
Integrating behavioural design into the virtual

environment development process

James Stephen Willans
Submitted for the degree of Doctor of Philosophy

The University of York
Department of Computer Science

Human-Computer Interaction Group

November 2001

Abstract

A number of specifications formalisms have been developed (or applied) to support
the abstract design of the behavioural component of the virtual environment inter-

face. These formalisms subscribe to the philosophy that virtual environments should
be viewed as hybrid systems which combine discrete and continuous behaviour. A

significant deficiency in designing behaviour in this way is that the designs cannot be

directly executed and explored in the same manner as an implementation. This limi-

tation makes it difficult for a designer to evaluate the suitability of designs. The thesis

presents the Marigold toolset which supports two approaches to evaluating behaviour

described using the Flownet hybrid formalism.

The first approach involves refining the design to an implementation prototype

where it can be explored with users. An emphasis within this approach is a usable

means of integrating the behaviour with the components that form the direct interface

to the users (the presentation) such as devices. This is achieved by the use of visual
data flow networks. The second approach involves the analysis of Flownets so that

characteristics of the design can be automatically checked. A consideration within
this approach is a usable means of specifying the properties and understanding the

results of the analysis.
A secondary focus of the thesis is a requirements specification approach for virtual

environments. This is motivated by reports that one of the problems with the virtual

environment development process is an accurate interpretation of the users require-

ments by the designers. The approach elicits requirements in a language familiar to

the users, and translates these into a specification that can be used by a designer to

construct designs. The Primrose tool has been developed to support this approach.

Contents

Introduction 15
1.1 Virtual environments 15

1.2 Virtual environment design 16
1.3 Evaluating designs 18
1.4 Thesis overview 19

2 Background 21

2.1 Behavioural design formalisms
..............

21

2.1.1 HyNet
22

2.1.2 Flownet
27

2.1.3 Tufts formalism
...................

28

2.1.4 Discussion
29

2.1.5 Summary
......................

31

2.2 Prototyping designs
31

2.2.1 Traditional approaches 32

2.2.2 Virtual environment approaches 35

2.2.3 Discussion 38

2.3 Analysing designs 39

2.4 Conclusion
......................... 40

3 Flownets 41

3.1 Discrete components
41

3.1.1 Basics 41

3.1.2 Inhibitor arc 42

3.2 Continuous components 43

3.2.1 Data input/output 43

3.2.2 Continuous to discrete
.............. 44

3.2.3 Discrete to continuous 44

3.2.4 Transforming and storing data
......... 45

3.3 Dynamic behaviour
.................... 46

3

CONTENTS 4

3.4 Examples 48
3.4.1 Mouse based flying 48
3.4.2 Door 49

3.5 Conclusion
................................. 50

4 Prototyping Flownets 51
4.1 Introduction

...........................
51

4.2 Prototyping interaction techniques
53

4.2.1 Building the specification
53

4.2.2 Constructing a prototype
56

4.3 Prototyping world object behaviour
.............

58
4.3.1 Building the specification

59
4.3.2 Integration of behaviour and appearance

60
4.3.3 Constructing a prototype

61

4.4 Non-static binding
....................... 63

4.4.1 World object grouping 63

4.4.2 Dynamic binding
.................... 64

4.5 Conclusion
........................... 66

5 Analysing Flownets 68

5.1 Introduction 68

5.2 Properties
....................... 70

5.2.1 Correctness
.................. 70

5.2.2 Usability
................... 71

5.2.3 Discussion 73

5.3 Building a reachability tree 74

5.4 Analysing the reachability tree 77

5.4.1 Safety properties 77

5.4.2 Liveness properties 79

5.5 Mode confusion analysis 82

5.5.1 Applying the analysis 84

5.5.2 Discussion
................... 84

5.6 Discussion 86

5.7 Conclusion 88

6 Virtual environment requirements specification 89

6.1 Introduction 89

6.2 Overview 90

6.3 Applying the approach 92

CONTENTS 5

6.3.1 Eliciting user requirements
92

6.3.2 Specifying designer requirements
93

6.3.3 From scenarios to requirements tree
95

6.3.4 From requirements tree to designs
........

96

6.4 Kitchen example
99

6.5 Primrose
...........................

104

6.6 Discussion
..........................

105

6.7 Conclusion
.........................

106

7 Case studies 108
7.1 Introduction

.........................
108

7.2 Navigating a landscape
...................

109

7.2.1 Initial design
....................

109

7.2.2 Two-handed flying
................. 110

7.2.3 Mode confusion analysis 111

7.2.4 Prototyping the design
............... 112

7.2.5 Substituting devices
................ 114

7.2.6 Offsetting the speed 114

7.2.7 Prototyping the design (2)
............. 119

7.3 A virtual kitchen
...................... 120

7.3.1 Oven
......................... 120

7.3.2 Toaster 126

7.3.3 Microwave 129

7.3.4 Interacting with the kitchen 132

7.3.5 Kitchen prototype 134

7.4 Aims revisited 136

7.4.1 Prototyping Flownets 136

7.4.2 Analysing Flownets 138

7.4.3 Guiding design using Primrose 138

7.5 Conclusion
......................... 139

Conclusion 141

9.1 Summarv of the thesis
141

8.2 Contribution
8.3 Designing virtual environments
RA Poe-cnf wnrlz- (rp-%;, i. Qif. pcII

.................... 142

.................... 142
%. j .ý 11 -- ký -I- -1

8.5 Future work
8.5.1 Prototyping
8.5.2 Analysis

..................

............. 143

............. 144

............. 144

............. 145

CONTENTS

8.5.3 Requirements specification
145

AA semantics for Flownets 147

A. 1 Overview
......................

147

A. 2 Flownet configuration
147

A. 3 Transformation operations
151

A. 3.1 Sensor
....................

151

A. 3.2 Place
....................

151

A. 3.3 Transition
152

A. 3.4 Flow control
154

A. 3.5 Transformer
155

A. 3.6 Operation ordering
156

B Marigold details 160

B. 1 Code generation
160

B. 2 Editing node properties
164

B. 3 Device stubs
165

Bibliography 167

List of Figures

1.1 AC31) world object modeller 17
1.2 Implementation flexibility/abstract ion tradeoff 18

2.1 HyNet discrete transition (taken from [Massink, Duke, and Smith 1999]) 23
2.2 HyNet continuous transition (taken from [Massink, Duke, and Smith

19991) 24
2.3 Partial HyNet specification of the mouse-based flying interaction tech-

nique (taken from [Massink, Duke, and Smith 1999]) 25
2.4 Complete HyNet specification of the mouse-based flying interaction

technique (taken from [Massink, Duke, and Smith 1999]) 26
2.5 Flownet specification of the mouse-based flying interaction technique . 27
2.6 Specification of mouse-based flying using the Tufts formalism

..... 29

2.7 A comparison of using state transition diagrams with Petri-nets to
describe dependencies between concurrent discrete state behaviour

.. 30

2.8 Seeheim UIMS Architecture [Pfaff 1985] 32

2.9 An example of a UIMS dialogue specification (taken from [Olson 1992]) 33

2.10 An example of an application interface component within a UIMS

(taken from [Olson 1992]) 33

2.11 Animating a Statechart specification using the Statemate tool [Harel,

Lachover, Naaad, Pnueli, Politi, Sherman, Shtull-Trauring, and Trakht-

enbrot 1990]
34

2.12 CSP description of channels linking the behaviour to an implementa-

tion (taken from [van Schooten, Donk, and Zwiers 1999]) 36

2.13 Partial listing for the mouse-based flying interaction technique specified

using PMIW 37

2.14 The presentation concepts for a virtual environments and their relation
to the behaviour 38

3.1 A simple condition-event Petri-net 42
3.2 Examples to illustrate the firing rules of condition-event Petri-nets -. 42
3.3 An example of an inhibitor arc 43

7

LIST OF FIGURES 8

3.4 An example of systems dynamics modelling notation
43

3.5 Flownet plugs linked to continuous arcs
44

3.6 A plug link directly into the condition-event net
44

3.7 Example of sensors relating continuous and discrete behaviour
44

3.8 Example of flow controls relating discrete and continuous behaviour - 45
3.9 A common transformer store configuration

45
3.10 An example net to demonstrate the potential conflict of transition be-

haviour
................................... 46

3.11 The execution cycle of a Flownet
.....................

47
3.12 Flownet for the mouse-based flying interaction technique

48
3.13 Flownet for the behaviour of a door world object

49

4.1 An example of a "body electric" data flow specification (taken from [Kalawsky

1993, p218]) 52
4.2 Combining the advantages of Flownets for behavioural design with data

flow networks for prototyping 53

4.3 Flownet specification for the mouse-based flying interaction technique 54

4.4 (a) Adding variables to the mouse input plug (b) Adding conditional

code to the middle mouse button sensor (c) Adding process code to

the position transformer 55

4.5 Prototype specification for the mouse-based flying interaction technique 57

4.6 Flownet specification for a complex locking door world object (discrete) 59

4.7 Flownet specification for a complex locking door world object (contin-

uous) 60

4.8 Complex object specification for a locking door world object 61

4.9 Mouse based flying prototype specification expanded to include a sim-

ple manipulation interaction technique and a locking door world object 62

4.10 The door closed and locked (top left), the door unlocked and opened
(top right), the door prevented completely closing by the locked lock

(bottom)
...................................

63

4.11 A specification illustrating the two forms of non-static binding con-

structs supported by Marigold 65

4.12 Screenshot of the drawer world object 66

5.1 An overview of the analysis process 69

5.2 Discrete part of a Flownet specification for a locking door world object 74

5.3 First part of the reachability tree generated for the locking door Petri-net 75

5.4 Complete reachability tree generated for the locking door Petri-net
.. 76

LIST OF FIGURES

5.5 Dialogue box to check the reachability of a specific marking for the
locking door

5.6 Dialogue box to check the reachability of a sequence of markings for
the locking door

5.7 Dialogue box reporting that all states are reachable within the locking
door

5.8 Dialogue box reporting that all states are not reachable within the
locking door

5.9 A dialogue box specifying that the locking door is free from deadlock
5.10 An amended design of the locking door to illustrate deadlock
5.11 The dialogue reporting that the amended design of the locking door

suffers from deadlock
5.12 The configuration of Flownet components which enables the rendering

of a change to the external environment
5.13 Rendering a new state to the external environment
5.14 Flownet specification for the mouse-based flying interaction technique
5.15 The dialogue to the mode checking analysis reporting that mouse-based

flying may cause mode confusion
5.16 The revision of the mouse-based flying interaction technique taking

into consideration the potential mode confusion
5.17 The mode confusion analysis result of the revised mouse-based flying

design

6.1 Overview of requirements specification approach
6.2 A scenario describing how the user opens a window in their office ...
6.3 The structuring of key requirements in the requirements tree
6.4 The evolution of the requirements tree (right) as the example scenario

(left) is analysed
6.5 Interpreting the world object requirements from the requirements tree

6.6 Interpreting the behavioural requirements from the requirements tree .
6.7 Mapping the behavioural requirements of the window pane world ob-

ject onto the discrete component of a Flownet design using the Marigold

9

78

79

80

80
81
82

82

83
84
85

85

86

86

92

93

94

96
97
97

HSB 98

6.8 A Marigold COB specification for the opening window 99

6.9 Using an oven to fry an egg scenario 99

6.10 Including the frying egg scenario in the requirements tree 100
6.11 Using the microwave to heat beans scenario 100
6.12 Including the microwave scenario in the requirements tree 101
6.13 Using the toaster to make toast scenario 102

LIST OF FIGURES 10

6.14 Including the toast scenario in the requirements tree 103
6.15 A screenshot of the Primrose tool 104
6.16 The requirements tree within Primrose 105

7.1 A prototype specification using mouse-based flying technique to navi-
gate the landscape

............................. 110
7.2 Flownet specification for the two-handed flying technique

111
7.3 The mode confusion analysis result of the two-handed flying interaction

technique 112
7.4 Revised Flownet specification for the two-handed flying technique ad-

dressing potential mode confusion 112
7.5 Prototype specification with an indicator to avoid mode confusion -- 113
7.6 Two-handed flying screenshot 114
7.7 Prototype specification using Polhemus trackers 115
7.8 Revised Flownet specification for the interactive jog dial

........ 117
7.9 Complex object specification for the interactive jog dial 118
7.10 A prototype specification constructed to evaluate the jog dial 118
7.11 Jog dial screenshot 119
7.12 Revised two-handed flying Flownet to facilitate the external input of a

speed offset 119

7.13 Prototype specification for navigating a landscape using the two-handed

flying technique with the jog dial technique determining an offset speed 120

7.14 Requirements tree exposing those requirements for the oven (within

Primrose)
..................................

121

7.15 Flownet specification for the oven world object 123

7.16 Analysing the oven for a correctness property 124

7.17 Revised Flownet specification for the oven world object 124

7.18 Complex object specification for the oven world object 125

7.19 Oven in its initial state (top left), oven with gas switched on and igni-

tion switch being pressed (top right), frying the eggs (bottom)
.... 125

7.20 Requirements tree exposing those requirements for the gas toaster
(within Primrose) 126

7.21 Flownet specification for the toaster world object 127

7.22 Complex object specification for the toaster world object 128
7.23 Toaster in its initial state (left), pulling the toasters slider to begin

toasting the bread (right)
......................... 128

7.24 Requirements tree exposing those requirements for the microwave (within

Primrose) 129
7.25 Flownet specification for the microwave world object 130

LIST OF FIGURES 11

7.26 Complex object specification for the microwave world object
131

7.27 Microwave in its initial state (top left), placing food into the microwave
(top right), setting the timer (bottom) before pressing the on switch - 131

7.28 Requirements tree exposing those requirements for the user interaction 132

7.29 Flownet specification for the sticky-hand interaction technique
133

7.30 Prototype specification for the virtual kitchen
135

7.31 Kitchen virtual environment
135

7.32 The requirements specification and design process supported by Marigold

and Primrose
139

8.1 Supporting the top-down and bottom-up design of virtual environ-

ments using specification and prototyping
143

A. 1 The execution cycle of operations on a Flownet
157

B. 1 Resolving complex object specification links during code generation -- 161

B. 2 Algorithm for executing a Flownet
162

B. 3 Mapping from PB specifications to implementation code
163

BA Main algorithm for executing Flownet specifications
164

B. 5 (a) Editing the properties of a viewpoint node (b) editing the prop-

erties of a dynamic bind node (c) editing properties of a world object

rendering node
165

B. 6 The device stub for a Polhemus tracker
166

Acknowledgement s

I am indebted to my supervisor Professor Michael Harrison whose support, advice

and friendship has made my research so enjoyable. Although the work presented in
the thesis is my own, a number of further individuals have enhanced my thoughts.
Dr. Shamus Smith provided a sounding board for ideas that matured as a result of
his feedback. The f6flmal methods and graphics expertise of Dr. David Duke provided

useful insights into the strengths and limitations of my ideas. Useful feedback has

also been provided by Dr. Mieke Massink, Dr. Jos6 Campos, Dr. Darren Priddin,

Professor Colin Runciman, Karsten Loer and I am particularly grateful for corre-

spondences with Professor Robert Jacob (Tufts University). Jon Cook (University

of Manchester) provided excellent support for the Maverik toolkit, and James Carter

provided local support beyond the call of duty for my machines. Ben Challis and
Shamus Smith were, and remain, excellent friends. Maria looked after me when I was

not working, and continues to make an important difference. This thesis is dedicated

to my parents and it is for their support, above all, which I am most grateful.

12

Declaration

Much of the work presented in this thesis has already been published elsewhere co-

authored with Michael Harrison [Willans and Harrison 1999; Willans and Harrison

2000a; Willans and Harrison 2000b; Willans and Harrison 2001a; Willans and Harri-

son 2001b], Michael Harrison and Shamus Smith [Willans, Harrison, and Smith 2000,

Willans, Smith, and Harrison 2001a; Willans, Smith, and Harrison 2001b] and David

Duke and Shamus Smith [Smith, Duke, and Willans 2000]. Parts of chapter 6 are
based on collaborative work with Shamus Smith and David Duke. In all other cases,
I have presented only those aspects of the work which are directly attributable to me.

An article about the work presented in this thesis has appeared in Technology Re-

search News [Patch 2001].

13

To my parents, Stephen and Mary

14

Chapter 1

Introduction

This thesis is concerned with the design of 3D virtual environment interfaces (some-
times called virtual reality interfaces). In recent years the use of 3D virtual environ-
ments has become more widespread, partly as a consequence of diminishing technol-

ogy costs and partly due to the availability of development applications such as the
Maverik toolkit [Hubbold, Dongbo, and Gibson 1996]. This class of interactive sys-
tem is beginning to realise its potential in applications such as training [Higgett and
Bhullar 1998; Hodges, Watson, Rothbaum, and Opdyke 1996], product prototyping
[Thompson, Maxfield, and Dew 1999] and data visualisation [Sastry, Boyd, Fowler,

and Sastry 1998] outside the context of specialised laboratories.

1.1 Virtual environments

The dominant form of computer interface continues to be the windows, icons, mice
and pointer (WIMP) interface. A defining characteristic of this interface is that, re-
gardless of application, the user interacts with consistent concepts such as menus and
buttons via consistent interaction techniques. This enables the user to use previous
knowledge of interaction to successfully interact with new applications. The consis-

tent nature of WIMP interfaces also has a favourable impact on their development.

A developer only needs to consider those aspects of the interface which are not reused

since the reusable concepts are known to be adequate (and are provided in standard
libraries). For instance, an interaction technique such as drag and drop does not need

to be redesigned for each new application, its usability and functionality (and other

concerns) are well established.
Virtual environment interfaces are commonly developed to simulate real world

interfaces, or interfaces to support highly specialised tasks where there are novel

concepts. Although there is a level of consistency in these types of applications, it
is much finer grain than that of WIMP interfaces. As a result, the development

15

VIRTUAL ENVIRONMENT DESIGN 16

of virtual environment interfaces is a non-trivial process. A developer must design

concepts in view of the requirements of each application and ensure that these designs

are usable. Our concern is with the design of the software part of virtual environment
interfaces. In the next section we examine the general approach to their design.

1.2 Virtual environment design

Two major components of a virtual environment interface are the visual world ob-
jects' that are rendered to a user and the behavioural rules that determine how the

environment responds to user interaction.

The world objects of a virtual environment are usually designed using 3D mod-
ellers such as 3DStudio [Auto desk-corp oration 1997] and AC3D [Colebourne 2001].
A screenshot of AC3D is shown in figure 1.1 displaying an office desk and chair world
objects. Using these tools, world objects are designed by dragging and dropping visual
primitives from a menu bar onto one of three views of the object being designed (front,

side and plan). The visual primitives are perceived as in the real world including de-

tails of colour, texture and their spatial positioning. This makes it easy for a designer

to make a transition between the requirements of the world objects (often described

using photographs or drawings) and their realisation within a design. In addition,
3D modellers provide the facility to interact with the world objects (figure 1.1 lower

right) by rotation and zoom, allowing the designer to evaluate the suitability of the

designs of world objects by exploring how it will appear in the finished environment.
Current research is shortcutting the transition between the requirements of world

objects and their designs further. The approaches presented in [Zeleznik, Herndon,

and Hughes 1996; Deering 1996] provide a means of translating rough sketches into

concrete designs of world objects. The approach described in [Gibson and Howard

2000] demonstrates how photographs can be translated into concrete design of world

objects with minimal human intervention.

In contrast, the design of the behaviour of a virtual environment is integrated into

its implementation. The abstractions used can take one of two forms or something
in-between. In the case of high-level implementation toolkits such as Alice [Pausch

1995], the behaviours are described using a language that has a (loose) correspondence

to concepts in the requirements (the real world), for example to make a rabbit world

object look at a helicopter world object: bunny. poZn tat (h elicopter) -
However there are

a limited number of predefined high level abstractions (such as pointat that can be

used. Alternatively, in the case of a low-level implementation toolkit such as Maverik

[Hubbold, Dongbo, and Gibson 1996], the behaviours are described using geometric
'Hereafter referred to as world objects.

VIRTUAL ENVIRONMENT DESIGN 17

Figure I. I: AC31) world object modeller

translations that bear little resemblance to how the requirements are expressed. Using

languages akin to Alice, abstractions can be used which relate to the requirements, but

their high-level nature limits what can be described. Languages like Maverik afford

greater flexibility, but the behaviour must be designed using low-level abstractions

which are difficult to relate to the requirements. This tradeoff between abstractions

and flexibility is visualised in figure 1.2. Implementation abstractions make it difficult

to achieve a description of the behaviour in a flexible manner using abstractions that

correspond to the requirements.
This problem can be resolved by separating the design from the implementation.

Here abstractions which are incomplete (non-execut able) are used. Thus providing

more flexibility and a better link with the requirements. A number of design spec-
ification formalisms have been developed (or applied) to support this (for example,
[Jacob 1996; Smith, Duke, and Massink 1999]). Such approaches build upon simi-
lar techniques developed for more traditional interactive systems where, for instance,

state-transition diagrams [Wasserman 1985], Petri-nets [van Bilion 1988] and State-

charts [van Z1jI and Mitton 1991, Horrocks 1999] are used.

1.3. EVALUATING DESIGNS

high

low

MAVERIK

Flexibility

ALICE

Abstraction

implementation
concepts

real
world
concepts

Figure 1.2: Implementation flexibility/ abstraction tradeoff

18

Despite the strengths of using such specification formalisms, a significant weak-

ness is they cannot be executed in the same manner as an implementation. This

makes it difficult to evaluate whether a design is correct [Carr 1996]. It is generally

considered that this deficiency is one of the main reasons behavioural specification
formalisms have not been more widely adopted [Carr 1996; Morrey, Siddiqi, Hibberd,

and Buckberry 1998]. The primary concern of this thesis is enabling the evaluation

of design specifications of virtual environment behaviour.

1.3 Evaluating designs

Newman and Lamming separate usability evaluation into two approaches [Newman

and Lamming 1995, p167]:

9 Empirically - by building prototypes of the design.

o Analytically - by analysing design specifications.

This distinction is equally applicable and useful to software evaluation per-se [Berry

and Wing 1985].

Prototyping designs

The prototyping of user interface designs is motivated by a need to involve the user

within the design process. Often users have difficulty articulating their precise re-

quirements for a system, but by interacting with a prototype the user can identify

strengths and weaknesses of a design. Prototyping is a critical part of the engineering

THESIS OVERVIEW 19

of user interfaces [Sommerville 1996, p153], as noted by Myers 'the only reliable way
to generate quality interfaces is to test prototypes with users and modify the design
based on their comments' [Myers 1989].

Analysing designs

Analysis is concerned with asking questions directly about a design. User interface
designs are commonly analysed using informal techniques [Newman and Lamming
1995, p167], however a weakness of this type of analysis is its imprecision [Campos
2000, p25]. The use of formal methods has been explored [Abowd 1991; Harrison and
Thimbleby 1990] to address this because their mathematical nature enables greater
certainty that the analysis is correct (though the wrong thing could be specified).
More recently the use of automatically analysing user interface designs has been

explored [PaternO 1995; Campos 2000].

1.4 Thesis overview

The main contributions of this thesis are approaches to evaluating designs of virtual

environment behaviour using prototyping and analysis. In order to support these

approaches, the Marigold toolset has been constructed. Marigold supports the design

of virtual environment behavioural using the Flownet formalism [Smith and Duke

1999b; Smith, Duke, and Massink 1999], and the refinement of designs to a prototype
by 'plugging' the designs into a presentation (interaction devices and world objects).
Analysis evaluation is enabled by Marigold's support for automatically checking prop-

erties of the Flownet designs.

A fundamental step prior to the design of any system is understanding the re-

quirements that the design must satisfy. Without an adequate means of eliciting the

requirements from the intended end-user and specifying these, the process of design

becomes difficult and error-prone. A further contribution of this thesis is an approach

to specifying virtual environment requirements in a manner that considers both the

end-user and the developer. The Primrose tool has been developed to support this

approach.

The thesis is structured as follows:

Chapter 2 Background examines the current state of affairs with respect to two

criteria. Firstly, the alternative specification formalisms for designing virtual

environment behaviour. Secondly, approaches to evaluating such behavioural

specifications.

1.4. THESIS OVERVIEW 20

* Chapter 3 Flownets details the existing Flownet formalism which we will utilise
as a behavioural design specification formalism within this thesis.

Chapter 4 Prototyping Flownets introduces the Marigold toolset and describes
how it supports a transition from Flownet designs to implementation prototypes.

e Chapter 5 Analysing Flownets describes support within the Marigold toolset
for the automatic analysis of Flownet designs.

Chapter 6 Requirements Specification introduces an approach to eliciting and

specifying virtual environment requirements. The Primrose tool is described

which supports the application of this approach.

Chapter 7 Case studies describes two case studies which apply the Marigold

toolset to the design of virtual environments.

Chapter 8 Conclusion reviews the contributions of this thesis and presents di-

rection for future work.

Chapter 2

Background

The purpose of this chapter is twofold. Firstly, in section 2.1 we review design for-

malisms used to describe virtual environment behaviour to justify our use of Flownets.
Secondly, in sections 2.2 and 2.3 we examine the extent to which current methods for

prototyping and analysing such descriptions supports the evaluation of designs. This

provides a context for the Marigold toolset.

2.1 Behavioural design formalisms

A number of formalisms have been explored for the specification of virtual environ-

ment behaviour at various levels of rigour. In [van Schooten, Donk, and Zwiers 1999;

Smith and Duke 1999a] CSP (communicating sequential processes) [Hoare 1978] is

used. The approach presented in [Kim, Kang, Kim, and Lee 1998] uses Statecharts

[Harel 1987] to describe non-user driven behaviour (the user observes passively).
These styles of specification abstract the behaviour into discrete, token style, steps.
The user generates a token and the computer responds with a token determined by

the state of the behaviour. For traditional interfaces such as those driven by menus

and those based on WIMPs, these techniques work well because they are rich enough
to reflect their command based nature [Jacob 1995].

When virtual environment behaviour is described using these techniques, it has

been found that the descriptions lack a level of richness adequate to characterise the

behaviour [Jacob 1995; Smith and Duke 1999b]. This is because the user's interaction

with the environment is often continuous and the user perceives the rendering of

the environment continually. This continuous behaviour should also be considered.
Consequently, virtual environments may be considered more conveniently as hybrid

systems and their behaviour modelled as a combination of discrete and continuous

components [Jacob 1996; Smith, Duke, and Massink 1999; Wiithrich 1999]. Dix and
Abowd also argue the need for this distinction in the wider context of interactive

21

2.1. BEHAVIOURAL DESIGN FORMALISMS 22

systems, although they refer to this as status (continuous) and event (discrete) [Dix

and Abowd 1996]. Three visual formalisms have been developed for (or applied to) the
hybrid specification of virtual environment behaviour: HyNet, the Tufts formalism

and Flownets.
For convenience we consider virtual environment behaviour as being of two types.

Firstly, interaction techniques that map the user onto the environment to support
navigation and the selection and manipulation of world objects. Secondly, world ob-
ject behaviour defining how world objects respond to user interaction. To compare
the three formalisms mentioned above, we shall use the interaction technique called
mouse-based flying. Mouse based flying enables navigation on the x and z axis using
the desktop mouse. The technique is initiated by pressing the middle mouse button.
When the mouse cursor is moved away from the position of the mouse click, navi-
gation through the environment begins. The user's speed and direction is directly

proportional to the angle and distance between the current pointer position at the

point the middle mouse button was pressed. Flying is deactivated by a second press
of the middle mouse button. Variations of this technique are used in many desk-

top virtual environment packages such as the Virtual Production Planner [BBC/Colt

International 1997] and VRML (virtual reality modelling language) [Carey and Bell

1997]

1 .1 HyNet

HyNet (Hybrid High-Level Petri-Nets) [Wieting 1996] builds on Petri-nets [Petri 1962]

using object-oriented concepts including inheritance and polymorphism. The appli-

cation of HyNets to virtual environment interaction techniques is demonstrated in

[Massink, Duke, and Smith 1999; Smith, Duke, and Massink 1999]. A HyNet speci-
fication is made up of a number of states and transitions which are related by arcs.

Tokens are moved dynamically from state to state by the transitions.

The transitions can either be discrete or continuous, and are inscribed with a five

part label which describes their firing capacity, activation condition, firing action,

delay time and firing time:

The firing capacity defines how often a transition can fire in parallel with itself.

e The activation condition is a boolean pre-condition for the transition firing to

take place.

* The firing action for discrete transitions consists of executable expressions, for

the continuous transitions it consists of a differential equation.

BEHAVIOURAL DESIGN FORMALISMS 23

The delay time (discrete transitions only) defines the time that must pass be-

tween firing and re-enabling the transition.

The firing time (discrete transitions only) defines the length of time the execu-
tion of the transition must take.

There are a number of different types of arcs linking places and transitions. In-
hibitor arcs prevent a transition firing (visually shown as an arc containing an open
circle in its centre). Conversely, enabling arcs enable a transition to fire (shown as an
arc ending in an open circle). The inhibitor or enabling arcs are activated if there is a
token present in the place they are connected to. Finally, there are standard Petri-net

arcs which are associated with a token type (weighting) defining which tokens can
pass.

Two types of tokens flow around a HyNet specification. Either simple Petri-net

tokens which mark the state of behaviour, or complex tokens which also mark the

state but are instances of classes.

[In

FC: I

p4
AC: x. at(l) >3 && z>0
FA: y=x. at(2) * x. at(l);

001, I] DT: 2
FT: z

Figure 2.1: HyNet discrete transition (taken from [Massink, Duke, and Smith 1999])

In figure 2.1 a discrete transition is illustrated which is related to four places.
Place pl contains two tokens (2,5) and is related to the transition via a Petri-net

regular arc. This transition specifies that two tokens can be carried and that these

are assigned to x. Place p2 contains no tokens and is related to the transition via an

inhibitor arc. Place p3 contains a single token (1) and is related to the transition via

an enabling arc. In order for a transition to fire (regardless of whether it is discrete

or continuous) it is necessary for every state targeting the transition via a regular arc

and enabling arc to contain enough tokens to match the weighting of the arc, and

for every state targeting the transition via an inhibitor to contain no tokens. This

axiom is satisfied in figure 2.1. In addition the activation precondition (AC) for the

transition must be satisfied. In this case, this means that the value of the token

carried on the enabling arc (z) must be greater than 0, and that the value assigned

to the first x (x. at(l)) must be greater than 3. This precondition can be satisfied by

the following execution x. at(l) = 5, x. at(2) =2 and z=1.

p2 p3
[Token, I [Int, 11

BEHAVIOURAL DESIGN FORMALISMS 24

When the marking of the net and the activation precondition has been satisfied,
then the delay time (DT) of 2 clock ticks begins, when this expires the execution of
the firing action occurs (FA). In this case the firing action specifies that the value of
x. at(l) should be multiplied by x. at(2) and the result (10) placed in p4. The (FT)

condition dictates that this should be completed in the number of time steps specified
by z (1). This transition can only fire once in parallel with itself (FC).

xy
____a F-I t p4

AC: y<4
PI FA: y'= -1 [Real, omega] z [Real, I

"ý
z

x' =0.5*z

01"
p2 p3

[Token, I [Int, 1]

Figure 2.2: HyNet continuous transition (taken from [Massink, Duke, and Smith
1999])

To illustrate a continuous transition consider the example in figure 2.2. The job

of a continuous transition is to continually change the value of objects in the adjacent

places. It is graphically described by a double box. The transition enabling condition
is the same as the discrete. In this example the precondition (AC) specifies that the

value of y should be less than 4. This precondition is continually checked before each
iteration of the transition execution, if the condition fails then execution is halted. In

this example, the value of y is decremented by 1, and the value of x is increased by

0.5 *z every clock cycle. This behaviour will continue until the precondition fails or
if a bounded (required) token is consumed by other behaviour in the net.

