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Abstract

Estimation of high dimensional covariance matrices is an interesting
and important research topic. In this thesis, we propose a dynamic
structure and develop an estimation procedure for high dimensional
covariance matrices. Simulation studies are conducted to demonstrate
its performance when the sample size is finite. By exploring a financial
application, an empirical study shows that portfolio allocation based
on dynamic high dimensional covariance matrices can significantly out-
perform the market from 1995 to 2014. Our proposed method also
outperforms portfolio allocation based on the sample covariance ma-

trix and the portfolio allocation proposed in Fan et al. (2008a).
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1 Introduction

Covariance matrix estimation is an important topic in statistics and
econometrics with wide applications in many disciplines, such as eco-
nomics, finance and psychology. A traditional approach to estimating
covariance matrices is based on the sample covariance matrix. How-
ever, the sample covariance matrix would not be a good choice when
the dimension is large, and especially when the inverse is required,
which is often the case when constructing a portfolio allocation in fi-
nance. This is because the estimation errors would accumulate when
using the inverse of the sample covariance matrix to estimate the in-
verse of the covariance matrix. When the size of the covariance matrix
is large, the cumulative estimation error would become unacceptable
even if the estimation error of each entry of the covariance matrix is
tiny.

In recent years there have been various attempts to address high
dimensional covariance matrix estimation. Usually, a sparsity condi-
tion is imposed to control the trade-off between variance and bias.
See, Wu and Pourahmadi (2003), Karoui (2008), Bickel and Levina
(2008a,b), Lam and Fan (2009), Fan et al. (2011), and the references
therein. Fan et al. (2008a) considered a different approach by impos-
ing a factor model and estimated the covariance matrix based on this
structure.

Most of the literature addressing high dimensional covariance ma-
trix estimation assumes that the covariance matrix is constant over
time. However, in many applications, covariance matrices are dynamic.
For example, today’s optimal portfolio allocation may not be optimal
tomorrow, or next month. Therefore, when applying the formula for
Markowitz’s optimal portfolio allocation (Markowitz, 1952, 1968), the

covariance matrix used should be dynamic and allowed to change over



time.

In order to introduce a dynamic structure for covariance matri-
ces, one cannot simply assume each entry of a covariance matrix is
a function of time because this would not serve very well in predic-
tion. Instead, we start with an approach stimulated by Fan et al.
(2008a) which is based on the Fama-French three-factor model (Fama
and French, 1992, 1993)

yt:a—i—XtTa—i—et (1.1)

where y; is the excess return of an asset and X; is the vector of the
three factors at time ¢. To make (1.1) more flexible, we allow a to
depend on the values of the three factors at time t — 1. To avoid
the so-called ‘curse of dimensionality’, we assume this dependence is
through a linear combination of the values of the three factors at time

t — 1, which brings us to
ye = (X0, 8) + X a(X,) 1 8) + e

This motivates a dynamic structure for the covariance matrix of a
random vector Y; through an adaptive varying coefficient model which
we shall now introduce.

Suppose (X}, VY, t = 1,--- ,n) is a time series where Y; is a p,
dimensional vector and X; is a ¢ dimensional factor. An underlying
assumption throughout this thesis is that p, — oo when n — oo,
and ¢ is fixed. Also, we assume that X;, t = 1,--- ,n is a stationary

Markov process. We assume
Vi=g(X,L8) + (X B) X +e, [Bl=1 56>0 (12

where B = (f1,---,0,)7, g(X,2,3) is an intercept vector varying with



X .8, ®(X!,0) is a factor loading matrix varying with X', 3, and
{€:, t =1,--- ,n} are random errors which are independent of { Xy, ¢ =
1,---,n}. We also assume that E(e;|{€; : | < t}) =0 and that

cov(el{e : 1l <t}) =3 = diag{ait, e 7U§n,t}

where
m S
Oy =0ro+ Y Qri€hs;+ o t=2,---,n  (13)
kt — ©k0 kaCk t—i Ve,i0k,t—js - % ) :
i=1 j=1

for each £k = 1,--- ,p, and for some integers m and s. Let F; be the
o-algebra generated by {(X', €) : 1 < ¢}. The main focus of this

thesis is on the conditional covariance matrix
cov(Y;|Fim1) = (X, 8) . (Xi—1)® (XD, 8)" + X0, (1.4)

where ¥,(X;—1) = cov(X¢|X;—1). In (1.4), B8, ®(-), X.(-), o, and
Y, for @ = 0,---,m and 7 = 1,---,s are unknown and need to
be estimated. Not only does (1.4) introduce a dynamic structure for
cov(Y;|Fi—1), but also reduces the number of unknown parameters from
Pn(pn+1)/2 to p,q+¢? unknown functions and ¢+ s+m + 1 unknown
parameters.

We remark that model (1.4) is interesting in its own right, since
it combines single-index modelling (Carroll et al., 1997, Hardle et al.,
1993, Yu and Ruppert, 2002, Xia and Hérdle, 2006, Kong et al., 2014)
and varying coefficient modelling (Fan and Zhang, 1999, 2000, Fan
and Yao, 2003, Sun et al., 2007, Zhang et al., 2009, Li and Zhang,
2011, Sun et al., 2014). In this thesis, as a by-product, an estimation
procedure for (1.4) is proposed and an iterative algorithm is developed

for implementation purposes.



The organization of this thesis is as follows. In Chapter 2 we re-
view the existing literature related to the proposed methodology such
as: local polynomial modelling, varying coefficient models, high dimen-
sional covariance estimation using factor models, and modern portfolio
theory. In Chapter 3 we explore a special case of (1.2) corresponding
to p, = 1 and two associated methods for estimating 3. This aids as a
useful stepping stone to understanding methodology in later chapters,
as well as being of independent interest outside the field of covariance
matrix estimation. In Chapter 4 we explain how the methodology from
Chapter 3 can be generalised when p, > 1. In Chapter 5 we explore
the topic of bandwidth selection. In Chapter 6 we propose methodol-
ogy to estimate cov(Y;|F;_1) making use of the techniques introduced
in Chapters 4 and 5. We provide various simulated data examples to
illustrate the performance of the proposed methodology. In Chapter
7 we explore a real data example whereby we use our estimated co-
variance matrix to form a portfolio and compare its performance with
other existing estimators. In Chapter 8 we consider a generalisation to
the model structure by moditying the index to take into account X;_;
X9, -+, Xy, for some positive integer n using a moving average. In
Chapter 9 we summarise the key conclusions from the thesis and ex-

plore a possibility for future work relating to a pursuit of homogeneity.



2 Literature review

2.1 Local polynomial modelling

The main idea behind nonparametric regression is to not assume a
parametric form of a regression function. Instead, the functional form
of the regression function is left unspecified and determined completely
by the data. This approach is useful for getting a clear description of
an unknown function, which could suggest whether a parametric choice
is appropriate or not. There is clear motivation for the methodology
from a least-squares regression point of view, however the whole idea
can be extended so that it can be used in: quantile and robust re-
gression, survival analysis, generalized linear models and much more.
See, for example, Hastie and Tibshirani (1990), Green and Silverman
(1993), Wand and Jones (1994) and Fan and Gijbels (1996) for a com-
prehensive review of these techniques. In this chapter, we summarise
the methodology for local polynomial regression by reviewing Fan and
Gijbels (1996).

Assume that we have independently and identically distributed ob-
servations (X1, Y1), -+, (X,,Y,) and denote by (X,Y) a generic mem-
ber of the sample. We start by considering the following global poly-

nomial models

Yi = Bot+B5iXi+e (2.1)
Vi = Bo+BiXi+ X+ (2:2)
Vi = Bo+5iXi+ foX] + 03X + € (2.3)
Yi = Bo+BiXi+ B2 X7+ B X7+ BuX] + (24)

where €1, - -+ , €, are independently and identically distributed N (0, 0%)
random variables. We define (2.1), (2.2), (2.3) and (2.4) as linear,



quadratic, cubic and quartic global polynomial models respectively.
Before introducing local polynomial modelling, we shall first consider
a motivating example based on the simulated motorcycle accident
dataset by Silverman (1985). This dataset contains two variables: the
recorded head acceleration and the time in milliseconds since impact,
denoted by Y and X respectively. Figure 1 shows a scatterplot of Y
against X along with estimates of E[Y|X = z| resulting from linear,
quadratic, cubic and quartic global polynomial models. We can see
visually that a linear model is not appropriate due to the lack of linear
trend and indeed suffers from large bias. By fitting a quadratic, cubic
or quartic regression model, the bias will be reduced but results in an
estimator with larger variance. In other words, whichever polynomial
order one chooses to parametrize the regression model, the resulting
estimator will suffer from large approximation error.

One might argue that it is easy to visualise “using our brains”
the relationship between Y and X. This reasoning only holds for
datasets within the domain of human visualisation. There are many
examples of data where one cannot visualise the data so easily, such as
binary data and multivariate data. With that in mind, the purpose of
exploring the motorcycle data is simply to give an illustrative example
of a problem that local linear regression is particularly well suited for.
But applications extend far beyond this simple example and to areas
which are beyond the domain of human visualisation.

There are various related methods for fixing the problems resulting
from polynomial modelling such as spline approaches and orthogonal
series modelling. However, in this chapter and indeed in the entire
thesis, we restrict our attention to local polynomial modelling and, in
particular, local linear regression. The idea is to apply a (weighted)
linear regression model to a strip of data around the point we wish to

estimate. We repeat this lots of times over a grid of equally spaced



Figure 1: Example of global polynomial models
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Scatterplots of ‘recorded head acceleration’ against the ‘time in mil-
liseconds since impact’ from the motorcycle accident dataset along with
linear, quadratic, cubic and quartic global polynomial models.



points. Linear interpolation is used for estimation between the grid
points. Denote by m(z) = E(Y|X = z) the conditional mean function.
We model the data in the strip

Y, = a(z) + b(z)X; + error, for X; ex+h (2.5)

where h is a prespecified bandwidth, and the intercept a(-) and gradient
b(-) depend on the grid point = of interest. We choose a(-) and b(-) so

that they minimise the weighted local least squares problem

g{m —ale) =o)Xk (FE) (B <)L e

where K (+) is a kernel function (a symmetric probability density func-
tion) and [ is an indicator function. The kernel function is often chosen
to be the Epanechnikov function K(z) = 0.75x (1—22), due to certain
desirable statistical properties as explained by J Fan (1995, theorem
3.4). It is for these reasons that we shall always use the Epanechnikov
function as the choice of kernel function in this thesis. At this point,
it will be useful to define the scaled kernel function Ky(-) = K(-/h)/h.

One may intuitively understand equation (2.6) as follows. The
quantity K ((X; — z)/h) can be thought of as a weight, measuring
how far away z is from X;. That is, K ((X; —x)/h) gets smaller as
the distance between z and X; increases. This is intuitively appealing
because remote data points carry little information about our estimate
of m(x). One can actually absorb the indicator I (|X; — x|/h < 1) into
K if K has a support contained in [—1,1]. The reason we include an
indicator is because we wish to discard any data which is outside the
strip of data x =+ h.

The complexity of the model is determined by the bandwidth h. A

very small h results in an estimate which is essentially linear interpo-



Figure 2: Example of local linear modelling
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This figure shows a scatter plot of ‘recorded head acceleration’ against
the ‘time in milliseconds since impact’ from the to the motorcycle ac-
cident dataset along with three examples of local linear modelling cor-
responding to bandwidths h = 0.6, h = 3.2 and h = 100.

lation of the data points. A very large h results in an estimate which
coincides with the (global) linear regression estimator. In practice we
seek a bandwidth which is just about right and finds a good tradeoff
between bias and variance. Sometimes it is possible to test several
bandwidths, and choose a bandwidth subjectively (by eye). Another
approach is to arbitrarily choose h to be approximately 20% of the
range of data. Although this may be sufficient for some purposes,
there exist more sophisticated methods for selecting bandwidths such
as cross validation or using asymptotic theory.

The motorcycle data can be modelled well using the local linear
estimator. Figure 2 shows the local linear model applied to the mo-
torcycle data for a variety of bandwidths. Larger values of h result in
higher degrees of smoothing. For example, when h = 100 was used,

the estimator is almost identical to a global linear model. Conversely,



when h = 0.6 was used, the estimator essentially interpolates the data
points. However, with A = 3.2, the local linecar fit is just about right,
and has a much smaller approximation error than any of the global
polynomial fits.

There are various other local modelling regression estimators which
one may try and use. For example, one may consider using a weighted

average of the response variables

m (gj) - E?:l Ky, (XZ — gj) Y;
e Yoo Ky (X —x)

originally proposed by Nadaraya (1964) and Watson (1964); or the

Gasser-Muller estimator

(2.7)

i) = / Ky (u—2) Y; du (2.8)

with s; = (X; — Xi41) /2, Xo = —o0 and X1 = 400 originally pro-
posed by Gasser and Miiller (1984).

Both (2.7) and (2.8) can be thought of as a local constant ap-
proximations for m(-). Indeed, by considering an arbitrary local least

squares regression

0 = argmin, Z Z w;Y;/ Z w; (2.9)

it is easy to see that (2.7) and (2.8) are special cases with w; =
Ky (X; —z) and w; = f:j_l Kp(u — z)du respectively. However quite
interestingly, local constant fits are rarely used in practice. As ex-
plained by Fan (1992), this is because there is no increase in variance
when going from a local constant fit to a local linear fit, however there

is some reduction in bias. As a matter of fact, there is a stronger

10



generalisation of this very phenomenon, whereby only odd order fits
should be used. In addition to this, local linear modelling adapts well
to random and fixed designs, as well as highly clustered and nearly
uniform designs Fan and Gijbels (1996, chapter 3.2.4).

The local linear estimator can easily be extended to accommodate
for a pth order local polynomial fit, as well as vth order derivative
estimation. Suppose that the bivariate data (Xi,Y7) - (X,,Y,) form
an independent and identically distributed sample from a population
(X,Y). We wish to estimate the regression function m(z) = E(Y|X =
7o) and its derivatives m/(xq), m"(xq), - -- ,m® (zo). Assume that the

data is generated from a location-scale model
Y =m(X)+o(X)e (2.10)

where E(e) =0, Var(e) = 1, and X and € are independent. We denote
the conditional variance of Y given X = x by 0(z¢) and the marginal
density of X by f(-). Suppose that the (p + 1)th derivative of m(x)
at the point xy exists. We start by considering a Taylor expansion of

m(x) for x in a neighbourhood of z

ml/(xo)

m(x) = m(ro) +m'(xo)(x — o) + == (& — o)
+...+M(fv_m)p (2.11)

From a regression analysis point of view, we can think of m(xg), m’(xo),

, m®)(x4) as unknown model parameters that need to be estimated.
This motivates the following notation: let m\(xq)/j! = B; for j =
0,1,---,p. With this in mind, (2.11) becomes

m(z) = By + Bi(x — 20) + B (1 — 20)* + - + Bz — z0)P.  (2.12)

11



Comparing (2.12) with (2.5), it is clear that one has the possibility for
derivative estimation too. We choose estimators of Sy, f1, ---, B, so

that they minimise

Xn: {Yz‘ B Zﬁj (Xi — l’o)j} Ky, (Xi — x0) (2.13)

i=1

and denote the estimators by 507 Bl, cee Bp respectively. Also, we de-
note the estimator of m® (o) by 7, (z¢) = V1B, foreach v =0, , p.
The intuition behind equation (2.13) is completely analogous to that of
(2.6), just with a higher degree polynomial being fitted locally rather
than a straight line. Traditionally with least squares theory, it is con-
venient to work with matrix notation. Denote by X the design matrix
of problem (2.13)

1 (X7 —x9) -+ (Xy—m)P
i (Xn‘_IO> (Xn;éﬁo)p
and define
y=W, . Y)" B=(6.6)", W =diag{Ky(Xi— )}
The weighted least squares problem (2.13) can be rewritten as
min (y — X8)' W (y — X8)
for which the estimator has the following analytic formula:

B =X"WX) 'X"Wy. (2.14)

12



Since both the bias and variance of an estimator determine the
mean squared error (MSE) and the mean integrated squared error
(MISE), it is natural to be interested in their properties. From a prac-
tical point of view, one way of selecting a bandwidth is so that MISE
is as small as possible. The conditional expectation and variance of ,3

is given by

E(BIX) = (X"WX) ™' X"Wm
=B+ (X"WX) ' X"Wr

and

Var(8X) = (XT™WX) " (X"X) (X"WX)

where m = {m(X,),--- ,m(X,)}", B = {m(xo),--- ,m® (x0)/p!} ",
r = m— X3, the vector of residuals of the local polynomial approxima-
tion, and ¥ = diag { K7 (X; — z0) 0?(X;)} . However, notice that these
equations cannot be directly used because of the unknown quantities
r and X. Therefore a first order asymptotic expansion of the bias and
variance of 1, (x¢) = V!,éy is used as an approximation and is given
in the theorem below. The theorem is quoted directly from Fan and
Gijbels (1996) but was originally proven by Ruppert and Wand (1994).

We use the following notation:

pi= [wKdu v = [WK e S = (w1000

5’ = (uj+l+l)0§j,l§p7 S = (uj+l)0§j7l§p7 Cp = (/’Lp-i-la ce 7M2p+1)T7

Cp = (up-i-?v T 7,LL2p+2)T7 €v41 = (07 e 707 17 07 T 70>T7

where e,,; has a 1 on the (v + 1)™ position. Also we use op(1) to
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represent a random quantity that is tending to zero in probability.

Theorem

Assume that f(zo) > 0 and that f(-), m®P*I(.) and o*(-) are con-
tinuous in a neighbourhood of xo. Further assume that h — 0 and

nh — oo. Then the asymptotic conditional variance of m,(xo) is given

by

. e v1%02(x0)
Var(iin, (1) X) = ¢,18718"5 eon oo
1
+op <—nh1+2V> . (2.15)

The asymptotic conditional bias for p — v odd is given by

|
Bias {m,(z0)|X} = e,.1S7 "¢, v j_'l)!m(p“)(xo)hp“_”
+ op(RPT17Y). (2.16)

Further, for p — v even the asymptotic conditional bias is

. R - v!
Bias {1, (o)X} = e,,,5 lcpm{m(p+2)($o),

+ @+ 2)m(p+1)(:1:0)—§/((§;))) yhPtEY

+ op(hPT27Y) (2.17)

provided that f'(-) and m®*2)(.) are continuous in a neighbourhood of

xo and nh® — oo.

From the above theorem, we can clearly see that there is a theoret-
ical distinction between odd order fits and even order fits with respect
to the asymptotic bias. Indeed, Ruppert and Wand (1994) showed
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that in fact odd order fits are always desirable over even order fits.

2.2 Varying coefficient models

A varying coefficient model (VCM) is, as the name suggests, an exten-
sion of a linear model where the coefficients are allowed to vary over
some random variable U. Their modelling potential has been explored,
for example, by Hastie and Tibshirani (1990), Cleveland et al. (1992)
and Fan and Zhang (1999). In this section, we shall provide a concise
review of VCM’s.

We assume the following conditional linear structure

p
Y => a;(U)X;+¢ (2.18)
j=1
for given covariates (U, X1, -+, X,)T and response variable Y with

E(e|U, Xy, ,X,) =0, Var(elU,Xy,---,X,) =0*(U).

A model of this structure is known as a varying coefficient model. Note
that it is possible for us to include an intercept by setting, for example,
the first variable X; = 1. Also, note that the coefficient functions a;(-)
vary over a known random variable U. One major advantage of this, is
that it helps to reduce modelling bias by avoiding the curse of dimen-
sionality. The coefficient functions a; often have a nice interpretability,
especially in longitudinal data analysis where they represent how the

impact of the corresponding covariate on the response changes over

time. Suppose we have a random sample (U;, X;1. -+ , X, Vi) where
i =1,--+-,n from model (2.18), then one can estimate the coefficient
functions a;(-) j =1, -+, p using local linear modelling. As explained

by Fan and Zhang (1999), for each given u we approximate the function
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locally by
a;(U;) = a; + b;(U; — u)

for U; in a neighbourhood of u. This leads to the following loss function

z": Y — Zp:{@j +0;(Ui —u)} Xij | Kn(Ui — u). (2.19)

i=1

The weighted least squares problem (2.19) can be rewritten as

min (Y — Xa)" W (Y — Xa)

where a = (ay, by, ,a,,b,)" and
Xn Xll(Ul—U) le le(Ul—U) Y,
X = : : L : , V= :
X an(Un — u) cee an an(Un — u) Y,

W =diag {K,(U; — ), , Kp(Uy, —u)}.

The solution is given by
a= (XTWx) 't xtwy
and the estimator of coefficient function a;(u) is
aj(u) = eg;_1 5, (XTWX)TXTWY (2.20)
where ey, is the unit vector of length m with the k-th component

being 1.

