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Abstract 
 
Personalisation of therapy is an important goal in modern oncology, however routes for 

biomarker discovery and validation are challenging with a high level of evidence required 

prior to application into routine care. Whilst cancer care is stratified by biomarker status 

in some tumour sites, less progress is evident in advanced colorectal cancer (aCRC). 

 

In this thesis candidate clinical and molecular biomarkers have been tested within the 

datasets and biobanks of randomised controlled trials in aCRC (FOCUS, PICCOLO and 

COIN). Specifically, the utility of routine clinical information as biomarkers, the 

mechanisms of the poor prognosis of BRAF-mutant aCRC, predictive markers of efficacy 

for anti-EGFR agents in RAS-wt patients, and testing of pharmacogenomic markers of 

toxicity and efficacy for irinotecan have been tested. 

 

Routinely measured markers of the systemic inflammatory response, the derived 

neutrophil-lymphocyte ratio and platelet count, were validated as independent adverse 

prognostic markers in aCRC and may help identify patients who are not disadvantaged 

more conservative upfront treatment approach.  

 

It has been demonstrated that the poor prognosis conferred by BRAF-mutation is mainly 

driven by rapid progression following first-line therapy, rather than chemo-resistance. 

Knowledge of BRAF-mutation status therefore provides useful clinical information beyond 

the context of prognostication and selection for anti-EGFR therapy, with particular 

implications for treatment sequencing.  

 

mRNA overexpression of EGFR ligands and HER3 were both shown to be promising 

positive predictive markers for anti-EGFR therapy in aCRC in RAS-wt patients. In both 

studies a population of RAS-wt patients who fail to benefit from anti-EGFR agents were 

clearly identified. Both markers warrant urgent further validation and clinical 

development. 

 

Therefore further clinical and molecular biomarkers have shown potential clinical utility 

in aCRC, which all hold promise for routine application and to further personalise 

treatment in aCRC. 
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Chapter 1. Introduction 

1.1. Personalised medicine 

Personalised medicine – the use of patient- and tumour-specific information to select the 

optimum treatment for individual patients – is an increasingly important approach for 

many tumour types. This involves applying knowledge of an individual’s clinical, 

histopathological and molecular characteristics to choose the best treatment plan. More 

accurate prediction of efficacy and toxicity for a wider range of cancer drugs has the 

potential to improve disease outcomes, avoid toxicity, better patient compliance and 

improve cost-effectiveness, and could enable oncologists both to make better use of 

established drugs and to bring forward novel treatments for defined patient subgroups. 

This is particularly pertinent when several therapeutic approaches are available. 

 

The field of personalised medicine has expanded with the discovery and validation of 

biomarkers to guide specific clinical scenarios. This is not a new concept in oncology; 

breast cancer patients have been selected for hormone treatment based upon their 

oestrogen (ER) and progesterone receptor status since the 1980s. Further progress came 

with the discovery and validation of HER2 amplification as a positive predictive marker 

for trastuzumab in the 1990’s.(1) Another example was identification of translocation-

prone tumour groups such as the BCR-ABL fusion genes in chronic myeloid leukaemia:(2) 

subsequent use of imatinib, targeted therapy against the ABL kinase domain, has resulted 

in disease control rates (DCR) of 93% in this population.(3) Therefore the search for 

cancer biomarkers is an integral part of cancer research.  

 

In its simplest form, personalised medicine may use a single molecule of clear functional 

significance (e.g. Kirsten-RAS[KRAS] mutation) to dichotomise the patient population 

(present; absent) and make a treatment decision (Epidermal growth factor receptor 

[EGFR]-targeted therapy; not). However, massively parallel gene sequencing now allows 

whole cancer genomes to be rapidly and accurately sequenced, unveiling the complexity 

and diversity of gene mutations present in solid tumours. It is hoped that detailed 

knowledge of this genetic diversity will both steer the development of novel agents and 

identify new biomarkers of response and toxicity. To date, however, relatively few 
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biomarkers have been proven sufficiently discriminatory and reliable to guide treatment 

decisions.  

 

Furthermore this increased understanding of biology has not necessarily translated into 

the delivery of safe and effective biology-driven cancer treatments: there has been no 

increase in Food and Drug Administration (FDA) approval of cancer drugs with only half 

of drugs entering costly phase III trials being approved.(4) The need to utilise biomarkers 

within the drug development process to predict efficacy and safety of new drugs at an 

earlier stage is recognised. However the development and commercialisation of biomarker 

tests is also an expensive and lengthy process.  

 

These issues have been recognised and personalised, or precision medicine, has become a 

national priority, with creation of the Stratified Medicine Innovation Platform and an 

investment of £200 million over the next five years.(5) This represents a consortium of 

government and charities (including Cancer Research UK [CRUK] and Arthritis Research 

UK), the Medical Research Council (MRC) and the National Institute for Clinical Excellence. 

It is hoped that communication between industry, academia and government may support 

innovative ideas by removing potential barriers and aligning priorities.(5) 

 

This thesis will test potential personalisation strategies and novel biomarkers to guide the 

treatment of advanced colorectal cancer (aCRC). This chapter shall describe classes of 

biomarkers, and their development, validation and reporting. Current treatment strategies 

and use of biomarkers, and routes for biomarker development in aCRC will then be 

discussed. 

 

1.2. Biomarkers 

A biomarker is “a characteristic used to measure and evaluate objectively normal 

biological processes, pathogenic processes, or pharmacological responses to a therapeutic 

intervention”.(6) This term covers a wide variety of data types, including biochemisty 

laboratory tests, electrocardiograms, and imaging testing such as positron emission 

tomography (PET) scans.  

 

Biomarkers can therefore inform many different clinical decisions across medical 

specialties. However to be clinically useful they must fulfill the following criteria:(6)  
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 Be based upon sound scientific rationale,  

 Acceptable to measure,  

 Good sensitivity and specificity,  

 Have a robust assay  

 Be cost-effective.  

Biomarkers are divided into broad categories depending upon their application, including 

screening biomarkers, diagnostic biomarkers, prognostic biomarkers, predictive 

biomarkers, monitoring biomarkers and toxicity biomarkers. Biomarkers from each 

category have a role in cancer medicine.  

 

1.2.1. Screening biomarkers 

 

Earlier diagnosis is a key aim of cancer research with an objective of detecting cancer at a 

curable stage so a screening biomarker could be of great clinical utility. A robust screening 

biomarker must meet additional criteria: it must detect disease at an early asymptomatic 

stage, and have a careful balance of sensitivity and specificity. A screening biomarker must 

be highly specific to avoid false positives and avoidance of unnecessary testing, but be 

sensitive to ensure that patients aren’t falsely reassured. Therefore the optimal balance of 

sensitivity and specificity will take into account the consequences of producing either a 

false-positive or a false-negative result. Furthermore to be part of a successful screening 

programme it needs to be cost-effective, non-invasive and produce better outcomes.  

 

1.2.2. Diagnostic biomarkers  

 

Diagnostic biomarkers will provide information in symptomatic patients and will be used 

alongside other diagnostic tools. They can be useful in patients with unknown primaries 

or to aid diagnostic sub-classification. 

 

1.2.3. Prognostic biomarkers 
 

A prognostic biomarker discriminates between patients who will have good or poor 

outcomes, independent of the treatment they receive. A prognostic marker may identify 

patients at lower/higher risk of relapse after surgery, or those more/less likely to survive 

for several years with advanced disease, so can be useful in risk stratification. 
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Prognostic markers can be used as stratification factors in randomised controlled trials 

(RCTs) to ensure that the test and control populations are balanced; this ensures that any 

observed effect between groups is due to the treatment. Such stratification allows for 

correct interpretation of study end-points in the presence of possible confounders.  

 

Rather confusingly, a poor prognostic marker may also correlate with a poor rate of 

response or shorter time to progression on treatment, simply because the underlying rate 

of tumour growth is higher. However, it does not distinguish which treatment will be more 

or less effective. Therefore, while prognostic biomarkers may sometimes identify patients 

who do (or do not) need treatment at all, they do not help decide which treatment to use, 

and therefore have a limited role in personalised medicine.  

 

1.2.4. Predictive biomarkers 

 

Predictive biomarkers, by contrast, correlate directly with the probability of benefit from a 

specific treatment. An example is ER positivity in breast cancer, which is strongly 

predictive for benefit from hormonal therapy.(7) Predictive biomarkers are clinically 

extremely useful, but are much harder to detect and validate than prognostic markers. 

Differences between a prognostic and predictive biomarker are illustrated in figure 1.1.  

 

 

Figure 1-1 Different information provided by a prognostic and predictive biomarker 

Drug X was superior to no treatment in a RCT; biomarker studies A and B were then 

performed to identify candidate predictive biomarkers for Drug X. In Biomarker Study A 

the biomarker is prognostic: patients who are positive for the prognostic biomarker had 
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increased benefit from drug X compared to biomarker negative patients, but also had 

improved outcomes with no treatment. However in Biomarker Study B the biomarker is 

predictive for benefit from drug X: patients positive for the predictive biomarker will have 

improved outcomes with drug X compared to biomarker negative patients, but biomarker 

positive patients not treated with the drug will have similar outcomes to the biomarker 

negative group (fig. 1.1). This scenario also illustrates potential problems of testing a 

potential predictive marker in a non-randomised population: without an untreated control 

group it appears that the prognostic marker positive patients have improved outcomes 

due to treatment with drug X, but they would do well regardless. 

 

However biomarkers can be prognostic and predictive, such as ER positivity in breast 

cancers. This should be considered when interpreting results. 

 

1.2.5. Toxicity biomarkers 
 

Toxicity biomarkers are a form of predictive marker that predicts for a patient’s likelihood 

of drug toxicity. Candidates are in most cases genetic polymorphisms for genes encoding 

proteins involved in drug metabolism or clearance. UGT1A1*28 and DYPD polymorphisms 

have been proposed as toxicity biomarkers for irinotecan(8) and fluorouracil (5FU)(9) 

respectively; however, both are still of uncertain clinical utility, so whilst available for 

routine use their uptake is not universal.   

    

1.2.6. Monitoring biomarkers 
 

Monitoring biomarkers have several potential utilities: monitoring patients following 

curative treatment to ensure they remain disease-free, surveillance of patients during 

treatment breaks, or to monitor during treatment to ensure clinical benefit. Similar to 

screening biomarkers, a monitoring biomarker needs to be both sensitive and specific to 

ensure correct clinical decisions are made. 
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1.3. The challenges of biomarker identification and validation 

 

For integration of a biomarker into routine practice there must be great confidence that 

the biomarker is robust and measures what we think it does; it must demonstrate analytic 

validity and clinical utility. Analytical validity is the demonstration of quality of the 

biomarker assay: critically important is reproducibility, ensuring that the same answer 

will be produced for the same sample within predefined technical variation. Clinical utility 

is the ability to distinguish two groups biologically that have sufficiently different clinical 

outcomes.(10)  

 

For this necessary rigour and validation, biomarker development is costly, time-

consuming and usually requires collaboration between industry and academia. Very few 

candidate biomarkers progress to prospective trials, and fewer reach implementation in 

the clinic; hence this pathway is not efficient.(11) 

 

Guidelines for the process of biomarker validation have been issued by CRUK (CRUK 

Biomarker Roadmap),(12) and will be described further in Section 1.4.3. The importance 

of these guidelines are illustrated by the fact that a candidate predictive biomarker that 

appears promising in pre-clinical and non-randomised studies can often prove non-

discriminatory in testing in randomised datasets or prospective trials. Guidelines by the 

National Comprehensive Cancer Network (NCCN) describe the level of evidence for a 

biomarker, depending upon strength of association and the level of validation 

provided.(13)  

 

It is therefore important to understand the stages of biomarker development to ensure 

that the candidate biomarker is fulfilling each step before validation takes place. Several 

useful review articles have summarised some of the challenges.(10, 14-17) 
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1.4. The multi-step process of biomarker development 

Biomarker development is a multi-step process that can be broadly categorised into 4 

main steps:(10)  

 Preclinical exploratory studies for identification of potential biomarkers. 

 Development of a robust assay with analytical validity.  

 Clinical validation of biomarker and assay in  

o ‘Prospectively planned retrospective studies’ in randomised trial                      

bio-banks,  

o Prospective trials. 

These phases are not distinct, with multiple studies usually performed at different time 

points. Successful biomarkers will need to overcome challenges at each step before clinical 

implementation. At each step, every biomarker study requires a pre-defined statistical 

plan. 

 

1.4.1. Biomarker study design and statistical considerations 
 

A predefined study and statistical plan is crucial to any biomarker study to limit bias and 

data misinterpretation. Common issues encountered include inappropriate statistical 

analyses, data over-fitting, multiple hypothesis testing, inappropriate study population 

difficulty in cut-point determination and overlapping training and validation cohorts.(17)  

 

Ideally a biomarker study population will match the general population as much as 

possible; retrospective studies may be biased towards patients with available material 

which may in turn be related to tumour size and patient outcome.(18) To aid 

interpretation, clear inclusion/ exclusion criteria should be provided and upfront 

identification of potential confounders.  

 

Consideration of planned sub-group analyses should also be ideally performed 

prospectively as their results can be over-interpreted: the number of sub-groups, their 

pre-specification and their ability to detect a statistical interaction should be considered. 

To compare treatment effects in the sub-groups, interaction tests should be performed 

rather than p-values: here, the biomarker is treated as a covariate that may affect 

treatment effect.(19)  
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Commonly multiple markers will be tested in drug development studies, particularly in 

the discovery stage. Whilst this is efficient and cost-effective, multiplicity can lead to risk 

of finding false-positive results.(19) Similarly this can be problematic with post-hoc 

testing in multiple biomarkers in retrospective series, dealing with interim analyses and 

multiple endpoints. A solution is to adjust the level of significance by the number of tests 

performed, the Bonferroni correction.(20) The impact of multiple testing in genome-wide 

association study (GWAS) and pharmacodynamics studies can be addressed by a post 

measure assessment of confidence, the false discovery rate, that estimates the number of 

false-positives based upon the data.(21) Again the need for validation of promising 

biomarkers in independent datasets is highlighted. 

 

Despite these precautions, false positive results reaching statistical significance may 

occur; and, conversely, clinically significant associations may fail to meet the statistical 

significance thresholds required in the context of multiple testing, particularly in studies 

with small sample sizes. It is therefore important that results are considered in the wider 

context, for example biological plausibility and consistency with previous evidence. For 

interpretation of analyses, confidence intervals will be more informative than p-values. 

 

1.4.2. Strategies for biomarker discovery 
 

Strategies for biomarker discovery can be hypothesis-driven, exploiting prior knowledge 

of molecular pathways to examine molecules likely to impact on drug activity. 

Alternatively they may exploit “-omic” technologies to interrogate the whole genome, 

proteome, etc., for groups of markers (‘signatures’) correlating with drug effects. These 

studies are usually performed in diseased/ non-diseased, treated/non-treated groups, to 

identify molecules with discriminatory potential.  

 

With high throughput technology thousands of molecules can be assessed; however this 

technology suffers from high false-positive rates, thereby slowing the progression of 

useful biomarkers. One issue may be the lack of clear hypothesis-based clinical question 

prior to discovery work being performed.(10) 

  



 9 

 
1.4.3. Analytical validity of a candidate biomarker 

 

Analytical validity ensures that the assay will measure the biomarker reliably in the 

population of interest and be reproducible between laboratories. It is therefore crucial to 

limit possible bias during assay development and biomarker studies.  

 

Many sources of variations can impact on effect: type of tissue used, collection and storage 

of samples, fixation, laboratory batch effect (including reagent lots, shifts in instrument 

calibration), variations on antibody ‘work up’.(11)Guidelines have been created to reduce 

variation by the Biospecimen Reporting for Improved Study Quality(22) and UK 

NEQAS.(23)  

 

Most biomarker studies are based upon single tumour samples for each study participant, 

though studies of intra-tumoural heterogeneity suggest that testing from multiple blocks 

of the same tumour may be necessary.(24) Furthermore the molecular profile of tumours 

can vary from primary to metastases, and over time: deregulation of EGFR signalling has 

been shown to occur between primary and metastatic sites.(25) Whilst KRAS, BRAF and 

PIK3CA mutations show good concordance between primary and metastatic disease (91%, 

100% and 94%, respectively), EGFR, PTEN and pAKT frequently differ (61%, 66% and 

54% respectively).(24, 26-28) 

 

1.4.4. Clinical validation of biomarkers     
 

Clinical validation assesses the strength of association between the assay result and the 

clinical outcomes. The principle methodology is testing statistical significance or strength 

of association using receiver operator curve (ROC) analysis. 

 

Validation of prognostic markers should be ideally performed in patient groups not 

receiving experimental treatment, but for whom clinical information is available, for 

example the control arm of a randomised controlled trial (RCT).  

 

Ideally predictive biomarker validation is performed in a specifically designed prospective 

RCT, but this is not usually feasible. Instead the so-called ‘prospectively retrospective’ 

approach of performing a biomarker validation experiment to a prospectively-planned 

statistical plan, but using stored biosamples from a previously performed RCT is 
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employed. However high quality samples from well annotated series are sparse and 

therefore only promising biomarkers should be tested in such datasets.(14)  

 

A common issue of testing predictive markers in RCT biobanks is the lack of sufficient 

power to detect effect, particularly for rare mutations or amplifications. The predictive 

analysis compares the impact of a drug in two biomarker-defined cohorts, therefore the 

trial population is divided into four. Hence the smallest detectable difference in treatment 

effect between the two biomarker groups will be larger than the treatment effect that the 

original trial had been powered for.(29) 

 

There are a variety of trial designs utilised to test predictive markers prospectively 

alongside treatment of interest, including population enrichment designs, biomarker by 

treatment interaction designs, biomarker strategy design, biomarker adaptive threshold 

designs, adaptive accrual design and enrichment signature designs. The methodology used 

will depend upon the clinical question, the type of biomarker, the level of evidence for the 

biomarker, the need to test treatment in a biomarker negative group and projected sample 

size.(19) 

 

1.4.5. Clinical utility of a biomarker 
 

Clinical utility describes the usefulness of a validated biomarker. This will usually depend 

upon the clinical situation, availability of effective therapy, magnitude of clinical benefit in 

biomarker groups and relative value to patient and society. For example, a prognostic 

marker must provide additional discriminatory clinical information than is already 

provided by readily available clinical and pathological risk stratification. 

 

Furthermore, a biomarker that has reached the clinic may also have limitations depending 

upon its setting. For example, prostate specific antigen (PSA) has been approved for 

monitoring of prostate cancer since 1989; more recently it has been approved for the 

screening of prostate cancer following research reporting that raised PSA in asymptomatic 

individuals was associated with increased risk of developing prostate cancer.(30) 

However this test suffers from several limitations: increased PSA levels are seen in 

patients with benign prostatic enlargement, inflammation and infection. Additionally PSA 

levels do not correlate with severity; higher grade tumours are not differentiated from 

lower grade tumours that may not require active management.(11)  
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This controversy has been heightened by results of two prospective studies investigating 

the impact of PSA screening.(31, 32) One study reported that prostate screening led to a 

20% reduction in prostate cancer-specific mortality,(31) whereas no effect on survival 

was demonstrated in the other.(32) Both trials reported that PSA measurement resulted 

in over-diagnosis and over-treatment of prostate cancer, with resultant unnecessary 

biopsies, toxicity from perhaps unnecessary treatment and psychological distress.  

 

In England, it is not recommended that the PSA be used as a screening tool in 

asymptomatic men.(33) Instead a biomarker with greater sensitivity for prostate cancer, 

which can discriminate between indolent and aggressive disease would be more useful. 

 

1.5. Reporting of biomarker studies 

Reporting of results from biomarker studies needs to be thorough and transparent to 

provide sufficient information for the assessment of the quality of the study and the 

generalizability of the results. The REMARK guidelines have provided a framework for the 

structure and content for biomarker papers.(34) Although developed for the reporting of 

prognostic markers, most principles can be applied into papers studying predictive 

markers. Additionally the Consolidated Standards of Reporting Trials (CONSORT) have 

developed a number of initiatives to guide reporting of RCTs, some also relevant to 

biomarker reporting.(35) CONSORT diagrams should be provided for predictive 

biomarker reporting from RCTs: these allow the reader to understand the biomarker 

population within the RCT population and illustrate potential bias with missing samples. 

 

The consequences of poor biomarker reporting are that dramatic but wrong results due to 

poor study design or inappropriate analysis could attract undeserved attention. This may 

lead other researchers down incorrect avenues, or worse impact on patient care. This 

issue may contribute to the current lack of validated biomarkers. Proper reporting will 

fairly describe limitations to be considered in the study’s interpretation and suggestions 

for future work.(11)  
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1.6. New technology and integration of new data 

Great progress has been made since the initial draft of the human genome was published 

in 2001.(36) High-throughput technologies have expanded our understanding of cancer 

pathogenesis in individual patients, with technology covering deoxyribonucleic acid 

(DNA), ribonucleic acid (RNA), proteins and metabolites. The worldwide collaborative 

personal genome project and 1000 genomes project plan to sequence thousands of 

individual genomes to better understand genomic variability.(37, 38) It is challenging 

previous held concepts: instead of a single driver mutation, most tumours appear to be 

driven by a multitude of genetic and epigenetic events.(39)  

 

Results from whole genome sequencing and gene expression profiling can now be 

available in days and massively parallel technologies have dramatically reduced costs of 

sequencing,(40) so the integration of this data into routine clinical practice may become 

reality. For example a gene expression profiling test, the Oncotype Dx, that provides an 

algorithm that assesses risk and calculates benefit for adjuvant chemotherapy for breast 

cancer, has been approved by the FDA and the National Institute of Clinical Excellence 

(NICE).(41) 

 

However several practicalities need consideration prior to routine use of such technology 

in hospital laboratories. These include capacity to keep updated with rapidly advancing 

technology, validation of new assays, and necessary expansion of molecular pathology and 

bio-informatics. Consensus will be needed on choice of sequencing platform, optimal gene 

depth and coverage for profiling; variable coverage over key genes rather than whole 

exomes, genomes or transcriptomes. Additionally decision of when to test: at diagnosis of 

early disease, but then to repeat if metastatic disease is developed? Is there need for 

repeat biopsy on progression due to tumour evolution with resistance and new mutations 

and genomic alternation? How many tumour sites should be biopsied, as there can be 

heterogenous tumours in metastatic disease.(42) Furthermore how will busy clinicians be 

expected to keep updated with the clinical relevance of each genetic alteration, 

particularly if mutations with unknown clinical relevance are reported: should there be 

gene-based reporting or therapeutic based reporting? (43, 44) 

 

These issues will need to be addressed as eventually comprehensive tumour profiling may 

be more practical and cost-effective than individual gene testing. Routine profiling may 
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then become standard practice, particularly if the use of expensive treatments are 

restricted only to those most likely to benefit.(40) 

 

1.7. Personalisation of therapy: patient factors 

As well as genetic alterations, patient characteristics may impact on outcomes and 

influence choice of treatment. There is strong evidence that some patient factors, including 

performance status (PS),(45) body mass index (BMI),(46) and co-morbidities(47) shall 

have impact on outcomes. The presence of some co-morbidities may impact on ability to 

tolerate treatment: for example, diabetic patients with cancer are more likely to be 

admitted with infective complications during chemotherapy.(48) This presents another 

opportunity to personalise therapy. 

 

1.8. Examples of personalised medicine in current cancer care 

Personalised medicine is making an increasing contribution to routine cancer care in some 

tumour sites. In breast cancer treatment is guided by numerous biomarkers: ER status to 

select patients for endocrine therapies,(49, 50) and HER2 overexpression to select 

patients for trastuzumab,(1, 51, 52) lapatinib,(53) and pertuzumab.(54)  

 

In non-small cell lung cancer (NSCLC) the main driver mutations identified include EGFR, 

KRAS, FGFR1, ERBB2, PIK3CA, ALK, BRAF, ROS1, MEK1, RET, NRAS and AKT1.(44) This 

knowledge has translated into use of targeted therapies: activating mutations in EGFR are 

sensitive to EGFR tyrosine kinase inhibitors (TKIs) with response rates of around 

70%.(55) Tumours harbouring specific ALK gene fusions have approximately 60% 

response rates to the ALK tyrosine kinase inhibitor crizotinib.(56) Crizotinib also has 

activity in ROS1 fusion-positive tumours and MET mutated tumours.(57) Tumours 

overexpressing HER2 are responsive to the HER2 TKI afatinib,(58) and the BRAF inhibitor 

vemurafanib has activity in BRAF-mut NSCLC.(59) 

 

Multiplex mutational profiling is becoming part of standard practice with mutations being 

detected in roughly half of unselected lung cancers, and in nearly 90% of lung 

adenocarcinomas in East Asian never-smokers.(60) 
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Personalisation of therapy in melanoma is advancing, and this shall be discussed in 

Chapter 3. This thesis will concentrate on efforts to personalise treatment in aCRC. 

 

1.9. Colorectal cancer 

Each year, more than one million people are diagnosed with colorectal cancer (CRC) 

worldwide, making it the third most common cancer following lung and breast cancer.(61) 

It is estimated that 54% of bowel cancers are linked to lifestyle and other risk factors, 

including red meat consumption, low fibre diet, alcohol consumption, smoking and 

obesity:(62) the incidence of CRC has risen in Asian countries that have seen increasing 

adoption of a ‘western’ diet.(63) Other risk factors include older age, African-American 

ethnicity, previous history of colon polyps, inflammatory intestinal conditions, family 

history of CRC and inherited syndromes.(64) 

 

Symptoms depend upon the stage of presentation and tumour location, but include change 

in bowel habit, rectal bleeding, abdominal pain, lethargy and weight loss. Diagnosis is 

usually by colonoscopy, biopsy, histology, and imaging. Using this information a tumour is 

staged, using the TNM (65) or Duke’s(66) staging system. With this information, and 

consideration of patient fitness and circumstance, a multidisciplinary team agrees upon a 

management strategy for an individual patient. 

 

Outcomes are improving, but despite this many patients relapse after initial curative 

treatment or present with incurable disease: CRC is the second most common cause of 

cancer related mortality in the United Kingdom (UK).(67) Many patients with early stage 

disease are cured with resection alone, but for those with more advanced operable 

disease, or with inoperable aCRC, drug therapies form an important and integral part of 

treatment.  

 

There are five active agents in aCRC in routine use within the UK, 5-fluorouracil (5FU), 

oxaliplatin, irinotecan (Ir), cetuximab and bevacizumab. With the routine use of such 

agents and adoption of an increasingly active approach to surgical management of 

metastatic disease, the median overall survival (OS) in aCRC has improved from six 

months to nearly two years in the past 20 years.(68) There is no single proven ‘gold 

standard’ regimen and no single sequence for optimum use of these drugs, but specific 

treatment strategies are selected by individual clinicians using RCT evidence and patient-
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specific factors (age; co-morbidity; symptoms; preferences), treatment-specific factors 

(efficacy; toxicity) and tumour-specific factors (potential future operability; RAS mutation 

status).  

 

Only one predictive marker has been validated in aCRC. RAS-mutation status is a negative 

predictive marker for the anti-EGFR agents cetuximab and panitumumb:(69, 70) only RAS 

‘wild-type’ patients are treated with these agents. There is therefore much scope for 

improvements in precision medicine in aCRC.  

 

This thesis aims to investigate potential new biomarkers that can aid personalisation of 

therapy in aCRC.  

 

1.9.1. Understanding of the molecular basis of aCRC 
 
Further personalisation of CRC, with hypothesis led studies of novel biomarkers and 

development of targeted therapies requires understanding of the molecular basis of the 

disease. 

 

1.9.2. CRC hereditary syndromes 
 

Although it is estimated that 20% of CRCs have a hereditary component,(71) only a small 

proportion are caused by the autosomal dominant inherited diseases familial 

adenomatous polyposis (FAP) and hereditary non-polyposis colorectal cancer (HNPCC). 

FAP is caused by mutation in the adenomatous polyposis coli (APC) tumour suppressor 

gene, with subsequent development of multiple colorectal adenomas that usually develop 

into an invasive carcinoma in the second or third decade.(72) HNPCC (Lynch Syndrome) is 

due to germline mutation in one of the DNA mismatch repair genes, resulting in early 

onset cancers in the bowel and other organs.(73) Patients known to harbour these genetic 

alterations undergo colonic surveillance to detect and remove polyps and cancers at an 

early stage, however they may undergo prophylactic colectomy. 

 

1.9.3. Development of sporadic CRC 
 

More commonly CRC will develop sporadically from benign adenomatous polyps.(74) 

Although adenomas are present in approximately 30-40% of the population, just a small 

proportion will develop into invasive cancer: risk factors for invasion include size over 10 

millimetres, villous component and high grade dysplasia.(74) In the majority of CRCs a 
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series of genetic alterations accumulate as a lesion progresses from benign adenoma to 

invasive carcinoma – the classical chromosomal instability pathway.(75) Common gene 

mutations include APC, protein 53 (p53), Kirsten rat sarcoma (KRAS), v-RAF murine 

sarcoma viral oncogene homolog B (BRAF), SMAD family member 4 (SMAD4) and 

phosphatidylinositol 3-kinase (PIK3CA).(75) 

 

However approximately 15% of CRC are associated with inactivation of DNA mismatch 

repair genes, the microsatellite instability phenotype or deficient mismatch repair 

(dMMR).(76) Unlike in Lynch syndrome, sporadic CRC associated with dMMR is usually 

associated with promoter hypermethylation and silencing of the human mutL homolog 1 

gene (MLH-1).(77)  

 

Defects in mismatch repair (MMR) can be detected by IHC for the presence of MLH1, 

MSH2, MSH6 and PMS2 proteins, or alternatively by a polymerase chain reaction (PCR) for 

MSI. The dMMR phenotype is associated with female sex, larger tumours and right-sided 

colon location.(78) dMMR is associated with improved OS in early stage CRC,(79) and has 

been proposed as a predictive marker for lack of efficacy of FU-based adjuvant therapy in 

stage II CRC.(80) 

 

1.10. Classifications of colorectal cancer 

CRC has been traditionally classified morphologically, but wide heterogeneity exists 

suggesting that additional or alternative classifications may be beneficial for both 

prognostication and for the prediction of CRC treatment benefit. Proposed classifications 

include MMR status, molecular sub-typing, epigenetic, gene expression profiling and single 

gene parameters. Each classification provides its own perspectives on the underlying 

biology. 

 

1.10.1. Molecular sub-typing of CRC 
 

Wide disease heterogeneity has been shown in aCRC, with many signalling pathways 

altered, and in different ways, during cancer development. Over the past twenty years 

major cancer genes and pathways central to CRC development and progression have been 

identified, including the p53, MAPK, PI3K, TGF-β and WNT pathways.(81) Different driver 

mutations have been identified depending upon MMR status: dMMR tumours being more 
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likely to harbour mutations in BRAF, PTEN and TGFBR2, and are predominantly in the 

proximal colon, show poor differentiation, mucinous histology and increased peritumoral 

lymphocytic infiltration.(82) In contrast, chromosomally unstable tumours are more likely 

to be located in the distal colon and develop along the ‘classical genetic pathway’ of CRC, 

with mutations in APC, KRAS, SMAD4 and TP53.(82) 

 

CRC genome sequencing studies have revealed greater diversity in the genetic profiles of 

CRCs. Whole-exome sequencing of 11 dMMR CRCs described around 80 coding sequence 

mutations, with smaller numbers of commonly mutated driver genes and a larger group of 

“private mutations” (rare gene mutations usually found in a single family or small 

population).(83) The Cancer Genome Atlas (TCGA) network subsequently reported 

comprehensive data on 223 unselected CRCs.(84) Twenty-four genes were identified as 

commonly mutated including those listed in this section, plus several novel candidate 

genes such as SOX9, TCF7L2, ATM, ARID1A and FAM123B. As anticipated hypermutation 

was identified in nearly 15% and three-quarters demonstrated the expected dMMR 

phenotype. However the remaining 25% did not display dMMR and instead were 

associated with DNA polymerase mutations and may represent a new CRC sub-type. The 

TCGA also reported copy number analysis and reported amplifications of HER2 and 

IGF2.(84) 

 

1.10.2. Sub-typing by gene expression profiling 
 

Another potential classification of CRC is with gene signatures using expression profiling 

and hierarchical clustering. Gene expression profiling in samples from a large adjuvant 

trial suggest six CRC sub-types exist.(85) As well as identifying a BRAF-mutant gene 

signature, a BRAF mutant-like population within the BRAF-wt population was reported 

that share similar clinic-pathologic and gene expression features as BRAF-mut tumours. 

This group were associated with proximal primary tumour location (PTL), dMMR, older 

age and 30% had a KRAS mutation. Both populations demonstrated inferior OS than other 

groups, so this new classification is of prognostic relevance.(85) Additionally a ‘MSI-like’ 

gene expression profile has been described that captures the hypermutant tumours 

described by the TCGA study.(81) 

 

A further gene expression profiling study of 1113 CRC samples proposes instead that five 

main CRC sub-types exist and that several main biological processes are key determinants 

of CRC behaviours.(86) Sub-type characteristics each have specific CRC markers and 
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mutations, histopathological features, grade, gene expression patterns and differing 

median survival.  

 

 A further gene expression study of 88 non-randomised samples of all Duke’s stages 

suggested four sub-types exist with differing outcomes that are independent of stage. 

Tumour-associated stroma and mucinous histology were pivotal to the proposed 

classification.(87)  

 

Such studies have been conducted on primary tumours and it is unclear whether such 

classifications would have relevance in the advanced setting. Also, expression profiling 

includes only statistically significant genes within a proposed signature; it is likely that 

only a fraction will have functional relevance  

 

If sub-types were validated identification of high-risk groups may alter therapeutic 

decisions, such as the need for adjuvant chemotherapy and sub-type specific clinical trials. 

As demonstrated there is currently a lack of consensus on the optimal sub-type model; 

such models would require prospective testing before routine adoption, as is being 

performed in the I-SPY2 trial in breast cancer.(88) 

 

1.11. Management of early stage colon cancer 

Detailed discussion on the treatment of early colon and rectal tumours are outwith the 

scope of this thesis. In brief, patients are treated surgically, with the addition of 

radiotherapy in most rectal cancers. Depending upon post-operative staging results, 

patients with stage 3 and 2b tumours with high risk characteristics (for example 

peritoneal involvement or extramural vascular invasion) are offered adjuvant intravenous 

5-fluorouracil or capacitabine, with the addition of oxaliplatin in higher risk patients.(89) 

Neither EGFR-or vascular endothelial growth factor (VEGF) targeted therapies have 

demonstrated benefit in the adjuvant setting.(90, 91) 

 

1.12. Current treatment of advanced colorectal cancer 

This section will describe current practice for treating aCRC, to identify points in the 

treatment pathway where further personalisation of therapy would be beneficial.  
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The European Society of Medical Oncology (ESMO) aCRC guidelines advise that aCRC 

patients should be stratified into three groups, according to their initial presentation:(92, 

93) 

 

 Group 1 – potentially resectable metastases 

 Group 2 – non-resectable metastases, high tumour burden and tumour related 

symptoms 

 Group 3 – non-resectable metastases, asymptomatic and less aggressive disease. 

It is suggested that for Group 1 and 2 patients early response and progression-free 

survival (PFS) is the key aim; the management of Group 3 should focus on survival rather 

than short term outcomes.(93) This classification is based upon both evidence based 

management strategies and anecdotal experience, rather than being guided by specific 

biomarkers. Other factors guiding decisions may include dynamics of disease progression, 

presence of prognostic markers and patient co-morbidity and preference.  

 

1.12.1. Treatment of potentially resectable metastases 
 

For metastatic disease confined to liver or lungs, strategies directed towards resection 

should be considered in fit patients. The aim of neo-adjuvant chemotherapy is primarily to 

achieve response, which correlates with success of resection.(94) Evidence for the 

addition of anti-EGFR agents in KRAS-wt patients in this setting is controversial: first-line 

RCTs have reported improvement in response rates (RR) with anti-EGFR agents compared 

with chemotherapy alone.(95-97) However the New Epoc trial, designed to test the 

addition of cetuximab to chemotherapy prior to resection of liver metastases, KRAS-wt 

patients were harmed by the addition of cetuximab to neo-adjuvant chemotherapy 

(progression free survival [PFS} 14.1 vs 20.5 months, hazard ratio [HR] = 1.5, p<0.05),(98) 

suggesting that initial response may have less longer term importance. Similarly, mixed 

results are reported for the addition of bevacizumab to neo-adjuvant chemotherapy.(99) 

 

1.12.2. Chemotherapy strategies for aCRC 
 

Table 1.1 describes the landmark chemotherapy trials in aCRC. 

 

Given that there is no ’gold standard’ of sequencing, the choice of first line chemotherapy, 

FU in combination with oxaliplatin (FOLFOX) or irinotecan (FOLFIRI) will depend upon 
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the individual patient and whether a biological is added. For some, a conservative 

approach may be appropriate, such as an expectant or single agent upfront strategy,(100, 

101) and planned treatment breaks in those with responding or stable disease.(102) 

Conversely, use of all three active chemotherapy drugs upfront may be useful in carefully 

selected patients; first-line triplet chemotherapy with FU, oxaliplatin and irinotecan 

(FOLFOXIRI) has superior RR, PFS and OS than FOLFIRI alone, with increased but 

manageable toxicity.(103) This regimen has been tested in combination with 

bevacizumab;(104) the BRAF-mut sub-group particularly benefitted from this 

approach.(105) 

 

Second line therapy is usually reserved for those with good PS and adequate organ 

function; the regimen is usually changed from first line.  

 

Further trials have investigated the efficacy and optimal integration of the VEGF inhibitor 

bevacizumab and the anti-EGFR agents, cetuximab and panitumumab. 

 

 

Trial Name Description 
Patient 

no 
Outcome Reference 

1
st
 line chemotherapy 

De Gramont 

et al 

FOLFOX compared with 5FU 

alone 
420 PFS benefit with FOLFOX (106) 

Saltz et al FOLFIRI vs Ir vs 5FU 683 OS benefit with FOLFIRI (107) 

Douillard et al 
FOLFIRI compared with 5FU 

alone 
387 OS benefit with FOLFIRI (108) 

N9741 FOLFOX vs FOLFIRI 795 OS benefit with FOLFOX (109) 

FOCUS 

Sequential single agent vs 

staged combination vs 

combination 

2135 

OS equivalence of initial 

single agent to combination 

chemo 

(100) 

CAIRO 
Continuous vs staged 

combination 
675 Equivalence (101) 

COIN 
Intermittent vs continuous 

combination 
1630 

Non-inferiority of 

intermittent not proven 
(102) 

2
nd

 line chemotherapy 

Cunningham 

et al 

Irinotecan plus best supportive 

care (BSC) vs BSC 
179 OS advantage for irinotecan (110) 

Douillard et al 

FOLFIRI followed by 

FOLFOX vs FOLFOX 

followed by FOLFIRI 

226 
Equivalent in time to 

progression 
(111) 

Rothenburg et 

al 

FOLFOX vs oxaliplatin vs 5FU 

alone after progression on 

FOLFIRI 

463 FOLFOX superior OS (112) 

 

Table 1-1 Landmark trials for combination chemotherapy in aCRC 
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1.12.3. Use of anti-EGFR agents in aCRC 

 

Many CRCs are reliant on EGFR signalling,(84) therefore it is an attractive therapeutic 

target. There are two main classes of anti-EGFR agents: small molecule TKIs and 

monoclonal antibodies (MoAbs). TKIs bind to the intracellular protein kinase of receptors, 

preventing its autophosphorylation of downstream molecules. These agents include 

gefitinib and erlotinib. MoAbs instead broadly compete with the endogenous EGFR ligands 

blocking ligand-dependent activation of the EGFR plus induce receptor internalisation and 

downregulation. These agents include cetuximab and panitumumab. Only the MoAbs have 

demonstrated consistent benefit in aCRC.  

 

Cetuximab binds with domain III of EGFR partially blocking ligand binding and also 

preventing dimerization.(113) Panitumumab, a fully humanised monoclonal IgG2 

antibody, has a higher affinity than cetuximab to the EGFR ligand binding site completely 

blocking the receptors interaction with ligands and preventing resultant downstream 

signalling.(114) 

 

1.12.3.1. EGFR signalling 
 

The EGFR has six recognised ligands which on binding cause transition from an inactive 

monodimer to an active homodimer.(115) Extracellular binding of ligands leads to 

receptor homodimerisation and internalisation by highly regulated clarithrin-mediated 

endocytosis in usual physiological conditions.(116) However alternative internalisation 

mechanisms are seen with receptor overexpression or high ligand concentration.(117) 

Following cellular internalisation, EGFR and ligands are compartmentalised into 

endosomes with subsequent recycling to the cell surface (figure 1.2).(118)   

 

Homodimerisation starts intrinsic cytoplasmic kinase activity leading to auto- and 

transphosphorylation of tyrosine residues resulting in downstream signalling cascades. 

(119) The main downstream pathways are the MAPK and PI3K-AKT pathways (figure 

1.2)(120) 
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Figure 1-2 Schematic representation of ligand binding leading to EGFR dimerization and phosphorylation 

with resultant downstream signalling and cellular functions.  

 

This model is likely simplistic as many other factors contribute to EGFR trafficking and 

signalling; HER2 overexpression can disrupt internalisation and endosomal sorting of 

EGFR.(121) ‘Cross-talk’ occurs between HER receptors through formation of 

heterodimers, resulting in diverse signalling complexes: this shall be explored in Chapter 

5. 

 

Whilst activation of the EGFR and consequent downstream signalling results in vital 

cellular functions, including proliferation, migration, apoptosis and differentiation, (122) 

upregulation in cancer is associated unregulated proliferation.(123) In contrast to NSCLC, 

mutations in EGFR are not the main variation in aCRC. 

 

1.12.3.2. Use of anti-EGFR agents in aCRC 
 

 
Early in the development of anti-EGFR agents it became apparent that a sizable proportion 

of aCRC patients did not respond. Unlike in NSCLC mutations in the EGFR do not 

determine sensitivity to these drugs.(124) Instead it was discovered that mutations in 

exon 2 (codon 12 and 13) of KRAS, a small G-protein downstream of EGFR, rendered these 

agents ineffective.(69, 125, 126) Furthermore prospective-retrospective analysis of 

expanded mutation testing in RAS (KRAS exons 3 and 4; NRAS exons 2, 3, and 4) in the 

PRIME trial identified 17% of tumours originally classified as KRAS-wt had a 

mutation.(70) Interaction testing demonstrated clear separation of panitumumab 
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treatment effect between the newly identified RAS mutant and wild-type populations.(70) 

These agents are now restricted to RAS-wt patients, representing a success of personalised 

medicine in aCRC. 

 

Landmark phase III studies of anti-EGFR agents in KRAS-wt patients are described in Table 

1.2.  

 

Table 1-2 Landmark studies of anti-EGFR agents in KRAS-wt aCRC patients 

 

However not all RAS-wt patients benefit from these treatments: this shall be explored in 

Section 1.14. 

 

1.12.4. Use of bevacizumab in aCRC 
 

Monoclonal antibodies to VEGF include bevacizumab, aflibercept and cediranib; most 

experience in aCRC is with bevacizumab. Landmark studies are listed in Table 1.3.  

 

Trial Name/ 

author 
Description 

Patient 

no 
Outcome  Reference 

1
st
 line setting 

Hurwitz FOLFIRI +/- bevacizumab 813 
PFS & OS benefit with bev + 

FOLFIRI 
(99) 

Saltz OxFU +/- bevacizumab 1401 
PFS benefit with FOLFOX + 

bev 
(133) 

2
nd

 line setting  

E3200 
FOLFOX alone vs FOLFOX 

+ bev vs bev alone 
829 

OS & PFS benefit with 

FOLFOX + bev 
(134) 

Van Cutsem FOLFIRI +/- aflibercept 1236 
OS & PFS benefit FOLFIRI 

+ aflibercept 
(135) 

 

Table 1-3 Landmark phase III trials of bevacizumab in aCRC 

Trial Name Description Patient no Outcome (KRAS-wt) Reference 

1st line setting 

CRYSTAL FOLFIRI +/- cetuximab 666 
PFS & OS benefit with 

cetuximab + FOLFIRI 
(95, 97, 127) 

PRIME 
FOLFOX +/- 

panitumumab 
656 

PFS benefit with FOLFIRI + 

pan. OS benefit with pan in RAS-

wt. 

(70, 96) 

COIN OxFU  +/- cetuximab 729 
No PFS or OS benefit with 

cetuximab 
(128) 

NORDIC 

VII 

Intermittent or continuous 

OxFU +/- cetuximab 
303 

No PFS or OS benefit with 

cetuximab 
(129) 

2nd line setting  

20050181 
FOLFIRI +/- 

panitumumab 
597 

PFS benefit with FOLFIRI + 

panitumumab 
(130) 

PICCOLO 
Irinotecan +/- 

panitumumab 
460 PFS benefit with IrPan (131) 

3rd line setting 

CO.17 
Cetuximab vs best 

supportive care (BSC) 
230 

PFS & OS benefit with 

cetuximab 
(69, 132) 
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Bevacizumab has demonstrated activity in aCRC (133, 136-138) but absolute benefits in 

unselected patients are modest. Bevacizumab in combination with capecitabine may be 

useful in those unable to tolerate combination chemotherapy.(139) Current controversies 

include continuation of bevacizumab post-progression(140) and maintenance 

therapy.(141) 

 

Aflibercept in combination with FOLFIRI is approved by the FDA for patients failing 

oxaliplatin.(135) Cediranib has been tested head-to head with bevacizumab for first- line 

treatment; activity was comparable.(142) A further anti-angiogenic regorafinib has also 

shown activity.(143) 

 

Recent debate surrounds choice of biological agent to be given in combination with 

chemotherapy for the first-line treatment of RAS-wt aCRC: anti-EGFR agents or 

bevacizumab. Direct comparisons have been made in three RCTs, with mixed results.(144-

146) In FIRE-3 a seven month OS benefit was reported with FOLFIRI plus cetuximab 

compared to FOLFIRI plus bevacizumab (HR = 0.70, p=0.011), but with no significant 

difference in PFS or response rate (RR), the primary endpoint.(144) The PEAK trial noted 

improvements for RR and PFS with panitumumab compared with bevacizumab, however 

CALGB 8045 did not see any difference in effect between the 2 drugs.(146) 

 

1.12.5. Emerging therapies in aCRC 
 

Many agents have demonstrated efficacy in aCRC but are not yet incorporated into routine 

practice. TAS-102 (a combination of a thymidine-based nucleic acid analogue, trifluridine 

and a thymidine phosphorylase inhibitor) has demonstrated overall survival (OS) and PFS 

advantage over placebo in a phase three trial of heavily pretreated aCRC. This effect was 

seen across all patient sub-groups and was treatment was associated with few adverse 

events.(147)  

 

Regorafinib, a small molecule multi-kinase inhibitor, has also demonstrated survival 

benefit in heavily treated aCRC compared with placebo.(143) However 93% of patients 

treated with regorafinib reported treatment-related adverse events (mainly fatigue and 

hand-foot skin reaction). Work to identify sub-groups who gain most advantage is 

underway. 
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Further testing is warranted to establish optimal integration into the aCRC pathway, along 

with consideration of cost-effectiveness.  

 

Immunotherapy has for the first time shown benefit in CRC, with testing of PD-1 blockade 

in dMMR tumours.(148) It was hypothesised that hypermutated tumours would be most 

susceptible to immunotherapy as mutations encode proteins that are recognised and 

targeted by the immune system, so immune augmentation could be an effective anti-

tumour strategy. For the 13 dMMR CRC patients treated with pembrolizumab (a 

humanised IgG4 monoclonal antibody PD1-inhibitor), RR was 62% and DCR was 92%. In 

pMMR CRC minimal effect was observed (RR 0%; DCR 16%). Although this personalised 

strategy would only benefit a small number of patients with aCRC this is an important 

development. 

 

Other promising therapeutics include aspirin(149) and vitamin D supplementation.(150)  

 

1.12.6. Current European consensus for the treatment of aCRC 
 

Based upon this evidence, European guidelines currently recommends:(93) 

 

 Upfront RAS testing in all patients prior to first-line therapy. 

 Doublet chemotherapy plus anti-EGFR agent in RAS-wt group 1 and group 2 

patients; may be appropriate in some group 3 patients 

 RAS-mutant patients should be treated with combination doublet plus 

bevacizumab in the first-line. 

Availability of cetuximab and bevacizumab in England is limited by the constraints of the 

Regional and National Cancer Drug Funds (CDF) approvals.(151) Currently the national 

CDF approves cetuximab and panitumumab for the first-line treatment of RAS-wt patients 

in combination with FOLFIRI, FOLFOX 4 or OxMdG. Treatment in the third or fourth line is 

approved for RAS-wt patients of PS 0-1, who have not previously been exposed to anti-

EGFR agents. Bevacizumab is approved in the second line in combination with doublet 

chemotherapy; not with FU alone and not as single-agent maintenance therapy. 
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1.13. Current use of biomarkers in advanced colorectal cancer 

Despite an increasing understanding of the molecular basis of CRC, there are only few 

biomarkers that are routinely utilised to guide treatment management decision. 

 

1.13.1. Validated prognostic biomarkers 
 

Two main prognostic scores have been proposed for aCRC, the Kohne(45) and GERCOR 

(152)scores. Kohne’s study evaluated clinical parameters as prognostic markers in 3825 

patients in RCTs treated with 5FU. Clinical parameters associated with poor outcomes 

were PS over 0, more than one metastatic site, liver metastases, peritoneal metastases; 

positive markers included rectal primary (compared with colon) and lung or lymph node 

metastases. Laboratory parameters associated with worse outlook include high platelets 

(plts), alkaline phosphatase (AlkPhos) and white cell count (WCC), and low haemoglobin 

(Hb).  

 

A risk score was developed using 4 parameters (PS, no of involved metastatic sites, WBC 

count and alkaline phosphatase), categorising patients into three prognostic groups: low 

risk, median OS 15 months; intermediate risk, median OS 10.7 months; high risk, median 

OS 6.1 months.(45)  

 

The GERCOR score is based upon analysis of 803 patients treated with either first-line 

FOLFOX or FOLFIRI in RCTs.(152) Significant prognostic factors were PS, number of 

metastatic sites and LDH. A score using LDH and PS was proposed, categorising patients 

into three risk groups: low risk, median OS 29.8 months; intermediate risk, median OS 

19.5 months; high risk, median OS 13.9 months. 

 

Different prognostic factors may apply to patients commencing second-line therapy. 

Patients treated in second-line RCT populations are more likely to be poor PS patients and 

have more metastatic sites, suggesting more advanced disease.(153) For patients 

commencing irinotecan vs BSC following FU progression, poor PS, recent weight loss, two 

or more metastatic sites, liver metastases and low Hb were poor prognostic markers.(110) 

In a second line RCT following FU failure, PS over 0, right primary tumour location (PTL), 

raised Alk phos, low Hb and low WCC were identified as poor prognostic factors.(154) 
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For both first and second-line prognostication there are limitations of the described 

studies for relevance in current oncology practice. Both studies were limited by the 

missing variables for certain variables, including bilirubin, presence of symptoms and CEA. 

ECOG PS was dichotomised as 0 vs. 1 or greater, whereas 0/1 compared with 2 or more is 

more clinically informative. PTL was dichotomised as rectal vs. colon tumours; whereas 

right colon vs left colon and rectum is more relevant.(155) Kohne’s score is less relevant 

for more effective regimens. 

 

Importantly some molecular markers have been validated as poor prognostic markers in 

aCRC, such as mutations in BRAF and KRAS.(156) As molecular testing increasingly 

becomes routine practice, studies of prognostic markers should include this information. 

 

Other well established molecular markers include aneuploidy(157) and p53 

expression.(158) dMMR is a marker of inferior prognosis in aCRC, but meta-analysis of 

three RCTs suggests that this effect is driven by concurrent BRAF-mut status.(159) 

However as these markers are not routinely assessed in aCRC their utility in patient 

assessment is limited.  

 

Current suggestions for RCT stratification in aCRC include centre, PS, a lab value (LDH or 

Alk phos) and 1 vs more metastatic sites; for 2nd line trials, stratification for prior 

chemotherapy or targeted therapy. Some allowance for non-conventional trial specific 

factors due to the individual needs of the trial.(153) This guidance is based upon studies 

described and may need to be revised in view of updated practice. 

 

1.13.2. Validated predictive biomarkers 
 

The only validated predictive marker in aCRC is RAS-mutation status to select patients for 

the anti-EGFR agents.  

 

1.13.3. Validated monitoring biomarkers 
 

Carcinoembryonic antigen (CEA) is secreted from tumour cells into serum and is 

recommended as a diagnostic, prognostic and monitoring biomarker in CRC.(160, 161) 

The level of evidence for use of CEA as a monitoring tool is 2C as it has only been studied 

in observational series.(162)However it is advised that CEA levels be checked prior to 

chemotherapy as a baseline and tested regularly thereafter, with rising levels suggestive of 

progressive disease.(161) Caution should be applied in its interpretation: a ‘CEA flare’ may 
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occur shortly after commencing chemotherapy, which is not associated with progressive 

disease.(163) CEA may also be a less useful tool if baseline values are low.(162)  

 

1.13.4. Toxicity biomarkers 
 

There are no biomarkers that are routinely used to predict which patients are at risk of 

toxicity from specific CRC treatment agents. The evidence for the use of UGT1A1*28 and 

DYPD as predictors of toxicity will be discussed in Chapter 6. 

 

1.14. Routes to further personalisation of therapy in aCRC 

1.14.1. Further predictive biomarkers for anti-EGFR agents 
 

As discussed RCTs of cetuximab and panitumumab have yielded inconsistent results, 

varying between trials and patient subpopulations from worthwhile benefit to significant 

harm.(126, 131) An unmutated RAS pathway, although necessary, is not sufficient for 

response to anti-EGFR agents, since many patients whose tumours are wild-type for both 

KRAS and NRAS do not respond.(127, 131) Therefore further biomarkers may further 

refine the target population for anti-EGFR agents.  

 

1.14.1.1. Further candidate predictive biomarkers for anti-EGFR agents 
 

Occurring in nearly half of aCRCs, validation of RAS mutations as negative predictive 

markers was relatively straightforward; validation of further biomarkers has proven 

difficult with rare alterations being studied in heterogenous populations with, often small, 

treatment effects.  

 

Candidate biomarkers currently under investigation include further alterations in the 

MEK-AKT pathway (mutations in BRAF, PIK3Ca and PTEN), EGFR copy number 

variation(164) and EGFR ligands,(165, 166) interactions with HER and other 

transmembrane receptors and their ligands,(167) micro-RNA signatures(168) and 

markers of inflammation.(169) 

 

Some reports suggest that tumours with KRAS codon 13 mutations may retain sensitivity 

to anti-EGFR agents, raising concern that eligible patients may be denied treatment.(170) 
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However this was refuted in pooled post-hoc analysis of three phase III RCTs (171) but 

will be prospectively assessed in the ICE CREAM international trial.(172) 

 

1.14.1.2. Alterations in the EGFR and other HER receptors 
 
In other cancers, receptor mutation or overexpression have proven to be predictive 

markers for targeted agents: EGFR mutation is a predictive marker for gefitinib;(173) 

HER2 overexpression as a predictive marker for trastuzumab.(1) The frequency of EGFR 

mutations is lower in CRC than seen in other cancers and has no consistent relationship 

with outcomes.(174) The relationship between EGFR gene and protein overexpression as 

a prognostic and predictive marker for anti-EGFR therapies has been tested, with 

inconsistent findings. 

 

The reported frequency of EGFR protein overexpression in aCRC vastly ranges between 

studies (18–97%),(175) with different patterns of staining described.(176) EGFR 

expression in primary colorectal tumors does not correlate with their corresponding 

metastatic sites.(177) The biological consequence of EGFR protein overexpression is 

unclear; there is no clear association either with prognosis(178, 179) or anti-EGFR 

benefit.(180)  

 

EGFR gene copy number variation (CNV) has been investigated as a candidate biomarker. 

In three studies of cetuximab treated patients increased EGFR CNV was associated with 

improved outcomes than with normal expression,(164, 181, 182) but a prognostic or 

predictive effect could not be determined. To complicate further, each study utilised a 

different mechanism for assessing CNV (CISH [chromatin in-situ hybridisation], FISH 

[fluorescence in-situ hybridisation], and TaqMan), as such no standardised method for 

assessment has been validated.  

 

Preclinical work has reported that HER3 and IGF-1 interferes with the biological activity of 

EGFR in CRC through lateral signalling, so as a single biomarker EGFR CNV may be less 

useful.(183) This will be discussed further in Chapter 5. 

 

However the EGFR ligands epiregulin and amphiregulin have shown promise as predictive 

markers for anti-EGFR agents and are hypothesised to be surrogates for tumour EGFR 

dependence;(166, 184) this shall be further explored in Chapter 4. 
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The HER family shows interdependence, with the creation of hetero- and homo-dimers 

between receptors creating multiple signalling complexes. This appears to be particularly 

important for PI3K/Akt pathway activation.(185) Therefore overexpression of another 

family member may impact on the efficacy of EGFR-targeted agents by providing ‘escape 

signalling’ allowing the tumour to block the pathway being pharmacologically 

targeted.(186) Overexpression of HER2(167) and HER3(183) has been linked to anti-

EGFR resistance, and this shall be explored in Chapter 5. Similarly upregulation of the 

proto-oncogene MET has been linked to anti-EGFR agent resistance.(187, 188) These 

alterations have been difficult to validate due to the rarity of the amplifications in CRC. 

 

1.14.1.3. Mutations in downstream pathways 
 

The impact of having any other mutation in candidate genes downstream of EGFR has 

been investigated in KRAS-wt patients. In a large series of aCRC patients treated with 

cetuximab, the presence of a mutation in BRAF, NRAS or PIK3CA was associated with 

reduced RR, PFS and OS than those with no mutations.(189) This ‘all wild type’ population 

had statistically more PFS benefit with panitumumab than KRAS-wt patients with any 

additional mutation in the PICCOLO trial.(131)   

 

BRAF is a negative prognostic marker in aCRC,(156, 190) but its utility as a predictive 

marker for anti-EGFR therapies is controversial. In several non-randomised series and the 

PICCOLO trial, BRAF mutation was a negative predictive marker for anti-EGFR 

therapies.(131, 164, 189, 191) Furthermore BRAF-mut patients treated with 

panitumumab in PICCOLO had statistically shorter OS than those treated with irinotecan 

alone, suggesting a potential harmful interaction.(131) However in biomarker analysis in 

several RCTs of anti-EGFR agents only prognostic effect was seen.(97) Again validation has 

been complicated by the low incidence and strong prognostic effect in CRC. The behaviour 

of BRAF mutations in aCRC will be discussed in detail in Chapter 3. 

 

The PIK3CA gene is mutated in approximately 20% of CRC, usually occurring in exon 9 or 

exon 20. Interaction of PIK3CA mutations with anti-EGFR agents efficacy remains 

unproven. Whilst initial work studied grouped both exons together,(192) recent evidence 

suggests that only exon 9 mutations are relevant.(189)   
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1.14.1.4. Other potential molecular predictive biomarkers for anti-EGFR 
agents 

 
MicroRNAs (miRNAs) are non-coding RNAs of 21-13 nucleotides in length that bind to 

complementary sequences in the 3’-untranslated regions of target mRNAs, blocking 

transcription. They are involved in important cellular functions, including apoptosis, 

differentiation and proliferation. 

 

Expression of several miRNAs have been related to CRC prognosis and anti-EGFR efficacy, 

including miR-7 through regulation of the EGFR(193) and Mir-31-3p,(194) but further 

validation is required. 

 
1.14.1.5. Clinical and radiological biomarkers for anti-EGFR agent  efficacy 

 

The presence of a pustulo-papular skin rash following treatment was identified as a 

potential indicator of cetuximab or panitumumab response, and is associated with 

improved RR, PFS and OS.(195) Histologic examination of the skin following treatment 

shows downregulation of phospho-EGFR, decreased expression of markers of cellular 

proliferation such as Ki-67 and inflammatory infiltrates.(196) This finding lacks 

specificity: although patients responding usually develop a rash, those not benefitting 

could also. Instead the rash may be reflective of adequate plasma drug concentrations. 