Shown in figure 2.3 is part of the mouse-based flying interaction technique specified

using the HyNet formalism. In this specification, the action conditions (AC) are shown

in the upper part of transitions and the firing actions (FA) are shown in the lower

part of transitions. The top part of the HyNet specification describes the behaviour

of the mouse. Initially there is a complex token in the Mouse state (denotated by

[Mouse, l]) which records the position of the mouse and the state of its buttons in

the f (x, y, vx, vy), 0,0,01 data structure. The position part of this token is continually

updated by the move mouse transition. When a mouse button press occurs, the

whenever you 1%ke transition records the state of the button in this token and returns

it to the Mouse state. The lower part of figure 2.3 describes how the state of the

complex token in the Mouse state changes the state of the technique. A transition

continually updates the complex token in the Cursor state which records the position

BEHAVIOURAL DESIGN FORMALISMS 25

I whenever you like I

o. vx = chg (i. vx) o. vy=chg (i. vy)

o-I = switch(i. 1) o. m=switch(i. rr,
o. r--switch(i. r)

01 Ii

move mouse
-M

(X, Y, vx, vy),
Mouse

M. X' = M. vx 0,0,0) [Mouse, l]

my = M. vy

m
m-m

M. M M. M= M. m M. M

C. P = cp(m. p) sp = sc(M. P) md. distx=0.0

md. disty = 0.0
md. x =look Ir

Cursor c Square sp
md. y = fw-b-w

[Cursor, II [Square, lj-2f. rn-IýJ-

((0.0,0.0))
Mode

[Mode, I

Figure 2.3: Partial HyNet specification of the mouse-based flying interaction tech-
nique (taken from [Massink, Duke, and Smith 1999])

of the mouse. This token is used in the expanded specification to render a cursor on

the screen to reflect the position of the mouse. When the Mouse token records that a

mouse button has been pressed (m. m= I) a discrete transition places a (simple) token
in the Square state, this is immediately removed by a further transition. A token in

the Square is used in the expanded specification to render a square to the user to

mark the origin of navigation. The Mode state is used in the expanded specification
to record how the direction of navigation through the environment. A (simple) token

is generated by a transition and placed in the Mode state when a mouse button has

been pressed. This token is immediately consumed by a further transition. Figure

2.4 describes a complete HyNet specification of the mouse-based flying interaction

technique taken from [Massink, Duke, and Smith 1999]. In addition to describing the

behaviour of the mouse and the interaction technique itself, this design details the

projection of the environment onto the screen (as indicated in the figure).

UNIVERSITY
OFYORK

- :, '-qARY

BEHAVIOURAL DESIGN FORMALISMS

whenever you like

o vx = chg (i vx) o. vy=chg (i, vy)

oI sýitch(i 1) o rý-s. ach(i m
o r=s. iLch(i. r) Mouse
0 i

ýve moýe
moý, c

m (xy. vx, vy),
m 0,0,0

............. mm-m-m

mm=l

sp
= -(M I

Cws. r c Sq-m sp
CUT-r. I [Sqmre, l

m
md distx=O 0
., d diýty =00
md. x = 1-k-Ir
rrkd y= fw-bw

- -Qý

Mode

(Mode, I

'P

Scr=

cj pjbx1

su

" distx' =p (m ýx)

" disty* =p (mvy)

m

26

class 2DC"dsp I)

class 3DCýrdsp I ?r

class Post Real xy);

class Box I Pos p)),

class M- t Pos P.
Bit Lau,

class Sqtwýj Pos lbxt,

Box sc ()

Box Sqý=.. ý (a) t mEum (tý(a)).)

I xmd(m)'=nxýy (m)'=ny I

n x=xmd m
n y=yZ m

ý

n

n

class Cursor I Pos P, Md Mode &md (a Mode) I

Pos cp retaa-ri if a] Lhen lookjr

l- else if ar then crab-Ir

Pos Cursor- cp (a) return (Lrans(a)),) else 1-k_lr),)

Md Mode yrnd (. McKie) t
class Md j Look-Ir, cmb-lr, look-ud, fw_bw, ri sefall return (if aI Lhen lookud

else if ar Lhen nse-fall
class McKie ý Real distx, else fw_b.),)

Real disty,

Md x, y,
Md xmd 0, /0 relate incýse in dist of rnouýse wiLh dist on screen
Md ymd Real Mode

,p (r. Real)(mtaa-raif C*r< boxsize
Real p then 00

cl, c c *r)

-I
ymý=

ýlk
m cmb-jlr m ym = nse-fall m ym = fw-b.

n, I-k 1,
-ud

v'=rotvwx(m xspýd) _ wy(m Y, v'=trnsvwy(m, yspeed) yspcýd)

rmt

p-d) v'=tms-xm xjTced)

Vieý

Ma(YO, 1

Scr

Screen

12DCý, sp I

s1

.......... - class MaLi, 41 Matrix4 view,)

par
XO'yO'ZO

/* rotation on x-axis of view ref system
vm vm= xN, yN. ýN

MaLrix4 Matr, 4
, rotvwx(s RealV

cr-te(par) V, YV. ZV
P rotation on y-axis of view ref system

Matrix4 Ma"4 rotvwy(s Real)j 1.

/* -f -iý, m i, - --i,

MaLrix4 Mau-x4 L-wx(s Rcal)ý

/* Lranýslauon of pos ref point in view y-amas diýfion
SC Scene

S Matfix4 MaLr-x4 Lrnsvvvy(siReal)ý

scr pmj (vrnprnsz)
13DCoorsp, I I

/* translation of pos ref point in view z-axis diýtion 0/

Matrix4 Matý4 tmsvwz(s ReaOt 1,

pm
/* ýtion of fint view rnatrix býed on lpý, nonrnal a. nd view-up vector

............ MaLrix4 MaLi-x4 cmaW A

Scene class Sacen J 2DCoomp Scr.).
ProjMatrix Projection Scmen pmj (ab MaLrix4. s 3DCoordsp)(

PM [Ma"4,1
'DCoordsp Scýeen

. piJbx (b Box)(1,

2DCoonIsp Screen piýlcý (c Pos)t 1.

Figure 2.4: Complete HyNet specification of the mouse-based flying interaction tech-

nique (taken from [Massink, Duke, and Smith 1999])

BEHAVIOURAL DESIGN FORMALISMS 27

2.1.2 Flownet

Flownetsl have been developed specifically for describing virtual environment be-
haviour [Smith and Duke 1999b; Smith, Duke, and Massink 1999]. Within Flownets
the discrete event/condition Petri-nets [Petri 1962] are augmented using constructs
based on a systems dynamics modelling formalism [Forrester 1961] for the continuous
detail. Flownets have been applied to the specification of both interaction techniques
[Smith and Duke 1999b; Smith, Duke, and Massink 1999] and the behaviour of world
objects [Smith, Duke, and Willans 2000].

In chapter 3 we describe Flownets in detail. In order to Ove an overview of the
formalism figure 2.5 illustrates the Flownet specification of the mouse-based flying
interaction technique. This has a clear interface to the data flowing in and out of the
technique via plugs (mouse and posdion). The state of the technique is denoted by

the presence of a token in either the idle or flying states. The continuous behaviour is
related to the discrete via sensors. For instance, when the middle mouse button sensor
triggers, a token is placed in the idle state (via the start transition). The discrete

behaviour is related to the continuous via flow controls which are enabled or disabled

depending on the state of the associated discrete component. For instance, when
there is a token in the flying state, the corresponding butterfly flow control is enabled

which transforms (1E) the position of the environment based on the origin position
(the position of the middle mouse button click) and the current mouse position. This

is output to the posthon plug.

Figure 2.5: Flownet specification of the mouse-based flying interaction technique

'Not to be confused with Flow Nets [Flaus and Ollagnon 1997] which is used for the hybrid

modelling of process control systems.

mouse position

2.1. BEHAVIOURAL DESIGN FORMALISMS 28

2.1.3 Tufts formalism

The formalism developed by Jacob et. al and presented in [Jacob 1996; Jacob, Deligian-

nidis, and Morrison 1999; Morrison and Jacob 1998] was also developed specifically
for the specification of virtual environment behaviour at Tufts University. Within
this the discrete components are described using state transition diagrams and the
continuous components using links and variables. Unlike HyNets and Flownets, there
is no diagrammatic relation between the two representations, this relation is achieved
by the cross referencing of variables.

Figure 2.6 shows the specification of mouse-based flying using the Tufts formal-
ism. The lower part shows the state transition diagram which specifies the three
discrete states that the technique can be in (inactive, idle and flying). The upper
part describes how data stored in variables (circles) is continually transformed by links
(square boxes) when they are enabled. Links are enabled when the current discrete

state matches their identity (this plays the same role as a Flownet flow control). For

instance, when the user is in the discrete state of flying the link labelled FLYING is

enabled. This allows information contained in the mouse and originPos variables to
flow into the position variable.

The relation between the continuous and discrete part enables the firing of discrete

transitions (and is the equivalent of a Flownet sensor). These are defined by functions

on continuous variables. For instance, the function MOUSE. pos (outorigin) describes

a threshold on the continuous mouse variable which detects when the position of
the mouse has moved away from the origin position (the function itself, such as

pos(outorigin), is not explicitly captured in the formalism). When the threshold
MOUSE. Pos (outorZgin) occurs, and the technique is in the idle state, the state of
behaviour will change from idle to flying.

2.1. BEHAVIOURAL DESIGN FORMALISMS

originPos
Ll
Lj

1 idientity

-p-L

IDLE

moge
INPUT

identity position
FLYING OUTPUT

BUTTON2. DN MOUSE. pos(outorigin)

inactive idle (f lying

BUTTON2. UP MOUSE. pos(inorigi/)

BUTTON2. UP

Figure 2.6: Specification of mouse-based flying using the Tufts formalism

2.1.4 Discussion

29

In the previous sections we have described three approaches to specifying virtual
environment behaviour using hybrid formalisms. Although we have not described the
formalisms exhaustively we have given enough detail to illustrate the main concepts

and their use in modelling the mouse-based flying interaction technique. Of the three
formalisms, HyNet is the most complex to understand and relate to the informal

textual description of the interaction technique. However, this is not a fair comparison

since this design also includes that of the mouse input device and the projection of the

environment as output to the user. Even taking this into consideration, HyNet is still
the most detailed specification because of its inclusion of precise details of the data

flowing around the specification. While it remains a purely behavioural specification

and does not include many details required for its implementation, concepts such as

the concrete data description are similar to those used in an implementation rather
those in the requirements. This kind of detail becomes more important as a design is

refined towards a final implementation, however it is less critical in the earlier stages of
design. As such, HyNet value is better placed as an implementation design formalism

rather than one to be used for initial designs. This is an opinion also expressed in
[Smith, Duke, and Massink 1999].

Flownets and the Tufts formalism are similar in many respects. They both make a

clear distinction between those concepts which are continuous in nature and those that

are discrete. They both use a standard notation to describe the discrete behaviour.

BEHAVIOURAL DESIGN FORMALISMS 30

However, Flownets are advantageous because they use a concurrent formalism to
describe the discrete component. The reasons for this will now be discussed.

Concurrency

In the case of interaction techniques the discrete part of the formalisms describes the

state of the user and how their input should be interpreted (the mode of interaction).
Often interaction techniques for virtual environments are multi-modal where the user
is in multiple states concurrently. For instance, in the head-butt zoom interaction

technique [Mine, Brooks Jr, and Sequin 1997] the users uses their hands to form a

viewing window and the location of their head to zoom in and out of the window.
The hands of the user can be in a number of states (form window, window formed

and resize window) and the head of the user can be in a number of states (zoom out,
static and zoom in) concurrently. These concurrent states are often dependent on
each other, for instance the window must be formed in order to be able to zoom.

door closed door closec
d

Oooer

d
door & locked & unlocked

lock locked unlocked

door door
open closed dooropen dooropen

8,1

C

or op
8, lockepd

pre: door-unlocke & unlocked

(a (b (c

Figure 2.7: A comparison of using state transition diagrams with Petri-nets to describe

dependencies between concurrent discrete state behaviour

For world objects the discrete part of the formalism describes the state of the

objects and how input should be interpreted. World objects often have many compo-

nents that behave independently but which have dependencies on one another, in a

similar manner to interaction techniques. For instance a locking door may consist of

the door itself and a lock. The door can be in a number of states (open and closed)

and the lock can be in a number of states (locked and unlocked) concurrently. A

dependency may exist describing that the door cannot be opened when locked.

The Tufts formalism uses state transition diagrams to describe the discrete compo-

nents. Although state transition diagrams do not describe concurrent state behaviour,

a number of techniques can be applied to bypass this limitation. One approach is to

model the concurrent components as separate diagrams. Using this approach it is nec-

2.2. PROTOTYPING DESIGNS 31

essary to describe dependencies between diagrams using pre-conditions (or guards) on
the transitions which reference other diagrams. The pre-condition must be satisfied
in order for the transition to take place. This approach succeeds with interaction
techniques because these usually have a small (discrete) state space. However, world
objects often have a much larger state space reflecting the complexity of real world
objects. This makes it difficult to comprehend the resulting design. An alternative
approach is to interleave behaviours. Again, for interaction techniques this can work
(and is the approach adopted by the Tufts formalism in [Morrison and Jacob 1998]),
however with the larger state space of world objects (not explored for the Tufts for-

malism) this results in an of states and transitions. An example of using these two
techniques is illustrated in figure 2.7 (a) and (b) for a locking door world object.
Essentially using state transition diagrams to model concurrent behaviour is going
against the grain of the formalism. This limitation of state transition diagrams is also

expressed in [Foley, van Dam, Feiner, and Hughes 1990, p458-459] in the context of

modern interfaces generally.
The Flownet formalism uses Petri-nets to describe the discrete components. Petri-

nets were designed to overcome the inability of sequential formalisms (state transition
diagrams, for example) to describe concurrency. Consequently it can model with ease
the concurrent state behaviour of interaction techniques and world objects. The

locking door world object is described using a Petri-net in figure 2.7 (c).

2.1.5 Summary

In this section we have drawn a number of conclusions:

Three hybrid formalisms have been developed for (or applied to) the specifica-

tion of virtual environment behaviour: HyNet, Flownets and the Tufts formal-

ism.

9 The value of HyNet is as an implementation specification formalism rather than

for the description of initial designs.

Although Flownets and the Tufts formalism are similar, Flownets supports the

specification of discrete concurrency which is important for the description of

virtual environment behaviour.

2.2 Prototyping designs

In this section we examine efforts to translate design specifications of behaviour into an
implementation of the behaviour. First, we examine approaches to achieving this with

2.2. PROTOTYPING DESIGNS 32

specifications of traditional interfaces. Secondly, we examine approaches to achieving
this specifically for behavioural specifications relating to virtual environments.

2.2.1 IYaditional approaches

ulms

The challenge addressed by user interface management systems (UIMS) is to separate
the semantics of the user interface from the application. This allows the interface to
be designed independent of application concerns. In addition, different interfaces can
be designed for the same application (this is useful when there are multiple users with
different concerns).

The most common interpretation of a UIMS is the Seeheim architecture [Pfaff

1985] shown in figure 2.8. This separates the user interface into three components.
The presentation component which receives raw data from input devices and renders
some interface (usually visually) to the user. The application interface component

which communicates directly with the application. The dialogue component which
manages the dialogue of interaction between the presentation and the application com-

ponents. Efforts have largely focussed on describing the dialogue component using
formalisms such as state transition diagrams [Denert 1977; Jacob 1986] and State-

charts [van Zijl and Mitton 1991; Wellner 1990; Lucena and Liesenberg 19941. For

the purposes of our discussion the dialogue component can be considered equivalent
to what we call behavioural design specifications in section 2.1.

User Presentation Dialogue Application Application HH
interface

Figure 2.8: Seeheim UIMS Architecture [Pfaff 1985]

A review of the various realisations of UIMS is presented in [Beaudouin-Lafon

1994]. However, the general approach is consistent. We will illustrate this using

the dialogue description shown in figure 2.9 (taken from [Olson 1992, p37]). This

describes how the user can draw a line or a rectangle interactively. The dialogue

receives (logical) events from the user, in figure 2.9 these can be Line, Rectangle and
MouseDown. These events change the state of the dialogue according to its current

state and also call actions, for example Pl: =MouseLoc, DrawLine and DrawRect.

2.2. PROTOTYPING DESIGNS

s
Line MouseDown

L2
Pl: =MouseLoc

MouseDown

DrawLine(Pl, MouseLoc)

MouseDown

Rectangle LJICLVVFItVUtkr I, IVIVUbULL)U)

(: ý,

-
M. u.. Down

III Pl: =MouseLoc
R2

33

Figure 2.9: An example of a UIMS dialogue specification (taken from [Olson 1992])

The main application contains a loop which continually propagates events to the
dialogue and checks for actions from the dialogue (figure 2.10, also taken from [Olson

1992, p39]).

CurrentState :=S,
Repeat
I

GetEvent(E);
Select a transition T using CurrentState and E
DoConunand (Action (T));
CurrentStateNextState (T)

1

Figure 2.10: An example of an application interface component within a UIMS (taken
from [Olson 1992])

2.2. PROTOTYPING DESIGNS

Statemate

34

Statemate [Harel, Lachover, Naaad, Pnueli, Pollti, Sherman, Shtull-Trauring, and
Trakhtenbrot 1990] is a tool which supports the prototyping of Statechart [Harel

1987] specifications. Within Statemate, transitions can be linked to events from wid-
gets such as buttons, and variables can be linked to functions on display widgets. As

the user interacts with the widgets they behave according to the Statechart specifica-
tion. In this way, Statemate can be seen as a form of UIMS. However, unlike typical
UIMS, the presentation of the prototype is not the actual intended presentation of
the specification. For instance, the consequence of interaction with a behavioural
design for an aircraft interface might be explored using the limited widgets supplied
with Statemate (figure 2.11) rather than the devices of the real aircraft. This style of
prototyping is more commonly known as specification animation and is also used in
[Systd 1995] for evaluating formal specifications of user interfaces.

Fae Edit View Layo" Tools OVIZons geo

Refranel Deletel Undo
-- ----------

In:: ý, x T-1

4LIMBING

OTIS. . kjFSCENDING

FILTACQ

119

Figure 2.11: Animating a Statechart specification using the Statemate tool [Harel,

Lachover, Naaadj Pnueli, Politi, Sherman, Shtull-Trauring, and Traklitenbrot 19901

2.2. PROTOTYPING DESIGNS

2.2.2 Virtual environment approaches

35

The approach presented in [Kim, Kang, Kim, and Lee 1998] uses an existing tool for
building real-time system models (ASADAL/PROTO), the authors claim the abil-
ity to generate virtual environment prototypes of the models, but conclude with a
proposal of code generation as future work (there is no detail of how this might be

achieved). However [van Schooten, Donk, and Zwiers 1999] and [Morrison and Ja-

cob 1998; Jacob, Deligiannidis, and Morrison 1999] present concrete examples of the
transition from behavioural designs to implementations.

1ý-Om CSP

[van Schooten, Donk, and Zwiers 1999] describes how a behavioural specification
described using concurrent sequential processes (CSP) [Hoare 1978] can be used to

prototype a virtual environment based on an earlier approach for traditional interfaces
[Alexander 1990]. This is achieved by two communicating processes. AC program im-

plements the CSP engine and the presentation component is realised using a TCL/TK

process. In the CSP specification some processes are allocated special virtual envi-
ronment communication channels. These processes can then handle events from the

presentation and/or call commands in the presentation. Illustrated in figure 2.12 is

an example taken from [van Schooten, Donk, and Zwiers 1999]. This describes how

the behavioural specification for TableClosed and TableOpen is linked to the input

events openO7 closeo and usertablerefresh. Additionally there is an output channel

userchck which calls a function to create a button labelled chck.

From the Tufts formalism

PMIW [Morrison and Jacob 1998; Jacob, Deligiannidis, and Morrison 1999] is a soft-

ware model to support the implementation of designs constructed using the Tufts

formalism (section 2.1.3). The VRED 2 editor was developed to support the spec-

ification of designs. It was originally intended that this editor would support the

automatic generation of implementations, but this is not currently the case and the

transition must be manually achieved by coding the design directly. The PMIW

software model is based in C++ and uses the IRIS Performer virtual environment
libraries. In order to realise a design using PMIW it is necessary to encapsulate the

details of the behaviour in a class. This class is instantiated from a further class which
is also responsible for constructing the remainder of the environment and the run-

time maintenance of the environment. We will illustrate the use of PMIW using the

mouse-based flying specification in figure 2.6. The partial code for the behaviour class
'The meaning of the PNIINV and VRED acronyms are unclear.

2.2. PROTOTYPING DESIGNS

Table ý
type [window]
inputf

usertableopen receive
usertableclose receive
usertablerefresh receive

[openol I
Ecloseol I
[showtext(I'Table filled")]

I

outputj userclick
init [createbutton("click")]

I
I= TableClosed

TableClosed =
opentable usertableopen TableOpen
closetable TableClosed

TableOpen =
opentable usertablerefresh TableOpen
closetable usertableclose TableClosed
userclick textout2-perftime -> TableOpen

36

Figure 2.12: CSP description of channels linking the behaviour to an implementation
(taken from [van Schooten, Donk, and Zwlers 1999])

for mouse-based flying is shown in figure 2.13 (the complete code is approximately
three times its length).

In the behaviour class, the variables are defined and links are instantiated. This

is illustrated for the variable to record the origin position (line 5), the link to update
the origin position (line 12) and the link to update the position of the environment
(line 16). Each link has its own class which contains a constructor and an evaluation
function. The constructor adds input and output variables to lists (lines 50-56),

and the evaluate function describes how the variables in these lists are transformed

(lines 62-64). The discrete part of the design is described using a special language

(originally developed for [Jacob 1986]) embedded in the C++ code, which is parsed

and translated prior to compilation. This is illustrated in figure 2.13 for the three

discrete states of mouse-based flying (lines 23-37). The discrete behaviour is linked

to the continuous variables (lines 26,27) in order for the variables to be enabled as a

result of discrete interaction.

A behavioural class is instantiated in a second class. The second class is respon-

sible for the construction of the environment including initialising world objects and

adding these to data structures, and the initialisation of devices and ensuring that

these are polled at runtime.

2.2. PROTOTYPING DESIGNS

2* instantiate continuous variables
3

4

5 originPos = new Variable<pfVec3 > (VariableBaseAll INT);
6

7

8* instantiate continuous links
9

10

11 extern MouseCursor *mouse;
12 Link *identity = new LinkRecord Origin (mouse, originPos
13 identity ->SetName ("LinkRecordorigin");
14

15 extern PfWindow *pfwindow;
16 Link * identity = new LinkFlying (originPos mouse, pfwindow
17 identity ->SetName ("LinkFlying");
18
19
20 * state transition event handlers (parsed before compile)
21

22
23 bool mbf:: IhIo (Token token)
24 <std >
25 mbf->end
26
27 inactive BUTTON2. DN-> idle

28
29 Enable : recordOrigin
30 idle BUTTON2. UP-> inactive
31 Cond: originEvent->outOrigino; -> out0forigin
32
33 Enable: flying
34 out0forigin BUITON2. UP-> inactive
35 Cond: origin Event ->in Origin recordOrigin
36 ;
37 </std>
38
39
40 link discrete events to continuous links
41

42
43 recordOrigin = new Condition (Link Record Origin

44 flying = new Condition (LinkFlying

45
46
47 * constructors for links
48

49
50 mbf:: LinkRecordOrigin LinkRecordOrigin Variable <pfVec3 > *src ,

Variable<pfVec3 > *dest

52 assert src NULL);

53 assert dest NULL);

54 ins->Add (src
55 outs->Add (dest

56
57
58
59 transformation functions for links
60
61
62 void mbf:: LinkRecordOrigin :: Evaluate

63 dest->SetI (src->getI);
64 }

37

Figure 2.13: Partial listing for the mouse-based flying interaction technique specified
using PMIW

2.2. PROTOTYPING DESIGNS 38

2.2.3 Discussion

An important part of the prototyping approaches previously discussed is the linking

of the behaviour (or the dialogue) to the presentation which defines the concrete
interface to the user. The presentation is made up of a number of concepts. Input
devices receive interaction from the user, and the system renders some state via
output devices. Usually the rendering of this state takes place visually. For virtual
environments the visual rendering of the environment is described using world objects
constructed using a 3D modeller. This taxonomy is illustrated in figure 2.14.

world

output
(objects

input
ý§ devices

s sp c icatiol
devices behýaviour

i ns pecifications

Figure 2.14: The presentation concepts for a virtual environments and their relation
to the behaviour

The UIMS approach provides a means of implementing specifications by linking

the specifications to events and actions provided by the presentation. The focus

of the effort has been on the exploration of languages for describing the dialogue

(behavioural) component. The definition of the presentation component is usually

described in an underlying toolkit. This toolkit describes the events and actions that

the presentation supports, and the binding between these and the concrete realisation

of the presentation concepts. In order to change the bindings it is necessary to alter

the toolkit program code definition. However, rarely does this need to happen in

interfaces such as WIMPs because of their consistent device interface (mouse and

keyboard) and rendering to the user (windows and widgets).
Similarly, the Statemate approach links specifications to a consistent presentation

of widgets and devices via events and actions. The important difference is that the

presentation of the prototype (animation) is not (usually) the intended final presen-

tation. The input devices and appearance of display may all be different in the final

implemented design. In that context, the Statemate approach supports the designer

2.3. ANALYSING DESIGNS 39

in evaluating the result of interaction. What can not be evaluated is the suitability
of the behavioural design in the context of the intended presentation.

The presentation of virtual environments is not consistent between applications.
Limited Statemate style insight can be gained by using consistent presentation con-
cepts that are crude approximations to the intended final context. This is the ap-
proach used to prototype (animate) CSP specifications where TCL/TK widgets are
used. However, in order to gain a deeper understanding of the designs it is also impor-
tant to be able to explore the presentation of the behaviour. For instance, to evaluate
the suitability of a navigation interaction technique design in its intended context;
or to adapt an interaction technique design in order to account for characteristics of
input devices (to introduce constraints, for instance). Furthermore, in a prototyping
context it is desirable to be able to explore alternative presentations. For example,
to experiment with different devices and interaction technique combinations.

The Tufts approach is important because it demonstrates that the abstractions
used in hybrid specifications of virtual environment behaviour can also be used in the
implementation of designs. This approach is built on top of a virtual environment h-

brary (Performer) which enables the intended presentation of the virtual environment
to be implemented with the behaviour. Despite the strengths of the Tufts approach,

a number of shortcomings can be identified:

The approach does not support Flownets. We have argued (section 2.1.4) that

the concurrent nature of the discrete component of Flownets is important for

the design specification of virtual environment behaviour.

The transition between design and implementation must take place manually.
Consequently semantics must be specified twice, this is time consuming and

may result in translation errors.

In making the transition, the designer is burdened with low-level implemen-

tation issues. For instance, the management of data structures to hold world

objects and the polling of devices. These issues are important for a final imple-

mentation where performance and scalability must also be considered. However,

in a prototyping context it is desirable to abstract from these.

2.3 Analysing designs

An important focus of interactive system research has been the formal analysis of de-

sign specifications. Within this domain, a number of techniques have been developed

which support the checking of desirable requirements within a design specification.

For instance, within a formal design specification of an air-traffic control system, a

2.4. CONCLUSION 40

desirable requirement might be that two planes cannot occupy the same air space
simultaneously. This can be formalised and proved to exist. There are also a number
of generically desirable requirements which can be analysed in a similar manner. For

example, undoability: the ability for the user to undo any action they perform. The

application of this style of analysis can be seen in [Abowd 1991; Patern6 1995].
The power of design analysis is that it is exhaustive with a high degree of cer-

tainty that the requirements hold within the design, this is particularly the case when
it is automatically applied. This can be achieved by using model checking [Clarke
Jr., Grumberg, and Peled 1999] as presented in [Campos 2000]. The application of
automation to design analysis often has the added advantage of being rapid. The

potential to (automatically) apply analysis techniques to the domain of virtual envi-
ronments is discussed in [Massink, Duke, and Smith 1999], although no application
is illustrated.

2.4 Conclusion

In this chapter we have reviewed past work concerning the specification of virtual
environment behaviour, and the explorations of such designs using prototypes and

specification analysis. The discussions of this work has motivated the aims of this

thesis:

e We want to provide a translation from Flownet design specifications of virtual
environment behaviour to a prototype.

- The approach should support the exploration of presentations.

- The approach should hide implementation concerns from the designer.

We want to explore the analysis of design specifications.

Chapter 3

Flownets

As described in the previous chapter, Flownets [Smith, Duke, and Massink 1999;
Smith and Duke 1999b] are an appropriate formalism for the design of virtual envi-
ronment behaviour. In this chapter we further describe the formalism and discuss a
semantics. Although our discussion is informal, a formal semantics for Flownets is

given in appendix A using the Z specification language.

3.1 Discrete components

The discrete part of a Flownet is described using a condition-event Petri-net. Condition-

event Petri-nets are based on original Petri-nets introduced in Petri's thesis [Petri

1962]. Flownets also use inhibitor arcs [Hack 1975] within the Petri-net component
of the specification.

Basics

Shown in figure 3.1 is a simple Petri condition-event net example to illustrate the

main concepts. A condition-event net is made up of places (pl, p2, p3) and transitions

(tl, t2) related by arcs (we sometimes refer to these as discrete arcs to distinguish

between these and continuous arcs which we introduce in section 3.2.1). The initial

state (sometimes called the marking) of the net is defined by allocating tokens to

places, these are represented by black dots (p3). Condition-event nets contain simple

unstructured tokens, that is they represent conditions only rather than the more

complex data tokens of high-level Petri-nets (see [Reisig 1982]). The behaviour of
the net is defined by the movement of tokens around places via transitions. This is

determined by the enabling and firing rules of transitions.
The enabling and firing rules of condition-event nets are illustrated by the two

diagrams shown in figure 3.2. In order for a transition (tl or t2) to be enabled, every

41

3.1. DISCRETE COMPONENTS

P1

t2

Figure 3.1: A simple condition-event Petri-net

42

place targeting the transition via an arc (pl and p2, or p3) must contain a token. An

enabled transition may fire whereupon a token is deposited in every place connected
by an arc originating from the transition. In the case of figure 3.2 (a) a token would
be placed in p3. In the case of figure 3.2 (b) a token would be placed in p5 and p6-

P1

0 ti p3

p 2-

(a) (b'

p5

Figure 3.2: Examples to illustrate the firing rules of condition-event Petri-nets

With Petri-nets it is not possible to determine which transitions should be en-

abled when two or more can be enabled concurrently. While this non-determinism is

maintained in Flownets to a great extent, it is necessary to introduce a mechanism
by which priority is sometimes given to transitions. This is discussed in section 3.3.

3.1.2 Inhibitor arc

Flownets use the added construct of an inhibitor [Hack 1975] within the condition-

event nets. An inhibitor arc specifies that the connected place must not contain a
token in order for the transition to be enabled. An inhibitor can be used in combina-
tion with regular arcs as illustrated in figure 3.3. Within this, transition tl will fire

when there is a token in place pI and there is no token in p2.

3.2. CONTINUOUS COMPONENTS

P1 ti p2

(0)-

Figure 3.3: An example of an inhibitor arc

3.2 Continuous components

43

The continuous part of Flownets is based on a notation for modelling system dynam-
ics presented in [Forrester 1961]. Within this, entities are modelled as continuous
quantities interconnected in loops of information feedback and circular causality. An

example of this notation can be seen in figure 3.4 taken from [Forrester 1961, p333].
The information source allocation to development and design is used as a condition
for the continuous flowing of ideas through to designs.

