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Abstract

In recent years, there has been a growing trend towards using multi-core pro-
cessors in real-time systems to cope with the rising computation requirements of
real-time tasks. Coupled with this, the rising memory requirements of these tasks
pushes demand beyond what can be provided by small, private on-chip caches, re-
quiring the use of larger, slower off-chip memories such as DRAM. Due to the cost,
power requirements and complexity of these memories, they are typically shared
between all of the tasks within the system.

In order for the execution time of these tasks to be bounded, the response time
of the memory and the interference from other tasks also needs to be bounded.
While there is a great amount of current research on bounding this interference,
one popular method is to effectively partition the available memory bandwidth
between the processors in the system. Of course, as the number of processors
increases, so does the worst-case blocking, and worst-case blocking times quickly
increase with the number of processors.

It is difficult to further optimise the arbitration scheme; instead, this scaling prob-
lem needs to be approached from another angle. Prefetching has previously been
shown to improve the execution time of tasks by speculatively issuing memory
accesses ahead of time for items which may be useful in the near future, although
these prefetchers are typically not used in real-time systems due to their unpre-
dictable nature. Instead, this work presents a framework by which a prefetcher
can be safely used alongside a composable memory arbiter, a predictable prefetch-
ing scheme, and finally a method by which this predictable prefetcher can be used
to improve the worst-case execution time of a running task.
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1 I N T R O D U C T I O N

Within recent years, the breakdown of Dennard scaling [13] has limited the ability
for processor designers to improve system performance by increasing the overall
system clock speed. Instead, to maintain expected year-on-year performance in-
creases, system designers have instead turned to scaling the number of cores on a
chip rather than the core speed. Today, eight-core processor designs are becoming
commonplace, and multi-core scaling is set only to continue; EZChip [14] are cur-
rently creating 72-core designs, Parallela are creating 64-core designs which can be
connected together for a maximum of 256 cores and Intel are aiming for over 60

cores on the Knight’s Landing platform [15].
While these systems are allowing apparent processor performance to meet ex-

pected year-on-year improvements, they are beginning to run into an important
problem. The “memory gap” has been known for the last couple of decades [16],
that is, that the memory subsystem simply cannot cope with the memory band-
width requirements of modern tasks. As the number of cores accessing a single
memory increase, this effect is only going to worsen, and memory latencies are
only going to increase.

This causes significant problems within the field of real-time systems, which by
their very nature need to know the worst-case response time of all the components
within a system. This rising memory latency causes the estimate for the worst-case
time to execute an instruction which accesses memory to significantly increase
and hence, the worst-case time to execute the task as a whole increases. As the
number of cores sharing memory increases, this effect will only worsen further to
potentially unacceptable levels.

There are many techniques by which some of this latency can be alleviated, one
of which being prefetching. This attempts to utilise spare bandwidth to specula-
tively fetch data ahead of time, although it is generally not used within real-time
systems because the behaviour of the prefetcher is difficult to predict and may actu-
ally cause the worst-case execution time of a task to worsen. That said, a controlled
and predictable form of prefetching is an attractive prospect to try and reduce this
ever-increasing memory delay by using any “spare” system bandwidth to try and
reduce the execution time of other tasks.

This thesis will attempt to investigate the effects of prefetching on real-time
multi-core systems, and attempt to create a prefetching scheme under which the
worst-case execution time of a task can be improved. Firstly though, the remainder
of this chapter will explain the background behind the move to multi-core systems
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and the effects this has on real-time systems to provide the intuition behind the
work in the remainder of this thesis. It will then provide a research hypothesis
which this thesis will attempt to prove, before closing with a plan for the remainder
of this thesis.

1.1 background

Up until the last decade, two observations managed to adequately capture the
trends within computer architectures. Moore’s Law [17] states that, in effect, the
number of transistors on an integrated circuit for which the cost per transistor
is optimal doubles around every 18 months. Dennard Scaling [13] then states
that as the feature size of transistors falls, the power density of transistors remains
constant and thus the power required for two identically sized dies should be the
same, regardless of feature size. In effect, Moore’s Law provides extra transistors
for new features, and Dennard Scaling combined with improved manufacturing
processors allow the transistors to be used within a similar power budget.

While Moore’s observations are still relevant today, Dennard Scaling has begun
to break down [18]. To maintain the same power density as the number of tran-
sistors in a unit area increases, the power utilised per transistor naturally must
decrease, for which one realisation is to reduce the operating voltage of the tran-
sistor. Within recent years, this operating voltage has been lowered so far that
sub-threshold leakage1 becomes a real issue and begins to limit the voltage scaling
of transistors. As transistors are made smaller, the power density can no longer re-
main constant and hence heat dissipation begins to become a real problem within
systems.

As clock frequency increases also require more power, this led to clock frequency
scaling of microprocessors to plateau around 2003 [20], mainly because it is diffi-
cult to dissipate the heat generated by both more transistors and faster transis-
tors. This problem is then combined with increasing wire delays caused by using
smaller wires [21]; as wire diameter decreases, the resistance of the wire increases
and hence the time taken to switch the state of the wire between “off” and “on”
increases because of the capacitor time constant τ = RC. The combination of these
factors, amongst others, makes it difficult to increase the clock speed further. In-
stead, to use the transistors provided by Moore’s Law and to provide the expected
year-on-year performance increases, system designers instead turned to using mul-
tiple cores on a single die.

1 Field Effect Transistors (FETs) used within computer circuits are effectively used as digital switches.
When there is a sufficient positive voltage between the “gate” and “source” pins of the FET (called
the threshold voltage), it will allow current to flow between the “source” and the “drain” pins. Sub-
threshold leakage is the current which can flow when this condition has not yet been met. This
leakage is inversely proportional to the threshold voltage [19], which Dennard Scaling assumes can
be lowered with transistor size in order to maintain constant power density.
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Figure 1.1: Example multi-CPU system, comprised of two independent CPUs with private
memories.

While increasing the number of cores on a single chip allows for good perfor-
mance increases, it does cause a new problem. Single-core processors typically
contained their own memory controller, and were connected to their own memory.
Any communication between processors then had to take place using a given sys-
tem bus, for example, Ethernet or CAN. An example of such a system is shown
in Figure 1.1, where there are two single-core processors with exclusive access to
their attached memory. If data must be shared between these processors, it must
be done explicitly through the attached CAN interface.

CPU

Memory Controller

IO Controller

CPU

Memory

CAN

Figure 1.2: Example multi-core system, comprised of a dual-core CPU with a single shared
memory.

Due to many factors, allowing each core to retain its own private, software man-
aged memory is infeasible in multi-core processors. Constraints such as die area,
power utilisation and the number of package pins [16] limit the number of memory
modules that can be connected to a chip and hence make it impossible for each
processing core to have its own large, private memory. Instead, each core must
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share the global system resources, creating a system such as that shown in Fig-
ure 1.2. Within this system, both cores share a single common memory controller
and I/O controller. For the aforementioned reasons, these controllers are rarely
multi-channel and hence if both cores want to access memory at the same time,
there will be contention and one of the cores will be granted access to memory,
causing the other to have to wait.

This contention causes significant issues within the field of real-time systems. A
real-time task is typically characterised by the fact that it must respond to an input
stimulus with a set period of time for the output to be valid. There are various
examples of such systems; flight control systems must process the pilot’s inputs
quickly and update the state of the aircraft’s control surfaces quickly enough to be
responsive, video decoders must emit a new frame with a set deadline to ensure
smooth video playback. To make such guarantees, a real-time task can be evalu-
ated against a model of the system to ascertain a worst-case execution time for a
portion of the task’s code. Given that the execution time of a block of code can be
bounded, it is then possible to assert that a task can respond to a given input in a
given period of time.

To construct this system model, it must be possible to determine how long each
component in the system will take to respond in the worst-case. For a task which
uses external memory, it must therefore be possible to ascertain the worst-case
time to access memory in order to create a worst-case bound on the task as a
whole. For a system using single-core processors such as that in Figure 1.1, the
worst-case response time of the memory is simply the worst-case time for the
memory controller to operate. In a multi-core system such as that in Figure 1.2
with a shared memory controller, however, the problem is much more complex.
Not only does the response time of the memory controller need to be known, but
it must also be possible to ascertain what the other processors are doing at that
point in time to determine if any of their memory accesses will block any given
memory access.

Analysing how these tasks will interfere is possible [22, 23], but difficult; if the
tasks running on each processor can be started and stopped at will, the blocking
caused between each set of tasks which may execute together must be considered,
a problem which is exponential in nature [24] and hence soon becomes infeasible
as the number of tasks grows.

A method by which this complexity can be alleviated is to assign each task
a partition of the available system bandwidth which describes the portion of the
system bandwidth which can be given to a task, and the maximum latency between
issuing a request and the request being given service. These constraints are then
enforced using a hardware arbiter sitting between the processors and memory,
which ensures that no processor can cause any other processor to receive less than
its defined bandwidth. A revised version of the system design with an arbiter is
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Figure 1.3: Example multi-core system, comprised of a dual-core CPU with a single arbi-
trated shared memory.

shown in Figure 1.3. By splitting the system bandwidth like this, the system model
can use the given constraints of the assigned partition when determining the worst-
case response time for a memory access. Because the bandwidth partitioning is
enforced by the arbiter, the interference caused by other processors need not be
considered when analysing the execution time of a task, since the arbiter will
ensure that the task receives the level of service defined by the partition.

While this approach makes the worst-case analysis of the system simpler, and
can provide additional safety guarantees, it does have its problems. This approach
effectively places a static bound on the amount of blocking that any memory re-
quest can experience, and thus assumes that all other processors are fully utilising
their bandwidth bound (or even that all available system bandwidth has been allo-
cated). If this is not the case, then there will be “spare” system bandwidth available.
Moreover, because the estimate for the worst-case response time of a memory ac-
cess assumes a request will be blocked by many other processors issuing memory
accesses, the worst-case response time of a memory access increases as the number
of processors increases.

This problem is being further exaggerated by another issue. While processors
have seen bountiful year-on-year performance increases, seeing year-on-year per-
formance increases of 1.25x to 1.52x, the memory side of things has not been so
lucky. Memory performance scaling has only been growing year-on-year at a rate
of around 1.07x [1], leading to the so called “memory gap” as seen in Figure 1.4.
As processor speeds increase and the degree of memory sharing increases, as will
the apparent cost of accessing memory.

There has been some improvements in memory technology to alleviate this per-
formance gap; modern DDR memories contain multiple “banks” of memory which
can be accessed in parallel to attempt to alleviate contention issues when sharing

25



 

5.1 Introduction

 

■

 

289

 

block

 

 (or 

 

line

 

), are moved for efficiency reasons. Each cache block includes a 

 

tag

 

to see which memory address it corresponds to. 
A key design decision is where blocks (or lines) can be placed in a cache. The

most popular scheme is 

 

set associative

 

, where a 

 

set

 

 is a group of blocks in the
cache. A block is first mapped onto a set, and then the block can be placed any-
where within that set. Finding a block consists of first mapping the block address
to the set, and then searching the set—usually in parallel—to find the block. The
set is chosen by the address of the data:

 

(Block address) 

 

MOD

 

 

 

(Number of sets in cache)

 

If there are 

 

n

 

 blocks in a set, the cache placement is called 

 

n-way set associative

 

.
The end points of set associativity have their own names. A 

 

direct-mapped

 

 cache
has just one block per set (so a block is always placed in the same location), and a

 

fully associative

 

 cache has just one set (so a block can be placed anywhere).
Caching data that is only read is easy, since the copy in the cache and mem-

ory will be identical. Caching writes is more difficult: how can the copy in the
cache and memory be kept consistent? There are two main strategies. A 

 

write-
through

 

 cache updates the item in the cache 

 

and

 

 writes through to update main
memory. A 

 

write-back

 

 cache only updates the copy in the cache. When the block
is about to be replaced, it is copied back to memory. Both write strategies can use
a 

 

write buffer

 

 to allow the cache to proceed as soon as the data is placed in the
buffer rather than wait the full latency to write the data into memory.

 

Figure 5.2

 

Starting with 1980 performance as a baseline, the gap in performance
between memory and processors is plotted over time. 

 

Note that the vertical axis
must be on a logarithmic scale to record the size of the processor-DRAM performance
gap. The memory baseline is 64 KB DRAM in 1980, with a 1.07 per year performance
improvement in latency (see Figure 5.13 on page 313). The processor line assumes a
1.25 improvement per year until 1986, and a 1.52 improvement until 2004, and a 1.20
improvement thereafter; see Figure 1.1 in Chapter 1.

1

100

10

1,000

P
er

fo
rm

an
ce

10,000

100,000

1980 2010200520001995
Year

Processor

Memory

19901985

Figure 1.4: The growing gap between CPU and memory performance [1]

a single DDR memory. As an example, Micron’s 1Gb DDR3 modules are arranged
as eight banks [11], with newer DDR4 memories containing up to sixteen banks of
memory [25]. Of course though, each bank can only be accessed by one requester
at once, hence the system designer must ensure that all banks are being utilised in
a uniform manner by all requesters to ensure optimal system performance. While
this reduces the interference which a task may experience when accessing memory,
there is still the very real problem of contention within the banks, and the actual
rising latency of a single memory request to deal with.

Of course, this rising memory latency has spawned much work to attempt to
mask these latencies. One of these methods is caching [26], which attempts to
store recently used data close to the processor to attempt to drastically reduce
the latency of accessing frequently used data. Examples of where this is useful
are loops, where the same code will be executed many times, or for a few data
items which are frequently accessed (e.g. counters or state variables). While this
technique can mask the latency of frequently accessed items, it does nothing to
attempt to mask the latency of the “initial” load of a data item. Caching therefore
does not have much of a positive effect on a task which accesses each member of a
data set only once, or has very large, straight blocks of code since every memory
access will cause a cache miss (i.e. the required data will never be resident in
cache).

As mentioned earlier, systems which use partitioned bandwidth may not fully
utilise the available bandwidth, leading to some “spare” bandwidth within the
system. Another method to alleviate the rising worst-case cost that can also use
some of this spare bandwidth is prefetching. A prefetcher is a functional unit
within the system which attempts to predict what a requester will soon require,
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and issue a memory request on behalf of that requester ahead of time. As an
example, if a requester accesses addresses A, A+ 1 and A+ 2 in sequence, it will
probably require the data at address A + 3 in the near future. This is a rather
naïve metric; other, smarter metrics are explored further within Section 2.4. If
the prefetcher was accurate, it will reduce the latency of a memory access vastly,
because the required data will already have been delivered to the processor ahead
of time. This method can also be combined with caching; caching can reduce the
latency of repeatedly accessed data, and prefetching can attempt to fetch the “next”
data into cache ahead of time to reduce the cost when data has not been previously
accessed.

Ultimately, however, both techniques cause issues when used within real-time
systems as they modify the context under which a task is being executed. In order
to determine the latency of a memory access when a cache is used, the system
model must also consider all other memory accesses which have previously taken
place to determine whether the required data is resident in cache. While this is
simple for single path tasks, it is generally undecidable if a task’s control flow de-
pends on its input data [27]. As the memory access pattern then depends upon
the path taken through the program, a static analysis tool cannot accurately de-
termine what data has been fetched and hence what is stored in cache unless the
input data is known a priori. This leads to an estimate for the worst-case execution
time which is lower due to the inclusion of the cache, but pessimistic because the
behaviour of the cache cannot be predicted with perfect accuracy.

Prefetching also suffers from a similar problem: the state of the prefetcher is
context sensitive depending on what accesses the prefetcher has observed where
again, the run-time behaviour of a task based upon its inputs will change the be-
haviour of the prefetcher. Moreover, the accesses which the prefetcher observes
are based upon the behaviour of the cache. If the system analysis cannot deter-
mine for definite whether a requested data item is resident in cache, then it cannot
also determine whether the prefetcher observes said data access and hence cannot
make any guarantees about the state of the prefetcher. Because the cache analy-
sis is undecidable, the prefetcher’s state is hence undecidable and thus the set of
memory accesses issued by the prefetcher are undecidable. On top of this, many
prefetchers fetch directly into the processor’s cache rather than any form of hold-
ing buffer, hence causing further unpredictability regarding the contents of the
processor’s cache; the prefetcher may have fetched useful data, but could well also
have displaced useful data already resident in cache, hence invalidating much of
the existing cache analysis.

Despite these problems, something needs to be done to slow down the rising
memory latencies in real-time systems. This work explores using prefetching
within the context of a real-time system to attempt to improve the time which
an executing task is blocked waiting for memory accesses to complete. This chap-

27



ter will first further explore the reasons for moving to shared-memory multi-core
systems, before using this information to form a research hypothesis for the re-
mainder of this thesis and finally providing a structure for the remainder of this
thesis.

1.2 research hypothesis

As introduced in Section 1.1, caching is a good way to hide some of this memory
latency. The problem is, caching does not actually reduce memory latency, only
hides the latency involved with fetching repeated data, which it does by moving
recently accessed data closer to the processor into faster storage. Caches also typ-
ically fetch data on the granularity of an entire cache line (of the order of 16-32

bytes of data), hence also hide the latency of accessing some subsequent mem-
ory locations to the one originally accessed. While this optimises the number of
memory accesses that take place though, it does not actually optimise how these
memory accesses take place; even if some memory accesses no longer take place,
those that do will still incur large latency costs.

It is clear that if memory delays are to increase along this trajectory for the
foreseeable future, the memory system must be optimised as a whole. Moreover,
something needs to be done about the growing pessimism within real-time sys-
tem analysis brought about by the memory subsystem. Prefetching is an attractive
optimisation to use for this; by pushing data out from memory to the processors
speculatively, the costs involved with memory access can be reduced, or even re-
moved entirely.

Of course though, this causes problems for real-time systems. A prefetch unit
within the system speculatively requesting data from memory can cause extra
interference for running tasks, and since prefetchers normally deliver data directly
into the cache of the target processor, it may also invalidate any cache analysis.
For the most part however, these limitations are simply because prefetching, as
of yet, has not been considered under the constraints of a real-time system. If the
prefetcher can be constrained in a way such that it is possible to predict what it will
do and when, there is no real reason why it cannot be used in a real-time system.

This thesis will therefore explore the following hypothesis:

A prefetcher can be constructed so that it can be used within a real-time
system in a predictable way, such that it does not cause any detriment
to the worst-case execution time of the tasks running within that sys-
tem. Furthermore, it is possible under certain circumstances to predict
when the prefetcher will operate, allowing it to utilise “spare” or unallo-
cated bandwidth within the system to actively improve the worst-case
execution time estimate of a task running in a real-time system.
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1.3 thesis structure

From this, the remainder of the thesis will be structured as follows:

chapter 2 will detail the related literature in the subjects of multi-core systems,
including how to predict the behaviour of DRAM, how to arbitrate multiple
requesters fairly for DRAM, and current work related to prefetching on both
single and multi-core systems.

chapter 3 will, given the related literature, further concrete the chosen research
avenue and provide a research hypothesis

chapter 4 demonstrates the effects brought about by using a traditional, non-
arbitrated prefetcher and the potential system analysis issues it brings about.

chapter 5 will provide a framework by which a prefetcher can be integrated
into a real-time system without affecting the worst-case execution time of the
system.

chapter 6 will then provide a method by which a prefetcher can be used in order
to improve the calculated worst-case execution time.

chapter 7 will then, finally, provide the major conclusions identified and outline
the future research opportunities from this project.
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2 B A C KG R O U N D & R E L AT E D W O R K

This chapter will provide a concise overview of the related literature within the
fields of work associated with real-time prefetching. This will first give an overview
on the operation of memory within systems, the problems it poses within a real-
time system, and how these issues are handled within the current state of the
art. It will then provide an overview of current caching and prefetching schemes,
before detailing how shared resources are arbitrated in both monolithic and dis-
tributed fashions. It will then give a brief overview of scheduling theory and how
predictability is asserted, before summing up by outlining the methods by which
a program can be analysed and a worst-case bound ascertained.

2.1 predictability

There are many variations on the definition of a real-time system. The common
definition is effectively that “a system which must, by a defined time period, be
able to react to an external stimulus from the environment”. An external stim-
ulus may be anything from a user pressing a button on the system to a video
transcoder receiving video to a nuclear reactor reaching the point of no return
before meltdown.

Of course, each of these scenarios are vastly different in terms of scale. A user
will only be slightly inconvenienced if a system takes a while to respond to the play
button being pushed. If a video encoder fails, there might be some frame skip. If
a reactor goes critical or an aircraft fails to respond to input, it could lead to loss
of life. For this reason, the real-time community tends to split up the definition of
real time between hard real-time, firm real-time and soft real-time (HRT, FRT and
SRT, respectively). These are defined by Burns and Wellings [28] as follows:

hard real-time Where it is absolutely imperative that the system reacts within
its given time frame, else there may be disastrous consequences.

firm real-time Where the deadline may be missed occasionally, but there is no
benefit from it being late.

soft real-time Where the deadline may be missed occasionally, or that a service
can occasionally be delivered late.
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In the case of both FRT and SRT tasks, there may be an upper limit on the num-
ber of times there can be a deadline miss. To quote the video encoder example
again, a couple of late frames is not too bad; it just leads to a slightly poor expe-
rience. Many late frames within a short interval, on the other hand, renders the
video almost unwatchable. Additionally, as stated also by Burns and Wellings, a
system may have both HRT and SRT requirements, for example, a warning system
may have a SRT deadline of 50ms for optimal response, while a HRT deadline of
200ms also exists to prevent damage.

For this task, it is vital to determine the range of times in which a task may
execute for in order to prove that a task may meet these constraints. As noted by
Wilhelm et al. in their review of worst-case execution time prediction methods [2],
this is generally done by observing the execution of a task under a variety of test
cases and recording the monitored best and worst case execution times. Of course,
this will overstate the best case and understate the worst case, as an exhaustive
analysis can be difficult to perform and as such, is not applicable for HRT tasks.
Standard techniques in industry for predicting the real worst case execution time
(WCET) may place constraints on the activities that can be performed within a
program (e.g. forbidding recursion).

Of course, there are a vast number of ways to arrive at a WCET estimate or
bound, and the remainder of this section shall attempt to provide an overview of
the techniques which can be used. Again, this is to attempt to bring the reader
up to speed with the terminology and techniques used, nor explain each method
in great depth and does not attempt to be an exhaustive search through the liter-
ature surrounding time predictability, which would be another review in itself. If
desired, there are many reviews in existence, such as the 2000 review by Puschner
and Burns [29] and a review from 2008 by Wilhelm et al. [2].

2.1.1 Deriving Predictability Estimates and Bounds

There are two main classes of approaches used to derive a predictability bound
and/or estimate. In this context, a bound cannot be exceeded, else the analysis is
wrong. An estimate, on the other hand, is not 100% guaranteed to be correct, but
should be accompanied with an error margin.

Static Analysis

Static analysis is typically an offline technqiue which attempts to ascertain a worst-
case bound of a given section of a task by using a model of the target architec-
ture [30]. This is performed in a number of steps [31]:
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flow analysis, using the source and the final output, reconstructs all the possi-
ble paths through a program. For this, certain constructs, e.g. recursion, may
not be permitted due to their ambiguity in analysis, or may have to be manu-
ally constrainted by the programmer to assert facts about them, for example,
maximum loop iterations or recursion depth.

global low-level analysis computes the factors affecting a task on a certain
machine from the machine’s global constructs, for example, cache.

local low-level analysis computes the same factors as above, but localised
to a single task and code segment, for example, pipeline stalls and branch
prediction.

The end result is then calculated from these three components. There may also
be other inputs in order to make the task easier, for example, value analysis, as
detailed by Ferdinand et al. [32] approximates the state that each processor register
can be in at run time. This can then be used to compute the range of possible
memory addresses that can occur at run time and thus aid in cache analysis.

Of course though, in order for this technique to be sound, it requires an ex-
tremely accurate model of the processor. This is simple for a basic architecture
(for example, Z80); each instruction takes a fixed number of cycles and all memory
accesses are single-cycle. Of course, modern architectures are much more com-
plex than this. For example, in order to ascertain what the effect of a cache on
the worst-case execution time is, the analysis must attempt ascertain what the con-
tents of cache will be at any point in time. Persistence analysis is typically used
for this [33], which for each memory access classifies if it is definitely not in cache
(e.g. for the cases where analysis cannot definitely ascertain that the same cache
line has already been loaded and not evicted), or those which may reside in cache
(e.g. an earlier access in the flow analysis accessed the same line).

As will be explored further in Section 2.2, the unpredictability of memory also
adds difficulty to the static analysis of a given task. The access time to a given
location in memory depends upon the previous pattern of accesses; if an access is
accessing the same DRAM line as the previous access, the memory access will be
much faster than for a different row. Moreover, as multi-core systems become more
prevalent, static analysis must ascertain how long an access to a shared memory
resource takes given the interference from other tasks in the system. Techniques to
derive this will be explored further in Section 2.3.

These factors lead to problems with pessimism in static analysis. As it is diffi-
cult to soundly assert conditions on the state of the system, many static analysis
techniques must assert worst-case conditions on each access. As an example, worst-
case memory access latencies are normally assumed and worst-case initial cache
conditions must be assumed. Moreover, in order to make the problem feasible to
solve, many analysis tools will limit the number of blocks that the state of caches is
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asserted over, and hence may assume that cache blocks are missing when they will
definitely reside in cache. Despite this pessimism, static analysis should always be
able to find the worst-case path, assuming that the model of the processor is sound
and is hence typically regarded as safer than measurement-based approaches.

Measurement-based Analysis

Rather on relying upon an accurate model of the processor, measurement-based
analysis instead uses the behaviour of the processor itself to model the execution
times [34], after all, “the best model of the processor is the processor itself”. As
with static analysis, measurement based techniques begin by re-constructing a flow
graph of the program, where each block in the graph typically corresponds to a
single-entry single-exit block of instructions which are executed sequentially, typ-
ically known as a basic block. The tool then executes the program a number of
times under a set of inputs and environmental conditions, then times how long
each of these blocks takes to execute to derive a distribution of probabilities for
each block.

After this has taken place for each block, the execution times for each block can
be combined according to the flow graph. If blocks are connected in a sequential
fashion, then the execution times of each are summed, if they appear in parallel
(e.g. in an if/then/else construct), then the maximum execution time of all of the
parallel blocks is selected. The combination of all of these basic blocks then forms
an estimate of the worst-case execution time of the entire task.The Worst-Case Execution-Time Problem • 36:3

Fig. 1. Basic notions concerning timing analysis of systems. The lower curve represents a subset
of measured executions. Its minimum and maximum are the minimal and maximal observed exe-
cution times, respectively. The darker curve, an envelope of the former, represents the times of all
executions. Its minimum and maximum are the best- and worst-case execution times, respectively,
abbreviated BCET and WCET.

exhaustively explore all possible executions and thereby determine the exact
worst- and best-case execution times.

Today, in most parts of industry, the common method to estimate execution-
time bounds is to measure the end-to-end execution time of the task for a subset
of the possible executions—test cases. This determines the minimal observed
and maximal observed execution times. These will, in general, overestimate the
BCET and underestimate the WCET and so are not safe for hard real-time
systems. This method is often called dynamic timing analysis.

Newer measurement-based approaches make more detailed measurements
of the execution time of different parts of the task and combine them to give
better estimates of the BCET and WCET for the whole task. Still, these methods
are rarely guaranteed to give bounds on the execution time.

Bounds on the execution time of a task can be computed only by methods that
consider all possible execution times, that is, all possible executions of the task.
These methods use abstraction of the task to make timing analysis of the task
feasible. Abstraction loses information, so the computed WCET bound usually
overestimates the exact WCET and vice versa for the BCET. The WCET bound
represents the worst-case guarantee the method or tool can give. How much
is lost depends both on the methods used for timing analysis and on overall
system properties, such as the hardware architecture and characteristics of the
software. These system properties can be subsumed under the notion of timing
predictability.

The two main criteria for evaluating a method or tool for timing analysis
are thus safety—does it produce bounds or estimates?— and precision—are the
bounds or estimates close to the exact values?

Performance prediction is also required for application domains that do not
have hard real-time characteristics. There, systems may have deadlines, but
are not required to absolutely observe them. Different methods may be applied
and different criteria may be used to measure the quality of methods and tools.
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Figure 2.1: Graphical view of the execuiton times of a task, along with the relevant
bounds [2].

In order to be sound, this approach must be able to assert that it has actually
observed the worst-case path through the task and the worst-case conditions of
the system. An example of this is shown in Figure 2.1, where the meaning of each
item is explained as follows:
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measured execution times: Observed maximum/minimum execution times for
the task. These may not be accurate, as the actual maximum/minimum exe-
cution times may not have been observed.

bcet/wcet: Actual best and worst-case execution times. These may occur very
infrequently and hence were never observed.

upper/lower timing bound: Best and worst case execution times with a safety
margin added.

measured execution times: The set of all execution times observed when eval-
uating the worst-case behaviour of the task.

possible execution times: The set of all possible execution times for all differ-
ent program paths, inputs and initial hardware conditions.

timing predictability: The possible range of execution times after the safety
margin has been added.

In this example, the actual highest execution time may have been observed as
“maximal observed execution time”, but the actual worst-case under a different
set of conditions may be much higher at the “WCET” line. The first solution is
the observe the flow graph in order to assert that full program coverage has been
achieved. If this cannot be asserted, then it is possible that a block of code has
been missed with an extremely high actual execution time. The second solution
is to exhaustively test all possible inputs, and execute the code with a sufficient
number of iterations such that all possible system states have probably taken place.

While simpler than static analysis techniques, it is much more difficult to assert
that a measurement-based analysis is sound because of the unpredictability of sys-
tem compontents such as caches and shared memory. While dynamic anaysis does
work on multi-core system, it does have to be constrained such that the memory
arbiter is also operating in worst-case conditions in order for the actual worst-case
execution time to be observed, which may again be difficult without modifying
the arbiter itself.

2.1.2 Response Time

The predictability of a system is also not only dependant upon the worst case
execution time of a single task. In general, the WCET of a task assumes a sole
task running with no interference. Clearly, on a system, interrupts can arrive, a
process can be pre-empted to make way for a higher priority task, or a required
resource may not be available as another task it currently using it. For this reason,
the deadline of a task is normally much longer than the actual WCET of a task. In
general, the worst case response time R of a task i is denoted as Ri = Bi +Ci + Ii
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as outlined by Burns and Wellings [28]. Ci is the WCET of process i and Ii is the
interference process i receives, be it pre-emption, locked resources, or anything else
influenced by other processes within the system. Bi is the blocking factor which
the maximum time spent on acquiring shared resources and critical sections. This
analysis goes on to detail the blocking factor I as follows, given fixed priority
scheduling:

Interference Ii

Given all tasks in the system with a higher priority, hp(i), the maximum amount
of interference is as follows, given that Ti is the period of task i.

Ii =
∑

j∈hp(i)

⌈
Ri
Tj

⌉
Cj

This equation can be extended to include the time taken to perform a context
switch [28], the time to overcome a polluted cache from the pre-empting pro-
cess [35], and generally the time to recover the state of the system at the time
the process was pre-empted. An example extension to this is as follows:

Ii =
∑

j∈hp(i)

⌈
Ri
Tj

⌉
(CS1 +CS2 +Cj + γj)

Where CS1 and CS2 are the times taken by the operating system to context
switch away from and back to a task, respectively. γj is then the delay imposed on
task i by the cache pollution introduced by task j.

Blocking Bi

The blocking factor B is a much simpler factor to compute. Assuming a priority
inheritance protocol [36], where a task utilising a shared resource assumes the
priority of the highest consumer of that resource when using it, the blocking factor
is the sum of the time taken in all critical sections where said critical section is
used by a process with lower priority than process i, and also by a process with
equal or higher priority to i.

This blocking term exists solely because it is possible for a lower priority task to
lock a resource used by a higher priority task (as the normal execution time with
the lock is accounted for by Ii. Since priority inheritance ensures that each critical
section can only be blocked by a lower priority task once for each critical section,
for the duration of that critical section [36]. Hence, given K critical sections, that
usage(k, i) is 1 if the previously detailed conditions hold for critical section k and
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task priority i (and 0 otherwise), and that C(k) is the WCET of the critical section
k:

Bi =

K∑
k=1

usage(k, i)C(k)

2.1.3 Priority Ceiling Protocol

The model detailed previously assumes a priority inheritance protocol is used,
where a user of resource assumes the priority of the job it blocks with the highest
priority. This is to prevent “priority inversion” from occurring, where a low prior-
ity task a obtains a shared resource, then is preempted. If a higher priority task b
attempts to use the shared resource without a priority inheritance protocol, it will
be blocked until task a has finished with the resource. If there are also other tasks
with their priorities in between tasks a and b, task a will still have to wait for those
tasks to complete (or block), and as such, have to wait much longer to execute its
critical section, thus further blocking task b.

Another protocol is the Priority Ceiling Protocol, also suggested by Sha et al [36].
This was designed to address some of the flaws in priority inheritance, for example,
that it is possible for transitive blocking to occur (high priority task c blocked by b
blocked by low priority task a), and that deadlock is possible (e.g. a high priority
task c wanting to lock a resource owned by a, which in turn wants to lock a
resource owned by c). This takes two forms: the original ceiling priority protocol
and the simpler immediate ceiling priority protocol.

From Burns and Wellings [28], the original priority ceiling protocol takes the
following form.

1. Each task has a static default priority

2. Each resource has a static ceiling value defined, which is the maximum pri-
ority of the tasks which use it.

3. Each task has a dynamic priority, which is the higher of its own priority, and
any inherited from blocking higher priority tasks (same as priority inheri-
tance).

4. A task can only lock a resource if its dynamic priority is higher than the
ceiling of any locked resource (unless those resources belong to that task).

Clause 4 prevents some of the properties listed above. Taking the deadlock
example, when the higher priority task attempts to lock something which the lower
priority task would require, since its dynamic priority is not strictly greater than
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the current system ceiling. It would then not be allowed to access the resource
and would be blocked by the lower priority task until said lower priority task had
finished with the shared resource, and the system ceiling was again lowered.

The immediate ceiling priority protocol is similar, but much easier to implement.
In this case, when a task acquires a shared resource, its priority is raised to the
priority ceiling of the shared resource (that is, immediately assumes the priority of
the highest priority task which could utilise the resource).

Within both priority ceiling protocols, the blocking factor Bi is changed to [28]:

Bi =
K

max
k=1

usage(k, i)C(k)

This is, simply enough, the length of the longest critical section in any lower
priority task which is shared with the current task. This holds because when a low
priority task obtains a lock on a resource which could be used by a high priority
task, no other tasks may lock any resource which can be used by the high priority
task. Given that, a high priority task may be blocked by a single lower priority
task. Assuming nested locks, a task may be blocked multiple times, but it may
only be blocked by a single task.

2.2 memory

Of course, in order for a processor to be able to perform any useful computation,
it needs access to some form of memory. Traditionally, this would have been some
form of static-RAM (SRAM) device, and is effectively implemented as a flip-flop
connected to two transistors to control access to the cell. In a typical implemen-
tation, this utilises approxamately six transistors, as can be seen in Figure 2.2. In
order to access SRAM, W line of the word to read is asserted by an address de-
coder based upon the input address, then the data stored in the flip-flop is sensed
through the B lines.

This design leads to a chip which consumes reasonably little power and is fast.
More importantly, however, is the fact that it is predictable; since the device is
effectively a set of flip-flops connected to a multiplexer, the access time is related
to the propogation delay of the internal logic, and both reads and writes typically
take the same amount of time to complete.

While SRAM performs well and is simple to predict, the design of each cell
makes it infeasible to use for large-scale shared memories typically required on
modern systems. The number of components in each cell makes each cell large in
silicon, hence it suffers from poor density and as a result it is expensive to create
large SRAM chips. In a world dictated by cost, this makes DRAM an attractive
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Figure 2.2: Comparison of SRAM and DRAM designs, adapted from [3]
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alternative. Each DRAM cell is implemented using a capacitor connected to a
single access transistor, as can be seen in the first half of Figure 2.2, giving each
DRAM cell a much smaller footprint than the SRAM equivalent and hence allow-
ing devices to have much higher storage densities. This makes DRAM attractive to
any situation where large amounts of storage are required (e.g. external memory),
leaving SRAM to be used for smaller amounts of faster storage, such as processor
caches and scratchpads.

These density gains are not without any cost, however; DRAM has many flaws
stemming from the usage of capacitors as a storage medium [5]. The first of these
is that capacitors leak charge over time. In order to mitigate this issue, the DRAM
controller must periodically refresh the contents of these capacitors in order to
maintain the charge stored within and prevent bit flips from occuring. This takes a
period of time within which the memory cannot accept any other memory requests,
as the refresh cycle effectively reads an entire DRAM row out and writes it back
again. As an example, a modern 1Gb Micron DDR4 module requires a refresh
which takes 260ns every 7.8µs [25]. This both slows down the potential access
time, and makes DRAM less predictable; the total access time now depends on
whether a refresh cycle needs to take place first.

