Integrating behavioural design into the virtual

environment development process

James Stephen Willans
Submitted for the degree of Doctor of Philosophy

The University of York
Department of Computer Science

Human-Computer Interaction Group

November 2001

Abstract

A number of specifications formalisms have been developed (or applied) to support
the abstract design of the behavioural component of the virtual environment inter-
face. These formalisms subscribe to the philosophy that virtual environments should
be viewed as hybrid systems which combine discrete and continuous behaviour. A
significant deficiency in designing behaviour in this way is that the designs cannot be
directly executed and explored in the same manner as an implementation. This limi-
tation makes it difficult for a designer to evaluate the suitability of designs. The thesis
presents the Marigold toolset which supports two approaches to evaluating behaviour
described using the Flownet hybrid formalism.

The first approach involves refining the design to an implementation prototype
where 1t can be explored with users. An emphasis within this approach is a usable
means of integrating the behaviour with the components that form the direct intertace
to the users (the presentation) such as devices. This is achieved by the use of visual
data flow networks. The second approach involves the analysis of Flownets so that
characteristics of the design can be automatically checked. A consideration within
this approach 1s a usable means ot specifying the properties and understanding the
results ot the analysis.

A secondary focus of the thesis is a requirements specification approach for virtual
environments. This 1s motivated by reports that one ot the problems with the virtual
environment development process 1s an accurate interpretation of the users require-
ments by the designers. The approach elicits requirements in a language tamiliar to
the users, and translates these into a specification that can be used by a designer to

construct designs. The Primrose tool has been developed to support this approach.

Contents

1 Introduction 15
1.1 Virtual environments L. 15
1.2 Virtual environment designo 16
1.3 Ewvaluatingdesigns 13
1.4 Thesis overview e e e e e e e e e e e 19

2 Background 21
2.1 Behavioural design formalisms 0000 21

2.1.1 HyNet e 22
2.1.2 Flownet 27
2.1.3 Tufts formalism L 28
2.1.4 DiScusSIon e e e e e e e e e e e 29
2.1.5 Summary e e e 31
2.2 Prototyping designso Lo 31
2.2.1 Traditional approaches00 32
2.2.2 Virtual environment approaches 30
2.2.3 Discussion e e e e e e e e e e 33
2.3 Analysingdesigns. e 39
2.4 Conclusion e e e e e e e e e e 40

3 Flownets 41

3.1 Discrete components Lo 0oL 41
3.1.1 BasiCs e e e e e e e e e 41
3.1.2 Inhibitor arc e e e 42

3.2 Continuous componentso e w e e e 43
3.2.1 Data input/output 43
3.2.2 Continuous to discreteo 44
3.2.3 Discrete to continuouso oo Lo L. 44
3.2.4 Transtorming and storingdata 45

3.3 Dynamic behaviour o0 oL 46

CONTENTS

3.4 Examples

................................

3.4.1 Mouse based flying
3.4.2 Door

3.5 Conclusion

4 Prototyping Flownets

4.1 Introduction

4.2 Prototyping interaction techniques

4.2.1 Building the specification

4.2.2 Constructing a prototype

4.3 Prototyping world object behaviour

4.3.1 Building the specification

4.3.2 Integration of behaviour and appearance

4.3.3 Constructing a prototype

lllllllllllllllllllll

4.4 Non-static binding L.
4.4.1 World object grouping L.
4.4.2 Dynamicbinding L.

4.5 Conclusion L,

5 Analysing Flownets

5.1 Introduction.

5.2 Properties e e
5.2.1 Correctness
5.2.2 Usability L.
5.2.3 Discussion e e e e,

5.3 Building a reachability treeo

5.4 Analysing the reachability tree00 L.
5.4.1 Safety propertieso,
5.4.2 Liveness propertieso oo

5.5 Mode confusion analysis,
5.5.1 Applying the analysis
5.5.2 Discussion e e e e e e e e

5.6 DISCUSSION e e e e e e e e e e e e,

5.7 Conclusion e e e e e e

6 Virtual environment requirements specification

6.1 Introduction

0.2 Overview

6.3 Applying the approach

lllllllllllllllllllllllllll

o1
o0l
03
03
00
08
09
60
61
03
63
04
66

68
038
70
70
71
73
74
77
(7
79
32
34
34
36
33

CONTENTS O

6.3.1 Eliciting user requirements 92

6.3.2 Specitying designer requirements 93

6.3.3 From scenarios to requirements tree 95
6.3.4 From requirements tree to designs 96

6.4 Kitchenexample L. 99
6.0 Primrose. 104
6.6 Discussion 105
6.7 Conclusion 106
7 Case studies 108
(.1 Introduction., 108
(.2 Navigating a landscape. L. 109
7.2.1 Imtialdesign 109

7.2.2 Two-handed lying L. 110

7.2.3 Mode confusion analysis 111

7.2.4 Prototyping thedesign. 112

7.2.5 Substituting devices oL o Lo L. 114

7.2.6 Offsetting thespeed 114

7.2.7 Prototyping thedesign (2) 119

7.3 A virtual kitchen L 120
7.3.1 Oven e, 120

7.3.2 Toaster e 126

7.3.3 Microwave e e e e e e e 129

7.3.4 Interacting with the kitchen 132

7.3.5 Kitchen prototype Lo 134

7.4 Aimsrevisited, 136
7.4.1 Prototyping Flownets 136

7.4.2 Analysing Flownets 0 0oL 138

7.4.3 Guiding design using Primrose 138

7.5 Conclusion e e e e e e 139
8 Conclusion 141
8.1 Summary of thethesis 0oL 141
8.2 Contribution e e 142
8.3 Designing virtual environmentso 142
8.4 Recent work (revisited) 143
8.5 Futurework o 144
8.50.1 Prototyping 144

85.2 Analysis 145

CONTENTS

8.9.3 Requirements specification

A A semantics for

A.1 Overview . .

A.2 Flownet confi

A.3 Transformation operations
A.3.1 Sensor

A.3.2 Place

A.3.3 Transition
A.3.4 Flow control
A.3.5 Transtormer

A.3.6 Operation ordering

B Marigold details

Flownets

guration

llllllllllllllllllllllll

B.1 Code generation e e

B.2 Editing node
B.3 Device stubs

Bibliography

properties L L L e e e e e e

lllllllllllllllllllllllllllllllll

145

147
147
147
1ol
101
101
152
104
105
156

160

160
164
160

167

List of Figures

1.1
1.2

2.1
2.2

2.3

2.4

2.9

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

3.1
3.2
3.3

AC3D world object modeller

Implementation flexibility /abstraction tradeoff

HyNet discrete transition (taken from [Massink, Duke, and Smith 1999]) 23

HyNet continuous transition (taken from [Massink, Duke, and Smith
1999]) © o

Partial HyNet specification of the mouse-based flying interaction tech-
nique (taken from [Massink, Duke, and Smith 1999])
Complete HyNet specification of the mouse-based flying interaction
technique (taken from [Massink, Duke, and Smith 1999])
Flownet specification of the mouse-based flying interaction technique .
oSpecification of mouse-based flying using the Tufts formalism
A comparison of using state transition diagrams with Petri-nets to
describe dependencies between concurrent discrete state behaviour . .
Seeheim UIMS Architecture [Pfaff 1985]
An example of a UIMS dialogue specification (taken from [Olson 1992])
An example of an application interface component within a UIMS
(taken from [Olson 1992])
Animating a Statechart specification using the Statemate tool [Harel,
Lachover, Naaad, Pnueli, Politi, Sherman, Shtull-Trauring, and Trakht-
enbrot 1990] L L
CSP description of channels linking the behaviour to an 1implementa-
tion (taken from [van Schooten, Donk, and Zwiers 1999])
Partial listing for the mouse-based flying interaction technique specified
using PMIW Lo
The presentation concepts for a virtual environments and their relation

to the behaviour

A simple condition-event Petri-net

Examples to 1llustrate the firing rules of condition-event Petri-nets . .