Improved management of cutaneous toxicity also limits the usefulness of this approach. 

 

Early tumour shrinkage and depth of response is proposed as a marker of longer- term 

benefit from anti-EGFR treatment. The rate of early tumour shrinkage and depth of 

response were associated with improved survival with chemotherapy, a phenomenon 

more specific to cetuximab than bevacizumab containing regimens.(197) 

 

1.14.2. Secondary resistance to anti-EGFR agents. 
 

Mechanisms of secondary resistance to anti-EGFR agents have been investigated using 

post-progression biopsies and circulating tumour DNA (ctDNA). Following progression on 

anti-EGFR agents, RAS-wt patients can develop KRAS, NRAS, BRAF and PIK3Ca 

mutations,(198) amplification of ERBB2 and MET, (187, 188) and changes in the HER 

ligand axis, with increased amphiregulin, TGF-α and heregulin expression.(199)  

Acquired mutations in EGFR exon 12 are also described, rendering cetuximab ineffective 

but with the possibility of retained panitumumab sensitivity.(200)  
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Strategies being tested to overcome this include testing re-exposure, particularly using 

panitumumab following cetuximab resistance,(201) and second generation EGFR MoAbs 

engineered to induce enhanced antibody-dependent cellular cytotoxicity, or increased 

receptor internalisation: imgatuzumab has shown preclinical efficacy,(202) but in 

combination with FOLFIRI was not superior to FOLFIRI plus bevacizumab in a phase II 

RCT.(203)  

1.14.3. Biomarkers for VEGF targeted agents 
 

Currently no validated biomarkers guide patient selection for bevacizumab, although 

several are under investigation (reviewed in(204)).   

 

Circulating VEGF-A levels have shown discriminatory value for bevacizumab benefit in 

gastric,(205) breast,(206) and pancreatic cancer(207), but this has not been reproduced 

in aCRC.(208) Reports of the usefulness of the ratio of VEGF165b:VEGFtotal have also been 

inconsistent.(209, 210) 

 

Other potential biomarkers for bevacizumab include day 4 circulating endothelial 

progenitor cells and the proportion of baseline CXCR4-positive circulating endothelial 

cells,(211), VEGF polymorphisms,(212) and osteopontin(213) but further validation is 

required.  

 

1.14.4. Chemotherapy 
 

Translational studies from the MRC-FOCUS trial investigated biomarkers for treatment 

efficacy and toxicity with 5FU, oxaliplatin and irinotecan.(214, 215) One promising marker 

was Topoisomerase-1 (Topo-1), the molecular target of SN-38: moderate or high levels of 

Topo-1 as determined by IHC showed the greatest OS benefit of initial combination 

chemotherapy compared to initial single agent, particularly if irinotecan-based. Topo-1 

was also associated with benefit in a series of CRC patients treated with irinotecan based 

adjuvant chemotherapy.(216) These findings were not validated in CAIRO, with no 

association seen between Topo-1 expression and response to irinotecan and 

capecitabine.(217) 

 

Excision cross- complementing gene (ERCC1 and ERCC2) is an excision nuclease that 

repairs DNA damaged by platinum agents(218) and has been reported to determine 

sensitivity to platinum agents in lung cancer.(219) A meta-analysis of several small studies 
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suggested a useful role for ERCC1 in predicting oxaliplatin benefit in CRC,(220) but was 

not reproduced in biomarker analysis in either FOCUS or CAIRO.(214, 217) 

 

Proposed predictive biomarkers for FU efficacy are thymdylate synthase (TS) and 

dihydropyrimidine dehydrogenase (DPD). Direct TS inhibition is a major mechanism of 

5FU, whilst DPD mediates 5FU catabolism in the liver. 

 

However findings have been divergent and inconsistent, likely exacerbated by 

heterogenous chemotherapy regimes, patient populations and biomarker measurements 

between studies.  Whilst a meta-analysis suggested that low TS expressing tumours were 

more sensitive to 5-FU based chemotherapy,(221) this finding was not reproduced in 

biomarker analysis from the CAIRO or FOCUS trials. (214, 217)  

 

In CAIRO, low DPD expressing tumours were associated with improved outcomes with 

capecitabine, but this has not been validated independently.(217)   

 

A translational study from the COIN trial tested 260 potentially functionally coding region 

and promoter variants in genes within the 5-FU, capecitabine and oxaliplatin pathways in 

2183 aCRC patients treated with oxaliplatin-fluoropyrimidine. No biomarkers remained 

significant for efficacy endpoints after correction for multiple testing.(222) 

 

1.14.5. Use of pathway targeted agents successful in other cancers 
 
Another strategy is to test biomarker/ targeted therapy combinations showing action in 

other cancers. However recognition of an appropriate target and effective treatment in 

one cancer does not necessarily translate to another. Whilst BRAF-mutated melanomas 

treated with vemurafenib have shown dramatic results (60-80%)(223, 224), 

disappointingly only 1 of 19 patients with BRAF-mutated aCRC responded in a phase I 

study.(225)  

 

More promising is targeting HER2 overexpressing CRC. Following strong preclinical 

evidence, the Heracles trial tested heavily treated HER2 overexpressing CRC with 

trastuzumab plus lapatinib. The study’s primary end-point was met with 34% of patients 

achieving a response.(226) However only a small proportion of aCRC patients express 

HER2(227) so this strategy is unlikely to make as great a clinical impact as in breast 

cancer. 
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Mutant KRAS has proven a difficult therapeutic target. RAS mutant cells rely heavily on the 

RAF/MEK/ERK cascade.(228) It also plays a role in the maintenance of high levels of Bcl-

Xl, an antii apoptotic Bcl-2 family protein. Overexpression of this alone is related to 

resistance to anti-EGFR agents.(229) 

 

Small molecules have been developed that interfere with GEF binding to lock KRAS into an 

inactive state in mouse models.(230) Further approaches include targeting its post-

translational modifications by preventing proper plasma membrane attachment,(230) and 

inhibiting components of key signalling pathways: in cell lines studies concominant 

blockade of RAF and MEK in KRAS-mut CRC reduced cell viability.(231) However thus far 

this has not translated into an effective treatment. 

 

Difficulties are thought to be due to limited understanding of RAS-mediated signalling 

transduction feedback loops, pathway redundancy, tumour heterogeneity and uncertainty 

as to how RAS proteins activate downstream targets.(232) 

 

A new approach to targeting mutant KRAS may be with ‘synthetic lethality’ or cell check-

point therapeutics. These treatments take advantage of the loss of viability resulting from 

combinations of two separate non-lethal mutations. Several lethal interactions with KRAS-

mut CRC are seen using small-hairpin RNA screening: deletions of PLK-1, APC and units of 

the proteasome.(233, 234) If such cancers are treated with check-point inhibitors then 

cells are unable to arrest the cell cycle for DNA to be repaired, so undergo apoptosis. These 

agents are in early testing but have shown promising results in solid tumours.(235) 

 

1.14.6. Personalisation of therapy by patient factors 
 

Patient characteristics can also guide treatment decisions, for example gene 

polymorphisms leading to variations in drug response, increasing age and the presence of 

co-morbidities.   

 

Polymorphisms of genes involved in drug handling are an important potential source of 

inter-patient variability.  However pharmacogenetic relationships for anticancer drugs are 

in most cases poorly characterised and inadequately validated, so clinicians are 

understandably reluctant to incorporate testing into routine clinical practice. The most 

widely studied is UGT1A1*28 polymorphisms for the prediction of irinotecan toxicity and 

efficacy.(236) This shall be discussed further in Chapter 6. 
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The evidence base for treatment strategies for elderly aCRC patients and those with co-

morbidities is accumulating. Trial data demonstrates that frailer patients benefit from 

combination 1st line chemotherapy(237, 238), bevacizumab (139) and anti-EGFR agents 

(239), but can be at increased risk of toxicity (238). Another study pooling data from five 

RCTs demonstrated that patients with a PS greater than two have inferior survival and 

may benefit from initial single rather than combination chemotherapy(238). 

 

Co-morbidity, for example diabetes, can increase risk of toxicity and admission during 

chemotherapy, and lessen the likelihood of completion.(48) With an ageing population 

with complex co-morbidities, increasing emphasis must be given to patient factors, 

including age, specific co-morbidity and immune status to guide management decisions.   

 

1.14.7. Biomarker-stratified trials in aCRC 
 

Further personalisation of treatment in aCRC may be progressed by biomarker stratified 

clinical trials. The feasibility of a complex prospective biomarker-driven multi-centre trial 

in aCRC was demonstrated in FOCUS 3.(240) This trial allocated patients into one of four 

molecular sub-groups based upon prior hypotheses. 

 

In total 244 patients were randomised from 24 centres in the UK and 74% had biomarker 

results available within 10 weeks of registration. No tested treatment strategy met its 

efficacy endpoints. Of note, it was observed that patients with low topo-1 (n=30) had 

improved RR with FU alone than with FOLFIRI, however this did not translate into 

differences in PFS. 

 

Following demonstration of feasibility The FOCUS 4 trial programme is now open in the 

UK, and shall be discussed later. 

 

1.15. Further routes to personalisation of CRC treatment in this 

thesis 

There are therefore several avenues to progress the personalisation of therapy in aCRC. 

Building upon previous evidence and identifying areas of need, several strategies will be 

investigated in this thesis. 
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 Use of routine clinical parameters as prognostic and predictive markers in aCRC 

 Exploring the poor outcomes of BRAF mutant aCRC 

 Identifying further predictive markers for anti-EGFR therapy 

o Amphiregulin and epiregulin as predictive biomarkers for panitumumab 

benefit 

o HER3 as a predictive biomarker for anti-EGFR therapy. 

 Identification of pharmacogenomics markers for irinotecan toxicity and efficacy. 

Biobanks from two large RCTs shall be utilised, the FOCUS and PICCOLO trials. 

Additionally for Chapter 3 clinical data from the COIN trial is included. 

 

1.16. Clinical trials  

1.16.1. The FOCUS trial 
 

The FOCUS trial recruited 2135 consenting patients with aCRC from 60 centres in the UK 

between 2000-2003.(100) The trial was designed to compare different sequences of 

cytotoxic chemotherapy in unpretreated aCRC.  Patients were randomly assigned equally 

between three treatment strategies (fig 1.3). In strategies A (control) and B, first line 

therapy was FU alone, followed by either single agent irinotecan (A) or combination 

therapy (B), whereas combination therapy was given first-line in strategy C. In strategies B 

and C the choice of combination therapy was randomised equally between FU/ irinotecan 

and FU/ oxaliplatin. Primary outcome measure was OS; secondary outcomes included PFS 

and RR. Only 0.5% to 1.5% of patients in each arm received anti-EGFR mAb therapy 

during subsequent salvage therapy. 
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Figure 1-3 FOCUS trial schema 

 

Median survival in the control group was 13.9 months. In each of the other strategies 

survival was longer, but only the C-Ir (initial FOLFIRI) group met the pre-defined 

statistical superiority criteria (p=0.01). There was no statistically significant survival 

advantage to strategy C and B (upfront combination chemotherapy vs deferred 

combination). No patient characteristics identified patients who benefitted more from 

upfront than deferred combination chemotherapy. There were no differences in quality of 

life outcomes between the arms. 

 

PFS and RR were higher with combination chemotherapy than FU alone. This trial 

challenged the assumption that the maximum tolerated chemotherapy should be given in 

the 1st line in aCRC. 

 

1.16.2. The PICCOLO trial 
 

In PICCOLO 1196 consenting patients were recruited between 2006-2010.(131, 241). 

The trial aimed to answer 2 questions: does the addition of panitumumab to irinotecan 

(IrPan) improve OS in the second line treatment of aCRC, compared with irinotecan (Ir) 

alone, and whether the modulation of irinotecan with ciclosporin (IrCs) could reduce 

toxicity without affecting efficacy. Primary outcome was OS; secondary outcomes included 

PFS and RR. Initially this was a 3-arm RCT with all patients randomised in equal 

proportion to three study arms, Ir, IrCs and IrPan (fig. 1.4).  However following the 
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validation of KRAS as a negative predictive marker(69, 125) the need for the application of 

a molecular selection strategy prior to randomisation was clear and the trial design was 

modified in mid-2008 (fig. 1.5).   

 

 

Figure 1-4 Initial PICCOLO trial schema 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

Figure 1-5 Adapted PICCOLO design including molecular stratification 

 

Of the 1198 randomised patients, 460 were included the IrPan vs Ir primary analysis 

population (KRAS-WT and no previous cetuximab). There was no difference in OS 

between the IrPan and Ir arms (HR = 0.91, 95%CI 0.73-1.14; p-0.44) but PFS was superior 

in the IrPan arm (HR=0.78, 95%CI 0.64-0.95; p=0.015). 
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Pre-planned molecular testing and analyses were performed to test the effect of a 

downstream mutation in the MEK-AKT pathway (BRAF, NRAS or PIK3CA) on outcome 

measures, compared with an all-WT population (no downstream mutations).  The all-WT 

population treated with IrPan had improved response rates (43.8%) and PFS (HR=0.68; 

95% CI, 0.53-0.86), however still did not achieve OS benefit. Those KRAS-WT patients with 

a mutation had worse outcomes with IrPan compared with Ir (OS HR = 1.64[1.14-2.34], 

p=0.028); this was particularly marked for patients with a BRAF-mutation (OS HR=1.84; 

95% CI 1.10-3.08).   

 

Therefore PICCOLO did not reach its primary end-point and IrPan could not be 

recommended as second-line therapy. However there were important translational results 

that questioned the current opt-in strategy for treatment with anti-EGFR agents for 

patients with KRAS-wt tumours given the potential detriment. Additionally within the ‘all 

wild-type’ group some patients continue to fail to benefit from anti-EGFR agents, 

suggesting that there may be further, yet unknown, factors contributing to resistance. 
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Chapter 2. Routine clinical parameters as biomarkers in 
advanced colorectal cancer. 

 

2.1. Introduction 

Biomarkers can provide useful information, aiding risk stratification and guiding 

treatment decisions, however few are utilised in the routine management of aCRC. 

Biomarker discovery and validation is therefore a priority for CRC research. With 

emerging technology, increasing information could be provided to clinicians: integration 

of this into routine practice and cost-effectiveness shall be challenging.  

 

During the initial patient consultation basic information is collected about the patient and 

tumour. This chapter will consider whether such readily available data can be utilised to 

guide treatment decisions in aCRC. In particular the role of the derived 

neutrophil/lymphocyte ratio (dNLR), platelet count and primary tumour location (PTL) 

shall be evaluated as biomarkers in aCRC. These markers were selected due to biological 

rationale and previous evidence, and will be evaluated alongside other clinical and 

molecular markers to reflect modern oncology practice. Candidate biomarkers shall be 

tested at different points in the aCRC pathway: both in chemo-naïve patients (FOCUS trial), 

and following first-line FU failure (PICCOLO).  

 

2.1.1. Advantages of routine blood test results as clinical biomarkers 
 

Biomarkers derived from routine blood tests are readily available, relatively                 non-

invasive, acceptable to patients, and inexpensive. Tumour biomarkers (MEK-AKT pathway 

mutations, MMR status, grade), may signal likely tumour behaviour, but tissue is often 

from a historical surgical specimen. Blood tests instead inform of the patient’s condition at 

the point of contact. Repeated measurements during treatment allow for dynamic 

assessment and perhaps response to therapy, and new information at the point of 

consideration of future lines of treatment. Both blood-based markers studied in this 

chapter are proposed to be surrogates for the systemic inflammatory response. 
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2.1.2. Inflammation 
 

The immune system consists of cells and proteins that recognise and then protect the body 

from pathogens. It is broadly categorised into the innate and adaptive immune system 

(figure 2.1). Both are involved in the process of inflammation. 

 

 

Figure 2-1 Components involved in the innate and adaptive immune response 

 

Inflammation is the body’s natural protective response to any insult or injury; detection of 

the insult leads to an influx of plasma proteins and acute inflammatory cells to the site. 

The acute inflammatory response initiates healing, but is not always beneficial. Detailed 

description of components of the immune system, interactions with cancer and its 

potential manipulation by therapeutics in aCRC are outwith the scope of this chapter, but 

have been recently reviewed.(242, 243) 

 

Acute inflammation is a complex process, with three main components: alterations in 

vascular calibre, increased permeability of blood vessels, and emigration of leukocytes 

from the circulation and subsequent accumulation and activation at the site of injury. 

Release of chemotactic cytokines attracts specific leucocyte populations and inflammatory 

cell recruitment.(244, 245) The main initial effector is circulating neutrophils that adhere 

to the site of injury.(246, 247) 
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Chemotactically attracted monocytes then differentiate to form tissue macrophages 

responsible for the release of the cytokines and growth factors driving the local 

inflammatory response. These inflammatory mediators encourage cellular proliferation 

and local angiogenesis to enable tissue repair. Additionally inflammatory cascades are 

triggered by innate immune cells leading to antigen presentation by dendritic cells and 

macrophages to T-cells, with subsequent activation of the adaptive immune response. 

 

2.1.3. Inflammation and cancer 
 

Virchow made the first observation of the association of tumour growth and inflammation 

and described leukocyte infiltration within tumours, now widely considered a hallmark of 

cancer.(248, 249) The role of the inflammatory process has been described at all stages of 

cancer development and progression. Multiple cancer risk factors have the common 

principle of chronic inflammation: tobacco, chronic infection, autoimmunity, obesity, 

dietary factors, and inhaled pollutants.(250)  

 

Inflammation enables many of the cellular and molecular capabilities essential for 

carcinogenesis: for example, tumour proliferative and survival signalling through IL-6; 

activation of STAT3 and NK-kB signalling leading to suppression of apoptosis and cell 

cycle progression.(251, 252) Other consequences of inflammation include genomic 

instability by increasing rates of DNA damage and compromising DNA-repair processes. 

Mechanisms include reactive oxygen species released by tissue neutrophils and 

macrophages leading to DNA breaks;(253) inflammatory cytokines induced expression of 

activation-induced cytidine deaminase, with consequent mutations in TP53 and 

MYC;(254) disruption of cell-cycle checkpoints and repression of MMR proteins leading to 

DNA replication errors and the accumulation of random genetic alterations.(255)  

 

Inflammatory mediators also facilitate the metastatic process: monocytes and IL-4 

induced tumour-associated macrophages facilitate tumour invasion, extravasation and 

metastatic outgrowth.(256, 257)  

 

Patterns of immune response have also been associated with cancer outcomes. Adaptive 

immunity can be divided further into humoral immunity (HI) and cell-mediated immunity 

(CMI). HI is associated with TH2 CD4+ lymphocytes, with production of interleukin- (IL-)4, 

IL-6 and IL-10. CMI is associated with the production of cytokines, interferon-γ (IFN-γ) 

and (tumour necrosis factor- α) TNF-α by TH1 CD4 T-lymphocytes, with activation of 

cytotoxic T-lymphocytes (CTLs), natural killer (NK) cells, macrophages and monocytes. 
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Most cancers are associated CMI suppression(258) and shift towards the TH2 response is 

associated with tumour survival.(259) Furthermore, activation of the IL-6/ JAK/STAT3 

pathway leads to increased expression of various acute phase proteins, such as albumin 

and C-reactive protein (CRP). 

 

However the immune system also has a role in tumour suppression. The innate immune 

system recognises tumour specific antigens on the surface of cancer cells: NK cells 

recognise a lack of major histocompatibility complex-1 (MHC-1) surface molecules on 

cancer cells and both directly kill such cells and actively recruit other effectors.(260) 

Recruited macrophages and dendritic cells phagocytose cancer cells and present tumour-

associated antigen on their surface, resulting in a specific effector T-cell response designed 

to eradicate tumour from the body.(261)  

 

However it is hypothesised that cancer cells evolve and undergo a selection process for 

cells that evade immune system regulation, leading to clinically apparent tumours. The 

importance of ‘immunosurveillance’ is evidenced by the increased rate of cancers in 

immunocompromised patients, including advanced HIV infection and chemically- 

immunosuppressed transplant recipients.(262)  

 

2.1.4. The inflammatory response in CRC tumours 
 

These complex interactions are relevant in CRC. Chronic gut inflammation may be more 

critical in CRC carcinogenesis than previously thought. Inflammatory bowel disease is a 

well-recognised risk factor for CRC, but only accounts for a small proportion of cases. 

Intestinal inflammation may be more commonly caused by an over-population of ‘bad-

microflora’, with associated pro-inflammatory cytokines, leading to epigenetic changes 

and recruitment of immune cells that contribute to cancer initiation and progression.(263) 

Increased IL-6/JAK/STAT3 signalling is a key driver of CRC, implicated in initiation, 

development and formation of tumours,(264) and associated with a hyperproliferative  

and invasive phenotype of CRC cells.(265) 

 

CRC tumours with increased immune cell infiltrates have been associated with absence of 

pathological evidence of early metastatic disease (venous emboli and lymphatic and 

perineural invasion). Tumours with a ‘good immune profile’ showed infiltration of 

markers of T-cell migration, activation and differentiation, but not inflammatory 

mediators or immunosuppressive markers.(266) Other immune characteristics associated 

with improved prognosis include the presence of immune effector cells and antigen 
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presenting dendritic cells, NK cells and markers of TH1 adaptive immunity.(249, 267, 268) 

In an independent series of 599 tumour specimens of stage I-IV CRCs, high densities of 

CD8+ cytotoxic T-lymphocyte infiltrate were associated with earlier stage tumours.(269)  

 

Instead tumour immune characteristics associated with poor outlook include high levels of 

particular inflammatory cell infiltrates, such as high concentrations of tumour-associated 

macrophages.(270)  

 

2.1.4.1. Assessing the immune profile of tumours 
 

A CRC tumour immunoscore has been proposed. Genomic and in situ immunostaining 

analysis in 415 patients reported that immunological data (the type, density and location 

of immune cells) provided superior prediction of patient survival than current 

histopathological staging methods.(266) However this requires further validation and has 

not been routinely adopted. 

 

2.1.5. The effect of the systemic inflammatory response in a cancer patient 
 

A tumour could be considered as a pathogen and as such has the ability to initiate and 

maintain a host inflammatory response. The clinical consequence of chronic activation of 

the systemic inflammatory response is cachexia, increased fatigue and decrease in 

performance status;(271) a cancer patient may also be immunosuppressed due to 

increasing age and poor nutrition. It is also important to understand how host immune 

activation interacts with prognosis and response to therapy.  

 

The systemic inflammatory response and the tumour inflammatory response may be 

entirely separate: both are independently associated with cancer-specific survival,(272) 

and increased blood neutrophil count (associated with poor prognosis) has been 

associated with low-grade peritumoral infiltrate.(273) 

 
2.1.5.1. Biomarkers to assess the systemic inflammatory response 

 

Measurement of serum IL-6 level may be a useful biomarker of the host inflammatory 

response. Activation of IL-6 during the early immune response leads to initiation of the IL-

6/ JAK/STAT pathway and regulation of a broad spectrum of target cells, including 

expression of acute-phase proteins by hepatocytes (CRP and albumin),(274) neutrophil, 

macrophages T cells and epithelial cells.(275) STAT3 activation leads to cancer cell 

proliferation, invasion, differentiation and inflammation.(276) IL-6 is elevated in aseptic 
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inflammatory conditions and associated with a neutrophil-dominated inflammation, then 

transition to a more sustained adaptive immune response.(277) In CRC, IL-6 has a central 

role in initiation and persistence of intestinal inflammation(278) and colitis-associated 

cancers.(279) 

 

However this process may be reflected simply by defects in both the innate immune 

system with alterations in neutrophils and monocytes, and the adaptive immune system 

with lymphopenia,(280) and CRP and albumin levels.(281, 282) Several inflammation 

based prognostic scores have been developed and have been correlated with cancer 

outcomes, including the neutrophil-lymphocyte ratio (NLR), modified Glasgow Prognostic 

Score (mGPS – utilising acute phase proteins), platelet lymphocyte ratio (PLR) and the 

prognostic index. The most extensively studied are the NLR and mGPS.  

 

A high mGPS has been correlated with poor prognosis independent of tumour site,(283) 

and has been validated in over 30,000 patients across different tumour sites.(284) A meta-

analysis of 40,559 cancer patients reported that high NLR was associated with poor 

survival, compared with low NLR with effect was seen across all disease sub-groups, sites 

and stages.(285) 

 

Direct comparisons of these scores have been performed, but correlations between the 

elements of different scores (high levels of CRP, neutrophils, platelets, and low levels of 

albumin and lymphocytes) are seen.(283)  

 

2.1.5.2. Testing of inflammatory scores in RCT datasets 
 

Inflammation-based scores have not been validated in RCT datasets. Most RCT datasets 

will not routinely collect all desired components, particularly CRP and lymphocytes, so an 

alternative marker is required. 

 

This issue was addressed by a useful paper that validated the dNLR.(286) The dNLR 

utilises the WCC and neutrophil count to create a ratio, presuming that the vast majority of 

non-neutrophil WCC will be lymphocytes. In over 27,000 patients the area under the ROC 

curves were 0.65 for the NLR and 0.64 for the dNLR for disease free survival. The authors 

had recommended different cut-offs for the ratios used in the two scores, with a cut-off for 

NLR being 4, and 2 for dNLR.  

 



 46 

The FOCUS and PICCOLO trials have collected white cell, neutrophil and platelet counts for 

each trial patient at baseline and at set time-points throughout trial treatment, so this 

chapter will examine dNLR and platelet count as biomarkers. 

 

2.1.6. The neutrophil-lymphocyte ratio 
 

The NLR has been evaluated as a prognostic marker in a variety of clinical situations 

including pancreatitis (287) and coronary artery disease, (288) but most evidence is in 

cancer. A high NLR level is associated with poorer outcomes in nasopharyngeal cancer 

(289), non-small cell lung cancer (290), breast cancer (291), oesophageal,(292) gastric 

cancer,(293) renal cell carcinoma,(294) and pancreatic cancer.(295)  

 

2.1.6.1. NLR as a prognostic marker in CRC 
 

The NLR has been tested as a prognostic marker for DFS and OS in surgical series in early 

CRC: a high NLR is associated with worse outcomes following resection of the primary 

tumour,(296, 297) following hepatic resection of CRC liver metastases,(298) and poorer 

OS, time to local recurrence and DFS in locally advanced rectal cancer patients undergoing 

chemo-radiotherapy.(299) 

 

2.1.7. The systemic inflammatory response and chemotherapy efficacy 
 

The efficacy of chemotherapy drugs may be influenced by a complex interplay of tumour 

and host immune components, modulating various immune cell populations in different 

ways, both direct and indirect.(300) The presence of inflammation has been associated 

with inferior chemotherapy outcomes: high concentrations of tumour associated 

macrophages are associated with poor response to chemotherapy.(301)  

Additionally chemotherapy-induced neutropenia is associated with improved 

chemotherapy responses.(302, 303) A suggested mechanism is that chemotherapy 

induces death of myeloid-derived suppressor cells – a heterogeneous group of immature 

and mature myeloid cells, predominated by neutrophils, increases activity of T cells and 

subsequent tumour control.(304) Therefore an additional benefit of anti-cancer therapies 

may be suppression of neutrophil-driven inflammation. 

 

In a study of 182 advanced lung cancer patients treated with first-line palliative platinum 

chemotherapy, an elevated NLR was associated with reduced RR and shorter PFS and OS, 

compared with low NLR.(305) High NLR was associated with a lesser chance of clinical 
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benefit and reduced OS than patients with low NLR, in aCRC patients treated with first line 

palliative chemotherapy.(306)  

 

One study has assessed the NLR as a predictive marker for chemotherapy. In a RCT of 

metastatic castration-resistant prostate cancer receiving 1st line chemotherapy, high dNLR 

was associated with inferior survival, but was not a predictive marker for docetaxel 

benefit.(307) 

 

Monoclonal antibodies can activate immune cells such as neutrophils, macrophages and 

NK cells by binding to their Fc regions, resulting in antibody-dependent cytotoxicity: 

hence their ability to trigger immune cell activation and cause immunogenic cell death 

may contribute to their efficacy. Polymorphisms in the Fc gamma receptor have been 

associated with cetuximab-resistance through its inability to induce recruitment and 

activation of immune effector cells.(308, 309)  

 

2.1.8. Platelet counts and outcomes with aCRC 
 

High platelet count has also been associated with poor outcomes in CRC.(310, 311) As part 

of the systemic inflammatory response, IL-6 triggers the differentiation of megakaryocytes 

to platelets in the bone marrow. Tumour-associated thrombocytosis is also induced by the 

tumour by several mechanisms, including by secretion of VEGF.(312) Platelets may also 

facilitate metastasis through mediating tumour cell survival in the circulation, and 

extravasation and angiogenesis in the microenvironment of target sites.(313)  

 

In a study of 1513 surgically treated early CRC patients, high platelets were associated 

with reduced survival (OS HR = 1.66, p<0.001), and with a higher incidence of distant 

metastatic relapse (HR = 2.81, p=0.011), but not risk of loco-regional relapse (0.59, 

p=0.32).(314) 

 

In sub-analysis of COIN C (investigating non-inferiority of intermittent vs. continuous 1st 

line chemotherapy in aCRC), the only predictive marker of detriment with chemotherapy 

breaks was a high baseline platelet count: this population experienced a five month 

reduction in OS with intermittent compared with a continuous strategy  (interaction 

p=0.0027).(102) Cancer patients with evidence of a heightened inflammatory response 

may therefore benefit from continuous intensive therapy. 
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2.1.9. Markers of the systemic inflammatory response as monitoring 
biomarkers 

 

The only recommended tumour marker in CRC is CEA, but as described in Chapter 1 this 

has several limitations. Regular blood tests are performed throughout chemotherapy, so 

repeated NLR assessments can be made. NLR may reflect changes in tumour behaviour 

during chemotherapy; lowering values suggesting dampening of the inflammatory 

response, perhaps secondary to tumour response. Conversely a rising NLR may signal 

tumour progression and futile treatment. 

 

Early normalisation of the NLR following chemotherapy for aCRC was associated with 

improved outcomes.(306, 315) A similar NLR pattern was seen during gefitinib treatment 

in advanced NSCLC,(315) and first-line chemotherapy for advanced bladder cancer.(316) 

Conversely in a population of aCRC patients treated with first-line FOLFIRI-Bev, although 

baseline high NLR as an adverse prognostic marker an increase or stable NLR following 2 

cycles was associated with a reduced risk of death.(317) 

 

2.1.10. Primary tumour location and CRC outcomes 
 

Another emerging hypothesis is that the location of a CRC primary tumour will impact on 

its biology, clinical outcomes and potentially, response to treatment. The distal and 

proximal colon have different embryonic origins (midgut and hindgut respectively), and 

have differences in bacterial flora and luminal content.(318) Clinico-pathological 

differences are described in observational studies, with right PTL being associated with 

increasing age, female sex, peritoneal carcinomatosis and a increased rate of mucinous, 

poorly differentiated and locally advanced tumours; instead, hepatic and pulmonary 

metastases more frequent in left PTL.(155, 319) 

 

Studies examining potential differences in biology depending upon PTL have reported that 

right-sided tumours are more likely to have large chromosomal alterations, be MSI, CIMP-

phenotype, and BRAF-mutated.(320-322)  

 

An important study has examined biological differences in the colon in detail.(155) Right 

PTL was associated with higher frequencies of KRAS, BRAF and PIK3CA, regardless of MSI 

status. Instead HER1 and HER2 amplification and gene expression patterns in keeping 

with EGFR pathway activation were more likely in distal tumours. 
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2.1.10.1. PTL as a prognostic marker in aCRC 
 

Many previous studies of prognostic markers in aCRC (including Kohne’s score) have 

compared colon to rectal cancers, with no effect seen.(45) However the more relevant 

comparison is right colon compared with left colon and rectal cancers. 

 

Study of nearly 78,000 patients from the National Cancer Institute’s Surveillance, 

Epidemiology and End Results (SEER) database found that right PTL was associated with 

worse survival than left colon and rectal cancers, (78 vs. 89 months, p<0.001). This effect 

was less dramatic following adjustment for relevant confounders (HR = 1.04 [1.02-

1.07]).(323) An observational study of over 17,641 CRC patients also reported that right 

PTL was a poor prognostic marker, but effect was not striking (HR = 1.12).(319) In early 

aCRC, right PTL was not associated with reduced RFS, but was an independent 

determinant of shorter survival after relapse (adj HR=1.70, p<0.001).(155) 

 

PTL analysis in 146 patients from the AIO KRK-0104 (1st line CAPIRI+ cetuximab vs CAPOX 

+ cetuximab in aCRC), right PTL was associated was inferior OS (13.0 vs 26.3 months; HR = 

0.63, p<0.016), and PFS (5.2 vs 7.8 months; HR = 0.67, p=0.02), than left PTL.(324) In a 

large analysis of 3 cohorts of previously untreated aCRC (n =2027), right PTL was 

associated with inferior OS and PFS, independent of mucinous histology and BRAF- 

mutation status.(325) 

 

2.1.10.2. PTL as a predictive marker for chemotherapy benefit 
 

Since right PTLs are hypermutated with hypermethylation (potentially as a consequence 

of adjuvant chemotherapy) it has been hypothesised that they will be resistant to most 

current chemotherapeutic regimes. Additionally as active EGFR-signalling is more likely in 

distal tumours, anti-EGFR agents may only be beneficial in left PTL.(155) 

 

For the 207 KRAS/BRAF-WT aCRC patients treated with cetuximab in Missiaglia’s study, 

right PTL had reduced PFS than left PTL (18 vs 30 weeks, p=0.02).(155) In the AOI KRK-

0104 KRAS-wt population, right PTL patients had reduced OS (p<0.001) and PFS 

(p=0.007) compared with left, but lesser PTL effect was observed in the KRAS/ BRAF-wt 

population (OS HR = 0.81, p=0.47; PFS HR = 0.60, p=0.23).(324) This hypothesis is yet to 

be tested in a population randomised to anti-EGFR agent vs. control. 
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PTL has been tested as a predictive biomarker for bevacizumab: VEGF-A is found in higher 

concentrations in the left than right colon.(326) In an observational comparison of CapeOx 

+/- bevacizumab, left PTL patients benefitted from bevacizumab, whilst right tumours did 

not: PTL/ biomarker interaction was positive for OS [p=0.004), but not PFS 

[p=0.15]).(327) Patients with rectal cancer had the best outcomes with bevacizumab 

within the study. These finding were not validated in PTL analysis from two RCTs of 

bevacizumab (AVF2107 or NO16966).(325) 

 

PTL has not yet been assessed as a predictive marker for standard cytotoxic 

chemotherapy. In a study of 656 stage III CRC, patients with right PTL had a marked 

survival advantage with adjuvant chemotherapy, compared to those who did not (48% vs 

27%; p<0.001), with lesser impact in left PTL (details of this analysis and interaction test 

not reported).(328) 
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2.2. Study hypotheses  

2.2.1. Derived Neutrophil-lymphocyte ratio 
 

 High dNLR will correlate with shorter OS and PFS, compared to a low dNLR. 

 High dNLR will identify patients who will benefit from more intensive 

chemotherapy (combination vs. single agent). 

 Increasing dNLR during chemotherapy will be associated with tumour progression 

at 12 weeks. 

2.2.2. Platelets 
 

 High platelets will correlate with shorter OS and PFS, compared to low platelet 

status. 

 High platelets will identify patients who will benefit from more intensive 

chemotherapy (combination vs. single agent). 

2.2.3. Primary tumour location 
 

 Right PTL will correlate with shorter OS and PFS, compared to left and rectal 

tumours. 

 Right PTL will be associated with lack of benefit to the addition of panitumumab to 

irinotecan. 

 

2.3. Method 

2.3.1. Patient population  
 

This study involves patients from the FOCUS and PICCOLO trials. Consort diagrams for 

patients included in this biomarker study are shown in Figures 2.2 and 2.3. 

 

In FOCUS all patients are included in the prognostic analysis. For the predictive analyses 

patients in Arm C (upfront combination chemotherapy) are compared to those in Arms A 

and B (upfront single-agent chemotherapy). The upfront oxaliplatin vs. irinotecan 

comparison is limited to Arm C (Fig. 2.2 a. and b.) 

 



 52 

In PICCOLO, only patients treated with irinotecan alone (IrCs vs Ir, or IrPan vs Ir 

randomisations) are included in the prognostic analyses. The predictive analysis compares 

KRAS-wt patients in the IrPan vs Ir randomisation (Fig. 2.3 a and b). 

 

All patients who have dNLR measurements at cycles 1 and 4 are included in the 

assessment of dNLR as a tumour marker ‘NLR dynamic’ analysis in both trials. 

 

 

Figure 2-2 Consort diagram of FOCUS patients included in the dNLR/plts analysis 
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Figure 2-3 Consort diagram of FOCUS trial patients involved in the PTL study 

 

Figure 2-4 Consort diagram of PICCOLO study patients involved in the dNLR/ plts analysis 
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Figure 2-5  Consort diagram of PICCOLO study patients included in the PTL analyses 
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2.3.2. Study measurements and definitions 
 

2.3.2.1. Neutrophil-lymphocyte ratio measurements 
 

The baseline dNLR was calculated from the pre-treatment FBC (neutrophil count/ total 

WBC - neutrophil count). The dNLR was primarily assessed as a binary measure, 

prospectively defined as “high” (≥2.001) and “low” (<2.000), using the binary cut-point 

validated by Proctor et al.(286) Sensitivity analyses were performed on all pre-defined 

dNLR cut-points. 

 

For the ‘NLR dynamic’ analysis, the actual percentage change between the dNLR values 

from baseline to cycle 4 (approximately 6 weeks) were calculated. Based upon this, 

patients were assigned to three prospectively defined categories:  

 NLR improved (decrease in >25% from baseline to cycle 4),  

 NLR rise (>25% increase in dNLR from baseline to cycle 4) and  

 NLR stable (<25% increase, and <25% decrease from baseline to cycle 4).  

 

Patients with missing baseline dNLR data were excluded from the prognostic and 

predictive analysis. Patients with missing follow-up dNLR data were excluded from the 

‘NLR dynamic’ analysis. 

  

2.3.2.2. Platelets 
 

Baseline platelet count was assessed primarily as a binary measure, prospectively defined 

as high (>400,000u/l) vs low (<400,000 u/l). Patients with missing platelet values were 

excluded from the prognostic and predictive analysis.  

 

2.3.2.3. Primary tumour location 
 

PTL was prospectively defined as right PTL (to point of the splenic flexure) vs. left PTL 

(left tumour plus rectum). A secondary analysis examined left colon vs. rectal tumours. 

 

2.3.3. Statistical Analyses 
 
Stata was used for all statistical analyses (Stata Statistical Software: Release 12 (2011), 

StataCorp. College Station, Texas). 
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2.3.3.1. Baseline characteristics 
 

Baseline patient characteristics were compared between the high and low dNLR groups, 

platelet groups and PTL groups using two-tailed T-tests, Wilcoxon rank sum tests (for 

variables with non-normally distributed frequency distributions) and Pearson Chi-

squared tests (for categorical variables). 

 

2.3.3.2. Planned analyses 
 

The primary analyses in both trials was to test the candidate markers as prognostic 

biomarkers for OS and PFS in the first (FOCUS) and second-line (PICCOLO).  

 

In FOCUS the dNLR, platelets and PTL were tested as predictive biomarkers for  upfront 

combination vs single agent FU chemotherapy, and oxaliplatin-based vs irinotecan-based 

combination chemotherapy. In PICCOLO the dNLR, platelets and PTL were tested as 

predictive biomarkers for benefit from the addition of panitumumab to irinotecan. 

 

2.3.3.3. Statistical analyses 
 

Univariate Cox hazard models were estimated for potentially relevant prognostic markers 

in both trials (FOCUS: age, performance status [PS], previous resection of primary tumour, 

number of metastatic sites, dNLR, platelet count, alkaline phosphatase, PTL and KRAS and 

BRAF mutant status; PICCOLO: PS, previous response to chemotherapy, number of 

metastatic sites, previous tumour resection, PTL dNLR, platelets, alkaline phosphatase, 

and KRAS and BRAF mutant status). Significant factors at univariate analysis were entered 

into a multivariate Cox model, and HRs and 95% confidence intervals (CIs) were 

estimated. A sensitivity analysis to investigate the prognostic effect of alternative dNLR 

cut-points was performed. 

 

For the three predictive analyses testing for interaction between the effects of high vs low 

dNLR status and treatment was performed on OS and PFS.   

 

For the RR endpoint, odds ratios (ORs) and 95% CIs were estimated from logistic 

regression models for the effect of dNLR status, and the interaction was analysed in the 

same way.  These analyses were repeated for the effects of high vs low platelets, and right 

PTL vs left PTL and rectum.  
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An exploratory analysis was performed to test whether change in dNLR after 6 weeks of 

chemotherapy is predictive of RECIST response at 12 weeks. Three groups were defined as 

previously described. Changes in the dNLR between baseline and cycle 4 were compared 

between 12-week responders and non-responders, and those with clinical benefit and 

progressive disease. For the primary RR endpoint, ORs and 95% CIs were estimated from 

logistic regression for the effect of dNLR dynamic groups on 12 week RECIST response. 

Additionally the sensitivity and specificity of dNLR dynamic group to predict RECIST 

response was calculated, and a sensitivity analysis to explore the effect of different cut-

points. 
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2.4. Results (1): Clinical biomarkers in the FOCUS trial 

2.4.1. Biomarker distributions and patient characteristics  
 

Patient characteristics according to dNLR, platelets and PTL are shown in Table 2.1. As a 

number of patients had missing PTL data, an analysis was performed to assess whether 

there were differences in the characteristics of missing cases. Those without PTL data 

were less likely to have a raised alkaline phosphatase (p=0.04) had fewer metastatic sites 

(p=0.01), but more likely to have their primary tumour in situ (p<0.001). 

 

2.4.1.1. dNLR population distribution and characteristics 
 

Out of the 2135 patients in the FOCUS trial, 2044 patients had dNLR data available.  The 

dNLR showed a normal distribution (Figure 2.6). Median baseline dNLR value was 2.17 

(IQR 1.61-2.97). 

 

 

Figure 2-6 Distribution of baseline dNLR within the FOCUS trial 

 

Using the pre-defined cut-point of 2.01, 1153/2044 (56.4%) patients were assigned to the 

‘high dNLR’ group, and 322/891 (43.6%) to the ‘low dNLR’ population. A higher 

proportion of patients in the high dNLR group had a primary tumour in-situ, high platelets, 

raised alkaline phosphatase and were of poor PS (table 2.1). 

 

2.4.1.2. Platelet population distribution and characteristics 
 

Out of 2135 patients in the FOCUS trial, 2073 had baseline platelet data. Platelet 

distribution was skewed to the right (fig. 2.7), suggesting that the mass of the distribution 

of platelet values are concentrated on the left of the figure (i.e the lower values). Therefore 
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as anticipated the median baseline platelet value was 312 (IQR 253-397), lower than the  

mean (338, sd 126).  

 

 

Figure 2-7 Distribution of baseline platelet values within the FOCUS trial 

 

Using the pre-defined cut-point (>400,000 u/l), 510/2073 (24.6%) patients were assigned 

to the ‘high platelet’ group, and 1563/2073 (75.4%) to the ‘low platelet’ group. This group 

was associated with a higher proportion of patients with high dNLR, high alkaline 

phosphatase, primary tumour in-site and poor PS (table 2.1) . 

 

2.4.1.3. PTL population distribution and characteristics  
 

 
In FOCUS, PTL data was available for 1390 patients. In total, 364 (26.2%) of patients had a 

right-sided tumour (right PTL), and 1026 (73.8%) had a left sided or rectal tumour (left 

PTL). 454 patients had a rectal tumour (32.7%) and 572 a left colonic tumour (41.1%) (fig. 

2.8).  

 

 

Figure 2-8 Distribution of the PTL study population 
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Right-sided tumours were more common in females, had a higher incidence of BRAF 

mutations and a higher rate of loss of MLH1 and MSH2, and were more likely to have been 

resected (Table 2.1). 
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 dNLR population n=2044  platelets population n =2073   PTL study population = 1390  

 High dNLR 

(≥2.00) 

Low dNLR 

(<2.00) 

 High platelets 

(≥400) 

Low platelets 

(<400_ 

 Right PTL Left PTL PTL missing 

No of patients 1153 (56.4%) 891 (43.6%)  510 (24.6%) 1563 (75.4%)  364 (26.2%) 1026 (73.8%) 745 (34.9%) 

Median age 62 63  60.8 63.0  63.1 62.6 62.1 

Sex (n=2044) 
Male 777 (55.4%) 628 (44.6%)  303 (60.6%) 1240 (79.4%)  226 (62.1%) 733 (71.4%) 501 (67.3%) 

Female 376 (58.8%) 263 (41.2%) 207 (39.4%)) 442 (28.3%) 138 (37.9%) 293 (28.6%) 244 (32.7%) 

PS (n=2044) 
0-1 1023(88.5%) 849 (95.3%)  434 (85.1%) 1463 (93.6%)  336 (92.3%) 948 (92.4%) 671 (90.1%) 

2 133 (11.5%) 42 (4.7%)  76 (14.9%) 100 (6.4%)  28 (7.7%) 78 (7.6%) 74 (9.9%)* 

Resected primary 

(n=2043)  

Yes 794 (68.7%) 737 (82.8%)  309 (60.6%) 1240 (79.4%)  315 (86.5%) 787 (76.7%) 493 (66.4%) 

No 362 (31.3%) 154 (17.2%)  201 (39.4%) 322 (20.6%)  49 (13.5%) 239 (23.3%) 249 (33.6%) 

No of metastatic sites 

(n=2043) 

0-1  472(41.9.2%) 383 (44.0%)  194(22.4%) 674 (77.6%)  134 (37.2%) 419 (41.7%) 339 (46.9%)* 

>2 655(58.1%) 487 (56.0%)  300 (25.9%) 859 (74.1%)  226 (62.8%) 585 (58.3%) 384 (53.1%) 

High platelets 

(n=2073) 

Yes 376 (32.5%) 125 (14%)  n/a n/a  91 (25.7%) 226 (22.4%) 226 (30.4%) 

No 779 (67.4%) 766 (85.9%)  n/a n/a  263 (74.3%) 781 (77.6%) 518 (69.6%) 

Primary tumour location 

(n=1390) 

Right 176 (15%) 169 (18.9%)  91 (28.7%) 263 (25.2%)  n/a n/a  

Left  551 (47.7%) 446 (50.1%)  226 (71.3%) 781 (74.8%)  n/a n/a  

KRAS –mut (n=779) 
Mutant 169 (51.4%) 160 (48.6%)  75 (49.3%) 258 (43.6%)  106 (51.5%) 208 (43.8%) 28 (35.4%) 

Wild-type 209 (51.9%) 194 (48.1%)  77 (50.7%) 333 (56.4%)  100 (48.5%) 267 (56.2%) 51 (64.6%) 

BRAF mutation (n=764) 
Mutant 19 (1.6%) 32 (3.4%)  14 (9.0%) 44 (7.3%)  35 (16.7%) 19 (3.9%) 7 (8.6%) 

Wild-type 321 (20.0%) 295 (33.1%)  141 (91.0%) 559 (92.7%)  175 (83.3%) 467 (96.1%) 74 (91.4%) 

High alk phos (>400) 

(n=2028) 

Yes 230 (20.0%) 92 (10.4%)  140 (27.5%) 192 (12.3%)  51 (14.1%) 153 (14.9%) 126 (18.1%)* 

No 919 (80.0%) 795 (89.6%)  369 (72.5%) 1364 (87.7%)  312 (85.9%) 871 (85.1%)å 571 (81.9%) 

 

Table 2-1 Baseline characteristics of FOCUS trial patients, by dNLR status, platelet status and PTL status 

 
* = significant p-value between missing cases and PTL population
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2.4.2. Prognostic Analysis of Clinical Biomarkers 
 

The prognostic analysis for all tested biomarkers is presented in table 2.2. 

 

 High vs low dNLR  High vs low platelets  R vs L PTL 

OS HR 
n=2044 (fail = 1769)  n = 2073 (fail = 1796)  n=1389 (fail = 1228) 

1.57(1.43-1.73), p<0.001  1.89 (1.44-2.11), p<0.001  1.22[1.08-1.39],p=0.002 

PFS HR 
n=2035 (fail = 1978)  n=2064 (fail = 2007)  n=1380, fail (1344) 

1.45 (1.33-1.59), p<0.001  1.59 (1.44-1.77), p<0.001  1.08 [0.96-1.22], p=0.20) 

 

Table 2-2 Prognostic analysis for the effect of the dNLR binary classifier, the binary platelets classifier and 

PRL on overall survival and progression free survival 

 

2.4.2.1. Prognostic effect of dNLR 
 

A negative prognostic effect of high versus low dNLR status was seen for OS (HR=1.57, 

[95%CI 1.43-1.73], p<0.001) and PFS (HR=1.45 [1.33-1.59], p<0.001) (table 2.2 and fig 

2.9).  

 

 

Figure 2-9 a)OS KM curves, and b) PFS KM curves for high vs low dNLR groups in the FOCUS trial 

 

When assessing dNLR as a continuous variable, increasing dNLR levels were associated 

with inferior OS (HR = 1.23 [1.19-1.26], p<0.001) and PFS (HR=1.17[1.14-1.21], p<0.001). 
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2.4.2.2. Prognostic effect of platelets 
 

High platelet count was associated with inferior OS (HR = 1.90 [1.71-2.12], p<0.001) and 

PFS (HR = 1.58[1.43-1.76], p<0.001) than the low platelets (table 2.2 and fig. 2.10). 

 

 

Figure 2-10 a) OS KM curves, and b) PFS KM curves for high vs. low platelets in the FOCUS trial 

 

As a continuous variable, increasing platelets count was a negative prognostic marker for 

OS (HR = 1.002, p<0.001) and PFS (HR = 1.002, p<0.001). 

 

2.4.2.3. Prognostic effect of PTL 
 

Right sided PTL was a poor prognostic factor for OS (HR=1.22[1.08-1.39],p=0.002), but 

not PFS (HR = 1.08 [0.96-1.22], p=0.20), compared with left PTL (table 2.2 and fig 2.11). 

 

 

Figure 2-11 a) OS KM curves, and b) PFS KM curves for right vs. left PTL groups in the FOCUS trial 

 

When compared to rectal tumours, left colonic tumours had improved OS (HR = 0.75[0.59-

0.95], p=0.015) and PFS (HR = 0.76[0.58-1.00), p=0.05)(data not shown). 
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2.4.2.4. Multivariate analysis of prognostic factors within the FOCUS trial 
 

Each of dNLR, platelets and PTL were significant prognostic factors within the FOCUS trial, 

however it is important to understand their usefulness compared with other validated 

prognostic markers. Other significant factors at univariate analyses were primary tumour 

in-situ, poor performance status, KRAS mutation, BRAF mutation, raised alkaline 

phosphatase and BMI (table 2.3). 

 

Prognostic Factor 
No in each 

population 
OS HR (95% CI) PFS HR (95% CI) 

Age* continuous 1.07 (0.96-1.19), p=0.22 0.94 (0.84-1.04) p=0.25 

 PS ≥2 180/2135 (8.4%) 
1.39 (1.29-1.49), 

p<0.001 

1.19 (1.12-1.29), 

p<0.001 

Primary tumour in situ 514/2044 (25.1%) 1.54 (1.38-1.72),p<0.001 1.34 (1.21-1.49) p<0.001 

Right PTL 364/1390 (26.2%) 1.22 (1.08-1.39) p=0.002 1.08 (0.96-1.22) p=0.20 

2 or more metastatic 

sites 
1195/2087 (57.3%) 

1.40 (1.27-1.54), 

p<0.001 

1.33 (1.22-1.46), 

p<0.001 

KRAS-mut  329/732 (44.9%) 
1.21 (1.04-1.42), 

p=0.014 
1.15 (0.98-1.34) p=0.051 

BRAF-mut 57/747 (7.6%) 
1.53 (1.16-2.04), 

p=0.003 
0.95 (0.72-1.26), p=0.76 

dNLR ≥2 1153/2044 (56.4%) 1.57 (1.43-1.73) p<0.001 1.45 (1.33-1.59) p<0.001 

Plts ≥400 499/2044 (24.5%) 
1.90 (1.71-2.12), 

p<0.001 
1.58 (1.43-1.76),p<0.001 

Alkaline phos ≥300 322/2044 (15.7%) 
1.98 (1.74-2.24), 

p<0.001 

1.62 (1.44-1.83), 

p<0.001 

 

Table 2-3 Univariate analysis of prognostic markers in FOCUS for OS and PFS 

 

Multivariate analysis included factors significant at univariate testing. dNLR (adj HR = 

1.25, p=0.001), high platelets (adj HR=1.44, p=0.001), high alkaline phosphatase (adj HR = 

1.90, p<0.001), BRAF mutations (adj HR = 1.62, p<0.001), poor PS (adj HR = 1.23, p=0.003) 

and ≥2 metastatic sites (adj HR = 1.24, p=0.018) were identified as independent poor 

prognostic markers for OS. 

 

For PFS, following adjustment high dNLR, platelets, alkaline phosphatase, primary tumour 

in-situ and over ≥2 metastatic sites were independent prognostic markers. 
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2.4.3. Clinical markers as predictive biomarkers for FOCUS strategies 
 

Results of the predictive analyses are shown in table 2.4. The tested treatment strategies 

are:  

 Initial upfront combination chemotherapy vs single agent (upfront IrFU or OxFU 

vs. 5FU alone) 

 Irinotecan vs oxaliplatin based upfront combination chemotherapy 

 

2.4.3.1.  dNLR as a predictive biomarker for FOCUS strategies 
 

Patients with a high dNLR had an OS benefit with upfront combination compared with FU 

alone (HR = 0.80 [0.75-0.97], p=0.02), but those with a low dNLR did not (HR = 0.96[0.82-

1.13], p=0.68). dNLR/ treatment interaction testing was not significant (p=0.20) (table 2.4 

and fig. 2.12).  Patients with a high dNLR had PFS benefit with upfront combination 

chemotherapy rather than single agent FU (HR = 0.68, p<0.001); those with a low dNLR 

had significant but lesser PFS benefit from combination treatment (HR = 0.78, 

p=0.01)(interaction p=0.09).  

 

For both dNLR categories, RR was higher for combination than single agent chemotherapy 

(dNLR high 58.6% vs 34.2%, p<0.001; dNLR low 63.6% vs 43.8%, p<0.001). High dNLR 

patients were just as likely to respond to initial combination chemotherapy as low dNLR 

(p=0.21), but were less likely to respond to 5FU alone (p=0.001). 

 

 

Figure 2-12 OS KM curves for a) high dNLE, and b) low dNLR (interaction p=0.20) 

 

dNLR did not identify patients with differential benefit from a irinotecan compared with 

an oxaliplatin based regimen for OS (interaction p=0.92) or PFS (interaction p 

=0.81)(Table 2.4).
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 All patients dNLR study population  Platelets study population  PTL study population 

  dNLR ≥2 dNLR <2   Plts≥400 Plts<400   Right PTL Left PTL  

Treatment 

strategy 

Unadjusted 

HR (95% 

CI) 

Int  

p-

value* 

Unadjusted 

HR 

(95% CI) 

Unadjusted 

HR 

(95% CI) 

Int p-

value 
 

Unadjusted 

HR 

Unadjusted 

HR 

Int p-

value* 
 

Unadjusted 

HR 

Unadjusted 

HR 

Int p-

value* 

OS HR for 

upfront 

combination vs 

single agent 

1769 events 

n =2044 

0.051 

1043/ 1153 726/ 891 

0.20 

 467/499 1302/1545 

0.79 

 331/363 897/1026 

0.30 
0.90 (0.82-

1.00) 

0.82 (0.75-

0.97),p=0.019 

0.96 (0.82-

1.13),p=0.68 
 

0.94 (0.77-

1.14) 

p=0.51 

0.89(0.80-

1.01) p=0.07 
 

0.92(0.70-

1.19) p=0.52 

0.97(0.85-

1.12)p=0.71 

PFS HR for 

upfront 

combination vs 

single agent 

1978 events 

n=2035 

<0.001 

1127/1149 
851 events 

n=886 

0.09 

 494/498 1484/1537 

0.68 

 353/361 991/1019 

0.14 
0.73 (0.67-

0.81) 

0.68 (0.61-

0.78),p<0.001 

0.78 (0.68-

0.91),p=0.001 
 

0.73 (0.61-

0.89) 

p=0.001 

0.74 (0.66-

0.82),p=0.001 
 

0.67(0.53-

0.83)p<0.001 

0.79(0.7-

0.91)p<0.001 

OS HR for 

irinotecan5FU vs 

oxaliplatin5FU 

 

581 events 

n=68- 
0.61 

342 /380 239 /300 

0.92 

 158/167 430/521 

0.62 

 112/123 288/329 

0.99 
0.96 (0.81-

1.13) 

0.95(0.77-

1.17), p=0.63 

0.98 (0.77-

1.27),p=0.92 
 

1.07 (0.78-

1.47) p=0.66 

0.96 (0.79-

1.16) p =0.70 
 

0.97(0.67-

1.40) p=0.88 

0.98(0.78-

1.24) p=0.89 

PFS HR for 

irinotecan5FU vs 

oxaliplatin5FU 

 

657 events 

n=678 
0.26 

370/ 379 287 /299 

0.81 

 165/166 500/520 

0.31 

 118/122 320/328 

0.67 
1.09 (0.94-

1.27) 

1.09(0.89-

1.33), p=0.42 

1.14 (0.90-

1.44),p=0.27 
 

1.27 (0.93-

1.74) p=0.13 

1.07 (0.89-

1.27) 
 

0.97(0.68-

1.39)p=0.86 

0.86(0.69-

1.06) p=0.19 

 

Table 2-4 Estimated crude HRs and 95% CIs for the effect of tested treatment strategies for high vs. low dNLR, then high vs. low platelets, then right vs. left PTL, including 

likelihood ratio tests for marker*treatment interactions
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2.4.3.2. Platelets as a predictive marker for FOCUS strategies 
 

Platelets were not a discriminative predictive marker for either upfront combination vs. 

single agent (OS interaction p = 0.79; PFS interaction p = 0.68), or irinotecan vs. oxaliplatin 

based chemotherapy (OS interaction p=0.62; PFS interaction p=0.31)(table 2.4). 

 

2.4.3.3.  PTL as a predictive biomarker for FOCUS strategies 
 

Right-sided PTL did not preclude benefit from any of the tested treatment strategies: 

upfront combination vs single agent (OS interaction p = 0.30; PFS interaction p = 0.14), or 

irinotecan vs oxaliplatin based chemotherapy (OS interaction p = 0.99, PFS interaction p = 

0.67)(table 2.4). 

 

When comparing outcomes of rectal vs. left colon tumours, there was no differential effect 

from either strategy: upfront combination vs. single agent (OS interaction p = 0.30; PFS 

interaction p = 0.08), or irinotecan vs. oxaliplatin based chemotherapy (OS interaction 

p=0.18; PFS interaction p=0.50)(data not shown). 

 

2.4.4. Exploratory analyses in FOCUS 
 

The exploratory analyses will investigate the effect of alternative cut-points of dNLR, test a 

combined dNLR/ platelets model, explore the prognostic value of other components of the 

FBC, and investigate the dNLR as a tumour marker during first-line chemotherapy. 

 

2.4.4.1. Investigating the effect of alternative dNLR cut-points 
 

dNLR is a continuous variable with no natural dichotomisation point, however a binary 

variable is more practical for clinical application. The dNLR cut-point at 2 was pre-

determined based upon previous work,(286) but may not be optimal in this population. 

The effect of alternative cut point ranges is shown in table 2.5 and figure 2.13. Risk of each 

dNLR cut-point is compared with that of the low dNLR group (<2.00). Increasing dNLR is 

associated with progressively worse OS. With a dNLR cut-point of 3.5-4, patients in the 

high dNLR have a markedly poor outlook (HR OS =2.40 {1.94-2.97, p<0.001). Utilising this 

cut-point, fewer patients were assigned to the high dNLR group. 



