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Abstract 

The thesis focuses on the control of asymmetric permanent magnet synchronous 

generator (PMSG) system, with particular reference to the suppression of its second 

harmonic (2h) power, DC bus voltage and torque ripples. 

The asymmetries include the unbalanced resistances, unbalanced inductances, and 

unbalanced 3-phase back-electromotive forces (EMFs). The mathematical model of 

the general asymmetries in the PMSG system is firstly presented. The power ripple 

and torque ripple due to the asymmetries without/with negative-(N-) sequence 

currents are then analysed in detail. It shows that there are 2h impedances in the 

synchronous dq-axis frame. Consequently, the N-sequence currents emerge under the 

conventional current proportional and integral (PI) control, which will result in 

undesired 2h power, DC bus voltage and torque ripples. 

To suppress the 2h torque resulted from the N-sequence currents, three typical 

methods aiming for balanced currents without N-sequence currents are reviewed, 

evaluated and their relationship is revealed. It shows that all these three methods are 

capable of suppressing the N-sequence currents as verified by experiments. However, 

the 2h power and DC bus voltage cannot be suppressed. 

To suppress the undesired 2h power and DC bus voltage, an improved power 

control without any sequential component decomposers under general unbalanced 

conditions is proposed. Its effectiveness is validated by elaborated experiments on a 

prototype PMSG with inherent asymmetry and deliberately introduced asymmetries. 

However, the 2h torque is compromised. 

To solve the 2h torque, power and DC bus voltage simultaneously, the 

compensation in parallel with the DC bus is investigated in the PMSG system with 

asymmetric impedances. The undesired 2h power from the PMSG is compensated by 

the 2h power from the compensation unit. Two topologies of the compensation unit 

and corresponding control methods are investigated, while the compensation 

effectiveness is validated by experiments. 

Furthermore, the compensation unit with external circuits in series with the 

asymmetric PMSG is investigated. By the compensation in series, the original 

unbalanced system is modified to a balanced system in theory. Therefore, the N-
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sequence currents, 2h power, DC bus voltage, and torque ripple can be naturally 

suppressed. The feasibility of this compensation method is verified by experiments at 

different speeds and load conditions, although the effectiveness may be slightly 

affected by the non-linearity of the compensation inductors in practice. 

Finally, the research of suppressing the 2h DC bus voltage and torque ripple is 

extended to the dual 3-phase PMSG system with one channel failed. By utilizing the 

windings, rectifier or inverter in the faulty channel which are still functional, three 

methods designated as two sets in parallel, two DC buses in parallel and N-sequence 

currents compensation are investigated, which require minimum extra hardware 

investment compared with the compensation in parallel and in series. 
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Chapter 1 General Introduction 
Equation Chapter (Next) Section 1 

1.1 Introduction 

Wind power generation technology has been developed since 1970s and developed rapidly 

from 1990s [1]. Various wind turbine concepts have been developed and different wind 

turbine generators have been built. According to the speed controllability, power electronics, 

and generator type, the wind turbine can generally be categorized into different types [1-5], as 

described as follows.  

According to the speed controllability, the wind turbines can be classified into fixed-speed 

and variable-speed wind turbines [5]. The fixed-speed wind turbines work at fixed speed, 

which are designed to obtain the maximum efficiency at one wind speed. When the wind 

speed increases beyond the level at which the rated power is generated, the power will be 

regulated by pitching the blades. The variable-speed wind turbines are designed to achieve 

maximum aerodynamic efficiency over a wide range of wind speeds. By adapting the turbine 

speed to wind speed by tracing the optimum tip-speed ratio, it is possible to obtain maximum 

power from the incident wind and achieve optimum aerodynamic efficiency when the wind 

speed is below the level of the rated wind power. In contrast, when the wind speed is above 

the level of rated wind power, the blades are pitched necessarily to regulate the power. 

Compared with the fixed-speed wind turbines, the variable-speed wind turbines have many 

advantages such as increased energy capture and operation at maximum power point below 

the level of the rated power, improved efficiency, and power quality, etc.[6]. 

According to the power electronics employed in the wind turbine system, the power 

converters can be divided as partial-scale power converter and full-scale power converter [7]. 

The doubly fed induction generator (DFIG)-based wind turbine [6, 8] equipped with partial-

scale power converter is the most adopted solution nowadays and has been used extensively 

since 2000s. The DFIGs are typically used in the applications that require varying speed of 

the generator in a limited range around the synchronous speed. The stator windings of DFIG 

are directly connected to the grid, whereas the rotor windings are connected to the grid by a 

power converter with normally 30% capacity of the wind turbine. The converter controls the 

rotor’s speed within typically ±30% synchronous speed [6]. From the economical point of 

view, the DFIG-based wind turbine is very competitive because of the smaller converter. 
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However, its major problem is the use of slip rings, poor controllability and grid support 

under the grid faults conditions [9]. 

In the wind turbine system with full-scale power converter, the energy from the generator is 

rectified to DC bus by rectifier and then transferred to the grid by inverter [10]. The generator 

can be asynchronous generator, electrically excited synchronous generator, or permanent 

magnet (PM) excited synchronous generator. The stator windings are connected to the grid 

through the full-scale power converter, which can perform reactive power compensation and 

smooth grid connection for the entire speed range. Compared with the DFIG-based partial-

scale converter system, the full-scale power converter wind turbine system has higher losses 

and it is more expensive. However, the elimination of slip rings, simpler control, full power 

and speed controllability, and better grid support ability are the major advantages. In the near 

future, the wind turbine with full-scale power converter is expected to take over the DFIG-

based wind turbine [10, 11]. 

According to the generator type, the wind turbine can be classified as DFIG, asynchronous 

generator, and synchronous generator based wind turbine. The synchronous generator, either 

externally electrical excited or PM excited, are becoming the preferred generator in the best 

seller power range [4, 5, 11, 12], especially the PMSG wind turbine system is the most 

attractive wind turbine systems and is increasingly used due to its high efficiency, low 

maintenance cost, low noise, maximum wind power capability in wide wind speed range, and 

good grid support ability, etc [13-16]. 

One of the problems associated with some wind turbine systems is the presence of the 

multi-stage or single-stage gearbox coupling the wind turbine to the generator in the geared 

wind turbine system. This mechanical element suffers from considerable faults and increased 

maintenance expenses. To improve reliability of the wind turbine and reduce maintenance 

expenses, the gearbox can be eliminated by using direct-drive multi-poles generator with high 

torque at low rated speed [1, 17]. The wind turbine without gearbox is namely the direct-

drive system. 

The system with the multi-pole PMSG and full power back-to-back (BTB) converter 

without gearbox becomes the most adopted generator system in the near future due to the 

reduced losses, reduced noise, high drive stiffness and lower weight [10]. However, the 

increased price of rare-earth magnets might change the philosophy of wind turbine drive 

trains to avoid high risk in expenses. 



3 
 

1.2 PMSG Direct-drive System 

Generally, there are two types of PMSG direct-drive system. The first is the conventional 

system; the second is the BTB system. 

1.2.1 Conventional PMSG Drive System 

The power topology of the conventional PMSG drive system is illustrated in Fig.1.1, which 

is constructed by a PMSG, a passive diode rectifier, a boost converter and a grid side IGBT 

inverter [7, 18-24]. The boost converter controls the DC-side voltage or DC-side current 

according to the maximum power point tracking (MPPT) [18, 19, 25, 26]. The control 

function of the grid-side inverter is to regulate the DC bus voltage by transferring the power 

from the DC-link capacitor to the grid. 

Fig.1.1 Conventional PMSG drive system [20, 21]. 

The conventional PMSG drive system is widely used in small-scale wind turbine system 

for its low cost and high reliability. The major disadvantage is that the PMSG current is not 

controlled by the passive diode rectifier; which results in severe low-order current harmonics. 

The corresponding large electromagnetic torque ripple may have a detrimental effect on the 

life of the turbine through fatigue induced by shaft torque ripple [21, 27, 28] and result in 

noise [29-32]. The problem of wind turbine acoustic noise was addressed in detail in [29, 33, 

34], when the wind turbine is sited within residential areas, noise is a primary siting 

constraint as it causes hearing loss and sleep disturbance [35]. The complaint of wind turbine 

noise has been reported many times in recent years. 

As detailed in [36], the mechanical drive train of wind turbine can be modelled as two 

masses connected with spring. Therefore, there are resonance frequencies in the system. If the 

resonance frequencies are in accordance with torque ripple frequencies, severe mechanical 

vibrations could be induced by even 1.5~2% of torque ripple [37]. Any torque harmonic 

located near a shaft’s natural frequency will create an oscillation with significant magnitude, 
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potentially leading to accelerated fatigue or severe damage of the system, unless the 

oscillation is sufficiently damped [27]. 

Since the reduction of torque ripple can significantly reduce the vibration and acoustic 

noise [38, 39], it is very important to suppress the torque ripple in the PMSG wind turbine 

system. It is detailed in [40, 41] that the current harmonics due to the passive diode rectifier 

can be minimized by making the boost converter work in discontinuous mode, and then the 

torque ripple can be significantly reduced. However, the current stress of the boost converter 

switch in discontinuous mode is much higher than that in continuous mode; which makes the 

conventional PMSG drive system impractical as the system power level increases. 

The conventional PMSG drive system without the DC-side capacitor was investigated in [7, 

20, 21]. It is detailed in [21] that the torque ripple can be reduced by removing the DC-side 

capacitor, and it can be further reduced by controlling the DC-side current compared with 

controlling the DC-side voltage. However, abundant low-order current harmonics and torque 

ripple are still inevitable. 

1.2.2 Back-to-back PMSG Drive System  

Since 2000, more and more advanced BTB power converters were introduced to regulate 

the power from the wind turbines [3, 11, 42, 43]. At first, it was employed mostly in the 

partial-scale power capacity for the DFIG [6, 44, 45], then in the full-scale power capacity for 

the asynchronous/synchronous generator [10, 11, 46-50]. By introducing the BTB in the wind 

turbine system, the extracted power from the wind turbines can be fully controlled. 

Meanwhile, it enables the whole wind turbine system to act like a completely controllable 

generation unit which can better integrate the wind power into the grid [4, 10, 12, 51, 52]. 

The BTB PMSG drive system can be illustrated in Fig.1.2, where a controlled IGBT 

rectifier is employed for PMSG drive [42] instead of the passive diode bridge rectifier in 

Fig.1.1. By using the controlled rectifier, the currents of PMSG can be controlled 

independently by the vector control techniques, and therefore, electromagnetic torque ripple 

can be minimized and the mechanical stress can be correspondingly reduced [42]. 

The DC bus voltage can be maintained to a fixed value. Alternatively, it can be regulated to 

an adaptive value for reduction of losses in the wind turbine converter and higher reliability 

[53, 54]. There are generally two kinds of control strategies for the wind turbine system 

according to which side is in charge of controlling the DC bus voltage. 
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Fig.1.2 BTB system. 

In the first control strategy, the speed control plus current/power control are applied to the 

generator side, while the speed reference is from the MPPT [42]. The generator works in 

generation mode and transfers the power from the wind turbine to the DC bus. The DC bus 

voltage control is applied to the grid side, which tries to regulate the DC bus voltage so that it 

can follow the DC bus voltage reference by transferring the power from the DC bus to grid 

side so as to avoid the accumulation of power on the DC bus capacitor. 

In the second control strategy, the DC bus voltage control is employed in generator side, 

the power/current control is employed in grid side, while how much power should be 

extracted from the wind turbine is from an offline lookup table according to the wind speed 

[55]. The advantage of this control strategy is that it can regulate the DC bus voltage during a 

supply dip, which could provide better grid support compared with the first control strategy. 

1.3 Conventional Vector Control 

Nowadays, numerous control strategies such as direct torque control (DTC) [56], model 

predictive control [57-59] and vector control [42, 60-63] have been developed for 3-phase 

drive system. The DTC has the advantages of low machine parameter dependence and fast 

dynamic torque response. However, the drawback of the DTC is represented by the torque 

and flux ripples [64]. In order to obtain equivalent dynamic torque response as DTC, a 

preferred alternative is the model predictive control. The main objective of the model 

predictive control is to control instantaneous stator currents with high accuracy in a transient 

interval that is as short as possible [65]. It can provide high dynamic performance and low 

current harmonic to ensure the quality of the torque and speed controls [66]. However, its 

applicability is hindered due to parameters sensitivity and high cost in computation. The 

vector control [42, 60-63] control is for its simplicity and low torque ripple. It controls the 

torque related q-axis current and air gap flux-linkage related d-axis current in dq-frame 

individually. The torque ripples can be reduced by controlling the stator currents [67]. 

Consequently, the vector control is widely adopted in industrial applications.  
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The typical PMSG drive system can be illustrated in Fig.1.3, which is mainly constructed 

by the controller and power driver. The controller acquires the necessary information such as 

the current, speed, and rotor position, etc., and then the stator voltage that should be applied 

to the machine can be obtained according to the control object. The controller outputs 

corresponding PWM signals to the power system and then the power system converts the 

PWM signal to PWM output voltages, which are equivalent to the stator voltage that should 

be applied to the machine. 

Cdcv

 

Fig.1.3 Typical PMSG drive system. 
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Fig.1.4 Vector control of 3-phase system. 

The flowchart of conventional vector control is shown in Fig.1.4. The PI controllers in dq-

frame can be expressed as 

 
*

*

i
p

dd

qq i
p

K
K iv s

iv K
K

s

      
              

 (1.1) 

where 
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*

*

d d d

q q q

i i i

i i i

   
        

 (1.2) 

Assuming that the induced 3-phase back-EMFs are sinusoidal and balanced, eddy current 

and hysteresis losses, mutual leakage inductance, and saturation are neglected, the voltage 

equation for the ideal 3-phase PMSG without asymmetries in dq-frame can be expressed as 

(1.3)-(1.4) respectively [60, 61, 68, 69]. 

 
 
 

_

_

s d dd ffd d

q ffd qs q q

R sL iv v

v vR sL i

    
          

 (1.3) 

where 

 
_

_

0ffd d dq q q q
e e e

ffd q q fd d d d

v eL i L i

v eL i L i
  


         

           
        

 (1.4) 

where s is differential operator, Rs is the stator winding resistance. Ld and Lq are the dq-axis 

inductances respectively. ψf is PM flux. The ωe is the electrical angular speed. id, vd, iq, vq, ed 

and eq are the dq-axis currents, voltages and back-EMFs respectively. vffd_d and vffd_q are 

decoupling voltages in dq-frame. 

The electromagnetic torque can be expressed as 

     3 3

2 2e d q q d f q d q d qT p i i p i L L i i        (1.5) 

where p is the number of pole-pairs. The equivalent circuits for (1.3)-(1.4) can be illustrated 

in Fig.1.5. It can be seen from Fig.1.5 that the equivalent circuits in dq-frame are decomposed 

completely, which are similar to the equivalent circuit of DC machine. Therefore, the PMSG 

can be controlled like a separately excited DC machine and has the equivalent fast transient 

response while does not have the drawbacks of mechanical commutation in the DC machine 

[69]. 

Therefore, the conventional current control with cross-coupling feed-forward control for 

PMSG can be illustrated in Fig.1.6. The output of PI controllers can be expressed as 

  * *i
d p d d d e q q

K
v K i i e L i

s
      

 
 (1.6) 

  * *i
q p q q q e d d

K
v K i i e L i

s
      

 
 (1.7) 
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dv
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e q qL i

di
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qv

sR qL

e d d e fdL i 
qi

 

(b) 

Fig.1.5 Equivalent circuits of 3-phase PMSG in dq-frame. (a) d-axis equivalent circuit. (b) q-

axis equivalent circuit. 
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Fig.1.6 Conventional current control in dq-frame with cross-coupling feed-forward control. 

When voltage (1.6) and (1.7) are applied to the PMSG, according to the voltage equations 

in (1.3), the current responses can be expressed as 

    *i
p d d s d d

K
K i i R sL i

s
     
 

 (1.8) 

    *i
p q q s q q

K
K i i R sL i

s
     
 

 (1.9) 

As can be seen from (1.8) and (1.9), after the cross-coupling feed-forward compensation, 

the mathematical model in dq-frame can be simplified as a resistance and inductance (RL) 

load [63]. Considering the time delay in the current control loop, the current control in dq-

frame can be illustrated in Fig.1.7, where Td is the total delay time in the close loop, including 
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current sampling delay, PWM voltage output delay, etc. L is Ld in id current controller and it 

is Lq in iq current controller. 

1

sLs R
dT se

*i ii
p

k
k

s


 

Fig.1.7 Current control after cross-coupling feed-forward compensation. 

To simplify the design of PI gains, the delay function dT se is usually simplified as a low-

pass filter [70], which can be expressed as 1/(1+sTd). If the dominant pole of –R/L is canceled 

by the zero point of PI controller, the open loop of whole system can be simplified as typical 

first order system in control theory [70]; then Kp and Ki equation can be optimally designed as 

 24p
d

L
K

T
  (1.10) 

 24
s

i
d

R
K

T
  (1.11) 

where   is damping factor. The  is equal to 0.707 for optimized design in the typical first 

order system, which can achieve good rising time and overshot simultaneously. However, if 

the inductance and resistance vary with temperature, the dominant pole and zero in the close 

current control loop are not well matched; therefore, the dynamic performance will be 

affected. In some cases, the Kp and Ki gains need to be reduced to guarantee the system 

stability in the whole working range. Or alternatively, if the inductances and resistances can 

be identified from online tuning, the Kp and Ki gains can be always optimized according to 

(1.10) and (1.11). 

The current control structure can be illustrated in Fig.1.8. Since the gains of PI controller 

are chosen to cancel the dominant pole related to inductance and resistance, the dynamic 

performance is only related to the total time delay. 

1

sLs R

*i i 
24

s

d

Ls R

T s




1

1 dT s

 

Fig.1.8 Current control with major pole point cancellation. 

The close loop transfer function can be expressed as 
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 * 2 2 2 2

( ) 1

( ) 4 4 1d d

i s

i s T s T s 


   (1.12) 

Usually, the coefficient of the s2 term is much smaller than the coefficient of s term. 

Therefore, (1.12) can be rewritten as (1.13), which is a typical low-pass filter. 

 * 2 2 2 2 2

( ) 1 1

( ) 4 4 1 4 1d d d

i s

i s T s T s T s  
 

    (1.13) 

As the cut-off frequency of the low-pass filter in (1.13) is related with Td,  the bandwidth of 

PI controller is directly related with Td. When Td is smaller, the bandwidth is higher, vice 

versa, when Td is larger, the bandwidth is lower [70]. As presented in [32], the bandwidth can 

expanded by using double current sampling and PWM duty cycle double update to reduce the 

time delay Td. 

It is worth noting that, the cross coupling feed-forward voltages in (1.4) are not always 

accurate due to the parameters variation in practice, which may be resulted from temperature 

variation, saturation, etc. In this case, the mismatched crossing-coupling compensation 

voltages will be compensated by the PI controllers. This increases the burden of PI 

controllers. Therefore, the cross coupling feed-forward voltage compensation should be as 

accurate as possible. 

1.4 Asymmetric PMSG 

In practice, the perfectly symmetrical machine is impossible. Generally, the asymmetries of 

PMSG include the unbalanced resistances, unbalanced inductances and unbalanced 3-phase 

back-EMFs, which may be resulted from the poor connections [71-74], winding asymmetries 

[75-81], rotor eccentricities [82], manufacturing tolerances, or faulty conditions [83, 84], etc. 

The stator resistances may be unbalanced due to the poor connection resulted from the 

combination of poor workmanship, thermal cycling, vibration, or damage of the contact 

surfaces due to pitting, corrosion, or contamination [72-74]. In [74], an online detection of the 

high-resistance of the induction machine was developed based on monitoring the asymmetry 

in the voltage and current measurements. In [85], the analytical model of 3-phase induction 

machine with unbalanced 3-phase resistances was developed in terms of voltage and current 

space vectors. In [72], the detection of stator resistance asymmetry in multi-phase induction 

machine was investigated, it showed that the P-sequence and N-sequence current components 

appeared in the harmonic sub-planes, which are normally absent in balanced operating 

conditions. In [86], the current control for six-phase induction machine was investigated in 
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the scenarios with introduced asymmetries by connecting extra resistor in series with phase 

windings. In all these researches, the stator resistances were assumed not equal to each other 

and the unbalanced resistances were modelled as extra resistance connected in series with the 

original balanced system [72, 74, 85]. 

The unbalanced inductances may be resulted from the winding asymmetries. In [75], the 

winding asymmetries in small synchronous generators was studied, it was found that the 

synchronous machines are slightly asymmetric with unbalanced slot leakage inductances and 

unbalanced 3-phase back-EMFs due to the winding asymmetries. An extreme example of the 

winding asymmetries is the linear machine, e.g. as presented in [78], the average self-

inductances are unbalanced in the PM linear synchronous machine. Another example of the 

winding asymmetries is the multi-unit 3-phase machine in the event of fault. When all units 

work normally, there is no difference between the multi-unit machine and the single 3-phase 

machine with all units in parallel. However, in this case of failure of one unit, only the 

healthy units are supplied, the remaining healthy windings may work under unbalanced 

conditions. In [79], various winding configurations of the dual 3-phase 12-slot, 10-pole 

(12s/10p) PM machine were investigated. In the first winding topology of double-layer 

windings and single-layer windings in [79], the remaining phase windings are asymmetric 

after removing one set of the dual 3-phase windings, which will result in unbalanced 

magnetic flux paths, unbalanced radial force and unbalanced inductances. Although doubling 

the slots and poles (24s/20p) can reduce unbalanced radial force [80], however, the magnetic 

flux paths are still unbalanced, which will result in unbalanced inductances. In [76] and [81], 

the average mutual inductances in the same unit of the multi-unit 3-phase machine are 

unbalanced, and the 2h mutual inductances may be different as well with different winding 

connections. As also shown in Fig.C.1(a), the measured mutual-inductances of the prototype 

PMSG employed in the thesis are unbalanced. 

In [82], the back-EMFs of the PM brushless machine due to eccentricity was investigated. 

It shows that the eccentricity does not affect the back-EMFs and electromagnetic torque of 

rotational symmetrical machines whose configuration repeats every certain amount of angle, 

but the back-EMFs waveforms of rotational asymmetric machines are distorted significantly. 

Further, the static eccentricity does not change the harmonic contents of back-EMFs, but 

results in unbalanced 3-phase back-EMFs. 
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1.5 Influence of Asymmetries 

The performance of the PMSG drive system may be affected by the potential asymmetries. 

When the 3-phase system is asymmetric, the unbalanced phase currents are produced [87-90] 

under conventional current control due to the limited bandwidth of the PI controller. Based 

on the symmetrical-component theory [91], the unbalanced currents in 3-phase system can be 

decomposed as positive-(P-) and negative-(N-)sequence currents. The N-sequence currents 

will interact with the back-EMFs and result in the torque ripple at the twice fundamental 

frequency and 2h power which will flow towards DC bus capacitors. 

In the wind turbine system, the speed of generator depends on the aerodynamic torque Tw 

and the electromagnetic torque Te. The aerodynamic torque oscillations are resulted from 

random wind fluctuation, tower shadow or wind shear [92]. On the other hand, 

electromagnetic torque ripple is mainly resulted from the generator-side harmonic current. 

Both these torque ripples are a source of mechanical stress on the drive train and may have a 

detrimental effect on turbine lifetime. 

The aerodynamic torque Tw ripple caused by wind fluctuation and shear is hard to be 

avoided because of environmental factors. However, the electromagnetic torque Te ripple can 

be suppressed since it is related to generator current and therefore can be controlled. If there 

are N-sequence currents in the stator currents, the N-sequence currents will interact with the 

back-EMFs and the 2h torque component will be produced. As mentioned in [37], severe 

vibrations, corresponding acoustic noise, and fatigue could happen due to mechanical 

resonance[27, 28], which is not allowed in the wind turbine system. 