In traditional varying coefficient models the index U is known and
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often chosen to be a time component. However in the model struc-
ture studied in this thesis, the index is unknown and the estimation
procedure becomes more complex. Suppose we wish to estimate a mul-
tivariate regression function G(x) = E(Y|X = x) where Y is a random
variable and X is a p x 1 random vector. The following model struc-
ture, termed an adaptive varying-coefficient linear model (AVCLM) in

Fan et al. (2003), is one way to approximate G(x)
p
9(x) =Y 9;,(8™%)z, (2.21)
=0

where 3 € R? is an unknown direction, x = (z1---z,)", 1o = 1 and
coefficients go(+),- - .gp(+) are unknown functions. The choice for the
estimators of g;(-) and B3 are based on the minimisation of E{G(X) —
g(X)}?. One example of an estimation procedure for 8 was given in
Fan et al. (2003), and a thorough discussion on this topic is provided
in Section 3.2.1. As a by-product of this thesis, we shall propose an
improved estimation procedure for AVCLM’s. It is useful to note that
once 3 has successfully been estimated, model (2.21) becomes a VCM

which can be estimated using local linear regression.

2.3 High Dimensional Covariance matrix estima-
tion

We shall review the topic of high dimensional covariance matrix estima-
tion, that is when the number of dimensions p is comparable to sample
size n. This has applications in finance but also in other fields such as
economics and psychology. In the context of modern portfolio theory,
suppose that (Y, -+ ,Y,) is a time series, where Y; = (Y;y,- -+, Yy,)"

represents the excess return of an asset over the risk-free rate of return.
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One way to estimate the covariance matrix X is by using the sample co-
variance matrix. It has been shown that the sample covariance matrix
is unbiased and invertible when p < n, and is a good choice when there
is no prior knowledge of the underlying covariance structure (Eaton
and Tyler, 1994). However, when p grows with (or even exceeds) n,
it has been shown by Ledoit and Wolf (2004) and Johnstone (2001)
that the sample covariance matrix no longer performs well. This is due
to noise accumulation, whereby small element-wise estimation errors
accumulate so that the matrix as a whole becomes a poor estimator.
One way to deal with this problem is to impose a factor structure on
the response variable Y;. This is an interesting possibility if one has
prior understanding of the underlying structure of the data. This was
explored by Fan et al. (2008a) and we shall now give a concise review
of the topic.
Suppose that

where fi, -+, fx are the excess returns of K factors, b;;, ¢ =1,--- ,p,
j =1,---, K, are unknown factor loadings, and €, - - - , €, are p idiosyn-
cratic errors uncorrelated given fi,-- -, fx. We assume that the factors

are observable. A real life example of this comes from the Fama and
French Three Factor Model Fama and French (1993), whereby K = 3
and the factors f1, fo, f3 denote proxies for market, size and value
factors. Indeed, it is well known that the variability in stock returns
can be explained well by these three factors. Hence, aided with this
prior knowledge, it is possible to estimate X as follows. First, we write

the factor model (2.22) in matrix form

y =B,f +e€, (2.23)
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where
y = (Y1, 7yp)T7 B, = (b, - 7bp)T7

bi:(bn,ila"'7bn,iK)Ta fz(fla"':fK)T7 62(617"')€p)T

for ¢ =1,---,p. This notation is chosen to be consistent with that of
Fan et al. (2008a). We remark that the factor loading matrix B,, has

a subscript n to emphasise the dependence on n. It is assumed that
E(elf) =0, and, cov(elf)=2X%,,

where ¥, o a diagonal matrix. Let (f1,y1), -, (f,,¥.) be n indepen-
dent and identically distributed samples of (f,y), and let

Y,=cov(y), X=(f,---,£), Y=(y1,--- ,yn) and E = (€1, - ,€,).
Under model (2.23) we have
3, = cov(B,f) + cov(e) = B,cov(f)B,, + X,,,.

One way to estimate the covariance matrix 3J,, is with the substitution

estimator

where
B, = YXT(XX")!
is the matrix of estimated regression coefficients;

v (f) = (n — )7XXT — {n(n — 1)} X117XT
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is the sample covariance matrix of the factors f; and
3,0 = diag(n'EET)

is the diagonal matrix of n'EET with E = Y — BX the matrix of
residuals.

The covariance matrix estimator proposed in this thesis is signif-
icantly different to 3, because the structure we propose is dynamic
and we do not assume the factors are constant. By assuming that
the covariance matrix is dynamic, we will later see that significant

improvements can be made when applied to real data.

2.4 Modern portfolio theory

Some of the first quantitative research on portfolio allocation was orig-
inally analysed by Markowitz (1952), which we shall now review. Sup-
pose that w = (wy, -+ ,w,)" represents weights of a portfolio corre-
sponding to p assets. We assume that the weights can be negative,
which means short selling is allowed. Further we assume that the
weights must sum to one, so they have the interpretation of an allo-
cation. Markowitz defines the mean-variance optimal portfolio as the
solution to the following minimization problem

min w'Xw
w

subject tow'1=1 and w'pu=24¢ (2.24)

where X is the covariance matrix of excess asset returns and p is
the expected vector of asset returns, 1 is a p X 1 vector of ones, and
0 is the target rate of return imposed on the portfolio. This has the
interpretation that we wish to minimise the portfolio’s variance subject

to a desired return. It is easy to see that an analytic solution of (2.24)
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is given by

C3 — O -
w= 2 2Inl 4 .
C1C3 — C5 C1C3 — G5

C17y — C2

S (2.25)

with: ¢; =127, ¢, = 1TSS 'y, and ¢5 = 'S .

There are other portfolio allocations which can be constructed by
solving different optimisation problems, such as a minimum variance
portfolio

min w' Xw
w

subject to w'l =1, (2.26)
a mean-variance optimal portfolio with no short sales

min w'Xw
W

subject tow 'l =1, w'p =94, andw; >0 forall i, (2.27)
and a mean-variance portfolio with gross exposure constraints

min w' Xw
w

subject to w'1, =1, w'u =4 and |w|, <c (2.28)

where ¢ is some constant controlling the overall exposure of the port-
folio.

The crucial point is that in order to form a portfolio allocation w,
using any of the above approaches, one needs to obtain an estimate
of 3 which is difficult when the dimension p is large relative to n.
Furthermore, today’s optimal portfolio allocation may not be optimal
tomorrow. Hence, in this thesis we shall estimate both ¥ and p using

a proposed dynamic structure and make comparisons with the tradi-
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tional approach based on the sample covariance matrix and the factor
model explored by Fan et al. (2008a). In the real data analysis of this
thesis, we will calculate the returns resulting from the portfolio allo-

cations (2.24) and (2.28) to assess the performance of the estimators.
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3 Univariate model

In this chapter we explore a special case of model (1.2), which can
be understood as a univariate model corresponding to the case when
pn, = 1. The purpose of exploring this univariate model is twofold.
First, it helps us to gain insight into estimation procedures which will
be later generalised in Chapter 4. Secondly, it is of independent inter-
est outside the field of covariance matrix estimation, since the proposed
methodology can be used for AVCLM’s in general. For example, AV-
CLM’s have previously been used to analyse Canadian mink-muskrat
data in 1925-1994 and the pound—dollar exchange rates in 1974-1983
by Fan et al. (2003). Using a simulation study, the method we propose

will be shown to have a better performance.

3.1 Model specification

Assume that {(Xy,y;), t =1,--- ,n} is a time series where y; denotes
a univariate response variable and X; = (x4, -- ,xq7t)T is a random
vector. We assume that {X;, ¢t = 1,--- ,n} is a stationary Markov

process, and consider a model of the form

q
y= gi(XLiB)rj+en 1BI=1, fi>0 (3.1)

J=0

where ||-|| denotes the Euclidean norm, 8 = (8,---,53,)" is an un-
known direction vector; go(:), --,g4(+) are unknown coefficient func-
tions varying with scalar index X' ;3; 7o, = 1 is an intercept dummy
variable; and ¢; is a random error variable. In this chapter, we simplify
the GARCH structure (1.3) and assume that {e;, ¢t = 1,--- ,n} are
independent random variables with mean zero and variance o2.

We remark that in a similar way to an AVCLM, we must impose
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the identifiability conditions that ||3|| = 1 and 8; > 0. Note, however,
that (3.1) is similar, but not identical, to an AVCLM. Recall that in
an AVCLM the impact of z;; on y; depends on g;(X;'3) as opposed
g;(X;5,8). This subtle change in the model structure means we no
longer have to impose the identifiability condition g,(-) = 0. See the
proof of theorem 1(b) in Fan et al. (2003) for an explanation why.

3.2 Methodology

In this section we outline two methods for estimating 8 in model (3.1).
One crucial thing to note is that once an estimate ,3 of B3 is given, model
(3.1) becomes a varying coefficient model with known index X" | B At
this stage, estimation of coefficient functions g;(-) can be achieved us-
ing methodology associated with traditional varying coefficient models
using local linear regression. This can be achieved by approximating

gj(XtT_l,é), j=0,---,q, locally by a Taylor expansion

9;(XE1B) & g;(2) + 4;(2)(X, 8 — 2)

for X', ,3 in a neighbourhood of a given grid point z. By minimising

Z Y — Z{gj +9;(2 (XtT—lzé - Z)}xj,t>2Kh(XtT—13 - 2)

with respect to g;(z) and g;(z) for j = 0,--- g, it follows from least
squares theory that

0= {xX"wxy'xtwy (3.2)

where
0 = (9o(2).- . 9q(2). Go(2), -+ . 4g(2))", (3.3)
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W = diag (Kh(XlTB —2), e Kn(XT B — z)) . (34)

L XT XTB—:  (XTB-2)X]
X=| 1 : :
1 Xg Xg—llé -z (XnT—llé - Z)XE

andy = (Y2, ,yn)".

With this in mind, the primary focus now is the estimation of
B. Due to the complex relationship between Y; and X, there is not
an analytic formula for an estimator of 3, and hence we explore two

iterative approaches in Section 3.2.1 and Section 3.2.2.

3.2.1 Fan’s estimator for 3

We shall now introduce an estimator ,éF of B analogous to that origi-
nally suggested by Fan et al. (2003).

Before the iterative procedure, one must specify an initial value
of B, which we denote by B. The problem of choosing 3 was not
discussed in Fan et al. (2003), but it was said that “[they| expect that
the estimator derived will be good if the initial value is reasonably
good.” However, we will see in the simulation study that an incorrect
choice of B can slightly worsen the performance of the estimator.

Define the residual sum of squares of the data by

RB) = —= o= S oK Bes PulXE8) (30)

n—1

where w(+) is a bounded weight function with a bounded support. In
practice, we usually let w(-) be an indicator function in order to reduce
the boundary effects. In the simulation studies, the choice of w(-) is

not crucial because the results are not highly sensitive to its particular
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choice. Hence, in the numerical examples, we set

w(z) = 1 if kos(XPB, -, X1 18) < 2 < kors(XTB, -, XE18)
0 otherwise

where k,(X{ 3, -+, X;_103) is the pth percentile of XT3, -+, X ;0.
The quantity R(8) can be interpreted as a goodness of fit statistic,
and can be used to estimate 3 by iterating between the following two

steps until R(3) differs insignificantly.

Step 1: Estimate g;(-) assuming 3 is known In this step we
assume 3 is known to us and estimate g,,(-). For example if this is the
first iteration set B = ﬁ, otherwise set ,[:} equal to the estimator of 3
obtained from Step 2 of the previous iteration. Since an estimate for
B has been given, model (3.1) becomes a synthetic varying coefficient
model with known index X" 3. Consequently, estimates of the coeffi-
cient functions and their derivatives can be obtained from local linear

regression using (3.2).

Step 2: Estimate 3 assuming g;(-) is known Using 9, the es-
timated coefficient functions and their derivatives obtained from Step
1, the goal now is to estimate 8. Suppose that By is the true mini-
mizer of (3.6). Unfortunately it is not possible to find an exact analytic
formula for 8;). However, by noting that R(,B(l)) = 0, where R() de-
notes the derivative of R(-), we can obtain an approximate minimizer.

For any By close to By, we have the Taylor expansion

0= R(By)) =~ R(B) + R(B) By — B))-
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where R(-) is the Hessian matrix of R(-). Upon re-arrangement, this

suggests a one-step iterative estimator

3(1) = /5(0) - R(/@(o)>_lR(,@(o))»

where ,3(1) is the new estimate for 8. Then, rescale B(l) such that it
has unit norm with first non-vanishing element positive. Note that we

have the following expressions for the gradient vector and Hessian:

RB) = = 253 (=3 (X HY 4 (XE B0}

n—1
t=

X Xt—lw(XtT—lﬁ)

and

R(B) = { (X Bz X XD w(XE, B)

Xy 16)173 t}

=2 =0

X {Z §i(XLB)z; } X XD w(X 2, B)

=0
where we assume the derivative of the weight function w(-) is zero for
simplicity.

3.2.2 Local discrepancy estimator

In this section, we propose an alternative estimator BL of B which we
will later show outperforms BF when applied to simulated data.

Form =0,--- ,q, expanding g,,(-) locally using a first order Taylor
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series gives us the following approximation:
9n(XTB) = gn(XIB) + 4 (X[ B)(X]B - X B)

where X8 is in a small neighbourhood of X;"3. Therefore we can

approximate model (3.1) by

q q
i 2 Y (X BT + D> g X[ BN X8 = X[ B)m i + 1.
m=0 m=0
(3.7)
For brevity purposes, we use the notation

0 . (0 .
’Yj = (g]( )7 79]('q)7g](' )7 7gj('q))T

L=y Y1)

where we denote g, (X, 3) and g,,(X;"8) by gj(.m) and g](.m) respectively.
Using approximation (3.7) together with the idea of least squares, we

can form the following loss function:

n—1 n q q

LB.T) = D3 = O g tmi+ > ™ wmi(Xioy — X;)"8)
Jj=1 i=2 m=0 m=0
x K (Xio — X;)"B) (3.8)

which we call the local discrepancy loss function. The estimator ,C:}L

can be obtained by solving

(BL,f‘) = argmin L(8,T) (3.9)
BT

subject to the constraints ||3]| = 1 and 5; > 0. A global minimum of

the local discrepancy function cannot be found analytically and there-
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fore an iterative procedure is proposed for implementation purposes. It
is worth noting that at each stage of the iterative procedure, there ex-
ists a closed form solution. This means the estimation procedure does
not depend on a generic maximisation or minimisation algorithm.

As with Fan’s methodology, introduced in Section 3.2.1, one must
choose an initial estimator for 3 which we still denote by B. Not only
will we later see that BL outperforms BF when applied to simulated
data, but also the estimator BL is not very sensitive to the initial
estimator f‘}

In order to solve equation (3.9), we iterate between the following

two steps until L(3,T) differs insignificantly.

Step 1: Estimate I' assuming 3 is known If this is the first
iteration, set [5 — (3. Otherwise, set ﬁ equal to the estimator of (3
obtained from Step 2 of the previous iteration. We now estimate I" by
solving

T = arglznin{L(B, m}.

For each j, we choose the estimator of «v; by minimising

n q q
Y = argminz{yz- - Z gg('m)mmﬂ - Z gjm)mmvi(Xi—l - X)) By
i i=2 m=0 m=0
x Ky (X1 — X;)"8). (3.10)

We can write equation (3.10) in matrix notation as

4, = argmin (y — X;7;) " W;(y — X;7,)

i

where
W, = diag{K((X1 — X;)"8), -+, Ku((Xo1 — X;)"B)},  (3.11)

29



L X3 (G-X)"8  XJ(X:—-X,)"B
Xi=1|: : 5 . (3.12)
1L XD (X1 —X)™8 XT(X1—X;)"8
and y = (y2,--- ,yn)". By least squares theory, the solution is given
by
vy = {& WX X Wy

A~

and hence we obtain T' = (4, -+ .4, _,).

Step 2: Estimate 8 assuming I' is known Using the estimates

f‘, from Step 1, we would like to choose our estimator of 3, denoted
by ,3(1), such that

B(l) = arggnin{L(,@, f)}

which is equivalent to

n q

1
,3(1) = argmm Z A](-m)xmyi

=2 m=0

= Zgjm)zmz i1 = X) BYEN((Xia — X;)'8)}. (3.13)

However, notice that B appears twice in this objective function: once
in the least squares part and once in the kernel function. It is unlikely

that a closed form exists for equation (3.13), and so we use the following

30



approximation

n—1 n

B = avamin( 53l 3
j=1 1=2
— Z 9" s (X1 — X)) T BY Ki(Xi1 — X5)" By }-
m=0

(3.14)

where B(o) is the estimator for 3 used in Step 1. We remark that 3
only appears once in this objective function, in the least squares part,
and so a closed form solution can be obtained as follows. First, rewrite

the minimisation problem:

n—1 n

B( —argrmn Z {e;j — ]\4Tﬁ} Wi—1, (3.15)

j=1 i=2

where:

q
Z 5 Ty, My = Z éjm)fm,i(Xi—l - Xj).
m=0

wi; = Kp((X; — Xj)TB(o))-

All that remains is to rewrite the double summation in equation (3.15)
in the form of a single summation of N = (n — 1)(n — 1) quantities,
so that it becomes a traditional weighted least squares problem. We
do this by stacking the vectors and matrices. This can be achieved by
defining the N x 1 vector C, the N x ¢ matrix M, the N x N diagonal
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matrix W as follows:

C= (0217 5,61y C22, 0 0 Cp2y G2 (n—1)y 7cn,(n—l)>T
M = (]\/{217 T ]\/[nh ]\/{227 ) ]\/{TL27 Tty M27(7’L—1)7 ) M?L(n—l))T

W = dlag{’UJQl, s, Wi, Wag, s v, W2, , Wan—1," " 7wn7n—l}'

With this notation, equation (3.15) can be written as a traditional

weighted least squares problem:
X N
By = al‘géniﬂ Z{Cm — My B Wy
i=1

where My; and Cp;, denote the ¢th row of M and C respectively and
where W; denotes the ith diagonal entry. In matrix notation, this is

equivalent to
B = argmin (C — MB)" W (C -~ M§B),
and the solution is given by
By = (M"WM) 'M"WC. (3.16)

At this point, ,C:}(l) should be rescaled to satisfy the identifiability condi-
tions ||3|| = 1 and B > 0. Although we now have an analytic formula
for B(l), one should proceed with caution to avoid exceeding RAM
limitations because the dimensions of C, M and W increase at rate
O(n?). This issue becomes more crucial in the multivariate analogue,

and a recommended solution is given in Section 4.2.1.
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3.3 Simulation study

In this section, we are going to use a simulated example to compare
the performance of estimators BL and BF We generate 1000 datasets

from model (3.1) each with a sample size of n = 1000. We set

1
q= 4’ /8 = 5(17 27 07 2>T7 gO(Z> = 3€Xp(—Z2>,

91(2) = 0.8z, ¢2(2) =0, g3(z) = 1.bsin(mz), ga(2) =0.

In other words, we generate y;, t = 1,--- ,n, from the following model

Y, = 3exp(—27_;) + 0.82 1714 + 1.5sin(mz_1)z3, + €

where .

zZp = g(iﬂl,t + 229 + 2144)
and where we generate X, - -- , X,, independently from a uniform dis-
tribution on [—1,1]? and €y, - - - , €, independently from a standard nor-

mal distribution. The parameter 3 and the true coefficient functions
are chosen to be analogous to Example 1 in Fan et al. (2003).
For each generated dataset, we estimate (3 using BL and BF In

each case, we try the following two initial estimators
B, =p d By— —— (8, 1, =10, )" (3.17)
=00, ah = sy 4y T LU, . .
' 2 V166

We remark that Bl is a perfect choice since it conveniently coincides
with the true value of 3 which aids the estimation procedure. However,
the angle between BQ and the true 3 is approximately 36 degrees, and
therefore not an optimal choice. We remark that in other simulated
work, not reported in this thesis for brevity, we tried other initial esti-

mators which do not point close to the true 8. We find that the same
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conclusions hold, and hence [32 can be thought of as a representative
example.

In addition to this we estimate @ using the “Oracle” estimator
Bo = (B which uses the true B as the estimator. Hence for each
estimate of 3, (E}F using ,E'Jl, ,C:}F, using Bz, ,C:}L using E‘]l, BL using BQ
and BO) we estimate coefficient functions g;(-), 7 =0,--- , ¢, over 101

equally spaced grid points of the following range
r(B) = max(X{ B, , X B) —min(X{ B, , X1 B).  (3.18)

We denote these grid points by uy, - -+, u101-

In the iterative algorithms for estimating 3, we choose the band-
width h equal to 20% of r(,@) on the first iteration and update it on
subsequent iterations by choosing h equal to 20% of T(B(O)) where B(o)
is the most recent estimate. After the iterative procedure converges,
and we have an estimate of 3, we estimate g;(-) using h equal to 20%
of r(,@) We opt for this approach to simplify this simulation study.
However, a significant improvement, along with a thorough topic of
bandwidth selection, can be found in Chapter 5.