 68 

dNLR cut 

point range 

High dNLR 

group 

OS HR (95% CI)  for high vs 

low dNLR 

PFS HR (95% CI) for high vs 

low dNLR 

 n=1153 1769 events, n=2044 1978 events, n=2035 

<2 0 1.0 1.0 

2-2.5 384 (33.3%) 1.23 (1.08-1.39), p=0.002 1.17 (1.04-1.33), p=0.010 

   

2.5-3.0 306 (26.5%)%) 1.49 (1.29-1.71), p<0.001 1.50 (1.32-1.72), p<0.001 

3.0-3.5 170 (14.7%) 1.82 (1.52-2.16), p<0.001 1.57 (1.33-1.86), p<0.001 

3.5-4.0 107 (9.0%) 2.40 (1.94-2.97), p<0.001 2.04 (1.66-2.52), p<0.001 

>4 186 (16.1%) 2.08 (1.62-2.69), p<0.001 1.78 (1.39-2.28), p<0.001 

 

Table 2-5 Effect of alternative dNLR cut-point ranges on OS and PFS, compared to low dNLR (<2) 

 

 

Figure 2-13 Alternative dNLR cut-points, with OS HRs for high vs. low dNLR at tested cut-points 

 

The predictive ability of dNLR for FOCUS strategies with alternative cut-points was tested. 

At no cut-point was there a significant dNLR/treatment interaction for either strategy 

tested (data not shown). 

 

2.4.4.2. Testing of a combined dNLR and platelet model 
 

It has been demonstrated that dNLR and platelets have independent effects on survival 

(section 2.4.2.4), therefore combining information from both blood tests to create a single 

biomarker may be beneficial, using an ‘either dNLR or plts high’ vs ‘neither high’ model. 

The prognostic analysis is shown in table 2.6, and the predictive analysis in table 2.7.
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dNLR/ platelet 

model 

High risk 

group 

OS HR (95% CI)  for high vs 

low dNLR 

PFS HR (95% CI) for high vs 

low dNLR 

  1769 events, n=2044 1978 events, n=2035 

High dNLR &/or 

plts 
1278(62.5%) 1.75 (1.59-1.93), p<0.001 1.56 (1.43-1.72), p<0.001 

Both high dNLR 

& plts 
374 (18.3%) 1.91 (1.69-2.15), p<0.001 1.61 (1.44-1.81), p<0.001 

 

Table 2-6 Prognostic analysis of the two combined dNLR/ platelet models, for OS and PFS 

 

Treatment strategy 
High dNLR &/or 

platelets 

Low dNLR and 

platelets 
 

 
Unadjusted HR 

(95%CI) 

Unadjusted HR (95% 

CI) 

Interaction p-

value 

OS initial combination vs single 

agent 

0.85 (0.76-0.97), 

p=0.014 

0.97 (0.82-1.16), 

p=0.78 
0.22 

PFS initial combination vs single 

agent 

0.67 (0.60-0.76), 

p<0.001 

0.81 (0.69-0.98), 

p=0.008 
0.041 

OS IrMdG vs OxMdG 
0.97 (0.79-1.19), 

p=0.77 

0.95 (0.72-1.25), 

p=0.72 
0.96 

PFS IrMdG vs OxMdG 
1.12 (0.92-1.35), 

p=0.26 

1.10 (0.86-1.42), 

p=0.44 
0.91 

 

Table 2-7 Estimated crude HRs and 95% CIs for the effect of tested treatment strategies in high dNLR &/or 

platelets vs. low dNLR and platelets, including likelihood ratio tests for marker*treatment interactions. 

 

Firstly an ‘either dNLR or platelets high’ vs. ‘neither high’ model was investigated. Using 

that criteria, 1278 (62.5%) patients were assigned to the ‘high’ group and 766 (37.5%) to 

the ‘low’ group.  

 

Having either high dNLR or platelets at baseline was associated with inferior OS (HR = 

1.75[1.59-1.93], p<0.001) and PFS (HR = 1.56 [1.43-1.72], p<0.001), compared to patients 

who were low for both. This effect was maintained following adjustment (adj OS HR = 

1.49, p<0.001; adj PFS HR = 1.30, p<0.001). 

 

This joint model was assessed as a predictive marker. For upfront combination vs. single 

agent chemotherapy, the ‘high’ group had more benefit from a more intensive strategy 

than the low group. Whilst the difference in treatment effect between the biomarker 

groups was not significant for OS (interaction p = 0.22), it was for PFS (interaction 

p=0.041). For both groups, RR was higher for combination than single agent 

chemotherapy (‘either high’ 60.8% vs 33.3%, p<0.001; ‘neither high’ 61.2% vs 46.7%, 

p<0.001). The ‘either high’ group were as likely to respond to initial combination 

chemotherapy as ‘neither high’ (p=0.56), but less likely to respond to 5FU alone (p=0.002). 
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Neither group had differential effect with either an irinotecan compared to an oxaliplatin-

based combination (table 2.7). 

 

Next the effect of a ‘both high’ model was tested: both baseline dNLR and platelet raised 

vs. all other patients. Using this model, fewer patients were assigned to the ‘high risk’ 

group (18.3%). There was a marked prognostic effect of having both markers raised, 

particularly when the model used the dNLR cut-point of 3.5 (OS HR = 2.26, p<0.001; PFS 

HR = 2.05, p<0.001)(data not shown). This model did not predict benefit from any FOCUS 

strategy (data not shown). 

 

2.4.4.3. Prognostic value of other components of the full blood count 
 

To explore the individual effect of neutrophils or lymphocytes, compared to the dNLR and 

platelets, each FBC component was assessed as a continuous prognostic marker for OS 

(table 2.8). In a direct comparison, dNLR is a stronger prognostic marker than either 

neutrophils or lymphocytes individually. 

  

FBC component (n=1809) Median (IQR) OS HR 

dNLR 2.13 (1.59-2.87) 1.21 (1.17-1.25), p<0.001 

Neutrophils 5.3 (4.2-7.0) 1.13 (1.11-1.16), p<0.0house01 

Lymphocytes 2.5 2.0-3.1) 1.02 (0.97-1.08), p=0.31 

Platelets 309 (251-392) 1.002 (1.001-1.003), p<0.001 

 

Table 2-8 Prognostic analysis of further components of the FBC, treated as continuous variables 

 

2.4.4.4. Change in dNLR and during chemotherapy 
 

The behaviour of the dNLR during chemotherapy was investigated, and whether changes 

could predict RECIST response at 12 weeks.  

 

The dNLR progressively decreased from baseline at 2 weeks (NLR2), then at 6 weeks 

(NLR4) from baseline (Fig 2.14). Median dNLR was 2.18 at baseline, 1.67 pre-cycle 2 and 

1.5 pre-cycle 4. 
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Figure 2-14 dNLR distributions at a) baseline, b) pre-cycle 2, and c) pre-cycle 4 

 

At cycle 4, dNLR information was available in 1804 patients (88.3%) and for those RECIST 

response data was available for 1709 (94.7%). Utilising the pre-defined model for 

classifying change in dNLR between baseline and pre-cycle 4, dNLR rose in 183 (8.7%) 

patients, remained stable in 630 (34.9%), and decreased in 997 (54.9%). 

 

To investigate whether NLR changes were related to response outcomes, the population 

was divided into baseline high vs. low dNLR as it was hypothesised that these groups may 

behave differently, and larger relative changes were more likely in the high baseline dNLR 

group. Patients who had a baseline high dNLR had a median 37.0% drop in dNLR; those 

with a baseline low dNLR had a median drop of 18%. 

 

Patients with a baseline high dNLR who responded at 12 weeks had a greater decrease in 

dNLR than those with stable disease (p=0.006). Patients who had clinical benefit at 12 

weeks had a greater decrease in dNLR at mid-point than those with progressive disease 

(p<0.001) (fig. 2.15). 
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Figure 2-15 Boxplots showing percentage change in dNLR between baseline and cycle 4 in baseline high dNLR 

patients, a) 12 week responders and stable disease, and b) 12 week clinical benefit vs. progressors 

 

Patients with a low baseline dNLR who had a response at 12 weeks had a greater decrease 

in dNLR than those with stable disease (p=0.037). Those with clinical benefit at 12 weeks 

had a greater decrease in dNLR at mid-point than those with progressive disease 

(p=0.040) (fig. 2.17). 

 

  

Figure 2-16 Boxplots showing percentage change in dNLR between baseline and cycle 4 in baseline low dNLR 

patients, a) 12 week responders and stable disease, and b) 12 week clinical benefit vs. progressors 

 

A pre-defined cut-point was then used to assign patients to three ‘NLR-dynamic’ groups:  

 Improved dNLR (>25% decrease in dNLR from baseline to pre-cycle 4),  

 Stable dNLR (<25% decrease and <25% increase from baseline to pre-cycle 4)  

 Worse dNLR (>25% increase in dNLR from baseline to pre-cycle 4)  

Outcomes were compared between falling and stable or worsening dNLR (improved vs. 

stable or worse), and falling or stable dNLR and rising dNLR (improved and stable vs. 

worse dNLR), for each of the baseline dNLR groups.  
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Regardless of baseline dNLR status, rising dNLR during chemotherapy was associated 

with increased risk of progressive disease at 12 weeks, inferior PFS and OS compared with 

stable or falling dNLR (table 2.9). These findings were independent of other prognostic 

markers.  

 

A more pronounced effect of the ‘NLR dynamic’ model was seen in the baseline high dNLR 

group: for patients with a rising dNLR only 45.3% had disease control with first-line 

chemotherapy at 12 weeks.  

 

There were no significant changes in platelets during therapy, and no trends with 

response (data not shown). 
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Baseline dNLR low group: effect of changing dNLR during treatment 

NLR kinetic category (n=891) 12 wk CR/PR OR (95%CI) Clinical Benefit OR (95%CI) PFS HR OS HR 

Improved dNLR 

n = 341 (54.9%) 

RR = 40.5% DCR = 76.2% 

1.01 (0.88-1.67) p=0.86 1.01 (0.86-1.18),p=0.88 
1.53(1.14-2.05), p=0.004 

OR = 1.27 (0.13-1.76) 

p=0.13 

Stable or improved dNLR 

n =707 (89.8%) 

RR = 35.6% DCR = 74.8% 

0.74 (0.59-0.89) p=0.003 
0.71 (0.57-0.87) 

p=0.002 1.32 (0.86-2.05), p=0.20 
1.58 (1.04-2.43) 

p=0.033 

dNLR rise 

n = 112 (10.1%) 

RR = 29.4% DCR = 65.2% 1.37 (1.12-1.67), 

p=0.003 

1.41 (1.14-1.75), 

p=0.63 
0.75 (0.49-1.16) p=0.20 0.63 (0.41-0.96), p=0.033 

Baseline dNLR high group: effect of changing dNLR during treatment 

NLR kinetic category (n=985) 12 wk CR/PR OR (95%CI) Clinical Benefit OR (95%CI) PFS HR OS HR 

Improved dNLR 

n = 650 (65.9%) 

RR = 32.3% DCR = 69.8% 

0.76 (0.66-0.87) p=0.86 0.83 (0.72-0.95),p=0.009 
1.60(1.18-2.17), p=0.002 

OR = 1.48 (1.13-1.96) 

p=0.005 

Stable or improved dNLR 

n =914 (92.8%) 

RR = 29.9% DCR = 68.4% 

0.59 (0.47-0.77) p<0.001 
0.57 (0.45-0.74) 

p<0.001 1.91 (1.03-3.54), p=0.040 
2.64 (1.63-4.31) 

p<0.001 

dNLR rise 

n = 71 (7.2%) 

RR = 18.3% DCR = 45.1% 1.66 (1.30-2.13), 

p<0.001 

1.74 (1.36-2.24), 

p<0.001 
0.52 (0.28-0.97) p=0.040 0.38 (0.23-0.61), p<0.001 

 

Table 2-9 Treatment outcomes (ORs for 12 week response; ORs for clinical benefit; HRs for PFS; HRs for OS), depending upon NLR kinetic categories
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The most useful clinical application for the ‘dNLR kinetic’ model would be to detect 

progression earlier than in routine practice. The sensitivity of the ‘dNLR kinetic’ model for 

detecting progressive disease at 12 weeks was 14.3%, but the specificity was 91.7%. This 

corresponded into a positive predictive value of 42.6% and a negative predictive value of 

71.3%. The area under the curve (AUC) for NLR change and clinical benefit was 0.54, 

suggesting that it was not a discriminative tumour marker (fig. 2.17). 

 

 

Figure 2-17 ROC curves for dNLR change for prediction of 12 week clinical benefit 
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2.5. Results: Clinical biomarkers in the PICCOLO trial 

 

2.5.1. Biomarker distributions and patient characteristics  
 

Patient characteristics according to dNLR, platelet and PTL are shown in table 2.10. 

dNLR distribution 

 

2.5.1.1. dNLR distribution and characteristics in PICCOLO 
 

 
Out of the 1196 patients in the PICCOLO trial, 1145 patients (95.7%) had dNLR data 

available.  The dNLR showed a normal distribution (fig. 2.18). Median value was 2.0 (IQR 

1.46-2.67), lower than in FOCUS.  

 

 

Figure 2-18 Distribution of baseline dNLR values within the PICCOLO trial 

 

Using the pre-defined cut-point, 593/1145 (51.7%) patients were assigned to the ‘high 

dNLR’ group (dNLR>2.01), and 551/1145 (48.1%) to the ‘low dNLR’ population 

(dNLR<2.00).  

 

A higher proportion of patients in the high dNLR group had their primary tumour in-situ, 

more than 2 metastatic sites, have raised platelets and alkaline phosphatase and be of a 

poor performance status, than the low dNLR groupy (table 2.10). 

 

2.5.1.2. Platelet population distribution and  

 
Out of 1196 patients in the PICCOLO trial, 1157 had baseline platelet data. Platelet count 

was normally distributed (fig. 2.19). Median platelet count was 262 (IQR 1.47-2.68), lower 

than seen in FOCUS. 
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Figure 2-19 Distribution of baseline platelet values within the PICCOLO trial 

 

Using the pre-defined cut-point, 142/1157 (12.3%) patients were assigned to the ‘high 

platelet’ group (>400,000), and 1015/1157 (87.7%) to the ‘low platelet’ group. The high 

platelet group had a higher proportion of patients with their primary tumour in situ, high 

dNLR and of female sex, than the low platelet group (table 2.10). 

 

2.5.1.3. PTL population distribution and characteristics 
 

In PICCOLO, PTL data was available for 1179/1196 (98.5%) patients. In total, 362 (30.7%) 

of patients had a right PTL, and 817 (69.3%) had a left PTL. 441 patients had a rectal 

tumour (37.4%) and 376 (31.9%) a left colonic tumour.  

 

The right PTL group had a higher proportion of females, BRAF mutated tumours, primary 

tumours resected and fewer patients with previous clinical benefit with chemotherapy 

than the left PTL population (table 2.10). 
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 dNLR population n=1144  platelets population n = 1157  PTL study population n =1179 

 dNLR ≥2.00 dNLR <2  Plts ≥400 Plts <400  Right PTL Left PTL 

No of patients 551 (48.2%) 593 (41.8%)  142 (12.3%) 1015 (87.7%)  362 (30.7%) 817 (69.3%) 

Median age 62 63  61.8 (55.1-69.7 62.9 (56.9-70.3)  63.8 (57.6-70.3) 63.8 (56.6-70.3) 

PS≥2 (n=1185) 
0-1 495(90.4%) 562 (95.7%)  120 (85.1%) 948 (94.3%)  332 (92.5%) 753 (93.1%) 

2 52 (9.6%) 25 (4.3%)  21 (14.9%) 57 (5.7%)  27 (7.5%) 56 (6.9%) 

Gender (n=1190) 
Male  370 (67.5%) 409 (69.3%)  79 (56.0%) 709 (70.2%)  216 (60.0%) 584 (71.9%) 

Female 178 (32.5%) 181(30.7%) 62 (44.0%) 301 (29.8%) 144 (40.0%) 228 (28.1%) 

Resected primary (n=1195) 
Yes 378(68.6%) 451 (76.1%)  83 (58.5%) 755 (74.4%)  291 (80.4%) 559 (68.4%) 

No 173 (31.4%) 142 (23.9%)  59 (41.5%) 260 (25.6%)  71 (19.6%) 258 (31.6%) 

>2 metastatic sites (n=1149) 
Yes 388 (73.2%) 368 (64.0%)  96 (69.6%) 669 (68.3%)  236 (67.2%) 546 (69.6%) 

No 142(26.8%) 207 (36.0%)  42 (30.4%) 310 (31.7%)  115 (32.8%) 238 (30.4%) 

Primary tumour location 

(n=1179) 

Right 160 (29.3%) 187 (32.1%)  46 (32.9%) 303  (30.2%)  n/a n/a 

Left 386 (70.7%) 396 (67.9%) 94 (67.1%) 699 (69.9%) n/a n/a 

dNLR ≥ 2.00(n=1144) 
Yes n/a n/a  98 (69.5%) 454 (44.9%)  160 (46.0%) 387 (48.5%) 

No n/a n/a 43 (30.5%) 550 (55.1%) 187 (54.0%) 396 (51.5%) 

Platelets ≥400 (n=1157) 
Yes 98(17.8%) 43 (7.3%)  n/a n/a  46 (13.2%) 94 (11.8%) 

No 453 (82.2%) 550 (92.7%)  n/a n/a  303 (86.8%) 699 (88.2%) 

Alk phos ≥300 (n=1148) 
Yes 176 (15%) 169 (18.9%)  42 (30.0%) 159 (15.8%)  61 (17.6%) 138 (17.5%) 

No  551 (47.7%) 446 (50.1%)  98 (70.0%) 848 (84.2%)  285 (82.4%) 649 (82.8%) 

BRAF mutation (n=1068) 
Mutant 43 (8.8%) 42 (7.9%)  13 (10.6%) 73 (8.1%)  51 (15.7%) 38 (5.2%) 

Wild-type 447 (91.2%) 486 (92.1%)  110 (89.4%) 834 (91.9%)  274 (84.3%) 689 (94.8%) 

RAS mutation (n=969) 
Mutant 227 (50.7%) 242 (50.7%)  64 (55.2%) 411 (50.1%)  165 (55.2%) 320 (48.9%) 

Wild-type 221 (49.3%) 235 (49.3%) 52 (44.8%) 409 (49.9%) 134 (44.8%) 335 (51.1%) 

Prev clinical benefit (n=2028) 
Yes 230 (20.0%) 92 (10.4%)  84 (66.1%) 655 (70.7%)  202 (61.8%) 543 (72.9%) 

No 919 (80.0%) 795 (89.6%)  43 (33.9%) 272 (29.3%)  125 (38.2%) 202 (27.1%) 

 

Table 2-10 Patient characteristics by dNLR status, then by platelet status, then by PTL status
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2.5.2. Prognostic Analysis of Clinical Biomarkers 
 

The prognostic analyses for all tested biomarkers are presented in table 2.11. Only 

patients treated with irinotecan alone are included in this analysis. 

 

 High vs low dNLR  High vs low platelets  R vs L PTL 

OS HR 
n = 487 (fail =451)  n = 494 (fail = 458)  n=500 (fail =465) 

1.53(1.27-1.84), p<0.001  1.66 (1.27-2.18), p<0.001  1.10 (0.91-1.34), p=0.34 

PFS HR 
n=484 (fail = 432)  n=491 (fail = 439)  n=495 (fail= 446) 

1.34 (1.12-1.63), p=0.002  1.37 (1.04-1.81), p=0.027  1.08 (0.88-1.31), p=0.45 

 

Table 2-11 Prognostic analysis for the effect of the dNLR binary classifier, the binary platelet classifier, and 

PTL on overall survival and progression free survival. 

 

2.5.2.1. Prognostic effect of dNLR 
 

A negative prognostic effect of high versus low dNLR status was seen for OS (7.7 vs 

12.4mths; HR=1.53, [95%CI 1.27-1.84], p<0.001) and PFS (2.9 vs 5.4 mths; HR=1.34 [1.12-

1.63], p=0.002) (table 2.11 and fig. 2.20).  

 

 

Figure 2-20 a) OS KM curves, and b) PFS KM curves for high vs. low dNLR in PICCOLO 

 

When assessing dNLR as a continuous variable, increasing dNLR levels were associated 

with inferior OS (HR = 1.12 [1.07-1.17], p<0.001) and PFS (HR=1.17[1.06-1.19], p<0.001). 

 

2.5.2.2. Prognostic effect of platelets 
 

Using the primary dichotomous variable, high platelets was associated with inferior OS 

(6.5 vs 10.4mths; HR = 1.66 [1.27-2.18], p<0.001) and PFS (2.8 vs 4.7 mths; HR = 

1.37[1.04-1.81], p=0.027) than low platelets (table 2.11 and fig. 2.20). 
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Figure 2-21 a) OS KM curves, and b) PFS KM curves for high vs. low platelets in PICCOLO 

 

As a continuous variable, increasing platelets count was also a negative prognostic marker 

for OS (HR = 1.001, p<0.001) and PFS (HR = 1.003, p<0.001). 

 

2.5.2.3. Prognostic effect of PTL 
 

Right sided PTL was not associated with either shorter OS (8.5 vs 10.3 mths; 

HR=1.10[0.91-1.34],p=0.35), or PFS (3.2 vs 4.4 mths; HR = 1.08 [0.96-1.22], p=0.20) than 

left PTL (table 2.11 and fig. 2.22). 

 

 

Figure 2-22 a) OS KM curves, and b) PFS KM curves for right vs. left PTL in PICCOLO 

 

Compared to rectal tumours, left colonic tumours trended towards improved OS (10.6 vs 

9.7 mths; HR = 0.80[0.64-1.01], p=0.061), but not PFS (3.9 vs 4.1 mths; HR = 1.01 [0.82-

1.30), p=0.76)(data not shown). 
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2.5.2.4. Multivariate analysis of prognostic factors within the PICCOLO trial 
 

dNLR and platelets were significant prognostic factors for patients treated with Ir alone, 

following progression on 5FU. PTL was not significantly prognostic in the 2nd line. 

 

Other prognostic factors within PICCOLO are shown in table 2.12. Other significant factors 

were primary tumour in-situ, poor performance status, BRAF or KRAS mutation status and 

raised alkaline phosphatase. 

 

Prognostic Factor Groups OS HR (95% CI) PFS HR (95% CI) 

Primary in situ 
143/511 

(27.9%) 

1.56 (1.36-

1.76),p<0.001 

1.43 (1.25-1.63) 

p<0.001 

Right PTL 
162/500 

(32.4%) 
1.10 (0.91-1.34) p=0.37 1.08 (0.96-1.22) p=0.45 

≥2 metastatic sites 
340/488 

(69.6%) 

1.36 (1.11-1.67), 

p=0.003 

1.31 (1.07-1.61), 

p=0.010 

No benefit with 1
st
 line 

chemotherapy 

141/463 

(30.4%) 

1.16 (0.93-1.41), 

p=0.19 

1.15 (0.93-1.42), 

p=0.18 

PS ≥2 32/504 (6.3%) 
2.41 (1.68-3.5), 

p<0.001 

2.04 (1.41-2.95), 

p<0.001 

RAS-mut 
209/424 

(49.0%) 

1.24 (1.01-1.51), 

p=0.035 
1.11 (0.91-1.36) p=0.30 

BRAF-mut 40/459 (8.7%) 
1.17 (0.84-1.64), 

p=0.34 

1.06 (0.76-1.49), 

p=0.72 

dNLR ≥2.00 
242/488 

(49.6%) 

1.54 (1.28-1.85) 

p<0.001 

1.35 (1.12-1.64) 

p=0.002 

Plts ≥400 
62/488 

(12.7%) 

1.66 (1.27-2.18), 

p<0.001 

1.37 (1.04-

1.81),p=0.027 

Alk phos ≥300 
100/488 

(20.5%) 

2.32 (1.85-2.91), 

p<0.001 

1.70 (1.36-2.14), 

p<0.001 

 

Table 2-12 Univariate analysis of prognostic markers in PICCOLO 

 

A multivariate analysis was performed, including only factors significant at univariate 

analysis. In this analysis dNLR (adj HR = 1.35, p=0.006), high high alkaline phosphatase 

(adj HR = 1.89, p<0.001) and poor performance status (adj HR = 2.74, p<0.001) were 

independently prognostic for OS.  

 

For PFS, following adjustment high dNLR (adj HR = 1.23, p=0.033), alkaline phosphatase  

(adj HR = 1.45, p=0.003), and poor performance status (adj HR 1.66, p=0.013) continued 

to be independent prognostic markers. 
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2.5.3. Clinical Biomarkers as predictive markers for panitumumab in KRAS-
wt aCRC 

 

The predictive analysis in PICCOLO shall test whether the clinical biomarkers are 

predictive of benefit of the addition of panitumumab to irinotecan (limited to the IrPan vs 

Ir randomisation primary population) (fig. 2.2). Results are shown in table 2.13. 

 

2.5.3.1. Predictive effect of dNLR 
 

Of the 466 patients in the PICCOLO primary analysis, 465 had baseline dNLR data 

available. dNLR was not a useful predictive marker for panitumumab benefit (OS 

interaction p= 0.20; PFS interaction p=0.09)(table 2.13). 

 

2.5.3.2. Predictive effect of platelets 
 

High vs. low platelets was not a useful predictive marker for panitumumab benefit (OS 

interaction p = 0.90; PFS interaction p = 0.40)(table 2.13).  

 

2.5.3.3. Predictive effect of PTL 
 

Given the strong relationship between right-PTL and BRAF-mut status, the predictive 

analysis for PTL was performed in the KRAS and BRAF-wt population. Right-PTL was not a 

useful biomarker for panitumumab effect (OS interaction p=0.72; PFS interaction 

p=0.89)(table 2.13). 

 

When considering rectal vs left sided tumours, PTL was not a useful biomarker for 

panitumumab benefit (OS interaction p = 0.83; PFS interaction p=0.19)(data not shown). 
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 All patients dNLR study population  Platelets study population  PTL study population** 

  High dNLR Low dNLR   High plts Low Plts   Right PTL Left PTL  

Treatme

nt 

strategy 

Unadjuste

d HR 

(95% CI) 

Int p-

value

* 

Unadjusted 

HR 

(95% CI) 

Unadjusted 

HR 

(95% CI) 

Int p-

value

* 

 
Unadjusted 

HR 

Unadjusted 

HR 

Int p-

value

* 

 
Unadjusted 

HR 

Unadjusted 

HR 

Int p-

value

* 

OS HR 

for 

IrPan vs 

Ir 

311 events 

n =458 

0.41 

203/221 200/ 222 

0.73 

 27/43 349/397 

0.90 

 80/88 245/287 

0.72 
0.91 (0.73-

1.14) 

1.03 (0.79-

1.37),p=0.79 

0.95 (0.72-

1.25),p=0.71 
 

1.01(0.47-

2.16) 

p=0.98 

0.89(0.71-

1.14) p=0.38 
 

0.87(0.55-

1.36) p=0.53 

0.96(0.75-

1.23)p=0.74 

PFS HR 

for 

IrPan vs 

Ir 

398 events 

n=450 

0.010 

191/218 196/221 

0.98 

 39/43 349/397 

0.40 

 83/86 261/287 

0.89 
0.76 (0.63-

0.94) 

0.78(0.57-

1.02),p=0.06 

0.75 (0.57-

0.99),p=0.04 
 

0.95(0.49-

1.83) p=0.88 

0.74 (0.59-

0.92),p=0.00

6 

 
0.70(0.56-

0.87)p=0.002 

0.67(0.51-

0.87)p=0.002 

 

Table 2-13 Estimated crude HRs and 95% CIs for the effect of IrPan vs. Ir in the high vs. low dNLR populations, the high vs. low platelet populations, then right vs. left PTL 

populations, including likelihood ratio tests for marker*treatment interactions. 

**KRAS and BRAF-wt population 
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2.5.4. Exploratory Analyses 
 

2.5.4.1. Effect of alternative dNLR cut-points 
 

When the dNLR cut-point was increased, the high dNLR group was associated with worse 

survival but with fewer patient numbers (table 2.14). 

 

dNLR cut point 
Pts assigned to high 

dNLR  group (n=551) 
OS HR 

PFS HR 

<2.00 0 1.00 1.00 

2-2.5 158 (28.7%) 1.39 (1.15-1.69), p=0.001 1.34 (1.09-1.63), p=0.004 

2.5-3.0 114 (20.7%) 1.49 (1.21-1.85), p<0.001 1.18 (0.95-1.47), p=0.16 

3.0-3.5  54 (9.8%) 1.44 (1.08-1.93), p=0.014 1.43 (1.06-1.92),p=0.019 

3.5-4.0 40 (7.3%) 2.59 (1.85-3.62), p<0.001 1.94 (1.37-2.74), p<0.001 

4.0-4.5 13 (2.4%) 1.35 (0.75-2.41), p=0.31 1.55 (0.86-2.74), p=0.15 

>4.5 41 (7.4%) 2.92 (2.10-4.08), p<0.001 2.43 (1.73-3.39), p<0.001 

 

Table 2-14 Assessing alternative dNLR cut-point ranges vs. dNLR low (<2) on OS and PFS in PICCOLO 

 

2.5.4.2. Combining baseline dNLR and platelets information 
 

Again an ‘either dNLR or platelets high’ vs a ‘neither high’ model was investigated. Using 

these criteria, 922 patients were assigned to the ‘high’ group (79.9%) and 231 (20.3%) to 

the ‘low’ group. 

 

‘Either high’ dNLR or platelets at baseline was associated with inferior OS (HR = 1.59[1.37-

1.86], p<0.001) and PFS (HR = 1.36 [1.17-1.59], p<0.001), compared to patients who were 

high for neither. This model was not predictive for IrPan benefit (data not shown). 

 

Next the effect of both baseline dNLR and platelets being high, compared with the rest of 

the population was tested. Only 135 patients (11.7%) were assigned to the ‘high’ group 

and 1018 (88.3%) to the ‘low’ group. 

 

The ‘ both high’ grouping was associated with reduced OS (HR = 1.63 [1.36-1.96], p<0.001) 

and PFS (HR = 1.27 [1.05-1.54], p=0.012), compared to the rest of the population. 
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2.5.4.3. The dNLR as a tumour marker during chemotherapy 
 

dNLR data was available for 804 patients at cycle 4. Median dNLR at cycle 4 was 1.41, 

compared with median dNLR 2.0 at baseline. High dNLR at cycle 4 was associated with 

poor OS (HR = 1.69 [1.43-2.01], p<0.001) and PFS (HR = 1.52[1.28-1.82],p<0.001), 

compared with a low dNLR. 

 

Patients who had a baseline high dNLR had a median 33.3% drop in dNLR; those with a 

baseline low dNLR had a median drop of 18.1%. 

 

In the baseline high dNLR population, those who had a response at 12 weeks had a greater 

decrease in dNLR than those with stable or progressive disease (p=0.015). Those with 

clinical benefit had a greater decrease in dNLR at mid-point than those with progressive 

disease at 12 weeks (p=0.041) (figure 2.23). 

 

 

Figure 2-23 Boxplots showing the relationship between percentage change in dNLR from baseline to mid-point 

and 12 week RECIST response in patients with a high baseline dNLR; a)% change in dNLR in patients with 

response vs. stable or progressive disease, and b) % change in the dNLR in patients with progressive disease 

vs. clinical benefit. 

 

For patients in the baseline low dNLR group, there was no significant difference in change 

dNLR during treatment between responders and those with stable or progressive disease 

at 12 weeks (p=0.12). Those with clinical benefit had a greater decrease in dNLR at mid-

point than those with progressive disease at 12 weeks (p=0.002) (fig. 2.24). 
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Figure 2-24 Boxplots showing the relationship between % change in dNLR from baseline to mid-point and 12 

week RECIST response in patients with a low baseline dNLR: a) % change in those with response vs. stable or 

progressive disease, and b) % change in those with progressive disease vs. clinical benefit. 

 
As in FOCUS, a pre-defined cut-point was used to assign patients to 3 ‘NLR-dynamic’ 

groups:  

 

 Improved dNLR (>25% decrease in dNLR from baseline to pre-cycle 4),  

 Stable dNLR (<25% decrease and <25% increase from baseline to pre-cycle 4)  

 Worse dNLR (>25% increase in dNLR from baseline to pre-cycle 4)  

Outcomes were compared between falling and stable or worsening dNLR (improved vs. 

stable or worse), and falling or stable dNLR and rising dNLR (improved and stable vs. 

worse dNLR), for each of the baseline dNLR groups. 

 

The ‘NLR-dynamic’ grouping as a monitoring tool was more useful in those with a baseline 

high dNLR than a baseline low dNLR; changes in the dNLR in the baseline low dNLR group 

were not useful for predicting 12 week RECIST response (table 2.15). 

 

Similar to FOCUS, the most useful application was identifying patients most at risk of 

progression at 12 weeks. Patients with a high baseline dNLR whose dNLR continued to 

rise during chemotherapy were at most risk of progression. None of these patients had a 

12-week RECIST response, and they had a much lower chance of stable disease (OR = 0.33, 

p=0.018). Conversely those with improving or stable dNLR at the midpoint had similar 

rates of response and disease control than patients with a low baseline dNLR (table 2.15). 
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Baseline dNLR low group: effect of changing dNLR during treatment 

NLR kinetic category 

(n=454) 

12 wk CR/PR OR 

(95%CI) 

Clinical Benefit OR 

(95%CI) 
PFS HR OS HR 

Improved dNLR 

n = 171 (37.6%) 

RR = 22.2% DCR = 76.2% 

0.97 (0.79-1.19) p=0.80 0.96 (0.78-1.17),p=0.68 
1.51(0.93-2.44), p=0.093 

OR = 1.86 (1.22-2.83) 

p=0.004 

Stable or improved 

dNLR 

n =383 (84.4%) 

RR = 19.3% DCR = 69.2% 

0.84 (0.64-1.12) p=0.24 
0.78 (0.60-1.02) 

p=0.073 1.64 (0.78-3.47), p=0.19 
1.56 (0.93-2.63) 

p=0.090 

dNLR rise 

n = 71 (15.6%) 

RR = 12.6% DCR = 59.4% 1.18 (0.83-1.56), 

p=0.24 

1.27 (0.98-1.65), 

p=0.073 
0.61 (0.29-1.27) p=0.19 0.63 (0.38-1.07), p=0.090 

Baseline dNLR high group: effect of changing dNLR during treatment 

NLR kinetic category 

(n=337) 

12 wk CR/PR OR 

(95%CI) 

Clinical Benefit OR 

(95%CI) 
PFS HR OS HR 

Improved dNLR 

n = 208 (61.7%) 

RR = 18.7% DCR = 63.4% 

0.81 (0.64-1.01) p=0.070 0.94 (0.72-1.22),p=0.67 
1.89 (0.98-3.65), p=0.056 

OR = 1.29 (0.82-2.02) 

p=0.26 

Stable or improved 

dNLR 

n =315 (93.4%) 

RR = 16.8% DCR =62.9% 

0.48 (0.31-0.76) p=0.002 
0.73 (0.46-1.17) 

p=0.19 n/a 
2.96 (1.21-7.27) 

p=0.018 

dNLR rise 

n = 22 (6.6%) 

RR = 0% DCR = 36.3% 2.06 (1.31-3.22), 

p=0.002 

1.35 (0.85-2.15), 

p=0.19 
n/a 0.33 (0.14-0.83), p=0.018 

 

Table 2-15 Treatment outcomes (OR for 12 week response; OR for clinical benefit; HR for PFS; HR for OS), depending upon NLR kinetic categories in PICCOLO. 
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Similar to the FOCUS analysis, change in NLR during therapy has a low sensitivity for 

detecting progression (16.9%), but a high specificity (89.7%). 

 

ROC curves for changes in NLR for predicting clinical benefit (AUC=0.56) and 12 week 

response (AUC=0.55) as shown in figure 2.25.   

 

 

Figure 2-25 ROC curves for dNLR change for the prediction of a)12 week clinical benefit, and b) 12 week 

RECIST response 

 

2.6. Discussion 

In two large RCTs the routine clinical parameters tested provided useful information to 

aid patient assessment and management at different points of the treatment pathway in 

aCRC. In particular the dNLR and platelets, markers of the systemic inflammatory 

response, were strong prognosticators in both the first and second line, and may have 

value in monitoring response to treatment. These markers also identified low risk patients 

not disadvantaged by a less intensive first line treatment. PTL was a less useful biomarker 

in both clinical scenarios. 

 

For previously untreated aCRC patients high dNLR, high platelet count and right PTL were 

poor prognostic markers for OS. At multivariate testing, only dNLR and platelets retained 

statistical significance. For PFS, dNLR and platelets were significantly prognostic (at 

univariate and multivariate testing); PTL was not.  

 

For patients commencing second-line irinotecan in PICCOLO, having progressed on 5FU, 

dNLR and platelets were poor prognostic markers for OS and PFS, but only dNLR 

remained significant at multivariate testing. PTL was not a useful prognostic marker in the 

second line. 
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This analysis has tested candidate markers alongside available parameters identified by 

the Kohne(45) and GERCOR(152) scores, and additionally tumour KRAS and BRAF status, 

to ensure relevance for modern oncology practice. The strength of effect of each 

prognostic marker was assessed in both univariate and multivariate models. Using this 

approach, important prognostic variables in the first-line were (in order of OS adjusted 

HR), raised alkaline phosphatase, BRAF-mut status, platelets ≥400, high dNLR ≥2, 2 or 

more metastatic sites and poor performance status. The two strongest prognostic 

categories included only a small proportion of patients (high alkaline phosphatase 15.7%; 

BRAF-mut 7.6%). For prediction of poor PFS, high alkaline phosphatase, high platelets, 

high dNLR, 2 or more metastatic sites and primary tumour in-situ remained significant. 

 

These findings are in keeping with information from the Kohne and GERCOR scores, and 

with reports of BRAF mutation and alkaline phosphatase as poor prognostic markers in 

aCRC.(329, 330) The mechanisms of the poor outlook of BRAF-mutated aCRC will be 

discussed in Chapter 3. A high alkaline phosphatase level is likely to represent a high 

burden of liver metastatic disease with increased liver mass, potentially with a degree of 

intrahepatic or biliary obstruction.(330)  

 

A limitation of this prognostic model is that it didn’t include LDH, identified as a strong 

marker in both databases. The FOCUS dataset did not find a strong prognostic role for PTL, 

differing from previous work.(325) Given the strength of evidence of the dNLR and 

platelet count, a modern prognostic marker panel for chemotherapy-naïve patients should 

additionally include dNLR, platelets and BRAF-mutation status. 

 

The median dNLR and platelets were lower in second-line than first-line patients, and 

correspondingly a lower proportion of patients were assigned to the high dNLR or platelet 

category. Given the poor outlook of these markers in first-line therapy, fewer patients with 

an active systemic inflammatory response may be deemed eligible for further 

chemotherapy, or will have died during initial treatment. Alternatively the inflammatory 

response may be most active at the point of diagnosis of advanced disease, and exposure 

to chemotherapy will have dampened this. This highlights differences between a 

chemotherapy-naïve population and those fit enough for further treatment. It is likely that 

the first-line prognostic panel may not be as relevant in this group and a more 

personalised approach may be appropriate. 

 

For patients commencing second-line chemotherapy, significant prognostic markers OS 

and PFS in the multivariate model were poor PS, raised alkaline phosphatase and dNLR: 
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patient characteristics provided more prognostic information than tumour factors. Careful 

evaluation of patient condition is therefore critical in this setting as those with poor PS, 

high alkaline phosphatase or dNLR had considerably less PFS and OS benefit.  

 

There is less data providing details of prognostic factors for patients who have failed first-

line chemotherapy. In a study examining irinotecan vs. BSC, poor PS, recent weight loss, 

two or more metastatic sites, low Hb and the presence of liver metastases were significant 

in multivariate testing.(110) In a second-line trial comparing irinotecan vs. FU, following 

FU failure PS greater than 1, right PTL, low Hb, low WBC and high Alk phos were 

associated with poor outcomes.(154)  

 

The evaluated clinical models could not be recommended as predictive biomarkers for the 

FOCUS or PICCOLO treatments. In FOCUS, patients with a low dNLR had no OS advantage 

from upfront combination chemotherapy compared with FU alone; patients with a high 

dNLR did. However dNLR/ treatment interaction was negative so dNLR cannot be 

recommended as a biomarker for this clinical decision. High dNLR patients had as much 

chance of responding to first-line combination chemotherapy than low dNLR patients, but 

had lesser chance with single agent FU. These findings stress that this group benefits from 

intensive first-line therapy, and challenges previous reports that high dNLR patients have 

less benefit from chemotherapy.(305, 306)  

 

In COIN the only group to be significantly disadvantaged by intermittent compared 

continuous first-line chemotherapy were patients with high baseline platelets,(102) 

however in FOCUS, high platelets did not identify patients benefitting more from intensive 

chemotherapy.   

 

PTL was not a useful predictive biomarker for any treatment strategy. Right PTL has 

proposed as a negative predictive marker for anti-EGFR therapies.(155, 324) In PICCOLO, 

the first randomised assessment of PTL as a predictive marker for anti-EGFR agents, right 

PTL was not discriminative in either the KRAS-wt or the KRAS-BRAF-wt population: 

patients with BRAF-wt right-sided tumours gained PFS benefit with IrPan compared with 

Ir alone. These results would not be supportive of clinicians using PTL to guide treatment 

decisions. 

 

Further exploratory analyses were performed to optimise the biomarker models and 

investigate dynamic changes in the dNLR during therapy. Firstly the prognostic utility of 

each component of the FBC was tested to investigate whether neutrophils alone, or 
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lymphocytes alone, or the ratio was more important. In this model, the dNLR was the 

strongest marker. This may be a simple representation of shift from a TH2 to a TH1 

response, with promotion of neutrophils with corresponding decrease in lymphocytes: 

this pattern is typically seen in cancer and is associated with worse prognosis.(259)  

 

The dNLR is a continuous variable with smooth distribution and no natural 

dichotomisation point, but a binary cut-point is more practical for clinical application. This 

study prospectively defined the cut-point at 2.00, as validated in the Proctor’s study.(286) 

Proctor’s paper tested the dNLR in the Scottish Cancer Registry population, including 

patients with different cancer sites and at different stages. The dNLR measurement was 

sampled up to 2 years following cancer diagnosis. There are therefore differences between 

this population and the aCRC population studied in FOCUS so an alternative cut-point may 

be more appropriate for the aCRC population. 

 

As a continuous marker, rising dNLR was associated with increasingly poor OS so the 

prognostic effects of alternative cut-points were assessed to identify a more informative 

cut-point. Progressive rises in the dichotomisation point corresponded with increasing 

HRs for OS and PFS, compared to the low dNLR population. In FOCUS when a cut-point 

range of 3.5-4.0 was utilised, the dNLR was a stronger prognostic marker for OS, than the 

predefined cut-point of 2 (OS HRs of 2.03 vs 1.56, respectively). With this model, fewer 

patients were assigned to the ‘high’ group than in the pre-defined model (15.5% vs 

56.4%). With a cut-point of 3.5, the dNLR was the strongest prognostic marker for patients 

commencing first-line chemotherapy, identifying those patients at increased risk. This cut-

point range was most associated with increased risk in PICCOLO also. 

 

The optimal dichotomisation point will also reflect the degree of risk that clinicians want 

to observe: a dNLR cut-point of 3.5 identifies patients at most risk of poor outcomes 

independent of treatment, rather than moderate risk utilising a lower value. Using this 

value, the dNLR would be a useful clinical trial stratification factor, identifying a high risk 

population but having no utility as a predictive marker for any tested treatment strategies. 

 

Platelets and dNLR both had independent prognostic effect for OS and PFS in FOCUS so the 

use of a clinically usable single combined model was evaluated. Although both may reflect 

an underlying inflammatory response, different processes may be being captured.  An 

‘either high’ vs. a ‘neither high’ combined dNLR/ platelet model was firstly tested which 

assigned a high proportion of patients to the ‘high’ group in both FOCUS (62.5%) and 
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PICCOLO (79.9%). In both trials this model was a stronger prognostic marker than dNLR 

alone, and in PICCOLO more discriminative than either marker alone.  

 

‘Either high’ patients had more PFS benefit from upfront intensive chemotherapy than FU 

alone, than the ‘neither high’ (interaction p=0.041). Although lesser effect was seen for OS, 

‘neither high’ patients had no survival advantage with upfront combination chemotherapy. 

The ‘either vs neither’ dNLR/platelet model appears to identify a low risk group of 

patients with a more indolent course who have no survival detriment with a more 

conservative upfront treatment approach.  

 

Using a model testing the effect of both dNLR and platelets raised, only a small number are 

assigned to the ‘high’ group (FOCUS 18.3%; PICCOLO 11.7%) but they had markedly 

inferior OS and PFS. This model was not a useful predictor for any treatment strategy 

tested. 

 

Which inflammation score should then be recommended for incorporation into clinical 

practice? The dNLR and platelets have independent prognostic effects, both when tested in 

the primary binary model, and in the continuous model. However only dNLR was a 

significant prognostic marker for both OS and PFS in PICCOLO. For the identification of 

higher risk patients a dNLR of greater than 3.5 was most discriminative. These patients 

require upfront intensive treatment and were shown to have less benefit from a gentler 

approach. 

 

Instead, for the identification of low risk patients the ‘either vs neither’ model is 

recommended: patients with both low platelets and low dNLR had a more indolent course 

and less benefit from intensive first-line chemotherapy. This may aid other routine clinical 

decisions: a patient and clinician may be more comfortable with an initial expectant 

approach, gentler upfront chemotherapy and treatment holidays. These approaches could 

have quality of life benefits for some patients. Additionally, a MDT may be more willing to 

consider a patient with borderline resectable metastatic disease for surgery if they 

otherwise in a good prognostic category. Although systemic inflammatory scores are 

considered alongside other prognostic markers, in both trials host immune markers 

performed better than tumour specific factors in joint models. This information therefore 

should be incorporated into the routine assessment of aCRC patients being considered for 

chemotherapy and into clinical trial stratification, particularly for post first-line studies 

where host factors were more important than tumour factors. 
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Comparisons with other inflammatory scores were not possible. Retrospective analyses of 

RCT datasets are limited by the variables collected, and therefore none of lymphocytes, 

albumin or CRP data is available. Therefore this study can only advise on application of the 

dNLR. Importantly this study demonstrates the usefulness of scores of the systemic 

inflammatory response in clinical practice and this model could be optimised in further 

datasets. 

 

As blood tests are performed routinely throughout chemotherapy, the dNLR was tested as 

a tumour marker to identify patients failing midway through treatment. In both trials 

median dNLR was lower at treatment mid-point than baseline, suggesting chemotherapy 

acts on the peripheral inflammatory response, additional to its anti-tumour activity. It was 

hypothesised that a falling dNLR during treatment would correlate with tumour response, 

as assessed by RECIST at 12 weeks. It was also hypothesised that different dynamic effects 

would be seen in the baseline dNLR high and low patients, so their data was analysed 

separately. 

 

In both trials patients with a baseline high dNLR had a greater fall in dNLR during 

treatment, and the “dNLR dynamic’ model was more useful in these patients. In FOCUS 

stable or falling dNLR mid-way through treatment was associated with an increased 

chance of response and clinical benefit. Conversely, an increasing dNLR at mid-point was 

significantly associated with progressive disease at 12 week radiological assessment. In 

both trials patients with a high baseline dNLR, whose dNLR continued to rise were at high 

risk of progression during chemotherapy. A rising dNLR may identify failing patients 

requiring early radiological assessment and consideration of an alternative management 

plan. In this model, patients who have failed early will have been missed, as they wouldn’t 

have had measurement of dNLR at cycle 4 or a 12-week scan. Therefore this model may 

underestimate the risk of rising dNLR during therapy. 

 

A candidate monitoring tumour marker requires rigorous testing before clinical 

application: the ideal marker has 100% sensitivity and 100% specificity for predicting the 

desired clinical outcome, in this case the dNLR’s ability to detect progressive disease at the 

12 week assessment. ROC analysis in both trials would not be supportive of the dNLR as a 

useful monitoring biomarker. In further examination, the dNLR had a low sensitivity for 

detecting progression in both trials: therefore a clinician cannot presume that a rising 

dNLR necessarily means chemotherapy is failing. However in both trials specificity 

(FOCUS – 91.7%; PICCOLO 89.7%) was high, suggesting that if a patient has a low or 
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improving dNLR then it is unlikely that they are progressing. This is the only setting that 

the dNLR can be recommended as a monitoring tool.  

 

Currently there is no ‘gold standard’ of tumour marker for monitoring advanced CRC. As 

with CEA, dNLR information should be taken into context with the overall clinical picture. 

A low dNLR may provide reassurance to continue treatment, but should be questioned if 

there are other features of progression. A high dNLR alone should not prompt an early CT 

scan, but it would provide supporting evidence alongside other suggestive clinical factors. 

 

In this chapter the dNLR and platelet count are useful prognosticators in the first and 

second-line treatment of aCRC. Models using these markers can identify both lower risk 

patients for whom more conservative upfront treatment may be reasonable, and higher 

risk patients requiring a more intensive approach.  Furthermore serial dNLR 

measurements during treatment may have utility as a monitoring tool. 

 

This work is consistent with and builds upon findings of previous studies reporting that 

the systemic inflammatory response is important in the assessment and treatment of 

cancer. Further validation in RCT databases would be valuable to confirm its optimal 

utility in aCRC routine clinical practice. 

 

2.7. Further work 

 

As these biomarkers are routinely measured, testing in other clinical scenarios may reveal 

other clinical applications. Testing in RCT datasets of adjuvant chemotherapy would 

assess whether the dNLR helps in the risk stratification of early CRC; particularly in 

patients with lower stage tumours not routinely offered chemotherapy. Testing in trials of 

neo-adjuvant chemotherapy may show that patients with a high NLR benefit more from 

upfront systemic therapy than a low NLR population. These markers should be tested in 

other cancer sites, preferably in RCT datasets.  

 

An Australian study is underway aiming to validate and quantify the prognostic value of 

the host inflammatory response for PFS and OS in bevacizumab treated aCRC patients.  
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The interaction between systemic inflammatory markers and immune modulating drugs 

would be of value. In particular, assessing the NLR in trials of immune modulating drugs in 

melanoma or lung cancer may be beneficial.  

 

Although this study has shown trends between changes in the NLR and 12 week 

radiological response, the model lacked sensitivity. However there is little data supporting 

the strength of the CEA as a monitoring tool in aCRC: the sensitivity and specificity for 

detecting progression has only been reported in small series. A prospective study 

measuring CEA and all components of the inflammatory response measured in routine 

bloods tests throughout chemotherapy could compare each marker’s ability to predict 

tumour response. Following this, each could be used as a monitoring tool to detect 

progressive disease off active treatment. 

 

The dNLR and platelet models are thought to be surrogates for the systemic inflammatory 

response, and understanding the exact underlying immune mechanism  underpinning this 

poor outlook is crucial to identify novel biomarkers and therapeutic targets.  

 

One contributor may be activation of the IL-6/JAK/STAT3 pathway. IL-6 signalling 

inhibition led to suppression of colitis-associated carcinogenesis in mouse models and in 

colon cancer cell lines.(331) Current therapies targeting the IL-6/JAK/STAT3 pathway are 

in early testing. An IL-6 ligand-blocking antibody, (siltuximab) has been shown to be 

capable of blocking the signal transduction pathway, achieving anti-tumour and anti-

inflammatory effect in metastatic renal cell carcinoma.(332) Another IL-6 directed mAb 

(Tocilizumab) has been reported to treat rheumatoid arthritis and preclinical data 

suggests efficacy in cancer.(333) Treatments inhibiting JAK/STAT signalling and STAT3 

are also in development.(276) The NLR may identify patients who benefit most from these 

therapies and should be considered the development of these agents. 

 

To understand the underlying mechanisms, a local study is recruiting aCRC patients prior 

to commencing first-line chemotherapy. Differences in immune function testing between 

patients with a high NLR and low NLR will be investigated. Additionally changes in the 

immune panel during chemotherapy will be tested, and correlated with tumour response.  

 

Blood tests are being collected before treatment, mid-way through chemotherapy and 

following completion of treatment. Samples are transferred immediately to the laboratory 

and immune function testing will be performed in batches. Additionally tumour formalin-

fixed paraffin-embedded (FFPE) blocks will be collected and immune scoring on whole 
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sections will be performed and correlated with outcomes. The systemic and tumour 

immune profiles shall be compared. Biomarkers of interest will be prospectively tested in 

further datasets. 

 

 Challenges of this study are the high volume of blood required for testing (50ml per 

measurement), the need for immediate transfer to the laboratory and cost (approximately 

£2000 for 3 serial immune panel tests). Therefore any new biomarker identified would 

need to considerably add to the information already provided by the current inflammatory 

score
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Chapter 3. Exploring the poor outcomes of BRAF-mutant 
advanced colorectal cancer 

 

3.1. Introduction 

As described mutations in BRAF confer a poor prognosis in aCRC. However the underlying 

causes for this phenomenon are unclear. This chapter shall explore this poor prognosis by 

examining detailed treatment outcomes of patients in FOCUS, COIN and PICCOLO. 

 

3.1.1. Mutations in BRAF 
 
The BRAF gene is part of the MAPK signalling pathway (Figure 3.1). BRAF produces a 

protein called B-Raf (serine/threonine-protein kinase B-Raf) Mutations in BRAF (BRAF –

mut) are associated with poor outcomes in aCRC independent of treatment. However the 

mechanism of this poor outlook is unclear. 

 

 

Figure 3-1 Simple representation of the MEK-AKT pathway, highlighting position of BRAF. Modified from 

(334) 
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3.1.2. The role of BRAF in the MAPK signalling pathway 

 

Constitutive activation of the MAPK pathway is a common event in many cancers, leading 

to proliferative signalling.(249) In normal circumstances MAPK signalling is initiated by 

ligand binding to the EGFR, leading to receptor dimerisation (fig. 3.1). Subsequently 

phosphorylated adaptor proteins bind to and activate the RAS family of proteins.(335) 

Next, RAS proteins bind to and phosphorylates cytosolic RAF dimers,(336) of which there 

are 3 RAF isoforms that are serine/threonine kinases, BRAF, C-RAF and A-RAF. RAF 

activation leads to recruitment of MEK and ERK and scaffolding proteins to the cell 

membrane, leading to the phosphorylation of MEK, then ERK and subsequent nuclear 

activity.(337) RAF plays a critical role in this pathway and mutation provides opportunity 

for malignant cells to maintain continuous MAPK signalling. 

 

Mutations in BRAF were first described by Davies in 2002(338) and are most commonly 

caused by a valine to glutamic acid change at codon 599 (V600E); mutations of CRAF are 

rare and ARAF have not been reported.(339) V600 mutation leads to a conformational 

change in the G-loop segment of BRAF, resulting in its constitutional activation 

(approximately 500 fold increase) and an ability to bind to MEK and ERK as a 

monomer.(337) A consequent increase in ERK phosphorylation leads to target gene 

transcription, resistant to normal negative feedback mechanisms.(340) 

 

Mutations in BRAF have been shown to be present in many stages of cancer development 

and progression: mutations are seen in benign skin naevis(341) and in pre-cancerous 

colon polyps.(342) However oncogenic BRAF alone cannot induce progression to 

cancer.(342) 

 

BRAF mutations have been described in several cancer types: melanoma, colorectal 

NSCLC, thyroid, hairy-cell leukaemia, gliomas and multiple myeloma,(343) stressing the 

importance of the MAPK pathways in oncogenesis across a wide spectrum of cancers. 

Consequently there has been intense effort to target BRAF with small molecules, with most 

success in metastatic melanoma. 
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3.1.3. BRAF mutations in metastatic melanoma 
 

Mutations in BRAF occur in nearly half of all metastatic melanomas; the most common 

mutation is V600E, followed by V600K, V600D and L597R mutations.(344) Clinico-

pathological differences are noted between V600E-mutated and non-V600E mutated 

patients: non-V600E mutations are associated with increasing age, male sex and 

chronically sun-exposed areas.(345) There is a decrease in the incidence in any BRAF 

mutation with increasing age: almost all patients under 30 possess a mutation compared 

with 25% of patients over 70.(345) 

 

Previously the outlook for metastatic melanoma was dismal, but identification of the BRAF 

mutation led to improved pathological understanding of the disease, leading to new 

therapeutic opportunities. Following disappointing results of clinical trials of 

sorafanib,(346, 347) a phase I trial of the BRAF-enzyme inhibitor vemurafanib reported 

impressive response rates: of 32 patients treated, 24 experienced a PR, and 2 a complete 

response (CR).(348) The subsequent RCT of vemurafinib vs. decarbazine in BRAF-mut 

metastatic melanoma was stopped early due to reaching the pre-specified early stopping 

rule of improved OS and PFS,(224) leading to FDA approval of vemurafinib and the 

companion diagnostic test in August 2011. Another BRAF-inhibitor, dabrafenib, has shown 

efficacy as a single-agent and in combination with trametinib, a MEK-inhibitor.(349, 350) 

There is also evidence to support MEK-inhibition directly in metastatic melanoma, 

however in a phase II trial of trametinib overall responses were limited to those naïve of 

BRAF-inhibition,(351) suggesting that acquired resistance to BRAF-inhibitors impacts 

response to single-agent MEK inhibition. 

 

Reactivation of the MAPK pathway on progression is a mechanism of resistance to BRAF-

targeted therapy, with new mutations in NRAS and MEK identified.(352) Combining BRAF 

and MEK inhibition was a logical approach to delay the development of resistance: recent 

phase III trials in previously untreated BRAF-mut patients have demonstrated 

improvements in all clinical endpoints with the doublet when compared with vemurafenib 

alone.(353, 354) An ongoing phase II study is looking at this combination for patients with 

surgically resected high risk V600 mutated melanomas. This molecular understanding of 

acquired resistance has been possible by studies collecting paired biopsies: prior to 

treatment and following progression.  
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3.1.4. BRAF mutations in other cancers 
 

The personalisation of therapy for BRAF-mut patients is less developed in other cancers. In 

NSCLC, BRAF mutations are present in 1.6-4.9% of adenocarcinomas and of those half are 

V600 mutations.(343) Unlike melanoma there are no distinct clinico-pathological features 

and treatment outcomes with first-line platinum treatment compared are comparable 

with wild-types.(355) Ongoing trials are investigating the role of BRAF-inhibition in V600 

(NCT01336634) and non-V600 mutated (NCT01514864) NSCLC; additionally the MEK1/2 

inhibitor selumetinib is under investigation (NCT00888134). 

 

3.1.5. BRAF mutations in colorectal cancer 
 

An association between dMMR and BRAF mutations in early CRC was first reported by 

Rajagopalan, also noting that BRAF and RAS mutations were mutually exclusive.(342) The 

presence of a BRAF mutation in a dMMR tumour only occurs in sporadic CRC, and rules out 

HNPCC.(356) Instead sporadic tumours arising from MSI are highly associated with BRAF-

mut and CIMP-positivity.(357, 358) Mutations are highly associated with certain clinic-

pathological features: female sex, right PTL, and increasing age, (322) and have a 

characteristic gene expression profile.(85) 

 

3.1.5.1. BRAF mutations in early stage colorectal cancer 
 

In a molecular sub-study of PETACC-3 (RCT comparing biweekly infusional FU alone or 

with irinotecan for stage III CRC),(359) BRAF-mut occured in 7.9% of early CRCs; the 

incidence did not significantly vary by tumour stage.  

