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Abstract  

 

The research described in thesis deals with the production of biofuels and fine chemicals 

from the green alga Tetraselmis suecica. Firstly, the identity of the strain received from the 

culture collection was confirmed using molecular techniques (18S rDNA sequencing) and 

electron microscopy. Secondly, a fully defined artificial seawater medium was developed to 

grow T. suecica and then the tolerance of this alga to salinity and pH changes was 

established. The neutral lipid (triacylglycerol) production was measured using Nile Red dye 

after stressing T. suecica cells with high salinity (up to 1 M NaCl) and pH values (pH 7 to 9). 

It was established that high salinity and high pH values tended to induce higher levels of 

triacylglycerol in the algal cells.  Then fatty acid profiles of T. suecica cells were analyzed by 

gas chromatography–mass spectrometry (GC-MS) after direct transesterification with 

hydrochloric acid in methanol. Higher salinity grown cells showed higher levels of 

monounsaturated fatty acids, which are ideal for biodiesel production.  The possibility of 

growing T. suecica on a larger scale was investigated using a 2 L airlift photobioreactor and 

the response to higher levels of CO2 was assessed in the airlift bioreactor. The effect of re-

using the medium on the growth of T. suecica was examined with the aim of developing an 

integrated algal biorefinery process using T. suecica as the feedstock. 
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1.1  Introduction to Biofuels 

The rapid increase in population and growth in industrialization has led to a much increased 

global energy demand which has generated a large increase in the use of fossil fuels. 

According to the United States Energy Information Administration (EIA), the consumption of 

global energy in the last 20 years has increased from 355 Quadrillon British Thermal Units 

(QBTU) in 1990 to 510 QBTU in 2010 which is about a 44% increase.  The EIA predict that 

a further 60% increase will take place over the next 20 years (Energy Information 

Administration, 2005).  Most of the energy demand is met from the burning of fossil fuels 

(petroleum, natural gas and coal) which are easy to use, provide high energy density and are 

cheap when compared to alternative energy sources. However, the continued use of fossil 

fuels is inadvisable, because of the acceleration of the accumulation of greenhouse gases 

(GHG), increases in air pollution and the production of acid rain. Also, the depletion of fossil 

fuels resources will make their use non-sustainable in the long term (Hook and Tang, 2013). 

 

Therefore, a large amount of research has been carried out with the goal of finding new 

renewable energy sources that are sustainable and environmentally friendly. Among the 

alternatives, wind energy, solar energy, geothermal energy, hydroelectric energy and biofuels 

have attracted significant amounts of research and exploitation. First generation biofuels are 

produced from food crops or other plants that require good quality arable land and plenty of 

freshwater (Kikuchi et al., 2009).  This has resulted in a food versus fuel debate which has 

limited the ability of first generation feedstocks to meet the demand for the production of 

biofuels. In addition the Net Energy Balance (NEB) for corn bioethanol and soybean 

biodiesel is very small (i.e. only slightly more energy is yielded from the bioethanol/biodiesel 

than was used to produce it) (Hill et al., 2006).  Second generation biofuels are based on so-
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called ―energy crops‖ (Miscanthus or Switchgrass), which can grow on marginal land or 

agricultural wastes left after cropping can be used.  The main problem with second generation 

feedstocks is the difficulty in extracting the lignocellulosic substrates, which make up the 

bulk of the carbon sources in grasses and agricultural waste like straw (Himmel et al., 2007; 

Sousa et al., 2009).  

 

The possibilities of developing a new generation of biofuels have increased since the first 

generation of biofuels run into the problems outlined above.  Therefore, there is a growing 

interest in third generation biofuels using microalgae as the feedstock. Microalgae can be 

grown in saline water or wastewater and do not compete for arable land and precious 

freshwater (Gilmour and Zimmerman, 2012). As a result of continuous and increasing 

burning of fossil carbon, the amount of greenhouse gas CO2 in the atmosphere has increased. 

Algae are very efficient at taking up CO2 from the atmosphere and converting it into organic 

compounds through the process of photosynthesis. In fact, microalgae can be used to utilise 

the CO2 directly from flue gases from steelworks or other industries (Zimmerman et al., 

2011). Algal biomass can be used in a number of ways to produce biofuels, but the most 

likely possibility is using microalgae that produce high levels of neutral lipids 

(triacylglycerol, TAG) as a basis for biodiesel production (Chisti, 2008). Many microalgae, 

including Dunaliella, Chlorella, Nannochloropsis and Tetraselmis can produce high levels of 

neutral lipids and can be grown in saline media (Chisti, 2008).  The key breakthroughs 

required to make algal biodiesel a commercial reality are: a) finding a highly productive 

strain that will produce high levels of neutral lipid during growth and not just in stationary 

phase, b) finding a good method to harvest small microalgal cells efficiently and c) efficient 

recovery of the lipids from the algal cells (Gilmour and Zimmerman, 2012).  One key idea is 
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the formation of an ―algal biorefinery” which will utilise microalgal biomass to produce 

biodiesel, protein for animal feed, health supplements and fertiliser (Chisti, 2008). 

 

1.2  Introduction to Microalgae 

1.2.1  Classification of Microalgae 

Algae are thallophytes (i.e. photosynthetic non-vascular plants which lack roots, stems and 

leaves, but contain chlorophyll a as their primary photosynthetic pigment) (Vonshak and 

Maske, 1982).  The mechanism of photosynthesis in algae is similar to that of higher plants 

and involves the evolution of oxygen as a by-product. Their simple cellular structure gives 

them the ability to convert solar energy more efficiently than plants. Moreover, they have 

more efficient access to CO2, water, and other nutrients as the majority of algae grow in 

aqueous suspension. Nevertheless, algae can be found in both aquatic and soil ecosystems in 

all geographic zones. Some algal species have the ability to adapt to harsh environmental 

conditions.  Estimates of the number of algal species vary widely with an upper limit of 1 

million species (Guiry, 2012).  The taxonomic database AlgaeBase (www.algaebase.org) lists 

140,661 species names with some 53,000 published documents relating to algal species cited 

(accessed June 2015).  A conservative estimate of the number of algal species made by Guiry 

(2012) was 72,500. 

 

Algae are morphologically extremely variable and range from macroalgae (seaweeds) up to 

70 m long to the microscopic algae (microalgae), which can be single cells a few µm in 

diameter. Macroalgae are multicellular algae with defined tissues and specialized cells, but 

they never develop phloem or xylem and are thus differentiated from plants.  Microalgae are 

divided into two major groups (eukaryotic and prokaryotic), all with a unicellular or simple 

http://www.algaebase.org/
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multicellular structure. Eukaryotic microalgae include a wide range of groups including green 

algae and diatoms, while prokaryotic microalgae are grouped as cyanobacteria 

(Cyanophyceae), formerly known as blue-green algae.  Eukaryotic microalgae have a nucleus 

containing genetic material and several other organelles (chloroplast, mitochondria etc.) 

surrounded by membranes and they have a high degree of internal organization, whereas in 

the prokaryotic cyanobacteria there is no distinct nucleus and no membrane bound organelles 

(van den Hoek et al., 1995).   

 

Traditionally microalgae have been classified based on to their pigment type, cell wall 

constituents and the chemical nature of storage products. Also, cytological and morphological 

characters such as the process of nuclear and cell division,  the  presence and spatial 

organization of flagella, as well as the presence of an envelope of endoplasmic reticulum and 

if there any connection with the nuclear membrane.  This traditional classification gives rise 

to the green algae (chlorophytes), red algae (rhodophytes) and diatoms (van den Hoek et al., 

1995).  However, since the advent of rDNA sequencing (see section 1.7) and other molecular 

methods, a more detailed classification of algae within the eukaryotic domain has been 

produced (Figure 1.1).  The key information in this figure is the wide separation of different 

algal groups throughout the eukaryotic domain.  The green and red algae are grouped with the 

higher plants, but diatoms, dinoflagellates and euglenoids are widely separated and have little 

in common at the molecular level with green algae (Simpson and Roger, 2004).  The work 

described in this thesis was carried out on Tetraselmis suecica, which is a green (chlorophyte) 

alga (Figure 1.1). 
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Figure 1.1.  Phylogeny of Algae within the Eukaryotic Domain.  All the groups in the green 

bubble are algal groups closely related to plants.  The other algal groups (marked with a green 

asterisk) are widely dispersed around the different groups showing that algae are a very 

phylogenetically diverse group (Taken from Slonczewski and Foster, 2014). 

 

 

1.2.2  Photosynthesis in Microalgae  

The process of converting CO2 and H2O using sunlight energy to glucose and oxygen is 

called photosynthesis. This process serves as a source of energy for metabolism and growth 

for almost all forms of life either directly or indirectly (Masojidek et al., 2004). Almost half 

of the total photosynthesis taking place on Earth is associated with algal cells that form the 

marine phytoplankton (Camacho et al., 2003). Chlorophyll a works as the key 
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photochemically active compound, and receives light in order for photosynthesis to occur. 

Therefore, the content of this pigment in microalgae influences photosynthetic activity 

(MacIntyre et al., 2002). In addition the absorption of this light has an impact on biomass 

production in microalgae and on the accumulation of target products so the performance of 

photosynthesis is affected by the availability of light (Su et al., 2007).  In addition to 

chlorophyll a, algae contain a number of other pigments that contribute to the harvesting of 

light and include chlorophyll b, chlorophyll c and carotenoids.  In the cyanobacteria and red 

algae, carotenoids are replaced by phycobilins as accessory light harvesting pigments (van 

den Hoek et al., 1995). 

 

Figure 1.2 provides a detailed overview of photosynthesis taken from a recent textbook of 

microbiology (Slonczewski and Foster, 2014).  The upper panel shows that the light energy 

absorbed by chlorophyll a is used to promote electrons to a more negative redox potential and 

that two photosystems work together to produce electrons that can directly reduce NAD(P) to 

NAD(P)H which is used throughout metabolism.  The other key requirement for metabolism 

is ATP and this is produced via a proton motive force build up across the membrane due to 

spatial orientation of the components in the membrane. 
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Figure 1.2.  An overview of photosynthesis showing the key steps in the electron transport chain 

that allow the reduction of NAD(P) in the upper panel.  The lower panel shows the spatial 

orientation of the electron transport components which pump protons across the membrane 

and set up a proton motive force which drives ATP production (Modify from Slonczewski and 

Foster, 2014). 
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1.2.3  Physical and Chemical Conditions for Algal Growth 

The growth and productivity of microalgae can be affected by different factors including 

light, pH, salinity, temperature, nutrients (nitrogen, phosphorus, potassium, magnesium) and 

heavy metals (e.g. copper). However the effect of those factors varies from one species to 

another. Therefore knowledge of those factors can lead to a better growth rate and biomass 

production which will improve the potential for algal biofuel production.  

 

 1.2.3.1  Light 

Light is one of the most important factors that affect overall biomass productivity in 

photoautotrophic cultures i.e. cultures that depend on CO2 as their sole source of carbon. 

Light provides the energy source for the growth in microalgae. Go et al. (2012) reported that 

the biomass production and lipid accumulation in Tetraselmis suecica were affected by light 

intensity and nitrate concentration and the optimized conditions were 108.9 µmol m−2 s-1 and 

18.6 mg L-1, respectively. Moreover, Tetraselmis sp. showed a decrease in growth rate under 

a 12:12 h light: dark regime conditions and the highest growth rate was observed under 24 h 

continuous light regimes (Alsull and Omar, 2012). A key point is that at high cell density the 

light intensity must be increased to penetrate through the culture, since self shading becomes 

a limiting factor for growth (Jain et al., 2015). 
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 1.2.3.2  Carbon and pH  

Light, water and CO2 are essential elements for the process of photosynthesis and lack of 

available CO2 can result in less photosynthesis which affects the biomass productivity. 

However, the presence of CO2 in seawater is less than 1% at pH 8 and more than 90 % occurs 

in the form of HCO3
– (Borowitzka, 1982). Nevertheless, the pH in the medium can be 

increased as a result of conversion of bicarbonate to CO2 and that has been reported by 

Moheimani when an increase was observed in the pH of the medium in unregulated CO2 

culture of T. suecica (Moheimani, 2013). Also, his working indicated that significantly higher 

biomass productivity was achieved at pH 7.5 in T. suecica. 

 

 1.2.3.3  Salinity 

It is well known that the biomass productivity and lipid composition are influenced by 

conditions like salinity (Renaud and Parry, 1994). Microalgae are also known for their 

tolerance to changes in salinity. Tawfiq et al. (1999) reported that Tetraselmis had an 

optimum salinity range between 20 and 35‰ (0.34 to 0.6 M NaCl). A similar conclusion was 

drawn by Alsull and Omar (2012), who found that Tetraselmis sp. achieved the highest 

growth and cell density over the same salinity range (0.34 to 0.6 M NaCl). 

 

 1.2.3.4  Temperature 

The response of microalgae chemical compositions to high and low growth temperatures 

varies from species to species (Chen et al., 2012). Tawfiq et al. (1999) reported that optimum 

temperature for Tetraselmis ranged between 19 and 21oC. However, Montaini et al. (1995) 

reported that the optimum temperature for T. suecica is 27±1oC. 
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 1.2.3.5  Nitrogen 

Nitrogen sources (normally ammonium and nitrate) are essential inorganic salts for cell 

growth and metabolism. Nevertheless, the most favourable conditions  for nitrogen 

concentration vary from species to species (Huang et al., 2013). Furthermore, the 

accumulation of lipids has been increased in Tetraselmis as a response to limiting the culture 

nitrogen concentration. A similar conclusion was drawn by Li et al. (2008) who suggested 

that nitrogen reduction in microalgae culture led to rapid accumulation of oil.  

 

1.3  Microalgae Cultivation Systems 

From reading the scientific literature, it is clear that there are many different types of systems 

for microalgae cultivation. The choice of cultivation system depends on cost, final product, 

nutrients source and CO2 capture. In general, microalgae cultivation systems can be classified 

as open or closed systems (Suali and Sarbatly, 2012). The advantages and disadvantages of 

these two systems are compared in Table 1.1. Open pond system has been used for large scale 

algae cultivation since the 1950s. This system can be classified into natural waters (lakes, 

lagoons, and ponds) and artificial ponds or containers. While closed systems, known as 

photobioreactors (PBRs), have been developed to address some of the issues with open pond 

systems like contamination and improved regulation and control of nearly all of the 

biotechnologically important parameters (Bahadar and Khan, 2013). Moreover, flue gases 

can be used from power plant providing additional environmental benefits to the use of 

closed system PBRs (Zimmerman et al., 2011). Photobioreactors come in a different range of 

designs, principally tubular, flat plate, airlift or column photobioreactors (Table 1.1). 

However, the overheads of closed systems are considerably higher than open pond systems 

and there are concerns about the feasibility of scaling up PBRs (Kiran et al., 2014). 
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Table 1.1: Advantages and limitations of open and closed culture systems (Adapted from 

Dragone et al., 2010). 
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1.4  Harvesting Techniques Applied to Microalgae 

 

Microalgal harvesting is the process of concentrating algal biomass from the cultivation 

medium to a concentration that is appropriate for the economic downstream processing (Bilad 

et al., 2014). Harvesting of algae can be done by different methods such as flotation, 

filtration, centrifugation and sedimentation. A summary comparison of various harvesting 

techniques applied to microalgal biomass is given in Table 1.2 (Barros et al., 2015).  At 

laboratory scale, centrifugation is the method of choice for harvesting microalgal cells, but 

once the process is scaled up centrifugation quickly becomes uneconomic due to energy 

(electricity) costs.  Filtration and flocculation methods, as shown in Table 1.2, have been tried 

with varying degrees of success and there is no doubt that finding an economical way to 

harvest algal cells is one of the main requirements for building a commercially successful 

business based on biofuels from microalgae (Gilmour and Zimmerman, 2012).  
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Table 1.2. Comparison of different harvesting techniques applied to microalgae biomass  

(Adapted from Barros et al., 2015). 
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1.5  Microalgae as a Source of Biodiesel 

The proposal to use microalgae as a renewable source of fuel has a long history (Borowitka 

and Moheimani, 2013 and references therein). In 1942 Harder and von Witsch proposed that 

microalgae could be a suitable source of lipids which might be used as food or for the 

production of biofuels. By 1951, the possibility of the producing biofuels using algal oils was 

suggested by Milner. Shortly afterwards in 1952, Aach reporting on the growth of Chlorella 

pyrenoidosa in a photobioreactor found that under nitrogen deficiency cells accumulated up 

to 70% of dry weight as lipids in stationary phase. Around the same time it was also reported 

that the actual lipid productivity is low (Geoghegan, 1951). This paradox of high lipid per 

cell versus versus low productivity on a volume of medium basis has persisted to the present 

day (Liu et al., 2013).  The potential of algae as food source was a hot topic after the second 

world war because of the need to feed a growing world population (Spoehr and Miliner, 

1949). With this driving force, the first large scale algal cultures were set up at MIT in 

Boston and at the Stanford Research Institute, USA in 1948 - 1950. During the running of 

large scale culture experiments, some important fundamental advances were made in our 

understanding of microalgae biology and these studies laid the ground work for subsequent 

research into the large scale production of algae for biofuels production (Hunter and 

Provasoli, 1964).  The idea of using algae as human food was overtaken by the great 

increases in conventional agriculture that took p lace in the 1950s.  Only in the Far East 

(Japan, Thailand) did microalgae become established as a human food (Gilmour et al., 2012). 
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1.5.1  Advantages of Using Microalgae for Biodiesel Production 

The advantages of using microalgae over the other available feedstocks (first and second 

generation biofuels) for biodiesel production have been described in many research articles 

(Chisti, 2007). Microalgae are easy to grow with little or even no attention and they can be 

grown on non-arable land, brackish water and waste water. Moreover, microalgae have the 

ability to grow anywhere using water and sunlight to reproduce through photosynthesis which 

is simply converting energy from the sun into chemical energy with high growth rate 

comparing to conventional forestry, or agricultural crops. Estimates of the maximum 

photosynthetic efficiency for algae vary from 5 – 10%, which contrasts with crop plants 

showing efficiencies of 1 to 2% (Walker, 2009).  Some microalgae species can live in harsh 

environmental conditions such as high salinity and extremes of temperature (Gilmour and 

Zimmerman, 2012).    

 

Other indirect advantages of using microalgae for biofuel production are as follows (Breenan 

and Owende, 2010; Borowitzka and Moheimani, 2013): 

 

 Microalgae can mitigate greenhouse gases from the atmosphere and industrial flue 

gases through carbon capture and use it in photosynthesis. 

 Microalgae can be used to remove heavy metals from the environment coupled with 

the production of potentially valuable biomass.  

 The residual biomass fraction after oil extraction can be used as a high protein feed for 

farm animals. Also, its contains carbohydrates that can be used for bioethanol 

production. 
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 Microalgae have the ability to grow in harsh conditions and can grow in unsuitable 

areas for agriculture purposes regardless of the seasonal weather change, therefore 

they don’t compete with food production. 