An example of an inhibitorarc

20
260
27
29
30
32
33

33

34

360

37

33

42
42

LIST OF FIGURES 3

3.4
3.0
3.6
3.7
3.3
3.9
3.10

3.11
3.12
3.13

4.1

4.2

4.3
4.4

4.5
4.6
4.7

4.8
4.9

4.10

4.11

4.12

0.1
5.2
5.3
0.4

An example of systems dynamics modelling notation 43
Flownet plugs linked to continuous arcs 14
A plug link directly into the condition-event net 44
kxample of sensors relating continuous and discrete behaviour. 14
Example of flow controls relating discrete and continuous behaviour . 45
A common transformer store configuration 45
An example net to demonstrate the potential conflict of transition be-

haviour 46
The execution cycle of a Flownet 47
Flownet for the mouse-based flying interaction technique 48
Flownet for the behaviour of a door world object 49

An example of a ”body electric” data flow specification (taken from [Kalawsky
1993, p218]) o, 52

Combining the advantages of Flownets for behavioural design with data
....................... 53

Flownet specification for the mouse-based flying interaction technique 54

flow networks for prototyping

(a) Adding variables to the mouse input plug (b) Adding conditional
code to the middle mouse button sensor (c) Adding process code to
the position transformer Lo 5O
Prototype specification for the mouse-based flying interaction technique 57
Flownet specification for a complex locking door world object (discrete) 59

Flownet specification for a complex locking door world object (contin-

Mouse based flying prototype specification expanded to include a sim-
ple manipulation interaction technique and a locking door world object 62
The door closed and locked (top left), the door unlocked and opened
(top right), the door prevented completely closing by the locked lock

A specification illustrating the two forms of non-static binding con-

structs supported by Marigold.o 00000 65
Screenshot of the drawer world object 66
An overview of the analysis process 69

Discrete part of a Flownet specification for a locking door world object 74
First part of the reachability tree generated for the locking door Petri-net 75

Complete reachability tree generated for the locking door Petri-net . . 76

LIST OF FIGURES

0.0 Dialogue box to check the reachability of a specific marking for the
locking door

0.6 Dialogue box to check the reachability of a sequence of markings for

the locking door

0.7 Dialogue box reporting that all states are reachable within the locking
door

0.8 Dialogue box reporting that all states are not reachable within the

locking door

5.9 A dialogue box specifying that the locking door is free from deadlock .
5.10 An amended design of the locking door to illustrate deadlock

5.11 The dialogue reporting that the amended design of the locking door
suffers from deadlock

llllllllllllllllllllllllllll

5.12 The configuration of Flownet components which enables the rendering

of a change to the external environment
0.13 Rendering a new state to the external environment
5.14 Flownet specification for the mouse-based flying interaction technique
5.15 The dialogue to the mode checking analysis reporting that mouse-based

flying may cause mode confusion
5.16 The revision of the mouse-based flying interaction technique taking

into consideration the potential mode confusion

5.17 The mode confusion analysis result of the revised mouse-based flying

design L e e

6.1 Overview of requirements specification approach
6.2 A scenario describing how the user opens a window 1n their office . . .
6.3 The structuring of key requirements in the requirements tree
6.4 The evolution of the requirements tree (right) as the example scenario

(left) isanalysed Lo
6.5 Interpreting the world object requirements from the requirements tree
6.6 Interpreting the behavioural requirements from the requirements tree .
6.7 Mapping the behavioural requirements of the window pane world ob-

ject onto the discrete component of a Flownet design using the Marigold

HSB . . e e e e e e e
6.8 A Marigold COB specification for the opening window
6.9 Using an oven to fry an egg scenario
6.10 Including the frying egg scenario in the requirements tree
6.11 Using the microwave to heat beans scenario
6.12 Including the microwave scenario in the requirements tree

6.13 Using the toaster to make toast scenario

LIST OF FIGURES 10

6.14 Including the toast scenario in the requirements tree 103
6.15 A screenshot of the Primrose tool 104
6.16 The requirements tree within Primrose 105
7.1 A prototype specification using mouse-based flying technique to navi-
gate the landscape 110
7.2 Flownet specification for the two-handed flying technique 111
7.3 'The mode confusion analysis result of the two-handed flying interaction
technique L. 112
7.4 Revised Flownet specification for the two-handed flying technique ad-
dressing potential mode confusion. 112
7.0 Prototype specification with an indicator to avoid mode confusion . . 113
7.6 'T'wo-handed flying screenshot 114
7.7 Prototype specification using Polhemus trackers 115
7.8 Revised Flownet specification for the interactive jog dial 117
7.9 Complex object specification for the interactive jog dial 118
7.10 A prototype specification constructed to evaluate the jog dial 118
(.11 Jog dial screenshot L. 119
7.12 Revised two-handed flying Flownet to facilitate the external input of a
speed offset 119
7.13 Prototype specification for navigating a landscape using the two-handed
Hying technique with the jog dial technique determining an offset speed 120
7.14 Requirements tree exposing those requirements for the oven (within
Primrose) e 121
7.15 Flownet specification for the oven world object 123
7.16 Analysing the oven for a correctness property 124
7.17 Revised Flownet specification for the oven world object 124
7.18 Complex object specification for the oven world object 125
7.19 Oven in its initial state (top left), oven with gas switched on and igni-
tion switch being pressed (top right), frying the eggs (bottom) 125
7.20 Requirements tree exposing those requirements for the gas toaster
(within Primrose) 126
7.21 Flownet specification for the toaster world object 127
7.22 Complex object specification for the toaster world object 128
7.23 Toaster in its initial state (left), pulling the toasters slider to begin
toasting the bread (right)00, 128
7.24 Requirements tree exposing those requirements for the microwave (within
Primrose) e e e e e e 129
7.25 Flownet specification for the microwave world object 130

LIST OF FIGURES 11

7.26
1.27

7.28
7.29
7.30
7.31
(.32

3.1

A.l

B.1
B.2
B.3
B.4
B.5

B.6

Complex object specification for the microwave world object 131
Microwave 1n its initial state (top left), placing food into the microwave
(top right), setting the timer (bottom) before pressing the on switch . 131