Evaluating the performance of B and g;, 7 =0,---, ¢ is done using

the relative absolute deviation error metrics

q 101 ~ o z _
A(@) _ 24j=0 zq:k:l |fié£uk) gj(uk>| A(B) _ HIB /8H1 (3.19)
fo0 24l 1 ()| 181,

where H||1 denotes the L; norm. The expectation and standard de-

~

viation of A(§) and A(3) can be approximated by averaging over the

1000 replications using

1000 1000
1

BAG) ~ 1555 D Aa), SDIAG) =~ (3550 {80 -E(AG)) "

i=1 1=
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BAB) = g5 3 MB). SDIAE) ~ (55 S (AB-B(A@)Y)

where A;(+) denotes the relative error metric of the ith simulated
dataset.

A comparison of the expectation and standard deviation of A(B3)
and A(g) over the 1000 replications is given in Table 3.1, and we see
that ,@L performs significantly better than BF Further we see that
E(A(9)) and SD(A(§)) achieved by 3, is very close to that achieved
by Bo- 3

As one would expect, choosing the initial value 8 so that it points
closer to the true value can also lead to a reduction in approximation
error for both estimators. This is best illustrated by the boxplots in
Figure 3. For the estimator ,BL, a key observation is that only two
datasets out of 1000 suffered significantly by choosing ,32 instead of
[‘31. However, for the estimator ﬁF, the median relative error increased
from approximately 30% to 40% when moving from 3, to B,. This
shows that ,@L is notably less sensitive to the initial estimator than ,@F
is. This is very important in real data applications because in reality
we do not know the true 8 and we cannot guarantee that our initial
estimator is well chosen.

The boxplots in Figure 3 also give us insight into the reason why
Bp fails to perform as well as 3. We see the distributions of A(3)
and A(g) are positively skewed for ,@F, with larger errors usually cor-
responding to the iterative algorithm failing to converge or converging
to local optima. However, for BL, the iterative algorithm converged to
the global optimum 998 out of 1000 times.

Indeed, if the estimation of 3 is poor, then so is the estimation
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of the coefficient functions, due to the nature of the model structure.
This is illustrated in Figures 5, 6, 7, 8 and 9 which show typical esti-
mated coefficient functions resulting from ,BF using ,@1, BF7 using @2,
BL using ﬁl, BL using ,32, and Bo respectively. A vital observation is
that the typical estimated coefficient functions, corresponding to the
seed matching the upper quartile of A(g), can be seen to have signifi-
cantly large approximation error when BF is used. This is because the
estimator failed to converge or converged to a local optimum. How-
ever for ,BL the typical estimated coefficient functions always seem to
closely approximate the true function. It is also worth noting that the
estimated coefficient functions resulting from ,30 look fairly similar to
those from ,BL. This shows that the performance of the proposed es-
timator is almost as good as the true @ from a visual point of view.
Although there are sometimes deviations at the boundary, this is a
fairly common issue in nonparametric regression due to the lack of
information available at the boundary.

It is also important to make a comparison of the computational
time to estimate 3 because the methodology in future chapters will be
based on a generalisation of this one. From Table 3.2 we see that ,@L
is significantly faster on average than BF In both cases, the compu-
tational time decreases if 3 is chosen to be ,31 instead of ,32, as one
would naturally expect. This is because fewer iterations are needed for
convergence.

To conclude, we have firstly shown that the proposed estimator BL
outperforms the estimator [:}F suggested by Fan et al. (2003) in this
simulation study. Secondly, we have seen evidence to suggest that ,@L
is not very sensitive to the choice of the initial estimator 8. Finally,
we see that the performance of BL is similar to that of the Oracle

estimator 3.
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Table 3.1: Comparison of estimators of 3

~

E(A(B)) SD(A(B)) E(A(3)) SD(A(9))

Bp using B,  0.926 1.038 0.482 0.299
Bp using B,  1.069 1.062 0.523 0.309
B, using B,  0.063 0.028 0.262 0.043
By, using B,  0.067 0.098 0.264 0.055
Bo 0.000 0.000 0.261 0.042

This table gives a comparison of the estimators BF, ,C:}L and Bo in terms

~ ~

of E(A(B)), SD(A(B)), E(A(g)), and SD(A(g)) for the simulation
study in Section 3.3. For both ﬁF and ,BL, we compare the performance
when the initial values B, and By are used at the beginning of the
iterative estimation procedures.

Table 3.2: Computational time to estimate 3

Mean Standard Deviation

BF using Bl 9.82 2.05
Bp using 3, 10.62 2.67
B, using B, 4.31 1.28
B using B, 7.56 2.07

For the simulation study in Section 3.3, this table shows the mean
and standard deviation of the computational time (seconds) spent

estimating B for a single dataset. Results are given for estimators Bp
and B, with initial values B, and B,.
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Figure 3: Boxplots of A;(3)
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Thus figure shows the boxplots of the relative error metrics ALA(,@) 1=
1,---,1000, for Bp using B, By, using By, By, using B,, and By, using

B, for the simulation study in Section 3.5.

Figure 4: Boxplots of A;(g)
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This figure shows the boxplots of the relative error metrics Ay(g), i =

17 o 10007 fO’I" IBF ’lLSan 131; 13F7 ’lLSan 62; ﬂL ’lLSan ﬁl; 6L ’lLSan 132;
and Bq for the simulation study in Section 3.3.
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Figure 5: Estimated coefficients with ,@F using ,@1.
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Figure 6: Estimated coefficients with BL using ,@1.
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Figure 7: Estimated coefficients with E}F using Bz
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Figure 8: Estimated coefficients with ,BL using ,@2.
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Figure 9: Estimated coefficients with ,30.
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4 Multivariate model

In this chapter we introduce a multivariate generalisation of model
(3.1). The main objective is to explore three methods for estimating
B in this multivariate model, and use a simulation study to compare

the performance of these estimators.

4.1 Model specification

Assume that {(X;,Y;), t = 1,--- ,n} is a time series where Y; denotes a
vector of p,, response variables and X, denotes a vector of ¢ (observable)
factors. We assume that p, — oo as n — oo, and q is fixed. We
also assume that {X;, t = 1,--- ,n} is a stationary Markov process,

and consider the following model structure
Y, =g(XLiB) + (XLB8)X, +e, [IB=1 B/ >0 (41)

where 8= (fy,---,3,)" is an unknown direction vector, g(-) is an un-
known intercept vector, ®(-) is an unknown factor loading matrix, and
€ = (€14, ,epmt)T is a p,-dimensional random error vector at time
t. In this chapter, we assume that {e,;, t =1,---,n} are independent
variables with mean zero and variance o2 for each k.

We can write g(-) and ®(-) as

g()=(g1(),; g, ()" and @ =(ai(-). -, a,,()"

where g;(-) and a; (-) are defined as the rows of g(-) and ®(-) respec-

tively. This allows us to rewrite (4.1) using componentwise notation

Ykt = 9k<XtT—1:8> + XtTak(XtT—hB) + €kt 18] =1, />0 (4.2)
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where

Y, = (yl,ta T »ypn,t)T7 Xy = ($1,t, tee 7xq,t)T-

It is easy to see that (3.1) is a special case of (4.2) when p, = 1. An
important remark, however, is that 3 does not depend on k. In other
words, the components of the model all share the same 3. The reason
for making this assumption becomes clear if one were to consider a

slightly different model
yke = g(X.118y) + X ar (X1, 8y) + erss (4.3)

where B, = Bk, , k1) and ||B,]| =1, By >0for k=1,---  p,.
The key problem with (4.3) is that we have an extra (p, — 1)q parame-
ters to estimate, which could result in a significant increase in variance
in the estimation. It is for this reason that we assume (4.2) in this
chapter and the rest of the thesis. An alternative possibility for future

work, however, is discussed in Section 9.2.

4.2 Methodology

In a similar way to Section 3.2, once an estimate ,@ of B is given, model
(4.1) becomes equivalent to p,, synthetic varying coefficient models with
known index X', 3. For any z, the estimators of g;(z) and ay(z) can be
obtained using local linear estimation for standard varying-coefficient

models
9r(2) = (1,014 gy { XWX X Wy, (4.4)

and
ap(z) = (qul»Iq7Oq><(q+l)){XTWX}_1XTWYk (4.5)

where yr = (Yr2," "+ ,Ukn)®, and where W and X are defined in equa-

tion (3.4) and equation (3.5) respectively. However, the methodology
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for estimating 3 is notably different from Section 3.2. Hence, the ob-

jective of this section is to introduce three methods for estimating 3.

4.2.1 Local discrepancy estimator

In this section we propose an estimator for @ which is based on a
multivariate generalisation of the estimator given in Section 3.2.2.
A Taylor expansion, for X;'3 in a small neighbourhood of X JT 3,

gives
o (X; B) = apm (X B) + anm(X; B)(Xi — X;)' 8
and
gr(X['B) = gr(X[B) + gr(X[B)(X; — X;)'8

where aj (+) = (ak1(+), -+ ,arq(")), form=1,--- jgand k=1, -+, p,.

We rewrite this as:
o = gl + ol (X - X;)"8
where
gi) = 90X B). 6} = i (X7B). 077 = axn(X]B), 4 = (X 0).

We can approximate model (4.2) by

Nzgijmz_l'zg msz X)Tﬁ—{_ekz

where zo; = 1 for all 7. To keep future equations concise, we use the

notation

0 0
’Yk,j = (gl(g,]) 7g](g;7gl(€,])7 gl(g?]))
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Iy = {'7k,17 T 77k,n—1}7 = {Flv T 7rpn}'

This leads to the multivariate local discrepancy loss function

j=1 1=2 k=1 m=0
q
.(m 2
- Z .(];(w)xm,i(Xz’—l - Xj)TB} Kn((Xio1 — Xj)TB)-
m=0

(4.6)

As with the univariate case, the estimator of 3, denoted by ,BL, can be

obtained by solving
(By,T) = argmin L(3,T) (4.7)
ﬁ’r

subject to the constraints ||3]| = 1 and ; > 0. The estimation proce-
dure given in Section 3.2.2 is a special case of what is to follow. Choose
an initial estimator for @ which we denote by B and iterate between

the following two steps until L(3,T") differs insignificantly.

Step 1: Estimate I' assuming 3 is known If this is the first
iteration, set [:3 — 3. Otherwise, set B equal to the estimator of 3
obtained from Step 2 of the previous iteration. We now estimate I" by

solving

I = argmin{L(3,T)}.
r
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For each j and k, we choose our estimator of v, ; as

A Ve = argmln{z Yk,i — Z (]k] Tm,i
- Z G i (Xia = X)) B) K (X = X,)"B) ). (48)
We can write (4.8) in matrix notation as

’:Yk,j = argmin(yk — Xy")’ky])TWj(yk - X]’Yk,j)

Yk,j

where W, and X; are defined by (3.11) and (3.12) respectively. By

least squares theory, the solution is given by
Y = {X WX, X Wy,
and hence we obtain '), = Year s Yono1 )y and r={r, --.I,}

Step 2: Estimate 3 assuming I' is known Using the estimates
T', from Step 1, we would like to choose our estimator of 3, denoted
by ,3(1), such that

~

Ba = argénin{L(ﬁ, I)}

which is equivalent to

. n—1 n pn q
/6(1) = argmin{ {yk,z - g](:;)xmz
B j=1 i=2 k=1 m=0
- Z ) (X — X)) BY R (X — X)"8) ).
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In exactly the same way as the univariate case, we approximate this

minimisation using

n—1 n pn

3(1) = argmm{z {Yri — g](;j;)xmn'

j=1 i=2 k=1 m=0

- Z 9 i (Ximr — X)) BYEL(Ximt — X)) Bo) }
m=0

Q

where B(o) is the estimator for B used in Step 1. Rewriting the min-

imisation problem yields

n—1 n pn

= argmmz {cijk — Mgkﬁ}Q Wi_1j (4.9)

j=1 i=2 k=1

where

q
Czyk - ykz Z g](;? Tm 0y Afzyk = (Z g](g?;)xm,z>(X2—1 - Xj)7

m=0

wi; = Kh((Xz - X])TB(0)>

All that remains is to rewrite the triple summation in equation (4.9)
in the form of a single summation of N = (n — 1)(n — 1)p, quantities,
so that it becomes a traditional weighted least squares problem. This
can be achieved by defining the N x 1 matrix C, the N X ¢ matrix M
and the N x N matrix W

C= (C;Fl ’ 07?170227"' 70 C;F(n 1) 7Crrf,(nfl))T
M = (M2117 M;flvMQg?" MEQ?" M2T(n DRI 7]\45,(n—1))T

W = diag{Wzlv"' Wi, Wag, oo [ Wia, - - 7W2,n717"' ,anfl}

49



where I, is the p, X p,, identity matrix and where
Cij = (ciji s Cijpa) '+ Mig = (Mijr, -+, Migp,)", Wiy = L, wy.

With this notation, equation (4.9) can be written as a traditional

weighted least squares problem:
N
A . 2
B = argmin > {Cu —MuB} Wy
i=1

where M; and Cp;), denote the ith row of M and C respectively and
where Wy; denotes the ith diagonal entry. In matrix notation, this is

equivalent to
By = arggnin (C—MB)"W (C—-Mg),
and the solution is given by
By = (M"WM)'M"WC. (4.10)

At this point, ,3(1) should be rescaled to satisfy the identifiability con-
ditions ||3]| =1 and 8; > 0.

As with the univariate case, care must be taken from a computa-
tional point of view to avoid exceeding the limitations of RAM because
the dimensions of M, C and W increase at rate O(n?p,). For exam-
ple, for a sample size of n = 1000 and p,, = 100, M, C and W each
have approximately 10® rows. To deal with this problem, in the nu-

merical studies in this thesis, (4.10) was computed using the following
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equations

N (n=1) (n—1)pn
M'"WM = fi(i) = F1(G 4+ npa(i — 1)) (4.11)
i=1 i=1  j=1
N (n—1) (n—1)pn
M'WC = > f,(i) = fo(i+npa(i—1))  (412)
=1 =1 7j=1
where
M; )M M;, 1M q)
f1(i) = Wy 7
MMy -oeeee M; M q)

fa(i) = WiCry (M, - -+, Miig) ",

and Mj; ;) denotes the (7, j) entry of M. In (4.11) and (4.12) we break
the large summand into (n — 1) blocks of size (n — 1)p, and only store
one block in RAM at a time.

4.2.2 Averaging univariate estimates

In this section we introduce an alternative approach for estimating 3.

We pretend, temporarily, that the true model is
Ykt = ge(X218) + Xl an(X,8y) + en, (4.13)

Where ﬁk = (ﬁk,l? Tt aﬁk,q)T and HIBkH - 17 Bk,l >0 fOI' k - 17 oy Pne
By viewing (4.13) as p, univariate models, one can estimate B by

estimating B4, -+, 3, using univariate methodology, and then take
an average. Denoting the univariate estimator of 3, from Section

3.2.1 and Section 3.2.2 by BFk and BL,k respectively, we introduce the
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following two estimators
R 1 Pn . R 1 Pn .
Br = — Z By, and Bp=— ZIBL,k'
L L

We remark that the variance of a preliminary estimate ,Bk could be
large since it only uses a portion of the information available. However,
by averaging all of the p,, preliminary estimates in this way, the overall
variance will be reduced. In fact, we will see that the performance of

BE and ,@L are fairly similar.

4.3 Simulation study

In this section, we compare the performance of estimators BL, BE and
BF, using a simulated example. We generate 1000 datasets from model
(4.1) each with a sample size of n = 1000 and number of assets p, = 50.
We set

g=4, and B = %(1, 2,0, 2)T,

and for k=1,---,p, we set
ge(2) = 2ok + 3exp(—2?), ar1(2) =214 +0.82, apa(2) = 2oy,

ap3(z) = 23 + 1.5sin(nz),  arpa(2) = Z4k

where &, are some fixed parameters for j = 0,--- ;gand k = 1,--- | p,.
In order to define Z;;, we simulate them independently from a uni-
form distribution on [—1, 1], and use these same values throughout all
simulations. We generate X, ---, X, independently from a uniform
distribution on [—1, 1]7 and €, independently from a standard normal
distribution for kK = 1,--- ,p, and t = 1,--- ,n. Once both X; and

€; have been generated, Y; can be generated through model (4.1) for
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t=1,---,n.

For each generated dataset, we estimate B using the three estima-
tors BF, BL and BE- In each case, we try the initial estimators ,@1
and 3, given in (3.17). In addition to this we estimate 3 using the
“Oracle” estimator Bo = (3 which uses the true 3 as the estimator.

For each estimate of 3, (,ép using ,@1, BF using Bz, BL using ,@1, ,@L
using ,32, BE using Bl, BE using ﬁ2, and BO} we estimate coefficient
functions g;(-), 7 =0, - , g, over 101 equally spaced grid points of the

following range
T(B) = maX(XlTB, e ,XEB) — min(XlT,B, e ,XEB).

and denote these grid points by uq, - - - , u191. We choose the bandwidth
h in the same way as we did in Section 3.3.

Evaluating the performance of an estimator 8 can be measured
using A(B) as defined in (3.19). The performance of g(-) and ®(-) are

evaluated similarly using the following metric

" 100 | ~
N D20 Dbt Do 19 () — G ()]
(g, @) = q n 100

j=0 Db D=t 19 (ue)|

(4.14)

where
ak,j(') lszlvvq
i () = T
gr(-) ifj=0.

~

A comparison of the expectation and standard deviation of A(3)
and A(g, ®) over the 1000 replications is given in Table 4.1. In a
similar way to Chapter 3, we see that both BL and BE perform much
better than ,C:}p as one would expect. This is because the estimator ,ép
sometimes fails to converge or converges to local optima. Also, we see

that the expectation and standard deviation of A(g, ®) for both B,

23



and B; are similar to that of the Oracle estimator 3.

From the boxplots in Figure 10, we see that BL and ,BE are almost
identical in performance when ,@1 is used. However, a key observation
is that there are several occurrences when BE performs slightly worse
than f‘]L if BQ is used. The crucial point is that ,C:JL is not sensitive at
all to the choice of the initial value. We remark that the boxplots also
confirm that a very large approximation error occurs if BF is used.

The boxplots in Figure 11 also show that the coefficient functions
can be estimated within a good degree of accuracy when BL and ,BE are
used, but less so with ,@p Typical estimated coefficient functions for
these look almost identical to those presented in the previous chapter
and so are omitted for brevity.

We see from Table 4.2 that BL also outperforms BE and BF in
terms computational time. This is because the time taken to calculate
BE and ,C:}p on average is roughly p,, multiplied the time taken for the
corresponding univariate estimation. In the real data analysis chapter
of this thesis, we will calculate a new @3 for 5000 trading days and
across four independent datasets. Hence this gain in computational
time is very important for implementation purposes.

To conclude, we firstly see that the performance of BL and BE both
significantly outperform ,315 Secondly, the performance BL and BE are
fairly similar, which is to be expected since they are based on similar
techniques. However there is evidence to suggest that BE is slightly
more sensitive to the initial value B than ,éL is. Hence, the estimator

BL is the preferred choice.
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Table 4.1: Comparison of estimators of 3

~ ~

E(A(B)) SD(A(B)) E(A(g,®)) SD(A(g @)

Bp using B,  0.520 0.398 0.241 0.054
Bp using B,  0.673 0.437 0.259 0.060
B, using 3,  0.013 0.006 0.192 0.016
B, using B,  0.013 0.006 0.193 0.017
B; using B,  0.013 0.006 0.193 0.017
B; using 3,  0.015 0.018 0.193 0.017

Bo  0.000 0.000 0.192 0.016

This table gives a comparison of BF; ,[:}L and BE with the two initial
values B, and By, as well as Bq, for the simulation study in Section

4.3. The expectation and standard deviation of A(B) and A(g,ff')
taken over 1000 replications, are given in each case.

Table 4.2: Computational time

Mean Standard deviation

Bp using B, 473.87 46.61
Bp using B, 481.50 42.83
B, using B, 75.59 25.44
B, using B, 183.25 34.35
B using B, 194.88 21.38
B; using B, 340.65 39.64

This table gives the mean and standard deviation of the )
computational time (seconds) to estimate B using Bg, By, or Bi for a
single dataset in the simulation study in Section 4.5.
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Figure 10: Boxplots of AL(,B)
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This figure shows boxplots of relative error metric A(B) over 1000
replications for the simulation study in Section 4.3. A_comparison of
BF, ,BL and ,BL with two different initial values 61 and ,82 18 provided.
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Figure 11: Boxplots of A;(g, (i))
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This figure shows boxplots of the relative error metric A(g, ‘i') over
1000 replications for the simulation study in Section 4.3. A compari-
son of ,BF, ,BL and BL with two different initial values Bl and 62 8
provided, along with the Oracle estimator ,60
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5 Bandwidth selection

In this chapter, we discuss how to choose the bandwidth A used in
the estimation of 3, g(-) and ®(-) described in Section 4.2. Since the
index of the varying coefficient model is unknown until 8 has been
estimated, it can be quite hard to visualise if a particular value of A is

“large” or “small”. Therefore, we introduce the following metric

h
r(B)

R = x 100 (5.1)

where
r(B) = max(X{'8, -+, X, 8) — min(X{B, -+, X 3) (5.2)

for some given estimate ,@ of B. One can interpret A% as the percent-
age of the range of estimated indices which is covered by the global
bandwidth A.