 

 Using wastewater as a medium for growing microalgae can lower the cost of biofuel 

production. 

 

 Other commercial potential form microalgae are human nutrition, biofertiliser, 

polyunsaturated fatty acids, and recombinant proteins. 

 

 

1.5.2  Algal Lipids 

Algal lipids can be divided into two main groups: the non-polar lipids (fatty acids, 

hydrocarbons, wax, sterols and steryl esters) and polar lipids (phosphoglycerides, 

glycosylglycerides) (Gunstone et al, 2007). They are essential constituents of all living cells 

where they perform important functions. Phosphoglycerides, glycosylglycerides and sterols 

are essential structure components of biological membranes. These lipids maintain specific 

membrane functions and provide the permeability barrier surrounding cells and between 

organelles within cells, as well as providing a matrix for various metabolic processes. The 

non–polar lipids mainly triacylglycerols (TAG) are abundant storage compounds which can 

be easily catabolised to provide metabolic energy (Gurr et al, 2002).  As already described in 

section 1.2.1, algae comprise a large group of photosynthetic organisms from different 

phylogenetic groups representing many taxonomic divisions. They are distributed worldwide 

inhabiting predominantly freshwater and seawater ecosystems. The ability of algae to adapt 
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to environmental conditions is reflected in their exceptional variety of lipids. Many algae 

accumulate substantial amounts of non-polar lipids, mostly in the form of triacylglycerol 

(TAG) or hydrocarbons, and these levels may reach up to 20-50% of dry cell weight 

(Brennan and Owende, 2010). These oleaginous species have been considered as promising 

sources of oil for biofuels. The potential advantages of algae as a source of oil for biofuels 

include their ability to grow at high rates exhibiting a rapid biomass doubling time usually 

from 1-6 days and producing 10-20 times more oil than any crop plants (Chisti, 2007). Algae 

can grow in saline brackish and coastal seawater with little competition. They may utilize 

growth nutrients from seawater sources and sequester carbon dioxide from emitted flue gases, 

thereby providing additional environmental benefits. Moreover, algae can produce valuable 

co-products including β-carotene, pigments, fatty acid, vitamins, and proteins (Markou and 

Nerantzis, 2013). Thus, algae exhibit superior attributes to terrestrial crops plants as 

bioenergy sources. Moreover, in most cases algae will not compete for habitats used to 

produce food crops (Chisti, 2008).    

 

 

1.5.3  Induction of Neutral Lipid Production 

One of the advantages of using microalgae for biofuels particularly for biodiesel is that they 

can grow very fast doubling their numbers every few hours under ideal growth conditions, 

with the ability to produce a large volume of biomass. However, the amount of lipids in their 

biomass is low which made it less ideal for biofuel (Sharma et al., 2012). From the literature, 

enhancing of the lipid productivity can be made using one or more of lipid induction 

techniques such as high light intensity, high salinity, high CO2 concentrations and nutrient 

limitations – normally nitrogen or phosphorus. Table 1.3 shows the effect of different 

environmental stresses on microalgae biomass accumulation and biochemical composition 
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for biofuels. It's believed that microalgae act in response to the stress conditions by changing 

their metabolic pattern to maintain their growth rates or to increase the chance of surviving 

under these harsh environmental conditions (Markou and Nerantzis, 2013).  
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Table 1.3. The effects of different environmental stresses on accumulation and composition of 

microalgal biomass for biofuel production. Adapted from Cheng and He (2014). 
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1.5.4  Extraction of Algal Lipids  

Various methods for extraction of lipids from microalgae have been examined. Those 

methods can be divided mostly into mechanical extraction such as oil expeller or press, 

ultrasound assisted, microwave assisted and chemical extractions such as solvent extraction, 

supercritical CO2, and ionic liquid extraction. A summary of the advantages and 

disadvantages of those methods is given in Table 1.4 (Mubarak et al., 2009). Selecting a 

method for lipid extraction needs to show a high level of specificity to algal lipid in order to 

reduce the co-extraction of non-lipid contaminants, like protein and carbohydrates. Also, the 

method has to be more selective to triacylglycerols (neutral lipids) more than other lipids 

such as  polar lipids, free fatty acids as only triacylglycerols are suitable for biodiesel 

production ( Halim et al., 2012 : Ugoala et al., 2012). 
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Table 1.4. Advantages and disadvantages of different methods of oil extraction. Adapted and 

modified from Mubarak et al. (2009). 
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1.5.5  Conversion of Algal Lipids to Biodiesel 

The production of biodiesel from microalgae has been discussed at length in the literature and 

it is one of the most desirable biofuel products from microalgae (Suali and Sarbatly, 2012). 

Following the extraction procedure, the resultant microalgal lipids can be converted into 

biodiesel through transesterification which is a chemical reaction where triglycerides are 

converted into fatty acid methyl esters (FAME) and glycerol as a by product in the presence 

of an alcohol such as methanol or ethanol and a catalyst either alkali or acid (Figure 1.3) 

(Dragone et al., 2010). For the complete replacement of conventional liquid fuels by 

microalgae-produced biodiesel, the following would need to be achieved: (1) as much as 

necessary biomass produced to make fuel at a commercial scale; (2) the production cost 

should be less than fossil fuel production cost; (3) the algal biodiesel produced should meet 

all US and Euopean standards for fuel quality (Harun et al., 2010; Stansell et al., 2012). 

 

 

 

 

 

Figure 1.3. The chemical reaction of the transesterification procedure (Suali and Sarbatly, 

2012).  Triglycerides = triacylglycerols = TAGs.  The methyl esters are biodiesel. 
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1.6  Algal Biorefinery Concept  

The concept of algal biorefining is analogous to current petroleum refineries in which various 

fuels and chemicals are produced from crude oil. In the same way, algal biorefining is seen as 

an integrated facility, for sustainable processing of algal biomass into marketable products 

and energy through various processes and equipment based on biomass conversion. The 

variation in the components of microalgal biomass led to a range of products being produced 

that maximize the value of biomass utilization (Trivedi et al., 2015). The biorefinery concept 

can meet several environmental deliverables such as mitigating sustainability issues with 

respect to greenhouse gas emissions, fossil fuel usage, potential food shortages and land use 

change for fuel production. The biorefinery of the future will carry out several applications 

aiming to optimize overall process economics and minimize overall environmental impact, 

Those applications include: (1) Energy options from microalgae (biodiesel, bioethanol, 

biogas, bio -jet fuel); (2) Non energy options from microalgae (feed industry, food industry, 

pharmaceutical industry, chemical industry, and cosmetics industry); (3) Environmental 

applications (bio-mitigation of CO2 emissions using microalgae and bioremediation of waste 

water and polluted soil using microalgae). Figure 1.4 shows the future schematic flow sheet 

of an algae based biorefinery (Hughes et al., 2013; Trivedi et al., 2015). The majority of 

these applications are being developed individually, but have the potential to be extra 

efficient and economical when joined together in multi-process intersecting regimens using 

by-products or waste materials from one process to feed another application. 
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1.7 Polymerase Chain Reaction (PCR) 

Karry Mullis was awarded a Nobel Prize in 1993 for his work on fine-tuning the polymerase 

chain reaction (PCR) technique. PCR works by utilising an enzyme called DNA polymerase. 

This enzyme makes a copy of a selected region of DNA that needs to be amplified. This way, 

―the amount of the selected DNA region doubles over and over with each cycle - up to 

millions of times the starting amount - until enough is present to be seen by gel 

electrophoresis‖ (Weaver 2005). Two predetermined sites in a region of a DNA are amplified 

with the help of oligonucleotides (primers) that are complementary to these sites. The latter 

serve as primers for synthesis of copies of the DNA region. Each cycle of PCR doubles the 

number of DNA molecules synthesized until a huge amount is produced (Gibbs 1990). PCR 

can provide molecular biologists and other researchers with almost unlimited amounts of the 

exact genetic material that they want to study. The PCR reaction consists of three steps: 

denaturation, synthesis and reannealing (Weaver 2005). These three steps are repeated around 

30 times and each cycle only takes 3 to 5 minutes to complete using an automated thermal 

cycler.  In addition, amplification of PCR is both simple and elegant. Oligonucleotide pr imers 

are used to complement the ends of a DNA sequence to be amplified. Deoxyribonucleotides 

are used with an appropriate buffer. Healing and cooling are used to denature the original 

DNA strands and allow annealing of the primer. This process is continued repeatedly and 

extended in order to create new copies of the original DNA fragment (Arnheim and Erlich, 

1992). Usefulness of PCR lies in its capability to amplify DNA coming from very small 

amounts of the target DNA or from the DNA of a single cell. Due to this characteristic, PCR 

has become an intrinsic part in molecular biology laboratories.   
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In the field of microalgal identification, the 18S ribosomal (r)RNA gene is used and specific 

primers are produced for this gene.  After PCR, the 18S rDNA can be sequenced and then put 

into the BLAST database to identify the algal species. 

 

1.8  Aims and Objectives 

 To confirm the identity of the Tetraselmis strain received from the Culture Collection 

using 18S rRNA gene sequencing. 

 To optimise the growth medium for culturing the Tetraselmis species and if possible 

produce a fully defined seawater medium for growing Tetraselmis. 

 To use methods refined in the Gilmour laboratory to measure the amount of TAG in 

Tetraselmis cells grown under a variety of salinities and pH. 

 To use methods refined in the Gilmour laboratory to measure the fatty acid profile of 

Tetraselmis using GC-MS. 

 To examine the possibility of using Tetraselmis as the basis of an algal biorefinery. 
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2.  Materials and Methods  

This chapter describes chemicals, enzymes and other materials used in carrying out the 

experiments. Also, a description of protocols including molecular biology methods is 

included. 

 

2.1. Chemicals 

Chemical or Kit  Provider 

PCR Master Mix Thermo-Fisher 

6x DNA Loading Dye Fermentas Life Sciences 

Genomic DNA Buffer Set QIAGEN 

Genomic-tip Kit QIAGEN 

QIAquick PCR Purification Kit QIAGEN 

Agarose ICN Biomedical 

DNA Hyper ladder BIOLINE 

Ethidium Bromide BIO-RAD 

Percoll™ Sigma-Aldrich 

Nile Red Sigma-Aldrich 

Grams Iodine Camlab 

Triolein Thermo-Fisher 

Tridecanoic acid (C13 lipid) Fluka 

Methyl nonadecanoate (C19 FAME) Fluka 

 

Table 2.1: Non-Standard Chemicals Used. 
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2.2. Enzymes 

Enzymes Provider 

Ribonuclease (RNase) Sigma 

Lysozyme Sigma 

Proteinase Sigma 

 

Table 2.2: Enzymes 

 

2.3. Algae Strain 

Algae strain Provider 

Tetraselmis suecica CCAP 66/4 Culture Collection of Algae and Protozoa 

 

Table 2.3: Algae strain 

 

2.4. Buffers, Vitamins and Trace Elements 

Buffer, Vitamin or Trace Element Composition 

50X TAE Buffer Per litre 

242g Tris base, 

 57.1 mL glacial acetic acid,  

100 mL of 500 mM EDTA (pH 8.0). 
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EDTA Buffer 

 

For 500 ml stock of 0.5 M (pH 8.0): 

93.05g EDTA disodium salt in 400 ml 

deionised water. 

Trace elements Per Litre: 

Na2EDTA 4.16 g, 

FeCl3.6H2O 3.15 g, 

CuSO4.5H2O 0.01 g, 

ZnSO4.7H2O 0.022 g, 

CoCl2.6H2O 0.01 g, 

MnCl2.4H2O 0.18 g, 

Na2MoO4.2H2O 0.006 g. 

Vitamin Solution F/2 Medium Per 100 ml: Cyanocobalamin (Vitamin B12) 

0.1g and Biotin (Vitamin H) 0.1g. 

Trace metal solution BG11 (Blue-Green 

Medium). 

Per litre: 

H3BO3 2.86g, 

MnCl2.4H2O 1.81g, 

NaSO4.7H2O 0.22g, 

Na2MoO4.2H20 0.39g, 

CuSO4.5H2O 0.08g 

Co(NO3)2.6H2O 0.05g. 

 

Table 2.4: Buffers, Vitamins and Trace Elements. 
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2.5. Cleaning and Sterile Techniques  

To ensure sterile conditions, all culturing equipment used in experiments was autoclaved. 

Also, inoculation and sub-culturing were carried out with a flame after cleaning the bench 

with 70% ethanol. Moreover, the glassware was soaked for 2 hours in concentrated sulphuric 

acid to ensure that all residual material from previous cultures was removed. 

 

2.6. Medium Preparation 

2.6.1 Dunaliella Medium 

The medium composition was obtained from Hard and Gilmour (1996). Composition – NaCl 

(solid) 23.4 g l-1, 0.4 M; KCl: 10 mM; MgCl2: 20 mM; CaCl2 : 10 mM; MgSO4: 24 mM; 

NaNO3: 5 mM; Na2SO4: 24 mM; NaH2PO4: 0.1 mM; FeEDTA pH 7.6: 1.5 μM; HEPES 

pH7.6: 20 mM; NaHCO3 (solid): 1 g l-1. Trace elements – H3BO3: 185 mM; MnCl2.4H2O; 7 

mM, ZnCl2: 0.8 mM; CoCl2: 20 μM; CuCl2: 0.2 μM. 

 

2.6.2 F/2 Medium 

F/2 Medium is an artificial seawater medium and was prepared as described in Guillard and 

Ryther (1962). Composition – 33.6 g l-1 of artificial seawater salts (Ultramarine Synthetica); 

NaNO3: 0.882 mM; NaH2PO4.H2O: 36.2 μM. Trace elements – FeCl3.6H2O: 11.7 μM; 

Na2EDTA.2H2O: 11.7 μM; MnCl2.4H2O: 0.91 μM; ZnSO4.7H2O: 0.0765 μM; CoCl2.6H2O: 

0.042 μM; CuSO4.5H2O: 0.0393 μM; Na2MoO4.2H2O: 0.026 μM. Vitamins – Thiamine.HCl 

(vitamin B1): 0.296 μM; Biotin (vitamin H): 2.05 × 10-9 M; Cyanocobalamin (vitamin B12): 

3.69 × 10-10 M. 
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2.6.3 TS Medium 

This was a medium derived in the Gilmour laboratory, but it was based on the seawater 

composition from the work of Castro and Huber (1997). Levels of Dunaliella and F/2 media 

components were adjusted to give more similar amounts to seawater composition. F/2 trace 

elements were used as these were more representative of seawater values. Composition – 

NaCl (solid): 24.4 g l-1; MgSO4: 53.27 mM; MgCl2 : 53.27 mM; Na2SO4: 28.11 mM; CaCl2 : 

10.38 mM; KCl: 9.97 mM; H3BO3: 443.89 μM; NaNO3: 4 M. 

 

2.6.4 BG11 Medium 

BG11 medium is commonly used for growing cyanobacteria and the composition was 

obtained from Stanier et al. (1971). Three stock solutions are prepared.  Stock solution 1: 

NaNO3 15 g l-1. Stock solutions 2 to 8: each of the following were added to separate 500 ml 

volumes of distilled water: K2HPO4 2 g, MgSO4.7H2O 3.7 g, CaCl2.2H2O 1.80 g, citric acid 

0.30 g, ammonium ferric citrate green 0.30 g, EDTANa2 0.05 g, Na2CO3 1 g. Stock solution 9 

(trace metal solution) per litre: H3BO3 2.86 g, MnCl2.4H2O 1.81 g, ZnSO4.7H2O 0.22 g, 

Na2MoO4.2H2O, 0.39 g, CuSO4.5H2O 0.08g, Co(NO3) 2.6H2O 0.05g.  To prepare medium, 

29.2 g of NaCl were added to 829 ml of distilled water and 100 ml of stock solution 1 were 

added, with 10 ml each of stock solutions 2 to 8 and 1 ml of stock solution 9 was added. 

 

 

 

 

 



34 
 

2.7 Growth of Tetraselmis suecica 

 2.7.1 Culture Methods 

Tetraselmis suecica (CCAP 66/4) was obtained from the Culture Collection of Algae and 

Protozoa, Oban, UK (Butcher 1959). A primary stock culture (in a 100 ml flask) was 

prepared using the liquid T. suecica samples received from the CCAP and allowed to grow in 

the culture room at 25 ± 1°C with continuous light (50 – 70 µmol m-2 s-1) supplied by 

daylight fluorescent lights. When the culture reached the stationary phase after around 2 

weeks incubation, four different types of medium (TS, F/2, Dunaliella and BG11) were 

inoculated from the primary stock culture and allowed to grow to allow for adaptation to the 

medium before setting up growth curves. 

 

2.7.2 Comparison of Different Media for Growing T. suecica 

Tetraselmis suecica was cultured in four different media (TS medium, F/2 medium, 

Dunaliella medium and BG11 medium) to observe which medium is the most appropriate 

based on the highest growth potential.  Growth was measured using a Unicam Helios alpha 

spectrophotometer at 595 nm. OD595 readings (using medium as the blank) were taken every 

day to measure the growth rate of T. suecica. 

 

2.7.3 Development of F/2 Defined Medium 

One of the advantages of using algae for biofuel production is the ability to control their 

accumulation and secretion of biofuels by changing their growth conditions o r by metabolic 

engineering. This led to the development of a defined F/2 medium where the quantity of the 

chemicals added to the media such as N, P, and NaCl can be adjusted.  In addition, F/2 
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medium prepared using the commercial seawater salt mixture is not suitable for use at higher 

salinities than seawater, because the medium precipitates after autoclaving.  The defined F/2 

medium is an important outcome of this work. 

 

2.7.4 Comparison of F/2 Medium and Defined F/2 Seawater Medium 

After the development of F/2 defined medium in the laboratory a growth comparison for T. 

suecica was done by culturing the alga in both F/2 medium and F/2 defined medium. Growth 

(OD595) was measured every 24 hours over a 12 day growth period.  

 

2.7.5 Effect of Salinity on Growth of T. suecica 

A common observation is that an increase in salinity can increase the lipid content of 

microalgae, but lowers the growth rate of a species. Therefore, the effect of salinity on the 

growth and lipid content of microalgae species was investigated.  

 

2.7.6 Effect of pH on Growth of T. suecica 

In this experiment the effect of pH on algal growth was evaluated every day using OD595 

measurements. 
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2.8.  Relationship between OD at 595 nm and Dry Weight (Biomass) for T.  

suecica cells grown at different salinities 

After growing the green alga T. suecica for two weeks in defined F/2 medium containing 

different salinities to ensure adaptation to each salinity medium, three replicate cultures for 

each medium to be tested were inoculated from the appropriate adapted culture. Growth was 

determined by measuring OD595 every 24 hours. 