 

Despite frequent co-existence, dMMR and BRAF-mut are associated with differing 

outcomes: in two large adjuvant trials in stage II/III CRC BRAF-mut was associated with 

poor OS,(322, 360) whereas dMMR instead conferred a favourable outlook.(361) However 

this was not reproduced in a large adjuvant trial in stage II CRC.(362) The worst 

prognostic group is the BRAF-mut/pMMR group.(322, 360, 363) Of note, BRAF-mutant 

status can still confer poor prognosis in the dMMR population.(363)  

 

The underlying mechanism for this poor prognosis in early-stage cancer is not fully 

understood. There is, however, no convincing evidence that BRAF-mut patients have lesser 

benefit with adjuvant chemotherapy. In PETACC-3, BRAF-mut status was not associated 

with inferior recurrence free survival (RFS);(322) in QUASAR (RCT comparing adjuvant 

chemotherapy vs. observation in stage II CRC), BRAF-mut status did not predict for lack of 
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benefit with 5FU adjuvant chemotherapy;(362) and in CALBG 89803, there was a trend 

towards improved benefit from the addition of Ir to FU/LV chemotherapy in BRAF-mut 

patients.(360)  

 

However, when they do recur BRAF-mut cancers display a distinct pattern of metastatic 

spread: more commonly associated with peritoneal and distant lymph node metastases, 

and less likely to have lung metastases and are associated with short survival.(364) 

 

3.1.6. BRAF mutations in advanced colorectal cancer  
 

Mutations in BRAF occur in 8-12% of patients with aCRC(343) and almost all harbour the 

V600 substitution.(156, 329) They are rarely associated with RAS or PIK3CA 

mutations.(156, 338) 

 

Similar to early stage CRC, BRAF-mut aCRCs represent a distinct population with typical 

clinico-pathological features: older patients, proximal primary tumour of high grade, 

associated with dMMR status, have mucinous histology, and have an increased incidence 

of peritoneal and distant lymph node metastases, with fewer pulmonary metastases.(159, 

364-367)  

 

 BRAF-mut aCRC is consistently associated with poor OS in case series(213, 367, 368) and 

RCTs.(97, 329) Pooled analysis of first-line aCRC trials reports inferior OS compared with 

BRAF wild-types (BRAF-wt) (11.4 vs 17.2 months, HR =1.91 p<0.001).(159) In a 

population-based study of 354 patients, following adjustment for prognostic factors, 

BRAF-effect was even more marked (OS HR=10.66, p<0.001).(364)  

 

Of note, dMMR is associated with worse prognosis than pMMR in aCRC.(159, 364) Within 

the larger series, there was no significant interaction between dMMR and BRAF status and 

outcomes; the authors concluded that the poor prognosis of dMMR is driven by BRAF-mut 

status.(159) 

 

BRAF-mut aCRC appears to represent a distinct population with a poor outlook.  BRAF is 

therefore an attractive therapeutic target, particularly with successes seen in melanoma. 
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3.1.6.1. Targeting BRAF in advanced colorectal cancer 
 

Vemurafanib was tested in a phase I study of 21 BRAF-mut aCRC patients: only one of 19 

patients with evaluable response had a PR. The authors concluded that despite only 

modest clinical activity, BRAF could be a therapeutic target in aCRC.(369) 

 

Preclinical work confirmed that BRAF-mutant CRC cell lines were less sensitive to 

vemurafenib than BRAF-mut melanoma.(370) Treatment of BRAF-mut CRC cell lines with 

vemurafenib led to initial suppression of pERK levels, but levels rose again within 24 

hours suggesting reactivation of the MAPK pathway. High pEGFR levels were seen 

following vemurafenib treatment and subsequent inhibition of EGFR led to suppression of 

pERK levels by stopping activation of RAS-GTP and the subsequent phosphorylation of 

CRAF. The combination of RAF- and EGFR inhibition led to greater in vitro and in vivo 

efficacy compared with RAF inhibition alone. Increased levels of pEGFR have not been 

described in BRAF-mut melanoma following BRAF-inhibition.  

 

Complementary work confirmed that BRAF-mut CRC cell lines were insensitive to single 

agent BRAF-inhibition until knockdown of EGFR. Subsequent clinical activity was observed 

with combination of vemurafenib with anti-EGFR agents; anti-EGFR agents alone had little 

anti-tumour effect.(371) The suggested mechanism was that combination therapy 

‘switched off’ EGFR-dependent Akt activation.  

 

Dual blockade of the RAF-MAPK pathway with vemurafenib plus a MEK inhibitor was 

efficacious in melanoma, with decreases in pERK levels strongly associated with tumour 

response.(372) Combining BRAF and MEK inhibitors may therefore prove an effective 

strategy instead in aCRC.  

 

Initial clinical testing of both dual MEK and BRAF inhibition(373) and dual EGFR and BRAF 

inhibition(374) have been reported. Whilst both demonstrated activity (RR of 12% and 

13.3%, respectively), this is not comparable to RR in melanoma. However a triplet 

combination of dabrafenib, trametinib and panitumumab was more promising: in the 14 

patients treated, 40% had a clinical response and a further 40% experienced disease 

stabilisation, with acceptable toxicity.(374)  

 

BRAF is therefore a complex therapeutic target in aCRC and despite progress there is 

unlikely to be an approved targeted approach available imminently so optimisation of  

currently available treatment is important. Further understanding of the mechansim of 
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poor prognosis and identification of the point of the treatment pathway at which 

outcomes differ from wild-types may suggest alternative treatment strategies.  

 

3.1.7. Mechanisms of poor prognosis in BRAF-mut aCRC 
 

One possible mechanism for poor outcomes is that BRAF-mut status may confer resistance 

to treatments used in CRC. Most data describing potential interaction of BRAF-mut status 

with aCRC treatment is from studies and RCTs investigating anti-EGFR agent efficacy; only 

limited further information exists for other treatment strategies. 

 

3.1.7.1. EGFR targeted agents 
 

BRAF-mut has been extensively investigated as a negative predictive biomarker for 

cetuximab and panitumumab treatment in KRAS-wt patients. A negative predictive effect 

was reported in several non-randomised series(189, 191) and a harmful effect of 

panitumumab was seen in BRAF-mut patients in PICCOLO.(131) However molecular 

analysis in other RCTs reported solely prognostic value.(97, 329) 

 

3.1.7.2. Bevacizumab 
 

There is no evidence that BRAF-mut patients have worse outcomes with 

bevacizumab.(375, 376)  

 

3.1.7.3. Standard chemotherapy regimes 
 

The impact of BRAF-mut status on outcomes with standard chemotherapy regimes is less 

investigated. As discussed there was no evidence of inferior RFS with adjuvant 

chemotherapy.(360, 362) However poor results with chemotherapy are reported for 

BRAF-mut aCRC patients.(367, 368, 377) In the larger series from MD Anderson, 69 BRAF-

mut patients were treated with systemic therapy (OxFU or IrFU based, including 

combinations with monoclonal antibodies) for a median of two lines of therapy, but with 

no BRAF-wt comparison.(377) Median PFS was 6.3 months for first-line treatment, not 

affected by regimen which the authors felt was inferior to a wild-type population. Survival 

of BRAF-mut patients was 20.2 months, due to inclusion of those with resectable 

metastatic disease. In a study of 168 patients, inferior PFS with first-line chemotherapy 

was reported for the 13 BRAF-mut patients compared to BRAF-wt (4.3 vs 12.5 mths).(368) 
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However in FOCUS whilst BRAF-mut status was associated with markedly inferior OS, the 

BRAF-mut and BRAF-wt patients benefitted to a similar extent from the addition of either 

oxaliplatin or irinotecan to 5FU.(156)  

 

Less information exists regarding the experience of BRAF-mut patients on subsequent 

lines of chemotherapy following first-line progression. The MD Anderson cohort described 

outcomes following first-line chemotherapy where available: median PFS for BRAF-mut 

patients was 2.5 and 2.6 months for second and third-line treatments respectively, 

corresponding with the first response assessment.(377)  

 

Therefore for only one class of drug, anti-EGFR antibodies, has BRAF-mut been reported to 

confer lack of benefit,(131) but this finding is inconsistent;(97) given the modest overall 

impact of these drugs on survival it does not explain the major survival disadvantage seen 

in BRAF-mut patients. One consistent finding is that BRAF-mut is associated a greater 

detriment in overall survival than in progression-free survival.  Thus, in the pooled 

analysis of first-line trials, whilst PFS was modestly inferior in BRAF-mut patients than 

wild-types (6.2 vs 7.7 months, HR = 1.34 p<0.001), this small difference contrasted with 

very markedly inferior OS (11.4 vs 17.2 months, HR =1.91 p<0.001).(159)  This raises the 

question whether BRAF-mut confers tumour biological changes that lead to accelerated 

decline following progression on therapy, and it is this rather than drug resistance that 

drives the poor prognosis. 

 

To investigate this phenomenon further, individual patient data from three large aCRC 

RCTs has been examined to identify points on the treatment pathway at which BRAF-mut 

outcomes differ from BRAF-wt patients treated with standard chemotherapy. Detailed 

treatment outcomes in two first-line RCTs, behaviour during chemotherapy-free intervals 

and following disease progression have been tested. Patterns of, and outcomes with 

second-line therapy will be described. In order to avoid potential interactions of BRAF 

status with anti-EGFR drugs  patients treated in trial arms which involved anti-EGFR 

agents were excluded, and at a time when these drugs were not widely available in the UK 

for post-trial use. 
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3.2. Hypothesis 

The poor prognosis of BRAF-mut aCRC patients is not chiefly driven by chemoresistance. 

The disparity between PFS and OS detriments in first-line trials instead may suggest that 

deterioration following progression may underlie the poor outlook of these patients. 

 

3.3. Methods 

3.3.1. Patients and Methods 
 

Individual patient data was obtained from selected arms of FOCUS,(100) COIN(102, 128) 

and PICCOLO,(131) to reflect different clinical uses of standard cytotoxic chemotherapy 

(without targeted therapy) in aCRC (Figure 3.2).  

 

Full reports of these studies have been previously published.(100, 102, 128, 131) National 

ethical approval and patients’ written informed consent was obtained for all aspects of the 

clinical and translational research.  

 

3.3.2.  Assessment of BRAF status 
 

BRAF-status has previously been determined in all three trials; methodology is described 

in detail in each manuscript.(131, 156, 222) Briefly, DNA was extracted was extracted 

from FFPE tumour tissue using the QiAMP DNA microkits (Qiagen, Hilden, Germany), 

following manufacturer’s instructions. Primers for amplification were designed using 

Pyrosequencing Assay Design Software (Biotage AB, Uppsala, Sweden). BRAF-analysis was 

performed using PyroMark ID software (Biotage AB) set to the single nucleotide 

polymorphism (SNP) allele quantification mode. 
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Figure 3-2 Consort diagram of study participants from the FOCUS, COIN and PICCOLO trials 
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N = 2445 
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Intermittent       
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PICCOLO - 2nd line aCRC 
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KRAS-mut 
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      Ir 

    n=189 

      IrCs 

    n=288 

        KRAS-wt 
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        Ir 
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= Trial arm(s) included in RR, PFS, P-PS and OS analysis 
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5FU; Ir on 
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n=59 
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3.3.3. Statistical analysis 
 

Stata was used for all statistical analyses (Release 12 (2011), StataCorp. College Station, 

Texas). Baseline patient characteristics were compared between BRAF-wt patients (with 

or without other MEK/AKT pathway mutations) and BRAF-mut patients using two-tailed 

T-tests, Wilcoxon rank sum tests (for variables with non-normally distributed frequency 

distributions) and Pearson Chi-squared tests (for categorical variables). 

 

In addition to overall survival (OS – time from randomisation to death from any cause), 

three treatment-related clinical endpoints were used: progression-free survival (PFS - 

time from randomisation to first evidence of progression or death); 12-week RECIST 

response rate (RR), and disease control rate (DCR).(378) Finally, post-progression 

survival time was compared (P-PS), defined as time from progression to death in those 

with a progression event. In COIN arm C, patients with stable/responding disease at 12 

weeks then had a planned chemotherapy-free break until progression, making PFS and P-

PS inappropriate end-points; therefore, analysis of these end-points in COIN is limited to 

Arm A. 

 

The prognostic influence of BRAF-mut status on survival outcomes (PFS, P-PS and OS) was 

analysed using Cox proportional hazards modelling and described using HRs and 95% CIs. 

Additionally, multivariable Cox models were fitted adjusting for other factors previously 

known to be prognostic in the population or likely to interact with BRAF-status. These 

were: WHO performance status (2 vs. 0/1), primary tumour resected (yes vs no), primary 

tumour location (PTL) (right colon vs other). In COIN and FOCUS they were additionally: 

platelet count (< vs ≥ 400,000/μl), peritoneal metastases (present vs absent), MMR 

status). In PICCOLO they were additionally response to previous therapy and peritoneal 

metastases. MMR status was unavailable for PICCOLO at time of analysis. 

 

Kaplan-Meier curves were plotted. For response endpoints, ORs and 95% CIs were 

estimated from logistic regression models for the effect of BRAF-mut status. Models were 

adjusted for the markers previously described. 
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3.4. Results 

3.4.1. BRAF-status and other patient characteristics 
 

BRAF-mut status was available for 1284/1630 (78.7%) patients in COIN, 787/2135 

(36.9%) in FOCUS and 459/511 (89.8%) in PICCOLO. Prevalence of BRAF-mut was 

consistent with published values (FOCUS 61/787 [7.6%], COIN 130/1284 [10.1%], 

PICCOLO 40/459 [8.7%]). Baseline characteristics by BRAF-status were mostly balanced, 

but BRAF-muts were more likely to have right-sided PTL (58% vs 24%, p<0.001), 

peritoneal metastases (22% vs 14%, p=0.003) and dMMR (13% vs 3%, p<0.001), and less 

likely to have lung (24% vs 40%, p<0.001) and liver (68% vs 74%, p=0.040) metastases 

(table 3.1). There were no differences in demographics from patient involved in this study 

and those with BRAF-mut statuses missing in PICCOLO; in FOCUS and COIN patients with 

BRAF-status missing were less likely to have a right-sided tumour (p=0.006) and to have 

nodal metastases (p<0.001). 
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 FOCUS and COIN 
Study Population (n=2071) 

PICCOLO study population 
(n=459) 

 BRAF-mut 
(n=191) 

BRAF-wt 
(n = 1880) 

BRAF mut 
(n = 40) 

BRAF-wt 
(n = 419) 

Median age 63.4 
(IQR 57-71) 

64 
(IQR 57-69) 

63.1 
(IQR 56-67) 

62.7 
 (IQR 56-67) 

Sex Male 107 (56.0%) 1271 (67.6%) 13 (32.5%) 295 (70.4%) 
Female 84 (44.0%) 609 (32.4%) 27 (67.5%) 120 (28.7%) 
Missing 0 (0.0%) 0 (0.0%) 0 (0.0%) 4 (0.9%) 

WHO PS 0-1 
2 

173 (90.6%) 1750 (93.1%) 39 (97.5%) 386 (84.1%) 
18 (9.4%) 130 (6.9%) 1 (2.5%) 26 (5.7%) 

Missing 0 (0.0%) 0 (0.0%) 0 (0.0%) 47 (10.2%) 

Resected 
primary 

Yes 131 (68.6%) 1326 (70.5%) 36 (90%) 299 (71.5%) 

No 50 (26.2%) 496 (26.4%) 4 (10%) 118 (28.2%) 
Local 

recurrence 
10 (5.2%) 58 (3.1%) 0 1 (0.3%) 

Primary 
tumour location 

Right 111 (58.1%) 451 (24.0%) 22 (55.0%) 126 (30.1%) 
Left  70 (36.7%) 1327 (70.6%) 17 (42.5%) 284 (67.8%) 

Missing 10 (5.2%) 102 (5.4%) 1 (2.5%) 9 (2.1%) 
Previous 

clinical benefit 
Yes n/a n/a 21 (52.5%) 271 (64.7%) 
No n/a n/a 12 (30.0%) 112 (26.7%) 

Missing n/a n/a 7 (17.5%) 36 (8.6%) 
Peritoneal mets Yes 42 (22.0%) 263 (14.0%) 16 (40.0%) 97 (23.5%) 

No 148 (77.5%) 1603 (85.3%) 24 (60.0%) 311 (75.3%) 

Missing 1 (0.5%) 14 (0.7%) 0 5 (1.2%) 

Lung mets Yes 45 (23.6%) 754 (40.1%) 15 (37.5%) 246 (59.7%) 
No 145 (75.9%) 1112 (59.2%) 25 (62.5%) 164 (39.8%) 

Missing 1 (0.5%) 14 (0.7%) 0 (0.0%) 2 (0.5%) 
Liver mets Yes 129 (67.5%) 1395 (74.2%) 30 (75.0%) 305 (73.3%) 

No 61 (31.9%) 471 (25.1%) 10 (25.0%) 107 (25.7%) 
Missing 1 (0.5%) 14 (0.7%) 0 (0.0%) 4 (1.0%) 

Nodal mets Yes 104 (54.5%) 811 (43.1%) 16 (40.0%) 103 (24.6%) 
No 86 (45.0%) 1055 (56.1%) 24 (60.0%) 311 (74.2%) 

Missing 1 (0.5%) 14 (0.7%) 0 (0.0%) 5 (1.2%) 
MMR status pMMR 24 (12.6%) 56 (3.0%) n/a n/a 

dMMR 143 (74.9%) 1583 (84.2%) n/a n/a 
Missing 24 (12.6%) 141 (7.5%) n/a n/a 

KRAS status WT 180 (94.2%) 993 (52.8%) 36 (90.0%) 219 (52.3%) 
Mut 8 (4.2%) 857 (45.6%) 0 (0.0%) 172 (41.1%) 

Missing 3 (1.6%) 30 (1.6%) 4 (10.0%) 28 (6.7%) 

 

Table 3-1 Patient characteristics by BRAF status in the study population 

 
3.4.2. BRAF-mutation as a prognostic marker for overall survival 

 

BRAF-mut status was a significant prognostic marker for OS in the first line (10.8 vs 16.4 

mths; adjusted HR = 1.48, p<0.001)(table 3.2 & fig. 3.3). This effect was seen in both first-

line studies (FOCUS 10.8 vs 16.2 mths, HR = 1.55 [1.17-2.04], p=0.002; COIN 9.8 vs 16.6 

mths, HR = 1.78 [1.46-2.17], p<0.001). 
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Figure 3-3 OS KM curves for BRAF-mut vs BRAF-wt in 1st line studies 

 

However BRAF-mut status did not confer significantly inferior OS for patients commencing 

second-line treatment (6.9 vs 10.2 mths; HR = 1.17 [0.85-1.65], p=0.33) (table 3.2 & figure 

3.4). 

 

 

Figure 3-4 OS KM curves for BRAF-mut vs BRAF-wt for patients commencing second-line chemotherapy 
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Clinical 

Endpoint 
Treatment strategy Median (IQR) survival (mo) HR (95% CI) 

BRAF-mut 
 

BRAF-wt 

PFS 

1st line FU (FOCUS) n=29 
6.5  

n=399 
6.6 

0.96 (0.60, 1.52) 
P=0.86 

1st line combination (FOCUS & COIN) n=57 
6.0  

n=575 
6.9  

1.12 (0.91-1.36) 
P=0.26 

2nd line Ir n=39 
3.5  

n = 414 
4.0  

1.06 (0.76, 1.49) 
p=0.72 

P-PS 

1st line FU (FOCUS) n=48 
3.5  

n=627 
8.8  

2.13 (1.58, 2.87) 
P<0.001 

1st line combination (FOCUS & COIN) n=102 
4.4  

n=970 
9.6  

2.00 (1.61, 2.49) 
P<0.001 

All 1st line strategies n = 150 
4.2 

n=1597 
9.2 

1.69 (1.41-2.06) 
p<0.001 

2nd line Ir n=26 
5.9  

n = 291 
6.5  

1.13 (0.75, 1.69) 
p=0.57 

OS 

1st line (all regimens) n=191 
10.8  

n=1880 
16.4  

1.48 (1.22, 2.17) 
P<0.001 

2nd line Ir n = 40 
6.9  

n= 419 
10.2  

1.17 (0.85-1.65) 
p=0.33 

 

Table 3-2 Estimated crude HRs for the effect of BRAF-mut vs BRAF-wt for PFS, P-PS & OS 

 

3.4.3. Effect of BRAF-status on treatment outcomes with first-line 
chemotherapy (FOCUS and COIN) 

 

For patients treated with first-line combination chemotherapy in FOCUS and COIN, BRAF-

status had only modest impact.  Response rates were lower in the BRAF-mut patients 

compared with wild-types (34.6% vs 46.9%, adjusted OR = 0.66[0.44-0.99], p=0.046). 

However there was no difference in PFS for first-line combination chemotherapy by BRAF-

status (6.0 vs 6.9 mths; adjusted HR = 1.12[0.91-1.36], p=0.26) (fig. 3.5).  

 

Figure 3-5 PFS KM curves for BRAF-mut vs BRAF-wt patients treated with 1st line combination 

chemotherapy 
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Individual data for each trial is shown in figure 3.6. BRAF-mut patients did not have 

inferior PFS when treated with first-line combination chemotherapy in either FOCUS 

(adjusted HR = 1.07, [0.69-1.67], p=0.37) or COIN (adjusted HR = 1.14, [0.91-1.42], 

p=0.16) when assessed individually. 

 

 

Figure 3-6 Forest plot of PFS HR for 1st line combination chemotherapy in FOCUS & COIN, then overall 

 

There was no evidence of a difference in this effect by chemotherapy regimen (OxFP vs 

OxCap in COIN (interaction p =0.87). In FOCUS there were too few patients to analyse 

detailed treatment outcomes by BRAF-status for initial OxFU or IrFU. 
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3.4.4. Effect of BRAF-mut status for patients treated with first-line FU 
 
With first-line single-agent 5FU, there was no difference in PFS in BRAF-mut compared 

with BRAF-wt patients (6.5 vs. 6.7 mths, adjusted HR=0.96 [0.60-1.52], p=0.86)(table 3.2 & 

fig. 3.7). There were no significant differences in RR (17.2% vs 21.7% (OR=0.75 

[0.28,2.03], p=0.57), or DCR (70.0% vs 76.4% (OR=0.72 [0.28-1.94], p=0.52).  

 

 

Figure 3-7 PFS KM curves for BRAF-mut vs BRAF-wt treated with FU alone 

 
These data show that there is a modest reduction in RR in BRAF-mut patients treated with 

oxaliplatin/FP but no difference in PFS after adjusting for prognostic factors. Furthermore, 

there was no difference in RR or PFS when these patients were treated with first line FP 

alone.  

 

3.4.5. Experience of BRAF-mut patients following first-line chemotherapy: 
post-progression survival. 

 

Following progression on first-line chemotherapy, BRAF-mut patients had marked 

reduction in P-PS compared with BRAF-wt (4.2 vs 9.2 mths, adjusted HR = 1.69[1.41-2.06], 

p<0.001)(table 3.2 & fig. 3.8). 
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Figure 3-8 Post-progression survival KM curves for BRAF-mut vs BRAF-wt in FOCUS & COIN 

 

This effect was consistent in both first-line trials (FOCUS, all strategies: 3.5 vs 8.8 mths, HR 

= 2.13 [1.58-2.87], p<0.0001; COIN 4.5 vs 9.6 mths, HR = 2.00 [1.61-2.49], p<0.0001)(table 

3.2 & fig. 3.9).  

 

 

Figure 3-9 Forest plot of P-PS in FOCUS & COIN, then combined 

 

There was no interaction with chemotherapy regimen (FOCUS [OxFU/ IrFU] interaction 

p=0.44; COIN [OxFU/OxCap interaction p=0.57) or planned post-progression treatment 

(FOCUS, irinotecan vs doublet p=0.32; OxFU vs IrFU p=0.44). Of other prognostic factors 

tested in the multivariate model, only primary tumour in-situ was associated with reduced 

PPS (HR = 1.45 [1.02-2.05], p=0.036). 
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3.4.6. Impact of chemotherapy-free intervals in BRAF-mut patients  
 

In contrast to the higher death rate seen after failure of first-line chemotherapy, there was 

no evidence that BRAF-mut patients fare less well when having a planned treatment break 

with stable/responding disease. COIN compared continuous or intermittent 

chemotherapy, and found overall that intermittent chemotherapy was non-inferior for OS 

(HR=1.04 [0.98–1.10], p=0.16); in BRAF-mut patients this was also the case (HR=0.97 

[0.80–1.17], p=0.75). 

 

Overall in COIN, progression events in patients during chemotherapy breaks led to shorter 

PFS (HR=1.27 [1.21–1.33], p<0.001). Interestingly, however, BRAF-mut patients were the 

only molecular sub-group not to have a PFS disadvantage with intermittent chemotherapy 

(BRAF-mut PFS HR=1.09 [0.91–1.31], p=0.33; BRAF-wt PFS HR=1.29 [1.22–1.37], p<0.001; 

interaction p=0.14).  

 

3.4.7. Impact of BRAF status on uptake of salvage therapy 
 
To explore the reasons for the markedly inferior 1st-line P-PS in BRAF-mut patients, the 

uptake of post-progression therapies was explored. 

 

In COIN, BRAF-mut patients were significantly less likely to receive second-line therapy 

after first-line progression than BRAF-wt (39% versus 60%, p=0.002). However, for those 

receiving chemotherapy there was no difference in duration spent on second-line 

chemotherapy (p=0.2).  

 

3.4.8. Outcomes of BRAF-mut patients treated with second-line 
chemotherapy 

 

For patients commencing second-line Ir in PICCOLO there were no differences between 

BRAF-mut and BRAF-wt patients for any treatment outcomes: RR (5.0% vs 8.1%; OR = 

0.59 [0.22-2.55], p=0.65), DCR (59.3% vs 59.5%; OR = 0.99[0.44-2.23], p=0.98), PFS (3.5 

vs 4.0 months; HR = 1.06 [0.76-1.49], p=0.72) (table 3.2 and fig. 3.10).  
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Figure 3-10 PFS KM curves for BRAF-mut vs BRAF-wt for second-line Ir 

 

Following progression on Ir, P-PS was similar in BRAF-mut than BRAF-wt patients (5.9 vs 

6.5months; HR = 1.13 [0.75-1.69], p=0.57) (table 3.2 & figure 3.11). The only factor 

predicting reduced shorter P-PS in PICCOLO was poor performance status (HR= 2.27 

[1.15-4.48], p=0.019). 

 

 

Figure 3-11 P-PS KM curves for BRAF-mut vs BRAF-wt for second-line Ir 

 

3.5. Discussion 

This is the largest and most comprehensive clinical series of BRAF-mut patients treated 

with multiple chemotherapy strategies at different points of the aCRC pathway to 

investigate the mechanism of poor survival and provide clinicians with an evidence base 

for treatment decisions. The relative rareness of this mutation in aCRC has meant this 

group of patients has been difficult to study, and to detect a BRAF-specific effect. 
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Within three large RCTs, the point at which the outlook of BRAF-mut patients markedly 

differed from BRAF-wt was following progression on first-line chemotherapy. This was 

seen in both FOCUS and COIN, independent of chemotherapy strategy. Notably no other 

tested factor was associated with reduced P-PS and thus this appears to be specific to 

BRAF-mut cancers.  

 

To understand this phenomenon patterns of care following progression on first-line 

chemotherapy were investigated. Fewer BRAF-mut patients received second-line 

chemotherapy in COIN than BRAF-wt, but those that did remained on therapy for an 

equivalent duration. Furthermore there was no significant difference in any treatment 

outcome according to BRAF-status for patients treated with Ir alone in the PICCOLO trial. 

Therefore, once started, BRAF-mut patients benefit equivalently to BRAF-wt patients from 

second-line chemotherapy. 

 

Notably, this accelerated decline cannot be attributed to simply stopping chemotherapy: in 

COIN BRAF-mut patients with stable disease following 12 weeks of chemotherapy were 

not disadvantaged by a planned chemotherapy-break.  

 

This study would not support the hypothesis that chemoresistance drives the entirety of 

the poor prognosis of BRAF-mut aCRC. Whilst there was reduced activity of first-line 

chemotherapy compared with BRAF-wt in COIN, this was not maintained following 

adjustment and critically PFS detriment did not mirror the more clinically relevant 

reduction in survival. No differential effect was seen in any strategy tested in FOCUS. 

 

There is less experience of BRAF-mut patients following first-line treatment. Unpublished 

sub-analysis from the 20050181 Trial (second-line FOLFIRI/panitumumab vs FOLFIRI) 

primarily describes interactions of RAS and BRAF mutation status with panitumumab 

effect.(379) BRAF-mut patients treated with FOLFIRI-alone had worse OS (5.7 vs 15.4 

mths) and PFS (1.8 vs 5.5mths) than RAS-wt counterparts, suggesting a greater BRAF-mut 

effect than seen in PICCOLO. Differences between these trials provide some explanation. 

This study compares outcomes of BRAF-mut patients with BRAF-wt, regardless of RAS-

status to reflect usual practice; in 20050181 outcomes for BRAF-mut patients were 

compared with the dual RAS and RAF-wt population. There were also important 

differences in pre- and post-trial therapy: only 67% of patients in 20050181 received first-

line oxaliplatin, compared with 95% in PICCOLO. Increased post-trial treatment in 

20050181 with anti-EGFR agents (31% vs. 6% in PICCOLO) and oxaliplatin may have 
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contributed to the particularly good OS in the RAS-RAF wt comparator group. Further 

study of BRAF-mut with further lines of chemotherapy would be beneficial.  

 

This report identifies a subset of BRAF-mut aCRCs who have a more indolent clinical 

course, as evidenced by equivalent representation (percentage of BRAF-mut patients in 

the trial) and outcomes in PICCOLO and on post-trial therapy in COIN. Likewise, within the 

MD Anderson cohort 15% of BRAF-mut patients were progression-free at two years.(380) 

Unfortunately there were no specific clinico-pathological features identifying this group, 

or marked differences between these first and second line trial populations, however 

BRAF-mut patient in PICCOLO were of good performance status. Such clinical 

heterogeneity may suggest other molecular drivers, particularly post-progression; study 

of post-progression biopsies will be essential in identifying the biological mechanism of 

the rapid decline, and to identify strategies to inhibit these.  

 

This study offers several advantages over previous work. A prospectively defined analysis 

of BRAF-effect allowed for consideration of relevant confounding factors. BRAF-mut aCRCs 

are associated with specific clinico-pathological features: older age, proximal primary 

tumour, high grade, deficient MMR, mucinous histology and peritoneal and lymph node 

metastases,(159, 222, 364-367) most of which interact with prognosis. Analysis of BRAF-

mut patients must consider such factors: highlighted by the fact that the OxFU PFS 

detriment was less marked (and non-significant) following adjustment. RCT data has 

allowed accurate and robust measurement of response, progression events, P-PS and post-

progression therapies. 

 

A weakness of this, and all current studies of BRAF-mut patients, is failure to address 

outcomes of frail patients: those screened for MEK-AKT pathway mutations will be 

deemed eligible for RCT inclusion or anti-EGFR therapy. Previous work has suggested that 

patients with BRAF-mut CRCs were most likely to be elderly females; this is a population 

unlikely to be well represented in this or other studies discussed.(365, 366) Clinicians 

should therefore be cautious when applying RCT evidence to such populations. 

 

Disappointing results of BRAF-inhibitors as single agents in aCRC(369) and a growing 

appreciation of molecular complexity of BRAF-mut aCRC(371) suggest that targeted 

approaches may involve multi-agent combination, with consequent toxicity and expense. 

There is therefore an urgent need to optimise chemotherapy strategies to improve 

outcomes. First-line intensive combination treatment with FOLFIRINOX plus bevacizumab 
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in BRAF-mut patients resulted in PFS and OS of 11.8 and 24.1 months respectively, and an 

acceptable toxicity profile.(105) These were comparable outcomes to BRAF-wt patients 

treated within the TRIBE study,(104) although the benefit of the addition of bevacizumab 

to this regime is unclear. Given the marked decline we have seen following progression on 

first line chemotherapy, maximisation of the efficacy of first line treatment with the use of 

all the active chemotherapy drugs together appears to be  an appropriate approach in 

good performance status patients. 

 

Knowledge of BRAF-status offers the clinician useful information and can help guide 

treatment decisions, outwith the context of anti-EGFR agents. The poor survival of BRAF-

mut patients is driven by accelerated decline following progression, and a lower 

probability of receiving further lines of therapy, so clinicians need extra vigilance. Whilst 

we report some lesser degree of benefit with first line therapy in BRAF-mut than wt-

patients, this does not seem to drive all of the poor outcome of these patients. However, 

BRAF-mut patients may still enjoy treatment breaks when not progressing, and if treated 

with second-line chemotherapy are no less likely to benefit than wild-type patients. 

 

3.6. Further work 

Further analyses are outstanding for this project as data was unavailable at the point of 

submission. This data includes post first-progression outcomes in FOCUS by BRAF-status 

and the impact of dMMR status in PICCOLO.  

 

It is planned to do a sub-group analysis looking at interactions between peritoneal 

metastases, BRAF-mut status and outcomes. It is also planned to investigate the outcomes 

of RAS-mutant patients in RCTs, as this mutation sub-group is also associated with inferior 

prognosis in aCRC.(156) The same analysis plan shall be utilised. 

 

This study has raised some important hypotheses regarding the mechanism of the poor 

outlook of BRAF-mut aCRC patients. The most striking observation is the marked 

reduction in post-progression survival in BRAF-mut patients following first-line 

chemotherapy, in the absence of treatment with a targeted agent. This appears to be the 

point at which their outcomes differ from BRAF-wt patients. It is therefore important to 

understand the biology of this accelerated decline: is it due to emergence of new driver 

mutations or activation of other pathways? Study of paired pre- and post treatment 
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biopsies would be needed to answer this question. Further treatment targets may be 

identified which could lead to a targeted approach following progression for fit patients. 

 

Gene expression analysis in early CRC suggested that a BRAF-like mutant population exist 

in the BRAF-wt population. As well as having a similar gene expression profile, they had 

similar survival outcomes to the BRAF-mut population. Testing for this gene signature in a 

study of aCRC would ascertain whether this group exist in the advanced population. If so, 

investigating whether they follow patterns demonstrated in this work. Again paired pre- 

and post treatment biopsies would be beneficial to identify whether there is a common 

driver molecular alteration.  
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Chapter 4. Combined epiregulin and amphiregulin expression 
levels as a biomarker of prognosis and 
panitumumab benefit in RAS-wt advanced 
colorectal cancer 

 

4.1. Introduction 

Clinical trial results with the anti-EGFR agents panitumumab and cetuximab in aCRC have 

been inconsistent, varying in different RCTs and patient sub-populations between 

worthwhile benefit and significant harm.(126, 131) One consistent finding is that 

activating mutations in RAS (KRAS exons 2,3 and 4, NRAS exons 2, 3 and 4) confer lack of 

benefit.(70, 126) However, an unmutated RAS pathway, although necessary, is not 

sufficient for response to anti-EGFR agents: in the PRIME and PICCOLO phase III trials, the 

response rate of patients with tumours wild-type for all tested codons in KRAS and NRAS 

was still less than 50%.(70, 131)  

 

It is plausible that successful EGFR blockade requires upregulation of EGFR signalling in 

addition to an intact EGFR signal transduction pathway, therefore it would be valuable to 

identify biomarkers of EGFR-signalling tumour dependence. However, unlike in lung 

cancer,(381) none of EGFR mutation status, EGFR gene copy number or EGFR protein 

expression have shown consistent association with anti-EGFR agent efficacy.(181) Instead, 

another proxy for EGFR-dependence may be EGFR ligand expression. 

 

4.1.1. EGFR ligands 
 

EGFR ligands include epidermal growth factor (EGF), transforming growth factor-α (TGF- 

α), amphiregulin (AREG), epiregulin (EREG), heparin binding-epidermal growth factor like 

growth factor, epigen and betacellulin.(382) All ligands are type I transmembrane 

proteins cleaved by cell surface proteases leading to release of mature growth factors that 

bind to and activate the EGFR.(382) On ligand binding the EGFR homodimerises or 

heterodimerises with ErbB2, ErbB3 or ErbB4, leading to tyrosine kinase domain 

phosphorylation and activation of downstream pathways (including the RAS/MAPK, 

PI3/AKT and STAT pathways)(fig. 4.1).(383) 
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Figure 4-1 Representation of the EGFR pathway, highlighting the role of EGFR ligands. Modified from (334) 

 

Interest in the usefulness of EGFR ligands as positive predictive markers for anti-EGFR 

therapy was sparked by a GWAS examining biopsies of liver metastases from 80 aCRC 

patients treated with cetuximab monotherapy, with the aim of discovering genes 

associated with cetuximab efficacy.(165) Out of a panel of 640 probe sets with moderate 

to high levels in CRC, the key finding was that high expression levels of the EGFR ligands 

EREG and AREG were best associated with DCR. Expression levels of other EGFR ligands 

were not associated with treatment benefit in this,(165) or subsequent studies.(384, 385)  

 

4.1.2. Epiregulin and Amphiregulin 
 

Both EREG and AREG are located on chromosome 4, in close proximity to 

betacellulin.(382) They are initially expressed as a transmembrane preform, then cleaved 

by a metalloproteinase and disintegrin enzyme to release a mature active form which 

binds to the EGFR.(382) 

 

4.1.2.1. Epiregulin 
 

EREG binds to both EGFR and HER4.(386) Whilst EREG has lower affinity to the EGFR than 

EGF, its binding results in prolonged receptor activation.(387) Compared to EGF there is 

less ligand-induced EGFR down-regulation and increased receptor recycling.(388) EREG 

production is through several mechanisms, including establishment of an autocrine 

signalling loop and paracrine production by surrounding tissue.(389) 
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EREG is expressed in normal tissue and is implicated in key physiological functions, 

particularly in the stimulation of and response to inflammation: including angiogenesis 

and vascular remodelling, cutaneous wound healing, and intestinal epithelial proliferation 

in response to inflammation.(390)  

 

EREG is overexpressed in several tumour types, including bladder, gastric, breast, lung, 

head and neck, and colon cancer.(390) 

 

4.1.2.2.  Amphiregulin 
 

AREG binds only to the EGFR, in competition with EGF, and is reported to be less effective 

at inducing EGFR tyrosine phosphorylation at low levels, but with similar activity as other 

ligands at higher concentrations.(391) AREG is produced by an autoregulated feedback 

loop and is secreted into the bloodstream by AREG-producing tissue.(392, 393)Following 

activation on AREG binding, the EGFR is then recycled (rather than internalisation and 

degradation seen with other ligand activation), favouring accumulation of EGFR at the cell 

surface.(394) 

 

AREG is expressed in a wide variety of tissues physiologically (including mammary glands, 

reproductive, vascular, gastrointestinal and respiratory) and participates in many 

physiological processes.(392) AREG is overexpressed in several human cancers including 

breast, lung, ovary, prostate, pancreas, stomach and colon.(395) AREG is implicated in 

several essential malignant processes, including resistance to apoptosis, uncontrolled 

growth, sustained angiogenesis and tumour invasion and metastasis.(395) 

 

4.1.3. EREG and AREG as predictive biomarkers for anti-EGFR therapy 
 

EREG and AREG are commonly overexpressed in colorectal cancer.(396) In CRC cell line 

studies, binding of either of these ligands to EGFR leads to autocrine EGFR activation; 

hence EREG/AREG overexpression may be a proxy for tumour EGFR-dependence.(392, 

397) 

 

High mRNA expression of EREG or AREG has been reported to correlate with the efficacy 

of EGFR-targeted agents in KRAS-wt aCRC in non-randomised series.(165, 166, 384, 385) 

EREG and AREG mRNA expression was measured in FFPE tumour samples from 220 

irinotecan-refractory aCRC patients treated with cetuximab. High mRNA expression of 

EREG and AREG was associated with improved clinical outcomes, but only when limited to 
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KRAS-wt patients.(166) In KRAS-wt patients increasing EREG mRNA expression was 

associated with improved RR (OR = 1.90[1.27-2.83], p<0.001) and DCR (OR = 1.86 [1.23-

3.29], p=0.011), plus improved OS and PFS. Similar results were reported for AREG. In a 

combined model EREG outperformed AREG, so EREG alone was proposed for clinical 

development. However in other studies using similar methodology, AREG emerged as the 

superior predictive marker.(384, 398)  

 

In a recent analysis from the CO.17 trial (BSC with or without cetuximab), KRAS-wt 

patients with high EREG RNA expression had improved OS with cetuximab whilst KRAS-

wt, low EREG patients did not. With 225 KRAS-wt patients and modest power, the 

biomarker/treatment interaction tests approached but did not reach statistical 

significance for OS and PFS (p=0.08 and 0.07 respectively).(184) 

 

EREG/AREG mRNA expression was further assessed in 952 patients randomised to first-

line line OxFP with or without cetuximab in the COIN trial.(128, 399) EREG superseded 

AREG in combined predictive models. Within the OxFP arm high EREG expression was 

associated with improved survival. In patients treated with infusional OxFP plus 

cetuximab, significant ligand/treatment interactions were reported for both OS and PFS 

(OS HR 0.33, p=0.011); no ligand/treatment effect was observed when capecitabine 

treated patients were included.(128) Additionally different dichotomisation points (high 

EREG vs low EREG) were used to demonstrate statistical EREG/treatment interaction for 

OS (≥ 80th centile) and PFS (≥ 50th centile).  

 

4.1.4. EGFR ligands as markers of prognosis and predictive markers for 
panitumumab in PICCOLO  

 

Previous work has provided important indications that EGFR ligand expression may offer 

a much-needed positive selection strategy for anti-EGFR therapy, and deserves further 

consideration. The PICCOLO trial biobank provides an excellent opportunity to further 

study and validate EREG/AREG as positive predictive markers for anti-EGFR agents. 

However there is need for a novel ligand model and a more comprehensive analysis, 

considering possible confounders. 

 

4.1.4.1. Considerations for the biomarker study design 
 

The design of this study has been informed by scientific rationale for EGFR activation by 

EREG and AREG, and builds upon previous work. Firstly there is need to standardise the 
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methodology used to assess EREG and AREG mRNA expression: the same RT-PCR (reverse 

transcription polymerase chain reaction) method as used by Jacobs et al will be utilised in 

this biomarker study.(166) 

 

Previously outcomes for either EREG or AREG have been reported depending upon 

statistical ‘best fit’ within the dataset. Since AREG and EREG are commonly but not 

consistently co-expressed, and either may mediate EGFR activation, it was elected a priori 

to measure both ligands and investigate them as a single putative predictive biomarker in 

an “either/or” model. As this is a new ligand model it will not be possible to validate ligand 

cut-points proposed in previous work. 

 

Confounding factors such as MEK-AKT and right PTL may interact with the 

ligand/treatment model,(70, 131, 155) so the analysis was planned to ensure that any 

ligand effect is independent of these factors. 

4.2. Hypothesis 

Benefit of panitumumab will be confined to patients with both wild-type RAS (KRASc.12,13,61 

and NRASc.12,13,61-wt) and high expression of either AREG or EREG.  Patients with a RAS or 

BRAF mutation will not benefit from panitumumab regardless of ligand status. 

4.3. Methods 

4.3.1. Study population 
 
Patients involved in the ligand study have been treated in the IrPan vs Ir comparison in 

the PICCOLO trial (including patients with KRAS mutations/ pre-treatment with EGFR 

agents) with sufficient tumour material for analysis (fig 4.2). 
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Figure 4-2 PICCOLO trial schema, highlighting patients included in this biomarker study 

 
4.3.2. Laboratory materials and methods 

 

4.3.2.1. Slide preparation  
 

A haematoxylin and eosin stain was performed on a 5μm tumour section to identify area 

of highest tumour cell density, which would be used for subsequent RNA extraction. 

 

4.3.2.2. RNA Extraction  
 

Five-seven 5 micron slides per tumour were deparaffinised through xylene and graded 

alcohol to water.  Macrodissection was guided by the H&E stained section. 

 

RNA was extracted using the RNEasy FFPE kit (Qiagen, Valencia, CA) according to the 

manufacturers instructions. Briefly, the macrodissected tissue was digested by proteinase 

K overnight. DNA was removed using a DNA eliminator column. The remaining sample 

was washed on a RNeasy MinElute spin column, then eluted into 20 µl RNase-free water. 

An estimation of RNA concentration was made using a spectrophotometer (Nanodrop, ND) 

and the RNA stored at -70°C immediately to prevent degradation. 

  

aCRC previous progression 
on FU based chemotherapy 

 KRAS12, 13, 61-wt   KRAS12,13,61-mut 

Irinotecan 
 Irinotecan + 

panitumumab 
 Irinotecan  

  Irinotecan + 
ciclosporin 

IrPan 
randomisation 

IrCs 
randomisation 
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4.3.2.3. cDNA synthesis 
 

cDNA synthesis was performed by firstly adding random primer (Invitrogen, Carlsbad, CA) 

to RNA and incubating for 10 minutes at 70°C.  First strand buffer, DTT and dNTPs were 

added (all Invitrogen, Carlsbad, CA) and incubated for 2 minutes at 42°C before the 

addition of of Superscript Reverse Transcriptase II (all Invitrogen, Carlsbad, CA). 

Following a 50 minute incubation at 42°C and a 70°C inactivation step for 15 minutes, 20µl 

distilled water was added to give a final reaction volume of 39µl. The resultant cDNA was 

stored at -20°C. 

 

4.3.2.4. Quantitative real-time PCR (RT-PCR) 
 

AREG and EREG expression levels were measured in duplicate and normalised against 

expression of 3 reference genes, GADPH, UBC and RPL13A. The geNorm algorithm used in 

the qBasePlus software (Biogazelle, Ghent, Belgium) was utilised to evaluate the stability 

of the reference genes. (400) 

 

To correct for inter-run variability, 5 inter-run calibrators were used (5-fold dilution 

series produced from a mixture of total RNA for CRC cell line HCT116 and human 

reference RNA (Stratagene, La Jolla, CA). 

 

A 96 well plate was required for each gene being tested and each reference gene. With 

each gene tested, each sample and standard was added in duplicate along with a negative 

control.  

 

Briefly, cDNA was diluted in water (1 in 5 dilution), then 5μl of the resulting solution was 

added to 20μl of stock solution and added to the 96 well plate. Additionally stock solution 

was added to standards and negative control and added to a labelled plate.  

 

The plate was inserted into the thermocycler (Real Time PCR System, Applied Biosystems, 

Foster City, CA) and the AREG and EREG gene selected in the detection system (7500 

system SDS software). Following 2 mins at 50°C and 10 mins at 95°C, 40 cycles were 

completed (95°C for 15 seconds then 60 °C for 1 minute). PCR sequences are detailed in 

the Appendix. 

 

Data analysis was performed using qBasePlus 1.1 software (Biogazelle, Ghent, Belgium). 

Target-specific PCR efficiencies were calculated from the inter-run calibration standard 
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curves then utilised to calculated the calibrated normalised relative quantities of ligand 

expression.(401) 

 

4.3.2.5. Statistical analysis 
 

STATA was used for all statistical analyses (Stata Statistical Software: Release 12 (2011), 

StataCorp. College Station, Texas). Baseline patient characteristics were compared 

between treatment arms using two-tailed T-tests, Wilcoxon rank sum tests (for variables 

with non-normally distributed frequency distributions) and Pearson Chi-squared tests 

(for categorical variables). Patient characteristics were compared to the whole trial 

population using the same tests.  

 

Boxplots were produced for raw AREG and EREG expression, and their correlation was 

estimated using Spearman’s coefficient. Data from the two assays were then combined to 

give a clinically usable single dichotomous classifier by taking the upper/middle tertile 

cut-point for each ligand and dividing the population into “high expressors” (either EREG 

or AREG in top tertile) or “low expressors” (neither EREG nor AREG in top tertile). This 

cut-off was chosen pragmatically, to give high and low groups of similar size.  

 

Three clinical endpoints were used: primary endpoint was PFS; secondary endpoints were 

OS and RR. PFS and RR data were unchanged from the primary trial analysis, but updated 

two-year OS data was used in this analysis. 

 

Ligand expression was first assessed as a prognostic marker in patients treated with Ir 

alone, both using the dichotomous classifier (“high expressors” vs “low expressors”) and 

using each ligand separately as a continuous variable (log-transformed to base 2), in Cox 

proportional hazards models.  

 

Ligand expression was then assessed as a predictive marker for panitumumab benefit by 

testing for interaction between the effects of expressor status (high/low) and treatment 

(IrPan/Ir) on PFS and OS using the likelihood ratio test. Adjustment was performed for 

significant prognostic factors in the trial population (PS; response to previous therapy). 

Secondary analysis of predictive effects was performed in patients with RAS or BRAF 

mutations.  
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BRAF mutation and PTL (right colon vs left colon or rectum) were identified as possible 

confounding factors; therefore survival models were estimated for the joint effects of 

BRAF and ligand, then PTL status and ligand, for the dichotomous classifier and each 

ligand separately.  

 

4.4. Results 

4.4.1. Patient characteristics 
 

Of the 696 PICCOLO patients within the Ir vs IrPan randomisation, 331 had sufficient 

tumour available for RNA extraction, and subsequent measurement of ligand expression 

was successful in 323. Baseline characteristics by treatment arm were well balanced and 

reported in Table 4.1. There were no significant differences in characteristics between the 

ligand study population and those for whom material was unavailable. 
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Patient characteristic Ir (N=171) 
IrPan 

(N=152) 

 
All patients 

(323) 
RAS-wt 

 Category    (n=220) 

Age at randomisation (yrs)  
Mean 62.1  
(s.d 10.8) 

Mean 61.3  
(s.d 11.1) 

Mean 61.7  
(s.d 10.9) 

Mean 61.9  
(s.d 11.2) 

Sex N(%) Male 106 (62.0) 95 (62.5) 201 (62.2) 133 (60.5) 
 Female 65 (38.0) 57 (37.5) 122 (37.8) 87 (39.5) 

Ligand expression N(%) Low 93 (54.4) 90 (59.2) 183 (56.7) 121 (55.0) 
 High 78 (45.6) 62 (40.8) 140 (43.3) 99 (45.0) 

Performance status N(%) 0-1 164 (95.9) 147 (96.7) 311 (96.3) 210 (95.5) 
 2 7 (4.1) 5 (3.3) 12 (3.7) 10 (4.5) 

Previous bevacizumab N(%) No 168 (98.3) 148 (97.4) 316 (97.8) 216 (98.2) 
 Yes 3 (1.7) 4 (2.6) 7 (2.2) 4 (1.8) 

Previous Oxaliplatin N(%) No 10 (5.9) 11 (7.2) 21 (6.5) 13 (5.9) 
 Yes 161 (94.1) 141 (92.8) 302 (93.5) 207 (94.1) 

Previous response N(%) 
CR, PR or 

SD 
100 (58.5) 90 (59.2) 190 (58.8) 135 (61.4) 

 PD 50 (29.2) 46 (30.3) 96 (29.7) 57 (25.9) 
 Unknown 21 (12.3) 16 (10.5) 37 (11.5) 28 (12.7) 

Previous dose modifications 
N(%) 

No 64 (37.4) 56 (36.8) 120 (37.2) 85 (38.6) 

 Yes 107 (62.6) 96 (63.2) 203 (62.8) 135 (61.4) 
Previous chemotherapy N(%) No 63 (36.8) 57 (37.5) 120 (37.1) 78 (35.4) 

 Yes 102 (59.7) 95 (62.5) 197 (61.0) 139 (63.2) 
 Unknown 6 (3.5) 0 (0) 6 (1.9) 3 (1.4) 

KRASc.12,13,61 N(%) Wild-type 137 (80.1) 114 (75.0) 251 (77.7) - 
 Mutant 34 (19.9) 38 (25.0) 72 (22.3) - 

BRAFV600E N(%) Wild-type 150 (87.7) 124 (81.6) 274 (84.8) 173 (78.6) 
 Mutant 21 (12.3) 28 (18.4) 49 (15.2) 47 (21.4) 

NRASc.12,13,61 N(%) Wild-type 163 (95.3) 142 (93.4) 305 (94.4) - 
 Mutant 8 (4.7) 10 (6.6) 18 (5.6) - 

KRASc.146 N(%) Wild-type 163 (95.3) 145 (95.4) 308 (95.4) - 
 Mutant 8 (4.7) 7 (4.6) 15 (4.6) - 

PIK3CAexon 9/20 N(%) Wild-type 148 (86.6) 138 (90.8) 286 (88.5) 201 (91.4) 
 Mutant 23 (13.4) 14 (9.2) 37 (11.5) 19 (8.6) 

No mutations detected  89 (52.1) 68 (44.7) 157 (48.6) 157 (71.4) 
Any mutation detected  82 (47.9) 84 (55.3) 166 (51.4) 63 (28.6) 

Overall survival time 
(months) 

 
Median 

11.3 
Median 10.1 Median 10.7 

Median 
10.9 

  
(IQR1.7-

41.8) 
(IQR 1.5-

38.7) 
(IQR 1.3-50.4) 

(IQR 1.4-
41.8) 

Death event N(%) No 11 (6.4) 9 (5.9) 20 (6.2) 18 (8.2) 
 Yes 160 (93.6) 143 (94.1) 303 (93.8) 202 (91.8) 

Progression free survival time 
(months)* 

 Median 4.3 Median 4.9 Median 4.4 Median 5.1 

  
(IQR 0.9-

14.7) 
(IQR 0.7-

20.3) 
(IQR 0.4-20.5) 

(IQR 0.6-
20.5) 

Progression event N(%) No 10 (5.9) 14 (9.2) 24 (7.4) 20 (9.1) 
 Yes 161 (94.1) 138 (90.8) 299 (92.6) 200 (90.9) 

Best response N(%)** CR or PR 19 (11.1) 37 (24.3) 56 (17.3) 44 (20.0) 
 SD or PD 151 (88.3) 113 (74.3) 264 (81.7) 173 (78.6) 
 Unknown 1 (0.6) 2 (1.3) 3 (0.9) 3 (1.4) 

 

Table 4-1 Baseline patient characteristics by treatment arm, including mutation status 

*One patient with zero months progression free survival (PFS) time was excluded from PFS analyses 

Two patients had both a RAS and RAF mutation (BRAF mutant n=49 in study population) 
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Survival data were available for all study patients. Of these, 299 had a disease progression 

event  (93%) and 303 (94%) patients had died. 

 

A complete set of MEK-AKT mutation (KRASc.12-13,61,146 NRASc.12-13,61 and BRAFV600E) 

genotype data was available for all cases. 220/323 (68%) patients were wild-type across 

all KRAS and NRAS codons (“RAS-wt”). This high proportion is due to the change in trial 

design in June 2008 meaning that patients with KRASc.12,13,61 mutations were not recruited 

to this randomisation, hence increasing the proportion of KRASc.12,13,61-wt patients in this 

population(fig 4.1). Of the 220 RAS-wt patients, 47 (21%) had a BRAF mutation.  The 

breakdown of this study population according to mutation status is shown in fig. 4.3. 

 

 

Figure 4-3 Consort diagram of study population 

  

Whole population  
n= 323 

RAS –wt                       
n= 220 

RAS and BRAF-wt   
n= 173 

RAS mutated    
n= 103 

 

 
 BRAF mutant     

n=47 
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4.4.2. AREG and EREG Distribution 
 

Both ligands showed skewed distributions over the patient population (fig. 4.4), and 

ligand expressions are log-transformed in subsequent analyses.   

 

 

 
 

Figure 4-4 Raw ligand distribution for EREG and AREG 
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EREG and AREG were highly co-expressed (Spearman correlation coefficient, 0.78, 

p<0.0001) (fig. 4.5). 

 

 
 

Figure 4-5 Distribution of log transformed EREG and AREG expression. High ligand expressors (top tertile or 

either or both) are shown in blue, low ligand expressors (bottom tertiles of both) in red. 

 

Using the combined binary classifier, 140/323 (43%) patients were designated as “high 

expressors” (either ligand in the top tertile), and 183/323 (57%) “low expressors” 

(neither ligand in the top tertile) (Figure 4.5).  

 

4.4.2.1. EREG and AREG distribution depending upon MEK-AKT pathway 
mutations 

 

In pairwise comparisons, EREG and AREG expression were not significantly associated 

with RAS mutation status (Wilcoxon rank sum tests: AREG p=0.41; EREG p=0.31). Both 

ligands were significantly higher in BRAF-wt than the BRAF-mutated groups (p<0.0001, 

both comparisons)(fig 4.6). 
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Figure 4-6 EREG and AREG expression depending upon MEK-AKT pathway mutation status 

 
 

4.4.2.2. EREG and AREG expression and primary tumour location 
 

We investigated the effect of PTL on ligand expression in the RAS-wt population as BRAF-

mut status was associated with low ligand expression, and BRAF-mutations are commoner 

in right-sided tumours. In the RAS-wt populations, both EREG and AREG expression was 

significantly higher in left-sided than right-sided primary tumours (p<0.001, both 

comparisons)(fig. 4.7). 
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Figure 4-7 a)EREG, and b) AREG expression depending upon primary tumour location 

 
 

4.4.3. The performance of EREG and AREG as a combined dichotomous 
marker 
 

The primary analysis of this chapter investigates EREG and AREG as a combined 

dichotomous marker, dividing the population into “high expressors” (either EREG or AREG 

in top tertile) or “low expressors” (neither EREG nor AREG in top tertile).  

 

4.4.3.1. Prognostic utility of the combined ligand model 
 

There was no evidence of an effect of high ligand expression on OS (HR 0.79, 95% CI, 0.58-

1.09, p=0.15) or PFS (HR 0.93, 95% CI 0.68-1.27, p=0.64), compared with low ligand 

expressors (table 4.2 and fig 4.8) in patients in the Ir arm of the study.  
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   Ir   Ir  

 Unadjusted HR  

(95% CI) 

p-value Adjusted HR 

(95%CI)* 

p-value 

PFS All patients High versus low ligand expression 0.93 (0.68-1.27) 0.64 0.93 (0.68-1.28) 0.67 

  Log AREG 0.97 (0.87-1.07) 0.50 0.94 (0.85-1.05) 0.29 

 Log EREG 0.94 (0.86-1.02) 0.16 0.93 (0.85-1.01) 0.10 

 RAS-wt High versus low ligand expression 1.03 (0.71-1.50) 0.88 0.99 (0.68-1.46) 0.97 

  Log AREG 0.96 (0.85-1.07) 0.47 0.93 (0.82-1.05) 0.23 

  Log EREG 0.95 (0.86-1.04) 0.27 0.93 (0.85-1.03) 0.17 

OS All patients High versus low ligand expression  0.79 (0.58-1.09) 0.15 0.75 (0.54-1.04) 0.08 

  Log AREG  0.94 (0.85-1.03) 0.18 0.91 (0.82-1.00) 0.06 

 Log EREG 0.87 (0.80-0.94) 0.001 0.84 (0.77-0.92) <0.0005 

 RAS-wt High versus low ligand expression 0.86 (0.59-1.25) 0.43 0.81 (0.55-1.20) 0.30 

  Log AREG 0.95 (0.85-1.06) 0.37 0.92 (0.82-1.04) 0.17 

  Log EREG 0.87 (0.79-0.95) 0.002 0.84 (0.77-0.93) <0.0005 

 
Table 4-2 Prognostic analysis for the effect of EREG and AREG as separate variables and as a combined 

dichotomous model, on PFS and OS 

* adjusted for performance status, previous response and previous chemotherapy 

 
 

 
 

Figure 4-8 OS KM for high vs low ligand expressors (dichotomous model) in the irinotecan arm alone. 