Ideas : ý- Designs

Allocation to
development
and design

Figure 3.4: An example of systems dynamics modelling notation

3.2.1 Data input/output

A Flownet contains data links to and from the external environment called plugs.
Plugs are labelled to describe the data to which they are linked. Continuous arcs

originate from and terminate in plugs, and are visually depicted by thick lines ending

in double headed arrows. Illustrated in figure 3.5 is an input and output plug linked

to continuous arcs. Sometimes within a specification it is necessary to duplicate plugs

for conciseness of specification. When this is the case, identical labels denote that

two plugs are synonymous.
A plug input can also originate discrete data, for instance the clicking of a de-

vice button. As such, these can be associated directly with a discrete arc into the

condition-event net as illustrated in figure 3.6.

3.2. CONTINUOUS COMPONENTS

input output

Figure 3.5: Flownet plugs linked to continuous arcs

discrete
input

Figure 3.6: A plug link directly into the condition-event net

3.2.2 Continuous to discrete

44

Continuous data flow is related to the discrete condition-event net via sensors which
represent some boolean condition on the data flow. A sensor can be targeted by

one or more continuous arcs and can originate one or more discrete arc. Sensors

are informally labelled to define a boolean threshold describing their firing condition.
Illustrated in figure 3.7 are two examples of the use of a sensor to map continuous
behaviour onto a discrete net. In figure 3.7 (a), transition tl is enabled when input

= x. In figure 3.7 (b), transition t2 is enabled when input =x and there is a token

in p2.

input

input =

(a)
pI p2

input

(b)
p3

Figure 3.7: Example of sensors relating continuous and discrete behaviour

3.2.3 Discrete to continuous

The discrete condition-event net enables the flow of continuous data via flow Controls.
A flow control is targeted by arcs from places and/or transitions. It becomes enabled

when one or more targeting transition or targeting place is enabled. A flow control is

3.2. CONTINUOUS COMPONENTS 45

also targeted by a continuous arc, and continuous arcs originate from a flow control.
When a flow control is enabled data can pass continually from the input continuous

arc to the output continuous arc. Illustrated in figure 3.8 are examples of the use of
flow controls. In 3.8 (a), the flow control allows the flow of continuous data whenever
there is a token in pl. In 3.8 (b), the flow control allows the flow of continuous data
for each firing of transition tl.

(a (b'

Figure 3.8: Example of flow controls relating discrete and continuous behaviour

3.2.4 Transforming and storing data

Continuous data is transformed by transformers. These are targeted by continuous

arcs and are labelled to describe the transformation that they perform. There must

also be a continuous arc originating that carries the resulting transformed data, this

arc usually targets a store. A store is a repository of data which resides within a
Flownet. Data is also communicated from stores via continuous arcs.

It is common to find transformers and stores used in the configuration illustrated in

figure 3.9 where data a is continually transformed (via some transformation function)

while the flow control (f) is enabled.

transform a

Figure 3.9: A common transformer store configuration

3.3. DYNAMIC BEHAVIOUR 46

3.3 Dynamic behaviour

The execution of a Flownet is achieved through a number of operations which evaluate
components and change their state based on the result of the evaluation. This division
of operations is based on component groups. Evaluation of transitions is achieved by
two operations. The first operation for interaction transitions, that is those transitions
whose firing is influenced by the interaction of the user. This means that transitions
targeted by either a sensor and/or a plug. Secondly, an operation for non-interaction
transitions. These are transitions whose firing is solely dependent on the distribution

of tokens in the Petri-net.

sl

Figure 3.10: An example net to demonstrate the potential conflict of transition be-
haviour

The separation of transitions into two groups is required because an interaction

transition must have firing priority over a non-interaction transition. The motivation
for this can be illustrated with the example shown in figure 3.10. If place pl is

enabled then potentially either transition tl can fire or, if sl is also enabled, t2. If

there is a non-deterministic firing priority of transitions, the possibility arises where
t1 is given firing priority over Q and, because tl will always fire, Q can never fire.

The division of transition evaluation enables the evaluation of interaction transitions

prior to evaluation of non-interaction transitions. Consequently when this semantic

is applied to figure 3.10, transitions t2 will fire when place pI is enabled and sensor

sl is enabled, otherwise transition tI will fire.

As such, the execution of a Flownet can be considered as six sequential steps

which are continually repeated:

9 Step 1- evaluate sensors: if the threshold condition of a sensor is met, then the

sensor becomes true, if not the sensor becomes false.

3.3. DYNAMIC BEHAVIOUR 47

* Step 2- evaluate interaction transitions: an interaction transition becomes en-

abled when all places, sensors and boolean plugs targeting it by an arc are true,

and all places targeting it by an inhibitor are false. An interaction transition
then fires, upon which all the targeting places are disabled and the transition
becomes true. Otherwise the transition becomes false.

e Step 3- evaluate non-interaction transition: a transition becomes enabled when
all places targeting it by an arc are true, and all places targeting it by an
inhibitor are false. A transition then fires, upon which all the targeting places
are disabled and the transition becomes true. Otherwise the transition becomes
false.

* Step 4- evaluate places: if there exists a transition targeting a place which is

true, then the place is enabled.

Step 5- evaluate flow controls: if there exists a transition or place targeting a
How control which is true, then the flow control becomes true. If not, the flow

control becomes false.

9 Step 6- evaluate transformer: if there exists a flow control targeting a trans-

former which is true, then the transformer becomes true, otherwise it becomes
false.

This cycle of execution is illustrated in figure 3.11.

evaluate transformers
evaluate start)

evaluate flow controls
evaluate interaction transition, -

evaluate places
on-interaction transitions

Figure 3.11: The execution cycle of a Flownet

3.4. EXAMPLES

3.4 Examples

48

In this section we exemplify Flownets. In section 3.4.1 we return to the mouse-based
flying interaction technique used to explore the alternative formalisms in chapter 2.
In section 3.4.2 we illustrate the use of the formalism for describing the behaviour of
world objects using a door example.

3.4.1 Mouse based flying

As described inchapter 2, the mouse-based flying interaction technique enables flying

through a virtual environment on the x and z axis using the desktop mouse. The

technique is initiated by pressing the middle mouse button. When the mouse cursor
is moved away from the clicked position, navigation through the environment begins.

The user's speed and direction is directly proportional to the angle and distance

between the current pointer position and the point at which the middle mouse button

was pressed. Flying is deactivated by a second press of the middle mouse button.

mouse

©

position

Figure 3.12: Flownet for the mouse-based flying interaction technique

The Flownet for this technique is shown in figure 3.12. This has one input: mouse

and one output: posdion. When the middle mouse button is pressed, the Flownet

middle mouse button sensor is activated and the start transition (1) is fired. The start

transition enables the continuous flow which updates origin with the current mouse

position (2). A token is then placed in the idle state. When the out origin sensor

3.4. EXAMPLES 49

detects that the mouse has moved away from the orZgin position, transition (3) is
triggered and the token is moved from the idle to the flying state. A token in the
flying state enables the continuous flow which calculates the translation on position
(4) using the current mouse position and the origin. This is then continuously supplied
to the output plug. Whenever the flying state is enabled, the inhibitor determines

that the start transition cannot be re-fired. When the zn or, g, n sensor detects that
the mouse has moved back into the origin position, the token in the flying state is
returned to the idle state closing the flow control and halting the transformation of

position. Regardless of whether the technique is in the zdle or flyzng state, it can be

exited by the m%ddle mouse button sensor becoming true and firing one of the exit
transitions (5 or 6).

3.4.2 Door

In this section we demonstrate how Flownets can be used to specify world object
behaviour by specifying a door. This door is initially in the closed state and begins

to open when a device button is pressed. When the door is fully opened it can again
be closed with a second press of the button.

door
door closed door closed

position

POS

door

button
T

oor

decrease
closing

y

opening

door
position

door
open

increase
door
position

door
position

POS

9

door
open \, D

Figure 3.13: Flownet for the behaviour of a door world object

The Flownet for this behaviour is shown in figure 3.13. This has one input from

the external environment: button, and one output to the external environment: door

Position (although this is duplicated for clarity of presentation). Initially the door is

in the door closed state, a token is represented by the inner circle'. When a discrete

button press is detected from the button plug (1), the associated transition moves the

token from the door closed to the door opening state. This enables the flow control
'the token is represented in this way (rather than as a black dot) so that both the text and the

token can be displayed within a place.

3.5. CONCLUSION 50

(2) which enables a continuous opening transformation of the door posdion which is

output to the external environment through the door position plug. When the door

open sensor (3) detects that the door is fully open, the token is then moved from the
door opening state and placed in the door door open state. When the door is in the
door open state, a second press of the button moves the token to the door closzng state.
This state enables the corresponding flow control which enables the transformation of
the door posZhon which is output to the external environment. When the door closed

sensor detects that the door is fully closed, the token is moved from the door closing
state back to the initial state of door closed.

3.5 Conclusion

In this chapter we have informally explored the various constructs within the Flownet

formalism. A more thorough treatment of a semantics for Flownets is give in appendix
A using the Z formalism.

Chapter 4

Prototyping Flownets

In this chapter we introduce the Marigold toolset. This toolset supports the trans-
lation from Flownet designs of virtual environment behaviour to an implementation

prototype. Marigold is designed to be independent of any specific implementation.

For the proof of concept described in this thesis we use the Maverik [Hubbold, Dongbo,

and Gibson 1996] toolkit. Many toolkits would be suitable as an implementation tar-

get, however Maverik was particularly desirable for a number of reasons. Firstly, its

open source nature allowed us to examine details of its implementation. Secondly,

Maverik is widely used and has proved itself in small and large applications.

4.1 Introduction

In chapter 2 we argued that a prototyping approach for virtual environment be-

havioural specifications should hide low-level implementation concerns from the de-

signer. This need to provide higher-level abstractions for building virtual environ-

ments has been addressed in the past in the approaches presented in [Sherman 1993;

VPL Research 1991].

In these approaches the virtual environment is specified as a visual data flow net-

work. The data flow networks are similar to those used in the hybrid formalisms

discussed in chapter 2, but rather than specifying abstract concepts they are speci-

fying implementation concepts. The nodes describe presentation components such as

devices which are origins and targets of data, and functions which manipulate this

data. The nodes are linked via transitions to define how the environment should

behave. Consequently, the data flowing in through the input nodes (devices or world

objects) is transformed by the behaviours and then output through the output nodes.

A screenshot of "body electric" [VPL Research 1991] is shown in figure 4.1. In terms

of behavioural design, these approaches suffer from the issue of trade off between

flexibility and abstraction discussed in the introductory chapter since they are di-

51

INTRODUCTION 52

Net-Anatomy. DM

Control the World with your mouse

Mous x
Fry's DM 201 I

M Av erageTwo

rld -World 2 Round
Constant

PI

Figure 4.1: An example of a "body electric" data flow specification (taken
from [Kalawsky 1993, p218])

rectly associated with an implementation. However, the inethod of introducing the

presentation and relating this to the behaviour is advantageous for two reasons:

9 the nodes encapsulate underlying implementation detail, therefore this detail is
hidden from a designer.

o there is a loose coupling between the nodes that describe the presentation and
the behaviour nodes. This allows presentation components to be substituted

with ease by inserting new nodes and linking these to the behaviour using tran-

sitions.

This data flow style of specifying virtual environment implementation is motivated
by earlier work exploring alternative methods for the specification of data visualisation

algorithms. Of particular significance is the application visualisation system (AVS)

[Upson, Jr., Kamins, Laidlaw, Schlegel, Vroom, Gurwitz, and van Dam 1989] where

complex algorithms are encapsulated into nodes which are subsequently linked to

input and output data sources. This approach has been extensively applied to the

specification of traditional interfaces in order to yield the benefits outlined above
(see for instance [Smith 1990; Ingalls, Wallance, Chow, Ludolph, and Doyle 1988,

Esteban, Chatty, and Palanque 1995]). In the virtual environment context, this style

of specification has also been used to specify behaviour while immersed in the virtual

environment [Steed 1996].

The challenge addressed in this chapter is to provide a means of prototyping

Flownets using data flow networks. An overview of the approach to achieving this

4.2. PROTOTYPING INTERACTION TECHNIQUES 53

is illustrated in figure 4.2. This involves supporting the (semi-automatic) refinement
of a Flownet specification to a data flow node, and then 'plugging' this node into

a presentation using a data flow network. From the data flow specification, code is

automatically generated, compiled and executed. This approach is supported by the
Marigold toolset which is written using Java/AWT and has been tested for portability

across unix and windows based platforms.
Flownet

Input Flownet output
device node device

Implementation

Figure 4.2: Combining the advantages of Flownets for behavioural design with data
flow networks for prototyping

4.2 Prototyping interaction techniques

In this section we shall demonstrate how Marigold supports the transition from

Flownet specifications of an interaction technique to a prototype.

4.2.1 Building the specification

Prototyping a Flownet description of an interaction technique using Marigold is a

two stage process. The first stage takes place in the hybrid specification builder

(HSB) which provides a means of specifying Flownets visually. The resulting design

for the mouse-based flying interaction technique is illustrated in figure 4.3. The

toolbar at the top of the HSB contains an option for each of the node types (e. g.

state, transition and transformer) and each of the connection types (continuous and

discrete). The HSB enforces the syntax of the specification and only allows legal

4.2. PROTOTYPING INTERACTION TECHNIQUES 54

connections between nodes. The tool also tries to maintain clarity of specification by

automatically formatting the visual connections between components.

Marigold Hyrjrid Specification Euilder (ý/2.0) - /us ill an s,; marig old/h sbi specifications/mbf. veb 1---11721 ? <j
File Check View Stub HPIP

trans , arc inh , flow con ýsensor ýs tore ýtransf ýPluq ed1t/rn ov e/JeIete ýtoke n

mouse
pos ition

out rigin in o igin

j

r pos i

tic),
tion

F

t
idle a ng

t

e
middle m/butt x

Figure 4.3: Flownet specification for the mouse-based flying interaction technique

Within the HSB it is necessary to add a small amount of code to some of the

nodes of the specification. This code describes the semantics of those components

more precisely. There are three types of code that can be added. We will describe

these in the context of the mouse-based flying example:

1. variable code - this is placed in the plugs of the specification. It describes

what kind of information flows in and out of the plugs and, hence, around

the specification. The code added to the mouse plug is illustrated in figure

4.4 (a). An integer variable represents the state of the mouse buttons and a

vector represents the mouse position. For variables flowing from plugs, it is

necessary to define whether its mapping to the external environment should be

relative (environment = environment + plugVar) or absolute (environment =

plugVar). Variable code is also used to define data which reside in the stores of

the specification.

4.2. PROTOTYPING INTERACTION TECHNIQUES 55

conditional code - this is placed in all sensors and some transitions. It describes
the threshold state of the data for firing the component. Illustrated in figure
4.4 (b) is the code added to the middle m/butt sensor. As can be seen from
figure 4.4 (b), the HSB informs the developer which data flow in and out of
the node (the data they are able to access). The code specifies that when the

middle mouse button is pressed, the sensor should fire.

3. process code - this is placed in all transformers and denotes how the information
flowing into the transformer is transformed. Illustrated in figure 4.4 (c) is the

code added to the position transformer. This describes how position should be

transformed using the current mouse position and the origin position.

Once the code has been added, a stub of the interaction technique can be generated.
This is achieved by selecting a menu option and specifying a target filename in the

resulting dialogue box. Flownet specifications, along with the information added to
the nodes, can also be saved to a file which can be loaded back into the Marigold
HSB.

The second stage of the specification to prototype refinement involves integrating
the interaction technique specification into a presentation. This is achieved within
the prototype builder (PB).

Name IPOUSO

N. - Tý II p6t.

bsclute Add

mousePoitMAV
(v?

ctor (o Re.., e
se ý It r, mou ýB A ir

0k Cancel

Nane Ilmidclem/butt 11 -I

Inc ut, s)

m(. us? Pos MAJ-vector
mc-us? Butt Ini

D ut pu t(c)

zole

urn 1;
', Mw"Buttýl)

0;

CI CorCcI

Name I
update positio

Iýru'f(,)

poSition AAV-4edor
ýiginvos Mw_yector
,,. -, tPý NAV--tv

" Outt int

culput,:

lposition 14AV-, ectý

Cýdý

ýloat spe A;
lirect on - mav: ýectorSub(criginPos mot
1 i' "t --ý, " , ect, Set(d
, pEed

.
0,1

--ý. ýI. i

(a) (b) (c)

Figure 4.4: (a) Adding variables to the mouse input plug (b) Adding conditional
code to the middle mouse button sensor (c) Adding process code to the position
transformer

4.2. PROTOTYPING INTERACTION TECHNIQUES 56

4.2.2 Constructing a prototype

The stub generated from the HSB is an environment-independent description of the
behaviour. By this, we mean that it does not make commitments to the inputs and
outputs from the behaviour. In order to explore the technique in an implementation

prototype context, it is necessary to 'plug' it in to a presentation using data flow

networks. This stage of the refinement is supported by the Marigold prototype builder
(PB). The presentation is modelled as four concepts:

Definition 1 Interaction devices (de) are physical devices which act as an input to

mterachon techn%ques.

Definition 2 Viewpo%nts (VP) msually render a subset of world objects.

Definition 3 World objects (wo) are visually perceived by the user M the vZrtual

environment. World objects may also be used to represent the user, or part of the

user, within the environment (often referred to as avatars).

Definition 4 Cursor objects are specific instances of the world objects that promde

an indication to the user of the interachon demce's state (e. g. positional feedback).

The Marigold PB provides a visual method for connecting these elements as inputs

and outputs to one or more interaction technique. Illustrated in figure 4.5 is the

mouse-based flying interaction technique within the PB linked to a presentation. The

toolbar at the top of the diagram contains an option for each of the concepts described

above and also Flownet behavioural stubs (the other options will be discussed later in

this chapter). In order to construct a prototype it is necessary to select these options

and click on the workspace to create an object instance node.

As can be seen from figure 4.5 each node has a set of variables (the signature of a

node). The variables for the mouse-based flying interaction technique (mbf) are those

that were placed in the plugs of the Flownet within the HSB- What cannot be seen

from this black and white figure is that each variable has a different background colour

denoting whether it is an input, output or both. Each variable that can output data

is annotated with a letter describing whether it provides an absolute (a) or relative (r)

mapping. The relation between the nodes are defined by creating transitions between

these variables which defines a data flow. The tool automatically verifies that the

variables being joined are of the same type.

Within the mouse-based flying specification, we have linked a desktop mouse,

as an input to the technique, and a viewpoint, as an output from the technique.

4.2. PROTOTYPING INTERACTION TECHNIQUES

File Code He Ip

device ýc urs or object ,, complex object ýdynamic bind ýolbject group -, iewpcint ýIink 'mo'e
-ýde`lete

office scenery(wo)
MAV-matrix matrix (a)
MAV-vector vector (a)
int selected (a)
int visible (a)

viewpoint(vp)
MAV-vector eye (a)
MAV-vector view (ý
MAV_vector up (a)
MAV-vector fixed_up (a)

n-d3f(be) desktop mouse(de)
MAV. vector mouseP AV-matrix rnatrix (a)
int mouseButt MAV-vector ýector (a)
MAV veclo positýon (r) int button (a)

57

Figure 4.5: Prototype specification for the mouse-based flying interaction technique

Additionally, we have inserted an office desk world object so that the movement of
the viewpoint can be perceived by the user. However because the desk remains static
during interaction, it is not linked to any other environment concept. When a world

object is inserted it is necessary to specify the file location of the world object created
by a 3D modeller. In the case of an input device, the location of a device stub is

required.
These device stubs are short textual files which can be constructed easily by the

developer. They relate the output of each device to a common data layer (in a manner

similar to that presented in [Faisstnauer, Schmalstieg, and SzalavAri 1997]). The data

layer is represented by the variables that appear in the node of the device stubs of

the PB specification. This consistent interface allows devices to be easily substituted

within interaction techniques. A number of stubs have been constructed for common

devices, the process for adding additional device stubs is described in appendix B. 3.

In order to insert a Flownet behaviour into the PB specification, the file location of

the stub generated from the HSB must be specified.
It is necessary to define the initial positional state of the viewpoint and world

object concepts via a dialogue box. This is accessed by editing the respective node.

For world objects, there are also options in this dialogue to select whether the object

should be initially visible and/or initially selected. A number of further attributes

4.3. PROTOTYPING WORLD OBJECT BEHAVIOUR 58

can also be set in the world object dialogue box. Firstly, whether the state of the
selected variable determines if the world object positioning should be updated (i. e.
only change position when the selected variable is true). Secondly, whether the world
object should participate in dynamic binds. The application of these attributes will
be discussed later in the chapter. Screenshots of the dialogue boxes associated with
the nodes of the PB specification are shown in appendix B. 2.

Once the PB specification is complete the code for the environment can be auto-
matically generated, compiled and executed. This is achieved by selecting an option
in the code menu and specifying a target filename. During the process of genera-
tion, compilation and execution, a dialogue box informs the user of the status of the
process. Details of the code generation process is given in appendix B-1

4.3 Prototyping world object behaviour

Since Flownets can be used to specify world object behaviour in the same manner as
interaction techniques, the HSB can be used to support the construction of the world
object behavioural specifications. Similarly, the PB can be used to integrate the stub
of a virtual environment world object behaviour (generated from the HSB) into a

presentation. For world object behaviour, this integration would be a definition of
the relation between the behaviour and the world object.

When world objects are exported from a 3D modeller, they must be decomposed

(separated) according to how they are required to behave in an environment. For

instance, a freezer unit may have a door which can open and close, and a number

of drawers which can open and close. Therefore, the freezer's drawers, door and the

freezer unit itself all become separate world objects. However, the behaviour would

usually be described using one design. This need to link many world objects to a

single behaviour can result in a complicated PB specification. Moreover, every time

a world object with a behaviour is required within the PB specification, it must be

relinked to the behaviour. In practice, it would be advantageous to be able to reuse

this relation.
In order to address this problem, the Marigold toolset consists of a third tool

called the complex object builder (COB). Rather than defining the relation between

the stub of a world object's behaviour and the world object directly using the PB, the

COB is used to perform this same task. Any additional information required from

the external environment is also made explicit using this tool. From the COB a stub

is generated which encapsulates all the details of how the world object will behave

and appear. This stub is a reusable complex world object node that can be used in

4.3. PROTOTYPING WORLD OBJECT BEHAVIOUR 59

any PB specification. To exemplify this process we will use an elaboration of the door

world object described in chapter 3.

4.3.1 Building the specification

Illustrated in figure 4.6 is the discrete part of the Flownet specification for the be-
haviour of the door within the HSB. Shown in figure 4.7 is the continuous part of
the specification also within the HSB. Although the HSB supports the construction
of Flownet specifications using one view, it is preferable to split the continuous and
discrete part of a larger specifications to maintain clarity of presentation. These views
can be rapidly switched via a menu option. This Flownet specifies that the door can
be opened, closed, locked and unlocked. It also incorporates constraints specifying
that the door cannot be opened when locked and cannot be completely closed when
locked. Code is added to some of the nodes of the specification and a stub of the
behaviour is generated (in the same manner described in the previous section for

interaction techniques).

Marigold Hybrid Specification Builder (V2, O) - fusrli%ýiillansimarigold/hsb/specificationsidoorlocý3. veb A clj Fxj

File Check View Stub Help

ýstate /tra n5 ýarc ýinh /flow /con /se ns or ýs t0f 8 trans f ýPluq
EjE]

ýmove delete toke n

lock

locke
un locke d

touch lock

almost close

fin sh c ose

touch handle

almost closed unloc

close c losing opening open

door open

open

Figure 4.6: Flownet specification for a complex locking door world object (discrete)

4.3. PROTOTYPING WORLD OBJECT BEHAVIOUR 60

9, 'ýýIarigold H-ibrid Specification Euilder W2., O. i - l'uý,;,,., i%.,.; illaný. irriarigoid: 'hst;. ',; pecifications/doorlocý lweb
File Check View Stub HPIp

'. 's ta te trans /arc ,inh ýflow ,, con -s ens or store /transf /Plug ýmo'e delere 'token

handle position hand position lock position

touch handle
door, ='sel Dtouch lock

lock

door position

finish c ose

Block

pos lock pos(t, on
dooropen

door p -C

M

close ope n almost closed

urloc urloc

Figure 4.7: Flownet specification for a complex locking door world object (continuous)

4.3.2 Integration of behaviour and appearance

The next stage involves integrating the stub of the world object behaviour, generated
from the HSB, with the world objects themselves using the COB. A screenshot of the

COB is shown in figure 4.8. This tool is similar to the PB in that nodes are added
to the specification and relations expressed between these using transitions. In figure

4.8 the stub of the locking door Flownet can be seen in the centre of the specification.
We have linked this stub to a number of world objects (which form the appearance

of the door), and an external link node. A wall world object is also included which is

not linked to any behaviour.

The locking door behaviour has an input defining the positioning of the door lock

world object. It also has an output to the door lock world object which updates its

position. This is similarly the case for the door handle. The position of the door world

object is only updated (no information is passed to the behaviour), and the wall world

object remains static. The external link specifies that data is required which is not

contained within the specification. In this case the position of the virtual hand world

object (or whatever causes a selection) must be linked at the PB level of refinement.

The relative positioning of the world objects are also set within the COB by editing

their properties (see appendix B. 2). From the COB, a stub of the specification is

generated which encapsulates a description of how a world object should behave and

appear.

4.3. PROTOTYPING WORLD OBJECT BEHAVIOUR 61

1ý, Ieri go) Ia Corril Object Cui I cler f0--, W - ; wl%-li I Ian s! rrarl gc1d: 'pb/comp I e;. "ý, ý. 'orld, -, -blect. 5., doorýo cý.. c,. -. lo
File Help

object /external link F, behaviour ýolbject group ýdynamic bind -hnk -m,,, e 'edit delete

external link
door handle (wo)

MAV matrix matrix (a)
vector Yector (a) MAV MAV

doorlock(be) doo Ock(be) ri O ri int selected (a)
ltý AV-man x h osi tion MAV-mat' 0,

I

Int vi V1 int visible (a)
M AV_matrlx handlepos

=

0 MAV-matrix handlePos

door tock(wo) oc "S MAV_Matrx lo<kp 5 J o MAV-matrix lo<kPos door(wo) CIO
MAV matrix matri, x (a)

MAV_vecto ockposition (r) r J V-Yec to I oc <p 05 ltlo n MAV-Yector lockPosition (r) (r) MAV_ Mv MAV-matrix matrix (a)
MAV Y, ector Yector (a) matr MAV_ x doorposltlon (r) a oor Po lt, 0 M V- mc tr x n (r) IMAV-matrix doorPosition (r) Yector MAV vector (a) Yect
int selected (a) int selected (a)
int Yisible (a) lint Yisible (a)

wall(wo)
MAV-matrix matrix (a)
MAV-vector vector (a)
int selected (a)

int visible (a,)

Figure 4.8: Complex object specification for a locking door world object

4.3.3 Constructing a prototype

A COB stub can be imported into the PB. Figure 4.9 shows the integration of the
locking door complex object (co) into the mouse-based flying specification described

earlier. In addition, we have included a simple manipulation interaction technique
(sman, also described using a Flownet) within this specification which controls the

position of a virtual hand world object using two mappings of the keyboard device.

The locking door complex object node (door with lock) can be seen on the left side

of the specification. The one variable exposed within this node is that specified as

an external link within the COB specification in figure 4.8. This variable is linked to

the position of the virtual hand. It is necessary to set the initial state of the complex

object stub by editing its properties. The position part of this state is offset against

the underlying relative position of the world objects defined in the COB. As in the

previous example, code can be automatically generated, compiled and run from this

PB specification.
Screenshots of the prototype generated froin this PB specification (figure 4.9) are

illustrated in figure 4.10. In addition to being able to navigate the environment using

niouse-based flying, the virtual hand world object can be used to interact with the

door and its lock using mappings of the keyboard. In figure 4.10 (top left) the door

is closed and locked. In figure 4.10 (top right) the door is unlocked and fully open.

4.3. PROTOTYPING WORLD OBJECT BEHAVIOUR 62

In figure 4.10 (bottom) the door cannot close any further because it is in the locked

state.

File Code Help I

ýIbehaviour /device ,, cursor ý/obje ct , complex object \/dynamic bind ýohiect group ývieýpoint link [ý--M-Ove-ý delete

viewpoint(vp)
MAV-vector eye (a)
ýIAV_vector view (ýý-
MAV_Yector up (a)
MAV-vector fixed-uo

mbf(be) desktop mouse(de)
ct 0 Lrlx atr 8) "V-"e 0, mousý, p 5 ýL- m

t tu tt

V ma ri
int mouseButt MAV'Yector Y-ecýtFoor (a)

a
_Ld)

MAV_Yector position r jjMn b- on

Figure 4.9: Mouse based flying prototype specification expanded to include a simple
manipulation interaction technique and a locking door world object

4.4. NON-STATIC BINDING

I

63

Figure 4.10: The door closed and locked (top left), the door unlocked and opened
(top right), the door prevented completely closing by the locked lock (bottom)

4.4 Non-static binding

Flownet specifications are not concerned with the presentation external to the be-

haviour, they abstract from this by interfacing to plugs. The PB and the COB tools

provide a means of binding a presentation to the plugs of Flownets using data flow

networks. The binding style described in the previous sections is based on the com-

mon data flow approach where static links are created between nodes. This means
that the relation that exists between the behaviour and the presentation must be

explicitly specified and that this relation persists at runtime. However, often it is
desirable that the relation between a behaviour and the presentation is expressed in

more dynamic terms. For instance, that a selection interaction technique can select

one of a number of objects within the kitchen, without explicitly linking every object

to the selection technique. This type of non-static binding is supported by two addi-

tional constructs within the Marigold PB and COB, namely world object group and

dynamic binds. In this section, we describe these constructs.

4.4.1 World object grouping

A world object group node is placed around a number of world object nodes within a
PB specification. Although, a world object group node does not display variables in

the same manner as other nodes (these were omitted for conciseness of specification),

4.4. NON-STATIC BINDING 64

there are slots on the right hand side of the node which correspond to those variables
within a world object node. Transitions can originate and target these slots. A world
object group is encapsulating the world objects into an array. Transitions to and from
the world object group are mapped to each of the grouped world objects.

In itself a world object group is still a static binding mechanism, however it can be

used in conjunction with a world object's selected variable to form a type of non-static
bind. In section 4.2 we mentioned that one of the properties that can be set when
editing a world object's dialogue box determines whether the state of the selected
variable determines an update of that world object. This means that when this
option is set and the selected variable is set to false, the world object does not change
position and remains static regardless of the transitions between it and a behaviour.
Only when the selected variable becomes true does the world object begin to accept
behaviour.

To illustrate the use of this in combination with the world object group consider
the PB specification illustrated in figure 4.11. Within this specification the world
object group encapsulates the world objects ball one and ball two. These objects
are set to only update when their selected variable is true. In this example, we
have linked the world object group to a selection interaction technique (select, also
described using a Flownet) which uses positional information from the world object

group, to determine when the selector world object intersects with one of these. When

this is the case, this interaction technique sets the selected variable of the appropriate

world object to true. Since the position of the selector is linked to the world object

group, all world objects within this group which have their selected variable set to

true will have their position set according to that of the selector world object which
is controlled by a simple manipulation interaction technique (sman).

4.4.2 Dynamic binding

The form of non-static binding described in the previous section depends on a be-

haviour (Flownet) determining an appropriate context for the binding to take place
(in the previous instance, that the selector intersects with one of the world objects).
Often, with virtual environments the binding context is that a world object occupies

a certain space. For instance, that world objects should bind to the opening and

closing behaviour of a drawer world object when they are placed within the drawer

space. The dynamic bind construct allows such conditions to be described.