It is also possible to estimate of g(-) and ®(-) using a nearest
neighbour bandwidth. In this case, the size of the bandwidth at a given
grid point z changes according to how many local data points are in its
neighbourhood. More precisely, the k-nearest neighbour bandwidth at
point z is defined by

hk(z) :min(k’,A), A= {(Z—XFB,), ,(Z—XEB)} (53)

where min(k,.A) is the kth smallest number of the set A. In order
to estimate g(z) and ®(z) using a nearest neighbourhood bandwidth,
one simply needs to replace h with hx(2) in (4.4) and (4.5) respectively.
We shall also use the metric &%) = k/n x 100 to help gauge whether

a particular k is “large” or “small” relative to the sample size n.
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5.1 Sensitivity to the choice of bandwidth

In this section we show that the choice of bandwidth h is not crucial
for successfully estimating 3 as long as h is chosen to be within a
reasonable range. However, the choice of A is more important when
estimating the coefficient functions g(-) and ®(-). We build on the
simulation study in Section 4.3 by exploring how different choices of
h affect the performance of the estimation of 3, g(-) and ®(-). For
brevity, we only use the initial value 8 = BQ in this chapter to keep
the number of comparisons to a minimum. We note, however, that
similar conclusions can also be made for other initial values too.

Using the same simulation settings as Section 4.3, Figure 12 shows
how sensitive the expected relative error metric E(A(B)) is to the
choice of global bandwidth &, measured by h(*). The crucial obser-
vation is that as long as h® is chosen within a sensible range, such
as h® ¢ (12%, 50%), we can estimate B within a 5% relative error
on average using either BL or ,C:}E. The same cannot be said for BF,
however, which incurs a much larger approximation error on average
even if the best possible bandwidth is used. These findings provide
additional evidence for using estimators By, and G instead of Bz. We
remark that the sensitivity of E(A(B.)) and E(A(B;)) to be fairly
similar as one would expect.

In order to examine how the choice of h affects the performance
of estimating g(-) and ®(-), we temporarily fix 8 = B, so that any
estimation error incurred is solely due to the approximation error of
the coefficient functions. Figure 13 shows how sensitive E(A(g, ®)) is
to the choice of h™ inside the range (12%, 50%). This time, we see
that the choice of h is essential, since the expected relative error can
be reduced from 30% to 20% with a careful choice of bandwidth. We

will see in Section 5.2 that a further reduction of the relative error can
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be made when a nearest neighbour bandwidth is employed as opposed
to a global bandwidth.

5.2 Data driven bandwidth selectors

Bandwidth selection methodology, in general, can often be computa-
tionally expensive if a grid-search approach is employed. We remark
that the iterative algorithm for estimating B can also be computa-
tionally expensive, especially for large n and large p,,, due to the high
dimensional matrices involved in each iteration. On the other hand,
once 3 is given, computing g(z) and ®(z) using (4.4) and (4.5) is
relatively fast to compute. With these facts in mind, we introduce
the following bandwidth selection approach designed to find a good

balance between computational costs and quality of estimation:

(Step 1)  In the iterative algorithm used to estimate 3 (see Section
4.2.1) choose a bandwidth A equal to approximately 20%
of r(B) on the first iteration where B is the arbitrary initial
value. Update h on all subsequent iterations by choosing
h equal to approximately 20% of r([:}(o)) where B(o) is the

most recent estimate.

(Step 2)  After the algorithm has converged, and an estimate for 8
is obtained, we estimate g(-) and ®(-) using a data driven
bandwidth selector h, in place of h in (4.4) and (4.5).

The subject of this section is to explore various data-driven methods
of choosing hs and compare their performance. In Step 2, hy can either
be a global bandwidth or a nearest neighbour bandwidth.

The choice of a global bandwidth &, or k in the case of a nearest
neighbour bandwidth, controls the trade off between bias and variance.

On the one hand, choosing a bandwidth which is too small would result
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Figure 12: Sensitivity of E(A(3)) to the choice of h
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Using the same simulation settings from Section 4.3, this figure shows

E(A(B)) vs b for B BF, ,BL and ,BL using B = ,82 The dot-
ted vertical lines represent a reasonable region to choose h(*) whereby

E(A(B)) < 0.05 for b e (12,50).
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Figure 13: Sensitivity of F(A(g, ®)) to the choice of h
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Using the same simulation settings from Section 4.3, this figure shows
E(A(g, ®)) vs h for B = By. Unlike B, we see that g(-) and ®(-)
require a careful choice of bandwidth to reduce estimation error as much
as possible.
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in estimators for g(-) and ®(-) with small bias but large variance. On
the other hand, choosing a bandwidth which is too large would result
in estimators for g(-) and ®(-) with small variance but large bias.
Both of these cases would result in large approximation error which is
not desirable. Therefore, in order to carefully choose bandwidth hs,
we require an information criterion I(hy) which, once minimised with
respect to ho, aims to find a trade-off between bias and variance.
With this in mind, we explore three information criteria based
on Akaike information criterion (AIC), Bayesian information criterion
(BIC) and cross validation (CV). Each of these criteria can be used
for either global bandwidth selection or nearest neighbour bandwidth
selection. For implementation purposes, to minimise I (hy) with respect

to ho, we employ the following grid search approach:

(Step 1)  Choose a number of candidate bandwidths. For the case
of global bandwidths, we recommend h(*) € H where H =
{1%, 2%,--- ,100%}. For the case of nearest neighhbour
bandwidths, we recommend k € K where K = {1,--- ,n}.

(Step 2)  For the case of global bandwidths, compute (h(*)) for each

W% € 3 and choose A = argmin{I(h(*))}. Similarly for
hP) eH
the case of nearest neighour bandwidths, compute (k) for

each k € K and choose k = argmin{/(k)}.
kek

We remark that this grid search approach can implemented using par-
allel computing to significantly speed up the computation. Further-
more, subsets of H and K can be chosen to speed up computation if

necessary, at the expense of approximating the minimisation.

62



5.2.1 Cross validation

In this section, we introduce an information criterion which can be
used for bandwidth selection based on cross validation. Assume that
an estimate 3 has been obtained using one of the methods in Chapter

4. We define the cross validation statistic at time t by

. (e o &1 -
> -t - e VR B)X, (5.4)

t=n—v

where g1 (.) and @(t_l)(-) are the respective estimates of g(-) and
®(-) based on (X!, Y;T), Il =1,---,¢t—1, and where v is a look-back
integer such that v < n — 1. We denote (5.4) by CV(h) when g~ (")
and é(t_l)(-) are estimated with a global bandwidth h, and by CV (k)
when g~V (-) and <i>(t_1)(-) are estimated with a nearest neighbour
bandwidth Ag(-).

Hence, we define the following global and nearest neighbour band-

width selectors:
hoy = argmin{CV(h)}, key = argmin{CV(k)}.
h k

We define #) = 100v/n as the percentage of the data for which we
use to train our tuning parameter search on. In Section 5.3 we see
that both estimators fzcv and l%cv are not very sensitive to the choice

of (%) when chosen to be in a reasonable range.

5.2.2 AIC and BIC

Stimulated by Fan et al. (2003), in this section we construct AIC and
BIC statistics used as information criterion for bandwidth selection.

Assume that an estimate ,@ has been obtained using one of the methods
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in Chapter 4. We start by defining the (locally weighted) residual sum

of squares metric

n

RSSk(2, h) :Z(yk,t — gr(2) = X ap(2) — (g(2)

+ XTa () (XE B~ 2) Kn(XE B 2),  (5.5)

for a given grid point z and for k = 1, - -+ | p,. We also define the (local)
degrees of freedom, m(z, h), and the (local) number of observations,
n(z, h), by

m(z,h) =n(z,h) — p(z, h), n(z,h) = tr{W(z)}
where
p(2, k) = tr{(X ()W (2) X (2)) X (2)W?(2) X (2)}

represents the (local) number of parameters. Here, W(z) and X'(z)
are defined in (3.4) and (3.5) respectively. Note that h can either be a
global bandwidth or a nearest neighbour bandwidth h(z) depending
on k. Using the above formulae, the local AIC and the local BIC at
grid point 2z using bandwidth A may be defined as

AICy(z, h) = log(RSSk(z, h)/m(z, h))+2p(z, h)/n(z, h)
and

BICy(z, h) = log(RSSk(z, h)/m(z, h))+log(n(z, h)) p(z, h)/n(z, k)
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fork=1,---,p,. Hence we define the following two global bandwidth

selectors:

Pn grld

> > AIC(aih (5.6)

g“dnklll

haic = argmin{
h

Pn grld

> BIC (i, h (5.7)

k=1 i=1

hgic = argmin{
h grxdpn

and the following two nearest neighbour bandwidth selectors:

Pn grld

D> AIC (2, hi(2:)) } (5.8)

j=1 i=1

kaic = argmin{
k grldpn

Pn grxd

> BIC (21, hu(z:)) } (5.9)

grldnjlll

kgic = argmin{
k

where 21, 2n,,, denote N, equally spaced grid points between
max(XTB,---, XT3) and min(XT3,---, XTB). As explored by Fan
et al. (2003), a further extension is to add a weight function to help
reduce the effects at the boundary.

The reason we introduce the above AIC and BIC metrics is so that
we can provide an interesting comparison with the cross validation
approach. However, we will see evidence in our simulation study that
cross validation using a nearest neighbour bandwidth is the preferred
(and proposed) choice, and that we do not recommend using iLAIc,

BBIC, /;:AIC or /;:BIC when applied to real data.
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5.3 Simulation study

In this section we compare the performance the global bandwidth selec-
tors (ﬁ AICH BBIC, and izcv) and the nearest neighbour bandwidth selec-
tors (lAfAIC, kgic, and l%cv), described in Section 5.2, using a simulated
example. From model (4.1), we generate 1000 datasets using {n =
1000, p, = 50} and another 1000 datasets using {n = 2000, p, = 50}.

This will allow us to see how the performance of the bandwidth selec-

tors is affected by an increase in sample size. We generate Xi,---, X,
and Y7, .-+, Y, using the identical model structure and assumptions to
Section 4.3.

In order to keep the number of comparisons to a minimum, we
shall only estimate 3 using the proposed estimator BL. We use the
same initial value B = ,éz which was used in Section 4.3. Some other
data analysis, not presented in this thesis for brevity, shows that same
conclusions can be made for other initial values whenever 3 is used.

For each generated dataset, we estimate g(-) and ®(-) using the
global bandwidth selectors }ALAIC, ilBIC and ilcv and nearest neighbour
bandwidth selectors ]%AI(L i’fBIC and /;’cv- We initially set (%) = 90% for
cross validation selectors, and later show that this choice is arbitrary.

We compare the performance of these bandwidth selectors with the
Oracle global bandwidth ho and the Oracle nearest netghbour bandwidth
ko defined respectively by

ho = arg}ILIlin{E(A(g, i)))} (5.10)

and
ko = arginin{E(A(g, D))} (5.11)

We can interpret ho as the tuning parameter which minimises the

~

quantity F(A(g, ®)) where a global bandwidth is used to estimate
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g(-) and ®(-). The interpretation for ko is the same, except a nearest
neighbour bandwidth is used to estimate g(-) and ®(-). The purpose
of introducing izo and /;70 is to aid as a benchmark to compare the
methods introduced in Section 5.2. One should note, however, that ho
and ko can only be calculated in a simulation study since in practice
we do not know the quantity E(A(g, ®)).

In Figure 14, we plot the quantity E(A(g, ®)) against hé%) where
g(-) and ®(-) are estimated using a global bandwidth. Similarly in
Figure 15 we plot E(A(g, ®)) against k%) where g(-) and ®(.) are
estimated using a nearest neighbour bandwidth. We do this for both
sample sizes n = {1000, 2000}, and read-off the Oracle global band-
widths iz(c)%) = {21.0%, 16.0%} and the Oracle nearest neighbour band-
widths l;’é)%) = {30.0%, 27.5%} which correspond to the the minimisor
of E(A(g, ®)). As one expects, we see that as the sample size in-
creases, the values of IA?/E)%) and I%E)%) decrease, and the expected errors
also decrease. An important point is that a much smaller relative er-
ror can be achieved on average using a nearest neighbour bandwidth
instead of using a global bandwidth. This fact will be verified again
later in this section.

An initial comparison of the performance of the six data-driven
bandwidth selectors is given in Table 5.1 for n = 1000 and Table 5.2
for n = 2000. A vital observation is that /Afcv performs better than
the other five bandwidth selectors with E(A(g, ®)) = 0.15 and 0.12
for n = 1000 and n = 2000 respectively. We see that, on average, l%g{})
only slightly under-smooths relative to /Af(()%), with E[/Afé@] = 29.35%
and 25.84%. This is also illustrated in Figure 18 and Figure 19 which
show a kernel density estimate of how ng{’,) is distributed relative to
ko. We see that the mass is distributed fairly evenly around l%(()%) with
only a very slight downwards bias.

The global bandwidth selectors izAIc, izBIc and fzcv perform worse
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than kcy since the quantity E(A(g, <i>)) is larger in each case. To
see why this is, it is useful to look at the boxplots of selected global
bandwidths across the 1000 replications given in Figure 16 and Figure
17. We can see that h arc and fLBIc notably over smooths whereas fzcv
slightly under smooths when compared to fALE)%).

The nearest neighbour bandwidths /%AIC and /ACBIC have extremely
poor performance, and incur a strikingly large value of E(A(g, <i>)) due
to excessive over smoothing. This evidence shows that one should not
select a nearest neighbour bandwidth using the AIC and BIC statistics
constructed by (5.8) and (5.9). However, as a suggestion for future
work, one may try an an alternative construction of the AIC and BIC
statistic (see for example Cheng et al., 2009).

For the approaches which use cross validation it is important to
see whether different values of v(%) significantly affect the quality of
estimation. One may argue that if the estimator koy is highly sen-
sitive to the choice of ¥(*) then its strong performance may simply
be due to chance alone. Hence, in order to address this concern, we
repeated the above experiment using %) = 60, 70, 80 and 90. The
results, displayed in Figure 24 and Figure 25, show that the estimation
performance is not sensitive to the choice of v(*). We remark however,
that there is a significant increase in computation time as one chooses
smaller values of (). Tt is for this reason why fix v(*) = 90 for the
rest of this thesis, however this choice is not crucial.

Another useful way to compare the six bandwidth selectors is given
in Figure 20 and Figure 21 which show boxplots of the relative errors
A(g, i)) over the 1000 replications for n = 1000 and n = 2000 respec-
tively. These plots agree with the previous analysis, and emphasise the
most crucial point that the preferred way of estimating g(-) and ®(-) is
using /Afcv- It is easy to see that /Aﬁcv also has a similar performance to

that of the Oracle estimator l;o, and that as the sample size increases
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the approximation errors clearly reduce.

One key reason why kv outperforms the other five bandwidth
selectors, in particular its closest rival fzcv, can be illustrated in Figure
22 and Figure 23 which show plots of typical estimated coefficient
functions for ¢;(-) and a; 3(-) respectively. We see that when kov is
used, the typical estimates closely approximate the true functions at all
grid points. Although hey can closely approximate the true functions
at central grid points, it suffers from severe estimation error at the
boundary. The reason why l;’g",) is so successful is because if there
are very few data points at the boundary, it will pick a slightly larger
bandwidth to help reduce the variance. From these plots, it is possible
to see that this is how ifcv outperforms izcv overall. Finally, it is
clear from Figure 22 and Figure 23 that both ];‘AIC and lAfBIC fail to
approximate the true function due to their excessive over smoothing.

To conclude, we firstly propose to estimate g(-) and ®(-) using a
nearest neighbour bandwidth selected by cross validation. Secondly, we
have seen that kcy outperforms other candidate bandwidth selectors
including those using AIC and BIC statistics related to Fan et al.
(2003). Finally, we have provided evidence that the performance of

l;cv is fairly similar to /270 in this simulated example.
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Figure 14: Visualisation for finding ho
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This figure shows E(A(g, ®)) vs hé%) when g(+) and ®(-) are estimated
using a global bandwidth in the simulation study in Section 5.3. Vertical
dotted lines correspond to ﬁo and horizontal dotted lines correspond to
the value of E(A(g, ®)) attained when ho is used to estimate g(-) and
P(.).

Figure 15: Visualisation for finding ko
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This figure shows E(A(g, ®)) vs k%) when g(-) and ®(-) are estimated
using a nearest neighbour bandwidth in the simulation study in Section
5.3. Vertical dotted lines correspond to /;70 and horizontal dotted lines
correspond to the value of E(A(g, ®)) attained when ko is used to
estimate g(+) and ®(+). 70



Table 5.1: Comparison of bandwidth selectors n = 1000
Ens”] SDI™] E(A(g.®)) SD(A(E, ®))

harc  33.35 1.44 0.21 0.01
hgic  35.70 1.39 0.22 0.01
hoey 1400 2.39 0.21 0.04

~

E[k™] SD[K"™] E(A(g ®)) SD(A(g ®))

kac  98.75 0.95 0.47 0.03
kpie  98.87 0.76 0.47 0.03
kov  29.35 2.72 0.15 0.01

This table shows expectation and standard deviation of the estimated
bandwidths along with E(A(g, ®)) and SD(A(g, ®)), for the simula-
tion study in Section 5.3 with a sample size n = 1000.

Table 5.2: Comparison of bandwidth selectors for n = 2000
En5”) sDhy") E[A(g.A)] SD[A(g A)]

haic 30.99 1.36 0.18 0.01
hpic  33.12 1.26 0.19 0.01
hoy  11.07 1.41 0.17 0.03

E[k™] SD[k®] E[A(g A)] SDIA(g, A)]

kaic  98.79 0.63 0.46 0.02
kpic 98.85 0.59 0.46 0.02
kov  25.84 2.29 0.12 0.01

This table shows expectation and standard deviation of the estimated

bandwidths along with E(A(g, ®)) and SD(A(g, ®)), for the simula-
tion study in Section 5.3 with a sample size n = 2000.

71



Figure 16: Selected global bandwidths for n = 1000

ﬁcv } """""" { °
GBIC_ ° }"' "'{ °
GAIC_ ° }"' "'{ °

10 15 20 25 30 35 40

Bandwidth (percentage)

For the simulation study in Section 5.3, this figure shows boxplots of

selected 55@3, 151(3?’23, f;g{}) over 1000 replications for n = 1000. The

dotted line corresponds to izg%) = 21%.

Figure 17: Selected global bandwidths for n = 2000
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For the simulation study in Section 5.3, this figure shows boxplots of

selected ﬁg%, lAzgl%, hgy\;,/ over 1000 replications for n = 2000. The

dotted line corresponds to izg%) = 16%.
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Figure 18: Density estimates of kcy (n = 1000)
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Figure 19: Density estimates of kcy (n = 2000)
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For the simulation study in Section 5.3, Figure 18 and Figure 19
show kernel density estimates of selected kcy for n = 1000 and
n = 2000 respectively. The vertical dotted lines correspond to the

. ~(R) : :
Oracle estimator kg’ To produce the kernel density estimate,
bandwidths were chosen using Silverman’s ‘rule of thumb’ bandwidth
selector (Silverman, 1986) which is default in R.

73



Figure 20: Comparison of bandwidth selectors (n = 1000)
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For the simulation study in Section 5.3, this figure shows boxplots of

Alg,

®) for haic, heic, hov, kaic, ksio, and koy for sample size

n = 1000. Vertical dashed and dotled lines correspond to the
benchmark values E(A(g, ®)) attained by hg%) and kg%) respectively.
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Figure 21:
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For the simulation study in Section 5.3, this figure shows boxplots of

Alg,

®) for haic, heic, hov, kaic, ksio, and koy for sample size

n = 2000. Vertical dashed and dotled lines correspond to the
benchmark values E(A(g, ®)) attained by hg%) and kg%) respectively.
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Figure 22: Typical estimates of g;(-)
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Figure 23: Typical estimates of a; 3(+)
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For the simulation study in Section 5.3, Figure 22 and Figure 23 show
typical estimates of g1(-) and ay 3(-) respectively. The typical estimates
correspond to seed with the median value of A(g, ®) over 1000 simula-
tions. On the left are global bandwidth selectors lAlAIC7 BBIC; /Alcv, and
on the right are the nearest neighbour bandwidth selectors /:JAIC, /%BIC,
kov. The solid black lines are the true coefficient functions.
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Figure 24: Sensitivity of hcov to the choice of v
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For the simulation study in Section 5.3, this figure shows boxplots of

A(g, ®), using the global bandwidth selector hoy with v = 60, 70,
80 and 90.