Requirements tree exposing those requirements for the user interaction 132

Flownet specification for the sticky-hand interaction technique 133
Prototype specification for the virtual kitchen 135
Kitchen virtual environmento 135

The requirements specification and design process supported by Marigold

and Primrose Lo 139
Supporting the top-down and bottom-up design of virtual environ-

ments using specification and prototyping L. 143
The execution cycle of operations on a Flownet 157
Resolving complex object specification links during code generation . . 161
Algorithm for executing a Flownet 162
Mapping from PB specifications to implementation code 163
Main algorithm for executing Flownet specifications 164
(a) Editing the properties of a viewpoint node (b) editing the prop-

erties of a dynamic bind node (c) editing properties of a world object

rendering node 165

The device stub for a Polhemus tracker 166

Acknowledgements

] am indebted to my supervisor Professor Michael Harrison whose support, advice
and friendship has made my research so enjoyable. Although the work presented in
the thesis 1s my own, a number of further individuals have enhanced my thoughts.
Dr. Shamus Smith provided a sounding board for ideas that matured as a result of
his feedback. The torinal methods and graphics expertise of Dr. David Duke provided
useful insights into the strengths and limitations of my ideas. Useful feedback has
also been provided by Dr. Mieke Massink, Dr. José Campos, Dr. Darren Priddin,
Protessor Colin Runciman, Karsten Loer and I am particularly grateftul for corre-
spondences with Professor Robert Jacob (Tufts University). Jon Cook (University
of Manchester) provided excellent support for the Maverik toolkit, and James Carter
provided local support beyond the call of duty for my machines. Ben Challis and
Shamus Smith were, and remain, excellent friends. Maria looked atter me when I was
not working, and continues to make an important difference. This thesis is dedicated

to my parents and it is for their support, above all, which I am most gratetul.

12

Declaration

Much of the work presented in this thesis has already been published elsewhere co-
authored with Michael Harrison [Willans and Harrison 1999; Willans and Harrison
2000a; Willans and Harrison 2000b; Willans and Harrison 2001a; Willans and Harri-
son 2001b}, Michael Harrison and Shamus Smith [Willans, Harrison, and Smith 2000;
Willans, Smith, and Harrison 2001a; Willans, Smith, and Harrison 2001b| and David
Duke and Shamus Smith [Smith, Duke, and Willans 2000]. Parts of chapter 6 are
based on collaborative work with Shamus Smith and David Duke. In all other cases,

[have presented only those aspects of the work which are directly attributable to me.

An article about the work presented in this thesis has appeared in Technology Re-
search News |Patch 2001].

13

To my parents, Stephen and Mary

14

Chapter 1

Introduction

This thesis 1s concerned with the design of 3D virtual environment interfaces (some-
times called virtual reality interfaces). In recent years the use of 3D virtual environ-
ments has become more widespread, partly as a consequence of diminishing technol-
ogy costs and partly due to the availability of development applications such as the
Maverik toolkit [Hubbold, Dongbo, and Gibson 1996]. This class of interactive sys-
tem 1s beginning to realise its potential in applications such as training [Higgett and
Bhullar 1998; Hodges, Watson, Rothbaum, and Opdyke 1996, product prototyping
'Thompson, Maxfield, and Dew 1999| and data visualisation [Sastry, Boyd, Fowler,

and Sastry 1998] outside the context of specialised laboratories.

1.1 Virtual environments

The dominant form of computer interface continues to be the windows, 1cons, mice
and pointer (WIMP) interface. A defining characteristic of this interface 1s that, re-
gardless of application, the user interacts with consistent concepts such as menus and
buttons via consistent interaction techniques. This enables the user to use previous
knowledge of interaction to successfully interact with new applications. The consis-
tent nature of WIMP interfaces also has a favourable impact on their development.
A developer only needs to consider those aspects of the interface which are not reused
since the reusable concepts are known to be adequate (and are provided in standard
libraries). For instance, an interaction technique such as drag and drop does not need
to be redesigned for each new application, its usability and functionality (and other
concerns) are well established.

Virtual environment interfaces are commonly developed to simulate real world
interfaces, or interfaces to support highly specialised tasks where there are novel
concepts. Although there is a level of consistency in these types of applications, it

s much finer grain than that of WIMP interfaces. As a result, the development

1o

1.2. VIRTUAL ENVIRONMENT DESIGN 16

of virtual environment interfaces is a non-trivial process. A developer must design
concepts 1n view of the requirements of each application and ensure that these designs
are usable. Our concern is with the design of the software part of virtual environment

intertaces. In the next section we examine the general approach to their design.

1.2 Virtual environment design

Two major components of a virtual environment interface are the visual world ob-
jects! that are rendered to a user and the behavioural rules that determine how the

environment responds to user interaction.

The world objects of a virtual environment are usually designed using 3D mod-
ellers such as 3DStudio |Autodesk-corporation 1997] and AC3D [Colebourne 2001].
A screenshot of AC3D is shown in figure 1.1 displaying an office desk and chair world
objects. Using these tools, world objects are designed by dragging and dropping visual
primitives from a menu bar onto one of three views of the object being designed (front,
side and plan). The visual primitives are perceived as in the real world including de-
talls of colour, texture and their spatial positioning. This makes it easy for a designer
to make a transition between the requirements of the world objects (often described
using photographs or drawings) and their realisation within a design. In addition,
3D modellers provide the facility to interact with the world objects (figure 1.1 lower
right) by rotation and zoom, allowing the designer to evaluate the suitability of the
designs of world objects by exploring how it will appear in the finished environment.
Current research is shortcutting the transition between the requirements of world
objects and their designs further. The approaches presented in {Zeleznik, Herndon,
and Hughes 1996; Deering 1996] provide a means of translating rough sketches into
concrete designs of world objects. The approach described in [Gibson and Howard
2000] demonstrates how photographs can be translated into concrete design of world
objects with minimal human intervention.

In contrast, the design of the behaviour of a virtual environment 1s integrated into
its implementation. The abstractions used can take one of two forms or something
in-between. In the case of high-level implementation toolkits such as Alice [Pausch
1995], the behaviours are described using a language that has a (loose) correspondence
to concepts in the requirements (the real world), for example to make a rabbit world
object look at a helicopter world object: bunny.pointat(helicopter). However there are
a limited number of predefined high level abstractions (such as pointat that can be
used. Alternatively, in the case of a low-level implementation toolkit such as Maverik

‘Hubbold, Dongbo, and Gibson 1996|, the behaviours are described using geometric

——

Hereafter referred to as world objects.

1.2. VIRTUAL ENVIRONMENT DESIGN 17

Figure 1.1: AC3D world object modeller

translations that bear little resemblance to how the requirements are expressed. Using
languages akin to Alice, abstractions can be used which relate to the requirements, but
their high-level nature limits what can be described. Languages like Maverik afford
ereater flexibility, but the behaviour must be designed using low-level abstractions
which are difficult to relate to the requirements. This tradeoff between abstractions
and flexibility is visualised in figure 1.2. Implementation abstractions make it difficult
to achieve a description of the behaviour in a flexible manner using abstractions that
correspond to the requirements.