The undesired 2h power flowing through the DC bus capacitors will result in the 2h current 

and 2h DC bus voltage. Since the equivalent series resistance of capacitors increases at low 

frequencies, the low-order current harmonics contribute disproportionately to the capacitor 

power losses and temperature rise, resulting in reduced lifetime [93, 94]. Nowadays, the DC 

bus capacitors are very fragile components in the power system [88, 93, 95], especially the 

cost reduction pressure from global competition indicates minimum design margin of 

capacitors, which increases the risk of failure of DC bus capacitors. Meanwhile, as the 

inverter of grid side in Fig.1.2 is trying to maintain the DC bus voltage, the undesired 2h 

power will be transferred to the grid side and results in higher current THD of grid side. 
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1.6 Control of Asymmetric PMSG 

1.6.1 Balanced Current Control 

To suppress the 2h torque due to the N-sequence currents, the effective way is to suppress 

the N-sequence currents if the 3-phase back-EMFs are balanced. In the unbalanced 3-phase 

system, the balanced current control, which tries to suppress the N-sequence currents in the 3-

phase currents, is intensively investigated. Generally, there are three typical current control 

methods which are applicable for supressing the N-sequence currents. The first is the 

proportional and resonant (PR) control in αβ-frame, the second is the dual current control, 

and the third is the proportional and integral plus resonant (PI-R) control in P-sequence 

reference frame (PSRF). 

1.6.1.1 PR Control in αβ-frame 

In general, the conventional PI regulators in αβ-frame are regarded as unsatisfactory for ac 

current regulation since the conventional PI regulator in this reference frame suffers from 

significant steady-state amplitude and phase errors. In [96, 97], the PR control in αβ-frame 

was proposed to trace the fundamental currents without tracing error due to the infinite 

selection characteristic at the centre frequency in the resonant control. The PR control has 

been widely employed in the industry applications. For example, the resonant control was 

employed to compensate selected current harmonics in active power filter system in [98, 99]. 

The resonant control at the centre frequency of fundamental was employed to regulate the P-

sequence and N-sequence currents in the grid application under generalized unbalanced 

operation conditions in [100, 101]. 

Since the PR control can trace the fundamental currents without tracing error in αβ-frame, 

if the current references in αβ-frame are fundamental, sinusoidal and have the same 

amplitude but 90° displacement, which means the reference currents are balanced, then the 

phase currents will be balanced. Compared with the conventional current control in 

synchronous dq-frame which could not achieve balanced currents in asymmetric system, this 

method can achieve balanced currents without requiring Park and inverse Park 

transformations [97], and it also does not require decomposing the sequential current 

components. 

1.6.1.2 Dual Current Control 

Since the P-sequence currents in PSRF and the N-sequence currents in N-sequence 

reference frame (NSRF) are DC components, if the DC components in NSRF can be 
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suppressed successfully, then the N-sequence currents can be suppressed and the balanced 

currents can be achieved. 

The dual current control was proposed in [102] for grid application with unbalanced supply 

voltages, where two PI controllers in PSRF and NSRF were employed to regulate the P-

sequence currents in PSRF and N-sequence currents in NSRF respectively. The notch filters 

were employed to extract P- and N-sequence currents as current feedback in the current 

controllers [102]. The dual current control was applied to PM synchronous machine with 

asymmetric phases in [87], where the sequence separation delaying method [103] was 

employed to extract P- and N-sequence currents. In [84], the dual current control was applied 

in the surface-mounted PM synchronous machine with internal turn short fault to suppress the 

N-sequence currents so as to suppress the torque ripple, where the notch filters were 

employed in each synchronous frame (PSRF and NSRF) to extract P- or N-sequence 

components. 

In the applications in [84, 87, 102], the dynamic performance may be compromised due to 

the use of the notch filter or delaying method. In [104, 105], the dual current control without 

notch filter was investigated for general unbalanced electrical systems, which can regulate the 

P-sequence and N-sequence current effectively. As there are DC and 2h currents in the 

current feedback in each frame, there are tracing errors in each set of the dual PI controllers. 

In [106], the dual current control with two PI plus resonant control (PI-R) in PSRF and NSRF 

respectively without notch filter was employed in grid applications. Although this method is 

also effective in terms of regulating the P-sequence and N-sequence currents, the dual current 

control of PI-R control is actually redundant. In fact, only the PI-R control in PSRF or NSRF 

will be sufficient in term of regulating the P-sequence and N-sequence currents. 

It is generally assumed that the cross coupling can be applied to decouple the cross 

coupling between d-axis and q-axis in dq-frame in the conventional current control. However, 

as detailed in [107] where the cross-coupling decoupling in the dual current control was 

evaluated, it is found that this technique does not produce noticeable improvement in the dual 

current control. 

Although the dual current control can be employed to suppress the N-sequence currents and 

achieve balanced 3-phase currents, it requires twice of the current controllers as that in 

conventional current control, which is the major disadvantage. 
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1.6.1.3 PI-R Control in PSRF 

When the unbalanced currents in abc-frame are mapped to synchronous dq-frame, the N-

sequence currents will be converted to 2h components in the dq-frame. If the 2h components 

in dq-frame are suppressed, then the N-sequence currents can be suppressed.  

In [108-110], the PI-R control with the resonant controller at the centre frequency of twice 

fundamental frequency in PSRF, was employed to suppress the 2h components in dq-frame 

so as to suppress the N-sequence currents. In [109], the currents in both DFIG and grid side 

are controlled in PSRF without decomposing sequential currents in the DFIG system with 

unbalanced network. In [108], the same control strategy was employed in a stand-alone DFIG 

system with unbalanced and nonlinear loads. In [111], the PI-R control in dq-frame in dual 3-

phase PMSM system was employed to eliminate the current unbalance between two sets and 

between phases in each set. 

This method has only one set of current controllers in PSRF, which is different from the 

dual current control with two sets of current controllers in PSRF and NSRF respectively. 

1.6.2 Second Harmonic Power Suppression 

When the currents are unbalanced in the asymmetric 3-phase system, the 2h power can be 

produced [112], which flows through the DC bus capacitors and results in the 2h DC bus 

voltage [113, 114]. Therefore, to suppress the 2h DC bus voltage, the 2h power flowing 

through the DC bus capacitors should be suppressed. 

1.6.2.1 Instantaneous Power Control 

Since the 2h DC bus voltage is related to the 2h power flowing through the DC bus 

capacitors [115, 116] and the 2h power is from the asymmetric PMSG, the effective way to 

suppress the 2h DC bus voltage is to suppress the 2h power from the PMSG, which can be 

achieved by the instantaneous power control [100, 102, 114, 117, 118]. The instantaneous 

power control has been widely employed in a weak grid-connected PWM rectifier system 

[100, 102, 114, 117, 118], where the grid voltages are unbalanced. By injecting the N-

sequence currents into the system in the instantaneous power control, the 2h power generated 

by the P-sequence currents and N-sequence voltages can be compensated by the 2h power 

generated by the N-sequence currents and P-sequence voltages. 

To illustrate the instantaneous power control principle, the block diagram of BTB system is 

shown in Fig.1.9, where the definition of current direction is based on motor mode rather than 
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generate mode. It is worth noting that the powers pin and pout are negative when the PMSG is 

in generation mode. In Fig.1.9, ea, eb, and ec denote back EMFs. The power generated by ea, 

eb, and ec is designated as pin, the power of the resistor and inductor are PR and PL 

respectively, the output power from the inverter is designated as pout, which is the sum of pin, 

PR and PL. 
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Fig.1.9 Illustration of power flow in BTB system. 

Generally, there are three kinds of instantaneous power control. The first is the 

instantaneous input power control [102, 117, 119], the second is the input-output-power 

control [100, 118], and the third is the output power control [114].  

The first method is the instantaneous input power control [117], where the negative (N-) 

sequence currents were introduced aiming for no 2h power in the input active power pin and 

zero average input reactive power. The average input power, zero 2h power in pin and zero 

average reactive power from ea, eb, and ec were employed as constraints to calculate the P- 

and N-sequence current references. However, the dq-axis currents were regulated by 

proportional-integral (PI) controllers in dq-frame [117], which would cause tracing errors due 

to the limited bandwidth of the PI controllers. To solve this problem, the dual current control 

scheme was proposed in [102], where the P- and N-sequence currents were regulated in the 

positive synchronous reference frame (PSRF) and negative synchronous frame (NSRF) 

respectively. By using a notch filter in each synchronous reference frame (SRF), the P- and 

N-sequence currents could be extracted so that they can be regulated. However, this method 

neglects the pulsating power in the impedances (PR+PL). Actually, the DC bus voltage 

essentially depends on the instantaneous output power pout rather than the input power pin. 

The power in the impedances fluctuates when the impedances or currents are unbalanced. 

Therefore, pout fluctuates even when pin is constant, and then it will still result in DC bus 

voltage ripple. In [119], the PR control in αβ-frame was employed to regulate the P-sequence 

and N-sequence currents without the sequential current components. However, to obtain the 
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current reference, the sequential components decomposer for supply voltage was necessary. 

Meanwhile, as the input power control cannot eliminate the 2h DC bus voltage, the DC bus 

voltage PI-R control with resonant control at the center frequency of twice fundament was 

employed, which resulted in third phase current harmonics. 

The second method is the input-output-power control [100, 118]. Since the 2h DC bus 

voltage depends on the 2h power in pout rather than pin, the average input active power pin, 2h 

power in pout and zero input reactive power from ea, eb, and ec were employed as constraints 

to calculate the P- and N-sequence current references. Since the 2h power in pout is 

considered, this method is capable of suppressing the 2h power even under generalized 

unbalanced operation conditions. Therefore, there is no 2h DC bus voltage ripple. To avoid 

tracing errors in the current regulators [117] and to avoid notch filters to extract P- and N-

sequence currents [102] which may reduce overall bandwidth of the current regulators, the 

resonant control was employed in [100, 101, 109, 118]. For example, the dual current 

regulators with PI-R control in the PSRF and NSRF respectively were employed in [118], the 

PR control in αβ-frame was employed in [100, 101], and the PI-R control in PSRF was 

employed in [109]. However, to calculate the current references, the sequential component 

decomposers were still required to extract P- and N-sequence supply voltages and output 

voltages, e.g. the notch filter was employed in [100, 109, 118] and the dual second-order 

generalized integrator(DSOGI) method [120] was employed in [101]. 

The third method is the output power control [114], where the average power in pout, the 2h 

power in pout and zero average output reactive power were employed as constraints to 

calculate the P- and N-sequence current references. Similar to the second method, this 

method is also robust to the generalized asymmetries due to the consideration of the 2h power 

in pout. Furthermore, it does not need extract the P- and N-sequence components of ea, eb and 

ec in Fig.1.9. However, the sequential output voltages are still essential for the calculation of 

the P- and N-sequence current references. To avoid the extraction of the sequential output 

voltages, the sum of supply voltages and inductor voltages were used to estimate the 

sequential output voltages in [114, 121, 122], which means the impedance asymmetries were 

not considered and the sequential component decomposers for the currents and supply 

voltage were inevitable in [114]. More specifically, the sequence separation delaying method 

[103] was employed to extract P- and N-sequence supply voltages and the notch filter method 

[102] was employed to extract P- and N-sequence currents in [114]. 
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From the aforementioned introduction, the second and third methods can essentially deal 

with the 2h DC bus voltage regardless of the asymmetries including the unbalanced 

impedances. However, some sequential component decomposers were required in the 

previous works. The comparison of various methods can be summarized in TABLE 1.1. 

1.6.2.2 Power Feed-forward Control 

To suppress the undesired 2h power flowing through the DC bus capacitors in the 

asymmetric PMSG drive system, the undesired 2h power from the asymmetric PMSG can be 

transferred to grid network by the instantaneous power feed forward control [123-125]. As 

shown in Fig.1.9, if all the power from p2 including the 2h power are transferred to the grid 

side, i.e. the 2h power in p2 is compensated by the 2h power in p1, there will be no 2h power 

flowing through the DC bus capacitors. Therefore, the 2h DC bus voltage can be suppressed. 

Although this approach can suppress the 2h DC bus voltage, the current of gird side will be 

distorted because the undesired 2h power is transferred to the grid side and results in some 

undesired grid current harmonics. Therefore, the THD of the grid currents will be increased. 

As the grid penetration and power level of the wind turbines increase steadily, the wind 

power starts to have significant impacts to the power grid system [3]. Therefore, the quality 

of power generated by the PMSG is crucial [126]. The limits on the amount of harmonic 

currents and voltages have been established in the IEEE standards 519 [127], IEEE standards 

1547 [128], and in the IEC-61000-3 standard [129]. For example, the total harmonic current 

distortion should be less than 5% [128]. Therefore, this approach may not meet the required 

power quality and should be avoided. 

1.6.2.3 Power Compensation 

To avoid the undesired 2h power flowing towards the grid side and DC bus capacitors, the 

fluctuated power in the DC bus can be diverted to an energy storage device shown in Fig.1.10 

[3, 130-132]. The energy storage device is connected in parallel with the DC bus. In [132], 

the inverter in the grid side and the DC/DC converter with energy storage device connected 

collaborated to regulate the DC bus voltage considering the pulsating power from incident 

wind. The current reference from the DC bus voltage PI controller was distributed between 

the grid side and the energy storage system so that the power generated by the PMSG was 

distributed between them. The high frequency power from PMSG was diverted to the energy 

storage system, while the low frequency power from PMSG was transferred to the grid side. 
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Therefore, the high frequency power flowing through the DC bus capacitors can be 

suppressed. 
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TABLE 1.1 
EVALUATION OF DIFFERENT POWER CONTROL  

Methods 
Input power control 

[102, 117] 
Input power 

control [119] 
Input-output-power control 

[100, 101, 109, 118] 
Output power control 

method [114] 
Power condition equations *

0

_ 2

_ 2

0

0

0

0

in

in c

in s

in

p p

p

p

q

 






 

 

*
0

_ 2

_ 2

0

0

0

0

in

in c

in s

in

p p

p

p

q

 






 

 

*
0

_ 2

_ 2

0

0

0

0

in

out c

out s

in

p p

p

p

q

 






 

 

*
0

_ 2

_ 2

0

0

0

0

out

out c

out s

in

p p

p

p

q

 






 

 

DC bus control  PI PI-R(2ωe) PI PI 
Current control [117]:PI control in 

PSRF 
[102]:Dual current 
control in PSRF and 
NSRF 

PR(ωe) control in 
αβ-frame 

[118]:Dual current PI-R control 
in PSRF and NSRF  
[100, 101]: PR control in αβ-
frame 
[109]: PI-R control in PSRF 

Dual current control in 
PSRF and NSRF 

Unit input power factor    
Unity output power factor     
2nd harmonic DC voltage High Low Low Low 
3rd current harmonics High High Low Low 
Current reference calculation in 
dq-frame/ αβ-frame 

dq-frame dq-frame [100, 109, 118]: dq-frame  
[101]:         αβ-frame 

dq-frame 

Current reference calculation Simple Simple Complicated Simple 
Sequential components 
decomposer for supply 
voltage/back-EMFs 

Yes/Notch filter Yes/Notch filter [100, 109, 118]: Yes/Notch 
filter 
[101]:         Yes/DSOGI 

Yes/Sequence separation 
delaying method [103] 

Sequential components 
decomposer for currents 

Yes/Notch filter No No Yes/Notch filter [102] 

Sequential components 
decomposer for output voltages 

No No [100, 109, 118]: Yes/Notch 
filter 
[101]:         Yes/DSOGI 

No/Estimation assuming 
balanced inductances 

Note:   pin_c2, pin_s2: coefficient of cosine/sine items in the 2h input power.            pout_c2, pout_s2: coefficient of cosine/sine items in the 2h input power. 
            pin0, qin0: average active and reactive input power.                                      pout0, qout0: average active and reactive output power.
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This approach did not require the information of generator output power and it can be 

classified as the post-treatment because it dealt with the fluctuated power that was there 

already. However, some software modification was required to distribute the power. 

According to this approach’s compensation principle, it can also be employed to suppress the 

2h DC bus voltage in theory when the PMSG is asymmetric. However, to suppress the high 

frequency DC bus pulsation effectively, the bandwidth of DC bus voltage PI control has to be 

very high, which may result in potential instability. 

In [133], a compensation device in parallel with the DC bus was employed to compensate 

the 2h power due to the grid supply voltage asymmetries in the solar power system, which 

can illustrated in Fig.1.11. This approach requires the 2h power information from the 

unbalanced 3-phase system, and then the 2h power is compensated by the devices of energy 

conversion and energy storage. This compensation principle can be employed to suppress the 

2h power due to the asymmetries of the PMSG. By this method, the 2h power flowing 

through the DC bus capacitors can be suppressed without involvement of the control of grid 

side in the wind turbine system. However, the 2h power pulsation due to the asymmetric 

impedances in [133] was not considered, which means it essentially cannot eliminate the 2h 

power in the DC bus. 

essv
 

Fig.1.10 Coordinated DC bus voltage control [132]. 

 

Fig.1.11 Second harmonic power compensation [133]. 
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1.6.3 Summary 

According to the aforementioned introduction, to suppress the 2h torque of PMSG with 

asymmetric impedances, the N-sequence currents should be suppressed. However, with only 

the P-sequence currents injection, the undesired 2h power due to the asymmetries will be 

produced and then results in 2h DC bus voltage. As shown in Fig.1.12, the undesired 2h 

power can flow through DC bus capacitors, or be transferred to the grid side by power feed 

forward control, or be diverted to the compensation unit in parallel with the DC bus, or be 

compensated by the PMSG itself with N-sequence currents injection in the instantaneous 

power control. 
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Fig.1.12 Illustration of power flow in BTB system. 

TABLE 1.2  

SUMMARY OF CONTROL OF ASYMMETRIC PMSG DRIVE SYSTEM 

Methods 
Balanced current 

control 

Power 

control 

Power feed 

forward 

Compensation 

in parallel  

N-sequence currents N Y N N 

2h power by PMSG Y N Y Y 

2h power to DC bus 

capacitor 
Y N N N 

2h DC bus voltage Y N N N 

2h torque N Y N N 

Increased grid current THD Y N Y N 

Increased cost N N N Y 

The balanced current control can suppress the 2h torque if the back-EMFs are balanced. 

However, it cannot suppress the 2h power and DC bus voltage. In contrast, the instantaneous 
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power control can suppress the 2h power and DC bus voltage. However, it cannot solve the 

problem of 2h torque. Although the power feed-forward control can transfer the undesired 2h 

power to grid side to avoid the 2h power flowing through the DC bus capacitors, the current 

THD of grid side will be deteriorated. To suppress the 2h DC bus voltage and 2h torque 

simultaneously without deterioration of current THD of grid side, the 2h power can be 

transferred to a compensation unit in parallel with the DC bus. However, extra hardware and 

software modification is required, which increases the system cost. Overall, all the 

aforementioned methods can be summarized as TABLE 1.2. 

1.7 Scope and Contributions of Research 

1.7.1 Scope 

This thesis is aiming for suppressing the 2h DC bus voltage and 2h torque when the PMSG 

has asymmetric impedances. The influence of PMSG asymmetries is described and analysed 

in Chapter 2. From Chapter 3 to Chapter 6, the research is focused on the single 3-phase 

asymmetric PMSG, while the research is extended to dual 3-phase PMSG system when one 

channel fails in Chapter 7. To verify the research, the test rig is based on a dual 3-phase 

PMSG which has apparent inherent asymmetries in single 3-phase mode while is balanced in 

dual 3-phase mode. The test rig is shown in Appendix B while the inherent asymmetries are 

detailed in Appendix C. The whole research structure can be illustrated in Fig.1.13. 
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Fig.1.13 Research structure. 

The thesis is organized as follows: 

Chapter 2 Influence of the PMSG Asymmetries 

In this chapter, the power ripple and torque ripple without/with N-sequence currents are 

analysed in detail when the resistances, self-inductances, mutual inductances or 3-phase 

back-EMFs are unbalanced. 

Chapter 3 Current Control of Asymmetric PMSG 

This chapter introduces the mathematical modeling of asymmetric PMSG, which considers 

the unbalanced resistances, unbalanced self-inductances, unbalanced mutual inductances and 

unbalanced 3-phase back-EMFs. The current control of asymmetric PMSG is reviewed and 

evaluated. Three typical balanced current control methods, including the PR control in αβ-

frame, dual current control in PSRF and NSRF respectively, and PI-R control in PSRF, are 

investigated and the relationship between these methods will be revealed for the first time. 

Elaborate experiments of the convention current control and balanced current control of 

asymmetric PMSG will be conducted and experimental results will be compared in depth. 

Chapter 4 Instantaneous Power Control of Asymmetric PMSG (without sequential 

component decomposers) 
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This chapter proposes an improved power control of suppressing the 2h DC bus voltage in 

asymmetric PMSG system under generalized unbalanced conditions. The proposed power 

control does not require any sequential component decomposers. Usually, the sequential 

components are essential for the current reference calculation in the power control. How to 

extract the necessary sequential components and why they can be extracted without 

sequential component decomposers will be demonstrated. Finally, the effectiveness of the 

proposed power control is verified on an asymmetric 3-phase PMSG prototype with inherent 

asymmetry and deliberately introduced asymmetries. 

Chapter 5 Control of Asymmetric PMSG with Compensation in Parallel 

This chapter proposes an effective method for suppressing the 2h DC bus voltage pulsation 

accounting for the 2h torque ripple in the PMSG system with asymmetric impedances. A 

compensation unit with Topology-RL in parallel with the DC bus and corresponding control 

method are introduced to suppress the 2h DC bus voltage. Elaborate experiments will be 

conducted to verify the effectiveness of the proposed method under generalized unbalanced 

conditions with asymmetric impedances and at different speeds. 

In addition, a compensation unit with Topology-RLE in parallel with DC bus is proposed to 

suppress the 2h DC bus voltage in PMSG system with asymmetric impedances. The 

corresponding control method will be introduced and the compensation with Topology-RLE 

will be compared with Topology-RL in depth. Finally, elaborate experiments will be 

conducted to verify the effectiveness of the proposed method under generalized unbalanced 

conditions of asymmetric impedances and at different speeds. 

Chapter 6 Control of Asymmetric PMSG with Compensation in Series 

In this chapter, how to compensate the unbalanced impedances of the asymmetric PMSG 

by external circuits in series is investigated. How to determinate the parameters of the 

compensation unit in series will be introduced when the resistances, self-inductances and 

even when mutual inductances are unbalanced. After the compensation, the original 

unbalanced 3-phase system is modified to a balanced 3-phase system. The comparative 

experiments on the original asymmetric system and the system after compensation will be 

conducted. It shows that the proposed method is effective at different speeds under different 

load conditions. 

Chapter 7 Control of Asymmetric Dual 3-Phase PMSG System 
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In this chapter, the suppression of the 2h DC bus voltage and torque ripple is extended to 

dual 3-phase PMSG drive system when one channel fails. In the previous research on single 

3-phase asymmetric PMSG, the 2h power was suppressed by compensation in parallel or in 

series with some hardware investment and reconfiguration. In this chapter, by utilizing the 

inverter, rectifier or the second set of 3-phase windings in the fault channel which are still 

functional, the 2h DC bus voltage can be suppressed with minimum cost or without any 

hardware investment. 

Chapter 8 General Conclusions 

This chapter summarizes this research work and gives some discussions on future work. 

1.7.2 Contributions 

 Modeling of the asymmetries and their influence on power ripple and torque ripple 

without/with negative sequence currents has been investigated systematically; 

 Mathematical modeling of asymmetric PMSG and comparison of conventional 

current control and three typical balanced current control methods, and the 

relationship between them is revealed for the first time, while their relationship was 

not addressed in the literature before; 

 Improved instantaneous power control without any sequential component 

decomposers despites of the type of asymmetries, while the sequential component 

decomposer was inevitable in the previous research; 

 Proposed an effective method for suppressing the 2h DC bus voltage pulsation 

accounting for 2h torque ripple in PMSG system with asymmetric impedances 

(Compensation in parallel with Topology-RL); 

 Proposed an improved method of suppressing the 2h DC bus voltage in asymmetric 

PMSG system (Compensation in parallel with Topology-RLE); compared with the 

compensation in parallel with Topology-RL, it has smaller compensation current and 

its implementation is easier; 

 Proposed a passive method of suppressing the 2h DC bus voltage in asymmetric 

PMSG system; the unbalanced impedances of the asymmetric 3-phase PMSG is 

compensated by external circuits in series. Without any active control, the unbalanced 

3-phaes system is modified to a balanced system and the 2h DC bus voltage is 

naturally suppressed. 
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 Proposed three methods of suppressing the 2h DC bus voltage and torque ripple in 

dual 3-phase PMSG drive system with minimum cost or without any hardware 

investment when one channel fails. 
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Chapter 2  Influence of the PMSG Asymmetries 
Equation Chapter (Next) Section 1 

2.1 Introduction 

In [134], the torque ripple of the PM machine due to unbalanced back-EMFs was 

investigated, which showed that the 2h torque ripple was generated in the current-fed, 

voltage-fed or vector control mode. However, a comprehensive analysis of the torque ripple 

due to the unbalanced impedances was not given, the power ripple due to unbalanced 3-phase 

back-EMFs and impedances were not investigated, and their analytical expressions were not 

given. 