 

A set of well grown cultures from 0.4, 0,8 and 1 M NaCl media (approximately OD595 = 1) 

was used to prepare dilutions according to the scheme shown in Table 2.5 with a final volume 

of 30 ml for each dilution. Then the OD595 reading of 1 ml from each dilution was taken and 

the samples returned to each tube. After that, all 12 × 50 ml tubes were centrifuged (3000 g) 

and supernatant was discarded. The pellets were resuspended in 5 ml of distilled water and 

transferred to 12 × 15 ml Falcon tubes which were then centrifuged (3000 g), the 

supernatants were removed and the pellets were resuspended in 1 ml of distilled water and 

transferred to pre-weighed 1.5 ml Eppendorf tubes. Eppendorf caps were removed from 

another set of tubes and used to seal the sample Eppendorf tubes instead of their own caps 

which remained attached. A hole was made in each cap to allow moisture to escape and the 

samples were than frozen over night at -80oC and then freeze dried (lyophilised) for 48 hours 

until they were completely dry. The caps with the hole were removed and discarded and the 

original caps were used to reseal the tubes.  All tubes were then reweighed using the fine 

balance and the calculation of dry weight for each sample was made by subtracting the initial 

weight from the final weight. A concentration curve of OD595 versus dry weight was created 

using Excel. 
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Tube Number Concentration 
(%) 

Culture (ml) Medium (ml) 

12 0.0 0 30 

11 8.3 2.5 27.5 

10 16.6 5 25 

9 33.3 10 20 

8 41.6 12.5 17.5 

7 50 15 15 

6 58.3 17.5 12.5 

5 66.6 20 10 

4 75 22.5 7.5 

3 83.3 25 5 

2 91.6 27.5 2.5 

1 100 30 0.00 

 

Table 2.5. Dilution scheme used to prepare each set of samples for dry weight versus OD 595 

comparison. 

 

 

                      

2.9. Relationship between OD at 595 nm and Cell Number for T.  suecica 

Cells Grown in F/2 Medium 

To check whether cell number correlates strongly with optical density (OD)   measurements 

of algae cultures, an OD versus direct cell count calibration curve was performed based on 

the work by Madigan et al. (2003), Reed (1998) and Skoog et al. (2007). The OD595 of a well 

grown algal culture was adjusted to 1 and then dilutions from 5% to 100% were made using 

the cell culture and fresh medium in 15 ml Falcon tubes as shown in Table 2.6. 
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Table 2.6. Dilution scheme used to produce a range of cell concentrations. 

 

Then 1 ml from each dilution was transferred to a plastic cuvette and the OD595 measurements 

were taken using the UNICAM Helios Alpha spectrophotometer with fresh medium as the 

blank.  Following the OD readings, 900 µl from each dilution was transferred to 1.5 ml 

Eppendorf tube and 100 μl of Gram’s Iodine was added and mixed well (to stop cell 

motility). After that, 20 μl was placed into the counting chamber of a Neubauer improved 

haemocytometer and viewed using a Nikon microscope with the x40 objective (x400 

magnification). Five replicates were carried out for each dilution. The number of cells in each 

dilution was calculated using the following equation: 

 

 

Depth = 0.02 mm, area of small square = 1/400 mm2 = 2.5 × 10-3 mm2 

Volume of small square = 2.5 × 10-3 × 0.02 = 5.0 × 10-5 mm3 

Cell no. per small square × 
 

      
 = cell mL-1 sample 

                

 

 × 10 = cells mL-1 original culture 

 

The data from the OD595 and cell count were compiled to give OD at 595 nm versus cell 

count graph. 

Tube 

Number 

Concentration 

(%) 

Culture (ml) Media (ml) 

11 5.0 0.25 4.75 

10 10.0 0.50 4.50 

9 20.0 1.00 4.00 

8 30.0 1.50 3.50 

7 40.0 2.00 3.00 

6 50.0 2.50 2.50 

5 60.0 3.00 2.00 

4 70.0 3.50 1.50 

3 80.0 4.00 1.00 

2 90.0 4.50 0.50 

1 100.0 5.00 0.00 
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2.10. Examination of Cell Morphology Using the Scanning Electron 

Microscope 

 

The cell morphology of T. suecica was examined in culture using a scanning electron 

microscope (SEM). Additionally, the cultures were examined by light microscopy to ensure 

that the cultures used for experiments were axenic. This method was developed in the 

Gilmour laboratory based on the work by Stephen Marshall (Marshall, 2013). 

 

2.10.1  Chemicals and Equipment 

 Percoll™ (Sigma-Aldrich) 

 15ml Falcon tubes 

 Ice 

 1ml plastic cuvettes 

 Glass coverslips 

 50ml Falcon tubes 

 0.1% (or higher) polylysine solution  

 Fresh growth medium 

 2% osmium tetroxide solution 

 Ethanol 

 Filter sterilised water 

 Self-adhesive SEM sample mounts 

 Lab tissue 
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2.10.2  Sample Preparation 

For each strain to be tested 1 ml of culture (OD595 of approximately 0.8) was used. The 

cultures need to be relatively clean and free of bacteria before the slides are made. If cleaning 

was required, running the sample through a Percoll™ discontinuous gradient was 

recommended. To make the gradient the following steps need to be performed: 

1. Six 10 ml stocks of 10%, 20%, 30%, 40%, 50% was created and 60% Percoll by 

combining growth medium with the appropriate amount of 100%. 

2. Stocks were cooled on ice before slowly layering them in a 15 ml Falcon tube (60% at 

bottom up to 10% at top). 

3. When the fractions had been added and had settled, 1 ml of culture was added to the 

top of the gradient. 

4. The Percoll™ gradients were then centrifuged at 1500 g for 15 mins. 

5. When completed, the top layers of Percoll were removed gently to reach the green 

algal band using a 1 ml automatic pipette and discard. 

6. Carefully, the green band was removed and used to inoculate a freshly autoclaved 

flask of sterile media. The contaminating bacteria should be found at or near the 

bottom of the Falcon tube.  
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2.10.3  Slide Preparation 

1. Standard glass coverslips was coated into 5x5 mm squares using a glass cutting pen. 

2. Coverslips was soaked in 0.1% polylysine solution within a 50 ml Falcon tube or trough 

overnight (or longer). 

3. 1 ml of clean culture was taken and adjusted to OD595 of 0.8 in a plastic cuvette using the 

spectrophotometer using the appropriate medium as a blank). 

4. 1.5 ml Eppendorf tube were transferred and centrifuged in the microfuge at full power 

(10000 g) for 3 mins and supernatant were discarded. 

5. 200 l of fresh medium were added and agitated gently to bring the pellet slightly out of 

suspension. 

6. 40 μl of 2% osmium tetroxide were added to the pellet. The tube was left to sealed at 

ambient temperature for 30 mins. 

7. The poly-lysine coated coverslips were washed with filter sterilised dH2O, dry at 40˚C. 

8. The Eppendorf tube was agitated gently to bring the cultures into suspension. 

9. The coated coverslips was taken and stacked to a self-adhesive SEM sample plate. 

10. 40 l of the cells were added to the centre of one of the coated coverslips and left to stand 

for 10 min to partially dry.  

11. Samples were washed by dropping 60 μl of 50% ethanol solution onto the coverslip. Step 

was repeated with 60 μl of 75% ethanol. 

12. Samples were washed again using 95% and 100% washing gradients (60 μl for each), 

instead air dry each time in a fume cupboard. 

13. When the last gradient is completely dry, sputter coat with gold (2 nm thick) and analysed 

with a scanning electron microscope (Accelerating voltage: 20.0 kV, 1000-10000 

magnification). 
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2.11 Molecular Identification of T. suecica 

 

2.11.1 DNA Extraction 

Genomic DNA extraction was performed using two extraction methods (Qiagen Kit and 

CTAB) as described below. 

 2.11.1.1 DNA extraction using Qiagen Kit 

The extraction was done according to the manufacturer’s protocol. Briefly: 

Sample preparation for lysis: 

 5 ml of algae culture was centrifuged in Falcon tube for 10 mins at 3000 g  

 The supernatant was then discarded and the pellet was resuspended in 1 ml of buffer 

B1 with 2 µl RNase and mixed by vortexing the tube. 

 20 µl of lysozyme stock solution and 45 µl of proteinase stock solution were added 

and then tube was incubated at 37oC for 30 min. 

 0.35 ml of buffer B2 was added and tube was mixed by inverting the tube several 

times and then incubating at 50oC for 30 min. 

Genomic- tip protocol: 

 QIAGEN- tip was equilibrated with 2 ml of QBT buffer 

 Sample was vortexed and applied to the equilibrate QIAGEN- tip. 

 The tip was then washed with 3 x 1 ml of buffer QC. 

 Genomic DNA was then eluted with 2 x 1 ml of buffer QF. 

 DNA was precipitated by adding 1.4 x isopropanol to the eluted DNA and tube was 

inverted 20 times, sample was then centrifuged at 5000 g for 15 mins and supernatant 

was discarded.  
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 DNA pellets were washed with 1 ml of cold 70% ethanol. The tube was then 

centrifuged at 5000 x g for 10 min and supernatant was discarded. 

 Air-drying was performed for 10 mins on the bench.  

 DNA was then resuspended in Tris-Buffer overnight. 

 

            2.11.1.2 DNA extraction using CTAB 

DNA extraction using CTAB was performed based on a method described by Li et al. (2002). 

 5 ml of algae culture was centrifuged in a 15 ml Falcon tube for 10 min at 3000 g. 

 Supernatant was discarded and the pellet was resuspended in 500 μl CTAB and then 

sonicated for 30 seconds at full power. 

 Sample was then incubated at 65oC for 1 hour. 

 Phenol- Chloroform extraction was then carried out as follows: 

 500 μl of phenol-chloroform isoamylacohol (24:25:1) was added to the 

sample. 

 Sample was then vortexed and centrifuged for 5 mins at full speed in a 

microfuge. 

 Top layer was removed into a fresh Eppendorf tube and 500 μl of chloroform 

was added. 

 Sample was then centrifuged for 5 min at full speed in a microfuge and the top 

layer was transferred into a fresh Eppendorf tube. 

 1/10 total volume of 3 M sodium acetate pH 5.2 was added. This was followed 

by adding 2.5 volumes cold 100% ethanol. 

 Sample was then incubated on ice for 30 mins and then centrifuged at 6000 xg 

for 15 mins. 
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 Supernatant was discarded immediately and 1 ml of ethanol was added. 

 Eppendorf tube was then centrifuged for 5 mins at full speed and supernatant 

was discarded. 

 Centrifugation was carried out again for the same time and speed. 

 Air drying was then performed for 10 mins. 

 Pellet was resuspended in MilliQ water. 

 DNA pellet was left on bench to resuspend overnight and incubated for 90 

mins at 50o C in the morning.  

 

 

2.11.2 DNA Quantification  

DNA was quantified using a Nanodrop spectrophotometer, following the manufacturer’s 

protocol using the wavelength of 260 nm. 

 

2.11.3 Polymerase Chain Reaction (PCR): 

The PCR amplifications were performed in a Mycycler thermal cycler (Bio-Rad) and the 

cycle parameters included an initial denaturation at 94°C for 5 min, 30 cycles of denaturation 

at 95°C for 30 seconds, annealing at 58°C for 30 seconds, elongation at 72°C for 1 min and a 

final 10 min elongation step at 72°C (see Table 2.7). Two 18S rRNA gene primers were used 

in the identification of T. suecica (Table 2.8) and Table 2.9 provides details for the PCR mix.  
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Initial Denature 94 °C 5 min 

Denature 

Anneal 

Elongation 

95 °C  

58 °C 

72 °C  

30 sec 

30 sec              30 cycles 

1 min  

Final Elongation 72 °C 10 min 

 

Table 2.7: PCR cycle conditions for 18S rRNA gene. 

 

 

Primer Name                                Sequence 
 

18S rRNA For Lim 5’-gcg gta att cca gct cca ata gc-3’ 

18S rRNA Rev Lim 5’-gac cat act ccc ccc gca acc -3’ 

18S For Sheehan 5’-aat tgg ttg atc ctg cca gc-3’ 

18S Rev Sheehan 5’-tga ttc tgt gca ggt tca cc-3’ 

 

Table 2.8: Sequence for 18S Lim and 18S Sheehan primers . 

 

Sample  18S Lim Replicate 18S Sheehan Replicate  Lim 
Negative 
Control 

Distilled water 17 17 17 17 22 

For Primer 4 4 4 4 4 

Rev Primer 4 4 4 4 4 

Master Mix 20 20 20 20 20 

Genomic DNA 5 5 5 5 0 

Total volume is 50 for all samples 

 

Table 2.9: Preparation for PCR using Master Mix. 
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2.11.4 PCR Purification 

The amplified PCR products were purified using QIAquick PCR Purification kit (Qiagen). 

Also, the yield of the purified PCR product was measured in quartz cuvette at 260 nm using a 

spectrophotometer.  

 

2.11.5 Gel Electrophoresis 

DNA quality and PCR products were determined using 1% agarose gel which was made up 

using 0.7 g of agarose powder and 70 ml of distilled water with 1.4 ml of 50x TAE buffer. A 

5µl aliquot of ethidium bromide was added to the gel mix after heating the mix in a 

microwave oven at power 6 for 90 seconds. Ten µl of the sample was mixed with 2 µl of 6x 

DNA loading dye and then loaded on to the agarose gel. Also, 7 μl of DNA ladder was 

loaded onto the agarose gel and the electrophoresis was run at 80 V for 60 min. Bands were 

visualized with a Uvidoc UV visualiser and photographs taken to capture the image. 

 

2.11.6 Sequencing 

DNA samples were sent out for sequencing to Eurofins/MWG. The obtained sequences were 

then compared against sequences in the GenBank nucleotide collection using the Basic Local 

Alignment Search Tool (BLAST). 
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2.12 Measurement of Respiration and Photosynthesis in T. suecica using 

Oxygen Electrode  

The effects of salinity, pH and temperature on the photosynthesis and respiration of T. 

suecica were assessed in the laboratory using the Oxygen Electrode system as described by 

Delieu and Walker (1972). Before starting the experiment, 2 ml of distilled water was added 

to the reaction chamber for 15 minutes with the lid off to calibrate the oxygen electrode. Then 

a small amount of sodium dithionite was added to the chamber which results in a chemical 

reaction that removes the oxygen from the chamber and that means 100% oxygen saturation 

point before addition of dithionite and 0% oxygen point after dithionite addition. The number 

of chart recorder units between 0 and 100% is known as the range.  Then the following 

equation is used to calculate the respiration rate: 

 

Respiration Rate (μmoles O2 mg chlorophyll-1 h-1) = 

             ⁄  ×                    ⁄  ×                     ⁄  

 

 Standard: Amount of oxygen soluble in 2 ml medium (sample) = 0.660 μmoles ml-1 

at 30°C or 0.722 μmoles ml-1 at 25°C 

 Range: Units taken from calibration (0 – 100%) 

 Number of units: Number of units are read directly from the chart recorder, it is 

normal to draw best fit straight line over 5 min 

 Time: The length of time in minutes for which the sample was measured 

 60: This converts the time from minutes to hours 

 Chloro = Chlorophyll present in sample (mg): this relates to amount of chlorophyll 

in a sample of 2 ml of cells.  
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2.12.1 Effect of Salinity on Respiration and Photosynthesis Rate  

Effect of salinity on respiration and photosynthesis rates was assayed using an oxygen 

electrode. Cells of T. suecica were adapted to stress before measuring photosynthesis and 

respiration. After adapting the cells to three different salt concentrations 0.4, 0.6 and 0.8 M 

NaCl, the OD595 was measured for each sample. Then 10 ml were taken and centrifuged at 

3000 g for 10 mins, after that algae pellets were resuspended in 2 ml fresh medium with the 

same salt concentration and left on the lab bench for 1 hour. Two ml from each sample were 

added into the reaction chamber and respiratory oxygen uptake was detected in the dark for 3 

mins then photosynthetic oxygen evolution was measured with a lamp as light source for 5 

mins. The rate of each process was recorded on the chart recorder. The OD595 was used in 

place of chlorophyll content and respiration (oxygen uptake in the dark) was calculated using 

the equation shown above.  To calculate the photosynthesis rate, the oxygen evolution in the 

light was added to the oxygen uptake in the dark (i.e. respiration rate was assumed to be the 

same in the light and the dark). 

 

 

 2.12.2 Effect of Temperature on Respiration Rate  

Effect of temperature (25, 30, 35, 40oC) on respiration rate in T. suecica was assayed using an 

oxygen electrode. The cells were subjected to the stress immediately before measurement. 

OD595 was measured for each sample. Then 10 ml were taken and centrifuged at 3000 g for 

10 mins, and after that alga pellets were resuspended in 2 ml of fresh medium with the same 

salt concentration and left on laboratory bench for 1 hour. Two ml from each sample were 

added into the reaction chamber and respiratory oxygen uptake and photosynthetic oxygen 

evolution were measured as described in section 2.12.1. 
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2.12.3 Effect of pH on Respiration and Photosynthesis Rate  

Effect of pH 7, 8, and 9 on respiration and photosynthesis rates in T. suecica was assayed 

using an oxygen electrode. Cells of T. suecica were adapted to stress before measuring 

photosynthesis and respiration. After adapting the cells to three different pH levels (pH 7, pH 

8 and pH 9), OD595 was measured for each sample. Then 10 ml were taken and centrifuged at 

3000 g for 10 mins, after that algae pellets were resuspended in 2 ml fresh medium with the 

same pH concentration and left in lab bench for 1 hour. Two ml from each sample were 

added into the reaction chamber and respiratory oxygen uptake and photosynthetic oxygen 

evolution were measured as described in section 2.12.1. 

  

 

 

2.13 Neutral Lipid Content and Fatty Acid Composition of T. suecica  

2.13.1 Lipid Determination of T. suecica Cells by Gravimetric Methods 

For gravimetric measurements, lipid extraction was performed based on the methods first 

described by Bligh and Dyer (1959). A well grown culture was taken (approximately OD595 = 

1) and centrifuged for 10 mins at 3000 g and the pellets were resuspended in 5 ml of distilled 

water and transferred to 15 ml Falcon tubes. The samples were centrifuged again for 5 mins 

at 3000 g and the pellets were resuspended in 5 ml of distilled water and centrifuged once 

more, and then the pellets were resuspended in 1 ml of distilled water. Six pre-weighed 

Eppendorf tubes were labelled and 1 ml from each sample was transferred.  Samples were 

frozen at -80oC overnight and then freeze dried (lyophilized) for 48 hours. The weight of 

biomass was estimated after re-weighing the Eppendorf tubes and the 500 µl of methanol / 
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chloroform (2:1 v/v) was added. The samples were sonicated for 1 min on ice and then 

centrifuged at full speed in the microfuge for 5 mins. The supernatants were discarded and 

chloroform and 1% NaCl (1 g NaCl in 100 ml) were added to give 2:2:1 methanol: 

chloroform: water. Samples were then centrifuged for 2 mins at full speed in the microfuge 

and the chloroform phase (top phase) was transferred into pre-weighed Eppendorfs and left 

with the tops open in the fume cupboard until dry. The weights of lipids recovered were 

calculated after re-weighing the Eppendorf tubes. 