This problem can be resolved by separating the design from the implementation.
Here abstractions which are incomplete (non-executable) are used. Thus providing
more flexibility and a better link with the requirements. A number of design spec-
ification formalisms have been developed (or applied) to support this (for example,
[Jacob 1996; Smith, Duke, and Massink 1999|). Such approaches build upon simi-
lar techniques developed for more traditional interactive systems where, for instance.
state-transition diagrams [Wasserman 1985], Petri-nets [van Bilion 1988] and State-
charts [van Zijl and Mitton 1991; Horrocks 1999| are used.

1.3. EVALUATING DESIGNS 18

high MAVERIK
Flexibility
ALICE
Abstraction
low
Implementation real
concepts world

concepts

Figure 1.2: Implementation flexibility/abstraction tradeoft

Despite the strengths of using such specification formalisms, a significant weak-
ness 1s they cannot be executed in the same manner as an implementation. This
makes 1t difficult to evaluate whether a design is correct [Carr 1996]. It is generally
considered that this deficiency i1s one of the main reasons behavioural specification
formalisms have not been more widely adopted [Carr 1996; Morrey, Siddiqi, Hibberd,
and Buckberry 1998|. The primary concern of this thesis is enabling the evaluation

of design specifications ot virtual environment behaviour.

1.3 Evaluating designs

Newman and Lamming separate usability evaluation into two approaches [Newman
and Lamming 1995, p167|:

e Empirically - by building prototypes of the design.

e Analytically - by analysing design specifications.

This distinction is equally applicable and useful to software evaluation per-se |Berry
and Wing 1985].

Prototyping designs

The prototyping of user interface designs is motivated by a need to mvolve the user
within the design process. Often users have difficulty articulating their precise re-
quirements for a system, but by interacting with a prototype the user can identify

strengths and weaknesses of a design. Prototyping 1s a critical part of the engineering

1.4. THESIS OVERVIEW 19

.

of user interfaces [Sommerville 1996, p153], as noted by Myers ‘the only reliable way

to generate quality interfaces 1s to test prototypes with users and modify the design
based on their comments’ [Myers 1989].

Analysing designs

Analysis 1s concerned with asking questions directly about a design. User interface
designs are commonly analysed using informal techniques [Newman and Lamming
1995, pl167|, however a weakness of this type of analysis is its imprecision [Campos
2000, p25|. The use of formal methods has been explored [Abowd 1991; Harrison and
Thimbleby 1990] to address this because their mathematical nature enables greater

certainty that the analysis is correct (though the wrong thing could be specified).

More recently the use of automatically analysing user interface designs has been
explored [Patern6 1995; Campos 2000].

1.4 Thesis overview

The main contributions of this thesis are approaches to evaluating designs of virtual
environment behaviour using prototyping and analysis. In order to support these
approaches, the Marigold toolset has been constructed. Marigold supports the design
of virtual environment behavioural using the Flownet formalism |Smith and Duke
1999b; Smith, Duke, and Massink 1999|, and the refinement of designs to a prototype
by ‘plugging’ the designs into a presentation (interaction devices and world objects).
Analysis evaluation is enabled by Marigold’s support for automatically checking prop-
erties of the Flownet designs.

A fundamental step prior to the design of any system 1s understanding the re-
quirements that the design must satisfy. Without an adequate means of eliciting the
requirements from the intended end-user and specifying these, the process ot design
becomes difficult and error-prone. A further contribution of this thesis is an approach
to specifying virtual environment requirements in a manner that considers both the

end-user and the developer. The Primrose tool has been developed to support this

approach.

The thesis 1s structured as follows:

e Chapter 2 Background examines the current state of aftairs with respect to two

criteria. Firstly, the alternative specification formalisms for designing virtual

environment behaviour. Secondly, approaches to evaluating such behavioural

specifications.

1.4. THESIS OVERVIEW | 20

e Chapter 3 Flownets details the existing Flownet formalism which we will utilise

as a behavioural design specification formalism within this thesis.

e Chapter 4 Prototyping Flownets introduces the Marigold toolset and describes

how 1t supports a transition from Flownet designs to implementation prototypes.

e Chapter 5 Analysing Flownets describes support within the Marigold toolset

for the automatic analysis of Flownet designs.

e Chapter 6 Requirements Specification introduces an approach to eliciting and

specifying virtual environment requirements. The Primrose tool is described

which supports the application of this approach.

e Chapter 7 Case studies describes two case studies which apply the Marigold

toolset to the design of virtual environments.

e Chapter 8 Conclusion reviews the contributions of this thesis and presents di-

rection for future work.

Chapter 2

Background

The purpose of this chapter is twofold. Firstly, in section 2.1 we review design for-
malisms used to describe virtual environment behaviour to justify our use of Flownets.
Secondly, in sections 2.2 and 2.3 we examine the extent to which current methods for
prototyping and analysing such descriptions supports the evaluation of designs. This

provides a context for the Marigold toolset.

2.1 Behavioural design formalisms

A number of formalisms have been explored for the specification of virtual environ-
ment behaviour at various levels of rigour. In [van Schooten, Donk, and Zwiers 1999;
Smith and Duke 1999a] CSP (communicating sequential processes) [Hoare 1978] is
used. The approach presented in [Kim, Kang, Kim, and Lee 1998| uses Statecharts
'Harel 1987] to describe non-user driven behaviour (the user observes passively).
These styles of specification abstract the behaviour into discrete, token style, steps.
The user generates a token and the computer responds with a token determined by
the state of the behaviour. For traditional interfaces such as those driven by menus
and those based on WIMPs, these techniques work well because they are rich enough
to reflect their command based nature [Jacob 1995].

When virtual environment behaviour 1s described using these techniques, i1t has
been found that the descriptions lack a level of richness adequate to characterise the
behaviour [Jacob 1995; Smith and Duke 1999b]. This is because the user’s interaction
with the environment is often continuous and the user perceives the rendering of
the environment continually. This continuous behaviour should also be considered.
Consequently, virtual environments may be considered more conveniently as hybrid
systems and their behaviour modelled as a combination of discrete and continuous

components [Jacob 1996; Smith, Duke, and Massink 1999; Wuthrich 1999|. Dix and

Abowd also argue the need for this distinction in the wider context of interactive

21

2.1. BEHAVIOURAL DESIGN FORMALISMS 22

systems, although they refer to this as status (continuous) and event (discrete) [Dix
and Abowd 1996]. Three visual formalisms have been developed for (or applied to) the
hybrid specification of virtual environment behaviour: HyNet, the Tufts formalism
and Flownets.