As introduced in Chapter 1, the N-sequence currents emerge under the conventional current 

control and instantaneous power control in the unbalanced 3-phase system, while the N-

sequence currents can be suppressed by balanced current control. Up to now, the torque 

ripple and power ripple due to asymmetries without/with N-sequence currents are not 

investigated systematically. 

In this chapter, the power ripple and torque ripple in the asymmetric PMSG system will be 

systematically investigated. Firstly, the mathematical modeling of the PMSG will be 

reviewed, and then the modeling of PMSG asymmetries will be introduced. Subsequently, the 

power ripple and torque ripple resulted from asymmetries without and with N-sequence 

currents will be analyzed in detail. 

2.2 Mathematical Modeling of PMSG 

2.2.1 Voltage and Flux-linkage Equations 

The 3-phase PMSG with Y connected windings can be illustrated in Fig.2.1. RA, RB and RC 

are the resistances of each phase winding respectively. LAA, LBB, and LCC are the self-

inductances of each phase respectively. MAB, MBC and MCA are the mutual inductances 

between phase A and B, between phase B and C, and between phase C and A respectively. ea, 

eb, and ec are the back-EMFs of each phase respectively. va, vb and vc are the terminal 

voltages of each phase respectively and ia, ib, and ic are the phase currents of each phase 

respectively. 
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Fig.2.1 Three-phase PMSG with Y connection. 

 

The flux-linkage equation of the 3-phase PMSG in abc-frame can be expressed as 

     s s s fL i       (2.1) 

where [ψs] is the stator flux-linkage, [ψf] is the PM flux-linkage, [Ls] is the inductance matrix, 

[is] is the stator current. They can be expressed as (2.2), (2.3), (2.4) and (2.5) respectively. 

    Ts a b c     (2.2) 

 
T

f fa fb fc           (2.3) 

  
AA AB AC

s BA BB BC

CA CB CC

L M M

L M L M

M M L

 
   
  

 (2.4) 

    s a b ci i i i  (2.5) 

The back-EMFs are denoted as [e]= [ea eb ec]
T, which are equal to the differential values of 

PM flux-linkages and can be expressed as 
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   f

d
e

dt
      (2.6) 

The voltage equation of 3-phase PMSG can be expressed as 

                s s s s s s s s

d d
v R i R i L i e

dt dt
       (2.7) 

where [vs] is the stator voltage, which can be expressed as 

    Ts a b cv v v v  (2.8) 

 [Rs] is the stator resistance matrix, which can be expressed as  

  
A

s B

C

R

R R

R

 
   
  

 (2.9) 

2.2.2 Mathematical Modeling of Inductances 

The self-inductances and mutual inductances in functions of rotor position θe can be 

generally expressed by Fourier expansions. Considering the higher order harmonics, the self-

inductances can be expressed as [135-137] 

  0 2 2
1

cos 2PP P P n p P n
n

L L L n  




     (2.10) 

The mutual inductances between two phases can be expressed as 

    0 2 2
1

cos cosPQ PQ p Q PQ n p Q PQ n
n

M M M    




           (2.11) 

where P stands for phase A, B, or C, while Q stands for the other phase that is different with 

phase P. ∆θP and ∆θQ are the electrical angle of the axis of phase P winding and phase Q 

shifted from d-axis of PM machine, which can be illustrated in Fig.2.2, which can be 

expressed as 

 ,    P P e Q Q e             (2.12) 

where θA, θB, θC can be expressed as (2.13) and θs=π/6. 

 0,   4 ,   8A B s C s         (2.13) 

LP0 is average value of self-inductance, LP2n is the coefficient of inductance harmonics 

(second, 4th, 6th…), and φP2n is the displacement angle of the corresponding harmonic 

components in the self-inductance. 
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MPQ0 is coefficient of the average mutual inductance between phase P and Q, MPQ2n is the 

coefficient of inductance harmonics (2nd, 4th, 6th…) in the mutual inductance, and the φPQ2n 

is the displacement angle of corresponding harmonic components in the mutual inductance. 

e
B

C A
 

Fig.2.2 Illustration of winding position. 

Neglecting the higher order (>2nd) harmonic inductances, (2.10) and (2.11) can be 

simplified as 

  0 2 2cos 2PP P P p PL L L       (2.14) 

    0 2 2cos cosPQ PQ p Q PQ p Q PQM M M              (2.15) 

where 

 0 0 2 2;     ;     ;PQ QP PQ QP PQ QPM M M M M M    (2.16) 

Usually, φP2 and φPQ2 are zero in PMSG. Therefore, the inductance matrix (2.4) can be 

rewritten as 

 

 

0 0 0

0 0 0

0 0 0

2 2 2

2 2 2

2 2 2

1 1

2 2
1 1

2 2
1 1

2 2

cos(2 ) cos(2 4 ) cos(2 8 )

      cos(2 4 ) cos(2 8 ) cos(2 )

cos(2 8 ) cos(2 ) cos(

A AB AC

s BA B BC

CA CB C

A e AB e s AC e s

BA e s B e s BC e

CA e s CB e C

L M M

L M L M

M M L

L M M

M L M

M M L

    
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  

   
 
    
 
  
  

 
  

 2 4 )e s 

 
 
 
  

 (2.17) 

2.2.3 Power and Torque Equations 

The power flowing in the PMSG drive system can be demonstrated in Fig.2.3, where the 

direction of the positive current is defined as the direction from the inverter to the PMSG. 
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The power generated by the resistances, inductances and back-EMFs are designated as pR, pL 

and pE respectively. When the PMSG works in generation mode, pE is negative. In contrast, 

when the PMSG works in motor mode, pE is positive. 
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Fig.2.3 Power flowing in the PMSG drive system. 

Assuming the inverter is zero-loss system, the power p2 flowing into the inverter will be 

equal to the power flowing out of the inverter, which is the sum of pR, pL and pE. Therefore, 

the power p2 can be expressed as 

 

   

 

2
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a A a

a b c b a b c B b

c C c
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v R i

p i i i v i i i R i

v R i

L M M i
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i i i M L M i
dt

M M L i
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           
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 (2.18) 

The torque can be calculated as the derivative of the stored magnetic co-energy Wc with 

respect to a small displacement [138]. Therefore, the torque generated by 3-phase PMSG can 

be expressed as (2.19). 

 
     
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m e e e
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   

 
 (2.19) 

where p is the number of pole pairs, θm and θe are the mechanical position and electrical 

position respectively. The first part in (2.19) is reluctance torque, which is designated as TeL; 

the second part of (2.19) is torque generated by PM, which is designated as TePM. 
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2.3 Modeling of Asymmetries 

In the asymmetric 3-phase PMSG system, the asymmetries may be resulted from the 

unbalanced resistances, unbalance inductances or unbalance back-EMFs. 

2.3.1 Unbalanced Resistances 

In (2.20), the maximum value of RA, RB and RC is defined as R0. If the resistances are not 

balanced, i.e. RA, RB and RC are not equal to each other, the asymmetries due to unbalanced 

resistances can be indicated by ∆RA, ∆RB and ∆RC, which can be expressed as (2.21), (2.22) 

and (2.23) respectively. 

  0 max , ,A B CR R R R   (2.20) 

 0 0A AR R R      (2.21) 

 0 0B BR R R      (2.22) 

 0 0C CR R R      (2.23) 

Since R0 is the maximum value of RA, RB and RC, at least one of them is zero and only two 

of them are not zero in the worst case. 

2.3.2 Unbalanced Inductances 

If the average self-inductances are not balanced, the average value of LAA, LBB and LCC are 

not equal to each other. If L0 is defined as the maximum average value of LAA, LBB and LCC, 

i.e. 

  0 0 0 0max , ,A B CL L L L   (2.24) 

where LA0, LB0 and Lc0 are the average self-inductances of phase A, B and C respectively, then 

the asymmetries due to the unbalanced average self-inductances LAA, LBB and LCC can be 

indicated as (2.25),(2.26) and (2.27) respectively. 

 0 0 0A AL L L     (2.25) 

 0 0 0B BL L L     (2.26) 

 0 0 0C CL L L     (2.27) 

If M0 is chosen as the minimum average value of MAB0, MBC0, and MCA0, i.e. 

  0 0 0 0min , ,AB BC CAM M M M  (2.28) 
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where MAB0, MBC0 and MCA0 are the average values of MAB, MBC, and MCA respectively, then 

the asymmetries due to the unbalanced average mutual inductances MAB, MBC, and MCA can 

be indicated as (2.29), (2.30) and (2.31) respectively. 

 0 0 0AB ABM M M    (2.29) 

 0 0 0BC BCM M M    (2.30) 

 0 0 0CA CAM M M    (2.31) 

2.3.3 Unbalanced Back-EMFs 

If the 3-phase back-EMFs are unbalanced, based on the symmetrical-component theory 

[91], the unbalanced back-EMFs can be decomposed as P-sequence back-EMFs and N-

sequence back-EMFs in the unbalanced 3-phase system without access of neutral point. If the 

rotor position is chosen as the zero crossing point of P-sequence back-EMFs of phase A from 

positive to negative, the 3-phase back-EMFs can be expressed as (2.32) 
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  (2.32) 

where θe is the electrical rotor position, E1p and E1n are the amplitude of P-sequence and N-

sequence back-EMFs respectively, the φ1n is the displacement angle of the N-sequence 

components. 

2.4 Influence of Asymmetries without N-sequence Currents 

The power ripple and torque ripple due to the unbalanced resistances, unbalanced 

inductances or unbalanced 3-phase back-EMFs with only P-sequence currents injection will 

be discussed in this section. Assuming the phase currents are balanced, which have only P-

sequence currents, the phase currents can be expressed as 
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  (2.33) 

where I1p is the amplitude of P-sequence currents, θs=π/6. 

2.4.1 Unbalanced Resistors 

According to (2.18), pR can be expressed as 
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 (2.34) 

If the resistances are balanced, i.e. RA=RB=RC=R0, (2.34) can be rewritten as 

       2 2 2 2
1 0 cos / 2 cos 4 / 2 cos 8 / 2R p e e s e sp I R                 (2.35) 

(2.35) can be simplified as  

 2
1 0

3

2R pp I R  (2.36) 

From (2.36), it can be seen that the pR is a constant value if the resistances are balanced. 

However, if the resistances are unbalanced, i.e. ∆RA, ∆RB and ∆RC are not zero in the 

modeling (2.20)~(2.23), the (2.34) can be rewritten as 
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  (2.37) 

As can be seen from (2.37), there will be 2h power in pR if the resistances are unbalanced.  

It is worth noting the unbalanced resistances do not affect the torque ripple at all according 

to (2.19). 

2.4.2 Unbalanced Inductances 

2.4.2.1 Power Ripple 

The self-inductances and mutual inductances of the machine can be expressed as (2.14) and 

(2.15) respectively if the higher order (>2nd) harmonic inductances are neglected. If the 

inductances are balanced, i.e. (2.38) and (2.39) 

 0 0 2 2 2 2,  ,  P P P LL L L L      (2.38) 

 0 0 2 2 2 2,   ,   PQ PQ PQ MM M M M      (2.39) 

According to (2.18), the power of inductances with balanced currents (2.33) injection can 

be expressed as 
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 (2.40) 

where ωe is the electrical frequency. From (2.40), it can be seen that pL is a constant value 

without ripple. Usually, φL2 and φM2 are zero. Therefore, the instantaneous power of the 

balanced 3-phase inductances is zero. However, if the inductances are unbalanced, the power 

pL will not be a constant value anymore.  

According to modeling of unbalanced self-inductance (2.25), the 2h power due to ∆LA0 will 

be 
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 (2.41) 

In the same way, according to modeling of unbalanced self-inductances (2.26) and (2.27), 

the 2h power due to ∆LB0 and ∆LC0 will be (2.42) and (2.43) respectively. 
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 (2.42) 
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  (2.43) 

According to modeling of unbalanced mutual inductance (2.29), the 2h power due to the 

unbalanced mutual average inductances between phase A and B can be expressed as (2.44). 

In the same way, according to modeling of unbalanced mutual inductance (2.30) and (2.31), 

the 2h power due to the unbalanced mutual average inductances between phase B and C, 

between phase A and C can be expressed as (2.45) and (2.46) respectively. 
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If the amplitudes of the 2h inductances are unbalanced, e.g. LA2 = L2+∆L2, where L2 is the 

average 2h self-inductances in LA2, LB2 and LC2, the power ripple due to ∆L2 can be expressed 

as 
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 (2.47) 

In the same way, if MAB2 = M2+∆M2, where M2 is the average 2h mutual inductance in 

MAB2, MBC2 and MCA2, the power ripple due to ∆M2 can be expressed as (2.48). 

If other 2h self-inductances LB2, LC2, or other 2h mutual inductances MBC2, MCA2 are 

unbalanced, the power ripple due to these asymmetries have similar expressions as (2.47) and 

(2.48) respectively. 
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Overall, the power ripple due to unbalanced inductances without N-sequence currents can 

be summarized as follows: 

1) There will be 2h power ripple if the average self-inductances or average mutual 

inductances are unbalanced according to (2.41)~(2.46); 

2) There will be second and 4th harmonic power ripple if the 2h self-inductances or 2h 

mutual inductances are unbalanced according to (2.47) and (2.48); 

2.4.2.2 Torque Ripple 

When the self-inductances and mutual inductances are balanced as shown in (2.38) and 

(2.39) respectively, the reluctance torque TeL can be simplified as 
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As can be seen from (2.49), there is no torque ripple if the inductances are balanced. 

However, if the average self-inductances are unbalanced as the modeling as (2.25)-(2.27), the 

torque ripple in the reluctance torque due to ∆LA0, ∆LB0 and ∆LC0 can be expressed as (2.50), 

(2.51) and (2.52) respectively. 
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If the average mutual inductances are unbalanced and modeled as (2.29)-(2.31), the torque 

ripple in the reluctance torque due to ∆MAB0, ∆MBC0 and ∆MCA0 can be expressed as (2.53), 

(2.54) and (2.55) respectively. 
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If the 2h self-inductances are unbalanced, e.g. if LA2 = L2+∆L2, the torque ripple of 

reluctance torque due to the unbalanced 2h self-inductance ∆L2 can be expressed as 
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If the 2h mutual inductances are unbalanced, e.g. if MAB2 = M2+∆M2, the torque ripple of 

reluctance torque due to the unbalanced 2h mutual inductance ∆M2 can be expressed as 
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If other 2h self-inductances LB2, LC2, or other 2h mutual inductances MBC2, MCA2 are 

unbalanced, the torque ripple due to those asymmetries have similar expressions as (2.56) and 

(2.57) respectively.  

Overall, the torque ripple due to asymmetric inductances without N-sequence currents can 

be summarized as below 

1) There is no 2h torque ripple if the average self-inductances are unbalanced or the 

average mutual inductances are unbalanced according to (2.50)~(2.55); 

2) There will be 2h and 4th harmonic torque ripple if the second self-inductances or 

mutual inductances are unbalanced according to (2.56) and (2.57); 

2.4.3 Unbalanced Back-EMFs 

2.4.3.1 Power Ripple 

Assuming the 3-phase back-EMFs are balanced with only P-sequence components and can 

be expressed as (2.58) 
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  (2.58) 

where E1p is the amplitude of the back-EMFs, then the power pE generated by the PM can be 

expressed as 

   1 1
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c
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 (2.59) 

As can be seen from (2.59), there is no 2h power. However, if the 3-phase back-EMFs are 

unbalanced as (2.32), the pE can be expressed as (2.60) which consists of 2h power. 

  1 1 1 1

3 3
cos 2

2 2E p p n p e enp E I E I       (2.60) 

2.4.3.2 Torque Ripple 

According to (2.19), the torque TePM resulted from the PM can be expressed as 
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Combining the (2.60) and (2.61) together, TePM can be rewritten as 

   1 1 1 1

3
cos 2

2
E
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e e
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As can be seen from (2.62), there is 2h torque when the 3-phase back-EMFs are 

unbalanced. 

2.4.4 Summary 

The power ripple and torque ripple due to the unbalanced impedances and unbalanced 3-

phase back-EMFs can be summarized as below. 

TABLE 2.1  

POWER AND TORQUE VARIATION WITH BALANCED CURRENTS INJECTION 

Items Description 

pR 1. Second harmonic power ripple if resistances are unbalanced; 

pL 1. Second harmonic power ripple if average self- or mutual inductances are 
unbalanced; 

2. Second and fourth harmonic power ripples if the second self- or mutual 
inductances are unbalanced. 

pE 1. Second harmonic power ripple if the 3-phase back-EMFs are unbalanced;. 

TeL 1. No torque ripple if the average self- or mutual inductances are unbalanced; 

2. Second and fourth torque ripples if the second self- or mutual inductances 
are unbalanced. 

TePM 1. Second harmonic torque ripple if the 3-phase back-EMFs are unbalanced; 

2.5 Influence of Asymmetries with N-sequence Currents 

The power ripple and torque ripple due to the unbalanced resistances, unbalanced 

inductances and unbalanced 3-phase back-EMFs with N-sequence currents injection will be 

discussed in this section.  

Assuming the 3-phase currents are unbalanced, which include P-sequence and N-sequence 

currents, the 3-phase currents can be expressed as (2.63). 
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where the P-sequence and N-sequence currents can be expressed as (2.64) and (2.65) 

respectively. 
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 (2.65) 

where I1P and I1N are the amplitude of P-sequence and N-sequence currents respectively. The 

φip and φin are the displacement angle of P-sequence and N-sequence currents respectively. 

2.5.1 Unbalanced Resistors 

According to (2.18), with the unbalanced currents (2.63) injection into stator currents, the 

pR can be expressed as 
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 (2.66) 

If the resistances are balanced, i.e. RA=RB=RC=R0, then (2.66) can be simplified as 

   2 2 2
0 1 1 1 1

3
2 cos 2

2R p p p p ip inp R I I I I         (2.67) 

From (2.67), it can be seen that there is 2h component in pR even the resistances are 

balanced. When the resistances are unbalanced, i.e. ∆RA, ∆RB and ∆RC are not zero in the 

modeling (2.20)~(2.23), (2.66) can be rewritten as (2.68).  

Compared with (2.67), it can be seen from (2.68), there are more items of 2h power if the 

resistances are unbalanced. 
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 (2.68) 

2.5.2 Unbalanced Inductances 

2.5.2.1 Power Ripple 

According to (2.18), the power of inductances with unbalanced currents (2.33) injection 

can be expressed as 
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 (2.69) 

If the self-inductances (2.14) and mutual inductances (2.15) are balanced and modeled as 

(2.38) and (2.39), then the (2.69) can be deduced as 
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 (2.70) 

As can be seen from (2.70) that there are second and fourth harmonic components in pL 

even when the inductances are balanced, and the fourth harmonic power depends on the N-

sequence currents and the 2h inductances. 

When the average self-inductances are unbalanced, i.e. ∆LA0, ∆LB0 or ∆LC0 are not zero in 

the modeling (2.25)~(2.27), the power ripple due to ∆LA0, ∆LB0 and ∆LC0 can be expressed as 

(2.71), (2.72) and (2.73) respectively. 
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When the average mutual-inductances are unbalanced, i.e. ∆MAB0, ∆MBC0 or ∆MCA0 are not 

zero in the modeling (2.29) ~ (2.31), the power ripple due to ∆MAB0 can be expressed as 
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In the same way, the power ripple due to the ∆MBC0 and ∆MCA0 will be (2.75) and (2.76) 

respectively. 
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If the amplitude of the 2h self-inductances are unbalanced, e.g. LA2 = L2+∆L2, where L2 is 

the average 2h self-inductances of LA2, LB2 and LC2, the power ripple due to unbalanced self-

inductances ∆L2 can be expressed as 
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In the same way, if MAB2 = M2+∆M2, where M2 is the average 2h mutual inductance of 

MAB2, MBC2 and MCA2, the power ripple due to unbalanced mutual inductances ∆L2 can be 

expressed as  
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(2.78) 

If other 2h self-inductances LB2, LC2, or other 2h mutual inductances MBC2, MCA2 are 

unbalanced, the power ripple due to those asymmetries have similar expressions as (2.77) and 

(2.78) respectively. 

Overall, the power ripple with N-sequence currents can be summarized as below 

1) According to (2.70), there will be 2h power ripple even when the average self-

inductances and mutual inductances are balanced. Furthermore, there will be fourth 

harmonic power ripple if there are 2h inductances; 

2) According to (2.71)~(2.76), there will be 2h power ripple due to the unbalanced average 

self-inductance and mutual inductances; 

3) According to (2.77) and (2.78), there will be second and 4th harmonic power ripple due 

to the unbalanced 2h self-inductances or 2h mutual inductances. 

2.5.2.2 Torque Ripple 

According to (2.19), the reluctance torque TeL with N-sequence currents injection can be 

rewritten as 
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 (2.79) 
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If the self-inductances (2.14) and mutual inductances (2.15) are balanced and modeled as 

(2.38) and (2.39) respectively, the (2.79) can be deduced as 
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 (2.80) 

As can be seen from (2.80) that there are 2h and fourth harmonic components in TeL no 

matter the inductances are balanced, and the second and fourth torque harmonics depend on 

the N-sequence currents and the 2h inductances. 

When the average self-inductances are unbalanced, e.g. ∆LA0, ∆LB0 and ∆LC0 are not zero in 

(2.25)~(2.27), or when the average mutual-inductances are unbalanced, e.g. ∆MAB0, ∆MBC0 

and ∆MCA0 are not zero in (2.29)~(2.31), similar to (2.50)~(2.55), the torque will be not 

affected by the unbalanced average inductances. 

If the amplitudes of the 2h inductances are unbalanced, e.g. LA2 = L2+∆L2, where L2 is the 

average 2h self-inductances of LA2, LB2 and LC2, the torque ripple due to ∆L2 can be expressed 

as 
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 (2.81) 

In the same way, if MAB2 = M2+∆M2, where M2 is the average 2h mutual inductance of 

MAB2, MBC2 and MCA2, the torque ripple due to ∆M2 can be expressed as (2.82). 

If other 2h self-inductances LB2, LC2, or other 2h mutual inductances MBC2, MCA2 are 

unbalanced, the torque ripples due to those asymmetries have similar expressions as (2.81) 

and (2.82) respectively.  
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 (2.82) 

Overall, the torque ripple with N-sequence currents can be summarized as below: 

1) According to (2.80), there will be second and fourth harmonic torque ripples even when 

the self-inductances and mutual inductances are balanced. Furthermore, there will be 

fourth harmonic power ripple if there are the 2h inductances, and the fourth harmonic 

torque depends on the N-sequence currents and the 2h inductances; 

2) According to (2.81) and (2.82), there will be second and 4th harmonic power ripples due 

to the unbalanced 2h self-inductances or mutual inductances; 

3) There will be no 2h torque ripple if the average self-inductance and mutual inductances 

are unbalanced; 

4) There will be 2h and fourth harmonic torque ripple due to the unbalanced 2h self-

inductance or 2h mutual inductances. 

2.5.3 Unbalanced Back-EMFs 

2.5.3.1 Power Ripple 

According to (2.18), the power pE resulted from the unbalanced currents (2.33) and 

unbalanced 3-phase back-EMFs (2.32) can be expressed as 
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 (2.83) 

As can be seen from (2.83), the 2h power ripple is produced by the interaction of P-

sequence back-EMFs and N-sequence currents and by the interaction of N-sequence back-

EMFs and P-sequence currents. 