As RAM sizes increase, it is not practical to simply carry on adding more and
more rows to the RAM chip; the resulting die would be extremely long and very
narrow. To alleviate this, denser SRAM and DRAM cells add more DRAM rows,
but also make each row longer; as an example, a single 256Mb DDR3 module
has a row size of 2Kb [11]. Due to physical and electrical constraints, it is clearly
impossible to transmit all 2048 of these bits from the package at once (to contrast,
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Chapter 7 OVERVIEW OF DRAMS 321

the bitline voltages all the way to logic level 0 or 1. 
Bringing the voltage on the bitlines to fully high or 
fully low, as opposed to the precharged state between 
high and low, actually recharges the capacitors as 
long as the transistors remain on. 

Returning to the steps in handling the read request. 
The memory controller must decompose the pro-
vided data address into components that identify the 
appropriate rank within the memory system, the bank 
within that rank, and the row and column inside the 
identifi ed bank. The components identifying the row 
and column are called the row address and the col-
umn address. The bank identifi er is typically one or 
more address bits. The rank number ends up causing 
a chip-select signal to be sent out over a single one of 
the separate chip-select lines. 

Once the rank, bank, and row are identifi ed, the 
bitlines in the appropriate bank must be precharged 
(set to a logic level halfway between 0 and 1). Once 
the appropriate bank has been precharged, the sec-
ond step is to activate the appropriate row inside the 
identifi ed rank and bank by setting the chip-select 
signal to activate the set of DRAMs comprising the 

desired bank, sending the row address and bank 
identifi er over the address bus, and signaling the 
DRAM’s  

____
 RAS  pin (row-address strobe—the bar indi-

cates that the signal is active when it is low). This tells 
the DRAM to send an entire row of data (thousands 
of bits) into the DRAM’s sense amplifi ers (circuits 
that detect and amplify the tiny logic signals repre-
sented by the electric charges in the row’s storage 
cells). This typically takes a few tens of nanoseconds, 
and the step may have already been done (the row 
or page could already be open or activated, meaning 
that the sense amps might already have valid data in 
them). 

Once the sense amps have recovered the values, 
and the bitlines are pulled to the appropriate logic 
levels, the memory controller performs the last step, 
which is to read the column (column being the name 
given to the data subset of the row that is desired), 
by setting the chip-select signal to activate the set of 
DRAMs comprising the desired bank,2 sending the 
column address and bank identifi er over the address 
bus, and signaling the DRAM’s  

____
 CAS  pin (column-

address strobe—like  
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FIGURE 7.8: The multi-phase DRAM-access protocol. The row access drives a DRAM page onto the bitlines to be sensed by the 
sense amps. The column address drives a subset of the DRAM page onto the bus (e.g., 4 bits).

2This step is necessary for SDRAMs; it is not performed for older, asynchronous DRAMs (it is subsumed by the earlier 
chip-select accompanying the RAS).

Figure 2.3: Internal organisation of DRAM cells, from [4]
.

the package has only 78 pins). Instead, a column decoder is also employed in order
to select which bits within a row are required, and the RAM is addressed using
a row/column scheme where part of the requested address form the row to read
from, and the remainder select the respective column.

While SRAM cells can typically be addressed directly using this matrix scheme,
DRAM is more difficult. Firstly, each bit is stored using a small capacitor (of the
order of 20-30 fF [37]), hence there is not enough charge stored within to drive
standard logic pins. Instead, when a row is selected, the cells in the addressed row
drive a set of sense amplifiers, which detect the small amounts of charge (or lack
thereof) and drive a logic ‘0’ or ‘1’. Due to the capacitor time constant T = RC, this
takes time, and hence there is a required time interval between selecting the row
and being able to select the column. Due to this restriction, and to reduce device
pin counts, the row and column are typically selected as two separate commands,
denoted as “RAS” and “CAS”.

There is also additional time as reading a DRAM cell is a destructive operation,
since charge is drained from the capacitors to drive the sense amplifiers. Because
of this, the sense amplifiers must write the data read back into the DRAM cells
again in order to prevent data loss. After data has been read or written, the sense
amplifiers must be reset to a known state again. This is done by driving them to
a voltage level in-between logic ‘0’ and ‘1’ such that the small amount of charge
stored in the capacitor (or lack thereof) will drive the charge stored in the sense
amplifier towards the respective logic level through a process called “precharging”.
Both the writing back of read data and precharging of course, takes additional
latency.
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The net result of this is that there is a set of latencies that need to be adhered to
in order to be able to utilise a DRAM module, as follows:

tRCD : RAS-to-CAS latency. The time between issuing a row selection (RAS) and
column selection (CAS)

tCAS : CAS latency. The time between issuing a column selection and the selected
data being available.

tRP : Precharge delay. The time between a precharge being issued and being able
to select a new row.

tRAS : Active to precharge delay. The minimum time between opening a page (by
issuing RAS) and closing it again (by issuing a precharge).

tRCD tCAS tRP

tRAS

1 2 3 4 5

CLK
WE

CAS
Addr Row Col Row

DQ D D

Figure 2.4: Example timing diagram for a DRAM read cycle, adapted from [5]. It is as-
sumed that all commands are latched on the rising clock edge.

The relationships between these timing constraints can be found in Figure 2.4,
where the major stages are described as follows:

1. A row address is placed on the DRAM’s address lines, and RAS is asserted
to signal the DRAM to latch the address.

2. After tRCD cycles, the controller must now place the column address on the
DRAM address lines and assert CAS to latch the address.

3. The DRAM module makes the requested data available after another tCAS

cycles. In this case, the module outputs two words of data to the controller.

4. After a minimum of tRAS cycles after the first RAS has been issued, the
controller can choose to issue a precharge command if it wishes to access
another row, typically done by asserting both RAS and WE simultaneously.
This command can overlap with the data output stage as shown, as long as
the tRP constraint holds.
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5. tRP cycles after issuing the precharge command, the memory module can
then accept the next row address, and the process starts afresh.

These specified latencies typically depend upon both the target data rate of the
device, and the speed grade of the individual part in use and are typically ex-
pressed as a number of clock cycles. Example figures for these latencies, along
with the associated clock frequency can be found in Table 2.1.

DDR3 Speed (MT/s)
Parameter 800 1066 1333 1600 1866 2133

tCK (ns) 2.5 1.875 1.5 1.25 1.07 0.938

tRCD (cycles) 6 8 10 11 13 14

tCAS (cycles) 6 8 10 11 13 14

tRP (cycles) 6 8 10 11 13 14

tRAS (cycles) 15 20 24 28 32 36

Table 2.1: Example values for tRCD, tCAS, tRP and tRAS for a variety of DDR3 devices.
Adapted from [11].

Because of the latency required between selecting a row and being able to select a
column, and the time taken to precharge the row again, many memory controllers
attempt to keep the currently selected row open in the hope that the next access
will hit the same row [4]. While this tends to yield good performance benefits for
tasks which access sequential data, it further harms the predictability of DRAM;
the timing of an access now also depends upon the addresses of the accesses which
came before it. Moreover, a period of time must be waited after switching from a
read to a write, or vice versa, due to the time it takes to reverse the direction of the
data bus, further harming predictability.

The net result of these issues is that DRAM is difficult to predict compared with
the simpler SRAM design since the latency of an access depends upon the previous
accesses and whether the memory controller scheduled a refresh cycle at that point
in time. Of course, it is possible to assume the worst-case timing on every single
access (i.e. each access causes read/write switching and a precharge to take place),
but this causes the efficiency of the memory subsystem to suffer (to around 40%
efficiency on DDR2 devices [38] and falling further for DDR3 devices). This is,
of course, unacceptable for modern systems. Much work has gone into improving
the predictability of DDR systems while attempting to retain some of the efficiency,
which will be explored throughout the remainder of this section.

2.2.1 Predictable DRAM Access

AMC

Paolieri et al. present a new memory controller called AMC (Analysable Memory
Controller) [39]. It is designed such that each task can be independently analysed;
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no task can affect the timing behaviour of another. It also utilises a pseudo-priority
system where hard real-time tasks are serviced before any non hard real-time tasks.
This then means that, while memory accesses cannot be preempted, each access
for a hard real-time task has a known upper bound.

Another method they have used in order to improve the timing behaviour is to
distribute the data across all banks. This has the effect that all RAM commands
can be effectively pipelined, hence, a closed-page auto-recharge policy is also used,
meaning there is a precharge issued after every access, each memory access will
happen in a fixed time, however, the granularity of memory accesses must be quite
large. Given four banks, each bursting eight 32-bit words, 128 bytes of memory
must be read or written for every memory access. This does mean though, that
if there are the correct number of banks in the memory system, the precharge
command can have been issued and completed in time for the last bank outputting
its data, so no cycles are lost waiting for a precharge.

Despite this, there are still some issues. Firstly, the worst case timing can differ
based on the previous action; read to write and vice versa can introduce more
delay. On top of this, in the four-bank system, there is still some delay between
consecutive accesses in order to allow the memory to precharge and for the RAS
and CAS to be re-issued. This issue could be alleviated by adding yet more banks,
but increasing the bank count means even coarser memory granularity, so yet more
wasted data, and subsequent accesses are waiting for yet longer for the previous
access to complete.

The memory requests of each hard real-time task are then serviced in a round-
robin fashion. In addition to this, each hard real-time task also has its own access
queue. This means tasks cannot interfere with themselves, and equally well, a task
issuing many accesses cannot interfere with a task only issuing a few accesses. To
this extent, the worst case timing under this system is defined as follows, where
NHRTs is the number of hard real-time tasks in the system, and tILWORST is the
worst case time for a single access:

WCRT = NHRTs · tILWORST − 1

The rationale here is simply that the worst case time is, obviously, the worst case
access time multiplied by the number of other HRT tasks. Typically, this would
be NHRTs − 1, as a system with one HRT task should have no interference, but
a NHRT task may have started the cycle before, which cannot be preempted and
hence must be considered. This also explains the −1 in the equation, which ac-
counts for this clock cycle where there were no other outstanding requests from an
HRT task, and hence an NHRT request was issued. Given this worst-case response
time, a worst-case execution time for the whole task can then be ascertained.
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There is another consideration, which is when the refresh cycles are issued in
the system, which are issued every tREFI cycles. In order to accurately predict
how many refresh cycles will take place over the execution of the task, the authors
propose starting each hard real-time task at the same time as a refresh cycle is
initiated such that it is known that a refresh will definitely happen after another
tREFI cycles. If the task is initiated just after a refresh has been issued, it will
therefore have to wait for the next refresh, and hence the final WCET for the task
is as follows:

WCETTOTAL =WCET + tREFI − 1

This, in the general case, allows for full predictability for each memory access,
although as the number of tasks in the system grows, so does the WCET. In a
system with say, 100 nodes, all of which have HRT requirements, this will simply
not scale, as the WCET bound will be huge. This work does, however, produce a
good way of alleviating the cost of a precharge and the timing difficulties generally
found with a closed-page system. Moreover, it also has an in-depth analysis of the
timing issues found with a DRAM system.

Predictable Access Patterns

Akesson et al. have considered the generation of predictable memory access pat-
terns [40, 41] which are then scheduled at run time in the memory controller [38,
42]. The first implementation of this technique, Predator [38] defines three mem-
ory access “groups”, a memory read, a memory write, and a memory refresh.
These then correspond directly to a sequence of SDRAM commands which have a
known time bound. These groups of commands are then scheduled dynamically
according to a CCSP arbiter [43], which will be explored further in Section 2.1.

Similar to the analysis done by Paolieri et al. [39], each access group (except for
the refresh group) accesses an entire burst across all banks. Again, all accesses
are accessed using auto-precharge, so the activity of one task cannot affect that of
another. Again, they impose the constraint that there must be a minimum amount
of cycles between accesses to the same bank (tRC cycles). In any case, they arrive
at a useful figure which is, for a read and write group, the data efficiency, which is
82.6%, assuming all requests are aligned (i.e. they can be read in a single burst for
each bank). They also arrive at the figure 60.3% for a system with a burst length
of 4 (i.e. less data transferred), assumably as subsequent pipelined requests will
need to wait longer for the tRC time constraint to be satisfied, however, as less is
now read, the overall efficiency may be improved as less data is wasted, and thus,
the CPU spends less time stalled receiving useless data.
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Memory Access Scheduling

Rixner et al. [44] propose a method to schedule memory accesses, but without
any regard for the timing predictability or WCET of the memory accesses. When
applied to synthetic benchmarks, this scheme can show a memory bandwidth
improvement of up to 144% compared with a naïve system (i.e. activate, read,
precharge on every access).

Rixner’s method adds a precharge manager and a row arbiter to every bank.
For each access, these decide when the currently open row should be precharged
and which row should be opened, respectively. There is then a column arbiter,
which, for each request, decides which should be able to read, or rather, which
can have access to the shared data bus. Finally, these connect to an address arbiter
which chooses which access to actually schedule based on the current state of
the memory system. Each of these arbiters can then use one of many different
arbitration techniques, as follows:

in-order Classical DRAM - only service a request if it is the oldest one.

priority Each reference has a priority: service the highest priority one first. There
are then sub-techniques, such as increasing the priority of old requests or
loads being given higher priority than stores.

open Only precharge if there are pending references to other rows in the bank
and there are no references to the currently active row.

closed Precharge rows with no more accesses pending. This is different to “open”
in that open waits until another access arrives targeting a different bank.

most pending The row with the most accesses is serviced first. This is then
combined with either “open” or “closed” to handle precharging. It is not
clear if all accesses to that row should be flushed before switching to a new
row, or switch to a new row just as another row has more pending accesses.

fewest pending Service the row with the fewest pending accesses. The theory is,
by eliminating this, more accesses will arrive targeting a row which already
has many accesses, thus increasing performance as the row will get more use
before needing to be precharged.

These schemes were then evaluated against a number of benchmarks. Firstly, a
comparison to “first ready” was made, where access is given to the oldest request
which does not violate timing (allowing bank accesses to be interleaved) show
an improvement of up to 125% in memory bandwidth compared with the naïve
model, although real applications only showed 17% improvement (compared with
70% for microbenchmarks and 40% for application memory traces). More aggres-
sive re-ordering (such as targeting accesses to the currently open row) showed
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much greater improvements, 27-30% for applications, 106-144% for microbench-
marks and 85-93% for application traces, although of course, the optimal strategy
is completely dependant upon the actual workload in use. Nethertheless, chang-
ing between such strategies at run time in a soft or non real-time system could
yield some interesting results.

2.2.2 Summary

As can be seen, the complexity of accessing a region of DRAM is not as simple as
with classic SRAM chips where an access consisted of placing the required address
on the inputs and asserting the “read” line. This increased complexity ultimately
means that the response time of a memory module can depend on the accesses
that came before it; if the previous access targetted the same row as required, an
access might be doubled in speed. Similarly, the need to periodically refresh the
memory modules, rendering main memory inaccessible, adds further complexity
to the response time analysis of memory.

This is simplified by the introduction of memory access patterns [40, 41]. Since
the amount of data transferred per pattern is known (as the burst size is set in
the controller), the system is now easier to analyse, as only the patterns for trans-
fer need to be considered rather than every block fetched from memory. These
patterns are then scheduled according to a credit-controlled arbiter, enforcing a
bandwidth quota onto each task. This is also better than the approach suggested
by Paolieri et al [39], since their approach uses a round-robin based arbiter, causing
a much more pessimistic estimate of WCET, especially as the number of cores is
increased.

Moreover, the predictable patterns will restore the RAM to a known state after
an access has taken place. This also does not have such a large overhead due to the
patterns used. Since a memory access must access all banks (due to the burst size),
it is possible to begin precharging a bank while a later bank is being read from. If
long enough bursts are used, this overhead is effectively eliminated.

The downside of this approach is that it also enforces constraints on the rest of
the system. The approach always reads whole bursts out of every DDR bank in
the system for efficiency reasons. Of course, if the rest of the data is not required
by the running task, this creates significant overheads. Moreover, this imposes
restrictions on the minimum transfer size over the interconnect, and in the case of
a cache, a minimum line size (else the additional data can overwrite potentially
useful data in other cache lines). The additional data can be thrown away and
ignored, but this reduces potential performance and wastes cycles while handling
this data.

As with many other methods though, a combination of methods may be ad-
vantageous for a mixed HRT/SRT/NRT system. As shown by Rixner et al [44],
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memory accesses can be scheduled based upon the previous access stream. This
then allows the memory controller to exploit aspects of the previous stream, such
as bypassing the precharge and RAS stage if accesses lie on the same row. Of
course, this can severely damage real-time analysis and WCET bounds, but for
soft and non real-time tasks, a great speedup can be observed. It may therefore be
possible to use such a method for these soft real-time tasks, while using the pre-
dictable arbiter for hard real-time tasks. This not only allows for potentially faster
SRT memory accesses, but simplifies analysis of the higher priority HRT tasks.

2.3 the move to multi-core

Due to the breakdown of Dennard scaling, it is difficult to further increase the
clock speed of processors. Moreover, as feature sizes become smaller, as do the
interconnecting wires. Since the resistance of a wire is inversely proportional to
its size, and the capacitance proportional to its length, the capacitor time constant
T = RC begins to dictate the maximum wire length as wires are made thinner, and
hence the area of the chip which is reachable in a single clock cycle [45] which
quickly makes large circuits at a high clock speed infeasible.

Instead, system designers are looking towards utilising multiple, smaller cores
in order to meet the demand for processing performance. This allows system
designers to utilise these extra transistors, as predicted by Moore’s Law, and to
maintain the typical performance scaling trends without significantly increasing
the clock speed of the processor.

Of course, processors need to be able to communicate with both peripherals and
main memory. On embedded systems, this communication is normally failitated
using a shared bus such as AHB [46]. Classical shared buses such as these suffer
when scaled further than a few cores; because a processor locks the whole bus
during an access, other processors cannot initiate a request, even if the destination
of the request is a completely different processor or peripheral. Moreover, there
are still problems with long wire lengths since the bus must visit each processor
and peripheral.

Advancements to this include crossbar interconnects. These instead connect
every processor to every other processor or peripheral through a set of switchboxes
and using dedicated links instead of utilising a shared bus (for example, AXI [47]).
This provides great improvements to perfomance, as multiple transactions can now
take place simultaneously, but of course, large switches are required in order to
provide this interconnection. While crossbars may also solve the problems of long
wires found with buses, they can incur a large logic overhead to implement these
switches which may damage the maximum possible clock frequency.
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Figure 2.5: An example of a Manhattan-grid based network-on-chip [6].

These problems with scaling have led to many system designers moving to
network-on-chip based approaches [48]. These instead attach each processor to
a small network router, then each message is encapsulated into a network packet
and routed over the network based upon some routing scheme. A common exam-
ple of such a network can be seen in Figure 2.5. Here, packets can be routed in
any direction at each router to their destination. Commonly, they will be routed
in an X-Y fashion, where they will first be routed to the correct column within the
network, then either up or down the column to their target.

There are numerous examples of using this form of interconnect in the litera-
ture [6, 49, 50]. Within the context of scheduling memory accesses, this research is
largely orthogonal; it focuses on the many-to-many communication paradigm and,
in cases, enforcing bandwidth guarantees on the communication between cores in
the system [50]. Attempts to schedule an 8-core system Æthereal based system
with inter-process communication and memory access in a realatively large FPGA
failed due to the amount of buffers required at each router and due to the size of
the TDM schedules required [51].

Many current architectures make this distinction between memory traffic and
inter-process communication traffic. The Parallella Epiphany multi-core does not
itself integrate a memory controller, but provides three different communication
networks; one for inter-process read, one for inter-process write and one for off-
chip traffic (e.g. to a memory controller) [52]. The Tilera line of multi-core pro-
cessor contain many different communication networks, including a network for
I/O devices, a network for memory accesses and a network for inter-process com-
municaion [53]. Intel’s Knights Corner multi-processors only contain a single ring
network using QPI [54] as can be seen in Figure 2.6, but these devices only support
the shared memory paradigm and do not expose core-to-core communications to
the programmer, hence only a memory network is provided.
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Figure 2.6: Example block diagram of Intel’s Knight’s Corner platform. Adapted from [7].

None of these multi-core processors contains any arbitration over the intercon-
nection network and hence are difficult to predict in terms of timing behaviour,
and instead would have to utilise an arbitration scheme, as will be discussed in
Section 2.3.1. As an example, the Predator DRAM controller [38] instead connects
directly to the virtual channels of an Æthereal router, then performs memory arbi-
tration from there.

2.3.1 Memory Arbitration

As discussed previously, while many commercial and research multi-core systems
utilise a network-on-chip to connect their processors to shared memory, the ac-
cess across the network is rarely arbitrated and hence, it is difficult to obtain a
worst-case response time for a memory access. In systems where this interconnect
is arbitrated (e.g. Æthereal), the disconnect between the communication require-
ments of a task and the memory requirements makes the arbitration scheme of the
network unsuitable for rate limiting access to shared memory.

For this reason, many multi-core systems also utilise some form of arbitration at
the memory controller in order to provide timing guarantees to the tasks within
the system. These arbiters are responsible for rate limiting the accesses to shared
memory according to some arbitration scheme. Given a predictable form of arbira-
tion, and a predictable memory controller (e.g. from Section 2.2), an upper bound
can then be ascertained for a memory transaction.
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sent to the requestor to emulate maximum interference from
other requestors. The interface of each requestor is hence
independent of others in the temporal domain, as shown in
Figure 1. This makes the system composable on the level
of requestors, which is a sufficient condition for it to be
composable on the level of applications.
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Fig. 1. Temporally independent interfaces are created by delaying responses
and flow control.

Our approach to composable resource sharing is based on
LR servers. In essence, a LR server guarantees a requestor a
minimum allocated service rate, ρ′, after a maximum service
latency, Θ, as shown in Figure 2. The allocated service rate
corresponds to reserved bandwidth in case of a memory chan-
nel, and can be either a worst-case or average-case allocation,
depending on the design methodology. The service latency
intuitively corresponds to the maximum interference from
other requestors. This separation of interference due to other
requestors from self interference, which is the time a request
waits for other requests from its own requestor, is a benefit of
the LR server model, since composability only requires us to
eliminate the effects of the former.

The motivation for basing our approach on LR servers is
that it enables us to transparently use any arbiter belonging to
the class, hence allowing the choice arbiter to be matched to
the given set of requirements. It is shown in [7] that many
well-known arbiters, such as Weighted Round-Robin [20],
Deficit Round-Robin [21], and several varieties of Fair Queu-
ing [22] are LR servers. Other arbiters in the class are
Credit-Controlled Static-Priority arbitration [23], which uses
priorities, and TDM [24]. Note that using different arbiters
enable service differentiation even though worst-case service
is enforced. For instance, the maximum latency of a high
priority requestor in a priority-based arbitration scheme is
lower than its corresponding worst-case latency using TDM
or Round Robin. Another benefit of LR servers is that they
support formal performance analysis using approaches based
on either LR analysis [7], network calculus [8], or data-flow
analysis [9]. This enables the possibility to formally verify
applications that can be modeled in any of these frame works.

Our approach to composability is based on predictability.
More specifically, we require predictable resources, where the
time to serve a scheduled request is upper bounded. This is not
a severe limitation, as it applies to most interesting memories
and peripherals. We furthermore require an upper bound on
the interference from other requestors. Given a predictable
resource, this requirement can be satisfied in three ways: 1) by
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Fig. 2. Example of predictable and composable service in a LR server.

characterizing the requestors and derive an upper bound on the
size of a request, as done in [5]. This allows non-preemptive
scheduling to be used, but is not robust in case the charac-
terization is wrong or a requestor malfunctions. 2) Preempt a
request in service after a maximum time, accomplished by a
TDM scheduler in [19]. This solution is robust and can handle
requests whose sizes are initially unknown, but is limited to
preemptive schedulers. 3) Use a hardware block to split up
requests into small atomic service units, referred to as atoms,
with known maximum service time, as proposed in [6]. This
solution assumes that requests can be split into smaller pieces,
which is typically the case for transaction-based resources like
memory channels and peripherals. We choose this option for
our approach, since it enables preemption of requests on the
granularity of atoms using any arbiter in the class of LR
servers, thus providing maximum flexibility.

IV. FORMAL MODEL

In this section, we formally show how to provide compos-
able service based on LR servers by deriving and enforcing
temporal bounds. We start by explaining how service curves
are used to model the interaction between the requestors
and the resource in Section IV-A. This allows us to define
composable service. We then proceed in Section IV-B by
defining a LR server and showing that they can provide
composable service according to our definition.

Throughout this paper, we use capital letters (A) to denote
sets, hats to denote upper bounds (â), and checks to denote
lower bounds (ǎ). Subscripts are used to disambiguate between
variables belonging to different requestors, although for clarity
these subscripts are omitted when they are not required. To
deal with different resources in a uniform way, we adopt an
abstract resource view, where a service unit corresponds to
the access granularity of the resource. Time is discrete and
a time unit, referred to as a service cycle, is defined as the
time required to serve such a service unit. The translation
from service cycles to clock cycles is solved by multiplying
the number of service cycles with the maximum service
cycle length, which is known and bounded for a predictable
resource.

A. Service curves

We use cumulative service curves to model the interaction
between the resource and the requestors. We let ξ(t) denote the
value of a service curve ξ at service cycle t. We furthermore
use ξ(τ, t) = ξ(t+1)−ξ(τ) to denote the difference in values
between the endpoints of the closed interval [τ, t].
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Figure 2.7: Graphical representation of the service provided by an LR arbiter [8].

Many of these arbiters fall into the class of Latency-Rate (LR) arbiters [55]. An
arbiter in this class can be characterised by two things: it’s latency, or the maximal
waiting time in which a set of requests may be blocked, and its rate, or the average
rate at which service will be provided to a shared resource. A graphical model
of this can be seen in Figure 2.7. Here, the red line denotes the service requested
through the arbiter, and the blue line the provided service. The arbiter will pro-
vide an average rate of service ρ after a delay Θ. The system is then schedulable
assuming that the sum of all rates does not sum to more than the available band-
width, i.e.

∑
r∈R ρr <= 1, where R is the set of all requesters. In this case, the

provided service will never fall below the minimum service level (the dotted line)
while there is still some work outstanding.

Being able to derive the latency and rate of a memory transaction in this way is
good for system analysis. Without such an arbiter, the system as a whole must be
analysed at once, and the behaviour of each task with regards to shared memory
must be accounted for together which is difficult and time consuming. By splitting
the available system bandwidth in this way, each task only needs to be analysed
against its assigned partition of the bandwidth, hence simplifying the analysis.
Furthermore, this simplifies task switching; given each task has assigned band-
width bounds, a new task can be scheduled on a processor as long as the amount
of bandwidth it requires does not exceed the remaining “spare” bandwidth in the
system. The combination of tasks with their own partitions like this is typically
called “composable” system construction [56].

Of course, the behaviour of an arbiter depends upon the arbitration scheme
in use. Some of the most commonly used schemes are detailed throughout the
remainder of this section.

Static Priority

The most basic arbitration scheme to use is static priority. Within this scheme,
each input port on the arbiter is assigned a static priority, and on each scheduling
interval (i.e. the period of time at which the arbiter will schedule a new request),
the request which originated from the highest priority input port is given service.
If the set of running tasks is known ahead of time, along with the exact memory
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locations they will access, when they will access them and exactly how long each
access will take, this approach is one of the simplest to analyse and does not
require much overhead in hardware to keep track of state.

Of course though, static priority does not allow for any dynamism in the system;
it is difficult to change the set of running tasks in a safe manner (unless all possible
sets of running tasks have been analysed ahead of time), and nor can static priority
deal with much deviation from what was expected; if a memory access could not
take place when the analysed schedule assumed that it could, then it may cause
the schedule to shift by one or more time periods and hence may cause tasks to
miss their deadlines. Moreover, static priority is not safe; if a task initiates more
memory accesses to what was expected, either through a bug in the task or an
error in the system analysis, it can negatively affect other tasks and again cause
them to miss their deadlines. In the worst case, it is possible for a task in a static-
priority system to flood the memory controller with reqeusts and effectively starve
all other tasks.

It is possible for statically scheduled systems to undergo “mode changes” [57]
in order to change the priorities of tasks or the set of running tasks to add some
form of dynamism to the system. Ultimately though, this simply assigns a set of
tasks to a “mode”, then analyses the interactions of each, allowing the system to
jump between a few pre-determined set of tasks.

This inability to deal with unexpected conditions makes static priority a poor
fit for a system which also uses prefetching; if the prefetcher initiates a prefetch
at a poor time, it may cause excess interference in the system and cause tasks to
miss their deadlines, as the system analysis did not take this into account. Even
if the prefetch is safe, it may displace useful data out of the processor’s cache
and again, cause it to perform an unexpected fetch, causing excess interference
and cause tasks to miss their deadlines. While not good on its own, static prior-
ity can be very good when combined with other arbitration schemes; both CCSP
and FBSP use static priority to determine an ordering when there are multiple re-
quests which can be scheduled in the same scheduling interval. This, combined
with another arbitration scheme, allows some flexibility within the system as high-
priority requesters can issue a request without experiencing much latency, whereas
requesters which can deal with additional latency can be assigned a lower static
priority while still guaranteeing an upper bound on the blocking they will experi-
ence.

Round-Robin/Time Division Multiplexing

Arguably the most basic fair arbitration scheme is round-robin arbitration [58].
This scheme simply cycles through the input ports to the arbiter in sequence, ac-
cessing the request from the next slot on each scheduling interval. Because of the
simplicity of this arbiter, it is trivial to derive latency-rate constraints for it; as-
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suming a scheduling interval of tsched and N inputs ports, the latency is the time
taken if a request has “just missed” its interval, that is, the time taken to elapse
the window it just missed, and the windows of all other requestors, hence can be
derived as (tsched ×N) − 1. The rate is equally simple to derive, since bandwidth
is equally shared between requestors, and is hence 1

N .

1 2 2 3 4 4

tmax

3 4 2

Cell Pointer

Figure 2.8: Example 9-slot TDM schedule for four requestors.

Of course, round-robin assumes that all requestors will require the same rate
of service. This is relaxed when using time-division multiplexing instead. This
method uses a table, where each slot denotes which requestor is given service
on each cycle, of which an example can be seen in Figure 2.8. On each scheduling
interval, the arbiter reads which requestor should be given service from the current
table cell, then increments the cell pointer. This can then be used to accomodate the
case where uniform bandwidth is not required, but some requestors may require
a slightly high bandwidth share than others.

While slightly more complicated, this arbiter does still fit into the framework for
an LR arbiter. Here, it must be assumed that the request just missed its slot again,
and that it will have to wait the maximal amount of time possible until it can be
scheduled again. This behaviour depends upon the current TDM schedule; for the
schedule in Figure 2.8, the maximal waiting for requestor number 2 is tmax, or in
this case, (7× tsched) − 1. The average rate is then the proportion of slots which a
requestor has from the whole schedule, or rather, nSlots

N .

Frame-Based Static Priority

So far, all of the arbitration schemes suffer in the fact that they do not allow for
any jitter in the release of requests coming from a requestor; if they miss the start
of their window by a cycle, they must wait the maximal delay for their time slot
to appear again. Frame-based static priority attempts to fix this by moving to a
model whereby a requestor is permitted to make a number of requests within a
given time window [59]. Of course, there still needs to be a mechanism to arbitrate
which requestor in the set of requestors which can make a request can have service,
which is done through static priority.
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At least for memory arbitration, this is advantageous over systems such as TDM
because it does not require the task to always have the same access pattern; it may
be “burstier” over some windows, or may be constant over others. Instead, it only
enforces an average rate. On the other hand, it may cause a great amount of slack
to accumulate for low-priority requestors; if the high-priority requestors are not
utilising their entire bound, lower-priority requestors will be able to gain service
much faster than their estimated latency. Moreover, the hardware overhead of such
an arbiter is larger than the table-based systems.

The latency and rate of the arbiter can be derived as follows: the latency is the
worst-case situation where all higher priority requestors must consume their entire
bound. If ni is the number of requests that a requestor i ∈ R may have serviced
over the frame interval tframe and hp(i) is the set of requesters with a higher
priority than i, the worst-case latency Θi is defined as follows:

Θi =
∑

k∈hp(i)

nk × tsched

The rate is then the proportion of the total number of requests which can be
serviced in the frame time, hence:

ρi =
ni × tsched

tframe

Credit-Controlled Static Priority

While Frame-Based Static Priority goes some way to allow for non-uniform access
patterns, it still imposes scheduling within a given frame time. Credit-Controlled
Static Priority (CCSP) instead attempts to emulate the the characteristics of an LR

server, rather than fitting an LR server model to the arbiter [9].
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Figure 5. The upper bound on provided ser-
vice is not necessarily non-decreasing.

Definition 22 (Potential). The potential of a requestor
r ∈ R is denoted πr(t) : N → R, and is defined as
πr(t) = ŵ′

r(t) − w′
r(t).

Definition 23 (Accounting). The accounted potential of a
requestor r ∈ R is denoted π∗

r (t) : N → R, where π∗
r (0) =

σ′
r and

π∗
r (t + 1) =

⎧
⎪⎨
⎪⎩

π∗
r (t) + ρ′r − 1 r ∈ Ra

t ∧ γ(t) = r

π∗
r (t) + ρ′r r ∈ Ra

t ∧ γ(t) ̸= r

σ′
r r /∈ Ra

t ∧ γ(t) ̸= r

(2)

Enforcement in the rate regulator takes place before the
accounting is updated, and is performed by determining if
a request from a requestor is eligible for scheduling. A re-
quest becomes eligible at its eligibility time. Definition 24
states three conditions that must be satisfied for a request at
this time: 1) all previous requests from the requestor must
have been served, 2) the requestor must be backlogged, and
3) the requestor must have at least enough potential to serve
one service unit, including the service earned when the ac-
counting is updated. The eligibility criterion for a requestor
is formally defined in Definition 25.

Definition 24 (Eligibility time). The eligibility time of a
request ωk

r from a requestor r ∈ R is denoted te(ω
k
r ), and

is defined as the smallest t at which: 1) ∀i < k : t ≥ tf(ω
i
r),

and 2) wr(t) > w′
r(t), and 3) π∗

r (t) ≥ 1 − ρ′r.

Definition 25 (Eligible requestor). Requestor r is defined
as eligible at t if ∃k ∈ N : t ∈ [te(ω

k
r ), tf(ω

k
r ) − 1] ∧

π∗
r (t) ≥ 1 − ρ′r ∧ wr(t) > w′

r(t).

Definition 26 (Set of eligible requestors). The set of re-
questors that are eligible for scheduling at t is defined as
Re

t = {r | ∀r ∈ R ∧ r eligible at t}.

4.3. Scheduler

The CCSP arbiter uses a static-priority scheduler, as it
decouples latency and rate and has a low-cost hardware im-
plementation. Each requestor is assigned a priority level,

p, as stated in Definition 27, where a lower level indicates
higher priority. We do not allow requestors to share prior-
ity levels. Sharing priorities, as done in [32], results in a
situation where equal priority requestors must assume that
they all have to wait for each other in the worst-case, re-
sulting in less tight bounds. In this paper, we consider a
scheduler that is preemptive on the granularity of a sin-
gle service unit. A preemptive non-work-conserving static-
priority scheduler schedules the highest priority eligible re-
questor every cycle, as defined in Definition 29. The case
of a non-preemptive scheduler is covered in [4].

Definition 27 (Priority level). A requestor r ∈ R has a
priority level pr, such that ∀ri, rj ∈ R, ri ̸= rj : pri

̸= prj
.

Definition 28 (Set of higher priority requestors). The set
of requestors with higher priority than ri ∈ R is defined as
R+

ri
= {rj | ∀rj ∈ R ∧ pri

> prj
}.

Definition 29 (Static-priority scheduler). The scheduled
requestor at a time t in a preemptive non-work-conserving
static-priority scheduler is defined as

γ(t) =

{
ri s.t. ri ∈ Re

t ∧ !rj ∈ Re
t : prj

< pri
Re

t ̸= ∅
∅ Re

t = ∅

5. Arbiter Analysis

In this section, we derive analytical properties of the
CCSP arbiter. First, we define and upper bound the interfer-
ence experienced by a requestor during an interval. We then
use this bound to derive the service guarantee of CCSP, and
to prove that it belongs to the class of LR servers. Lastly,
we upper bound the finishing time of a request, based on the
derived service guarantee.

Definition 30 states that the interference experienced by
a requestor in an interval consists of two parts. The first part
is concerned with the potential of higher priority requestors
at the start of the interval and the second with the increase of
their provided service bounds during the interval. Together,
these parts determine how much an interfering requestor can
maximally be scheduled before being slowed down by the
rate regulator.