For convenience we consider virtual environment behaviour as being of two types.
Firstly, interaction techniques that map the user onto the environment to support
navigation and the selection and manipulation of world objects. Secondly, world ob-
ject behaviour defining how world objects respond to user interaction. To compare
the three formalisms mentioned above, we shall use the interaction technique called
mouse-based flying. Mouse based flying enables navigation on the z and z axis using
the desktop mouse. The technique is initiated by pressing the middle mouse button.
When the mouse cursor i1s moved away from the position of the mouse click, navi-
cgation through the environment begins. The user’s speed and direction is directly
proportional to the angle and distance between the current pointer position at the
point the middle mouse button was pressed. Flying is deactivated by a second press
of the middle mouse button. Variations of this technique are used in many desk-
top virtual environment packages such as the Virtual Production Planner [BBC/Colt

International 1997] and VRML (virtual reality modelling language) [Carey and Bell
1997/

2.1.1 HyNet

HyNet (Hybrid High-Level Petri-Nets) [Wieting 1996] builds on Petri-nets [Petri 1962]

using object-oriented concepts including inheritance and polymorphism. The appl-

cation of HyNets to virtual environment interaction techniques is demonstrated in
Massink, Duke, and Smith 1999; Smith, Duke, and Massink 1999|. A HyNet speci-

fication is made up of a number of states and transitions which are related by arcs.
Tokens are moved dynamically from state to state by the transitions.
The transitions can either be discrete or continuous, and are inscribed with a five

part label which describes their firing capacity, activation condition, firing action,

delay time and firing time:

e The firing capacity defines how often a transition can fire in parallel with itself.

e The activation condition is a boolean pre-condition for the transition firing to

take place.

e The firing action for discrete transitions consists of executable expressions, for

the continuous transitions it consists of a differential equation.

2.1. BEHAVIOURAL DESIGN FORMALISMS 23

e The delay time (discrete transitions only) defines the time that must pass be-

tween firing and re-enabling the transition.

e The firing time (discrete transitions only) defines the length of time the execu-

tion of the transition must take.

There are a number of different types of arcs linking places and transitions. In-

hibitor arcs prevent a transition firing (visually shown as an arc containing an open

circle in its centre). Conversely, enabling arcs enable a transition to fire (shown as an
arc ending in an open circle). The inhibitor or enabling arcs are activated if there is a
token present 1n the place they are connected to. Finally, there are standard Petri-net
arcs which are associated with a token type (weighting) defining which tokens can

pass.

Two types of tokens flow around a HyNet specification. Either simple Petri-net

tokens which mark the state of behaviour, or complex tokens which also mark the

state but are instances of classes.

o—— }—=—0 =
t pd AC:x.at(l) >3 && z>0
Pl 7 FA:y=x.at(2) * x.at(1);
[Int, omega] [Bool, 1] DT: 2
FT: z
p2 p3
[Token, 1] [Int, 1]

Figure 2.1: HyNet discrete transition (taken from [Massink, Duke, and Smith 1999))

In figure 2.1 a discrete transition is illustrated which is related to four places.
Place pl contains two tokens (2,5) and is related to the transition via a Petri-net
regular arc. This transition specifies that two tokens can be carried and that these
are assigned to x. Place p2 contains no tokens and is related to the transition via an
inhibitor arc. Place p3 contains a single token (1) and 1s related to the transition via
an enabling arc. In order for a transition to fire (regardless of whether 1t 1s discrete
or continuous) it is necessary for every state targeting the transition via a regular arc
and enabling arc to contain enough tokens to match the weighting ot the arc, and
for every state targeting the transition via an inhibitor to contain no tokens. This
axiom is satisfied in figure 2.1. In addition the activation precondition (AC) for the
transition must be satisfied. In this case, this means that the value of the token
carried on the enabling arc (z) must be greater than 0, and that the value assigned
to the first x (x.at(1)) must be greater than 3. This precondition can be satisfied by

the following execution x.at(1l) = 5, x.at(2) = 2 and z = 1.

2.1. BEHAVIOURAL DESIGN FORMALISMS 24

R Eee—-

When the marking of the net and the activation precondition has been satisfied,
then the delay time (DT) of 2 clock ticks begins, when this expires the execution of
the firing action occurs (FA). In this case the firing action specifies that the value of
x.at(1) should be multiplied by x.at(2) and the result (10) placed in p4. The (FT)

condition dictates that this should be completed in the number of time steps specified

by z (1). This transition can only fire once in parallel with itself (FC).

i

AC:y<4
p4
pl FA:y =-1
|[Real, omega] [Real, 1] =05 *7

I
t
%
p2 p3
[Token, 1] [Int, 1]

Figure 2.2: HyNet continuous transition (taken from {Massink, Duke, and Smith
1999])

To illustrate a continuous transition consider the example in figure 2.2. The job
of a continuous transition is to continually change the value of objects in the adjacent
places. It is graphically described by a double box. The transition enabling condition
is the same as the discrete. In this example the precondition (AC) specifies that the
value of y should be less than 4. This precondition is continually checked betore each
iteration of the transition execution, if the condition fails then execution 1s halted. In
this example, the value of y is decremented by 1, and the value of x 1s increased by
0.5 * z every clock cycle. This behaviour will continue until the precondition fails or
if a bounded (required) token is consumed by other behaviour in the net.

Shown in figure 2.3 is part of the mouse-based flying interaction technique specified
using the HyNet formalism. In this specification, the action conditions (AC) are shown
in the upper part of transitions and the firing actions (FA) are shown in the lower
part of transitions. The top part of the HyNet specification describes the behaviour
of the mouse. Initially there is a complex token in the Mouse state (denotated by
‘Mouse,1]) which records the position of the mouse and the state of its buttons in
the {(x,y,vx,vy),0,0,0} data structure. The position part of this token is continually
updated by the move mouse transition. When a mouse button press occurs, the
whenever you like transition records the state of the button in this token and returns
it to the Mouse state. The lower part of figure 2.3 describes how the state of the
complex token in the Mouse state changes the state of the technique. A transition

continually updates the complex token in the Cursor state which records the position

2.1. BEHAVIOURAL DESIGN FORMALISMS 25

el il

whenever you like

0.vXx =chg (1.vx) o.vy=chg (i.vy)

0.l = switch(1.l) o.m=switch(i.m)
o.r=switch(i.r)

IOVe mouse | ((X.y.VX.VY), Mouse
m.X' = m.vx 0.0.0 } [Mouse, 1]
m.y =m.vy
- — |
m
m m
O — O O
|
Y Yy Y
| m.m =] m.m = | m.m = 1 m.m = |
c.p = cp(m.p) i sp = sc(m.p) md.distx=0.0
md.disty = 0.0
md.x = look_Ir
md.y = fw_bw
Cursor | ¢ Square Sp d ~
[Cursor, 1] [Square, 1

{(0.0,0.0)}

Mode
[Mode,1]

Figure 2.3: Partial HyNet specification of the mouse-based flying interaction tech-
nique (taken from [Massink, Duke, and Smith 1999])

of the mouse. This token is used in the expanded specification to render a cursor on
the screen to reflect the position of the mouse. When the Mouse token records that a
mouse button has been pressed (m.m = 1) a discrete transition places a (simple) token
in the Square state, this is immediately removed by a further transition. A token in
the Square is used in the expanded specification to render a square to the user to
mark the origin of navigation. The Mode state is used in the expanded specification
to record how the direction of navigation through the environment. A (simple) token
is generated by a transition and placed in the Mode state when a mouse button has
been pressed. This token is immediately consumed by a further transition. Figure
2.4 describes a complete HyNet specification of the mouse-based flying interaction
technique taken from [Massink, Duke, and Smith 1999]. In addition to describing the
behaviour of the mouse and the interaction technique itself, this design details the

projection of the environment onto the screen (as indicated in the figure).