2.13.2 Lipid Determination by Nile Red Fluorescence 

A number of experiments have been done to measure neutral lipid concentration in T. 

suecica. Firstly, droplets of neutral lipids were visualised using a fluorescence microscope. 

Secondly, optimisation of Nile Red Fluorescence emission using the 96 well microplate 

method involved optimisation of Nile Red concentration, cell concentration and time of 

staining. Finally, the Nile Red fluorescence method was quantified using triolein as the 

standard.  Figure 2.1 shows schematically the plan of the main Nile Red fluorescence 

experiments carried out. 
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Figure 2.1.  Schematic diagram of the plan for Nile Red fluorescence experiments.  

 

 

 

 

 

 

Nile Red Fluorescence Experiment 

Optimisation 

1- Nile Red Peak Fluorescence  

2- Nile Red Concentration test 

3- Nile Red Triolein Concentration test  
 

Nile Red Sample Measurement Test 

2 week culture 

age 
0.40 M pH 8 

0.40 M pH 9 

0.40 M pH 7 

0.60 M pH 8 

0.80 M pH 8 

       1 M pH 8 

3 week culture 
age 

0.40 M pH 8 

0.40 M pH 9 

0.40 M pH 7 

0.60 M pH 8 

0.80 M pH 8 

       1 M pH 8 

4 week culture 
age 

0.40 M pH 8 

0.40 M pH 9 

0.40 M pH 7 

0.60 M pH 8 

0.80 M pH 8 

       1 M pH 8 

1 week culture 

age  

0.40 M pH 8 

0.40 M pH 9 

0.40 M pH 7 

0.60 M pH 8 

0.80 M pH 8 

1 M pH 8 
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2.13.2.1 Lipid body visualisation using a fluorescence microscope 

 Microalgae accumulate and store natural lipids in lipid bodies which appear as oil droplets 

inside their body. For visualisation of those lipid bodies Nile Red lipophilic dye was used for 

staining and a Fluorescence Microscope with a Nikon Digital camera attached was used to 

capture the images.  This approach is based on the work by Cooksey et al. (1987). Samples 

were prepared as follows:   

 5 ml of culture was taken into a 15 ml Falcon tube and the OD595 was adjusted to 0.2 

using fresh medium. 

 1 ml was then transferred into 1.5 Eppendorf tube and 5 µl of Grams lodine was 

added. 

 20 µl of Nile Red (NR) in acetone was added and the sample was vortexed.  

 10 µl of the sample was added to the slide and a cover slip was added. 

 The slide was placed in the microscope and a drop of oil was added. 

 Images were then taken in two sets with fluorescence and without fluorescence (Just 

normal microscope light). 

      

 2.13.2.2 Nile Red peak fluorescence  

This experiment was performed based on the work by Alonzo and Mayzaud (1999), 

Bertozzini et al. (2011) and Chen et al. (2009). 

Materials used: 

 Nile Red (9-diethylamino-5H-benzo[  α ]phenoxazine-5-one) 

 Acetone 

 Standard 96 Well plate (Black walled preferably) 
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 2 ml Eppendorf tubes (x8) 

 1 ml plastic cuvettes (x2)  

All other chemicals and solvents of analytical grade were purchased from Sigma or 

other commercial suppliers. 

The concentration of Nile Red dye needed in the final culture was 1 µmol/ml from 20 µl, to 

get this concentration two stocks needed to be made: 

1-  0.0025g of Nile Red is added to 10ml of acetone, making the first stock of   0.25 

mg/mL (or 250 µg/ml)  

2-   63.7 µl of the previous stock was added to 936.3 µl of acetone, making a second stock 

of 15.9 µg/mL.  20 µl of this stock is equal to 0.318 µg/mL or 1 µmol/ml.  

At each step, the mixture was whirlimixed and after the stock solutions were prepared, they 

need to be wrapped in aluminium foil to stop photodegradation. 

 

To determine the optimum cell concentration to use, a 10 ml sample of a well grown culture 

was transferred to a 15 ml Falcon tube and the OD595 was adjusted to 1 using an appropriate 

medium as blank. The sample was centrifuged for 5 min at 3000 g and the supernatant was 

discarded. An equivalent volume of fresh medium was added as replacement for the 

discarded supernatant. The sample was then mixed until the pellet was re-suspended and then 

pipetted into 2 ml Eppendorf tubes to set up a range of cell concentrations as shown in Table 

2.10. 
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Percentage 100 87.5 75 62.5 50 37.5 25 12.5 Total(ml) 

Culture(µl) 2000 1750 1500 1250 1000 750 500 250 9 

Medium(µl) 0 250 500 750 1000 1250 1500 1750 7 

Table 2.10. Dilution scheme to produce a range of cell concentrations for Nile Red peak 

fluorescence test. 

 

The details of the plate reader settings and the layout of the plate are shown in Tables 2.11 

and 2.12, respectively. 

 

 

     Procedure Details 
 

   Plate Type 96 WELL PLATE 

  Read Fluorescence Endpoint 

  

 

Full Plate 

   

 

Filter Set 1 

   

 

    Excitation: 485/20,  Emission: 580/50 

 

    Optics: Top,  Gain: 60 

  

 

Read Speed: Normal 

  Table 2.11.  Plate reader settings for Nile Red peak fluorescence experiments.  

 

Table 2.12.  Plate layout for Nile Red Peak fluorescence experiments.  

(Note: Row R1 to R4 is replicates from the same concentration) 

 

Dilution 

%  

100 87.5 75 62.5 50 37.5 25 12.5 Empty Wells 

1 2 3 4 5 6 7 8 9 10 11 12 

A R1 staine1 staine5 staine9 staine13 staine17 staine21 staine25 staine29 BLK BLK BLK BLK 

B R2 staine2 staine6 staine10 staine14 staine18 staine22 staine26 staine30 BLK BLK BLK BLK 

C R3 staine3 staine7 staine11 staine15 staine19 staine23 staine27 staine31 BLK BLK BLK BLK 

D R4 staine4 staine8 staine12 staine16 staine20 staine24 staine28 staine32 BLK BLK BLK BLK 

E R1 unsta1 unsta5 unsta9 unsta13 unsta17 unsta21 unsta25 unsta29 BLK BLK BLK BLK 

F R2 unsta2 unsta6 unsta10 unsta14 unsta18 unsta22 unsta26 unsta30 BLK BLK BLK BLK 

G R3 unsta3 unsta7 unsta11 unsta15 unsta19 unsta23 unsta27 unsta31 BLK BLK BLK BLK 

H R4 unsta4 unsta8 unsta12 unsta16 unsta20 unsta24 unsta28 unsta32 BLK BLK BLK BLK 
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To carry out the experiment, 4 x 200 µl were transferred from each 2 ml Eppendorf tube to 

the unstained cell wells (E to H, see Table 2.12) within the relevant cell concentration 

column. An additional 200 µl was discarded from each 2 ml Eppendorf to make the 

remaining volume 1 ml. Then 20 µl of the 15.9 µg/mL Nile red stock solution was added to 

each Eppendorf tube and a timer was started after each tube was whirlimixed. After that the 

Nile Red stained cells were transferred to the relevant wells (A to D, see Table 2.12) and the 

plate was then placed in the plate reader machine. Readings were taken 5, 10, 15 and 20 mins 

after adding Nile Red stain using the Peak finder protocol. The result will give the cell 

concentration needed for optimal staining along with the optimal time for peak fluorescence. 

 2.13.2.3 Nile Red concentration test 

This experiment was performed based on the work by Alonzo and Mayzaud (1999), 

Bertozzini et al. (2011) and Chen et al. (2009). This protocol will give the optimum stain 

concentration needed for the T. suecica strain to produce the clearest fluorescence signal 

achievable. 

Materials used: 

 Nile Red (9-diethylamino-5H-benzo[  α ]phenoxazine-5-one) 

 Acetone 

 Standard 96 Well plate (Black walled preferably) 

 2 ml Eppendorf tubes (x8) 

 1 ml plastic cuvettes (x2)  

All other chemicals and solvents of analytical grade were purchased from Sigma or other 

commercial suppliers. 
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In this procedure six stock solutions were made, one primary stock and five secondary stocks 

which gave the Nile red concentration range from 0.25 to 3 µmol/ml from a 20 µl aliquot. 

Primary stock was made by adding 0.0025g of Nile Red to 10ml of acetone, making the first 

stock of 0.25 mg/mL (or 250 µg/ml). Then the secondary stock solutions from 0.25 to 3 

µmol/ml were made as shown in Table 2.13. 

 

Nile red µmol/ml From primary (µl) Acetone (µl) 

0.25 15.9 984.1 

0.5 31.8 968.2 

1 63.7 936.3 

2 127.3 872.7 

3 191 809 

Table 2.13.  Nile Red stock solutions used in Nile Red concentration test.  

 

 From the result of Nile Red peak fluorescence procedure (section 2.13.2.2), the optimal cell 

concentration for T.suecica was found to be OD595 = 0.818 which was turbid enough to 

produce a good fluorescence signal, whilst avoiding self shading. A well grown culture of T. 

suecica was centrifuged for 10 mins at 3000 g and the supernatant was discarded and 

replaced with an equivalent volume of fresh medium and then whirlimixed until the algae 

pellet was re-suspended. The optimal OD595 was then adjusted to the optimal cell 

concentration. Two ml aliquots of the culture were transferred to 5×2 ml Eppendorf tubes and 

then 4×200 µl were removed from each 2 ml Eppendorf tube and added to a 96 well plate as 

unstained cells at the relevant concentration as shown in Table 2.14. 
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NR Concntration 3 2 1 0.5 0.25 Empty wells 

 
1 2 3 4 5 6 7 8 9 10 11 12 

      A R1 Con1 Con5 Con9 Con13 Con17 BLK BLK BLK BLK BLK BLK BLK 

      B R2 Con2 Con6 Con10 Con14 Con18 BLK BLK BLK BLK BLK BLK BLK 

      C R3 Con3 Con7 Con11 Con15 Con19 BLK BLK BLK BLK BLK BLK BLK 

      D R4 Con4 Con8 Con12 Con16 Con20 BLK BLK BLK BLK BLK BLK BLK 

      E R1 unstin1 unstin5 unstin9 unstin13 unstin17 BLK BLK BLK BLK BLK BLK BLK 

      F R2 unstin2 unstin6 unstin10 unstin14 unstin18 BLK BLK BLK BLK BLK BLK BLK 

      G R3 unstin3 unstin7 unstin11 unstin15 unstin19 BLK BLK BLK BLK BLK BLK BLK 

      H R4 unstin4 unstin8 unstin12 unstin16 unstin20 BLK BLK BLK BLK BLK BLK BLK 

Table 2.14. Plate layout for Nile Red concentration test. 

(Note: Row R1 to R4 is replicates from the same concentration) 

 

An additional 200 µl was discarded from each 2 ml Eppendorf tube making the remaining 

volume 1 ml. From the secondary Nile Red stock solutions, 20 µl of each Nile Red 

concentration was added to the appropriate Eppendorf tube and mixed well. Then 4 x 200 µl 

stained cells were transferred to the appropriate wells (Table 2.14). The 96 well plate was 

then placed in a plate reader machine for measurement. See Table 2.15 for the plate reader 

settings. 

 

 

 

 

Table 2.15.  Plate reader settings for Nile Red concentration test.  

   

 

 

Procedure Details 
 

   Plate Type 96 WELL PLATE 
  Read Fluorescence Endpoint 

  

 
Full Plate 

   

 
Filter Set 1 

   

 

Excitation: 485/20,  Emission: 580/50 

 
Optics: Top,  Gain: 60 

  

 
Read Speed: Normal 
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     2.13.2.4 Nile Red triolein concentration test 

This experiment was performed based on the work by Alonzo and Mayzaud (1999), 

Bertozzini et al. (2011) and Chen et al. (2009). This protocol will allow the Nile Red 

fluorescence signal to be converted to triolein equivalents. 

Materials used: 

 Nile Red (9-diethylamino-5H-benzo[  α ]phenoxazine-5-one) 

 Acetone 

 Triolein (TO) or 1,2,3-Tri-[(cis)-9-octadecenoyl]glycerol, C57H104O6 ~99%) (44895-U 

Supelco) – Neutral Lipid 

 Isopropanol 

 Standard 96 Well plate (Black walled preferably) 

 2 ml Eppendorf tubes (x8) 

 1 ml plastic cuvettes (x2)  

All other chemicals and solvents of analytical grade were purchased from Sigma or other 

commercial suppliers. 

 

The concentration of Nile Red dye needed in the final culture was 1 µmol/ml from 20 µl, to 

achieve this concentration two stocks needed to be made: 

1-  0.0025g of Nile Red is added to 10 ml of acetone, making the first stock of 0.25 

mg/mL (or 250 µg/ml).  

2-    63.7 µl of the previous stock was added to 936.3µl of acetone, making a second stock 

of 15.9 µg/mL.  20µl of this stock is equal to 0.318 µg/mL or 1 µmol/ml.  
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At each step, the mixture should be whirlimixed and after the stock solutions are prepared, 

the containers need to be wrapped in aluminium foil to stop photodegradation. 

From the result of the Nile Red peak fluorescence procedure, the optimal cell concentration 

for T. suecica was found to be OD595 = 0.818 which was turbid enough to produce a good 

fluorescence signal, whilst avoiding self shading. A well grown culture of T. suecica was 

centrifuged for 10 mins at 3000 g and the supernatant was discarded and replaced with an 

equivalent volume of fresh medium then mixed until the algae pellet was re-suspended. The 

OD595 was then adjusted to the optimal value. 

 

In this experiment, 8 different lipid concentration standards were made using triolein (To) as 

a model neutral lipid dissolved in isopropanol. As recommended by Bertozzini et al. (2011), 

cultured T. suecica cells were also added as shown in Table 2.16.  

Conc of 

triolein 

(mg/ml) 

0.05 0.04 0.03 0.02 0.01 0.005 0.0025 0 Total(ml) 

Culture(µl) 1980 1980 1980 1980 1980 1980 1980 1980 15.84 

Triolein(µl) 20 16 12 8 4 2 1 0 0.063 

Isopropanol(µl) 0 4 8 12 16 18 19 0 0.097 

Table 2.16.  Dilutions for triolein concentration curve. 
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After whirlimixing 4 × 200 µl were transferred from each Eppendorf tube and added as the 

unstained cells at the relevant concentration as shown in the plate layout in Table 2.17. 

Triolein Conc 0.05 0.04 0.03 0.02 0.01 0.005 0.0025 0 Empty wells 

  1 2 3 4 5 6 7 8 9 10 11 12 

A stain stain stain stain stain stain stain stain BLK BLK BLK BLK 

B stain stain stain stain stain stain stain stain BLK BLK BLK BLK 

C stain stain stain stain stain stain stain stain BLK BLK BLK BLK 

D stain stain stain stain stain stain stain stain BLK BLK BLK BLK 

E unsta unsta unsta unsta unsta unsta unsta unsta BLK BLK BLK BLK 

F unsta unsta unsta unsta unsta unsta unsta unsta BLK BLK BLK BLK 

G unsta unsta unsta unsta unsta unsta unsta unsta BLK BLK BLK BLK 

H unsta unsta unsta unsta unsta unsta unsta unsta BLK BLK BLK BLK 

Figure 2.17.  Plate layout for triolein concentration curve experiment. 

 

An additional 200 µl was discarded from each Eppendorf tube to make the remaining volume 

1 ml. Then 20 µl of Nile Red stock solution was added to each Eppendorf tube and mixed 

well. Four x 200 µl samples of the stained cells were then transferred to the appropriate wells 

(Table 2.17). The 96 well plate was then placed in the plate reader machine and the plate 

reader settings shown in Table 2.18 were used. 

 

Procedure Details 
 

   Plate Type 96 WELL PLATE 

  Read Fluorescence Endpoint 
  

 
Full Plate 

   

 

Filter Set 1 

   

 
    Excitation: 485/20,  Emission: 580/50 

 
Optics: Top,  Gain: 60 

  

 

Read Speed: Normal 

  Table 2.18. Plate reader settings for triolein concentration curve. 
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2.13.2.5 Nile Red sample measurement test 

 Nile Red measurements on algal cells grown under different environmental conditions were 

performed after performing the three optimisation test experiments described in sections 

2.13.2.2, 2.13.2.3. and 2.13.2.4 i.e the Nile Red peak fluorescence test, the Nile Red 

concentration test and the Nile Red triolein concentration test. To find the optimise time for 

harvesting cells during the induction of lipid accumulation, measurements were performed on 

cells grown for 1 week, 2 weeks, 3 weeks and 4 weeks. Ten ml samples were taken from each 

flask at each time point and centrifuged at 3000 g for 5 mins. Supernatants were discarded 

and replaced with the appropriate medium, and algal pellets were re-suspended and the OD595 

was adjusted to give the optimised cell concentration which was OD595 = 0.818.  Then 2 ml 

aliquots from the adjusted culture were transferred to 2 ml Eppendorf tubes. After that 4 × 

200 µl aliquots were transferred to the 96 well plate in the appropriate wells as unstained 

cells as shown in the plate layout in Table 2.19. 

 

Samples 
  

0.40 
M  

PH 
7 

PH 
9 

0.60 
M 

0.80 
M 

1 
 M Empty wells 

1 2 3 4 5 6 7 8 9 10 11 12 

Nile  
red 

unstained  
cell 

A SPL1 SPL2 SPL3 SPL4 SPL5 SPL6 BL BL BL BL BL BL 

B SPL1 SPL2 
SPL1

3 
SPL4 SPL5 SPL6 BL BL BL BL BL BL 

C SPL1 SPL2 SPL3 SPL4 SPL5 SPL6 BL BL BL BL BL BL 

D SPL1 SPL2 SPL3 SPL4 SPL5 SPL6 BL BL BL BL BL BL 

Nile  
red  

stained 

cell 

E SPL1 SPL2 SPL3 SPL4 SPL5 SPL6 BL BL BL BL BL BL 

F SPL1 SPL2 SPL3 SPL4 SPL5 SPL6 BL BL BL BL BL BL 

G SPL1 SPL2 SPL3 SPL4 SPL5 SPL6 BL BL BL BL BL BL 

H SPL1 SPL2 SPL3 SPL4 SPL5 SPL6 BL BL BL BL BL BL 

Table 2.19.  An example plate layout for sample measurements. 

 

 



62 
 

200 µl were then discarded from each Eppendorf tube leaving the remaining volume 1 ml. 