Figure 25: Sensitivity kov to the choice of v
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For the simulation study in Section 5.3, this figure shows boxzplots
of A(g,®), using the nearest neighbour bandwidth selector koy with
v = 60, 70, 80 and 90.
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6 Introduction to FACE

In this chapter, we focus on the main subject of the thesis: estima-
tion of high dimensional covariance matrices using our proposed dy-
namic structure. We use the abbreviation FACE (Factor model with
an Adaptive-varying-coefficient-model structure Covariance matrix Es-
timator) to denote the estimator introduced in this section. This name
was chosen because the estimator will ‘face’ the markets today based on
what happened yesterday and adapt according to the dynamic struc-

ture.

6.1 Model specification

In this chapter we generalise the model structure explored in previous
chapters by imposing a GARCH related structure on the idiosyncratic
errors. This assumption is well suited to a financial setting, where it
is common to witness continued periods of large volatility followed by
continued periods of calm.

As before, assume that {(X;,Y;), t = 1,--- ,n} is a time series
where Y; denotes a vector of p, response variables and X; denotes a
vector of ¢ (observable) factors. We still assume that p, — oo as
n — oo, and ¢ is fixed, and that {X;, t = 1,--- ,n} is a stationary

Markov process. The proposed dynamic model structure is
Vi =g(X,Li8) + (X B) X +e, [Bl=1 5>0 (61

where 8 = (B1,-+-,8,)" is an unknown direction vector, g(-) is an
unknown intercept vector, ®(-) is an unknown factor loading matrix,
and € = (€14, - ,epmt)T is a p,-dimensional random error vector at

time ¢. We assume {€;, t = 1,--- ,n} is independent of {X;, t =
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1,-+-,n}, and we further assume that E(e;|{€; : I < t}) = 0 and that
cov(e|{e - I <t}) =g, = diag{o7 -+, 0, ,}

where

m S
2 2 2 _
OF = kot Y rith, it Y WOh s t=2-.n  (62)

i=1 j=1

for each k = 1,--- ,p, and for some integers m and s. Throughout
the numerical studies of this thesis, we will simply choose m = 1 and
s=1.

Let F; be the o-algebra generated by {(X', €) : [ < t}. The
main focus of this chapter is on the conditional covariance matrix
cov(Y;|Fi_1), for which an expression can be obtained by taking the
conditional covariance of both sides of (6.1), yielding the crucial iden-
tity

cov(Yy| Fio1) = ®(X,11 8)80(Xe1) R(X,118) " + Bo (6.3)

where ¥,(X;-1) = cov(Xy|X;—1). In a similar way, by taking condi-

tional expectations, we have
E(Yi|Fi1) = 8(X,118) + @(X,_1B) E(X| X)), (6.4)

This will also be useful to us, since in Markowitz’s formula for portfolio
allocation, we need to estimate both the covariance matrix and the

mean vector of excess asset returns.
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6.2 Methodology

Estimating cov(Yy|Fi—1) and E(Y;|F;—1) using the following substitu-

tion estimators
cov (Y| Fi1) = (i)(XtT—IB)XA)x(Xt—l)(i)(XtT—l/B)T + zA307t (6.5)

and
E(Yi|Fio1) = (X[, 8) + (X[ B)E(X|X,-1) (6.6)
can be broken down into the following steps:

(Step 1)  Estimate 3 using either By, By, or B as in Section 4.2.

(Step 2)  Estimate g(-) and ®(-) using (4.4) and (4.5) using either
the global bandwidth hs or the nearest neighbour band-
width h;(z) as explained in Section 5.2.

(Step 3)  Estimate X ; using methodology introduced in Section 6.2.1.

(Step 4)  Estimate ¥,(-) using methodology introduced in Section
6.2.2.

Hence, in this section, we explore methodology for estimating X,(+)
and X;. The recommended choice is to use B = BL in Step 1 and a
nearest neighbour bandwidth h;(z) with k selected by cross validation
in Step 2.

6.2.1 Estimation of 3,

In this section, we introduce the methodology for estimating the id-

iosyncratic error covariance matrix ;. Denote the residuals by

Tt = p = Yot — (X1 B) + X[ 8 (X, 8) (6.7)
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for each k, k = 1,--- ,p,. By substituting (6.7) into (6.2), we arrive
at the following synthetic GARCH model

m S
2 _ 2 2 _
Oft = Qro + E kTl T E VejOkp—jr t=2,- 1 (6.8)
i=1 j=1

It can be shown that (6.8) has a re-parametrisation in the form of the
following ARMA model

max(m,s) s
2 2
rhe= ot Y (it Wa)h s et — Y VeiMke—gs (6.9)
i=1 7=1
for each t, t = 2,--- ,n, where nyy = 77, — 07, Ve = 0 when i > s,

and a;,; = 0 when ¢ > m.

It is now possible to use the estimation procedure for ARMA mod-
els in order to get estimates for ay,; and 74 ;. By substituting these
estimates into (6.8) we can obtain an estimator &3, of o7, and hence
an estimator zo,t of 2.

For each k, k=1, ,pp, let Op = (o, Qhny Veds "+ * > Vhos) -
We are going to use a quasi-maximum likelihood approach to estimate

0,.. We define the negative quasi log-likelihood function of 8, as

n r2
Qn(8) =1 { b 1og az,xek)}

t=2 O-]%‘,t(ek)

where o7 ,(6}) are recursively defined by (6.8) with initial values being

either

7”13,0 = = le,l—m = UZ,O = = Ok1-s = k0
or

7’13,0 = =Tk1-m = 013,0 = = 02,1_3 =Tgo
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By minimising O ,,(0)) with respect to 6 on a compact set
A C (¢, 40) x (¢,+00)™* >0

we use the minimiser 6}, to estimate .

There are established methods for choosing m and s such as using
AICC Brockwell and Davis (2002), although it is often practical to
simply choose m = 1 and s = 1. To keep things straightforward, we
simply assume m = 1 and s = 1 in the numerical studies in this thesis.

In order to implement the estimation procedure, and to simulate
the data, one can take advantage of the fGarch R package by Wuertz
and Chalabi (2013).

6.2.2 Estimation of X,(-)

In this section, we introduce the methodology for estimating the con-
ditional covariance matrix 3,(-). A crucial remark is that, since ¢
is fixed as n — oo, the number of unknown parameters in X,(-)
is significantly smaller than the number of unknown parameters in
cov(Y;|Fi—1). This means the estimation for X, (-) does not suffer from
the so-called ‘curse of dimensionality’.

The proposed estimator is based on a local constant approximation.
In order to estimate E(X;|X; 1 = u) and F(X; X' |X;_; = u), for any

given u, we use the local constant estimators with

N >y XK, (|| X1 —ul])
E(X|Xi—1=u) =
(X Xe—n ) 2?22 Ky, (HXt_l — uH)

(6.10)

and

R S Xe X[ K, (| Xom1 — u))
T . . t=2 3
B X = = = e (e — )

(6.11)
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where hj is a bandwidth. In both (6.10) and (6.11) we apply more
weight to values of X; when X, ; is “close” in magnitude to u. This

gives us the following estimator of X, (u)

3, (u) =E(X, XX, =u) — BE(X| X, = W{E(X| X, =u)}"
={trtOW)} X {trOWV)W — W11TW}X (6.12)

where

X =(Xa,--,Xn)", W =diag(K,(||[X;—u

)+ s Ko ([ Xy — ).

Indeed, it can be seen that ﬁ)m(u) is related to the sample covariance
matrix, and they are identical to one another if hy — oc.

We can choose hg using cross validation in a similar way to the
previous chapter. First, fix v < n. We start by defining the cross
validation statistic at time t for bandwidth hsz by

CV(hs) = Y || XX =BV (XX X)) ||+ X — B9 (X X)) |

t=n—v

where E(-D(X,|X,_;) and E¢D(X,XT|X,_;) are the respective esti-
mates of E(X,|X, 1) and E(X, X} | X, 1) based on {X\, 1 =1,--- t—
1}, and where v is a look-back integer such that v < n — 1. Hence,
denoting the hs that minimises CV(hs) by hs, we use the global band-
width ks in the local constant estimation of (6.10) and (6.11).

6.3 Portfolio allocation

In this section, we will briefly describe the construction of an optimum
portfolio allocation based on the proposed dynamic structure and the

associated estimation procedure. Our proposed portfolio allocation
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builds on the mean-variance portfolio by Markowitz (1952, 1968).
The allocation vector w of p,, risky assets, to be held between times

t — 1 and t, is defined as the solution to

min w'cov(Y;|F_1)w
w

subject tow'1l, =1 and w'E(Y;|F1)=9¢

where ¢ is the target return imposed on the portfolio. The solution w

is given by

w30 V(Y| Foi) ', + ¢ ov(Yy|Fimt) L E(Yi| Fisy)

W = ——=COV _ _— _ _
Clcg—cg t|Vt—1 Pn Clcg—cg t|vt—1 t|vt—1

where

c1 =1, cov(Yi|Fm1) 'L, e =11 cov(Yy|Fimr) T E(Yi|Fmn)

3 = B(Yy| Fooy) Y eov (Yy| Foor) LB (Y| Fioy).

We remark that one can impose additional constraints to the above
optimisation problem, and the solution can be solved for numerically.
An example relating to gross exposure constraints will be presented
in Section 7.6. The key point is that, regardless of the additional
constraints, the estimated portfolio always requires a good estimator

of the covariance matrix.

6.4 Simulation study

We now examine the performance of FACE using a simulated example.
In Section 6.4.1 we explore the sensitivity of FACE to the choice of ,3
and h, and make comparisons with the conclusions from previous

chapters. In Section 6.4.2 we compare FACE to some other commonly
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used estimators such as the sample covariance matrix estimator and

the estimator proposed by Fan et al. (2008a).

6.4.1 Sensitivity to the choice of B and 5,

We start by focusing on how the choice of estimators for B and hs
affects the quality of estimators cov(V;|Fi_1) and E(Y|Fi_;). We gen-
erate 1000 datasets from model (6.1), together with (6.2), each with a
sample size of n = 1000 and p,, = 50. Weset ¢ =4, m =1, and s = 1.
For k =1,--- ,p,, we set oy, = 0.5, oy, = 0.1, and 5 = 0.1. We
set B, g(-) and ®(-) equal to the same values as those from Section
4.3. Fort =1,--- ,n+ 1, we generate X; independently from a uni-
form distribution on [—1,1]?, Z; from a p,—variate standard normal
distribution, and €; through €; = Eéfth. Once X; and €; have been
generated, Y; can be generated through (6.1) for t =1,--- ,n+ 1.

We will initially pretend that (X, ,,Y, ) is unknown to us, and
this will not be used in the estimation of cov(Y;|F;_1) and E(Y;|F;_1).
The purpose of generating an additional data point (X, ,, YL ) is to

enable us to calculate the one-period simple return
R(W) = W'Y,

of a portfolio allocation w formed at time n, based on data (X', Y,"),
t=1,---,n, and held until time n + 1. We use the Sharpe ratio

E(R(w))

SR(W) = SD(R(w))

to evaluate the performance of a portfolio allocation w, where SD(R(W))
is the standard deviation of R(w). For simplicity we assume a zero
risk-free rate and use a target return of § = 1%, although similar con-

clusions can be made for other positive values of 9.

85



We use the metrics

A(M M):HM_—MHF e(fo, ) = 1
’ (21 P

f”_”’HF

n
to evaluate the performance of the estimator M of matrix M and the

estimator [t of a p,-dimensional column vector p, where
| M|, = {tr(MMT)}/?

is the Frobenius norm. A crucial remark is that both A(M , M) and
e(fr, ) can only be used for simulated data, but not with real data
since the true parameters are unknown in practice. Using SR(W) has
the advantage that it measures the quality of estimation for real data
too and, more importantly, is relevant to an investor from a financial
point of view. The Sharpe ratio can be viewed as a reward-to-risk
ratio, and so larger values of SR(W) are desirable.

For each generated dataset, we estimate cov(Y;|F—1) and E(Yy| Fi—1)

using different combinations of
Be{Bs B Br}

and
ha € {hatc, heic, hev, by, (), Py ()s e, ()

For each combination of ,[:3 and iLQ, we compute means and standard

deviations of the following quantities
AB), APXB), AZ(Xn), AZou), R(W),

AV (Yt | F) ™ cov (Yo F) ™), e(B(Yial F), E(Vasa| o))

over the 1000 replications.
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For the estimator of ¥,(+), we note that there is no dependence on

hy and 3, so in all cases we have
E(A(Z,(X,)) =0.082, SD(A(Z,(X,))) = 0.0413.

As expected, we do not suffer from the ‘curse of dimensionality’ because
3.,.(+) is only a ¢ X ¢ matrix.

A comparison of the performance of the substituted quantities ,3,
d(XT3), and ﬁ]oynﬂ, as well as cov(Yy41|F,) ' and E(Y, 41| Fy), can
be found in Tables 6.1, 6.2 and 6.3. In general, these findings agree
with the conclusions from Chapters 3, 4 and 5. In particular it is
possible to estimate B within a reasonable degree of accuracy using
either ,@L or BE, and both of these estimators outperform ,BF We also
see that the Sharpe ratios using ,@L and BE are significantly higher
than Br too. Additionally we also notice that bandwidths selected
using l%AIC and /;:BIC still perform poorly, which was noted in Chapter
5. The recommended method for selecting a bandwidth, using kv
works well as before, and we see that hcy has improved slightly in this
simulation study compared to Section 5.3.

It is possible to gain more insight into these estimators from the
boxplots in Figure 26. As previously mentioned, hcy can perform quite
well most of the time, especially when the effects of the boundary are
not too severe. However we notice from the boxplot that there are
several outliers corresponding to large approximation errors resulting
most likely from errors at the boundary caused by remote data points.
On the other hand, /:JCV is more stable and does not have such large
outliers. This is a key reason why we propose using koy to select the
bandwidth.

Similar conclusions can also be made from the boxplots of portfolio

returns in Figure 27. For example, we see that the realised returns are
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more concentrated around the target rate § = 1% when B, and B; are
used, and more dispersed if Bp is used.

In summary, we can confirm the key conclusions made in previous
chapters also hold in the context for covariance matrix estimation and
portfolio allocation. In particular, for the estimation procedure in
Section 6.2, we recommend using ,@ = ,@L in Step 1 and a nearest
neighbour bandwidth A (z) with k selected by cross validation in Step
2. These choices will be used in the Section 6.4.2, as well as in the real

data analysis in Chapter 7.
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Table 6.1: Performance of 3 and &(XT3)
E[D,] SDD] E[Ds] SDID,)

Bz 059 045 041  0.19
haic B, 001 001 029  0.09
Br 0.0l 00l 029  0.09

Bz 059 045 049  0.27
Miwe B, 001 001 045  0.28
Br 001 001 045  0.28

) By 059 045 042  0.19
hsie 3, 001 001 031  0.10
Br 001 001 031 0.10

Bz 059 045 049  0.26
Pime B, 001 001 046  0.28
Br 001 001 046  0.28

Bz 059 045 035  0.23
hev B, 001 00l 016  0.10
B: 001 001 016  0.10

Bs 059 045 035  0.23
Miev B, 001 001 015  0.04
Br 0.0l 00l 015  0.04

For the simulation study in Section 6.4.1, this table shows the mean

~

and standard deviation of relative error metrics D1 = A(B) and
Dy = A(®(X,,8)). The first column shows the choice of data driven
bandwidth hy and the second column shows the choice of estimator for

B.
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Table 6.2: Performance of cov(Y,, 1 |F,) !

E[Ds] SD[Ds] E[Ds] SD[D4] E[Ds] SD[Ds]

) Br 049 033 032 013 018  0.04
haic @, 018 003 016 002 017  0.04
Br 018 003 016 002 017  0.04

Br 08 021 048 006 018  0.05

hac Bp 079 013 045 004 018  0.05
B 079 013 045 004 018  0.05

) Br 051 033 033 013 018  0.04
heic g, 020 004 018 002 017  0.04
Br 020 004 018 002 017  0.04

Br 089 021 048 006 018 0.5
Mige B, 080 013 046 004 018  0.05
B 08 013 046 004 018  0.05

) Br 040 034 027 015 017  0.04
hov g, 010 002 011 003 017  0.04
Br 010 002 011 003 017  0.04

Br 038 034 02 015 017  0.04

Miew B, 010 002 011 002 017  0.04
Br 010 002 011 002 017  0.04

For the simulation study in Section 6.4.1,

this table shows the

mean and standard deviation of relative error metrics D
A(Eo,n—l-l); D4 = A(@(Yn+1|.rn>_l7COV(Yn_;,_l'.Fn)_l) (ITLd D5

~

e(E(Yni1|Fn), E(Yni1|Fn)). The first column shows the choice of data
driven bandwidth ho and the second column shows the choice of esti-

mator for 3.

90



Table 6.3: Performance of w

E[R(w))] SD[R(w))] SR[R(W)]

) Bz 1.10 0.65 1.7
haic 3, 1.13 0.47 2.4
Bt 1.13 0.47 2.4
Bz 1.02 0.81 1.3
Pime B, 1.01 0.77 1.3
Bt 1.01 0.77 1.3
) Bs 111 0.66 1.7
heic 3, 1.14 0.49 2.4
Bt 1.15 0.49 2.4
Bs  1.02 0.81 1.3
Miwe B, 101 0.78 1.3
Br 101 0.78 1.3
) Bz 1.00 0.62 1.6
hov B, 1.01 0.41 2.5
B:  1.01 0.41 2.5
Bs 098 0.62 1.6
Miew B 0.99 0.40 2.5
B:  0.99 0.40 2.5

For the simulation study in Section 6.4.1, this table shows the mean and
standard deviation of the portfolio returns R(w), along with the Sharpe
ratio SR[R(W)]. The first column shows the choice of data driven
bandwidth hy and the second column shows the choice of estimator for

3.
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Figure 26: Estimation errors of cov(Y,1|F,) ™"
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For the simulation study in Section 6.4.1, this figure shows boxplots
of the error metric A(cov (Yo y1|Fn) ™", cov(Yo|Fa) ") over the 1000
replications, grouped according to the different combinations of hy and

B.
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Figure 27: One-period simple returns
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For the simulation study in Section 6.4.1, this figure shows boxplots
of the one-period returns R(W) over the 1000 replications, grouped ac-
cording to the different combinations of ho and 3. Returns are reported
as percentages.
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6.4.2 Alternative estimators

In this section we compare FACE with some other commonly used es-
timators using simulated data. We generate 1000 datasets from model
(6.1), together with (6.2), using the same simulation settings as Section
6.4.1. We repeat this using the following combinations of n and p,:
{n = 1000, p, = 50}, {n = 1000, p, = 100}, {n = 2000, p, = 50},
and {n = 2000, p, = 100}.

We shall use 8 = By, and a nearest neighbour bandwidth h;(z)
with % selected by cross validation to estimate g(-) and ®(-), and
denote our proposed estimators, based on the dynamic structure, by
SPACE = cov(Y,41|Fn) and Wgacg = W as described in Section 6.2 and
Section 6.3 respectively.

An alternative approach to estimating cov(Y,,11|F,) is to simply

ignore the dynamic structure and use the sample covariance matrix
Soam = (0 — 1YY" = {n(n — 1)} 'Y11TYT

where Y = (Y7,---,Y,). We can use the sample mean and Ay in
Markowitz’s formula (see Section 6.3) to form an estimated portfolio
allocation which we denote by wWgan.

In a similar way, one can ignore the dynamic structure, but use
a factor model whereby the coefficients are assumed constant. Still
using the ¢ = 4 factors, we explore the covariance matrix estimator
based the linear factor model explored by Fan et al. (2008a), which
was summarized in the literature review in Section 2.3. We denoted
this estimator by ﬁ)FAN, and its corresponding estimated portfolio al-
location by Wgan.
and 3L

in terms of A(X 17 cov(Y,11]F,) 1) as well as their realised portfolio

In Table 6.4, we make a comparison of EA]F_;CE, EAJ;SM

-

returns and Sharpe ratios. It is easy to see that ﬁ];AlCE greatly outper-

94



forms =1 and 371

SAM an- A more graphical and easier way of comparing

the three estimators is given in Figure 28, which shows how the relative
errors are distributed across the 1000 replications for each combination
of n and p,,. The crucial point here, is that if one ignores the dynamic
structure, and uses f]g L, and EA]F’[SN, then the approximation errors are
strikingly large. However, we see that by taking into account the dy-
namic structure, by using 31 we can achieve a much better quality
of estimation.

-1

We also see that when p, increases, but n stays fixed, that ﬁ)s Kt

suffers from increased errors due to an increase in number of param-
eters to estimate. Indeed, this is a well known fact about the sample
covariance matrix which this simulation study has verified. However,
the vital point is that increasing p, does not worsen the estimation

-1

acps Since the proposed dynamic structure successfully

quality of 3
reduces the dimension.