UNIVERSITY
OF YORK
' {E3ARY

2.1. BEHAVIOURAL DESIGN FORMALISMS ot 26

| whenever you like

0.1 = switch(i.l)

o.vx = chg (i.vx) o.vy=chg (i.vy)

o.m=swilch(i.m

...

class 2DCoordsp { }
class 3DCoordsp (777 |

class Pos| Real x.y},
class Box {Pos pl},

o.r=swilch(i.r)
[A Mouse class Mouse { Pos p.
0 : Bit lm.r,
move mouse }
Mouse class Square{ Pos Ibrt;
mx’ = mvx e _ ((xy.vx.vy), [Mouse, 1] -
= 0,0,0 Box sc ()
my' =mvy] ®) |
.. : Box Square :: sc (a) | return (trans(a)), |
i m =) Iﬂ m j) m T
m - Y
== mm= mm= | xmd(m) '=n.x vymd(m)'!=ny
md.distx=0.0
2 - Xx=xmd(m)
c.p=cpimp) sp = sc(m.p) Ly N. X=XIT}
J md disty = 0.0 n.y=ymd(m)
md.x = look_Ir
md.y = fw_bw A
Cursor | ¢
[Cursor,1]
n
{(0.0,0.0)}
n
class Cursor { Pos p; Md Mode . xmd (a : Mode) |
Pos cp (), return (if a.] then look_Ir
o cp s else if a.r then crab_lIr
Pos Cursor :: cp (a) { return (trans(a)),) else look_lIr),)
Y Y Y ¥
Md Mode ymd (a : Mode) {
Ser’= Scr'= class Md (Look_lr, crab_lr, look_ud, fw_bw, nse_fall} return (if a.] then look_ud
prijcr(cp)| ||| pnbx(sq)| n.distx” = p (m.vx) m else if a.r then rise_fall
n.disty” = p (m.vy) class Mode { Real distx, else fw_bw),)
Real disty,
Md x, vy,
. Md xmd (), /* relate increase in dist of mouse with dist on screen */
Md ymd (), Real Mode ‘- p (r : Real){ return(if ¢*r< boxsize
Real p (), then 0.0
) else c*r)).
scr
m.xm = look_Ir m.ym = look_ud m.Xxm = crab_Ir | mym= nse_fall | m.ym = fw_bw
v’ =rotvwx(m.xspeed) v'=rotvwy(m yspeed) v'=trmsvwx(m.xspeed) v'=trnsvwy(m.yspeed) v'=trmsvwz(m yspeed)
v
class Matrx4{ Matnx4 view, |
par /* rotation on x—axis of view ref system */
: View vm vm =
: Matrix4 Matrx4 . rotvwx(s: Real)} },
: [Matrx4, 1] create(par)
E /* rotation on y—axis of view ref system */
p b
""""""""""""""""" Matrix4 Matrx4 :: rotvwy(s:Real){ },
O VIR ﬁﬁlView /* translation of pos ref point in view x-axis directiorf/
| Matrix4 Matrx4 ;- trnsvwx(s:Real){ },
TS TSGR /* wanslation of pos ref point in view y—axis direction */
scr SC Scene ;
A (3DCoorsp.1] Matrix4 Matrx4 .. trnsvwy(s:Real){ },
scr = proj (vin,pm,sc) ‘ /* ranslation of pos ref point in view z—axis direction */
: Sereetl - = . Matrix4 Matrx4 - utnsvwz(s:Real)(},
: [2
; 2DCoorsp., 1] /[* creation of first view matnx based on pos,normal and view—up vector
m
O PR s Matnx4 Matrx4 - create(........){ },
ProiMats SCe_ne) class Screen (2DCoorsp Scr, },
Matrix
PFOJ ecnon 2DCoordsp Screen :: proj (a,b . Matrix4,s:3DCoordsp)/|)
PM [Matrx4,1|

2DCoordsp Screen .: prjbx (b: Box){ },
2DCoordsp Screen :: pricr (¢ : Pos){),

...

Figure 2.4: Complete HyNet specification of the mouse-based flying interaction tech-
nique (taken from [Massink, Duke, and Smith 1999])

2.1. BEHAVIOURAL DESIGN FORMALISMS 27

2.1.2 Flownet

Flownets' have been developed specifically for describing virtual environment be-
haviour |Smith and Duke 1999b; Smith, Duke, and Massink 1999]. Within Flownets
the discrete event/condition Petri-nets [Petri 1962] are augmented using constructs
based on a systems dynamics modelling formalism [Forrester 1961] for the continuous
detail. Flownets have been applied to the specification of both interaction techniques
'Smith and Duke 1999b; Smith, Duke, and Massink 1999] and the behaviour of world
objects [Smith, Duke, and Willans 2000].

In chapter 3 we describe Flownets in detail. In order to give an overview of the
formalism figure 2.5 illustrates the Flownet specification of the mouse-based flying
interaction technique. This has a clear interface to the data flowing in and out of the
technique via plugs (mouse and position). The state of the technique is denoted by

the presence of a token in either the idle or flying states. The continuous behaviour is
related to the discrete via sensors. For instance, when the middle mouse button sensor
triggers, a token 1s placed in the idle state (via the start transition). The discrete
behaviour 1s related to the continuous via flow controls which are enabled or disabled
depending on the state of the associated discrete component. For instance, when

there is a token in the flying state, the corresponding butterfly flow control is enabled

L™]

which transforms (L_l) the position of the environment based on the origin position

(the position of the middle mouse button click) and the current mouse position. This

1s output to the position plug.

mouse position

r $ 9 Y [
\V\ - DOS itio‘r|

ongin

K >

V -
middle mouse
button _ .
- idle > | flying

HE}S

1?:@]
A

\
11X
!

Figure 2.5: Flownet specification of the mouse-based flying interaction technique

INot to be confused with Flow Nets [Flaus and Ollagnon 1997] which is used for the hybrid
modelling of process control systems.

2.1. BEHAVIOURAL DESIGN FORMALISMS 28

T

2.1.3 Tufts formalism

T'he formalism developed by Jacob et.al and presented in [Jacob 1996; Jacob, Deligian-
nidis, and Morrison 1999; Morrison and Jacob 1998] was also developed specifically
for the specification of virtual environment behaviour at Tufts University. Within
this the discrete components are described using state transition diagrams and the
continuous components using links and variables. Unlike HyNets and Flownets, there
1S no diagrammatic relation between the two representations, this relation is achieved
by the cross referencing of variables.