2.5.3.2 Torque Ripple 

According to (2.61), the torque resulted from the unbalanced currents (2.33) and 

unbalanced back-EMFs (2.32) can be expressed as 
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 (2.84) 

As can be seen from (2.84), the 2h torque ripple is produced by the interaction of P-

sequence back-EMFs and N-sequence currents and by the interaction of N-sequence back-

EMFs and P-sequence currents. 

2.6 Conclusions 

In this chapter, the power ripple and torque ripple due to the generic asymmetries in the 

PMSG without/with N-sequence currents are exclusively investigated, which can be 

summarized in TABLE 2.2. 

With balanced currents injection, there will be 2h power if the resistances, average self-

inductances, average mutual inductances and back-EMFs are unbalanced. Furthermore, if the 

2h self-inductances and 2h mutual inductances are unbalanced, the fourth harmonic power 

will be generated. In terms of torque ripple, there is no torque ripple if the system is balanced 

or when the resistances or average inductances are unbalanced. There will be 2h torque if the 

back-EMFs are unbalanced. Furthermore, the 4th harmonic torque appears if 2h self-

inductances and 2h mutual inductances in the system are unbalanced. 

With N-sequence currents injection, 2h power will be produced by resistances, inductances, 

and back-EMFs, no matter whether the system is balanced or not. Furthermore, the 4th 

harmonic power appears if there are 2h self-inductances or 2h mutual inductances in the 

system no matter whether they are balanced or not. In terms of torque ripple, the torque ripple 

with N-sequence currents injection is even worse compared with that without N-sequence 

currents injection. There will be 2h torque even the back-EMFs and inductances are balanced. 
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TABLE 2.2 

POWER AND TORQUE RIPPLE WITH UNBALANCED CURRENTS INJECTION 

Scenarios 

Balanced currents 

(Without N-sequence currents) 

Unbalanced currents 

(With N-sequence currents) 

Power ripple Torque ripple Power ripple Torque ripple 

Balanced resistances / / 2h / 

Unbalanced resistances 2h / 2h / 

Balanced inductances / / 2h+4h*1 2h+4h*1 

Due to unbalanced average self-inductances 2h / 2h / 

Due to unbalanced average mutual inductances 2h / 2h / 

Due to unbalanced 2h self-inductances 2h+4h 2h+4h 2h+4h 2h+4h 

Due to unbalanced 2h mutual inductances 2h+4h 2h+4h 2h+4h 2h+4h 

Balanced back-EMFs / / 2h 2h 

Unbalanced back-EMFs 2h 2h 2h 2h 

*1:2h and 4h components due to 2h inductances 
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Chapter 3 Current Control of Asymmetric PMSG 
Equation Chapter (Next) Section 1 

3.1 Introduction 

In Chapter 2, the power ripple and torque ripple in the unbalanced system without/with N-

sequence currents are analysed systematically. As shown in TABLE 2.2, there are 2h torque 

ripple if there are N-sequence currents in 3-phase system even when the impedances and 3-

phase back-EMFs are balanced. The 2h torque ripple could be reduced by suppressing the N-

sequence currents if the back-EMFs are balanced. Therefore, it is essential to investigate the 

current control of asymmetric PMSG aiming for balanced currents. 

The conventional current control of 3-phase system is the proportional and integral (PI) 

current control in the synchronous dq-frame, which has become the standard current regulator 

for 3-phase machine due to its capability of regulating ac currents over a wide frequency 

range [63, 139]. The mathematical modeling of the ideal 3-phase machine in dq-frame can be 

modeled as a linear resistance and inductance (RL) load after the cross-coupling 

compensation [140]. However, in the unbalanced 3-phase system with unbalanced 

impedances, there are 2h resistances and inductances in dq-frame [100, 104]. When the 

conventional PI control is applied to the unbalanced system, the 2h impedances will result in 

unbalanced phase currents due to the limited bandwidth of the PI controller. 

To suppress the N-sequence currents, the balanced current control aiming for suppressing 

the N-sequence currents has been exclusively investigated [84, 87, 99-102, 104, 108-110, 118, 

141, 142]. There are three typical balanced current control methods which can suppress the 

N-sequence currents effectively in unbalanced system, which have been briefly introduced in 

Section 1.6.1. Although these methods have been employed widely in the unbalanced system, 

the relationship between these methods has not been evaluated and discussed yet. 

In [100], the modelling of grid-connected voltage-sourced rectifier with unbalanced 

resistances, self-inductances and grid supply voltage was introduced. Although the modelling 

method can be applied to the unbalanced 3-phase PMSG system, the 2h inductances and the 

unbalanced mutual inductances were not considered. 

In this chapter, the mathematical modelling of asymmetric 3-phase PMSG will be 

introduced first. The unbalanced resistances, self-inductances, mutual inductances and back-

EMFs will be accounted. Then, the conventional current control and three typical balanced 
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current control methods will be reviewed and evaluated, and the relationship between these 

methods will be revealed for the first time. Finally, the elaborate experiments of the 

conventional current control and three typical balanced current control methods will be 

conducted; the experimental results show that the balanced current control is capable of 

suppressing the N-sequence currents. 

3.2 Modeling of Asymmetric PMSG 

3.2.1 Mathematical Model in abc-frame 

The flux linkage equation and voltage equation of 3-phase PMSG in abc-frame can be 

expressed as (2.1) and (2.7) respectively. For the convenience of discussion, they are repeated 

in this chapter as (3.1) and (3.2) respectively. 

     s s s fL i       (3.1) 
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dt dt
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If the resistances are unbalanced and modeled as (2.20)~(2.23), the resistance matrix (2.9) 

can be rewritten as 
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where I3 is the unit matrix and is equal to diag(1,1,1), which can be expressed as 
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If the 3-phase back-EMFs are unbalanced, the back-EMFs can be expressed as (2.32). For 

convenience, it is repeated as follows. 
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  (3.5) 

If the average self-inductances and average mutual inductances are unbalanced and 

modeled as (2.24)~(2.31) while the 2h inductances are balanced, (2.17) can be rewritten as 

(3.6). 
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 (3.6) 

3.2.2 Mathematical Model in αβ-frame 

Applying the Clark transformation (A.2) and inverse Clark transformation (A.4) to (3.1) 

and (3.2), the flux-linkage and voltage equation in αβ-frame can be expressed as 

 fL i                    (3.7) 
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where [vαβ] is equal to Tαβ*[vs]; [iαβ] is equal to Tαβ*[is]; [ψαβ] is equal to Tαβ*[ψs]; [ψfαβ] is 

equal to Tαβ*[ψf]; [Rαβ] and is [Lαβ] can be expressed as (3.9) and (3.10) respectively. 

   _s invR T R T       (3.9) 

   _s invL T L T       (3.10) 

[Rαβ] can be deduced as  

 
     

     

_ 0 2

1 1 1

1
3

                                  0 4 8
3 3 3

s inv A B C

CA B
s s s

R T R T R R R R I

RR R
M M M

  

  

        

 
  

 (3.11) 

where 

    
 1

cos sin( )

sin( ) cos
M

 


 
 

  
 

 (3.12) 
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 2

1

1
I

 
  
 

  (3.13) 

[Lαβ] can be deduced as 

 

   
   
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 

 
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0 0 1
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1 1
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1 1
        0
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        4

3 3

       

e e

e e
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B AC s

M L
L L I M

L L L I M M M I

L M M

L M M



 
 





                
                 
   
     
 
     
 

 0 0 1

1 1
 8

3 3C AB sL M M      
 

 (3.14) 

The back-EMFs in αβ-frame can be expressed as 

      ff f

d d d
e e

d
T T T

t dt dt                        (3.15) 

Substitute (3.5) into (3.15), the back-EMFs in αβ-frame can be rewritten as 

    
 

 
 1 1

sin sin

cos cos
e e en

p n
e e en

eTe E E  

  
  

     
             

 (3.16) 

3.2.3 Mathematical Model in PSRF and NSRF 

In this section, the P-sequence reference frame (PSRF) and N-sequence reference frame 

(NSRF) will be introduced first, and then the mathematical modelling in PSRF and NSRF 

will be presented.  

3.2.3.1 Relationship between PSRF and NSRF 

According to the symmetrical-component theory [91], the 3-phase voltages, currents and 

flux-linkages can be decomposed as P- and N-sequence components in the 3-phase system 

without access of neutral point. The general P- and N-sequence components can be expressed 

as 

 

 
 
 

 
 
 

cos 0 cos 0

cos 4 cos 8

cos 4cos 8

p s p
a n s n

b p s p n s n

c n s n
p s p

N sequence
P sequence

FF F

F F F

F FF

     
     

    




                                   


   (3.17) 
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where Fp and Fn are the amplitude of P-sequence and N-sequence components respectively; 

θp and θn are the displacement angle of P-sequence and N-sequence components respectively. 

By Clark transformation(A.2), the P-sequence and N-sequence components in αβ-frame can 

be expressed as (3.18) and (3.19) respectively. As the θ increases, the trajectory of (3.18) will 

rotate in positive direction, while the trajectory of (3.19) will rotate in opposite direction. 

  pjp
pF F e

 


  (3.18) 

  njn
nF F e  


   (3.19) 

Applying the Park transformation (A.6) to (3.18) and (3.19) respectively, the P-sequence 

components and N-sequence components in dq-frame can be expressed as (3.20) and (3.21) 

respectively. 

    cos sinpjp
dq p p p p pF F e F jF      (3.20) 

      2 cos 2 sin 2njn
dq n n n n nF F e F jF            (3.21) 

Therefore, the P-sequence components will be converted to DC components in dq-frame, 

while the N-sequence components will be converted to 2h components in dq-frame. 

In the unbalanced system, the positive sequence reference frame (PSRF) and negative 

sequence frame (NSRF) are usually employed for analysis. The relationship between the αβ-

frame and PSRF is shown in Fig.3.1. It shows that the PSRF is actually the same as the 

synchronous dq-frame. Therefore, the projection of vector Fαβ on d-axis and q-axis of the 

PSRF can be obtained by 

  d
dq

d

FF
T

FF









  
   

    
 (3.22) 

(3.23) can be rewritten as (3.23) in the form of vector. 

 j
dqF e F


   (3.23) 

where 

 dq d qF F jF     (3.24) 

where dF  and qF  are the projection of Fαβ on the d-axis and q-axis of PSRF respectively. 

The relationship between the αβ-frame and NSRF is shown in Fig.3.2, where the d-axis of 

NSRF rotates in the opposite direction of the rotor position. Therefore, the projection of 

vector Fαβ on d-axis and q-axis of the NSRF can be obtained by 
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  d
dq

d

FF
T

FF









  
    

    
 (3.25) 

(3.25) can also be rewritten as (3.26) in the form of vector. 

 j
dqF e F


   (3.26) 

where 

 dq d qF F jF     (3.27) 
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S


dF 

qF 

F

F

q

d 



F 

 

Fig.3.1 Relationship between αβ-frame and PSRF. 
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S
dF 

qF 

F

F

 q

d 



F








 

Fig.3.2 Relationship between αβ-frame and NSRF. 

Therefore, the P-sequence components in NSRF can be expressed as 

    2p pj jp j p j
dq p pF e F e F e F e

    


       (3.28) 

While the N-sequence components in NSRF can be expressed as 

  n nj jn j n j
dq n nF e F e F e F e   


        (3.29) 

As can be seen from (3.28) and (3.29), the P-sequence and N-sequence components in 

NSRF are converted to 2h components and DC value respectively. 
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Overall, the unbalanced components in abc-frame, αβ-frame and synchronous frame can be 

summarized as TABLE 3.1. 

TABLE 3.1  

UNBALANCED COMPONENTS IN DIFFERENT FRAMES 

abc-frame 

 
 
 

 
 
 

cos 0 cos 0

cos 4 cos 8

cos 4cos 8

p s p
a n s n

b p s p n s n

c n s n
p s p

N sequence
P sequence

FF F

F F F

F FF

     
     

    




                                   


 

αβ-frame 
   2 /3 4 /32

3
p n j j

a b b

P sequence N Sequence

F F F F F e F e 
  

 

      where  

 pjp
pF F e

 



, 

 njn
nF F e  


   

PSRF (Conventional 
synchronous dq-frame) 

 2p nj jj
dq p n

N sequenceP sequence

F e F F e F e  


  



  


 

NSRF 
 2 p n

j jj
dq p n

N sequenceP sequence

F e F F e F e
  


 



  


 

 

3.2.3.2 Mathematical modeling in PSRF 

By applying the Park transformation (3.22) to the flux-linkage equation (3.7) and voltage 

equation (3.8) in αβ-frame respectively, the flux-linkage and voltage equation in PSRF can be 

expressed as 

 dq dq dq fdqL i                     (3.30) 

 q
dq dq dq dq e

d

d
v R i

dt


 




   



 
                  

 
 (3.31) 

where the superscript “+” means the variables are in PSRF, the voltage, current, flux-linkage, 

and impedance in PSRF can be expressed as 

 
   
   

,     

,  

dq dq e s dq dq e

dq dq e s fdq dq e f

v T v i T i

T T

 

 

 

     

 

 

             
             

 (3.32) 

     1

dq dq e dq eR T R T          (3.33) 

     1

dq dq e dq eL T L T          (3.34) 

and the back-EMFs in PSRF can be expressed as 
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fq

dq fdq e
fd

d
e

dt


 




 



 
            

 (3.35) 

It can be deduced that 

  dq dq ee T e        (3.36) 

Then the resistance matrix in PSRF can be deduced as 

 
   

     
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1 1 1

1
3

          2 0 2 4 2 8
3 3 3
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       

 
     

 (3.37) 

The inductance matrix in PSRF can be expressed as  

 

   
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                 
   
      
 
      
 

     0 1 2 8AB e sM M     
 

 (3.38) 

where 

 2

1

1
J

 
   

 (3.39) 

As can be seen from (3.37) and (3.38), when the impedances are unbalanced, there will be 

2h impedances in the PSRF. 

Substitute (3.16) into (3.36), the back-EMFs in PSRF can be rewritten as 

    
 1 1

sin 20

cos 21
e en

dq dq dq e p n
e en

e e T e E E

 


 
                         

 (3.40) 

As can be seen from (3.40), the P- and N-sequence back-EMFs are converted to DC 

components and 2h components in PSRF respectively. 



 

59 
 

3.2.3.3 Mathematical Modelling in NSRF 

By applying (3.25) to the flux-linkage equation (3.7) and voltage equation (3.8) in αβ-frame 

respectively, the flux-linkage and voltage equations in NSRF can be expressed as 

 dq dq dq fdqL i                     (3.41) 

 q
dq dq dq dq e

d

d
v R i

dt


 




   



 
                  

 
 (3.42) 

where the superscript “-” means the variables are in NSRF, and the voltage, current, flux-

linkage, and impedance in NSRF can be expressed as 

 
   
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,     
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     

 

 
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               

 (3.43) 

     1

dq dq e dq eR T R T           (3.44) 

     1

dq dq e dq eL T L T           (3.45) 

The back-EMFs in NSRF can be expressed as 
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dq fdq e
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
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 
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 (3.46) 

Substitute (3.16) into (3.46), the back-EMFs in NSRF can be rewritten as 

    
 

 
 1 1
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 


 
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                    
 (3.47) 

As can be seen from (3.47), the P- and N-sequence back-EMFs are converted to 2h 

components and DC components in NSRF respectively. 

According to (3.44), the resistance matrix in NSRF can be deduced as 

 

   
 

 

 

0 2

1

1

1

1
3

        2 0
3

        2 4
3

        2 8
3

dq A B C

A
e s

B
e s

C
e s

R R R R R I

R
M

R
M

R
M

 

 

 

         


  


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
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 (3.48) 

According to (3.45), the inductance matrix in NSRF can be deduced as 
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 (3.49) 

As can be seen from (3.48) and (3.49), when the impedances are unbalanced, there are 2h 

impedances in the NSRF. It is worth noting that there are fourth harmonic inductances in the 

NSRF if there are 2h self-inductances or mutual inductances.  

As listed in Table 3.1 in Section 3.2.3.1, the N-sequence currents will be converted to DC 

currents in NSRF. As there are 2h and fourth harmonic inductances in (3.49), there will be 

fourth harmonic voltages in NSRF. Therefore, the interaction of DC currents and fourth 

harmonic voltages in NSRF will result in fourth harmonic power, which is in accordance with 

the power ripple analysis in Table 2.2. 

3.3 Evaluation of Current Control of Asymmetric PMSG 

As shown in (3.37) and (3.38), when the impedances of PMSG are unbalanced, there are 2h 

resistances and 2h inductances in the synchronous dq-frame (PSRF). Meanwhile, there are 

also mutual 2h impedances between d-axis and q-axis. Since the conventional current control 

can only trace DC currents in dq-frame without tracing error in the linear system. Therefore, 

it is not applicable to eliminate the N-sequence currents in an unbalanced system. 

In this section, the PR control in αβ-frame, dual current control, and PI-R control in PSRF 

will be reviewed and evaluated. The brief introduction of these three methods has been 

presented in Section 1.6.1. It is well known that these methods are all capable of suppressing 

the 2h current and have been employed widely in various applications. However, the 

relationship between these methods has not been investigated. In this chapter, the relationship 

between those current control methods will be revealed for the first time. 
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3.3.1 PR control 

The PR control in αβ-frame can be illustrated in Fig.3.3, where the currents in α-axis and β-

axis are regulated by PR control respectively with the resonant control at the centre frequency 

of fundamental. 
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Fig.3.3 PR control in αβ-frame [99-101]. 

 

As illustrated in Fig.3.3, the PR controllers in αβ-frame can be expressed as 
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 (3.50) 

where 
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Defining 
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then (3.50) can be rewritten as 
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Since 
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Applying the Park transformation to (3.53), (3.56) can be obtained. 
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The time-domain form of (3.52) in the αβ-frame can be expressed as 
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Substituting (3.54) into (3.57), it can be obtained that 
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The frequency-domain of (3.58) in dq-frame can be expressed as 
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Solving (3.59), [xd xq]
T can be expressed as 
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Substituting (3.60) into (3.56), the current regulators in dq-frame can be obtained and 

expressed as 
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 (3.61) 

Therefore, the PR control in αβ-frame is equivalent to (3.61) in synchronous dq-frame, 

which is consistent with the conclusions in [97]. 
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It is worth noting that the resonant control in (3.50) cannot be realized in a physical filter 

network since it is lossless [97], an alternative method is approximating an ideal integral 

using a high-gain low-pass filter 1/(s+ωc). Therefore, the resonant control in (3.50) can be 

rewritten as [97] 
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 (3.62) 

where ωc is the cut-off frequency of low-pass filter, ω0 is the resonant frequency, which is 

equal to ωe in this case. Assuming ωc<< ω0, (3.62) can be further simplified as 
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3.3.2 Dual Current Control 

The flowchart of dual current control with notch filter [102] is shown in Fig.3.4, where the 

P-sequence currents are regulated in PSRF and N-sequence currents are regulated in NSRF 

respectively. The sequential current components need to be extracted as current feedback. 

Therefore, the notch filters are employed to extract the P-sequence currents and N-sequence 

currents. Although the sequential current components can be regulated effectively, the 

dynamic performance may be compromised due to the notch filter.  
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Fig.3.4 Dual current control with notch filter [102]. 

To improve the dynamic performance, the dual current control without notch filter was 

investigated in [104] and can be illustrated in Fig.3.5. By regulation of the currents (including 

the P-sequence and N-sequence currents) in PSRF and NSRF respectively, the DC 

components of currents in PSRF and NSRF can be regulated, which means the P-sequence 
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currents in PSRF and N-sequence currents in NSRF can be regulated effectively. If the 

current references in NSRF are zero, the balanced currents can be achieved. 
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Fig.3.5 Dual current control without notch filter [104]. 

 

Assuming the proportional gain in dual current control in Fig.3.5 is half of the proportional 

gain in the PR control in αβ-frame, as illustrated in Fig.3.5, the current control in PSRF can 

be expressed as 
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where 
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The current control in NSRF in dual current control can be expressed as 
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where 

 
*

*
d d d

q q q

i i i

i i i

  

  

    
          

 (3.67) 



 

65 
 

Similar to the derivation of the equivalent current control in dq-frame for the PR control in 

αβ-frame, according to the relationship between PSRF and NSRF in Section 3.2.3.1, the 

current control in PSRF which is equivalent to the PI control in NSRF (3.66) can be deduced 

and expressed as (3.68).  
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Therefore, combining (3.64) and (3.68), the current control in dq-frame which is equivalent 

to the dual current control can be expressed as 
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As can be seen that, (3.69) is exactly the same as (3.61). Therefore, the dual current control 

is equivalent to the PR control in αβ-frame in theory. 

3.3.3 PI-R Control in PSRF  

The PI-R control in PSRF with resonant control at the frequency of twice fundamental 

frequency is shown in Fig.3.6, where the PI-R control is applied for regulation of d-axis and 

q-axis currents respectively. Therefore, the 2h currents in PSRF can be suppressed by the 

resonant control. As the N-sequence currents are converted to 2h components in PSRF, the 

suppression of 2h components in PSRF means that the N-sequence currents can be 

correspondingly suppressed. 
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Fig.3.6 PI-R control in PSRF [108-110]. 
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As illustrated in Fig.3.6, the PI-R current control in PSRF (dq-frame) can be expressed as 
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3.3.4 Summary 

The conventional current control, PI-R control and the equivalent current control in dq-

frame for the PR control and dual current control are listed in TABLE 3.2, which reveals their 

relationship clearly. As can be seen from (3.61), (3.69) and (3.70) there are resonant 

controllers at the centre frequency of twice fundament frequency in the equivalent control in 

the dq-frame for the PR control in αβ-frame, dual current control, and PI-R in PSRF. 

Therefore, these methods are all capable of suppressing 2h currents in dq-frame, which 

means the N-sequence currents can be suppressed. Since the conventional current control 

does not have the corresponding resonant control in dq-frame, it is incapable of eliminating 

the 2h current. It is also interesting to find that the PR control in αβ-frame is actually 

equivalent to the dual current control in theory. 
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TABLE 3.2 
COMPARISONS OF DIFFERENT CURRENT CONTROL STRATEGIES 

Methods Implementations Equivalent current control in dq-frame 
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3.4 Experiments 

The experiments of the conventional current control, PR control in αβ-frame, dual current 

control, and PI-R in PSRF will be conducted and corresponding experimental results will be 

analyzed in detail. 

The test rig is illustrated in Fig.3.7, where the prototype PMSG is coupled with a servo 

machine. The servo machine is driven by the Siemens servo drive S120, which is used to 

simulate the wind turbine. A power resistor RL (100Ω) is connected in parallel with the DC 

bus to consume the power generated by the generator. The equivalent capacitance of DC bus 

capacitors is 3000μF.  

The design parameters of the PMSG are shown in TABLE B. 1 and the test rig prototype is 

shown in Fig.B.2 in Appendix B. The prototype machine is actually a dual 3-phase PMSG. 

To demonstrate the current control of asymmetric PMSG, only one set of the dual 3-phase 

windings is deliberately employed as an asymmetric single 3-phase PMSG, whose mutual 

inductances are unbalanced, Fig.C.1(a) in Appendix C. 

The experiments are conducted based on dSPACE DS1006, which is detailed in Appendix 

B. The calculation rate of the current loop is configured to be 5 kHz, which is the same as the 

PWM frequency. The overall time delay Td including the PWM output delay, current 

sampling delay and processing delay is approximately 1.5 times of PWM period. The design 

principle of PI parameters in [70] is that the dominant pole of –R/L is canceled by the zero 

point of PI controller in dq-frame, the open loop of whole system can be simplified as typical 

first order system in control theory [70]. Then the proportional gain Kp and integral gain Ki 

can be optimally designed as 

 2 2
;

4 4
s

p i
d d

RL
K K

T T 
   (3.71) 

However, in the case study of unbalanced system, the inductances vary with the rotor 

position. For simplicity, the inductance L for designing Kp is simply chosen as the minimum 

value of Ld and Lq in Fig.C.1(d), which is approximately 17mH. Thus, the optimized PI 

parameters can be derived by setting the damping factor ξ to 0.707 with the inductance 

L=17mH and resistance R = 3.76Ω, the coefficients of the current controllers are listed in 

TABLE 3.3. 