These observations can also be seen by the fact that the Sharpe
ratios SR(Wgacg) are notably higher than SR(Wgan) and SR(Wgan)
for all combinations of n and p,. Finally, we also remark that the
portfolio returns resulted from wWgacg are relatively closely distributed
around the target rate 6 = 1% whereas wgay and Wgan have returns

which are more dispersed.
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Table 6.4: Comparison of ﬁ]FACE, ﬁ]SAM and SFAN

n = 1000, n =1000, n =2000, = = 2000,

Prn = 50 pn = 100 Pn = 50 pn = 100
FACE 0.11 0.11 0.08 0.07
E[D] SAM 0.29 0.40 0.23 0.28
FAN 0.61 0.61 0.61 0.61
FACE 0.02 0.01 0.01 0.01
SD[D] SAM 0.01 0.01 0.01 0.01
FAN 0.01 0.01 0.01 0.01
FACE 0.99 1.01 1.03 1.03
E[R(W)] SAM 0.96 0.96 1.02 1.02
FAN 0.96 0.96 1.02 1.02
FACE 0.40 0.28 0.39 0.27
SD[R(wW)] sam 1.02 1.03 1.03 1.02
FAN 0.99 0.97 1.02 1.00
FACE 2.5 3.6 2.6 3.8
SR(w) SAM 0.9 0.9 1.0 1.0
FAN 1.0 1.0 1.0 1.0

For the simulation study in Section 6.4.2, this table shows the mean
A —1 ~ —1
and standard deviation of D = A(X cov(Yui1|Fn)™) for ¥~ =

A1

A1 ~A—1 .

YeacEs Ssan, and Xpan, along with the portfolio returns R(w), for
WFACE; WsaM, and Wpan. The results are grouped according to different
combinations of n and p,, and Sharpe ratios are also recorded in the

final three rows.
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o1 o1 -1
Figure 28: Comparison of X, p, gy and g,y
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For the simulation study 1in Section 6.4.2, this figure shows

boxplots over the 1000 replications of relative error metrics
1 ~ —1 1

~—1 ] ~— ~—
A(E ,COV(YnJ,_l‘.Fn)_l) f07’ Z - EFACE7 ZSAM’ and EFAN' The re-
sults are grouped according to different combinations of n and p,.
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Figure 29: Comparison of Wracg, Wsam and Wean
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For the simulation study in Section 6.4.2, this figure shows boxplots
over the 1000 replications of one-period simple returns R(W) for w =
WFACE, Wsam, and Wran. The results are grouped according to different
combinations of n and p,.
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7 Real Data Analysis

In this chapter we are going to apply the dynamic structure for co-
variance matrices to four real datasets. We compare Wpacy with the
allocation based on the sample covariance matrix (denoted by Wgsan),
and the allocation proposed by Fan, Fan and Lv (2008) (denoted by

Wran ), which were described in Section 6.4.2.

7.1 Description of datasets

In this section, we provide a brief description of the real datasets
which we use to compare the proposed methodology. All data can be
freely downloaded from Kenneth French’s website http://mba. tuck.
dartmouth.edu/pages/faculty/ken.french/data_library.html and
was accessed on 2nd April 2015.

The observable factors w14, 224 and 3, are taken to be the (daily)
market, size and value factors respectively from the Fama-French three-
factor model, as described in Table 7.1. The response variable Y; is
chosen to be (daily) simple returns from one of four datasets, which
we shall separately analyse, minus the risk-free rate. The risk-free rate
is taken to be the one-month Treasury bill rate and is also included
on Kenneth French’s website. The labeling along with a brief descrip-
tion can be found in Table 7.2. It is important to test the proposed
methodology, Wracg, on multiple datasets and across such a wide time
period because in some periods, any trading strategy may perform well
or poorly simply due to chance alone. By using twenty years (approxi-
mately 5000 trading days) worth of data, and independently analysing
four datasets, we hope to improve the reliability of our analysis.

There are various advantages of using the (excess) portfolio re-

turns for y,; as opposed to using individual stocks: we avoid having to

99



merge different sources of data; we avoid survivorship bias (where we
only picked companies that did not go bankrupt); and we attempt to
avoid company specific risk. A further benefit is that the data is free
and presented in a spreadsheet format. These results can be indepen-
dently reproduced using the C++, R and Bash source code found on
www. johnleighbox.co.uk.

To have a better idea about what the data is like, we plot the
observations from 3rd January 1995 to 31st December 2014 of the
three factors and the risk-free rate in Figure 30, and the first four
components of Y; (from Dataset 1) in Figure 31 corresponding to the
industrial sectors: Agriculture, Food Products, Candy & Soda, and
Beer & Liquor. The plots show clearly that there are periods of large
volatility around the 2008-2009 financial crisis. We will see Wpacg
performs reasonably well even during that period, whilst wgay and
wpan do not.

We initially focus on Dataset 1 (49 Industry Portfolios) where each
Y+ can be easily interpreted as a portfolio consisting of company shares
from a given industry. To get a better understanding of how certain in-
dustries react to periods of financial instability, we plot the cumulative
returns of some industrial portfolios in Figure 32. For example, during
the collapse of the dot-com bubble in 1999-2001, we see that technology
related industry portfolios, Softw (Computer Software), Chips (Elec-
tronic Equipment) and LabEq (Measuring and Control Equipment) all
suffered significant losses. Also, during the 2008-2009 financial crisis,
financial related industry portfolios, such as Banks (Banking), Insur
(Insurance) and Fin (Trading), experienced large drawdowns. How-
ever, we see that some industry portfolios were only marginally af-
fected, if at all, by both of these periods of financial volatility, such
as: Fun (Entertainment), Beer (Beer & Liquor), Toys (Recreation)

and Smoke (Tobacco Products). This preliminary data analysis shows
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strong motivation for dynamically allocating a portfolio using the pro-

posed methodology.
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Table 7.1: Description of datasets for X,

Ji Name Description

1 Market factor Return on the market minus the risk-free rate

2 Size factor Excess returns of small caps over big caps

3 Value factor Excess returns of value stocks over growth stocks

This table gives name of factor j, corresponding to x;, and a brief
description.

Table 7.2: Description of datasets for Y,

7 Name Brief description DPn
Each NYSE, AMEX, and NASDAQ
1 49 Industry stock is assigned to one of 49 industry 49
Portfolios portfolios based on its four-digit
Compustat SIC code.
100 Portfolios Intel'rsectlon of 10 pQrtfollos formed
: on size (market equity, ME) and 10
2 Formed on Size and . . 97
Book-to. Market portfolios formed on the ratio of book
equity to market equity (BE/ME).
100 Portfolios Intersection of 10 portfolios formed
3 Formed on Size on size (market equity, ME) and 10 99
and Investment portfolios formed on investment (Inv).
100 Portfolios Intersection of 10 portfolios formed
4 Formed on Size on size (market equity, ME) and 10 99

and Operating
Profitability

portfolios formed on profitability

(oP).

This table gives the name of ‘Dataset 7’ followed by a brief description,
quoted from Kenneth French’s website. The fourth column is the value
Pn ONCE We Temove components containing missing values.
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Table 7.3: Description of the 49 industry portfolios

k Yk t Industry name k Yk t Industry name

1 Agric  Agriculture 26 Guns Defense

2 Food Food Products 27 Gold Precious Metals

3 Soda Candy & Soda 28 Mines Non-Metallic & Industrial
Metal Mining

4 Beer Beer & Liquor 29 Coal Coal

5 Smoke  Tobacco Products 30 0il Petroleum and Natural
Gas

6 Toys Recreation 31 Util Utilities

7 Fun Entertainment 32 Telcm Communication

8 Books Printing & Publishing 33 PerSv  Personal Services

9 Hshld Consumer Goods 34 BusSv  Business Services

10 Clths  Apparel 35 Hardw Computers

11 Hlth Healthcare 36 Softw  Computer Software

12 MedEq Medical Equipment 37 Chips Electronic Equipment

13 Drugs Pharmaceutical Products 38 LabEq Measuring and Control
Equipment

14 Chems Chemicals 39 Paper Business Supplies

15 Rubbr  Rubber & Plastic 40 Boxes  Shipping Containers

Products

16 Txtls  Textiles 41 Trans  Transportation

17 B1dMt Construction Materials 42 Whlsl  Wholesale

18 Cnstr  Construction 43 Rtail Retail

19 Steel  Steel Works Etc 44 Meals Restaurants, Hotels,
Motels

20 FabPr Fabricated Products 45 Banks Banking

21 Mach Machinery 46 Insur Insurance

22 ElcEq Electrical Equipment 47 R1Est Real Estate

23 Autos  Automobiles and Trucks 48 Fin Trading

24 Aero Aircraft 49 Other Almost Nothing

25 Ships  Shipbuilding, Railroad

Equipment

This table gives the labelling and a brief description of industrial sectors
which form the 49 Industry Portfolios dataset. Precise details of their

construction are given on Kenneth French’s website.
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Figure 30: Returns plot of factors and risk free rate
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Figure 31: Returns plots of vy, -+ ,ys:
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Figure 32: Comparison of industrial portfolios
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7.2 A trading strategy example

In this section, we compare the three portfolio allocations, (Wgack,
wgan and Wray), along with the market portfolio, year by year from
Jan 3rd 1995 to Dec 31st 2014 using a simple trading strategy. For each
year we trade on each trading day, which is approximately 7" = 252
trading days per year. At the beginning of each year we assume we have
an initial balance of £100. Although this initial choice is arbitrary,
it is a useful way of comparing the performance during the course
of a year. We assume no transaction costs, allow for short selling,
and assume that all possible portfolio allocations are attainable. Our
trading strategy consists of forming a portfolio allocation w the end of
each trading day and holding it until the end of the next trading day.
Between day t — 1 and day t, we obtain the portfolio return
Ry(W) =w"Y; + Ry,

where W is formed based on (X" ;, V;'.), j =1, ---, n, for some
look-back integer n, and Ry, is the risk-free rate. In this section, we
set n = 500 and § = 1%.

We use Dataset 1 (49 Industry Portfolios) to demonstrate how the
trading strategy works. We plot the balances at the end of each trading
day over the course of each year in Figures 33 - 37. From these figures
alone, it is clear that wpacg performs significantly better than the
other three in terms of cumulative return.

We remark that although Wpacg, Wsam and wgan are all con-
structed based on Markowitz’s formula, the difference between them
lies in the way to estimate the covariance matrix of returns, which
appears in Markowitz’s formula. Both wgay and wean do not take

into account the dynamic feature of the covariance matrix in their es-
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timation, but wgacg does. This is the fundamental reason why Wgacg
performs significantly better than wgay and wean.

One may argue that if wgan and wWgan used fewer observations
in their moving window to estimate the covariance matrix they would
start to take the dynamic feature into account, potentially improving
their performance. This issue is addressed in Section 7.4 when we
explore alternative choices for n. We will see that even if wgay and
wran only use the observations in a carefully chosen moving window,
wrack still outperforms them.

To have a tangible idea about whether the covariance matrix is
dynamic or not, we plot the estimated intercept and coefficients of
x14, Top and wsy, interpreted as the impact of the factors, for each
of the first four components of Y; in Figure 38. One can see that
these coefficients are dynamic rather than constant, which implies the
covariance matrix is also dynamic.

It is interesting to have a closer look at the performances of the
four strategies in the volatile time period 2007-2009 during which the
financial crisis took place (see Figure 36). During 2007, WracE, Wsam
and wran all perform reasonably well, with Wgacg slightly better. The
market does not make much profit, and is beaten by the other three. In
2008, wracg continuously does well whilst the other three do not make
profit at all. In 2009, although Wgacg does not do very well during
some time periods, it adapts to the market change quickly and almost
breaks even. The reason that wpacg can adapt to market change
quickly is because it takes into account the dynamic feature of the
covariance matrix of returns. On the other hand, both Wgay and
wran do very poorly, and in fact they almost lose all their money at
the end of the year. In 2009, the market performs best, but still with
very little profit.

A similar incident occured during the beginning of 2001, around
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the time of the dot-com bubble bursting. We see that wgay and Wean
suffered huge losses right at the start. Although Wgacg also suffered
some losses at the start, it recovered by the end of the year with an

overall annual return of 40%.
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Figure 33: Daily balance during 1995-1998
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Figure 34: Daily balance during 1999-2002
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Figure 35: Daily balance during 2003-2006
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Figure 36: Daily balance during 2007-2010
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Figure 37: Daily balance during 2011-2014
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Figure 38: Coefficient functions of industry portfolios 1-4
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This figure shows the estimated intercept and coefficient functions for
the market, size and value factors, for the first four industry portfolios
(Agriculture, Food Products, Candy & Soda, and Beer & Liquor) on
the first day of trading.

115



7.3 Annualized Sharpe Ratio

In Section 7.2, we saw evidence to suggest that the proposed portfolio
allocation Wpacr can outperform wgay and weany well when applied
to Dataset 1. Assessing the performance of any trading strategy can
be accurately, and more concisely, measured by using the Sharpe ratio,
annualized to take into account the number of trading days in the year.
With the realised returns Ry (W), t =1, ---, T, we can calculate the

annualized Sharpe ratio

where

and Ry, is the risk-free rate on day t.
Another commonly used measure that practitioners use to measure

the risk of a trading strategy is the maximum drawdown metric

MDD(w) = max [maxﬁ(s) - §(t)}
t€[0,T] | s€0,t]

where £(t) is the cumulative return process. This can be intuitively
understood as the maximum historic decline over the period of interest,
and is a useful way of measuring the risk associated with a portfolio
allocation.

Using the same trading strategy as described in Section 7.2, and
still using n = 500 with 6 = 1%, we compute SR(w) and MDD(w)

116



for each year from 1995 to 2014 and for each dataset given in Table
7.2. From the results given in Figure 39, we see that the Sharpe ratios
for wpacg are consistently higher than that of wgay and Wran. Also,
from Figure 40 we see that the maximum drawdowns for Wpacg are
consistently smaller than those of wgam and wran. In a lot of cases,
Wrace’s maximum drawdowns are similar to that of the market, but
with much higher Sharpe ratios. These conclusions can all be equally
found for Datasets 1-4, and hence provides more convincing evidence
to support the conclusions from the previous section and the need for
the proposed dynamic structure to estimate covariance matrices.

The striking effects of the financial crisis in 2008-2009 and the dot-
com bubble bursting in the early 2000’s can be best illustrated by
looking at the maximum drawdowns. We see in both time periods the
allocations wran and wgay suffered huge losses in these time periods,
whereas wpacg did not. In 2009, across all four datasets, the Sharpe
ratios for wpan and wgay range from 0 to -3 whereas with Wgacg they
range from 0 to 2. This evidence suggests how Wgacg is more robust
to areas of financial volatility thanks to the way it adapts to market

change.
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Figure 39: Sharpe ratios with n = 500 and ¢ = 1.0%.
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Figure 40: Maximum Drawdowns with n = 500 and 6 = 1.0%.
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7.4 Sensitivity to choice of sample size

A crucial question is whether the performance Wgacg, in terms of (cu-
mulative) portfolio returns, is sensitive to the choice of sample size n
used. In addition to this, one may argue that if wgay and Wran used
fewer observations in their moving window to estimate the covariance
matrix they would start to take the dynamic feature into account,
potentially improving their performance.

In this section, we repeat the backtesting experiment described in
Section 7.2 using n = 300 and n = 100 to estimate the covariance
matrix. This way, the portfolios formed would only take into account
the most recent observations, and would react better to sudden changes
in the market. In the same way as before, we trade on each trading
day and assume an initial balance of £100 at the beginning of each
year. However, for brevity, we only report the balance at the end of
the last trading day of each year. This can also be interpreted as a
cumulative return throughout the year. We do this, independently,
for Datasets 1-4 and report the results in Tables 7.4 - 7.7 respectively.
By looking at the balance at the end of each year, we can see that
wracg usually significantly outperforms wgan and wWpan, regardless of
whether n = 100, 300 or 500 is used.

By focusing on the effects of the financial crash in 2009, we do
indeed see a small improvement for wran when a smaller sample size
is used. For example, in Dataset 1, the final balances of Wgpan are
£68, £5 and £3, when n = 100, 300 and 500 respectively. Similarly,
for wgan, they are £50, £9 and £4. Indeed, although there is an
improvement when n = 100, the losses are still devastating due to the
poor estimation of the covariance matrix. On the other hand, Wgack
earns £94, £189 and £149 as a consequence of always acknowledging

the dynamic feature. Datasets 2-4 also tell a similar story in that
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wrace performs well regardless of n. In these datasets, we also see
multiple occurrences of wgay losing all its money if too small a sample
size is chosen.

The annualized Sharpe ratios for each dataset can be found in
Figure 41 and Figure 42 for n = 100 and n = 300 respectively, and
very similar conclusions can be made.

This evidence suggests that even if one carefully selects a sample
size, attempting to capture the dynamics of the market, both wgan
and Wpan still perform poorly relative to Wpacg. Further to this, we
see that Wgacg is fairly robust to the choice of n. This is important

because it shows Wgacg did not perform well due to chance alone.
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Table 7.4: Balances for Dataset 1 with different n

n = 100 n = 300 n = 500

FACE SAM FAN FACE SAM FAN FACE SAM FAN
1995 229 172 222 o954 275 355 428 375 475
1996 163 102 98 193 57 75 228 102 121
1997 177 138 155 298 143 205 232 94 125
1998 175 79 135 320 339 303 420 361 285
1999 120 59 77 253 115 167 332 114 131
2000 176 101 132 253 157 122 163 55 43
2001 128 53 60 166 50 49 140 10 6
2002 162 74 69 224 149 143 206 215 180
2003 162 57 99 135 41 47 213 54 75
2004 111 67 95 131 54 56 179 74 62
2005 183 200 171 186 161 153 265 293 236
2006 149 119 122 184 114 96 151 103 77
2007 236 191 236 398 319 339 563 472 590
2008 142 73 105 201 80 117 356 38 33
2009 149 50 68 189 9 b} 94 4 3
2010 129 109 102 107 172 148 153 224 143
2011 180 110 96 192 94 126 284 134 161
2012 159 118 96 125 62 85 148 72 69
2013 233 197 229 417 180 277 393 229 371
2014 161 138 137 158 119 137 166 118 186

Year

For Dataset 1, this table shows a comparison of Wpace, Wsam and
WraAN S annual balance (rounded to the nearest pound), assuming an
initial balance of £100 at the start of each year, for sample sizes n =
100, 300, 500.
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Table 7.5: Balances for Dataset 2 with different n

n = 100 n = 300 n = 500

FACE SAM FAN FACE SAM FAN FACE SAM FAN
1995 144 81 106 150 114 91 216 124 113
1996 197 237 162 255 195 161 291 201 171
1997 185 121 164 433 292 321 457 233 274
1998 196 83 92 194 91 115 190 120 129
1999 184 6 107 356 131 136 471 89 71
2000 47 4 229 898 188 263 991 98 94
2001 173 26 81 327 8 92 367 134 133
2002 280 9 117 o976 255 294 477 207 349
2003 339 109 212 o018 82 118 608 153 116
2004 311 71 142 260 165 111 285 126 68
2005 179 7 107 345 206 174 398 164 149
2006 181 41 139 352 133 146 483 129 132
2007 321 466 213 531 165 143 657 134 181
2008 225 3 155 393 169 364 602 206 517
2009 220 95 115 318 76 49 2719 36 53
2010 193 205 98 186 66 111 208 95 &9
2011 153 130 95 232 69 114 201 84 98
2012 109 21 74 134 50 44 170 55 30
2013 166 54 104 196 118 92 160 55 38
2014 170 96 159 154 129 99 149 117 65

Year

For Dataset 2, this table shows a comparison of Wpace, Wsam and
Wran s annual balance (rounded to the nearest pound), assuming an
initial balance of £100 at the start of each year, for sample sizes n =
100, 300, 500.
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Table 7.6: Balances for Dataset 3 with different n

n = 100 n = 300 n = 500

FACE SAM FAN FACE SAM FAN FACE SAM FAN
1995 159 0 99 185 104 84 217 130 100
1996 191 34 167 284 142 141 261 83 78
1997 183 107 143 436 156 208 584 218 195
1998 159 8 112 164 103 152 185 135 238
1999 162 2 96 326 134 107 629 131 114
2000 386 17 229 746 326 436 1151 405 318
2001 183 9 87 334 143 127 384 131 162
2002 233 10 82 434 205 231 305 186 315
2003 348 144 229 o7l 155 178 676 202 160
2004 266 127 174 286 137 90 290 129 90
2005 178 16 104 373 215 200 352 186 146
2006 224 385 148 429 166 122 712 198 168
2007 307 97 181 569 109 142 728 107 161
2008 180 0 82 410 96 173 505 84 129
2009 198 34 9 207 65 35 194 87 41
2010 190 0 119 275 142 161 241 183 191
2011 206 11 145 280 219 201 267 206 182
2012 132 295 87 183 200 107 203 170 129
2013 149 18 108 192 158 126 193 151 118
2014 138 58 116 191 109 109 185 94 91

Year

For Dataset 3, this table shows a comparison of Wpace, Wsam and
Wran s annual balance (rounded to the nearest pound), assuming an
initial balance of £100 at the start of each year, for sample sizes n =
100, 300, 500.