Figure 2.6 shows the specification of mouse-based flying using the Tufts formal-
1Ism. The lower part shows the state transition diagram which specifies the three
discrete states that the technique can be in (inactive, idle and flying). The upper
part describes how data stored in variables (circles) is continually transformed by links
(square boxes) when they are enabled. Links are enabled when the current discrete
state matches their identity (this plays the same role as a Flownet flow control). For
instance, when the user is in the discrete state of flying the link labelled FLYING is
enabled. This allows information contained in the mouse and originPos variables to
How 1nto the position variable.

The relation between the continuous and discrete part enables the firing of discrete
transitions (and is the equivalent of a Flownet sensor). These are defined by functions
on continuous variables. For instance, the function MOUSE.pos(outorigin) describes
a threshold on the continuous mouse variable which detects when the position of
the mouse has moved away from the origin position (the function itself, such as
pos(outorigin), is not explicitly captured in the formalism). When the threshold
MOUSE.pos(outorigin) occurs, and the technique 1s in the :dle state, the state ot

behaviour will change from :idle to flying.

| N
|

BEHAVIOURAL DESIGN FORMALISMS 29

originPos
INT

1dentity

IDLE
mouse
INPUT D/—\Q
1dentity position
FLYING OUTPUT
BUTTONZ . DN MOUSE.pos (outorigin)

NS

BUTTONZ2 .UP MOUSE.pos(1norigin)

BUTTONZ . UP

Figure 2.6: Specification of mouse-based flying using the Tufts formalism

2.1.4 Discussion

In the previous sections we have described three approaches to specifying virtual
environment behaviour using hybrid formalisms. Although we have not described the
formalisms exhaustively we have given enough detail to illustrate the main concepts
and their use in modelling the mouse-based flying interaction technique. Of the three
formalisms, HyNet 1s the most complex to understand and relate to the informal
textual description of the interaction technique. However, this 1s not a fair comparison
since this design also includes that of the mouse input device and the projection of the
environment as output to the user. Even taking this into consideration, HyNet 1s still
the most detailed specification because of its inclusion of precise details of the data
flowing around the specification. While it remains a purely behavioural specification
and does not include many details required for 1ts implementation, concepts such as
the concrete data description are similar to those used in an 1mplementation rather
those in the requirements. This kind of detail becomes more 1mportant as a design is
refined towards a final implementation, however 1t is less critical in the earlier stages of
design. As such, HyNet value is better placed as an implementation design formalism
rather than one to be used for initial designs. This 1s an opinion also expressed in
[Smith, Duke, and Massink 1999].

Flownets and the Tufts formalism are similar in many respects. They both make a
clear distinction between those concepts which are continuous 1n nature and those that

are discrete. They both use a standard notation to describe the discrete behaviour.

2.1. BEHAVIOURAL DESIGN FORMALISMS 30

el
il

However, Flownets are advantageous because they use a concurrent formalism to

describe the discrete component. The reasons for this will now be discussed.

Concurrency

In the case of interaction techniques the discrete part of the formalisms describes the
state of the user and how their input should be interpreted (the mode of interaction).
Often interaction techniques for virtual environments are multi-modal where the user
1s 1n multiple states concurrently. For instance, in the head-butt zoom interaction
technique [Mine, Brooks Jr, and Sequin 1997] the users uses their hands to form a
viewing window and the location of their head to zoom in and out of the window.
The hands of the user can be in a number of states (form window, window formed

and resize window) and the head of the user can be in a number of states (zoom out,

static and zoom in) concurrently. These concurrent states are often dependent on

each other, for instance the window must be formed 1n order to be able to zoom.

door closed door closed
door door & locked & unlocked I
lock
locked < J##H,l"100 ed door I_V |
\ unlocked |

door
door T [open
open door open T
& locked
pre: door_unlockec
door
locked

(a) (b} (C)

/

door open

& unlocked

Figure 2.7: A comparison of using state transition diagrams with Petri-nets to describe
dependencies between concurrent discrete state behaviour

For world objects the discrete part of the formalism describes the state ot the
objects and how input should be interpreted. World objects otten have many compo-
nents that behave independently but which have dependencies on one another, in a
similar manner to interaction techniques. For instance a locking door may consist of
the door itself and a lock. The door can be in a number of states (open and closed)
and the lock can be in a number of states (locked and unlocked) concurrently. A
dependency may exist describing that the door cannot be opened when locked.

The Tufts formalism uses state transition diagrams to describe the discrete compo-
nents. Although state transition diagrams do not describe concurrent state behaviour,
o number of techniques can be applied to bypass this limitation. One approach is to

model the concurrent components as separate diagrams. Using this approach it 1s nec-

2.2. PROTOTYPING DESIGNS 31

essary to describe dependencies between diagrams using pre-conditions (or guards) on
the transitions which reference other diagrams. The pre-condition must be satisfied
In order for the transition to take place. This approach succeeds with interaction
techniques because these usually have a small (discrete) state space. However, world
objects often have a much larger state space reflecting the complexity of real world
objects. This makes it difficult to comprehend the resulting design. An alternative
approach 1s to interleave behaviours. Again, for interaction techniques this can work
(and is the approach adopted by the Tufts formalism in [Morrison and Jacob 1998]),
however with the larger state space of world objects (not explored for the Tufts for-
malism) this results in an of states and transitions. An example of using these two
techniques 1s illustrated in figure 2.7 (a) and (b) for a locking door world object.
Essentially using state transition diagrams to model concurrent behaviour is going
against the grain of the formalism. This limitation of state transition diagrams is also

expressed in |Foley, van Dam, Feiner, and Hughes 1990, p458-459] in the context of
modern intertaces generally.

The Flownet formalism uses Petri-nets to describe the discrete components. Petri-
nets were designed to overcome the inability of sequential formalisms (state transition

diagrams, for example) to describe concurrency. Consequently it can model with ease
the concurrent state behaviour of interaction techniques and world objects. The

locking door world object is described using a Petri-net in figure 2.7 (c).

2.1.5 Summary

In this section we have drawn a number of conclusions:

e Three hybrid formalisms have been developed for (or applied to) the specifica-

tion of virtual environment behaviour: HyNet, Flownets and the Tufts formal-

1S11.

e The value of HyNet is as an implementation specification formalism rather than

for the description of initial designs.

e Although Flownets and the Tufts formalism are similar, Flownets supports the
specification of discrete concurrency which is important tor the description of

virtual environment behaviour.

2.2 Prototyping designs

In this section we examine efforts to translate design specifications of behaviour into an

implementation of the behaviour. First, we examine approaches to achieving this with

2.2. PROTOTYPING DESIGNS 32

specifications of traditional interfaces. Secondly, we examine approaches to achieving

this specifically for behavioural specifications relating to virtual environments.

2.2.1 Traditional approaches
UIMS

The challenge addressed by user interface management systems (UIMS) is to separate
the semantics of the user interface from the application. This allows the interface to
be designed independent of application concerns. In addition, different interfaces can
be designed for the same application (this is useful when there are multiple users with
different concerns).