A dynamic bind node is added to a PB specification in the usual manner, where-

upon Marigold requests the name of a world object file created using a 3D modeller.
The position of this world object is set by editing its properties in the same way as a

regular world object and transitions are used to link behaviours to the dynamic bind

4.4. NON-STATIC BINDING

File Code Help

dey ice "cu rs, >r object ýcompýex object ýdynarnir bind ýobjert gro, p "-eýQ6nt ýIlnk e, deIe te

F World object group

IMAV-vector fixed- lalli
I

ýMAVýindow ýindo. (M

65

Figure 4.11: A specification illustrating the two forms of non-static binding constructs
supported by Marigold

node. The world object associated with a dynamic bind represents a space within

the virtual environment which a regular world object must occupy in order to bind

to any behaviours linked to the dynamic bind node in the PB specification. The type

of occupation a world object must make in order to satisfy the bind is also set in the

properties of the dynamic bind node, this can either be a partial or full intersection

with the world object which represents the binding space. It is also necessary to

specify within the properties of a dynamic bind node whether the bind itself should

also be updated by any associated behaviour. The dialogue box to these properties is

described in appendix B. 2. In order to participate in a dynamic bind, a world object's

dynamic bind attribute must be set to true by editing its properties (as discussed in

section 4.2).
In figure 4.11 a dynamic bind construct (db) has been added to the PB specifi-

cation (in drawer) and linked to the position of the drawer world object. For this

dynamic bind, we constructed a world object to represent the space inside the drawer

(not displayed in the environment) and set its positioning attributes such that it was

initially located inside the drawer world object. In this example, we specified that

an object should be fully within the space defined by the drawer world object, and

that the binds world object should behave according to the behaviour of the drawer.

4.5. CONCLUSION 66

Consequently, when world objects, such as ball one and/or ball two (which were set
to participate in the bind) are placed within the drawer, they bind to the drawer's
behaviour and open and close with the drawer. In addition, although the bind world
object cannot be observed in the environment, its position always remains relative to
that of the drawer.

The prototype generated from the specification shown in figure 4.11 is shown in
figure 4.12 with the drawer, two balls and the selection object (small square). This

prototype allows the user to control the selection object using the keyboard, select
the balls and place them in the drawer. The drawer is opened and closed by touching
its front with the selection object. When the ball(s) are in the drawer they open and
close with the drawer's behaviour.

Figure 4.12: Screenshot of the drawer world object

4.5 Conclusion

In this chapter we have presented an approach for the prototyping of behavioural

designs specified using the Flownet formalism. This approach is supported by the

Marigold toolset which provides a transition from Flownets to an implementation

using Maverik/C. The transition is achieved by 'plugging' the Flownet designs into a

presentation using data flow networks. Although traditional data flow networks were

found to work well for the basic aspects of specifying a virtual environment prototype,

they were found to be limited with respect to two areas.
The first limitation concerns the definition of the relation between world object

behaviour and the concepts that form the world object's appearance. These relations

must be redefined every time it is required, this hinders reuse. Additionally, the

4.5. CONCLUSION 67

complexity of these relations can compromise the clarity of a PB specification. In

order to address this, the COB tool was added to the Marigold toolset which allows
the relation to be defined independent of a PB specification, in a manner that can be

reused in different contexts.
The second limitation concerns the style of binding between the behaviour and

environment concepts. With traditional data flow networks this is static and persists
at runtime. Often it is the case that dynamic relations need to be expressed. This is

addressed by the use of non-static binding mechanisms within the data flow specifi-
cation. These support a method of specifying dynamic relations that can take place
between behaviours and world objects at runtime.

Chapter 5

Analysing Flownets

In chapter 4 we described how the Marigold toolset supports a transition from Flownet

specifications of virtual environment behaviour to a prototype. This allows charac-
teristics of the behaviour to be explored by the user in an implementation context.
In this chapter we explore the extent to which this can be complemented by the
(automatic) analysis of the characteristics of Flownet designs.

5.1 Introduction

Prototyping is a powerful approach to evaluating a design because it involves the user
[Myers 1989]. However there are features of a design that cannot be guaranteed to
be demonstrated using a prototype. Firstly, evaluating a design using a prototype is

informal and consequently imprecise. Secondly, with a prototype it is not possible
to be certain that characteristics of a design have been analysed exhaustively. For

these reasons, a flawed design can be understood to be correct using prototyping in

isolation.

A complementary technique is the formal analysis of design specifications. Formal

analysis can address the deficiencies of prototyping because it is precise and exhaustive
[Campos 2000]. A prerequisite of the application of such analysis is that the design

specification that is to be evaluated is also formal (can be described mathematically).
The process of formal analysis involves formulating the characteristic of the design

that requires evaluating as a precise property. This property is then applied to the

formal design specification and a result is determined which specifies whether the

property holds.

There are two approaches to determining the analysis result. The first of these is

manual proof. The disadvantage of this approach is that a manual process is error

prone and is hard to do by designers. The second approach involves automating

the analysis. With this approach there can be more confidence about the result

68

5.1. INTRODUCTION 69

since automation implies repeated accuracy. An additional advantage of automated
analysis is that, in most cases, a result can be derived in less time and with less
ingenuity than a manual proof.

Requirement
:''*"'',, *«*, *, *, *1-Zý: _* **,,, **, ------/...................

human

P ro pe rty Result
.......

............ * *'*''*

automated

ANALYSIS

Figure 5.1: An overview of the analysis process

Illustrated in figure 5.1 is an overview of the process of analysing design specifi-

cations. From this it can be seen how automation can do much of the work in the

analysis process. However as can also be seen from figure 5.1, it is still necessary for a
human to translate the requirements into properties. If this is performed incorrectly

then the results of the analysis are meaningless. Therefore, it is important that there

is a close correspondence between the language of the requirements and the language

of the properties. Similarly, the result of the analysis must still be interpreted by

the human. If the result of this is that a property holds, then no further clarifica-

tion is necessary. However, if the property does not hold, then the design must be

revised. Therefore, the result of a failed analysis should express with as much clarity

as possible under what circumstances the property fails.

This discussion has motivated a criterion for analysing properties of design spec-

ifications:

The use of automation can help assure the accuracy of the analysis.

* Properties must be specified in a language that has a close mapping to the

requirements.

e Meaningful results should be given when a property falls to hold.

5.2. PROPERTIES 70

Using the above criteria, this chapter explores the extent to which the analysis of
design specifications can be applied in the context of Flownet designs and virtual
environment properties.

5.2 Properties

As expressed in the previous section, properties play a central role in the formal

analysis of design specifications. In this section we discuss the types of properties
that are relevant to the analysis of virtual environment behavioural specifications
constructed using Flownets.

One way of thinking about an interactive system is that it consists of two parts.
The first of these is the core system which realises the functional requirements of
the system (the reason it is built). The second of these is the interface between the

user and the core system whose job it is to support the user in interacting with the

system. With the core system the concern is its correctness according to the functional

requirements. With the interface the primary concern relates to ensuring that it is

usable. Since these two parts are concerned with different requirements, they can be

designed and evaluated separatelyi.
For virtual environments, the distinction between the core system and the inter-

face is less clear. This is because the interface is not only supporting the interaction

of the user, but also the functional requirements of the system. That is, there is no

real system core beyond the interface, since the interface is the reason the system was
built. The consequence of this is that requirements pertaining to both correctness and

usability can be considered in the context of design specifications of virtual environ-

ment interfaces. In the following sections we discuss the properties that are relevant

to virtual environments in these two areas. The final section discusses conflicts that

may occur when dealing with both types of properties in the same design.

5.2.1 Correctness

In the context of safety critical systems, analysis of correctness is an important part

of ensuring the system behaves in a manner consistent with their requirements. Cor-

rectness properties are usually classed into one of two groups: safety and liveness 2.

Safety properties specify that some undesirable behaviour cannot take place in the

system. For instance, in the case of a nuclear reactor. a safety property might specify

that it cannot be in the state of meltdown. Liveness properties specify that desirable

'A remaining issue is ensuring an accurate relation between the interface specification and that

of the core system. This issue is explored in [Doherty, Campos, and Harrison 20001
2 Although there has been a suggestion that this categorisation is insufficient [Naurnovich and

Clarke 20001, it is rich enough for the purpose of our discussion.

5.2. PROPERTIES 71

behaviour can eventually take place. For instance, in the case of a nuclear reactor, a
liveness property might be that the rods (the positions of which control the reaction)
can be raised.

Virtual environments are often concerned with simulating the real world at dif-
ferent levels of realism. In the same way as safety critical systems, there is behaviour
that we want to ensure takes place (liveness properties) and behaviour that we want
ensure never takes place (safety properties) within the simulation. For instance con-
sider the behaviour of the locking door discussed in chapter 4. Physical constraints
on a door prevent it from being in certain states. These can be expressed as safety
properties:

* The door cannot be open and closed simultaneously.

* The door cannot be locked and unlocked simultaneously.

Undesirable sequences of states can also be derived and expressed as safety properties:

9A closed and locked door cannot be immediately opened.

*A closed and locked door cannot be immediately closed.

Similarly, there are certain sequences of behaviour that the door can exhibit. These

can be expressed as liveness properties:

9 The door can be unlocked and then opened.

* The door can be closed and then locked.

All the properties discussed in this section relate to the discrete behaviour of the

design specification for a virtual environment. There are also properties which can be

formed about the continuous nature of the behaviour, for instance: the opening speed

of the door should accurately simulate that of a real door. Although such properties

can offer valuable insight into the design, Flownets are not a rich enough representa-

tion for the analysis of these. This is because the continuous behaviour is described

at a high level of abstraction and does not formally specify timing constraints and
data transformations.

5.2.2 Usability

Understanding properties relating to usability is less straightforward than those of

correctness. This is because the properties are encapsulating knowledge about how a

system should be formed based on characteristics of the way users interact. However,

5.2. PROPERTIES 72

past interactive system research (particularly in psychology) has developed a knowl-

edge base of properties that are known to contribute to the usability of a system.
In [Fields, Merriam, and Dearden 1997] a distinction is made between descrip-

tive and prescriptive representations of interactive systems. Descriptive representa-
tions are concerned with exposing characteristics of the system such that these can
be analysed for usability. Prescriptive representations are concerned primarily with
specifying how the system should be built. The advocated approach to usability
analysis is the former, where the usability requirements determine the representa-
tions that should be used [Fields, Merriam, and Dearden 1997; Campos and Harrison
1998]. Clearly, this approach will yield a better system compared to the prescriptive
approach, since a broader range of usability requirements can be identified and anal-
ysed. However, Flownets are a prescriptive representation since they are intended to
describe a design. Consequently, it is necessary to consider not only which usabil-
ity requirements are desirable but also which usability requirements (when formed
into properties) can be analysed within the representation. This compromise reduces
the range of requirements that can be considered. However, any analysis achieved is

without the time consuming task of building further representations.
As noted in the previous section, it is difficult to express behavioural proper-

ties about the continuous components of a Flownet since the formal detail of such

properties (timing, data transformation) are not described within the representation.
This is not to say that useful usability analysis cannot take place on the continuous
behaviour. A valuable usability property in the context of the locking door is: the

virtual hand should be able to reach the door handle within a certain time period.
However because of the abstract nature of the continuous components, our exploration

of behavioural usability properties must focus on the discrete part of FlownetS3. For

interactive systems, the analysis of discrete behavioural representations for usability

properties has been explored extensively (for instance, see [Sufrin and He 1990]). In

the context of Petri-nets there are two properties relating to usability that are often

analysed [Palanque, Bastide, Dourte, and Silbertin-Blane 1993; Bastide and Palanque

1990]. The first of these is the availability of states within the design:

* The user should be able to access every state of the behaviour.

This property is a liveness property and ensures there are no states of the interface

that are not accessible by the user. The second property relates to absence of deadlock

of states within the design:

The user should be able to interact with the interface regardless of state.
'The HyNet formalism (discussed in chapter 2) would be more suitable for reasoning about such

continuous properties because continuous behaviour is formally described.

5.2. PROPERTIES 73

This is also a liveness property which ensures that the user is not going to encounter
the system in a state where it will no longer interact. Clearly properties of this type

are relevant in the virtual environment context. However as we will discuss in the

next section, there is potentially a conflict between these usability properties and the

correctness properties described in the previous section.
Another way of viewing the states of a Flownet is as a mode. This is because the

state is determining how the input of the user is interpreted. A particular concern of
interactive systems is that they should adequately indicate the current mode so that
the users do not suffer from mode confusion [Degani 19961. Mode confusion occurs

when the user thinks the system is in one mode when it is actually in another. The

result is that the user misunderstands how the system will interpret their input.
Within Flownets, the continuous components provide a mapping between the state

of interaction and the output to the external environment. By examining the mapping
between the states and continuous outputs it is possible to determine which states
output information to the external environment and which do not. From this it is

not possible to say that the property of adequate representation of modes is satisfied,
because there is no knowledge within a Flownet about how the data is rendered onto
the external environment. However, it is possible to determine when the property

cannot hold. The property of mode confusion can be described more succinctly:

* The user should be able to observe the state of interaction.

5.2.3 Discussion

At the beginning of this section we made a distinction between the correctness require-

ments of the system which ensure the functionality of the system, and the usability

requirements which ensure that the system is usable. We argued that because of the

nature of virtual environments, their design specifications capture both these types

of requirements.
Since we are dealing with two sets of requirements with different concerns, a

potential conflict can be identified between the desirability of the properties. This is

because it is often necessary to reproduce usability problems that exist within the real

world. For instance, if a behavioural design is constructed to simulate the behaviour

of a gas oven (as we will do in chapter 7) then if the oven is in the state of the gas

being on, there should be no (visual) external representation to the user of the gas.

However if we apply the mode confusion property, then the mode must be rendered

in order for the property to hold. Therefore, when usability properties fail to hold,

it is necessary to ensure that this is not as a result of characteristics of the design

pertaining to the correctness requirements.

5.3. BUILDING A REACHABILITY TREE

5.3 Building a reachability tree

74

The types of properties we have discussed, with the exception of those relating to mode
confusion, are concerned with the discrete part of a Flownet. In order to consider the
discrete part of a Flownet independently of the continuous behaviour, an assumption
must be made. This assumption is that all sensors relating the continuous to the
discrete behaviour can always fire. When this is the case, the Flownet can be reduced
to a standard event/condition Petri-net, since the semantics of the discrete part (as

given in appendix A) are based on these, as explained in chapter 3.
With Petri-nets, behavioural properties are analysed by deriving a reachability

tree [Reisig 1982]. The tree lists all possible traces of behaviours supported by the
Petri-net. A reachability tree is produced by recursively firing each of the available
transitions of the net beginning with the initial marking, and recording the new
marking as leaves. This is a simple process for Petri-nets of the type we are using
since each place can only contain one token and therefore has a boolean value.

1-vlariciold Hybrid Specification Builder f. V2.0) -, Iusr/jwillan5/marigold/hstYspecificationsidoorlock3.,,,, eb MCI

lile Check View Stub Help

, state ýtrans arc ýinh ýflow \/con -se nsor 's tore ýtransf -plug EE] ýMove delete tolke n

lock

locke
un locke d

t touch lock ouch lock

almost close

fin is In c ose

touch handle

almost closed unloc

close closing opening open

clooropen

open

Figure 5.2: Discrete part of a Flownet specification for a locking door world object

Consider once again the locking door world object behaviour discussed in chapter
4. The discrete part of this Flownet is again shown in figure 5.2 within the Marigold

HSB. Illustrated in figure 5.3 is the first part of the reachability tree derived from

this Petri-net. At the root of the tree is the initial marking of the net. Here aT

represents a token in a place and '0' representing the absence of a token in a place.

5.3. BUILDING A REACHABILITY TREE 75

This marking specifies that there is a token in both the locked and the closed states.
The only new marking that can be derived from the initial marking is for the token
to be moved from the locked state to the unlocked state, as illustrated in figure 5.2
(a).

From this marking there are two options for new markings, these become leaves
of (a). Firstly, as shown in figure 5.3 (b), the tokens can be moved from the unlocked
and closed states and placed in the unlocked and opening states. Secondly, as shown
in figure 5.3 (c), the token can be moved from the unlocked state back to the locked
state. Since the latter marking has already occurred on the path from the root, the
tree does not need to be extended beyond this node. Consequently, stop is placed
next to this node and analysis need not continue further on this branch of the tree
However, further markings can be derived from figure 5.3 (b).

c :300
EF ZT a -0
C) C) 0 CD o

w2 -0 (n. 3
CD CD CD D (D 50
Cl 0- Cl (a =3 U:) a

1010000

(a)

0110000
(b)

0101000 1010000
(stop)

Figure 5.3: First part of the reachability tree generated for the locking door Petri-net

The complete reachability tree for the Petri-net of figure 5.2 is shown in figure

5.4. This lists all the possible states and ordering of states for the discrete behaviour

of the locking door world object. In the next section we will discuss how this can be

analysed for the properties we have discussed.

5.3. BUILDING A REACHABILITY TREE

ooI

o

oo almost C:)
closing CD

open CD
opening 0

closed
unlocked 0

locked

hi ; v! i

:' /LN/

\/c

oo

o oo
oo

oo
o oo Ioo

o- I o o

o

o

76

Figure 5.4: Complete reacliability tree generated for the locking door Petri-net

5.4. ANALYSING THE REACHABILITY TREE

5.4 Analysing the reachability tree

77

In section 5.2 we discussed the properties we are interested in analysing within
Flownets. In the following sections we discuss how the reachability tree can be used
to facilitate the analysis of such properties and how it can be incorporated into the
Marigold HSB and checked automatically.

5.4.1 Safety properties

Safety properties are concerned with ensuring some behaviour cannot happen. Let

us consider one of the safety properties described in section 5.2 for the locking door

world object:

e The door cannot be open and closed simultaneously.

This property is specifying that the following marking of the Petri-net cannot take

place:

locked unlocked closed opening open closing almost
? ? ? ? ?

Where a? specifies that we are not concerned with the marking of that place. If we

manually parse the reachability tree shown in figure 5.4, we can see that there is no

node that matches this marking and the behaviour cannot take place. Consequently,

the safety property holds.

In order to do this automatically, the check reachability menu option is chosen and

a dialogue appears asking for the parameters (marking) of the property. The dialogue

expressing the property described above is shown in figure 5.5. When the check button

is pressed, the reachability tree is automatically generated, and subsequently parsed

for the property. The Marigold HSB then reports whether the specified behaviour

relating to the property is valid. If the behaviour is valid then a scenario is displayed

which illustrates an example context for the behaviour. This can be used to determine

how to change a design to satisfy a property (this is illustrated in chapter 7).

5.4. ANALYSING THE REACHABILITY TREE

check. reachability

un locke d ,, 1 "don't care

closed . /0 /don't care

opening \/O don't care

closing don't care

open /don't care

almost don't care

locke d Z1 don't care

Check
I

C lose
I This marking is invalid

78

Figure 5.5: Dialogue box to check the reachability of a specific marking for the locking
door

Let us consider one of the further liveness properties pertaining to correctness
described in section 5.2. This described that for the locking door world object:

*A closed and locked door cannot be immediately opened.

This property is slightly more complex because it specifies that a sequence of states

should not exist. That is, a behaviour does not occur where in the first state the door

is closed and locked and the next state it is opening:

locked unlocked closed opening open closing almost
first state I ? I ? ? ? ?

next state ? ? ? I ? ? ?

Again the behaviour can be checked against the reachability tree in figure 5.4. This

property holds since there is no sequence of nodes in the tree that matches the prop-

erty.
Illustrated in figure 5.6 is the Marigold HSB interface to the analysis of sequence

reachability properties. This is similar to the dialogue shown in figure 5.5 with an

additional facility that specify the parameters of the next state marking. As in the

previous example, the reachability tree is generated and the result derived automati-

cally.

5.4. ANALYSING THE REACHABILITY TREE 79

check. sequence

first state next state

unlocked don't care 1 \/O don't care

closed \/don't care I \/O don't care

opening \/O don't care 1 VO /don't care

closing 1/0 don't care V1 VO /\ don't care

open VO don't care V1 VO ^cIon't care

almost V1 11/0 don't care 1 VO ^clon't care

locked VO \/don't care 1 VO don't care

Close This marking is invalid

Figure 5.6: Dialogue box to check the reachability of a sequence of markings for the
locking door

5.4.2 Liveness properties

Liveness properties are concerned with ensuring some behaviour can take place. In

order to contribute to usability, one class of liveness property discussed in section 5.2

is that:

* The user should be able to access every state of the behaviour.

In order for this property to hold it is necessary to make sure a token is placed in ev-

ery state of the behaviour at some point within the reachability tree. For the locking

door, it is necessary to check the reachability tree of figure 5.4 to ensure each of the

following markings are contained somewhere within the tree (each row is a separate

analysis):

locked unlocked closed opening open closing almost

clieck locked ? ? ? ? ? ?

clieck unlocked ? I ? ? ? ? ?

clieck closed ? ? I ? ? ? ?

clieck opening ? ? ? I ? ? ?

clieck open ? ? ? ? ? ?

clieck closing ? ? ? ? ? ?

clie. ck almost ? ? I? ? ?

5.4. ANALYSING THE REACHABILITY TREE 80

Since the property is a generic one, it is not necessary to specify any additional
parameters. Within the Marigold HSB a menu option is chosen and the dialogue

shown in figure 5.7 appears reporting the result of checking the markings against the

reachability tree. It can be seen from this figure that all the states of the locking door

are accessible.

Check reachability of all states F-Q Ft Fx-

Checking ... unlocked is reachable
closed is reachable
opening is reachable
closing is reachable
open is reachable

almost is reachable
locked is reachable
All states are reachable

Ok

Figure 5.7: Dialogue box reporting that all states are reachable within the locking
door

In order to illustrate this property failing to hold, an extra state (labelled extra

state) was added to the locking door behavioural specification. This state has no

initial token, and there were no arcs targeting the state in order to pass a token.
When the analysis is applied this time, the dialogue illustrated in figure 5.8 appears.
This indicates that the property fail to hold and the state which is responsible for

this.

Check reachability of all states F--] FPJ F? 51

unlocked is reachable
closed is reachable
opening is reachable
closing is reachable
open is reachable

almost is reachable
locked is reachable
extra state is not reachable
All states are not reachable

Olk

Figure 5.8: Dialogue box reporting that all states are not reachable within the locking
door

Another type of liveness property that appears to contribute to usability (section

5.2) is that:

* The user should be able to interact with the interface regardless of state.

5.4. ANALYSING THE REACHABILITY TREE 81

In terms of the reachability tree, this property is specifying that there is always at
least one transition in the Petri-net which can fire (that deadlock cannot occur). This

means that on no occasion should the reachability tree terminate. For the locking

door, and its reachability tree illustrated in figure 5.4 each of the branches does termi-

nate, however this is because the marking was encountered earlier in the behavioural
trace. Consequently, the tree could continue infinitely, and the property described

above does hold for the locking door. When this is checked from the Marigold HSB,

the dialogue shown in figure 5.9 confirms this.

Check, deadlock of all states F-Q FP-J 5K

Checking ... Deadlock cannot occur

A
Olk

Figure 5.9: A dialogue box specifying that the locking door is free from deadlock

To illustrate the result of the property failing to hold, an amended version of
the discrete part of the locking door is shown in figure 5.10. Within the amended
design, the transition between the closed and openmg state no longer replaces the

token it removes from the unlocked state (as is the case in the original design shown

in figure 5.2). When the analysis is applied this time, the resulting dialogue specifies
the anticipated failure of the property, in addition it specifies the precise marking(s)

of the Petri-net where the property fails. In this case, the token is removed from

the unlocked state by the transition to the opening state. When the token is moved

around to the almost state, the behaviour cannot continue because a token is required
in unlocked state for the transition back to the closed state to fire.

5.5. MODE CONFUSION ANALYSIS

alm

close

Figure 5.10: An amended design of the locking door to illustrate deadlock

Check deadlock of all states F-Q Fp-j X(j

The following marking results in deadlock:
unlocked without token
closed without token
opening without token
closing without token
open without token

almost with token
locked without token

I
Ok

82

Figure 5.11: The dialogue reporting that the amended design of the locking door

suffers from deadlock

5.5 Mode confusion analysis

The final usability property discussed in section 5.2 is concerned with ensuring that

mode confusion does not take place:

e The user should be able to observe the state of interaction.

As described in section 5.2, the states of a Flownet can be considered as inodes because
they define how the user's interaction is interpreted. We are interested in how each of

5.5. MODE CONFUSION ANALYSIS 83

the states within a Flownet design maps to the external environment via plugs. This
is because the only way a state can render some change to the external environment,
and indicate a mode change to the user, is by enabling continuous behaviour which
transforms and outputs data to a plug.

In our informal description of Flownets in chapter 3 (more rigorously defined in

appendix A), we described how a discrete state controls continuous behaviour by

enabling and disabling a flow control. Although the process of enabling a flow control
does not render a change to the external environment, the configuration of components
shown in figure 5.12 does (at this level of abstraction). In this configuration the flow

control is enabling the continuous transformation (transform data) of the data residing
in the store (data). This data is subsequently output to the external environment. If

a transformer targets more than one store, then at least one of the stores must output
its data via a plug. We will call this type of configuration RENDERED.

environment

transform data

VN I ýý data

Figure 5.12: The configuration of Flownet components which enables the rendering
of a change to the external environment

In order for a state to be rendered to the external environment, it can directly

enable a flow control which is part of a RENDERED configuration. An example of
this is shown in figure 5.13 (a). Alternatively, all transitions which target the state
must enable flow controls which are part of a RENDERED configuration, an example

of this is shown in figure 5.13 (b). This ensures that some state rendering takes place
just before the state is reached. The final method of ensuring that a state is rendered
is if all states that target the state enable a flow control that is part of a RENDERED

configuration. Even though the new state does not perform a rendering, since one of
the old states must have been continuously rendering, the absence of this consequently
indicates the new state. This is illustrated in figure 5.13 (c).

5.5. MODE CONFUSION ANALYSIS 84

RENDERED

(b) I A<ý, I RENDERED
RENDERED

old new' new stat, - tate stateý
ýs

(c)
old

state

RENDERED IXI RENDERED

Figure 5.13: Rendering a new state to the external environment

5.5.1 Applying the analysis

The HSB incorporates a mechanism for checking the presence of the configurations
illustrated in figure 5.13. Consider again the mouse-based flying interaction technique
described in the chapter 4 (figure 5.14). When, the mode confusZon analysis option is

chosen from the Marigold HSB menu bar, the dialogue shown in figure 5.15 appears.
This reports that there is a failure in the rendering so mode confusion can take place.
The analysis also reports that the idle state is responsible for this. Consequently,

the user may not able to perceive from the state of the environment whether the

technique has not been started or whether they are in the idle state.
In order to address this problem, the design of mouse-based flying was revised

to incorporate a mapping of the origin position to the external environment. This

revision is shown in figure 5.16. In this design, when the start transition fires and
places a token in the idle state, the resulting transformation is output to the origin
pos plug. Figure 5.17 shows the application of mode confusion analysis to the revised
design which confirms that the property no longer fails.

5.5.2 Discussion

As indicated in section 5.2 the analysis approach described previously is not able
to ensure that mode confusion will not take place. There is no guarantee that a
RENDERED transformation does transform the external environment in such a way
that the user is aware of the mode. For instance, the transformation enabled by a new
state may be the same transformation that took place in the previous state. Even in
the case where the transformation is unique, a Flownet does not determine that the

5.5. MODE CONFUSION ANALYSIS 85

Mjl'ýIarqci6i H,, brid ', pecificaticn Euiider 'usr, ýiý.,; ii! aný,. ýrriarigold; 'hsbi5pecifica*,
-ionsirrlbf. ýfeb 7_777-i F2 K

File Check view Stub Help

-trans /arc inh ýflow /con , sensor store ýtransf ýPluq ýedit ýMole ýclelete toke n

mouse
pos ition

Y

in igin out rigin

j

L

rigin posit ion

--I- ai le flying
Li

r
t

, middle m/butt 0
1

I itli-

Figure 5.14: Flownet specification for the mouse-based flying interaction technique

Mode analysis F-Q [f] FX-J-

State: idle .. not rendered
State: flying .. rendered
MODE PROBLEM

i
Ok

Figure 5.15: The dialogue to the mode checking analysis reporting that mouse-based
flying may cause mode confusion

data is presented in a manner that prevents mode confusion. Hence, the analysis will

never report that mode confusion will not take place, rather: moding seems okay.
However, we can say with a greater level of certainty that unless states are related

to the external environment in the manner described in the previous section, then it

is not possible for the user to observe the mode of interaction. As illustrated in the

previous example, the results of this analysis can be subsequently used to revise the

design.

5.6. DISCUSSION

mouse

mid(

86

Figure 5.16: The revision of the mouse-based flying interaction technique taking into
consideration the potential mode confusion

Mode analysis

State: idle .. rendered
Statellying .. rendered
MODING SEEMS OKAY

Ok

Figure 5.17: The mode confusion analysis result of the revised mouse-based flying
design

5.6 Discussion

We have described how the analysis of Flownet specifications can provide useful insight
into the designs of virtual environment behaviour. The main departure from tradi-

tional interface analysis approaches is that this analysis is concerned with properties

concerning correctness in addition to usability. This insight is a valuable perspective

on virtual environment interfaces and highlights the complexity of their successful
design. In a wider context, it suggests that those forms of interface evaluation tech-

niques concerned with usability cannot be transferred directly to the domain of virtual

environments.

5.6. DISCUSSION 87

In the introduction to this chapter we argued that there are three desirable criteria
for an analysis process. We will discuss each of these in view of the presented approach:

e The use of automation can help assure the accuracy of the analysis.

Each of the evaluation techniques is fully automated within the Marigold HSB. Con-

sequently, we can be confident that the results are accurate. In addition, by using
automation the analysis can derive the results almost immediately. This has been
the case for all the Flownets analysed including the locking door example used in this

chapter 4.

9 Properties must be specified in a language that has a close mapping to the

requirements.

The usability properties (including mode confusion) are generic, so there is no need
to specify any additional parameters when applying such analysis. This analysis is

achieved by choosing a menu option. By contrast, the correctness properties are
concerned with specific characteristics of the Flownet and require additional param-
eters. These parameters are specified in the Marigold HSB dialogues (figure 5.6, for
instance) where it is necessary to indicate the states of the behaviour that can be

reached. These states are in the same language used in the requirements. Thus, it
is a short step from formulating an abstract requirement to being able to specify the
requirement as a checkable property.

* Meaningful results should be given when a property fails to hold.

If an undesirable behaviour is supported by the design (a safety property fails) the
interesting issue is the causation of the behaviour. When safety properties relating
to correctness properties are checked within the Marigold HSB, and found to fail, the
tool gives an example of a scenario which would lead to this being the case (a state
trace). This insight can be used to redesign the behaviour. When usability properties
that fail to hold in a design are analysed, the Marigold HSB reports either the state
or the sequence of states that cause this to be the case. Again, this can be used to

pinpoint the problem with the design.
By meeting these criteria, Flownet analysis provides a practical insight into the

meaning of behavioural designs without resorting to the comparatively time con-
suming approach of prototyping. A limitation of the described approach is that the

analysis is restricted to one Flownet specification. As illustrated in chapter 4, an
'To give some indication of speed, the time taken to return results for the locking door properties

described in this chapter ranges from 1 to 91 milliseconds on a Pentium 40OMHZ with 128MB of
ram.

5.7. CONCLUSION 88

environment is likely to be designed using many specifications. Since these cannot be

composed for analysis, there is no insight into the relation between the behaviours.
This must be evaluated from a prototype. Although an advantage of analysing smaller
units in this way, is that the result is derived in a much shorter time.

A facility within the Marigold HSB, not explored in this chapter, is the ability
to export the Petri-net part of the Flownet description into a file format loadable by
the integrated net analyser tool (INA) [Roch and Starke 1999]. INA offers a powerful
approach to analysing Petri-nets beyond those facilities supported directly by the
Marigold HSB. Potentially for larger nets, analysis results can be derived faster using
the INA tool since it offers the ability to reduce the net while still preserving the
necessary semantics to prove a property.