It is worth noting that the resonant controller (3.50) is usually implemented by replacing 

the ideal integral 1/s with an approximated low-pass filter transfer function 1/(s+ωc) in 
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practice [96, 97], where ωc is the cut-off frequency of low-pass filter and it is far smaller than 

the resonant frequency. The cut-off frequency of low-pass filter are very important 

considering the stability [96]. For simplicity, the cut-off frequency is chosen as 1/1000 times 

of resonant frequency, and the integral gain of resonant control is set to be the same as the 

integral gain of PI control [86]. 

It is also worth noting that the number of pole pairs of the prototype PMSG is 16. 

Therefore, the 32nd harmonic in the following harmonic analyses based on the mechanical 

frequency indicates the 2h component in electrical frequency. 

CLR

 

Fig.3.7 Illustration of the test rig. 

 

TABLE 3.3 PARAMETERS OF CURRENT REGULATORS 

Parameters Value 

Estimated total time delay 300μs 

Proportional gain Kp ( =L/(2Td) ) 28.33 

Integral gain of integral Ki (=R/(2Td) ) 6266 

Integral gain of resonant control 6266 

 

3.4.1 Conventional Current Control 

In this experiment, the conventional current PI control illustrated in Fig.1.4 is employed. 

The speed is regulated to 60rpm by the servo motor. The d-axis and q-axis current references 

in Fig.1.4 are assigned to 0A and -4A respectively. The experimental results are shown in 

Fig.3.8. As can be seen from the phase currents, Fig.3.8(a), the currents are slightly 

unbalanced.  
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(e) 

 

(f) 

Fig.3.8 Experimental results of conventional PI control (a) Phase currents. (b) Currents in αβ-

frame. (c) d-axis currents. (d) q-axis currents. (e) Harmonic analysis of currents in αβ-frame. 

(f) Harmonic analysis of current in dq-frame. 

 

When the unbalanced phase currents are mapped to αβ-frame, Fig.3.8(b), it can be seen that 

the amplitudes of iα and iβ are slightly different while the corresponding harmonic analysis, 

Fig.3.8(e), clearly shows that the amplitude of iα and iβ are different. When the phase currents 

are converted to dq-frame, the 2h currents can be observed apparently from the d-axis current, 

Fig.3.8(c) and q-axis current, Fig.3.8(d) and their corresponding harmonic analysis Fig.3.8(f). 

It is worth noting that the severity of the unbalanced currents depends on how severe the 

unbalance is, and it also depends on the bandwidth of the PI controller. If the bandwidth of PI 

controller is fast enough, the unbalanced currents can also be suppressed to the acceptable 

level to some extent. However, in reality, the bandwidth of PI controller is usually limited for 

a given platform. In some applications, the system performance may be very sensitive to the 
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torque ripple resulted from the unbalanced currents. In this case, the conventional current 

control may not be applicable. 

 

3.4.2 PR Control in αβ-frame 

In this experiment, the PR control in Fig.3.3 with resonant control at the center frequency 

of fundamental frequency is applied in the stationary αβ-frame. The speed is regulated to 

60rpm by the servo motor and the d-axis and q-axis current references in Fig.3.3 are assigned 

to 0A and -4A respectively. 

The experimental results are shown in Fig.3.9. As can be seen from the phase currents 

Fig.3.9(a), the amplitudes of all phase currents are almost the same, which means the 3-phase 

currents are more balanced than those in Fig.3.8(a). The currents in αβ-frame and 

corresponding harmonic analysis are shown in Fig.3.9(b) and Fig.3.9(e) respectively. It can 

be seen that the amplitudes of iα and iβ are the same, which indicates the currents are balanced. 

Consequently, no 2h currents can be observed from the d-axis currents in Fig.3.9(c), q-axis 

currents in Fig.3.9(d) and the corresponding harmonic analysis in Fig.3.9(f). 

It is worth noting that the average q-axis current in Fig.3.9(d) is slightly deviated from the 

current reference value -4A. The deviation is about 0.02A, which is 0.5% of the current 

reference. Although the resonant control has infinite selection characteristic at the centre 

frequency and the PR control can track fundamental current without tracing error in theory 

[96-98], in reality, the ideal integral in the resonant control is usually replaced by an 

approximated low-pass filter transfer function [96]. Therefore, the tracing capability is 

slightly compromised. Nevertheless, the currents are more balanced than the currents under 

conventional current control. 
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(f) 

Fig.3.9 Experimental results of PR control in αβ-frame. (a) Phase currents. (b) Currents in αβ-

frame. (c) d-axis currents. (d) q-axis currents. (e) Harmonic analysis of currents in αβ-frame. 

(f) Harmonic analysis of currents in dq-frame. 

 

3.4.3 Dual Current Control 

In this experiment, the dual current control without notch filters in Fig.3.5 is employed. 

The speed is regulated to 60rpm by the servo motor. The d-axis and q-axis current references 

in PSRF are assigned to 0A and -4A respectively, while the d-axis and q-axis current 

references in NSRF are 0A aiming for suppression of the N-sequence currents.  

The phase currents are shown in Fig.3.10(a), which shows that the currents under the dual 

current control are more balanced than those in Fig.3.8(a) under conventional current control. 

The currents in αβ-frame and corresponding harmonic analysis are shown in Fig.3.10(b) and 

Fig.3.10(e) respectively. It can be seen that the amplitudes of iα and iβ are the same, which 

indicates the currents are balanced. Consequently, no 2h currents can be observed from the 

dq-axis in Fig.3.10(c), Fig.3.10(d), and the corresponding harmonic analysis in Fig.3.10(f). 

Compared with the experimental results in Fig.3.9 and Fig.3.10, it can be concluded that 

the dual current control has the similar capability of suppressing the N-sequence currents as 

the PR control in αβ-frame. Furthermore, it can trace the q-axis current reference fairly well, 

Fig.3.10(d), without tracing error, while there is trivial tracing error under PR control in αβ-

frame in reality, Fig.3.9(d). 
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(e) 

 

(f) 

Fig.3.10 Experimental results of dual current control. (a) Phase currents. (b) Currents in αβ-

frame. (c) d-axis currents. (d) q-axis currents. (e) Harmonic analysis of currents in αβ-frame. 

(f) Harmonic analysis of current in dq-frame. 

 

3.4.4 PI-R Control in PSRF  

In this experiment, the PI-R control in PSRF with resonant control at the center frequency 

of twice fundamental frequency, Fig.3.6, is employed. The speed is regulated to 60rpm by the 

servo motor. The d-axis and q-axis current references in Fig.3.6 are assigned to 0A and -4A 

respectively. The experimental results are shown in Fig.3.11, it can be seen that the PI-R 

control has almost the same performance of suppressing the N-sequence currents as the dual 

current control and does not have the trivial tracing error as the PR control in αβ-frame. For 

simplicity, the analyses of the experimental results under the PI-R control in PSRF will not be 

repeated here anymore. 
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(e) 

 

(f) 

Fig.3.11 Experimental results of PI-R(2ωe) in PSRF. (a) Phase currents. (b) Currents in αβ-

frame. (c) d-axis currents. (d) q-axis currents. (e) Harmonic analysis of currents in αβ-frame. 

(f) Harmonic analysis of current in dq-frame. 

3.4.5 Summary 

Through the comparative experimental results, it can be concluded that the conventional 

current control cannot suppress the N-sequence currents properly, while the PR control in αβ-

frame, the dual current control, and the PI-R control in PSRF can suppress the N-sequence 

currents effectively. It is worth noting that the PR control in αβ-frame, the dual current 

control, and the PI-R control in PSRF do not require any information of asymmetries. 

Therefore, they are robust to any asymmetries although the experiments are only conducted 

on the asymmetric PMSG with inherent unbalanced mutual inductances.  
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The PR control in αβ-frame is equivalent to the dual current control in theory. However, the 

current tracing performance is slightly compromised due to the implement of resonant control 

with the integral approximately replaced by an approximate low pass filter in reality. 

The PI-R control in PSRF has the equivalent performance to the dual current control 

without average tracing error and it does not require two sets of PI controllers. However, the 

implementation of PI-R control increases the complexity compared with the implementation 

of PI control.  

The dual current control requires two sets of current controllers, whose control complexity 

is increased compared with the conventional PI control. It is worth noting that the 

proportional gain of each set of PI controller should be only half of the proportional gain in 

other control strategies, otherwise, the system may be unstable due to the relatively high 

proportional gain. 

3.5 Conclusions 

In this chapter, the mathematical modelling of generic asymmetric PMSG is presented, 

which considers the unbalanced resistances, unbalanced average self-inductances, mutual 

inductances and unbalanced back-EMFs. Four current control methods including the 

conventional current control, PR control in αβ-frame, dual current control and PI-R control in 

PSRF are reviewed and evaluated. The relationship between these methods is revealed for the 

first time. Comparative experiments show that there are unbalanced currents in the 

asymmetric PMSG under conventional current control, while the PR control in αβ-frame, 

dual current control and PI-R control in PSRF are all capable of suppressing the N-sequence 

effectively. 
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Chapter 4 Instantaneous Power Control of Asymmetric 

PMSG (without sequential component decomposers) 
Equation Chapter (Next) Section 1 

4.1 Introduction 

The PMSG direct-drive system is very attractive in the wind turbine drive system for its 

highest energy production, high efficiency, high reliability, low maintenance cost, low noise, 

etc [13]. However, when the PMSG is asymmetric, the undesired 2h power will be produced 

[112] and results in the 2h DC bus voltage [113, 114, 143]. As the DC bus voltage fluctuates, 

it results in the current harmonics flowing through the DC bus electrolytic capacitors. Since 

the equivalent series resistance of capacitors increases at low frequencies, the low-order 

current harmonics contribute disproportionately to the capacitor power losses and 

temperature rise, resulting in reduced lifetime [93]. 

In Chapter 3, the current control of asymmetric PMSG is investigated. Although the N-

sequence currents can be suppressed effectively by the balanced current control, as shown in 

TABLE 2.2, there will be 2h power in the asymmetric PMSG. With the 2h power flowing 

towards the DC bus capacitors, it suffers the 2h DC bus voltage pulsation. Since the 2h DC 

bus voltage is related to the 2h power flowing through the DC bus capacitors [115, 116], the 

effective way to suppress the 2h DC bus voltage is to suppress the 2h power, which can be 

achieved by the instantaneous power control.  

The instantaneous power control has been widely employed in the weak grid-connected 

PWM rectifier system [100, 102, 114, 117, 118]. As introduced in Section 1.6.2.1, the 

instantaneous power control can be classified as instantaneous input power control [102, 117], 

the input-output-power control [100, 118], and the output power control [114]. By 

introducing the N-sequence currents, the 2h power generated by the P-sequence currents 

could be compensated by the 2h power generated by the N-sequence currents. However, as 

listed in TABLE 1.1, all the power control methods require sequential component decomposers 

to extract sequential currents, back-EMFs or output voltages, such as the sequence separation 

delaying method [103], the notch filter method [102], or the dual second-order generalized 

integrator(DSOGI) method [120], which increase the system complexity. 
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In this chapter, an improved power control aiming for suppressing the 2h DC bus voltage 

accounting for generalized asymmetries without sequential component decomposer will be 

proposed and verified by elaborated experiments. The proposed method is based on the 

output power control. With the aid of the current PI-R control in PSRF to regulate the P-

sequence and N-sequence currents, no sequential current decomposers for current controllers 

are required. The sequential output voltages, which are essential for current reference 

calculation, are simply obtained from the output voltages of current PI controllers and 

resonant controllers respectively, which will be detailed in the Section 4.4.1. Since the 

sequential output voltages in the proposed method are from current controllers rather than 

from the estimation in [114], the proposed method are robust to generalized asymmetries 

even when the impedances are unbalanced. Therefore, the proposed power control can be 

implemented without any sequential decomposers under generalized unbalanced conditions. 

Finally, the proposed method will be verified on an asymmetric 3-phase PMSG prototype 

with inherent asymmetry and deliberately introduced asymmetries. 

4.2 Second Harmonic DC Bus Voltage Introduced by Asymmetries 

From Fig.4.1, it can be deduced that [144, 145]  

 1 2dc
c

dc

dv p p
i C

dt v


    (4.1) 

where p1 is the instantaneous power from external, p2 is the instantaneous power from the 

inverter, and pc is the instantaneous power flowing through the DC bus capacitors. (4.1) 

indicates that there will be 2h voltage in vdc when there is 2h power in p1 or p2 [113, 114, 

143]. If the inverter in Fig.4.1is a lossless system, the 2h DC bus voltage will be affected 

directly by the 2h power in pout. 

The 2h power in unbalanced system can be expressed as [146]  

  2 2
2 2 2cos 2nd nd

ep P      (4.2) 

where θe is the electrical rotor position, P2
2nd is the amplitude of the 2h power, θ2 is the 

displacement angle. 

Usually, vdc is regulated to trace the reference value vdc* by the DC bus voltage PI 

controller in the grid side inverter. Therefore, assuming the DC bus voltage can be expressed 

as 

 * 2
2cos(2 )nd

dc dc dc e vv v V        (4.3) 
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where Vdc
2nd and θ2v are the amplitude and offset angle of the 2h DC bus voltage respectively.  

With consideration of DC and 2h components from the inverter side, the power p2 can be 

expressed as 

  2
2 2 2 2cos 2 ...dc nd

e pp p P       (4.4) 

where p2
dc is the average power; P2

2nd and θ2p are the amplitude and offset angle of the 2h 

power. Assuming only the average DC power without 2h power in (4.4) is transferred to the 

left side of the DC bus capacitors, then 

 1 2
dcp p  (4.5) 

Substitute (4.3)-(4.5) into (4.1), the amplitude of the 2h DC bus voltage can be deduced as 

 
 

2
2 2

2*2 1

nd
nd L

dc

dc e L

P R
V

v CR



  (4.6) 

where the equivalent RL [147] can be deduced as 

    2*
2
dc

L dcR v p    (4.7) 

4.3 Review of Instantaneous Power Control 

As detailed in [102], the unbalanced 3-phase components without zero sequence 

components can be expressed as the sum of orthogonal P- and N-sequence components, i.e. 

 e ej jp n
dq dqF e F e F 


   (4.8) 

where F can be voltage v, current i, back-EMFs e in PMSG application or grid voltage in grid 

applications. θe is the rotor electrical position in generator applications or grid angle in grid 

applications, and Fαβ can be expressed as 

  2 /3 4 /32

3
j j

a b cF F jF F F e F e 
        (4.9) 

In (4.8), ej p
dqe F and ej n

dqe F are the P- and N-sequence components in αβ-frame 

respectively. p
dqF  are the P-sequence components in PSRF, n

dqF  are N-sequence components 

in the NSRF, and they can be expressed as 

 p p p
dq d qF F jF   (4.10) 

 n n n
dq d qF F jF   (4.11) 
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where subscripts d, q mean d-axis and q-axis respectively, the superscripts p, n mean P- and 

N-sequence components respectively. 

To discuss the principle of the power control, the block diagram of a PWM 

inverter/rectifier is repeated in Fig.4.1 for convenience. 
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Fig.4.1 Conventional PWM inverter/rectifier. 

4.3.1 Input Power Control 

In the input power control, the 2h power in the input power in Fig.4.1 is supposed to be 

suppressed. The instantaneous active and reactive input powers can be expressed as [148] 

  3

2inp e i e i       (4.12) 

  3

2inq e i e i       (4.13) 

where eα, eβ, iα and iβ are back-EMFs and currents in αβ-frame. By substituting eα, eβ, iα and iβ 

from (4.8) into (4.12) and (4.13) respectively, the instantaneous active and reactive input 

powers can be deduced as [102, 114] 

 0 _ 2 _ 2cos(2 ) sin(2 )in in in c e in s ep p p p      (4.14) 

 0 _ 2 _ 2cos(2 ) sin(2 )in in in c e in s eq q q q      (4.15) 

where pin0, qin0 are the average active and reactive input powers respectively, pin_c2, pin_s2, 

qin_c2 and qin_s2 are the coefficients of 2h active and reactive input powers respectively, which 

have the following relationship  
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     

           

 (4.16) 

If pin_c2 and pin_s2 in (4.14) are zero aiming for suppressing the 2h input power, and pin0 in 

(4.14) and qin0 in (4.15) are the reference average active and reactive input power pin0* and 

qin0* respectively, by solving (4.16), the P- and N-sequence current references can be 

obtained and expressed as 
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* * *
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1 2
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2 2

3 3

p p p
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i e ep q

i eD D e

i e e
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          

 (4.17) 

where superscript * means reference value and the D1 and D2 can be expressed as 

        2 2 2 2

1
p p n n
d q d qD e e e e     (4.18) 

        2 2 2 2

2
p p n n
d q d qD e e e e     (4.19) 

If the current controllers could trace the current references (4.17) without tracing errors, 

pin_c2 and pin_s2 will be zero. Consequently, the 2h active input power in (4.14) can be 

suppressed. 

4.3.2 Output Power Control 

In the output power control, the 2h power in instantaneous active output power in Fig.4.1 is 

supposed to be suppressed. The instantaneous active and reactive output powers at the poles 

of inverter can be expressed as [148] 

  3

2outp v i v i      (4.20) 

  3

2outq v i v i      (4.21) 

By substituting vα, vβ, iα and iβ from (4.8) into (4.20) and (4.21) respectively, the 

instantaneous active and reactive output powers can be deduced as [102, 114] 

 0 _ 2 _ 2cos(2 ) sin(2 )out out out c out sp p p p     (4.22) 

 0 _ 2 _ 2cos(2 ) sin(2 )out out out c out sq q q q     (4.23) 
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where pout0, qout0 are the average active and reactive output powers respectively, pout_c2, pout_s2, 

qout_c2 and qout_s2 are the coefficients of 2h active and reactive output powers respectively, 

which have the following relationship  

 

0

0

_ 2

_ 2

2

3

p p n n p
out d q d q d

p p n n p
out q d q d q

n n p p n
out c d q d q d

n n p p n
out s q d q d q

p v v v v i

q v v v v i

p v v v v i

p v v v v i

     
                
     

           

 (4.24) 

If pout_c2 and pout_s2 in (4.22) are zero aiming for suppressing the 2h output power, and pout0 

in (4.22) and qout0 in (4.23) are the reference average active and reactive output power pout0* 

and qout0* respectively, by solving (4.24), the P- and N-sequence current references can be 

obtained and expressed as 
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 (4.25) 

where superscript “*” means reference value and D1 and D2 can be expressed as 

        2 2 2 2

1
p p n n
d q d qD v v v v     (4.26) 

        2 2 2 2

2
p p n n
d q d qD v v v v     (4.27) 

If the current controllers could trace the current references (4.25) without tracing errors, 

pout_c2 and pout_s2 will be zero. Consequently, the 2h active output power in (4.22) will be zero. 

Therefore, according to (4.1), the 2h DC bus voltage can be suppressed. 

4.3.3 Input-output-power Control 

In the input-output-power control, the 2h power of instantaneous active output power is 
supposed to be suppressed to suppress the 2h DC bus voltage, while the average active input 
power and average reactive input power are regulated for controlling the average input power 
and the average unity input power factor. The four constraints for current reference 
calculations in input-output-power control can be expressed as 
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 (4.28) 
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If pin0 in (4.14) and qin0 in (4.15) are the reference average active and reactive input power 

pin0* and qin0* respectively, pout_c2 and pout_s2 in (4.22) are zero aiming for suppressing the 2h 

output power, by solving (4.28), the P- and N-sequence current references can be obtained 

and expressed as 

 

*
0

*

*

*

*
*

0

0

02
    

03

0

0

02

03

0

dp qn dn

qp dn qnin

p
dn qp dpd

p
qn dp qpq

n
d qp dn qn
n
q dp qn dnin

qn dp qp

dn qp dp

e e e

e e ep

e e eDi
e e ei

i e e e
i e e eq

e e eD

e e e

    
     
                                  

      

2 2

2 2
dp qp

dn qn

dn qp dp qn

dn dp qn qp

v v

v v

v v v v

v v v v

 
  
 
 

  

  (4.29) 

where 

 

p p n n
d q d q

p p n n
q d q d

n n p p
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n n p p
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 

   

  (4.30) 

Compared with the current reference calculation (4.17) for input power control and (4.25) 

for output power control, the current reference calculation (4.29) for input-output-power 

control is more complicated. 

4.4 Proposed Control Strategy 

As the 2h DC bus voltage essentially depends on the 2h component in the output power pout 

rather than input power pin, the proposed control is based on output power control which is 

robust to the generalized asymmetries including the asymmetric impedances. As shown in 

(4.25), the P- and N-sequence output voltages are essential for the calculation of P- and N-

sequence current references in the output power control. In this section, the principle of the 

extraction of P- and N-sequence output voltages with the aid of PI-R controller in PSRF will 

be introduced first, and then the proposed power control without any sequential component 

decomposers will be presented. 

4.4.1 Extraction of the P- and N-Sequence Output Voltages 

The mathematical modeling of the asymmetric PMSG in dq-frame can be linearized as a 

linear model with disturbance [104, 149]. The linear model can be expressed as a resistance-
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inductance (RL) with a low-pass filter having the time constant Td, where Td is the total time 

delay including current sampling delay, calculation delay, PWM output delay, and etc. The 

PI-R control in PSRF is employed to regulate the currents in dq-frame. The control flowchart 

can be illustrated in Fig.4.2(a), where x and xout are the current reference and feedback in dq-

frame respectively, y is the output voltage, d is disturbance including the 2h voltage. 

1

Ls R
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1dT s 

x outx
PIy

Ry

d

2 2
0

iK s

s 
 

(a) 

 

(b) 

 

(c) 

Fig.4.2 Proposed output voltages extraction of P- and N-sequence components. (a) Equivalent 

transfer function. (b) Bode magnitude (input). (c) Bode magnitude (disturbance). 
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In reality, an approximated low-pass filter transfer function 1/(s+ωc) is employed to replace 

the ideal integral 1/s in resonant controller in Fig.4.2(a) [96, 97], where ωc is the cut-off 

frequency of low-pass filter and ωc is far smaller than the resonant frequency. The resonant 

control is usually implemented by (3.63). In this case study, a low-pass filter with cut-off 

frequency ωc=ω0/1000 is employed and the integral gain of resonant control is set to be the 

same as the integral gain of PI controller. 

Assuming the fundamental frequency is 16Hz, the centre frequency in the resonant control 

will be 32Hz aiming for suppressing the 2h currents. R, L and Td in Fig.4.2(a) are 3.76Ω, 

17mH and 300μs respectively. The bode magnitude of xout/x, yPI/x and yR/x can be shown in 

Fig.4.2 (b), which show that the 2h voltage (32Hz) in yR is dominant while that in yPI is 

negligible if there is 2h component in the current reference x. Meanwhile, the DC output 

voltage in yPI is dominant while that in yR is negligible. 

The bode magnitude of xout/d, yPI/d and yR/d are shown in Fig.4.2 (c). If there is 2h 

component in d, it can be seen that the 2h current in xout is suppressed effectively. Meanwhile, 

the 2h voltage in yR is almost equal to d, which is dominant while that in yPI is negligible. If 

there is DC value in the disturbance d, the DC output in yPI will be equal to d as the 

magnitude of yPI/d at the zero frequency is 0dB, while the DC output in yR is negligible. 

Overall, the DC and the 2h output voltages can be separated by the PI controller and 

resonant controller effectively. The output of the PI controller and resonant controller can be 

employed to represent the DC voltage and 2h voltage respectively. 

4.4.2 Control Scheme 

The detailed control block diagram of the proposed method is shown in Fig.4.3. The 

current references generation is shown in Fig.4.3(a), which are obtained according to (4.25). 

The average output reactive power reference is assigned to zero for the unity average output 

power factor in this case study. Tdq(θ) is the standard Park transformation (A.7). By the 

matrix conversion Tdq(2θe), the N-sequence current references in the NSRF (DC value) are 

converted to AC values (2ωe) in PSRF. Therefore, there are DC value and AC value with 2ωe 

frequency in the current references in PSRF. 