The most common interpretation of a UIMS is the Seeheim architecture [Pfaff
1985] shown in figure 2.8. This separates the user interface into three components.
The presentation component which receives raw data from input devices and renders
some interface (usually visually) to the user. The application interface component
which communicates directly with the application. The dialogue component which
manages the dialogue of interaction between the presentation and the application com-
ponents. Efforts have largely focussed on describing the dialogue component using
formalisms such as state transition diagrams |Denert 1977; Jacob 1986| and State-
charts [van Zijl and Mitton 1991; Wellner 1990; Lucena and Liesenberg 1994]. For
the purposes of our discussion the dialogue component can be considered equivalent

to what we call behavioural design specifications in section 2.1.

Figure 2.8: Seeheim UIMS Architecture [Pfaff 1985)

| ‘ -
User <=—=- Presentation Dialogue |= Application |eAppIication

A review of the various realisations of UIMS is presented in |[Beaudouin-Lafon
1994]. However, the general approach is consistent. We will illustrate this using
the dialogue description shown in figure 2.9 (taken from [Olson 1992, p37]). This
describes how the user can draw a line or a rectangle interactively. The dialogue
receives (logical) events from the user, in figure 2.9 these can be Line, Rectangle and
MouseDown. These events change the state of the dialogue according to its current

state and also call actions, for example P1:=MouseLoc, DrawlLine and DrawRect.

2.2. PROTOTYPING DESIGNS 383

Line MouseDown
P1:=Mousel oc

MouseDown

DrawLine(P1,Mouseloc)

_ MouseDown
Rectangle DrawRect(P1,Mouseloc) \

- MouseDown
P1.=Mouseloc

Figure 2.9: An example of a UIMS dialogue specification (taken from [Olson 1992])

The main application contains a loop which continually propagates events to the

dialogue and checks for actions from the dialogue (figure 2.10, also taken from [Olson
1992, p39}).

CurrentState := S;
Repeat

{
GetEvent (E);

Select a transition T wusing CurrentState and E
DoCommand(Action (T));

CurrentState:=NextState (T);
}

Figure 2.10: An example of an application interface component within a UIMS (taken
from [Olson 1992|)

2.2. PROTOTYPING DESIGNS 34

Statemate

Statemate [Harel, Lachover, Naaad, Pnueli, Politi, Sherman, Shtull-Trauring, and
Trakhtenbrot 1990] is a tool which supports the prototyping of Statechart [Harel
1987| specifications. Within Statemate, transitions can be linked to events from wid-
gets such as buttons, and variables can be linked to functions on display widgets. As
the user interacts with the widgets they behave according to the Statechart specifica-
tion. In this way, Statemate can be seen as a form of UIMS. However. unlike typical
UIMS, the presentation of the prototype is not the actual intended presentation of
the specification. For instance, the consequence of interaction with a behavioural
design for an aircraft interface might be explored using the limited widgets supplied
with Statemate (figure 2.11) rather than the devices of the real aircraft. This style of

prototyping 1s more commonly known as specification animation and is also used 1n

Systa 1995] for evaluating formal specifications of user interfaces.

\IHIHI

SGE 1:.CC lrJTP.r_..uL _MEC H.I‘*-JIS-.-'I [Update] /(8[|
% i W . i :f’.:;_:;g_;.'. -. .-_.;s;:; " | . foid : | | Hw
, "-‘ e e R | Ly | | | Rei‘rml Be].etel |

(e[S

s S A S ———{————U R LS

YSFPH

Q

EXPEDITE |

Sense MNO1 Select=d

Figure 2.11: Animating a Statechart specification using the Statemate tool |Harel,
I,achover, Naaad, Pnueli, Politi, Sherman, Shtull-Trauring, and Trakhtenbrot 1990)|

2.2. PROTOTYPING DESIGNS 35

2.2.2 Virtual environment approaches

T'he approach presented in {Kim, Kang, Kim, and Lee 1998] uses an existing tool for
building real-time system models (ASADAL/PROTO), the authors claim the abil-
1ty to generate virtual environment prototypes of the models, but conclude with a
proposal of code generation as future work (there is no detail of how this might be
achieved). However [van Schooten, Donk, and Zwiers 1999] and [Morrison and Ja-

cob 1998; Jacob, Deligiannidis, and Morrison 1999] present concrete examples of the

transition from behavioural designs to implementations.

From CSP

van Schooten, Donk, and Zwiers 1999] describes how a behavioural specification
described using concurrent sequential processes (CSP) [Hoare 1978] can be used to
prototype a virtual environment based on an earlier approach for traditional interfaces
|Alexander 1990]. This is achieved by two communicating processes. A C program im-
plements the CSP engine and the presentation component is realised using a TCL/TK
process. In the CSP specification some processes are allocated special virtual envi-
ronment communication channels. These processes can then handle events from the
presentation and/or call commands in the presentation. Illustrated in figure 2.12 is
an example taken from [van Schooten, Donk, and Zwiers 1999]. This describes how
the behavioural specification for TableClosed and TableOpen is linked to the input
events open(), close() and usertablerefresh. Additionally there is an output channel

userclick which calls a function to create a button labelled click.

From the Tufts formalism

PMIW [Morrison and Jacob 1998; Jacob, Deligiannidis, and Morrison 1999] is a soft-
ware model to support the implementation of designs constructed using the Tufts

formalism (section 2.1.3). The VRED* editor was developed to support the spec-
ification of designs. It was originally intended that this editor would support the

automatic generation of implementations, but this is not currently the case and the
transition must be manually achieved by coding the design directly. The PMIW
software model is based in C++ and uses the IRIS Performer virtual environment
libraries. In order to realise a design using PMIW it 1s necessary to encapsulate the
details of the behaviour in a class. This class is instantiated from a further class which
is also responsible for constructing the remainder of the environment and the run-
time maintenance of the environment. We will illustrate the use ot PMIW using the

mouse-based flying specification in figure 2.6. The partial code tor the behaviour class

_"-zTh‘e meaning of the PMIW and VRED acronyms are unclear.

2.2. PROTOTYPING DESIGNS 36

Table {
type [window]
inputq{
usertableopen { receive [open()] }
usertableclose { receive [close()] }

usertablerefresh { receive [showtext("Table filled")] }

;
output{ userclick {

init [createbutton("click")]

}
} = TableClosed

Table(Closed =

(opentable -> usertableopen -> TableOpen)
] (closetable -> TableClosed)

TableOpen =

(opentable -> usertablerefresh -> TableOpen)
L] (closetable -> usertableclose -> TableClosed)
[l (userclick -> textout2_perftime -> TableOpen)

Figure 2.12: CSP description of channels linking the behaviour to an implementation
(taken from [van Schooten, Donk, and Zwiers 1999])

for mouse-based flying is shown in figure 2.13 (the complete code is approximately
three times its length).

In the behaviour class, the variables are defined and links are instantiated. This
is illustrated for the variable to record the origin position (line 5), the link to update
the origin position (line 12) and the link to update the position of the environment
(line 16). Each link has its own class which contains a constructor and an evaluation
function. The constructor adds input and output variables to lists (lines 50-56),
and the evaluate function describes how the variables in these lists are transformed
(lines 62-64). The discrete part of the design i1s described using a special language
(originally developed for [Jacob 1986]) embedded in the C++ c<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>