 

4.4.3.2. The predictive utility of the combined ligand model for panitumumab 
benefit in RAS-wt patients. 

 
As previously stated, the primary hypothesis of this study was that RAS-wt patients with 

high ligand expression would have improved PFS when treated with IrPan compared with 

Ir alone. Conversely, low ligand expressors would have no benefit from panitumumab, 

even with intact EGFR signalling. The results were supportive of this hypothesis, as shown 

in table 4.3 and figure 4.9. 
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 All patients  Low ligand expression High ligand expression 

 Mutation 

subgroup* 

Unadjusted HR 

(95% CI) 

p-value for 

interaction 

Unadjusted HR  

(95% CI) 

Unadjusted HR  

(95% CI) 

PFS** RAS WT 200 events n=219  111 events n=120 89 events n=99 

  0.63 (0.47-

0.84),p=0.002 

0.01 0.93 (0.64-1.37),p=0.73 0.38 (0.24-0.61),p<0.0001 

 RAS and BRAF 

WT 

156 events n=172  71 events n=78 85 events n=94 

0.53 (0.38-

0.74),p=0.0002 

0.16 0.70 (0.43-1.16),p=0.17 0.41 (0.26-0.66),p=0.0002 

RAS mutated 99 events n=103  58 events n=62 41 events n=41 

1.16 (0.78-

1.73),p=0.45 

0.62 0.99 (0.58-1.68),p=0.97 1.24 (0.65-2.38),p=0.52 

BRAF mutated 46 events n=49  42 events n=44 4 events n=5 

0.99 (0.54-

1.80),p=0.96 

- 1.35 (0.73-2.52),p=0.34 Too few to analyse 

OS RAS WT 202 events n=220  110 events n=121 92 events n=99 

  1.04 (0.78-

1.37),p=0.80 

0.11 1.29 (0.88-1.89),p=0.19 0.82 (0.54-1.24),p=0.35 

 RAS and BRAF 

WT 

157 events n=173  70 events n=79 87 events n=94 

0.94 (0.68-

1.29),p=0.70 

0.40 1.10 (0.68-1.79),p=0.69 0.82 (0.54-1.26),p=0.37 

RAS mutated 101 events n=103  62 events n=62 39 events n=41 

1.38 (0.93-

2.05),p=0.11 

0.30 1.13 (0.67-1.89),p=0.65 1.70 (0.87-3.33),p=0.12 

BRAF mutated 47 events n=49  42 events n=44 5 events n=5 

1.25 (0.70-

2.23),p=0.46 

0.38 1.41 (0.75-2.67),p=0.29 0.24 (0.02-2.67),p=0.24 

 
Table 4-3 Estimated crude HRs and 95% CIs for the effect of treatment on OS and PFS in low ligand 

expression and high ligand expression stratifying by RAS and BRAF mutation status, including likelihood 

ratio tests for ligand*treatment interactions. 

 

 

Figure 4-9 PFS Kaplan Meier curves for RAS-wt patients a) low ligand expressors, b) high ligand expressors 

(interaction p = 0.01) 
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Figure 4-10 OS Kaplan Meier curves for RAS-wt  patients a) low ligand expressors, b) high ligand expressors 

(interaction p = 0.11) 

 

For RAS-wt high ligand expressors, IrPan had a significant effect on PFS: median 8.3 

months (IrPan) vs 4.4 months (Ir); HR=0.38 [0.24–0.61], p<0.0001). However, 

panitumumab had no effect in RAS-wt patients with low ligand expression: median PFS 3.2 

months (IrPan) vs 4.0 months (Ir); HR=0.93 [0.64–1.37], p=0.73). The ligand-treatment 

interaction was significant (p=0.01), and also following adjustment for other prognostic 

factors (p=0.001, data not shown). 

 

Lesser predictive effect was seen on the secondary endpoints, OS (table 4.3 and fig. 4.10) 

and RR. Although RAS-wt high ligand expressors had improved OS outcomes with IrPan 

than low ligand expressors (HRs 0.82 vs 1.29, respectively), the ligand-treatment 

interaction was not significant (p=0.11).  

 

Likewise for RAS-wt with high ligand expression, the RR was 47.7% (IrPan) vs 11.3% (Ir), 

relative risk = 4.22[1.87-9.52], p=0.001. Whilst for RAS-wt patients with low ligand 

expression RR was 18.9% (IrPan) vs 10.5% (Ir), relative risk = 1.81 [0.74-1.16], p=0.17). 

However ligand-treatment interaction for RR was not significant (p=0.17)(data not 

shown). 

 

4.4.3.3. The predictive utility of the combined ligand model for panitumumab 
benefit in other mutation sub-groups. 

 

Whilst the primary analysis was within the RAS-wt population, we also considered the 

predictive effect of the combined ligand model in other mutation sub-groups; RAS- and 

BRAF-wt, RAS mutant and BRAF mutant (table 4.3).  
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Within the RAS- and BRAF-wt subpopulation, high ligand expressors had similar outcomes 

in terms of PFS and OS as the RAS-wt group. Again those with low ligand expression did 

not have improved outcomes with IrPan (HR=0.70[0.43-1.16] p=0.17) compared with Ir 

alone. However the ligand/treatment interaction was not significant in this sub-group 

(interaction p=0.16).  

 

We also investigated whether RAS-mutant patients with high ligand expression would 

benefit from panitumumab (table 4.3). However they gained no benefit by any endpoint. 

 

As expected, BRAF-mut patients with low ligand expression did not benefit from IrPan 

compared with Ir. Of note, there were too few BRAF-mut patients with high ligand 

expression to adequately compare treatment effect or ligand/treatment interaction for 

this mutation sub-group. 

 

4.4.4. The performance of EREG as a single continuous marker 
 
Additional to reporting the combined ligand model we have investigated each ligand 

individually as a log-transformed continuous variable. 

 

4.4.4.1. Prognostic utility of EREG alone 

 

The prognostic analysis is reported in table 4.2. As a single continuous marker EREG was 

prognostic for OS (HR=0.87, [0.80–0.94], p=0.001) in patients treated with Ir alone. 

However it was not prognostic for PFS (HR=0.94, [0.86-1.02], p=0.16). 

 

4.4.4.2. The predictive utility of EREG alone for panitumumab benefit   

 

The predictive analysis for EREG and AREG as individual log-transformed continuous 

variables is shown in table 4.4. 
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  All patients Ir IrPan  

 
Mutation 
subgroup 

 
Unadjusted HR 

(95% CI) 

Unadjusted 
HR 

(95% CI) 

Unadjusted HR 
(95% CI) 

p-value for 
interaction 

PFS 

RAS WT 

Log 
AREG 

0·86 (0·80-
0·93),p=0·0001 

0·96 (0·85-
1·07),p=0·47 

0·79 (0·72-
0·87),p<0·0001 

0·008 

 Log 
EREG 

0·90 (0·84-
0·95),p=0·0004 

0·95 (0·86-
1·04),p=0·27 

0·85 (0·79-
0·93),p=0·0003 

0·08 

 RAS and 
BRAF WT 

Log 
AREG 

0·92 (0·84-
1·01),p=0·08 

1·0 (0·88-
1·13),p=0·96 

0·87 (0·76-
0·99),p=0·04 

0·15 

 
 

Log 
EREG 

0·94 (0·88-
1·01),p=0·12 

1·0 (0·89-
1·11),p=0·97 

0·92 (0·82-
1·02),p=0·11 

0·29 

 RAS 
mutated 

Log 
AREG 

0·91 (0·80-
1·05),p=0·20 

0·96 (0·78-
1·19),p=0·71 

0·90 (0·75-
1·08),p=0·25 

0·46 

 
 

Log 
EREG 

0·90 (0·80-
1·01),p=0·08 

0·90 (0·73-
1·10),p=0·29 

0·90 (0·77-
1·05),p=0·17 

0·85 

 BRAF 
mutated 

Log 
AREG 

0·77 (0·65-
0·92),p=0·003 

0·88 (0·63-
1·24),p=0·47 

0·75 (0·61-
0·92),p=0·007 

0·27 

 
 

Log 
EREG 

0·84 (0·71-
0·98),p=0·03 

0·80 (0·59-
1·09),p=0·16 

0·82 (0·66-
1·02),p=0·08 

0·73 

OS 
RAS WT 

Log 
AREG 

0·89 (0·83-
0·95),0·001 

0·95 (0·85-
1·06),p=0·37 

0·85 (0·77-
0·93),p=0·0006 

0·07 

 
 

Log 
EREG 

0·86 (0·81-
0·92),p<0·0001 

0·87 (0·79-
0·95),p=0·002 

0·86 (0·79-
0·93),p=0·0005 

0·72 

 RAS and 
BRAF WT 

Log 
AREG 

0·96 (0·88-
1·05),p=0·40 

1·01 (0·89-
1·14),p=0·91 

0·93 (0·83-
1·05),p=0·24 

0·26 

 
 

Log 
EREG 

0·93 (0·86-
1·01),p=0·08 

0·92 (0·83-
1·03),p=0·15 

0·95 (0·85-
1·06),p=0·33 

0·88 

 RAS 
mutated 

Log 
AREG 

0·86 (0·75-
0·99),p=0·04 

0·84 (0·67-
1·04),p=0·11 

0·90 (0·75-
1·08),p=0·27 

0·56 

 
 

Log 
EREG 

0·91 (0·81-
1·02),p=0·12 

0·85 (0·69-
1·04),p=0·12 

0·98 (0·84-
1·14),p=0·76 

0·27 

 BRAF 
mutated 

Log 
AREG 

0·82 (0·70-
0·95),p=0·01 

0·87 (0·65-
1·18),p=0·37 

0·78 (0·65-
0·95),p=0·01 

0·74 

 
 

Log 
EREG 

0·77 (0·65-
0·91),p=0·002 

0·74 (0·56-
0·97),p=0·03 

0·72 (0·56-
0·93),p=0·01 

0·87 

 

Table 4-4 Estimated crude HRs and 95% CIs for the effect of log AREG and log EREG on PFS and OS in all 

patients, then Ir, then IrPan stratifying by BRAF and RAS mutation status including likelihood ratio tests for 

ligand*treatment interaction. 

 

Within the primary analysis population (RAS-wt) high EREG expression was associated 

with improved PFS with IrPan (HR = 0.85 [0.79-0.93] p<0.001 compared with Ir alone (HR 

= 0.96[0.86-1.04],p=0.27). However the ligand/treatment interaction was not significant 

(p=0.08). Significant PFS benefit with IrPan with high EREG expression was not seen in 

any other mutation sub-group. Additionally there was no effect on the secondary 

endpoints OS or RR regardless of mutation sub-group. 
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4.4.5. The performance as AREG as a single continuous marker 
 

4.4.5.1. Prognostic utility of AREG alone 
 
As a single continuous marker, AREG was not prognostic for either OS (HR = 0.94[0.85-

1.03], p=0.09) or PFS (HR = 0.97 [0.87-1.07], p=0.50) in patients treated with Ir alone 

(table 4.2).  

 

When the prognostic utility both ligands were tested in a multivariate model, EREG 

remained prognostic for OS (p=0.001) but not PFS (p=0.11). Again AREG was not a 

significant prognostic marker. 

 

4.4.5.2. The predictive utility of AREG alone for panitumumab benefit 
 

Within the RAS-wt population, high AREG expression was associated with IrPan PFS 

benefit (HR=0.79[0.72-0.87], p<0.001), but not Ir alone (HR = 0.96[0.85-1.07], p=0.47) 

(table 4.4). Ligand/treatment interaction was significant (p=0.008). No other mutation 

sub-group were associated with IrPan PFS benefit according to AREG status. 

 

High AREG expression in RAS-wt patients was associated with OS benefit with IrPan (HR = 

0.79 [0.72-0.87],p<0.001) but not Ir alone (HR = 0.95[0.85-1.06], p=0.37), however the 

ligand/treatment interaction fell short of statistical significance (p=0.07). Again significant 

OS benefit was not seen in other mutation sub-groups. 

 

4.4.6. Effect of possible confounding factors on the ligand models 
 

BRAF-mut and right sided PTL were identified as possible confounders to the ligand 

model. Indeed expression of both EREG and AREG were lower in the presence of either of 

these factors (fig. 4.6). Therefore it is necessary to test whether the differential treatment 

effects by ligand expression in the primary analysis (PFS in RAS-wt patients) were instead 

being driven by these factors. 

 

In total there were 49 BRAF-mut patients (15.2%) within this study cohort. This high 

proportion is due to the population being enriched for KRAS-wt patients. In this 

population treated with Ir alone BRAF was prognostic for OS (HR = 2.15 [1.34-

3.46],p=0.002) and PFS (HR = 1.61[1.00-2.59], p=0.05) (data not shown).  
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Within the RAS-wt study population, there was not a significant BRAF mutation/ treatment 

interaction for PFS (p=0.21) or OS (0.42) (table 4.5). 

  All patients  Ir IrPan  

  
Unadjusted 

HR 
(95% CI) 

p-value 
Unadjusted HR 

(95% CI) 
Unadjusted HR 

(95% CI) 
Interaction 

p-value 

PFS 
BRAF  

(mut vs WT) 
1.85  

(1.32-2.60) 
<0.0005 

1.62  
(0.99-2.65), 

p=0.05 

2.28 (1.41-
3.69),p=0.001 

0.21 

OS 
BRAF  

(mut vs WT) 
2.56  

(1.82-3.60) 
<0.0005 

2.23  
(1.36-3.66), 

p=0.001 

2.97 (1.82-
4.83),p<0.0005 

0.42 

PFS 
Site  

(R vs L) 
1.13  

(0.84-1.52) 
0.41 

0.90  
(0.61-1.33), 

p=0.60 

1.25 (0.79-
1.97),p=0.34 

0.29 

OS 
Site  

(R vs L) 
1.39  

(1.04-1.85) 
0.03 

1.38  
(0.93-2.03), 

p=0.11 

1.48 (0.95-
2.29),p=0.08 

0.81 

 

Table 4-5 Estimated crude HRs and 95% Cis for the effect of BRAF (mut vs WT) and PTL (R vs L) on 

survival in RAS-wt patients 

 

In total 30.6% of patients had a right-sided primary tumour. In the study population 

treated with Ir, PTL was not prognostic for OS (HR = 1.38 [0.93-2.03], p=0.11) or PFS (HR 

= 0.90[0.61-1.33], p=0.60) (table 4.5). 

 

Within the RAS-wt study population, there was not a significant PTL/ treatment 

interaction for PFS (p=0.29) or OS (p=0.81) (table 4.5). 

 

4.4.6.1. The impact of BRAF-mut status on the predictive ligand model 
 

The effect of BRAF on the predictive ligand model in RAS-wt patients is demonstrated in 

table 4.6. The primary dichotomous classifier, and the continuous EREG and AREG model 

are tested. 
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  All patients  Ir  IrPan  p-value for interaction 

between ligand and 
treatment 

  Adjusted HR 
(95% CI) 

p-value Adjusted HR  
(95% CI) 

Adjusted HR  
(95% CI) 

PFS Log AREG 0·88 (0·81-0·95) 0·001 0·98 (0·87-1·10),p=0·75 0·82 (0·73-0·91),p=0·0002 0·008 

BRAF 1·60 (1·12-2·27) 0·009 1·59 (0·95-2·64),p=0·08 1·73 (1·04-2·89),p=0·04  

Log EREG 0·92 (0·86-0·98) 0·009 0·97 (0·88-1·07),p=0·50 0·88 (0·80-0·97),p=0·01 0·11 

BRAF 1·50 (1·04-2·19) 0·03 1·57 (0·93-2·64),p=0·09 1·55 (0·89-2·68),p=0·12  

 High vs. low ligand expression 0·79 (0·59-1·06) 0·11 1·14 (0·77-1·70),p=0·51 0·56 (0·36-0·87),p=0·01 0·005 

 BRAF 1·74 (1·23-2·46) 0·002 1·71 (1·02-2·86),p=0·04 2·04 (1·25-3·34),p=0·005  

OS Log AREG 0·92 (0·85-0·99) 0·03 0·98 (0·87-1·10),p=0·69 0·88 (0·80-0·97),p=0·01 0·09 

BRAF 2·33 (1·63-3·31) <0·0001 2·19 (1·32-3·63),p=0·002 2·50 (1·50-4·18),p=0·0005  

Log EREG 0·89 (0·84-0·96) 0·001 0·88 (0·80-0·97),p=0·01 0·90 (0·82-0·99),p=0·04 0·88 

BRAF 2·13 (1·47-3·10) <0·0001 2·17 (1·30-3·64),p=0·003 2·22 (1·27-3·87),p=0·005  

 High vs. low ligand expression 0·81 (0·61-1·08) 0·15 0·96 (0·65-1·41),p=0·83 0·64 (0·42-0·99),p=0·04 0·10 
 BRAF 2·42 (1·71-3·44) <0·0001 2·21 (1·33-3·67),p=0·002 2·73 (1·65-4·50),p<0·0001  

PFS Log AREG 0·85 (0·78-0·92) <0·0001 0·93 (0·82-1·05),p=0·23 0·79 (0·71-0·87),p<0·0001 0·02 

R vs L 0·96 (0·71-1·30) 0·81 0·85 (0·57-1·27),p=0·43 0·96 (0·60-1·53),p=0·87  

Log EREG 0·89 (0·83-0·95) 0·0002 0·93 (0·84-1·02),p=0·13 0·85 (0·78-0·93),p=0·0003 0·11 

R vs L 0·96 (0·70-1·30) 0·78 0·83 (0·55-1·24),p=0·36 0·94 (0·58-1·53),p=0·80  

 High vs. low ligand expression 0·72 (0·54-0·97) 0·03 0·99 (0·67-1·45),p=0·95 0·51 (0·32-0·81),p=0·004 0·01 
 R vs L 1·03 (0·76-1·40) 0·84 0·90 (0·60-1·33),p=0·59 1·00 (0·62-1·62),p=0·99  

OS Log AREG 0·89 (0·82-0·96) 0·002 0·95 (0·84-1·08),p=0·42 0·85 (0·78-0·94),p=0·001 0·12 

R vs L 1·23 (0·91-1·65) 0·18 1·32 (0·88-1·97),p=0·18 1·23 (0·79-1·93),p=0·36  

Log EREG 0·86 (0·81-0·92) <0·0001 0·86 (0·78-0·95),p=0·002 0·87 (0·79-0·95),p=0·001 0·91 

R vs L 1·15 (0·85-1·56) 0·37 1·16 (0·77-1·75),p=0·47 1·18 (0·74-1·88),p=0·48  

 High vs. low ligand expression 0·76 (0·56-1·02) 0·07 0·91 (0·61-1·34),p=0·62 0·61 (0·39-0·95),p=0·03 0·15 

 R vs L 1·26 (0·93-1·71) 0·14 1·34 (0·89-2·01),p=0·16 1·21 (0·76-1·94),p=0·42  

 
Table 4-6 BRAF and PTL adjusted HRs and 95% Cis for the effect of log AREG, log EREG and the dichotomous classifier on survival by treatment arm in RAS-wt patients. 
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The dichotomous ligand model continued to be a significant predictor of panitumumab 

PFS benefit following adjustment for BRAF (interaction p=0.005). Furthermore AREG 

remained significant following adjustment for BRAF (interaction p=0.008). However, as in 

univariate analysis, EREG was not significant (interaction p=0.11). 

 

Following adjustment for BRAF, none of the ligands models reached statistical significance 

for panitumumab OS benefit. Therefore the ligand/treatment PFS effect appears to be 

independent of BRAF-mut status. 

 

4.4.6.2. The impact of primary tumour location on the predictive ligand model 
 

The effect of PTL on the predictive ligand model in RAS-wt patients is demonstrated in 

table 4.6. The dichotomous ligand model remained a significant predictor of panitumumab 

PFS benefit following adjustment for PTL (interaction p=0.01). Furthermore AREG was 

significant following adjustment for PTL (interaction p=0.02). However, as in univariate 

analysis, EREG was not significant (interaction p=0.11). Following adjustment for PTL, no 

ligand model reached statistical significance for panitumumab OS benefit.  

 

Therefore the ligand/treatment PFS effect appears to be independent of PTL. 

 

4.4.7. Interrogation of the combined AREG/EREG model 
 

The binary ligand model was prospectively defined based upon two factors: to combine 

data from EREG and AREG as either can activate EGFR through different mechanisms, and 

to dichotomise at the middle/upper tertile for both and thus generating similar numbered 

high and low patient groups. However as this is a novel approach, we have performed 

exploratory analyses to test this model.  

 

4.4.7.1. Interrogation of the combined dichotomous ligand model: testing ‘either 
high vs neither’ assumption 

 

The ‘either vs neither’ model was prospectively proposed based upon the hypothesis that 

high expression of either EREG or AREG would lead to EGFR upregulation regardless of 

expression of the other ligand. Hence we have separately looked at patients classified on 

the basis of both ligands, or just one falling into the top tertile in RAS-wt patients (fig 4.11). 
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Given the small numbers of patients falling into the ’one ligand high’ category, this was not 

split further into high EREG only (n=23) and high AREG only (n=16). 

 

 
 

Figure 4-11 Exploratory analysis to assess the contribution of each ligand to the combined model in RAS-wt 

patients. 

 
Those RAS-wt patients with high expression of both ligands had a marked PFS benefit 

from panitumumab (HR = 0.28[0.28-0.53], p<0.0001). For the patients with one ligand 

within the top tertile, panitumumab PFS benefit was less certain but a wide confidence 

interval was observed (HR = 0.60[0.30-1.22], p=0.16). 

 

4.4.7.2. Interrogation of the combined dichotomous ligand model: testing the 
binary cut-point 

 

The cut-point at the middle/upper tertile boundary was prospectively defined based upon 

the distribution of ligand expression within this population, to create roughly equal 

groups. Defining an optimal cut-point based upon outcomes was not feasible as this study 

combines data from both ligands. 

 

This exploratory analysis therefore examines the effect of altering the cut-point for 

dichotomisation at the 50th, 80th and 90th centile (table 4.7)  
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Unadjusted HR 

(95% CI) 

Unadjusted HR 

(95% CI) 
p-value for interaction 

Low ligand expression 

(<50
th

 centile for both) 

High ligand expression 

(>50
th

 centile for either) 
 

79 events n=87 121 events n=132  

1·04 (0·66-1·64),p=0·87 0·44 (0·30-0·65),p<0·0001 0·02 

Low ligand expression 

(<66
th

 centile for both) 

High ligand expression 

(>66
th

 centile for either) 
 

111 events n=120 

0·93 (0·64-1·37), p=0·73 

89 events  n=99 

0·38 (0·24-0·61), p<0·0001 

 

0·01 

Low ligand expression 

(<80
th

 centile for both) 

High ligand expression 

(>80
th

 centile for either) 
 

138 events n=152 62 events n=67  

0·83 (0·58-1·17), p=0·28 0·37 (0·21-0·65), p=0·0005 0·04 

Low ligand expression 

(<90
th

 centile for both) 

High ligand expression 

(>90
th

 centile for either) 
 

161 events n=176 39 events n=43  

0·71 (0·52-0·98), p=0·04 0·35 (0·17-0·71), p=0·004 0·24 

 

Table 4-7 Estimated crude HRs and 95% CIs for the effect of treatment arm (IrPan vs Ir) n PFS in RAS-wt 

patients stratified by ligand expression four ways to explosre different cut-offs 

 
None of the exploratory cut-points provided superior discrimination (as defined by 

ligand/treatment interaction) of the benefitting/ non-benefitting population than the 

predefined boundary. Notably, a cut-point at the 50th centile assigned more patients to the 

‘high expressor’ group than by the original classification (132 vs 99, respectively) and 

maintained separation of the benefitting/ non-benefitting populations.  

 

4.4.7.3. Interrogation of the combined dichotomous ligand model: testing the 
validity of a combined rather than separate ligand approach 

 

When analysed separately, both continuous AREG and EREG acted as significant predictive 

biomarkers for panitumumab PFS benefit for RAS-wt patients (p<0.0001 and p=0.0003 

respectively, table 4.3). To assess the contribution of each ligand into the combined model, 

both were entered into a multivariate model. Resultingly, only AREG retained a significant 

effect on panitumumab PFS benefit (AREG HR =0.84 [0.71-0.99], p=0.04; EREG HR=0.95 

[0.83-1.08], p=0.43). 

 

This analysis is suggestive that if only one ligand was to be further developed then it 

should be AREG: indeed we observed marked PFS benefit in the ‘high AREG’ group 

(HR=0.30 [0.17-0.52],p<0.0001, n=76). In this circumstance this would mean withholding 

treatment to those who had an isolated high EREG, for whom treatment benefit is 

uncertain (HR=0.82[0.32-2.09], p=0.68, n=23, data not shown). 
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4.5. Discussion 

 
This study confirms the utility of EREG and AREG mRNA expression as biomarkers to 

identify RAS-wt patients most likely to benefit from anti-EGFR therapy, and proposes a 

simple model – ‘either high vs neither high’ – to combine information from both ligands. 

Using this model, RAS-wt patients with ‘neither high’ gained no PFS benefit from the 

addition of panitumumab to chemotherapy, while those with ‘either high’ gained marked 

benefit. Lesser differences were seen in the secondary end-points of OS and RR.  

 

Although predictive, the combined ligand model was not significantly prognostic. 

However, consistent with previous findings,(165, 166, 184, 399) EREG alone was 

prognostic for improved survival. 

 

It has been hypothesised that EREG and AREG stimulate the EGFR though an autocrine 

loop with positive feedback.(392) In cell line studies blocking ligand release strongly 

inhibits autocrine activation of EGFR reducing the rate and persistence of EGFR cell 

migration;(397) additionally secondary resistance during cetuximab treatment is 

associated with falling ligand levels.(402) Ligand overexpression is thus a plausible proxy 

for tumour EGFR dependence, hence a logical positive predictive marker for anti-EGFR 

therapies.   

 

Following strong signals from non-randomised studies,(165, 166, 384, 385) the predictive 

utility of ligands for anti-EGFR therapy has been reported in RCTs in first-line,(399) third-

line,(184) and now second-line treatment of aCRC, and with both cetuximab(184, 399) and 

now panitumumab. Additionally, high expression of ligands correlates with anti-EGFR 

benefit in preclinical studies in squamous cancers.(403) This study provides strong 

impetus to further develop AREG and EREG into a clinically applicable test.  

 

In the third-line CO.17 trial, KRAS-wt patients with high EREG expression had significant 

benefit with cetuximab over supportive care alone (OS HR=0.46, p<0.001; PFS HR=0.33, 

p<0.001); conversely no benefit was seen in KRAS-wt low EREG expressors (OS HR=0.93, 

p=0.81; PFS HR=0.7, p=0.21); however, statistical tests for interaction fell just short of 

statistical significance (OS p=0.08; PFS p=0.07).(184) In the first-line COIN trial, 

exploratory analysis of the sub-group of KRAS-wt patients who received FOLFOX with or 

without cetuximab showed significant OS benefit with cetuximab only in high EREG 
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patients (HR=0.33; p=0.0042), with a biomarker/treatment interaction p-value of 

0.01.(399) 

 

Similar to validation of KRAS(69) then extended RAS,(70) several steps are necessary in 

biomarker development: demonstration of sound scientific rationale, assay validation, 

optimisation of biomarker model and testing in hypothesis-led studies in intention-to-

treat randomised datasets powered to test biomarker/ treatment interaction. The failure 

of previous work to make clinical impact is likely due to inability to adequately fulfil such 

steps. This data is thus critical to the development and validation of EGFR ligands as a 

predictive biomarker for anti-EGFR agents. 

 

Previous work on EGFR ligands has however been vital in informing this study design. The 

primary analysis utilised a pre-defined combined ligand model with a cut-point at the 

upper/middle tertile, based upon the ligand expression distribution within the study 

population. Post-hoc testing of the assumptions to assess whether our model could be 

improved was also performed. 

 

The a priori decision to use data from both ligands was based upon sound scientific 

rationale and preclinical evidence that either AREG or EREG can activate EGFR.(388, 395, 

404)  However, they are highly co-expressed so are affected by multicollinearity if treated 

competitively in a multivariable model. In previous studies using multivariable models, 

EREG outperformed AREG in some (166, 184, 399) while AREG outperformed EREG in 

others.(384, 398)  

 

However, this approach is a poor basis for clinical decision-making for those patients 

whose ligands are not co-expressed. It was therefore prospectively elected to consider 

both AREG and EREG data using an “either vs neither” approach. Had we instead used a 

multivariable model, AREG would have emerged as the more useful ligand. 

 

Ligand expression is a continuous variable with smooth linear distribution with clinical 

end-points, however a dichotomous biomarker is more practical for use in clinical 

practice.  Previous work have utilised minimum p-values to determine the optimal ligand 

cut-off for study endpoints within their dataset, however no dichotomisation point has 

been validated. The upper/middle tertile boundaries were chosen for a pragmatic reason: 

to give similar numbers of patients in the high (either/or) or low (neither/nor) 

populations for analysis. However, the exploratory analysis of other cut-points suggests 
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that fortuitously this may be the best discriminator in terms of strength of 

marker/treatment interaction (p=0.01). A lower threshold (50th centile) would have 

assigned more patients to the ‘high’ category whilst still retaining PFS benefit (interaction 

p=0.02).  

 

An ‘either high or neither’ approach was utilised as a proportion of patients will have high 

expression of just one or the other ligand (see fig. 4.4). For those in the top tertile for both 

EREG and AREG a greater average benefit for IrPan was seen, but the group identified for 

treatment smaller. Within those in the top tertile for only one ligand, some benefit was 

seen with IrPan (PFS HR=0.60), but this was not significant likely given the small sample 

size. This analysis does illustrate that by only using one ligand there is a danger that 

potential responders would be denied useful treatment. 

 

Other known ligands of EGFR (EGF, TGF- and HB-EGF) were not tested as they have not 

been consistently associated with anti-EGFR efficacy.(385, 405) The hypothesis-based 

approach ensured adequate power to detect a ligand/treatment interaction, avoiding 

multiple testing.  

 

However if MEK-AKT pathway mutations, or other molecular alterations, are instead 

driving tumour activity, EGFR activation will be redundant, with correspondingly low 

ligand expression. In this study, KRAS- or BRAF-mut status was associated with lower 

ligand expression and lack of benefit with panitumumab, regardless of ligand expression. 

One previous study has reported the impact of MEK-AKT pathway mutations beyond KRAS 

on the relationship between ligands and anti-EGFR treatments.(384) Similarly, ligand 

expression was lower in the presence of a KRAS or BRAF mutation.  Unexpectedly, high 

EREG expression was associated with cetuximab response in the presence of mutations, as 

well as in all-wt patients.  Other studies saw no treatment effect in KRAS-mutant patients 

(166, 184), in keeping with these findings. 

 

The impact of BRAF and PTL status on the ligand-treatment predictive model was 

considered as both have been shown to interact with anti-EGFR agent effect,(131, 155) as 

well as adjusting for significant prognostic factors within the trial. Within PICCOLO, BRAF 

was a negative predictive marker for panitumumab benefit in KRAS-wt patients, but PTL 

was not.(406) As expected, ligand expression varied significantly according to BRAF and 

PTL status however an independent predictive effect of ligands was demonstrated.  
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There were limitations of this study. Sufficient archived tissue was available for only 

331(48%) of the 696 patients in the IrPan vs Ir randomisation in PICCOLO. Reassuringly 

the demographics and outcomes in the study population were consistent with the main 

trial analysis. As in other aCRC second-line trials of EGFR therapies,(130, 407) the marked 

PFS benefit seen with panitumumab in KRAS-wt patients in PICCOLO did not translate into 

improved OS, driven in part by shorter survival after progression for patients who had 

received panitumumab.(131) PFS was therefore chosen as the primary end-point of this 

study; and it is perhaps no surprise that even though RAS-wt high ligand expressing 

patients had a very marked improvement in PFS with panitumumab, this did not translate 

into longer OS. 

 

Ligand overexpression potentially represents the first positive predictive marker for 

cetuximab and panitumumab. Increasingly aCRC treatment decisions will be guided by 

biomarker status and this study suggests limiting anti-EGFR treatment to RAS-wt patients 

with high ligand expression.  Similar to CO-17(184) RAS-wt patients with low ligand 

expression had no benefit from panitumumab; however some clinicians may require a 

higher level of evidence prior to denying RAS-wt patients anti-EGFR treatment. Whilst 

potentially limiting treatment to 25% of all CRC patients, early exposure to anti-EGFR 

agents in this biomarker group should be considered. With several agents available for use 

in the treatment of aCRC, ligand data could impact the decision of whether to treat initially 

with anti-EGFR agents in RAS-wt patients.  

 

Whilst this study serves as clinical validation of AREG and EREG mRNA as positive 

predictive markers for anti-EGFR agents, further development is now urgently required to 

bring this potentially important biomarker to routine clinical use. With alternative new 

agents emerging for use in the treatment of aCRC, it becomes ever more important to 

ensure that wherever possible our use of anti-EGFR agents is restricted those who will 

benefit from them, so avoiding the costs and lost opportunities of futile treatment. We 

propose this combined model as a clinically usable tool and would strongly advise further 

validation prospectively and in existing datasets. 

 

4.6. Further Work 

Further development is urgently needed before the ligand model could be incorporated 

into routine practice. Firstly, further validation in ideally multiple RCT datasets is required 
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to define the dichotomisation point between high and low ligand expressers; which 

patients will be selected for anti-EGFR therapy based upon this biomarker. However this 

decision will require consensus on what degree of benefit is required to justify treatment 

with an anti-EGFR drug, and conversely how low a probability of benefit justifies 

withholding treatment? These clinical decisions will translate into positive and negative 

predictive values that can then be calculated using independent data sets to establish the 

optimum cut-point for clinical use. 

 

Additionally consensus on technology used for RNA extraction (dual with DNA, vs RNA 

alone), the RT-PCR technique (including choice of housekeeping genes) and software used 

for data analysis requires standardisation before this biomarker could be recommended. 

RT-PCR is used as a diagnostic tool in other disease areas, particularly in infectious 

diseases, and so routine use of this technology is feasible. 

 

Alternatively a EREG/AREG protein-based assay would be attractive; 

immunohistochemistry would allow a high through-put of samples, provide rapid results, 

require less tumour tissue and would be more cost-effective. However it is unknown 

whether high mRNA expression will equate to high EREG/AREG protein expression; and 

also whether protein expression will be predictive of anti-EGFR agent benefit. 

Furthermore an EREG and/or AREG antibody would need to be reliable and reproducible, 

and again a consensus would need to be met on how to distinguish high and low 

expressors. Work is currently underway to investigate this. 

 

Proteonomic techniques could also be utilised to assess EREG/AREG protein expression. 

Matrix-assisted laser desorption/ionisation-mass spectrometry imaging (MALDI-MSI) is 

an advanced analytical tool allowing molecular profiling and imaging of several classes of 

biological compounds directly within tissue sections, thus independent of antibody with 

high-throughput capabilities. As well as measuring EREG/ AREG, there is capability to 

measure expression of cell surface receptors and other ligands, providing a more 

comprehensive characterization than the targeted IHC approach. Whilst this technique has 

been used to assay the expression level and the tissue distribution of EGFR, AREG and 

EREG in FFPE human placenta,(408) it has not yet been fully developed using CRC FFPE 

tissue. Work is currently underway in this area. 

 

Whilst this study has identified patients who have tumours that appear to be driven by 

EGFR signalling, further work needs to be done to characterise these tumours, particularly 
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to understand interplay with other ErbB receptors (HER2, HER3 and HER4). The role of 

HER3 shall be investigated in Chapter 4. Additionally gene copy number analysis may 

provide useful information about the role of EGFR copy number and response to anti-

EGFR agents: a convincing relationship has not so far been demonstrated.(183, 409)  

 

Furthermore, low ligand expression in RAS and RAF-wt tumours could be indicative of a 

currently unknown molecular alteration; cell studies suggest that minimal expression of 

EREG/AREG can be due to aberrant overactivation of FGFR3, leading to MEK/ERK 

activation.(410) Gene sequencing studies in this group may identify alternative tumour 

drivers and thus more effective therapeutics.  

 

As discussed in Chapter 1, biomarker-stratified clinical trials are feasible and FOCUS-4 is 

currently recruiting patients to an ‘all-wt’ cohort, however this data suggests that further 

molecular stratification by ligand status may be necessary. However, further development 

of the ligand assay and model is required. Prospective drug trials in this EGFR-driven 

group is potentially exciting, particularly in the neo-adjuvant and adjuvant setting.  
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Chapter 5. HER3 expression levels as a biomarker of prognosis 
and panitumumab benefit in aCRC 

 

5.1. Introduction 

5.1.1. ErbB/ HER receptor axis 
 

The HER family of receptors include ErbB1 (EGFR), ErbB2 (HER2), ErbB3 (HER3) and 

ErbB4 (HER4). Their activation in response to extra-cellular stimulus results in 

downstream signalling essential for the regulation of diverse cellular processes.(411) The 

EGFR and HER2 are therapeutic targets in many cancers; for example the EGFR-targeting 

agents cetuximab and panitumumab in aCRC. As previously discussed, intrinsic and 

acquired resistance limits the usefulness of these drugs. In this chapter the role of HER3 as 

a prognostic biomarker in aCRC and a predictive marker for panitumumab shall be 

examined. 

 

5.1.2. HER-receptor family interdependence 
 

Ligand binding stabilises the extra-cellular domain of HER receptors leading to a 

conformation that is favourable for dimerisation with other receptors. Following 

dimerisation the intracellular kinase domain is activated leading to phosphorylation of the 

c-terminal tail tyrosine kinase residues with subsequent recruitment of signalling 

molecules and activation of intracellular signalling pathways. This receptor cross-talk is 

characteristic of the HER receptor family: dimerisation leads to allosteric interaction 

(binding of a effector molecule/receptor/ protein not at its active site), activating the 

kinase domain of one receptor by the other without phosphorylation of its active site 

loop.(412) Instead dimerisation of other tyrosine kinase receptors leads to 

phosphorylation of the kinase domain producing an active kinase that in turn 

phosphorylates substrates (and subsequent signalling) until deactivated by 

phosphatases.(412) 

 

Dimerisation and cross-talk between HER family members allows for diverse 

combinations of receptor homodimers and heterodimers with potential differences in 

signalling activity (fig. 5.1).(413) The heterodimers are more active than homodimers, 
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particularly the HER2-HER3 heterodimer.(413) The functional diversity of this receptor 

family is widened by the differences in ligand-binding specificity of their extra-cellular 

domain; the complexity of HER family signalling is not fully understood. 

 

 

Figure 5-1 Simple representation of downstream signalling involving HER3 heterodimers. Modified from 

(334) 

 

5.1.3. HER3  
 

HER3 is encoded by the ErbB3 gene that is located on chromosome 12q13. HER3 has three 

regions: an NH2-terminal extracellular ligand-binding region, a transmembrane domain 

and an intracellular region.(414) It is physiologically expressed in a wide variety of human 

tissue.(415) The primary ligands for HER3 are the Neuregulin family, most notably NRG1 

(also known as heregulin). Upon ligand-binding the HER3 extracellular domain adopts a 

structure that is highly favourable for dimerisation with other HER receptors. Inactive 

HER3 covers its c-terminal tail preventing its allosteric activation function.(416) 

 

HER3 displays several differences from other HER receptors. Firstly its kinase domain 

lacks catalytic activity and subsequently has minimal tyrosine kinase function. Instead its 

kinase domain is activated as part of a kinase-domain dimer, not requiring catalytic 

activity.(417) HER3 cannot generate signalling through homodimerisation as its ligand-

associated extra-cellular domain is an obligate heterodimer.(418) Additionally HER3’s   c-

terminal tail becomes transphorphorylated following heterodimerisation, creating 

docking sites that allow accumulation of downstream signalling proteins including SHC 

and GRB7, leading to RAS-MAPK pathway activation; HER3 is acting as a signalling 

substrate. Importantly there are 6 docking sites for PI3KCA, not present on EGFR or HER2, 

so HER3 may be the main effector of PI3K/Akt pathway signalling.(185) However HER3 
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can form heterodimers in ligand-independent mechanisms;(419) NRG may only drive a 

small fraction of the HER3 dimerisation, as the complexes mainly exist as ligand-less 

monomer. This raises the possibility that HER3 mainly functions as a scaffold for the 

assembly of signalling complexes.(420) 

 

5.1.4. HER3 in cancer 
 

All members of the HER family have been linked to the development and progression of 

many types of cancer, either through overexpression or mutation. Given the described 

interdependence of this receptor family, it is likely that more than one HER protein will be 

involved in tumour pathogenesis. Unlike EGFR and HER2, HER3 has not been identified as 

a driver oncogene, but instead an important obligate partner in HER family oncogenesis. 

In a cell line lacking endogenous HER receptors, EGFR expression alone was not sufficient 

to promote cellular transformation; however subsequent co-expression of HER3 enabled 

transformation.(421)  

 

HER3 appears to promote HER2-driven breast cancer; both overexpression of HER3(422) 

and widespread activation of Akt(423) are seen in HER2 overexpressing breast cancers. 

Cell line studies have demonstrated cooperation of the receptors, involving 

heterodimerisation, tyrosine phosphorlylation of HER3, increased PI3K recruitment and 

an autocrine loop involving heregulin.(424) Furthermore, down-regulation of HER3 in 

HER2 positive breast cancer cell lines led to G1 arrest, reduced Akt phosphorylation and a 

reduction of cell proliferation.(425) This suggests that the HER2/ HER3 heterodimer 

contributes to the pathogenesis and proliferation of HER2-overexpressing breast cancer, 

particularly as HER2 is unable to directly bind PI3k, activate the PI3K/Akt pathway and 

initiate an autocrine loop involving heregulin. This is supported by the activity of 

pertuzumab (a monoclonal antibody that inhibits the dimerisation of HER2 with other 

HER receptors) in combination with trastuzumab in HER2 positive breast cancer: the 

Cleopatra trial (trastuzumab +/- pertuzumab in the first-line treatment of metastatic 

HER2 overexpressing breast cancer) recently reported improved OS and PFS with the 

combination.(426) Additionally pertuzumab has shown clinical activity in ovarian 

cancer.(427) 

 

The EGFR/HER3 and HER3/HER4 heterodimers are less well described. Structural 

analysis of the EGFR/HER3 heterodimer showed HER3 to be an allosteric activator of 

EGFR on dimerization.(428) 
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Whilst the critical role of HER3 in oncogenesis is becoming increasing apparent, fewer 

reports have studied the usefulness of HER3 overexpression as a prognostic marker and of 

a predictive marker for targeted therapy. 

 

5.1.4.1. HER3 overexpression  
 

The significance of HER3 overexpression has been measured in several studies, across 

different cancer types and using a range of techniques. Techniques for measuring 

overexpression include FISH, RT-PCR and protein expression using IHC. Within the studies 

using IHC, several different antibodies and scoring systems have been utilised. Whilst 

most studies report clear localisation of HER3 protein at the plasma membrane, others 

report cytoplasmic staining.  

 

5.1.4.2. HER3 as a prognostic marker  
 

The prognostic significance of HER3 gene and protein overexpression has not been 

studied extensively. In melanoma increased HER3 expression relates to poor prognosis 

and blocking melanoma cell lines with a HER3 monoclonal antibody led to reduction in 

proliferation and invasion.(186) High HER3 protein expression was related to inferior 

prognosis in gastric cancer,(429) HNSCC,(430) and ovarian cancer.(431) However in 

biomarker analysis from the Cleopatra trial, high HER3 mRNA related to improved 

prognosis but high protein expression did not.(432)  

 

5.1.5. The impact of HER3 overexpression on the efficacy of HER-receptor 
targeted therapy  

 

As the HER receptor family are interdependent, HER3 overexpression may interact with 

EGFR and HER2 targeted therapy efficacy. Preclinical studies examining this theory have 

developed two conflicting hypotheses. 

 

5.1.5.1. HER3 overexpression as a negative predictive marker to HER-targeted 
therapy: 

 

One hypothesis proposes that high expression of HER3 or its ligands may provide escape 

signalling following successful targeting of a receptor.(186) Preclinical models report that 

sensitivity to HER family TKI therapy correlates with inhibition of PI3K/Akt pathway 

signalling,(433) and failure to inhibit this results in drug resistance.(434, 435) Sergina and 
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colleagues studied the durability of Akt inhibition by gefitinib in HER2-driven cancer cells: 

following initial inhibition, Akt signalling resumed despite continued drug therapy.(186) 

Furthermore, whilst TKI treatment led to sustained inhibition of EGFR and HER2 

phosphorylation (and of downstream MAPK pathway signalling), phosphorylation of 

HER3 in response to TKI treatment was transient, and HER3 signalling resumed despite 

drug treatment and effective suppression of EGFR and HER2. There was no significant 

expression of HER4 throughout TKI treatment. 

 

The group suggests that drug-refractory HER2 cancers are caused by resistance at the 

HER3 substrate level, driven by residual HER2 kinase activity, with no evidence for non-

HER receptor tyrosine kinase (eg MET) mediating this effect. The biological consequence 

is continued tumour growth and survival. Of note, the studies supportive of this 

hypothesis have only considered HER2 driven cancers. 

 

5.1.5.2. HER3 as a positive predictive marker to HER receptor targeted therapy: 
 

An alternative hypothesis is that HER3 expression will predict sensitivity to HER-targeted 

therapy. Engelman and colleagues report on preclinical models of gefitinib sensitivity in 

mutant EGFR NSCLC cell lines.(436) Phospho-precipitate patterns were compared 

between gefitinib-sensitive and resistant cell lines, and then examined interactions 

between the presence of p85-HER3 interaction and gefitinib sensitvity. 

 

They found that PI3K/Akt pathway was activated in all NSCLC cell lines (EGFR mutant and 

wild-type) and only inhibited in gefitinib sensitive cell lines. When comparing PI3K 

immunoprecipitates between gefitinib-sensitive and resistant cells, they saw that HER3 

couples to PI3K on gefitinib-sensitive cell lines (both EGFR wild-type and mutant) but not 

on resistant. In gefitinib-sensitive cell lines, Akt activity was reduced in response to 

inhibition by gefitinib. In contrast, only minimal HER3 expression was seen in resistant 

cell lines. Of note, forced expression of HER3 did not increase sensitivity to gefitinib, 

suggesting that the cell still also relies on EGFR for Akt pathway activation. These finding 

were in keeping with a further study of gefitinib sensitivity in NSCLC cell lines: the 

tumours most sensitive to gefitinib had the highest expression of HER3.(420, 437) 

 

A further preclinical study examined signalling pathways that mediate erlotinib sensitivity 

in pancreatic and colon cancer.(438)  They discovered that HER3 is co-expressed with 

EGFR in erlotinib-sensitive cell lines, but not in erlotinib-resistant lines. Of note, there was 
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no relationship with expression of other HER receptors and erlotinib sensitivity. Similar to 

previous work, they noted that knockdown of HER3 in erlotinib-sensitive cells led to 

suppression of the Akt/mTOR pathway. Both studies concluded that targeting EGFR with 

gefitinib and erlotinib also downregulates activity of HER3 through disruption of the 

EGFR/HER3 heterodimer.  

 

Another study in HER2 positive breast cancers treated with lapatinib saw that response 

was associated with the presence of phosphorylated HER2 and HER3: phosphorylated 

HER3 was present in 10 out of 12 responders and the authors concluded that co-

expression may reflect an activated state.(439) 

 

This data suggests that the EGFR/HER3 heterodimer is an important component of EGFR 

signalling, likely due to its role in PIK3CA activation. Low tumour expression of HER3 will 

represent lack of positive feedback, instead suggesting another oncogenic driver; in such 

tumours EGFR-targeted therapy shall likely be ineffective. 

 

5.1.6. The role of the HER axis in colon cancer  
 

EGFR mutations are oncogenic drivers in some CRCs so overexpression of HER3 may be 

important. Few studies have tested this specific hypothesis. In a study of CRC cell lines, 

depletion of HER3 strongly inhibited proliferation and was associated with impaired Akt 

activation and reduced p-mTOR levels.(440) Additionally blocking HER3 by targeting 

heregulin, led to inhibition of CRC migration and invasion, and induced apoptosis.(440) 

Similarly, deletion of HER3 in mouse CRC models led to a dramatic reduction in tumours 

mediated by reduced PI3k/Akt signalling and caspase-3 mediated apoptosis.(441) 

Therefore HER3 appears plays a crucial role in CRC PI3K/Akt pathway signalling. 

 

HER3 protein is overexpressed in a significant proportion of CRCs(442-444) and good 

correlation seen between primary tumours (80%), lymph node metastases (81%) and 

liver metastases (82%).(178)  

 

One study reported that HER3 protein was overexpressed in 69% of cases. It was not an 

independent prognostic factor, but was inversely associated with several favourable 

characteristics: histological grade, tumour size, tumour depth, TNM stage, lymphatic 

invasion, lymph node and distant metastases. Additionally HER3 overexpression was 

positively correlated with HER2 protein expression and HER2 gene amplification.(445) 
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A further study measured HER3 mRNA expression by RT-PCR and protein expression 

using IHC within the same cohort. HER3 protein overexpression was associated with poor 

prognosis but mRNA overexpresson was not,(446) similar to HER3 analysis in 

Cleopatra.(432) 

 

5.1.6.1.  HER3 overexpression as a predictive biomarker for anti-EGFR therapy in 
aCRC 

 

HER3 is a logical candidate biomarker for EGFR-directed therapy in aCRC. Two studies 

have specifically examined this hypothesis; additionally HER3 has been tested within a 

panel of potential candidate predictive genes. 

 

Scartozzi and colleagues evaluated HER3 protein expression by IHC in 44 KRAS-wt aCRC 

patients treated with Ir plus cetuximab. In this cohort 52% were deemed high HER3 

expressors. Low HER3 expression was associated with improved PFS (6.3 vs 2.8 mths, 

p<0.001) and OS (13.6 vs 10.5 months, p=0.01), compared with high HER3 

expressors.(447) A follow-on paper examined EGFR copy number and IGF-1 in the same 

cohort. The group proposed that a favourable cetuximab tumour profile was HER3 

negative, IGF-1 negative, and had EGFR copy number >2.2.(183) This profile has not been 

further validated. 

 

Further studies have reported HER3 effect alongside testing several other candidate 

genes. Strimpakos and colleagues assessed genes in 226 aCRC patients treated with 

cetuximab-containing regimens.(448) Consistent with PICCOLO, high EREG and AREG 

expression was associated with cetuximab benefit, but HER3 was not related to any 

treatment end-points.  

 

An important recent translational study assessed 14 HER-pathway candidate genes 

(including HER2 and HER3) in 103 patients who had participated in the CALBG 80203 

trial of 1st line chemotherapy +/- cetuximab.(449) HER2 and HER3 were strongly co-

expressed. When data were pooled from patients treated with or without cetuximab there 

was a trend toward improved survival with higher HER2 expression (HR = 0.78, p=0.071); 

however, within the KRAS-wt group both HER2 (0.66, p=0.013) and EREG (HR = 0.89, 

p=0.016) were significantly associated with improved OS. The analysis then looked at 

differential effects in the chemotherapy alone and chemotherapy/cetuximab treated 

KRAS-wt groups (total n=55). Despite the small sample size, there was a 
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treatment/biomarker interaction: patients with below-median HER3 expression 

appearing to gain overall survival benefit from cetuximab whilst those with above-median 

expression did not (p=0.029). However, this finding was not reproduced with PFS. 

 

To date there are no studies measuring expression of the EGFR/HER3 heterodimer and its 

relation with prognosis and treatment benefit. 

  

5.1.7. HER2 and HER4 in colorectal cancer 
 

As with HER3, there are few studies reporting the roles of HER2 and HER4 in aCRC. Within 

FOCUS and PICCOLO 1342 patients were examined for HER2 overexpression both by IHC 

and FISH.(227) The prevalence of increased HER2 protein overexpression by IHC was 

2.2%. HER2 overexpression was strongly associated with KRAS and BRAF-wt status, and 

the incidence of raised expression was 5.2% of this population. HER2 was not a significant 

prognostic marker for OS or PFS in either study. In biomarker analysis from CALB80203, 

high HER2 expression was associated with improved outcomes;(449) Strimpakos 

reported a negative prognostic effect.(448) 

 

Bertotti examined the effect of HER2 overexpression on cetuximab efficacy using 

cetuximab-treated patient xenograft models.(167) HER2 amplification was seen in a sub-

set of cetuximab resistant RAS-RAF –PIK3CA-wt cases, and concluded that HER2 

overexpression was a marker of cetuximab resistance. This hypothesis was tested 

prospectively in a phase II study of trastuzumb and lapatinib in HER2-positive heavily pre-

treated aCRC patients (HERACLES Trial).(450) In total, 646 KRAS-wt patients were 

screened and 4.3% were HER2-positive (3+ or 2+ by IHC, plus FISH positive). The primary 

end-point was met with 6/18 objective responses, plus stable disease for over 4 months in 

a further 4 patients. Clinical outcomes were best in the group which had HER2 CNV>20 

copies. 

 

HER-4 has been less investigated. Kountokouras reported that HER4 was membranous 

overexpression by IHC in 18.9% of CRC patients, but had no relation to any treatment end-

points.(444) 

 

Therefore the HER axis appears to be important in aCRC and receptor expression may 

interact with anti-EGFR therapy efficacy. HER3 likely has a pivotal role due to the 
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biological functions described. This chapter will investigate the role of HER3 as a 

prognostic biomarker, and a predictive biomarker for panitumumab benefit. 

5.2. Hypothesis 

The primary hypothesis of this study is that HER3 overexpression will interact with 

panitumumab efficacy in RAS-wt patients. As current evidence is limited and inconsistent, 

we shall consider both possibilities: 

Hypothesis 1 

 HER3 overexpression will be a positive predictive marker for panitumumab 

benefit by identifying tumours reliant on the EGFR/HER3 heterodimer for 

PI3K/Akt signalling.  

Hypothesis 2 

 HER3 overexpression will be a negative predictive marker for panitumumab. 

Despite targeting the EGFR with panitumumab, baseline HER3 overexpression will 

allow for continued signalling through heterodimerisation with residual EGFR and 

other HER receptors.  
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5.3. Methods 

5.3.1. Patient population 
 

Patients involved in the HER3 study have been treated in the IrPan vs Ir comparison in the 

PICCOLO trial (including patients with KRAS mutations/ pre-treatment with EGFR agents) 

with sufficient tumour material for analysis (fig 5.2). 

 

 
 
Figure 5-2 Trial schema of the PICCOLO trial demonstrating patients included within this translational 

study. 

 
5.3.2. Laboratory materials and methods 

 
Slide preparation, RNA extraction and cDNA synthesis were performed as described in 

Chapter 4. 

 

HER3 expression was assessed by RT PCR, as described in Chapter 4. Again target-specific 

PCR efficiencies were calculated from the inter-run calibration standard curves, then 

utilised to calculated the calibrated normalised relative quantities of HER3 

expression.(401) 

 
5.3.3. Statistical analysis 

 

STATA was used for all statistical analyses (Stata Statistical Software: Release 12 (2011), 

StataCorp. College Station, Texas). Baseline patient characteristics were compared 

aCRC previous progression 
on FU based chemotherapy 

 KRAS12, 13, 61-wt   KRAS12,13,61-mut 

Irinotecan 
 Irinotecan + 

panitumumab 
 Irinotecan  

  Irinotecan + 
ciclosporin 

IrPan 
randomisation 

IrCs 
randomisation 
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between treatment arms using two-tailed T-tests, Wilcoxon rank sum tests (for variables 

with non-normally distributed frequency distributions) and Pearson Chi-squared tests 

(for categorical variables). Patient characteristics were compared to the whole trial 

population using the same tests.  

 

Boxplots were produced for raw HER3 expression. The primary analysis tested HER3 as a 

continuous variable (log-transformed to base 2). An exploratory analysis was additionally 

performed assessing HER3 as a binary variable: similar to the EREG/AREG analysis the 

population was divided into “high expressors” (HER3 in top tertile) or “low expressors” 

(HER3 expression in the middle/lower tertile).  This cut-point provided superior 

discrimination in terms of biomarker/ treatment interaction than seen at the median. 

 

Three clinical endpoints were used: primary endpoint was PFS; secondary endpoints were 

OS and RR. PFS and RR data were unchanged from the primary trial analysis, but updated 

two-year OS data was used in this analysis. 

 

HER3 expression was first assessed as a prognostic marker in patients treated with Ir 

alone, both using the continuous variable and the exploratory dichotomous classifier 

(“high expressors” vs “low expressors”), in Cox proportional hazards models.  

 

HER3 expression was then assessed as a predictive marker for panitumumab benefit by 

testing for interaction between the effects of expressor status (high/low) and treatment 

(IrPan/Ir) on PFS and OS using the likelihood ratio test. Adjustment was performed for 

significant prognostic factors in the trial population (PS; response to previous therapy). 

Secondary analysis of predictive effects was performed in patients with RAS or BRAF 

mutations.  

 

BRAF mutation and PTL (right colon vs left colon or rectum) were identified as possible 

confounding factors; therefore survival models were estimated for the joint effects of 

BRAF and HER3, then PTL status and HER3, for the primary continuous model and the 

dichotomous classifier. 

 

Additionally to explore the relationship between HER3 expression and EGFR ligand 

expression, survival models were estimated for the joint effects of EREG/AREG and HER3 

for the primary continuous model and the dichotomous classifier.  
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5.4. Results 

5.4.1. Patient characteristics 
 
Of the 696 PICCOLO patients within the Ir vs IrPan randomisation, 331 had sufficient 

tumour available for RNA extraction, and subsequent measurement of HER3 expression 

was successful in 308. Baseline characteristics by treatment arm were well balanced and 

reported in table 5.1.   

 

Within the study population 285 had a disease progression event (92.5%) and 289 

(93.8%) patients had died. Survival data was available for all patients.  
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Patient characteristic Ir (N=164) IrPan 

(N=144)  

All patients 

(308) 

RAS-wt 

 Category    (n=209) 

Age at randomisation 

(yrs) 

 Mean 61.9 (s.d 

10.9) 

Mean 61.4 (s.d 

11.2) 

Mean 61.6 (s.d 

11.0) 

Mean 61.7  

(s.d 11.3) 

Sex N(%) Male  103 (62.8) 90 (62.5) 193 (62.7) 127 (60.8) 

 Female 61 (37.2) 54 (37.5) 115 (37.3) 82 (39.2) 

HER3 expression N(%) Low 113 (68.9) 90 (62.5) 203 (65.9) 140 (67.0) 

 High 51 (31.1) 54 (37.5) 105 (34.1) 69 (33.0) 

Performance status N(%) 0-1 157 (95.7) 139 (96.5) 296 (96.1) 199 (95.2) 

 2 7 (4.3) 5 (3.5) 12 (3.9) 10 (4.8) 

Previous bevacizumab 

N(%) 

No 161 (98.2) 140 (97.2) 301 (97.7) 205 (98.1) 

 Yes 3 (1.8) 4 (2.8) 7 (2.3) 4 (1.9) 

Previous Oxaliplatin 

N(%) 

No 9 (5.5) 11 (7.6) 20 (6.5) 12 (5.7) 

 Yes 155 (94.5) 133 (92.4) 288 (93.5) 197 (94.3) 

Previous response N(%) CR, PR or SD 98 (58.8) 86 (59.7) 184 (59.7) 131 (62.7) 

 PD 46 (28.1) 43 (29.9) 89 (28.9) 52 (24.9) 

 Unknown  20 (12.2) 15 (10.4) 35 (11.4) 26 (12.4) 

Previous dose 

modifications N(%) 

No 62 (37.8) 54 (37.5) 116 (37.7) 83 (39.7) 

 Yes 102 (62.2) 90 (62.5) 192 (62.3) 126 (60.3) 

Previous chemotherapy 

N(%) 

No 60 (36.6) 54 (37.5) 114 (37.0) 73 (34.9) 

 Yes 98 (59.8) 90 (62.5) 188 (61.0) 133 (63.6) 

 Unknown 6 (3.6) 0 (0) 6 (2.0) 3 (1.4) 

KRASc.12,13,61 N(%) Wild-type 131 (79.9) 108 (75.0) 239 (77.6) - 

 Mutant 33 (20.1) 36 (25.0) 69 (22.4) - 

BRAFV600E N(%) Wild-type 145 (88.4) 116 (80.6) 261 (84.7) 164 (78.5) 

 Mutant 19 (11.6) 28 (19.4) 47 (15.3) 45 (21.5) 

NRASc.12,13,61 N(%) Wild-type 156 (95.1) 135 (93.8) 291 (94.5) - 

 Mutant 8 (4.9) 9 (6.2) 17 (5.5) - 

KRASc.146 N(%) Wild-type 156 (95.1) 137 (95.1) 293 (95.1) - 

 Mutant 8 (4.9) 7 (4.9) 15 (4.9) - 

PIK3CAexon 9/20 N(%) Wild-type 141 (86.0) 132 (91.7) 273 (88.6) 191 (91.4) 

 Mutant 23 (14.0) 12 (8.3) 35 (11.4) 18 (8.6) 

No mutations detected  85 (51.8) 64 (44.4) 149 (48.4) 149 (71.3) 

Any mutation detected  79 (48.2) 80 (55.6) 159 (51.6) 60 (28.7) 

Overall survival time 

(months) 

 Median 11.4  Median 10.1 Median 10.8  Median 10.8 

  (IQR 1.8-41.8) (IQR 1.5-31.8) (IQR 1.3-50.4) (IQR 1.4-41.8) 

Death event N(%) No 11 (6.7) 8 (5.6) 19 (6.2) 17 (8.1) 

 Yes 153 (93.3) 136 (94.4) 289 (93.8) 192 (91.9) 

Progression free survival 

time (months)* 

 Median 4.4  Median 4.5 Median 4.4 Median 5.1 

  (IQR 0.9-14.7) (IQR 0.7-20.2) (IQR 0.4-20.5) (IQR 0.6-20.5) 

Progression event N(%) No 10 (6.1) 13 (9.0) 23 (7.5) 19 (9.1) 

 Yes 154 (93.9) 131 (91.0) 285 (92.5) 190 (90.9) 

Best response N(%)** CR or PR 19 (11.6) 36 (25.0) 55 (17.8) 44 (21.1) 

 SD or PD 144 (87.8) 106 (73.6) 250 (81.2) 162 (77.5) 

 Unknown 1 (0.6) 2 (1.4) 3 (1.0) 3 (1.4) 

 

Table 5-1  Characteristics of patient population by treatment arm in the whole and limited to the RAS-wt 

population. 