Then 20 µl of Nile red with the concentration of 3 µmol/ml were added to the sample and 

mixed well. This was followed by transferring 4 × 200µl of stained cell samples to the 

appropriate wells (Table 2.19). Protocol was then run to make fluorescence measurements 10,  

15 and 20 mins after Nile Red addition (Table 2.20).  

 

Procedure Details 
 

   Plate Type 96 WELL PLATE 

  Read Fluorescence Endpoint 
  

 
Full Plate 

   

 

Filter Set 1 

   

 
    Excitation: 485/20,  Emission: 580/50 

 

    Optics: Top,  Gain: 
60 

  

 
Read Speed: Normal 

  Table 2.20.  Plate settings for sample measurements. 

 

 

 

2.13.3 Lipid Determination by Direct Transesterification Methods 

This work was performed based on methods described by Griffiths et al. (2010). A well 

grown culture was transferred to a 50 ml Falcon tube and then centrifuged at 3000 g for 10 

mins. The supernatant was discarded and the remaining pellet resuspended in 5 ml of distilled 

water. The culture was centrifuged again at the same speed and for the same time. The 

supernatant was discarded and the remaining pellet resuspended in 1 ml of distilled water. 

The sample was then transferred into pre-weighed 1.5 ml Eppendorf tube and then frozen at -

80o C for 48 hours.  The sample was then lyophilised (freeze dried) for 48 hours and the 

biomass was estimated. Ten mg of biomass was taken into a fresh glass crimped vial and 190 

μl of chloroform/methanol (2:1, v/v) was added to solubilise the lipids. Moreover, 10 μl (0.1 
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mg) of tridecanoic acid (C13 lipid) dissolved in chloroform/methanol (2:1, v/v) was added as 

an internal standard to check for reaction efficiency. This was followed by adding 0.3 ml 

HCl/ MeOH (5%, v/v) catalyst to the vial, which was crimp-sealed quickly. The 

transesterification process started after the vial was placed in a hot plate at 85oC and it was 

left for 1 hour to complete the process.  The vial was left at room temperature to cool for 10 

mins. The vial was then opened and 975 μl of hexane was added for fatty acid methyl ester 

(FAME) extraction. The vial was then closed again, mixed and left at room temperature for 1 

hour. Once the extraction was complete, the vial was opened and 487 μl of the top hexane 

phase was taken into a new vial.  This was followed by adding 12.5 μl (0.125 mg) of 10 

mg/ml methyl nonadecanoate (C19 FAME) in hexane as an internal standard to check the 

efficiency of GC-MS analysis, and the vial was re-closed.  

 

The extracted FAMEs from the transesterification reactions were then identified by gas 

chromatography mass spectroscopy (GC-MS) using a Perkin Elmer - Auto System XL Gas 

Chromatograph (CHM-100-790) and Perkin Elmer - Turbo Mass Mass Spectrometer 

(13657). The machine was fitted with a Zebron - ZB-5MS - 30 m 0.25 mm ID and 0.25 μm 

FT (7HG-G010- 11) GC Capillary column and ran using the following settings; Autosampler 

Method: Injection volume: 1 μl, Preinjection solvent washes: 2, Post injection solvent 

washes: 6. Temperature Program (FAME03_100mins): 100–300°C, Ramp 1: 2ºC/min to 300, 

20 ml/min He constant carrier gas flow. MS Scan: El+, Start mass: 50, End mass: 600, Scan 

time: 0.5 s, Interscan time: 0.1 s, Start time: 0, End time: 100 min. The resultant peaks were 

identified and integrated using a Perkin Elmer’s Turbomass software linked to a NIST 

database. 
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2.14 Nuclear Magnetic Resonance (NMR) Analysis of Compatible Solutes 

This work was performed based on the methods described by Derome (1987)  with the help of 

Prof M P Williamson in the MBB department for NMR analysis.  Duplicate 20 ml samples 

from a well grown culture (OD595 =1) were taken and centrifuged for 10 mins at 3000 g and 

the supernatant was discarded. The pellets were then resuspended in 1 ml of dist illed water 

and sonicated on ice for 2 × 20 seconds with a 10 second cooling period between sonication 

steps. After that samples were transferred to Eppendorf tubes and centrifuged for 5 mins in 

the microfuge at full speed. The supernatants were then transferred to fresh Eppendorf tubes 

and frozen at -80oC for 48 hours followed by freeze drying (lyophilisation) for 48 hours until 

the samples were completely dry. The sample was then weighed to estimate the weight of 

biomass.400 μl ofdeuterated chloroform (CDCl3) and 100 μL of deuterated methanol 

(CD3OD) were added to each sample for solubilisation of the biomass.The samples were then 

mixed and transferred to a 5 mm NMR tube, and 5 μl of Chloroform (CHCl3) was added as 

an internal standard. NMR spectra were obtained on a BrukerAvance 600 equipped with a 

cryoprobe. Data was recorded into 16k complex data points with simple pulse-acquire pulse 

program and a 3 s recycle time. Fourier transformation was applied using a 1 Hz line 

broadening followed by manual baseline correction. All spectra were acquired using 8 scans 

(with 4 dummy background scans). Processing and integration was performed using Bruker 

Topspin v1.3 software. 
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2.15  Re-cycling of Nutrients and its Effect on Growth of T. Suecica 

A 10 day old T. suecica culture was centrifuged and the medium was reused (the 

supernatant).  Incubation of T. suecica cells was carried out in the reused medium and also in 

a control fresh F/2 medium. The OD595 was then taken every 24 hours to measure growth. As 

there were no growth in the recycled medium after 4 days of incubation, enrichment with N 

and P was carried out by adding N and P stock solutions in to the recycled medium to test if 

the lack of growth was due to N or P limitation or if both elements were limiting (Table 

2.21).  

 

Recycling medium 1 Enrich with N 

Recycling medium 2 Enrich with P 

Recycling medium 3 Enrich with N and P 

Table 2.21 Protocol for enriching recycled medium. 

 

The enrichment cultures were incubated and growth was measured by measuring the OD595 

every 24 hours. After 6 days of enrichment, flasks with single element enrichment were 

enriched again with the other element (Table 2.22).  

 

Recycling medium 1 with  previous 

Enrichment with N 

Enrich with P 

Recycling medium 2 with previous 
Enrichment with p 

Enrich with N 

Table 2.22 Protocol for second cycle of enrichment. 

 

Cultures were then incubated and OD595 readings were taken every 24 hours. 
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2.16 Growth of T. suecica Using a Two Litre Photobioreactor  

Growth of T. suecica was measured using a 2 litre airlift photobioreactor with enrichment of 

CO2, P and N. Three separate photobioreactor experiments were carried out. The first 

experiment was the control without addition of N and P and just with normal air flow (0.03% 

CO2) to ensure a good mixing in the culture. In the second experiment,  the T. suecica culture 

was supplied with 5% CO2 and additional N and P was added to the culture.  In the final 

experiment atmospheric levels of CO2 were used, but with the addition of N and P. 
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Chapter Three 

 

Physiological 

 

Characterization of 
 

 

Tetraselmis suecica 
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3.1 Introduction 

As described in section 1.5, the idea of using microalgae as a source of renewable fuels 

has a long history, but recent interest in algal biofuels can be traced to the review 

published in 2007 by Chisti.  In this publication, a list of microalgae was prese nted 

containing the likely candidates for biodiesel production (Chisti, 2007) and it is shown in 

an adapted form as Table 3.1 overleaf.  Based on the highest level of lipid produced, 

Botryococcus braunii looks to be a strong candidate with a top value of 75% lipid.  In 

actual fact, this figure represents the amount of hydrocarbon produced by B. braunii 

(Banerjee et al., 2002), which is a better basis for biodiesel production than the neutral 

lipids normally stored by the other algae listed in Table 3.1.  However, commercial 

exploitation of B. braunii is very difficult due its colonial growth form and it naturally 

grows as sticky mats of biomass and not as suspended cells in liquid medium (Metzger 

and Largeau, 2005). 

 

The next best candidate from Table 3.1 appears to Schizochytrium, which is an unusual 

alga found within the Heterokonta group (Figure 1.1).  This organism has been mainly 

studied by research groups in Japan and China, and produces the polyunsaturated fatty 

acid (PUFA) docosahexanoic acid (DHA) in large amounts, which is used as a human 

dietary supplement (Qu et al., 2013).  The recent publication by Qu et al. (2013) 

confirmed that neutral lipid can make up about 56% of the dry weight of Schizochytrium.  

The other organism from Table 3.1 that has been studied in detail is Nannochloropsis, 

which like Schizochytrium, is also a heterokont alga belonging to the class 

Eustigmatophyceae (Van den Hoek, 1995).  Nannochloropsis has been well studied and 

high levels of neutral lipids (in excess of 25% of biomass) have been measured in this 
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alga on a regular basis (e.g. Pal et al., 2011).   However, Nannochloropsis cells are small 

(around 1 to 2 µm) and have thick cell walls, which makes the task of harvesting the 

neutral lipids more difficult (Rios et al., 2013).  Of the other algae listed in Table 3.1, 

species in the Dunaliella genus (Ying et al., 2015) and species related to the Chlorella 

genus (Smith et al., 2015) are being actively studied in the Gilmour lab.  For this reason, 

the current project was based on another organism listed in Table 3.1 (i.e. Tetraselmis 

suecica). 

 

Tetraselmis suecica is a marine green alga belonging to the chlorophyte group of algae 

closely related to higher plants (Figure 1.1).  This species has been used in aquaculture 

(fish and shellfish farming) since the 1970s and it has been widely studied for the effect 

of salinity and other environmental parameters on the biochemical composition of the 

cells (e.g Fabregas et al., 1984).  In particular changing nutrient concentrations (e.g. 

nitrate in the medium) has been used to alter the composition of protein, lipid and 

carbohydrate in T. suecica (Fabregas et al., 1995).  More recently, T. suecica has been 

studied with respect to production of PUFAs and neutral lipid.  Flow cytometry has been 

used by Guzman et al. (2010) to screen for strains that are hyperproductive for PUFAs 

and the factors affecting neutral lipid production by T. suecica have been studied by 

Bondioli et al. (2012) and Go et al. (2012). 

 

In the present work, it was decided to re-evaluate T. suecica as a source of neutral lipid 

and to use the CCAP strain 66/4 which has not been previously studied for neutral lipid 

production. 
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Microalga Lipid or equivalent (% dry wt) 

Botryococcus braunii 25 - 75 

Chlorella sp. 28 - 32 

Crypthecodinium cohnii 20 

Cylindrotheca sp. 

 

16 - 37 

Dunaliella primolecta 23 

Isochrysis sp. 25 - 33 

Monallanthus salina > 20 

Nannochloris  

 

20 - 35 

Nannochloropsis sp. 31 - 68 

Neochloris oleoabundans 35 - 54 

Nitzschia sp. 45 - 47 

Phaeodactylum tricornutum 

 

20-30 

Schizochytrium sp.  50 - 77 

Tetraselmis suecica 15 - 23 

Table 3.1.  List of algal species with the maximum value of lipid produced from 

each organism (adapted from Chisti, 2007).  Note that the “lipid or equivalent” 

content may refer to different types of lipids and not all are necessarily suitable for 

biodiesel production. 
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3.2 Results 

3.2.1 Identification of T. suecica using 18S rDNA Sequencing and SEM 

On receiving the T. suecica liqiuid culture form the culture collection (CCAP, Oban), the 

cells were checked for bacterial contamination and then the identity of the strain was 

checked using 18S rDNA sequencing 

 

  3.2.1.1 DNA extraction and PCR 

Tetraselmis suecica cells were harvested through centrifugation and the genomic DNA 

was extracted using two methods (CTAB and the Qiagen kit) as described in section 

2.11.1. Both methods successfully extracted the genomic DNA. However, the CTAB 

method showed a clear bright DNA band on the gel (Figure 3.1), therefore this band was 

selected for PCR amplification. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Samples of extracted DNA run in a 1% agarose gel.  Lanes 1 and 5 are ladders. 

 

               

   

CTAB Qiagen Qiagen 
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3.2.1.2 PCR Amplification 

 

When the 18S rRNA gene was amplified using the Sheehan primers, no amplification was 

seen and the gel shows only the primers themselves (Figure 3.2A).  However, when the Lim 

primers were used, the correct sized band (approximately 1800 bp) was amplified (Figure 3.2 

B).  The DNA was cleaned up using a PCR purification kit. 

 

 

Figure 3.2: PCR amplification results. A: Using 18S Sheehan primers, lanes 1 and 6 are 

DNA ladders, see scale at left hand side of figure and Lanes 2-5 show only primers. B: Using 

18S Lim primers, Lane 1 = ladder and lane 2 shows the 18S rDNA band at around 1800 bp.  

 

 

 

 

     

 

 

 

 

A B 
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  3.2.1.3 PCR purification 

 

The amplified PCR products were purified using QIAquick PCR Purification kit (Qiagen)  

(Figure 3.3), and both purified PCR products were of the correct size (approximately 1800 

bp). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Purification of PCR products – it is clear that 1.8 kb bands remained after the 

purification process (Lanes 2 and 3).  

   

 

  3.2.1.4 Sequencing of 18S rDNA and Identification using BLAST 

The sequences returned from Eurofins/MWG are shown in Figure 3.4. Only around 500 

bases were successfully sequenced. Using BLAST on the NCBI website indicated that 

both forward and reverse Lim 18S primer sequences matched the genus Tetraselmis (99% 

identity).  With this length of sequence it was not possible to confirm the species 

identification to T. suecica. 
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Forward sequence (508 letters): 

CAGTTACAGCTCGTAGTTGGATTTCGGATGGGATTTGCCGGTCCGCCGTTTCG

GTGTGCACTGGCCAGTCCCATCTTGTTGTCGGGGACTAGCTCCTGGGCTTCAC

TGTCCGGGACTAGGAGCTGACGAGGTTACTTTGAGTAAATTAGAGTGTTCAA

AGCAAGCCTACGCTCTGAATACATTAGCATGGAATAACATGATAGGACTCTG

GCTTATCTTGTTGGTCTGTGAGACCAGAGTAATGATTAAGAGGGACAGTCGG

GGGCATTCGTATTTCATTGTCAGAGGTGAAATTCTTGGATTTATGAAAGACGA

ACTTCTGCGAAAGCATTTGTCAAGGATGTTTTCATTAATCAAGAACGAAAGTT

GGGGGCTCGAAGACGATTAGATACCGTCCTAGTCTCAACCATAAACGATGCC 

GACTAGGGATTGGCAGACGTTTTTTTGATGACTCTGCCAGCACCTTATGAGAA

ATCAAAGTTTTTGGGTTGCGGG 

 

Reverse sequence (516 letters): 

TATAGGTGCTGGCAGAGTCATCAAAAAAACGTCTGCCAATCCCTAGTCGGCA

TCGTTTATGGTTGAGACTAGGACGGTATCTAATCGTCTTCGAGCCCCCAACTT

TCGTTCTTGATTAATGAAAACATCCTTGACAAATGCTTTCGCAGAAGTTCGTC

TTTCATAAATCCAAGAATTTCACCTCTGACAATGAAATACGAATGCCCCCGAC

TGTCCCTCTTAATCATTACTCTGGTCTCACAGACCAACAAGATAAGCCAGAGT

CCTATCATGTTATTCCATGCTAATGTATTCAGAGCGTAGGCTTGCTTTGAACA

CTCTAATTTACTCAAAGTAACCTCGTCAGCTCCTAGTCCCGGACAGTGAAGCC

CAGGAGCTAGTCCCCGACAACAAGATGGGACTGGCCAGTGCACACCGAAA 

CGGCGGACCGGCAAATCCCATCCGAAATCCAACTACGAGCTTTTTAACTGCA

GCAACTTAAATATACGCTATTGGAGCTGGAAAA 

 

Figure 3.4. Sequences of 18S rRNA gene from T. suecica using Lim forward and reverse 

primers. 
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    3.2.1.5 Scanning electron microscope images of T. suecica      

The SEM images below confirm that the culture is likely to be a member of the 

Tetraselmis genus due to the presence of four flagella (Figure 3.5) and the haptonema – 

which is a cavity at the base of the flagellum (Figure 3.5).  Only two flagella are clearly 

visible in the right hand image of Figure 3.5, but flagella are fairly easily lost during SEM 

preparation. 

 

 

Figure 3.5. Scanning electron microscope images of Tetraselmis suecica. Left image shows the 

four flagella characteristic of this algal genus and right image shows haptonema at the base of 

the flagella. 
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3.2.2 Comparison of Different Media for Growing T. suecica 

 

Tetraselmis suecica was cultured in four different media (TS medium, F/2 medium, 

Dunaliella medium, BG11 medium) to observe which medium is the most appropriate based 

on the highest growth potential. Three replicate OD595 measurements for each medium were 

performed each day, the initial OD595 for all cultures was 0.1. From the growth curves shown 

in Figure 3.6, it is clear that F/2 medium is the best medium for growing T. suecica, reaching 

an OD595 of 0.8 after 7 days incubation. For the other media, the best result was with 

Dunaliella medium with an OD595 of 0.6 after 7 days. However, the poorest medium was 

BG11 with an OD595 of 0.275 after 7days. 

 

 

Figure 3.6. Growth curves for T. suecica in TS medium, F/2 medium, Dunaliella medium and  

BG11 medium.  X axis is OD595 measured against medium blank and Y axis is time in days. 
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3.2.3 Development of F/2 Defined Medium 

One of the advantages of using algae for biofuel production is the ability to control their 

accumulation and secretion of biofuels by changing their growth conditions or by metabolic 

engineering. That led to the development of a defined F/2 medium where the quantity of the 

chemicals that add to the media such as N, P, and NaCl can be control.  In addition, F/2 

medium prepared using the commercial seawater salt mixture is not suitable for use at higher 

salinities than seawater, because the medium precipitates after autoclaving.  The defined F/2 

medium is an important outcome of this work and the composition of defined F/2 medium 

and how to prepare it is shown below. 

Stock Solutions 

1. Artificial Seawater (Hydrated Salts) 

Magnesium Sulphate (MgSO4)  2.92 g  MgSO47H2O  5.98 g  

Magnesium Chloride (MgCl2)  4.66 g  MgCl26H2O  9.95 g 

Calcium Chloride (CaCl2)   1.17 g  CaCl22H2O  1.55 g 

Strontium Chloride (SrCl2)   0.02 g  SrCl26H2O  0.034 g 

Each of the hydrated salts above was added to 400 ml of distilled water and each one 

was dissolved before adding the next salt. The volume was then made to 500 ml with 

distilled water before autoclaving. 

 

2. Artificial Seawater (Anhydrous salts) 

Sodium Chloride (NaCl)   23.9 g 

Potassium Chloride (KCl)   0.62 g 

Sodium Bicarbonate (NaHCO3)  0.18 g 

Potassium Bromide (KBr)   0.024 g 

Boric Acid (H3BO3)    0.020 g 

Sodium Thiosulphate (Na2S2O3)  0.00 4 g 
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Each of the anhydrous salts above was added to 400 ml of distilled water and each one 

was dissolved before adding the next salt. The volume was then made to 470 ml with 

distilled water before autoclaving. 