The current control scheme is shown in Fig.4.3(b). By PI-R control with the resonant 

control at the center frequency of 2ωe in the PSRF [109], the currents can be controlled 

effectively without tracing error. In the previous works, the sequence separation delaying 

method [103], notch filter method [102], or dual second-order generalized integrator (DSOGI) 
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method [120] were employed to extract P- and N-sequence components [100, 101, 109, 114, 

118, 119, 121]. In the proposed method shown in Fig.4.3(b), the P-sequence voltages in 

PSRF are directly from the output of the PI controllers, while the N-sequence voltages in the 

PSRF are directly from the output of resonant controllers in the PSRF due to its infinite gain 

at the center frequency of 2ɷe. By matrix conversion Tdq(-2θe), the N-sequence voltages (2ɷ) 

in the PSRF are converted to DC signals in the NSRF. Therefore, the N-sequence output 

voltages in the NSRF can be obtained easily. Since the P- and N-sequence output voltages are 

from PI-R controllers, they are robust to generalized unbalance. 
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Fig.4.3 Proposed power control method of suppressing the 2h DC bus voltage. (a) Current 

reference generation. (b) Current control scheme. 



 

90 
 

4.4.3 Summary 

The proposed method can be summarized as TABLE 4.1. Compared with the power control 

listed in TABLE 1.1, the proposed power control can be implemented by the proposed method, 

which does not require any sequential component decomposers for currents, supply 

voltage/back-EMFs, and especially for output voltages. 

As the 2h power and DC bus voltage can be effectively suppressed by the proposed method, 

the PI-R control employed in the DC bus voltage control aiming for suppressing the 2h DC 

bus voltage in [119] is not necessary and the PI control is enough for regulation of the DC 

bus voltage control. Thus, the 2h currents in dq-frame can be avoided; correspondingly, the 

third current harmonics can be avoided.  

Since the proposed method is based on the output power control, the output power factor 

rather than the input power factor can be controlled. 

TABLE 4.1 

SUMMARY OF THE PROPOSED POWER CONTROL 

Items Proposed method 

Power condition equations *
0

_ 2

_ 2

0

0

0

0

out

out c

out s

in

p p

p

p

q

 






 

 

DC bus voltage control  PI 

Current control PI-R(2ɷe) control in PSRF 

Unit input power factor 

Unity output power factor  

2nd harmonic DC voltage Low 

3rd current harmonics Low 

Current reference calculation in dq-frame/ αβ-frame dq-frame 

Current reference calculation Simple 

Sequential components decomposer for supply 
voltage/Back-EMFs 

No 

Sequential components decomposer for currents No 

Sequential components decomposer for output voltages No 
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4.5 Experiments 

The test rig is the same as that illustrated in Fig.3.7. A small-scaled asymmetric 3-phase 

prototype PMSG is employed to verify the proposed method. The PMSG has asymmetric 

winding topology that results in the inherent unbalance. The inductances measured by HIOKI 

LCR meter IM3533-01 at the frequency of 120Hz are shown in Fig.C.1(a) and the 

corresponding harmonic analysis is shown in Fig.C.1(b). It is apparent that the average 

mutual inductance MAB is quite different with the other mutual inductances MCA and MBC, 

which indicates the PMSG is unbalanced. 

The integral gain of resonant controller is chosen to be equal to the integral gain of PI 

controller. The overall time delay, including the PWM output delay, current sampling delay 

and processing delay, is approximately 1.5 times of PWM period. Therefore, the optimized 

current PI parameters can be derived by setting the damping factor to 0.707 [70]. 

In this section, the experimental results of balanced current control will be firstly 

introduced. As expected, the 2h power and DC bus voltage will be produced. Then the 

proposed power control will be investigated. It will be seen that the 2h power and DC bus 

voltage can be suppressed effectively. Hereafter, the extraction of the sequential output 

voltages will be analyzed in detail. Finally, it will be verified that the proposed method is 

applicable under different asymmetries. 

4.5.1 Balanced Current Control 

In this experiment, the d-axis and q-axis current references in the PSRF in Fig.4.3(a) are 

assigned to zero and -4A respectively, while N-sequence current references in the NSRF are 

assigned to be zero. The speed is regulated to be 60rpm by the servo motor. 

The experimental results are shown in Fig.4.4. As can be seen from the phase currents in 

Fig.4.4(a), they are very balanced. However, due to the unbalanced impedances in the PMSG, 

the instantaneous output active power p2 (equal to pout if the inverter loss is neglected) has 

apparent oscillation, Fig.4.4(b). From the harmonic analysis based on the mechanical 

frequency, Fig.4.4(b), it can be found that the 2h power (32nd mechanical frequency due to 

number of the pole pairs is 16) is apparent. Therefore, the DC bus voltage ripple of the 

second electrical frequency, Fig.4.4(c), is obvious. 
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(a) 

 
(b) 

 
(c) 

Fig.4.4 Balanced current control, harmonic analysis based on mechanical frequency. (a) 

Phase currents. (b) Active power. (c) DC bus voltage. 
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4.5.2 Proposed Power Control 

The experimental results of the proposed power control are shown in Fig.4.5 and Fig.4.6. In 

this experiment, the speed is regulated to be 60rpm by the servo motor, and the average active 

and reactive power reference in Fig.4.3(a) are assigned to -400W and 0W respectively. 

From the active power and the corresponding harmonic analysis, Fig.4.5(b), it can be seen 

the average active power is -400W, which means the active power is fairly regulated. The 

phase currents are shown in Fig.4.5(a), which are slightly more unbalanced than those in 

Fig.4.4(a). This is because the N-sequence currents are injected into the stator currents to 

suppress the 2h active power. As can be seen from Fig.4.5(b), the 2h active power is much 

smaller than that in Fig.4.4(b). Consequently, the 2h DC bus voltage in Fig.4.5(c) is much 

smaller than that in Fig.4.4(c). 
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(c) 

Fig.4.5 Experimental results-1 of proposed power control, harmonic analysis based on 

mechanical frequency. (a) Phase currents. (b) Active power and harmonic analysis. (c) DC bus 

voltage and harmonic analysis. 

 

The P-sequence current references in the PSRF and N-sequence current references in the 

NSRF are shown in Fig.4.6(a). It can be seen that they are DC signals. The P-sequence output 

voltages in the PSRF and N-sequence output voltages in the NSRF are shown in Fig.4.6(d), 

where the DC signals are dominant. Since the N-sequence currents in NSRF are not zero, 

there are apparent 2h currents in the dq-axis currents in the PSRF, Fig.4.6(b). Due to the 

unbalanced currents and unbalanced impedances, the output voltages will be unbalanced as 

well. As shown in Fig.4.6(c), the amplitude of phase voltages are different. Consequently, 

there are apparent 2h voltages in the dq-axis voltages in PSRF, Fig.4.6(e). 

It’s worth noting that although the average reactive power is zero, Fig.4.6(f), there is 

evident 2h power since the coefficients of 2h reactive power in (4.23) are not involved for 

current references generation (4.25). 
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(e) 

 

(f) 

Fig.4.6 Experimental results-2 of proposed power control, harmonic analysis based on 

mechanical frequency.. (a) P- and N-sequence current references in PSRF and NSRF

respectively. (b) dq-axis currents. (c) Phase ABC output voltages. (d) P- and N-sequence 

voltages in PSRF and NSRF respectively. (e) dq-axis voltages. (f) Reactive power. 

4.5.3 Extraction of Sequential Output Voltages 

The extracted sequential output voltages are shown in Fig.4.7. It can be seen from Fig.4.7(a) 

that the dominant DC values are in Vdp* and Vqp* rather than in Vd2ω* and Vq2ω*, which 

means nearly almost all the P-sequence voltages are mapped to Vdp* and Vqp*. It can also be 

seen from Fig.4.7(b) that the dominant 2h output voltages are in Vd2ω* and Vq2ω* rather than 

in Vdp* and Vqp*, which means the nearly all the 2h output voltages are mapped to Vd2ω* and 

Vq2ω*. Therefore, the P- and N-sequence voltages can be separated effectively by the 

proposed method. 
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(a) 

 

(b) 

Fig.4.7 Extraction of the sequential voltages (CC: balanced current control). (a) DC

components. (b) Second harmonics. 

4.5.4 Different Asymmetries 

In the following experiments, an external inductor is deliberately connected in series with 

phase A, B, and C respectively. The equivalent inductance and resistance in the inductor are 

5.63mH and 1.15Ω respectively. The inherent asymmetry, the extra asymmetries can be 

summarized in TABLE 4.2 when the phase A, B, or C is connected with the extra inductor 

respectively. 

The experimental results of different DC bus capacitors (3000μF or 1500μF) and different 

asymmetries are shown in Fig.4.8, where “inherent” denotes the inherent asymmetry, “phase 

A”, “phase B”, and “phase C” mean the corresponding phase is connected deliberately with 

the introduced inductor in series, the “CC” means balanced current control, the “Proposed” 

means the proposed power control. The capacitance in Fig.4.8 means the DC bus capacitance 

is 3000μF or 1500μF when the experiments are conducted. 

CC Proposed
0.00
0.01
0.02
0.03
0.04

20
40
60
80

100

d
c 

co
m

p
on

en
ts

 Vdp
*  Vqp

*  Vd2*  Vq2*

CC Proposed
0

1

2

3

4

2n
d

 h
ar

m
on

ic
s 

(V
)  Vdp

*  Vqp
*  Vd2*  Vq2*



 

98 
 

The experimental results show that the proposed method can suppress the 2h power and 

DC bus voltage effectively under the conditions of different asymmetries and different DC 

bus capacitors. 

TABLE 4.2 

ASYMMETRIES IN DIFFERENT CASES 

Cases Asymmetries 

Case 1 Inherent asymmetry  

Case 2 Extra asymmetry when phase A with external inductor in series 

Case 3 Extra asymmetry when phase B with external inductor in series 

Case 4 Extra asymmetry when phase C with external inductor in series 

 

 

Fig.4.8 Comparison of the 2h power and DC bus voltage under the conditions of different 

asymmetries and DC bus capacitors (CC: balanced current control, Proposed: Proposed

power control). 

4.6 Conclusion 

An improved power control of suppressing the 2h DC bus voltage under generalized 

unbalanced conditions without sequential component decomposers has been investigated. No 

special sequential decomposers, such as time delaying method, notch filter method, or dual 

second-order generalized integrator (DSOGI) method are required for the extraction of P- and 

N-sequence currents and output voltages. Since the proposed method does not require any 
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information of the PMSG’s parameters, it is robust to different types of asymmetries. The 

effectiveness has been verified on a small-scaled 3-phase prototype PMSG with considerable 

inherent asymmetry and deliberately introduced asymmetries. The elaborate experimental 

results show that the proposed method can suppress the 2h DC bus voltage effectively. 
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Chapter 5 Control of Asymmetric PMSG with 

Compensation in Parallel 
Equation Chapter (Next) Section 1 

5.1 Introduction 

As introduced in Chapter 3, the N-sequence currents in the unbalanced system can be 

suppressed by the balanced current control, e.g. the PR control in αβ-frame [99-101], the dual 

current control [87, 102, 142], or the PI-R control in PSRF [108-110]. Therefore, the 2h 

torque can be reduced if the 3-phase back-EMFs are balanced. However, the 2h power due to 

the system asymmetries will be introduced [112], which flows through the DC bus capacitors 

and results in 2h DC bus voltage [113, 114], capacitor power losses, temperature rise, and 

reduced lifetime [93].  

In Chapter 4, the 2h power and DC bus voltage suppressed by an improved instantaneous 

power control is investigated. The principle of instantaneous power control is that the 2h 

power generated by the P-sequence currents is compensated by the 2h power generated by 

the N-sequence currents. Therefore, the N-sequence currents are inevitable in order to 

suppress the 2h power in the unbalanced system. As shown in TABLE 2.2, the N-sequence 

currents will interact with back-EMFs and result in 2h torque and corresponding mechanical 

vibration. As presented in [37], severe vibrations, corresponding acoustic noise, and fatigue 

[27] could happen due to mechanical resonance, which is not allowed in the wind turbine 

system. 

Overall, none of the conventional current control, the balanced current control in Chapter 3 

or the instantaneous power control in Chapter 4 can suppress the 2h power and the 2h torque 

of the asymmetric PMSG simultaneously. To solve the 2h torque ripple and DC bus voltage 

ripple, with only P-sequence currents injection to avoid 2h torque ripple, the undesired 2h 

power can be transferred to the grid network by the instantaneous power feed-forward control 

[123-125]. However, this approach increases the THD of the grid currents and it should be 

avoided in most applications. The undesired 2h power generated by the asymmetric PMSG 

has to be transferred to somewhere else. 

An alternative way is to transfer the fluctuated power to an energy storage device [130-

132]. In [132], the DC bus voltage ripple was suppressed by coordinated DC bus voltage 
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control, where the current reference from the DC bus voltage PI controller was distributed 

between the grid side and energy storage system. To suppress the DC bus voltage pulsation 

without the information of power pulsation from PMSG, high bandwidth of DC bus voltage 

PI control is required, which may result in potential instability. This approach can be 

classified as the post-treatment because it dealt with the fluctuated power that was there 

already. 

In [133], a compensation device in parallel with the DC bus was employed to suppress the 

2h DC bus voltage due to the grid supply voltage asymmetries. The 2h power generated by 

the asymmetric system is compensated by the power generated by the compensation device. 

Different with the method in [132], this approach requires the information of the 2h power 

generated by the asymmetric system. When this approach is applied to the asymmetric PMSG 

wind turbine system, as the 2h power generated by the PMSG have been suppressed before 

flowing towards the DC bus capacitors, this approach can be classified as pre-treatment, 

which is especially suitable in distributed DC power systems [150]. However, the problem of 

the approach in [133] is that the power pulsation due to the asymmetric impedances was not 

considered. 

The comparison of the aforementioned methods is shown in TABLE 5.1. As can be seen 

from TABLE 5.1, the method of transferring the 2h power to energy storage device is the best 

solution for suppressing the DC bus voltage ripple and torque ripple without deterioration of 

current THD of grid side. 

TABLE 5.1 

COMPARISON OF DIFFERENT METHODS 

Methods Generator side DC bus capacitors Grid side 

Balanced current control  
2h DC bus voltage 

ripple 

Increased current 

THD 

instantaneous power 

control 
Torque ripple   

Power feed-forward 

control 
  

Increased current 

THD 

Transfer the 2nd power 

to energy storage device 
   
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Based on the same principle of transferring the fluctuated power to a compensation unit, 

[132, 133], an effective pre-treatment method accounting for the asymmetric impedances is 

investigated in this chapter, which considers the current THD of grid side, the 2h DC bus 

voltage, and the 2h torque of PMSG. The instantaneous average power control without N-

sequence currents is employed to avoid the 2h torque, while the 2h power caused by PMSG 

impedance asymmetries will be directly transferred to the active compensation unit without 

involvement of the grid side, and consequently, the DC bus voltage ripple can be suppressed. 

In this chapter, two power topologies of the compensation unit, which are designated as 

Topology-RL and Topology-RLE, will be investigated and their corresponding control 

method will be presented. 

5.2 Compensation in Parallel (Topology-RL) 

5.2.1 Introduction 

In this section, the compensation unit with topology-RL shown in Fig.5.1 will be 

investigated. It is constructed by H-bridge power switches and a compensation inductor. 

Since the compensation inductor (L) with inherent resistance (R) is employed as storage 

device to exchange the 2h power with the DC bus, the topology of this compensation unit is 

designated as Topology-RL. The proposed control strategy will be introduced in Section 5.2.2 

and the corresponding implementation will be introduced in Section 5.2.3, and then 

elaborated experiments with deliberately introduced asymmetries will be conducted in 

Section 5.2.4 to validate the effectiveness of the proposed method. 

ci 2i1i

CLR

dcv

1p 2p

cp
2mp

2cp

dcv

compL

compv

compi compR

 

Fig.5.1 Topology of the proposed compensation in parallel (Topology-RL). 
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5.2.2 Compensation Principle 

As described in the Appendix C, the mutual inductances of the dual 3-phase PMSG in 

single 3-phase mode are asymmetric, while the resistances and back-EMFs are balanced 

although the proposed method will be generally applicable to PMSG having any impedance 

asymmetries.  

If the 2h torque is to be avoided, the N-sequence currents cannot be injected into the stator 

currents, and the 2h power resulted from the inherent asymmetry will flow into the DC bus. If 

the 2h power is not transferred to the grid side or it does not flow through the DC bus 

capacitors, another flowing path for the 2h power has to be provided. In this section, an active 

compensation unit is proposed to absorb the 2h power before it flows towards the DC bus 

capacitors, as shown in Fig.5.1. If the 2h power in the power p2m from the PMSG and the 2h 

power in the power p2c from the compensation unit can be cancelled, the 2h power flowing 

into the DC bus capacitors will be suppressed.  

To compensate the 2h power (4.2)，the frequency of the compensation current should be 

the same as the fundamental frequency. Assuming the compensation current icomp in Fig.5.1 

can be expressed as 

  coscomp comp e compi I      (5.1) 

where Icomp and θcomp are the amplitude and offset angle of the compensation current 

respectively, the compensation voltage vcomp in Fig.5.1 under steady-state operation will be  

 
 

 
/

       cos

comp comp comp comp comp

comp comp e comp

v i R L di dt

I Z   

 

  
 (5.2) 

where 

  22
comp comp e compZ R L    (5.3) 

  arctan /e comp compL R     (5.4) 

where Lcomp is the compensation inductance, Rcomp is the inherent resistance of the inductor.  

Therefore, the power from the compensation unit will be 

     2 2 _ 2 cos cos 2 2c comp comp c h e compp v i P             (5.5) 
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where 

 2
2 _ 2 0.5c h comp compP I Z   (5.6) 

From (5.5), it can be seen that there are DC and 2h components in p2c. The amplitude of p2c 

is proportional to the square of the Icomp. Therefore, by adjusting the amplitude Icomp and 

initial offset angle θcomp, a specific 2h power could be generated to compensate the 2h power 

resulted from PMSG asymmetries. 

As can be seen from (5.5) and (5.6), to compensate the 2h power for given asymmetries, 

the compensation inductance is inversely proportional to the square of the compensation 

current. Generally, the inductor size is proportional to the energy stored in the inductor. 

Therefore, under the constraint of the same inductor size, the compensation inductance can be 

designed relatively high so that the compensation current can be reduced, which will be 

beneficial to the power switches of the compensation unit. 

5.2.3 Implementation 

To avoid the 2h torque resulted from the N-sequence currents; the instantaneous average 

power control without N-sequence currents is employed, which is illustrated in Fig.5.3(a). As 

detailed in [102, 114], the instantaneous active power pout in the unbalanced system can be 

expressed as 

 0 _ 2 _ 2cos(2 ) sin(2 )out out out c e out s ep p p p      (5.7) 

where pout_c2 and pout_s2 are the 2h coefficients of active output power, pout0 is the average 

output power which can be expressed as 

  0 1.5 p p p p n n n n
out d d q q d d q qp v i v i v i v i      (5.8) 

where subscripts d, q means d-axis and q-axis respectively, the superscripts p, n mean P- and 

N-sequence components respectively. 

Due to the infinite selection characteristic at the center frequency in the resonant control 

[96-98], the N-sequence output voltages are dominant in the output of the resonant controller. 

Thus, the output voltages from the PI controller are mainly P-sequence voltages. As no zero 

sequence currents are involved and id*=0 control is employed in Fig.5.3(a), the q-axis current 

reference iq* can be derived directly from the power reference and can be expressed as 

  * * * *
0 / 1.5p p

q q out qi i p v    (5.9) 
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Followed by iq* calculation, the PI-R control in the PSRF [108] is employed to regulate the 

current. Since only the P-sequence currents are injected into the stator currents, there is no 2h 

torque with balanced back-EMFs. However, there is 2h power due to asymmetric impedances.  

To determine the exact 2h power that should be transferred to the compensation unit, the 2h 

power in the power p2m from the PMSG should be extracted first. In reality, the internal 

resistance in the compensation inductor, Fig.5.1, may not be neglected. In this case, there is 

average DC power and 2h power in the power p2c from the compensation unit. Therefore, the 

2h power in p2c also needs to be extracted. 

As introduced in [151], the second-order generalized integrator (SOGI) [151] can be 

employed to extract the 2h power. The transfer function in the SOGI can be expressed as 

   0
2 2

0 0in

x k s
G s

x s k s




 

 
    (5.10) 

  
2
0

2 2
0 0in

x k
G s

x s k s




 

 
 

  (5.11) 

where k is the damping factor, ɷ0 is the center frequency. By the SOGI filter, the 2h power 

can be obtained as xα, while the 2h power delayed by 90° can be obtained as xβ.  

As detailed in [151], Gα(s) has better filter performance below ɷ0 than Gβ(s). When there is 

DC signal in the original input signal xin, there will be considerable DC signal in xβ. 

Therefore, the cascade-SOGI [152], Fig.5.2, can be employed to extract the 2h power without 

DC component. 

Therefore, according to (5.5), p2c_2h_α and p2c_2h_β in Fig.5.2(b) can be expressed as 

  2 2

2 _ 2 _ 2 _ 2 _ 2 _ 2 _ 2 _ 2
e compj

c h c h c h c hp p jp P e
  

  
     (5.12) 

where P2c_2h is the amplitude of p2c_2h_αβ.  

Assuming the 2h power in p2m from PMSG is p2m_2h_α, the signal lags p2m_2h_α 90º is p2m_2h_β, 

and then the vector p2m_2h_αβ can be expressed as 

 2 _ 2 _ 2 _ 2 _ 2 _ 2 _m h m h m hp p jp     (5.13) 

To compensate the 2h power p2m_2h_α, the 2h power reference p2c_2h_α
* and p2c_2h_β

* for the 

compensation unit should be 

 * * *
2 _ 2 _ 2 _ 2 _ 2 _ 2 _ 2 _ 2 _c h c h c h m hp p jp p         (5.14) 
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di

qi

*
dv

*
qv

2mp

2 e
2 _ 2 _m hp 

x
x

inx

0

2 _ 2 _m hp 

*
2 _ 2 _c hp 

*
2 _ 2 _c hp 
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inx

0
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2 d d q qi v i v
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compv
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(b) 

Fig.5.2 Extraction of 2h power. (a) Extraction of the 2h power reference. (b) Extraction of the

2h power in the compensation unit. 

Assuming p2c_2h_αβ
* can be expressed as 

  22*
2 _ 2 _ 2 _ 2

mj
c h m hp P e  


   (5.15) 

where P2m_2h is the amplitude of –p2m_2h_αβ, then the error between the amplitudes of the 

reference and the feedback 2h powers can be represented as 

 
2 2* 2 2

2 _ 2 _ 2 _ 2 _ 2 _ 2 2 _ 2c h c h m h c hp p P P     (5.16) 

The phase error between the reference and the feedback 2h powers can be represented by 

the cross product of (5.12) and (5.15), which can be expressed as 

  *
2 _ 2 _ 2 _ 2 _ 2 _ 2 2 _ 2 2sin 2c h c h m h c h m compp p P P          (5.17) 

The dot product of (5.12) and (5.15) can be expressed as (5.18). To guarantee the phase 

error between the reference and the feedback 2h powers to be 0° rather than 180°, (5.18) 

should be bigger than zero. 

  *
2 _ 2 _ 2 _ 2 _ 2 _ 2 2 _ 2 2cos 2c h c h m h c h m compp p P P          (5.18) 
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To compensate the 2h power, (5.16) and (5.17) should be zero. Therefore, (5.16) can be 

employed to regulate the amplitude of current reference of i*
comp, and (5.17) can be employed 

to regulate the initial angle of i*
comp, while (5.18) is employed to make sure (θ2m -2θcomp-∆θ) is 

0° rather than 180°. Therefore, the control block diagram of 2h power compensation can be 

illustrated in Fig.5.3(b). 
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(b) 

Fig.5.3 Control scheme of the proposed method. (a) Instantaneous average power control of 

PMSG. (b) Compensation current regulation. 

5.2.4 Experimental Investigation 

The test rig is demonstrated in Fig.5.1 and the test rig prototype is shown in Fig.B.2. The 

prototype PMSG is coupled with a servo machine, which is used to simulate the wind turbine. 