  



 166 

A complete set of MEK-AKT mutation (KRASc.12-13,61,146 NRASc.12-13,61 and BRAFV600E) 

genotype data was available for all cases. 209/308 (67.8%) patients were RAS-wt. Of the 

209 RAS-wt patients, 45 (21.5%) had a BRAF mutation.  The breakdown of this study 

population according to mutation status is shown in fig. 5.3. 

 

  

Figure 5-3  Consort diagram of study population 

 
5.4.2. HER3 Distribution 

 

HER3 demonstrated a skewed distribution so subsequent analyses have been log-

transformed (to base 2)(fig. 5.4). 

 

 
 

Figure 5-4  Log-transformed HER3 distribution 

 
5.4.2.1. HER3 distribution depending upon MEK-AKT pathway mutations and PTL 
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In pairwise comparisons, HER3 expression was not significantly associated with RAS 

mutation status (Wilcoxon rank sum tests: HER3 p= 0.46). HER3 was higher in BRAF-wt 

than the BRAF-mutated groups (p<0.05)(fig 5.5).  

 

The effect of PTL on HER3 expression was investigated as BRAF-mut status was associated 

with lower HER3 expression, and BRAF-mutations are commoner in right-sided tumours. 

In the RAS-wt population, HER3 expression was significantly higher in left-sided than 

right-sided primary tumours (p=0.02)(fig. 5.5). 

 

 
 

Figure 5-5 HER3 expression levels by RAS-status BRAF-status and PTL 

 
5.4.2.2. HER3 expression and EREG and AREG expression 

 
HER3 was positively correlated with both continuous EREG and continuous AREG within 

both the entire study population (both p<0.001) and the RAS-wt population (both 

p<0.001)(fig 5.6). This correlation was not seen in the RAS-mut population (EREG p=0.08; 

AREG p=0.17). 
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Figure.5-6 Scatter plot of log HER3 vs log AREG 

 
5.4.3. The performance of HER3 as a single continuous marker 

 
The primary analysis investigated HER3 as a log-transformed continuous variable, firstly 

as a prognostic marker then to assess its predictive utility for panitumumab benefit. 

 
5.4.3.1. Prognostic utility of continuous HER3 

 
The prognostic analysis is reported in table 5.2. 
 

 

 

 

Ir  Ir  

 
Unadjusted HR 

(95% CI) 
p-value 

Adjusted HR 

(95%CI)* 
p-value 

PFS All patients High versus low HER3 expression 1.03 (0.73-1.45) 0.86 0.98 (0.68-1.41) 0.91 

  Log HER3 0.93 (0.83-1.05) 0.25 0.90 (0.80-1.02) 0.10 

 RAS-wt High versus low HER3 expression 1.09 (0.72-1.66) 0.67 0.98 (0.63-1.52) 0.92 

  Log HER3 0.96 (0.82-1.13) 0.65 0.91 (0.77-1.07) 0.25 

OS All patients High versus low HER3 expression 0.85 (0.60-1.20) 0.35 0.79 (0.55-1.13) 0.19 

  Log HER3 0.91 (0.83-0.99) 0.04 0.88 (0.80-0.97) 0.008 

 RAS-wt High versus low HER3 expression 0.99 (0.65-1.51) 0.95 0.93 (0.60-1.44) 0.74 

  Log HER3 0.93 (0.83-1.05) 0.25 0.90 (0.80-1.01) 0.07 

 

Table 5-2 Prognostic analysis for the effect of the HER3 dichotomous classifier and log HER3 on overall 

survival and progression free survival. 

* adjusted for performance status, previous response and previous chemotherapy 

 
Continuous HER3 was prognostic for OS (HR=0.91, [0.83–0.99], p=0.04) in patients 

treated with Ir alone, but not for PFS (HR=0.93, [0.83-1.05], p=0.25). Within the RAS-wt 

population HER3 was not a significant prognostic marker for either OS (p=0.25) or PFS 

(p=0.65). 
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5.4.3.2. The predictive utility of continuous HER3 for panitumumab benefit   
 

The predictive analysis for continuous log-transformed HER3 is shown in table 5.3. Our 

hypothesis was that high HER3 expressors would have benefit from IrPan compared with 

Ir alone; conversely low HER3 expressors would not. This hypothesis was supported by 

the predictive analysis. 

 
  All patients Ir IrPan  

 
Mutation 

subgroup 

n 

(events) 

Unadjusted 

HR 

(95% CI) 

n 

(events) 

Unadjusted 

HR 

(95% CI) 

n 

(events) 

Unadjusted HR 

(95% CI) 

p-value for 

interaction* 

PFS 
All 

patients 
307(285) 

0.88 (0.83-

0.94),p<0.0005 
163(154) 

0.93 (0.83-

1.05),p=0.25 
144(131) 

0.87 (0.81-

0.94),p<0.0005 
0.21 

 RAS WT 208(190) 
0.82 (0.74-

0.90),p<0.0005 
114(106) 

0.96 (0.82-

1.13),p=0.65 
94(84) 

0.71 (0.61-

0.82),p<0.0005 
0.001 

 
RAS 

mutated 
99(95) 

0.95 (0.87-

1.05),p=0.34 
49(48) 

0.88 (0.72-

1.07),p=0.19 
50(47) 

0.99 (0.88-

1.12),p=0.91 
0.37 

 
BRAF 

mutated 
47(44) 

0.79 (0.66-
0.94),p=0.009 

19(18) 
1.03 (0.70-

1.53),p=0.88 
28(26) 

0.77 (0.63-
0.93),p=0.006 

0.11 

OS 
All 

patients 
308(289) 

0.90 (0.85-

0.95),p<0.0005 
164(153) 

0.91 (0.83-

0.99),p=0.04 
144(136) 

0.89 (0.83-

0.96),p=0.001 
0.74 

 RAS WT 209(192) 
0.86 (0.80-

0.94),p<0.0005 
115(106) 

0.93 (0.83-
1.05),p=0.25 

94(86) 
0.73 (0.64-

0.83),p<0.0005 
0.004 

 
RAS 

mutated 
99(97) 

0.94 (0.86-

1.03),p=0.17 
49(47) 

0.83 (0.70-

0.98),p=0.03 
50(50) 

1.01 (0.89-

1.14),p=0.93 
0.07 

 
BRAF 

mutated 
47(45) 

0.81 (0.70-
0.94),p=0.005 

19(18) 
0.89 (0.61-

1.31),p=0.56 
28(27) 

0.80 (0.68-
0.95),p=0.009 

0.67 

 

Table 5-3 Unadjusted Hazard ratios and 95% Cis for the effect of log2 HER3 on PFS and OS in all patients, 

the RAS-wt and RAS-mut and BRAF-mut 

* P-value is from a likelihood ratio test comparing a model including the main effects for log2 Her3 
and treatment (IrPan versus Ir) plus the log2 Her3*treatment interaction term with a model including 
only the main effects 

 

Within the primary analysis population (RAS-wt) high HER3 expression was associated 

with improved PFS with IrPan (HR = 0.71 [0.61-0.82] p<0.0005) compared with Ir alone 

(HR = 0.96 [0.82-1.13],p=0.65); HER3/treatment interaction was significant (p=0.001). No 

significant PFS benefit with IrPan with high HER3 expression was seen in any other 

mutation sub-group.  

 

Additionally there was an OS benefit for the addition of panitumumab to irinotecan in 

patients with high HER3 expression (IrPan OS HR = 0.73[0.64-0.83], p<0.0005, Ir OS HR = 

0.93 [0.83-1.05], p=0.25; interaction p=0.004).  

 

5.4.3.3. The predictive utility of continuous HER3 in other mutation sub-group 
 

The predictive effect of the continuous HER3 model was considered in other mutation 

sub-groups; RAS- and BRAF-wt, RAS mutant and BRAF mutant (Table 5.3).  
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No other mutation sub-group benefitted from IrPan, regardless of HER3 expression levels. 

Of note BRAF-mut patients appeared to have IrPan PFS and OS benefit (p=0.006 and 

p=0.009 respectively) with increasing HER3 expression, however interaction testing was 

negative (p=0.11 and p=0.67 respectively). 

 

5.4.4. The performance of HER3 as a combined dichotomous marker 
 

An exploratory analysis was performed exploring HER3 as a dichotomous marker, 

dividing the population into “high expressors” (top tertile of HER3 expression) or “low 

expressors” (HER3 in the middle or lower tertile). HER3 was cut at the upper/middle 

tertile. This assigned 105 patients to the ‘high expressor’ group and 203 patients to the 

‘low expressor’ group. 

 

5.4.4.1. Prognostic utility of the dichotomous HER3 model 
 

The prognostic analysis was shown in Table 5.2. Using the dichotomous classifier, high 

HER3 was not a significant prognostic marker for OS (HR 0.88, 95% CI, 0.60-1.20, p=0.35) 

or PFS (HR 1.03, 95% CI 0.73-1.45, p=0.86), compared with low HER3 expressors (table 

5.2 and fig 5.7) in all patients. HER3 was not prognostic for either OS (p= 0.95) or PFS (p= 

0.67) within the RAS-wt population. 

 

 
 

Figure.5-7 OS KM curves for high vs low HER3 expression levels  

5.4.4.2. The predictive utility of the HER3 dichotomous model for panitumumab 
benefit in RAS-wt patients. 

 
The predictive analysis for the exploratory HER3 dichotomous model is reported in table 

5.4, figure 5.8 and figure 5.9.
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 All patients Low HER3 expression High HER3 expression  

         

 
Mutation 

subgroup* 

Number of 

events 

(number of 

observations) 

Unadjusted HR  

(95% CI) 

Number of 

events (number 

of 

observations) 

Unadjusted HR 

(95% CI) 

Number of 

events 

(number of 

observation

s) 

Unadjusted 

HR 

(95% CI) 

p-value for 

interaction 

PFS RAS WT 190 (208) 0.67 (0.50-0.90) 128 (139) 0.96 (0.67-1.38) 62 (69) 0.33 (0.19-0.58) 0.002 

   p=0.008  p=0.84  p<0.0005  

 

RAS and 

BRAF WT 

148 (163) 0.56 (0.40-0.79) 97 (106) 0.76 (0.49-1.17) 51 (57) 0.36 (0.20-0.67) 0.05 

 p=0.001  p=0.21  p=0.001  

RAS 

mutated 

95 (99) 1.18 (0.78-1.77) 60 (63) 1.17 (0.70-1.97) 35 (36) 1.26 (0.63-2.52) 0.89 

 p=0.43  p=0.54  p=0.51  

BRAF 

mutated 

44 (47) 1.07 (0.57-1.98) 33 (35) 1.29 (0.60-2.74) 11 (12) 0.29 (0.06-1.40)  

 p=0.84  p=0.51  p=0.12 0.06 

OS RAS WT 192 (209) 1.10 (0.82-1.46) 130 (140) 1.56 (1.09-2.23) 62 (69) 0.66 (0.40-1.10)  

   p=0.52  p=0.02  p=0.11 0.01 

 

RAS and 

BRAF WT 

149 (164) 0.98 (0.71-1.36) 99 (107) 1.32 (0.86-2.02) 50 (57) 0.74 (0.42-1.29) 0.14 

 p=0.92  p=0.20  p=0.28  

RAS 

mutated 

97 (99) 1.36 (0.91-2.04) 63 (63) 1.02 (0.62-1.69) 34 (36) 2.09 (1.0-4.37)  

 p=0.14  p=0.92  p=0.05 0.09 

BRAF 

mutated 

45 (47) 1.33 (0.73-2.43) 33 (35) 1.41 (0.67-2.98) 12 (12) 0.41 (0.11-1.57)  

 p=0.35  p=0.36  p=0.19 0.11 

 

Table 5-4 Estimated crude HRs and 95% Cis for the effect of treatment on OS and PFS in low HER3 expression and high HER3 expression stratifying 

by RAS and BRAF mutation status, including likelihood ratio tests for HER3*treatment interactions. 
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Figure 5-8 PFS KM curves for RAS-wt patients for high HER3 expressors and low HER3 expressors, treated 

with IrPan vs Ir (interaction p =0.002). 

 

 

Figure 5-9 OS KM curves for RAS-wt patients for high HER3 expressors and low HER3 expressors, treated 

with IrPan vs Ir (interaction p=0.01). 

 
For RAS-wt high HER3 expressors, IrPan had a significant effect on PFS: median 8.2 

months (IrPan) vs 4.4 months (Ir); HR=0.33 [0.19–0.58], p<0.0005). However, 

panitumumab had no effect in RAS-wt patients with low HER3 expression: median PFS 3.3 

months (IrPan) vs 4.3 months (Ir); HR=0.96 [0.67–1.38], p=0.84). HER3-treatment 

interaction was significant (p=0.002), and also following adjustment for other prognostic 

factors (p=0.001, data not shown). 

 

Additionally HER3/treatment interaction was positive for OS (p=0.01) in RAS-wt patients. 

Of note, patients with low HER3 expression were harmed by treatment with panitumumab 

(OS HR = 1.56 (1.09-2.23), p=0.02). Instead those with high HER3 expression appeared to 

benefit from IrPan, but the difference was not significant (OS HR = 0.66 (0.40-1.10), 
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p=0.11). A lesser HER3 effect was seen for the response rate endpoint, but with high HER3 

expressors having a higher likelihood of a CR or PR. (table 5.5)
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Relative risks for 

IrPan versus Ir 

Response rate 

(RR) % 
Overall  Low Her3 expression High Her3 expression  

Mutation 

subgroup 
Ir IrPan 

Unadjusted 

Relative risk 

(95% CI) 

p-value 

RR 

Ir 

 

RR 

IrPan 

 

Unadjusted 

Relative risk 

(95% CI) 

RR 

Ir 

 

RR 

IrPan 

 

Unadjusted 

Relative risk 

(95% CI) 

p-value for 

interaction 

RAS WT 

  n=217    n=138   n=68  

10.8 32.0 2.95 (1.64-5.32) <0.0005 11.1 24.6 2.21 (1.03-4.75) 12.1 48.6 
4.01 (1.50-

10.68) 
0.34 

RAS & BRAF 

WT 

  n=170    n=105   n=56  

12.1 40.9 3.37 (1.85-6.14) <0.0005 11.4 34.3 3.0 (1.35-6.66) 16.0 54.8 3.43 (1.32-8.89) 0.83 

RAS mutated 
  n=103    n=63   n=36  

12.0 11.3 0.94 (0.33-2.73) 0.91 6.5 9.4 1.45 (0.26-8.11) 22.2 11.1 0.50 (0.10-2.40) 0.36 

BRAF mutated 

  n=49    n=35   n=12  

4.8 7.1 
1.50 (0.15-

15.46) 
0.73 9.1 8.3 0.92 (0.09-9.07) 0 0 - - 

 

Table 5-5 Estimated crude RRs and 95% CIs for response rate by HER3 expression status 
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5.4.4.3. The predictive utility of the combined ligand model for panitumumab 
benefit in other mutation sub-groups. 

 
Within the RAS- and BRAF-wt subpopulation, high HER3 expressors had PFS benefit from 

IrPan compared with Ir (HR =0.36 [0.20-0.67], p=0.05) as seen in the RAS-wt group. Again 

those with low ligand expression had no improvement with IrPan (HR=0.70[0.43-1.16] 

p=0.17) compared with Ir alone. The ligand/treatment interaction was of borderline 

significance (p=0.05). Lesser effect was seen for OS (interaction p= 0.14). 

 
The RAS-mut group did not benefit from IrPan treatment regardless of HER3 status. As 

seen in the continuous predictive analysis, BRAF-mut patients in the top tertile for HER3 

expression did trend towards improved PFS and OS with IrPan compared to Ir, but again 

interaction testing was not significant (interaction p=0.06 and p= 0.11 respectively). 

 
5.4.5. The impact of BRAF-mut status and PTL on the predictive HER3 model 

 
The effect of BRAF and PTL on the predictive HER3 model in RAS-wt patients is 

demonstrated in table 5.6. Both the primary continuous and the dichotomous HER3 

models are tested. 
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  All RAS-wt 

patients 

 Ir  IrPan  p-value for 

interaction between 

HER3 and treatment   Adjusted HR 

(95% CI) 

p-value Adjusted HR  

(95% CI) 

Adjusted HR  

(95% CI) 

PFS Log HER3 0.82 (0.74-0.91) <0.0005 0.96 (0.82-1.13),p=0.64 0.74 (0.64-0.86),p<0.0005 0.004 

BRAF 1.72 (1.21-2.43) 0.002 1.54 (0.92-2.57),p=0.10 1.82 (1.09-3.03),p=0.02  

 High vs. low HER3 expression 0.66 (0.49-0.87) 0.004 0.80 (0.54-1.19),p=0.28 0.55 (0.35-0.87),p=0.01 0.13 

 BRAF 1.80 (1.27-2.55) 0.001 1.61 (0.96-2.72),p=0.07 1.99 (1.21-3.26),p=0.006  

OS Log HER3 0.86 (0.79-0.93) <0.0005 0.92 (0.82-1.03),p=0.16 0.77 (0.68-0.87),p<0.0005 0.04 

 BRAF 2.56 (1.80-3.63) <0.0005 2.21 (1.31-3.72),p=0.003 2.56 (1.53-4.29),p<0.0005  

 High vs. low HER3 expression 0.65 (0.49-0.86) 0.003 0.72 (0.48-1.07),p=0.10 0.58 (0.38-0.91),p=0.02 0.54 

 BRAF 2.61 (1.83-3.72) <0.0005 2.35 (1.38-4.01),p=0.002 2.74 (1.66-4.54),p<0.0005  

PFS Log HER3 0.80 (0.73-0.89) <0.0005 0.93 (0.79-1.09),p=0.37 0.71 (0.61-0.82),p<0.0005 0.003 

 R vs L 1.09 (0.80-1.47) 0.59 0.85 (0.56-1.27),p=0.42 1.35 (0.85-2.15),p=0.21  

 High vs. low HER3 expression 0.66 (0.49-0.88) 0.005 0.81 (0.55-1.20),p=0.29 0.52 (0.33-0.81),p=0.004 0.06 

 R vs L 1.09 (0.81-1.48) 0.58 0.85 (0.56-1.27),p=0.42 1.31 (0.82-2.10),p=0.25  

OS Log HER3 0.85 (0.78-0.93) <0.0005 0.92 (0.81-1.04),p=0.18 0.72 (0.63-0.83),p<0.0005 0.008 

R vs L 1.42 (1.06-1.92) 0.02 1.36 (0.91-2.02),p=0.14 1.70 (1.08-2.68),p=0.02  

 High vs. low HER3 expression 0.70 (0.52-0.93) 0.02 0.82 (0.55-1.21),p=0.32 0.55 (0.36-0.85),p=0.007 0.16 

 R vs L 1.38 (1.02-1.86) 0.04 1.32 (0.88-1.98),p=0.18 1.66 (1.05-2.61),p=0.03  

 

Table 5-6 BRAF and PTL adjusted HRs and 95% CIs for the effect of log HER3 and the dichotomous classifier on survival by treatment arm in RAS-wt patients. 



 177 

 
The primary continuous HER3 model continued to be a significant predictor of 

panitumumab PFS benefit following adjustment for BRAF (interaction p = 0.0004) and PTL 

(interaction p=0.003). Additionally it continued to predict panitumumab OS benefit 

following adjustment for BRAF (interaction p=0.04) and PTL (interaction p=0.008). 

 

The exploratory dichotomous HER3 model was not significant following adjustment for 

BRAF and PTL for either PFS or OS. 

 

5.4.6. Effect of EREG and AREG expression on the HER3 models 
 

As shown in Chapter 4, a combined AREG and EREG model was shown to be a predictive 

biomarker for panitumumab PFS benefit in the RAS-wt population. However when treated 

individually AREG was a superior predictor over EREG as a continuous variable. To 

explore the relationship between HER3 and EGFR ligands as predictive markers for 

panitumumab benefit, a joint predictive model with HER3 and AREG has been performed, 

then a model assigning patients to 4 groups according to the HER3 and combined ligand 

dichotomous classifiers. 

 

Exploring the continuous model, higher expression of HER3 and AREG continued to be 

independent predictors of IrPan PFS benefit (interaction p = 0.03 and 0.05 respectively), 

suggesting that they have independent effects. In the combined model lesser independent 

effect was seen for OS (interaction HER3 p= 0.07 and AREG p = 0.21) (table 5.7). 

 
  Ir IrPan p-value for interaction 

  
Adjusted HR 

(95% CI) 

Adjusted HR 

(95% CI) 
 

PFS 
Log HER3 0.98 (0.83-1.16),p=0.81 0.80 (0.69-0.93),p=0.003 0.03 

Log AREG 0.97 (0.85-1.10),p=0.60 0.83 (0.74-0.92),p=0.001 0.05 

OS 
Log HER3 0.94 (0.83-1.07),p=0.36 0.78 (0.68-0.90),p=0.001 0.07 

Log AREG 0.97 (0.86-1.10),p=0.68 0.90 (0.81-0.99),p=0.04 0.21 

 

Table 5-7 AREG adjusted HRs and 95% Cis for the effect of log HER3 on survival by treatment arm in RAS-

wt population. 

 
When dividing the RAS-wt population into 4 groups depending upon dichotomous HER3 

and ligand status, the greatest panitumumab benefit was in those patients in the top tertile 

for both markers. This group a marked PFS (HR = 0.24 [0.11-0.51], p<0.005) and OS (HR = 

0.36[0.18-0.73], p=0.004) improvement with IrPan compared to Ir alone (table 5.8). 
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  Low HER3/Low ligand High HER3/low ligand Low HER3/high ligand High HER3/high ligand 

PFS RAS-wt 79 events n=86 26 events n=27 49 events n=53 36 events n=42 

  1.14 (0.73-1.79),p=0.57 0.61 (0.25-1.44),p=0.26 0.69 (0.37-1.29),p=0.25 0.24 (0.11-0.51),p<0.0005 

OS RAS-wt 80 events n=87 24 events n=27 50 events n=53 38 events n=42 

  1.44 (0.92-2.26),p=0.11 1.54 (0.67-3.55),p=0.31 1.90 (1.02-3.55),p=0.04 0.36 (0.18-0.73),p=0.004 

 

Table 5-8 Estimated crude HRs and 95% CIs for the effect of treatment on OS and PFS for 4 groups 

depending upon dichotomous HER3 and ligand classification in the RAS-wt population. 

 
Conversely, RAS-wt patients with neither HER3 nor ligands in the top tertile gained no 

benefit from panitumumab for either PFS (HR = 1.14[0.73-1.79], p=0.57) or OS (1.44 

[0.92-2.26], p=0.11). Those with high HER3 but low ligands had intermediate PFS benefit 

for IrPan (p=0.26); a similar effect was seen in patients with low HER3 but high ligand was 

seen (p=0.25). Unexpectedly this group has an OS detriment with IrPan compared with Ir, 

despite initial PFS benefit; significant in the low HER3 and high ligand group (p=0.04). 

 
5.4.7. Interrogation of the combined dichotomous HER3 model: testing the 

binary cut-point 
 
The cut-point for the exploratory dichotomous HER3 model at the upper/middle tertile 

boundary was chosen as it provided the best discrimination in terms of HER3/treatment 

interaction. 

 

This exploratory analysis demonstrates the effect of altering the cut-point for 

dichotomisation at the 50th, 80th and 90th centile (table 5.9).  
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 Unadjusted HR  

(95% CI) 

Unadjusted HR  

(95% CI) 

p-value for 

interaction 

 Low HER3 expression 

(<50th centile) 

High HER3 expression 

(>50th centile) 

 

PFS 94 events n=102 96 events n=106  

 0.98 (0.64-1.49),p=0.92 0.51 (0.33-0.78),p=0.002 0.05 

OS 95 events n=103 97 events n=106  

 1.41 (0.94-2.14),p=0.10 0.96 (0.65-1.44),p=0.86 0.16 

 Low HER3 expression 

(<66th centile) 

High HER3 expression 

(>66th centile) 

 

PFS 128 events n=139 

0.96 (0.67-1.38),p=0.84 

62 events n=69 

0.33 (0.19-0.58),p<0.0005 

 

0.002 

OS 130 events n=140 62 events n=69  

 1.56 (1.09-2.23),p=0.02 0.66 (0.40-1.10),p=0.11 0.01 

 Low HER3 expression 

(<80th centile) 

High HER3 expression 

(>80th centile) 

 

PFS 153 events n=167 37 events n=41  

 0.84 (0.61-1.17),p=0.31 0.20 (0.09-0.44),p<0.0005 0.006 

OS 154 events n=168 38 events n=41  

 1.32 (0.96-1.82),p=0.09 0.47 (0.24-0.92),p=0.03 0.03 

 Low HER3 expression 

(<90th centile) 

High HER3 expression 

(>90th centile) 

 

PFS 168 events n=183 22 events n=25  

 0.75 (0.55-1.03),p=0.08 0.27 (0.10-0.72),p=0.008 0.13 

OS 170 events n=184 22 events n=25  

 1.25 (0.92-1.69),p=0.15 0.51 (0.21-1.24),p=0.14 0.15 

 

Table 5-9  Estimated crude HRs and 95% CIs for the effect of treatment arm (IrPan vs Ir) on PFS and OS in 

RAS-wt patients stratified by HER3 expression 4 ways to explore different cut-offs. 

 

5.5. Discussion 

In the largest randomised dataset examining HER3 in CRC, HER3 mRNA overexpression 

does interact with panitumumab effect, and acts as a positive predictive marker. 

Increasing HER3 mRNA expression was associated with improved PFS and OS in RAS-wt 

patients treated with IrPan, compared with Ir alone. Using the exploratory dichotomous 

model high HER3 expressors had PFS and OS benefit with IrPan compared with Ir; in 

contrast, RAS-wt low HER3 expressors did not. 

 

High HER3 mRNA expression was a favourable prognostic marker for OS in patients 

treated with chemotherapy alone, consistent with other studies.(448, 449) This was not 

seen for PFS, or either end-point in RAS-wt patients. The binary HER3 model was not 

prognostic. In contrast HER3 protein overexpression has been associated with inferior 

outcomes.(447) 

 

HER3 overexpression is the first biomarker to predict panitumumab OS benefit in 

PICCOLO. Consistent with other second-line trials of anti-EGFR agents in aCRC, (130, 407) 
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panitumumab PFS benefit was not mirrored by significant OS improvement. Other tested 

biomarkers have shown positive biomarker/ treatment interactions only for PFS 

(RAS/RAF/PIK3CA-wt; PFS interaction p=0.02 OS interaction p=0.06), (EREG/AREG; PFS 

interaction p = 0.01, OS interaction p =0.11). HER3 may identify patients most sensitive to 

anti-EGFR agents. 

 

Opposing hypotheses are proposed to explain the interaction of HER3 with HER-receptor 

targeted agent efficacy. HER3 overexpression as a negative predictive marker would 

provide escape signalling via the PI3k/Akt pathway.(186) Instead HER3 as a positive 

predictive marker can identify tumours most reliant on EGFR signalling through autocrine 

feedback loops, and most likely to respond to targeted agents.(436) 

 

HER3 mRNA overexpression has been studied in the CALBG80203 biobank.(449) In 

contrast to PICCOLO, high expression was associated with lack of cetuximab OS benefit, 

with lesser effect for PFS. A consistent finding was that high expression of HER3 and EREG 

were favourable prognostic markers (Ir only arm). This study has advantages of being a 

hypothesis-led comprehensive analysis in a larger randomised mature dataset, allowing 

for adjustments for likely confounders. The ability of the CALBG80203 study to 

demonstrate predictive markers for anti-EGFR agents is limited by small sample size, 

simultaneous testing of multiple genes and by not demonstrating significant cetuximab 

effect. Alternatively differential cetuximab and panitumumab effects may be being 

observed. 

 

In a study of 84 KRAS-wt aCRC patients treated with cetuximab and irinotecan, high HER3 

protein expression (assessed by IHC) was associated with worse outcomes,(447) also 

differing from the current data. Difficulties assessing HER3 protein expression by IHC have 

been described, particularly reproducibility: 3 different studies of HER3 using IHC in 

ovarian cancer reported widely different frequencies: 53.4%(431) vs 3%(451) vs 

85%.(452) The clinical effect of high HER3 gene and protein expression may differ: in two 

studies HER3 mRNA overexpression was a favourable prognostic marker, but protein 

expression was not.(432, 446) Therefore the validity of testing HER3 overexpression by 

IHC is questionable. 

 

Previous work using the PICCOLO biobank has been consistent with expected patterns in 

aCRC: enhanced IrPan effect in an ‘all-wt’ group (RAS/PIK3CA/BRAF-wt),(70, 189) and 

EREG/AREG as predictors of panitumumab effect.(166, 184). Patterns of HER3 expression 
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were as biologically anticipated: lower expression was associated with MEK-AKT pathway 

mutations and right PTL. With larger sample size, homogenous control arm and 

consistency of effect seen for both PFS and OS, we are confident that this study identifies 

HER3 mRNA overexpression as a novel positive predictive marker for anti-EGFR agents. 

However these important, but contrasting results emphasise need for validation in well-

designed hypothesis based studies in further randomised datasets. 

 

Efficacy of targeted agents will not usually be determined by one molecular alteration, so 

biomarker analyses must consider other possible interactions. BRAF-mutation,(191) 

PTL,(155) and EGFR ligands(166) have been associated with anti-EGFR therapy efficacy. 

The primary continuous HER3 model was independent of these factors.  

  

As high EREG/ AREG was predictive of IrPan benefit in PICCOLO, and is hypothesised to be 

a surrogate for tumour EGFR dependence it was important to establish whether HER3 had 

an independent biological effect. A combined model with continuous HER3 and AREG (the 

stronger predictive marker) demonstrated independent effect of both for panitumumab 

PFS benefit; however neither for OS. 

 

Data from both dichotomous classifiers was then combined, dividing the population into 4 

according to status of both biomarkers (high vs low). The population with high expression 

of both had marked panitumumab PFS and OS benefit. Those with one marker high (the 

other low) had intermediate PFS benefit, regardless of which gene was overexpressed. An 

unexpected finding was that this cohort trended towards OS harm with panitumumab, 

despite initial PFS benefit; a significant finding in the low HER3/ high ligand population. 

This is of great interest as all second-line anti-EGFR studies have failed to prove an OS 

benefit despite PFS effect.(130, 407) Understanding the behaviour of these tumours 

following panitumumab progression would be valuable. Although interesting, this was a 

small sub-group analysis. Importantly, RAS-wt patients with low expression of both 

markers gained no panitumumab benefit for any end-point.  

   

The prospectively planned primary analysis assessed HER3 as a continuous model. This 

differs to the AREG/EREG analysis that aimed to validate a clinically usable dichotomous 

ligand model, building upon strong prior evidence. As lesser data exists examining the role 

of HER3 in aCRC, the continuous model provides more power to examine to test 

prognostic significance and HER3/panitumumab interactions.  
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Having demonstrated HER3 effect using the primary model, an exploratory analysis was 

performed to assess HER3 as a binary measure (high vs low). HER3 is a continuous 

variable with no natural dichotomisation point so different cut-points were tested, and 

superior discrimination for biomarker/treatment interaction p-value was at the 

upper/middle tertile of mRNA expression. Using this model HER3 expression remained 

predictive of panitumumab PFS and OS benefit. However lesser effect was seen following 

adjustment for PTL and BRAF: this joint model cut the biomarker population into 4, with 

small numbers within each comparison. However it is likely that further cut-point 

optimisation may be required.  

 

This was a prospectively designed hypothesis based study investigating the role of HER3 

in aCRC, based upon strong scientific hypothesis. Instead multiple testing effects limit 

studies analysing multiple genes simultaneously. Study of HER2 and HER4 would be 

desirable; however there is strong co-expression between HER3 and HER2, plus a low 

prevalence of HER2 overexpression in aCRC(227) so it is unlikely that this would greatly 

alter HER3 effect described. Preclinical studies did not see interactions with HER4 and 

anti-EGFR effect. However we cannot discount that the HER2/HER3 heterodimer is 

driving some signalling.  

 

This study provides further fascinating biological insights into the complex molecular 

interactions necessary for anti-EGFR agent effect in aCRC and the need for further 

stratification beyond RAS-status.  

5.6. Further Work 

This study presents strong evidence that HER3 expression is an important component of 

anti-EGFR activity and testing in other randomised datasets and in prospective studies is 

advised. Further testing would ideally utilise the same assay to allow establishment of a 

dichotomisation point for a clinically usable binary marker. Whilst an IHC based HER3 

assay is attractive, the relationship between HER3 protein expression and anti-EGFR 

efficacy requires confirmation and assay development is critical to ensure reproducibility. 

 

From data presented in Chapter 4 and Chapter 5, a panel of biomarkers can identify 

patients most sensitive to anti-EGFR agents: patients most likely to have marked benefit 

are RAS-wt, EREG/AREG high expressors and HER3 high expressors. In contrast RAS-wt 

patients with low expression of EREG/AREG and HER3 are unlikely to have clinical benefit 
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with anti-EGFR agents, and alternative treatment should be considered. RAS-wt patients 

with high expression of either EREG/AREG or HER3 appear to gain intermediate benefit to 

panitumumab, and we do not provide sufficient evidence to deny treatment to these 

patients. This panel should be assessed in further datasets. It is clear that there are a 

population of RAS-wt patients unlikely to benefit from anti-EGFR therapy. 

 

Testing of HER2 and HER4 mRNA expression levels would be useful, however as discussed 

it is anticipated that lesser effect would be noted than with HER3. Too few patients with 

HER2 overexpressing tumours by conventional testing were present to allow a meaningful 

predictive analysis.(227)  

 

Further preclinical work examining this is warranted; particularly focussing on aCRC. A 

study of pre- and post treatment samples would be useful to understand the response of 

HER axis to treatment with cetuximab. Additionally functional studies measuring 

expression of the EGFR/HER3 and the EGFR/HER2 heterodimer and response to therapy 

would be beneficial. Phospho-HER3 expression would also be interesting to investigate 

but requires testing in fresh tissue. 

 

Similar to pertuzumab in HER2-driven cancers, a monoclonal antibody targeting the 

EGFR/HER3 heterodimer in combination with anti-EGFR agents may be of benefit to some 

patients. 
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Chapter 6. Pharmacogenomic predictors of irinotecan toxicity 
and efficacy 

 

6.1. Introduction 

As discussed three main types of chemotherapy are used in aCRC, but there is not a gold 

standard for sequencing. Each drug causes adverse effects that are significant and highly 

variable between patients. Prediction and avoidance of the negative effects of treatment is, 

and will remain, an important goal with the potential to improve patients’ experiences, 

individualise dose levels and avoid early cessation of therapy. 

 

Polymorphism of genes involved in drug handling is an important potential source of 

inter-patient variability in toxicity and efficacy. However pharmacogenetic relationships 

for anticancer drugs are in most cases poorly characterised and inadequately validated, so 

clinicians are understandably reluctant to incorporate testing into routine clinical practice.  

 

Irinotecan is among the anticancer agents with greatest clinical need and greatest 

potential for benefit from pharmacogenetics, particularly as its metabolism and clearance 

involves several enzymes and transporters with common functional germline variants. It 

is commonly used either as a single agent or in combinations, and whilst well tolerated by 

many patients can causes severe toxicity, particularly diarrhoea. 

 
6.1.1. Irinotecan metabolism 

 

Irinotecan is a semisynthetic derivative of camptothecin.  Campothecins interact 

specifically with topo-1 that relieves torsional strain in DNA by inducing reversible single-

strand breaks. Its active lipophilic metabolite SN-38 is formed from irinotecan by 

carboxylesterase metabolism. SN-38 is inactivated mainly through glucuronidation to SN-

38G, which is mediated primarily by UDP-glucuronosyl-transferases (UGTs)(fig. 6.1).  The 

inactive form SN-38G is more soluble and polar and is eliminated principally through 

biliary excretion.  
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Other inactive catabolites are produced (APC and NPC) by the action of the CYP3A 

enzymes. Irinotecan is then actively effluxed out of hepatocytes by ABC transporters.(453) 

Hence many factors are involved in irinotecan metabolism and clearance. 

 

 

Figure 6-1 Schematic representation of irinotecan metabolism. Adapted from PharmGKB (454) 

 

6.1.2. UGT1A gene 
 

UGT1A is located on chromosome 2q13 and has nine functional isoforms that are 

expressed differentially through the gastrointestinal system. This UGT1A enzyme sub-

family is encoded by a single gene complex comprising of 9 distinct exons corresponding 

to the N-terminal domain of the isoform that are spliced into 4 shared exons encoding the 

membrane building C-terminal domain.  A promoter region that regulates the tissue-

specific expression precedes each unique exon.  Certain UGT1A isoforms have 

demonstrated increased inter-individual variability, most notably UGT1A1, UGT1A9 and 

UGT1A6.(455) Genetic variations are based upon the number of TA dinucleotide repeats: 

for example the number of repeats in the UGT1A1 promoter region ranges from 5-8 with 6 

repeats being the most widespread (6/6 – wild type) and 7 repeats being the most 
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common variant, termed UGT1A1*28 (or 7/7 genotype), a TATA box variant. Increasing 

numbers of TA repeats lead to reduced transcription and enzyme activity.(456) 

 

As well as its role in drug metabolism, UGT1A enzymes are responsible for the metabolism 

of endogenous substrates including bilirubin. UGT1A1 in particular appears to be the only 

enzyme capable of bilirubin glucuronidation. A number of genetic conditions are 

associated with defective bilirubin glucuronidation, most notably Gilbert’s syndrome 

where the genetic defect is UGT1A1*28.(457) Gilbert’s syndrome is a frequent (3-10% in 

Caucasians) but benign bilirubin metabolism disorder that manifests as moderate 

unconjugated hyperbilirubinaemia, but has no other manifestations. Instead, Criger-Najjar 

disease is rare and severe and occurs when glucuronidation is totally absent.(458) 

 

There are racial variations in UGT1A1*28 alleic frequency, ranging from homozygosity 

rates of 8-20% in Caucasians, to less than 3% in Asian populations. Instead, the most 

frequent variant in the Asian population is UGT1A1*6 and UGT1A1*27; both are 

associated with markedly reduced enzyme activity.(456)  

  

Given its role in drug metabolism, UGT1A1*28 homozygosity has been identified as a risk 

factor for adverse drug reactions due to reduced drug clearance.(459) 

 

6.1.3. UGT1A1*28 as a biomarker for irinotecan toxicity 
 

In vitro research demonstrated that UGT1A1 was involved in the glucuronidation of SN-

38,(460) and that UGT1A1*28 homozygotes have twice the concentration of plasma SN-38 

than wild-types following irinotecan administration.(461) Increased plasma levels lead to 

myelosuppression and enteric injury, manifesting as diarrhoea. Clinical studies have 

investigated the association between UGT1A1*28 and irinotecan toxicity; larger studies 

are summarised in table 6.1. Based upon preliminary reports, in 2005 the FDA approved a 

genetic test for UGT1A1*28 homozygosity. This was based upon the results of two studies 

using different regimens, with a total of 132 patients and 13 UGT1A1*28 homozygous 

patients, of whom 8 experienced toxicity.(8, 462)  

 

Further studies have been performed to further qualify this relationship but results have 

been difficult to interpret due to small numbers, limited statistical power, heterogenous 

irinotecan schedules and populations. However meta-analysis of nine studies including 

821 patients found a higher risk of haematological toxicity in UGT1A1*28 homozygotes 
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compared with wild types but only when treated with medium (OR = 3.22, 95%CI =1.52-

6.81, p=0.08) and high (OR = 27.8, 95%CI – 4.0-195, p= 0.005) doses of irinotecan.(463) A 

further recent meta-analysis of 20 small studies (including 1760 patients) found a higher 

risk for UGT1A1*28 homozygotes compared with wild type for severe diarrhoea (OR = 

3.69, CI = 2.00-6.83, p<0.001).(464) However data from three large randomised trials: 

FOCUS (465), N9741 (466) and PETACC3,(467) together including 2,500 patients 

concluded that the association to be unclear and at best modest. Perhaps most 

importantly, whilst UGT1A1*28 may predict modestly increased risk of irinotecan, the 

majority of patients who experience irinotecan toxicity are not predicted by the test. 

Therefore, whilst it may have a role as a component of a multivariable tool, it appears to 

be of little value as a clinical risk tool in isolation. 

 

 
6.1.1. UGT1A1*28 status and irinotecan efficacy 

 

A further area of interest is the association between genotype and tumour response to 

irinotecan. As with toxicity, inconsistent results have been reported for the impact of 

homozygosity on irinotecan efficacy. Initial prospective work conducted in 238 aCRC 

patients treated with FOLFIRI reported an association of this genotype with improved RR 

and PFS compared with wild-types.(468) A meta-analysis described that response rates 

for irinotecan by UGT1A1*28 status were 41% for wild-types, 45% for heterozygotes and 

70% for homozygotes.(461)  

 

However, contradictory reports exist. In McLeod’s study, homozygote patients treated 

IrOx had inferior RR than wild-types, which may be reflective of poorer tolerance with 

increased SN-38 exposure.(236) A meta-analysis of 10 studies did not demonstrate 

significant association between UGT1A1*28 status and RR or PFS with irinotecan, taking 

into account dosing heterogeneity between the studies.(469) Again, no relationship with 

efficacy was demonstrated in the larger studies shown in table 6.1.(215, 468, 470, 471) 
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Study 

No of Ir 

treated 

patients 

Setting Regimens Ir dose 
UGT1A1*28 

frequency 

Association 

with  severe 

neutropaenia 

Association 

with ≥3 

diarrhoea 

Association 

with Ir 

efficacy 

Ref 

Braun, 

2007 

413, 

Caucasian 

1
st
 line 

palliative RCT 
Ir +/- FU 

350mg/m
2
 or 

180mg/m 

(FOLFIRI) 

9.4% No No No (215) 

Kweekel, 

2008 

218 

Caucasian 
1

st
/2

nd
 line 

Ir +/- 

capecitabine 

350mg/m
2
 or 

180mg/m
2
 

(FOLFIRI) 

6.4% 
Yes (febrile 

neut) 
No No (471) 

Cecchin, 

2009 

250, 

Caucasian 

All lines. 

Prospective 

observational. 

IrFU 

180mg/m
2
 

(FOLFIRI) 8.8% 

Yes (gd 3& 4), 

but not in MV 

model 

No No (468) 

Bioge, 

2010 

262 

Caucasian 

1
st
/2

nd
 line 

palliative RCT 
FOLFIRI 

180mg/m
2
 

(FOLFIRI) 
10.2% No No No (470) 

McLeod, 

2011 

221 

Caucasian 

1
st
 line 

palliative RCT 
IFL & IrOx 

IFL:125mg/m
2
 

IrOx:200mg/m
2
 9% 

Yes – only in 

IrOx treated 

group 

No No (236) 

Ichikawa, 

2015 

1312 

Asian 

20% 1
st
 line; 

80% 2
nd

/3
rd

 line 

palliative. 

Prospective 

observational 

Ir +/-FU 

combinations, 

or Ir plus 

biological 

Multiple 

regimens: 

150 mg/m
2
 bi-

weekly or 

FU combin   

125-150mg/m
2
 

 

11.1% 
Yes (gd 3& 4 

reported) 
Yes n/a (472) 

 

Table 6-1 Summary of large studies assessing UGT1A1*28 and irinotecan sensitivity 
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This data has led to prospective dose escalation studies based upon UGT1A1*28 genotype 

information. It is hypothesised that the maximum tolerated dose (MTD) in wild-type 

patients may be higher than currently recommended, and hence they are being under-

dosed: wild-type patients were able to tolerate doses 15-19% higher than UGT1A1*28 

heterozygotes.(473, 474) However the maximum tolerated dose (MTD) of irinotecan in 

homozygotes was 28% lower than used in FOLFIRI.(474) 

 

A genotype-directed phase I study was conducted to individualise irinotecan dose based 

upon UGT1A1*28 status. Each genotype represented three distinct groups with MTD 

ranging from 400 to 850mg, with no change in toxicity profile. The authors suggest that 

this work conclusively identifies the role of UGT1A1*28 as a major determinant of safe 

irinotecan dosing. Homozygous patients were initially given a 20% dose reduction, 

however all patients (n=3) experienced a dose limiting toxicity. Instead a 40% dose 

reduction to 400mg was tolerable for 3 weekly Ir dosing. Efficacy was a secondary end-

point given the small sample size, but will be explored in a genotype-directed phase II 

study.(475) 

 

6.1.2. Variants in the UGT1A1 gene and irinotecan sensitivity 
 

Other biologically plausible genetic factors involved in irinotecan metabolism and 

clearance should be considered. There are further genetic variations in the UGT1A1 

sequence such as promoter region variations, and haplotypes or combinations of variants 

may be important in phenotypic expression.  

 

Additional genotype variation in Gilbert’s syndrome has been studied: 300 Gilbert’s 

patients were genotyped for UGT1A and transporter SNPs, along with controls.(476) 

Gilbert’s patients were homozygous for UGT1A1*28, but additionally had variants in other 

UGT1A genes, including SNPs in UGT1A3, UGT1A6 and UGT1A9, with 76% being 

homozygous for all tested SNPs. There were no differences in transporter gene variants 

between Gilbert’s and normal subjects, perhaps as expected as impaired glucuronidation 

underlies the disease. This study concluded that there are more extensive haplotypes of 

UGT1A gene variants in Gilberts’s than previously considered, and also that these 

variations may also represent a risk factor to drug treatment in a non-Gilbert’s 

population.(476) 
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The role of variations in extended UGT1A1 SNPs and irinotecan sensitivity has been 

reported in clinical studies. In 65 irinotecan treated patients, a promoter SNP at position -

3156C was a superior predictor of UGT1A1 status than the TA promoter repeat,(477) and 

was associated both grade 4 neutropaenia and ≥ grade 3 febrile neutropaenia in irinotecan 

treated patients.(236) This is a common variant, with 10% of Caucasians and African 

Americans being homozygotes.(478) UGT1A1*93 has also been associated with 

neutropaenia.(479) 

 

6.1.3. Variants in other UGT genes and irinotecan sensitivity 
 

Additional UGT1A genes including UGT1A7 and UGT1A9, also mediate SN-38 

glucuronidation so polymorphism may result in impaired irinotecan excretion (figure 6.1). 

Homozygosity for UGT1A7*3 or UGT1A9*22 variants were associated with severe 

diarrhoea following the first cycle of irinotecan. (480) In a separate study these variants 

were associated with haematological toxicity with irinotecan.(481) 

 

In a prospective study of 167 aCRC patients treated with FOLFIRI, 21 candidate SNPs in 

the UGT1A gene were tested and associated with toxicity then tested in a validation cohort 

(n=250). Several UGT1A variants, including UGT1A1828 were associated with toxicity, but 

in multivariate analysis no UGT1A1 SNPs remained significant. However 3 SNPs located in 

the central region were associated with neutropaenia.(482) 

 

6.1.4. Other biologically plausible polymorphisms and irinotecan 
sensitivity 

 

Whilst variants in UGT1A SNPs may reduce efficiency of irinotecan metabolism, 

polymorphisms of genes involved in irinotecan excretion, may impact on toxicity and 

efficacy (fig 6.1). In particular variations in transporter gene SNPs are of interest: 

polymorphisms of ABCB1,(483) ABCC1,(468) ABCG2,(484) SLCO1B1,(479) and 

CYP3A4(236) have been associated with irinotecan toxicity. 

 

We therefore propose that given the widespread and increasing use of irinotecan, there is 

a need for a large study population, comprehensively examining the relationship between 

biologically plausible SNPs in this pathway and irinotecan toxicity and efficacy.   
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The PICCOLO trial provides an excellent opportunity to perform a wider, methodical, 

hypothesis-based investigation of irinotecan pharmacogenetics in a large clinical trial 

biobank of patients treated consistently with single-agent irinotecan schedule, with high-

quality clinical data.  

 

6.1.5. Genotyping methods 
 

Classical genotyping assays (such as gel electrophoresis-based procedures, allele-specific 

PCR and restriction fragment length polymorphism analysis) are generally labour 

intensive and hence unsuitable for high-throughput analyses. Integrated fluidic circuits 

can incorporate and significantly reduce fluid-handling steps of experiments plus enhance 

reliability of workflows. This technology can now be applied to genotyping using the 

Fluidigm 48.48 SNPtype Genotyping chip.(485) Nanolitre-scale volumes of reagents and 

samples are channelled through into chambers where distinct genotyping reactions can be 

run (fig. 6.2). This technology has the potential to run 9216 individual genotyping 

reactions in one experiment, with considerable savings in time, reagents and total DNA 

required.(486) In a study comparing the Fluidigm 48.48 SNPtype chip to TaqMan, there 

was 100% concordance between genotype results for 20 SNPs in 90 samples.(486) In a 

project genotyping 1698 cases, call rate (assigning a sample to a genotype of a tested SNP) 

using the Fluidigm 48.48 SNPtype chip was 97.6%.(486) However this technology is not 

suitable for genotyping all SNPs, such as when variation is due to dinucleotide repeats (for 

example, UGT1A1*28). 
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Figure 6-2  Fluidigm 48.48 SNP plate. Modified from (487) 

 

6.2. Study aims  

This study aims are to: 

 

 Validate or refute whether UGT1A1*28 homozygosity (7/7 genotype) is associated 

with a higher rate of irinotecan (Ir) toxicity or efficacy compared with wild type 

(6/6 genotype) or heterozygotes (6/7 genotype). 

 Examine whether other UGT1A genotypes correlate with Ir toxicity and better 

explain the observed association with UGT1A1*28. 

 Discover whether further biologically plausible SNPs are associated with Ir toxicity 

or efficacy. 

 To investigate whether baseline bilirubin level is associated with Ir toxicity and 

efficacy. 

6.3. Methods 

6.3.1. Patient Population: 
 

This biomarker study includes patients in the PICCOLO trial treated with single agent Ir 

(350mg/m2 every 3 weeks, or irinotecan 300mg/m2 every 3 weeks if aged>70 or PS2), 
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and for whom baseline blood samples have been received, or tumour DNA was available 

(figure 6.3). Of note, patients with a bilirubin over 25μmol/l on trial screening bloods 

were excluded from the PICCOLO trial. Only patients from the Ir alone arm were included 

as panitumab and ciclosporin have overlapping toxicities, and hence a causative role of 

candidiate SNPs in irinotecan toxicity could not be proven. 

  

 

 

Figure 6-3 PICCOLO trial schema, demonstrating patients involved in this translational study 

 

Assessment of toxicity 

 

Within the trial haematological and non-haematological toxicity were assessed and 

recorded at the start of each cycle using Common Toxicity Criteria for Adverse Events 

(CTCAE) version 2.0.(488) Serious adverse events were recorded at any time. Detailed 

toxicity management was provided in the PICCOLO trial protocol: it was recommended 

that ongoing toxicity of ≥ grade 2 at the start of a planned chemotherapy cycle incurred a 

one week delay. Chemotherapy doses were reduced by 20% after an episode of grade ≥ 3 

toxicity, or after two delays for grade 2 toxicity.(489) 

 

Toxicity end-points only included events that occurred within the first 12 weeks of 

treatment. Toxicity data was assessed for each individual study patient from original 

PICCOLO CRFs by JS (blinded to genotype), assessing each endpoint and using clinical 

judgement to determine cases of severe toxicity. The primary endpoint was any dose delay 

aCRC previous progression on 
FU based chemotherapy 

 KRAS12, 13, 61-wt   KRAS12,13,61-wt 

Irinotecan 
 Irinotecan + 

panitumumab 
 Irinotecan  

  Irinotecan + 
ciclosporin 

IrPan 
randomisation 

IrCs 
randomisation 
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or reduction, any ≥grade non-haematological toxicity or any grade 4 neutropaenia, as this 

information was accurately recorded and reflects clinically relevant toxicity.(215) 

Information on the CRFs was used to judge whether a dose delay or reduction was 

secondary to toxicity. Other end-points are detailed in section 6.3. 

 

6.3.2. Methods for selecting SNPs 
 

Candidate SNPs were selected due to biological plausibility or had previous evidence 

suggesting a role in Ir sensitivity, and are listed in table 6.2 and table 6.3. Tagging SNPs 

(ht-SNP) were selected where assessment of candidate SNPs were in the same clusters/ in 

linkage disequilibrium, or when there would be technical difficulty of SNP genotype 

assessment.  
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SNP Gene 
Chromosome 

name 

Chromosome 

position 
Minor Allele 

MAF (1000 

genomes 

global (%) 

Reason for inclusion 

Reference 

UGT1A1 gene 

rs887829 UGT1A1 2 234668570 A 31.1 UGT TATA box promoter (8, 236) 

rs3755319 UGT1A1 2 234601965  47.4 
ht-SNP; variation associated with impaired bilirubin 

conjugation 

(490) 

rs4124874 UGT1A1 2 234665659  49.7 
ht-SNP in promoter region; involved in bilirubin 

conjugation 

(490) 

rs4148323 UGT1A1 2 234669144 A 5 Associated with low SN-38 AUC (483) 

rs10929302 UGT1A1 2 234665782  26.2 ht-SNP in PBREM region (490) 

Other UGT1A polymorphism 

rs2008595 UGT1A3 2 234637192 G 49.9 htSNP involved in bilirubin conjugation (490) 

rs3806596 UGT1A3 2 234637707 G 49.7 htSNP involved in bilirubin conjugation (490) 

rs3732217 UGT1A4 2 234628270 T 8.4 htSNP involved in bilirubin conjugation (490) 

rs1105880 UGT1A6 2 234601965 C 31.9 htSNP involved in bilirubin conjugation (490) 

rs7577677 UGT1A7 2 234590616 A 29.2 Variant associated with Ir toxicity (491) 

rs7586110 UGT1A7 2 234590527 G 29.2 Functional promoter involved in Ir toxicity (492) 

rs11692021 UGT1A7 2 234591205  29.3 Variant associated with Ir toxicity (493) 

rs17868323 UGT1A7 2 234590970 T 49.8 Variant associated with Ir toxicity (493) 

rs17868324 UGT1A7 2 234590975 G 45.5 Coding exon 1; variant associated with Ir toxicity (493) 

rs1042597 UGT1A8 2 234526871 G 28.7 htSNP involved in bilirubin conjugation (490) 

rs1042605 UGT1A8 2 234527118 G 12.4 htSNP involved in bilirubin conjugation (490) 

rs2741046 UGT1A9 2 234580249 C 14.1 htSNP involved in bilirubin conjugation (468, 490) 

rs2741048 UGT1A9 2 234581748 C 44.5 htSNP involved in bilirubin conjugation (490) 

rs4663871 UGT1A9 2 234581587 A 18.3 htSNP involved in bilirubin conjugation (468, 490) 

rs6731242 UGT1A9 2 234578693 G 17.4 htSNP involved in bilirubin conjugation (490) 

rs13418420 UGT1A9 2 234578762 C 31.0 htSNP involved in bilirubin conjugation (490) 

rs17862856 UGT1A9 2 234582077 A 18.4 htSNP involved in bilirubin conjugation (490) 

rs1823803 UGT1A10 2 234539111 T 36.3 htSNP involved in bilirubin conjugation (490) 

rs2741031 UGT1A10 2 234538716 T 26.9 htSNP involved in bilirubin conjugation (490) 

 

Table 6-2 Details of additional SNPs in the UGT1A gene to be tested in this study: 
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SNP Gene 
Chromosome 

name 

Position on 

chromosome 
Minor 

allele 

MAF 

(HAP) 
Reason for inclusion  

Reference 

Transporter genes 

rs1045642 ABCB1 7 87138645 T 39.7 Involved in Ir excretion; variation associated with toxicity (483) 

rs1128503 ABCB1 7 87179601 T 42.2 
Involved in Ir excretion; variation associated with increased 

SN38 levels 

(494) 

rs2032582 ABCB1 7 87160618 T 34.0 
Involved in Ir excretion; variation associated with increased 

efflux activity 

(483) 

rs212088 ABCC1 16 16232433 T 16.9 Involved in Ir excretion; variation associated with toxicity (483) 

rs35588 ABCC1 16 16139878 G 43.7 Involved in Ir excretion; variations lead to change in Ir AUC (495) 

rs35605 ABCC1 16 234527118  18.1 Involved in Ir excretion; variations lead to change in Ir AUC (468) 

rs2230671 ABCC1 16 16228242 A 18.7 Involved in Ir excretion; variations lead to change in Ir AUC (495) 

rs3765129 ABCC1 16 16149901 T 10.8 Involved in Ir excretion; variations lead to change in Ir AUC (495) 

rs717620 ABCC2 10 101542578 A 17.6 
Involved in Ir excretion; variations lead to increased efflux 

activity 

(483) 

rs3740066 ABCC2 10 101604207 A 30.4 
Involved in Ir excretion; variations lead to increased efflux 

activity 

(483) 

rs562 ABCC5 3 183637845  48.8 Transporter gene; deletions associated with toxicity (496) 

rs425215 ABCG1 21 43707101 G 43.3 Deletions associated with inflammation and Ir toxicity (496) 

rs12721627 CYP3A4 7 99366093  0.1 Key Ir transporter (497) 

rs2740574 CYP3A4 7 99382096 G 20.1 Key Ir transporter (497) 

rs4986910 CYP3A4 7 99358524 O-C-H 0.3 Splice variant – variation alters Ir AUC (236) 

rs776746 CYP3A5 7 99270539 A 31.2 Key Ir transporter (497) 

rs10264272 CYP3A5 7 99262855  4.5 Splice variant- variation alters Ir AUC -  (236) 

rs2306283 SLCO1B1 12 21329738 C 40.5 Membrane transporter- variation alters Ir AUC (495) 

rs4149056 SLCO1B1 12 21331549 C 12.3 Membrane transporter – variation alters Ir AUC (495) 

Additional genes involved with bilirubin metabolism 

rs1358503 SEMA3c 7 80599142 C  Variation associated with rising bilirubin levels (498) 

rs1517114 C8orf34 8 69389217 O-C-H  Variation associated with rising bilirubin levels (498) 

 

Table 6-3 Details of further candidate SNPs to be tested in this study 
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6.3.3. Laboratory methods and assays 
 

6.3.3.1. DNA extraction from blood 
 

Trial blood samples had been previously processed to separate and remove plasma layer, 

then had been stored at -80OC. DNA extraction was performed according to the 

manufacturer’s instructions using the QIAamp blood kit (Qiagen, Hilden, Germany), 

including proteinase K digestion and ethanol precipitation. DNA was stored at 4 OC prior to 

analysis. 