124



Table 7.7: Balances for Dataset 4 with different n

n = 100 n = 300 n = 500
FACE SAM  FAN FACE SAM FAN FACE SAM FAN

Year

1995 117 87 83 130 61 77 129 78 75
1996 194 1144 211 276 186 219 314 191 249
1997 188 15 155 436 165 275 494 245 323
1998 203 6 117 229 94 &4 150 100 98
1999 156 0 129 247 116 181 325 104 163
2000 408 63 231 645 320 302 o043 247 112
2001 180 3 130 279 122 150 365 141 146
2002 255 1 126 431 134 282 274 159 297
2003 343 213 228 436 159 126 504 143 70
2004 265 156 189 293 133 114 303 133 72
2005 202 38 100 364 115 155 427 176 142
2006 158 19 104 304 108 115 396 126 140
2007 269 16 169 322 152 128 443 156 144
2008 179 28 112 363 244 236 482 219 281
2009 149 0 71 183 31 30 203 38 39
2010 126 18 68 165 57 87 151 72 80
2011 174 385 165 355 128 231 206 157 128
2012 128 3 84 156 64 54 179 8 77
2013 165 138 129 218 136 146 205 103 &6
2014 133 9 115 245 163 133 260 115 &0

For Dataset 4, this table shows a comparison of Face, Sam and
Fan’s annual balance (rounded to the nearest pound), assuming an
wnitial balance of £100 at the start of each year, for sample sizes
n = 100, 300, 500.
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Figure 41: Sharpe ratios with n = 100 and ¢ = 1%
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Figure 42: Sharpe ratios with n = 300 and ¢ = 1%
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7.5 Sensitivity to choice of target return

In previous sections, we have found a significant amount of evidence
for using the proposed dynamic structure. In particular, we saw that
Wrace can outperform wgay and wpan over 20 years worth of data
across four datasets, and that these conclusions hold for different choices
of n. As previously mentioned, the key difference between Wgack,
wsam and wpan lies in the way to estimate the covariance matrix of
returns, which appears in Markowitz’s formula. Another necessary
quantity which appears in Markowitz’s formula is the target return
rate d, which we have previously set equal to 1.0% for simplicity. An
important question is whether the choice of d has any significant effect
on the overall performance of the trading strategy, and this will be the
topic explored in this section.

We remark that a larger choice of § means that an investor would
be willing to take more risk, in exchange for a larger expected return on
the allocated portfolio. This choice can sometimes be thought of as a
personal preference which is specific to the investor or fund, depending
on their risk tolerance and the returns they desire. This, naturally, can
change over time depending on the volatility of the financial markets.

Choosing ¢ is related to the amount of exposure in certain assets,
facilitated by short-selling. In practice, there are limits on how much
one can short-sell, and so many portfolio allocations obtained using
either Wracr, Wsam and wpan could be unattainable in real life. We
ignore this technicality in the interest of keeping things simple, because
it is easy to add further constraints to Markowitz’s formula in order
to restrict short selling. In Section 7.6, we explore an example of this
where we limit the gross exposure of a portfolio. The crucial point, is
that the estimation of covariance matrices is vital to forming a portfolio

allocation regardless of these additional constraints.
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In this section, we explore the sensitivity of Wpacg, Wsanm and
wraNn to the choice of ¢ by repeating the backtesting experiment from
Section 7.2 using & = 0.5% and § = 1.5% in addition to § = 1.0%.
We set n = 500 in order to keep the number of comparisons to a
minimum. For these different target returns, Tables 7.8 - 7.11 show
the balance on the final trading day of each year, assuming an initial
balance of £100 at the start of each year. These results agree with
the conclusions from the previous sections in the sense that Wpacg
performs better than wgay and Wran the vast majority of time in the
20 year period, and across all four datasets. We often see that as o
increases, the cumulative returns resulting from wgacg also increase,
whereas with wgan and Wean they decrease. The reason why wgam
and wpan decrease here is because they are often exposed heavily in
certain assets and do not adapt to market change quickly at all. The
increase in the portfolios volatility, associated with an increase in ¢,
also contributes to this decline. However, we note that Wpacg can also
lose money by an increase in 0, although only relatively small amounts
compared to wgay and Wrayn. For example, during the financial crisis
in 2009 for Dataset 1, Wpacg obtains an annual balances of £101, £94,
and £83 for 6 = 0.5%, 1.0%, and 1.5% respectively. On the other hand,
wsam ended the year with £24, £4, and £1, and wpan with £20, £3,
and £0.

Figure 43 and Figure 44 show annualized Sharpe ratios for o =
0.5% and 1.5% respectively. Comparing these with Figure 39, we still
see that wpacg’s Sharpe ratios are consistently greater than zero and
outperform wgay and Wpan. Since the Sharpe ratio measures the
expected reward to risk tradeoff, it is not too surprising that the plots

for wpacr look fairly similar across each 6.
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Table 7.8: Balances for Dataset 1 with different &

0 =0.5% 0=1% 60 =1.5%
Year
FACE SAM FAN FACE SAM FAN FACE SAM  FAN

1995 233 232 262 428 375 475 755 542 757
1996 163 115 124 228 102 121 304 79 103
1997 157 113 127 232 94 125 327 66 104
1998 198 198 179 420 361 285 856 558 377
1999 169 106 115 332 114 131 622 105 119
2000 137 81 75 163 55 43 182 31 19
2001 130 35 28 140 10 6 147 2 1
2002 144 151 137 206 215 180 287 274 209
2003 183 87 100 213 54 75 398 31 o1
2004 145 103 95 179 74 62 214 47 35
2005 163 172 138 265 293 236 410 443 310
2006 139 117 100 151 103 77 157 82 52
2007 248 235 270 563 472 590 1212 833 1060
2008 180 63 71 356 38 33 635 17 8
2009 101 24 20 94 4 3 83 1 0
2010 121 170 129 153 224 143 189 260 136
2011 193 133 133 284 134 161 396 123 148
2012 128 92 95 148 72 69 163 49 43
2013 227 175 226 393 229 371 650 253 511
2014 146 129 161 166 118 186 176 95 181

For Dataset 1, this table shows a comparison of Wpace, Wsam and
Wran s annual balance (rounded to the nearest pound), assuming an
initial balance of £100 at the start of each year, for target returns
0 =0.5%, 1%, 1.5%. The sample size used was n = 500.
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Table 7.9: Balances for Dataset 2 with different &

0 =0.5% 0=1% 60 =1.5%
Year
FACE SAM FAN FACE SAM FAN FACE SAM  FAN

1995 169 126 122 216 124 113 271 118 101
1996 198 168 157 291 201 171 419 227 174
1997 253 189 204 457 233 274 807 275 352
1998 137 102 107 190 120 129 259 135 148
1999 222 102 100 471 89 71 957 69 43
2000 380 123 128 991 98 94 2481 69 50
2001 210 138 133 367 134 133 626 126 125
2002 216 161 192 477 207 349 1036 257 600
2003 307 156 149 608 153 116 1183 147 86
2004 170 122 93 285 126 68 470 124 47
2005 207 139 128 398 164 149 749 187 166
2006 246 123 125 483 129 132 934 131 135
2007 247 121 130 657 134 181 1717 142 236
2008 195 121 184 602 206 517 1797 317 1250
2009 195 66 82 2719 36 53 391 19 32
2010 146 105 101 208 95 &9 292 82 75
2011 146 100 99 201 84 98 269 66 87
2012 143 86 80 170 55 50 197 33 29
2013 150 92 94 160 55 58 165 32 34
2014 128 114 88 149 117 65 167 112 45

For Dataset 2, this table shows a comparison of Wpace, Wsam and
Wran s annual balance (rounded to the nearest pound), assuming an
initial balance of £100 at the start of each year, for target returns
0 =0.5%, 1%, 1.5%. The sample size used was n = 500.
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Table 7.10: Balances for Dataset 3 with different ¢

5 =0.5% 0 =1% 5 =15%
FACE SAM FAN FACE SAM FAN FACE SAM FAN

1995 168 132 115 217 130 100 2713 124 83
1996 188 108 106 261 83 78 356 61 55
1997 285 181 174 o84 218 195 1164 250 208
1998 130 108 140 185 135 238 255 159 377
1999 255 120 121 629 131 114 1478 131 95
2000 389 253 218 1151 405 318 3285 579 365
2001 225 135 153 384 131 162 639 123 164
2002 179 147 186 305 186 315 o014 228 512
2003 313 174 165 676 202 160 1436 225 151
2004 180 128 109 290 129 90 457 126 71
2005 187 141 126 352 186 146 649 237 161
2006 299 157 145 712 198 168 1653 238 186
2007 244 103 121 728 107 161 2117 104 200
2008 189 79 89 505 84 129 1304 80 163
2009 156 104 69 194 87 41 236 68 22
2010 163 139 153 241 183 191 349 233 224
2011 166 150 140 267 206 182 418 270 221
2012 151 139 119 203 170 129 266 198 133
2013 160 141 127 193 151 118 229 157 107
2014 145 106 104 18 94 91 228 80 75

Year

For Dataset 3, this table shows a comparison of Wpace, Wsam and
Wran s annual balance (rounded to the nearest pound), assuming an
initial balance of £100 at the start of each year, for target returns
0 =0.5%, 1%, 1.5%. The sample size used was n = 500.
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Table 7.11: Balances for Dataset 4 with different ¢

d=0.5% 0=1% 6 =1.5%

FACE SAM FAN FACE SAM FAN FACE SAM FAN

1995 133 102 102 129 78 75 122 57 53
1996 208 165 187 314 191 249 462 211 312
1997 264 191 218 494 245 323 905 301 458
1998 117 94 92 150 100 98 189 103 99
1999 175 107 143 325 104 163 576 90 154
2000 266 190 132 o043 247 112 1072 281 69
2001 230 142 148 365 141 146 566 136 139
2002 180 145 193 274 159 297 410 166 421
2003 266 150 114 504 143 70 937 131 41
2004 184 134 99 303 133 72 488 126 49
2005 205 138 126 427 176 142 863 215 154
2006 221 126 132 396 126 140 693 122 142
2007 209 130 121 443 156 144 911 174 161
2008 174 117 134 482 219 281 1274 365 510
2009 155 69 70 203 38 39 260 20 20
2010 126 92 96 151 72 80 177 54 65
2011 152 135 120 206 157 128 271 168 125
2012 145 105 98 179 8 77 216 66 57
2013 164 118 110 205 103 &6 251 86 64
2014 171 115 97 260 115 &0 380 107 61

Year

For Dataset 4, this table shows a comparison of Wpace, Wsam and
Wran s annual balance (rounded to the nearest pound), assuming an
initial balance of £100 at the start of each year, for target returns
0 =0.5%, 1%, 1.5%. The sample size used was n = 500.
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Figure 43: Sharpe ratios (0 = 0.5%, n = 500)
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Figure 44: Sharpe ratios (0 = 1.5%, n = 500)
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7.6 Gross-exposure constraints

In the thesis so far, we have explored portfolio allocations based on
Markowitz’s formula, which is the solution to the following constrained
optimisation problem

min w'Xw
W

subject tow'1l, =1 and w'pu=9 (7.1)

where 3 is the covariance matrix of excess asset returns and p is
the expected vector of asset returns. As previously mentioned, the
difference between Wracgr, Wsam and Wean is how we estimate 3 and
. It is possible to extend the above optimisation problem to include
additional constraints, and we shall explore one such example in this
section.

Practitioners are often subject to regulations with regards to short
selling and can be under various exposure constraints in order to limit
their leverage. This motivates the following extension to Markowitz’s
constrained optimisation problem

min w'Xw
w

subject to w'l, =1, w u=2¢and |w|, <c (7.2)

where ¢ is some constant which controls the maximum gross exposure
which the optimum portfolio is allowed to have. To intuitively see how
the additional constraint |[w||; < ¢ prevents extreme positions in the
portfolio, we remark that ¢ = 1 means that no short sales are allowed
and ¢ = oo means there is no constraint on short sales. In previous
chapters we have studied the special case ¢ = oo which is potentially

unrealistic in real life. The total proportions of long and short positions
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are

R P SR (7 P
w 5 and w SR
respectively, since w* + w™ = ||w||, and wt —w™ = 1.

Unlike (7.1), there is not an analytic solution to (7.2) due to the ad-
ditional constraint on gross exposure. This optimisation problem has
been studied previously (see Fan et al., 2008b and Fan et al., 2012)
where it was noted the optimum portfolio allocation can be solved nu-
merically using quadratic programming. For implementation purposes,
we use the quadprog package in R (see Turlach and Weingessel, 2013)
which uses the dual method of Goldfarb and Idnani (1982) and Gold-
farb and Idnani (1983). The solve.QP function numerically solves a

constrained minimisation problem of the form

1
min  -b"Db —d'b (7.3)

suchthat A™b > by (7.4)

where we define the first m., rows of ATb > by to be equalities in-
stead of inequalities. We remark that m., is an integer which is to be
specified in the solve.QP function. One approach for solving this is
to declare a new vector u = (uy,--- ,u,, )" such that u; = |w;| so that

we can impose 1Tu < ¢. To achieve this, we set Meqg = 2 and set
d= Opnxh b= (WT7 uT>T7 bO = (1* 5’ lepn’ lepnolxpn7 _C)T7

A — 1pn><1 H Ipn _Ipn 0 x Ipn Opnxl
Op.x1 Op,x1 Ip, I, I, —1x 1,1

D — 2% Opn XPn
Opn XPn K;Ipn
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for some small &, for example x = 0.1. Then, minimising the objective
function in (7.2) becomes equivalent to

min (WTEW + guTu)

w,u

and the constraints in (7.4) become equivalent to
1'w=1, p'w=4 w+u>0,.,

—wW+u>0,,, u>0,,, —-1'u>-c

We implement the above methodology in a similar way to the pre-
vious sections, over the period from Jan 3rd 1995 to Dec 31st 2014.
At the beginning of each year we still assume we have an initial bal-
ance of £100. However, one should note that occasionally there are
trading days for which there is no solution to (7.2). This would occur,
for example, if there are no possible portfolios which can simultane-
ously expect to reach the target return whilst meeting its leverage
constraints. Hence we make a minor modification to our trading strat-
egy to deal with this problem. If a solution w exists, we form the
portfolio allocation w the end of the trading day and hold it until the
end of the next trading day exactly as before. If, on the other hand,
no solution exists, we simply do not trade and have the zero vector
as the portfolio allocation. In this chapter we set § = 0.5% in order
to increase the chances of finding a solution to (7.2). We apply this
trading strategy using ¢ = 5, 10, and 15 to Datasets 1-4, and report
the balances at the end of the final trading day of each year in Tables
7.12-7.15 respectively.

Compared with the analysis in Section 7.2 to Section 7.5, we see
that wgaym and wpan have made an improvement from the point of

view that they did not lose all their money in any year, like they did
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during 2001 and 2009 in Table 7.4 and Table 7.8. The reason for this
is because the portfolios wgay and wWgran were no longer as heavily
exposed in certain technology related industries (Computer Software,
Electrical Equipment, and Measuring and Control Equipment) and
financial related industries (Banking, Insurance and Trading) which
suffered huge losses due to the dot-com bubble and the financial crisis.
In some cases, especially when ¢ = 5, we note that they did not trade
for some periods of time, which naturally stopped them losing money
in the first place.

Overall, one can see higher end of year balances for wgay and Wean
when the allocations were formed by (7.2) instead of (7.1). This same
phenomenon has also been identified by Jagannathan and Ma (2002),
who explained in more detail why imposing restrictions, such as no-
short sales, can actually outperform Markowitz’s portfolio allocation.
This work was built upon by Fan et al. (2008b) and Fan et al. (2012),
who explained that no-short-sales portfolios can be improved upon
even more by allowing some short positions using (7.2).

Despite these improvements, however, we still do see that Wgacg
had higher returns than both wgay and wpan for the vast majority
of years and across all four datasets. This can perhaps best be seen
from the Sharpe ratio plots given in Figures 45 - 47. Although the gap
in performance is smaller, we see that the Sharpe ratios of Wgacg are
still consistently much greater than zero, whereas wgay and wpay still
suffer from negative Sharpe ratios in a number of time periods due to
the fact that they are failing to adapt to market change.

In order to examine how the leverage associated with these portfolio
allocations varies over time, we plot the end-of-month and end-of-year
total gross exposure ||w||,, for Dataset 1, in Figure 48 and Figure 49
respectively. It is clear that when c is relatively small, such as ¢ = 5, the

allocations consistently use the maximum amount of leverage possible
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in order to reach their target returns. In particular, we see a notable
number of trading days, with ¢ = 5, where wgay and wgan did not
trade at all because no solution to (7.2) could be found. We see that
as ¢ increases to 10 and 15, the total gross exposure for wgan and
wran does not change quickly over time, and they often spend a long
periods of time in heavily exposed positions. On the other hand, Wgacg
constantly changes its exposure, as it adapts to market change by using
the dynamic structure to estimate the covariance matrix. It is precisely
this reason which causes Wracg to outperform wgay and Weay in this

context.
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Table 7.12: Balances for Dataset 1 with ¢ =5, 10, 15.

c=9 c=10 c=15

FACE SAM FAN FACE SAM FAN FACE SAM FAN
1995 179 92 92 231 295 331 223 245 266
1996 136 89 88 161 114 118 163 115 122
1997 174 192 199 151 141 150 155 106 122
1998 199 131 113 194 188 172 193 193 175
1999 183 160 177 169 113 117 169 108 117
2000 133 58 63 138 80 T4 138 80 74
2001 134 53 47 130 35 28 130 35 28
2002 146 124 117 144 151 136 144 151 136
2003 164 146 158 182 98 102 183 87 99
2004 149 108 105 144 111 113 144 110 97
2005 165 214 234 161 174 164 163 169 157
2006 92 64 65 134 109 109 141 111 103
2007 244 277 300 260 256 285 248 238 270
2008 158 55 58 186 65 69 182 64 69
2009 107 46 42 101 29 19 101 25 20
2010 117 143 129 119 175 137 119 170 137
2011 175 109 105 192 138 155 194 134 152
2012 134 124 115 127 79 93 129 85 95
2013 256 397 391 232 259 265 229 190 233
2014 139 157 190 149 145 170 146 136 165

Year

For Dataset 1, this table shows a comparison of the three trading strate-
gies annual balance (rounded to the nearest pound), assuming an initial
balance of £100 at the start of each year, for § = 0.5% and for gross
exposure constraints ¢ = 5, 10, and 15. The sample size used was
n = 500.
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Table 7.13: Balances for Dataset 2 with ¢ =5, 10, 15.

c=9 c=10 c=15

FACE SAM FAN FACE SAM FAN FACE SAM FAN
1995 170 100 100 174 135 133 171 126 121
1996 213 100 100 206 147 146 202 174 161
1997 259 120 121 264 252 244 255 204 211
1998 108 161 155 131 118 118 136 107 108
1999 252 131 138 220 76 89 225 84 100
2000 477 189 175 386 164 136 387 140 131
2001 199 129 139 208 135 133 208 137 133
2002 213 184 188 215 166 191 215 162 191
2003 298 182 186 301 171 153 302 157 148
2004 167 181 178 172 116 102 171 117 92
2005 203 142 135 209 142 129 208 144 133
2006 247 100 100 249 126 128 236 128 121
2007 185 100 100 252 70 76 249 102 130
2008 142 61 59 186 151 176 193 137 190
2009 206 90 91 198 80 80 197 68 &4
2010 151 132 129 149 112 105 150 108 102
2011 122 95 97 133 98 114 142 109 106
2012 124 100 100 126 66 60 141 79 76
2013 158 102 102 156 128 121 152 100 95
2014 113 100 100 133 83 77 131 106 88

Year

For Dataset 2, this table shows a comparison of the three trading strate-
gies annual balance (rounded to the nearest pound), assuming an initial
balance of £100 at the start of each year, for § = 0.5% and for gross
exposure constraints ¢ = 5, 10, and 15. The sample size used was
n = 500.
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Table 7.14: Balances for Dataset 3 with ¢ =5, 10, 15.

c=9 c=10 c=15

FACE SAM FAN FACE SAM FAN FACE SAM FAN
1995 120 100 100 164 137 130 168 130 115
1996 157 100 100 183 119 113 189 124 116
1997 255 100 100 281 181 172 281 172 173
1998 117 269 265 135 150 148 129 120 141
1999 300 154 157 263 122 132 258 128 124
2000 428 440 401 383 284 237 391 249 219
2001 223 160 159 225 138 152 225 136 152
2002 181 170 174 178 151 185 178 150 185
2003 283 219 223 311 175 176 311 168 168
2004 173 127 127 178 122 108 179 129 109
2005 18 87 87 204 131 122 190 128 126
2006 214 100 100 308 144 145 294 152 141
2007 164 100 100 263 134 135 250 115 116
2008 142 100 100 198 108 114 192 91 93
2009 142 100 100 156 8 69 155 92 68
2010 147 106 108 164 145 146 162 145 150
2011 140 87 87 152 146 139 161 148 143
2012 139 100 100 162 161 158 154 135 126
2013 161 101 101 161 115 108 163 139 129
2014 141 100 100 121 84 85 136 103 97