A power resistor RL (100 Ω) is parallel with the DC bus to consume the power generated by 

the PMSG. The prototype machine is actually a dual 3-phase PMSG, which is detailed in 

Appendix B. To investigate the compensation effect on the asymmetric 3-phase PMSG, the 

second set of 3-phase windings of the dual 3-phase PMSG is disconnected deliberately. The 



 

108 
 

inherent asymmetries of the dual 3-phase PMSG are detailed in Appendix C, where it is 

demonstrated that there is apparent asymmetry in the single set of 3-phase windings.  

The compensation inductor is shown in Fig.5.4, which is constructed by 12 cells connected 

in series and its size is about 0.86% of the prototype PMSG. The inherent resistance and 

inductance of the inductor are 1Ω and 8.67mH, respectively. The measured parameters of 

total compensation inductor by HIOKI LCR meter IM3533-01 are listed as TABLE 5.2. 

TABLE 5.2 
PARAMETERS OF COMPENSATION CIRCUIT 

Parameters Value 
Lcomp (mH) 8.67 (39% of L0) 
Rcomp (Ω) 1 
RMS current (A) 10 

Dimensions(each cell) 

 

 
http://www.farnell.com/datasheets/1323796.pdf 

 

 

Fig.5.4 Compensation inductor. 
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In this section, the power and torque ripple in the balanced current control, instantaneous 

power control and proposed method will be investigated and compared. 

It is worth noting that the number of pole pairs of the prototype machine is 16. Therefore, 

the 32nd harmonic in the following harmonic analyses based on the mechanical frequency 

indicates the 2h component in electrical frequency. 

5.2.4.1 Inherent Asymmetry Without/With Compensation 

5.2.4.1.1 Balanced Current Control without Compensation 

In this experiment, the PI-R control in PSRF in Fig.3.6, which is capable to suppress the N-

sequence currents in the asymmetric system, is employed. The speed is 60rpm, which is 

regulated by the servo machine. The d-axis and q-axis current references are 0A and -4A 

respectively. The experiment results without compensation have been presented in Fig.4.4 in 

Section 4.5.1. For the convenience of comparison with the proposed compensation, the phase 

currents, power, and DC bus voltage without compensation are repeated in Fig.5.5(a), (b) and 

(c) respectively. Meanwhile, the measured torque is shown in Fig.5.5(d). As can be seen from 

Fig.5.5(a), the phase currents are quite balanced. However, due to the unbalance introduced 

in Appendix C, there is considerable 2h power in the instantaneous power of p2, Fig.5.5(b). 

Therefore, there is also apparent 2h DC bus voltage in Fig.5.5(c). However, since the currents 

and back-EMFs of the prototype machine are quite balanced, the 2h torque in Fig.5.5(d) is 

negligible. 
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(d) 

Fig.5.5 Experimental results of the balanced current control, harmonic analysis based on 

mechanical frequency (Without compensation). (a) Phase currents. (b) Power and harmonic 

analysis. (c) DC bus voltage and harmonic analysis. (d) Torque and harmonic analysis. 

5.2.4.1.2 Instantaneous Power Control without Compensation 

In this experiment, the instantaneous power control in Chapter 4 is employed. The speed is 

regulated to be 60rpm by the servo machine. The average active and reactive power reference 

in Fig.4.3(a) are assigned to -400W and 0W respectively. The experiment results have been 

illustrated in Fig.4.5. For the convenience of comparison with the proposed compensation, 

the phase currents, power, and DC bus voltage in the instantaneous power control are 

repeated in Fig.5.6(a), (b) and (c) respectively. Meanwhile, the measured torque is shown in 

Fig.5.6(d). As can be seen from Fig.5.6(b), the average p2 is -400W, which means the 

instantaneous power control is quite effective. Compared with the 2h power in Fig.5.5(b), 

those harmonics in Fig.5.6(b) are well suppressed. Since the N-sequence currents are 

introduced to suppress the 2h power, the phase currents in Fig.5.6(a) are slightly unbalanced 

if they are compared with that in Fig.5.5(a). Compared with the 2h DC bus voltage in 

Fig.5.5(c), the 2h DC bus voltage in Fig.5.6(c) is suppressed effectively. However, the 

introduced N-sequence currents interact with the back-EMFs, resulting in some 2h torque, 

Fig.5.6(d). 
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(d) 

Fig.5.6 Experimental results of the instantaneous power control, harmonic analysis based on 

mechanical frequency (Without compensation). (a) Phase currents. (b) Power and harmonic 

analysis. (c) DC bus voltage and harmonic analysis. (d) Torque and harmonic analysis. 

5.2.4.1.3 Proposed Power Control with Compensation 

In this experiment, the compensation unit will be employed for the compensation of the 2h 

power from PMSG. The experimental results of the propose method with compensation are 

shown in Fig.5.7. The speed is 60rpm, which is controlled by the servo machine. The 

reference power is -400W and it is regulated very well, as can be seen from Fig.5.7(g) that 

the average instantaneous power p2m is equal to -400W. However, there is 2h power in p2m 

because no N-sequence currents are injected into the stator currents to suppress the 2h power, 

Fig.5.7(a). With the compensation current, Fig.5.7(e), flowing through the compensation unit, 

the power p2c in the compensation unit can be shown in Fig.5.7(h). It can be seen that there is 

also 2h power in p2c. The amplitude and phase of the 2h power in p2m and p2c are equal and 

anti-phase respectively, Fig.5.7(f). Therefore, the 2h power ripple in p2 (=p2m + p2c) is 

cancelled, Fig.5.7(b), and the 2h DC bus voltage ripple can be suppressed effectively, 

Fig.5.7(c). As only P-sequence currents in the stator currents and the back-EMFs are quite 

balanced, the 2h torque in Fig.5.7(d) is much smaller than that in Fig.5.6(d). 
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(d) 
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(g) 

 

(h) 

Fig.5.7 Experimental results of the proposed method, harmonic analysis based on mechanical 

frequency (Constant average output power control, with compensation). (a) Phase currents. 

(b) Power and harmonic analysis. (c) DC bus voltage and harmonic analysis. (d) Torque and

harmonic analysis. (e) Currents of compensator. (f) Profile of 2h power ripple. (g) Power p2m

ripple and harmonic analysis. (h) Power p2c ripple and harmonic analysis. 

5.2.4.2 Introduced Asymmetries 

To verify the proposed method is effective under different kinds of asymmetries, an extra 

inductor is deliberately connected with phase A, B, or C respectively in series. The inductance 
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and inherent resistance of the extra inductor are 5.63mH and 1.15Ω respectively. The 

different scenarios are listed in TABLE 5.3. 

The experimental results of proposed method are shown in Fig.5.8. It can be seen that no 

matter the balanced current control (M1) or instantaneous power control (M2) is employed, 

the 2h DC bus voltage (or power) and torque ripple cannot be suppressed simultaneously 

without compensation in all cases. With the proposed method (M3), those 2h components can 

be suppressed simultaneously in all cases. 

 

Fig.5.8 Comparison of 2h power, DC bus voltage ripple and torque ripple with/without

proposed method (M1: balanced current control without compensation; M2: instantaneous 

power control without compensation; M3: average output power control with compensation).

 

TABLE 5.3 

DIFFERENT CASES OF ASYMMETRIES  

Cases No DESCRIPTION 

Case 1 Inherent asymmetry  

Case 2 Extra asymmetry when the inductor is connected with phase A 

Case 3 Extra asymmetry when the inductor is connected with phase B 

Case 4 Extra asymmetry when the inductor is connected with phase C 
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5.2.4.3 At Different Speeds 

The amplitudes of the 2h power without and with compensation at different speeds are 

shown in Fig.5.8. It can be seen that the 2h power is reduced significantly at different speeds 

after compensation. Consequently, the 2h DC bus voltage will be correspondingly suppressed 

according to (4.6). This experiment shows that the proposed method is effective at different 

speeds. 

It is worth noting the dynamics of the compensation depends on how fast to extract the 2h 

power, how fast to determine the compensation current reference, and how fast to regulate the 

compensation current. However, due to the huge inertia of the wind turbine system, the 

electrical system could be treated as a constant speed system and the dynamics of the control 

of compensation unit will not be a big issue. 

 

Fig.5.9 Without/with compensation in parallel at different speeds (iq= -4A, inherent 

asymmetry). 

5.2.5 Summary 

An effective method of suppressing the 2h DC bus voltage pulsation in the asymmetric 

PMSG system considering the torque ripple is investigated in this section. This method does 

not involve the control of the grid side at all. With the information of the 2h power of the 

PMSG, the specific fundamental compensation current is obtained by two PI controllers and 

then injected into the compensation unit with Topology-RL. The 2h power generated by the 

PMSG can be compensated by the 2h power generated by the compensation unit. 

Consequently, the 2h DC bus voltage can be suppressed. The effectiveness of the proposed 

method has been verified by elaborate experiments on the prototype PMSG with inherent 

asymmetries and with introduced asymmetries deliberately. 
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5.3 Compensation in Parallel (Topology-RLE) 

5.3.1 Introduction 

In Section 5.2 of Chapter 5, to suppress the 2h DC bus voltage and 2h torque of asymmetric 

PMSG without deterioration of current THD of grid side, the undesired 2h power is 

transferred to a compensation unit (Topology-RL) in parallel with the DC bus. As detailed in 

Section 5.2, the compensation unit is constructed by an H-bridge and a compensation 

inductor. To compensate the 2h power due to the asymmetries, the fundamental current is 

injected into the compensation unit. As the compensation current is fundamental current and 

the terminal voltage of the compensation inductor is fundamental voltage, the H-bridge can 

be considered as DC/AC compensation converter and the compensation inductor can be 

considered as ac storage device. As the major purpose of the inductor is to exchange the 2h 

power with the DC bus and the size of the compensation inductor depends on the energy 

stored in the inductor, the inductor could be bulky if there are serve asymmetries in the 

system. Meanwhile to determine the compensation current to compensate the 2h power, two 

PI controllers are employed to regulate the amplitude and offset angle of the compensation 

current reference, which is complicated. 

In this section, an improved method of suppressing the 2h DC bus voltage for asymmetric 

PMSG system will be investigated. It combines the topology of compensation unit with DC 

voltage source in [132] and the method of disposing of the pulsating power in [133] and in 

Section 5.2. It will be found that the improved method is superior to the method in Section 

5.2 in terms of control complexity, current rating, inductor size, extra copper loss and the 

number of power switches, which will be analyzed in detail in Section 5.3.2. Meanwhile, it 

has the same advantages as the method in Section 5.2, such as avoiding the current THD of 

the grid side and torque ripple of machine side, suppression of the 2h DC bus voltage and no 

software modification in the grid side. 

Firstly, the difference between the method in Section 5.2 and the improved method in this 

section will be analyzed in detail in Section 5.3.2. After the introduction of the corresponding 

implementation of the improved method, the comparative experiments will be conducted, 

which show clearly the differences between the method in Section 5.2 and the improved 

method in this section, and the effective of suppressing the 2h DC bus voltage will be verified 

under different conditions of asymmetries. 
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5.3.2 Compensation Principle 

The proposed compensation unit with Topology-RLE is shown in Fig.5.10. It is constructed 

by half-bridge switches, an inductor and a DC voltage source, where the Rcomp is the inherent 

resistance of the inductor and the DC voltage source could be a battery or super-capacitor. 

Since the components in the compensation unit are inherent resistor (R), inductor (L) and DC 

voltage source (E), the topology of the compensation unit in Fig.5.10 is designated as 

Topology-RLE. 
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Fig.5.10 Topology of the proposed compensation in parallel (Topology-RLE). 

In the compensation unit with Topology-RL, Fig.5.1, the fundamental current is injected 

into the compensation unit; the 2h power in the inductor is employed to compensate the 2h 

power from the asymmetric PMSG. However, in the compensation unit with Topology-RLE, 

Fig.5.10, the 2h power in the DC voltage source vess in Fig.5.10 will be employed to 

compensate the 2h power from the asymmetric PMSG. Since the voltage of the DC voltage 

source vess is constant, the compensation current should be the 2h current. 

In theory, the 2h current flowing through the inductor in Fig.5.10 will result in the fourth 

harmonic power. To eliminate this fourth harmonic power, the fourth harmonic current 

should be injected into the compensation current so that it can be compensated by the fourth 

harmonic power from DC voltage source. Therefore, to eliminate the 2h power, the second, 

fourth, eighth…, harmonic currents should be injected into the compensation unit in theory. 

In this case, the regulation of the compensation current will be very complicated. In reality, 

the DC bus voltage vess is usually much higher than the voltage across the inductor vRL, the 
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power in the inductor is negligible. In this case, only the 2h current injected into the 

compensation unit will be satisfactory. 

Since the 2h power is mainly compensated by the power flowing through vess, the major 

purpose of the inductor in Fig.5.10 is just for filtering the current, which is unlike the major 

purpose of the inductor in Fig.5.1 for exchanging the 2h power. Generally, the size of 

inductors is proportional to the stored maximum energy. Therefore, the size of inductor in 

Fig.5.10 can be much smaller than that in Fig.5.1.  

As detailed in Section 5.2, the compensation current for the compensation unit with 

Topology-RL is fundamental current. To determine the compensation current reference, two 

proportional-integral (PI) controllers were employed to regulate the amplitude and phase 

angle of the current reference respectively, which is complicated. In this section, it will be 

find it is easy to get the compensation current reference without two PI controllers in section 

5.3.3. 

Overall, the comparison of the Topology-RL and the Topology-RLE can be summarized in 

TABLE 5.4. 

5.3.3 Implementation 

5.3.3.1 Proposed control 

The control scheme of the proposed method can be illustrated in Fig.5.11. In the same way 

as the control method in Section 5.2, the instantaneous average power control without N-

sequence currents injection, Fig.5.3(a), is employed to control the average active power of the 

PMSG without ruining the 2h torque. The PI-R control [108-110] is employed to suppress the 

2h currents in dq-frame to suppress the N-sequence currents under asymmetric conditions. 

The current reference for the compensation unit can be simply expressed as (5.19) if the 

power of inductor is negligible.  

 
*

* 2 _ 2 _c h
comp

ess

p
i v

   (5.19) 

where p2c_2h_α
* is the 2h power should be compensated. Compared with the current reference 

obtained by two PI controllers in Section 5.2, the determination of current reference in the 

proposed method is much simpler. 
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TABLE 5.4 

COMPARISON OF TOPOLOGY-RL AND TOPOLOGY-RLE 

Items Topology-RL  Topology-RLE 

Topology H-bridge + inductor Half-bridge + inductor  

+ DC voltage source 

Type of energy conversion 
in the compensation unit 

DC/AC DC/DC 

Energy storage device Inductor DC voltage source 

Type of compensation 
current 

Fundamental (1f) 2f+4f+8f+… in theory 

2f                  if vess>>vRL 

Implementation Complicated Complicated if Vess ≈ vRL  

Simple if vess >> vRL 

Compensation current Large Small 

Size of inductor Large Small 
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(b) 

Fig.5.11 Proposed compensation method for topology-RLE. (a) Control block diagram of 

PMSG. (b) Control of the proposed method. 
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After the determination of the compensation current reference, the PI-R controller [108-110] 

with resonant control at the center frequency of 2ωe is employed to regulate the second 

harmoic current without tracing error. 

5.3.3.2 Extraction of Second Harmonic Power  

To compensate the 2h power from the asymmetric PMSG by compensation unit with 

Topology-RLE, the 2h power from the asymmetrical PMSG should be extracted first. In this 

section, two methods will be introduced; the first one is the SOGI method, which is the same 

method as that in Fig.5.2 in Section 5.2, and the second one is direct calculation without 

SOGI. 

5.3.3.2.1 Method 1 - Filter with SOGI 

The 2h power can be extracted by cascade-SOGI, which can be illustrated in Fig.5.2(a) in 

Section 5.2. Therefore, the whole flowchart of the compensation method can be illustrated in 

Fig.5.12. As can be seen from Fig.5.12, the whole flowchart includes two parts: the first is the 

2h power reference generation and the second is the regulation of compensation current. The 

dynamic of the compensation method depends on how fast to extract the 2h power and how 

fast to regulate the compensation current. The low dynamic performance of cascade-SOGI 

will compromise the dynamic performance of the whole compensation system. 

di
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dv *
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2 e

2 _ 2 _m hp 
x

2 _ 2 _m hp 

*
2 _ 2 _c hp 

*
2 _ 2 _c hp 

x0
essv
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Fig.5.12 Method 1 for Topology-RLE with SOGI. 

 

5.3.3.2.2 Method 2 - Calculation without SOGI 

As shown in Fig.5.12, the dynamic performance of the compensation method maybe 

compromised by the cascade-SOGI. To improve the dynamic performance of the 

compensation method, the cascade-SOGI has better be removed. Actually, from (4.22), the 

2h power from the PMSG can be expressed as  

 2 _ 2 _ _ 2 _ 2cos(2 ) sin(2 )m h out c e out s ep p p      (5.20) 

where pout_c2 and pout_s2 can be deduced from (4.24) and expressed as (5.21) if the P-sequence 

and N-sequence currents are fairly regulated. 
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  (5.21) 

Meanwhile, the 2h power lags p2m_2h_α 90° can be expressed as 

 2 _ 2 _ _ 2 _ 2sin(2 ) cos(2 )m h out c e out s ep p p      (5.22) 

Therefore, the 2h powers can be obtained directly from (5.20), (5.21) and (5.22). If the 

(5.20)~(5.22) are employed to obtain the 2h power of PMSG, the whole compensation 

method with Topology-RLE can be illustrated in Fig.5.13. Compared with the 2h power 

reference from cascade-SOGI, this method is simpler. Meanwhile, as the 2h power reference 

can be obtained without cascade-SOGI, the dynamic performance is expected to be better. 
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Fig.5.13 Method 2 for Topology-RLE without SOGI. 

It is worth noting the Method 2 can also be employed to extract the 2h power from the 

PMSG in the compensation with Topology-RL. However, it could not be applied to extract 

the 2h power from the compensation unit. Therefore, the Method 1 with SOGI is still 

necessary in the compensation with Topology-RL. 

5.3.4 Experiment Investigation 

The test rig is demonstrated in Fig.5.14, where the prototype asymmetric PMSG is coupled 

with a servo machine, which is used to simulate the wind turbine. A power resistor RL (100 Ω) 

is parallel with the DC bus to consume the power generated by the PMSG. The inductor in 

the compensation unit is the same as that compensation inductor used in Fig.5.4，Section 5.2. 

The voltage of the DC voltage source is 48V in this case study. The power generated by the 

PMSG is p2m and the power transferred to the compensation unit is p2c. 

The prototype PMSG and the servo machine are shown in Fig.B.2, where the prototype 

PMSG is a dual 3-phase PMSG. However, to investigate the compensation effect on the 

asymmetric 3-phase PMSG, the second set of 3-phase windings in the prototype dual 3-phase 
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PMSG is disconnected deliberately. Therefore, as shown in Fig.C.1, there are apparent 

inherent asymmetries in the system.  

It is worth noting that the number of pole pairs of the prototype machine is 16. Therefore, 

the 32nd harmonic in the following harmonic analyses based on the mechanical frequency 

indicates the 2h electrical frequency. 

ci 2i1i

CLR

dcv
compL

compv

compi compR

essv

1p 2p

cp
2mp

2cp

dcv

 

Fig.5.14 Test rig of compensation in parallel with Topology-RLE. 

5.3.4.1 Compensation with Topology-RLE 

In the experiment of compensation with Topology-RLE, the Method 1 in Fig.5.12 is 

adopted; the voltage of the DC voltage source is 48V in this case study. The speed is 

regulated to 60rpm by the servo machine.  

The experimental results are shown in Fig.5.15. The reference output active power in 

Fig.5.11(a) is -400W. As can be seen from Fig.5.15(g), the average instantaneous power in 

p2m is -400W, which means the average power is fairly regulated. However, there is 2h power 

in p2m due to the asymmetries and no N-sequence currents are injected into the stator currents 

to compensate the 2h power. The power p2c from the compensation unit is shown in 

Fig.5.15(h), it can be seen that there is also 2h power in p2c with the 2h compensation current 

in Fig.5.15(e). However, the phase angle of the 2h power in p2m and p2c are anti-phase, 

Fig.5.15(f). Therefore, the 2h power in p2 (=p2m + p2c) are cancelled, Fig.5.15(b), and then the 

2h DC bus voltage can be suppressed effectively, Fig.5.15(c). As only P-sequence currents 

are injected into the PMSG and the 3-phase back-EMFs are balanced, the 2h torque can be 

avoided, Fig.5.15(d). 
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The experimental results of the 2h power, 2h DC bus voltage, 2h torque in Fig.5.15 are 

similar to those results in the compensation with Topology-RL in Fig.5.7. But it is worth 

noting that there is apparent average power in p2c, Fig.5.7(h), which is due to the copper loss 

of the inherent resistance in the compensation inductor with large compensation current 

shown in Fig.5.7(a), while the average power in p2c, Fig.5.15(h) is negligible since the 

compensation current, Fig.5.7 (e), is very small. Therefore, the power p2 in Fig.5.7(b) is 

smaller than that in Fig.5.15(b), and the average DC bus voltage in Fig.5.7(c) is smaller than 

that in Fig.5.15(c) due to less average power flows towards the DC bus capacitor, although 

the average power generated by the PMSG in Fig.5.7(g) and Fig.5.7(g) are the same. 

As the compensation current with Topology-RLE decreases, the power rating of the half-

bridge switches in the compensation unit will decrease. Meanwhile, the inductor size will 

decrease as well because it is generally proportional to the energy stored in the inductor. 

Therefore, the proposed method of compensation in parallel with Topology-RLE is a 

competitive alternative to the Topology-RL although the DC bus voltage source is involved. 
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(g) 

 

(h) 

Fig.5.15 Experimental results with compensation of Topology-RLE, harmonic analysis based 

on mechanical frequency. (a) Phase currents. (b) Power and harmonic analysis. (c) DC bus 

voltage and harmonic analysis. (d) Measured torque and harmonic analysis. (e) Currents of

compensator. (f) Profile of 2h power. (g) Power p2m and harmonic analysis. (h) Power p2c and 

harmonic analysis. 
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5.3.4.2 Comparison of Method 1 and Method 2 

The second harmonic power references from Method 1 with SOGI in Fig.5.12 and from the 

Method 2 without SOGI in Fig.5.13 will be compared in this section. 

5.3.4.2.1 Comparison of 2h power Extraction 

The Fig.5.16(a) and (b) shows the comparison of the 2h power from Method 1 and Method 

2 during steady state and dynamic state respectively, where “@SOGI” means the measured 

results from Method 1, while “@Cal” means the measured results from the Method 2. 

 

(a) 

 

(b) 

Fig.5.16 Comparison of 2h power from Cascade-SOGI and calculation. (a) Steady state 

(average power=-400W, 60rpm). (b) Dynamic state (step power response from -300W to -

400W, 60rpm). 
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PMSG’s power p2m becomes stable at the time of 0.1s, so as the 2h powers from Method 2, 

while the 2h powers from Method 1 increase step by step until they have equivalent 

amplitude as that from Method 2 at the time of 0.4s.  

This experiment shows that the 2h power from the Method 1 and Method 2 can represent 

the 2h power from the PMSG at the steady state operation, and the Method 2 has better 

dynamic performance than the Method 1 during the transit operation. Therefore, the dynamic 

performance of Method 2 in Fig.5.13 is supposed to be better than that in Fig.5.12. 

5.3.4.2.2 Comparison of Dynamic Performance 

Since the 2h power reference from the cascade-SOGI in Fig.5.12 and from the calculation 

in Fig.5.13 at the steady state in Fig.5.16(a) are almost the same, the compensation effect of 

Method 1 and Method 2 should be the same as well. By elaborated experiments at the steady 

state, it has been verified that the experimental results of Method 2 are similar as those of the 

Method 1, and both methods can suppress the 2h power and DC bus voltage effectively. The 

experimental results of Method 1 at the steady state have been detailed in Section 5.3.4.1. For 

simplicity, the detailed experimental results of Method 2 at steady state will not be presented 

here anymore. In this section, the dynamic performance of Method 1 and Method 2 will be 

compared through power step response and speed step response. 