3. Nitrate 

Sodium Nitrate (NaNO3) –0.75 g was dissolved in 100 ml of distilled water. 

 

4. Phosphate 

Sodium Dihydrogen Phosphate (NaH2PO42H2O) – 0.057 g was dissolved in 100 ml of 

distilled water. 

 

5. Trace Elements 

For F/2 medium 

 

6. Vitamin Mix 

For F/2 medium 

 

7. Tris Buffer 

1 M Tris buffer pH 7.8 was prepared 

 

For 1 litter of medium, aseptically stock solution 1 was added to stock solution 2. Then 

10 ml of nitrate stock and 10 ml of phosphate stock was added using filter sterilisation, 

after that 1 ml of trace element and 1 ml of vitamin mix was added using filter 

sterilisation. Finally 10 ml of 1 M Tris was added using filter sterilisation. The mixer 

was mixed well and the pH was checked.  

 

 

 

 

 



79 
 

3.2.4 Comparison of Growing T. suecica in Defined F/2 medium and normal F/2 

medium 

After the development of F/2 medium, a comparison with the growth rate in normal F/2 

medium was carried out. Figure 3.7 shows the growth over 11 days of incubation where the 

final OD in defined F/2 medium reached 0.507, but in normal F/2 medium the final OD was  

 

Figure 3.7.  Comparison of growth of T. suecica in defined F/2 medium and normal F/2 medium.  

Each point represents the mean of three readings plus/minus the standard error. 

about 0.7.  It was clear that the normal F/2 medium produced a higher biomass, but the 

advantages of having a defined medium that supported good growth outweighed the small 

decrease in biomass.  For the rest of the work described in this thesis, defined F/2 medium 

was used.  

 

3.2.5   Effect of Salinity on Growth of T. suecica  

Increasing the salinity can increase the lipid content of microalgae, but often lowers the 

growth rate of a species. Measurements of lipid content will be described in Chapter 4, but in 

this section the effect of salinity the growth was investigated.  As expected, growth rate and 

final biomass level reached after 11 days were decreased as salinity increased (Figure 3.8).  
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However, at the highest salinity tested (1 M NaCl), the  level of growth observed was not 

significantly different from that at normal seawater salinity (0.4 M NaCl). 

 

Figure 3.8. The effect of increasing salinity on the growth of T. suecica. Each point represents 

the mean of three readings plus/minus the standard error. 

 

 

3.2.6   Effect of pH on Growth of T. suecica  

In this experiment, the effect of pH on algal growth was evaluated every day using the 

spectrophotometer to measure OD at 595 nm.  Increasing the initial pH from 7 to 9 had no 

negative effect on growth of T. suecica (Figure 3.9). In fact the highest biomass was observed 

for cell cultures grown at pH 9 which reached an OD595 of 0.784 compared with 0.616 for pH 

7 and  0.507 for pH 8 grown cells. 
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Figure 3.9.  The effect of pH on growth of T. suecica. Each point represents the mean of three 

readings plus/minus the standard error. 

 

 

 

3.2.7 Effect of Salinity, pH and Temperature on Photosynthesis and Respiration of T. 

suecica 

To further investigate the effect of environmental parameters (salinity, pH and temperature) 

on T. suecica, measurements of the rates of photosynthesis and respiration were made using 

an oxygen electrode system. Cells were adapted to the stresses before measuring 

photosynthesis and respiration except for temperature; in this case the cells were subjected to 

the stress immediately before measurement. Table 3.2 shows that the rate of respiration 

decreased with increasing salinity from 0.4 to 0.6 to 0.8 M NaCl.  In contrast the rate of 

photosynthesis increased slightly at 0.6 M NaCl, but then decreased at 0.8 M NaCl. 
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NaCl concentration Oxygen Evolution 
(µ mol O2 mg Chl−1 min−1) 

Respiration 
(µ mol O2 mg Chl−1 min−1) 

Rate of 
Photosynthesis 
(µ mol O2 mg Chl−1 min−1) 

0.40 M 1.312 ± 0.15 1.849 ± 0.18 3.161 ± 0.33 

0.60 M 2.317 ± 0.25 1.158 ± 0.14 3.475 ± 0.39 

0.80 M 0.514 ± 0.32 0.771 ± 0.35 1.285 ± 0.67 

Table 3.2. Effect of salinity on the rates of photosynthesis and respiration.  Photosynthesis rate 

is calculated by adding together oxygen evolution in the light plus oxygen uptake in the dark.  

Data are means of three replicates plus/minus the standard error. 

 

Increasing the initial pH from pH 7 to pH 8 decreased the rates of both photosynthesis and 

respiration, and at pH 9, both photosynthesis and respiration were very significantly 

decreased (Table 3.3). 

 

Potential of 
hydrogen (pH) 

Oxygen Evolution 
(µ mol O2 mg Chl−1 min−1) 

Respiration 
(µ mol O2 mg Chl−1 min−1) 

Rate of 
Photosynthesis 
(µ mol O2 mg Chl−1 min−1) 

pH 7 1.570 ± 0.11 2.340 ± 0.25 3.910 ± 0.35 

pH 8 1.312 ± 0.15 1.849 ± 0.18 3.161 ± 0.33 

pH 9 0.449 ± 0.17 0.533 ± 0.19 0.982 ± 0.36 

Table 3.3. Effect of pH on the rates of photosynthesis and respiration. Photosynthesis rate is 

calculated by adding together oxygen evolution in the light plus oxygen uptake in the dark.  

Data are means of three replicates plus/minus the standard error. 

 

Increasing the temperature above the growth temperature of 25°C led to a slight increase in 

respiration rate at 30°C, but then a steep decline in respiration rate took place at 35 and 40°C. 

The rate of photosynthesis also declined as the temperature increased (Table 3.4). 

Temperature Oxygen Evolution 
(µ mol O2 mg Chl−1 min−1) 

Respiration 
(µ mol O2 mg Chl−1 min−1) 

Rate of 
Photosynthesis 
(µ mol O2 mg Chl−1 min−1) 

25OC 1.312 ± 0.15 1.849 ± 0.18 3.161 ± 0.33 

30OC 0.815 ± 0.14 1.419 ± 0.08 2.234 ± 0.22 

35OC 0.886 ± 0.31 0.957 ± 0.35 1.814 ± 0.66 

40OC 0.709 ± 0.41  0.603 ± 0.51 1.312 ± 0.92 

Table 3.4. The effect of temperature on photosynthesis and respiration. Photosynthesis rate is 

calculated by adding together oxygen evolution in the light plus oxygen uptake in the dark.  

Data are means of three replicates plus/minus the standard error. 
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3.2.8 Determination of Compatible Solute Production with Increasing Salinity using 

NMR Analysis 

Tetraselmis suecica cells were grown at different salinities (0.4, 0.6 and 0.8 M NaCl) and 

freeze dried extracts were analysed by NMR.  Figure 3.10 (top panel) shows that increasing 

salt gave rise to higher peaks at 3.7 to 3.9 ppm.  Figure 3.10 (bottom panel) shows that there 

was no corresponding increase in these peaks in response to increasing pH.  Therefore, it is 

likely that the 3.7 to 3.9 ppm peaks correspond to a compatible solute (osmolyte) being 

accumulated.  To identify the compatible solute a 2D NMR spectrum was run with the most 

likely polyols.  Figure 3.11 shows that the unknown compound accumulated as a compatible 

solute by T. suecica is mannitol. 
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Figure 3.10. NMR spectra for T. suecica grown at a range of salinities (top panel) or pH values 

(bottom panel). 
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Figure 3.11. 2D 13C HSQC spectra of the 0.8 M NaCl sample from T. suecica cells (black) and 

authentic mannitol (purple).  This demonstrates the presence of mannitol in the algal extract.  
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3.3 Discussion 

The rDNA sequencing work confirmed that the algal isolate obtained from the CCAP 

was indeed a species of the green algal genus Tetraselmis.  The lengths of the sequences 

achieved (just over 500 bp) were insufficient to prove conclusively that the isolate was T. 

suecica (Figure 3.4).  The SEM images in Figure 3.5 allow the isolate to be distinguished 

from other green algae grown in the laboratory due to the presence of a haptonema at the 

base of the four flagella diagnostic for Tetraselmis. 

 

The next step was to confirm the optimising growth medium for T. suecica and this was 

shown to be F/2 medium (Figure 3.6), which is a very widely used seawater medium that 

can be made using filtered natural seawater or (as in the present work) by adding 

commercially available seawater salt mixtures.  In either case, F/2 is not a defined 

medium, because the concentration of all the salts is not known.  On a confidential basis, 

the manufacturer of the synthetic seawater salt mix provided a recipe and this was  

adapted to produce the defined F/2 medium described in section 3.2.3.  This medium was 

used successfully to grow T. suecica and allowed different salinities and nutrient 

limitations to be imposed on the cells. 

Tetraselmis suecica was shown to be able to grow well across a range of salinities (up to 

1 M NaCl) with little difference in final biomass achieved.  Earlier work by Fabregas et  

al. (1984) found optimal growth of T. suecica between 0.4 and 0.6 M NaCl, broadly in 

agreement with the results shown in Figure 3.8.  Less work has been done with regards to 

changing the pH, but the results in the present work (Figure 3.9) show a strong pH 

tolerance for T. suecica with optimum biomass accumulation at pH 9.  It appears that T. 

suecica can grow well at a range of pH and salinity values. 
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The experiments carried out in the oxygen electrode do slightly contradict the growth 

data in as much that both salinity and pH increase significantly decreased the rates of 

photosynthesis and respiration (Tables 3.2 and 3.3).  Although the cells were adapted to 

the salinities before being placed in the oxygen electrode, the measurements were taken 

over a very short time (15 mins in total).  Thus it is not a fair comparison with the long 

term growth rates over 11 days.  The effect of temperature on the respiration and 

photosynthesis rates does seem to show that 25°C is the optimal temperature for growth 

(Table 3.4). 

 

To survive at elevated salt concentrations, microorganisms need to synthesize compatible 

solutes to balance the increase in osmotic pressure in the external medium (Empadinhas 

and da Costa, 2008).  The NMR results shown in Figure 3.11 identified the polyol 

mannitol as the compatible solute for T. suecica. This agrees with the work published by 

Craigie et al. (1967) where it was shown that prasinophyte green algae like Tetraselmis 

use mannitol, whereas the true green algae (Chlorophyceae) like Dunaliella use glycerol.  

In terms of the energy efficiency using a C6 polyol like mannitiol is less efficient than 

using a C3 polyol like glycerol, thus Tetraselmis grows well up to 1 M NaCl (Figure 

3.8), whereas Dunaliella grows well up to at least 3 M NaCl (Ying et al., 2015). 

 

In this chapter, T. suecica has been shown to be tolerant to a range of salinities and pH 

values, which is a key requirement for an organism that could commercially produce 

biofuels and other fine chemicals (Chisti, 2007).  In the next chapter, the neutral lipid 

production by T. suecica cells will be assessed when grown at different salinities and pH 

values. 
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Chapter Four:  

 

Neutral Lipid 

Content and Fatty 

Acid Composition of 

Tetraselmis suecica 
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4.1 Introduction 

 

As described in section 1.5.2., algal lipids can be divided into polar and non-polar lipids. 

Within the non-polar lipid fraction, fatty acid chains attached to a glycerol backbone (neutral 

lipid, triacylglycerol, TAG) are the basis for biodiesel production.  Therefore, the suitability 

of microalgae for the production of biodiesel depends on their TAG content.  It is important 

to understand at what growth stage and under which culture conditions that TAG 

accumulation is maximised.  Since TAG is synthesized as a storage compound, it makes 

sense to stress the algae using environmental factors like temperature, light intensity, pH and 

salinity to reduce growth and switch on TAG production by altering the activity of metabolic 

pathways (Huang et al., 2013).  However, this means that growth is halted to induce TAG 

synthesis, rather than having TAG synthesized as the cells grow.  The latter is more desirable 

since it would lead to higher productivity. 

 

The other aspect of TAG synthesis is the composition of the fatty acid chains.  A number of 

characteristics of the fatty acids can change including length (number of carbons) and 

presence/absence and number of double bonds (i.e. degree of unsaturation).  The properties of 

the fatty acids affect the properties of the biodiesel produced (Stansell et al., 2012).  The 

composition of diesel fuels is covered by strict standards throughout the world (e.g. EN 

14214 is the fuel standard used in Europe).  This standard ensures that the ignition properties 

of the fuel, its viscosity and oxidative stability all fall within acceptable limits (Stansell et al., 

2012).  Fully saturated fatty acids (no double bonds) tend to add stability to the fuel, but can 

cause problems in cold weather (Knothe, 2005). Fatty acids rich in monounsaturated fatty 

acids (one double bond) are likely to be suitable and should make up a high proportion of the 

biodiesel. Polyunsaturated fatty acids are detrimental to fuel due to their susceptibility to 
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oxidation (Stansell et al., 2012).  The chain length is also important with C16 and C18 fatty 

acids being most suitable (Knothe, 2005). 

 

In Chapter 3, the tolerance of T. suecica to salinity and pH changes was established. In the 

current chapter, salinity and pH will be used to stress T. suecica cells and then the neutral 

lipid (TAG) production will be measured. There are a number of ways to measure lipids, but 

the lipid-soluble fluorescent dye Nile Red (9-diethylamino-5H-benzo[α]phenoxa-

phenoxazine-5-one) has been widely employed for the quantification of neutral lipid/TAG 

content in microalgae as a rapid, accurate and specific method (Cooksey et al., 1987; Chen et 

al., 2009). In this chapter, the intracellular neutral lipid in T. suecica was detected and then 

quantified with Nile Red (NR) staining. Secondly, fatty acid profiles of T. suecica were 

analyzed by gas chromatography–mass spectrometry (GC-MS) after direct transesterification 

with hydrochloric acid in methanol.  
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4.2 Results 

4.2.1 Visualisation of Lipid Bodies using Fluorescence Microscopy 

The accumulation of neutral lipids in T. suecica cells was first monitored by examining NR 

fluorescence under the fluorescence microscope to check that the NR dye dissolved in 

acetone was able to penetrate into the lipid droplets within the T. suecica cells.  The 

microscope images in Figure 4.1 clearly show the yellow fluorescence of NR when it is 

staining neutral lipids (TAG).  The staining shows that the neutral lipids are present as 

discrete droplets within the cells. There may be some indication that the amount of neutral 

lipid increased with increasing salinity, middle  

 

A) 

 

 

 

B) 

 

 

           

C) 

 

 

Figure 4.1. Fluorescence microscopy images of T. suecica cells stained with NR at a final 

concentration of 1 µmol/ml.  The cells were grown for 4 weeks  under different growth 

conditions. A) Cells grown in 0.4 M NaCl defined F/2 medium. B) Cells grown in 1 M NaCl 

defined F/2 medium. C) Cells grown in 0.6 M NaCl defined F/2 medium.  The images on the left 

are taken under normal light and the images on the right show the same cell under fluorescent 

light conditions. 
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images being from highest salinity (Figure 4.1), but this is not a quantitative method.  The 

key finding is that NR in acetone successfully entered the T. suecica cells and that the stained 

neutral lipid droplets were clearly visualised under the fluorescence microscope. 

 

4.2.2 Optimization of Nile Red Fluorescence Method  

To allow the quantification of NR fluorescence, a 96 well plate method using stained and 

unstained cells was used as described in section 2.13.  Several parameters were set as 

described below before the algal samples were analyzed. 

 

          4.2.2.1 Nile Red peak fluorescence 

 

Figure 4.2 shows the fluorescence intensities for different cell concentrations ranging 

from 12.5% to 100%, where 100% was OD595 = 1.  The highest fluorescence intensities 

were with 87.5, 100 and 75, respectively with 20 mins staining time. The other lower cell 

concentrations gave lower fluorescence intensities which decreased as the cell 

concentration decreased. The optimal cell concentration is 87.5% which is equivalent to 

an OD595 = 0.818. The measurement of NR after 5 mins staining was excluded as a result 

of lower fluorescence intensities. 
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Figure 4.2. Optimization of NR staining time and cell concentration on fluorescence intensity of 
the green alga T. suecica. The optimum conditions were 87.5% after 20 mins staining. Each 

column represent the mean of four reading plus / minus standard deviation. 

 

 

 

    4.2.2.2 Nile Red concentration test 

 

Figure 4.3 shows the effect of using different concentrations of NR ranging from 0.25 to 3 

μmol/ml (dissolved in acetone) with the 87.5% cell concentration (OD595 = 0.818) of T. 

suecica with different staining times (10, 15 and 20 mins). Very similar fluorescence 

intensities were observed when NR concentration was 3 μmol/ml after 10, 15 or 20 mins. 

However, the lower concentrations of NR gave low fluorescence intensities compared to 3 

μmol/ml after 10 mins staining (Figure 4.3). The optimal concentration of NR dye was 3 

μmol/ml. 
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Figure 4.3. Optimization of NR staining concentration for the green alga T. suecica. The 

optimum cell concentration of 87.5% was used, but the time of staining was varied from 10 

to 20 mins. Each column represent the mean of four reading plus / minus standard 

deviation 

 

 

 

 4.2.2.3 Nile Red Triolein test 

The final part of the NR set-up experiments was to produce a concentration curve using 

triolein as the model neutral lipid.  This will allow the conversion of fluorescence in 

arbitrary units to triolein equivalents.  The resulting concentration curve is shown in 

Figure 4.4. 
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Figure 4.4. Linear correlation between fluorescence intensity and triolein concentration to 

allow the conversion of fluorescence readings to triolein equivalents.  
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4.2.3 Neutral Lipid Content of T. suecica Cells Grown at Different Salinities 

The aim of the experiment was to determine if there was a correlation between increased 

molarity of NaCl in the medium, and production of neutral lipids (TAG) in T. suecica. 

The accumulation of lipids in T. suecica was assessed using NR dye staining as 

optimised in the previous section using 3 µmol/ml of NR dye concentration with the 

concentration of T. suecica cells set at OD595 = 0.818 (87.5% cell concentration) and the 

measurement of fluorescence intensities 20 mins after staining the algal cells with NR 

dye. The test was performed every week for four weeks to investigate the effect of salt 

stress over a significant time period. Figure 4.5 shows that the highest levels of neutral 

lipids were observed with the highest NaCl concentration (1 M) after 4 weeks culture. 

The relationship between increasing the salt concentration and TAG 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5. Neutral lipid content measured by NR fluorescence of T. suecica in defined F/2 

medium with different concentrations of NaCl. Each column represent the mean of four reading 

plus / minus standard deviation 
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accumulation was not straight forward. After two weeks growth, the lowest levels of 

TAG were found in the 1 M NaCl grown cells (Figure 4.5).  It is clear that age of culture 

is also important when considering the optimum conditions for TAG accumulation. 