Year

For Dataset 3, this table shows a comparison of the three trading strate-
gies annual balance (rounded to the nearest pound), assuming an initial
balance of £100 at the start of each year, for § = 0.5% and for gross
exposure constraints ¢ = 5, 10, and 15. The sample size used was
n = 500.
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Table 7.15: Balances for Dataset 4 with ¢ =5, 10, 15.

c=9 c=10 c=15

FACE SAM FAN FACE SAM FAN FACE SAM FAN
1995 153 100 100 132 121 113 135 108 101
1996 156 100 100 195 136 144 207 171 186
1997 208 100 100 266 183 185 261 199 215
1998 129 96 96 116 99 94 115 92 92
1999 277 130 153 192 155 160 181 130 155
2000 322 149 130 270 163 128 267 174 130
2001 244 172 168 231 150 148 231 143 148
2002 181 167 179 179 149 193 179 148 193
2003 251 140 134 263 157 122 264 153 115
2004 197 94 93 184 103 86 184 125 97
2005 192 97 97 199 121 114 203 134 127
2006 185 100 100 212 111 110 213 135 136
2007 172 100 100 224 181 169 206 111 108
2008 109 100 100 195 97 114 179 101 125
2009 192 136 138 159 72 76 156 68 72
2010 139 134 135 127 113 104 128 105 101
2011 127 87 87 148 97 99 153 116 114
2012 119 111 111 148 76 76 145 100 96
2013 183 72 72 169 175 169 168 135 122
2014 143 8 83 155 7 T7 168 105 96

Year

For Dataset 4, this table shows a comparison of the three trading strate-
gies annual balance (rounded to the nearest pound), assuming an initial
balance of £100 at the start of each year, for § = 0.5% and for gross
exposure constraints ¢ = 5, 10, and 15. The sample size used was
n = 500.
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Figure 45: Sharpe ratios (¢ = 5)
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Figure 46:

Sharpe ratios (¢ = 10)
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Figure 47:

Sharpe ratios (¢ = 15)
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Figure 48: End-of-month gross exposures
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This figure shows the end-of-month gross exposures ||w||, of the three
portfolio allocations Wpace, Wsanm and Wean for ¢ = 5, 10 and 15 in
the data analysis for Dataset 1 in Section 7.6.
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Figure 49: End-of-year gross exposures
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This figure shows the end-of-year gross exposures ||w||, of the three
portfolio allocations Wpace, Wsanm and Wean for ¢ = 5, 10 and 15 in
the data analysis for Dataset 1 in Section 7.6.
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8 Modification of index

In this chapter we explore one possible way to generalise the proposed
dynamic structure. Recall that the model introduced in this thesis
involves the index X' ;3. One may argue that this could be improved
further if we were to consider more than just the previous trading day
inside the index. We explore a slight modification which accommodates
for this without increasing the number of unknown parameters of 3.
We show, however, that the originally proposed methodology, which
only uses the previous trading day, works best when applied to real
data.

8.1 Model specification

Our model structure can be trivially extended to accommodate more
trading days at a cost of more unknown parameters to estimate. That
is, if an extra d trading days were to be included, the number of un-
known parameters in 3 would increase from ¢ to ¢ x d. However, this
may potentially hinder the estimation performance due to an increase
of variance. In order to make our model more flexible, without increas-
ing the number of unknown parameters, one may consider modifying
the index using a moving average.

As before, we still assume that {(X;,Y;), t = 1,--- ,n} is a time
series where Y; denotes a vector of p,, response variables and X; denotes
a vector of ¢ (observable) factors. Further, we still assume that p,, —
00 as n —» 00, ¢ is fixed, and that {X;, t =1,--- ,n} is a stationary
Markov process. However, by introducing a simple modification to the

index, one may consider

Yi=g(Vi'B) +@(V,'B)Xi +e, [Bl=1 B >0 (8.1)
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where 3, g(-), ®(-), € are as before, and V, = %] 7 X, isa g
dimensional (known) vector depending on some positive integer 7. We
still assume {¢;, t = 1,--- ,n} is independent of {X;, t =1,--- n},

and we further assume that F(e;|{€, : | <t}) = 0 and that
cov(e|{e - 1 <t}) =g, = diag{o7,, -+, 0, ,}

where

m S
2 2 2 _
Ofy = Qo+ E Qi€ T E VejOhp—js =2, M
i=1 j=1

for each k =1,--- ,p, and for some integers m and s.

Note that (8.1) now contains the index V,* 3 as opposed to X", 3.
This has the new interpretation that the coefficient functions are now
depending on the previous n trading days. One can intuitively under-
stand this to mean that the impact of today’s factors X; on today’s
excess returns Y; is an unknown function depending on V; as opposed
to X;_1. The original model proposed in this thesis is the special case
where 7 = 1.

Let F; be the o-algebra generated by {(X;', €l) : [ < t¢}. Assuming
for the moment that 7 is given, and that V; is known to us at time t—1,
it is possible to obtain an expression for the conditional covariance
matrix cov(Y;|F;—1) by taking the conditional covariance of both sides
of (8.1), yielding

cov(YilFir) = B(V,"B)Z,(X,) B (V" B)" + T,

where ¥,(X;_1) = cov(Xy|X;_1). In a similar way, by taking condi-
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tional expectations, we have
B(Yi|Fi-1) = g(Vi' B) + (V" B) B(X|Xi). (82)
As with Section 6.2, the goal is to obtain the substitution estimators
v (Yi|Fin) = (VB (X )@V BT + 20, (83)
and
E(Yi|Fio1) = &(V;"B) + @(V,"B) E(X:| Xi-1). (8.4)

Assuming for the moment that 5 is known, we can estimate 3, g(-),
®(-), 3,(-), and Xy, using identical methodology to that proposed in
Section 6.2 simply by replacing X', 3 with V;*3 inside the index. In
light of the results from previous chapters we estimate 3 using BL and
ho using hy, .

One can consider fixing 7 like we did in the previous chapters of
this thesis. Indeed, we shall see that n = 1, the original model explored
in this thesis, performs significantly better when applied to real data.
However, one may argue that 7 can be chosen using a data driven

approach using a similar cross validation statistic

> [vi— g0 - &)X, (8.5)

t=n—v

where g1 (.) and i(t_l)(-) are the respective estimates of g(-) and
®(-) based on (X!, Y;T), Il =1,---,¢t—1, and where v is a look-back
integer such that v < n—1. We denote (8.5) by CV(k,n) when g~ (")
and i(t_l)(-) are estimated with a nearest neighbour bandwidth Ay(+)
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and where V, = %} Y7 Xi—r. We choose k and 7 by
(kov, fov) = argmin{CV (k,n) } (8.6)
n

In order to implement this minimisation we employ a two dimensional

grid search algorithm:

(Step 1)  Choose a number of candidate nearest neighbour band-
widths, for example: k € IC where £ = {1,--- ,n}.

(Step 2)  Choose a number of candidate values of 7, for example:
n € A where A= {1,---, A} for some integer Ay.

(Step 3)  Compute CV(k,n) for each k € K and n € A. Choose
(k,7) = argmin{CV (k,7n)}.
A

ke ,ne

The above grid search approach has the drawback of an increase in
computational time compared to the one dimensional grid search in
Section 5.2.

8.2 Comparison with the original approach

In this section, we examine whether one can improve upon Wgacg
by choosing a portfolio allocation using the model structure intro-
duced in Section 8.1. We denote by w(7) the portfolio allocation using
Markowitz’s formula, described in Section 6.3, where (8.3) and (8.4)
use parameter 1 in V;. Hence, the special case w(1) corresponds to
Wpace. We fix § = 1.0% and n = 500.
We compare the portfolio allocations, w(1), w(2), w(3), and W (7jcv),

year by year from Jan 3rd 1995 to Dec 31st 2014 using the same trading
strategy which we used in Section 7.2. We only present the results for

Dataset 1 for brevity, but similar conclusions can be made for the other
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three. For each of the portfolio allocations, the end of year balances
are reported in Table 8.1 and plots of the Sharpe ratios and maximum
drawdowns in Figure 50. As one would expect, there are some sim-
ilarities between their performances. But overall, it is clear that the
originally proposed model, w(1), outperforms w(2), w(3), and w(7cv)
for the vast majority of years.

We remark that although w(2), w(3), and w(7)cv) do perform quite
well in some years, and actually slightly beating w(1) occasionally,
there are multiple occurrences of significant losses during the years
2000, 2001, 2006, 2009 and 2012 in Table 8.1. These losses are not
as severe as Wsanm's O Wpan's, however. The crucial point is that all
these losses could have been avoided simply by using wWgacg instead.
The only year that wpacg slightly lost money was during 2009, as we
remarked upon in Section 7.2, and the remaining 19 years all yielded
substantial profits.

These conclusions can be also seen by the large maximum draw-
downs of w(2), w(3), and W(7jcv), implying that these allocations
carry significantly larger risk than w(1). Further to this, there are
multiple instances of low and negative Sharpe ratios of w(2), w(3),
and W(7cy) during 2000, 2001, 2006, 2009, 2010 and 2012. Also, for
the vast majority of time, the Sharpe ratios of w(1) are much larger
than the modified index approaches. It is for these reasons, and the
conclusions from the real data analysis in Chapter 7, that we recom-

mend only using the originally proposed model W (1) = Wgack.
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Table 8.1: End of year balances using modified index

w(l) w(2) w(3) W(jov) Wsam Wran

1995 428 406 419 384 375 475
1996 228 201 133 119 102 121
1997 232 169 151 214 94 125
1998 420 1003 678 368 361 285
1999 332 298 303 166 114 131
2000 163 51 66 60 55 43
2001 140 36 43 62 10 6

2002 206 274 238 177 215 180
2003 273 184 172 184 54 75
2004 179 231 235 256 74 62
2005 265 161 142 126 293 236
2006 151 74 103 112 103 77
2007 563 598 342 445 472 590
2008 356 219 226 247 38 33
2009 94 95 63 121 4 3

2010 153 109 84 104 224 143
2011 284 107 159 125 134 161
2012 148 82 87 97 72 69
2013 393 169 251 250 229 371
2014 166 119 116 182 118 186

Using Dataset 1 from Chapter 7, we apply the identical trading strategy
as before but using the portfolio allocations w(1), w(2), w(3), and
w(fcy) which use the modified index approach. The allocation w(1)
is equivalent to Wpacg. This table shows the balance at the end of the

final trading day of each year for each trading strategy.
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Figure 50: Comparison of w(1), w(2), w(3), and w(7jcv)

Sharpe Ratios

1995 1997 1999 2001 2003 2005 2007 2009 2011 2013

Maximum Drawdown

1995 1997 1999 2001 2003 2005 2007 2009 2011 2013

—_ W) - W@ w3 - Wfiey)

Using Dataset 1 from Chapter 7, we apply the identical trading strategy
as before but using the portfolio allocations w(1), w(2), w(3), and
w(fcy) which use the modified index approach. The allocation w(1)
is equivalent to Wracg. These figures show the Sharpe ratios and the
mazimum drawdowns for each year.
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9 Conclusions and future work

In this chapter we shall outline the main conclusions from this thesis

and suggest a possibility for future work using a pursuit of homogene-

ity.

9.1 Conclusions

In Chapter 3 we explored a simplification of our dynamic structure
related to, but slightly different, to an adaptive varying coefficient
linear model. As a by product of this thesis, the proposed methodology
was shown to have applications outside the field of covariance matrix
estimation and portfolio allocation since it can be directly applied to
adaptive varying coeflicient models. We showed extensive numerical
evidence to suggest that our proposed methodology for estimating (3
outperforms the method introduced in Fan et al. (2003).

We introduced a multivariate factor model in Chapter 4 and ex-
plored the estimation of 8 using various extensions of the univariate
case: BF, BL and BE- Through simulation studies we found that the
performance of BL and BE are both significantly better than BF We
also recommended choosing ,BL over BE since it is slightly more robust
to the initial value used in the iterative estimation procedure and faster
to compute.

A discussion on bandwidth selection was given in Chapter 5. We
saw that the choice of bandwidth is not crucial for estimating 3 as
long as it is within a reasonable range. Since bandwidth selection is
a computationally expensive task, we recommended only carrying out
bandwidth selection on hs, used in the nonparametric estimation of
g(-) and ®(-). We explored various data driven bandwidth selectors,

implemented using a grid search approach, and found numerical evi-
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dence via a simulation study to suggest using cross validation using a
nearest neighbour bandwidth.

In Chapter 6 we built upon the work of previous chapters by us-
ing the methodology for estimating 3, g(-) and ®(-) to estimate the
(conditional) covariance matrix. We introduced methodology for es-
timating the idiosyncratic covariance matrix ¥, and the conditional
covariance matrix 3,(-). Further, we saw how a simple modification of
Markowitz’s formula can be used to dynamically allocate a portfolio.
Through a simulated example, we saw that ﬁ]SAM or ﬁ)FAN can suffer
from large approximation error since they ignore the dynamic struc-
ture. On the other hand, the proposed estimator ﬁ]FACE is shown to
perform much better, both in terms of the approximation error of esti-
mating the covariance matrix and in terms of the Sharpe ratio related
to the estimated portfolio allocation.

A numerical example using real data was presented in Chapter 7.
To compare the proposed (dynamic) estimator Xpack with (constant)
estimators 533 AM OF SFAN, we looked at a simple trading strategy based
on Markowitz’s formula. We separately analysed four real datasets,
each consisting of approximately 5000 trading days worth of daily re-
turns, and showed that performance of portfolio allocations resulting
from ﬁ]FACE significantly outperforms both ﬁ]SAM and f]FAN. This can
be seen both in terms of the balance of the trading strategy and the
Sharpe ratio of returns. We saw evidence to suggest that these same
conclusions hold true for a variety of sample sizes n. This suggests
that even if f]SAM and ﬁ]FAN only used the observations in a carefully
chosen moving window, ﬁ)FACE still outperforms them. Finally, we im-
posed an additional constraint to Markowitz’s optimisation problem
relating to gross exposure constraints, and showed that the Sharpe ra-
tios of ﬁ)FACE still dominates ﬁ)SAM or ﬁ)FAN. Indeed, there are many

other constraints and similar optimisation problems investors may use
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to choose a portfolio allocation. However finding a good estimator of
the covariance matrix is crucial, and SipacE can equally be applied to
these problems in a similar way.

A generalisation of the proposed model was introduced in Chap-
ter 8 regarding a modification of index X! ;3. A natural question is
whether an improvement could be made to ﬁ]FACE if we were to con-
sider more than the previous trading day inside this index by using
a moving average. We showed, however, that it is optimal to simply
use the previous trading day when applied to real data. This provided

additional evidence for using the originally proposed estimator S rAcE

9.2 Homogeneity pursuit

Throughout the thesis, we assumed a model structure of the form

Yt = g(X118) + X aw (XD 18) + s 1Bl =1, Bi>0. (9.1)

There are many ways in which this could possibly be extended, however
we offer one suggestion that could be of particular interest in future
work. In order to make (9.1) more flexible, one may naively consider

assuming

Ykt = 9k(X218e) + X (X, 8,) + ey 1Bl =1, Bra >0
(9.2)

where B, = (Br1,-,Bkq)" for k = 1,--+ p,. In (9.2), estimation
of each 3, can be achieved using univariate methodology introduced
in Chapter 3. On the one hand, this is advantageous because we no
longer assume every asset shares the same 3, which may not be true
in reality. On the other hand, due to an increase in the number of

unknown parameters to estimate, the estimation may suffer from a
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significant increase in variance. In reality it is likely that several assets,
such as those from the same industrial sectors, will share the same (3.

By taking a pursuit of homogeneity, one can assume
Ukt = ge(Xo18) + X an(X,51Be) + ens (9.3)

1Bl =1, Bri >0, By=pp forallke B,

where it is assumed a partition of {1, ---  p,}, denoted as B = (By, - , Bg)
exists, and that 3 B, I8 the common vector shared by all indices in B;.

We assume that K is some integer between 1 and p,, with the (ex-
treme) special cases K = 1 and K = p, corresponding to (9.1) and
(9.2) respectively.

If one has additional (prior) information about each asset, such as
their industrial sectors, it is possible to choose B manually. Alterna-
tively, the partition B, and its size K, can also be estimated using a
data driven approach. Once B and its size K has been determined,
Bp, j=1,---, K can be estimated using methodology discussed pre-
viously. Since it would be computationally intractable to compute all
2P partitions, we suggest a more efficient approach for estimating B
and K based on the K-means algorithm.

Temporarily assume that K is known. First, by using (9.2), we
estimate {Bl,--- van} by employing univariate methodology from
Chapter 3. We wish to assign each univariate estimate {Bk, k =
1,-+-,pn} to one of K cluster centroids {BBJ,; j=1,--- K} where
B = (By,---,Bg) is an estimated partition of {1,---,p,}. For ini-
tialisation purposes, let B = (él,--- ,éK) be random partition of
{1,-++ ,pn} which uses a random seed s. To find B, given some K and

s, repeat the following two steps until convergence.
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Step 1 (assignment) If this is the first iteration, set B equal to B
and then choose ,C:}Bj forj=1,---,K by samp}ing from {B,, - - ,Bpn}
without replacement. Otherwise, set B and B]_@j equal to the values

from the previous iteration. Then:

e Foreachk € {1,--- ,p,}and j € {1,--- , K}, calculate the angle
0ir = arccos(,égj,ék) between 3, and BBJ-'

e Foreach k € {1,--- ,p,}, assign Bk to its closest cluster centroid

using the mapping ¢ (k) = argmin {6;;}. This gives us the new
j€{17"' 7K}

partition B = (By,--- , Bx) where B; = {k : ¢(k) = j}.

Step 2 (update) For each j € {1,---, K} update cluster centroid

B B, using

v Bl (P(k), j ' ‘
by = LS00 R 100, 1) > 0
B; = = ;

re-sample from {3, - - ,,Bpn} it >y I(p(k), j) =0

where
1 (k) = j
0 if (k) # .
Then, re-standardise B B, SO that HB B, || = 1 and that the first compo-

nent is greater than zero.

I(p(k), j) =

We write ¢(K, s, By, - - - ,B,,) to denote the above K-means algo-

rithm to estimate a partition B = (By, - - - , By) using the (preliminary)
univariate estimates Bl,- = prn given an integer K and a random seed
S.

Using the above algorithm, we now briefly discuss how one may

choose to select K. Choosing a large K may result in an estimator with
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low bias and high variance because the number of unknown parameters
could be too large. Conversely, choosing a K which is too small will
result in smaller variance but possibly larger bias. We need a way to
select an optimum K with regards to this trade off. If one has prior
information about the number of sectors / industries, one may wish
to choose K manually. Instead, we propose a data driven approach
below.

We define the following cross validation statistic

- o . < (t—1) .
PN (- ACAET Sau(CAN-RbY

t=n—v

(9.4)

where: g1 (.) and é(til)(-) are the respective estimates of g(-) and
®(-) based on (X!, V1), 1=1,--- ¢t —1; v is some look-back integer;

Bk = Béj for all £ € Bj;

(Bb”' 7BK> = ¢(K7S’Bl7”' 7Bpn>;

and ,C:}l, e ,Bpn are (preliminary) univariate estimates resulting from
(9.2) based on (X}, V;T), 1 =1,--- ,t—1. We denote (9.4) by CV(K, s).
Using the above notation, we propose the following algorithm to

choose K and estimate the partition B.

Step 1 (estimate K) Using a grid search approach, calculate

(K,s) = argmin CV(K,s)
KeKksseS

where K = {1,--+ ,p,}, S = {s1,---, 8.}, and s1,---,s, are r seeds
which are used in the random initialisation of the K-means algorithm.

This can be important because the K-means algorithm may finish at
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a local optimum if a bad initialisation was chosen.

Step 2 (estimate partition B) Using the selected K from Step 1,
one can estimate the partition B by running the K-means algorithm
multiple times, using different random seeds, to minimise the residual

sum of squares. That is, choose

B = argmin RSS(B)

seS

where

. - . . . 2
RSS(B) = Y |V — &(X1.18,) - B(XT 80X,

t=2

,C:}k :BB], for all k € Bj
BE (Bl)"' 7Bf() :gb(KvSvBlv"' 7Bpn)'

This is just one approach for estimating B and K, and has not been
tested on real data yet. The purpose of presenting it is to show just
one example of how the dynamic structure can be potentially improved,

and to demonstrate that there is scope for exciting future work.
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