5.7 Conclusion

In this chapter we have described how requirements concerning virtual environment
behaviour can be formulated into properties and subsequently analysed within Flownet

specifications. We have argued that these properties should concern both correctness

and usability requirements and demonstrated how properties of these types can be

automatically checked from the Marigold HSB. A particular emphasis has been on

ensuring the approach is usable by supporting the natural specification properties,

and returning meaningful results when properties fails to hold.

Evaluating Flownet specification in this manner offers a complementary technique

to evaluating behavioural designs using prototypes in isolation. This is particularly
the case since the facilities to support the analysis of Flownets are built into the

toolset (Marigold) which also supports the prototyping of Flownets.

Chapter 6

Virtual environment
0

requirements specification

In the previous chapters we have explored evaluation approaches which aim to ensure
that designs of virtual environment behaviour are correct. Within these approaches
there has been a tacit understanding that virtual environment designers will have

a clear idea about the requirements for the virtual environment. In practice, this

is not the case. An important challenge is communicating the requirements of the

end-user to the designer in a manner that ensures the resulting designs are correct.
This chapter presents an approach to eliciting and specifying requirements when the

virtual environment is based on the real world.

6.1 Introduction

The study of the virtual environment development process described in [Kaur, Maiden,

and Sutcliffe 1996] demonstrates that in practice designers are unclear about the re-

quirements for designs:

It was easy for a designer to overlook what a user would be focussing on in
a model and spend equal amounts of time working on important and less
important parts, for example designing a chair with height adjustments.
Designers found problems judging the perceptibility of visual features to
the user; often creating over-complex environments because they assumed
users would notice every detail.

They note that designers used photographs and informal conversations with the users
to guide the designs [Kaur, Maiden, and Sutcliffe 1996]. However, the designers

did not apply a formal approach of eliciting and documenting the requirements of
the users. Such an approach is critical to accurately informing a designer of the

89

6.2. OVERVIEW 90

requirements for designs [Sommerville 1996, p64]. In this chapter we explore the

specification of requirements for virtual environments.
There are two major stakeholders in requirements specification: end-users of the

system and designers [Cybulski and Reed 1999]. Each of these stakeholders has dif-
ferent and conflicting concerns. Designers prefer the requirements specified in a form
that allows them to be easily mapped to designs. Users prefer to communicate their re-
quirements in a familiar (non-technical) language. These concerns must be addressed
if a requirements specification approach is to be successful:

* An approach should elicit the requirements in a language natural to the users.

An approach should refine the elicited requirements into a language natural to
the designers.

The approach presented in this chapter aims to address this dual concern.

6.2 Overview

In this section we give an overview of the approach to requirement specification. The

output of the approach is a specification for a virtual environment designer which
documents the requirements. Using the specification, along with reference material

such as photographs, a designer is clearly informed about detail of the real world that

the user requires reproduced in the virtual environment.
The first step in the approach is forming a problem statement which describes

the overall aim of the virtual environment being designed. The problem statement is

refined to a series of scenarios. In the scenarios the users describe episodes of inter-

action with the real world which they require simulated in the virtual environment.
Scenarios are a natural language for the user to express requirements because they
deal with their viewpoint rather than a conceptualisation of the requirements at an

abstract level [Kutti 1995]. This also enables consideration of different viewpoints of

potential users (stakeholders). For instance, in a building fire evacuation environment
(as presented in [Higgett and Bhullar 1998]) one concern might be the viewpoint of
the occupants of the building, but a further concern might be the viewpoint of the
fire service.

Although scenarios document user requirements, these requirements are clouded
by a clutter of non-relevant detail (as far as the designers are concerned) as well as be-

ing spread across multiple representations. Interpreting the implications of scenarios
directly to a design is non-trivial and error-prone. To make the transition from re-

quirements to design more reliable, the requirements that are important to a designer

must be extracted and structured into a usable form.

6.2. OVERVIEW 91

In order to understand what the important requirements are for a virtual envi-
ronment designer, it is necessary to examine design considerations that the designers

must make. For the software part of the virtual environment interface there are, as
discussed in chapter 1, two major components that must be considered. Firstly, the

world objects that are rendered to a user and, secondly, the behavioural rules that
determine how the environment responds to user interaction. When the virtual en-
vironment is based on the real world, the major concern is the level of realism with
which these two components of the environment simulate the real world. In view of
this, we derive four main considerations a virtual environment designer must make.
We call these the key requirement types:

World object appearance. World objects of the environment must appear at a
level of detail which is appropriate to their role. If a world object is not a critical
part of the requirement then it can appear at a low level of detail (wire frame,
for instance). Indeed a world object that is not critical to the requirements
but appears at a high level of detail (relative to other world objects) can give
false cues to interaction and lead to usability problems. On the other hand, a

world object which is critical to the requirements should appear at a high level

of detail (photo realistic, for instance).

World object decomposition. World objects must be decomposed appropriate to

the behaviour they support. To illustrate this, consider a virtual drawer unit. If

the drawer unit remains static during the execution of the virtual environment,
it can be constructed using a single world object. However, if a drawer in the
drawer unit should open and close, the drawer unit must be decomposed into

two world objects: the drawer and the drawer unit. If the drawer unit has a
handle which turns, then the handle becomes a further world object.

World object behaviour. If the behaviour of a world object is not critical to the

requirements then it can be simulated at a rough level of realism. For instance,

a virtual door may simply have an open and closed state. If the behaviour

is critical to the requirements then it may be simulated more realistically and
include movement between the open and closed state.

User behaviour. Behaviour (interaction techniques) must be provided that en-
ables the user to interact with the virtual environment. For instance, if it is

necessary for a user to be able to open a virtual drawer, then the design of the
behaviour must take this into consideration.

The scenarios are analysed and requirements of the types discussed above are
identified. These key requirements are used to build a specification we call a require-

6.3. APPLYING THE APPROACH 92

ments tree' (a single tree is constructed for each environment). The purpose of the

requirements tree is to consolidate the key requirements of the scenarios into a co-
herent form that can be interpreted by designers. An overview of the approach is
illustrated in figure 6.1.

Problem statement

Scenario

OSC

Scenario

Requirements tree

Figure 6.1: Overview of requirements specification approach

6.3 Applying the approach

Two forms of specification are used in this approach. Scenarios are used to extract the

requirements from the user (section 6.3.1). The requirements tree is used to structure
the key requirements for the designer (section 6.3.2). The process involves analysing
the scenarios in order to construct the requirement tree (section 6.3.3). Once the

requirement tree is constructed, it can be used as a basis for designs (section 6.3.4).

The following simple problem statement will be used to illustrate the discussion:

"provide a virtual environment that allows the user to explore their office".

6.3.1 Eliciting user requirements

Scenarios provide an effective way of eliciting requirements from users [Kutti 1995].

The user describes typical interactions with the real world which should be simulated

in the virtual environment and these are documented. This approach places no con-
straints on how the interaction is described. This allows the user to (unconsciously)

indicate a level of real world realism which concerns them. To illustrate this, consider
the following scenario-like description of dealing with a photocopy in the office space:

'Not to be confused with a scene graph tree specification often used in computer graphics.

6.3. APPLYING THE APPROACH

To photocopy a document, I open the lid, place my document on the glass
plate, close the lid, and press the green switch. I then open the lid, remove
my document and collect the photocopy.

and from the perspective of someone changing the photocopier's toner:

To change the toner cartridge on the photocopier I open the maintenance
door and raise the access flap. I then release the toner lock and the toner
cartridge moves towards me. I pull the cartridge out of the photocopier
and slide in a new one. I push the cartridge completely into place, lock the
cartridge and close both the access flap and then the maintenance door.

93

These descriptions are dealing with a real world photocopiers which can support both
interactions. But the virtual environment photocopier would need to include different

realism depending on which scenario it should support. For instance, in order to

support the photocopying of a document in the virtual world, it is not necessary to
facilitate access to the toner cartridge. In this way, scenarios are a filter on the real

world which identifies detail which the user considers important and blocks detail

which they consider unimportant.
To model the scenarios we use state transition diagrams. The states of the formal-

ism describe a static representation of the real world, and the transitions between the

states describe the behaviour that occurs in order to transform the real world from

one state to the next. State transition diagrams are particularly desirable (compared

to the more commonly used structured textual descriptions) since multiple scenarios
that differ only slightly can be modelled within the same diagram using transition
branching. An example of a state transition scenario description is shown in figure

6.2, describing how the user can open a window in their office.

the user the user
is at

is standing the window
the user walks at the thý useýr opens is open his desk to t ow to the window window the window

Figure 6.2: A scenario describing how the user opens a window in their office

6.3.2 Specifying designer requirements

Once the scenarios have been specified, they must be analysed so that the key re-
quirements can be gathered. In order to describe the requirements, and the relations
between the requirements, we use the requirements tree (see figure 6.3 for an example).

6.3. APPLYING THE APPROACH 94

Prior to analysis of the scenarios, there are two nodes in this requirements tree:

the env%ronment which is the root node, and the user which is a branch of the root

node. The relation between a parent node and a child node in the tree should be read
as cons%sts of. Thus, initially the environment consists of a user. Two types of nodes
can be added to the tree during the analysis of the scenarios.

The first of these are world object nodes. These can either be a child of the

environment node or a child of an existing world object node. The structure of world
object nodes in the tree describes the decompositional requirements of world objects.
For instance in figure 6.3, world object I should be decomposed into world object la

and world object 1b. For each world object node added to the tree at the lowest level,
it is necessary to annotate it with one of the following tags describing its significance:

* Background: are not critical to the scenario.

e Contextual: are important to the scenario but not the focus.

* Task: are central to the scenario.

This tag specifies the requirements concerning the relative level of realism with which

world objects should appear. For example in figure 6.3, world object la is task so

should appear at a relatively high level of detail while world object lb is contextual

and can appear at a relatively lower level of realism.
The second type of node that can be added to the requirements tree are the

behavioural nodes. These can either be a child of a world object node or of the user
node and are annotated with a <be> tag to differentiate these from world object
nodes. These nodes describe the behavioural requirements for world objects and for

the user.

environment
L user
LL user behaviour 1 <be>

L user behaviour 2 <be>
world object 1
L world object 1a <task>
L world object 1b <contextual>

L world object behaviour 1b <be>

Figure 6.3: The structuring of key requirements in the requirements tree

6.3. APPLYING THE APPROACH

6.3.3 From scenarios to requirements tree

95

We now illustrate the transition of the key requirements from the scenarios to a tree

using one scenario (figure 6.2). Prior to analysing the scenario, the tree consists of

an envZronment and a user (figure 6.4 a).
The first state of the scenario relates that the user is sitting at his desk. It can

be deduced therefore that a chair and a desk world object are implicated and should
be added to the tree (figure 6.4 b). These world objects are contextual - they are not
the focus of the scenario.

In the next transition the user walks to the wZndow. There should therefore be a

wZndow world object in the environment. It appears that this is not the focus of the

scenario, so the label is again contextual. No further requirements are established by

the next state.
The user next opens the window. This establishes the behavioural requirements

that the window can be opened and closed and produces the need to decompose its

existing representation in the requirements tree into a window and a wZndow frame

world object. The window frame is described as contextual, but the wzndow itself as
task since this is critical to the scenario. The window is also assigned the behavioural

requirement that it can be opened and closed. Nothing further is added by the last

state of the scenario. The final requirements tree is shown in figure 6.4 (d).

The requirements catalogued in the requirements tree should support all scenarios
that are analysed. Consequently, during analysis existing requirements in the tree

can be upgraded but never downgraded. To illustrate the reasoning behind this point

consider two scenarios A and B. Scenario A determines that the requirements tree

should include a door world object. Scenario B determines that the same door should
have open and close behaviour. If scenario A is analysed followed by B, then the

door should be upgraded to include the open and close behaviour. This is because

the requirements tree still supports both scenarios since it is of no consequence to

scenario A that the door should behave. However, if scenario B is analysed followed

by A, the door should not be downgraded to have no behaviour, since this will no
longer support scenario B.

6.3. APPLYING THE APPROACH 96

the user
is sitting at
his desk

the user-walks
to the window

the user '
is standing

at the
window

the user opens
the window

the window
is open

(a) environment
L user

(b)
....... environment

L user
L desk <contextual>
L chair <contexual>

............. environment
L user
LL move to window <be>

desk <contextual>
L chair <contextual>
L window <contextual>

................ environment
L user

L move to window <be>
L open window <be>

I

desk <contextual>
L chair <contextual>
L window

L window pane <task>
L closed<be>
L opened<be>

L

window frame <contextual>

Figure 6.4: The evolution of the requirements tree (right) as the example scenario
(left) is analysed

6.3.4 From requirements tree to designs

The important characteristic of the requirements tree is that it coherently documents

the virtual environment requirements for designers. This enables designers to be

informed of the requirements as they are designing virtual environments.
The structure of the requirements tree describes how world objects should be

decomposed. As illustrated in figure 6.5 this structure can be used to construct the

world objects using a 3D modeller. In this example the wMdow pane and w%ndow
frame become separate world objects in order to support the requirement that the

window should open and close. Similarly, the requirements tree informs the designer

the level of realism with which each world object component should appear. In figure

6.5 the window pane has a high realism of appearance because it is the focus of
interaction, while the other three world objects has a (comparable) lower realism of

appearance.
The requirements tree describes the behavioural requirements which the environ-

ment should meet. In the case of world objects this is a listing of the behaviours

a world object should support. For instance, in figure 6.6 the window pane can be

6.3. APPLYING THE APPROACH

4 environment
L

user
L

move to window <be>
L

open window <be>

desk <contextual>
L

chair <contextual>
L

window
L

windowpane <task>
L

closed<be>
L

opened<be>

window frame <contextual>

97

Figure 6.5: Interpreting the world object requirements from the requirements tree

environment
L

user L
move to window <beý

L
open window <be>-, _

desk <contextual>
L

chair <contextual>
L

window

0-ý-o
interaction behaviour

model

0-ý-o
interaction behaviour

model

L
windowpane <task>
L

closed<be> -----------
L

opened<b&> -----------

window frame <contextual>

0-ý-o
object behaviour

model

Figure 6.6: Interpreting the behavioural requirements from the requirements tree

opened and closed. These behavioural requirements can be mapped directly to a be-

havioural specification such as Flownets as exemplified in figure 6.7. With Flownets

each of the world objects behaviours within the requirements tree becomes a discrete

state in the Petri-net. This can be augmented with further detail to form a complete
design.

A designer is clearly informed of the behavioural requirements that must be met
by the designs of interaction techniques. These requirements can also be realised

using behavioural designs such as Flownets. However, there is not the straightforward

mapping between requirements of this type and their designs in the manner of world

6.3. APPLYING THE APPROACH 98

I, larigold Hybrid Specification Eudder i V2.0) - ýU5r[1%1! illans/rrtarigcld. ýhsbispecification5ý.,,. iindow. %/eb F---] Fp-j Xci

File Chcck view Stub Help

ýState /trans /arc ýinh flow con sensor ýstore ýtrarsf 'Phig edit 'Mo'e delete

open/close
window open window closed

Figure 6.7: Mapping the behavioural requirements of the window pane world object
onto the discrete component of a Flownet design using the Marigold HSB

object behaviour. This is because interaction techniques are rarely a direct simulation
of real world interaction techniques but rather abstract approximations. For instance,

in order to realise the requirement of "move to the window" the mouse-based flying

interaction (chapter 4) could be -used. It is necessary for a designer to consider the

behavioural requirements of the user described in the tree, along with photographs
(and maps) of the required location of world objects in the virtual environment, in

order to design (or determine) appropriate techniques.

The grouping of world objects and their behavioural requirements in the require-

ments tree enables a designer to understand how requirements are related to each

other. For example, the requirements tree of figure 6.6 shows that the requirements
for a window window consists of two world objects and two behaviours. This can

guide the construction of a Marigold COB specification which brings together designs

of world objects and their behaviours (figure 6.8).

6.4. KITCHEN EXAMPLE

I langold Cornple:,: Cloject. Culcler (v. '. O) - iu5 iijv; i I Ian 5/ marigo I d.! pixicom pie: I---] I aj I -x
File HOP

[-ýb
P

ý@v ýiour
-olbjert ýexternal link ýobject groul) ýdynamic bind link ýMole edit delete

window pane(wo)
external link

w1ndow(bE MAV_matrix matrix (a) ý

LV matrixhandl). 'sition -vector vector (a) MAV
siuoonn

S ItIon (r) t,)r 4 PO
int selected (a)

vec incowlDosMon (r) IMAV
- int visible (a)

window frame(wo)

MAV- matrix matrix (a)

MAV-Yector Yector (a)
int selected (a)
int visible (a)

Figure 6.8: A Marigold COB specification for the opening window

6.4 Kitchen example

99

In this section we demonstrate the application of the requirements specification ap-

proach with a larger example. The problem statement addressed in this example is:
"provide a virtual environment to train a chef to use typical kitchen equipment to

cook a breakfast". For this problem statement we derive three scenarios dealing with
the frying of an egg, the heating of beans and the making of toast.

The scenario for frying an egg using a gas oven (figure 6.9) results in the require-

inents tree (figure 6.10) containing an oven world object. This is decomposed into

a gas swdch, Zgnztzon switch and a flame to facilitate the behaviour associated with

each of these world objects. In addition, there is an oven unit world object which

supports no interaction. The user has associated behaviour which supports their

interaction with the gas oven.

t the gas is the hob is llt, ý
the chef is the gas is 'and ignition

switched off and
3ed stood in the switched on switch released the flame is

d

V

sw
)e

turns th kitchen walks to the oven presses the gas the eggs are turns the gas off extinguished
Itc Ig 10 switc I and switches on the gas ignition switch cooking

Figure 6.9: Using an oven to fry an egg scenario

6.4. KITCHEN EXAMPLE

environment
L oven <task>

L oven unit <contextual>
L flame <task>
LL on <be>

L off <be>
ignition switch <task>

LL press on <be>
L release off <be>
gas switch <task>
L turn on <be>
L turn off <be>

user
L release ignition switch <be>
L turn gas off <be>
L press ignition switch <be>
L turn gas on <be>
L move to oven <be>

Figure 6.10: Including the frying egg scenario in the requirements tree

100

The scenario for cooking beans using a microwave (figure 6.11) has augmented the

requirements tree (figure 6.12). Within this, the tree includes two additional world
objects the microwave and the bowl of beans. The m%crowave is decomposed into an

on swZtch, timer and a door to facilitate the behaviour associated with each of these

world objects. There is also a microwave unit world object which has no associated
behaviour. The bowl of beans world object is not decomposed further since it has

no associated behaviour. Additional behaviour has been associated with the user in

order to facilitate moving the bowl of beans to the microwave and interacting with
the microwave in order to heat the beans.

ýhe c hef the bowl is

is in the
moves to the

microwave
places bowl of

in the '--ýcloowses
the0or

Ic
kitchen door is open microwai)ve

m1crow v

IfI

microwave and opens beans into microwave door
door microwave

---ýýetscthoe microwave
co king time

the microwave the microwave
the cooking begins to rotate stops cooking time is set presses the the beans the cooking time the beans

start button expires

the door is
closed with

the bowl
inside

Figure 6.11: Using the microwave to heat beans scenario

6.4. KITCHEN EXAMPLE

environment
L bowl of beans <task>
LL move inside microwave <be>

microwave <task>
L microwave unit <contextual>
L on switch <task>
LL press <be>

timer <task>
L set <be> L
door<task>
L open <be>
L close <be>

L

food plate <contextual>
L rotate <be>

oven <task>
L oven unit <contextual>
L flame <task>
LL on <be>

L off <be>
ignition switch <task>

LL press on <be>
L release off <be>
gas switch <task>
L turn on <be>
L turn off <be>

user
L set microwave timer <be>
L place blow in microwave <be>
L move to microwave <be>
L release ignition switch <be>
L turn gas off <be>
L press ignition switch <be>
L turn gas on <be>
L move to oven <be>

Figure 6.12: Including the microwave scenario in the requirements tree

101

The final scenario is making toast using a toaster (figure 6.13). The requirements
tree (figure 6.14) has been further extended to include two additional world objects
the toast rack and the toaster. The toast rack is decomposed into the rack itself and

the toast that is initially held within the rack. The toast has an associated behaviour

so that it can be moved from the rack to the toaster. The toaster object is decomposed

into the toaster unit and the sHer, which has an associated behaviour. Additional

behaviour has been attributed to the user in order to facilitate the transfer of the
toast from the rack to the toaster and the interaction with the toaster itself.

6.4. KITCHEN EXAMPLE 102

the chef is toast is in begins toast is done in the r
toast is done

the toaster toasting
kitchen moves to toaster pulls toaster toaster time

r-I. r sl irr tu s to to
places toast from slider to bottom expires and the

ack into toaster slider returns to top

Figure 6.13: Using the toaster to make toast scenario

6.4. KITCHEN EXAMPLE

environment
L toast rack <contextual>

L rack <contextual>
L toast <task>

L move to toaster <be>
toaster <task>
L toaster unit <contextual>
L slider <task>

L move up <be>
L move down <be>

bowl of beans <task>
LL move inside microwave <be>

microwave <task>
L microwave unit <contextual>
L on switch <task>
LL press <be>

timer <task>
L set <be> L
door <task>
L open <be>
L close <be>
food plate <contextual>
L rotate <be>

oven <task>
L oven unit <contextual>
L flame <task>
LL on <be>

L off <be>
ignition switch <task>

LL press on <be>
L release off <be>
gas switch <task>
L turn on <be>
L turn off <be>

user
L pull toaster slider down <be>
L place toast in toaster <be>
L move to toaster <be>
L set microwave timer <be>
L place blow in microwave <be>
L move to microwave <be>
L release ignition switch <be>
L turn gas off <be>
L press ignition switch <be>
L turn gas on <be>
L move to oven <be>

103

Figure 6.14: Including the toast scenario in the requirements tree

6.5. PRIMROSE

6.5 Primrose

104

Applying the described approach by hand can be tedious and error-prone. Rarely
do scenario descriptions fit inside a state or on a transition and hence a specification
may have to be compromised to accommodate this restriction, reducing the accuracy
of the requirements. The requirements tree must be redrawn for almost every step of
the analysis with the danger that a designer may shortcut analysis of the scenarios
and attempt to consider multiple states/ transit ions concurrently.

I File He

ry eggs
nicrowave beans

oast the roast

- -F--n
--I Enýironmenr

F'j toast rack < contextual>
0- rj toast <task>

ý
(P Fj toaster <task>

the chef is the oven is
n toaster unit <contextu

O-Fj slider <task>
q) F'I b owl of In ak ed b ean s <tas

move inside microway
walks to gas presses the turns the ga q) Fj microwave <task>

F)microýave unit <conte

0- F-I on switch <task>

the gas is s the gas is s
(P LI timer <task>

0s et

(P f-I door <task>

open

close

0- FI food plate <contextual
(P 7'j oven <task>

F) oven unit <contextual-,
D-Fj flame <task>
0-F'Ijgnition switch <task>
0-Flgas switch <ta-k>
-1 User

pull toaster slider dow

he oven is lit and : nition sýitch place toast in toaster
s released, the eggs are cooking

move to toaster

Figure 6.15: A screenshot of the Primrose tool

The Primrose tool is designed to support the requirements specification approach.
It is written using Java/Swing and has been tested for portability across unix and

windows based platforms. A screenshot of this tool is shown in figure 6.15. At the
left side of the tool is a list of the scenarios for the environment being designed,

new scenarios can be added to this dynamically. In the centre of the tool is an

area for creating the state transition description of the selected scenario (using point

and click). The full descriptions of states and transitions are displayed in the text

area below the diagram allowing long comprehensive descriptions of each part of
the scenario. At the right hand side of the tool is the requirements tree which can
be dynamically updated and revised during the analysis of scenarios. Within this,

behavioural nodes are described using the 0 icon rather than the <be> tag of
the previous section. During scenario analysis it is possible to mark those states and

6.6. DISCUSSION 105

transitions which have been considered to prevent duplicating work. The environment
being analysed in figure 6.15 is the kitchen example described in the previous sections.

Within Primrose, sub-branches of the requirements tree can be folded and un-
folded thus making it easier for the designer to focus on those aspects of the require-

ments tree relevant to the current concerns. For instance, in figure 6.16 the oven

world object of is unfolded, while the other objects are folded.

Environment

0-17-1 toast rack <contextual>
0- FI toaster <task>
0-171 bowl of baked beans <task>
0- 171 rn i crowave <tas k>

r-I oven <task>

F) oven unit <contextual>
flame <task>

off

on

ignition switch <task>

released off

pressed on

g as switch <task>

turned off

turned on

0-171 User

Figure 6.16: The requirements tree within Primrose

6.6 Discussion

The previous sections have introduced an approach for the requirements specification

of virtual environments. In the introduction to this chapter we expressed two desirable

criteria for such an approach:

9 An approach should elicit the requirements in a language natural to the users.

We have used scenarios to elicit the requirements from the users, these are structured

using state transition diagrams. Scenarios have long been recognised as a good method

of recording existing work practices which are easy for users to adopt [Ben, Tawbi,

and Souveyet 1999]. This is because the story-telling style of scenarios places few

constraints on how they should be constructed. In the presented approach the user is
describing interaction with the familiar domain of the real world. As such the scenarios
have the additional desirable characteristic of abstracting from implementation factors

which may hinder the elicitation.

6.7. CONCLUSION 106

A criticism that can be applied to scenarios is that they do not necessarily ex-

pose all the requirements. Indeed this criticism can be applied to most requirements
specification approaches since there is no guarantee that the specified requirements
are indicative of the real requirements. In the previous chapters we have pursued an
approach to ensuring designs are correct using the Marigold toolset. This allows any

missed requirements to be identified and integrated into the design.

* An approach should refine the elicited requirements into a language natural to
the designer.

Although scenarios document the requirements of the virtual environment, these re-
quirements are clouded by a clutter of non-relevant detail (for the designer) as well
as being spread across multiple representations. Interpreting the implications of sce-
narios directly to a design is non-trivial and error-prone. We have introduced the

requirements tree as an intermediate representation that addresses this problem. The

requirements tree consolidates requirements derived from scenarios and structures
them according to a number of requirement types. We have demonstrated how sce-
narios can be mapped to the requirements tree, and argued that the coherency of the

requirements tree makes easier their use in design.
An omission from the requirements tree is a description of how the state of the

environment influences what behaviour can take place. For instance, in the "fry egg"
scenario, a gas and a spark is required as a precondition for a flame to appear. These
dependencies can be used as the basis for test cases for behavioural analysis (chapter
5). Early experimentation of the approach did attempt to incorporate this information
by including multiple representations of the tree which were associated with scenario
states. Therefore, each state would have a tree describing the precondition and a tree
describing the post condition. It was found, however, that even when supported by
the Primrose tool that this was cumbersome. Having multiple representations of the
tree was confusing and difficult to consolidate to a single specification for a designer.
More significantly, we found that the existing approach made it possible to determine
the behavioural dependencies by considering the real world object using the level of
realism defined within the requirements tree.

6.7 Conclusion

In this chapter we have explored requirement specifications for virtual environments

which are based on the real world. The presented approach begins with a problem

statement expressing the overall aim of the environment. This statement is refined
to a series of scenarios which allow the user to describe episodes that the virtual

6.7. CONCLUSION 107

environment should support in terms of concrete real world interaction. The scenarios
are then analysed and key requirements are structured in a manner that allows them
to be easily mapped to a virtual environment design.

In order for an approach to be valuable, practical concerns relating to its usage

must be considered. The Primrose tool was developed to support the application of
the approach.

Chapter 7

Case studies

In the previous chapters we have described the Marigold toolset which supports the

exploration of virtual environment behavioural designs, and an approach supported by

the Primrose tool which enables the specification of virtual environment requirements.
In this chapter we present two case studies which illustrate the application of these

contributions.

7.1 Introduction

This thesis has made a number of steps towards integrahng behavioural designs into

the development process of vtrtual envtronments. In chapter 2 we argued that Flownets

are a good formalism for the design of virtual environment behaviour. In chapter 4 we

presented an approach to evaluating the behavioural designs using prototypes built

using data flow networks. In chapter 5 we presented an approach for the evaluation

of Flownet designs using automatic analysis. Both these approaches are supported
by the Marigold toolset. In chapter 6 we presented an approach to requirements

specification prior to the design of the behaviour (and world objects). This approach
is supported by the Primrose tool.

This chapter contains two case studies that demonstrate the application of Marigold

and Primrose. Our aim is:

9 To illustrate how the evaluation approaches supported by the Marigold toolset

behave in a realistic development context.

e To illustrate the extent to which the additional use of the approach supported
by Primrose guides the formulation of designs.

108

7.2. NAVIGATING A LANDSCAPE

7.2 Navigating a landscape

109

In this case study we design an environment which supports the navigating of a

user around a large natural landscape. During navigation the user should be able
to observe visual features distributed around the landscape. The environment will
eventually be placed in a public museum where we can assume that users will be from

a variety of backgrounds. This is a good case study for assessing the application of
the approach because:

Effective navigation is frequently critical to a well designed virtual environment,

yet rather than being designed, reusable toolkit interaction techniques are often

employed.

9 The case study is a realistic one since museums and similar fora are constantly

seeking methods of broadening access to information.

7.2.1 Initial design

A first step in being more concrete about what the requirements of the environment

are, is to evaluate an existing technique to see how well it works in practice. Figure

7.1 shows a prototype specification which uses the mouse-based flying interaction

technique (discussed earlier in the thesis) to navigate the landscape. This is a sensible

initial choice because it requires a commonly available hardware configuration.
When we evaluated the prototype generated from this specification, desirable and

undesirable characteristics of this technique emerged. It was advantageous that the

technique can control speed in addition to orientation, because this provides a means

of slowing down to accurately locate interesting landscape features and quickly pass
those of little interest. However, because mouse-based flying does not control navi-

gation on the y axis there was no way to descend to observe more detailed landscape

because the user is at a static height. When this static height was lowered, we col-
lided with the landscape and quickly became disoriented. Therefore, a technique is

required which retains the ability to control speed but provides additional navigation
on the y axis.

7.2. NAVIGATING A LANDSCAPE 110

File Code He IpI

/device "cursor object complex object dynam[c bind objert group ýviewpoirt Ihnk ýMove delete

viewpoint(vp)
MAV_vectc, r eye (a)
MAV_Yector view (a)
MAV_Yector up (a)
MAV-Yector fixed-up (a)

mbf(be) desktop rnouse(de)

MAV-vector mouseP2s q___ MAV-matrix matrix (a)
int mouseButt IF--- MAV-Yector vector (a)
MAV-Yector positi- (r) int button (a)

landscape(wo)
M AV matrix matrix (a)
MAV-VeCtor YeCtor (a)
int selected (a)
int Yisible (a)

Figure 7.1: A prototype specification using mouse-based flying technique to navigate
the landscape

7.2.2 Two-handed flying

In [Mine, Brooks Jr, and Sequin 1997], Mine et al. present a series of techniques

which utillse the proprioceptive senses of the users body position to promote a better

understanding, for the user, of their state of interaction. One of these techniques is
two-handed flying where the user controls the direction and speed of navigation using
their arms. The following description of the technique is taken from [Mine, Brooks

Jr, and Sequin 1997]:

The direction of flight is specified by the vector between the user's two
hands, and the speed is proportional to the user's hand separation. A
dead zone (some minimum hand separation e. g. 0.1 metres) enables users
to stop their current motion quickly by bringing their hands together (a

quick and easy gesture).