Definition 30 (Interference). The interference experienced
by a requestor r ∈ R during an interval [τ1, τ2] is denoted
ir(τ1, τ2) : N × N → R, and is defined as

ir(τ1, τ2) =
∑

∀rj∈R+
ri

(π∗
rj

(τ1) + ŵ′
rj

(τ1, τ2)) (3)

To compute the upper bound on interference, we will
bound the two parts of Equation (3) separately. First, we
introduce two lemmas proven in [4]. Lemma 1 shows some

9

Figure 2.9: Example of accounting when using a CCSP arbiter [9].

In effect, this model creates an upper bound on the service that a requestor can
receive in a period of time, based upon the latency parameter in an LR server,
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ρ. In order to account for the request size of a requestor, this upper bound is
initially a “burstiness” offset, σ, and increases while the requestor is “active” on
every cycle by ρ. The difference between this upper bound and the service that
has been provided is then the potential, where a requestor can be scheduled if it
has a non-zero potential. These concepts can be seen in Figure 2.9; the red line is
the requested service, the blue line the provided service, ω̂ ′ the upper bound on
provided service and π the potential.

Given this rate limiting, assuming that the system is schedulable (i.e.
∑

r∈R ρr <=

1), each requestor can receive a minimum level of service ω̌ ′, each after a latency
Θr. Of course, CCSP assumes that it is possible to perform continuous accounting
and that requests are pre-emptable. In the case of shared memory, memory transac-
tions are non-preemptable, in which case the arbiter must wait until the requestor
has sufficient potential to encapsulate the worst-case timing of the memory trans-
action before it is permitted to be scheduled. Again, similar to the case of FBSP,
many requstors may become “valid” at any one time. In this case, a requestor from
this set is selected by means of static priority arbitration.

Work Conservation

One issue with most arbitration schemes is that they enforce that the requestors
connected to them should be requesting data through the arbiter at a given rate.
While some tasks may fit into this model, many do not; they may request large
amounts of data at some points during their execution, or sit idle at other points.
Moreover, if the system is being dynamically scheduled, the total amount of avail-
able system bandwidth may not be assigned to tasks within the system. In these
cases, the memory controller would normally be sat idle. This is not good; an
idle memory controller is always useless, instead it could be trying to do something
useful.

This situation is the motivation behind “work-conservation”. In effect, if the
arbiter cannot schedule anything because all tasks have exceeded their bound, then
it will instead pick some work from one of the tasks which has exceeded its bound.
As an example, both CCSP and FBSP can just pick the highest priority requestor
which has some work outstanding if not requestors with some remaining potential
have any work to do. Round-robin and TDM can look ahead in the slot table for
the next requestor with work to do (note that round-robin and TDM must not move
the slot table pointer; if a requestor is relying upon the fact that it will be serviced
every x cycles, and hence only generates a memory request every x cycles, moving
the slot table pointer may skip the requestor and hence reduce the actual allocated
bandwidth).

While work-conservation can be used to improve the average-case timing for
a task, it cannot be used to improve the worst-case. Many work-conservation
schemes are unpredictable, althouh even if they were predictable, the behaviour
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of tasks under work-conservation depends on the behaviour of all other tasks (in
order to be able to ascertain whether a task will miss its slot) and hence breaks one
of the main reasons for performing bandwidth partitioning.

2.3.2 Distributed Memory Arbitration

One problem that has been identified when using an arbiter to control access to
memory is that a large, monolithic arbiter like is typically used with the above
schemes cannot scale to the number of requestors in a modern system. If the
arbiter is connected to each processor in the place of a memory bus, the system
will still have long wires to connect many processors which are typically spanning
the die to a centralised memory arbiter. Connecting the memory arbiter to a NoC
can solve this, since there is only one entry point, but since each processor, or
worse, each task requires its own bandwidth bounds, this requires the memory
controller to separate these requests into separate input queues (through a large
de-multiplexer), then consider each of these input queues. While this (potentially)
solves the issue of long wires, the logic overhead caused by attempting to arbitrate
so many input queues leads to extremely long logic delays, and hence a low clock
speed in the arbiter.

As outlined in Section 2.3, many systems split out the memory requirements
of a task and the processor-to-processor communication requirements. Instead of
attempting to route packets to the memory controller then arbitrate from these,
state-of-the-art approaches instead take inspiration from network-on-chip systems
used for inter-process communication and attempt to apply them to memory ar-
bitration. By splitting this arbitration over a specialised memory network, these
distributed approaches can scale to many cores, while still enforcing bandwidth
guarantees required by real-time systems.

Distributed TDM

The first of these is a distributed TDM implementation by Schoeberl et al [10]. This
uses a set of network interfaces, which because memory traffic is a many-to-one
operation rather than a many-to-many, are then connected to a set of two-into-one
multiplexers which are connected together in a tree structure. These multiplexers
are bi-directional; they select one of their inputs which has data on it to relay
the request towards memory, then also relay requested data back to the processors
again. A conceptual view of this can be seen in Figure 2.10; here, the nodes labelled
NI are the network interfaces, and the MI node maps memory requests onto the
memory controller.

Since the worst-case response time of the memory controller can be ascertained
and bounded (using the techniques from Section 2.2.1), a TDM schedule can be
derived such that two requestors can never request in the same instant, and that a
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Figure 2.10: Conceptual view of Distributed TDM [10]

memory request will never be blocked at the top of the tree. This TDM schedule is
then enforced within the network interfaces next to the processors. For this reason,
the multiplexers do not require any intelligence whatsoever; they can just map
whichever input has data onto the output since the TDM schedule ensures that the
network is collision-free.

This improves the behaviour of a standard monolithic arbiter as now the distri-
bution of the arbiter can span the whole device, rather than just being located in a
section of the device close to the memory controller. This solves the wire length is-
sue, and since each multiplexer is two-into-one and has no internal intelligence, the
logic overhead of this approach is relatively low. On the other hand, in order for
this approach to work, all of the network interfaces need to be clock-synchronised,
since this approach effectively replicates the TDM slot table into each NI, and each
NI must move through the slot table at the same time. Moreover, this approach
cannot support work-conservation since the arbiters have no way to communicate
and hence can never reach agreement on which requestor should be able to dis-
patch a request in the work-conserving case.

GSMT

GSMT (Generic, Scalable and globally arbitrated Memory Tree) [12] is another
distributed arbitration scheme which performs some admittance control at the bot-
tom of the tree, next to processors, then uses a tree of multiplexers to connect to
memory. In contrast with Distributed TDM, however, the admittance control is per-
formed by both the network interfaces and the multiplexer tree. Conceptually, the
layout of the system is identical to that for Distributed TDM, as seen in Figure 2.10.
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The initial admittance control is performed by the network interfaces. In ef-
fect, these are credit-based arbiters and can be used to implement many different
arbitration schemes. These network interfaces contain a credit counter with an ini-
tial value InCr. On every active period, this credit counter is incremented by an
amount (Nr), and decremented by an amount every time the requestor has been
scheduled (Dr). In order to support frame-based arbitration schemes, this credit
counter is replenished to a given amount when an entire frame has elapsed. Sim-
ply enough, if the current amount of credits that a requestor has lies between an
upper and lower bound, the requestor can be scheduled. This scheme has been
shown to work across many different schemes, where the authors give examples
for TDM, FBSP and CCSP.

Of course, for FBSP and CCSP there many be many potential requestors within
each scheduling interval. This is handled by assigning each requestor a static prior-
ity, as is typical with these schemes. On each interval, each requestor which can be
scheduled (i.e. the credit counter falls between the upper and lower bound) sends
its request onto the tree along with its priority. Each multiplexer then chooses the
request with the highest priority, discarding the other request. The memory inter-
face then receives the request with the highest priority, and relays a message back
to this network interface to notify it that its request was scheduled, while all other
requestors should retry in the next scheduling interval.

This priority scheme also allows the arbitration system to implement work con-
servation. This is done by biasing the priority of a work-conserving access such
that its priority is lower than any non-work-conserving access. If the requestor’s
credit counter does not fall between the given bounds, then it can still send a re-
quest, just with this lower priority, and the rest of the arbitration scheme works as
usual.

Compared with Distributed TDM, this approach is more flexible, but as each
multiplexer must now inspect each request for its priority, its overhead is greater
and hence the potential maximum frequency is lower. Moreover, the network in-
terfaces themselves must be larger and slower to implement the counters. This
approach still also suffers from potential issues with clock synchronisation, as re-
quest intervals all must start at the same instance, but also, each multiplexer must
be synchronised to ensure that requests from sub-trees all move up the tree at the
same time.

Bluetree

Bluetree [60, 61] is another distributed approach which uses a tree of multiplexers.
This differs from distributed TDM however in that it does not perform any admis-
sion control at the bottom of the tree, next to the processors. Instead, each mul-
tiplexer has intelligence and separately performs its own arbitration. Moreover,

57



while Distributed TDM and GSMT rely upon some notion of a service interval,
Bluetree is a fully demand-based system.

This demand-based scheduling is implemented by including buffers at the input
to each multiplexer, which include some flow-control to the multiplexers located
below them. Whenever the multiplexer further up the tree has space in its input
buffer, the multiplexer picks a request from one of its inputs based upon a static
priority scheme. By convention, the left-hand input has priority over the right-
hand side of the multiplexer. Responses from the memory controller are then
routed back to the requestors by the multiplexers.

In order for the multiplexer to be timing predictable, it contains a “blocking
counter”. This records how many packets have been relayed by the high-priority
side of the multiplexer while a packet has been waiting at the low-priority side.
When this becomes equal to a predefined constant m, a single request is admitted
from the low-priority side, then the counter reset. Because a low-priority packet
is only blocked when there is a high-priority packet pending, then this arbitration
scheme is work-conserving, since the low-priority packet could be relayed other-
wise.

As an example, if this counter is set as m = 3, then when a request arrives at
the low-priority side of a multiplexer, then the maximal waiting is the time taken
for three high-priority requests to cross the multiplexer before it may itself cross.
Of course, for a packet arriving on the high-priority side, it may have to wait for a
single low-priority packet to cross the multiplexer, assuming that the request has
been preceeded by three other requests in quick succession.

Compared with Distributed TDM and GSMT, this approach does not require full
clock synchronisation across the tree, however, the system analysis is much more
complex and leads to a higher worst-case execution time than the other schemes,
and the logic overhead at each multiplexer is higher than other approaches due to
the blocking counters. As the network inherently supports requests being blocked
at each stage in the tree though, this approach allows for much simpler pipelining
of memory requests, and since there is no concept of a service interval, this ap-
proach allows for potentially much higher bandwidth than both Distributed TDM
and GSMT.

2.3.3 Summary

After the demise of Dennard Scaling, system designers have used multi-core ap-
proaches in order to provided the expected year-on-year performance scaling that
has been apparent over the last few decades. While this parallelism provides a
good way to scale the performance of a system, it provides issues to the designers
of real-time systems; the analysis of a running set of tasks now needs to not only
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analyse the behaviour of the task under inspection, but also of all other running
tasks.

Typically, this issue is sidestepped by providing a hardware arbiter which en-
forces an upper bound on how many requests a single processor may issue within
a given period of time, effectively partitioning the available memory bandwidth
across a set of processors. A task can then be analysed within the parameters of
this partition, rather than attempting to analyse the timing behaviour of it with all
other running tasks. This both simplifies the analysis, and is safer since a runaway
task will be throttled by the arbiter.

Traditionally, this arbiter is implemented as a single, monolithic block with many
inputs (from the processors) and a single output (to the memory controller). As
the number of processors within the system grows, it becomes fast impossible to
scale the arbiter to the required number of processors. This restriction is imposed
by the fact that these arbiters typically select a requestor from a set of input buffers,
then issues this request to memory. In order to do this lookup in a single cycle,
huge multiplexers are required, and the logic overhead soon becomes massive.
Moreover, as the size of the arbiter grows, as does the internal wire length, which
cannot grow much further since the capacitance of the wire (which increases with
length) soon limits the switching frequency, and hence the maximum clock speed
of the arbiter.

Area (mm2) fmax (MHz)
# Clients TDM CCSP GSMT TDM CCSP GSMT

4 0.016 0.020 0.017 588 526 1250

8 0.029 0.036 0.035 500 435 1250

16 0.061 0.077 0.070 435 357 1250

32 0.107 0.172 0.141 333 333 1250

64 0.203 0.417 0.282 333 303 1250

Table 2.2: Area and maximum frequency for a distributed arbiter (GSMT) versus mono-
lithic TDM and CCSP [12].

To solve this problem, much of the state-of-the-art research in system arbitration
is turning to using distributed arbitration schemes. These typically replicate and
distribute parts of the arbiter out to all requestors, then use a set of multiplexers to
route the packet to memory in a pipeline. Because the multiplexers are simple two-
to-one multiplexers, which are then pipelined, the logic overhead is typically less
than for a monolithic arbiter, and the shorter wire length and pipelining allows for
a much greater maximum frequency which, more importantly, is not significantly
impacted by the number of requestors. As an example, the results of scaling GSMT
versus monolithic TDM and CCSP are shown in Table 2.2.

The usage of this arbiter then allows the worst-case response time of a memory
request to be bounded. Moreover, as each task uses a partition of the system, it
is trivial to assert that the system is schedulable; if the sum of the bandwidths of

59



all tasks is not greater than the available system bandwidth, then the system is
schedulable. The assertion that the tasks cannot cause other tasks to miss their
deadlines by the use of a hardware arbiter then allows the system to be analysed
and a worst-case execution time estimate to be ascertained for each task, as detailed
in Section 2.1.

2.4 prefetching

A useful technique to use to attempt to reduce the latencies associated with ac-
cessing main memory is prefetching. This is a technique which fundamentally
attempts to speculatively issue memory requests for data which will be required
by a processor in the near future. Given the rising memory delays outlined in
Section 2.2, made worse by needing to ensure fair access to this main memory
from multiple processors as outlined in Section 2.3, something needs to be done to
attempt to reduce the overheads brought about by accessing shared memory.

There are two main methods by which prefetching can be implemented. The first
of these is pure hardware prefetching, where the processor contains a prefetch
unit which can speculatively issue memory accesses on behalf of the processor.
Hardware prefetches are almost ubiquitous in high performance processors; the
POWER4 architecture [62] contains both instruction side and data side stream
prefetches, and many Intel processors contain both stream and stride prefetch-
ers [63]. While hardware prefetching is effectively transparent to the system, it
is not without its limitations. Because the prefetcher can typically only observe
what addresses are being fetched, it cannot usually prefetch addresses which do
not follow an obvious pattern (for example, dynamically allocated linked lists), or
simply non-linear access to an array.

Instead, software prefetching [64] can be used to predict such data access pat-
terns. This is a technique which adds a “prefetch” instruction to a processor’s
instruction set which effectively acts as an asynchronous load. While this can im-
prove the prefetching accuracy of a task which fetches more “random” data, it
does have the downside that prefetching is now managed by the programmer. The
programmer must now decide when to issue a prefetch in order for it to arrive
in a timely manner, but not too early, and for what data. While this decision
may be easily possible for single-core machines, it becomes much more complex
on multi-core systems where the optimum time to initiate a prefetch, or how far
ahead of the stream the prefetch should be issued now depends on the current
memory load, as the prefetch may be blocked by other cores requesting data from
memory. Modern compilers can also automatically insert prefetch instructions on
behalf of the programmer [65], but of course, the compiler must still decide how
early a prefetch should be initiated in order to be optimal. Moreover, software
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prefetching and hardware prefetching are not mutually exclusive; the combination
of the two can still yield performance improvements where both are used for dif-
ferent data patterns, or the software prefetcher can be used to train the hardware
prefetcher [65].

While software prefetching can be more accurate (due to the executing program
having better knowledge of the data it will soon require), it does have its pitfalls.
Inserting such instructions into the program stream of course increases the overall
size of the program, which may be problematic for embedded systems. More-
over, it is difficult to place these instructions in an optimal fashion; they must
appear early enough in the program such that the data to be prefetched has been
fetched by the time it is required by the program, but not too early or too late. On
single-core systems, the “optimal” locations for these may be determined through
profiling or in-depth knowledge of the architecture, but of course on a multi-core
system, the latency of a prefetch may depend upon the behaviour of all other cores
in the system, and hence placing these instructions in an “optimal” place may be
difficult for multi-core systems.

Applying software prefetching to a real-time system also brings about its own
set of issues. Firstly, the inclusion of these prefetch instructions fundamentally
changes the timing behaviour of the task, and will require it to fetch more data
from main memory, causing more cache misses. Equally, this increase in task size
may also cause the task to no longer fit in cache, again causing yet more cache
misses. As an example, Lee et al. [65] demonstrate that the code size of some
benchmarks increase by 50-100% when software prefetch is used. This overhead
may increase both the worst-case execution time of the task (especially if assuming
that all prefetches miss) and may increase the complexity of the system analysis.
Finally, assuming that the prefetcher is a shared resource, the interference caused
by all tasks communicating with the prefetcher must be factored into the system
analysis to see if a software prefetch will even reach the prefetcher by the time that
the task requires the prefetched data.

Because of this additional complexity of using software prefetching in a real-
time multi-core system, this thesis only concerns itself with hardware prefetching
methods for the time being. Even within pure hardware prefetching, there are nu-
merous different prefetching schemes which are detailed throught the remainder
of this section.

Stream Buffers

The simplest approach uses the concept of sequential streams of data, as proposed
by Jouppi et al. [66]. Simply enough, this makes the assumption that if the proces-
sor has previously required blocks A, A+ 1 and A+ 2 from memory, then it will
probably soon require block A+ 3. If that block was deemed as useful, then block
A+ 4 can also be prefetched. This is implemented by utilising a small table inside
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the prefetcher which encodes the state of n access streams. When the processor
makes a memory request, if the address requested is the next in any of the stored
streams, then the stream information is updated and optionally, a prefetch initi-
ated, otherwise the access overwrites an existing stream using some update policy
(e.g. least recently used or round-robin).

The cache then records which blocks are stored as the result of a prefetch. If
the processor requests a cache block which has been prefetched, then the cache
notifies the prefetcher of this event. Using the stream information, the next line in
the stream can then be prefetched, and the information updated. The performance
of this technique depends upon the number of stream buffers employed. Using a
single stream buffer (i.e. the prefetcher can only identify one stream at once), a
performance increase of 7% was observed; with four, this figure increased to 60%.

Stride Prefetching

While the code for a task is typically accessed in a serial fashion, the data is not al-
ways in such a predictable scheme. Tasks may not access every block in sequence,
but may access with a stride. Stride prefetching [67] attempts to extend stream
prefetching to discover cases where the processor is predictably accessing the pat-
tern of A, A+ d, A+ 2d etc. It does this by using a similar table-based scheme,
but indexing the table on the program counter of the instruction which issued the
load. On each load, the instruction’s entry can be recalled, and the current load
address compared to the last one to try and discover a pattern. If one can be re-
liably ascertained (e.g. the prefetcher has observed more than m accesses in this
pattern), then the prefetcher can begin prefetching data as before.

While this can detect more diverse patterns than stream-buffer based techniques,
it does suffer from the fact that the prediction tables need to be much larger than
before since the tables must be indexed on the program counter rather than the
last load address. While these will be good at detecting a stride in say, a loop with
a single load instruction within, they may suffer when there are multiple load
instructions, each of which load from sequential memory addresses (e.g. if the
previously described loop was unrolled). Fu et al showed that program counter
based approaches such as these require a table of around 256 entries in order to be
effective [68].

Markov Prediction

Of course, both stream and stride prefetching rely upon a constant difference be-
tween load addresses to be observed. While this may be the case for code which
steps through the elements of an array, or for serial instructions, it is not always
the case. Joseph and Grunwald [69] attempt to prefetch these other cases by using
Markov predictors. This attempts to encode a graph of accessed memory locations
where the nodes are memory addresses and the edges encode the “next” address to
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be fetched, with a probability. When a memory access is observed, the prefetcher
can load this information and prefetch the most likely child nodes.

Of course, this graph will likely be huge and hence difficult to traverse quickly.
Nesbit et al. propose a generalisation of this which instead encodes the difference
between the memory addresses [70], where each node in the graph is the difference
between the last memory fetch and the current one, and the arcs are again the
probability. This can provide similar performance to a Markov prefetcher at a
fraction of the space required, albeit with potentially more false prefetches being
issued. Such an approach can be good for loops within which the body accesses
data in a structured, but not constant fashion (e.g. accessing elements in a structure
out-of-order).

Pointer Chasing

Another method to handle the prefetching of seemingly random data is to annotate
the data to be fetched with a set of pointers to the next data in the chain [71]. The
primary motivation of this is to prefetch linked data structures, such as linked lists,
which may also contain pointers to a separate data payload. Because this data is
annotated by either the programmer or the compiler, this does not actually require
any prediction and hence is much more accurate than Markov-based approaches.
After these pointers have been identifed, a prefetcher can then use them to fetch
the “next” data items into target cache, ready, and also any supplimental data
associated with each data item (i.e. data pointed to from a generic linked list
implementation).

Another approach attempts to identify such pointers automatically based upon
the observed data stream. Cooksey et al. utilise a method which insepcts data
returned from memory then, if any of it looks like a pointer, it can traverse down
that pointer and fetch additional data [72]. If any of that also could be a pointer,
the process can be repeated. In many cases, the heuristic for “looks like a pointer”
typically inspects the data returned from memory and if it could be a memory
address which falls in the heap segment of a program, then the technique assumes
it is probably a pointer to dynamically allocated data. Of course, this technique can
provide a great deal of false positives. There is also work on training this technique
based upon whether the processor accessed the prefetched data, and how many
prefetched blocks must be accessed for the prefetcher to restart prefetching data.

A final approach again attempts to detect pointer loads by inspecting returned
memory contents, but instead stores the mapping between the location of the
pointer and the data it points to in a cache [73]. The advantages of this are twofold;
firstly, on a repeated load of the pointer, the data pointed to can be loaded directly
from the pointer cache instead of main memory. In addition, if a pointer has been
retrieved from this cache, the prefetcher can start loading blocks from the pointed
to memory location. This potentially has less pollution than Cooksey’s method,
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but again assumes that pointers can be accurately identified. In addition, it is un-
suitable for multi-core systems, as while the local core can update the pointer cache
if a pointer is changed, multi-core systems would require some form of snooping
to implement this, adding to the overhead.

2.4.1 Adaptive Techniques

Prefetchers can typically be tuned on two main critera, the distance and the de-
gree. The prefetch distance is used to set how far ahead of the current stream the
prefetcher will start fetching from. Incrementing this value is useful in situations
where the prefetcher is blocked by standard memory traffic from processors. If the
prefetcher is blocked, it will not be able to initate a prefetch in a timely fashion
and hence the prefetch may be late; in the best case, it will only be able to mask a
portion of the memory latency, and in the worst case will not be able to be initiated
at all.

The prefetch degree controls how much data is fetched at once. As briefly
mentioned in Section 2.2, requesting successive memory locations is much, much
cheaper than random access, hence the performance penalty to request successive
memory blocks in a prefetch is extremely small. Controlling this parameter is
something of a tradeoff; fetching more data at a time may cause more, useful data
to be fetched in fewer prefetches. If this extra data was not required however, it
can cause issues, for example, it may displace useful information from cache and
hence actually worsen the performance of a task.

Of course, the actual set of parameters to use depends entirely upon the task be-
ing executed and the current state of the system; a task which fetches huge arrays
will benefit from a larger prefetch degree than one which only fetches a few succes-
sive memory locations. Additionally, if the current load on the memory controller
is high, a higher prefetch distance will probably yield much better results than a
lower one. In the ideal world, the prefetcher should fetch only the data which is
required, just as the processor requires it.

To accommodate this, recent research is concerning itself with tuning these pa-
rameters dynamically based upon the current state of the system. One of these is
proposed by Srinath et al called “Feedback Directed Prefetching” [74]. This ranks
the current behaviour of the prefetcher based upon three critera:

prefetch accuracy: How accurate the prefetcher is. This is evaluated by calcu-
lating how many of the prefetches were actually used by the processor.

prefetch lateness: The timeliess of the prefetches. This is evaluated by record-
ing how many prefetches were delivered to the processor by the time it re-
quired them. Even if they were not fully delivered, they may be coaleasced
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with the actual prefetch by the prefetcher, masking some of the time associ-
ated with memory access.

cache pollution: How many prefetches caused “useful” cache data to be dis-
placed. This is evaluated by using a bloom filter to record which cache blocks
were emitted due to a prefetch.

Based upon these critera, the prefetcher’s parameters can be modified. As an ex-
ample, if the prefetcher is accurate, but late, the prefetch distance can be increased
to help timeliness. If the prefetcher is accurate but on time, the prefetch degree can
be increased to fetch more useful data. If the prefetcher is causing cache pollution,
the prefetch degree can be lowered to prevent extra, un-needed data from being
fetched.

APOGEE [75] is another technique which attempts to tune the distance of a
prefetch on a GPU for the purposes of energy reduction. The authors make the
observation that while prefetching on each thread on a GPU is inefficient, a set
of threads typically operate together in a SIMD (single instruction, multiple data)
format. Moreover, these threads will typically exploit a similar access pattern,
with a fixed stride between the threads. By observing the accesses of each of
these threads, the stride between the threads can be ascertained, and prefetches
dispatched. On top of this, the prefetcher evaluates the late-ness of each prefetch,
and if they are late, increments the distance accordingly.

Another technique is “Adaptive Stream Detection” [76, 77]. This technique at-
tempts to build a histogram of “stream length” at run-time, then uses this infor-
mation to ascertain whether prefetches should be initiated. In the training period,
this technique uses a table which holds the current streams, with the last address
accessed in each one and a “lifetime” field. If a memory access cannot be corrlated
with an existing stream, a new entry is added with a pre-determined lifetime, oth-
erwise, the entry is updated and the lifetime reset. On each processor cycle, this
lifetime is decremented, and if it becomes zero, the entry is removed from the table
and the observed stream length is added to the histogram.

After the training period, the prefetcher then uses this table to track the currently
observed prefetch streams in a similar way to stream prefetching. When a new
access is observed, the prefetcher inspects the histogram, then will prefetch the
next k consecutive blocks from memory if the inequality lht(i) < 2× lht(i+ k)
is satisfied, where lht(i) is the number of memory accesses which occured which
were part of a stream of length i.

2.4.2 Memory-Side Prefetching

So far, most of the techniques described in this section concern themselves with
the local behaviour of a single task, and does not concern itself with the global state
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of the system (with the exception of APOGEE [75], although arguably a parallel
SIMD workload is the same task).

By moving the prefetcher into the memory controller, it is potentially possible
for the prefetcher to issue requests based upon the current state of the system.
Yedlapalli et al propose a technique called “Meeting Midway” [78] which attempts
to create prefetches based upon the observed access stream and the current state of
the memory controller. Again, as discussed in Section 2.2, performing a memory
access to an already active memory row is extremely cheap. “Meeting Midway”
therefore only prefetches data from a currently active DDR row by effectively also
requesting the next few blocks when a DDR access occurs.

The technique also performs extra optimisations for multi-core systems. Firstly,
it will not issue a prefetch if there are a large number of waiting demand accesses
to prevent a detriment on the performance of other tasks in the system. It also only
fetches the data into a buffer in the prefetcher to prevent cache pollution. For this
reason, it can be used alongside a conventional core-side prefetcher. Finally, due
to its position next to memory, it does not cause bus locking when performing a
prefetch and hence does not block other tasks un-necessarially.

This technique is also used within other prefetchers. For similar reasons, the
prefetcher used for “Adaptive Stream Detection” [76] was also designed to re-
side within the memory controller. Yang and Lebeck [79] also propose another
prefetcher which is implemented within the memory controller which implements
a similar pointer chasing routine to those shown earlier in this section. By plac-
ing the prefetcher inside the memory controller, prefetches could be issued much
faster, as the prefetch coming from the processor did not have to cross the inter-
connect and other functional units inside of the processor.

2.4.3 Multi-core Prefetch

Much of the work presented within this section can be used within a multi-core
context without modification. Also, some of the techniques (e.g. APOGEE [75]
and “Meeting Midway” [78]) are designed to be used with a multi-core system.
While these techniques exist, there is little work which evaluated the performance
of a prefetcher on a multi-core system to observe the overall performance impact
or the scaling problems which may arise.

Dahlgren et al [80] show the study of an adaptive prefetcher in a cache-coherent
multi-core system, with shared memory at each node within the system. While the
authors do model contention at each memory, they assume that the interconnect
has infinite bandwidth and also assume an infinite cache in most experiments.
Despite this, they do find that prefetching does improve the execution time and
reduce the number of cache misses. While the authors also find a slightly increased
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traffic consumption across the interconnection network, they do not provide any
study on the amount of memory contention that takes place.

Tullsen et al [81] provide a similar study by assigning a fixed memory delay
of 100 cycles, then varying how many of these cycles can be executed in parallel
with other memory requests, and how many must be serialised over all proces-
sors. From this, the authors executed a number of benchmarks with a number
of different prefetching schemes, and found that in almost all cases, prefetching
worked well where the contended part of the memory bus latency was small, and
hence prefetches could be completed quickly without significantly blocking other
tasks. As the latency increased, however, prefetching tended to cause a perfor-
mance detriment in all cases.

Other work by Ebrahimi et al [82] attempt to extended previous feedback-directed
prefetching approaches [74] to multiple cores in order to try and throttle multiple
core-side prefetchers and prevent prefetchers from negatively impacting the exe-
cution times of other processors. The target system is a multi-core system with a
shared last-level cache, with a prefetcher on each core. The local prefetching char-
actistics (i.e. distance and degree) can be changed as with previous techniques,
but a further function unit also monitors the global behaviour of the prefetcher and
may override the control decisions made by the local prefetcher.

As an example, if a prefetcher is not operating in an accurate fashion and more-
over, there is a great demand on shared memory by other prefetchers, then the
global functional unit can cause that prefetcher to throttle down. Moreover, if the
accuracy of a prefetcher is low, and it is also polluting the data stored in last-level
cache belonging to other processors, then the global functional unit can throttle the
local prefetcher. The authors found that this technique can typically improve the
performance of the system further than standard adaptive prefetching, with lower
bus bandwidths when applied to a multi-core system due to the lower amount of
interference. Moreover, the authors also found that the gains due to the prefetcher
actually increased with the number of cores in the system.

Finally, Liu and Solihin [83] explored the utilisation of prefetching on systems
which already had bandwidth partitioning, comparing the speedups found when
executing a set of tasks on a dual or quad-core system compared with serially
on a single-core. As found in previous research, utilising bandwidth partitioning
in itself can cause an improvement in the execution time versus a standard non-
arbitrated system, but in all cases, the prefetcher could either cause a performance
gain or a detriment, depending on the tasks being executed. From this, the authors
derived a metric which decides whether each core’s prefetcher should be enabled.
From this, it can be shown that only enabling certain prefetchers is never any worse
than the case without prefetching, and can typically yield performance gains.
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2.4.4 Summary

Prefetching is a technique which is frequently used to try and hide some of the
memory latency by attempting to predict what the processor will require next and
attempting to fetch this before it is required, effectively attempting to speculatively
overlap memory access with the computation time of a task. Of course, the effec-
tiveness of this depends on many factors; the access pattern of a task should be
predictable enough for an external unit to be able to determine the pattern, and
there should be sufficient time in between memory accesses to be able to dispatch
another prefetch.

While prefetching has been shown to be a useful technique on single-core sys-
tems, and on multi-core to an extent, there has been no work which attempts to
evaluated its effects on a time-predictable system, or to be able to incorporate the
prefetcher into the worst-case execution time calculations. Moreover, there are
no current prefetching techniques which attempt to fit a prefetcher in alongside
a hardware arbitration scheme in a safe manner; Liu and Solihin [83] are close,
but the prefetcher used is still a standard prefetcher with no knowledge of the ar-
biter, which is simply then disabled if it is found to cause a performacne detriment
ahead of time.

Given that more and more real-time systems are moving to multi-core systems in
order to fulfill their performance requirements, a system like prefetching will soon
be required in order to prevent memory latencies from becoming huge and ex-
tremely pessimistic, and causing large amounts of slack within a system. Methods
such as memory-side prefetching could be useful for this, as their location next to
the memory controller can allow them to gain an insight into the state of the entire
memory subsystem, and hence only prefetch when it is “safe” to do so. Moreover,
by combining them with a distributed arbitration approach such as those shown
in Section 2.3.1, it may be possible to prefetch for a subset of cores to improve
the execution time for a set of soft real-time tasks, while allowing hard real-time
tasks to request at a high priority and still maintain a low deadline without much
pessimism.

2.5 summary

This chapter has outlined much of the background work which both motivates the
contributions of this thesis, and which is used by this thesis when exploring the
hypothesis presented in Section 1.2. The major work detailed within this chapter
can be summarised as follows:

Section 2.1 first details what it means for a task to be “predictable”, and ulti-
mately details what must be met in order to assert that the prefetching scheme
described within this thesis is predictable. In order to meet the goal that the
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prefetcher should be able to improve the worst-case execution time, the entire
prefetching and arbitration scheme must be able to be modelled with a reason-
ably simple system model such that a static analysis tool can ascertain what the
behaviour of the prefetcher will be at any time in the system in the worst-case.
This can then be combined with a model of the processor, arbitration scheme and
memory controller in order to arrive at an estimate for the worst-case execution
time of a task in the system.

Section 2.2 then goes on to detail why modern, large memories cause issues for
predictability in real-time systems. Both AMC [39] and Predator [38] attempt to
distribute data across DDR banks in order to optimise bank efficiency, operate a
closed-page policy and attempt restrict each access to a fixed “pattern” for which
the worst-case response time can be ascertained. Both of these techniques pro-
vide a method by which the response time of a single memory transaction can be
bounded and scheduled by an arbiter, and can hence be used by this thesis and
thus provides predictability to the memory subsystem.

The rationale behind moving to multi-core architectures, and how multi-core
systems can be made to be predictable with respect to a shared resource is then
outlined in Section 2.3. While there are methods by which the access to a shared
resource can be analysed without using any extra hardware, they are both expen-
sive to analyse and are potentially unsafe in the case of a runaway task. In order to
resolve this, Section 2.3.1 details a number of schemes by which multiple proces-
sors can access memory in a safe and fair manner. Such arbitration schemes can
provide an upper bound on the number of requests which may block a request
from a given processor, and hence can be combined with a predictable memory
controller from Section 2.2 in order to determine the worst-case response time of a
single memory access in a shared-memory system.

Finally, Section 2.4 details many of the current techniques for prefetching data
for tasks and gives an overview of the recent work within multi-core prefetching.
While many of these techniques can work well to improve the average-case exe-
cution time of a given task, none currently lay any focus on the worst-case timing
of a task, or on being predictable. As detailed within Section 2.1, each of the
components in the system must be predictable in order to ascertain a worst-case
execution time for a task. If the prefetcher is not predictable, then the memory
hierarchy as a whole is not predictable, making it difficult to make any assertions
about the worst-case timing behaviour of the system.

This thesis will therefore build upon the work detailed in Sections 2.2, 2.3 and 2.4
in order to fill in some of this gap and to create a “predictable” prefetching scheme.
In order to fulfil the hypothesis outlined in Section 1.2, it will then use some of the
system analysis techniques described in Section 2.1 in order to analyse the worst-
case behaviour of the prefetcher and attempt to integrate it with the worst-case
execution time analysis of a task.
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3 R E A L-T I M E P R E F E TC H I N G

Moving towards multi-core processing with an external shared memory causes
significant issues within the field of real-time systems. As explored within Chap-
ters 1 and 2, there is the requirement that the execution time of tasks within a
real-time system can be bounded, such that it is possible to assert that they will
complete their processing within a given time interval. To do so requires bounding
the worst-case timing behaviour of everything within a system which a task uses,
be it shared resources, memories within the system or even the functional units
within the processor upon which the task is running.

CPU CPUCPU CPU

Memory 
Interconnect

Memory

Figure 3.1: Graphical view of a system with four processors and a hardware memory
arbiter.

Figure 3.1 shows a system model for a fairly simple multi-core system with
shared memory. These are typically made up of a set of processors, which through
some memory interconnect are then connected to a memory controller which is-
sues commands to the underlying memory. There has already been extensive work
on making each of these blocks predictable; Section 2.2.1 details many methods by
which the memory controller can make the underlying DDR memory accessible in
a predictable fashion, and there are many processor designs which are designed
to be predictable from the outset [84, 85].