4.2.4 Neutral Lipid Content of T. suecica Grown at Different pH Values 

The influence of pH on the neutral lipid content of T. suecica was examined using NR 

staining dye as optimised using 3 µmol/ml concentration of NR dye with the 

concentration of T. suecica cells (OD595 = 0.818) and the measurement of fluorescence 

intensities at 20 mins after staining the algal cells with NR dye. The test was performed 

each week from 1 to 4 weeks after inoculation to examine the effect of pH stress over a 

long period. Figure 4.6 shows that, interestingly, the highest neutral lipid levels were 

observed in T. suecica cells grown at pH 9 for 2 weeks. However, after four weeks 

growth, there was no difference in the TAG levels in cells grown at different pH values 

(Figure 4.6). 

 

Figure 4.6. Neutral lipid content measured by NR fluorescence of T. suecica cells grown in 

defined F/2 medium at different pH values. Each column represent the mean of four 

reading plus / minus standard deviation 
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4.2.5 Total Lipid Determination of T. suecica Cells by Gravimetric Method 

A one-off experiment was undertaken to look at the effect of pH and salinity stress on the 

total lipid production by T. suecica cells.  A large amount of biomass is required for the 

gravimetric method so the cells were grown for 4 weeks and the whole flask used to 

generate sufficient biomass (section 2.13.2).  Figure 4.7 shows that the same trends were 

seen as for 4 week old cultures used for NR dye neutral lipid determination (i.e. higher 

levels of total lipids in cells exposed to 1 M NaCl), but little difference in cells exposed 

to pH changes. 

 

 

Figure 4.7. Gravimetric measurement of total lipid content for 4 week old T. suecica cultures 

grown at different salinities and pH values.  The pH of all salinity cultures was pH 8 and the 

salinity of the different pH cultures was 0.4 M NaCl. Each column represent the mean of four 

reading plus / minus standard deviation 
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4.2.6 Fatty Acid Profiles of T. suecica Cells Grown at Different Salinities 

Figures 4.8, 4.9 and 4.10 show the spectra of fatty acids found in T. suecica cells exposed to 

increasing salinity.  In each figure, the top panel shows the fatty acid spectrum for cells 

grown in normal salinity (0.4 M NaCl) and two saturated fatty acids dominate the spectrum – 

hexadecanoic acid (palmitic acid, C16:0) and octadecanoic acid (stearic acid, C18:0).  In cells 

grown in 0.6 M NaCl, several other fatty acids are detected in addition to the two major 

saturated fatty acids i.e. pentadecanoic acid (C15:0), cis-10-heptadecanoic acid (C17:1), 

elaidic acid (C18:1) and linolelaidic acid (C18:2).  At higher salinities (0.8 and 1 M NaCl), 

the same spectrum of additional fatty acids was found (Figures 4.9 and 4.10).  It seems clear 

that with increased salinity above 0.4 M NaCl, more unsaturated fatty acids are produced in 

response to the salt stress. 

 

 

 

4.2.6 Fatty Acid Profiles of T. suecica Grown at Different pH Values 

Figures 4.11 and 4.12 show that stressing the T. suecica cells, through changing the external 

pH to 7 or 9, had a very similar effect on the fatty acid profile as increasing the salinity.  

Again a number of unsaturated fatty acids were produced in response to the change in pH 

including linolelaidic acid, which contains two double bonds and is a polyunsaturated fatty 

acid. 
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Figure 4.8. Comparison of GC-MS chromatographs for fatty acid accumulation in T. suecica; 

Top: grown in normal conditions with 0.4 M salt concentration and pH 8. The fatty acids 

accumulated were identified as (1)- hexadecanoic acid, methyl ester C16  (peak 8.66) (2)- 

octadecanoic acid methyl ester C18:0  (Peak 10.75) and the other two peaks were internal 

standard peaks 6.05 (C13) and peak 12.45 (C19). Bottom: T. suecica cells grown under stress 

conditions with 0.6 M salt concentration and the fatty acids accumulated were (1) pentadecanoic 

acid methyl ester c15:0 (Peak 8.26), (2) hexadecanoic acid, methyl ester C16 (Peak 8.67), (3) cis -

10-heptadecenoic acid methyl ester C17:1 (Peak 10.67), (4) octadecanoic acid methyl ester C18:0 

(Peak 10.76), (5) elaidic acid methyl ester C18:1,9t (Peak 10.83), (6) linolelaidic acid methyl ester 

C18:2n6t (Peak 12.97). The other two peaks were internal standard peaks 6.06 (C13) and 12.43 

(C19). 
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Figure 4.9: Comparison of GC-MS chromatographs for fatty acid accumulation in T. suecica; 

Top grown in normal condition with 0.4 M salt concentration and pH 8. The fatty acids 

accumulated were (1)- hexadecanoic acid, methyl ester C16  (peak 8.66) (2)- octadecanoic acid 

methyl ester C18:0  (Peak 10.75) and the other two peaks were internal standard peak 6.05 

(C13) and Peak 12.45 (C19). Bottom T. suecica cells  grown under stress conditions with 0.8 M 

salt concentration and the fatty acids accumulated were (1) pentade canoic acid methyl ester 

c15:0 (Peak 8.26), (2) hexadecanoic acid, methyl ester C16 (Peak 8.67), (3) cis -10-heptadecenoic 

acid methyl ester C17:1 (Peak 10.67), (4) octadecanoic acid methyl ester C18:0 (Peak 10.77), (5) 

elaidic acid methyl ester C18:1,9t (Peak 10.83), (6) linolelaidic acid methyl ester C18:2n6t (Peak 

12.97). The other two peaks were internal standard peaks 6.05 (C13) and 12.44 (C19).  
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Figure 4.10. Comparison of GC-MS chromatographs for fatty acid accumulation in T. suecica; 

Top: grown under normal conditions with 0.4 M salt concentration and pH 8. The fatty acid 

accumulated were (1)- hexadecanoic acid, methyl ester C16  (peak 8.66) (2)- octadecanoic acid 

methyl ester C18:0  (peak 10.75) and the other two peaks were internal standard peaks 6.05 

(C13) and12.45 (C19). Bottom: T. suecica grown under stress conditions with 1 M NaCl 

concentration and the fatty acids accumulated were (1) pentadecanoic acid methyl ester c15:0 

(peak 8.25), (2) hexadecanoic acid, methyl ester C16 (peak 8.66), (3) cis-10-heptadecenoic acid 

methyl ester C17:1 (peak 10.67), (4) octadeconoic acid methyl ester C18:0 (peak 10.76), (5) 

elaidic acid methyl ester C18:1,9t (peak 10.83), (6) linolelaidic acid methyl es ter C18:2n6t (peak 

12.97). The other two peaks were internal standard peaks 6.05 (C13) and 12.44 (C19).  
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Figure 4.11: Comparison of GC-MS chromatographs for fatty acid accumulation in T. suecica; 

Top: grown in normal conditions with 0.4 M salt concentration and pH 8. The fatty acids 

accumulated were (1)- hexadecanoic acid, methyl ester C16  (peak 8.66) (2)- octadecanoic acid 

methyl ester C18:0  (peak 10.75) and the other two peaks were internal standard peaks 6.05 

(C13) and 12.45 (C19). Bottom: T. suecica grown under stress conditions at pH 7 and the fatty 

acids accumulated were (1) pentadecanoic acid methyl ester c15:0 (peak 8.25). (2) hexadecanoic 

acid, methyl ester C16 (peak 8.67), (3) cis -10-heptadecenoic acid methyl ester C17:1 (peak 

10.68), (4) octadecanoic acid methyl ester C18:0 (peak 10.76), (5) elaidic acid methyl ester 

C18:1,9t (peak 10.83), (6) linolelaidic acid methyl ester C18:2n6t (peak 12.97). The other two 

peaks were internal standard peaks 6.05 (C13) and Peak 12.44 (C19). 
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Figure 4.12: Comparison of GC-MS chromatographs for fatty acid accumulation in T. suecica; 

Top: grown under normal conditions with 0.4 M salt concentration and pH 8. The fatty acids 

accumulated were (1)- hexadecanoic acid, methyl ester C16  (peak 8.66) (2)- octadecanoic acid 

methyl ester C18:0  (peak 10.75) and the other two peaks were internal standard peaks 6.05 

(C13) and 12.45 (C19). Bottom: T. suecica grown under stress conditions at pH 9 and the fatty 

acids accumulated were (1) pentadecanoic acid methyl ester c15:0 (peak 8.26), (2) hexadecanoic 

acid, methyl ester C16 (peak 8.67). (3) cis -10-heptadecenoic acid methyl ester C17:1 (peak 

10.68). (4) octadecanoic acid methyl ester C18:0 (peak 10.76), (5) elaidic acid methyl ester 

C18:1,9t (Peak 10.83), (6) linolelaidic acid methyl ester C18:2n6t (peak 12.97). The other two 

peaks were internal standard peaks 6.06 (C13) and 12.44 (C19). 
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4.3 Discussion 

In this chapter, NR fluorescence was shown to be a suitable method for visualising lipid 

droplets inside T. suecica cells (Figure 4.1).  The NR fluorescence method was then 

optimised for a quantitative assay in a 96 well plate reader format by setting the time 

required for peak fluorescence and the concentration of both cells and NR dye that are 

optimal (section 4.2.2).  Using these parameters, the amount of neutral lipid (TAG) 

accumulated by T. suecica cells under salinity and pH stress was measured (Figures 4.5 

and 4.6).  At the normal pH of 8, it was found that four weeks incubation at 1 M NaCl 

gave rise to the highest amount of TAG (Figure 4.5).  In contrast at the normal salinity of 

0.4 M NaCl, it was found that 2 weeks culture at pH 9 produced the most TAG (Figure 

4.6).  This established that environmental stresses can turn on TAG synthesis as has been 

shown previously for N-limited Tetraselmis cultures (Xu et al., 2013).  It was also 

interesting that for 4 week old T. suecica cultures, total lipid measured gravimetrically 

showed the highest lipid level in 1 M NaCl grown cells.  The conclusion to be drawn is 

that a large increase in salinity can induce increased TAG accumulation and high salinity 

may be the best condition to use for TAG synthesis in a commercial biofuel process 

based on T. suecica as the feedstock.  This has the additional advantage that 

contamination of T. suecica cultures will be more easily controlled at elevated salinities 

(Azma et al., 2010; Qin et al., 1999). 

 

The fatty acid profiles of the TAG accumulated under salinity and p H stresses were 

measured using GC-MS.  Any increase in salinity above 0.4 M NaCl induced the 

production of monounsaturated fatty acids and one polyunsaturated fatty acid.  The 

mixture of saturated, unsaturated and polyunsaturated fatty acids looks very pro mising as 



106 
 

a base for biodiesel production and should meet the requirements for cold-flow, ignition 

properties, viscosity and oxidative stability (Stansell et al., 2012). 

 

In the next chapter, attempts to scale up Tetraselmis cultures in 2 litre photobioreactors 

will be described and the possibility of recycling nutrients will be explored. 
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5.1 Introduction 

In the previous chapter, the suitability of T. suecica cells as a feedstock for biofuel 

production was confirmed due to their tolerance of high salinity and the fact that TAG 

production was increased at high salinity and showed a good mix of saturated and 

monounsaturated fatty acids.  The logical next step is to examine scaling up of cultures 

from 100 ml in 250 ml flasks used in the previous chapters to a 2 litre airlift fermenter.  

Previous work in the Gilmour laboratory with T. suecica (Bangert and Gilmour, 

unpublished) has shown that the cells may stick to the surfaces of the fermenter which 

disrupts growth of the culture.  However, it is important to examine how well T. suecica 

can grow in an aerated culture rather than a static 250 ml flask culture as a first step 

towards larger scale cultures. 

 

The second aspect of scaling up is that nutrients are required in much larger amounts.  

The availability of CO2 is not a major problem, although transferring CO2 from an 

industrial source to an algal pond or bioreactor may not be cost effective and most recent 

proposals envisage building the algal ponds adjacent to the industrial facility (Rosenberg 

et al., 2011).  However, the availability of nitrogen and phosphorus sources is a potential 

major limitation to the scale up of algal biodiesel production to a level that provides a 

significant percentage of the diesel requirement of a major industrial country like the UK 

or USA (Pate et al., 2011).  Two ways of addressing the problem of N and P limitation 

are a) to recycle the nutrients and/or b) use wastewater rich in nutrients to supplement the 

algal growth medium.  Both ideas can be incorporated into the concept of an algal 

biorefinery, where medium is recycled, industrial or domestic waste is part of the inputs 
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and all parts of the algal biomass are used for products or recycled back into the process 

(Razzak et al., 2013). 

 

The aims of the work presented in this chapter are to examine the possibility of growing 

T. suecica on a larger scale using a 2 L airlift photobioreactor and using higher levels of 

CO2. Also, the effect of re-using the medium on the growth of T. suecica will be 

examined with the aim of developing an integrated algal biorefinery process using T. 

suecica as the feedstock. 

 

 

5.2 Results 

5.2.1 Re-using the Medium and its Effect on Growth of T. suecica 

For this experiment, 10 day-old cultures of T. suecica grown in 0.4 M NaCl defined F/2 

medium were centrifuged to remove all the algal cells and then the supernatant (used 

medium) was inoculated with fresh cells along with a control in fresh 0.4 M NaCl F/2 

defined medium. Figure 5.1 shows the growth rate in recycled medium over the first four 

days was very low compared with the control, therefore it is clear that little or no growth 

took place in all three re-used medium flasks in comparison with the control.  To test if 

this was due to a limitation in N or P, additional N and P was added as shown in Figure 

5.1.  There was still poor or no growth shown after a single enrichment with N or P (red 

and green lines, respectively).  However, when both N and P was added (purple line, 

Figure 5.1) then good growth was seen. Figure 5.2 shows pictures of the growth flasks 

during the experiment.  Panel B in Figure 5.2 shows the lack of growth in the re-used 

medium after 4 days and then Panel C shows that addition of both N and P gave good 
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growth, but single nutrient enrichment was not effective.  After 10 days, N was added to 

the culture which had only P enrichment previously (green line in Figure 5.1) and P was 

added to the flask which had previously had only N enrichment (red line in Figure 5.1).  

In both cases, good growth resulted from this second enrichment step.  Panel D in Figure 

5.2 shows the flasks after 14 days growth and all have reached reasonable levels of 

biomass (Figure 5.1).  This experiment shows clearly that after 10 days growth in F/2 

defined medium, both N and P are becoming limiting so that the used medium cannot 

support a new cycle of growth from a fresh inoculum of cells.  Addition of both N and P 

was required to restore growth to near the control rate of growth (Figure 5.1).  However, 

it is important to note that no toxic substance was built up in the used medium; it was a 

lack of N and P that prevented growth. 
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Figure 5.1. Growth curves for T. suecica cultures grown in reused 0.4 M NaCl defined F/2 

medium (purple, red and green) versus a control flask grown in fresh 0.4 M NaCl F/2 medium.  

After 5 days additional N (1 ml of defined F/2 medium Nitrate stock solution) was added to the 

culture depicted in red, additional P (1 ml of defined F/2 medium Phosphate stock solution) was 

added to the culture depicted in green and both N and P (1 ml of each defined F/2 medium 

Nitrate and Phosphate stock solution) were added to the culture depicted in purple.  After 10 

days, N (1 ml of defined F/2 medium Nitrate stock solution) was added to the culture depicted in 

green and P (1 ml of defined F/2 medium Phosphate stock solution) was added to the culture 

depicted in red. 
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Figure 5.2. Growth flask pictures of T. suecica cultures during the experiment to test the re -use 

of 0.4 M NaCl defined F/2 medium. A) All flasks before the inoculation. B) After four days 

incubation, growth has only taken place in the control flask. C) After 10 days, good growth has 

taken place in flask with both N and P enrichment. D) After 14 days, good growth has now 

taken place in both flasks with single enrichment after the second stage enrichment.           
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5.2.2 Growth of T. suecica Using a Photobioreactor 

Three separate experiments were performed using the 2 litre airlift photobioreactor (Figures 

5.3 and 5.4). Approximately 1.9 litres of 0.4 M NaCl defined F/2 medium were added to the 

vessel and then it was sterilized by autoclaving.  The inoculum was a well grown 100 ml 

culture and the temperature was controlled at 25°C.  In each experiment, the OD595 was 

measured daily to estimate the growth rate over a 14 day growth period.  The first fermenter 

experiment used normal 0.4 M defined F/2 medium with atmospheric air bubbled through the 

medium.  The second experiment used 0.4 M F/2 medium with extra N and P (19 ml of each 

defined F/2 medium nitrate and phosphate stock solution, see section 3.2.3) and finally the 

third experiment had the extra N and P, and 5% CO2 bubbled through the medium rather than 

air. Figure 5.5 shows that for the first 7 days there was little difference in the growth for all 

three conditions.  However, in the second 7 days, the N and P became limiting in the control 

culture and the enriched N and P culture achieved a much higher biomass at the end of the 14 

day incubation period.  Adding in additional CO2 provide a further boost to the final biomass 

(OD595 more than 1.2) against a final control OD595 value of just above 0.6. 

 

Both experimental sections in this chapter have shown the new F/2 defined medium does 

become N and P limiting quite soon after inoculation (7 to 14 days) and that N and P 

additions significantly increase the final biomass levels produced.  As expected, increasing 

the CO2 from atmospheric levels (0.03%) to 5% also increased the final biomass obtained. 
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Figure 5.3.  Two litre airlift photobioreactor set-up on the laboratory bench.  There is a water 

jacket which is connected to water circulating from the water bath to control the temperature at 

25°C.  The fluorescence lights are daylight fluorescence tubes and provided a light intensity of 

35 µmol m
-2

 s
-1

 (Picture taken by Krys Bangert). 
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Figure 5.4.  Empty fermenter vessel after harvesting algae showing the key characteristics of air 

inlet and oulet, water jacket and sample outlet.  Picture taken by Krys Bangert. 
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Figure 5.5. Growth of T. suecica using the 2 litre airlift photobioreactor under three different 

conditions in 0.4 M F/2 defined medium.  Control (blue line) = normal medium bubbled with 

air; green line is defined F/2 medium enriched with N and P (19 ml of each defined F/2 medium 

nitrate and phosphate stock solution) bubbled with air; red line is enriched medium bubbled 

with 5% CO2. 
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5.3  Discussion of the Algal Biorefinery Concept 
 

The experimental work described in this chapter has laid down the groundwork for further 

exploration of the possibilities of using T. suecica as a feedstock for commercial production 

of algal biofuels.  The scale-up experiment was successful and over a 14 day growth period 

no obvious problems were encountered with the cells being mixed by the airlift effect 

(Zimmerman et al., 2011).  Tetraselmis suecica has a cell wall so it is not susceptible to cell 

damage in the same way that the wall-less Dunaliella cells suffer damage (Bangert, 2013). 