Since the speed and direction of navigation is controlled by the users hands, this

technique provides control of the speed and also navigation on the z axis. Our next
step was to move from this informal explanation of the technique to a reified Flownet

design. The resulting design specification for (an interpretation of) this technique is

shown in figure 7.2. This clarifies the technique and the additional design decisions we
have made. For instance, the textual description gives no indication of the initial state

7.2. NAVIGATING A LANDSCAPE ill

of the technique. The Flownet specification states that the technique is initially in the

state of not flying. Only when the hand posZhons reach a distance (d) greater than
the minimum (min) does the technique change state to flying. The textual description
does not indicate at which point the technique can be exited. The Flownet design

clarifies that the technique can be exited in any of the two states of interaction.

Marigold H, /brid Specification Bu dder (V-0) - usrijA! illan5/rriarigoldi; hsb/5pecification5/thf. ý/eb
File Check View Stub Hýlp

trans arc inh /flow 'Icon ýsensor , store /transf plug toke n /edit ýMove /delete

hand positions position hand positions

speed

pos ition

di

flying exi

min
(D

dc=min
0---

--C] disable

enable D- a tfl ext
r

Figure 7.2: Flownet specification for the two-handed flying technique

7.2.3 Mode confusion analysis

Once the Flownet specification for the two-handed flying technique was built and we

were satisfied it matched the textual description, we checked the design for mode

confusion using the HSB. The result of this analysis confirmed that there was a

potential mode confusion problem. This is illustrated in figure 7.3.

When the technique is in the not flying state, no change is rendered to the exter-

nal environment. The user is unable to perceive from the state of the environment
whether or not the technique is active when stationary. To overcome this problem
the technique was revised, this is shown in figure 7.4. This incorporates additional

constructs so that whenever the technique becomes active or inactive, an appropriate

notification is passed to the outside environment (the output to the thf plug). The

revised specification showed no symptoms of mode confusion.

7.2. NAVIGATING A LANDSCAPE
-

Mode analysis F-Q I-d F25-j-

State: flying .. rendered
State: not flying

.. not rendered
MODE PROBLEM

Ok

112

Figure 7.3: The mode confusion analysis result of the two-handed flying interaction
technique

Marigold Hybrid Specification Builder (V2.0) - iusr, jý)iillansimarigold/lisWspecifications/thf.. veb ýý--j ýIFIý -5zj 2
File Check view Stub Help

trans ýarc Inh flow ýcon ýsensor ýstore /transf plug ýedit ýrnove delete toke n

di

fly ing

d>min d<=min
-0 ----0-

disable

t
enable a not flying

eI

thf

thf

Figure 7.4: Revised Flownet specification for the two-handed flying technique ad-
dressing potential mode confusion

7.2.4 Prototyping the design

The next stage was to add code to the nodes constituting design specification of the

interaction techniques and to generate a stub which can be inserted into the prototype

specification for navigating the landscape. The resulting prototype specification is

shown in figure 7.5 using the two-handed flying technique to control navigation. The

technique controls the visibility of the active world object (which is initially invisible)

by changing the state of its visible variable. The position of the viewpoint is updated

7.2. NAVIGATING A LANDSCAPE 113

by the technique as is the position of the active world object. This is so that when
the active world object is visible it can always be perceived w1th1n the viewpoint.

Although the technique is intended to be used with trackers to determine the

positioning of the user's hand in 3D space, when this prototype was first specified
trackers were unavailable to us. This initial prototype specification simulates the
hand trackers input by the use of the desktop mouse to represent the left hand, and
a mapping of the keyboard to represent the right hand. The position of these devices

were also mapped onto cursors so that their relative distance could be perceived in
the viewpoint (this would not be necessary with hand trackers because the user has

a sense of the relative position of their hands). A further mapping of the keyboard

enabled and disabled the technique.
The prototype generated from this specification did not allow the usability of the

technique to be well established since simulated, rather than the actual, devices were
being used. However, it does offer some insight into whether the navigational require-
ments were met. For example, a conclusion from this prototype (shown in figure 7-6)

was that because the technique does not facilitate any rotary locomotion (pitch, roll
or yaw) the user always remains at the same angle of orientation (facing forwards).

However, we found that the necessary features of the landscape can be observed within
this constraint. Consequently, a commitment could be made to hardware to support
the actual device requirements of the technique.

Marigold Prototype Builder (V2.0) - /usrijwillans /marigold/pb/prototypes/thf2. vep
File Code Help

, behaviour device , cursor /object ,, complex object dynamic bind ýobject group viewpoint
EE:]

ýmove ýdelete

F-k-y-bo-ard-(de-)]
viewpoint(vp)

MAV_vector eye (a)
MAV-vector view (a) thfZ(be)
MAV-vector up (a)

Up (a) M AV vector fixed char enabledisable desktop rnouse(de) s t
- - MAV-vector lefth MAV-matrix matrix (a)

E

cursor
MAV vector riqhth YL c MAV ctor vector (a) MAV- c y e MAV-matrix cursor
MAV vector position (r) t utto tb u t t on (a) in
int visible (a)

acbve(wo)
MAV-matrix matrix (a) 6D0F keyboard (de)

ursor
MAV-vector vector (a) landscape(wo) MAV-matrix matrix (a)

MAV matrix cursor int selected (a) MAV-Yector vector (a) -
int visible (a) MAV-matrix matrix int button (a)

MAV-vector vector (a)
int selected (a)
int visible (a)

viewpoint(vp)
MAV_vector eye (a)
MAV-vector view (a)
MAV-vector up (a)
MAV_vector fixed-up (a)

Figure 7.5: Prototype specification with an indicator to avoid mode confusion

7.2. NAVIGATING A LANDSCAPE

++

Figure 7.6: Two-handed flying screenshot

7.2.5 Substituting devices

114

A number of trackers (Polhemus ISOTRACK II) were acquired which are able to
detect the position of a user's hands. The prototype specification was revised by

substituting the nodes of the pseudo devices for those of the trackers and linking
these to the two-handed flying technique within the PB. The resulting specification
is shown in figure 7.7.

The prototype generated from the revised specification was evaluated. Overall the

technique worked well and we could interact with ease. However, despite the ability

of the technique to control speed, we found that the slowest speed of the technique
(hand slightly above the minimum distance) too fast to support accurate navigation

and we kept slipping into the dead zone and halting. This improved as our experience
increased, but quickly we began to find the fastest speed of the technique (arms at
full stretch) frustratingly slow. Potentially the code within the Flownet specification

could be changed to accommodate this, but the environment would then be targeted

to one set of users (amateurs or experienced) and we wish to support a range of

users. A solution we chose to pursue was to provide a mechanism whereby a user

could dynamically select a speed offset. Ideally, we wanted to achieve this without
introducing additional devices.

7.2.6 Offsetting the speed

In traditional WIMP user interfaces there are a number of standard interaction tech-

niques that allow the user to select one of a number of options such as pull-down

iiienus and clieck-box. One equivalent interaction technique for virtual environments

7.2. NAVIGATING A LANDSCAPE 115

I f. langold Prototype Euilder ýV2.0) - /u5r/pJllans, : rnai igoidlpb/protot*ipesitht-'. ý..; ep
File Code Help

ýIbehaviour ýdeyice ýc u rsor ý, bject \/comolex object dynamic bind _-object group /Yiep6nt ýMove deiete

viewpoint(vp)
keyboard(de)

MAV-vector eye (a) char letter (a)

MAV vector Yiew (a)
-

MAV-vector up (a)
týhfZ(be)

MAV-vector fixed a char enabledisable left Polhemus(de)
' M AV-vecEtorletfth MAV matnix matri (a)
A

v tor t MAV_Yect riqhth MAV ... (
ct Os ,t MAV-vector position (r) t int button ka) J

,0 int Yisible (a) -
active(wo)

MAV-matrix matrý. (a) right Polhernus(de)

MAV-Yector Yector (a) F dsca e wo
Mv ma MAV matrix matrix (a)

C --
cursor l ý

int selected (a) p () MAV-vector ve or MAV-matrix cursor

int visible (a) 111ý MAV_matrix matrix (a) i nit button (a)
MAV_vector vector (a)
int selected (a)
int visible (a)

Figure 7.7: Prototype specification using Polhemus trackers

is the virtual jog dial introduced in [Deisinger, Blach, Wesche, Breining, and Simon

2000]. The following description of the technique is taken from [Deisinger, Blach,

Wesche, Breining, and Simon 2000]:

The jog dial for VR is a seim-circle and an indicator. The semi-circle
represents the range of possible values and the indicator points to the
current value. The indicator rotates around the centre of the semi-circle
and is controlled intuitively by rotating the wrist around the axis defined
by the forearm. The jog dial is activated through a speech command or
menu item. When activated, a button on the device controls the jog dial.
As soon as the button is pressed the indicator rotates according to the
wrist, until the button is released.

Since the technique uses the rotary movement of the wrist to determine the selection,

this technique can utilise one of the two Polhemus trackers which currently exists

within the design.

The Flownet specification for this is shown in figure 7.8. Code was added to the

nodes constituting the jog dial Flownet and a stub of the technique generated. This

was made reusable by encapsulating the behaviour and renderings in a complex object

specification shown in figure 7.9. Initially the stub generated from the COB specifi-

cation was inserted into a new prototype specification for evaluation independent of

viewpoint(vp)
MAV-vector eye (a)
MAV-vector view (a)
MAV-vector up (a)
MAV_vector fixed-up (a)

7.2. NAVIGATING A LANDSCAPE 116

the navigating landscape prototype. This is illustrated in figure 7.10 (bottom) and a
screenshot of the prototype generated from this specification shown in figure 7.11. A

series of iterative tunings took place to ensure that the angle of the jog dial's arrow of
the jog dial was relative to that of the Polhemus tracker. This involved adjusting the

code in the transformer nodes of the Flownet specification. When this was correct,
the technique was found to support the selection of a speed offset.

7.2. NAVIGATING A LANDSCAPE 117

File Check view Stub Help

trans ýarc .,
i nh flow ýcon ýsensor /store ýtransf plug ed, t ýnnoye /delete token

select

selecting

select

visible

togg le
show

hide

se leýý.

hidden

uPCa te

nx

File Check view Stub Help

F-,
tate

I
ýtrans arc /inh ýflow ýcon ýsensor ýstore ýtransf ýPluq ýedit ýMoye ýdelete ýtoke n

jog position

dev ic e Pos selected selected option

select

u pdate

toggle

Y
7

--0 show
hide

trigge rs ---0
select vis i bi I ity

selected
----o

sibilhty

Figure 7.8: Revised Flownet specification for the interactive jog dial

7.2. NAVIGATING A LANDSCAPE

I-lari go Id Complex Object Euilder 0/2,0) - lusrjvii I Ian simari goldiplaicorno I e;. '. P.., 'orldCbjectsijog. cý. li o
File Help

object /external link \,, object group ýdyrannlc bind link ýrn", Ye edit delete

jog diaJ(wo) ý 2 !
t ix n LAv aa tr (3)

-MLI
xm i " r mvr'

tt

H

_ _0 vecto
ý

Vc
or (a) vvr t(ýr (a) log(be)

int selected (a)
int visible (a) int o tion (a) t0

!

nt vi< int visible (a)

R

Z
. her t Ch., rigger rt

0 g arrow (wo jog arro MA V MAV matrix joqPos (a)
m tr MAV-matrix matrix (a) AV M AV matrix devicePos

v 'to MAV-vector vector (a) r (a)
e int selected (a)

int visible (a) l.. k7]

Figure 7.9: Complex object specification for the interactive jog dial

118

File Code Help I

behaviour device ýcur5or ýolbject ýcornlplex object /dynami, bind ýolbject group ývipwlpoint EEk] -Move -delete
I

I viewpoint(vp) I

Figure 7.10: A prototype specification constructed to evaluate the jog dial

7.2. NAVIGATING A LANDSCAPE

Figure 7.11: Jog dial screensliot

7.2.7 Prototyping the design (2)

119

The two-handed flying Flownet specification shown in figure 7.4 was revised to fa-

cilitate the input of the offset (figure 7.12) and regenerated. The original prototype

of figure 7.5 was then augmented to incorporate the complex object for the jog dial.

This is shown in figure 7.13. A separate viewpoint was added to the specification to
display the jog dial when active. A prototype was again generated from this specifi-

cation. This prototype was found to be effective in supporting the task of navigating

and observing interesting features of the landscape.

hand positions pos it ion

Figure 7.12: Revised two-handed flying Flownet to facilitate the external input of a
speed offset

r Or

7.3. A VIRTUAL KITCHEN 120

I Mangold Provype Builder 002.13) - . ýusr. lj%.,.; illansi'rriarigold, pbýprototypes.. 'thf_jog, %iep F-Q FP-J x

File Code Help
E, behay-io-, j-r] devire ýcursor ýobjert complex object dynamic bind ýobjerr qr, ýup ýviewpoint link nnoy edeIe te

left Polhemus(de)
MAV-matrix matrix (a)

navigation(vp)- thf3(be) MAV_Yectcr Yector (a)
MAV_vector eye (a)

C har enabledisable
i nt button ýa)

MAV_Yector view (a) MAV-Yector lefth MAV_vector up (a)
\1

MAV_Yector riqhth MAV-vect fixed-up (a) MAV-Yector position (r) right Polhemus(de)
MAV-window window (a) int visible (a) MAV-matrix matrix (a) cursor

int option MAV-Yector vector (a) MAV matrix cursor
int button (a)

ma tr, ý (a) log dial(co)
M AV veclor vector (a) int o tion (a)
int selected a) char tri er keyboard(de)

AV-ma 'rx x(

lint Yigib MAV-matrix de,, c Pos ýJchar Ietter ((aO]

landscape(wo) Jog(VP)
MAV-matrix matrix (a) MAV-Yector eye (a)
MAV-Yector Yector (a) MAV-vector Yiew (a)
int selected (a) MAV_vector up (a)
rif visible (a) MAV-vector fixed-up (a)

MAV-window window (a)

Figure 7.13: Prototype specification for navigating a landscape using the two-handed
flying technique with the jog dial technique determining an offset speed

7.3 A virtual kitchen

In the previous case study the precise requirements of the system were initially un-

clear. In that context, Marigold was able to support the evaluation of alternative
designs. In this case study we present a more linear transition from the requirements

of a virtual kitchen as expressed in the requirements tree constructed in chapter 6, to

a prototype implementation of designs built to satisfy these requirements. There are

a number of reasons why we consider a virtual kitchen to be a good case study:

e Virtual kitchens are frequently built but have limited behaviour.

eA real world kitchen consists of many complex behaviours.

7.3.1 Oven

The requirements tree for the virtual kitchen is illustrated in figure 7.14 with the

branches unfolded to reveal the requirements for the virtual oven. There are three

world objects which exhibit behaviour: the flame, the ignition switch and the gas

switch. Initially we built the Flownet design shown In figure 7.15 to satisfy these

requirements. Within this design each of the behavioural nodes in the tree became

navigation(vp)
MAV_vect r eye (a)
MAV_vector view (a)
MAV_vector up (a)
MAV_vector fixed_up (a)
MAV-window window (a)

log(vp)
MAV-Yector eye (a)
MAV-vector view (a)
MAV-vector up (a)
MAV-vector fixed_up (a)
MAV-window window (a)

7.3. A VIRTUAL KITCHEN 121

discrete states in the Flownet, this was subsequently augmented with additional detail
to form a complete design.

Fj Environment
O-Fj toast rack <contextual>
0- Fj toaster <task>
0- Fj bowl of baked bears <task>
0- F'I mi crowave <tas k>

171 oven <task>
F) oven unit <contextual>

19 f-'Iflame <task>
off

on
ignition switch <task>

released off

pressed on
F1 gas switch <task>

turned off
turned on

0- Fj user

Figure 7.14: Requirements tree exposing those requirements for the oven (within
Primrose)

Within the design of the virtual oven we wanted to ensure that the behaviour be

realistic. For example, that it not be possible to switch off the flame without turning

off the gas switch. Although there may be other ways of extinguishing the flame, such
as a cut in the gas supply, this is a rare occurrence and not something we wish to
reproduce in our design. We can characterise this aspect of an oven by the following

safety property:

* The oven cannot have the gas knob turned on and the flame present and then
have the gas knob turned on and the flame not present.

When this was checked from the Marigold HSB, it was found that this property failed

to hold. The trace of the behaviour reported by the tool (figure 7.16) demonstrated

that the gas token is consumed in order to fire the transition to switch the flame on.
The consequence of this is that the token in the flame on state can be returned to
the flame off state (since it no longer inhibited by the gas state) and the flame is

extinguished without turning off the gas knob. The revised Flownet design is shown
in figure 7.17 which ensures that when the gas token is removed it is immediately

replaced before any further behaviour can take place. The property was rechecked
and found to hold.

7.3. A VIRTUAL KITCHEN 122

Code was added to some of the nodes of the Flownet specification and a stub of
the behaviour was generated. The next stage involved integrating this stub into the

world objects of the virtual oven. An oven world object was bought from a third party
supplier and a 3D modeller was used to decompose this into separate world objects
according to the decompositional requirements of the tree (figure 7.14). The world
objects were then linked to the Flownet behaviour using the COB (figure 7.18). A

world object group was placed around the ignition and gas switch object renderings.
The matrix variable of this world object group (defining its position and orientation)
was linked as an output to the external environment, and the selected variable was
linked as an input from the external environment. As we shall demonstrate later in
the case study, this allowed us to use a selection interaction technique within a PB

specification in order to determine when the world objects within the world object
group are selected.

In figure 7.19 a number of screenshots demonstrating interaction with the virtual
oven prototype are shown. The PB specification used to integrate the complex object

of figure 7.18 and to generate this prototype is described later in the chapter (section

7.3.4). Within the screenshots, the gas switch is on the left and the ignition switch

on the right. In figure 7.19 (top left) the oven is in its initial state. In figure 7.19

(top right) the gas is on and the user is pressing the ignition switch. Finally, 7.19

(bottom) shows the oven frying the eggs (i. e. with a flame).

7.3. A VIRTUAL KITCHEN

0- -

File Check View Stub Help

-state trans ý'arc inh flow ý/con sensor ýstore ýtransf -blug ýedit rn, ýv e ýdelete token

ign o
gas on

turn on
k-on

release off

i-off F i-on turn off
L k-off

press on

gas of ign on

gas

spark f-on f-off

flm on

--e

File Check View Stub Help

ýstate trans ýarc ýinh ýflow ýcon ýsensor /store -transf ýPlug EE] -nnOye -delete token

release off
turn on

turn off EL ig nltion
[ý___C

press press on gas switch D- -

i-off
z

i-on k-on k-off f-off f-on

ign position knob position flame on/off

Figure 7.15: Flownet specification for the oven world object

123

7.3. A VIRTUAL KITCHEN 124

:.. larigold Hybrid Specificat ion Eudder (VD- I) - usr., j viillansl'marigoid/h5tis pecificatio ns, 'e; M. err. allntSpecýo ý,, en,, ieb
File Check view Stub Help

, trans ýstate arc inh flow /con ýserlso(ýstore /transf plug edit
F-,

Ye delete ýtoken

Valid trace J Fq- Pi Xj(

check sequence 7 ign off 0
7i 1 gn on
7 spark 0
7 gas on 1

first state next state or 7 gas off 0
7 flm on 0

ign off ý, O don't care ýI 1110 don't care
7 flm off 1
7 gas 0

ign on don't care ,, 1 110 'don't care
6 ign off 0
6 ign on 1
6 spark 0

spark don't care A don't care
6 gas on I
6 gas off 0
6 flm on 1

gas on \10 ,, don't care ^1 don't care
6 fim off 0
6 gas 0

5 ign off 0
gas off don't care /1 ^don't care 5 ign on I

5 spark 1
5 gas on 1

flm on "0 ý/don't care 1 /0 don't care 5 gas off 0
5 film on 0
5 f1m off 1

flm off 1/0 don't care 1 1/0 vdon't ca-re 5 gas 1 14
ign off 0

gas ^don t care I ýrj don t care 4 ign on 1
4 spark 1 1
4 gas on 1

This marking is valid 1 4 gas off 0
4 flm on 0
41m off 1 1 4 gas 0

Ok

Figure 7.16: Analysing the oven for a correctness property

-I Valid trace IF-- J Fq- Pi Xj(

7 ign off 0
7 ign on 1
7 spark 0
7 gas on 1
7 gas off 0
7 flm on 0
7 flm off 1
7 gas 0

6 ign off 0
6 ign on 1
6 spark 0
6 gas on 1
6 gas off 0
6 flm on 1
6 flm off 0
6 gas 0

5 ign off 0
5 ign on 1 15

spark 1
5 gas on 1 15

gas off 0
5 f1m on 0
5 f1m off 1
5 gas 1 14

ign off 0
'I ign on 1
4 spark 1 1

4 gas on 1
4 gas off 0
4 f1m on 0
4fm off 1
4 gas 0

Ok

Figure 7.17: Revised Flownet specification for the oven world object

7.3. A VIRTUAL KITCHEN 125

I Aarigold Cornple:,: Ublect. Euilder N-. 0) - ý'usr, 'j%,! illansirriarigoldipli'corriple; ý-ýl,, / orld0bieL'. 5/oven, cý.,: o X
File He I

, be hav iour /object ýextkrnal link ýobject group ýdynanric bmd EEI
ýrnove edit delete

lWorld object group ----F- -
ignition(wo)

MAV-matrix matrix (a)
oven(be) --. v MAV-vector Yector (T

flame(wo) MAV_ye tor ignitionPos (r) int selected (a)
MAV-matrix matrix Fa)

MAV-matrix knobPos (r) int visible (a)
MAV-vector vector (a) int fla e (a)
int selected (a) int iqsel cted
int Yisible (a) int knbselected gas switch (wo) -W ')

MAV matrix matrix (a)

MAV Yector Yector (a)

E

y
ed (a) int sele cted (a) ' t

oven body(wo)
(c int, is ib I ,

MAV-matrix matrix (a)
MAV-vector vector (a)

int selected (a)

irit visible (a)

Figure 7.18: Complex object specification for the oven world object

9

Figure 7.19: Oven in its initial state (top left), oven with gas switched on and ignition

switch being pressed (top right), frying the eggs (bottom)

N"mk.. - qu

7.3. A VIRTUAL KITCHEN

7.3.2 Toaster

126

The virtual kitchen requirements tree is shown in figure 7.20 unfolded to reveal the

requirements for the virtual toaster. The main behavioural concern for the toaster is

the slider which supports the user in lowering and raising the toast into the toaster.
In order to satisfy this behavioural requirement we constructed the Flownet design
illustrated in figure 7.21. This maps the two behaviours of the toaster's requirements
tree to discrete states (up and down). These discrete states were then augmented
with intermediate states (to top and follow hand) and the continuous behaviour.

Environment

toast rack <contextual>

toast <task>
0 move to toaster

toaster <task>
F) toaster unit <contextual>

op Fj slider <task>

move up

move down

0- Fj bowl of baked beans <task>
0-f-I microwave <task>
0- Fj oven <task>
0- f-I User

Figure 7.20: Requirements tree exposing those requirements for the gas toaster
(within Primrose)

The stub of the toaster's Flownet was integrated with- the visual renderings of
the world object (decomposed according to the requirements tree) within the COB

specification illustrated in figure 7.22. As in the oven, external links were created

to the environment outside the world object to determine when components of the

object are being interacted with. Additionally, an external link to determine the

position of the virtual hand (or selector) was incorporated in order for the slider to

follow the position of the hand. Two dynamic binds were also added to the COB

specification bread in left and bread in right which were linked to the position of the

slider. These dynamic binds determine when the bread world object is within the

toaster and subsequently bind the bread to the position of the slider.

Figure 7.23 shows a screenshot of the toaster resulting from the integration of

the COB specification of figure 7.22 into a PB specification (described later in the

chapter). Figure 7.23 (left) shows the toaster in its original state. Figure 7.23 (right)

shows the user pulling the slider down to begin toasting the bread.

7.3. A VIRTUAL KITCHEN

rum F-Q FP-j Ecj
File Check view Stub Help

,, s tate ýtra ns ýarc ýinh , flow con ýse nsor ,s tore /transf ýPluq
EE]

ýMove /delete toke n

slide posýtion pulling

selected let go

Cle

t

hand position

position

up follow hand

reset timer

timer
at bottom at top

slide position timer expired
increment timer

Figure 7.21: Flownet specification for the toaster world object

127

7.3. A VIRTUAL KITCHEN 128

File Help

I
, object /external link ýcbjert group ýdynarnic bind link ýrnole edit ýdelete

I

left end (wo) rig t end(wo)
MAV-matrix matrix (a) MAV_matrix matrix (a)
MAV-vector Yector (a) MAV-Yector Yector (a)
int selected (a) int selected (a)
int visible (a) int visible (a)

middle(wo) far side(wo) close side(wo)
MAV-rnatrix matrix (aL) MAV-matrix matrix (A) MAV_matrix matrix (a)
MAV_Yector vector MAV-vector vector (a) MAV_vector vector (a)
int selected (a) int selected (a) int selected (a)
int visible (a) int visible (a) int visible (a)

Figure 7.22: Complex object specification for the toaster world object

Figure 7.23: Toaster in its initial state (left), pulling the toasters slider to begin

toasting the bread (right)

-1ý: tl
I--

7.3. A VIRTUAL KITCHEN

7.3.3 Microwave

129

The requirements tree for the virtual kitchen is shown again in figure 7.24 exposing
those requirements for the design of the microwave. Within this the on switch, timer,
the door and the food plate all have associated behaviours. These behaviours became
discrete states within the Flownet, and were subsequently augmented with additional
detail to form a design (figure 7.25).

-'I Environment

0- F-I toast rack < contextu al >
ID- r-I toaster <task>
(P Fj bowl of baked beans <task>

0 move inside microwave
(P microwave <task>

n microwave unit <contextu

on switch <task>
0 press

4P Fj timer <task>
0 set
door <task>

open

close

I? Fjfood plate <contextual>
a rotate

&- f-'j oven <task>
0- f-I User

Figure 7.24: Requirements tree exposing those requirements for the microwave (within
Primrose)

The stub of the microwave's Flownet was integrated with the visual renderings

of the microwave (decomposed according to the requirements tree) using the COB.

The resulting specification is illustrated in figure 7.26. As with the oven and the

toaster, this behaviour was linked to the external environment to determine when the

object is been interacted with. A dynamic bind node was also added to the COB

specification to link any world object placed in the microwave to the rotating food

plate (in microwave).
Screenshots of the microwave in an environment generated from a PB specification

(described later) are shown in figure 7.27. In figure 7.27 (top left) the microwave is

in its initial state. In figure 7.27 (top right) the microwave is open and the user
has placed a bowl of food into the microwave. In figure 7.27 (bottom) the user has

closed the door of the microwave and is setting the time in preparation for cooking
by pressing the on switch.

7.3. A VIRTUAL KITCHEN

t larigold Hybrid Specifica tion Builder
.
ý/'-'. O! - /usi, lj,.,,. ýillans/m arigoiclilisb/specificaiions/e:, I. eriialintSpecýmicro,,,, a...; e. '. /eb

File Check View Stub Help

"s ta te , trans ýarc ýinh ýflow , con ýse nsor store ýtransf ýPluq ý, e d it delete toke n

touch on switch

off

timer expired

door closed

touch door
on

open door close door

door open
turn plate decr 8 ment dial & timer

tou ch dial

timer set
dial static

increment dial & time

__j

Marigold Hybrid Specific ation Builder (V2.0) - /usiýl,)iillansiýM arigoldi'lislYspecifications, e:. -. ternallntspec(micro%, ia,, ie. veb
File Check View Stub Help

, /State trans ýarc ýinh /flow /con , sensor /store x/transf 'Plug EE: 1 ýmove delete token

door position

dial posit)on

timer expired

door position
dial/time

open door close door

increment dial & time decrement dial & timýr

th door

D-ý
th dial

plate pos -------- pooplate position
th switch

turn plate

130

Figure 7.25: Flownet specification for the microwave world object

7.3. A VIRTUAL KITCHEN

t1arigold Complex . Aiect. Euilder iV-. 0) - /u5r,, j-,, /illans/rriartgold/otiicomple:,,, / , ýiorld0blect5ý'e., IernailntCO/micro-%lia.. ie. c,.,, -o 7,772T
File Help

[Vbphaýiourý
ýobject ý, external link , Ajrt group ýdynarnir bind ýI[nk -m-we edit ýdelete

shell (wo
MAV-matrix matrix (a) World object group
MAV-Yector vector (a)
int selected (a)
int visible (a) door(wo)

MAV_matrix matrix (a)
MAV-vector vector (a)

microwave(be) int selected (a)

in fnicrowave(db) int touchDoor int visible (a)

IMAV-matrix matrix int touchDial dial(wo)
IMAV_Yector vector int touchOn M AV- matrix matrix ýa)

MAV-matrix door Pos; (r) MAV-vector vector (a)
MAV-matrix dial Pos (r) int selected (a)

rotating plate(wo) M AV- matrix platePos (r) int visible (a)
MAV-matrix matrix (a) on switch(wo)
MAV-vector vector (a)

MAV matrix matrix (a)
int selected (a) _

]

MAV vector vector (a)
int Yisiblie (a) - int selected (a)

int visible (a)

Figure 7.26: Complex object specification for the microwave world object

131

Figure 7.27: Microwave in its initial state (top left), placing food into the microwave
(top right), setting tile timer (bottom) before pressing the on switch

7.3. A VIRTUAL KITCHEN

7.3.4 Interacting with the kitchen

132

The requirements tree is again shown in figure 7.28 with the requirements exposed
concerning the interaction of the user with the environment. These requirements
require selection, manipulation and navigation interaction techniques.

Our main concern in supporting the interaction was to minimise the mental load on
the user. Consequently it was decided that one interaction technique should support
both the manipulation of world objects, and navigation of the environment. The
Flownet design for the technique to facilitate this is illustrated in figure 7.29. This
Flownet has two main interaction states. The initial state update both controls the

position of both a virtual pointer (hand) and the navigation of the environment. In the

update both state the hand position is always projected in relation to the viewpoint.
This can be toggled to the hand only state which just updates the position of the hand

relative to the position of the viewpoint. We call this technique sticky-hand since the
hand is seemingly stuck to the viewpoint during interaction. For the selection of

objects within the kitchen, we decided to reuse the selection interaction technique

used in chapter 4.

-1 Environment

0-f-Itoast rack <contextual>
0- F1 toaster <task>
(D- Fj bowl of baked beans <task>

(D- Fj microwave <task>
e. Fj oven <task>
qý Fj user

pull toaster slider down

place toast in toaster

move to toaster

set timer

place bowl in microwave

move to microwave

release ignition switch

turn gas off

press ignition switch

turn on gas

move to oven

Figure 7.28: Requirements tree exposing those requirements for the user interaction

In the next section we describe how the stub of the sticky-hand Flownet, and those

stubs generated from the COB specification for the world objects described previously,

were incorporated into a PB specification and then generated Into a prototype.

7.3. A VIRTUAL KITCHEN

FQJ FP-J F2-! ý
File Check Vi.. Stub Help

'/S ta te tra ns arc ýinh flow ýron ýse nsor \/ s tore ýtransf ýpIuq
ELI

ýMOYLI ,deIe te , to ke n

update Yp

10

project hand update local hand

J

update both
toggle

hand only

enable
0, -

IF disable

disa le

File Check View Stub Help

, state trans , arc ýinh flow /con ,, se nsor , store ý/transf ýPluq move /de lete toke n

update local hand

*0 - local hand

update Ylp

device input ---- 000, vp
hand hand position

It
project hand

enable
----0

viewpoint

F---<Dtoqgle
Ldisable

viewpoi nt

Figure 7.29: Flownet specification for the sticky-hand interaction technique

133

7.3. A VIRTUAL KITCHEN 134

7.3.5 Kitchen prototype

In the previous sections we have described the Flownet designs specification which
were constructed to satisfy the requirements tree constructed in chapter 6. For the
complex world objects, we have described how their Flownet designs were integrated

with their visual renderings using the Marigold COB. From the COB specification
stubs were generated describing how the world objects should appear and behave.
For the sticky-hand interaction technique, a stub was also generated from the HSB,

and a HSB stub already existed for the selection interaction technique.
These stubs were integrated into the PB specification shown in figure 7.30. The

complex world objects can be seen down the right hand side of this specification linked
to the selection interaction technique (select3). In addition to the complex world
objects, a food bowl and toast world objects were inserted into the PB specification
in accordance with the requirements tree. These can be seen on the left hand side of
the specification and are also linked to the selection technique.