There are also many ways by which the memory interconnect can be made to be
predictable. A few techniques use a standard, non-predictable interconnect, then
attempt to analyse the behaviour of all tasks accessing it [86, 23]. While these
techniques can be used on “standard” memory interconnects, they are computa-
tionally expensive; they must analyse the behaviour and interactions of each and
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every task on the system together to determine the interference that they will cause
each other, a problem which has effectively O(N2) complexity with respect to the
number of tasks.

Some systems instead opt to utilise an arbiter in the place of the memory in-
terconnect. An arbiter is a device which can fairly split the available memory
bandwidth across a set of requesters, of which many techniques can be found in
Section 2.3.1. As the amount of assigned bandwidth and the maximum latency
of a memory request can be determined from this partitioned system is known
ahead of time, a task can instead be evaluated against its own bandwidth bound.
Because each task is analysed against its allocated bound, this technique far simpli-
fies the system analysis, as now each task can be analysed in isolation against its
own worst-case bound, and need not take other tasks into consideration. Because
each task is analysed in isolation, the complexity of this technique is simply O(N)

with respect to the number of tasks.
This is typically known as “composable” system construction [87], since a set of

tasks can be combined together while still being able to provide the required level
of service to all tasks, assuming that the required service is less than or equal to
the provided service of the system. In order for an arbiter to be composable, it
must provide a minimum defined service level to a given task, which cannot be
negatively impacted by other tasks within the system. This means that tasks must
be analysed in isolation and must not attempt to reclaim “spare” time from other
tasks.

3.1 memory arbitration

Many arbiters which can typically be used to control access to shared resources
such as memory fall into the Latency-Rate (LR) class of arbiters [55]. These arbiters
provide an average rate of service ρ to their clients after a maximum latency σ.
As an example, assuming that a requester occupies a single slot in a four-slot
TDM schedule, with an active period of tperiod, the requester will be allocated a
quarter of the available bandwidth (hence ρ = 0.25), and in the worst case must
wait for the whole schedule to cycle before being able to make a request (hence
σ = tperiod × 4− 1).

In order to be used with an LR arbiter, the average request rate must be ascer-
tained for a task. This may be simple for some tasks; a task which works on serial
data in a simple loop will access the data storage in a fairly predictable pattern.
A task which carries out many different functions, on the other hand, is far more
difficult to predict since the different paths through the task may yield different
request rates. Ascertaining this rate is then made even more complicated when
extra hardware features are used, such as caches and prefetchers. Moreover, this
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request rate may differ based upon the current control flow of the task; certain
paths may require more data, faster from memory and hence the system designer
must consider the average-case request rate, across all paths, and the worst-case
rate, which may only be rarely invoked.
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Figure 3.2: Access timings for benchmarks with varying cache sizes.

Examples of a task’s request rate can be seen graphically in Figure 3.2, which plot
the cumulative number of memory accesses over time for the sha and binarysearch
benchmarks. Here, the sha benchmark computes the SHA-1 hash for a serial block
of data and has a relatively linear access pattern. The binarysearch benchmark
accesses data much more randomly and exhibits “bursty” behaviour. The access
pattern depends heavily on the input data and cache behaviour of the task; the
block size of the cache means that any required data may have already been fetched
into cache by a previous access.

The end result of this is that it is not always possible to be able to ascertain
a static bandwidth bound which accurately captures the behaviour of the task.
For example, for the binarysearch benchmark, the system designer must choose
to provide a large portion of the available memory bandwidth, and optimise the
worst-case execution time (WCET) with the trade-off that the task will not always
fully utilise its bandwidth bound, or provide a smaller portion of the bandwidth
and ensure that no bandwidth is wasted at the cost of the WCET. Finally, the
assigned partition must be able to cover the worst-case path of a program. If this
path is not frequently taken, then the bandwidth bound may again be an over-
estimate.

Over-estimating the required bandwidth in this way can create some “spare”
time within the system as the arbiter will be providing the requester with service,
when it has no requests to service. The conventional way to deal with this spare
time is to use a technique called work conservation. This attempts to ensure that
the shared resource is never idle by scheduling the work generated by another
task whenever spare time would be created by the arbiter. For example, in a TDM
system, if the currently active task has no requests outstanding, a request from
another task can be taken instead. Note that this would not necessarily advance
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the schedule, as this can change the timing behaviour of the arbiter, it simply
chooses a request from a different requester to schedule in the “spare” time.

While this keeps the arbiter busy, the work-conserving behaviour of many ar-
biters is typically not well defined without breaking composability, since this
would require knowledge of the request patterns of the other tasks. As an example,
both the arbiter used in [12] and CCSP [9] fall back to a static priority scheme in the
work-conserving mode, hence the access behaviour of all other tasks in the system
would need to be known in order to improve the WCET using work-conservation
(except for the highest priority task).

Finally though, work conservation only attempts to re-distribute spare band-
width amongst other requesters. Within the context of the memory subsystem in
a real-time task, this partially ignores the issue of rising memory latencies. Even
if the the work-conserving behaviour of the arbiter could be analysed and incor-
porated into the WCET analysis, the potential gains are still bounded by memory
latency. By using different approaches to consume this slack time, the memory
latency could be eliminated entirely in certain cases.

3.2 prefetching

Prefetching is one technique which arose to try and cope with these rising memory
latencies. It attempts to do this by speculatively fetching blocks from memory
directly into the cache of the target processor based upon the pattern of memory
addresses it has already accessed. As an example, if a processor has accessed
addresses A, A+ 1 and A+ 2, it is quite likely to soon require the data at address
A + 3. This is, of course, a simple heuristic; many other approaches have been
discussed in detail within Section 2.4.

One other motivator for prefetching is that, even in single-core systems, main
memory is not typically fully utilised. The cost of a memory request crossing
interconnects, crossing the memory controller, and the response being delivered
back to the processor poses a significant overhead. Caches are another technique
to cope with this rising latency which work by eliminating redundant memory
accesses, but adding a cache to the system further reduces the utilisation figure
for main memory. Figure 3.3 shows this effect that a cache can have on memory
utilisation and plots the memory use for a number of benchmarks for varying
cache sizes. These experiments use a single Microblaze [88] processor running at
100MHz with a standard DDR3 memory controller running at 200MHz. On top of
the delays inherent to the processor and memory system, the interconnect causes
there to be 18 cycles of latency for each memory transaction.

Of course, the memory controller sitting idle is bad; the memory controller could
be doing some useful work instead. In these cases, prefetching attempts to utilise
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Figure 3.3: Memory utilisation for a number of benchmarks and cache sizes.

this spare bandwidth to speculatively issue a memory access for something which
is potentially useful to the processor. Figure 3.4 shows this performance boost
when used in an identical system to that in Figure 3.3. This example uses a simple
stream prefetcher, hence yields good results for benchmarks which access serial
data, e.g. md5 and insertsort. It also compliments benchmarks with large amounts
of straight-line code well, for example basicmath and rijndael. Some benchmarks
show little improvement, however. matmult is a small benchmark which executes
over a number of iterations. In this case, the benchmark itself can fit entirely in
cache, from which it then executes until it completes without accessing memory,
hence there is nothing useful to prefetch.

While prefetching has been shown to be a valuable technique for single-core
systems, there is little research on its impact on a multi-core system. That which
does exist typically concerns itself with cache-coherent systems and the impact
which the prefetcher has on the false sharing of data, or just concerns itself with
the average case. There has been work on evaluating a prefetcher on a bandwidth
partitioned multi-core system [83], but this effectively only presents a methodology
to disable the prefetcher when it can be shown to give a performance detriment
ahead of time. There is also little work on the effects of a prefetcher on a real-time
system; Lee et al. [89] show that automatically prefetching the instructions on the
worst-case path can improve performance over standard prefetching, but this work
ignores any bus contention and interference that prefetching can cause, and only
attempts to improve the worst case path through the program, which may only be
taken very rarely.
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Figure 3.4: Performance increase when using basic prefetching on various benchmarks

Prefetching is not typically used within real-time multi-core systems for a simple
reason: a prefetcher is generally a separate functional unit within the system which
can issue memory requests as it pleases. This typically causes the system analysis
to become infeasible; if the amount of blocking is not known or bounded, then a
worst-case execution time cannot be ascertained for the system as a whole. Even if
the prefetcher does have deterministic behaviour, the potential interference that it
will cause will cause a great amount of pessimism within the analysis.

As an example, the prefetch system presented by Dahlgren et al [80] fetches the
next K cache blocks after a cache miss, if they do not already reside in cache. In
the worst case, this of course causes another K memory accesses to occur after
performing a memory access. Any system analysis must now assume that each
memory access may be blocked by K memory accesses from the previous load,
hence the cost of each memory access must now be multiplied by K+ 1 causing the
amount of pessimism in the system analysis to greatly increase. Some prefetchers
sidestep this issue by imposing a priority ordering between prefetches and demand
miss accesses, only emitting prefetches when there are no demand misses waiting
for service, like the scheme proposed by Hur and Lin [76]. While this will prevent
the blocking issue, it does have the problem that in a system with sufficiently high
load, the prefetch will be blocked by demand accesses for a long period of time,
potentially rendering the prefetch useless and preventing further prefetches from
being initiated.

Moreover, the unpredictability of prefetchers causes issues for systems which
utilise cache. Typical prefetchers prefetch directly into the cache of the target pro-
cessor, but any cache analysis which has taken place within the system analysis
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will assume that the contents of the cache can only be affected by the currently run-
ning task. By fetching directly into the cache of the target processor the prefetcher
may displace data which the processor required in the near future, hence harming
performance and invalidating any cache analysis which may have already taken
place, since the analysis tool can no longer make any concrete assumptions about
the contents of cache.

Some techniques instead move the prefetcher into the memory controller itself,
rather than the processors [77, 90, 78]. Inserting the prefetcher here in the memory
hierarchy is interesting because it is now possible for the prefetcher to ascertain
the state of the system and hence only prefetch when there is available bandwidth.
Such an approach is also global; the bandwidth which is left unused by one proces-
sor can be used to prefetch data for another processor instead. It may also be able
to select data to prefetch based on the global access stream, rather than just that for
a single processor. While this is an interesting concept, it does not actually fix the
issues that have already been presented within the global scope of the system. A
work-conserving arbiter will still attempt to schedule requests whenever there is
“spare” time, hence blocking prefetches.

These issues typically prevent prefetchers from being used within real-time sys-
tems due to both their unpredictability and the amount of bandwidth they can
potentially consume. For the most part though, both of these issues arise simply
because the prefetcher doesn’t have any knowledge of the system; to be used in a
real-time system, the prefetcher needs to be integrated into the system such that it
can reliably determine when a prefetch can be dispatched.

3.3 real-time prefetching

As previously discussed within Section 3.2, prefetching is an attractive method by
which the rising memory latencies found within modern systems can be masked.
Despite this, prefetching is typically not used within a real-time system because
of the many pitfalls detailed previously; the prefetcher can operate at random
intervals, causing unpredictable blocking, and can displace useful contents from a
processor’s cache, causing the processor to initiate spurious memory requests.

These pitfalls exist solely because the prefetcher is not controlled in any mean-
ingful way with respect to the system as a whole; without any knowledge of the
scheduling of the system, the prefetcher will not be able to throttled to prevent it
causing harm. As presented within Section 1.2, this thesis will attempt to prove
the hypothesis that by integrating the prefetcher into the global arbitration scheme,
it can be used safely within a real-time system, without causing any harm to the
existing worst-case execution time.
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In order to evaluate existing prefetching schemes and build upon them in a
meaningful way, a general model of the real-time system must be decided upon.
This model will then be evolved throughout the thesis, with a hardware realisa-
tion at each step to evaluate the effectiveness of the prefetching scheme in the real
world. The remainder of this Section will take the existing literature from Chap-
ter 2 and use this literature to construct a model under which these investigations
can take place.

μ0 μ1 μ2 μ3 μN

DDR

Prefetcher

...

Arbiter

DDR Controller

Figure 3.5: Block diagram of the system model.

Conceptually, the system is comprised of a number of requesters, each of which
initiate memory requests which are then passed through a fair, composable arbitra-
tion scheme. After this, they are then issued to the memory controller, which will
then either respond with the requested data or an acknowledge packet. Finally,
there is a prefetcher integrated into the system which, as stated before, can issue
memory requests on behalf of the requesters in the system. A block diagram of
this model can be found in Figure 3.5.

At a high level, this system is comprised of a set of requesters C. Each requester
r ∈ C issues a set of requests W(r) = {ωr

1,ωr
2, ...,ωr

n}, which are memory requests
in an address space A, where the set of all possible requests is described with
C. Each of these requests are dispatched at time td(ωr

n), and a response arrives
back at the initiator at time ta(ωr

n). Each access operates on a single address
A(ωr

n) ∈A and is either a read or a write. Each of these requesters may have real-
time requirements, such that each request must complete in a known and bounded
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amount of time twc(r). While twc may be different for each requester, it must be
the same for each request initiated by a given requester, hence:

∀r ∈ C,ωr
n ∈W(r) : ta(ω

r
n) − td(ω

r
n) 6 twc(r) (3.1)

In order to satisfy this constraint, the response time of each component within
the block diagram in Figure 3.5 must be known and bounded. The remainder
of this section will detail the assumptions made about each of these blocks such
that a worst-case response time can be ascertained, and therefore present a general
system model under which prefetching experiments can take place.

3.3.1 Requesters

As stated previously, the requesters are a set of hardware components r ∈ C con-
nected to the inputs of the arbiter and issue a set of requestsW(r) = {ωr

1,ωr
2, ...,ωr

n}

to shared memory. These requesters may be processors running real-time tasks, or
may be hardware peripherals which require access to shared memory. Irrespective
of the implementation details of each requester, it is assumed that each of their
memory requests must complete within a bounded period of time, twc(r). The ac-
tual hardware implementation of these requesters is orthogonal to this work, since
this work only intends to ensure that the memory subsystem is predictable; it is
assumed that the behaviour of the requester can be analysed given an analysable
memory system given that twc(r) can be derived.

Each of these requesters may issue a request ωr
n ∈ W(r) to read or write data

from addressA(ωr
n) ∈A, on the granularity of B bytes at a time. When a requester

initiates a read request, it is expected that it will receive a response with the B bytes
at the specified address within twc(r) cycles, and that similarly, when a requester
initiates a write request, the data contained within the request will be written to
memory, and an acknowledgement delivered back to the requester within twc(r)

cycles.
In order to support a prefetcher, the requesters must also be able to receive data

“pushed” to them from the memory subsystem. In order to distinguish it from
other traffic (e.g. to prevent “pushed” data being mistaken as a read response), the
data will be tagged as “prefetched” to allow the requester to handle it accordingly.
In order for the requester to be analysable within the system as a whole, any
data which is pushed into the requester must not cause it to initiate any spurious
memory requests, for example, Section 3.2 observed that prefetching directly into
the target cache of a processor may displace useful data and hence cause repeated
requests for the same data. The requester must ensure that this scenario does not
occur.
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3.3.2 Arbiter

The arbiter is a many-to-one component which is responsible for scheduling re-
quests from the requesters C, and relaying them to the next component in the
chain in a fair and predictable manner. While forwarding these requests “up”
through the arbiter, the arbiter must not modify the request in any way, except to
tag each request with the requester ID r ∈ C so that a response can be routed to
the correct requester.

The arbiter must also support routing responses back “down” through the ar-
biter, from the memory controller (or prefetcher), back down to the requesters
again. Any responses being routed in this manner must be tagged with the desti-
nation requester r ∈ C. The requester indices must maintain the same mapping in
both directions (i.e. a a request from index x and a response to index x must refer
to the same requester).

How a request is routed from the requesters to the next stage is irrelevant to this
system model, however, there are a few constraints. It must be possible to ascertain
a worst-case bound on the time taken to cross “up” the arbiter for a given requester,
t
arb↑
wc (r). This worst-case must only depend on the requester index, and must not

depend upon any other details of the request. In order to optimise throughput,
the arbiter may accept multiple pipelined requests from any given input, and be
able to provide the worst-case time between two requests being accepted δarb(r),
this creates two constraints on the times at which a given request is accepted by
the arbiter, tarb↑a (ωr

n) and dispatched from the top of the arbiter tarb↑d (ωr
n):

∀r ∈ C,∀ωr
n ∈W(r) : tarb↑d (ωr

n) − t
arb↑
a (ωr

n) 6 t
arb↑
wc (r) (3.2)

∀r ∈ C,∀ωr
n,ωr

k ∈W(r) : k > n =⇒ tarb↑a (ωr
k) > t

arb↑
a (ωr

n) + δ
arb(r) (3.3)

The time taken to route a packet downwards, tarb↓wc (r) should also be bounded
for each requester. Since the “down” path back to the requesters has only a single
logical master, there should be no contention for responses. For this reason, all
responses should be delivered in a constant time, and not depend upon the current
system load or access pattern, but may change based upon the requester index.

As a simplification for later stages of the system model, both the arbiter and
the set of all requesters can be treated as a single master which issues a superset
of all transactions from all requesters. This superset W∗ is therefore the set of all
requests from all requesters such that ∀ωr

n ∈W∗ : ωr
n ∈W(r).
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3.3.3 Memory & Memory Controller

As described in Section 2.2, DRAM is unpredictable, but generally used where a
large memory is required because of its high density and low cost. While some of
this unpredictability is caused by potential speedups (e.g. subsequent accesses to
an already open row are faster than the first request which opened the row) and
can hence be avoided (e.g. by always closing the row after every request), some of
it is inherent to DRAM (e.g. the need for refresh cycles, read-to-write switching
and vice versa) and cannot be side-stepped by simply returning to a known state
between two transactions.

The memory controller is the unit which is actually responsible for scheduling
these commands onto the physical DRAM chips. The memory controller must
decide when to open and close DRAM rows, when to issue DRAM refresh cycles
and so on. Because of the tight coupling required between the memory controller
and the memory itself, this system model treats the two as a single functional unit.

The memory controller must respond to two types of request, reads and writes,
each for an address A ∈ A. This address space A must be identical for all re-
questers and for both reads and writes. There is no concept of “virtual memory”,
and all addresses are physical. Each address A corresponds to a location of mem-
ory which stores B bytes of data, where no two addresses should correspond to
the same memory location (i.e. there is no address aliasing). When the memory
controller receives a read request for location A, it should respond to the respective
requester with the B bytes of data stored at location A. Similarly, on a write, the
memory controller must take the B bytes of data stored within the request, and
commit them to location A. For a write request, the requester may also provide a
“byte-enable” to write a subset of bytes to prevent having to read the data before
modification. After writing, the memory controller must respond with a “write
acknowledge” response.

In order to be used within a real-time system, the memory controller must yield
these responses within a given period of time, denoted as tmem

wc . As with all other
units in the system, this time must not depend upon any of the parameters of the
request itself, it must be a single time to cover the worst-case of all requests. The
memory controller may pipeline requests if required, with an inter-request time
of δmem, but must not reorder its requests in any way1. Given that the arrival

1 Given that some memory modules contain many distinct banks of memory, some controllers may re-
order transactions to optimise throughput by scheduling two requests which target different banks
at the same time, even if there are other requests between them. Other controllers also reorder
transactions if there are many requests targetting the same row to reduce the delay associated with
precharging the memory and opening the same row. Such behaviour is typically difficult to capture
in the system model, and again depends upon the set of requests which came before a given memory
access.
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time of a request, and dispatch time of a response are denoted by tmem
a (ωr

n) and
tmem
d (ωr

n), the following constraints hold:

∀ωr
n ∈W∗ : tmem

d (ωr
n) − t

mem
a (ωr

n) 6 t
mem
wc (3.4)

Thus all requests must complete by the given worst-case response time.

∀ωr
n,ωq

k ∈W∗ : tmem
a (ωr

n) > t
mem
a (ωq

k) =⇒ tmem
a (ωr

n) > t
mem
a (ωq

k)+ δ
mem

(3.5)

Thus all requests have a minimum separation of δmem cycles.

∀ωr
n,ωq

k ∈W∗ : tmem
a (ωr

n) > t
mem
a (ωq

k) =⇒ tmem
d (ωr

n) > t
mem
d (ωq

k) (3.6)

Thus responses must be delivered in the same order which the requests arrived.

3.3.4 Prefetcher

The prefetcher is the unit under investigation which sits between the arbiter and
the memory controller. Its purpose is to observe the set of all requests from the
arbiter, attempt to ascertain a correlation of the addresses being fetched and if one
can be found, speculatively issue an access along the same pattern.

Upon receiving a read request, the prefetcher may update some of its internal
state, but must allow the packet to transit the prefetcher without any modification.
Optionally, after receiving this read request, the prefetcher may also emit a prefetch
based upon its internal state. Upon receiving a write request, the prefetcher must
simply allow the request to transit the prefetcher without modification. Because
there is no requirement that data must be read before writing in this model, the
prefetcher need not act upon write requests, since if the requester is reading before
writing, the stream will be correlated from the reads, and if the requester is only
writing then initiating a prefetch based upon the writes will only deliver data to
the requester which it will never read.

As with all other modules in the system, the prefetcher must operate in a pre-
dictable manner in order to operate within a real-time system. As previously, the
arrival time of a request at the prefetcher and the time at which the request is
issued from the prefetcher to the memory controller is denoted with t

pf↑
a (ωr

n)

and tpf↑d (ωr
n), respectively. Moreover, the time to transit the prefetcher must be

bounded and is represented with tpf↑wc . As with all other modules, the timing of the
“down” path back from the memory controller to the arbiter must also be bounded
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and have no blocking, and is represented with tpf↓wc , where the arrival time from
the memory controller and the dispatch time to the arbiter are represented with
t
pf↓
a (ωr

n) and tpf↓d (ωr
n). It holds therefore that

∀ωr
n ∈W∗ : tpf↑d (ωr

n) − t
pf↑
a (ωr

n) 6 t
pf↑
wc (3.7)

∀ωr
n ∈W∗ : tpf↓d (ωr

n) − t
pf↓
a (ωr

n) = t
pf↓
wc (3.8)

There is also an exception to the “the prefetcher must not modify packets” rule.
The prefetcher may coalesce a read request with an outstanding prefetch if the two
are for the same address and for the same requester. Because the response time
of memory is known and bounded, this still works within the realm of a real-time
system, the intuition of which will be explained in Section 3.3.5. This mechanism
allows an outstanding prefetch to satisfy the read request, hence alleviating some
of the latency of the read request.

3.3.5 Discussion

Currently, this section has provided the intuition that each component within the
system must have worst-case bounds, but has ignored the system as a whole. The
first stipulation on the system as a whole is that there must not be any buffers in-
between two functional units; when a request leaves one unit, it must be accepted
by the next in the same cycle. It thus follows that:

∀r ∈ C,∀ωr
n ∈W(r) : td(ω

r
n) = t

arb↑
a (ωr

n)

∧t
arb↑
d (ωr

n) = t
pf↑
a (ωr

n)

∧t
pf↑
d (ωr

n) = t
mem
a (ωr

n)

∧tmem
d (ωr

n) = t
pf↓
a (ωr

n)

∧t
pf↓
d (ωr

n) = t
arb↓
a (ωr

n)

∧t
arb↓
d (ωr

n) = ta(ω
r
n)

(3.9)

The relationships between these timing characteristics can be seen graphically
in Figure 3.6. This timing diagram lists each functional unit in both directions
(hence Arbiter ↑ denotes the request is currently “in” the arbiter, transiting towards
memory) and shows how a request moves through these units in the worst-case,
and within what time periods. Each time interval listed above the timing diagram
(e.g. t

arb↑
wc ) denote the worst-case timing bounds for a request to transit each
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Figure 3.6: Timing diagram showing the time taken for a request ω1 to cross each func-
tional unit in the system.

functional unit, and each time instant listed below the diagram (e.g. td) denote the
times at which the packet arrives at or is dispatched from each functional unit.

Requester ↑ ω1 ω2

Arbiter ↑ ω1 ω1,ω2 ω2

Prefetcher ↑ ω1 ω1,ω2 ω2

Memory ω1 ω1,ω2

δarb δmem

1 2 3 4 5 6

Figure 3.7: The relationships between the inter-request times (e.g. δmem) for two requests,
ω1 and ω2 from the same requester.

Figure 3.7 also shows how the definitions of the “inter-request” times (i.e. δx)
influence how requests are relayed through the system, and shows example worst-
case figures for the inter-request times (note that this does not demonstate the
worst-case crossing times txwc). This diagram shows two requests, ω1 and ω2

as they transit from the single requester to memory, a process which operates as
follows:

1. ω1 is accepted by the arbiter, and at the same instant the requester attempts
to issue another access ω2.

2. After a period of δarb cycles (in the worst-case), the arbiter is now able to
accept another request from the requester, ω2. Note that the arbiter is still
handling request ω1 at this point.

3. The arbiter now relays ω1 on to the prefetcher, and is still currently process-
ing ω2.
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4. In this contrived example, ω2 did not experience as much blocking as ω1

and hence emerges from the arbiter and in to the prefetcher. Note that the
prefetcher is still also processing ω1 at this point, but can pipeline both re-
quests.

5. The prefetcher has completed processing ω1, and the memory controller has
space in its input queue and hence ω1 is relayed to the memory controller.

6. The prefetcher relays ω2 to the memory controller. The prefetcher may have
completed processing ω2 before this point, but may be blocked by up to
δmem cycles by the memory controller if the memory controller could not
accept ω2 in the meantime.

Requester1 ↑ ω1

Requester2 ↑ ω2

Arbiter ↑ ω1,ω2 ω2

Prefetcher ↑ ω1 ω2

Memory ω1 ω2

Prefetcher ↓ ω1 ω2

Arbiter ↓ ω1 ω2

Requester1 ↓ ω1

Requester2 ↓ ω2

tarbwc (1)

tarbwc (2)

1 2 3

Figure 3.8: Timing diagram showing two requests ω1 and ω2 dispatched from two differ-
ent requesters simultaneously.

Of course, the pipelining can be performed on requests from different requesters,
if required. Figure 3.8 shows two requests being initiated simultaneously from two
different requesters. The operation of this is similar to that in Figures 3.6 and 3.8,
but each requester has different worst-case timings to cross the arbiter. The key
points of this diagram are as follows:

1. Both ω1 and ω2 are accepted simultaneously by the arbiter on two separate
inputs. Both requests will then be processed by the arbiter in subsequent
cycles.

2. After a maximum of tarb↑wc (1), the request from requester 1, ω1 emerges
from the arbiter into the prefetcher. It is then processed by the rest of the
components in the system as before.
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3. After a maximum of tarb↑wc (2), requestω2 emerges from the arbiter and again,
is processed by the remainder of the components within the system.

For simplicity, both requests do not reside in the rest of the system’s functional
units (e.g. the prefetcher or the memory controller) at the same time in this di-
agram. This case is, of course, possible, whilst still observing the δarb and δpf

constraints.
Finally, the set of defined constraints combined with the relationships defined

between td(ωr
n) and ta(ωr

n) for each of the functional units within the system also
allows the worst-case response time to be ascertained when using any component
as a reference point. t̂xwc is used to denote the worst-case response time of a
request, from the point that it is dispatched from functional unit x to the point
that a response is received by the same unit. This is logically the worst case of
all functional units “above” the current functional unit. As an example, for the
prefetcher, t̂pfwc is defined as follows:

t̂pfwc =
x

max tpf↓a (ω) − tpf↑d (ω) = x (3.10)

Due to Equation (3.9), tpf↑d (ω) = tmem
a (ω) and t

pf↓
a (ω) = tmem

d (ω). Equa-
tion (3.4) then provides an upper bound on the difference between tmem

d (ω) and
tmem
a (ω) hence:

t̂pfwc = tmem
wc (3.11)

Intuitively, the following equations hold for the response time of the remainder
of the system:

t̂arbwc = t̂pfwc + t
pf↑
wc + tpf↓wc (3.12)

And that a worst-case for an entire memory request, t̂wc(ω
r
n) can be ascertained:

t̂wc(ω
r
n) = t̂

arb
wc + tarb↑wc (r) + tarb↓wc (r) (3.13)

This set of equations now allows us to express that the prefetch coalescing sys-
tem presented within Section 3.3.4 will not harm the worst-case. This mechanism
allows an outstanding prefetch to fulfil a read request, assuming that both the
prefetch and the demand access are for the same address and for the same re-
quester. Assuming the prefetch is ωr

pf and the demand access ωr
n, the assumption
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is that the prefetch was initiated before the respective demand access would have
left the prefetcher, hence:

t
pf↑
d (ωr

pf) < t
pf↑
d (ωr

n)

Logically, these requests would complete after t̂pfwc cycles in the worst-case,
hence tpf↓a (ωr

pf) = t
pf↑
d (ωr

pf) + t̂
pf
wc, and similar for ωr

n. Because t̂pfwc is constant,
it hence follows that tpf↓a (ωr

pf) < t
pf↓
a (ωr

n) and because the time taken to tran-
sit “down” the prefetcher, tpf↓wc is constant, it hence follows that the prefetch will
always complete before the respective demand miss would have.

Of course, while this section shows that the prefetcher will not cause a detriment
to the worst-case response time of a memory access twc(ω), it completely ignores
that the prefetcher must be able to initiate memory requests of its own in order to
be useful. At the moment however, this is almost impossible to fit into the model.

The arbiter currently assumes that the worst-case time between a request leaving
the arbiter and a response arriving, t̂arbwc is simply based upon the time to transit
the prefetcher and the latency of the memory controller. If the prefetcher issues
memory requests of its own, these will have an impact on the definition of t̂arbwc as
the arbiter must now wait for a potential prefetch to complete before its request
will be admitted. As there is no model of how the prefetcher is currently operating,
this is currently impossible. The model of the prefetcher could be changed such
that it can only issue a prefetch in response to a memory request arriving, but this
simply causes the worst-case delay imposed by the prefetcher tpf↑wc to also include
another memory transaction. In effect, this causes the worst-case response time of
a memory transaction to double, which is clearly unacceptable.

In order to prove the hypothesis that it is possible to use a prefetcher “safely”
within a real-time system, it must be possible to integrate the prefetcher in such a
way that the worst-case delay caused by the prefetcher does not increase. In order
to do so, this will require that the behaviour of the prefetcher is better defined and
importantly, integrated with the rest of the components within the system in order
to ensure its safety.

These ideas will now be explored further throughout the remainder of this thesis.
Chapter 4 will flesh out the model presented within Section 3.3 with a “standard”
prefetch approach in order to investigate the impact of the prefetcher on the worst-
case execution time of a real-time system. Chapter 5 will then take these results,
and propose modifications to the model to create a feedback system under which
a prefetcher can be safely integrated into a real-time system, before also demon-
strating this safety with a hardware implementation. Finally, Chapter 6 will build
on this system to provide a framework by which the worst-case execution time of
a task can be improved through the inclusion of a prefetcher, and Chapter 7 will
sum up the contributions and provide potential future research avenues.
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4 R E A L-T I M E P R E F E TC H I N G O N
M U LT I C O R E

4.1 introduction

As explored within Section 2.4.3, there is already some work investigating the
effects of prefetching on multi-core systems. While some of this work has explored
the effects of prefetching on bus utilisation [81, 80], none have really explored the
impact of varying numbers of cores prefetching on both the bus utilisations and
execution times of tasks. Moreover, no work has yet investigated the effects of
prefetching on a system with real-time requirements. Some work has investigated
the problems with prefetching within a bandwidth-partitioned system [83], but
this work only really provided a basic metric to determine whether a prefetcher
should be used within a partition or not.

Chapter 3 outlines how prefetching is potentially a valuable strategy to mask the
rising worst-case access costs for memory accesses within real-time systems. As
discussed towards the end of Section 3.3.5, however, there is a critical flaw with
current prefetchers; they are not built in an analysable way and hence it is currently
impossible to predict what a prefetcher will actually prefetch and when.

In order to provide motivation behind this work, this chapter will investigate
the actual performance impact which a prefetcher will have on a real-time system.
To do so, it will first provide a hardware realisation of the system model defined
within Section 3.3 and, using this system, execute a number of tasks on it to inves-
tigate how a prefetcher can cause an improvement or detriment to the execution
time of these tasks. This will then provide the intuition behind the subsequent
chapters of this thesis which will use the results of this work to propose modifica-
tions to the system model in order to perform “safe” prefetching within a real-time
system.

4.2 system architecture

Firstly, a realisation of the system model defined in Section 3.3 must be constructed
in order to allow experiments to be carried out to evaluate the impact of prefetch-
ing on a “standard” system. In order to support the flexibility to quickly modify
the behaviour of the system components (i.e. the processors and the prefetcher)
while still allowing the fast turnaround of experiments, the experimental system
was created on a Xilinx VC709 FPGA board [91]. This board contains a large
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Virtex 7 FPGA along with 8GB of DDR3 memory, of which 2GB is used by the ex-
perimental platform. The remainder of this section will detail the construction of
the components used in this evaluation platform, along with any pre-built FPGA
IP (e.g. processors and memory controllers) that they use.

4.2.1 Arbitration Scheme

Because this work concerns itself with many-core real-time systems, there are a
few design considerations which must be taken into account when designing the
memory interconnect. The interconnect itself must firstly be able to scale to a large
number of requesters, and present some path for future scaling. As also stated
within Section 3.3.2, the arbiter must also provide access to shared memory in a
fair and composable way.

The first of these considerations necessitates a move towards a distributed arbi-
tration scheme as large, monolithic arbiters simply cannot scale to the number
of requesters in modern real-time systems while still operating at a fast clock
speed [12]. As mentioned in Section 2.3.3, as monolithic arbiters increase in size,
their maximum clock frequency significantly decreases. The very nature of dis-
tributed schemes instead allow them to scale much larger with virtually no de-
crease to their clock frequency.

The tradeoff of using a distributed approach is a slightly longer WCET due
to the increased number of pipeline stages that a memory transaction must cross,
although the extra few cycles are insignificant compared with the delay imposed by
the memory controller. To hide some of this additional delay, it may be possible to
pipeline memory requests, hence masking some of the apparent latency of crossing
the memory controller.

The pros and cons of many of these distributed arbitration schemes are explored
within Section 2.3.2. To be compatible with the system model, there are a few
characteristics which are required of the arbitration scheme:

• The arbiter must tag each request with the requester index from which it
originated.

• The arbiter must support routing of a response back to the respective re-
quester based upon the requester index.

• The worst-case delay for crossing “up” the arbiter, tarb↑wc (r) must be known
and bounded for a given requester r ∈ C.

• The delay for crossing “down” the arbiter, tarb↓wc (r) must be known and fixed
for a given requester r ∈ C.

• The delay between two requests for a given requester r ∈ C being accepted
by the arbiter, δarb(r) must be known and bounded.
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Of the approaches explored within Section 2.3.2, Distributed TDM [10] can be
discounted immediately. Distributed TDM operates by arbitrating each requester
at their input to the arbiter and effectively replicates a 1-input TDM scheduler for
each requester. Because there can only be one request in-flight per active period,
the arbiter does not need to tag each request with the requester index, and broad-
casts each response. Each requester can then ascertain whether the response was
destined for them simply if they were scheduled in that period. This means that
any components “after” the arbiter (i.e. the prefetcher and memory controller)
cannot ascertain which requester a request originated from, and the arbiter does
not support sporadically pushing data to a specific requester.

Both GSMT [12] and Bluetree [60, 61] tag requests with their originators and
hence support routing responses back to a specific requester. Moreover, they have
bounded “up” times and constant “down” times, and make it possible to deter-
mine the worst-case inter-request time δarb. Both techniques also allow for work
conservation and can fully utilise main memory; Bluetree routes based on back-
pressure, and by setting the scheduling interval equal to the response time of
memory, GSMT can ensure there is always a packet waiting on the input the mem-
ory controller on the cycle where it can accept a new packet.

The differentiating factor here is simply a question of scalability. As GSMT as-
sumes that all packets are transmitted in the same instant, each multiplexer need
only examine both inputs and pick the one with the highest priority. If one of these
packets is a cycle late, the multiplexer will relay both in subsequent cycles, as they
both are the “highest-priority” packet in their respective cycles, which may then
lead to a packet being lost if the memory controller cannot accept it. As the tree
grows larger, the power utilisation and skew inherent with large clock networks
may necessitate a move towards a globally asynchronous, locally synchronous ar-
chitecture [92] across the memory tree, which GSMT cannot support. Instead, Blue-
tree makes its scheduling decisions at each multiplexer and relies upon backpres-
sure to decide when the memory controller can accept a new packet. Because of
this, it is possible to place entire sub-trees within their own clock domain safely. Be-
cause of the attractive avenues for future scaling, Bluetree was chosen over GSMT
within this work.

Bluetree is made up of a set of 2-into-1 multiplexers, as can be seen within Fig-
ure 4.1. An internal block diagram of these multiplexers can be found in Figure 4.2:
they comprise of a single input buffer on each side, and an output link to the next
stage with flow control. On every cycle in which a packet can be relayed up to
the next level (i.e. the next buffer is empty), the multiplexer will pick one of the
requests from the input buffers (using the arbiter), then relay this request up to the
next stage.