 

6.3.3.2.  Assessment of UGT1A1*28 genotyping 
 

The number of TA repeats in the UGT1A1 promoter was determined by PCR-fragment 

length polymorphism (PCR-FLP). PCR primers were designed using a reference sequence 

from the UCSC Genome Browser(499) and the online design tool Primer3.(500) Sequences 

are 5’-3’.  The forward primer has a 5’ fam label: 

 Forward Fam-TCACGTGACACAGTCAAACATT 

 Reverse AGAGGTTCGCCCTCTCCTAC 

 

PCR reactions contained 10µl of Qiagen HotStarTaq Master Mix (Qiagen, Crawley, UK.  Cat. 

no. 203445), additional magnesium chloride to a final concentration of 2mM, 200nM each 

of forward and reverse primers, 2ul of genomic DNA and sufficient water to make a final 

volume of 20l.  Thermal cycling conditions were 94°C for 12 minutes followed by 40 

cycles of 94°C for 10 seconds, 55°C for 20 seconds and 72°C for 20 seconds. 

 

PCR fragment length was determined by diluting PCR reactions 1:1000 in water and 

running on an Applied BioSystems 3130xl.  Fragment length, and therefore genotype, was 

determined by comparison with reference samples of known genotype. 

 

6.3.3.3.  Genotyping for extended SNPs. 
 

Assay primers were designed by Fluidigm based upon the extended SNP list in Table 6.2 

and 6.3, and are described in Appendix table 1.  
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Preparation of the chip, assay mixes and sample pre-mixes (requiring 5.0μL of genomic 

DNA) was performed as per the manufacturer’s instructions.(487) Assay mix and sample 

mix were pipetted into the chip as shown in figure 6.2. 

 

For the PCR reactions, the chip was loaded into a Fluidigm FC1 Cycler and the SNPtype 

48x48 Fast v1.pcl protocol selected and run. When completed, the chip was removed from 

the FC1 Cycler. The EP1 Reader Data Collection Software was selected, and the chip loaded 

into the reader, and the genotyping programme selected. 

 

6.3.4. Statistical analysis 
 

6.3.4.1. Study Endpoints: 
 

All end points are dichotomous, that is, each patient was classified as having 

experienced the toxic event or not.  

Primary toxicity measure: 

 A dose delay or a dose reduction as a result of chemotherapy toxicity, or non-

haematological grade (gd) 3 toxicity (not alopecia), gd 4 neutropaenia, and 

included patients who have failed treatment by 12 weeks. 

  

Secondary toxicity measures: 

 Any ≥CTCAE grade 3 non-haematological toxicity reported within the first 12 

weeks of chemotherapy. 

 CTCAE grade 4 neutropaenia reported within the first 12 weeks of chemotherapy 

or admission with febrile neutropaenia. 

 Rates of severe toxicity (toxic deaths, grade 4 neutropaenic sepsis, grade 4 

toxicity) 

 

Primary efficacy measure: 

 RECIST response at 12 weeks (CR/PR vs SD/PD) 

 

Secondary efficacy measures: 

 RECIST response at 12 weeks (CR/PR vs SD/PD) 

 PFS 

 OS 
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Statistical analyses 

 

The study design was a retrospective analysis of the prospective PICCOLO trial.  In total, 

371 patients allocated to single agent Ir with a DNA sample were available for the analysis. 

The polymorphisms selected for analysis are listed in tables 6.2 and 6.3. Each 

polymorphism was tested to see whether the genotype distributions conform to Hardy–

Weinberg equilibrium (HWE).  

 

6.3.4.2. Replication of association with UGT1A1*28 
 

Firstly the rate of toxicity in each genotype group separately was be assessed and then the 

risk of toxicity in UGT1A1*28 homozygotes compared to the risk in the other genotype 

groups combined. Thirdly the heterozygotes and rare homozygotes were combined and 

compared with the common homozygotes. Given the sample size, incidence of severe 

toxicity in the trial and expected 10% frequency of UGT1A*28 homozygosity, there was 

80% power to detect a relative risk of 2.3 or more for UGT1A1*28 homozygotes (one-

sided test, p=0.05). 

 

6.3.5. Further planned analyses 
 

Genotyping work is still in progress for some samples in this study, and optimisation of 

extended SNP assays ongoing. The planned analyses for the completed study are described 

below. 

 

6.3.5.1. Fine mapping of UGT1A region 
  

Linkage disequilibrium will be estimated between the UGT1A polymorphisms. Multiple 

regression will be used to test for independent associations between genotype and 

toxicity, including the UGT1A1*28 genotype in the model. In addition haplotype analysis 

will be carried out by comparing estimated haplotype frequencies between groups with 

differing outcomes based on the likelihood ratio test. This analysis will identify the pattern 

of genotypes at this locus that best explains the association with toxicity. 
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6.3.5.2. SNPs in other genes 
 

For a SNP with common minor allele frequency (~0.3), there will be 80% power to detect 

a relative risk of 2.0 at a nominal 0.05 significance level and of 2.4 at a significance level of 

0.0025, allowing for multiple testing.  

 

6.3.5.3. Predictive model 
 
A predictive model has been developed where genotype data will be sequentially entered 

into the model, starting with the best-fitting UGT1A genotype, and retained if the model is 

significantly improved as determined using the likelihood ratio test. The genotype model 

will then be compared with one containing bilirubin to understand whether genotyping 

can explain additional variability in toxicity. The predictive model will require further 

validation in another study.  

 

Poisson regression with robust error will be used to estimate the relative risks and 

confidence intervals. All regression analyses will be performed using STATA. The analysis 

of the secondary outcome (response rates) will be similarly conducted. The majority of 

patients in the trial are self-reported as white-European and so population stratification is 

unlikely to be an issue; however a sensitivity analysis will be performed where the study 

population is restricted to those patients self-reporting to be white European.  

 

6.4. Results 

There were UGT1A1*28 results for 361 samples (44 tumour DNA and 317 germline DNA) 

including 20 matched germline and tumour DNA duplicates. Concordance was 96% for 

these samples. In total, samples and clinical data were available for 333 of the 371 

irinotecan treated patients (figure 6.4) 
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6.4.1. Study population characteristics 
 
Characteristics of the study population are listed in table 6.4.  
 

Total pts treated with 
Ir alone 
N=511 

Pts with clinical 
sample available 

N=361 

Pts with sufficient 
clinical data  

N=333 

Samples unavailable 
N=150 

Insufficient clinical data for 
toxicity assessment 

N=28 

Figure 6-4  Consort diagram of patient’s involved in this study 
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Study population 

(n=371) 

Age at randomisation (years)  Mean 62.5 (s.d 10.5) 

   

Sex N(%) Male 244 (66.3) 

 Female 124 (33.7) 

Performance status N(%) 0-1 349 (94.1) 

 2 22 (5.9) 

Previous bevacizumab N(%) No 359 (96.8) 

 Yes 12 (3.2) 

Previous oxaliplatin N(%) No 16 (4.4) 

 Yes 352 (95.6) 

Previous response N(%) CR/PR/SD 236 (69.6) 

 PD 103 (30.4) 

Previous dose modifications N(%) No 148 (39.9) 

 Yes 223 (60.1) 

Previous chemotherapy N(%) No 173 (47.3) 

 Yes 193 (52.7) 

Primary endpoint* N(%) No 198 (56.7) 

 Yes 151 (43.3) 

 Total 349 (100) 

Grade 3 toxicity N(%) No 248 (71.1) 

 Yes 101 (28.9) 

 Total 349 (100) 

Very severe toxicity N(%) No 308 (88.5) 

 Yes 40 (11.5) 

 Total 348 (100) 

Maximum diarrhoea N(%) 0-2 297 (86.1) 

 >2 48 (13.9) 

 Total 345 (100) 

Grade 2 diarrhoea N(%) No 214 (61.9) 

 Yes 132 (38.1) 

 Total 346 (100) 

Grade 4 neutropaenia or admission with febrile 

neutropaenia N(%) 

No 327 (94.2) 

Yes 20 (5.8) 

 Total 347 (100) 

Cessation of therapy following 12 weeks N(%) 
Continued 154 (43.9) 

Stopped 197 (56.1) 

 Total 351 (100) 

Complete or partial response N(%) No 325 (88.8) 

 Yes 41 (11.2) 

 Total 366 (100) 

Disease control rates N(%) PD 181 (49.5) 

 CR/PR/SD 185 (50.5) 

 Total 366 (100) 
 

Table 6-4 Patient characteristics within this biomarker study 



 203 

 
6.4.2. UGT1A1*28 genotype analysis  

 
rs8175347 was successfully genotyped in 333/371 samples (89.7%), consistent with 

previous work.(236) Fragment length data for each genotype is shown in figure 6.5.  

 

   

 

Figure 6-5 Fragment length data for each UGT1A1*28 genotype 

 

The frequency of UGT1A1*28 genotypes in our dataset, and the expected frequency is 

listed in table 6.5. The number of patients with a 7/7 genotype was lower than expected 

by HWE (10 vs 27; HWE p<0.001), and instead a larger proportion of patients were 

heterozygotes than expected (171 vs 136)(table 6.5). The minor allele frequency was 

28.6%, similar to seen in other aCRC populations.(215) 

 

Genotype Observed genotype frequency Expected (HWE) 

6/6 (wild-type) 152 (45.6%) 170 (51.1%) 

6/7 (heterozygous) 171 (51.4%) 136  (40.8%) 

7/7 (homozygous) 10 (3.0%) 27 (8.1%) 

 

Table 6-5 Actual and expected UGT1A1*28 frequencies within the biomarker population. 

 

Homozygote genotype status was associated with increased bilirubin levels (test for trend 

across genotype groups p<0.001)(figure 6.6). 

 

 6/6 
genotype 

 6/7 
genotype 
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Figure 6-6 Distribution of pre-treatment bilirubin levels, by UGT1A1*28 genotype status 

 
6.4.3.  UGT1A1*28 status and study outcomes 

 
The associations between genotype and toxicity and efficacy are reported in table 6.6. ORs 

for toxicity or efficacy endpoints are reported in table 6.7, comparing risk for 

heterozygotes to wild-type, then homozygotes to wild-types. 

 
rs8175347 - 
Number(%) 

  6/6 6/7 7/7 
p-

value** 
  n*     

Primary endpoint No 175 78 (54.9) 93 (57.8) 4 (40.0) 0.52 
 Yes 138 64 (45.1) 68 (42.2) 6 (60.0)  

Grade 3 toxicity No 217 97 (68.3) 114 (71.3) 6 (60.0) 0.63 
 Yes 95 45 (31.7) 46 (28.7) 4 (40.0)  

Severe toxicity No 275 129 (90.9) 139 (86.9) 7 (70.0) 0.11 
 Yes 37 13 (9.1) 21 (13.1) 3 (30.0)  

Maximum diarrhoea 0-2 264 120 (85.7) 135 (85.4) 9 (90.0) 1.0 
 >2 44 20 (14.3) 23 (14.6) 1 (10.0)  

Grade 4 neutropaenia 
or admission with 

febrile neutropaenia 

No 292 134 (95.0) 150 (94.3) 8 (80.0) 0.16 

Yes 18 7 (5.0) 9 (5.7) 2 (20.0)  

Cessation of therapy 
following 12 

Continued 135 54 (37.8) 77 (47.8) 4 (40.0) 0.20 

Weeks Stopped 179 89 (62.2) 84 (52.2) 6 (60.0)  
Complete or partial 

response 
No 293 141 (93.4) 144 (86.2) 8 (80.0) 0.05 

 Yes 35 10 (6.6) 23 (13.8) 2 (20.0)  
Disease control rates PD 167 81 (53.6) 80 (47.9) 6 (60.0) 0.53 

 CR/PR/SD 161 70 (46.4) 87 (52.1) 4 (40.0)  
 

Table 6-6 Associations between genotype and each toxicity and efficacy end-point tested  

*Totals vary due to missing data  **p-values from fisher’s exact tests 
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Outcome 
Outcome 

risk 
category 

Unadjusted Odds ratio (95% confidence interval) 

6/6 
(baseline) 

6/7 7/7 

Primary endpoint Yes 1.0 0.89 (0.5-1.40) 1.83 (0.49-6.76) 

   P=0.62) P=0.37 

Grade 3 toxicity Yes 1.0 0.87 (0.53-1.42) 1.44 (0.39-5.35) 

   P=0.58 P=0.59 

Very severe toxicity Yes 1.0 1.50 (0.72-3.12) 4.25 (0.98-18.46) 

   P=0.28 P=0.05 

Maximum diarrhoea >2 1.0 1.02 (0.53-1.95) 0.67 (0.08-5.55) 

   P=0.95 P=0.71 

Grade 2 diarrhoea Yes 1.0 1.02 (0.64-1.63) 1.09 (0.30-4.06) 

   P=0.93 P=0.89 
Grade 4 

neutropaenia or 
admission with 

febrile neutropaenia 

Yes 1.0 1.15 (0.42-3.17) 4.79 (0.85-26.88) 

  P=0.79 P=0.08 

Cessation of therapy 
following 12 

Stopped 1.0 0.66 (0.42-1.05) 0.91 (0.25-3.37) 

Weeks   P=0.08 P=0.89 

Complete or partial 
response 

Yes 1.0 2.25 (1.03-4.90) 3.53 (0.66-18.86) 

  P=0.04 P=0.14 
Disease control 

rates 
CR/PR/SD 1.0 1.26 (0.81-1.96) 0.77 (0.21-2.84) 

   P=0.31 P=0.70 
 

Table 6-7 Unadjusted ORs for association of each genotype with toxicity and efficacy endpoints 

 

The association between toxicity/efficacy and genotype comparing the homozygous 

genotype group with the combined wild-type and heterozygous group is reported in tables 

6.8 and 6.9. Additionally the risk of toxicity/efficacy for the combined heterozygous and 

rare homozygous group compared with the wild-types is also reported in table 6.9 (6/7 

and 7/7 vs 6/6). 
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rs8175347 - Number(%)   6/6+6/7 7/7 
p-

value** 
  n*    

Primary endpoint No 175 171 (56.4) 4 (40.0) 0.35 
 Yes 138 132 (43.6) 6 (60.0)  

Grade 3 toxicity No 217 211 (69.9) 6 (60.0) 0.50 
 Yes 95 91 (30.1) 4 (40.0)  

Severe toxicity No 275 268 (88.7) 7 (70.0) 0.10 
 Yes 37 34 (11.3) 3 (30.0)  

Maximum diarrhoea 0-2 264 255 (85.6) 9 (90.0) 1.0 
 >2 44 43 (14.4) 1 (10.0)  

Grade 2 diarrhoea No 191 185 (61.9) 6 (60.0) 1.0 
 Yes 118 114 (38.1) 4 (40.0)  

Grade 4 neutropaenia or 
admission with febrile 

neutropaenia 

No 292 284 (94.7) 8 (80.0) 0.11 

Yes 18 16 (5.3) 2 (20.0)  

Cessation of therapy 
following 12 

Continued 135 131 (43.1) 4 (40.0) 1.0 

weeks Stopped 179 173 (56.9) 6 (60.0)  
Complete or partial response No 293 285 (89.6) 8 (80.0) 0.29 

 Yes 35 33 (10.4) 2 (20.0)  
Disease control rates PD 167 161 (50.6) 6 (60.0) 0.75 

 CR/PR/SD 161 157 (49.4) 4 (40.0)  
 

Table 6-8 Outcomes of UGT1A1*28 homozygotes compared with other genotypes 
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Outcome 
Outcome risk 

category 

Unadjusted Odds ratio 
(95% confidence interval) 

7/7 versus 
6/6+6/7 

(baseline) 

7/7+6/7 versus 
6/6 (baseline) 

Primary endpoint Yes 1.94 (0.54-7.03) 0.93 (0.59-1.46) 
  P=0.31 P=0.75 

Grade 3 toxicity Yes 1.55 (0.43-5.61) 0.90 (0.55-1.46) 
  P=0.51 P=0.66 

Severe toxicity Yes 3.38 (0.83-13.68) 1.63 (0.80-3.34) 
  P=0.09 P=0.18 

Maximum diarrhoea >2 0.66 (0.08-5.33) 1.0 (0.53-1.90) 
  P=0.70 P=1.0 

Grade 2 diarrhoea Yes 1.08 (0.30-3.92) 1.03 (0.65-1.63) 
  P=0.91 P=0.91 

Grade 4 neutropaenia or 
admission with febrile 

neutropaenia 

Yes 4.44 (0.87-22.63) 1.33 (0.50-3.53) 

 P=0.07 P=0.56 

Cessation of therapy following 
12 

Stopped 1.14 (0.31-4.11) 0.67 (0.43-1.06) 

weeks  P=0.85 P=0.09 

Complete or partial response 
Yes 2.16 (0.44-10.60) 2.32 (1.08-5.00) 

 P=0.34 P=0.03 
Disease control rates CR/PR/SD 0.68 (0.19-2.47) 1.22 (0.79-1.89) 

  P=0.56 P=0.36 
 

Table 6-9 Unadjusted ORs for UGT1A1*28 homozygotes vs all other genotypes and outcomes, then  

homozygotes and heterozygotes vs wild-types and outcomes. 

 
6.4.3.1. UGT1A1*28 genotype status and toxicity outcomes 

 
When comparing the three genotype groups, there were no statistically significant 

differences in any toxicity outcome (table 6.6 and table 6.7). There were a higher 

proportion of homozygotes meeting the primary toxicity endpoint compared with 

heterozygotes or wild-type patients (60.0% vs 42.2% vs 45.1%, respectively), but this 

difference was not significant (p=0.52). 

 

There was nearly a trebling in the incidence of severe toxicity in the homozygote group 

(30%) compared to the heterozygotes and wild-types (13.1% and 9.1% respectively), but 

this difference was not significant (Fisher’s exact test p=0.11; OR=1.5(0.72-3.12) p=0.28 

for 6/7 vs 6/6; and OR=4.25(0.98-18.46) p=0.05 for 7/7 vs 6/6).  

 

There was no association between genotype status and severe diarrhoea. 

 

Again there was an increased rate of grade 4 neutropaenia or febrile neutropaenia in the 

homozygous group, compared to either heterozygotes or wild-type patients (20%, 5.7% 
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and 5.0%, respectively), but again this difference was not significant (Fisher’s exact test 

p=0.16; OR=4.44(0.87-22.63) p=0.07 for 7/7 vs. other genotypes).  

 

6.4.3.2. UGT1A1*28 and efficacy outcomes 
 

Differences were seen in 12-week RR between each genotype group and were of 

borderline significant (wild-type 6.6%, heterozygotes 13.8%, homozygotes 20.0%, 

Fisher’s exact test p=0.05). Comparing each genotype to wild-type, both heterozygotes 

(OR=2.25(1.03-4.90), p=0.04) and homozygotes (OR=3.53(0.66-18.86), p=0.14) were 

more likely to respond but statistical significance at the 5% level was only reached in the 

heterozygote group. There was no association between DCR rates and genotype group. 

 

Homozygosity was not associated with differences in either PFS (HR = 1.06[0.54-2.06], 

p=0.87) or OS (HR = 0.81 [0.42-1.57], p=0.53), when compared with wild-types and 

heterozygotes combined.  

 

Comparing homo- and heterozygotes to wild-type patients, there were no differences in 

PFS (HR = 0.89 [0.71-1.12], p=0.32) or OS (HR = 0.96 [0.77-1.20], p=0.74). 

 

6.4.4. Effect of baseline bilirubin levels on study outcomes 
 

6.4.4.1. Baseline bilirubin within the study population 
 

Of the 371 patients, baseline bilirubin levels were available for 357: median level was 10 

(range 2-51)(fig. 6.7). Patients with screening bilirubin levels greater than 25 had been 

excluded from the trial.  

 

 
 

Figure 6-7 Distribution of baseline bilirubin levels 
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6.4.4.2. Effect of bilirubin levels on outcomes 

 
Using the predefined binary classifier (bilirubin ≥17.0 as high; <17 as low), 40 (11.2%) 

patients were assigned to the high group, and 317 (88.8%) to the low group. The effect of 

high vs low bilirubin on outcomes is shown in table 6.10.  

 

In patients with low bilirubin levels the prevalence of the 6/6, 6/7 and 7/7 genotypes 

were 49%, 49% and 2% respectively compared with 19%, 72% and 8% in patients with 

high levels (Fisher’s exact test p=0.001).  

 

In patients with high bilirubin levels, the proportion of patients with severe toxicity was 

higher than in patients with low levels, though the difference was not significant (16.2% 

vs.10.6%, p=0.30). In patients with high bilirubin levels, the proportion of patients with 

grade 4 neutropeania or admission with febrile neutropaenia was higher than in patients 

with low levels though again the difference did not reach statistical significance (10.% vs. 

4.9%, Fisher’s exact test, p=0.14). The high bilirubin group trended towards higher 

response rates than the low group, but this was not statistically significant (20.0% vs 

10.2%, Chi-squared test p=0.07). 

  



 210 

   
Baseline bilirubin 

N(%) 
 

  Number <17 ≥17 p-value 

rs8175347 6/6 145 138 (48.8) 7 (19.4)  
 6/7 164 138 (48.8) 26 (72.2)  
 7/7 10 7 (2.4) 3 (8.3) 0.001* 

rs8175347 6/6 + 6/7 309 276 (97.5) 33 (91.7)  
 7/7 10 7 (2.5) 3 (8.3) 0.09* 

rs8157347 6/6 145 138 (48.8) 7 (19.4)  
 6/7 + 7/7 174 145 (51.2) 29 (80.6) 0.001** 

Primary endpoint No 194 173 (57.1) 21 (55.3)  
 Yes 147 130 (42.9) 17 (44.7) 0.83** 

Grade 3 toxicity No 244 216 (70.8) 28 (75.7)  
 Yes 98 89 (29.2) 9 (24.3) 0.54** 

Very severe toxicity No 302 271 (89.4) 31 (83.8)  
 Yes 38 32 (10.6) 6 (16.2) 0.30** 

Maximum diarrhoea 0-2 292 258 (85.4) 34 (94.4)  
 >2 46 44 (14.6) 2 (5.6) 0.20* 

Grade 2 diarrhoea No 210 183 (60.6) 27 (73.0)  
 Yes 129 119 (39.4) 10 (27.0) 0.14** 

Grade 4 neutropaenia or 
admission with febrile 

neutropaenia 

No 321 288 (95.1) 33 (89.2)  

Yes 19 15 (4.9) 4 (10.8) 0.14* 

Cessation of therapy 
following 12 weeks 

Continued 152 132 (43.3) 20 (52.6)  

 Stopped 191 173 (56.7) 18 (47.4) 0.27** 

Complete or partial 
response 

No 313 281 (89.8) 32 (80.0)  

 Yes 40 32 (10.2) 8 (20.0) 0.07** 

Disease control rates PD 171 154 (49.2) 17 (42.5)  
 CR/PR/SD 182 159 (50.8) 23 (57.5) 0.43** 

 

Table 6-10 Toxicity and efficacy results by bilirubin status (high vs low) 

*p-value from Fisher’s exact test, **p-value from Pearson Chi-squared test 
 

 
 

6.4.5. Fluidigm SNP assay quality control 

  
Results from the preliminary extended SNP analysis are included in this section. Thus far a 

total of 280 patient samples were included in the extended SNP analysis. It was elected to 

not include samples that had failed over 14 SNPs, so 206 patients are included in the 

analysis. 

 

Initial quality control results from 283 samples for multiple SNP testing are shown in table 

6. In total 46 additional SNPs were tested. The rationale for the inclusion of each SNP was 

shown in table 6.1 and 6.2. 
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Two quality control methods are employed: firstly actual genotype frequency is compared 

with expected frequency, predicted by the Hardy Weinberg equilibrium (tables 6.11 and 

6.12). Next the minor allele frequency (MAF) for each SNP tested within the study 

population is compared to the reported MAF on the 1000 genomes database: discordance 

of over 10% is highlighted (tables 6.13 and 6.14).(501)  

 

Eight SNPs failed all assays, and further quality testing was not performed. Eleven SNP 

frequency distributions did not conform to HWE. The MAF in the population differed from 

the reference in 8 SNPs: 3 of these SNPs did not conform to HWE.
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SNP Gene Failed 
Missing 

rate (%) 

MAF 

(%) 

HWE 

p-value 

Reason for 

discordance 

UGT1A1 gene 

rs887829 UGT1A1  3 29 0.9  

rs3755319 UGT1A1 Yes     

rs4124874 UGT1A1 Yes     

rs4148323 UGT1A1  3.0% 2.0 0.04  

rs10929302 UGT1A1 Yes     

rs853035 UGT1A1  0 28 0.01 
Too many 

homozygotes observed 

Other UGT polymorphisms 

rs2008595 UGT1A3  54 39 0.001 
Too few homozygotes 

observed 

rs3806596 UGT1A3  2 45 0.05  

rs3732217 UGT1A4  2 6 0.02 
Too many 

homozygotes observed 

rs1105880 UGT1A6  0.5 33 0.5  

rs7577677 UGT1A7  1.5 38 0.02 
Too many 

homozygotes observed 

rs7586110 UGT1A7  0.5 39 0.01 
Too many 

homozygotes observed 

rs11692021 UGT1A7 Yes     

rs17868323 UGT1A7  60 39 1.0  

rs17868324 UGT1A7  0.5 37 0.1  

rs1042597 UGT1A8  1 24 0.002 
Too many 

homozygotes observed 

rs1042605 UGT1A8  79 43 0.6  

rs2741046 UGT1A9  1.5 28 1.0  

rs2741048 UGT1A9  6 37 1.0  

rs4663871 UGT1A9  15 21 0.04 
Too many 

homozygotes observed 

rs6731242 UGT1A9  0.5 18 0.05  

rs13418420 UGT1A9  2 22 0.02 
Too many 

homozygotes observed 

rs17862856 UGT1A9  4 19 0.04 
Too many 

homozygotes observed 

rs1823803 UGT1A10  0.5 43 0.3  

rs2741031 UGT1A10  0.5 3 1.0  

 

Table 6-11 Quality control for extended UGT1A SNP analysis using Hardy-Weinberg Equilibrium to predict 

genotype frequency. 
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SNP Gene Failed 
Missing rate 

(%) 

MAF 

(%) 

HWE p-

value 

Reason for 

discordance 

Transporter genes 

rs212088 ABCB1  1 20 0.3  

rs1045642 ABCB1  3 50 0.06  

rs1128503 ABCB1  9 44 0.08  

rs2032582 ABCB1  1 44 0.05  

rs35588 ABCC1  30 29 0.7  

rs35605 ABCC1 Yes     

rs2230671 ABCC1  35 26 0.5  

rs3765129 ABCC1  0.5 18 0.3  

rs717620 ABCC2  0.5 16 1.0  

rs3740066 ABCC2  0.5 33 1.0  

rs562 ABCC5 Yes     

rs425215 ABCG1  2 34 0.4  

rs12721627 CYP3A4 Yes     

rs2740574 CYP3A4  0 5 0.09  

rs4986910 CYP3A4  2 0 -  

rs776746 CYP3A5  1 10 0.004 

Too many 

homozygotes 

observed 

rs10264272 CYP3A5 Yes     

rs2306283 SLCO1B1  2 39 0.005 

Too many 

homozygotes 

observed 

rs4149056 SLCO1B1  0 14 0.6  

Genes involved in bilirubin metabolism 

rs1358503   0 50 0.3  

rs1517114   18 0 -  

 

Table 6-12 Quality control of extended SNP analysis using HWE to predict genotype frequency – other  

O-C-H = only common homozygotes 
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SNP Gene Failed Missing rate (%) Minor Allele MAF (%) MAF (HAP) 

UGT1A1 gene 

rs887829 UGT1A1  3 A 29 31.1 

rs3755319 UGT1A1 Yes    47.4 

rs4124874 UGT1A1 Yes    49.7 

rs4148323 UGT1A1  3.0% A 2.0 5 

rs10929302 UGT1A1 Yes    26.2 

rs853035 UGT1A1  0 G 28 40.6 

Other UGT polymorphisms 

rs2008595 UGT1A3  54 G 39 49.9 

rs3806596 UGT1A3  2 G 45 49.7 

rs3732217 UGT1A4  2 T 6 8.4 

rs1105880 UGT1A6  0.5 C 33 31.9 

rs7577677 UGT1A7  1.5 A 38 29.2 

rs7586110 UGT1A7  0.5 G 39 29.2 

rs11692021 UGT1A7 Yes    29.3 

rs17868323 UGT1A7  60 T 39 49.8 

rs17868324 UGT1A7  0.5 G 37 45.5 

rs1042597 UGT1A8  1 G 24 28.7 

rs1042605 UGT1A8  79 G 43 12.4 

rs2741046 UGT1A9  1.5 C 28 14.1 

rs2741048 UGT1A9  6 C 37 44.5 

rs4663871 UGT1A9  15 A 21 18.3 

rs6731242 UGT1A9  0.5 G 18 17.4 

rs13418420 UGT1A9  2 C 22 31.0 

rs17862856 UGT1A9  4 A 19 18.4 

rs1823803 UGT1A10  0.5 T 43 36.3 

rs2741031 UGT1A10  0.5 T 3 26.9 

Table 6-13  Comparison of observed MAF/ expected MAF from 1000 genome project in extended UGT1A 

SNPs 
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SNP Gene Failed Missing rate (%) Minor allele MAF (%) MAF (HAP) 

Transporter genes 

rs212088 ABCB1  1 T 20 16.9 

rs1045642 ABCB1  3 T 50 39.7 

rs1128503 ABCB1  9 T 44 42.2 

rs2032582 ABCB1  1 T 44 34.0 

rs35588 ABCC1  30 G 29 43.7 

rs35605 ABCC1 Yes    18.1 

rs2230671 ABCC1  35 A 26 18.7 

rs3765129 ABCC1  0.5 T 18 10.8 

rs717620 ABCC2  0.5 A 16 17.6 

rs3740066 ABCC2  0.5 A 33 30.4 

rs562 ABCC5 Yes    48.8 

rs425215 ABCG1  2 G 34 43.3 

rs12721627 CYP3A4 Yes    0.1 

rs2740574 CYP3A4  0 G 5 20.1 

rs4986910 CYP3A4  2 O-C-H 0 0.3 

rs776746 CYP3A5  1 A 10 31.2 

rs10264272 CYP3A5 Yes    4.5 

rs2306283 SLCO1B1  2 C 39 40.5 

rs4149056 SLCO1B1  0 C 14 12.3 

Gene involved in bilirubin metabolism 

rs1358503   0 C 50  

rs1517114   18 O-C-H 0  

Table 6-14 Comparison of observed MAF and expected MAF from 1000 genome project in other tested SNPs 

6.5. Discussion 

This study aims to provide a comprehensive analysis of the impact of polymorphisms in 

SNPs involved in the metabolism and clearance of irinotecan on toxicity and efficacy 

outcomes. To date published literature has presented inconsistent and divergent results 

on both outcomes measures, exacerbated by small studies, with heterogenous irinotecan 

scheduling and chemotherapy combinations. Instead, this study is performed in a large 

RCT population with well-documented toxicity and efficacy outcomes. Importantly 

patients have been treated with single agent irinotecan, rather than in combination with 

5FU so a causal relationship of candidate SNP polymorphism with irinotecan toxicity can 

be more convincingly established. 

 

The primary analysis set out to examine the relationship of UGT1A1*28 homozygosity and 

irinotecan toxicity. Within the PICCOLO population there were no statistically significant 

interactions demonstrated. In particular there was no association with increased risk of 

diarrhoea, in keeping with most other large genotyping studies(215, 236, 468, 470, 471) 

and one meta-analysis,(502) but contrasting to a large study of Asian patients(472) and a 

further meta-analysis of small studies.(503) 
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There was a trend observed between UGT1A1*28 homozygosity and increased incidence 

of grade 4 neutropaenia, but the relationship did not achieve statistical significance. There 

was a trebling of the rates of severe toxicity in the homozygote population, compared with 

other genotypes: this relationship had borderline significance when comparing 

homozygotes to wild-types (p=0.05). The relationship between UGT1A1*28 and 

neutropaenia appears to be more convincingly demonstrated in the literature: several 

large studies and meta-analyses reporting this interaction,(236, 468, 471, 502) however 

not found in others.(215, 470) However on closer examination of positive studies, 

Kweekel’s only found an association with genotype and febrile neutropaenia;(471) 

Cecchin’s study included both grade 3 & 4 neutropaenia, but was not significant in 

multivariate analysis with other relevant SNPs;(468) McLeod’s study found positive 

association only in the IrOx treated group, not the IrMdG group;(236) and in Hoskin’s 

meta-analysis only patients treated with higher doses of irinotecan were at increased 

risk.(502)  

 

Furthermore a causal relationship between UGT1A1*28 and irinotecan toxicity cannot be 

established in previous work as the vast majority of studies have been with in 

combination with 5-flurouacil, with an overlapping toxicity profile. This study has the 

advantage of assessing the impact of genotype on irinotecan alone. 

 

Other inconsistencies between studies include comparisons made in the statistical 

analysis, as 3 risk groups are present for genotyping studies. Some studies report a 3-gene 

comparison (using Fisher’s exact test), others report homozygosity compared with wild-

types (chi-squared test). Less frequently reported is homozygotes vs wild-types and 

heterozygotes, assessing UGT1A1*28 homozygosity as a binary variable (present; absent). 

However it is important to also understand the risk of toxicity for heterozygotes, which 

appears to be raised but to not the same degree as heterozygotes, consistent with this 

work. 

 

In 2005 the FDA approved a genetic test for UGT1A1*28 homozygosity. This was based 

upon the results of two studies using different regimens, with a total of 132 patients and 

13 UGT1A1*28 homozygous patients, of whom 8 experienced toxicity.(8, 462) The extent 

of the demonstrated clinical validity of this test is therefore questionable. However the 

FDA renewed the approval in 2010 and currently it is recommended that genotyping is 

established prior to irinotecan treatment, with dose reduction suggested in homozygote 

patients. Currently in Europe this test is not recommended by the EMA. Using this 
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biomarker test UGT1A1*28 risk is presumed to be binary (at risk [7/7]; no risk [6/6 and 

6/7]), therefore this comparison should be reported in publications.  

 

Of increasing interest is the relationship between UGT1A1*28 status and irinotecan 

efficacy. The most important emerging message is that wild-type patients have lesser 

benefit from irinotecan, which may be due to underdosing with current schedules.(475) 

This study would be supportive of this hypothesis: wild-type patients were less likely to 

respond to irinotecan than hetero- or homozygotes (p=0.03). However lesser effect was 

seen on PFS and OS. This interesting hypothesis is being explored in ongoing prospective 

trials. 

 

The major limitation of the analysis of UGT1A1*28 in this study was that the observed 

genotype frequencies were out of HWE: the minor allele frequency of UGT1A1*28 in this 

study, at 28.6%, was very similar to previous reports. However, in contrast to previous 

studies the population were strikingly out of HW equilibrium, with a much lower than 

expected rate of 7/7 homozygotes.  As a result, there were only ten 7/7 patients in the 

population under stduy, which limits the ability to confirm or refute previous reports of 

the impact of 7/7 genotype on irinotecan toxicity.  

 

There are a number of possible explanations for the low number of 7/7 patients. The 

genotyping methodology is a standard PCR and the failure rate (10.1%) is comparable to 

other large studies.(236) Each individual sample’s fragment length data was evaluated by 

an experienced molecular geneticist: it was felt that peak amplification is more likely to be 

biased towards homozygote selection than heterozygote, so it is unlikely that 

underreporting of homozygote status contributed significantly. 

  

One possible reason is that the population selected for PICCOLO was depleted of 7/7 

patients: could these patients be less likely to receive second-line therapy due to excessive 

toxicity with first-line chemotherapy? However, homozygote patients treated with OxMdG 

in FOCUS did not experience excessive toxicity compared to other genotypes.(215) 

Furthermore there is no evidence that homozygote status is a poor prognostic marker: a 

meta-analysis of 1524 patients found no statistical difference in survival with UGT1A1*28 

homozygosity, compared to either wild-types (HR = 1.01, p=0.92) or heterozygotes (HR = 

1.13, p=0.37).(504) It is unlikely that there would be sampling bias against the 

homozygote group. 
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Another possible explanation is that the PICCOLO trial protocol excluded patients with 

baseline serum bilirubin of >25. A strong relationship between homozygote status and 

increasing bilirubin levels was documented within this study, and so it is likely that a 

proportion of homozygotes were not eligible for the trial on this basis. However the same 

restriction was made in the FOCUS trial protocol, and the proportion of homozygotes was 

9.4% and was in HWE. It is therefore uncertain how much impact this made. Therefore 

this disparity cannot be explained.  

 

Certainly the low proportion of homozygote patients has limited the power of this study to 

detect an interaction with irinotecan toxicity and efficacy. Therefore available samples 

shall be re-genotyped using the FDA approved UGT1A1*28 genotyping assay.  

 

Although there is clear biological plausibility between UGT1A1*28 homozygosity and 

increased risk of irinotecan toxicity, multiple genes are associated with drug clearance so 

it seems unlikely that polymorphism in one SNP confers all of the risk. Another important 

aim of this study is to explore whether additional polymorphisms of SNPs involved in 

irinotecan metabolism and clearance can better predict risk, either individually or as part 

of a ‘risk signature’. SNPs examined in this study have been selected due to their biological 

role in irinotecan metabolism or clearance, or previous evidence implicating an 

association between polymorphism and irinotecan outcomes. 

 

Initial quality control data for the extended SNP analysis on a limited sample set has been 

presented in this chapter. Firstly a number of samples (26%) tested failed over 14 SNP 

assays so were excluded. A high proportion of these samples had low concentrations 

and/or poor quality DNA; additional DNA has been extracted from remaining WBC pellets 

or tumour DNA has been sourced where possible. The UGT1A1*28 analysis utilised this re-

extracted or resourced DNA. 

 

Eight SNPs assays failed with all samples so further optimisation, including pre-assay 

amplification, is required. Furthermore eleven SNPs did not conform to HWE; unlike in the 

primary analysis too many homozygotes were observed. The minor allele frequency 

differed from reference in eight SNPs. The reference for the expected MAF was ascertained 

from NCBI resource links, which utilised data from HapMap or the 1000 genomes 

project.(505) This resource provides details of the population from which genotyping was 

performed, including number and ethnicity. This study is the largest European population 

to test many of the SNPs where a discrepancy between observed and expected MAF was 
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seen (rs853035, rs2008595, rs2741031, rs2741031, rs27405740), so the significance of 

this inconsistency is less clear. 

 

Another important consideration is the assessment of the contribution of genotyping 

information for the prediction of irinotecan outcomes alongside other clinical variables. 

Ichikawa’s paper has proposed a nomogram for predicting irinotecan-induced severe 

neutropaenia in Japanese patients which includes type of regimen, administered dose of 

irinotecan, gender, age, PS, pre-treated neutrophil count, total bilirubin level alongside 

UGT1A1*28 genotype.(472) 

 

6.6. Further work 

As described further work is necessary to optimise some of the extended SNP assays. 

Where this is not possible alternative methods of genotyping (for example, SnapShot) 

shall be explored. It is also planned to re-run the UGT1A1*28 assay on the FDA-approved 

biomarker test to confirm (or refute) the genotyping results reported in this chapter. 

Analyses shall then be performed using the planned analysis including the SNPs that have 

satisfied quality control standards.  
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Conclusions 
 

The needs for a more personalised approach is aCRC is clear, but there are many 

challenges and obstacles. Here, the processes and ‘best practice’ of biomarker discovery 

and validation have been reviewed and as much as possible studies in this thesis have 

applied these principles. Each study had a pre-defined statistical plan based upon a 

biologically plausible hypothesis, adequate sample size, considered potential confounders, 

and was performed in a randomised population, so allowing for discrimination between 

prognostic and prediction effects of tested biomarkers. With this approach biomarkers 

demonstrating effect should be considered for development and potential clinical 

application.  

 

Chapter 2 has reported that the dNLR and platelet count, both surrogates of the systemic 

inflammatory response, are independent prognostic markers in aCRC in both the first- and 

second-line. This model can be utilised in different ways. Using a cut-point over 3 the 

dNLR identifies a group of high-risk patients who benefit most from upfront combination 

chemotherapy. Instead patients with lesser evidence of a heightened systemic 

inflammatory response (low dNLR and low platelets) were not disadvantaged from a more 

upfront conservative approach. Further validation and testing in other clinical scenarios is 

warranted. The importance of the systemic inflammatory response in the prognostication 

and treatment of cancer has again been shown and further translational research may aid 

in understanding the immunological mechanisms for this strong effect seen. 

 

The usefulness of knowledge of a patient’s BRAF-status has been demonstrated in Chapter 

3. This study reported that rapid decline following first-line chemotherapy appears to be 

the main driver of the poor prognosis in BRAF-mut aCRC patients. However BRAF-mut 

patients have similar benefits with first- and  second-line chemotherapy as wild-types, and 

do not appear to be disadvantaged by treatment breaks. This finding has both clinical and 

translational significance. Fit BRAF-mut patients may benefit from intensive upfront 

chemotherapy, with the option of treatment breaks following disease control. Further 

translational work is needed to understand the biological mechanisms of this observed 

rapid decline: pre- and post treatment biopsies may reveal a further molecular alteration, 

potentially a therapeutic target. 

 

Chapters 3 and 4 tested mRNA expression of EREG/AREG and HER3 as predictive 

biomarkers for anti-EGFR therapies. Both chapters clearly demonstrate that a population 

of RAS-wt patients do not benefit from panitumumab and questions the current ‘opt-in’ 

strategy. A combined model using data from both markers identified a population most 
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sensitive to panitumumab. For AREG/EREG this study builds upon previous work, and so 

clinical validity has been achieved. Instead, this is the first large study to test HER3 mRNA 

expression levels as a predictive marker for panitumumab, and so testing in further 

datasets is crucial. For both markers assay development is required, particularly to 

provide consensus on a dichotomisation point. 

 

Many difficulties relating to biomarker research have been encountered in the irinotecan 

pharmacogenomics study. Although a standard assay was used for the primary 

UGT1A1*28 analysis, genotype frequencies in PICCOLO were significantly different from 

what would be anticipated and so presented results should be interpreted with caution. 

No reasons for this disparity were found. Similarly it is unclear why many of the extended 

SNP genotype analyses failed quality control checks. For both, further laboratory work is 

being performed to optimise assays and confirm genotyping results using an alternative 

methodology. 

 

Work from this thesis therefore contributes to efforts to further personalise treatment in 

aCRC. Evidence presented from Chapter 2 and Chapter 3 may influence the routine 

practice of some oncologists. Instead, the EREG/AREG model requires optimisation and 

HER3 overexpression further clinical validation as well as assay development, so neither is 

ready for clinical application. 

 

Further efforts to improve outcomes for aCRC patients are currently ongoing in the UK. 

The FOCUS 4 trial is a molecularly stratified multi-arm multi-stage phase II/III RCT in 

aCRC. This study allows for testing of new molecular agents in biomarker-stratified 

groups, when strong biological or clinical evidence exists linking the biomarker with 

treatment efficacy. Testing of a novel agent against placebo in these biomarker-enriched 

populations aims to detect effect in a timely and cost-effective manner.(506) 

 

The Stratification in Colorectal Cancer: from biology to treatment prediction (S:CORT) 

program aims to expand the understanding of the biology of CRC, validate promising 

biomarkers in patient samples from national studies and trials. Specific aims are to 

validate predictive markers to identify patients most likely to respond to oxaliplatin, those 

who will respond to radiotherapy, identify factors in early CRC that predict risk of 

invasion and guide surgical management and predictors for efficacy of novel molecularly 

targeted agents.  
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With these efforts there is real promise for the application of precision medicine in the 

routine management in aCRC, with the goal of improving cancer outcomes and quality of 

life for each patient. 
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Appendix 
 
1. STATA do-files used in Chapter 2 
 
a) STATA file for FOCUS analyses 
 
clear 
cd "/Users/medjcri/Documents/NLR project" 
  
insheet using "FOCUSWorkbook1csv.csv", comma 
keep trialno ratiocategory 
drop if trialno==. 
bysort trialno:assert _N==1 
save "FOCUSratiocategory.dta", replace     
  
insheet using "/Users/medjcri/Documents/NLR project/FOCUStrialcsv.csv", clear 
bysort trialno:assert _N==1 
save FOCUStrial.dta, replace 
 
use "/Users/medjcri/Documents/BRAF/FOCUS_all_variables.dta", clear  
bysort trialno:assert _N==1 
merge trialno using "FOCUSratiocategory.dta" 
tab _merge 
drop _merge 
sort trialno 
merge trialno using "FOCUStrial.dta" 
tab _merge 
drop _merge 
   
**generating variables 
 
foreach temp of varlist liv-oth { 
gen `temp'_1=0 if `temp'=="No" 
replace `temp'_1=1 if `temp'=="Yes" 
} 
 
gen number_met_sites=liv_1+nod_1+lung_1+peri_1+oth_1 
foreach temp of varlist liv-oth { 
gen `temp'_1=0 if `temp'=="No" 
replace `temp'_1=1 if `temp'=="Yes" 
} 
 
 
gen metsite1 =. 
replace metsite1 = 0 if number_met_sites==0 
replace metsite1 = 0 if number_met_sites==1 
replace metsite1 = 1 if number_met_sites==2 
replace metsite1 = 1 if number_met_sites==3 
replace metsite1 = 1 if number_met_sites==4 
replace metsite1 = 1 if number_met_sites==5 
 
gen metsite2 =. 
replace metsite2 = 0 if number_met_sites==0 
replace metsite2 = 0 if number_met_sites==1 
replace metsite2 = 0 if number_met_sites==2 
replace metsite2 = 1 if number_met_sites==3 
replace metsite2 = 1 if number_met_sites==4 
replace metsite2 = 1 if number_met_sites==5 
 
 
gen gender = . 
replace gender = 0 if sex== "Male" 
replace gender = 1 if sex== "Female" 
label define gender_lbl 0 "male" 1 "female" 
tab gender sex 
drop sex 
 
 
recode who (1 = 0) (2 = 1)(3 = 1) 
label define who_lbl 0 "PSlow" 1"PShigh" 
label values who who_lbl 
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gen primresect = . 
replace primresect = 0 if resect== "No" 
replace primresect = 1 if resect== "Yes" 
label define primresect_lbl 0 "no" 1 "yes" 
tab primresect resect 
drop resect 
 
gen agecat = age 
recode agecat (1/69 = 0) (70/99 = 1) 
label define agecat_lbl 0 "<70" 1">70" 
label values agecat agecat_lbl 
 
gen agecat2 = age 
recode agecat2 (1/50 = 1)(51/70 = 0)(70/90 = .) 
label define agecat2_lbl 0 "<50" 1"50-70" 
label values agecat2 agecat2_lbl 
 
gen agecat3 = age 
recode agecat3 (1/50 = .)(51/70 = 0)(70/90 = 1) 
label define agecat3_lbl 0 "50-70" 1 "70+" 
label values agecat3 agecat3_lbl 
 
gen analysisirvsox1 = . 
replace analysisirvsox1 = 1 if regimen== "B" 
replace analysisirvsox1 = 1 if regimen== "C" 
replace analysisirvsox1 = 0 if regimen== "D" 
replace analysisirvsox1 = 0 if regimen== "E" 
label define analysisirvsox1_lbl 1 "irinotecan based chemo" 0 "Oxaliplatin based chemo" 
label values analysisirvsox1 analysisirvsox1_lbl 
 
 
gen apcat1 = ap 
recode apcat1 (0/299 = 0)(300/2000 = 1) 
label define apcat1_lbl 0 "low ap" 1 "high ap" 
label values apcat1 apcat1_lbl 
 
gen basewbc = wbct1st 
recode basewbc (0/9.99 = 0)(10/100 =1) 
label define basewbc_lbl 0 "low WBC" 1 "high WBC" 
label values basewbc basewbc_lbl 
 
gen NLR1 = neutt1st/(wbct1st - neutt1st) 
drop if NLR1<0 
drop if NLR1== . 
drop if NLR1>15 
 
gen NLRcateg1 = NLR1 
recode NLRcateg1 (0/2.000001 = 0) (2.0000002/40 = 1) 
label define NLRcateg1_lbl 0 "low NLR" 1"high NLR" 
label values NLRcateg1 NLRcateg1_lbl 
 
gen platcat1 = platt1st 
recode platcat1 (1/400 = 0) (401/1500 = 1) 
label define platcat1_lbl 0 "low platelets" 1">high platelets" 
label values platcat1 platcat1_lbl 
 
gen bestresp = . 
replace bestresp = 0 if bestrespall== "Stable disease" 
replace bestresp = 0 if bestrespall== "Progressive disease" 
replace bestresp = 1 if bestrespall== "Partial Response" 
replace bestresp = 1 if bestrespall== "Complete Response" 
label define bestresp_lbl 0 "SD/PD" 1 "CR/PR" 
label values bestresp bestresp_lbl 
tab bestresp bestrespall 
 
gen clinben = . 
replace clinben = 1 if bestrespall== "Stable disease" 
replace clinben = 0 if bestrespall== "Progressive disease" 
replace clinben = 1 if bestrespall== "Partial Response" 
replace clinben = 1 if bestrespall== "Complete Response" 
label define clinben_lbl 0 "progressed" 1 "clinben" 
label values clinben clinben_lbl 
 
 
gen treatfail12wk = . 
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replace treatfail12wk = 1 if bestresp12wk== "Stable d" 
replace treatfail12wk = 0 if bestresp12wk== "Progress" 
replace treatfail12wk = 1 if bestresp12wk== "Partial" 
replace treatfail12wk = 1 if bestresp12wk== "Complete" 
recode treatfail12wk (.=0) 
label define treatfail12wk_lbl 0 "progressed" 1 "clinben" 
label values treatfail12wk treatfail12wk_lbl 
 
 
gen bestrespall212wk = . 
replace bestrespall212wk = 0 if bestresp12wk== "Stable d" 
replace bestrespall212wk = 0 if bestresp12wk== "Progress" 
replace bestrespall212wk = 1 if bestresp12wk== "Partial" 
replace bestrespall212wk = 1 if bestresp12wk== "Complete" 
recode bestrespall212wk (.=0) 
label define bestrespall212wk_lbl 0 "SD/PD" 1 "CR/PR" 
label values bestrespall212wk bestrespall212wk_lbl 
 
 
gen progressed = . 
replace progressed = 0 if pfsevent== "No" 
replace progressed = 1 if pfsevent== "Yes" 
label define progressed_lbl 0 "No" 1 "Yes" 
label values progressed progressed_lbl 
 
gen died = . 
replace died = 0 if death== "No" 
replace died = 1 if death== "Yes" 
tab died death 
label define died_lbl 0 "No" 1 "Yes" 
label values died died_lbl 
 
gen analysisirvsox = . 
replace analysisirvsox = 1 if regimen== "B" 
replace analysisirvsox = 1 if regimen== "C" 
replace analysisirvsox = 0 if regimen== "D" 
replace analysisirvsox = 0 if regimen== "E" 
label define analysisirvsox_lbl 1 "irinotecan based chemo" 0 "Oxaliplatin based chemo" 
label values analysisirvsox analysisirvsox_lbl 
 
 
gen treatmentintensity = . 
replace treatmentintensity = 0 if regimen== "A" 
replace treatmentintensity = 0 if regimen== "B" 
replace treatmentintensity = 0 if regimen== "D" 
replace treatmentintensity = 1 if regimen== "C" 
replace treatmentintensity = 1 if regimen== "E" 
label define treatmentintensity_lbl 0 "initial single agent" 1 "initial combination" 
label values treatmentintensity treatmentintensity_lbl 
 
gen combination = . 
replace combination = . if regimen== "A" 
replace combination = 0 if regimen== "B" 
replace combination = 0 if regimen== "D" 
replace combination = 1 if regimen== "C" 
replace combination = 1 if regimen== "E" 
label define combination_lbl 0 "deferred combination" 1 "initial combination" 
label values combination combination_lbl 
 
gen htm = ht/100 
gen bodymi = wt/(htm*htm) 
 
gen bmi = wt/ (ht*ht) 
 
*demographic information 
 
codebook NLRcateg1 
 
summarize age if NLRcateg1==0 
summarize age if NLRcateg1==1 
 
tab who if NLRcateg1==0 
tab who if NLRcateg1==1 
tab who NLRcateg1, chi 
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tab primresect if NLRcateg1==0 
tab primresect if NLRcateg1==1 
tab primresect NLRcateg1, chi 
 
tab platcat1 if NLRcateg1==0 
tab platcat1 if NLRcateg1==1 
tab platcat1 NLRcateg1, chi 
 
tab braf_cat if NLRcateg1==0 
tab braf_cat if NLRcateg1==1 
tab braf_cat NLRcateg1, chi 
 
tab site_cat2 if NLRcateg1==0 
tab site_cat2 if NLRcateg1==1 
tab site_cat2 NLRcateg1, chi 
 
tab apcat1 if NLRcateg1==0 
tab apcat1 if NLRcateg1==1 
tab apcat1 NLRcateg1, chi 
 
 
tab metsite1 if NLRcateg1==0 
tab metsite1 if NLRcateg1==1 
tab metsite1 NLRcateg1, chi 
 
histogram NLR1, bin(15) 
 
 
*Prognostic analysis 
 
stset stime, failure(died==1) 
stcox NLRcateg1 
sts graph, by (NLRcateg1)  
stcox NLRcateg1 primresect who platcat1 braf_cat site_cat2 metsite1 kras121361 apcat1 
 
 
stcox NLR1 
 
stcox agecat 
stcox metdis 
stcox primresect 
stcox who 
stcox platcat1 
stcox braf_cat 
stcox site_cat2 
stcox agecat2 
stcox agecat3 
stcox apcat1 
stcox metsite1 
stcox metsite2 
 
 
stset ptime, failure(progressed==1) 
stcox NLRcateg1 
sts graph, by (NLRcateg1) 
stcox NLRcateg1 who primresect platcat1 metsite1 apcat1 
 
**predictive analyses - treatment intensity 
 
 
stset stime, failure(died==1) 
stcox combination 
stsum, by(combination) 
 
 
 
stset stime, failure(died==1) 
stcox combination if NLRcateg1==1 
stsum, by(combination) 
  
stset stime, failure(died==1) 
stcox combination if NLRcateg1==0 
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 xi: stcox i.NLRcateg1*i.combination 
estimates store a 
xi: stcox i.combination i.NLRcateg1 
lrtest a  
 
 
stset ptime, failure(progressed==1) 
stcox combination 
stcox combination if NLRcateg1==1 
 
 stset ptime, failure(progressed==1) 
stcox combination if NLRcateg1==0 
 
 xi: stcox i.NLRcateg1*i.combination  
estimates store a 
xi: stcox i.combination i.NLRcateg1 
lrtest a  
 
tab treatmentintensity bestresp if NLRcateg1==1, chi2 
tab treatmentintensity bestresp if NLRcateg1==0, chi2 
logistic bestresp treatmentintensity if NLRcateg==1 
logistic bestresp treatmentintensitab ty if NLRcateg==0 
 
 xi: logistic i.NLRcateg1*i.treatmentintensity 
estimates store a 
xi: logistic i.treatmentintensity i.NLRcateg1 
lrtest a  
 
**predictive analysis - Ir vs Ox 
 
stset stime, failure(died==1) 
stcox analysisirvsox1 
 
 
stset stime, failure(died==1) 
stcox analysisirvsox2 
stcox analysisirvsox2 if NLRcateg1==1 
stcox analysisirvsox2 if NLRcateg1==0 
 
 
 
 xi: stcox i.NLRcateg1*i.analysisirvsox2 
estimates store a 
xi: stcox i.analysisirvsox2 i.NLRcateg1 
lrtest a  
 
 
stset ptime, failure(progressed==1) 
stcox analysisirvsox2 
stcox analysisirvsox2 if NLRcateg1==1 
stcox analysisirvsox2 if NLRcateg1==0  
 
 
 xi: stcox i.NLRcateg1*i.analysisirvsox2 
estimates store a 
xi: stcox i.analysisirvsox2 i.NLRcateg1 
lrtest a  
 
 
****tumour marker analysis  
 
gen NLR4 = neutt4th/(wbct4th - neutt4th) 
drop if NLR4<0 
 
histogram NLR4, bin(15) 
 
gen NLRcat4 = NLR4 
gen NLRcateg4 = NLR4 
recode NLRcateg4 (0/2.000001 = 0) (2.0000002/40 = 1) 
label define NLRcateg4_lbl 0 "low NLR" 1"high NLR" 
label values NLRcateg4 NLRcateg4_lbl 
 
stset stime, failure(died==1) 
stcox NLRcateg4 
stset ptime, failure(progressed==1) 
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stcox NLRcateg4 
 
 
gen NLRchange = (NLR4-NLR1)/NLR1 
gen NLRchangepercent = NLRchange *100 
gen NLRchangecat1 = 2 if NLRchange<=-0.25 
replace NLRchangecat1 = 1 if NLRchange>-0.25 & NLRchange<0.25  
replace NLRchangecat1 = 0 if NLRchange>=0.25 & NLRchange~=. 
label define NLRchangecat1_lbl 0 "NLRdecrease" 1 "NLRstable" 2 "NLRincrease" 
label values NLRchangecat1 NLRchangecat1 _lbl 
 
gen dynamic = . 
replace dynamic = 0 if NLRchange<=-0.25 & NLRcateg1==0 
replace dynamic = 1 if NLRchange<=-0.25 & NLRcateg1==1 
replace dynamic = 2 if NLRchange>-0.25 & NLRchange<0.25 & NLRcateg1==0 
replace dynamic = 3 if NLRchange>-0.25 & NLRchange<0.25 & NLRcateg1==1 
replace dynamic = 4 if NLRchange>=0.25 & NLRchange~=. & NLRcateg1==0 
replace dynamic = 5 if NLRchange>=0.25 & NLRchange~=. & NLRcateg1==1 
label define dynamic_lbl 0 "NLRimproved0" 1 "NLRimproved1" 2 "NLRstable0" 3"NLRstable1" 4"NLRrise0" 5"NLRrise1" 
label values NLRchangecat1 NLRchangecat1 _lbl 
 
 
codebook NLRchangecat1 
codebook dynamic 
 
 
gen NLRimproved = NLRchangecat1 
recode NLRimproved (1=0)(2=1) 
label define NLRimproved_lbl 0 "no improvement" 1 "improvement" 
label values NLRimproved NLRimproved_lbl 
 
gen NLRfavourable = NLRchangecat1 
recode NLRfavourable (2=1) 
label define NLRfavourable_lbl 0 "not favourable" 1 "favourable" 
label values NLRfavourable NLRfavourable_lbl 
 
gen NLRworse = NLRchangecat1 
recode NLRworse (0=1)(2=0)(1=0) 
label define NLRworse_lbl 0 "no deterioration" 1 "deterioration" 
label values NLRworse NLRworse_lbl 
 
gen dynamicworse= dynamic 
recode dynamicworse (1=0)(2=0)(3=0)(4=1)(5=0) 
 
tabulate NLRimproved treatfail12wk 
tabulate NLRworse treatfail12wk 
 
tabulate NLRimproved bestrespall212wk 
tabulate NLRworse bestrespall212wk 
 
logistic bestrespall212wk NLRimproved 
logistic bestrespall212wk NLRfavourable 
logistic bestrespall212wk NLRworse 
logistic bestrespall212wk NLRimproved if NLRcateg1==1 
logistic bestrespall212wk NLRimproved if NLRcateg1==0 
logistic bestrespall212wk NLRfavourable if NLRcateg1==1 
logistic bestrespall212wk NLRfavourable if NLRcateg1==0 
logistic bestrespall212wk NLRworse if NLRcateg1==1 
logistic bestrespall212wk NLRworse if NLRcateg1==0 
 
 
logistic treatfail12wk NLRimproved 
logistic treatfail12wk NLRfavourable 
logistic treatfail12wk NLRworse 
logistic treatfail12wk NLRimproved if NLRcateg1==1 
logistic treatfail12wk NLRimproved if NLRcateg1==0 
logistic treatfail12wk NLRfavourable if NLRcateg1==1 
logistic treatfail12wk NLRfavourable if NLRcateg1==0 
logistic treatfail12wk NLRworse if NLRcateg1==1 
logistic treatfail12wk NLRworse if NLRcateg1==0 
 
logistic dynamicworse0 treatfail12wk 
tab dynamicworse0 treatfail12wk 
  
stset ptime, failure(progressed==1) 
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stcox NLRfavourable 
 
stset ptime, failure(progressed==1) 
stcox NLRworse 
 
stset ptime, failure(progressed==1) 
stcox NLRimproved 
 
 
stset stime, failure(died==1) 
stcox NLRfavourable 
 
stset stime, failure(died==1) 
stcox NLRworse 
 
stset stime, failure(died==1) 
stcox NLRfavourable 
 
***15% difference in NLR c4 (same analyses used for 20%, 30%) 
 
gen NLRchange = (NLR1-NLR4)/NLR1 
gen NLRchangepercent = NLRchange *100 
gen NLRchangecat15 = 0 if NLRchange<=-0.15 
replace NLRchangecat15 = 1 if NLRchange>-0.15 & NLRchange<0.15 
replace NLRchangecat15 = 2 if NLRchange>=0.15 & NLRchange~=. 
label define NLRchangecat15_lbl 0 "NLRdecrease" 1 "NLRstable" 2 "NLRincrease" 
label values NLRchangecat15 NLRchangecat15 _lbl 
 
codebook NLRchangecat15 
 
gen NLRimproved15 = NLRchangecat15 
recode NLRimproved15 (1=0)(2=1) 
label define NLRimproved15_lbl 0 "no improvement" 1 "improvement" 
label values NLRimproved15 NLRimproved15_lbl 
 
gen NLRfavourable15 = NLRchangecat15 
recode NLRfavourable15 (2=1) 
label define NLRfavourable15_lbl 0 "not favourable" 1 "favourable" 
label values NLRfavourable15 NLRfavourable15_lbl 
 
gen NLRworse15 = NLRchangecat15 
recode NLRworse15 (0=1)(2=0)(1=0) 
label define NLRworse15_lbl 0 "no deterioration" 1 "deterioration" 
label values NLRworse15 NLRworse15_lbl 
 
tabulate NLRimproved15 treatfail12wk 
tabulate NLRworse15 treatfail12wk 
tabulate NLRfavourable15 treatfail12wk 
 
tabulate NLRimproved15 bestrespall12wk 
tabulate NLRworse15 bestrespall12wk 
 
logistic bestrespall12wk NLRimproved15 
logistic bestrespall12wk NLRfavourable15 
logistic bestrespall12wk NLRworse15 
 
logistic treatfail12wk NLRimproved15 
logistic treatfail12wk NLRfavourable15 
logistic treatfail12wk NLRworse15 
 
 
stset ptime, failure(progressed==1) 
stcox NLRfavourable15 
 
stset ptime, failure(progressed==1) 
stcox NLRworse15 
 
stset ptime, failure(progressed==1) 
stcox NLRimproved15 
 
 
stset stime, failure(died==1) 
stcox NLRfavourable15 
 
stset stime, failure(died==1) 
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stcox NLRworse15 
 
stset stime, failure(died==1) 
stcox NLRfavourable15 
 
 
 
gen NLR 
 
gen NLRchangecat1 = 2 if NLRchange<=-0.25 
replace NLRchangecat1 = 1 if NLRchange>-0.25 & NLRchange<0.25  
replace NLRchangecat1 = 0 if NLRchange>=0.25 & NLRchange~=. 
label define NLRchangecat1_lbl 0 "NLRdecrease" 1 "NLRstable" 2 "NLRincrease" 
label values NLRchangecat1 NLRchangecat1 _lbl 
 