The sticky-hand interaction technique was linked to a hand world object and also
to a viewpoint. Finally, the node labelled kitchen objects is a COB encapsulation
of all the background objects (walls, floor and worktops) to ensure that the kitchen
looks like a real world kitchen. None of these have associated behaviour.

From the PB specification illustrated in figure 7.30 a prototype was automatically

generated. Screenshots of the individual complex world objects are shown in the

previous sections, and figure 7.31 shows an overview of the whole environment. In

order to evaluate the kitchen we tested the scenarios used to originally devise the

requirements tree in chapter 6.

7.3. A VIRTUAL KITCHEN 135

File Code Help I

/device ýcursor object complex object /dynamic bind ýobject group , viewpoint ýIhnk ýMoýe delete
I

viewpoint(yp)

MAV_Yector eye (a)

MAV-vector view (a)

MAV-vector up (a)

MAV_Yector fixed-up (a)

Figure 7.30: Prototype specification for the virtual kitchen

pop

Figure 7.31: Kitchen virtual environment

7.4. AIMS REVISITED 136

7.4 Aims revisited

In chapter 2 we introduced a number of aims for the thesis:

e We want to provide a translation from Flownet design specifications of virtual
environment behaviour to a prototype.

- The approach should support the exploration of presentations.

- The approach should hide implementation concerns from the designer.

e We want to explore the analysis of design specifications.

These aims will be reviewed in the following sections.

7.4.1 Prototyping Flownets

The approach supported by the Marigold toolset provides a transition between Flownet

designs of virtual environment behaviour to a prototype realisation of the design. This

approach involves adding a small amount of code to some of the Flownet nodes, and
then 'plugging' the Flownet into a presentation. An important characteristic of the
Marigold toolset is that it not only enables the prototyping process, but it also sup-

ports the prototyping process.
A Flownet is specified using the Marigold HSB. The HSB ensures that the Flownet

being constructed is syntactically correct by not allowing connections between incom-

patible components. When process and conditional code is added to the nodes of the

HSB, the tool informs the designer of the data flowing in and out of the nodes. This

support ensures a Flownet can be specified rapidly and accurately.
The PB supports the integration of Flownet nodes into a presentation. In the

Marigold PB it is not possible to instantiate behaviours or presentation components

that do not exist because these must be chosen via a dialogue. The PB ensures that

variables being related are of the same type and are of the form input to output. These

characteristics of the PB mean that a specification cannot be constructed which will

not compile and execute (providing the Flownets have been refined correctly).

The reuse mechanism supported by the Marigold COB further supports the pro-

totyping of Flownet designs. By encapsulating behaviours and the rendering of world

objects into a reusable node, the designer does not need to redefine the relation every

time it is required. In the first case study the use of the COB was illustrated for

the jog dial (section 7.2-6), and in the second case study for the oven (section 7.3.1),

toaster (section 7.3.2) and microwave (section 7.3-3).

7.4. AIMS REVISITED

Exploring presentations

137

Marigold supports a 'plug and play' approach to relating presentation components
to Flownets using data flow networks. The use of data flow networks enables rapid
coupling and decoupling of presentations to behaviours and, consequently, enables the

exploration of alternative presentations and the evaluation of whether a presentation
is suitable for a behavioural design (or vZce versa). In the first case study (section 7-2)

this style of exploratory prototyping was illustrated. The initial prototype demon-

strated that the mouse-based flying interaction technique did not allow important

parts of the landscape to be viewed because it only supported navigation on the x
and z axis (section 7-2). Similarly, a further prototype demonstrated the inability

of the Polhemus tracking devices to adequately control speed when used with the

two-handed flying interaction technique (section 7.2.5).
Flownet nodes are not concerned with the presentation they interface to. In the

second case study (section 7.3) we illustrated the use of the dynamic bind construct for

the toaster and microwave (sections 7.3.2 and 7.3.3) which enables decisions about
binding behaviour to world objects to be delayed until runtime. For example, the
Flownet defining the microwave behaviour is not concerned with whether the be-

haviour is propagated to the rotating plate or to the bowl of beans (or to the toast,

if it is placed in the microwave!).

The visual nature of the Marigold PB and COB enables the relation between

behaviour(s) and presentation components to be readily perceived by the designer.

For instance, in the first case study (section 7.2) the revised PB specification incor-

porating the jog dial (figure 7.13) clearly shows that the r%ght polhemus is an input

device for both the jog dial interaction technique (jog dial) and the two-handed flying

interaction technique (thf3).

Hiding implementation concerns

The use of data flow networks enables Marigold to hide the low-level detail of the

implementation from the designer. Nodes encapsulate the underlying complexity of
the presentation components that they represent. For instance, an input device node
knows about when to poll the device and how to pass data for the device to the

variables in the nodes. Similarly, a world object node knows how to place a world

object in a data structure that will ensure that it is rendered to the user. The designer

does not have to worry about these low-level implementation details.

It is necessary for the designer to add code to some of the nodes of the Flownet

specification. This involves some knowledge about data types (vectors and matrices)

and the Maverik [Hubbold, Dongbo, and Gibson 1996] functions to transform these

data types. However, the code required is minimal compared to the code required to

7.4. AIMS REVISITED 138

implement the prototype using a programming language such as Maverik. To give
some indication of this, the final prototype developed for the first case study (section
7.2) contained approximately 50 lines of code. The finished generated prototype
from the Marigold PB was 600 lines of code. Although, it should be noted that the

generated prototype code is not optimal.

7.4.2 Analysing Flownets

The second form of evaluation supported by the Marigold toolset is the automatic
analysis of Flownet specifications. The major strength of automated analysis com-
pared to prototyping is that it is exhaustive [Campos 2000]. Two forms of analysis can
take place on a Flownet design. Usability characteristics of the design can be checked.
This was exemplified in the first case study (section 7-2) when the potential for mode
confusion was identified for the two-handed flying interaction technique (section 7.4).
The HSB automatically checked the design and specified precisely which part of the
design was deficient. The second form of analysis is for correctness of the design

according to the functional requirements. This was demonstrated in the second case

study when the behaviour of the gas oven was found to be flawed (section 7.3.1). The

HSB automatically checked the property and a trace was returned which illustrated

a behaviour which would cause the property to fall. This trace informed the revision

of the design enabling the behaviour to be consistent with the requirements.

7.4.3 Guiding design using Primrose

In the second case study (section 7.3) the approach supported by the Primrose tool

was employed to guide the construction of the virtual environment designs. For the

construction of world objects, there is a small step from the behavioural requirements,

as expressed in the requirements tree, to Flownet designs. Often this is achieved by

simply mapping the requirements to discrete states within the Flownet. This was
the case for the oven (section 7.3-1), toaster (section 7-3.2) and microwave (section

7.3.3). Similarly the decompositional requirements precisely describe how the world

objects should be decomposed. For the kitchen case study, these requirements allowed

us to decompose the third party kitchen world objects in order to accommodate the

behavioural requirements.
The behavioural requirements, as expressed in the requirements tree, guides the

design of the interaction techniques to a lesser extent. As demonstrated in the kitchen

case study (section 7.29), there is not a straightforward mapping between require-

ments of this type and Flownet designs. However, the behavioural requirements
document what the user should be able to achieve in the virtual environment. This

7.5. CONCLUSION 139

offered some indication of the requirements the design should satisfy in the case of
the kitchen.

Marigold and Primrose (along with the use of a 3D modeller) can be seen as
supporting a complete requirements and design process for virtual environments. An

overview of this process is shown in figure 7.32.

PRIMROSE

object
appearance

object
decomposition

object
behaviour

use
behaviour

3rd Party
3D modeller

Hybrid Specification
Builder (Flownets)

Hybrid Specification
Builder (Analysis)

...........

Complex Object
Builder

MARIGOLD
TOOLSET

object
behaviour user

behaviour
(interaction
technique(s))

Prototype
Builder

Prototype
(Maverik)

Figure 7.32: The requirements specification and design process supported by Marigold

and Primrose

7.5 Conclusion

This chapter has illustrated how each of the contributions of this thesis can be used
to support the use of behavioural design specifications within the virtual environment
development process. The two case studies have demonstrated two different design

strategies. The first of these dealt with a situation where the requirements were
roughly defined. Marigold was then employed iteratively to explore alternative designs

using prototypes and design analysis. The second case study dealt with prototyping

7.5. CONCLUSION 140

a design based on more concrete requirements defined using the approach supported
by the Primrose tool.

In addition to specifying the individual usefulness of each of the approaches, these

case studies have illustrated how the approaches supported by Marigold for the eval-

uation of behavioural designs, and the requirements elicitation and specification sup-

ported by Primrose, can be used as a complete development approach prior to the
implementation of an environment. The Primrose approach focusses on the user and
their requirements, Marigold then refines these to designs which can be evaluated

against the user's requirements.

Chapter 8

Conclusion

8.1 Summary of the thesis

It has been argued that the disadvantage of using implementation code for designing

virtual environment behaviour is that there is little correspondence to the language of
the requirements. Although this issue is addressed by behavioural design formalisms

which support the design of behaviour at an abstract level, a major disadvantage of
these formalisms is that they cannot be directly executed and evaluated in the same

manner as implementation code. This is a serious obstacle to their application in the

virtual environment development process.
This thesis presents two approaches to evaluating behavioural designs which are

supported by the Marigold toolset. Firstly, with refining designs to prototypes, so that

they can be explored by users. Secondly, with automatically analysing the designs, so
that characteristics of the design can be evaluated without prototyping. The Marigold

toolset provides usable support for both approaches. The use of data flow networks
for prototyping behavioural designs allows the developer to plug the presentation of
the environment into the behaviour and to visualise the configuration. The automated

nature of the analysis approach, and its informative feedback, supports the developer

in applying analysing and understanding the result.
Notwithstanding the level of support and ease of use of Marigold, evaluation of

designs will always be an expensive process. The need to apply this type of evaluation

can be reduced by being more certain about the requirements that the designs are

addressing. This thesis therefore also presents an approach to eliciting and specifying

virtual environment requirements when the requirements are based on the real world.
Like Marigold, the emphasis within this approach is ensuring that it is easy to apply.
This is realised by the Primrose tool which supports the application of the approach.

141

8.2. CONTRIBUTION 142

8.2 Contribution

The thesis contributes to supporting the integration of behavioural design into the
virtual environment development process by enabling the evaluation of virtual envi-
ronment behavioural designs described using Flownets. Evaluation of designs using
prototypes has many advantages, the most salient of these is that the user can be in-

volved in the evaluation process. The work presented in chapter 4 describes how this
is achieved using the Marigold toolset which facilitates a semi-automatic transition
between the design and the prototype implementation.

Despite the advantages of prototypes, they cannot be used to evaluate some prop-
erties of the system exhaustively. A common approach to addressing this problem in
software engineering is to evaluate the design directly using specification analysis. The

approach presented in chapter 5 supports the automatic analysis of Flownet designs.
An insight discussed in that chapter is that it is necessary to analyse both usability
requirements of the environment, as with traditional interfaces, and the correctness
requirements of the environment. The presented approach demonstrates the analysis
of both types of requirements and is also supported by the Marigold toolset.

There is a greater chance of producing a satisfactory design if the requirements
(which the design is based upon) are an accurate reflection of the user's 'real' require-
ments. Requirement specification for virtual environments is not an area that has
been explored in the past, but given the complex and inconsistent nature of virtual
environments, it can be seen as an important part of ensuring their successful devel-

opment. An approach, supported by the Primrose tool, to eliciting and specifying

virtual environment requirements has been provided in chapter 6.

8.3 Designing virtual environments

The central motivation for this thesis is that virtual environments must be designed
in a requirements-oriented manner. However, it is unavoidable that the limitations

of current technology will influence designs to a certain extent. The tension between

requirements at one end of the spectrum, and technology at the other can be addressed
by design processes that combine top-down (from the requirements) and bottom-up

approaches (from the technology) [Bryson 1995].
Reflecting on the contribution of this thesis we observe that the specification ap-

proaches supported by Primrose and Flownets are top-down because they are refining
an informal understanding of requirements to a more concrete implementable form.
At the same time, the prototyping ability of the Marigold toolset is addressing the
bottom-up concerns of designing virtual environments. We observe then a symbio-
sis between implementation independent specification (not necessarily formal) and

8.4. RECENT WORK (REVISITED) 143

prototyping as a means of addressing the design of virtual environments. This is

illustrated in figure 8.1 annotated with the kinds of questions being asked by each

part of the process.

REQUIREMENTS

Specification I What are the ideal requirements?

Prototypin
Have we captured the requirements correctly?

9 How does technology influence the requirements?

IMPLEMENTATION

Figure 8.1: Supporting the top-down and bottom-up design of virtual environments
using specification and prototyping

8.4 Recent work (revisited)

We have recently become aware of a further work which should be mentioned here.
The Shadow system presented in [Morrison 1998] extends the Tufts formalism (de-

scribed in chapter 2) by introducing hierarchy to the specification formalism. These

graphical specifications are manually translated to a textual language. This textual
language reproduces the syntax of the graphical specification using tags, within which
the developer embeds C++ code segments. From this specification, program code can
be generated, compiled and executed.

There are a number of differences between the prototyping approach supported by

the Shadow system and that presented in this thesis. Firstly, like the Tufts formalism,
discrete behaviour is described using state transition diagrams, in chapter 2 we ar-
gued that state transition diagrams do not adequately model the discrete behaviour

of virtual environments. Secondly, the granularity of the specification used by the
Shadow system is lower level than both Flownets and the original Tufts formalism.
Concepts used within these descriptions relate primarily to the implementation rather

than the requirements. For instance, variable names and the notion of instantiation of
behaviours are incorporated at the highest level of abstraction. Thirdly, the Marigold

toolset supports the refinement of the graphical specification to the prototype whereas

8.5. FUTURE WORK 144

with the Shadow system it is necessary to map the graphical representation to the

textual equivalent. Finally, the Shadow system offers advantages over Marigold in

that large scale virtual environments can be specified because of its use of hierarchy

within the specifications.
Marigold and the Shadow system can be seen as complementary approaches to

the design and implementation of virtual environments. Marigold could be used at
the earlier design stage of development to evaluate alternative designs. The Shadow

system could then be used to implement the whole environment once designs have
been established.

8.5 Future work

In this section we discuss future directions for the research described in this thesis.

8.5.1 Prototyping

The Marigold toolset is composed of three separable tools so that we could isolate and

explore the issues each individual tool is addressing. In practice, it would be desirable

that they were integrated so that a transition could be more rapidly made between

each of the representations. Indeed, the Primrose tool could also be integrated so
that behavioural and world objects specifications are associated with nodes in the

tree. This would have the desirable effect that the behavioural and world object

specifications can be traced back to the scenario they are addressing with a few

mouse clicks.
One of the weaknesses of the prototyping approach supported by Marigold is

that it is necessary to place code in some of the nodes of a Flownet specification.
This means that its usage remains in the domain of the programmer rather than the
designer. A number of strategies could be explored to address this issue. Firstly,

data flow networks could also be used to specify the code using low level nodes such

as matrix and vector transformations. Secondly, techniques could be borrowed from

animation where behaviour (code) is inferred from the specification of a number of key

frames (important states of the behaviour). This type of approach has been applied
to traditional WIMP interaction in [Frank and Foley 1993; Frank, Sukaviriya, and
Foley 1995]. For trivial world object behaviour, this has also been explored for virtual

environment in [Yamamoto 1996; Kim and Lee 1998].

The dynamic bind concept proved a particularly interesting and useful abstrac-
tion. As discussed in chapter 4, there are parallels between this type of binding and
that which was investigated initially in the Aviary system [Snowden 1996], and more

recently the Deva system [Pettifer 1999]. Within both these systems laws of physics

8.5. FUTURE WORK 145

are bound to spaces within the environments. In this thesis, we have not explored how
laws of physics might be specified and prototyped. Potentially they can be specified
using Flownets and linked to an environment using dynamic binds. This is an area
worthy of investigation.

8.5.2 Analysis

The analysis of virtual environment specifications has the potential to offer very useful
insights into the designs. This thesis has just scratched the surface. Particularly, we
have dealt only with discrete properties and, as mentioned in chapter 5, there are
characteristics of the continuous behaviour which it would be useful to analyse. In

this context, time is an interesting issue which is being dealt with in interactive
systems generally [Kutar, Britton, and Nehaniv 2000].

Combined analysis of the specifications of the behaviour and the (appearance of)
world objects is also a potential interesting research area. This dual reasoning ap-
proach can lead to insights about whether the user will be able to see interesting
(important) parts of the environment or whether the user will be able to reach cer-
tain world objects, for instance. In this respect, it would also be interesting to see if

any of the virtual environment usability guidelines proposed by Kaur [Kaur 1998] can
be automatically checked. This is a difficult proposition given the abstract nature of
the guidelines and the richness of the specifications required to support such analysis.
Potentially this research could draw upon the work examining automatic scene con-

struction and camera placement within computer graphics ([Fleishman, Cohen-Or,

and Lischinski 2000], for instance) which deal with similar issues.

8.5.3 Requirements specification

The requirements specification approach presented supports requirements elicitation

and specification when the requirements are based on the real world. Often it is the

case that the requirements have no real world counterpart. An obvious example of
this is the requirements specification for games. In this context, it is less clear how

well the approach supported by Primrose might work. For the scenarios, this depends

to a large extent on whether it is suitable to conceptualise less novel environments

as a series of scenarios. For the requirements tree, this depends whether it is a

rich enough description to be interpreted without any real world references. This is

probably not the case since it does not include details about behavioural dependencies.

Consequently, extensions to the approach supported by Primrose for environments
based on non-real world phenomena would be an interesting avenue of research.

As well as addressing the functional and the usability requirements of an environ-

ment, there are further requirements that can be seen as important. One example

8.5. FUTURE WORK 146

of this is maintaining the interest of the user while they are interacting with the
environment. If a greater insight was gained into what such requirements mean in

practice (maybe from cognitive theory) then these could be formalised and applied as
templates to the requirements specification approach. Once again, this has great po-
tential in the context of games where there seems to be some informal understanding
of these kinds of issues [Kanev and Sugiyama 1998].

Appendix A

A semantics for Flownets

We will use the Z specification language to structure a formal definition of a semantics
for Flownet. Z has previously been used for describing the semantics of other for-

malisms similar to Flownets (Statecharts [Harel 1987] in [Mikk, Lakhench, Petersohn,

and Siegel 1997], for instance). This specification has been checked using the fuzz

typechecker [Spivey 20001.

A. 1 Overview

In this semantics we define the transformation of a Flownet configuration in two

stages. Firstly, by describing the configuration of a Flownet: the meaning of com-
ponents (nodes), the state of components and the relation between the components
(arcs). Secondly, we define operations on a Flownet which results in the transforma-
tion of its configuration.

A. 2 Flownet configuration

First we introduce a basic type to define the name of variables:

[NAME]

A sensor places one or more thresholds on variables which must be met in order for

it to fire. These are characterised by a function mapping variable names to threshold

values:

Sensor =- [Name Value: NAME --ý N]

A store holds data. This data is characterised by a function mapping variable names
to values:

147

A. 2. FLOWNET CONFIGURATION 148

Store =- [Name Value : NAME ---> NI

A transformer takes some input value(s) and transforms this to some output value(s).
In this definition we are not concerned with the precise nature of the transformation.
We abstract from this by considering the transformation as a mapping of variables
names:

Transformer =- [Transformatton : NAME --ý NAME]

A plug is a source or destination of data. This data is characterised by a function

mapping variables names to values:

Plug =- [Name Value : NAME --ý N]

Usually the firing of a transition is wholly determined by the distribution of tokens in

the Petri-net and the state of sensors. The exception to this is when a plug is related
to a transition via a discrete arc. When this is the case, the data in the plug must

meet some threshold value(s) in order for the transition to fire. These thresholds are

characterised by a function mapping variable names to values:

TransZtZon =- [Name Value: NAME --ý N]

A flow control enables the flowing of data when enabled. The data which is flowing

through a flow control is characterised by a function mapping variable names to values:

- [Name Value: NAME FlowControl =

A place component is defined as a basic type:

[Place]

A Flownet component can be one of the six types defined above. It is convenient to

be able to identify these more abstractly as component types:

COMPONENT:: -- flow Control ((FlowContro 1))

sensor ((Sensor))

store((Store)) I

transformer((Transformer))

plug ((Plug)) I

place((Place))
transitzon((Transihon))

A-2. FLOWNET CONFIGURATION 149

Six operations can be executed upon a Flownet which transform its configuration.
We define a type to record each of these:

OPERATION:: = sensors I iTransibons I transibons

places I flowControls I transformers

Informally a Flownet configuration consists of:

9A set of components that form the Flownet.

A set of arcs relating components. These can be standard Petri-net arcs, in-
hibitor arcs and continuous arcs.

A set for each of the component groups that can be considered as being active.
These can be sensors, transitions, places, transformers and flow controls. For
instance, a place can be considered active when it has a token, and a flow control
can be considered active when its threshold values have been met.

9A record of which transformation operation has been applied in order to know

which operation to next apply.

Within this configuration it is important to preserve the following characteristics:

The set of arc relating components are restricted to which components they can

relate. For instance, an inhibitor arc can only relate places to transitions.

* The sets of active components can only contain components that are in the
Flownet.

If a plug is mapped to a store via a continuous arc, then the data in the plug is
also available in the store.

If a store is mapped to a flow control via a continuous arc, then the data in the

store is also available in the flow control.

We formally define a Flownet configuration as:

A. 2. FLOWNET CONFIGURATION 150

Flownet
Components: P COMPONENT

Arcs, Inhibitors, Continuous: COMPONENT<--+ COMPONENT

activeSensors :F COMPONENT

active Transitions :F COMPONENT

activePlaces :F COMPONENT

active Transformers: F COMPONENT

achveFlow Controls :F COMPONENT

nextOperatZon: OPERATION

Arcs C (ran sensor x ran transition)U
(ran transition x ran place) U
(ran transition x ran flowControl)U
(ranplace x ran flow Control) U
(ran sensor x ran transZtZ*on)U
(ran plug x ran transition)

Inhibitors C (ran place x ran transibon)
Cont%nuous C (ran plug x ran sensor)U

(ran plug x ran transformer) U
(ran transformer x ran store)U
(ran store x ran transformer)U
(ran store x ran flow Control) U
(ran store x ran sensor)U
(ran store x ran plug)U
(ran flowControl x ran transformer)

activeSensors C Components

active Transitions C Components

activePlaces C Components

active Transformers C Components

activeFlow Controls C Components

Vp, s: Components; P: Plug; S: Store I (P, p) C plug A (S, s) c store
A (s, p) G Continuous e P. Name Value C S. Name Value

V s, f: Components; S: Store; F: FlowControl I (S, s) E store
A (F, f) C flowControl A (s, f) G Contznuous

o S. NameValue C F. NameValue

A. 3. TRANSFORMATION OPERATIONS

A-3 Týransformation operations

151

In this section we describe the operations that transform the Flownet configuration.

A. 3.1 Sensor

A sensor is targeted by either a Plug or a Store component. In order for a sensor
to become active, every threshold NameValue in the sensor must find a matching
Name Value in a Plug or Store which targets the sensor via. a continuous arc. When

a sensor becomes active it is either in, or is added to, activeSensors. Otherwise it is

not in, or removed from, activeSensors:

evaluateSensors
AFlownet

Vs: Components; S: Sensor I (S, s) E sensor *
(Vnv: S. Name Value o

3c: Cont%nuous I second c=s*
((3 p: Plug I (p, first c) E plug * nv E p. Name Value)

v
(I st : Store I (st, first c) C store 9 nv E st. Name Value))

A (s E activeSensors V
(s ý act%veSensors A activeSensors' = actz, veSensors U Is))))

v
(s ý activeSensors V

(s E actZveSensors A activeSensors' = activeSensors \ jsj))

A. 3.2 Place

The only component that can target a Place is a Transition component via a Petri-

net arc. A place becomes active when at least one targeting Transition component

is active (they are a member of activeTransdions). When a Place is evaluated active

it is either already a member of, or becomes a member of, activePlaces. If a place is

not evaluated active, actZvePlaces remains unchanged.

A-3. TRANSFORMATION OPERATIONS 152

evaluatePlaces
AFlownet

Vp : Components IpG ran place
((3a : Arcs Ifirsta =pe

first aE active Transitions)

A ((p E actZvePlaces) V

(p V actZvePlaces A actzvePlaces' = actzvePlaces U jpj)))

V act%vePlaces' = act%vePlaces

A. 3.3 Transition

For the reasons explained in chapter 3, transitions needs to be considered as two

groups. Firstly, interaction transitions whose firing is governed by the external envi-

ronment. Secondly, non-interaction transitions whose firing is wholly determined by

the state of places within the Petri-net.

We will first informally describe interaction transitions followed by the formal

schema. An interaction transition is targeted by at least one Sensor or Plug com-

ponent via an Arc relation, but potentially also by Place via an Arc relation or by

a Inhibitors relation. In order for the transition to be, or become a member of the

activeTransitions set the following must be satisfied:

1. The Transition component must be the target of at least one Plug component

or at least one Sensor component. This determines that it is an interaction

transition.

2. Every Sensor component, targeting the Transihon, must be a member of ac-

tiveSensors.

3. For every Name Value function within the Transihon there must be a matching
Name Value in a Plug component which targets the Transition.

4. Every Place component targeting the Transdion within Arcs must be a member

of activePlaces. After the operation, every Place component relating to the

Transition within Arcs must not be a member of achvePlaces (the tokens are

consumed) .

5. Every Place component targeting the Transition within Inhibitors must not be

a member of act%vePlaces.

6. The Transition Component is a member of actMeTransdion.

Otherwise the transition is not in, or should be removed from activeTransitions:

A. 3. TRANSFORMATION OPERATIONS

evaluateITransitions
AFlownet

Vt: Components; T: Transition T, t) E transition 9
c: Continuous I second ct9

first cE ran plug V first cG ran sensor)
A
(V cl : Continuous I second cl =tA first cl E ran sensor o

first cl E activeSensors)
A
(V nv : T. Name Value

El c2 : Continuous I second c2 =te
3p: Plug I (p, first c2) C plug o nv C p. Name Value)

A
(V a: Arcs I second a-tA first aE ran place 9

first aE activePlaces A

activePlaces' = activePlaces \ Ifirst a})
A
(V Z: Inhibitors I second i=t*

first iý activePlaces)
A
(t C active Transitions V (t V activeTransitions A

active Transitions' = active Transitions Uf tj)))
V
(t V active Transitions V (t E achveTransitions A

active TransZtZons' = active Transitions t

153

The distinction of a non-interactive transition is that it becomes active based only
on the relation with places linked via Petri-net arcs and inhibitors. Again, we give
an informal description followed by the formal schema:

1. The Transition component must not be related by any Plug or Sensor compo-

nent. This determines that it is a non-interaction transition.

2. Every Place component targeting the Transffion within Arcs must be a member

of activePlaces. After the operation, every Place component relating to the

Transition within Arcs must not be a member of activePlaces (the tokens are

consumed).

3. Each Place component targeting the Transition within Inhibitors must not be

a member of activePlaces.

4. The Transition Component is a member of activeTransition.

A. 3. TRANSFORMATION OPERATIONS 154

Otherwise the transition is not in, or should be removed from activeTransitions:

evaluate Transitions
AFlownet

Vt: Components ItE ran transdion
(3 c: ContZnuous I second ct

first cC ran plug V first cC ran sensor)
A
(V a: Arcs I second a=tA first aE ran place 4P

first aE act%vePlaces A

activePlaces' = activePlaces \ Ifirst a})
A
(V i: Inh%*bztors I second %* =te

first activePlaces)

(t E active Transitions V (t ý active Transitions A

active Transitions' = active Transitions U ftl)))

V (t ý active Transitions V (t E active Transitions A

active Transitions' = active Transitions \ jtj))

A. 3.4 Flow control

A flow control is can be targeted by a Place or Transition component via a Petri-net

arc, or a Store component via a continuous arc. For a FlowControl component to

become a member of activeFlowControls, one of the Place components must be a

member of achvePlaces or one of the Transition components must be a member of
activeTransdions. Otherwise the flow control is not in, or should be removed from

actZveFlow Controls:

evaluateFlow Controls
AFlownet

Vfc : Components I fc E ranflowControl 9
(3 a: Arcs I second a= fc e

first aE achvePlaces V first aG active Transitions

A (fc E activeFlow Controls V (fc V activeFlow Controls

A activeFlow Controls' = activeFlowControls U jfcj)))

v
(fc V activeFlow Controls V (fc E activeFlow Controls

A activeFlow Controls' = activeFlow Controls \ Ifc}))

A. 3. TRANSFORMATION OPERATIONS

A. 3.5 Transformer

155

A transformer can be targeted either by a Plug, Store or FlowControl component
and can target a Store component. Again, we will informally describe the predicate
followed by the formal schema. In order for a transformer to be, or become, a member
of the achve Transformers set, the following must be satisfied:

1. For each of the Transformahons functions in the Transformer component,
there must be a targeting FlowControl, Plug or Store with an element of their
Name Value function with the same domain as the domain of Transformations.
This ensures that the variable to be transformed is flowing into the Transformer

component. Additionally, if the data originates from a FlowControl component,
this component must be active (i. e. a member of achveFlow Controls) -

2. For each of the Transformations functions in the Transformer component,
there must be a targeting Flow Control, Plug or Store with an element of their

Name Value function with the same domain as the domain of Transformations.

This ensures that the variable to place the result is flowing into the Transformer

component. Additionally, if the data originates from a FlowControl component,

this component must be active (i. e. a member of achveFlow Controls).

3. For each of the Transformations functions in the Transformer component,
the Transformer component must target a Store with an element of their

NameValue function with the same domain as the range of Transform a tions.

This checks to ensure that the variable to place the result is a member of a
targeting store.

4. The Transformer component is a member of active Transformers

Otherwise the transformer is not in, or should be removed from achve Transformer:

A. 3. TRANSFORMATION OPERATIONS

evaluate Transformers
AFlownet

Vt : Components; T: Transformer I (T, t) G transformer
((V nv : T. Transformation

El c: Continuous I second c=t
((3 f FlowControl I (f first c) E flowControl

first nv E dom f. Name Value

A first cE activeFlow Controls)
v
(3 p: Plug I (p, first c) c plug

o first nv C dom p. Name Value)

v
(3 s: Store I (s, first C) E store

o first nv E dom s. Name Value)))

A
(V nv : T. Transformation 9

3c: Conhnuous I second c=t9
((3 f: FlowControl I (f first C) E flowControl

4p second nv E domf. NameValue

A first cG activeFlo w Controls)

v
(3 p: Plug I (p, first c) C plug

e second nv C dom p. Name Value)
v

(3 s: Store I (s, first c) E store
e second nv C dom s. Name Value)))

A
(V nv : T. Transformation o

3c: Continuous I first c=te
3s: Store I (s, second c) c store

o second nv G dom s. Name Value)

A (t E actZveFlow Controls V (t ý active Transformers

A activeTransformers' = activeTransformers Uf tj)))

V (t ý actZveFlowControls V (t E active Transformers

A active Transformers' = active Transformers \f t}))

A. 3.6 Operation ordering

156

The operation described above are executed upon a Flownet as illustrated in figure

A. 1 beginning with the evaluation of sensors. The variable nextOperation in the

Flownet schema records which operation should be executed in the next step. Below

we define a precondition schema for each of the operations which checks to ensure

A. 3. TRANSFORMATION OPERATIONS 157

that they should be executed and sets the variable to the value of the next operation
to be executed.

evaluate transformers
7,

evaluat (sta rt)

evaluate flow controls

evaluate interaction transition. -

evaluate places
on-interaction transitions

Figure A. 1: The execution cycle of operations on a Flownet

For the sensor operation:

sensorsPrecondition
AFlownet

nextOperation sensors
nextOperation' iTransitions

checkSensors =- sensorsPrecondition A evaluateSensors

For the interaction transition operation:

i TransdionsPrecondition
AFlownet

nextOperation - ZTransitzons

nextOperation' = transitions

checkITransZtions =- zTransitionsPrecondition A evaluateITransitions

For the non-interaction transition operation:

A. 3. TRANSFORMATION OPERATIONS 158

transitionsPrecondition
AFlownet

nextOperation - transitzons

nextOperation' = places

check Transitions -- transitionsPrecondition A evaluate Transitions

For the place operation:

placesPrecondition
AFlownet

nextOperation places
nextOperatZon' flowControls,

checkPlaces placesPrecondition A evaluatePlaces

For the flow control operation:

flow ControlsPrecondition
AFlownet

nextOperation flowControls

nextOperation' transformers

checkFlow Controls =- flow ControlsPreco ndition A evalu ateFlo w Controls

For the transformer operation:

transformersPrecondition
AFlownet

nextOperation transformers

nextOperation' sensors

- transformersPrecondition A evaluate Transformers check Transformers =

We also define an operation to initialise the nextOperation of a Flownet to be the

sensor operation.