The “down” path from memory back to the requesters is implemented using a
single buffer. On each cycle, without flow control, the packet in the “down” buffer
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Figure 4.1: Example Bluetree structure for an 8-core system.
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Figure 4.2: Internal block diagram of a Bluetree multiplexer.

is relayed back to the requester which initiated it. In order to prevent stalling the
memory controller, the downwards path is defined to be non-blocking; the buffers
are only utilised in order to split the critical path and to create a pipeline in order
to allow Bluetree to be scalable.

The packet format which is used internally by Bluetree can be found in Fig-
ure 4.3, which is used by the requesters in the tree when initiating a request. Re-
turned data follows much the same format, but without the byte enable, priority
or size. The usage of each field is listed below:

type: The message type (i.e. read, write, write ack etc).
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4 bit4 bit 8 bit28 bit16 bit128 bit 8 bit 4 bit
SizePriorityCPU IDTask IDAddressBENDataType

Figure 4.3: Bluetree Client Packet Format.

data: Sixteen bytes of read or write data. The size of this field corresponds with
the cache line size of the target cache, and the size of a DRAM request when
Burst Chop1 mode is used.

ben: Byte enable for a write transaction. Each bit in this field corresponds to a
byte in the Data field, and hence allows a requester to write only a subset of
the sixteen bytes to memory.

address: The address to read or write from, aligned to a 16-byte boundary.
Reads and writes are assumed to operate in a 32-bit address space, of which
the least significant four bits will always be zero and are hence omitted.

task id: Field to encode additional data which is returned with the response.
Currently unused and exists for future expansion.

cpu id: The ID of the requesting CPU. This is filled in by each multiplexer on the
upwards path (by shifting in a 0 or a 1 for the left and right directions, respec-
tively), and used by the multiplexers on the downwards path to determine
where to route the packet.

priority: Field to encode a priority which may be used by the multiplexers or
memory controller. Currently unused and exists for future expansion.

size: Number of additional lines to read from memory. Used to initiate a burst
transaction. Since the system model requires that each access is for a maxi-
mum of sixteen bytes, this field should be set to zero.

As an example, a standard memory read transaction will begin by the processor
creating one of these packets of type read, with the Data and BEN fields left as zero.
The Address field is then filled in with the address of the data to fetch, and all other
fields set to zero. As the packet crosses the multiplexers on the way to the memory
controller, each multiplexer will shift the CPU ID field left once, then set the least
significant bit appropriately. When the packet reaches the memory controller, the
controller will issue a request for memory address Address, then create a response
packet of type read, with the same address, CPU ID and Task ID as the request, then
relay it back down the tree. Each multiplexer then inspects the least significant bit

1 DDR3 memory has a fixed burst size of 8 words since DDR3 transfers eight words per cycle. Burst
chop mode discards half of this data for applications which do not require the full set of data or to
maintain compatibility with DDR2 memories.
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of the CPU ID field, shifts it right once, and routes the packet appropriately. The
returned data can then be used by the target processor.

A write packet then works in an identical fashion, but with the type set to write
and the Data and BEN fields set appropriately. The data blocks specified by the
BEN are then written to the specified address, and a write acknowledge packet re-
turned in the same manner as a read, but with no data.

These examples only concern themselves with a single request. If there is a
pending request at both inputs to the multiplexer, the multiplexer must decide
which to relay. This is done using a simple, composable arbitration scheme. Each
multiplexer uses an implicit static priority scheme which, simply by convention,
favours the request waiting at the left-hand side of the multiplexer. In order to pro-
vide fair and composable arbitration, each multiplexer also contains a “blocking
counter” which encodes how many high-priority requests have been given service
while there has been a low-priority request waiting. Whenever a high-priority
packet is relayed and there is a low-priority packet waiting, this counter is incre-
mented. When this counter reaches a pre-defined value m, the priority ordering
is inverted for a single request, allowing the low-priority request to take prece-
dence. Whenever a low-priority request is relayed, this counter is reset back to
zero. As an example, if this counter is set as m = 3, then a low-priority packet can
be blocked by three high-priority ones. In the worst case, a high-priority packet
may be blocked by a single low-priority request, assuming that there were three
requests ahead of it.

Requester1 ω1 ω2 ω3 ω4

Requester2 ωA

Input1 ω1 ω2 ω3 ω4

Input2 ωA

Output ω1 ω2 ω3 ωA ω4

Blocking Ctr 0 1 2 3 0 1

1 2 3 4

Figure 4.4: A timing diagram to show the blocking behaviour of a Bluetree multiplexer for
two inputs. Numbered packets (i.e. ω1) are from requester 1, lettered packets
(i.e. ωA) are from requester 2. This assumes a blocking factor m = 3.

A graphical view of this can be found in Figure 4.4. This shows the requests
from two requesters transiting the multiplexer. Each stage can be broken down as
follows:

1. Both requesters make a request, ω1 and ωA, both of which are accepted into
the multiplexer and copied into the multiplexer’s input buffers.

2. The request pending at input 1, ω1, is relayed across the multiplexer and
available at the output. Because this was the “high priority” side, the block-
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ing counter is incremented. The multiplexer also accepts the next request
from requester 1, ω2. This process repeats for the next two requests (ω2 and
ω3).

3. The blocking counter is equal to the blocking factor (m = 3). Because of
this, the request at the low-priority input (ωA) is given service, blocking the
request at the high-priority input (ω4). The blocking counter is then reset to
zero.

4. The blocking counter is now no longer equal to the blocking factor, hence the
high-priority side is given service again, as in step 2.

These multiplexers are then chained together into a tree in order to allow the
requesters to communicate with the memory controller. In order to be predictable
though, it must be possible to derive a set of values for the constraints tarb↑wc (ωr

n),
t
arb↓
wc (ωr

n) and δarb(r), as required from the system model presented within Sec-
tion 3.3. The derivation of these terms is presented throughout the remainder of
this section.

This analysis takes the form of two parts; firstly, the timing behaviour for a
single multiplexer and a given blocking factor m is presented in isolation. This
derivation will then be extended further to analyse a set of multiplexers in a tree
for a given depth.

Single Multiplexer

Recall that Bluetree uses a blocking factor, m to determine how many high-priority
requests can be transmitted across the multiplexer before a low-priority request can
instead be given service. For simplicity, however, this blocking factor has been re-
defined to encode the multiplexer’s “cycle length”, that is, a low-priority request
can be blocked by m − 1 high-priority requests, then a low-priority request can
take service. This does not negatively affect the analysis of Bluetree, it merely
simplifies the following sets of equations.

For this reason, the maximum number of times a request ω can be blocked on
the way up the tree, Bup(ω) is simple to define, and is presented in Equation (4.1).

Bup(ω) =

1 High Priority Input

m− 1 Low Priority Input
(4.1)

That is, a request on the high-priority input can be blocked by a single low-
priority request in the worst case, and a request on the low-priority input can be
blocked by m− 1 high-priority packets. It is now possible to ascertain the worst-
case timing for a memory request transiting up the tree to transit the multiplexer
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using Equation (4.2). For the system model described within Chapter 3, each com-
ponent above the arbiter is scheduled based upon back-pressure from the memory
controller. Because the memory controller can accept a request every δmem cycles,
it hence follows that a request can emerge from the top of the arbiter every δmem

cycles in the worst-case, hence:

tarb↑wc (ω) = (Bup(ω) + 1)× δmem (4.2)

This worst-case situation will occur when a requester has just had a request
transit the tree, hence the +1, and will definitely have its next request blocked.
For a high-priority requester, this situation occurs when it has just issued m− 1

requests in quick succession, and occurs whenever a request has been accepted for
a low-priority requester.

After transiting the multiplexer, the request must then be serviced by all the com-
ponents “above” the arbiter, like the prefetcher and memory controller, consuming
t̂arbwc cycles, then transit back down the tree again (consuming tarb↓wc cycles). Be-
cause Bluetree is defined to be non-blocking on the downwards path though, this
t
arb↓
wc is only a single cycle. The final timing behaviour for a single multiplexer is

hence presented in Equation (4.3).

tmux
wc (ω) = tarb↑up (ω) + t̂arbwc + tarb↓wc (ω) (4.3)

Multiple Multiplexers

As a set of multiplexers is combined into a large tree, the timing analysis is made
more complicated by the fact that an upstream multiplexer (i.e. one closer to the
memory controller) can now block multiplexers underneath it. When blocked by
the upstream multiplexers, the blocking counters of a downstream multiplexer are
not updated at all, since no packets are transiting it. In effect, this causes entire
sub-trees to be stalled.

The worst-case blocking conditions are hence when all multiplexers are blocked
on the path to memory. This causes packets at the bottom of the tree to experience
a huge amount of blocking before being able to transit even the first level of the
tree. As an example, even for the highest priority requester, if all multiplexers
above it are giving service to the low-priority side, then it will be blocked once
due to the root of the tree, then due to the next level, and so on. Depending
upon the configuration of the tree, the blocking counter for the root multiplexer
may even give priority to the low-priority side again before the packet has even
transited the first level of the tree.
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This blocking pattern makes it difficult to derive a single equation to model the
behaviour of the tree. Instead, three piecewise functions are defined to model
the behaviour of each multiplexer. Moreover, to simplify these equations, each
“block” is assumed to only be of a single cycle, and is then later multiplied by
δmem in order to derive a final value. Finally, the concept of a “priority path”,
P is introduced, which encodes the path from the bottom of the tree to the root
which a packet transits. As an example, if P = {H}, a requester is connected
to a single multiplexer on the high-priority side. P = {H,L,L} defines a system
where a requester is connected to the low-priority side of one multiplexer, which
is connected to the low-priority side of another, which is finally connected to the
high-priority side of the root multiplexer. Finally, P(l) : l >= 0 defines the priority
level at level l, where l = 0 is a packet which is above the root multiplexer, l = 1 is
entering the root multiplexer and l = n is the lowest level of the tree.

The three functions are as follows:

• CP
l (t): The current internal cycle for the multiplexer at level l is relation to

the current global time t, given a priority path P.

• BP
l (t): Specifies whether the input to the multiplexer at level l given a priority

path P will be blocked at time t.

• B̂P
l (t): Specifies whether a multiplexer at level l will be blocked by those

multiplexers above it at time t, given a priority path P.

And are defined as follows:

CP
l (t) =


0 t = 0

CP
l (t− 1) B̂P

l (t− 1)

CP
l (t− 1) + 1 !B̂P

l (t− 1)

(4.4)

BP
l =



True CP
lmod m = 0∧ P(l) = L

False CP
lmod m = 0∧ P(l) = R

False CP
lmod m 6= 0∧ P(l) = L

True CP
lmod m 6= 0∧ P(l) = R

(4.5)

B̂P
l (t) =


False l = 1

True BP
l−1(t)

B̂P
l−1(t) !BP

l−1(t)

(4.6)
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Equation (4.4) dictates the “internal cycle” of the multiplexer. This is a logical
counter which is advanced whenever the multiplexer is not blocked by any multi-
plexer above it. Since each memory access is assumed to be a single cycle for now,
this effectively records the blocking counter for that multiplexer, taking upstream
blocking into account. Equation (4.5) then uses this definition to decide whether a
packet being relayed from a client with a given priority path will be given service
in any given cycle. Finally, Equation (4.6) dictates whether a multiplexer at level
l will be blocked by an upstream multiplexer in a given cycle. Of course, the top
level multiplexer will never be blocked by anything above it (hence the l = 1 case),
and otherwise it will be blocked if the above multiplexer is currently blocked.

This worst-case blocking can then be ascertained by using the B̂P(t) function. A
function LPl (t) can be defined which computes how far a packet, created at level l
has travelled at time t for a given priority path P.

LPl (t) =


l t = 0

LPl (t− 1) BP
Ll(t−1)(t)

LPl (t− 1) − 1 !BP
Ll(t−1)(t)

(4.7)

That is, a packet begins at level l and can only progress up the tree if the current
multiplexer is not blocked in that cycle. The worst-case blocking time, tarb↑wc is
then:

tarb↑wc (ω) = δmem ×
∞

min
t=0

t : LPl (t) = 0 (4.8)

Proc. Index 0 1 2 3 4 5 6 7
m = 2 30 30 30 30 30 30 30 30

m = 3 15 18 24 32 29 33 47 60

m = 4 11 16 26 39 28 44 71 114

m = 5 10 17 27 50 33 58 102 195

Proc. Index 8 9 10 11 12 13 14 15
m = 2 30 30 30 30 30 30 30 30

m = 3 30 36 48 63 57 66 93 120

m = 4 32 48 76 116 84 132 212 340

m = 5 40 65 105 200 130 230 405 780

Table 4.1: Worst-Case blocking across a 16-core tree, measured in number of blocks.

Which finds the lowest value of t such that the memory request has just been
emitted from the root multiplexer. Example blocking figures can be found in Ta-
ble 4.1. Because it has been previously assumed that each memory request was a
single cycle, it is hence multiplied by δmem to derive the actual number of cycles
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for which it is blocked. Finally, since the downwards path on Bluetree is defined
to be non-blocking, tarb↓wc is simply as follows:

tarb↓wc (ω) = l (4.9)

These values can then be substituted into Equation 4.3, and hence the worst-case
response time for a memory transaction is as follows:

twc(ω) = (δmem ×
∞

min
t=0

t : LPl (t) = 0) + t
mem
wc + l (4.10)

4.2.2 Requesters

There are two different types of requesters which are used while evaluating the
behaviour of the prefetcher in this system. Firstly, standard processors are used
to ascertain the average-case behaviour of the prefetcher when used with the com-
posable memory tree. Afterwards, a set of hardware traffic generators are used
to emulate the worst-case conditions on the tree such that prefetcher evaluations
under worst-case conditions can be investigated. The details of each of these are
provided below.

Processors

To be evaluated within a real-time context, it must be possible to construct a model
of a processor which defines the timing behaviour of the processor in the worst-
case. Given such a model, a given task can then be evaluated against the worst-case
processor model to ascertain the worst-case behaviour for the task when run on
said processor. Because tasks running on a processor require access to shared
memory, the processor model can then be combined with a worst-case model of
the memory system, then the combined model can be used to bound the execution
time of a section of code. In addition, it also should be possible to extend the
processors themselves to perform any architectural changes which are required to
implement the prefetcher.

Xilinx’s Microblaze [88] processors were hence chosen for this purpose. This is
a reasonably simple processor for which the latencies of each instruction are well
defined and which does not contain any complex features such as out-of-order ex-
ecution or superscalar pipelines. These characteristics allow a reasonably simple
model of the processor to be constructed such that static analysis can be performed.
In addition, while these processors do support features which are typically unpre-
dictable (such as a branch predictor), the processor can be configured to disable
them at design time. For future expansion, it uses a low-overhead, simple and
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well defined bus to connect the processor to memory, hence custom caches can be
easily connected without any significant performance overhead.

In order to fit the model defined in Section 3.3 a custom cache has been attached
to the processor which allows data to be pushed in from an external source. If
a prefetch response is delivered into the cache, the cache is updated to store the
returned data into its internal storage such that it can be requested by the processor.
In order for prefetch hit feedback to be supported (so that the cache can notify the
prefetcher of a “useful” prefetch), each cache line also contains a flag to record
whether the data stored in that line is the result of a prefetch, which is set when a
prefetch is stored into the respective line and cleared when the data from a demand
read is stored.

When the processor issues a read request to the cache, the cache first checks
whether the data corresponding to the address is already resident. If so, it imme-
diately responds with the relevant data. If the requested data line is tagged as
“prefetched”, the cache also initiates a “prefetch hit” request and issues it to the
arbiter, clearing the “prefetched” line in the process to prevent multiple hit packets
being issued for a single line of data. If the data is not already resident in cache,
the cache will issue a read request for the accessed address to the arbiter and block
until a response has been delivered. This must be responded to with a single read
response; if spurious read responses are received, the cache may yield undefined
behaviour.

Upon receipt of a write request, the cache will again check if the address to
be written is already resident in cache. If so, it is updated with the data to be
written, and the “prefetched” flag cleared (if set). Regardless of whether the data
was resident in cache, the write request is forwarded to the arbiter (i.e. it is a
write-thru cache) and the cache again blocks until the write acknowledge response
is received.

Traffic Generators

Referring back to Section 2.1, in order to determine the worst-case execution time
for a task analytically, the system must have been able to observe the worst-case
conditions of the system. As many processors place limits on the number of si-
multaneous transactions which may take place at once (i.e. the processors in use
can only issue a single read and single write with no reordering), processors are
unsuitable at simulating the worst-case tree conditions.

Instead, hardware traffic generators are used in order to simulate these worst-
case conditions. These are implemented as simple tree clients which simply issue
a new read request on every single cycle for which their output queue is empty.
In order to prevent the memory controller from being able to simply keep the
same DRAM row open to satisfy most requests, the traffic generators read from
sequential memory locations.
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By fetching from sequential memory locations like this, the traffic generators
will also exercise the worst-case conditions of the prefetcher. Because only a sim-
ple stream prefetcher is used for these experiments, the system can be easily con-
figured to prefetch for the traffic generators by making the traffic generators fetch
sequential memory locations, or configured to not prefetch for the traffic genera-
tors by using a longer stride (i.e. every other memory location).

The traffic generators consume all incoming data regardless of the message type,
but simply throw it away. The traffic generators also do not wait for a response
before sending the next memory request, they request as fast as possible. By doing
this, this ensures that all buffers between each traffic generator and the memory
controller remain as full as possible. Moreover, it will cause the “blocking counters”
in the multiplexers to always operate as if the tree was at full utilisation, and hence
will cause the worst-case blocking across the memory tree.

4.2.3 Prefetcher

In order to be utilised within a real-time system, the prefetcher itself should be
predictable. As discussed within Section 3.3.4 however, the current system model
does not provide a rigorous definition over what the prefetcher should fetch and
when. No current prefetchers from Section 2.4 do define such a model of prefetch
however, and as such these problems are explored further within Chapters 5 and 6

in order to create a “real-time” prefetcher.
To simply evaluate the effects which a prefetcher can have in the worst-case,

a simple 1-lookahead stream prefetcher was used. The rationale for using such a
simple design is that this can capture many of the patterns for tasks used within the
evaluation; code is inherently streaming and many benchmarks operate over serial
data. It is also trivially possible to construct the pathologically worst and best cases
for evaluation; the best case comes when a task accesses perfectly sequential data,
and the worst when it accesses enough “serial” data in a row for the prefetcher to
begin issuing, then moves to another address and starts again.

Of course, other prefetching schemes may give better results, although may not
be able to fit into the system model or are overly complex. Stride prefetching,
for example, can detect the stride of accesses, but requires knowledge of the pro-
gram counter when a load instruction is issued, hence is unsuitable for a memory-
side prefetcher where this information is not available. Markov prefetching re-
quires huge tables for its storage which will consume what fast storage is already
available. Approaches which require knowledge of the program flow typically
utilise annotations stored in memory, hence further compound the memory access
penalty and may cause even more blocking to occur while these annotations are
being fetched from memory.
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Figure 4.5: Block diagram of the internals of the prefetcher.

While the current system model does not make any assertions over what the
prefetcher will attempt to fetch, Section 3.3.4 does place requirements on the timing
behaviour of a normal memory request through the prefetcher and how prefetches
and memory accesses can be coalesced. These must be considered when construct-
ing the prefetcher, and worst-case timing figures provided for tpf↑wc and tpf↓wc . To
fit this model, a prefetcher design was created, a block diagram of which can be
found in Figure 4.5. Each block is explained in detail below:

bluetree: The Bluetree adaptor first takes all requests coming in from Bluetree
and splits them into two queues: the demand queue for standard memory
accesses, and the hit queue for hit feedback.

demand queue: Stores standard memory accesses from the requesters on Blue-
tree.

hit queue: Stores hit feedback generated from the requesters from previous prefetches.

incoming squash filter: Inspects incoming memory requests to ascertain whether
they can be coaleasced with an outstanding prefetch. If so, the outstanding
prefetch table is updated and the memory request is discarded.

demand miss calculator: Inspects the stream buffers to determine whether the
current miss is part of a stream. If so, the stream entry is updated and a
prefetch dispatched for the “next” address. If not, the demand miss is used
to create a new entry in the stream buffers.

hit calculator: Does the same as the demand miss calculator, but inspects the
stream buffers based upon the hit notification. This block will never insert
a new stream entry if the hit notification does not correspond to an existing
stream.
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demand mem queue: Stores memory requests which are to be queued to go to
memory after they have been checked against the outstanding prefetch table
and forwarded to the demand miss calculator. This queue is then multi-
plexed with the prefetch queue with a static priority.

prefetch mem queue: Stores any pending prefetches generated by the demand
miss or hit calculators. When an item is popped from this queue, it is also
entered into the “outstanding prefetch table”.

outstanding prefetch table: Stores all outstanding prefetches, and is to be
used to ascertain whether a demand access can be coalesced with a prefetch.

outgoing squash filter: Only used for returned prefetches. The filter checks
the outstanding prefetch table for the current prefetch. If the prefetch is
marked as a “squash”, the prefetch is instead returned as a read. The line in
the outstanding prefetch table is then removed.

The prefetching scheme used is a simple stream prefetcher, hence it attempts
to correlate a stream on the pattern of A, A+ 1, A+ 2 etc. In order to do this, it
snoops all read requests before they are forwarded on to the memory controller
in order to ascertain when a streaming access is taking place, and also receives
“prefetch hit” requests from the requesters in order to carry on prefetching an
already established stream.

To do this, incoming requests are first filtered into one of two streams: a demand
queue for reads and writes, and a hit queue for any hit feedback from the proces-
sors. Read requests are then passed on to the incoming squash filter which checks
the outstanding prefetch table to check whether there is an outstanding prefetch
for the same address that is currently being requested. If so, the table is updated
to mark the prefetch as “coalesced” and the read request discarded in order to ful-
fil the requirement that the prefetcher should coalesce demand accesses and their
respective prefetches. If there is not an outstanding prefetch for the same address,
the request is forwarded to the demand queue and eventually issued to the mem-
ory controller. Write requests are issued through the same functional units, but are
ignored and simply forwarded on unmodified.

If the request cannot be coalesced, it also enters the demand miss calculator. This
component inspects the stream buffers to ascertain whether the demand request
is part of a stream (i.e. if address A− 1 has also been observed). If so, a prefetch
for address A + 1 is initiated, and the table updated to record address A + 1 as
the last observed. This prefetch is then multiplexed onto the output queue with a
configurable static priority. If not, a new table entry is added recording address
A as the last observed address in round-robin order. Pseudocode describing the
operation of the demand miss calculator can be found in Listing 4.1.

A graphical view of this can be found in Figure 4.6. A breakdown of the steps
is as follows:
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#define STREAM_BUFFERS 8
struct streamBufferEntry {

addr_t last_address;
bool valid;

};

streamBufferEntry streamBuffers[STREAM_BUFFERS] = {0};
int lastStreamBuffer = 0;

void pfMiss(req) {
// Search for the last address
int streamBufId = -1;
for(i = 0; i < STREAM_BUFFERS; i++) {

if(streamBuffers[i].valid &&
streamBuffers[i].last_address == req.address - 1) {
streamBufId = i;
break;

}
}

if(streamBufId != -1) { // Found a stream. Update and issue.
// Update stream buffers. The newly prefetched line is
// the ‘‘last observed’’ data
streamBuffers[streamBufId].address = req.address + 1;
issuePrefetch(req.address + 1);

}
else {

// Replace an entry with a new stream buffer
// Don’t increment here, we didn’t issue a prefetch
streamBuffers[lastStreamBuffer].last_address = req.address;
streamBuffers[lastStreamBuffer].valid = true;
lastStreamBuffer = (lastStreamBuffer + 1) % STREAM_BUFFERS;

}
} �

Listing 4.1: Pseudocode description of how the prefetcher handles a demand miss.

1. The request, ω1 enters the prefetcher and is stored in the demand access
queue.

2. The request then enters the incoming squash filter when it is checked against
the list of outstanding prefetches.

3. The request could not be coalesced, so it moves into both the demand miss
calculator, which attempts to correlate it to an existing stream, and into the
demand output queue.

4. The request is issued to the memory controller.

5. The demand calculator has finished processing. In this case, the access could
be correlated to an outstanding stream, so a prefetch is initiated.

6. The prefetch is then issued to the memory controller.
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Figure 4.6: Timing diagram showing a single request, ωhit, transiting the prefetcher. This
also causes a prefetch, ωpf to be initiated.
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Figure 4.7: Timing diagram showing a single prefetch hit feedback request, ω1, transiting
the prefetcher. This also causes a prefetch, ωpf to be initiated.

If the prefetcher observes a “prefetch hit” request, it is forwarded to the “hit cal-
culator”. This works in the same way as the demand miss calculator, but searches
the table for a stream with address A as the last access. If found, a prefetch is
again initiated for address A+ 1 and the table updated to reflect this. The prefetch
hit packet is then discarded and is not forwarded to the memory controller or ac-
knowledged. Pseudocode for the operation of the hit calculator can be found in
Listing 4.2, and a timing diagram of the request moving through the prefetcher
can be found in Figure 4.7, and works in much the same way as that for a demand
access:

1. The prefetch hit request, ωhit enters the prefetcher and is placed into the
prefetch hit queue.

2. The prefetch hit then moves into the hit calculator.

3. Again, the hit could be correlated to a prefetch stream, hence a prefetch ωpf

is initated. If a stream could not be correlated, no prefetch would be initiated,
and the timing diagram would end here.

4. The prefetch ωpf is then issued to the memory controller.

Finally, all data returned from the memory controller is snooped by the “out-
going squash filter”. If the returned data is a prefetch, the “outstanding prefetch
table” is checked to determine whether a demand access has arrived for the same
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#define STREAM_BUFFERS 8
struct streamBufferEntry {

addr_t last_address;
bool valid;

};

streamBufferEntry streamBuffers[STREAM_BUFFERS] = {0};
int lastStreamBuffer = 0;

void pfHit(req) {
// Search for the hit address
int streamBufId = -1;
for(i = 0; i < STREAM_BUFFERS; i++) {

if(streamBuffers[i].valid &&
streamBuffers[i].last_address == req.address) {
streamBufId = i;
break;

}
}

if(streamBufId != -1) { // Found a stream. Update and issue.
// Update stream buffers. The newly prefetched line is
// the ‘‘last observed’’ data
streamBuffers[streamBufId].address = req.address + 1;
issuePrefetch(req.address + 1);

}
} �

Listing 4.2: Pseudocode description of how the prefetcher handles a prefetch hit.

address (i.e. a demand miss has been coalesced with the prefetch). If so, the
prefetch is re-written as a standard read response. In all cases, the prefetch is then
removed from the outstanding prefetch table. Standard read responses and write
acknowledgements pass through this unit un-modified, as required in Section 3.3.
Again, an example of this can be found in Figure 4.8, and is described below:

1. A prefetch, ωpf has been initiated and placed into the prefetch queue. This
updates the outstanding prefetch table. A demand access ω1 also arrives at
the incoming demand access queue.

2. The prefetch is issued to the memory controller. The demand access moves
into the incoming squash filter.

3. The squash filter detected that the demand access could be coalesced with the
prefetch, hence discarded the demand access and updated the outstanding
prefetch table to reflect that the coaleasce occured.

4. The prefetch returned from memory and entered the outgoing squash filter.

5. The outgoing squash filter detected that the prefetch had been coaleasced, so
re-wrote ωpf to be able to satisfy ω1 and placed it in the output queue.
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Figure 4.8: Timing diagram showing how a prefetch, ωpf can be coaleasced to a demand
access ω1

For experimentation, many of the parameters of the prefetcher (i.e. the depth
of the queues and the size of the prefetch buffers) can be tuned at design-time.
For these experiments, the queues were implemented as two-entry queues with
cut through (hence an entry pushed into an empty queue can be popped from the
queue in the next cycle). For this prefetcher design though, the size of the queues is
mostly irrelevant; they are simply used as buffers which can support simultaneous
enqueue and dequeue of data items to prevent starvation on the prefetcher’s input,
while breaking up the critical path through the prefetcher.

For these experiments, the size of the stream buffers was set to be eight entries
for each processor, for each interface (i.e. instruction and data) for each processor,
requiring a total of 256 buffer entries, each storing an address and a valid bit. In
order to reduce the number of hardware registers required, these stream buffers
were implemented as FPGA block RAMs, making them reasonably cheap to store.
The main overheads associated with the stream buffers arises from the lookup
logic; to optimise performance, each of the entries in the stream buffer is looked
up in parallel, effectively making the stream buffers for a given requester a content-
addressable memory. For the purposes of these experiments, eight stream buffers
is a good tradeoff between the complexity of the lookup logic and the number of
streams that can be tracked at once.

In terms of timing behaviour, each squash filter takes a single cycle to cross,
while each “calculator” takes three cycles to cross, but all blocks are pipelined.
Each block can operate in parallel with every other block except for the “calcu-
lators”; while the three cycle crossing time of these is pipelined, but only one
calculator can accept a new request in each cycle (hence no two requests can be
in stage 1 at any time). This is implemented using a simple priority ordering to
prioritise demand memory accesses. The calculators do not block on the output
queue, if the output queue is full, any generated prefetches are discarded. Finally,
each of the queues are two-entry FIFOs.
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The prefetcher will only relay a request when the input queue of the memory
controller has space, and hence each functional unit uses back-pressure to throttle
itself. The worst-case crossing time is therefore expressed in terms of δmem, or the
worst-case time between two requests being accepted by the memory controller.
Because the critical path for a memory request uses two queues and a squash filter,
there can be five blocks under worst-case conditions and hence tpf↑wc = 5× δmem.
The “down” path is again defined to be non blocking (and hence cannot have any
backpressure), therefore tpf↓wc = 3.

As stated in both Section 3.3 and within this chapter, all of these figures as-
sume that the prefetcher doesn’t actually do anything. If prefetches are initiated
by the prefetcher, any demand accesses may be blocked while the prefetch is be-
ing serviced by the memory controller. Because the behaviour regarding when
the prefetcher operates is not currently well defined, this is impossible to bound.
Again, this is a problem which is explored further within Chapter 5.

4.2.4 Memory Controller

The memory controller used in the platform is a standard Xilinx memory con-
troller [93]. This memory controller is a DDR3 memory controller exposing a 2GB
address range for both read and write transactions which are accessed with a 28-
bit address, aligned to sixteen-byte boundaries. Upon receiving a read request, the
memory controller will retrieve the data from main memory and respond with the
relevant data. Any write requests are written to the DDR memory, and a write
acknowledgement delivered back to the relevant requester.

Normally, the memory controller supports transaction reordering by storing a
queue of requests, then servicing the requests from this queue which match the
currently open row first. If no requests match the currently open row, then the
row is closed and precharged, and another request chosen. In order to fulfill the
requirement that the memory controller must return the results of requests in the
same order in which they were issued though, the memory controller also supports
“strict” mode, which forces all requests to be serviced in the same order in which
they arrived which was used for these experiments.

Because there is no reordering of transactions, the timing of a memory transac-
tion has a deterministic upper bound, which is simply the time taken to precharge
the last command, followed by the time taken to open the required row and col-
umn required.
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4.3 evaluation methodology

In order to evaluate the potential effects of using a prefetcher within a real-time
system, two things need to be ascertained. Firstly, the effect on the actual execu-
tion time must be evaluated to demonstrate the potential improvements by using
a prefetcher with a “standard” task-set under average-case conditions. Of course
though, to reason about the behaviour of the prefetcher within a real-time sys-
tem, the worst-case execution times also need to be evaluated to determine if the
prefetcher causes a performance detriment under worst-case conditions, and by
how much.

In order to do so, a hardware design must be determined for the “average-case”
systems, and also a way of simulating the “worst-case” conditions on the memory
tree. After these two problems have been solved, a set of tasks must also be de-
termined which can be used to evaluate the system, for both synthetic (i.e. “ideal”
and “non-ideal”) and “real-world” tasks.

4.3.1 Hardware Setup

The platform was evaluated using two different hardware configurations, each us-
ing a sixteen-input tree where m = 4 (i.e. a low-priority packet can be blocked
by at most three high-priority packets). The actual choice of the number of re-
questers to use has little relevance to the work; the final system is intended to be
composable and hence the results depend only on the number of cycles a packet
can be blocked. Instead, this choice of sixteen requesters and blocking factor al-
lows for the exploration of a good range of latencies, while not being too complex
to reason about. Moreover, from an implementation standpoint this number of
requesters can be synthesised on a modern FPGA easily while leaving room for
extra hardware in the later stages of this thesis.

The platform was evaluated for average-case performance by utilising sixteen
Microblaze [88] processors at the leaves of the tree. Identical software was run on
each processor, and the execution time of the benchmark was taken over a number
of iterations from each processor. The prefetcher is then toggled on and off to
determine what impact the prefetcher makes to the execution time of the task.

In order to then asceratin the effects of the prefetcher on the worst-case perfor-
mance of the systems, another set of systems are built which incorporate a single
processor attached to one of the leaves of the memory tree, with fifteen traffic gen-
erators connected to the remainder of the leaves. These traffic generators issue
a memory request on every cycle where they are given service by the arbitration
tree without waiting for a response. Any responses delivered from the memory
controller are simply consumed and thrown away.
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Figure 4.9: Graphical view of “processor index” on Bluetree.

The worst-case analysis of Bluetree presented within Section 4.2.1 assumes that
all other buffers in the tree are always full with requests from other requesters, and
that the memory controller always has work to do. This can be emulated using
these traffic generators; because they issue on every possible cycle, it will ensure
that all buffers in-between the requesters at the leaves of the tree and the memory
controller at the root will remain full and cause maximal blocking to occur.

One issue with this analysis of Bluetree is that it assumes the absolute worst-case
behaviour on each access. As an example, for a single memory request issued to
a single multiplexer on the “high-priority” side, it assumes that it will be blocked
by a “low-priority” request (i.e. the blocking counter is equal to m). For a set of
memory requests issued to the “high-priority” side of the multiplexer though, this
is not necessarially the case; in a set of m memory requests, at least m− 1 requests
will not be blocked by a “low-priority” packet. For simplicity, the current worst-
case system analysis does not take this into account when analysing the time taken
to issue a set of memory requests, as to do so requires accurate knowledge of the
current state of the blocking counters and the requests issued by other requesters.
Of course, it is possible to integrate this into the worst-case analysis of Bluetree if
required, although this extension is currently left as further work.

For this reason, the worst-case performance of the benchmarks and traffic gen-
erators within this “worst-case” system is better than the performance of the tasks
when analysed against the Bluetree model presented in Section 4.2.1. Ultimately
though, flooding the tree with requests from all other requesters should maximise
the blocking as much as possible and be very close to the actual worst-case be-
haviour of the memory tree.

In these systems, the behaviour of the task from the perspective of each tree
input is realised by moving the processor to each possible slot on the tree, filling
the other fifteen inputs with the traffic generators. Each input to the tree is given
an index from left to right, where index 0 is the leftmost slot and index 15 is
the rightmost. A graphical view of this can be found in Figure 4.9. Because of
the arbitration scheme used, the response time of a memory transaction does not
monotonically increase with the processor index, and hence the processor index
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cannot be viewed as a “priority”. The actual response times corresponding to each
index can be found in Section 4.2.1.

4.3.2 Workload Generation

To go along with the hardware, two different classes of workload are evaluated.
The first of these is a traffic generator intended to demonstrate the best and worst
case behaviours of the prefetcher to show both the potential performance improve-
ment and detriment which can be caused by the prefetcher. The second of these
is a set of benchmarks intended to show the impact of the prefetcher on a set of
representitive workloads for embedded or multimedia systems.

The software traffic generators simply issue a memory request, await the re-
sponse, the waits for a number of processor cycles before dispatching the next
request. Any data which is read is simply thrown away; the purpose of the set of
reads is simply to measure the latency of a set of memory requests. These reads
are issued for sequential memory lines in order to provide the best conditions pos-
sible for the prefetcher, with a configurable “hold-off” period between each access
to simulate differing bandwidth requirements.

This traffic generator is then evaluated using a delay between 5 and 500 cycles,
in increments of 5 (because the delay loop takes five cycles to execute). Each
combination of delay and processor index is then run 20 times and recorded. It is
expected that by increasing the hold-off period, the prefetcher will have more time
to be able to operate and hence more prefetches will be able to be dispatched and
complete fully, hence fewer prefetches will be coalesced with demand misses.

The rationale for using such a traffic generator is that it can be used to demon-
strate the absolute best and worst case performance differences for an applica-
tion with a given average request rate. As an example, a software traffic gener-
ator with a fully sequential access pattern will yield the greatest potential from
the inclusion of the prefetcher in the systems, and demonstrate where the limits
for the prefetcher are in the best case. A software traffic generator can also be
programmed with a completely non-sequential traffic pattern to demonstrate the
“worst-case” effect, when the prefetcher is not able to perform any prefetches on
behalf of the running task, but may be causing extra interference by fetching data
for other tasks.