 

It is also clear that sufficient levels of N and P are essential to achieve the high biomass 

required for biodiesel production and the ability to source this N and P in a sustainable way 

will be crucial to the success of algal biodiesel production.  As mentioned in section 5.1, 

wastewater is a good source of N and P and cleaning up of polluted water can potentially be 

combined with growth of algae for biofuels.  In this discussion section the potential for 

setting up a biorefinery using T. suecica as the feedstock will be explored. 

 

There are a number of different ways that an algal biorefinery can be set up and a fairly 

simple set-up is shown in Figure 5.6, which is taken from the paper of Razzak et al. (2013).  

The origins of the inputs to the algal culture are crucial and should include wastewater or 

seawater as sources of nutrients and industrial flue gas as the source of CO2.  Solar energy 

must be used, but this does not automatically mean an open pond, it could involve a closed 

photobioreactor situated outdoors.  As much as possible of the medium should be recycled 

and any waste CO2 from downstream processing should also be recycled back to the 

microalgal culture for re-use.  The range of potential products is shown in Figure 5.6 and 

includes a mixture of fuels, animal feed and human health foods (i.e. a mixture of low value 
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high volume products such as fuels versus high value low volume products such as health 

food supplements). 

 

 

 

Figure 5.6.  Outline of an algal biorefinery scheme.  The microalgal culture requires the inputs 

shown in the top left of the diagram and the potential uses for the microalgal biomass are shown 

on the right hand side.  Recycling of the medium and CO2 are essential for the operation of the 

biorefinery.  Modified from Razzak et al. (2013). 

 

 

5.3.1  Inputs to the Microalgal Biorefinery 

To grow algal biomass, all inorganic nutrients must be supplied in addition to a source of 

carbon (normally CO2) and energy (normally solar energy).  This may be stating the obvious, 

but when contemplating algal growth on a large scale, even minor nutrients are required in 

reasonably large amounts.  The F/2 defined medium described in section 3.2.3 provides a 

good breakdown of all the nutrients required to grow a marine alga such as Tetraselmis.  

Sodium chloride, magnesium chloride, magnesium sulphate, calcium chloride and potassium 

chloride are (in decreasing order of weight required) the major salts required.  Micronutrients 
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such as strontium chloride and potassium bromide may also be required depending on the 

algal species.  A source of nitrogen (often sodium nitrate) and a source of phosphate are 

essential and other trace metals and vitamins may be required again depending on the species 

(see Table 2.4).  The most obvious source of most of the salts is natural seawater, but 

supplementation with N and P will almost certainly be required to promote growth to a 

satisfactory level.  A sustainable source of N and P is wastewater. 

 

The N to P ratio in algal biomass varies from N:P 4:1 (under N limitation) to values reaching 

almost N:P 40:1 (Craggs et al., 2013).  The latter ratio corresponds to 10% N and 1% P on a 

dry weight basis.  For scientists interested in the removal of N and P from wastewater to 

avoid the eutrophication of lakes and rivers, these ratios indicate that N is the key element 

and that if all N is removed then all P will also be sequestered into the algal biomass (Craggs 

et al., 2013).  In domestic wastewater, N concentrations can be found in the range of 15 to 90 

mg l-1 and P concentrations range from 4 to 20 mg l-1 (Beuckels et al., 2015).  From the 

defined F/2 medium recipe (see section 3.2.3), the amount of N present is 20.3 mg l-1 and the 

amount of P present is 1.1 mg l-1.  Therefore based on the results in this chapter, the N and P 

concentrations in domestic wastewater would allow growth of T. suecica for at least 10 days 

and probably for up to 2 to 3 weeks, since the amounts of P and N in wastewater are normally 

in excess of the amounts of P and N in F/2 medium.  It is reasonable to conclude that natural 

seawater supplemented with domestic wastewater would meet the requirements for growing 

T. suecica to satisfactory cell densities. 

 

The other major input is CO2, which can be found in high quantities in industrial flue gases.  

Zimmerman et al. (2011) successfully grew Dunaliella cells on industrial flue gas containing 

up to 23% CO2.  In the current work, we have demonstrated good growth of T. suecica up to 
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5% CO2 (Figure 5.5).  In a recent paper, Ferriols et al. (2013) demonstrated optimum growth 

of Tetraselmis at 10% CO2, giving good grounds to suspect that T. suecica could grow well at 

the elevated CO2 levels found in flue gases. 

 

 

5.3.2  Recycling Medium in a Microalgal Biorefinery 

The water requirement for growing microalgae to produce biodiesel on a large scale is 

potentially very large and in the previous section, it was suggested that the use of seawater 

supplemented with wastewater was a way to avoid this problem.  However, use of seawater 

means that the algal biorefineries must be located near the coast close to a sewage treatment 

plant and near an industrial source of CO2.  Matching these criteria can quite quickly and 

dramatically reduce the availability of suitable sites (Farooq et al., 2015).  Various studies 

have tried to determine the water requirement for microalgal cultivation for biodiesel 

production and this includes water used indownstream processes to extract and purify the 

TAGs.  This information is summarized in the paper by Farooq et al. (2015) and figures up to 

3360 litres of water per litre of biodiesel produced are quoted.  Re-cycling the medium can 

significantly decrease the water requirement as demonstrated for Chlorella vulgaris by 

Stephenson et al. (2010) with a decrease from 1611 litres of water required per litre of 

biodiesel to only 3.7 litres of water required per litre of biodiesel. 

 

The main problems with the recycling of growth medium is that growth inhibiting chemica ls 

may accumulate in the medium and broken cell debris may induce the growth of bacteria.  

There also tends to be an increase in salt concentrations as the medium is re-used (Ben-

Amotz, 1995).  In the present chapter, results were presented (Figures 5.1 and 5.2) that 

showed that no autoinhibitory chemicals were accumulated in T. suecica cultures over an 



121 
 

initial 10 day growth period.  After supplementation with N and P, T. suecica cells grew well 

in the re-cycled medium.   

 

This agrees well with a pilot scale culture of Tetraselmis MUR233 using recycled medium 

carried out by Fon Sing et al. (2014) in outdoor ponds in Western Australia.  Electro-

flocculation was used to remove the Tetraselmis cells and the recycled medium went through 

a settling tank before being returned to the culture pond.  It was found that over a period of 5 

months with recycling of medium at least twice weekly that the cells continued to grow well 

and coped with an increase in salinity from 5.5% w/v NaCl (approximately 1 M NaCl) to 

12% w/v NaCl (approximately 2 M NaCl).  The electro-flocculation method also sterilised 

the recycled medium and is an important part of this novel process (Fon Sing et al., 2014). 

 

 

 

 

5.3.3  Harvesting Cells and Extracting Products 

One of the major constraints preventing the mass commercial exploitation of microalgae is 

harvesting.  When algal cells are grown photoautotrophically (i.e. CO2 as sole source of 

carbon), 1 to 2 g l-1 dry biomass is the maximum achievable because of the self shading in 

dense algal cultures (Gilmour and Zimmerman, 2012).  Most industrial processes based on 

microbial biomass would normally expect to attain 100 g l-1 dry biomass before harvesting.  

This illustrates the challenge – to economically harvest very small microalgal cells from a  

dilute suspension of only 1 to 2 g l-1.  In many pilot studies for setting up algal biorefineries, 

centrifugation is used to harvest the biomass (e.g. Nurra et al., 2014), but the cost in energy 
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and money rules out centrifugation as a way of harvesting mass cultures of algae (Gutierrez 

et al., 2015). 

 

The most commonly used harvesting methods utilize the fact that algal cells are negatively 

charged and can thus be caused to produce flocs of cells that can be precipitated out of 

suspension by adding positively charged (cationic) flocculants such as aluminium or iron 

sulphate (Razzak et al., 2013).  Polyferric sulphate is more efficient with multiple positive 

charges to bind the cells together and biodegradable flocculants such as chitosan can also be 

used (Molina Grima et al., 2013).  The latter is particularly useful for food products, but the 

efficiency of chitosan flocculation is decreased with increasing salinity, which is a drawback 

for marine algal species like Tetraselmis (Molina Grima et al., 2013).  Novel techniques, such 

as foam fractionation, which uses surfactants such as CTAB (cetyl trimethylammonium 

bromide) to break open the algal cells and produce a foam that is harvested from the top of a 

funnel attached to the fermenter (Coward et al., 2013).  Also, microwave assisted 

hydrothermal pyrolysis has been shown to be effective using Chlorella biomass and a range 

of products (lipids, sugars, proteins) were produced (Budarin et al., 2012).  This technique is 

particularly relevant to the biorefinery concept because it allows the simultaneous extraction 

of a number of products. 

 

Filtration is also an option, but relatively cheap cellulose filters do not work with many small 

algal cells.  Membrane filters and the use of a vacuum to drive the filtration can be used, but 

blocking of filters is a difficult problem to overcome (Molina Grima et al., 2003). No work 

has been done on harvesting during the current project, but there is no reason to think that T. 

suecica will not be amenable to the usual harvesting techniques. 
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The extraction of neutral lipids (TAGs) and other products from the harvested algal biomass 

can be achieved by a range of techniques including mechanical extraction (e.g. use of a bead 

mill), ultrasound (which produces cavitation bubbles) and chemical/solvent extractions (Bligh 

and Dyer solvent extraction or supercritical CO2 extraction) (Razzak et al., 2013).  The 

procedures used in Chapter 4 to extract and transesterify neutral lipids from T. suecica 

showed that extraction of lipids should be straight forward. 

 

5.3.4  Commercial Viability of a Microalgal Biorefinery 

The commercial viability of microalgal biorefineries is essential to the establishment of 

viable industries based on microalgal biomass.  The most obvious place to start the 

development of an algal biorefinery is to build on the existing high rate algal ponds (HRAP) 

which are used to clean up wastewater (Craggs et al., 2013).  The investment in harvesting 

technology would be repaid by the production of biodiesel to use elsewhere in the sewage 

works.  To date, water companies have not seen the need to invest in this area, but hopefully 

this will change in the near future. 

 

Another approach is to site an algal biorefinery (often called an algal farm in this context) on 

suitable marginal land and set up the infrastructure required for the refinery/farm from 

scratch (Abodeely et al., 2014; Subhadra and Grinson-George, 2010).  A fully integrated 

renewable energy park would include solar energy, wind energy, geothermal energy and algal 

biorefinery all on the same site with the production of biofuel and co-products, but with zero 

net carbon emissions (Subhadra, 2010).  This is a theoretical concept and would require a 

very large initial investment to get underway.  However, the idea o f using valuable co-

products to offset the cost of biofuel production is a good one and remains at the heart of the 

algal biorefinery concept. 
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5.4  Conclusions 

The work described in this chapter shows that T. suecica can be grown successfully in a 2 

litre photobioreactor under elevated (5% CO2) conditions.  It was possible to re-cycle the F/2 

growth medium without problems from autoinhibitory chemicals, but it was noted that N and 

P became limiting within 10 days of culture in the novel defined F/2 medium.  The analysis 

of the requirements for an algal biorefinery did not show up any obvious reasons not to use T. 

suecica as the algal feedstock, but more work is required to compare T. suecica to a range of 

algae to see which species are most suitable for the development of an algal biorefinery. 
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Chapter Six  

 

General Discussion 
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6.1  General Discussion 

Tetraselmis suecica has been identified as a good candidate for the production of biodiesel 

and other fine chemicals (Chisti, 2007) on the basis of high lipid content and the fact that T. 

suecica is tolerant to a range of environmental extremes including high salinity and pH 

(Chapter 3).  As a marine alga, T. suecica is normally grown on seawater based media such as 

F/2, but all such media are complex media with unknown concentrations of salts.  In the 

present work, a fully defined medium based on F/2 was developed (section 3.2.3) and shown 

to support good growth of T. suecica (Figure 3.7).  This means that in future work, nutrient 

levels can be varied in a fully quantitative way and this will lead to further insights into the 

best growth conditions for T. suecica. 

 

As part of the initial characterisation of T. suecica, NMR analysis was used to identify the 

compatible solute produced by the cells to balance the external osmotic pressure at high 

salinities.  The data shown in Figure 3.11 indicate that mannitol acts as the compat ible solute 

since its intracellular concentration increases with increasing salinity.  This finding confirms 

the original work of Craigie et al. (1967) using a modern technique.  The type of compatible 

solute affects the maximum salinity that can be tolera ted by the organism and a six carbon 

polyol would be expected to allow growth up to about 1 M NaCl (Empadinhas and da Costa, 

2008), which agrees well with the growth data shown in Figure 3.8. 

 

The work described in Chapter 4 aimed to identify the best cond itions for neutral lipid 

accumulation in T. suecica.  The results shown in Figure 4.5 indicate that high salinities (0.6 

M NaCl and above) do induce more TAG synthesis after 4 weeks incubation.  The effect was 

not particularly strong and reflects the fact that T. suecica grows well up to 1 M NaCl.  
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Increasing the salt stress above 1 M NaCl may induce more TAG accumulation, but it will 

also likely reduce the growth rate.  In a parallel experiment to determine the effect of pH on 

TAG synthesis, growing cells at pH 9 (0.4 M NaCl) for two weeks led to the highest level of 

TAG accumulation (Figure 4.6).  Putting these two results together suggests that 1 M NaCl 

and pH 9 would be the best growth conditions for TAG synthesis. 

 

The fatty acid profiles were also determined using GC-MS and increasing salinity induced 

the synthesis of fatty acids with one double bond (monounsaturated), which are ideal for 

biodiesel production (Knothe, 2005; Stansell et al., 2012).  It appears likely that growing T. 

suecica at high salinity will result in a favourable mix of fatty acids for biodiesel (Chapter 4). 

 

In the final results chapter (Chapter 5), preliminary experiments on scaling up the culture of 

T. suecica and re-using medium were successfully carried out showing that there were no 

obvious drawbacks to growing T. suecica on a large scale.  The analysis of algal biorefinery 

requirements described in section 5.3 showed that T. suecica meets the major criteria for a 

feedstock into an algal biorefinery.  The key points are that T. suecica can grow well at high 

salinity, high pH and high CO2.  Co-products such as carotenoids and polyunsaturated fatty 

acids can be produced from Tetraselmis and it has been used successfully as a feed for 

shellfish and fish farming (Fabregas et al., 1984). 
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6.2  Future Work 

The work on environmental stress effects on TAG production by T. suecica should be 

continued to confirm the optimum conditions for TAG production, which appear to be 1 M 

NaCl and pH 9.  Also, increasing the salinity stress beyond 1 M NaCl should be attempted to 

see if the increased production of TAG will outweigh the likely decrease in growth rate.  A 

full quantification of TAG will be carried out using the trio lein concentration curve which 

was produced as part of the current work.  This will enable a % TAG to be ca lculated on a 

dry weight basis. 

Once the optimum growth conditions for TAG synthesis are fully established, the GC-MS 

work will be repeated to examine the fatty acid profile with respect to biodiesel production. 

Supplementing the medium with wastewater from a sewage works will determine how well 

T. suecica can grow on wastewater and what level of wastewater addition to F/2 medium 

leads to the best growth and TAG synthesis.  The re-cycling of medium will be further tested 

by increasing the number of times the medium is re-used until it will no longer support 

growth.  At this point, the spent medium will be tested for toxin build-up to understand the 

limitations to re-cycling of the medium. 

Further scaling up of the cultures of T. suecica will be carried out using larger fermenters up 

to 200 litres.  This will allow a full investigation of the properties of T. suecica when grown 

in mass culture. If the 200 litre culture proves successful, the University of Swansea has 

larger fermenters which can be used to test biofuel production in T. suecica in a several 

thousand litre capacity outdoor fermenter. 
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Appendix A. Relationship between OD595 and dry weight for T. suecica cells 

grown at different salinities 

To allow dry weight to be calculated from OD measurements, concentration curves were 

produced as shown in Figures A.1 and A.2.  The data for 0.4 and 0.8 M NaCl grown T. 

suecica cells were similar and are plotted as one graph (Figure A.1).  However, the 

relationship between OD595 and dry weight was significantly different for the cells grown in 1 

M NaCl and thus a separate concentration curve was produced (Figure A.2). 

 

Figure A.1. Average of dry weight versus OD concentration curve s for 0.4 M NaCl grown and 

0.8 M NaCl grown T. suecica cells. 

 

Figure A.2. Dry weight versus OD concentration curve for 1 M NaCl grown T. suecica cells. 
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Appendix B. Relationship between OD595 and cell count for T. suecica cells 

grown at different salinities 

To allow cell number to be calculated from OD values, concentration curves were produced.  

The data for 0.4 and 0.8 M NaCl grown T. suecica cells were similar and are plotted as one 

graph (Figure B.1).  However, the relationship between OD595 and cell number was 

significantly different for the cells grown in 1 M NaCl and thus a separate concentration 

curve was produced (Figure B.2). 

 

Figure B.1. Average cell count versus OD calibration curve for 0.4 M and 0.8 M NaCl grown T. 

suecica cells. 

 

Figure B.2. Cell count versus OD calibration curve for 1M NaCl grown T. suecica cells. 

y = 934173x 
R² = 0.9884 

0.0E+00

1.0E+05

2.0E+05

3.0E+05

4.0E+05

5.0E+05

6.0E+05

7.0E+05

8.0E+05

9.0E+05

1.0E+06

0 0.2 0.4 0.6 0.8 1 1.2

C
e

lls
/m

l 

OD595 

y = 896122x 
R² = 0.9884 

0.0E+00

1.0E+05

2.0E+05

3.0E+05

4.0E+05

5.0E+05

6.0E+05

7.0E+05

8.0E+05

9.0E+05

1.0E+06

0 0.2 0.4 0.6 0.8 1 1.2

C
e

lls
/m

l 

OD595 



142 
 

Appendix C. Neutral Lipid Content of T. suecica Cells Grown at Different Salinities 

and pH Values - 10 mins reading 

  

 

Figure C.1. Neutral lipid content measured by NR fluorescence of T. suecica in defined F/2 

medium with different pH values. Each column represents the mean of four reading plus / 

minus standard deviation. 

 

 

 

Figure C.2. Neutral lipid content measured by NR fluorescence of T. suecica in defined F/2 

medium with different concentrations of NaCl. Each column represents the mean of four 

reading plus / minus standard deviation. 
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Appendix D. Neutral Lipid Content of T. suecica Cells Grown at Different Salinities 

and pH Values - 15 mins reading 

 

 

 

 

 

 

 

 

Figure D.1. Neutral lipid content measured by NR fluorescence of T. suecica in defined F/2 

medium with different concentrations of NaCl. Each column represents the mean of four 

reading plus / minus standard deviation 

 

 

 

 

 

 

 

 

Figure D.2. Neutral lipid content measured by NR fluorescence of T. suecica in defined F/2 

medium with different concentrations of NaCl. Each column represents the mean of four 

reading plus / minus standard deviation 
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