A. 3. TRANSFORMATION OPERATIONS

inifflownet
AFlownet

nextOperatZon' = sensors

159

It is now necessary to ensure that a Flownet only exhibits valid behavioural traces.
This is achieved by utilising the approach presented in [Evans 1996]. First, we intro-
duce a new data type mapping numbers to states to record computational traces.

comp X == NJ --ý

We then introduce the generic schema of [Evans 1996]. This schema defines that the

computation or is a valid behaviour of a system if its first step belongs to the initial
state (1) and subsequent steps belong to the set of possible states of the system.
This schema also facilitates an 'idling operation' where the state of the system is not
changed (i. e. the next state is the current state).

STATE- valldcomp -: comp STATE<--ý
(P S TA TE x (S TA TE +--> S TA TE))

Vo-: comp STATE; 1: P STATE; R: STATE +---> STATE

a valldcomp (I, R)
a(l) CIA

(Vn: N, 9 u(n) A u(n + 1) V u(n + u(n))

The state Flownet of may be transformed by any of the operations described above. We

describe the possible new state of the Flownet by the disjunction of its operations:

Flown et Transform

checkSensors V checkITransitZons V check Transitions V

checkPlaces V checkFIowControls V check Transformers

We can now ensure the valid transformation of a Flownet using the vahdcomp schema
beginning with the initial state im'tFlownet:

Flownet Transformation

a: comp Flownet

a valldcomp (linifflownet * OFlownet},

I Flownet Transform e OFlownet ý-4 OFlownet'})

Appendix B

Marigold details

B. 1 Code generation

In this section we describe informally the details of how Marigold achieves the im-

plementation refinement of Flownet designs. Specifically we are concerned with the

code generation module of the PB which produces Maverik/C code. This module is

separated from the rest of the prototype builder so that new modules for different

virtual environment implementations can be written and plugged into the PB.
The first step in the generation process is the unfolding of complex world objects

within the PB specification. This involves removing external link nodes, such that
there is a direct, rather than a two step link between nodes within a complex object
and nodes within the PB specification. This is illustrated in figure B. I.

The second step of the Marigold generation process is to generate Maverik func-

tions for each of the nodes within the PB specification. Each of these nodes, apart
from the Flownets, has a corresponding file which defines the Maverik code required
to implement their concept. For world objects, viewpoints and dynamic binds, infor-

mation added via dialogue boxes in the PB and COB such as the initial positioning

of world objects (see section B. 2) are appended to this code. The generated functions

expose input variables to communicate data and/or output variables to pass data.

A Flownet is an augmented condition-event Petri-net. Algorithms for translat-

ing such Petri-nets to code are widely available and adopt similar strategies (for

instance, [Valette 1986; Bruno and Marchetto 1986; Nelson, Haibt, and Sheridan

1983; Sibertin-Blanc, Hameurlain, and Touzeau 19951). These need to be extended to

support the implementation of Flownets as described in appendix A. For each of the

sensors, transitions and transformers within the Flownets, aC function is generated

which contains the code added within the HSB. For any functions and transitions

which contain no code (unconditional), these are appended to return true. When the

sensor and transition functions are called, they update an associated boolean vari-

160

B. 1. CODE GENERATION 161

Prototype specification (unresolved)

Complex object specification

extemal link

Figure B. I: Resolving complex object specification links during code generation

able indicating whether they have fired. When the transformer functions are called,
they perform a single transformation on their local data (as defined in the HSB)-
The Flownets are then reduced to a standard condition-event net (retaining any in-
hibitors) which are converted into a single C function using an algorithm similar to
that presented in [Bruno and Marchetto 1986] (adopting the semantics described in

appendix A). The sensor, transition and transformer functions are called from this
function and the resulting state of their variables analysed to determine whether a
transition should fire. The pseudo code for this function is given in figure B. 2.

In this algorithm, those C functions associated with sensors are called prior to the

parsing of the net and their variables evaluated by interaction transitions (interaction

transitions being those which are directly influenced by the interaction of the user)
during a parse. The C functions associated with interaction transitions are called
and evaluated as necessary during the parsing of the Flownet. Those functions as-
sociated with transformers are called (depending on the state of the net) subsequent
to a parsing of the Flownet. This algorithm checks interaction transitions prior to

non-interaction transitions . These details are in accordance with the semantics of
Flownets given in Appendix A although we refrain from proving this.

Consequently, there are a number of functions defining each of the nodes (con-

cepts) within the PB specification including the Flownets. A function is then gener-

ated which implements the link between the nodes of the unfolded PB specification
(mapFunction). This is illustrated in figure B. 3.

CODE GENERATION

1 parseFlownets
2

3

4 check all sensors S
5

6S= all sensors
7 S. updateState
8

9 check all interaction transitions T
10 note :t. associatedFunction is function
11 associated with transition T
12

13 T all interaction transitions
14 S all sensors targeting T via arc
15 P all places targeting T via an arc
16 PP all places targeting T via an inhibitor
17

18 if (S. enabled P. enabled
19 PP. disabled && T. associatedFunction
20

1

21 disable (P)
22 enable (T)
23

24

25 check all non-interaction transitions T
26

27 T= all non-interaction transitions
28

29 if (P. enabled PP. disabled
30

1

31 disable (P)
32 enable (T)
33

34

35 check all
36

place instances ' p'

37 T= all transitions targeting ' p'
38

39 if (T. enabled
40

1

41 disable (T)
42 enable (p)
43

44

45 activate all transformers 'TF' which are
46 related to an enabled place to update
47

48 AP = P. enabled
49 TF = all transformers related to AP via a continuous arc
50

51 update (TF)
52

}

Figure B. 2: Algorithm for executing a Flownet

162

CODE GENERATION

Generated implementation

mapFunction
f

behavi urinput-position = input-device. position
output: device. position = behaviouroutput-positi ion

PB Specification

output device input device behaviour

V
input-device

matrix position

behaviour

matrix input-position
matrix output-position

output-device

matrix position

Figure B. 3: Mapping from PB specifications to implementation code

163

The final step of the code generation process is defining when those functions de-

scribed previously should be called. Within Maverik (and most virtual environment
languages) there are two important parts to the program code. Firstly, the initial-

isation which happens only once during the lifetime of an environment. Secondly,

the rendering loop which continually iterates during the lifetime of the environment.

Some of the functions generated by Marigold are called in the former such as those

that instantiate world objects and viewpoints, others are called in the latter such

as those functions which poll devices and parse Flownets. The pseudo-code for this

algorithm is given in figure B-4.

B. 2. EDITING NODE PROPERTIES 164

// initalisation

createDevices ()
createWorldObject
createDynamicB indWorld Objects
createViewpoints ()

// rendering loop

while

checkDevices
mapFunction ()
parseFlownets

Figure BA: Main algorithm for executing Flowilet specifications

B. 2 Editing node properties

Illustrated in figure B. 5 are the dialogue boxes which support the editing of node
properties within the PB and COB. In figure B. 5 (a) the dialogue shown supports
editing the initial position and direction of view of a viewpoint.

In figure B. 5 (b) the dialogue box shown supports editing the initial positioning
and orientation of a dynamic bind within the virtual environment. In addition, this
dialogue allows the specification of whether any behaviour should also update the

position of the bind (update bind) and whether the intersection of the bind with
other world objects should be complete or partial (intersection condition).

In figure B. 5 (c) the dialogue box shown supports editing the initial positioning

and orientation of a world object within the virtual environment, and whether the

world object should be initially visible and/or selected. In addition, the dialogue

supports the specification of whether the selected variable determines whether the

world object should be updated, and whether the world object should participate

with dynamic binds.

B. 3. DEVICE STUBS

Name [Yiewpoint

XYz

Eye F- F- Fo-
View F Fo F 7
Up F- FF0
Fixed F- Fo F0

Ok Cancel

Name

Roll Fo
Pitch F-
Yaw F-
x Fq-
y P
z
u

pdate bind

intersection
partial condition

165

MEN edit ofýAect. IXK

Name Fb.
I

Roll F
Pitch F
Yaw F
x F -B
y

F6 75

z FO
Visible true

Selected L. Ie -j

r-selected dete rmines update

F'dynamically bind

Ok

Figure B. 5: (a) Editing the properties of a viewpoint node (b) editing the properties
of a dynamic bind node (c) editing properties of a world object rendering node

B. 3 Device stubs

Marigold is configured to use a number of interaction devices which are defined using
device stubs. New devices can be added by creating an appropriate stub for that
device, although this involves some knowledge of how Maverik deals with devices.
Illustrated in figure B. 6 is the stub for a Polhemus tracker. A device stub consists of
four parts, terminated by the end tag:

device name specifies the name of the device being defined. This is the name

which will appear in the node of the PB specification.

device variables specifies the C/Maverik variables that the device updates.
These are the variables which will appear in the node of the PB specification.

device function specifies a C/Maverik function that may be required to be iter-

atively called.

device main specifies C/Maverik code that is always called by the rendering loop

of the virtual environment kernel. This should update the variables specified in

device variables either directly and/or by calling the function in device function.

B. 3. DEVICE STUBS

Idevice name}
left Polhemus

I device variables I
MAV-matrix polhemusl -matrix; MAV-vector polhe musl -vector, int keyboard-button ;

I device function I

Idevice loopl
polhemusl-matrix = mav-TDM-matrix[3];
p olhe musl -vector = mav -matrixXYZ

Get (mav_TD M-matrix [3

Idevice mainj

jendl

Figure B. 6: The device stub for a Polhemus tracker

166

Bibliography

Abowd, G. D. (1991). Formal aspects of human-computer interaction. DPhil thesis,
University of Oxford.

Alexander, H. (1990). Structuring dialogues using CSP. In M. Harrison and
H. Thimbleby (Eds.), Formal Methods Zn Human-Computer

-Interaction, pp.
273-295. Cambidge University Press.

Auto desk-corporation (1997). 3DStudio. Ill McInnis Parkway, San Rafael, Cali-
fornia, 94903, USA.

Bastide, R. and P. Palanque (1990). Petri net objects for the design, validation
and prototyping of user-driven interfaces. In Human-Computer Interaction -
INTERACT'90, pp. 625-631. Elsevier Science Publisher, Amsterdam.

BBC/Colt International (1997). Virtual production planner.

Beaudouin-Lafon, M. (1994). User interface management systems: Present and
future. In S. Coquillart, W. StaBer, and P. Stucki (Eds.), From Object Modelling
to Advanced Visual Communication, pp. 197-223. Springer-Verlag.

Ben, C., A. M. Tawbi, and C. Souveyet (1999). Bridging the gap between users
and requirements engineering: the scenario-based approach. Technical Report
99-07, CREWS Report Series, CRI Universite Paris.

Berry, D. M. and J. M. Wing (1985). Specifying and prototyping: some thoughts

on why they are successful. In Proceedings of the Internabon JoZnt Conference

on Theory and Practice of Software Development (TAPSOFT), Volume 2, pp.
117-128. Lecture notes in Computer Science.

Bruno, G. and G. Marchetto (1986, February). Pro cess-translat able petri nets for

the rapid prototyping of process control systems. IEEE Transactions on Soft-

ware Engineering 12(2), 346-357.

Bryson, S. (1995). Approaches to the successful design and implementation of VR

applications. London Academic Press.

Campos, J. (2000). Automated deduction and usability reasoning. DPhil thesis,
University of York.

167

BIBLIOGRAPHY 168

Campos, J. and M. Harrison (1998). The role of verification in interactive sys-
tems design. In DesZgn, Specificahon and Verification of Interactive Systems'98.
Springer-Verlag. Abingdon, UK, June 3-5.

Carey, R. and G. Bell (1997). The Annotated VRML 2.0 Reference Manual.
Addison-Wesley.

Carr, D. A. (1996). Towards more understandable user interface specifications. In
F. Bodart and J. Vanderdonkt (Eds.), Design, specification and verification of
interactive systems'96, pp. 141-161. Springer-Verlag.

Clarke Jr., E. M., 0. Grumberg, and D. A. Peled (1999). Model Checkzng. MIT
Press.

Colebourne, A. (2001). AC31) modeller. http: //www. comp. lancs. ac. uk/
computing/users/andy/ac3d. html.

Cybulski, J. L. and K. Reed (1999). Automating requirements refinement with
cross-domain requirements classification. Australian Journal of Information
Systems (7), 131-145.

Deering, M. F. (1996, May). The holosketch VR sketching system. Communications

of the A CM 39(5), 54-61.

Degani, A. (1996). On Modes, Error, and Patterns of Interaction. Ph. D. thesis,
Georgia Institue of Technology, USA.

Deisinger, J., R. Blach, G. Wesche, R. Breining, and A. Simon (2000). Towards
immersive modeling - challenges and recommendations: A workshop analyzing
the needs of designers. In Virtual Environments 2000, pp. 145-146. Springer-
Verlag. Amsterdam, 1-2 June.

Denert, E. (1977). Specification and design of dialogue systems with state diagrams.

International Computing Symposium, 417-424.

Dix, A. and G. Abowd (1996, November). Modelling status and event behaviour of
interactive systems. Software Engineering Journal 11,334-346.

Doherty, G., J. Campos, and M. Harrison (2000). Representational reasoning and

verification. Formal Aspects of Computing (12), 260-277.

Esteban, 0., S. Chatty, and P. Palanque (1995). Whizz'ed: a visual environment for

building highly interactive software. In Proceeding of Interact'95, pp. 121-126.

Evans, A. S. (1996). Z For Concurrent Systems. Ph. D. thesis, Leeds Metropolitan

University.

BIBLIOGRAPHY 169

Faisstnauer, C., D. Schmalstieg, and Z. Szalavdri (1997, August). Device-
independent navigation and interaction in virtual environments. Technical Re-
port TR-186-2-97-15, Vienna University of Technology, Austria.

Fields, B., N. Merriam, and A. Dearden (1997). DMVIS: Design, modelling and
validation of interactive systems. In Design, Specification and Verification of In-
teractwe Systems conference proceedings, pp. 29-45. Springer-Verlag. 4-6 June,
Granada, Spain.

Flaus, J. -M. and G. Ollagnon (1997). Hybrid flow nets for hybrid processes mod-
elling and control. In 0. Maler (Ed.), Hybrid and Real-Time Systems Interna-
tional Workshop'97, pp. 213-227. Spinger Verlag.

Fleishman, S., D. Cohen-Or, and D. Lischinski (2000, June). Automatic camera
placement for image-based modeling. Computer Graphzcs Forum 19(2), 101-
110.

Foley, J., A. van Dam, S. Feiner, and J. Hughes (1990). Computer Graphics Prin-

ciples and Practice. The Systems Programming Series. Addison-Wesley.

Forrester, J. W. (1961). Industrial DynamZcs. MIT Press.

Frank, A R. and J. D. Foley (1993). Model-based user interfaces design by example

and interview. In Proceedings of UIST'93 A CM Symposium on User Interface

Software and Technology, pp. 128-137. ACM press.

Frank, M. R. 7 P. N. Sukaviriya, and J. D. Foley (1995). Inference bear: Designing

interactive interface through before and after snapshots. In Proceedings of the
A CM Symposium on Designing Interactive Systems.

Gibson, S. and T. Howard (2000). Interactive reconstruction of virtual environments
from photographs with application to scene-of-crime analysis. In Proceedings of
A CM Sympostum Zn Virtual Reality Software and Technology, pp. 41-48. ACM

Press.

Hack, M. (1975). Petri-net languages. Memo 124, Massachusetts Institute of Tech-

nology. Computation Structures Group, Cambridge, Massachusetts.

Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of
Computer Programming 8,231-274.

Harel, D., H. Lachover, A. Naaad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-

Trauring, and M. Trakhtenbrot (1990, July). STATEMATE: A working envi-

ronment for the development of complex reactive systems. IEEE Transactions

on Software Engineering 16(4), 403-413.

Harrison, M. and H. Thimbleby (Eds.) (1990). Formal Methods in Human-

Computer Interaction. Cambridge University Press.

BIBLIOGRAPHY 170

Higgett, N. and S. Bhullar (1998). An investigation into the application of a virtual
environment for fire evacuation mission rehearsal training. In P. Hatton (Ed.),
Eurographics 16th Annual UK Conference, pp. 87-96.

Hoare, C. A. R. (1978, August). Communicating sequential processes. Communi-

cations of the ACM 28(8), 666-677.

Hodges, L. F., B. A. Watson, B. 0. Rothbaum, and D. Opdyke (1996, November).
Virtually conquering fear of flying. IEEE Computer Graphics, 42-49.

Horrocks, 1. (1999). Constructing the User Interface with Statecharts. Addison-
Wesley.

Hubbold, R. J., X. Dongbo, and S. Gibson (1996). MAVERIK - the Manchester

virtual environment interface kernel. In M. Goebel and J. David (Eds.), Proceed-

ings of 3rd Eurographics Workshop on Virtual Enwonments. Springer-Verlag.

Ingalls, D., S. Wallance, Y. -Y. Chow, F. Ludolph, and K. Doyle (1988). The fabrik

programming environment. In IEEE Workshop on Visual Languages, pp. 222-
230.

Jacob, R. J. K. (1986). A specification language for direct-manipulation user inter-
faces. ACM Transactions on Computer Graphics 5,283-317.

Jacob, R. J. K. (1995). Specifying non-WIMP interfaces. In CHI'95 Workshop on
the Formal Specificabon of User Interfaces Position Papers.

Jacob, R. J. K. (1996). A visual language for non-WIMP user interfaces. In Pro-

ceedings IEEE Symposium on Visual Languages, pp. 231-238. IEEE Computer
Science Press.

Jacob, R. J. K., L. Deligiannidis, and S. Morrison (1999, March). A software model
and specification language for non-WIMP user interfaces. ACM Transactions

on Computer-Human Interachon 6(l), 1-46.

Kalawsky, R. S. (1993). The scZence of virtual reality and vZrtual environments.
Addison-Wesley.

Kanev, K. and T. Sugiyama (1998). Design and simulation of interactve 3D com-

puter games. Computer and Graphics 22(2), 281-300.

Kaur, K. (1998). Designing virtual environments for usabzlzty. Ph. D. thesis, City

University, London.

Kaur, K., N. Maiden, and A. Sutcliffe (1996). Design practice and usability prob-
lems with virtual environments. In Proceedings of Virtual Reality World '96,

Stuttgart, Germany.

BIBLIOGRAPHY 171

Kim, G. J., K. C. Kang, H. Kim, and J. Lee (1998). Software engineer'ng of

virtual worlds. In ACM Virtual Reality Systems and Technology Conference
(VRST'98), pp. 131-138.

Kim, M. and E. -T. Lee (1998). A visual interface for scripting virtual behaviors. In
AsZa-Pacific Computer Human Interachon, pp. 165-168. IEEE Press.

Kutar, M., C. Britton, and C. Nehaniv (2000). Specifying multiple time granular-
ities in interactive systems. In P. Palanque and F. Patern6 (Eds.), Interactive

systems design, specificahon and verification, pp. 51-63. Springer-Verlag LNCS

1946.

Kutti, K. (1995). Work processes: Scenarios as a preliminary vocabulary. In J. M.

Carroll (Ed.), Scenarzo-Based design, pp. 19-36. John Wiley and Son.

Lucena, F. N. and H. K. E. Liesenberg (1994). A statechart engine to support imple-

mentation of complex behaviour. In Proceedings of the 21st SemZsh Conference,

pp. 177-191.

Massink, M., D. Duke7 and S. Smith (1999). Towards hybrid interface specification
for virtual environments. In D. Duke and A. Puerta (Eds.), Design, Specification

and Verificatton of Interactive Systems '99, pp. 30-51. Springer-Verlag.

Mikk, E., Y. Lakhench, C. Petersohn, and M. Siegel (1997). On formal semantics

of statecharts as supported by STATEMATE. In D. J. Duke and A. S. Evans

(Eds.), 2nd BCS-FACS Northern Formal Methods Workshop. Springer-Verlag.

Mine, M. R, F. P. Brooks Jr, and C. H. Sequin (1997). Moving objects in space:

Exploiting proprioception in virtual-environment interaction. In SIGGRAPH

97, pp. 19-26. ACM Press.

Morrey, I., I Siddiqi, R. Hibberd, and G. Buckberry (1998). A toolset to support

the construction and animation of formal specifications. The Journal of Systems

and Software (41), 147-160.

Morrison, S. A. (1998). A specificatzon paradzgm for destgn and zmplementat, on of

non-WIMP human-computer interachons. Ph. D. thesis, Tufts University.

Morrison, S. A. and R. J. K. Jacob (1998). A specification paradigm for design and

implementation of non-WIMP human-computer interaction. In ACM CHF98

Human Factors M Compuhng Systems Conference, pp. 357-358. Addison-

Wesley/ACM Press.

Myers, B. A. (1989). User-interface tools: Introduction and survey. IEEE Soft-

ware 6(l), 15-23.

Naumovich, G. and L. A. Clarke (2000, March). Classifying properties: Ail al-

ternative to the safety-liveness classification. In Proceedings of the 8th AC211

BIBLIOGRAPHY 172

Sympomm on the Foundahons of Software Engineering (FSE 8), pp. 159-168.
ACM Press.

Nelson, R. A., L. M. Haibt, and P. B. Sheridan (1983, September). Casting petri
nets into programs. IEEE Transactions on Software Engineering 9(5), 590-602.

Newman, W. M. and M. G. Lamming (1995). Interachve System Design. Addison-
Wesley.

Olson, J. D. R. (1992). User Interface Management Systems: models and algo-
Hthms. Morgan Kaufmann.

Palanque, P. A., R. Bastide, L. Dourte, and C. Silbertin-Blane (1993). Design of
user-driven interfaces using petri nets and objects. In C. Rolland, F. Bodart, and
C. Cauvet (Eds.), Proceedings of CAISE93 (Conference on advance information

system engineering), Springer- Verlag LNCS, Volume 685.

Patch, K. (2001, November). Virtual reality gets easier. Technology Research
News. http: //www. trnmag. com/Stories/2001/110701/Virtual-reality-

gets-easier-110701. html.

Paterno, F. (1995). A Method for Formal Specificahon and Verificahon of Interac-
hve Systems. Ph. D. thesis, University of York.

Pausch, R. (1995, May). Alice: Rapid prototyping for virtual reality. IEEE Com-

puter Graphics 15(3).

Petri, C. A. (1962). Kommunikation mit automaten. Schriften des iim nr. 2, Institut

fdr Instrumentelle Mathematic. English translation: Technical Report RADC-

TR-65-377, Griffiths Air Base, New York, Vol. 1, Suppl. 1,1966.

Pettifer, S. R. (1999). An operatzng enmronment for large scale vzrtual realdy. Ph.

D. thesis, Manchester University.

Pfaff, G. E. (Ed.) (1985). User Interface Management Systems. Eurographic Sem-

inars Series. Springer-Verlag.

Reisig, W. (1982). Petri Nets. EATCS Monographs on Theoretical Computer Sci-

ence. Springer-Verlag.

Roch, S. and P. H. Starke (1999, April). INA Integrated Net Analyser (Version

2.2). Humboldt-Universität zu Berlin.

Sastry, L., D. R. S. Boyd, R. F. Fowler, and V. V. S. S. Sastry (1998). Numerical flow

visualization using virtual reality techniques. In 8th International Symposium

on Flow Visuahsation, pp. 235.1-235.9.

Sherman, W. R. (1993). Integrating virtual environments into the dataflow

paradigm. In 4th Eurographics workshop on ViSC.

BIBLIOGRAPHY 173

Sibertin-Blanc, C., N. Hameurlain, and P. Touzeau (1995). Syroco: A C++ imple-

mentation of cooperative objects. In G. Agha and F. DeCindio (Eds.), Proceed-

ings of the Workshop on Object- Oriented Programming and Models of Concur-

rency, pp. 51-62.

Smith, D. N. (1990). The interface construction set. In Visual Languages and Ap-

phcations. Plenum Pub.

Smith, S. and D. Duke (1999a). Using CSP to specify interaction in virtual en-
vironments. Technical Report YCS 321, University of York - Department of
Computer Science.

Smith, S. and D. Duke (1999b). Virtual environments as hybrid systems. In
N. Dodgson and M. Austen (Eds.), Eurographics UK 17th Annual Conference,

pp. 113-128. Eurographics.

Smith, S., D. Duke, and M. Massink (1999). The hybrid world of virtual environ-
ments. Computer Graphics Forum 18(3), C297-C307.

Smith, S. P. 7 D. J. Duke, and J. S. Willans (2000). Designing world objects for

usable virtual environments. In P. Palanque and F. Patern6 (Eds.), Workshop

on design, specificahon and verificatZon of Mteractwe systems, pp. 309-319.

Snowden, D. N. (1996). AVIARY: A model for a general purpose virtual environ-

ment. Ph. D. thesis, Manchester University.

Sommerville, 1. (1996). Software EngZneering (Fifth ed.). Addison-Wesley.

Spivey, M. (2000). The fuzz manual (second ed.). The Spivey Partnership.

Steed, A. J. (1996). Defining Interaction within Immersive Virtual Environments.

Ph. D. thesis, Queen Mary and Westfield College, UK.

Suffin, B. and J. He (1990). Specification, analysis and refinement of interactive

processes. In M. Harrison and H. Thimbleby (Eds.), Formal Methods Zn Human-

Computer Interaction, pp. 153-200. Cambidge University Press.

Systd, K. (1995). A Specification Method for Interachve Systems. Ph. D. thesis,

Tampere University of Technology.

Thompson, M. R., J. D. Maxfield, and P. M. Dew (1999). Interactive virtual pro-
totyping. In P. Hatton (Ed.), Eurographics UK 16th Annual Conference, pp.
107-120. Eurographics.

Upson, C., T. F. Jr., D. Kamins, D. Laidlaw, D. Schlegel, J. Vroom, R. Gurwitz,

and A. van Dam (1989, July). The application visualization system: A compu-

tational environment for scentific visualization. IEEE Computer Graphics and
Applications, 30-42.

BIBLIOGRAPHY 174

Valette, R. (1986). Nets in production systems. In W. Brauer, W. Reisig, and
G. Rozenbiz (Eds.), Petrt-nets: Applications and relationship to other models
of concurrency, Advances in Petri-nets (part 2), Volume LNCS 255, pp. 191-
217. Springer-Verlag.

van Bilion, W. R. (1988). Extending petri-nets for specifying man-machine dia-
logue. Internahonal Journal of Man-machine studies 28,437-455.

van Schooten, B., 0. Donk, and J. Zwiers (1999). Modelling interaction in virtual
environments using process algerbra. In A. Nijholt, 0. Donk, and B. van Oijt
(Eds.), 12th Workshop on Language techology: Interachon in virtual worlds,
pp. 195-212. Twente University.

van Zijl, L. and D. Mitton (1991). Using statecharts to design and specify a direct-

manipulation user interface. In Proceedings of the Southern African Computing
SymposZum, pp. 51-68.

VPL Research (1991). Virtual reality data-flow language and runtime system, body

electric manual 3.0. Redwood City, CA.

Wasserman, A. 1. (1985, August). Extending state transition diagrams for the spec-
ification of human-computer interaction. IEEE Transachons on SOftware Engz'-

neerZng 11 (8).

Wellner, P. D. (1990). Statemaster: A UIMS based on statecharts for prototyp-
ing and target implementation. In Human Factors in Computing Systems 1990

proceedings, pp. 177-182. ACM Press.

Wieting, R. (1996). Hybrid high-level nets. In J. M. Charnes, D. J. Morrice, and
D. T. Brunner (Eds.), Proceedings of the 1996 Winter Simulation Conference,

pp. 848-855. ACM Press.

Willans, J. S. and M. D. Harrison (1999). Requirements for prototyping the be-

haviour of virtual environments. In M. D. Harrison and S. P. Smith (Eds.),

User-centered Design and Implementation of Virtual Environments Workshop,

pp. 7-13.

Willans, J. S. and M. D. Harrison (2000a). A 'plug and play' approach to test-

ing virtual environment interaction techniques. In R. van Liere and J. Mul-

der (Eds.), 6th Eurographics Workshop on Virtual Environments, pp. 33-42.

Springer-Verlag.

Willans, J. S. and M. D. Harrison (2000b). Verifying the behaviour of virtual en-

vironment world objects. In P. Palanque and F. Patern6 (Eds.), Interactive

systems desZgn, specificatton and verification, pp. 65-77. Springer-Verlag LNCS

1946.

BIBLIOGRAPHY 175

Willans, J. S. and M. D. Harrison (2001a). Prototyping pre-implementation de-

signs of virtual environment behaviour. In R. Little and L. Nigay (Eds.), Eighth
IFIP Working conference on Engineering for Human Computer Interaction
(EHCF01), pp. 91-113. Springer-Verlag LNCS 2254.

Willans, I S. and M. D. Harrison (2001b, August). A toolset supported approach
for designing and testing virtual environment interaction techniques. Interna-
tional Journal of Human-ComPuter Studies 55(2), 145-165.

Willans, J. S.
7

M. D. Harrison, and S. P. Smith (2000). Implementing virtual
environment object behaviour from a specification. In V. Paelke and S. Vol-
bracht (Eds.), User Guidance in Virtual Environments, pp. 87-97. Shaker Ver-
lag, Aachen, Germany.

Willans, J. S., S. P. Smith, and M. D. Harrison (2001a, April). Modelling and ver-
ifying virtual environment behaviour. In G. J. Doherty, M. Massink, and M. D.
Wilson (Eds.), Continuity zn Future Computing Systems, pp. 75-79. Technical

report RAL-CONF-2001-001.

Willans, J. S., S. P. Smith, and M. D. Harrison (2001b). Using scenarios to identify
the design requirements of virtual environments. Technical Report YCS 333,
University of York.

Wilthrich, C. A. (1999). An analysis and a model of 3D interaction methods and
devices for virtual reality. In D. Duke and A. Puerta (Eds.), Design, Specification

and Verificabon of Interactive Systems '99, pp. 18-29. Springer-Verlag.

Yamamoto, K. (1996). 3D-visulan: A 3D programming language for 3D applica-
tions. In Pacific Workshop on Distributed Multimedia Systems (DMS96), pp.
199-206.

Zeleznik, R. C.) K. P. Herndon, and J. F. Hughes (1996). SKETCH: An interface

for sketching 3D scenes. In Computer Graphics Proceedings SIGGRAPH'96, pp.
163-169.