The results from these traffic generators can then be carried forward into subse-
quent chapters to propose modifications to the prefetching system in order to not
damage the worst-case execution time through prefetching, and to improve the
worst-case execution time through prefetching. Of course, this only presents the
best and worst cases with no data in-between (i.e. fetching x sequential locations,
then a non-sequential fetch etc). While these data points would be interesting,
this work mainly concerns itself with worst-case performance of the system, and
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so the “non-prefetchable” traffic generator is of most use for demonstrating the
prefetcher’s behaviour in the worst-case, with the “fully prefetchable” traffic gen-
erator being used to demonstrate if prefetching can actually yield any performance
benefit in the best case.

While the full spread of traffic patterns has not been investigated, certain pat-
terns representive of typical embedded and multimedia workloads have been in-
vestigated to ascertain the prefetcher’s impact on “real” applications. In order
to facilitate this, a selection of benchmarks have been used from the TACLeBench
suite [94]. These incorporate a number of benchmarks from many different sources
(e.g. Malardalen [95], MiBench [96] and Mediabench [97]), but any required data
has been inlined into the program in order to run the benchmarks without a filesys-
tem (or filesystem emulation layer). Moreover, static loop bounds have already
been ascertained for each benchmark in order to ease static analysis of the tasks
in later chapters. Many of the benchmarks contained within this suite are gen-
erally regarded within the embedded and multimedia research communities as
benchmarks representitive of real tasks running on these systems.

By inlining the files into the benchmarks, the benchmarks have been reduced
to single-path applications, easing both the static analysis and asserting that full
coverage can be attained for the measurement based approaches easily. These
benchmarks are then executed a number of times on both the sixteen processor
system and the “worst-case” systems, and the results taken.

4.4 results - low priority prefetching

The naïve intuition to ensure that the prefetcher does not have an impact on the
execution time of a task is to simply prefetch data at a low priority level. This
approach has two main problems; firstly, while it will work in a system such as
Bluetree which does not have a concept of an “active period”, it will not work
in any arbitrated system which uses active periods without modification. This is
because the prefetcher may observe some time at which there are no incoming
memory requests, but it is not able to distinguish whether there is actually no
request in-flight, or if the arbiter is simply waiting for the next active period before
initiating another memory request without global clock synchronisation.

4.4.1 Worst-Case Conditions

When the hardware traffic generators are used on a system where the prefetcher
is operating at low-priority and worst-case conditions are being simulated, the
problem arises that prefetches can be blocked indefinitely as demand traffic enters
the prefetcher and hence prefetches may actually never be dispatched. Figure 4.10
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Figure 4.10: Graph of execution time of a software traffic generator with and without the
prefetcher in a “worst-case” system.

shows the execution time for a software traffic generator running on such a system,
fetching 4096 memory blocks with a delay between initiating transactions between
0 and 500 cycles.

Because Bluetree is work-conserving, the prefetcher can never operate; it is al-
ways blocked because the tree is always backlogged in the worst-case conditions
and hence another memory request from a traffic generator is always available. In
this case, the prefetcher can never initiate a request. While this is the results for a
processor in index 1, all other results show the same form due to the issues listed
above, and equally for all benchmarks in the TACLeBench suite and hence have
been omitted from this thesis.

4.4.2 Average-Case Conditions

Traffic Generators

Firstly, a the software traffic generators were executed on sixteen processors within
the system. This measured the amount of time taken for sixteen of these traffic
generators to each fetch 4096 memory blocks from memory, each waiting between
0 and 500 cycles between each access. The results of this experiment can be found
in Figure 4.11. This shows improvements throughout for most of the delay values
up until a delay of around 80 cycles. Throughout this period (i.e. 80 - 500 cycles),
the apparent speedup is of the region of 4-20%. With higher delays, the apparent
speedup is of course lower, as the measured execution times also include the delay
factor which dominates the execution time for higher delays.
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Figure 4.11: Graph of execution time of sixteen traffic generators running on sixteen pro-
cessors with the prefetcher both enabled and disabled.

Below a delay of 80 cycles, the execution time with the prefetcher disabled shows
no change with respect to the delay factor. This is the side effect of the “blocking
counters” used on Bluetree; because of the amount of blocking which some proces-
sor indices may experience is reasonably high (and higher than the inter-request
delay) and that the blocking counters are only updated when a packet is relayed,
it may lead to a situation where two requests issued in a given time interval will
actually be relayed at the same instant, regardless of when in the interval the re-
quest was issued. This effect also appears in a much clearer form in the worst-case
systems presented in Section 4.5.1.

In addition, below a delay of around 80, utilising prefetching causes a significant
detriment to the execution time of the task, translating to a slowdown of up to 50%
in some cases. There are a few causes of this. Firstly, the measured execution time
of the traffic generator must wait for all processors to request 4096 words of data,
although because of the non-uniformity of the tree some processors may finish
before others. At low delays though (i.e. below 50), the pressure caused by all
requesters causes the prefetcher to not be able to operate at all, because there are
always demand accesses available which take precedence over prefetches. After
some of these requesters complete however, the prefetcher is able to initiate some
prefetches, but they are stale ones generated previously and are hence useless.
After these stale ones have been dispatched, the prefetcher may be able to operate
some of the time, but because it is also blocked by the requesters much of the
time, still initiates prefetches too late and hence causes a further execution time
detriment.
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As the delay is lowered further, the prefetcher does not have as much of a neg-
ative impact on the execution time, but still causes an execution time detriment.
This is due to the increased request rate which will prevent the prefetcher from
being able to operate for longer, until additional processors have completed the
traffic generator task, and also lowers the probability that the prefetcher will be
able to initiate a prefetch due to the increased load on the memory system. Be-
cause the prefetcher cannot operate until later in the task’s life cycle, it stands to
reason that it cannot cause as much of a detriment simply because it is operating
for less time.
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Benchmark (cont.)

Figure 4.12: Change to the average-case execution time of a set of benchmarks when the
prefetcher was enabled or disabled.

The sixteen processor system was then used to evaluate the prefetcher’s average-
case behaviour on the set of TACLeBench benchmarks. The result from this can be
seen in Figure 4.12. Each benchmark was executed on all sixteen cores at once for
fifteen minutes, with each processor reporting the execution time of each run of
the benchmark with the prefetcher disabled. The benchmark was then re-run with
the prefetcher enabled for another fifteen minutes. Within Figure 4.12, each bar in
a group shows the change to the execution time which the prefetcher caused for a
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processor in each processor index slot (where the left hand bar represents index 0,
and the right hand bar represents index 15).

Here, many of the benchmarks showed a slowdown to their execution times,
although the results of this correlate with those found for the traffic generators
previously. Benchmarks such as basicmath, gsm and rijndael are mainly code-bound
benchmarks which typically do not fit in the processors cache. Because the caches
in use are 16 bytes wide, and Microblaze has four byte opcodes, this means that
the “next” cache line will be required after four instructions have executed. This
in turn means that the apparent inter-load delay is reasonably small, and that
the prefetcher will not be able to initiate prefetches very often because they will
normally be blocked by demand accesses.

When the prefetcher is able to operate, however (i.e. if the task is executing a
loop out of cache and hence does not initiate many accesses), then the blocking
means that the prefetcher will again initiate stale and useless prefetches, causing
the memory system to be tied up with useless accesses. The effect of this is not as
bad on the gsm benchmark, as some of its execution time is tied up with data loads
which, because the prefetcher is mainly blocked, typically cannot be prefetched
successfully. rijndael also fetches large amounts of data from memory, hence is not
affected as much as basicmath.

Other benchmarks are either small (e.g. matmult and sqrt) and perform most of
their execution from cache, hence are not affected significantly, or are mostly data
bound. md5 is a benchmark without much code but which performs many data
fetches. Because this benchmark can operate mostly from cache, the prefetcher
may initiate some data accesses, but is mostly blocked or fetches useless data. sha is
another data bound benchmark and hence operates in much the same vein as md5.
This benchmark performs more computation in-between data accesses however
(hence has a slightly higher inter-access delay), which allows more prefetches to
be initiated which are actually useful and hence has a slight improvement to its
execution time.

4.5 results - high priority prefetching

When the prefetcher is able to issue prefetches with high priority mode, a prefetch
for a given item of data will effectively come straight after the demand request
for it. In these cases, prefetches will actually be dispatched and may actually be
useful to the target processor, but may also cause significant interference to other
requesters in the system. This section will discuss the results for a prefetcher
operating at the highest system priority under the average-case and worst-case
conditions.
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4.5.1 Worst-Case Conditions

Traffic Generator
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Figure 4.13: Execution times with the prefetcher enabled and disabled in the worst-case
conditions when prefetching for a single processor, and for all processors.

The green line in Figure 4.13 shows the traces for another set of software traffic
generators when used under “worst-case” system conditions, again fetching 4096

blocks from memory with a programmable delay. In these systems, the prefetcher
is only configured to try and prefetch memory items for the processor; it does not
attempt to prefetch anything for the hardware traffic generators.

In these systems, good improvements can be seen; the prefetcher is able to pick
up the stream quickly and correctly dispatch prefetches for the useful data. Be-
cause of the latency of a single memory transaction, and because the prefetch
is issued almost immediately after the demand access is issued to memory, the
prefetches can complete in good time and thus all systems see a good improve-
ment by utilising the prefetcher, and none show a performance detriment. With
that said, some system begin to see some “noise” as the delay is reduced (for
example, below around 175 cycles in Figure 4.13a). This is due to the “squash”
mechanism where a prefetch cannot be fully completed before the demand miss
for it is required. In many cases, the prefetch and the demand miss can be success-
fully coalesced, but in some cases, it can be missed. This can happen, for example,
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if a prefetch traverses down the tree in the exact cycle that the demand miss for the
same line transits up the tree. In these cases, neither of the multiplexers see both
of the packets in the same cycle and hence the “squash” is missed. Because this
may happen sometimes for a set of requests, depending upon the exact response
time of the memory controller, the coalescing of memory requests is semi-random
and hence creates the observed “noise”.

This noise also exhibits itself in Figure 4.13c around delay 450 and Figure 4.13d
around delay 350. This is again caused by the failure to coalesce prefetches, but at
higher levels in the tree. A prefetch hit will be issued by the processor, then the
demand request shortly after. Around these points, the demand request may be
crossing an upstream multiplexer at the same instant that the prefetch is travelling
back to the processor and be missed. As the delay decreases, it is more likely
that the demand access has been accepted into the multiplexer where the problem
occurred (or even make it to the prefetcher), and hence the coalesce can occur
successfully.

Processor indices which experience more blocking also see a form of a “stepping”
effect, for example, in Figures 4.13c and 4.13d. This is caused by the delay caused
at the leaves of the tree due to the arbitration across the whole tree. In these
cases, the demand request is dispatched in-between intervals where the processor
would be given service, hence all delays between two intervals will have the same
execution time. The “stepping” effect is still evident even when the prefetcher is
enabled, simply because the hit feedback is relayed through the same mechanism
and must still wait for arbitration. There may again also be noise near these steps
due to prefetches being coalesced with their demand misses, which may be missed
by the multiplexers.

Of course, these results only concern themselves when performing prefetch for
a single processor, and not pictured here is the effect that the prefetcher has on the
response time of the traffic generators. By prefetching at high-priority without any
arbitration, the prefetcher may well cause a performance detriment to the system
as a whole, while it still appears as though it causes an increase in performance
for a single requester.

The blue lines in Figure 4.13 show the effect of the prefetcher when it is oper-
ating for all cores within the system. In these cases, the prefetcher will have a
higher latency before being able to prefetch, and the extra prefetches may cause
interference to the rest of the system. Firstly, take the system with the processor
at index 0 (Figure 4.13a). At the start of the observed stream, the prefetcher per-
formed basically identically. This is because requests from index 0 experience the
least amount of blocking in the system, as such has a reasonably low response time
for a memory transaction and hence even with the extra latency brought about by
extra prefetches, the “delay” period is typically still sufficient for a hit notification
to reach the prefetcher and to be fully serviced.

118



This extra load on the memory subsystem does take its toll, however. With the
processor at index 0, squashes being to occur slightly earlier (at delay 200 rather
than 175), and much more of an impact can be seen, with the gains brought about
by the prefetcher to be almost negligible at delay 0. This is generally caused by
the additional latency in the system from the prefetcher causing both demand
requests and hit notifications to reach the prefetcher later. On top of this, there
are additional prefetches being dispatched, with the net effect that prefetches for
core 0 are dispatched later and hence, the execution time increases. Similar effects
can also be seen when the processor is at index 4 (Figure 4.13b), but of course, the
latencies are higher and the divergence begins at a higher delay value due to the
increased blocking which memory accesses from this index experience.

Processor indices 7 and 14 (Figures 4.13c and 4.13d) also show interesting be-
haviour with the prefetcher fetching for all cores. Not only is the prefetcher not as
effective (for the reasons listed above), but the latency “steps” shift slightly. This is
again caused by the additional interference due to the prefetcher. Generally, this
is caused by the distance up the tree that prefetch hit feedback managed to reach
before the delay was elapsed. The most clear example of this is the far right-hand
side of index 14 (Figure 4.13d). In this case, the hit packet would be generated
by the processor, then due to the blocking incurred at the lowest levels of the tree,
the hit feedback would be immediately followed by the demand miss for the next
line. In this case, the tiny improvement to the execution time is caused by the
hit feedback reaching the prefetcher just before the demand miss for the next line,
hence the prefetcher is still doing some work to improve system performance, but
not much.

In all of these cases, the prefetcher has still been able to improve system perfor-
mance, despite the additional latency generated by prefetching for all cores. This is
because the hit feedback is still generated just before the demand miss for the next
line, and hence has some possibility to travel up the tree and reach the prefetcher
just before the demand miss for the next line. Of course, additional prefetches are
generated, but the extra blocking causes by these fetches is still not too great. More-
over, since prefetches are dispatched at high priority, the prefetch hit notification
effectively causes a high-priority memory request for memory address A+ 1 to be
generated (along with the rest of the prefetches), and hence using the prefetcher
effectively shifts most memory requests into the prefetch queue rather than the
demand queue for tasks with a “perfect” access pattern.

In order to ascertain the actual performance hit caused by these extra prefetches,
Figure 4.14 shows the performance for the aforementioned traffic generators, but
when fetching an unprefetchable stream (i.e. fetching 4096 non-consecutive mem-
ory words), while prefetching for all hardware traffic generators. In effect, this
shows the impact of the extra traffic caused when prefetching for the hardware
load generators on the execution time of other tasks, and demonstrates the actual
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Figure 4.14: Execution times with the prefetcher enabled and disabled in the worst-case
conditions, for a non-prefetchable task.

“worst-case” behaviour of the system (fully backlogged tree, and the prefetcher
causing as much interference as possible). It can be seen that all tasks take a per-
formance hit when the prefetcher is running for other tasks due to the created
interference. Effectively, each memory request for the hardware traffic generators
causes two memory accesses to take place instead of the single access and hence
for the most part, the latency of a memory transaction can now be doubled.

For all tasks, this causes the shape of the timing curve to be effectively the
same with the prefetcher enabled and disabled, just with more latency. Since the
execution times shown in Figure 4.14 also incorporate the delay time, it is difficult
to demonstrate the actual impact caused by the prefetcher on the execution time,
but for the most part, the prefetching typically causes the “memory latency” for
each task to double.

The important result from these graphs, however, is the fact that the prefetcher
causes a significant increase to the execution time of the task for each task when the
prefetcher is not able to correlate the access pattern of the stream, where all tasks
experienced a slowdown of 20-40% at delay 0 when the prefetcher was enabled.
Importantly, this detriment is occurring under worst-case conditions and hence
shows that the prefetcher can cause an increase to the worst-case execution time of
a task of up to 40%, which is clearly unacceptable for a real-time system.
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Benchmarks

Of course, the traffic generators shown only capture two models of traffic; a per-
fectly prefetchable stream, and a completely non-prefetchable stream. Actual tasks
do not follow such uniform patterns; they may perform burst, sequential accesses,
or they may access purely random data relatively infrequently. The best example
of this is code. If a task contains large, single path routines (e.g. unrolled loops),
then there is a high probability that the stream will be able to be prefetched. Code
with many conditional statements, however, is difficult to prefetch as the processor
will only read a couple of lines of memory, then jump elsewhere in the program
and repeat.
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Benchmark (cont.)

Figure 4.15: Improvements seen by using a prefetcher on a number of TACLeBench bench-
marks, prefetching for only the core running the benchmark.

Figure 4.15 shows the potential gains that can be realised by using the prefetcher
in a system under worst-case conditions, where the prefetcher is only operating for
a single core. Here, each set of bars corresponds to a benchmark, where each bar
denotes the processor index where the benchmark was executed. As with the
traffic generators, most of the benchmarks shows good gains when the prefetcher
was enabled, typically in the range of 10-35%.

The actual speedup depends on the benchmark being executed. For example,
rijndael, md5 and sha all give good speed-ups because at their core they are process-
ing a serial data array. Moreover, the rijndael benchmark performs a large amount
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of straight-line computation on said large array, hence sees good speedups on
both the code and data interfaces of the processor. For the most part, the basic-
math benchmark contains many large mathematical routines, which can also be
easily prefetched and hence sees a good execution time improvement due to the
instruction side alone.

Other examples are the adpcm, h264 and gsm benchmarks. These benchmarks
still decode data from a buffer in a serial fashion, but their decoding routines
are reasonably complex. Due to this, it is difficult for the prefetcher to be able
to accurately prefetch the code side, and hence the performance improvement is
mainly just on the data side, with a little improvement due to code prefetching.
To go further, it is difficult to realise good improvements on the matmult and pm
benchmarks purely due to their size. They are small example processing kernels,
using a loop with a high iteration count which can easily reside in cache, hence
the memory is only hit once on the first invocation of the benchmark and the
remainder of the benchmark is then executed solely from cache without issuing
any more memory transactions.

Interestingly, some benchmarks even showed a slowdown, even when the pre-
fetcher is only fetching for a single core. The binarysearch benchmark has a fairly
random access pattern. For this reason, it is almost impossible to create a cor-
relation for the data being accessed and as such, the prefetcher initiates many
useless requests. Some processor indices showed a good improvement because the
prefetcher was still sometimes accurate, but the major problem for lower-priority
requesters is that the hit feedback would be created, which would then block the
next demand access for a large amount of time while also causing the prefetcher
to initiate another useless prefetch, causing a huge performance detriment. For
higher-priority cores, this hit feedback would not be blocked at the leaves of the
tree, and not cause significant blocking to the next demand access.

Other benchmarks also showed similar behaviour for processor indices with
a high amount of blocking, again, due to the prefetcher fetching effectively use-
less data. insertsort contains a fairly random data access pattern and as such the
prefetcher has great difficulty attempting to correlate a prefetchable pattern. The
fibcall is a small benchmark with very few iterations, hence any mis-predicted code
prefetches (i.e. when the prefetcher has fetched an entire routine, and starts fetch-
ing past the current routine) can cause a great impact to the execution time simply
due to the overall number of fetches which need to be performed anyway.

Figure 4.16 shows the same benchmarks in the same system when the prefetcher
is fetching data for all requesters, within which almost all benchmarks show a
great detriment to the execution time. Many code-bound benchmarks show similar
results (e.g. adpcm and basicmath). This is again caused by the hit feedback message
being blocked at the leaves of the tree, blocking the next demand access since
if the amount of blocking is sufficiently high, the prefetch hit message will be
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Figure 4.16: Improvements seen by using a prefetcher on a number of TACLeBench bench-
marks, prefetching for all cores.

scheduled on to the tree at the same point that the next demand access would have
been without the prefetcher. This poses virtually no savings if the next prefetch is
accurate and coalesces with the next demand access, and potentially causes a huge
detriment if the prefetcher was not accurate, as is evident for many benchmarks.

Many data-bound benchmarks (e.g. md5, sha and rijndael) can still see some
performance improvement in these systems, partially due to the blocking nature
of data accesses. With some requesters at a sufficiently high priority level, the hit
feedback from the last instruction access may begin transiting the tree just before
a demand data access occurs. This effectively allows the instruction prefetch to
occur while the demand data access is taking place and can improve performance.
A similar effect may also be evident with the data and instruction sides switched.
The sha benchmark also fetches a large amount of data from main memory in a
serial fashion. Moreover, the processing performed is such that the execution time
is not trivial, but small enough that the loop kernel can fit into instruction cache
easily. The prefetcher can hence easily correlate the data stream and somewhat
improve the performance of the benchmark.

Finally, for the fibcall benchmark, many processor indices do not experience
much blocking, hence the hit feedback tends not to block demand misses, and
the control flow is not very complicated, hence the prefetcher can fairly accurately
fetch most of the code and the hit feedback ends up fetching useful data, improv-
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ing performance. Of course, there are still some “useless” prefetches (i.e. when
fetching the data past the end of the benchmark), which cause a performance
detriment with processor indices with a greater amount of blocking due to the hit
feedback both blocking demand misses and fetching useless data.

4.5.2 Average-Case Conditions
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Figure 4.17: Graph of execution time of sixteen traffic generators running on sixteen pro-
cessors with the prefetcher both enabled and disabled.

The results from executing the traffic generator on sixteen processors when the
prefetcher could initiate prefetches at high priority can be found in Figure 4.17.
For the most part, the results here are much the same as those found within Sec-
tion 4.4.2, except after a delay factor of around 80.

Of course, with the prefetcher disabled, the results are identical to that with
low priority prefetching, although the merits of high priority prefetching begin to
show. Because the prefetcher can now operate at a high priority, stale prefetches
do not back up in the prefetcher’s output queue. This means that any prefetches
which are actually initiated have a higher probability of actually being useful to the
requesting task. Despite this though, the prefetcher was still not able to improve
the execution time by much in these cases, which for the most part is because the
prefetcher did manage to initiate a useful prefetch, just that it was initiated just
before the demand access from that processor also arrived and hence the savings
were not significant.

Towards a delay factor of zero, the prefetcher did also manage to cause a detri-
ment to the task’s execution time too. This can be caused if the prefetch and
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the corresponding demand access fail to be coalesced with each other and hence,
many memory accesses may effectively be issued to the memory controller twice.
In addition, the “prefetch hit” notification must also traverse the tree, which may
potentially block the next memory access. Because the prefetch calculators will
simply throw away a prefetch if the prefetch output queue is full, this can effec-
tively cause the prefetch hit notification to block the next memory access and be
completely useless.
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Figure 4.18: Change to the average-case execution time of a set of benchmarks when the
prefetcher was enabled or disabled.

The results from the suite of TACLeBench benchmarks when high-priority pre-
fetching is used in the average-case can be seen in Figure 4.18. As with the traffic
generators, the results are broadly in the same vein as when low priority prefetch-
ing was used. Because prefetches being initiated are not blocked for as long now
though, prefetches tend not to be stale and hence the impact is not as bad. More-
over, many data bound benchmarks (i.e. sha, md5 and h264dec) now show a speed
improvement, although it is still marginal compared with the potential detriment.

Many of the issues that caused problems with the traffic generators are still
present with these benchmarks though. As mentioned previously, both basicmath
and rijndael are mostly code-bound benchmarks and hence typically have a rather

125



low inter-request delay and therefore, as with the traffic generators, show a per-
formance detriment. This is again caused because prefetches can prevent other
prefetches from ever being initiated, and hence the “prefetch hit” notification
which caused the prefetch to occur in the first place only causes additional block-
ing for the “next” memory access. This is an effect which is especially evident on
the rijndael benchmark, where the processor indices which experienced the most
blocking show a great amount of slowdown.

4.6 summary

Clearly, prefetching is potentially useful for managing the increasing latencies
brought about by the need to share a large external memory between an increasing
number of requesters. Even under absolute worst-case conditions, the prefetcher
was still able to improve performance by around 15% when fetching an easily pre-
dicted stream. As also shown in the benchmarks in this chapter however, this fig-
ure is only really observed when fetching a perfectly prefetchable memory stream;
as soon as the traffic pattern deviates from what is expected, the performance soon
drops since the prefetcher is now causing a huge amount of additional blocking
and is also fetching useless prefetches for the processor in question.

Moreover, the naïve way of prefetching without harming the worst-case execu-
tion time of a task, by issuing prefetches at low priority, simply does not work
when the prefetcher is not controlled in any way. In these cases, prefetches are
created, but sit indefinitely in the output queue as they are blocked by all other
requests. These prefetches then prevent any other prefetches from entering the out-
put queue, and because they are not dispatched in a timely fashion, will not ever
fetch any useful data when they are finally issued to memory. Without control,
it is also impossible to integrate the prefetcher into a system which is scheduled
based upon an active period, since the prefetcher does not know when the active
period starts.

While the prefetcher does, at times, give a performance gain for a perfectly
prefetchable stream (i.e. a serial traffic generator or the sha benchmark), many
tasks do not fit into this model and hence are not suitable for prefetching. That
said, the problem here is not that the access pattern of the task is not perfectly
suitable for the prefetcher, but more that the prefetcher is not controlled by the
arbitration scheme in any way. Because of this, the prefetcher issues memory
accesses whenever it can which of course may cause more a memory request to
experience more blocking that it expected, and hence will cause the task to miss
its worst-case deadlines.

Instead, to be able to realise these benefits in a system where the tasks have
real-time deadlines, the prefetcher must be controlled in a way such that it can
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only perform memory accesses when it will not cause any tasks to miss their dead-
lines. Of course, constraining it in this way will not allow it to fully realise the
performance gains found in Figure 4.13, but will hopefully allow it to increase per-
formance somewhat while not causing any detriment to the worst-case execution
times. This is a problem which will be explored further in Chapter 5.

Another problem which has been outlined in this chapter is ultimately that one-
lookahead prefetching with an output queue is not the best prefetching scheme.
While it did manage to yield good results in some of the worst-case systems and
for many of the traffic generators, it is very limited in other ways. One of the major
reasons behind this problem is that a queue is not the best data structure to use
for prefetching; the low-priority prefetch experiments highlighted that the data in
the queue can fast become stale, and the high-priority experiments demonstrated
that new prefetch data could be discarded if the queue was full and again cause an
execution time detriment. Solutions to this architectural problem will be explored
further in Chapter 5.

The design of the prefetcher, however, is only the first of the problems. While
one-lookahead prefetching can work for data accesses when there may be a sig-
nificant period of time between accesses, it begins to fall down on code accesses
due to the extremely small latency between memory accesses. Because of this, the
prefetch hit notification may not have even been accepted by the arbiter before the
processor initiates an access for the “next” instruction line, and hence the prefetch
hit notification only blocks the processor for longer. If this hit notification causes
a useful prefetch to be initiated then it may save a couple of cycles, but otherwise
it will only cause a performance detriment. Alternative prefetching schemes for
code accesses will be explored further in Chapter 6 when attempting to build a
predictable prefetching scheme.
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5 W O R S T- C A S E A W A R E P R E F E TC H I N G

As identified in Chatper 3, the behaviour of the prefetcher is not currently well
defined regarding when it can actually operate. This leads to it being impossible
to actually reason about the prefetcher itself, and to assert that the prefetcher will
not affect the worst-case execution time of a task, or to bound the effect which
the prefetcher has on the worst-case. Chapter 4 then demonstrated this effect;
while the prefetcher is good on an “ideal” stream of data, it can cause a dramatic
detriment to the worst-case execution time of a task as soon as it begins fetching
data incorrectly.

To be able to make any guarantees about how the prefetcher will operate, its be-
haviour must be properly defined and integrated into the system model presented
within Chapter 3. This chapter will explore a model of prefetching which can be
integrated into said system analysis such that the behaviour of the prefetcher can
be bounded, and potentially improve the average-case execution time of a set of
tasks without harming the worst-case. Moreover, Chapter 4 also identified some
problems with the fundamental design of the prefetcher which may cause it to
fetch useless data, or to simply prefetch late. This chapter will also attempt to pro-
pose a new prefetcher design to alleviate some of these issues. The remainder of
this chapter will therefore propose the theory behind how prefetching can be per-
formed safely on a real-time system, before integrating this into the system model
from Section 3.3, creating a hardware realisation of the new model and finally
evaluating the performance of the system.

5.1 prefetching safely

5.1.1 Task Model

For a task to be able to be analysed within a real-time context, it must be analysed
against a model of the system which describes the worst-case behaviour of each of
the units in a system. This model describes the worst-case execution time of each
instruction, incorporating the worst-case time to access memory, the worst-case
behaviour of cache and the worst-case behaviour of all other architectural features.
An example of the breakdown of the execution time of a task is shown graphically
in Figure 5.1.
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Instruction Execution Cache Access Memory Access

Execution time

Figure 5.1: Example execution time breakdown of a hypothetical task and architecture.

This model is used when examining the time taken for each instruction in a
task, and is used to analyse the whole system. The memory subsystem, on the
other hand, does not care about the intricate details of the processor cache, or
how long each opcode takes, and only concerns itself with how long each memory
transaction takes, and when they are initiated. Ultimately, the memory subsystem
only cares about the “memory access” box within Figure 5.1.

Computation Memory Access

Execution time

C1 M1 C2 M2 Mn-1 Cn MnC3 Cn-1

B4 B3 B2 B1 Mem Down

Blocking

Figure 5.2: Example execution time for a task from the memory subsystem.

Given this, we can create a model for a task from the perspective of the memory
subsystem. This model simply encodes the time taken to execute a memory trans-
action, with the amount of computation time which separates them. Given that
the worst-case memory latency for a given core is constant, this model is simply
a set of computation times (C1,C2,C3, ...,Cn− 1,Cn) which occurs between mem-
ory transactions (M1,M2,M3, ...,Mn− 1,Mn), hence task = ((C1,M1), (C2,M2),
(C3,M3), ..., (Cn− 1,Mn− 1), (Cn,Mn). This model is shown graphically in Fig-
ure 5.2.

This memory latency can then be broken down further into the respective com-
ponents. Each memory access is made up of blocking at each level in the memory
tree, a memory latency as it crosses the prefetcher and DDR controller and is is-
sued to memory, then finally a latency to travel back down the tree again. Of
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these, the blocking factors depend on the requester’s position in the system, but
the memory latency and down-path time are constant across all requesters.

Since it is difficult to make any assertions on the state of the memory system
when a memory request is generated, each of the memory access times given in
Figures 5.1 and 5.2 are a constant time. This time must encode the worst-case
time for which the processor will be blocked while waiting for a packet to be ac-
cepted onto the memory tree, which also involves the worst-case blocking which
a memory packet could experience when transiting the tree on the way to mem-
ory. This latency cannot be reduced from the computed worst-case latency for a
memory access based upon the behaviour of other tasks, since this would break
the composability property of the memory arbiter.

5.1.2 Prefetching Methods

Given this task model, the prefetching strategy must be modified to fit around the
model such that it does not cause any of the blocking terms to increase, and does
not cause the memory latency to increase. There are a few methods by which this
could be realised, which are explored throughout the remainder of this section.

Exploiting Prefetch Hits

The first method by which the prefetcher can be controlled already effectively ex-
ists within the system. Recall from Section 5.1.1 that a task is simply a set of
computation times separated by memory accesses. Now assume that a prefetch
has previously been delivered to the processor, and is currently residing in the
processor’s cache. In this case, the memory access corresponding to the prefetch
Mx no longer needs to be issued, since the prefetch has already been delivered to
the target cache.

Computation Memory Access

Execution time

C1 M1 C2 M2 Mn-1 Cn MnC3 Cn-1

C1 M1 C2 PF Mn-1 Cn MnC3 Cn-1

Figure 5.3: Example of replacing the “missing” memory access caused by successfully
prefetching data with another memory access. In this example, access M2

was successfully prefetched ahead of time and can be replaced with another
prefetch, PF.
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In this case, because the prefetcher has speculatively fetched data ahead of time
that the processor requires, the processor no longer has to issue a memory access
for that data and hence will issue fewer memory accesses than the system analysis
assumed would take place. This “missing” memory access can then be replaced by
a prefetch for a different data item which may be required in the future; in the best
case, the prefetch will be useful and can cause a performance improvement, and
in the worst will simply replace this “missing” memory access with a useless fetch
which will cause no more performance detriment than if the original memory ac-
cess had never been prefetched. A graphical view of this can be seen in Figure 5.3,
where the memory access M2 has been successfully prefetched, and hence can be
replaced by another prefetch at run-time.

Because the system model defines that the worst-case response time of a memory
access, twc(r) only depends upon the requester index r and not upon the actual
contents of a memory access, it is therefore possible to issue any other memory
access in the place of the “missing” memory access. As defined within Chapter 3,
the time to cross the arbiter, tarb↑wc (r) and t

arb↓
wc (r) also depends only on the re-

quester ID, so the hit message will experience the exact same blocking as that of
a standard memory access. The only constraint that needs to be added is that the
worst-case time to cross the prefetcher, tpf↑wc remains constant whether it regards a
standard memory access, or the time between a prefetch hit message entering the
prefetcher and it causing a prefetch to be initiated. Finally, the worst-case memory
access time, tmem

wc must be constant regardless of the details of the request, so a
prefetch must have the same worst-case memory response time than the memory
access it is replacing.

This mechanism requires no modification to the system arbitration scheme, but
of course, it assumes that an initial prefetch has been somehow delivered to the pro-
cessor. Moreover, this approach ignores the pollution aspect; if a prefetch displaces
any useful data which resides in cache, then it will cause another memory access
to be initiated which was potentially not expected, and hence cause an increase in
the execution time. That said, the same is true for any other prefetching scheme,
unless the prefetcher is also given information on the caching policy and which
memory addresses are potentially considered to be “useful” so that the prefetcher
can skip these addresses. Instead, a small intermediate cache can be used to buffer
the last few prefetches before they are required.

Explicit Bandwidth Reservation

Another simple way to utilise the prefetcher in a predictable manner is to explicitly
allocate it a slice of the available system bandwidth. Prefetches can then be arbi-
trated onto memory using the same arbitration method that normal tasks utilise,
and hence are rate limited by the global system arbitration. Given that the amount
of bandwidth allocated to the prefetcher is known, the response time of any mem-
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ory transaction can still be bounded and hence, “runaway” situations where the
prefetcher causes a severe detriment to the observed task execution times can be
avoided.

While this method is safe, it requires the prefetcher to be considered ahead
of time when calculating the response time of a memory transaction and hence
causes the execution times of all other tasks to increase when it is used. This
method could also be combined with the hit feedback mechanism listed above
and hence may not require much bandwidth, there is a chance that all prefetches
dispatched are completely useless. In this case, the execution times of all other
tasks will be higher to facilitate the prefetcher, and the prefetcher does not bring
any average-case improvement to the system.

For this reason, explicit bandwidth reservation is not really applicable for this
system. Moreover, since we do not yet have a framework for the prefetcher to
improve the worst-case execution time of a task, this method will simply cause
an apparent performance detriment and hence violates the requirement that the
prefetcher will not harm the worst-case execution time of a task.

Slack Stealing

Another approach is based upon Lehoczky and Ramos-Thuel’s “Slack Stealing”
approach [98]. In effect, this approach attempts to statically ascertain how much
slack is available in a system at a given point of time (i.e. how much free time there
is in the schedule after all periodic tasks have run), and hence how much service
can be given to aperiodic tasks without causing other periodic tasks to miss their
deadlines.

A similar approach can be extended to prefetching within a real-time system,
where the periodic tasks are the requests of each task (which are semi-periodic
within the arbitration scheme) and prefetches are treated as aperiodic tasks. If
prefetches are treated as not having a deadline, then they can be speculatively
scheduled, and a similar system can be run on-line to reclaim any system slack.

The blocking term as shown in Figure 5.2 incorporates the time for which a
memory request will be blocked at each level in the tree by other memory requests
in the worst-case, when using Bluetree. Because the system model mandates that
all memory requests have identical worst-case timing, the worst-case response time
for each request is equal and hence this blocking factor can be re-written as the
number of requests which will block the current request at that level. This factor
can also be used with other arbitration methods; for distributed TDM and GSMT, it
will be the number of active periods, in the worst-case, before the memory request
is given service.

This then makes it possible to calculate the number of times which a memory
request can be blocked by other memory requests. If one of these requests is
missing (i.e. the processor did not dispatch a memory request in that instant),
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then work conservation will normally allow another request to take its place. This
allows a memory request to be serviced faster, causing it to complete faster.

Instead of being used for work-conservation, this generated slack can instead be
used by the prefetcher to issue a request speculatively. Because the prefetcher is
then just using bandwidth which would have been consumed by another memory
request, and the worst-case response time for the prefetch is the same as that
of a standard memory access, then the prefetcher can be effectively rate limited
without any modification to the system model and without causing any change to
the worst-case execution time of any other task.