**effect of alternative cut-points 
 
gen NLRcut15 = NLR1 
recode NLRcut15 (0/1.500001 = 0) (1.5000002/40 = 1) 
label define NLRcut15_lbl 0 "low NLR" 1"high NLR" 
label values NLRcut15 NLRcut15_lbl 
drop if NLRcut15==. 
drop if NLRcut15<0 
 
gen NLRcut25 = NLR1 
recode NLRcut25 (0/2.500001 = 0) (2.5000002/40 = 1) 
label define NLRcut25_lbl 0 "low NLR" 1"high NLR" 
label values NLRcut25 NLRcut25_lbl 
drop if NLRcut25==. 
drop if NLRcut25<0 
 
 
gen NLRcpt3 = NLR1 
recode NLRcpt3 (0/3.00001 = 0) (3.000002/40 = 1) 
label define NLRcpt3_lbl 0 "low NLR" 1"high NLR" 
label values NLRcpt3 NLRcpt3_lbl 
drop if NLRcpt3==. 
drop if NLRcpt3<0 
 
gen NLRcpt35 = NLR1 
recode NLRcpt35 (0/3.50001 = 0) (3.500002/40 = 1) 
label define NLRcpt35_lbl 0 "low NLR" 1"high NLR" 
label values NLRcpt35 NLRcpt35_lbl 
drop if NLRcpt35==. 
drop if NLRcpt35<0 
 
gen NLRct4 = NLR1 
recode NLRct4 (0/4.00001 = 0) (4.000002/40 = 1) 
label define NLRct4_lbl 0 "low NLR" 1"high NLR" 
label values NLRct4 NLRct4_lbl 
drop if NLRct4==. 
drop if NLRct4<0 
 
tab NLRcut15 
 
stset stime, failure(died==1) 
stcox NLRcut15 
 
 
stset ptime, failure(progressed==1) 
stcox NLRcut15 
 
tab NLRcut25 
 
stset stime, failure(died==1) 
stcox NLRcut25 
 
stset ptime, failure(progressed==1) 
stcox NLRcut25 
 
tab NLRcpt35 
 
stset stime, failure(died==1) 
stcox NLRcpt35 
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stset ptime, failure(progressed==1) 
stcox NLRcpt35 
 
tab NLRct4 
 
stset stime, failure(died==1) 
stcox NLRct4 
stcox NLRct4 who platcat1 
 
stset ptime, failure(progressed==1) 
stcox NLRct4 
 
***Platelets analysis 
 
*demographic information 
 
codebook platcat1 
 
summarize age if platcat1==0 
summarize age if platcat1==1 
 
tab who if platcat1==0 
tab who if platcat1==1 
tab who site, chi 
 
 
tab primresect if platcat1==0 
tab primresect if platcat1==1 
tab primresect site, chi 
 
tab metsite1 site, chi 
tab braf_cat site, chi 
tab apcat1 site, chi 
tab NLRcateg1 site, chi 
 
 
summarize age if NLRcateg1==0 
summarize age if NLRcateg1==1 
 
tab who if NLRcateg1==0 
tab who if NLRcateg1==1 
 
tab group if NLRcateg1==0 
tab group if NLRcateg1==1 
 
tab analysisirvsox if NLRcateg1==0 
tab analysisirvsox if NLRcateg1==1 
 
tab treatmentintensity if NLRcateg1==0 
tab treatmentintensity if NLRcateg1==1 
 
tab primresect if NLRcateg1==0 
tab primresect if NLRcateg1==1 
 
tab metdis if NLRcateg1==0 
tab metdis if NLRcateg1==1 
 
tab platcat1 if NLRcateg1==0 
tab platcat1 if NLRcateg1==1 
 
tab braf_cat if NLRcateg1==0 
tab braf_cat if NLRcateg1==1 
 
tab site_cat2 if NLRcateg1==0 
tab site_cat2 if NLRcateg1==1 
 
tab apcat1 if NLRcateg1==0 
tab apcat1 if NLRcateg1==1 
 
tab agecat2 if NLRcateg1==0 
tab agecat2 if NLRcateg1==1 
 
tab agecat3 if NLRcateg1==0 
tab agecat3 if NLRcateg1==1 
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tab metsite1 if NLRcateg1==0 
tab metsite1 if NLRcateg1==1 
tab metsite1 NLRcateg1, chi 
histogram NLR1, bin(10) normal kdensity 
 
 
 
*Prognostic analysis 
 
stset stime, failure(died==1) 
stcox platcat1 
sts graph, by (platcat1)  
stcox NLRcateg1 primresect who platcat1 
 
stset ptime, failure(progressed==1) 
stcox platcat1 
sts graph, by (platcat1) 
stcox who primresect platcat1 NLRcateg1 
 
*treatment intensity analysis 
 
stset stime, failure(died==1) 
stcox treatmentintensity if platcat1==1 
 
stcox treatmentintensity primresect NLRcateg1 who if platcat1==1 
  
stset stime, failure(died==1) 
stcox treatmentintensity if platcat1==0 
stcox treatmentintensity primresect who NLRcateg1 if platcat1==0 
 
 xi: stcox i.platcat1*i.treatmentintensity 
estimates store a 
xi: stcox i.treatmentintensity i.platcat1 
lrtest a  
 
  
 
stset ptime, failure(progressed==1) 
stcox treatmentintensity if platcat1==1 
stcox treatmentintensity primresect who NLRcateg1 if platcat1==1 
  
 stset ptime, failure(progressed==1) 
stcox treatmentintensity if platcat1==0 
stcox treatmentintensity primresect NLRcateg1 who if platcat1==0 
 
 xi: stcox i.platcat1*i.treatmentintensity 
estimates store a 
xi: stcox i.treatmentintensity i.platcat1 
lrtest a  
 
 
 
*Ir vs ox analysis 
 
stset stime, failure(died==1) 
stcox analysisirvsox2 if platcat1==1 
stcox analysisirvsox2 if platcat1==0 
  xi: stcox i.platcat1*i.analysisirvsox2 
estimates store a 
xi: stcox i.analysisirvsox2 i.platcat1 
lrtest a  
  
 stset ptime, failure(progressed==1) 
stcox analysisirvsox2 if platcat1==1  
stcox analysisirvsox2 if platcat1==0 
 
 
  xi: stcox i.platcat1*i.analysisirvsox2 
estimates store a 
xi: stcox i.analysisirvsox2 i.platcat1 
lrtest a  
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**other prognostic markers 
 
tab platcat1 
 
stset stime, failure(died==1) 
stcox platcat1 
 
stset ptime, failure(progressed==1) 
stcox platcat1 
 
tab brafstatus 
 
stset stime, failure(died==1) 
stcox brafstatus 
 
stset ptime, failure(progressed==1) 
stcox brafstatus 
 
tab primresect 
 
stset stime, failure(died==1) 
stcox primresect 
 
stset ptime, failure(progressed==1) 
stcox primresect 
 
tab site_cat2 
 
stset stime, failure(died==1) 
stcox site_cat2 
 
stset ptime, failure(progressed==1) 
stcox site_cat2 
 
tab metdis 
 
stset stime, failure(died==1) 
stcox metdis 
 
stset ptime, failure(progressed==1) 
stcox metdis 
 
tab who 
 
stset stime, failure(died==1) 
stcox who 
 
stset ptime, failure(progressed==1) 
stcox who 
 
**predictive analyses - treatment intensity 
 
 
stset stime, failure(died==1) 
stcox treatmentintensity 
 
 
stset stime, failure(died==1) 
stcox treatmentintensity if NLRcateg1==1 
stsum, by (treatmentintensity) 
stcox treatmentintensity platcat primresect who if NLRcateg1==1 
  
stset stime, failure(died==1) 
stcox treatmentintensity if NLRcateg1==0 
stsum, by (treatmentintensity) 
stcox treatmentintensity platcat primresect who if NLRcateg1==0 
 
 
 xi: stcox i.NLRcateg1*i.treatmentintensity 
estimates store a 
xi: stcox i.treatmentintensity i.NLRcateg1 
lrtest a  
 
 
stset ptime, failure(progressed==1) 
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stcox treatmentintensity 
stcox treatmentintensity if NLRcateg1==1 
*sts graph, by (analysisintensity, if NLRcateg1==1)  
stcox treatmentintensity platcat primresect who if NLRcateg1==1 
  
 stset ptime, failure(progressed==1) 
stcox treatmentintensity if NLRcateg1==0 
*sts graph, by (analysisintensity, if NLRcateg1==1)  
stcox treatmentintensity platcat primresect who if NLRcateg1==0 
 
 xi: stcox i.NLRcateg1*i.treatmentintensity 
estimates store a 
xi: stcox i.treatmentintensity i.NLRcateg1 
lrtest a  
 
tab treatmentintensity bestresp if NLRcateg1==1, chi2 
tab treatmentintensity bestresp if NLRcateg1==0, chi2 
logistic bestresp treatmentintensity who primresect if NLRcateg==1 
logistic bestresp treatmentintensity who primresect if NLRcateg==0 
 
 xi: logistic i.NLRcateg1*i.treatmentintensity 
estimates store a 
xi: logistic i.treatmentintensity i.NLRcateg1 
lrtest a  
 
 ***plts + NLR analysis 
  
 drop if NLRcateg1== . 
drop if NLRcateg1<0 
 
gen NLRplat = 1 if platcat1==1 |NLRcateg1==1 
recode NLRplat (.=0) 
 
codebook NLRplat 
tab NLRplat 
 
stset stime, failure(died==1) 
stcox NLRplat 
sts graph, by (NLRplat)  
stcox NLRplat primresect who  braf_cat site_cat2 metsite1 kras121361 apcat1 
 
 
 
stset ptime, failure(progressed==1) 
stcox NLRplat 
stcox NLRplat primresect who  braf_cat site_cat2 metsite1 kras121361 apcat1 
 
stset stime, failure(died==1) 
stcox treatmentintensity if NLRcateg1==1 
stsum, by (treatmentintensity) 
stcox treatmentintensity platcat primresect who if NLRcateg1==1 
  
stset stime, failure(died==1) 
stcox treatmentintensity if NLRcateg1==0 
stsum, by (treatmentintensity) 
stcox treatmentintensity platcat primresect who if NLRcateg1==0 
 
 
 xi: stcox i.NLRcateg1*i.treatmentintensity 
estimates store a 
xi: stcox i.treatmentintensity i.NLRcateg1 
lrtest a  
 
 
stset ptime, failure(progressed==1) 
stcox treatmentintensity if NLRplat==1 
stcox treatmentintensity if NLRplat==0 
stcox treatmentintensity platcat primresect who if NLRcateg1==0 
 
 xi: stcox i.NLRplat*i.treatmentintensity  
estimates store a 
xi: stcox i.treatmentintensity i.NLRplat  
lrtest a  
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***missing variables generation. then use demographics 
gen sitemissing =. 
replace sitemissing = 1 if site_cat==. 
replace sitemissing = 0 if site_cat==1 
replace sitemissing = 0 if site_cat==0 
replace sitemissing = 0 if site_cat==2 
 
 

B) STATA file for PICCOLO analyses 
 
cd "/Users/medjcri/Documents/NLR project" 
 
clear 
cd "/Users/medjcri/Documents/BRAF" 
 
insheet using "IrPan_dataset.csv", comma 
keep patientno  
gen trialno=patientno 
drop if trialno==. 
drop patientno 
save "PICCOLONLRmerge.dta", replace     
 
 
use "/Users/medjcri/Documents/BRAF/PICCOLO_data_allvariables_all pop.dta", clear 
replace trialno="1397" if trialno=="01397" 
destring trialno, replace 
merge trialno using "PICCOLONLRmerge.dta" 
tab _merge 
 
 
gen agecat = age 
recode agecat (1/69 = 0) (70/99 = 1) 
label define agecat_lbl 0 "<70" 1">70" 
label values agecat agecat_lbl 
 
 
recode whof04 (1 = 0) (2 = 1)(3 = 1) 
label define whof04_lbl 0 "PSlow" 1"PShigh" 
label values whof04 who_lbl 
 
recode prevrespf04 ( 2= 0) (3=.) (9876 = .) 
label define prevrespf04_lbl 0 "progression" 1 "clinical benefit" 
label values prevrespf04 prevrespf04_lbl 
 
 
recode prevoxali (2/4 = 0) 
label define prevoxali_lbl 0 "no" 1 "yes" 
label values prevoxali prevoxali_lbl 
 
recode prevmod (2/4 = 0) 
label define prevmod_lbl 0 "no" 1 "yes" 
label values prevmod prevmod_lbl 
 
 
 
gen platcat1 = plts_vc1 
recode platcat1 (1/399 = 0) (399/3000 = 1) 
label define platcat1_lbl 0 "low platelets" 1">high platelets" 
label values platcat1 platcat1_lbl 
 
gen primaryan1 = 1 if kras==2 & prevcetu==2 
 
***define NLR 
clear 
cd "/Users/medjcri/Documents/BRAF" 
 
 
use "/Users/medjcri/Documents/BRAF/PICCOLO_data_allvariables_all pop.dta", clear 
replace trialno="1397" if trialno=="01397" 
destring trialno, replace 
drop if trialno==. 
bysort trialno:assert _N==1 
 
gen NLR1 = neuphil_vc1/(wbc_vc1-neuphil_vc1) 
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gen NLRcateg1 = neuphil_vc1/(wbc_vc1-neuphil_vc1) 
recode NLRcateg1 (0/2.000001 = 0) (2.000002/40 = 1) 
label define NLRcateg1_lbl 0 "low NLR" 1"high NLR" 
label values NLRcateg1 NLRcateg1_lbl 
drop if NLRcateg1==. 
drop if NLRcateg1<0 
 
 
drop if randtrt==2 
drop if randtrt2==3 
 
label define dcr_lbl 1 "Clinical benefit" 0 "Progressive disease" 
label values dcr dcr_lbl 
 
label define crpr_12w 1 "Response" 0 "Stable or progressive disease" 
label values crpr_12w crpr_12w_lbl 
 
**NLR demographics 
 
codebook NLRcateg1 
summarize agecat if NLRcateg1==0 
summarize agecat if NLRcateg1==1 
 
tab who if NLRcateg1==0 
tab who if NLRcateg1==1 
 
tab randtrt2 if NLRcateg1==0 
tab randtrt2 if NLRcateg1==1 
 
tab prevresp if NLRcateg1==0 
tab prevresp if NLRcateg1==1 
 
 
tab prevoxali if NLRcateg1==0 
tab prevoxali if NLRcateg1==1 
 
 
tab prevbevac if NLRcateg1==0 
tab prevbevac if NLRcateg1==1 
 
 
 
tab prevmod if NLRcateg1==0 
tab prevmod if NLRcateg1==1 
 
tab braf_cat_sr if NLRcateg1==0 
tab braf_cat_sr if NLRcateg1==1 
 
tab site if NLRcateg1==0 
tab site if NLRcateg1==1 
 
 
tab mesperi 
tab mesperi if braf_cat_sr==0 
tab mesperi if braf_cat_sr==1 
 
tab liver 
tab liver if braf_cat_sr==0 
tab liver if braf_cat_sr==1 
 
tab lung 
tab lung if braf_cat_sr==0 
tab lung if braf_cat_sr==1 
 
tab lung 
tab lung if braf_cat_sr==0 
tab lung if braf_cat_sr==1 
 
tab abln 
tab abln if braf_cat_sr==0 
tab abln if braf_cat_sr==1 
 
tab exabln 
tab exabln if braf_cat_sr==0 
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tab exabln if braf_cat_sr==1 
 
tab sex 
tab sex if braf_cat_sr==0 
tab sex if braf_cat_sr==1 
 
tab kras121361_sr if braf_cat_sr==0 
tab kras121361_sr if braf_cat_sr==1 
 
tab nras1213_sr if braf_cat_sr==0 
tab nras1213_sr if braf_cat_sr==1 
 
tab pik3ca_sr if braf_cat_sr==0 
tab pik3ca_sr if braf_cat_sr==1 
 
 
*Prognostic analysis 
 
gen fuptimemonths = (fuptime/12) 
stset fuptime, failure(died==1) 
stcox NLRcateg1 if randtrt2==1 
stcox NLRcateg1 who braf_cat_sr prevresp if randtrt2==1 
sts graph, by (NLRcateg1)  
 
gen pfuptimemonths = (pfuptime/12) 
stset pfuptimemonths, failure(f_pfs==1) 
stcox NLRcateg1  
sts graph, by (NLRcateg1) 
stcox NLRcateg1 who prevresp braf_cat_sr if randtrt2==1 
 
*Predictive analysis 
 
stset fuptime, failure(died==1) 
stcox randtrt2 if primaryan1==1 
stcox randtrt2 if primaryan1==1 & NLRcateg1==1 
stcox randtrt2 if primaryan1==1 & NLRcateg==0 
 
 
 xi: stcox i.NLRcateg1*i.randtrt2 if primaryan1==1 
estimates store a 
xi: stcox i.NLRcateg1 i.randtrt2 if primaryan1==1  
lrtest a  
 
 stset pfuptime, failure(f_pfs==1) 
stcox randtrt2 if primaryan1==1 
stcox randtrt2 if primaryan1==1 & NLRcateg1==1 
stsum, by (randtrt2) 
stcox randtrt2 if primaryan1==1 & NLRcateg1==0 
stsum, by (randtrt2) 
 
xi: stcox i.NLRcateg1*i.randtrt2 if primaryan1==1 
estimates store a 
xi: stcox i.NLRcateg1 i.randtrt2 if primaryan1==1  
lrtest a  
 
tab crpr if randtrt2==1 & primaryan1==1 & NLRcateg1==1 
tab crpr if randtrt2==2 & primaryan1==1 & NLRcateg1==1 
 
tab crpr if randtrt2==1 & primaryan1==1 & NLRcateg1==0 
tab crpr if randtrt2==2 & primaryan1==1 & NLRcateg1==0 
 
logistic crpr randtrt2 if primaryan1==1 & NLRcateg1==1 
logistic crpr randtrt2 if primaryan1==1 & NLRcateg1==0 
 
xi: logistic i.NLRcateg1*i.randtrt2 if primaryan1==1 
estimates store a 
xi: logistic i.NLRcateg1 i.randtrt2 if primaryan1==1  
lrtest a  
 
**other prognostic factors 
 
tab who if randtrt2==1 
 
stset fuptime, failure(died==1) 
stcox who if randtrt2==1 
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stset pfuptime, failure(f_pfs==1) 
stcox who if randtrt2==1 
 
 
tab platcat if randtrt2==1 
 
stset fuptime, failure(died==1) 
stcox platcat if randtrt2==1 
 
stset pfuptime, failure(f_pfs==1) 
stcox platcat if randtrt2==1 
 
tab prevresp if randtrt2==1 
 
stset fuptime, failure(died==1) 
stcox prevresp if randtrt2==1 
 
stset pfuptime, failure(f_pfs==1) 
stcox prevresp if randtrt2==1 
 
 
 
stset fuptime, failure(died==1) 
stcox prevmod if randtrt2==1 
 
stset pfuptime, failure(f_pfs==1) 
stcox prevmod if randtrt2==1 
 
 
tab braf_cat_sr if randtrt2==1 
 
stset fuptime, failure(died==1) 
stcox braf_cat_sr if randtrt2==1 
 
stset pfuptime, failure(f_pfs==1) 
stcox braf_cat_sr if randtrt2==1 
 
 
tab site if randtrt2==1 
 
stset fuptime, failure(died==1) 
stcox site if randtrt2==1 
 
stset pfuptime, failure(f_pfs==1) 
stcox site if randtrt2==1 
 
***platelets predictive 
 
stset fuptime, failure(died==1) 
stcox randtrt2 if primaryan1==1 
stcox randtrt2 if primaryan1==1 & platcat1==1 
stcox randtrt2 if primaryan1==1 & platcat1==0 
 
 
 xi: stcox i.platcat1*i.randtrt2 if primaryan1==1 
estimates store a 
xi: stcox i.platcat1 i.randtrt2 if primaryan1==1  
lrtest a  
 
 stset pfuptime, failure(f_pfs==1) 
stcox randtrt2 if primaryan1==1 
stcox randtrt2 if primaryan1==1 & platcat1==1 
stsum, by (randtrt2) 
stcox randtrt2 if primaryan1==1 & platcat1==0 
stsum, by (randtrt2) 
 
xi: stcox i.platcat1*i.randtrt2 if primaryan1==1 
estimates store a 
xi: stcox i.platcat1 i.randtrt2 if primaryan1==1  
lrtest a  
 
tab crpr if randtrt2==1 & primaryan1==1 & platcat1==1 
tab crpr if randtrt2==2 & primaryan1==1 & platcat1==1 
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tab crpr if randtrt2==1 & primaryan1==1 & platcat1==0 
tab crpr if randtrt2==2 & primaryan1==1 & platcat1==0 
 
logistic crpr randtrt2 if primaryan1==1 & platcat1==1 
logistic crpr randtrt2 if primaryan1==1 & platcat1==0 
 
****tumour marker analysis  
 
gen NLR4 = neuphil_vc4/(wbc_vc4 - neuphil_vc4) 
drop if NLR4<0 
 
gen NLRcat4 = NLR4 
gen NLRcateg4 = NLR4 
recode NLRcateg4 (0/2.000001 = 0) (2.0000002/40 = 1) 
label define NLRcateg4_lbl 0 "low NLR" 1"high NLR" 
label values NLRcateg4 NLRcateg4_lbl 
 
stset fuptime, failure(died==1) 
stcox NLRcateg4 
stset pfuptime, failure(f_pfs==1) 
stcox NLRcateg4 
 
 
gen NLRchange = (NLR4-NLR1)/NLR1 
gen NLRchangepercent = NLRchange *100 
gen NLRchangecat1 = 2 if NLRchange<=-0.25 
replace NLRchangecat1 = 1 if NLRchange>-0.25 & NLRchange<0.25  
replace NLRchangecat1 = 0 if NLRchange>=0.25 & NLRchange~=. 
label define NLRchangecat1_lbl 0 "NLRdecrease" 1 "NLRstable" 2 "NLRincrease" 
label values NLRchangecat1 NLRchangecat1 _lbl 
 
gen NLRimproved = NLRchangecat1 
recode NLRimproved (1=0)(2=1) 
label define NLRimproved_lbl 0 "no improvement" 1 "improvement" 
label values NLRimproved NLRimproved_lbl 
 
gen NLRfavourable = NLRchangecat1 
recode NLRfavourable (2=1) 
label define NLRfavourable_lbl 0 "not favourable" 1 "favourable" 
label values NLRfavourable NLRfavourable_lbl 
 
gen NLRworse = NLRchangecat1 
recode NLRworse (0=1)(2=0)(1=0) 
label define NLRworse_lbl 0 "no deterioration" 1 "deterioration" 
label values NLRworse NLRworse_lbl 
 
recode crpr_12w (.=0) 
 
logistic crpr_12w NLRimproved 
logistic crpr_12w NLRfavourable 
logistic crpr_12w NLRworse 
 
recode response_12wpd (.=0) 
logistic response_12wpd NLRimproved 
logistic response_12wpd NLRfavourable 
logistic response_12wpd NLRworse 
 
****Alternative cut-points for baseline NLR 
gen NLR2025 = . 
replace NLR2025 = 0 if NLR1<=1.999 
replace NLR2025 = 1 if NLR1>=2.0 & NLR1<=2.5 
 
gen NLR2530 = . 
replace NLR2530 = 0 if NLR1<=1.999 
replace NLR2530 = 1 if NLR1>=2.5 & NLR1<=3.0 
 
gen NLR3035 = . 
replace NLR3035 = 0 if NLR1<=1.999 
replace NLR3035 = 1 if NLR1>=3.0 & NLR1<=3.5 
 
gen NLR3541 = . 
replace NLR3541 = 0 if NLR1<=1.999 
replace NLR3541 = 1 if NLR1>=3.5 & NLR1<=4.0 
 
gen NLR4045 = . 
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replace NLR4045 = 0 if NLR1<=1.999 
replace NLR4045 = 1 if NLR1>=4.0 & NLR1<=4.5 
 
gen NLRmax = . 
replace NLRmax = 0 if NLR1<=1.999 
replace NLRmax = 1 if NLR1>4.5 
 
stcox NLR2025 
stcox NLR2530 
stcox NLR3035 
stcox NLR3541 
stcox NLR4045 
stcox NLRmax 

 
 

 
Appendix 2: STATA files used in Chapter 3 
 
a) STATA files for FOCUS and COIN analyses 
 
use "/Users/medjcri/Documents/BRAF/COINFOCUSdataset.dta", clear 
 
drop if trt==2  // COIN Arm B is not used in any part of this work 
label var trial "Trial" 
 
gen who2 = (who==2) if !missing(who) 
gen resect = (tstat==1) if !missing(tstat) 
recode plt (400/max=1 ">=400,000/`micro'l") (min/400=0 "<400,000/`micro'l"), gen(plt400) 
 
 
*** Findings(1): BRAF-mut frequency 
tab braf trial, col 
 
 
*** Findings(1): BRAF-mut status was associated with inferior OS in the 1st line (median 10.8 vs 16.4mths) 
stset ostime, fail(death) scale(30.4375) 
stsum, by(braf) 
stcox braf           // Total 
available N=2071 
stcox braf trial who2 resect plt400 right mperi msi  // Adjusted incl. MSI: N=1608 (78%) 
stcox braf trial who2 resect plt400 right mperi   // Adjusted incl. MSI: N=1865 (90%) 
 
* Forest plot 
ipdmetan, study(trial) hr forestplot(nowt boxsca(250) lcols((e(N)) "N") /// 
 range(.6 2.75) ysize(2.5)) : stcox braf       
   // Unadjusted (for info only) 
 
ipdmetan, study(trial) hr forestplot(nowt boxsca(250) lcols((e(N)) "N") /// 
 range(.6 2.75) ysize(2.5)) : stcox braf who2 resect plt400 right mperi msi  // Adjusted, incl. 
MSI 
 
ipdmetan, study(trial) hr forestplot(nowt boxsca(250) lcols((e(N)) "N") /// 
 range(.6 2.75) ysize(2.5)) : stcox braf who2 resect plt400 right mperi   // Adjusted, excl. 
MSI 
 
* Kaplan-Meier plot (unadjusted) 
sts graph, by(braf) xlabel(0(6)42) tmax(42) risktable(, order(1 "Wild-type" 2 "Mutation")) /// 
 legend(order(1 "Wild-type" 2 "Mutation")) xtitle("Analysis time (months)") ytitle("Survival") title("") 
 
 
*** Findings(2): BRAF-mut status had modest impact on PFS & response endpoints 
gen resp12 = dstat12<3 
gen dcr = dstat12<4 
 
* 1st line doublet/combination (COIN + FOCUS C) 
tab resp12 braf if firstline| trial==2, col 
logistic resp12 braf if firstline | trial==2 
logistic resp12 braf who2 resect plt400 right mperi msi if firstline | trial==2 
logistic resp12 braf who2 resect plt400 right mperi if firstline | trial==2 
 
tab dcr braf if firstline | trial==2, col 
logistic dcr braf if firstline | trial==2 
logistic dcr braf who2 resect plt400 right mperi msi if firstline | trial==2  
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logistic dcr braf who2 resect plt400 right mperi if firstline | trial==2  
 
stset pfstime, fail(pfsfail) scale(30.4375) if(firstline | trial==2) 
stsum, by(braf)  
stcox braf         // Total available N=1641 
stcox braf who2 resect plt400 right mperi msi  // Adjusted incl. MSI: N=1283 (78%) 
stcox braf who2 resect plt400 right mperi   // Adjusted incl. MSI: N=1530 (93%) 
 
sts graph, by(braf) xlabel(0(6)42) tmax(42) risktable(, order(1 "Wild-type" 2 "Mutation")) /// 
 legend(order(1 "Wild-type" 2 "Mutation")) xtitle("Analysis time (months)") ytitle("Survival") title("") 
 
 
ipdmetan, study(trial) hr forestplot(nowt boxsca(250) lcols((e(N)) "N") /// 
 range(.6 2.75) ysize(2.5)) : stcox braf       
   // Unadjusted (for info only) 
 
ipdmetan, study(trial) hr forestplot(nowt boxsca(250) lcols((e(N)) "N") /// 
 range(.6 2.75) ysize(2.5)) : stcox braf who2 resect plt400 right mperi msi  // Adjusted, incl. 
MSI 
 
ipdmetan, study(trial) hr forestplot(nowt boxsca(250) lcols((e(N)) "N") /// 
 range(.6 2.75) ysize(2.5)) : stcox braf who2 resect plt400 right mperi   // Adjusted, excl. 
MSI 
 
 
 
* 1st line FU alone (FOCUS A and B) 
tab resp12 braf if !firstline, col 
logistic resp12 braf if !firstline 
logistic resp12 braf who2 resect plt400 right mperi msi if !firstline 
logistic resp12 braf who2 resect plt400 right mperi if !firstline 
 
tab dcr braf if !firstline, col 
logistic dcr braf if !firstline 
logistic dcr braf who2 resect plt400 right mperi msi if !firstline 
logistic dcr braf who2 resect plt400 right mperi if !firstline 
 
stset pfstime, fail(pfsfail) scale(30.4375) if(!firstline) 
stsum, by(braf) 
stcox braf          // Total available 
N=430 
stcox braf who2 resect plt400 right mperi msi  // Adjusted incl. MSI: N=325 (76%) 
stcox braf who2 resect plt400 right mperi   // Adjusted excl. MSI: N=335 (78%) 
 
sts graph, by(braf) xlabel(0(6)42) tmax(42) risktable(, order(1 "Wild-type" 2 "Mutation")) /// 
 legend(order(1 "Wild-type" 2 "Mutation")) xtitle("Analysis time (months)") ytitle("Survival") title("") 
 
 
*** Findings(2): Following progression, BRAF-mut patients had shorter post-progression survival 
gen ppstime = ostime-pfstime if pfsfail 
 
* 1st line doublet/combination (COIN + FOCUS C) 
stset ppstime, fail(death) scale(30.4375) if(firstline | trial==2) 
stsum, by(braf)  
stcox braf         // Total available N=1377 
stcox braf who2 resect plt400 right mperi msi  // Adjusted incl. MSI: N=1083 (79%) 
stcox braf who2 resect plt400 right mperi   // Adjusted excl. MSI: N=1296 (94%) 
 
* 1st line FU alone (FOCUS A and B) 
stset ppstime, fail(death) scale(30.4375) if(!firstline) 
stsum, by(braf) 
stcox braf          // Total available 
N=370 
stcox braf who2 resect plt400 right mperi msi  // Adjusted incl. MSI: N=296 (80%) 
stcox braf who2 resect plt400 right mperi   // Adjusted incl. MSI: N=306 (83%) 
 
* Combined (all COIN and FOCUS arms) 
stset ppstime, fail(death) scale(30.4375) 
stsum, by(braf)  
stcox braf         // Total available N=1747 
stcox braf who2 resect plt400 right mperi msi  // Adjusted incl. MSI: N=1379 (79%) 
stcox braf who2 resect plt400 right mperi   // Adjusted excl. MSI: N=1602 (92%) 
 
* Forest plot 
ipdmetan, study(trial) hr forestplot(nowt boxsca(250) lcols((e(N)) "N") /// 
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 range(.6 2.75) ysize(2.5)) : stcox braf       
   // Unadjusted (for info only) 
 
ipdmetan, study(trial) hr forestplot(nowt boxsca(250) lcols((e(N)) "N") /// 
 range(.6 2.75) ysize(2.5)) : stcox braf who2 resect plt400 right mperi msi  // Adjusted, incl. 
MSI 
 
ipdmetan, study(trial) hr forestplot(nowt boxsca(250) lcols((e(N)) "N") /// 
 range(.6 2.75) ysize(2.5)) : stcox braf who2 resect plt400 right mperi   // Adjusted, excl. 
MSI 
 
* Kaplan-Meier plot (unadjusted) 
sts graph, by(braf) xlabel(0(3)24) tmax(24) risktable(, order(1 "Wild-type" 2 "Mutation")) /// 
 legend(order(1 "Wild-type" 2 "Mutation")) xtitle("Analysis time (months)") ytitle("Survival") title("") 
 
*** BRAF-mut status as a significant prognostic marker for OS 
stset ostime, fail(death) scale(30.4375) if(firstline!=1) 
 
* Combined, n=1714 (i.e. EXcluding FOCUS Strategy C (Arms C or E) patients) 
stset ostime, fail(death) scale(30.4375) if(firstline!=1) 
 
ipdmetan, study(trial) hr forestplot(nohet nowt boxsca(250) lcols((e(N)) "N") /// 
 range(.6 2.75) ysize(2.5) spacing(2.5)) : stcox braf      
    // n=1714 
ipdmetan, study(trial) hr forestplot(nohet nowt boxsca(250) lcols((e(N)) "N") /// 
 range(.6 2.75) ysize(2.5) spacing(2.5)) : stcox braf who2 resect plt400 right mperi msi  // 
n=1334 (78%) 
 
sts graph if _rsample, by(braf) xlabel(0(6)42) tmax(42) risktable(, order(1 "Wild-type" 2 "Mutation")) /// 
 legend(order(1 "Wild-type" 2 "Mutation")) xtitle("Analysis time (months)") ytitle("Survival") title("") 
 
 
* Combined, n=2071 (i.e. INcluding FOCUS Strategy C (Arms C or E) patients) 
stset ostime, fail(death) scale(30.4375) 
 
ipdmetan, study(trial) hr forestplot(nohet nowt boxsca(250) lcols((e(N)) "N") /// 
 range(.6 2.75) ysize(2.5) spacing(2.5)) : stcox braf      
    // n=2071 
ipdmetan, study(trial) hr forestplot(nohet nowt boxsca(250) lcols((e(N)) "N") /// 
 range(.6 2.75) ysize(2.5) spacing(2.5)) : stcox braf who2 resect plt400 right mperi msi  // 
n=1608 (78%) 
 
sts graph if _rsample, by(braf) xlabel(0(6)42) tmax(42) risktable(, order(1 "Wild-type" 2 "Mutation")) /// 
 legend(order(1 "Wild-type" 2 "Mutation")) xtitle("Analysis time (months)") ytitle("Survival") title("") 
 
 
 
*** BRAF-mut status as a significant prognostic marker for PPS 
 
gen ppstime = ostime-pfstime if pfsfail 
stset ppstime, fail(death) scale(30.4375) 
 
ipdmetan, study(trial) hr forestplot(nohet nowt boxsca(250) lcols((e(N)) "N") /// 
 xlabel(.5 1 2 4) range(.6 4) ysize(2.5) spacing(2.5)) : stcox braf    
       // n=1747 
ipdmetan, study(trial) hr forestplot(nohet nowt boxsca(250) lcols((e(N)) "N") /// 
 xlabel(.5 1 2 4) range(.6 4) ysize(2.5) spacing(2.5)) : stcox braf who2 resect plt400 right mperi msi 
 // n=1379 (79%) 
 
sts graph if _rsample, by(braf) xlabel(0(3)24) tmax(24) risktable(, order(1 "Wild-type" 2 "Mutation")) /// 
 legend(order(1 "Wild-type" 2 "Mutation")) xtitle("Analysis time (months)") ytitle("Survival") title("") 
*/ 
 
*3 trial merged demographics using Faye's merged file 
 
summarize age if braf==0 
summarize age if braf==1 
 
 
tab ps 
tab ps if braf==0 
tab ps if braf==1 
tab ps braf, exact 
 
tab resect 
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tab resect if braf==0 
tab resect if braf==1 
tab resect braf, chi 
 
tab prevrespf04 
tab prevrespf04 if braf==0 
tab prevrespf04 if braf==1 
tab prevrespf04 braf, chi 
 
tab site 
tab site if braf==0 
tab site if braf==1 
tab site braf, chi 
 
tab mesperi 
tab mesperi if braf==0 
tab mesperi if braf==1 
tab mesperi braf, chi 
 
tab MSIstatus 
tab MSIstatus if braf_cat_sr==0 
tab MSIstatus if braf==1 
 
 
tab liver 
tab liver if braf==0 
tab liver if braf==1 
tab liver braf, chi 
 
tab lung 
tab lung if braf==0 
tab lung if braf==1 
tab lung braf, chi 
 
tab lung 
tab lung if braf_cat_sr==0 
tab lung if braf==1 
 
tab abln 
tab abln if braf_cat_sr==0 
tab abln if braf_cat_sr==1 
 
tab exabln 
tab exabln if braf_cat_sr==0 
tab exabln if braf_cat_sr==1 
tab exabln braf, chi 
 
 
tab sex 
tab sex if braf==0 
tab sex if braf==1 
tab sex braf, exact 
 
tab kras121361_sr if braf==0 
tab kras121361_sr if braf==1 
tab kras121361_sr braf, exact 
 
 
tab nras1213_sr if braf_cat_sr==0 
tab nras1213_sr if braf_cat_sr==1 
 
tab pik3ca_sr if braf_cat_sr==0 
tab pik3ca_sr if braf_cat_sr==1 

 
 
 
b) STATA files for PICCOLO analyses 
 
clear 
cd "/Users/medjcri/Documents/BRAF" 
 
use "/Users/medjcri/Documents/BRAF/PICCOLO_data_allvariables_all pop.dta", clear 
replace trialno="1397" if trialno=="01397" 
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destring trialno, replace 
drop if trialno==. 
bysort trialno:assert _N==1 
 
gen agecat = age_rand 
recode agecat (1/69 = 0) (70/99 = 1) 
label define agecat_lbl 0 "<70" 1">70" 
label values agecat agecat_lbl 
 
recode whof04 (1 = 0) (2 = 1)(3 = 1) 
label define whof04_lbl 0 "PSlow" 1"PShigh" 
label values whof04 who_lbl 
 
recode prevrespf04 ( 2= 0) (3=.) (9876 = .) 
label define prevrespf04_lbl 0 "progression" 0 "clinical benefit" 
label values prevrespf04 prevrespf04_lbl 
 
recode mesperi (2=0) 
 
recode prevoxalif04 (2/4 = 0) 
label define prevoxalif04_lbl 0 "no" 1 "yes" 
label values prevoxalif04 prevoxalif04_lbl 
 
gen fuptimemths = (fuptime/30.5) 
gen pfuptimemths = (pfuptime/30.5) 
gen postprogOS = (fuptime-pfuptime) if f_pfs==1 
gen postprogOSmths = (postprogOS/30.5) 
 
recode mesperi (9876=.) 
 
gen MSIstatus =. 
replace MSIstatus = 0 if mlh1ihc_sr=="P" & msh2ihc_sr=="P" 
replace MSIstatus = 1 if msh2ihc_sr=="N" 
replace MSIstatus = 1 if mlh1ihc_sr=="N" 
 
recode prevresect (2=0) 
 
 
 
gen rightperit =. 
replace rightperit =1 if site==1 & mesperi==1 
recode rightperit(.=0) 
 
drop if randtrt== 2 
drop if randtrt== 3 
 
**demographic info 
 
codebook braf_cat_sr 
 
summarize age_rand if braf_cat_sr==0 
summarize age_rand if braf_cat_sr==1 
 
tab whof04 
tab whof04 if braf_cat_sr==0 
tab whof04 if braf_cat_sr==1 
tab whof04 braf_cat_sr, chi 
 
tab prevrespf04 
tab prevrespf04 if braf_cat_sr==0 
tab prevrespf04 if braf_cat_sr==1 
tab prevrespf04 braf_cat_sr, chi 
 
tab site 
tab site if braf_cat_sr==0 
tab site if braf_cat_sr==1 
tab site braf_cat_sr, chi 
 
tab mesperi 
tab mesperi if braf_cat_sr==0 
tab mesperi if braf_cat_sr==1 
tab mesperi braf_cat_sr, chi 
 
tab MSIstatus 
tab MSIstatus if braf_cat_sr==0 
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tab MSIstatus if braf_cat_sr==1 
 
 
tab liver 
tab liver if braf_cat_sr==0 
tab liver if braf_cat_sr==1 
tab liver braf_cat_sr, chi 
 
tab lung 
tab lung if braf_cat_sr==0 
tab lung if braf_cat_sr==1 
tab lung braf_cat_sr, chi 
 
tab lung 
tab lung if braf_cat_sr==0 
tab lung if braf_cat_sr==1 
 
tab abln 
tab abln if braf_cat_sr==0 
tab abln if braf_cat_sr==1 
 
tab exabln 
tab exabln if braf_cat_sr==0 
tab exabln if braf_cat_sr==1 
 
tab sex 
tab sex if braf_cat_sr==0 
tab sex if braf_cat_sr==1 
 
tab kras121361_sr if braf_cat_sr==0 
tab kras121361_sr if braf_cat_sr==1 
 
tab nras1213_sr if braf_cat_sr==0 
tab nras1213_sr if braf_cat_sr==1 
 
tab pik3ca_sr if braf_cat_sr==0 
tab pik3ca_sr if braf_cat_sr==1 
 
****BRAF status and response12weeks 
 
recode crpr (.=0) 
tab crpr braf_cat_sr, chi2 
logistic crpr braf_cat_sr 
 
recode crpr_12w (.=0) 
tab crpr_12w braf_cat_sr, chi2 
logistic crpr_12w braf_cat_sr 
logistic crpr_12w braf_cat_sr whof04 mesperi prevrespf04 prevresect MSIstatus site 
 
recode response_12wpd (.=0) 
tab response_12wpd braf_cat_sr, chi2 
logistic response_12wpd braf_cat_sr 
 
***survival analyses 
 
 
stset fuptimemths, failure(died==1) 
stsum, by (braf_cat_sr) 
stcox braf_cat_sr 
sts graph, by(braf_cat_sr) xlabel(0(3)24) tmax(24) risktable(, order(1 "Wild-type" 2 "Mutation")) /// 
 legend(order(1 "Wild-type" 2 "Mutation")) xtitle("Analysis time (months)") ytitle("Survival") title("") 
 
 
sts graph, by(braf_cat_sr) 
stsum, by(braf_cat_sr) 
 
 
stset pfuptimemths, failure(f_pfs) 
stsum, by (braf_cat_sr) 
stcox braf_cat_sr 
stcox braf_cat_sr site prevresp prevresect mesperi whof04 
sts graph, by(braf_cat_sr) xlabel(0(3)24) tmax(24) risktable(, order(1 "Wild-type" 2 "Mutation")) /// 
 legend(order(1 "BRAF wild-type" 2 "BRAF mutation")) xtitle("Analysis time (months)") ytitle("Survival")  
  
 stsum, by(braf_cat_sr) 
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drop if postprogOS==0 
stset postprogOSmths, failure(died==1) 
stsum, by (braf_cat_sr) 
stcox braf_cat_sr  
stcox braf_cat_sr whof04 site mesperi prevresect prevresp 
 
 
sts graph, by(braf_cat_sr) xlabel(0(3)24) tmax(24) risktable(, order(1 "Wild-type" 2 "Mutation")) /// 
 legend(order(1 "BRAF wild-type" 2 "BRAF mutation")) xtitle("Analysis time (months)") ytitle("Survival")  
  
 
 
***site demographic information 
 
codebook site 
 
summarize age_rand if site==0 
summarize age_rand if site==1 
 
 
tab whof04 if site==0 
tab whof04 if site==1 
 
 
tab prevrespf04 if site==0 
tab prevrespf04 if site==1 
 
 
tab kras121361_sr if site==0 
tab kras121361_sr if site==1 
 
tab braf_cat_sr if site==0 
tab braf_cat_sr if site==1 
 
tab nras121361_sr if site==0 
tab nras121361_sr if site==1 
 
tab pik3ca_sr if site==0 
tab pik3ca_sr if site==1 
 
codebook site_lcr 
 
summarize age_rand if site_lcr==0 
summarize age_rand if site_lcr==1 
 
tab whof04 
tab whof04 if site_lcr==0 
tab whof04 if site_lcr==1 
 
tab prevrespf04 
tab prevrespf04 if site_lcr==0 
tab prevrespf04 if site_lcr==1 
 
tab kras121361_sr if site_lcr==0 
tab kras121361_sr if site_lcr==1 
 
tab braf_cat_sr if site_lcr==0 
tab braf_cat_sr if site_lcr==1 
 
tab nras121361_sr if site_lcr==0 
tab nras121361_sr if site_lcr==1 
 
tab pik3ca_sr if site_lcr==0 
tab pik3ca_sr if site_lcr==1 
 
tab prevoxalif04 braf_cat_sr 
 
***site  prognostic analysis 
 
gen fuptimemths = (fuptime/12) 
 
stset fuptimemths, failure(died==1) 
stcox site 
sts graph, by(site) 
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stset pfuptime, failure(f_pfs) 
stcox site 
sts graph, by(site) 
 
gen postprogOS = (fuptime-pfuptime) if f_pfs==1 
drop if postprogOS==0 
stset postprogOS, failure(died==1) 
stcox site 
sts graph, by(site) 
 
***site predictive analysis 
 
 
stset fuptime, failure(died==1) 
stcox randtrt2 if site==1 
  
stset fuptime, failure(died==1) 
stcox randtrt2 if site==0 
 
 
 
 xi: stcox i.site*i.randtrt2 
estimates store a 
xi: stcox i.randtrt2 i.site 
lrtest a  
 
***RAS analysis chemotherapy alone 
 
tab crpr any_ras, chi2 
logistic crpr any_ras 
 
tab crpr_12w any_ras, chi2 
logistic crpr_12w any_ras 
 
tab response_12wpd any_ras, chi2 
logistic response_12wpd any_ras 
 
stset fuptimemths, failure(died==1) 
stcox any_ras 
sts graph, by(any_ras) 
stsum, by(any_ras) 
 
stset pfuptimemths, failure(f_pfs) 
stcox any_ras 
sts graph, by(any_ras) 
stsum, by(any_ras) 
 
 
drop if postprogOS==0 
stset postprogOSmths, failure(died==1) 
stcox any_ras  
stcox any_ras whof04 site 
sts graph, by(any_ras) 
stsum,by(any_ras) 
 
**PIK analysis chemotherapy alone 
 
tab pik3ca_sr 
tab crpr pik3ca_sr, chi2 
logistic crpr pik3ca_sr 
 
tab crpr_12w pik3ca_sr, chi2 
logistic crpr_12w pik3ca_sr 
 
tab response_12wpd pik3ca_sr, chi2 
logistic response_12wpd pik3ca_sr 
 
stset fuptimemths, failure(died==1) 
stcox pik3ca_sr 
sts graph, by(pik3ca_sr) 
stsum, by(pik3ca_sr) 
 
stset pfuptimemths, failure(f_pfs) 
stcox pik3ca_sr 
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sts graph, by(pik3ca_sr) 
stsum, by(pik3ca_sr) 
 
drop if postprogOS==0 
stset postprogOSmths, failure(died==1) 
stcox pik3ca_sr  
stcox pik3ca_sr whof04 site 
sts graph, by(pik3ca_sr) 
stsum,by(pik3ca_sr) 

 
 
 
Appendix 3: PCR primers used in Chapters 4  
 
Gene Sequence 

EREG CCACATATTATTTCTGCAGATGGTACAGAAATCGAA 
AAAGTAAAGAACCAAAGAAGGAATATGAGAGAGTT 
ACCTCAGGGGATCCAGAGTTGCCGCAAGTCTGAAT 
 

AREG ATTCACGGAGAATGCAAATATATAGAGCACCTGGA 
AGCAGTAACATGCAAATGTCAGCAAGAATATTTCG 
GTGAACGGTGTGGGGAAAAGTCCATGAAAACTCAC 
 

GADPH TCAGACACCATGGGGAAGGTGAAGGTCGGAGTCAA 
CGGATTTGGTCGTATTGGGCGCCTGGTCACCAGGGC 
TGCTTTTAACTCTGGTAAAGTGGATAT 
 

UBC TAGTTCCGTCGCAGCCGGGATTTGGGTCGCAGTTCT 
TGTTTGTGGATCGCTGTGATCGTCACTTGACAATGC 
AGATCTTCGTGAAGACTCTGACTGGTAAGACCATCA 
CCCTCGAGGTTG 
 

RPL13A CTTGGGGACAGCATGAGCTTGCTGTTGTACACAGGG 
TATTTCTAGAAGCAGAAATAGACTGGGAAGATGCAC 
AACCAAGGGGTTACAGGCATCGCCCATGCTCCTCAC 
CTGTATTTTGTAATCAGAAATAAATTGCTTTT 
 

 
 
 
 
Appendix 4. Extended SNP analysis PCR primers used in Chapter 6
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 Gene Allele 

Allele 

detected 

by 

ASP1* 

ASP1 

Allele 

detected 

by 

ASP2G 

ASP2 

rs887829 UGT1A1 AG A 
GTGAACAAGTTAGGCTTCTTTTCCAA 

 
G 

GTGAACAAGTTAGGCTTCTTTTCCAG 
 

rs3755319 UGT1A1 GT G 
GCTCATCTTTCCCTTTTGACTTCAAC 

 
T 

GCTCATCTTTCCCTTTTGACTTCAAA 

 

rs4124874 UGT1A1 AC A 
CTTTGATGTTCTCAAATTGCTTTGTTCAA 

 
C 

CTTTGATGTTCTCAAATTGCTTTGTTCAC 
 

rs4148323 UGT1A1 GA G 
CGTCTTCAAGGTGTAAAATGCTCC 

 
A 

ACGTCTTCAAGGTGTAAAATGCTCT 

 

rs10929302 UGT1A1 AG A 
CCCAGCCCACCTGTCT 

 
G 

CCCAGCCCACCTGTCC 
 

rs853035 UGT1A1 AG A 
GGTGGCGGGTCTCCA 

 
G 

GGTGGCGGGTCTCCG 

 

rs2008595 UGT1A3 AG A 
CCACTTCAGAGAGAGTCCTCTT 

 
G 

CCACTTCAGAGAGAGTCCTCTC 

 

rs3806596 UGT1A3 AG A 
TGGCTCAGTGACAAGGTAATTAAGAT 

 
G 

TGGCTCAGTGACAAGGTAATTAAGAC 

 

rs3732217 UGT1A4 CT C 
GAAGACCATGTTGGGCATGATC 

 
T 

GAAGACCATGTTGGGCATGATT 
 

rs1105880 UGT1A6 CT C 
CTTTGCTGAGCGATCATTCCTG 

 
T 

ACTTTGCTGAGCGATCATTCCTA 

 

rs7577677 UGT1A7 AC A 
GGTCAGCAGTAGACACACATATAGT 

 
C 

GGTCAGCAGTAGACACACATATAGG 
 

rs7586110 UGT1A7 GT G 
CAGGTTCTATCTGTACTTCTTCCACG 

 
T 

CAGGTTCTATCTGTACTTCTTCCACT 

 

rs11692021 UGT1A7 CT C 
CAAGTGCATGATGTGGTTCCG 

 
T 

CAAGTGCATGATGTGGTTCCA 
 

rs17868323 UGT1A7 GT G 
ACTTATTTTTTTCAAATTGCAGGAGTTTGTTTAAG 

 
T 

ACTTATTTTTTTCAAATTGCAGGAGTTTGTTTAAT 

 

rs17868324 UGT1A7 AG A 
CAAAACAACTCTCCTTTAAGTATTCTACTAATTTTT 

 
G 

CAAAACAACTCTCCTTTAAGTATTCTACTAATTTTC 
 

rs1042597 UGT1A8 CG C 
TCTTCGCCAGGGGAATAGC 

 
G 

GTCTTCGCCAGGGGAATAGG 

 

rs1042605 UGT1A8 AG A 
GTTTGGGATAGTCCAAAACAAAGTCT 

 
G 

GTTTGGGATAGTCCAAAACAAAGTCC 
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SNP  Gene Allele Allele 

detected 

by ASP1 

ASP1 Allele 

detected 

by ASP2 

ASP2 

rs2741046 UGT1A9 CT C 
GACCTTGAAGGTTCAGAAAGATAAAGTAAG 

 
T 

GACCTTGAAGGTTCAGAAAGATAAAGTAAA 

 

rs2741048 UGT1A9 AC A 
CATTTCCTCTGGGGCGGT 

 
C 

ATTTCCTCTGGGGCGGG 
 

rs4663871 UGT1A9 AG A 
AAGGGCAGTTTTATAAAATTTGCTACTGAT 

 
G 

AGGGCAGTTTTATAAAATTTGCTACTGAC 

 

rs6731242 UGT1A9 CT C 
CCTACTGTGCACTAGAAGCCG 

 
T 

CCTACTGTGCACTAGAAGCCT 

 

rs13418420 UGT1A9 CT C 
TTGGCATGTTATATGTGTTATATACTGTATTATCAC 

 
T 

TTGGCATGTTATATGTGTTATATACTGTATTATCAT 

 

rs17862856 UGT1A9 AG A 
ATTTTTTGTCTTTATGAATAGGGCCA 

 
G 

ATTTTTTGTCTTTATGAATAGGGCCG 
 

rs1823803 UGT1A10 CT C 
ATTCTGTCCAGTGCAACAAATATTCC 

 
T 

GAATATAATTCTGTCCAGTGCAACAAATATTCT 

 

rs2741031 UGT1A10 CT C 
GAGCTTTACCAAATTAATTGATCTCAACAAAC 

 
T 

AGAGCTTTACCAAATTAATTGATCTCAACAAAT 
 

rs1045642 ABCB1 CT C 
TCCTTTGCTGCCCTCACG 

 
T 

TCCTTTGCTGCCCTCACA 

 

rs1128503 ABCB1 CT C 
TCTGCACCTTCAGGTTCAGG 

 
T 

CTCTGCACCTTCAGGTTCAGA 
 

rs2032582 ABCB1 GT G 
AGTTTGACTCACCTTCCCAGC 

 
T 

ATATTTAGTTTGACTCACCTTCCCAGA 

 

rs212088 ABCC1 CT C 
CCCAAAGCCTAGAGGCCAC 

 
T 

CCCAAAGCCTAGAGGCCAT 
 

rs35588 ABCC1 AG A 
GCCAATGGCACAGCGT 

 
G 

GCCAATGGCACAGCGC 

 

rs35605 ABCC1 CT C 
TAGACGGCAAATGTGCACAG 

 
T 

TAGACGGCAAATGTGCACAA 
 

rs2230671 ABCC1 AG A 
CGGGAGCTGGGAAGTCA 

 
G 

CGGGAGCTGGGAAGTCG 

 

rs3765129 ABCC1 CT C 
GGCGACCCTGGGATCAG 

 
T 

GGCGACCCTGGGATCAA 
 

rs717620 ABCC2 AG A 
CTGGACTGCGTCTGGAACA 

 
G 

TGGACTGCGTCTGGAACG 

 

rs3740066 ABCC2 AG A 
ACCTACCTTCTCCATGCTACCA 

 
G 

CCTACCTTCTCCATGCTACCG 
 

rs562 ABCC5 CT C 
ATGCAACGCTGACCATTCAAC 

 
T 

CATGCAACGCTGACCATTCAAT 

 

rs425215 ABCG1 CG C 
GCCACCACACCTCCTAGATC 

 
G 

GCCACCACACCTCCTAGATG 
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SNP Gene Allele 

Allele 

detected 

by ASP1 

ASP1  ASP2 

rs12721627 CYP3A4 CG C 
GCCACCACACCTCCTAGATC 

 
G 

GCCACCACACCTCCTAGATG 

 

rs2740574 CYP3A4 AG A 
CAGCCATAGAGACAAGGGCAA 

 
G 

AGCCATAGAGACAAGGGCAG 
 

rs4986910 CYP3A4 CT C 
CATGTTCATGAGAGCAAACCTCG 

 
T 

TCATGTTCATGAGAGCAAACCTCA 

 

rs776746 CYP3A5 AG A 
GTGGTCCAAACAGGGAAGAGATAT 

 
G 

TGGTCCAAACAGGGAAGAGATAC 

 

rs10264272 CYP3A5 CT C 
CCCCTTTGTGGAGAGCACTAAG 

 
T 

CCCCTTTGTGGAGAGCACTAAA 

 

rs2306283 SLCO1B1 CT C 
CTTACAGTTACAGGTATTCTAAAGAAACTAATATCG 

 
T 

CTTACAGTTACAGGTATTCTAAAGAAACTAATATCA 
 

rs4149056 SLCO1B1 CG C 
CACGAAGCATATTACCCATGAACG 

 
G 

CACGAAGCATATTACCCATGAACA 

 

rs1358503 SEMA3c CT C 
GTAATATGCAAAGCACCCTGTGG 

 
T 

TGTAATATGCAAAGCACCCTGTGA 
 

rs1517114 C8orf34   
AGGGAGTATGATAATTTTCCTGATAGCC 

 
 

AGGGAGTATGATAATTTTCCTGATAGCG 

 