This idea can be implemented by using the concept of a “prefetch slot”. These
slots will be created within the arbiter whenever a memory request was expected,
but absent. As an example, in a simple TDM model, if a requester is given ser-
vice but has no outstanding requests, the arbiter can instead synthesize a prefetch
slot for that requester and send that in the place of a standard memory request.
Upon receiving this message, the prefetcher can then fill in the slot with a prefetch
request and send that to memory instead. Since the prefetch slot is generated at
the same place as a standard memory request, traverses the same arbiter and must
also traverse the prefetcher with the same latency as a standard memory request,
its timing behaviour is identical to that of a standard memory request.

In systems which use back-pressure to rate limit requesters (i.e. Bluetree), this
technique is also work-conserving. The prefetcher can simply throw away the
prefetch slot if there is no work to do, incurring only a single cycle of latency. This
then allows the next request to be serviced.

This model of prefetching can then be used within all current composable arbi-
tration schemes, and an example implementation is shown for each of the major
distributed arbitration schemes below:

bluetree: This can be implemented by always running the “blocking counter”,
regardless of whether the multiplexer has pending work at both inputs. When
there is space available in the output buffer, and the input buffer has no pend-
ing work, then a prefetch slot is created instead and the blocking counter
incremented.

gsmt/distributed tdm: All input queues are considered as having pending
work, regardless of the number of pending requests contained within them.
At the start of each active period, if the input queue for the requester which
is receiving service is empty, a prefetch slot is created instead.
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5.2 system design

Before a new system design can be created, the ideas from Section 5.1 must be
integrated into the original system model from Section 3.3. This section will first
detail these modifications to the system model, then propose a new hardware
realisation of this model which incorporates the ideas from Section 5.1 in order to
support “safe” prefetching on a real-time system.

5.2.1 Updated System Model

In order to support slot-based prefetching, the system model must be modified in
two places. Firstly, the model of the arbiter must be modified in order to define
when a prefetch slot will be generated and relayed on. Secondly, the model of
the prefetcher must be modified such that it will only issue a prefetch when it
receives one of the prefetch slots, or it receives a prefetch hit notification. Since the
prefetcher treats prefetch hit requests as prefetch slots, the model of the requesters
need not be changed.

Arbiter

Firstly, the model of the arbiter must be extended to define how prefetch slots are
initiated. This model again assumes a set of requesters C, each of which issues a
set of requests W(r), r ∈ C. The arbiter then defines a set of requests issued from
the arbiter, W∗ such that:

W∗ =
⋃

r∈C

W(r) (5.1)

In addition, the arbiter itself currently defines the inter-request time between
two requests from a single requester r, δarb(r). It must also define a worst-case
time between two requests being emitted from the top of the arbiter in the worst-
case, ∆arb. In a system that schedules based upon backpressure, this is equal to
the time between two requests being accepted by the prefetcher, δpf, or is equal to
the active period in systems which are scheduled based on an active period. It is
hence assumed that the arbiter makes a scheduling decision every ∆arb cycles in
the worst-case.
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A functionW(r, t) is also assumed, which yields the current outstanding request
for requester r at time t. If there are no outstanding requests, a prefetch slot ωpf

should instead be created. W(r, t) is therefore defined as follows:

W(r, t) =

ωr
n ωr

n is outstanding at time t

ωpf otherwise
(5.2)

It is then assumed that W∗ can be expressed in terms of W(r, t) and ∆arb to
define an order by which requests will be issued in the worst-case. As an example,
for a two input TDM arbiter with two inputs, L and R a possible representation of
W∗ is as follows:

W∗ = {W(L, 0),W(R,∆arb),W(L, 2∆arb),W(R, 3∆arb)} (5.3)

Finally, in the worst-case, it is assumed that each request utilises the worst-case
timing, and hence the time between two requests is always ∆arb. It therefore holds
that

∀ω ∈W∗ : tarb↑d (ω) mod ∆arb = 0 (5.4)

This implies that in the worst-case, all requests are always initiated on a multiple
of ∆arb. Given the definition of W(r, t) above, this implies that a prefetch slot will
be dispatched in lieu of an actual memory request from requester r, and moreover
that it will be initiated at the exact same time that the “missing” memory request
would be. Since Section 3.3.5 defines that the time taken by components above the
arbiter to service a request, t̂arb must be constant, the inclusion of prefetch slots
does not affect the timing behaviour of the system.

Prefetcher

Given that it is now defined when a prefetch slot can be dispatched from the
arbiter, it is now possible to define when the prefetcher will operate. The timing
behaviour of the prefetcher is as before, there must be a worst-case time to cross
the prefetcher in both directions, tpf↑wc and tpf↓wc . The prefetcher can then be treated
as a mapping PF : W 7→W as follows:

PF(ω) =

ω ω 6= ωslot

ω
pf
x ω = ωslot

(5.5)
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In this case, ωpf
x is an arbitrary prefetch; the actual address being prefetched

does not matter at this point in time. If there are no available prefetches, this
access ωpf

x may be null. This mapping simply states that any non-slot messages
must pass through the prefetcher verbatim, and that prefetch slots can be replaced
by another access. This scheme must still be able to define a worst-case crossing
time, tpf↑wc such that:

∀ω ∈W∗ : tpf↑d (PF(ω)) 6 tpf↑a (ω) + tpf↑wc (5.6)

This constraint ensures that the prefetcher has a worst-case crossing time which
covers the time taken for a standard access to cross the prefetcher, and that the
worst-case time between a prefetch slot being accepted by the prefetcher and the
dispatch time of its replacement access must be the same as for an un-transformed
memory access. As before, there is the exception to this rule that a standard
memory access and a corresponding prefetch can be coalesced. This exception still
exists, and is functionally the same as detailed within Section 3.3.5.

5.2.2 Updated Bluetree Multiplexers

Arbiter

Down

High 
Priority 

Request

Low 
Priority 

Request

PF 
Slot

Figure 5.4: Internals of the modified Bluetree multiplexer.

Extending from Sections 5.1.2 and 5.2.1, the slot-based prefetching scheme can be
implemented on Bluetree by dispatching a prefetch slot every time the scheduled
requester has no outstanding work. In order to support this, each router simply
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stores an empty “prefetch slot” in a register, waiting to be relayed. When there is
space in the upstream buffer at the exit point of the router, if the arbiter detects that
the input buffer that would be given service has no work to do, then it will instead
relay a copy of this prefetch slot message. A new architecture for this router design
can be seen in Figure 5.4.

Secondly, the arbiter has been modified such that every time a message is relayed
across it, the blocking counter is incremented, whether the message was a prefetch
slot or an actual request. In effect, each router falls back to using a mini TDM
schedule. Because the prefetcher can choose to throw away a prefetch slot when
there is no work to do, another request can be scheduled in the next cycle and
hence the memory system can be kept busy (minus a single cycle delay), hence the
system as a whole can still be considered to be work-conserving.

The multiplexer itself therefore operates in the following manner. Whenever
there is space in the output buffer of the multiplexer, it will inspect the blocking
counter. If this counter is equal to m, it will then inspect the “low-priority” input
queue, otherwise it will inspect the “high-priority” queue. If there is a request
waiting at the relevant queue, the multiplexer will update the CPU ID as described
in Section 4.2, then move the request to the multiplexer’s output. The multiplexer
will then increment the blocking counter, or set the blocking counter to zero if it is
equal to m.

Requester1 ω1

Requester2 ωA

Input1 ω1

Input2 ωA

Output ωslot ωslot ω1 ωA ωslot ωslot ωslot

Blocking Ctr 0 1 2 3 0 1 2

1 2 3 4 5

Figure 5.5: Example of a Bluetree multiplexer relaying prefetch slots (ωslot) in lieu of a
request. Numbered requests (i.e. ω1) are initiated by requester 1, and lettered
requests (i.e. ωA) are initiated by requester 2. This assumes a blocking counter
m = 3.

If, however, the relevant input queue does not contain a memory request to
be relayed, the multiplexer will forward the “prefetch hit” placeholder message
to the output queue, and again update the blocking counter as before. While
this placeholder message does not contain sufficient routing information for it to
be delivered back to a processor (i.e. it does not contain a valid CPU ID), it is
not required as all fields within the slot will be filled in by the prefetcher. This
situation is shown in Figure 5.5, which shows how prefetch slots are created when
two requesters initiate only a single request each. Each stage in this diagram is as
follows:
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1. Both requests each initiate a request, ω1 and ωA. In addition, the blocking
counter is not equal to m, which implies that input 1 should be given ser-
vice. Because there is no request here, a prefetch slot is relayed instead. The
blocking counter is then incremented as if requester 1 did have a request.

2. Both requests are accepted from the requesters. Because no data was avail-
able in the input buffer at the start of this cycle, a prefetch slot is again issued.
The blocking counter is again incremented

3. The blocking counter is not equal to m, so requester 1 is given service. There
is an accepted and outstanding request from requester 1, ω1, hence the re-
quest is serviced. The blocking counter is then incremented.

4. The blocking counter is now equal to m. The request from requester 2, ωA

is now given service, and the blocking counter reset to zero.

5. Requester 1 would be given service, but it has no requests outstanding. A
prefetch slot is hence instead issued. This behaviour then repeats until there
is a request available in the input buffers.

Finally, the downwards path for the multiplexer works as previously; the least
significant bit of the CPU ID field is inspected, then the CPU ID is shifted right by
one position and the response forwarded to the relevant output queue.

Relating to the system model presented in Section 5.2.1, these multiplexers can
be constrained in a similar way. For simplicity, this description will only consider
itself with a single multiplexer, but this analysis can be chained together to form a
full system by assuming a different value of ∆arb. Bluetree is entirely throttled by
using backpressure from the next stage, and hence the router will make a decision
every time the “next” stage (i.e. the prefetcher) has space in its input buffer. ∆arb

is therefore equal to δpf. Assuming two inputs L and R, a blocking factor of m,
and the fact that the blocking counter now runs regardless of whether each input
has any outstanding work, W∗ is defined as follows:

W∗ = {W(L, 0),W(L,∆arb),W(L, 2∆arb), ...,W(L,m∆arb),W(R, (m+ 1)∆arb)}

(5.7)

The definition of W(r,n) is then as described within Section 5.2.1; it either re-
lays the request waiting in the buffer for requester r, or relays the prefetch slot.
Because the prefetch slot is logically dispatched whenever a requester without any
outstanding work would have been scheduled, its timing behaviour is the same as
that of a standard memory request, and the slot would be dispatched whenever a
standard memory request would be dispatched. For this reason, it will not cause
any detriment to the worst-case execution time of the system.
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5.2.3 Updated Prefetcher

The prefetcher has also been modified in order to allow it to utilise prefetch slots
as specified in Section 5.2.1. Firstly, the design has been modified such that there is
only a single pipeline through the prefetcher, thus both standard memory accesses
and prefetch slots being converted into prefetches will incur the same latency. A
prefetch merger then takes the requests from the input queue and, if the request
is a prefetch slot, merges it with one of the pending prefetches before issuing it to
the memory controller. If the request is a “standard” memory request (i.e. a read
or write request), it is forwarded on un-modified, where the prefetch merger only
exists to ensure both prefetches and standard accesses have the same latency.

In order to ensure that prefetches and demand accesses are handled in the
same manner, the prefetch merger is blocked if the output queue is full, allowing
prefetch slots to be blocked if there is no space in the output queue, as a standard
memory access would be. If there are no candidate prefetches at the point that
the prefetch slot would be passed to the output queue, the prefetch merger will
discard the slot to ensure that no spurious blocking will take place.

The prefetch buffers have also been modified due to behaviour observed in Sec-
tion 4.3. These experiments showed that prefetches were, at times, being dis-
patched late due to the blocking from demand memory accesses and from other
prefetches. This lead to them effectively being useless, as they could not be coa-
lesced to a demand miss when they were in the output FIFO, and would simply
be dispatched later on and cause a performance detriment.

Clearly, a FIFO is not the ideal data structure to use for these output buffers.
Instead, the buffers have been changed to a set of registers; one for each processor.
These buffers are then accessed by the prefetch merger in a round-robin fashion. A
restriction has been placed on the system that each processor can only have a single
outstanding prefetch at once to simplify the prefetcher design, and so prefetch
buffers which correspond to a requester with an outstanding prefetch are skipped
from the schedule. Finally, these buffers are only a single register holding the most
recent prefetch. If the prefetch is not serviced by the time the “next” prefetch has
arrived, the currently pending prefetch is discarded, with the rationale that it was
unlikely to have been required by the processor.

While this scheme potentially throws away useful prefetches, it does still encom-
pass many traffic patterns. Instruction fetching is inherently serial and hence if the
prefetcher encounters a new prefetch, it either means that the old prefetch was ac-
curate, but dispatched too late (and hence the processor has already fetched those
instructions), or that the processor has jumped elsewhere, and hence the instruc-
tions being prefetched would not be required by the processor (and are analogous
to a branch mis-prediction). On the data side, the same ideas hold for a proces-
sor fetching sequential items of data, although there is an obvious counter-example
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when the processor is fetching two (or more) different streams of data at once in an
interleaved fashion. In this case, some prefetches may be discarded if the prefetch
of stream A is not initiated before the processor fetches another item from stream
B, overwriting the current prefetch buffer in the process, althoug the prefetcher
will still be able to fetch some items accurately and importantly, will not prefetch
stale data.

Bluetree

Input 
Queue

Incoming 
Squash Filter

Outstanding 
Prefetches

Prefetch 
Calculator

Stream 
Buffers

Prefetch 
Buffers

Prefetch 
Merger

Output 
Queue Mem

Outgoing 
Squash Filter

Return 
Queue

Figure 5.6: Internal block diagram of the modified prefetcher.

A new block diagram of the prefetcher can be found in Figure 5.6. Each block
works in much the same way as before, with the modifications listed above. As
before, each queue is of size 2, and each other block takes a single cycle to cross
with the exception of the calculator block, which takes three cycles. The prefetch
merger only takes a single cycle to cross, but both prefetch slots and standard
accesses must cross it with the same cycle of penalty and hence, the crossing time
t
pf↑
wc is the same for both prefetch slots and memory accesses. There are two major

scenarios for the operation of the prefetcher, which are explored below:

Demand Memory Access

The memory access will first be delivered into the input queue, then pass into both
the incoming squash filter and the prefetch calculator. The squash filter, as before,
checks whether the request can be coalesced with an outstanding prefetch and if
so, updates the outstanding prefetch table to mark the prefetch as “coalesced”. If
not, the memory access will pass into the prefetch merger, which will simply pass
the memory request on to the output queue where it will be issued to the memory
controller.
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The prefetch calculator works in an identical fashion to before; it will check
the set of stream buffers to ascertain whether it can be correlated to an existing
stream. If it does (i.e. there is a stream for which the last access was for address
A − 1), then the stream is updated to record A + 1 as the last address accessed,
and the prefetch buffer for the relevant processor will be updated with a prefetch
for address A+ 1. If an existing stream does not exist, an existing stream will be
replaced in round-robin order with a stream on address A, and no prefetch issued.

In. Queue ω1

In. Squash Filter ω1

Prefetch Calculator ω1

Prefetch Buffers P1 P2

Prefetch Merger ω1

Output Queue ω1

Memory ω1

1 2 3 4 5

Figure 5.7: Timing diagram showing a standard demand read access, ω1 transiting
through the prefetcher.

A graphical view of a packet moving through the prefetcher can be found in
Figure 5.7, where each step performs the following actions:

1. A demand access, ω1, enters the prefetcher. It is assumed that the current
state of the prefetch buffers is described with P1.

2. The demand access moves into the squash filter and the prefetch calculator.

3. The demand access could not be coalesced with an outstanding prefetch,
hence it transits to the next stage, the prefetch merger.

4. Since this is not a prefetch slot, the merger does nothing and simply emits
the memory request into the output queue.

5. The memory request is issued to memory. The prefetch calculator has fin-
ished processing the memory request and updates the set of prefetch buffers
accordingly. The new state of the prefetch buffers is denoted with P2.

Prefetch Slot

The prefetch slot again is delivered into the input queue. It will then pass through
the incoming squash filter, which will ignore it since it is not a read request. It
then passes into the prefetch merger, which will inspect the candidate prefetch
buffers to find an available prefetch for a requester which does not already have
an outstanding prefetch. If found, it will fill the slot in with the details of the
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prefetch and issue it to memory, and if not, simply discard the slot and await the
next request.

The prefetch merger will also update the outstanding prefetch table to record
the new prefetch. As before, when the prefetch is returned from memory, the out-
standing prefetch table is checked again. If the respective record for the prefetch
is marked as “coaleasced”, the prefetch will be returned as a demand read, other-
wise it will pass through un-modified. The respective record in the outstanding
prefetch table will then be cleared.

In. Queue ωhit

In. Squash Filter ωhit

Prefetch Calculator ωhit

Prefetch Buffers P1 P2 P3

Prefetch Merger ωhit

Output Queue ωpf

Memory ωpf

1 2 3 4 5

Figure 5.8: Timing diagram showing a prefetch hit request, ωhit transiting the prefetcher.
Because there is an available candidate prefetch ωpf ∈ P1, a prefetch can be
initiated.

A graphical view of this process can be found in Figure 5.8, and is described in
detail below:

1. The prefetch hit enters the prefetcher. The current state of the prefetch buffers
is assumed to be P1.

2. The prefetch hit moves into the incoming squash filter. Because this is a
prefetch hit from the processor and not a prefetch slot initiated from the
arbiter, it also moves into the prefetch calculator. If it was a plain prefetch
slot (i.e. just the arbiter notifying the prefetcher of spare time) then it would
only pass into the incoming squash filter.

3. Because prefetch slots do not cause any data to be fetched, the incoming
squash filter ignores the requests and passes it on un-modified.

4. The prefetcher merger searches for a candidate prefetch in P1 and re-writes
the prefetch slot to be a prefetch, ωpf. It then updates the prefetch buffers to
remove ωpf from them, leaving P2 as the new state of the prefetch buffers.

5. The prefetch ωpf is issued to memory. In this cycle, the prefetch calculator
also completes its processing and adds a new prefetch to the prefetch buffers.
The new state of these buffers is then P3.
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As noted within these steps, practically the same flow occurs for both prefetch
hits (which are prefetch slots with some added feedback) and prefetch slots orig-
inating from the arbiter. The only difference is that a plain prefetch slot does not
enter the prefetch calculator in step 2, and hence the state of the prefetch buffers
will not be updated in step 5.

μ0

I$ D$

PF$

μ1

I$ D$

PF$

...

Mux

Figure 5.9: Location of the small prefetch cache relative to the processor’s own caches.

The final modification that is required to prevent the prefetcher from negatively
affecting the worst-case execution time of the tasks running within the system
is the inclusion of a small “prefetch cache”, as mentioned within Section 5.1.2.
This is simply a small direct-mapped cache located between the processor’s main
caches and the memory interconnect, as seen in Figure 5.9. This cache is read-only,
and intercepts prefetches when they are delivered from the prefetcher, storing
them for later retrieval by the processor. Whenever the processor performs a read
operation, this cache is checked for the required line. If it is found, it is returned
to the processor directly from the prefetch cache, and a “prefetch hit” notification
delivered to the prefetcher. If two prefetches attempt to write to the same cache
location, the previously stored data is simply discarded from the cache.

The actual size of the prefetch cache is a design space parameter which can be
explored. If the system is space constrained, it can be reduced to be a single entry
buffer storing the most recent prefetch, throwing away any delivered prefetches
which were not required. Of course, this may be very wasteful, especially if the
prefetcher is prefetching two or more different streams of data at once (as the
elements of one data stream may be thrown away if a prefetch from another data
stream arrives before the initial prefetch was required). A good middle-ground is
to set the number of entries in the prefetch cache to be the same as the number of
stream buffers within the processor, with the intention being that each entry in the
prefetch cache will map to a prefetch from each stream buffer. Of course though,
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being a direct mapped cache, it is possible that two prefetches map to the same
entry in the cache, so larger is always better.

For these experiments, the size of the prefetch cache was set to be 32 entries. This
is because the prefetch cache operates on behalf of both the instruction and data
sides of the processor, each of which has eight stream buffers within the processor
(i.e. there are sixteen stream buffers assigned to the processor as a whole). In
order to ensure that prefetches were not easily lost, the number of entries was then
increased further to 32. Since the main focus of this chapter is to demonstrate that
this system setup does not cause any detriment to the worst-case behaviour of a
task though, the size of this cache is mostly irrelevant; the important detail is that
it is included.

5.3 system evaluation

Given the theory from Section 5.1.2, which has then been implemented into a
hardware system in Section 5.2, it must now be shown that the theory and prac-
tise actually stands up to real-world conditions. This section will provide an up-
dated evaluation methodology, and finally an evaluation of the behaviour of the
prefetcher within a real-time system using a measurement-based approach.

5.3.1 Evaluation Methodology

Because this work is focusing on being able to prefetch without harming the overall
worst-case execution time, the evaluation methodology is much the same as that
used within Section 4.3.

The system will again be evaluated on a sixteen-core system, where fifteen of the
available clients are hardware traffic generators, each of which initiate a memory
request on every cycle for which their output queues have available space within
them. This is used to simulate absolute worst-case conditions across the memory
tree. The final remaining client slot will then be used to connect a processor which
is then running the task under evaluation.

Again, two sets of applications will be used. Firstly, a set of software traffic gener-
ators will be used which issue an “ideal” access pattern. These just fetch sequential
cache lines from memory, then wait for a holdoff period before initiating the next
access. This is used to evaluate the behaviour of the prefetcher under worst-case
conditions, but when seeing an ideal traffic pattern. This task is then run again but
with a non-prefetchable pattern to demonstrate the impact that the prefetcher has
under absolute worst-case conditions. These two tasks should demonstrate both
extremes for the prefetcher on a single input.
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The prefetcher is then evaluated using a set of benchmarks from the TACLe-
Bench suite [94]. These benchmarks are single-path, and already have loop annota-
tions for the purposes of worst-case behaviour analysis. Despite this, they are still
executable, and provide a simple way to evaluate the behaviour of a real-world
task with multiple running streams alongside the prefetcher.

5.3.2 Software Traffic Generators
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Figure 5.10: Execution times with the prefetcher enabled and disabled in the worst-case
conditions.

The execution times for a software traffic generator running on processors at
indices which do not experience much blocking can be seen in Figure 5.10. There
are a few interesting behaviours which are exhibited in these graphs compared
with the graphs presented within Section 4.3.

The first of these is that the “prefetch off” execution times are actually lower for
many of the benchmarks using the slot-based prefetching scheme. The reason for
this mainly lies in the slot generation mechanism; by dispatching prefetch slots
(which are still dispatched even when the prefetcher is not running), the “blocking
counters” are always free running. This means that it is now unlikely for a memory
request to be blocked at every level throughout the memory tree; a memory request
on index 15 may be blocked by three other requests at the lowest level in the tree,
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but it may then only have to wait for a single other request at the next level because
of the effect of the prefetch slots on the blocking counters.

This means that many requesters which were connected to the low-priority input
of a multiplexer have observed an overall improvement to the execution time of
their tasks. Conversely though, requesters connected to high-priority inputs tend
to observe additional blocking because m prefetch slots have been dispatched and
hence the multiplexer now blocks the request where it did not before. Of course,
the state of the tree cannot be ascertained at any one point in time, and hence the
absolute worst-case response time for a memory transaction is as it was before, as
a memory request may encounter the maximal amount of blocking at each level
within the tree.

When the task is executing from index 0 (Figure 5.10a), memory requests from
the running task experience the least amount of blocking along their path to mem-
ory. The behaviour of the traffic generator is almost identical to that observed
without any control over the prefetcher, where the task still has a good speedup
without any performance detriment. The reasoning for this is mostly due to the
method by which prefetch slots are generated; because all other requesters are is-
suing memory requests as fast as possible, prefetch slots will only be generated
along the processor’s path to memory while it is not initiating any requests of its
own. Given the holdoff period is of the order of hundreds of cycles, this allows
many prefetch slots to be generated in-between the processor creating demand
misses.

Other processor indices without much blocking also show good results from
this approach. Again, this is because of the number of prefetch slots which can
be created while the processor is performing computation, hence allowing the
prefetcher to run and create prefetches for both the hardware traffic generators and
the running processor. Of course, these gains decrease as the amount of blocking
increases, but all tasks running on processor indices 0-2 show improvements of 15-
40% when the prefetcher is enabled. Processor index 2 (Figure 5.10c) also shows an
interesting effect at around delay 375 where the execution time with the prefetcher
enabled increases again. This occurs around the same area that there is a “step”
in the prefetch off line and can be explained similarly to some of the noise spikes
found within previous experiments. At around this delay point, the multiplexers
fail to coalesce the prefetch (travelling from the prefetcher to the processors) and
the demand miss for the same line, hence the execution time increases again. This
also explains the second spike at around delay 75.

The graph of index 3 (Figure 5.10d) shows what happens when the amount of
blocking starts to increase. All memory requests from this index must cross two
multiplexers on the low-priority side first, then two on the high-priority side. The
result of this is that the “prefetch off” trace has the stepping effect seen in the
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previous chapter, and also that it is difficult to initiate prefetches under certain
circumstances.

As before, the steps are caused because there are effectively now time intervals
between possible memory accesses. Any memory fetch which happens between
these intervals will have to wait until the next available interval. On the boundary
between these “steps” there will be fewer prefetch slots since what was once a
prefetch slot will now be used to transmit a demand miss instead, although this is
noisy due to the non-deterministic nature of DDR. Moreover, at these boundaries,
some prefetches fail to be coalesced with their demand misses since the coalescing
of prefetches on Bluetree is not perfect (it is possible that a prefetch transits out
of the multiplexer in the same cycle that the respective request enters, making the
coalesce impossible) and hence the improvement due to the prefetcher is lower.

Despite this, the system still observes improvements of 0-15% depending on
the delay. Importantly, however, the prefetcher does not cause a detriment to
the observed worst-case execution time of the task. The execution time with the
prefetcher enabled is slightly higher at some points (i.e. around delay 130), al-
though this is only by around 1%, and can be explained because of the apparent
execution time improvement due to the slot generation mechanism as discussed
before; in these cases, it is likely that the system never caused the worst-case con-
ditions to occur on the tree.
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Figure 5.11: Execution times with the prefetcher enabled and disabled in the worst-case
conditions.
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As the processor index increases, of course, as does the amount of blocking. For
the reasons explored earlier in this section, this means that fewer prefetch slots are
created and hence fewer prefetches can be initiated. As an example, the processors
in index 7, 11, 13 and 14 experience some of the highest levels of blocking when
attempting to transit the memory tree, and the results from these processors can
be found in Figure 5.11. For all of these systems, an improvement can be seen
while prefetch slots are still actually being generated. Of course, when the delay
between prefetches is reduced, eventually no slots can be generated and hence
the prefetcher is unable to operate. It should be noted, however, that even in this
case, the prefetcher does not cause any detriment to the worst-case execution time.
Finally, when the processor is running from index 15 (not pictured), the blocking
is so large that prefetch slots are never generated, and the execution time is no
different when the prefetcher is enabled or disabled.

All other processor indices exhibit similar behaviour; the lower-priority indices
begin to exhibit the previously seen “stepping” effect, and eventually as the num-
ber of prefetch slots dispatched becomes zero, there is no performance improve-
ment or detriment by using the prefetcher in the system. There is one interesting
point in Figures 5.11a and 5.11d though; the line for “prefetch off” has a spike
around the point of the “step”. The “stepping” effect can be explained as previ-
ously, but the spike occurs because there is some jitter in the time at which the
request is issued, relative to the multiplexer’s view of time. This is because the
time at which a request is issued is relative to the time at which the last request
completed, for which there may be some jitter depending on the state of the other
multiplexers, or if the memory controller scheduled a refresh etc. This means that
the “next” request from the processor may be slightly early, in which case it would
hit the window at which the processor would be scheduled anyway and hence
gain an improvement to the execution time, or be slightly late in which case it
would just miss its scheduling window and have to wait for the next one. The fact
that it sometimes hits and sometimes misses its window then leads to the noise
shown in the graphs.

The results from the same systems when an “unprefetchable” stream is used for
two of the processor indices can be seen in Figure 5.12. While only two systems are
shown here, all systems present almost identical behaviour; the system performs
almost the same with the prefetcher enabled or disabled.

In these systems, while prefetch slots may still be created within the arbitration
scheme, they can never be used for anything which is useful for the running task.
Nevertheless, these systems show no slowdown (except a marginal slowdown in
some cases as explained earlier in this section) as a result of the prefetcher being
operational in the system. Some of these systems actually show a marginal im-
provement to the execution time; this is typically caused by the rare cases where
the prefetcher accurately fetching data for the hardware traffic generators which
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Figure 5.12: Execution times with the prefetcher enabled and disabled when an un-
prefetchable traffic generator is used.

are simulating the worst-case system conditions, hence the response time of other
requests (which are blocking the stream of memory requests being inspected) is
lower and hence the amount of apparent blocking is lower.

5.3.3 Real-World Benchmarks

As in Chapter 4, the same systems were then used to run a selection of the bench-
marks from the TACLeBench [94] suite of benchmarks. Again, the benchmark
was run from each processor index on the tree, and the change in execution time
observed.

The results of this can be found in Figure 5.13. As with the traffic generators,
these benchmarks show improvements typically in the region of 5-30%, depending
on the access pattern of the benchmark being run, however, the apparent improve-
ments are lower than those observed when using the un-constrained prefetcher
(from Figure 4.16), again because prefetches begin to be throttled, and a side-effect
of creating prefetch slots does actually slightly improve observed execution times
in some situations.

The reasoning for the performance increase of tasks is also the same as that
demonstrated within Chapter 4; benchmarks which have a regular and predictable
access pattern can be greatly sped up by the use of a prefetcher. basicmath and
rijndael, again, utilise large subroutines which appear serially in memory, hence
is an ideal pattern to prefetch. md5 and sha operate on large serial data streams.
gsm and h264dec again begin to observe diminishing returns, since the amount
of computation begins to domainate over their memory blocking times. Finally,
some other benchmarks (e.g. fibcall) are very small, hence the prefetches which do
manage to be dispatched in time have a large effect on the overall execution time.

There are some interesting effects which are apparent within these graphs. The
first is that there is almost always a huge difference in the impact of the prefetcher
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Figure 5.13: Observed execution time improvement by utilising a prefetcher with the
TACLeBench benchmarks.

between processor indices 0 and 1, and between 2 and 3 and so on. This is caused
by the difference in the number of slots which may be generated by the arbiter for
these indices. Because they tend to be blocked towards the bottom of the tree, the
probability that a prefetch slot will be generated between two memory accesses is
lower, and hence the potential improvement is lower.

In addition, many of the tasks show absolutely no detriment to the worst-case
execution time of a task, even for the processor indices with the highest amount
of blocking (i.e. 7, 13, 14 and 15). This is simply because prefetch slots are only
created if a a prefetch hit occurs, in which case the prefetch slot is only taking
up the time within which the memory access would anyway, or created when the
processor did not issue a request by the point it would have received service, in
which case “dead” time would have been created. Two benchmarks (md5 and pm)
do show a slight performance detriment for some cores. Again, this is more due
to the fact that the actual worst-case was never observed; the apparent detriment
is caused by worst-case conditions actually occurring on the memory tree.
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5.4 summary

The work presented within this chapter provides a framework for performing feed-
back control of a prefetcher by a distributed, composable arbitration scheme in or-
der to utilise a prefetcher within a real-time system, without causing any detriment
to the worst-case execution time of the tasks running within said system. Further-
more, this framework was evaluated on a real hardware platform to demonstrate
that it does not cause any detriment to the worst-case execution time, and that it
typically improves the average-case execution time of the running tasks.

While this framework cannot currently improve the worst-case execution time of
a running task, all is not lost. Such a system may be used within systems with both
hard real-time tasks running, and either soft or non real-time tasks. By prefetching
for both hard and soft real-time tasks, it may be able to improve the execution
time of some tasks and hence may be able to help some soft real-time tasks to
meet their deadlines. It may also allow for soft real-time tasks to perform any
optional processing if there is sufficient resources remaining for it.

While prefetch slots are currently generated in a predictable way with respect to
the running task, it is not possible to accurately ascertain when prefetch slots will
be generated ahead of time. To do so relies upon determining how many prefetch
slots may be generated from the “slack” time of a set of tasks, while ultimately
depends upon the memory access pattern of each task and how much blocking
each of these memory accesses will experience. To do so would require analysing
each task together and hence breaks composability. Further work therefore can
build upon this framework, and attempt to develop a method by which prefetch
slots can be generated ahead of time, and where a lower bound on the number of
prefetch slots can be ascertained. From here, the predictability of the prefetching
method can used in order to attempt to improve the worst-case execution time
analytically ahead of time.

Finally, as also seen in Chapter 4, stream prefetching with “confirmation feed-
back” from the prefetch hits begins to limit the effectiveness of the prefetcher. Sim-
ply enough, by the time that the prefetch hit has managed to reach the prefetcher,
the next demand memory request has typically almost also reached the prefetcher
and also requires servicing. Ideally, a better feedback mechanism or a more ag-
gressive prefetching scheme should be used in order to further reduce the time
between two prefetches for a running task.
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6 W C E T I M P R O V I N G P R E F E TC H

Currently, Chapter 5 has provided a methodology by which a prefetcher can be
utilised in a real-time system without harming the worst-case execution time of
the running task. By the inclusion of this prefetcher, a task’s average-case execu-
tion time can be shown to improve, even while the system is under worst-case
conditions (i.e. maximal blocking on every memory access). While this approach
can be useful in mixed-criticality systems in order to allow soft real-time tasks to
perform more computation, it does not yet address the growing problem that rising
memory latencies are causing worst-case execution times to dramatically increase.

This chapter will take the work presented within Chapter 5, and attempt to ascer-
tain the conditions under while the inclusion of a prefetcher can be used to improve
the worst-case execution time of a given task. Moreover, the conclusions of both
Chapter 4 and 5 identify the fact that “confirmation-based” prefetch approaches
(i.e. ones where every prefetch must be acknowledged to be useful) do not scale
well, and hence this chapter presents a new prefetch scheme which does not suffer
from such issues.

6.1 improving the worst-case

This section will outline the prerequisites under which a prefetcher can be used to
improve the worst-case execution time of a running task. It will then outline a new
prefetching scheme which is more suited to these prerequisites and the arbitration
scheme, before finally detailing how this prefetcher is integrated into a worst-case
execution time calculation.

6.1.1 Worst-Case Execution Time Theory

As briefly mentioned within Section 2.1, static worst-case execution time analysis
tools operate using a model of the platform being used. The tool then splits the
program into a set of blocks, then analyses the program instructions within each
block against the system model in order to ascertain, under worst-case conditions,
how long the block of code will take to execute. Finally, according to the call graph
of the task, the execution times of each block is combined in order to derive the
worst-case execution time of the whole task. An example of this can be found in
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Figure 6.1: Example call graph for a hypothetical task.

Figure 6.1, where the worst case path is {A,D, F,G,H} with a worst case of 1588

cycles.
For feasibility and safety, these tools typically assume that each memory access

will take a fixed number of cycles, which is the worst-case latency for a memory
access. This worst-case figure includes the time taken to transit the arbitration, the
blocking from other tasks due to the arbitration scheme, the time taken to fetch
the request from memory, and finally the time taken to deliver the request back to
the processors again.

In order to integrate the prefetcher itself into the worst-case execution time cal-
culation, the prefetcher must be able to be modelled in a predictable manner, and
the behaviour of the prefetcher given an input task must be able to be modelled.
The prefetcher presented within Chapter 5 shows such a predictable design; it will
only issue a prefetch when it receives a prefetch slot, and it will service prefetches
for each processor in a round-robin fashion. For this reason, a prefetch will be ini-
titated on behalf of a processor, in the worst case, after the prefetcher has initiated
n− 1 other prefetches, where n is the number of processors in the system.

Of course, this only details for which processor a prefetch will be initiated when
a prefetch slot has been received. In order to be fully predictable, it must also be
possible to bound both what will be prefetched and when these prefetch slots will be
created. This section will concern itself with being able to predictably create these

154



prefetch slots, while Section 6.1.2 will concern itself with what will be prefetched
in these slots.

There are two main sources of prefetch slots. The first of these is from a processor
not completely utilising its allocated bandwidth. In every case where there is no
pending memory access when the arbiter “expects” there to be an outstanding
request, a prefetch slot will instead be generated. Assuming that a worst-case
service period (i.e. the longest period between two requests being relayed for a
given arbiter input) δarbwc (r) can be ascertained for a given arbiter input r ∈ C, it
can therefore be asserted that if two memory accesses of a task in the best case
are initiated at more than δarbwc (r) cycles apart, then a prefetch slot will certainly
be generated in the meantime. The best-case model is used in this case to assert
that a prefetch slot will definitely be issued in the given time period, since if the
worst-case is used, some of the operations in-between the given memory accesses
may execute slightly faster, meaning that the two memory accesses are now less
than or equal to δarbwc (r) cycles apart, in which case a slot will not be generated.

There are problems with this approach, however. The first is that a best-case
model of the system must also be constructed. While this is not much extra work
when also designing the worst-case system model, it does mean that the number of
potential prefetch slots may be extremely pessimistic. Furthermore, the generated
slots will only be able to apply to the currently running task; for these slots to be
used for other cores would again require that each task be evaluated against all
other tasks, breaking composability. This means that prefetches cannot be shared
at all between cores, and hence any prefetch slots generated by an un-prefetchable
task are effectively useless.

Another approach is to modify the system such that it is possible to statically
assert how often a prefetch slot will be generated in the worst-case. Compos-
able system analysis operates by assigning a partition of system resources to each
task, then analysing each task within said partition. If the combination of the
partitons used by each scheduled task does not fully utilise the available system
resources though, there will be spare capacity in the system. If the memory sys-
tem is under-utilised, this then implies that then prefetch slots may be generated
from the “spare” capacity. For Bluetree, this would be equivalent to one of the
tree inputs being un-connected as there is no task issuing requests from said input.
In this case, it can be asserted that a prefetch slot will be generated every δarbwc (r)

cycles due to a lack of a requester connected to this input. Given this knowledge, it
is therefore possible to predict the worst-case time in-between prefetch slots being
created and, given a predictable prefetcher, the worst-case number of slots which
need to be generated before a prefetch can be initiated for a given processor (in
this case, n− 1).

While this approach does break composability, the cost of analysis is much lower
than if each task’s access pattern was evaluated in order to ascertain when prefetch
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slots could be generated from a task not fully utilising its bandwidth quota. In ad-
dition, if all available system bandwidth has been allocated to other tasks, then
the prefetcher cannot be used to improve the worst-case execution time (since an-
alytically, prefetch slots will not ever be generated). If it can be asserted that a
tree input will be left un-connected, however, this technique can be used. More-
over, this technique can be used to derive a set of execution times, where each
corresponds to a set of un-connected tree inputs.

6.1.2 A Better Prefetching Approach

Now that Chapter 5 gives a prefetcher design which is predictable in so far as
which processor will receive a prefetch, and Section 6.1.1 can be used to ascertain
when a prefetch will happen, the final item which must be predictable is what
will be prefetched. Previous work presents techniques where there are multiple
prefetch buffers from which a single prefetch may be outstanding. These present
problems for system analysis as upon entering a code block, it is not easily possible
to ascertain whether a prefetch is already outstanding for a processor. A tool
may hence determine that a prefetch can be dispatched, when it may actually be
blocked by another outstanding prefetch.

Moreover, this technique uses a “confirmation-based” approach, where the pro-
cessor must acknowledge that a prefetch was useful before another can be cre-
ated. Of course, this acknowledgement must also transit the tree, being blocked
by other memory accesses and hence this approach is reasonably slow; previous
work within this thesis has shown that in many cases the prefetch hit notification
reaches the prefetcher only just before the next demand miss. For code prefetching,
confirmation-based prefetching is not ideal; such a prefetcher requires a number
of sequential fetches before it will begin creating prefetches, which may be longer
than the size of many basic blocks in the program and hence the analysis tool
may determine that prefetches can never be created. Moreover, if the basic block
is the same size as the number of fetches required to train the prefetcher, then
the prefetcher will begin fetching useless data just after the current basic block,
damaging performance.

Instead, the prefetcher should be able to issue prefetches as fast as possible. The
rationale here is that every memory request is assumed to have maximal blocking,
where non-existent requests are instead converted into prefetch slots. For that
reason, even if created prefetches are entirely useless, there is no impact on the
worst-case execution time. A better prefetching approach can therefore afford to
be as aggressive as possible, on as little information as possible.

While data fetching is typically viewed as “random”, instruction fetching does
typically have some form of inherent pattern. Compilers typically generate a set
of “basic blocks”, each of which is a single-entry multi-exit block of code which
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Instructions Data

Figure 6.2: Comparison of an example data access and instruction access.

is executed serially. Some compilers may also attempt to ensure that the most
likely path to be followed appears serially in memory too. A comparison between
such an instruction fetch pattern and an example data pattern can be found in
Figure 6.2.

The obvious technique to perform code prefetching is therefore to simply always
prefetch the next cache line. Because of the serial nature of programs, it will
probably be useful, and for reasons discussed previously, even if it is not, it will
not affect the task’s worst-case execution time. The prefetcher can then simply
fetch sequential lines from memory until it observes a demand miss for a different
address A, in which case it can change its fetch location to A+ 1 and continue as
before.

Of course, this approach only works well for code, and is not useful for the
random nature of data fetching. In this case, the prefetcher can fetch instructions
in this manner, but may also support the prefetching of data using the previously
evaluated method in order to attempt to improve the average-case execution time.
Since this work is currently focusing on improving the worst-case, however, it will
only concern itself with this instruction fetching scheme.

This technique should also give better results than those presented within Sec-
tion 5.3 due to the increase in aggression. Because the latency between a prefetch
being completed and the next prefetch being created is now zero, more prefetches
should be created in a more timely fashion.

Because of this increased aggression, however, cache pollution is now a very real
problem. Take the situation of a small program which is quickly loaded into cache,
then executes a large number of iterations exclusively from cache (e.g. matmult). In
this case the prefetcher will simply continue forever fetching data which is never
required, and eventually overwrite the useful contents of cache. The first obvious
fix is to cap the number of prefetches which can be fetched in a stream. This
prevents the prefetcher from fetching too much data, and if set correctly will not
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have an effect over the static analysis of the task (since extremely large basic blocks
are very rare).

Bluetree

Array
1

Array
2 ... Array

N

Cache Update

Cache Lookup

Req.
Queue

CPU

Resp.
Queue

Figure 6.3: Diagram of the internals of the intermediate stream cache.

The second fix is to again provide an intermediate cache to prefetch into. A suf-
ficiently small direct-mapped cache does still have the issue where a long prefetch
stream (or a large subroutine which calls a small function and returns again) can
overwrite the current prefetches in the cache though, causing a performance detri-
ment and even potentially invalidate the WCET calculation. Instead, a new design
for the intermediate cache is presented which better fits into the model of stream
prefetching used here. This cache uses a set of “arrays”, each of which stores a
fixed number of blocks of sequential data, as in the block diagram shown in Fig-
ure 6.3. When data is delivered to the cache, if the data is a prefetch (or a prefetch
squash), then each of these arrays is checked to determine if the new data is one
part of one of the already stored sequential streams. If so, it is added to the end,
and if not, a replacement candidate is picked in round-robin order. Example pseu-
docode for this process can be found in Listing 6.1. On a request by the processor,
the requested address is checked to determine whether it already exists in one
of these arrays, and is returned from cache if so. Example pseudocode for this
process can be found in Listing 6.2.
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#define CACHE_WAYS 8
#define CACHE_DEPTH 1024

addr_t addresses[CACHE_WAYS] = {0};
addr_t sizes[CACHE_WAYS] = {0};
data_t data[CACHE_WAYS][CACHE_DEPTH] = {0};
int buffer_replacement = 0;

void handle_incoming_data(data) {
// Only attempt to add prefetches
if(!is_prefetch(data))

return;

int foundBuffer = -1;
for(i = 0; i < CACHE_WAYS; i++) {

if(data.address == addresses[i] + sizes[i]) {
foundBuffer = 1;
break;

}
}

if(foundBuffer == -1) {
// Replace an existing buffer
addresses[buffer_replacement] = data.address;
sizes[buffer_replacement] = 1;
data[buffer_replacement][0] = data.data;
buffer_replacement++;

}
else {

data[foundBuffer][sizes[foundBuffer]] = data.data;
sizes[foundBuffer]++;

}
} �

Listing 6.1: Pseudocode description of how the stream cache inserts incoming data.

In order to reduce the implementation overhead of these arrays, each array is a
small piece of FPGA block-RAM. Two registers store the base address and size of an
array, and hence the address to be accessed for any requested address is simply
address - base address. In terms of FPGA resources, each array is reasonably cheap to
implement and hence each array can be the same size as the maximum stream size
to be prefetched at once. Multiplexing multiple arrays onto the input or output
of the cache is more expensive, however, and so the number of arrays should be
minimised.

In terms of timing, the prefetch cache is reasonably cheap to cross. From the
point that a request enters the cache, it will take three cycles to either reply with
the cached data, or to issue the request to memory. If a request is issued to memory,
this cache causes another cycle of delay when the response is being delivered, in
order for the response to cross the cache. For the purposes of this work, the cache
should be treated as an extension to the requester, and the model of the processor
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#define CACHE_WAYS 8
#define CACHE_DEPTH 1024

addr_t addresses[CACHE_WAYS] = {0};
addr_t sizes[CACHE_WAYS] = {0};
data_t data[CACHE_WAYS][CACHE_DEPTH] = {0};
int buffer_replacement = 0;

void handle_request(req) {
int foundBuffer = -1;
for(i = 0; i < CACHE_WAYS; i++) {

if(req.address >= addresses[i] &&
req.address < addresses[i] + sizes[i]) {
// Found it. Reply with the correct data.
reply_with_data(data[i][req.address - addresses[i]]);
return;

}
}

// Not found, issue to memory
relay_request(req);

} �
Listing 6.2: Pseudocode description of how the stream cache performs a lookup.

used should be modified to incorporate this extra latency into that of each memory
access. From the perspective of the system model from Chapter 3, this simply
causes the dispatch time of each memory access (i.e. td(ωr

n)) to increase by three
cycles, and requires no modification to the remainder of the system.

Finally, the cache supports simultaneously inserting prefetches from memory
and lookups from an attached processor. The base addresses and sizes of each
array are stored in registers, but with bypass capability such that the “lookup”
stage for a read can be notified of data which is currently being inserted. The next
cycle for the lookup stage then issues a request to the array’s block-RAM storage,
where the final cycle then reads the requested data and returns it to the processor.
Of course, any data which is being inserted as a result of a prefetch may write
to an address which the lookup logic is attempting to read from. In this case,
the block-RAMs are configured in read-first mode, which causes the cache read to
complete before the replacing data is written to that location.

As before, this prefetch cache is located close to the processor, in-between the
processor’s standard caches and the memory interconnect, as detailed in Sec-
tion 5.2.3.
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6.1.3 Improving the Worst Case

Section 5.2.3 gives a prefetcher design where it can be predicted which processor
a prefetch will be created for. Combined with an analysis of when the prefetcher
will be able to fetch from Section 6.1.1 and the analysis of what will be prefetched
from Section 6.1.2, it should now be possible to reduce the worst-case execution
time using the prefetcher.

If an input to the tree is left unconnected, it will generate prefetch slots when-
ever requests from it would be granted service under normal conditions. For this
reason, the time between prefetch slots being created from the multiplexer corre-
sponds to the worst-case inter-request time for a given arbiter input, δarb(r), which
for Bluetree corresponds to the worst-case time for a request to transit the first level
of the tree. This time can be ascertained using a modified form of the analysis pre-
sented within Section 4.2.1, specifically from Equation (4.8), which instead finds
the time until a packet has reached level l− 1 in a tree with l levels:

δarb(r) = δmem ×
∞

min
t=0

t : LPl (t) = l− 1 (6.1)

Because the worst-case blocking from level l− 1 of the tree to the top of the tree
is then constant, it can be stated that the prefetcher will receive a prefetch slot
originating from this tree input every δarb(r) cycles, in the worst-case. This is then
equal to the worst-case time between two prefetches being initiated. Given that this
figure is known, and that the prefetcher may be operating for up to n requesters,
the worst-case time between two prefetches being initiated for any given processor
is then derived as:

∆pf = n× δarb(r) (6.2)

This then forms a model of prefetching which can then be integrated into a
worst-case analysis tool. The prefetching scheme dictates that the prefetcher, when
possible, will always attempt to fetch the “next” set of instructions for any observed
instruction fetch. Given a set of contiguous instructions, it is therefore possible
to assert that a prefetch will be initiated, in the worst-case, ∆pf cycles after the
first instruction fetch of the set of contiguous instructions. This prefetch will then
definitely fetch the “next” set of instructions, after the last observed instruction
fetch, and will, in the worst-case, consume tmem

wc cycles.
For this reason, if the prefetch completes during the processor would have issued

a request for the prefetched instruction line, then the delay associated with the
fetch of the cache line can be eliminated entirely. If the processor would have
issued a request during the period in which the prefetcher is fetching the target
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line, then the latency of the memory fetch is reduced by the difference. After this
prefetch has been accounted for, the process can then repeat, using the start time
of the previous prefetch as the “initial” access in the block.

Computation Memory Access

Execution time

M1 M2 M3 M4

M1 M2 M3

Prefetch + Computation

Δpf

Figure 6.4: Example memory access scheduling with the prefetcher enabled.

Figure 6.4 shows an example of a prefetch being scheduled for a stream of in-
structions. This diagram shows four memory accesses (M1..M4), each separated
by a period of computation. After ∆pf cycles, the prefetcher has observed three
memory accesses, and has an access for M4 available in its output buffers. Af-
ter ∆pf cycles, this prefetch is scheduled, and can complete in its entirety before
M4 would normally be required. In this case, the access for M4 can be removed
entirely, and the worst-case execution time updated to reflect this.

Computation Memory Access

Execution time

M1 M2 M3 M4

M1 M2 M3

Prefetch + Computation

Δpf

M
4

Figure 6.5: Example memory access scheduling with the prefetcher enabled, where the
prefetch overlaps the demand access.

Figure 6.5 shows another possible case where ∆pf is slightly larger. In this case,
the processor requests M4 while a prefetch is already outstanding for it. Because
the prefetcher can coalesce prefetches, the time in which the processor is blocked
waiting for M4 to be delivered is slightly lower, and hence if the request for M4
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is dispatched at tM4, then the worst-case execution time is reduced by tM4 −∆pf

cycles.

6.2 evaluation

Now that a technique to improve the execution time of a task through prefetching
has been determined, it needs to be evaluated to determine the impact it may have
on the execution time of a given task. To do this, the technique has been integrated
into the OTAWA [99] worst-case analysis tool. This is a tool which analyses the
machine code for a task, then by extracting the timing behaviour from a model of
the task to be run, ascertains a worst-case bound for each basic block (or pairs of
contiguous basic blocks), then combines these times together.

The impact of the prefetcher on the static analysis of a set of TACLeBench bench-
marks will then be evaluated. In order to aid analysis, these benchmarks have al-
ready been annotated with the required loop bounds so that the analysis is feasible.
In order to evaluated the performance of the new prefetching technique, a set of
“worst-case” systems will again be built, and a set of the TACLeBench benchmarks
executed on the platform. Since this work is only evaluating the effect of code
prefetching, it does not make sense to execute the software traffic generators for
this platform.

6.2.1 Static Analysis

Because the worst-case analysis of the system takes place on single basic-block at
a time, there are two parameters which control the potential gains which can be
observed given any block of code at a time. The first of these is the length of the
basic block; if the basic block is longer, the WCET tool can analyse more code and
hence, given a sufficiently long ∆pf, a longer basic block may yield better results
as more prefetches will definitely be able to be initiated in this period.

The other of these parameters is how long each fetched instruction takes to
execute. Since many of the instructions in the Microblaze processor only take
a single cycle to execute, the differentiating factor is how many memory accesses
each block of code fetches from memory. If a block of code initiates a data memory
access, then the execution time for that block will be longer, and again due to the
longer length will allow more prefetches to be initiated.

Table 6.1 shows the potential saving which the prefetcher may bring to a hy-
pothetical block of code under analysis, where prefetch slots are being generated
from index 0, demand misses are being issued from core 1 and each memory ac-
cess takes 50 cycles. This leads to a memory access response time of 850 cycles and
a ∆pf time of 4000 cycles.
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Zero loads One load Two loads
BB Length Standard Saving Standard Saving Standard Saving

1 850 0 1700 0 2550 0

2 1700 0 3400 0 5100 0

... ... ... ...
5 4250 0 8500 850 12750 1700

6 5100 250 10200 850 15300 1700

... ... ... ...
10 8500 250 17000 2550 25500 3400

11 9350 500 18700 2550 28050 4250

... ... ... ...
20 17000 750 34000 4400 51000 7700

21 17850 1000 35700 5250 53550 7700

Three loads Four loads
BB Length Standard Saving Standard Saving

1 3400 0 4250 0

2 6800 0 8500 250

... ... ...
5 17000 1700 21250 1000

6 20400 2550 25500 1250

... ... ...
10 34000 4650 42500 2250

11 37400 5500 46750 2500

... ... ...
20 68000 10150 85000 4750

21 71400 11000 89250 5000

Table 6.1: Potential WCET savings within the analysis by using the prefetcher, for varying
numbers of cache lines in each basic block each with a given number of loads.
Each cache line is assumed to be four words long.

In these results, BB Length refers to the size of the basic block under analysis
in caches lines, where each cache line can hold four instructions. This then evalu-
ates the potential saved cycles in the cases where each of these cache lines contains
between zero and four memory access instructions. Standard then shows the execu-
tion time of this block with the prefetcher disabled, and Saving shows the number
of cycles by which the worst-case can be improved by.

Of course, as the length of the basic block increases, the potential to prefetch
increases as there is now sufficient time for the prefetch to actually be dispatched.
Moreover, as the proportion of memory accesses increases, as does the potential
gains. Again, this is because the memory accesses “create” time in which a prefetch
can be successfully dispatched. Clearly, the prefetcher is most effective for tasks
with long, straight-line code blocks (e.g. large math routines), or for data-bound
applications with many reads from shared memory.

Figure 6.6 shows the potential improvement that is available when the tree input
at index 0 (i.e. the one with the least blocking) is left unconnected. Many bench-
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Figure 6.6: Improvement in the WCET for a number of benchmarks when the processor
at index 0 was left un-connected.

marks yielded a good improvement (between zero and 30%) depending upon the
access pattern of the task. Data-bound benchmarks with reasonably large routines,
such as gsm and h264dec yielded good results, because the size of the basic blocks
were large enough for something to be prefetched, and the data access could also
allow a prefetch to be initiated.

Despite having large math routines, the basicmath benchmark did not yield as
good results as other “large” benchmarks. This is because many of the math rou-
tines operate solely on registers, without accessing main memory much. This
access pattern means that even with large basic blocks, there is not actually much
potential for prefetching. Nevertheless, it could still observe improvements to the
worst-case execution time.

Other benchmarks, for example matmult and sqrt are reasonably small, but still
fetch some data to memory. Because of the size of these benchmarks, even one
or two instruction lines being successfully prefetched translates to a very good
improvement in their overall execution time.

Figure 6.7 then shows what happens if the input at index 1 (with a slightly
higher amount of blocking) is instead left un-connected. Of course, this translates
to a higher value for ∆pf, and hence fewer prefetches will be dispatched in a given
window. For sufficiently small basic blocks, or basic blocks which do not operate
on memory, this may lead to no prefetches being dispatched at all where before
they could be.

Many tasks therefore have a performance improvement, but not as much as
when tree index 0 was left unconnected. Because of the latency for a prefetch to
be dispatched, the cores with a low blocking term now typically do not experience
a good improvement due to the fact that the basic blocks under inspection have
typically been fully executed in less than ∆pf cycles.
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Figure 6.7: Improvement in the WCET for a number of benchmarks when the processor
at index 1 was left un-connected.

Figure 6.8 finally shows the case where tree input 2 is left un-connected. The
trend is largely the same as the difference between leaving index 0 and index 1 un-
connected; a prefetch slot will experience more blocking before it is able to transit
the lowest level of the tree, hence ∆pf is larger and hence fewer prefetches will be
able to be initiated in any given time interval. Many of the tree indices with less
blocking are now unable to observe an increase to the worst-case execution time,
again, because the basic blocks under inspection complete before ∆pf cycles have
elapsed, in the worst case.

6.2.2 Worst-Case Hardware System

In order to evaluate the performance benefits of the new prefetching system on
a task under “worst-case” conditions, the prefetcher was also synthesized into a
hardware system and placed next to the memory controller, as before. The system
was then evaluated with the same set of benchmarks as in Section 6.2.1 and the
performance improvement recorded when the prefetcher was enabled. Again, as
the prefetcher is only used for code prefetching, the software traffic generators
were not used, as they are data-side benchmarks. The experimental evaluation is
the same as in Section 5.3.1; fifteen hardware traffic generators were used, each of
which requests on every possible cycle to simulate the worst case, while a Microb-
laze processor was connected to the final input to run the benchmark.

Figure 6.9 shows the realised performance increase when slots were being gener-
ated from index 0 on the tree. Here, many tasks realise huge improvements from
utilising these generated slots for prefetching. Because index 0 is left unconnected,
a great amount of prefetch slots are generated reasonably quickly. Moreover, ex-
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Figure 6.8: Improvement in the WCET for a number of benchmarks when the processor
at index 2 was left un-connected.

ecuting the task in this manner allows the prefetcher to also yield slots from the
task itself not fully utilising its allocated bandwidth budget.

Because the prefetcher is operating on the code side only, tasks with large basic
blocks yield very good results. The first example is basicmath, which contains large
math routines. Because of the size of these routines, the prefetcher can accurately
predict a large number of the potential memory accesses, and hence the benchmark
yields very good results. md5 also uses reasonably large routines, and hence yields
a good performance increase.

Data bound applications, for example gsm and h264dec still yield good benefits
due to still having reasonably large routines for audio and video decoding, but
due to the large number of data accesses (which are not prefetched), only yield a
20-40% increase to their execution times.

Many smaller benchmarks (for example, qurt and sqrt) may still realise good
benefits due to being reasonably straight-line, hence the prefetcher can operate
well, but due to their size even a few accurate prefetches will dramatically change
the execution time for the better. matmult is another small benchmark which can
benefit by the program being accurately prefetched, but does not yield huge per-
formance increases due to the number of iterations of this small kernel, which is
resident in cache.

Many benchmarks show a similar “shape” for the performance increase. This
is simply due to the amount of blocking which tasks experience while waiting
for memory accesses. Tasks which are blocked for longer will typically not coa-
lesce their prefetches, and of course have much higher gains to be realised by the
inclusion of the prefetcher and see a better performance increase. Data bound ap-
plications, however, typically can only be improved to a point and show a “flatter”
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Figure 6.9: The performance improvement from the prefetcher being enabled under
“worst-case” conditions.

shape. This is simply because the waiting time for data access to complete con-
sumes most of the time, hence forming a limit on the effectiveness of the prefetcher.
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Figure 6.10: The performance improvement from the prefetcher being enabled under
“worst-case” conditions, compared with work conservation

Of course, within a real system, it would be possible to simply use these prefetch
slots as work-conserving accesses, and effectively share the “spare” bandwidth
amongst all other requesters. Figure 6.10 shows the performance increase that the
prefetcher can yield when compared with work-conservation.

The potential performance improvements again largely depend upon the access
pattern of the task being executed. Because the prefetcher can speculatively issue
memory accesses, code-bound applications (e.g. basicmath and md5) yield very
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good performance improvements when compared to work-conservation, as do
some of the smaller benchmarks (e.g. sqrt and qurt).

On the other hand, any data bound applications, for example, h264dec and gsm
yield better performance improvements by the utilisation of work-conservation.
This is simply because of the number of (unprefetchable) data loads to main mem-
ory which take place. In this case, work-conservation will perform better, since
the “spare” bandwidth can be allocated to both the data loads and the instruction
loads, and due to the large number of data loads, the net result is better system
performance under work-conservation. Due to the very small size of the matmult
benchmark, the prefetcher will successfully fetch the whole benchmark, but will
also continue past the benchmark fetching useless data. This slows down any mem-
ory accesses which it may perform, and hence work-conservation again performs
better as it will only fetch data which is definitely required.

6.3 summary

This chapter presents a system design, building on top of the work within Chap-
ter 5, which facilitates predictable prefetch. This is achieved by exploiting the inher-
ent access pattern of program code to simplify the internal state of the prefetcher
such that it can be accurately predicted what will be prefetched for any given
stream of code. Given the slot-based system also presented within Chapter 5, it
then provides a method to ascertain the worst-case time between two prefetch slots
arriving at the memory controller and hence provides a system to ascertain what
will be prefetched and when, for each processor in the system.

This methodology gives a good improvement to the worst-case execution time
of a task when integrated into a static analysis tool, realising a performance of up
to 30%, depending on the access pattern of the benchmark and the period between
slots being received by the prefetcher. Moreover, the prefetch yields very good per-
formance increases of up to 90% when evaluated in a hardware system, and even
improvements of up to 80% when compared with standard work-conservation be-
cause of the speculative nature of the prefetcher.

This approach does require an amount of “spare” bandwidth to be known about
ahead of time. This may be known about ahead of time; tasks within a compos-
able system do not necessarily consume all available system bandwidth. Moreover,
tasks may be added or removed from the system at run time, and hence a system
may provide service levels for a task, or different WCET guarantees, depending
on the currently allocated portion of the bandwidth. While this does break com-
posability, it is reasonably simple to analyse and does not require an expensive
analysis of the interactions of a set of tasks.
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Of course, this “spare” bandwidth can instead be used to reduce the worst-case
of a task through reducing the worst-case blocking which the task can experi-
ence because of work-conservation. While this is technically possible, the work-
conserving behaviour of an arbiter is rarely known, and typically depends upon
the access pattern of the other tasks in the system, hence again breaks compos-
ability and requires an expensive system analysis. This approach provides a good
alternative which, by issuing a memory access ahead of time at a known time
from a separate functional unit, can improve the analytical worst-case execution
time of a task and in some cases, perform better than work-conservation due to its
speculative nature.
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7 C O N C L U S I O N S A N D F U T U R E W O R K

To recall from Section 1.2, this thesis attempted to prove the following hypothesis:

A prefetcher can be constructed in such a way that it can be used within
a real-time system in a predictable way such that it does not cause
any detriment to the worst-case execution time of the tasks running
within that system. Furthermore, this methodology to predict when
the prefetcher will operate, it is possible to utilise “spare” or unallo-
cated bandwidth within the system to actively improve the worst-case
execution time estimate of a task running in a real-time system by using
a predictable prefetcher.

This thesis has provided a framework by which a prefetcher can be integrated
into a system utilising composable arbitration without modification to the system
analysis in order to improve the average-case execution time of a task without any
harm to the worst-case execution time of a task. It then moves on to define a
predictable bandwidth source which can then be combined with the system model
in order to provide a safe and analysable improvement to the worst-case execution
time of a task.

This work provides a valuable method by which a predictable prefetcher can
therefore be used to slow the ever-growing memory latencies found in modern
multi-core real-time systems given a static amount of “spare” system bandwidth
known ahead of time. Moreover, this work can also be used to define service levels
based upon the current difference between the total available system bandwidth
and the bandwidth assigned to requesters by the arbiter.

7.1 contributions

The contributions of this thesis can be summed up as follows, organised by chap-
ter:

chapter 4 provides an insight into the behaviour of a standard, off the shelf
prefetcher on a system currently under worst-case conditions. This chapter
shows that while under “perfect” conditions (i.e. a stream of accesses which
can be perfectly predicted) the prefetch provides a good improvement to the
execution time of a task, it quickly provides a detriment to the execution time
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of a task as soon as it starts mis-predicting memory accesses. This chapter
then goes on to show that the prefetcher can cause a slowdown of up to
70% to the worst-case execution time of a task, an effect which is clearly
unacceptable within a real-time system.

chapter 5 builds upon these results to provide a model by which the prefetcher
can be notified of slack time in the system and by which the arbiter and
requesters in the system can generate this feedback. Since this feedback is
generated when the worst-case analysis would expect a request to be present,
but it is missing, the prefetcher can operate in such a way that it does not
exceed the interference which is predicted by the worst-case analysis. From
this, the prefetcher can thus operate and improve the average-case timing of
a real-time system without any detriment to the worst-case execution times
of real-time tasks.

chapter 6 finally identifies locations in the system where “spare” bandwidth
can be predictably sourced from, which can then be used in the above system
model. Because a predictable amount of “spare” bandwidth can be identified,
it is then possible to identify the worst-case time between the prefetcher being
able to issue two prefetches. This chapter then provides a more predictable
model of prefetch for a task’s instructions and hence provides a system by
which it can be predicted what will be prefetched for a given task. The
combination of being able to identify what will be prefetched and when then
allows a task’s worst-case execution time to be improved by the inclusion of
the prefetcher.

These contributions together provide a system which, under certain conditions,
allow a prefetcher to provide an improvement to the analysed worst-case execution
time of a task, and hence prove the hypothesis that a prefetcher can be constructed
to operate in a sufficiently predictable manner such that the worst-case execution
time of a real-time task can be improved.

7.2 conclusions

The first major conclusion of this work relates to the first part of the thesis hypoth-
esis. Through modification to the system arbiter and prefetcher, it is possible to
extend the system in such a way that the prefetcher can operate in a safe man-
ner without any detriment to the worst-case execution time of the system. This
works well; Chapter 5 demonstrates that the prefetcher can yield an average-case
execution time improvement of up to 30%, while guaranteeing that the prefetcher
will not cause a detriment to the worst-case execution time analytically and also
demonstrating the fact in a real system.
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This method is not without its limitations, however. The first of these is that
the feedback required for the prefetcher to operate must still travel over the same
arbitration system as “standard” memory accesses. While it can be asserted that
these feedback messages do not harm the worst-case execution time, it does yield
problems for low-priority requesters as the feedback messages will be blocked for
a long period of time. Because it is these messages which stimulate the prefetcher
to issue the “next” prefetch, it means that low-priority requesters do not see a great
performance improvement, while only making the higher priority requesters even
faster. For the most part though, this is a limitation of using a fairly “standard”
prefetching heuristic; a smarter or more aggressive prefetching scheme such as
that used in Chapter 6. Equally, the system could be modified such that prefetch
notification messages are passed through a different memory network, and hence
experience much less interference, although this will of course have a higher hard-
ware overhead.

The other limitation is that this technique requires a small “prefetch cache” to be
utilised so that prefetches cannot displace data from the processor’s cache which is
required in the near future. While this requires extra hardware, the overheads are
reasonably small. Ideally, this prefetch cache only requires as many entries as there
are stream buffers inside the prefetcher; as the prefetch “hit” notification is only
created when there is a prefetch hit, new prefetches for a stream will not overwrite
old ones because the condition for the new prefetch being initiated is that the old
prefetched data has been read. Of course though, if the hardware overhead must
be minimised, this cache can be reduced to only hold the most recent prefetch,
although this may cause other prefetches to be lost.

Despite these two limitations, this poses a valuable technique to improve the
average-case execution time of real-time tasks, and should help to maintain system
responsiveness in the face of rising memory latencies. While this technique has
limited applicability for systems comprising of only hard real-time tasks, it may
be useful in systems with both hard and non real-time tasks; by improving the
execution times of all tasks in the system, there is potentially more time available
to run the non real-time tasks.

By building a predictable and aggressive prefetcher and outlining a method to
predictably generate “spare” bandwidth within the memory system, Chapter 6

then presents a method by which the prefetcher can be used to improve the worst-
case execution time of a task. This again works quite well, with some benchmarks
gaining a 20-30% increase to their worst-case execution times, depending on the
amount of “spare” bandwidth available.

Of course, the limitation of this technique is that it requires an amount of spare
bandwidth to operate which must be ascertained ahead of time. Clearly, this band-
width could instead be shared amongst the current requesters rather than be used
for prefetching, although as shown in the comparison of work-conservation and
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prefetching towards the latter part of Chapter 6, different tasks benefit from dif-
ferent methods; as prefetching can be used to completely eliminate the time taken
to access memory, it can potentially yield better performance. Moreover, leaving
“spare” bandwidth in this manner is just one method by which prefetch slots can
be generated; the further work in Section 7.3 will identify other sources of prefetch
slots which could be explored in further work to allow the worst-case to be im-
proved without leaving “spare” bandwidth.

Despite this limitation, the technique as a whole works well and can analytically
improve the worst-case execution time of a hard real-time task. The rising mem-
ory latencies and increased memory contention is always going to be an issue, but
a technique such as prefetch can, and has been shown to, take steps to mitigate
this rising memory latency. Ultimately, this proves the thesis hypothesis to be
true; a prefetcher has been constructed which can both be used in a real-time sys-
tem without any performance detriment, and can also improve worst-case system
performance under certain constraints.

7.3 further work

Of course, there are many avenues through which this work can be extended in
future to further improve the results, or to analyse the current results even further.

The first of these should attempt to extend the new prefetching methodology
further in order to also consider the data side prefetching when improve the worst-
case execution time. This may be done in a few different ways; if a loop accesses
sequential elements, value analysis may be used to determine whether the sequen-
tial elements can be prefetched and hence, given a worst-case time between two
of the load instructions being executed can be ascertained, determine whether a
prefetch for a data item will complete in time. Other techniques could use a vari-
ant of persistence analysis to predict the state of the prefetcher at any point within
a task’s execution, similar to how cache analysis works. This can then be used to
ascertain which data accesses would be prefetched and thus further improve the
worst-case execution time.

Secondly, in order to improve the worst-case execution time through data-side
prefetching, a new data-side prefetching scheme should be developed in order to
make it easier to predict what would be prefetched. There are many methods
which can be used to improve the predictability of this; streams of data could be
tagged ahead of time to inform the prefetcher of what can be prefetched, then a
similar scheme to the presented code prefetching (i.e. start fetching all subsequent
entries after the first has been hit) can be used to fetch sequential stream elements.
Equally, software managed prefetching could be used to notify the prefetcher of
what data could be fetched next, effectively creating an “asynchronous read” in-
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struction within a processor. This can then be filled in by the compiler to fetch
data ahead of time. These techniques may also be advantageous to improve the
accuracy of code prefetching.

Better results still could be yielded by being able to generate prefetch slots with-
out having to leave one of the arbiter’s inputs un-connected. As mentioned within
Chapter 6, it may also be possible to predict how many prefetch slots are gener-
ated due to a task not fully utilising its bandwidth bounds and instead use these
prefetch slots to improve the worst-case execution time of a task. One method to
do this could be to constrain prefetch slots to a specific requester, only allowing
them to form a prefetch for those requesters. Using a technique to build a model
of how many memory requests a task issues in a period of time (e.g. from [22, 23]),
it is also possible to predict how many prefetch slots are generated. If it is accept-
able to break composability, it may also be possible to allow these prefetch slots to
improve the worst-case execution time of all tasks within the system, thus allowing
low-priority tasks with a large amount of blocking to also benefit.

Finally, any technique which is using the “spare” bandwidth of an arbiter is al-
ways going to be contrasted against work conservation. The latter stages of Chap-
ter 6 does perform a contrast between prefetching and work conservation under
“worst-case” conditions, showing that both techniques can perform well for differ-
ent task sets. This comparison could even be taken further, leading to a hybrid
approach of work conservation and prefetching. As an example, each prefetch slot
could also contain the details of a work-conserving access if one is available. The
prefetcher can then attempt to split the “spare” bandwidth between work conser-
vation and prefetching to investigate if the combination of the techniques yields a
greater performance increase than using one of the techniques alone.

7.4 closing remarks

Shared memory causes a great bottleneck in many systems; memory controllers are
being shared between an increasing number of processing cores as the multi-core
scaling of modern systems only continues. One major conclusion that can be taken
from this observation is simply that shared memory is not the correct paradigm
to use for modern systems, and that instead local memories and explicit commu-
nication should be used. Which such techniques will improve performance by
reliving some pressure on memory, shared memory simply cannot be eliminated
as the memory requirements of many modern tasks far exceed what can be pro-
vided with smaller, private memories. The cost of implementing larger core-local
memories, or a DDR memory per core is simply not cost effective with modern
manufacturing technologies.
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Shared memory is still a very useful paradigm for tasks requiring large amounts
of storage, or for many tasks which need to access the same, large bank of data.
There are many methods by which the latency problem can be alleviated; some
systems are moving towards integrating many DDR controllers on their chips (for
example, Tilera [100] chips currently utilise four separate DDR controllers). By
partitioning the memory between all requesters, the effective pressure on each
memory controller is reduced. Other techniques can raise the request granularity
to move more data in a single transaction, increasing the response time of each
request but delivering much more data at once.

Importantly, these techniques are not mutually exclusive with the prefetching
technique provided within this thesis. This thesis has shown that the ever-growing
latencies associated with accessing a shared memory can be slowed by also includ-
ing a prefetcher within the system. It can then also be combined with a partitioned
memory controller, or a larger request granularity in order to further improve the
performance and scalability of a multi-core system.
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