When the average active power reference in Fig.5.11(a) is stepped from -300W to -400W, 

the power step response of the Method 1 and Method2 are shown in Fig.5.17(a) and 

Fig.5.17(b) respectively, and the compensation current response are shown in Fig.5.17(c) and 

Fig.5.17(d) respectively. By comparison of Fig.5.17(c) and Fig.5.17(d), it can be observed 

that the compensation current response of Method 2 is faster than Method 1 with shorter 

settling time. Consequently, the 2h power with Method 2, Fig.5.17(b), is suppressed more 

quickly than that in Method 1, Fig.5.17(a). Therefore, in terms of the dynamic performance 

of the 2h power compensation, Method 2 is better than that of Method 1. 

When the speed is stepped from 40rpm to 60rpm by the servo machine, the power 

responses of Method 1 and Method 2 are shown in Fig.5.18(a) and (b) respectively, and the 

compensation current responses are shown in Fig.5.18(c) and Fig.5.18(d) respectively. 

Similar to the dynamic performance comparison in the power step response, Fig.5.17, the 

dynamic performance of Method 2 in the speed step response is superior to that of Method 1. 

In summary, the power step response and speed step response show that Method 2 has 

superior dynamic performance to the Method 1 as no SOGI is involved in Method 2. 
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(d) 

Fig.5.17 Step response when the power reference is stepped from -300W to -400W 

(Topology-RLE). (a) Power response of Method 1. (b) Power response of Method 2. (c) 

Compensation current of Method 1. (d) Compensation current of Method 2. 
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(c) 

  

(d) 

Fig.5.18 Step response when the speed is stepped from 40rpm to 60rpm by the load motor

(Topology-RLE). (a) Power response of Method 1. (b) Power response of Method 2. (c) 

Compensation current of Method 1. (d) Compensation current of Method 2. 
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while the 2h power and DC bus voltage are obvious. In contrast, the 2h torque ripples in all 

cases are apparent when M2 is employed, while the 2h power and DC bus voltage are 

suppressed effectively. With the proposed compensation, the 2h DC bus voltage, power and 

torque can be suppressed simultaneously. 

 

 

Fig.5.19 Comparison of 2h power, DC bus voltage and torque with/without proposed method

(M1: balanced current control without compensation; M2: instantaneous power control

without compensation; M3: average output power control with RLE compensation. 

 

5.3.4.4 At Different Speeds 

The amplitudes of the 2h power without and with compensation at different speeds are 

shown in Fig.5.9. It can be seen that the 2h power is reduced significantly at different speeds 

after compensation. Consequently, the 2h DC bus voltage will be correspondingly suppressed 

according to (4.6). This experiment shows that the proposed method is effective at different 

speeds. 
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Fig.5.20 Without/with compensation in parallel at different speeds (iq= -4A, inherent 

asymmetry). 

5.3.5 Summary 

An improved compensation in parallel with DC bus aiming for suppressing the 2h DC bus 

voltage and torque in the asymmetric PMSG is investigated in this section. Compared with 

the compensation in parallel in Section 5.2, the proposed method has only half power switch 

numbers and has lower compensation current. Consequently, it has benefits of lower power 

rating, lower power loss of the power switches, and lower copper loss of the compensation 

unit and smaller size of the compensation inductor. It could be a competitive method 

although the DC bus voltage source is involved. 

5.4 Conclusion 

With the proposed compensation in parallel with DC bus, the 2h DC bus voltage and torque 

can be suppressed simultaneously. Two power topologies designated as Topology-RL and 

Topology-RLE are investigated and their corresponding control methods have been presented. 

In the proposed method, the N-sequence is not involved for consideration of the 2h torque. 

Meanwhile, the 2h power resulted from the asymmetries is transferred to the compensation 

unit in parallel with the DC bus. Consequently, the 2h DC bus voltage is effectively 

suppressed. The effectiveness of the proposed method has been verified on a prototype 

asymmetric PMSG with inherent asymmetries and introduced asymmetries deliberately. 
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Chapter 6 Control of Asymmetric PMSG with 

Compensation in Series 
Equation Chapter (Next) Section 1 

6.1 Introduction 

In Chapter 5, the control of asymmetric PMSG with compensation in parallel with the DC 

bus has been investigated. To suppress the 2h DC bus voltage and 2h torque ripple of the 

PMSG without deterioration of current THD of the grid side, the undesired 2h power due to 

asymmetries is transferred to the compensation unit in parallel with the DC bus, Fig.5.1 with 

Topology-RL or Fig.5.10 with Topology-RLE. The 2h power from the PMSG and 2h power 

from the compensation unit have the same amplitude but they are anti-phase. Thus, the 2h 

power flowing towards the DC bus capacitors is cancelled. 

The compensation in parallel is a competitive solution in terms of suppressing the 

undesired 2h power and DC bus voltage, the 2h torque of the PMSG, and the current THD of 

grid side. To fulfill this method, some hardware such as power switches, compensation 

inductor, and DC voltage source are required. Meanwhile, a specific compensation current 

profile together with the corresponding current regulation is required, which increases the 

system complexity. 

In [153], a method of correcting the unbalanced load condition by means of an additional 

unbalanced load was studied. The compensation is illustrated in Fig.6.1, where an additional 

load is connected between an appropriate pair of phases. Although the current of ia, ib and ic 

are unbalanced due to the unbalanced load, the current of ia
”, ib

”, and ic
” after compensation 

are balanced. 

ai

bi

ci

ai

bi

ci

ai

bi

ci

 

Fig.6.1 Circuit diagram with added load [153]. 
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The method demonstrated in Fig.6.1 is a passive compensation that does not require any 

software modification. However, when the unbalanced load is asymmetric PMSG, whose 

frequency and voltage vary with the speed, it is impossible to find an appropriate unbalanced 

passive load that is in parallel with the unbalanced PMSG and make the whole load balanced. 

In this chapter, the passive unbalanced load connected in series with the PMSG to 

compensate the unbalanced impedances in PMSG will be investigated. It will be found that 

the asymmetric 3-phase system with unbalanced resistances, unbalanced self-inductances, or 

even unbalanced mutual inductances can be modified to a balanced system with external 

circuits in series as shown in Fig.6.2. It will be proved in theory from the perspective of the 

2h inductances in dq-frame and the 2h power. Therefore, the 2h power due to the 

asymmetries can be suppressed without any software modifications. Then the optimized 

inductance in the external circuits in theory and the non-linearity of the compensation 

inductor in practice will be analyzed in detail. Finally, the feasibility of this compensation 

method is validated by elaborate experiments at different speeds and loads, although the 

effectiveness may be slightly affected by the non-linearity of the compensation inductance in 

practice. 
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Fig.6.2 Compensation by external circuits in series. 

6.2 Principle of Compensation 

The general compensation unit in series with RL network can be illustrated in Fig.6.3, 

where ∆RAx, ∆LAx, ∆RBx, ∆LBx, ∆RCx, ∆LCx are the resistances and inductances in the 

compensation unit in series with each phase. 
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If the resistances of 3-phase windings and the average self-inductances are unbalanced, 

which can be modeled as (2.20)~(2.23) and (2.24)~(2.27), the asymmetries can be easily 

compensated by introduced external resistors and inductors; For the sake of simplicity, only 

the compensation of unbalanced average mutual inductances will be discussed in the 

following section. 
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Fig.6.3 Compensation in series for asymmetric PMSM. 

6.2.1 Perspective of the Mathematical Model 

If the 2h impedances of the asymmetric PMSG in dq-frame can be cancelled by the 2h 

impedances of introduced external circuit in series in Fig.6.2, there will no 2h impedances in 

dq-frame after compensation, which means the original asymmetric system can be modified 

to a balanced 3-phase system. Consequently, the 2h DC bus voltage and torque ripple can be 

suppressed naturally. 

When the average mutual inductances are unbalanced and modeled as (2.28)~(2.31), as 

introduced in Section 3.2.3.2 of Chapter 3, the inductance matrix in dq-frame can be deduced 

as 
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where M1(θ) is expressed as (3.12) and repeated as (6.2) for convenience. 

    
 1

cos sin( )

sin( ) cos
M

 


 
 

  
 

 (6.2) 

(6.1) indicates that there are 2h inductances in the inductance matrix in dq-frame when the 

mutual inductances are unbalanced. Therefore, with balanced 3-phase currents injection, 

there will be 2h voltages in dq-frame. Consequently, it will result in 2h power flowing 

through the DC bus capacitors. 

Assuming the introduced inductance matrix of the compensation unit in abc-frame can be 

expressed as [∆LAx, 0, 0; 0, ∆LBx, 0; 0, 0, ∆LCx], the introduced inductances in dq-frame can 

be deduced as 
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  (6.3) 

Therefore, the dq-axis inductances of the modified system can be expressed as 
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 (6.4) 

If ∆LCx=∆MAB0, ∆LAx=∆MBC0 and ∆LBx=∆MCA0, (6.4) can be simplified as 
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 (6.5) 

As shown in (6.5), with the introduced compensation inductors in series, there are no 2h 

inductances in the inductance matrix in dq-frame. Therefore, the system is modified to a 

balanced system. 
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6.2.2 Perspective of the 2h Power 

In the asymmetric PMSG system with unbalanced impedances, if the 2h harmonic power 

due to the asymmetric impedances can be compensated by the 2h power of introduced 

external circuit in series in Fig.6.2, the 2h power following towards the DC bus capacitors 

can be suppressed. 

Assuming the currents are balanced under the id=0 control, and they can be expressed as 
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  (6.6) 

where I1p is the amplitude of fundamental current, then the 2h power due to the unbalanced 

mutual inductances ∆MAB0, ∆MBC0 and ∆MCA0 can be expressed as (2.44), (2.45) and (2.46) 

respectively and repeated as (6.7), (6.8) and (6.9) respectively for convenience. 
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If an external inductor with inductance of ∆LAx is connected with phase A in series, the 

power of the inductor can be expressed as 
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 (6.10) 

In the same way, if external inductors ∆LBx and ∆LCx are connected in series with phases B 

and C respectively, the 2h power of those inductors can be expressed as (6.11) and (6.12) 

respectively. 
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1
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Then it can be found that 
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    2
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Therefore, if ∆LCx =∆MAB0, ∆LAx=∆MBC0 and ∆LBx=∆MCA0, the 2h power resulted from 

unbalanced average mutual inductances can be compensated completely by the introduced 

external inductors. 

6.2.3 Summary 

In summary, the unbalanced resistances, unbalanced average self-inductances, and 

mutual-inductances can be compensated by external RL network in series. Overall, the 

asymmetric 3-phase system with unbalanced impedances can be modified to balanced 3-

phase system by external RL network. The parameters of the external circuits can be 

summarized in TABLE 6.1 if the asymmetries are modeled in Section 2.3. 

Compared with the compensation in parallel in Fig.5.1 and Fig.5.10, the proposed method 

is much simpler, which does not need any power switches and any algorithm modifications. 

However, since the compensation in series is a passive compensation, the compensation 

effect may be affected by the non-linearity of compensation inductor, which will be detailed 

in Section 6.3.2 and verified by experiments in Section 6.4.1. 

TABLE 6.1 

COMPENSATION IN SERIES 

Items Asymmetries Compensation

Resistances 

Unbalanced resistance of phase A ∆RAx = ∆RA0 

Unbalanced resistance of phase B ∆RBx = ∆RB0 

Unbalanced resistance of phase C ∆RCx = ∆RC0 

Self-

inductances 

Unbalanced self-inductance of phase A ∆LAx = ∆LA0 

Unbalanced self-inductance of phase B ∆LBx = ∆LB0 

Unbalanced self-inductance of phase C ∆LCx = ∆LC0 

Mutual 

inductances 

Unbalanced mutual inductances between phase A and B ∆LCx = ∆MAB0

Unbalanced mutual inductances between phase B and C ∆LAx = ∆MBC0

Unbalanced mutual inductances between phase A and C ∆LBx = ∆MAC0
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6.3 Compensation for the Prototype PMSG 

According to the modeling of unbalanced average mutual inductances (2.28)~(2.31), at 

least one among the average mutual inductances of ∆MAB0, ∆MBC0, and ∆MCA0 is zero in the 

worst case. Therefore, only maximum two external inductors are required for compensating 

the unbalanced mutual inductances of the prototype PMSG completely. 

To investigate the compensation in series in the asymmetric 3-phase PMSG system, only 

the first set of 3-phase windings in the dual 3-phase PMSG, Fig.B.3, is employed. The 

measured no-load self-inductances and mutual inductances in the single set of the prototype 

dual 3-phase PMSG at the frequency of 120Hz by HIOKI LCR meter IM3533-01 and the 

corresponding curve fitting are shown in Fig.C.1(a), while the corresponding harmonic 

analysis is shown in Fig.C.1(b). As shown in Fig.C.1(a) and (b), it is apparent that the 

average mutual inductance of MAB is not equal to those of MCA and MBC, which is the 

dominant inherent asymmetry. Consequently, there are apparent 2h components in the dq-

axis inductances, Fig.C.1(d). 

According to the measured no-load inductances in Fig.C.1 and the inductance modeling of 

(2.14) and (2.15), the inductances of the prototype machine and the inherent asymmetry can 

be obtained and shown in TABLE 6.2. In the case study of the asymmetric prototype PMSG in 

single 3-phase mode, the 2h power resulted from the unbalanced impedances can be 

compensated by two external inductors connected with phase A and phase B respectively. The 

general compensation circuit in Fig.6.3 for the prototype PMSG can be simplified to Fig.6.4. 

With consideration of the internal resistance ∆R in the compensation inductors, an extra 

resistor should be connected with phase C in series in theory to keep the resistance network 

balanced. 

TABLE 6.2 

NO-LOAD INDUCTANCES OF THE PROTOTYPE PMSG 

Inductances Values 

DC self-indutance (mH) L0=LA0= LB0= LC0 =17.960 

2nd self-inductance(mH) LA2= LB2= LC2= 1.146 

DC mutual-inductance (mH) M0 = MAB0=1.049; MCA0= MBC0= 10.825 

2nd mutual-inductance(mH) M2=MAB2= MCA2= MBC2= -1.272 

Inherent asymmetry  ∆MAB0=0mH; ∆MBC0=∆MCA0= 9.776mH 
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Fig.6.4 Proposed compensation unit in series for the prototype PMSG. 

 

6.3.1 Optimized Compensation Inductance 

When the balanced currents of 4A (generation mode, iq=-4A) are injected into the stator 

currents, the active power flowing towards the DC bus from the PMSG is shown in Fig.6.5(b), 

where there is considerable 2h power due to the unbalanced mutual inductances. The dq-axis 

currents are shown in Fig.6.5(a), where there are no 2h currents in the dq-axis currents, which 

means the injected currents are quite balanced and sinusoidal. 
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(b) 

Fig.6.5 Experiments with inherent asymmetry. (a) Currents. (b) Second harmonic power. 

The extracted 2h power p2_2h from the power p2 generated by PMSG at the speed of 60rpm 

can be illustrated in Fig.6.6. To compensate the 2h power properly, the external inductor in 

Fig.6.4 with optimized inductance of 18.8mH under the rated load is required. The 2h power 

p2_2h_comp from the compensation unit and the 2h power after compensation ( p2_2h + p2_2h_comp) 

can also be shown in Fig.6.6. After compensation, the total 2h power is suppressed 

significantly. However, it is worth noting that there is still residual 2h power after 

compensation because p2_2h and p2_2h_comp are not exactly anti-phase, which is due to other 

insignificant asymmetries in the system, such as the trivial unbalanced resistances, self-

inductances and 3-phase back-EMFs. 

 

Fig.6.6 2h power (extracted vs. compensation) with optimized compensation inductance of

18.8mH (-4A, 60rpm). 
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6.3.2 Non-linearity of Compensation Inductor 

The compensation inductor employed in this case study is shown in Fig.6.7. It can be 

flexibly configured as Tap-5mH, Tap-10mH, Tap-15mH or Tap-20mH respectively. In 

reality, the inductances at different loads depend on the B-H curve of the material used in the 

inductor. If the B-H curve is non-linear, the inductance will be non-linear as well [154]. To 

investigate the non-linearity of the inductance under different load conditions, the 

inductances are measured by HIOKI LCR meter IM3533-01, HIOKI LCR HiTESTER 3522, 

and AC test respectively. 

 

Fig.6.7 Compensation inductor. 

In the AC test, the inductor is energized with a controllable AC voltage source, and then 

the impedance can be obtained by 

  2 2 V
Z L R

I
     (6.16) 

where ω, V, and I are the fundamental frequency, voltage and current respectively, R is the 

resistance at the test frequency. Thus, the inductance can be obtained by 

 2 2 /L Z R     (6.17) 

Take the measured inductance under the load of RMS 2.789A (peak 3.94A) as an example, 

the measured voltage and current of the compensation inductor are shown in Fig.6.8. The 

harmonic analyses of the voltage and current are listed in TABLE 6.3. The fundamental 

voltage and current are 13.9901V and 3.9447A. Assuming the resistance is varied from 

0.5*R0 to 2*R0 (R0 is the resistance at the ambient temperature), which may be due to 

temperature variation, the inductance can be calculated as shown in TABLE 6.4. Since the 
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impedance Z is much bigger than the resistance, the inductance is varied from 34.5389mH ~ 

34.6493mH, which has very trivial variation. It indicates the inductance measurement is 

credible even without consideration of temperature variation. 

 

(a) 

 

(b) 

Fig.6.8 Inductance measurement by AC test. (a) Measured voltage and current. (b) Harmonic 

analysis of voltage and current. 

 

If the inductance of the compensation inductor is linear, the expected harmonic voltages 

with the measured current flowing through the inductor can be shown in Fig.6.9. For example, 

the expected third harmonic voltage will be 1.625V, which has a huge difference from the 

actual measured third harmonic voltage (0.0679V) in TABLE 6.3. This phenomenon indicates 

the inductance is non-linear. 

Since the maximum RMS current of IM3533-01 and HiTESTER 3522 in constant current 

mode are 50mA and 100mA respectively, the measurements by IM3533-01 and HIOKI LCR 

HiTESTER 3522 are conducted until the limit. To obtain the inductances under heavy load 

conditions (>100mA), the inductances are measured by AC test. 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
-20

-10

0

10

20
V

ol
ta

ge
 (

V
)

Time (s)

 Voltage  Current

1 3 5 7 9 11 13 15 17
0.0

0.1

0.2

0.3

5

10

15

20

V
ol

ta
ge

 (
V

)

Harmonic order

 Voltage
 Current



 

148 
 

TABLE 6.3 

FFT ANALYSIS UNDER THE LOAD OF RMS 2.789A  

Harmonic order Voltage(V) Current(A) Harmonic order Voltage(V) Current(A) 

0 0.0430 0.2052 9 0.0015 0.0029 

1 13.9901 3.9447 10 0.0018 0.0016 

2 0.0284 0.0250 11 0.0022 0.0020 

3 0.0679 0.1529 12 0.0016 0.0011 

4 0.0045 0.0133 13 0.0022 0.0014 

5 0.0032 0.0287 14 0.0012 0.0008 

6 0.0028 0.0038 15 0.0017 0.0005 

7 0.0055 0.0057 16 0.0008 0.0006 

8 0.0022 0.0007 17 0.0017 0.0009 

 

TABLE 6.4 

INDUCTANCE MEASUREMENT AT THE RATED LOAD 

Voltage(V) Current(A) Frequency(Hz) Z(Ω) R(Ω) L(mH) 

13.9901 3.9447 16.2870 3.5466 0.1460 (1.0*R0) 34.6272 

13.9901 3.9447 16.2870 3.5466 0.0730 (0.5*R0) 34.6493 

13.9901 3.9447 16.2870 3.5466 0.2920 (2.0*R0) 34.5389 

 

 

Fig.6.9 Measured harmonic voltages and expected harmonic voltages with same current if the 
inductance is linear. 
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The measured inductances under different load conditions at the frequency of 16Hz are 

plotted in Fig.6.10. As can be seen from Fig.6.10, the inductances measured by IM 3533-01, 

HiTESTER 3522 and AC test under light load conditions match each other, which show the 

credibility of the measurement of the AC test. Meanwhile, it clearly shows that the 

inductance of the employed compensation inductor is non-linear. 

 

(a) 

 

(b) 

Fig.6.10 Measured indutances under different load conditions (Tap-20mH). (a) Inductance vs. 

load (full range). (b) Inductance vs. load (Zoom in). 

6.3.3 Extra Copper Loss 

Since the external inductors are connected in series with phases, the power rating of the 

compensation inductors and resistors in the compensation unit should be the same as the 

power rating of the PMSG. Therefore, the copper loss of the compensation unit and the 

PMSG can be expressed as (6.18) and (6.19) respectively. 
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11.5copperP I R     (6.18) 
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 2
11.5copperP I R   (6.19) 

where I1=4A is the peak value of the rated phase current, ∆R is the inherent resistance of the 

compensation inductor, R is the resistance of the phase winding of the PMSG. Therefore, the 

copper loss ratio can be expressed as 

 copper

copper

P R
P R

   (6.20) 

The measured resistances of the compensation inductor and the prototype PMSG by HIOKI 

LCR meter IM3533-01 are shown in TABLE 6.5, and then the introduced copper loss can be 

estimated and listed in TABLE 6.5 if the compensation inductor is configured with different 

taps. It is worth noting that Tap-20mH//20mmH in TABLE 6.5 means two Tap-20mH 

terminals are connected in parallel and they are treated as a unity inductor. 

As can be seen from the TABLE 6.5, the extra power loss from the compensation unit will 

not exceed 4% of the copper loss of the PMSG. 

TABLE 6.5 

MEASURED RESISTANCES AND ESTIMATED COPPER LOSS 

Tap ∆R@Compensation inductor (Ω) R@PMSG (Ω) Copper loss ratio

Tap-5mH 0.066 3.93 1.68% 

Tap-10mH 0.096 3.93 2.44% 

Tap-15mH 0.121 3.93 3.08% 

Tap-20mH 0.146  3.93 3.72% 

Tap-20mH//20mmH 0.077 3.93 1.96% 

6.4 Experiments 

The test rig is illustrated in Fig.6.11. The asymmetric PMSG employed for this study is the 

dual 3-phase PMSG in single 3-phase mode, whose measured inductances are shown in 

Fig.94. The PMSG is coupled with a servo machine driven by the Siemens servo drive S120, 

which is used to simulate the wind turbine. A power resistor RL(100Ω) is parallel with the DC 

bus to consume the power generated by the PMSG in generation mode. A dedicated 

compensation unit shown in Fig.6.4 is connected with the PMSG in series. 

The control is conducted based on dSPACE DS1006. The design parameters of the 

prototype PMSG are listed in TABLE B. 1 and measured parameters are detailed in Appendix 

C. It is worth noting that the number of the pole pairs of the prototype machine is 16. 
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Therefore, the 32nd harmonic in the following harmonic analyses based on the mechanical 

frequency indicates the 2h component in electrical frequency. 
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Fig.6.11 Illustration of test rig with compensation in series. 

6.4.1 Influence of Non-linearity of Compensation Inductor 

From the measured inductance of the compensation inductor in Fig.6.10, it can be 

concluded that the inductance of Tap-10mH (half of the inductance of Tap-20mH) is closer to 

the optimized inductance in Fig.6.6 than other Taps. Thus, Tap-10mH is the best candidate 

for the compensation inductor in the compensation unit in series. In theory, the 2h powers 

with the configuration of Tap-10mH and the Tap-20mH//20mH (two Tap-20mH in parallel) 

should be the same without consideration of non-linearity. However, due to the different non-

linearity of the compensation inductances, Fig.6.12, there is slight difference between these 

two cases. 

 

Fig.6.12 Different non-linearity of the compensation inductance (Tap-10mH vs. Tap-

20mH//20mH). 
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The 2h powers without and with compensation under different q-axis current conditions at 

the speed of 60 rpm are shown in Fig.6.13. The compensation inductor configured as Tap-

10mH and Tap-20mH//20mH are applied for compensation in series in the experiments 

respectively. As can be seen from Fig.6.13 that there is approximate 2.5W 2h power 

difference under rated current conditions between the configuration of Tap-10mH and the 

Tap-20mH//20mH, which is 0.16% of the rated power. The compensation effect is slightly 

affected by the non-linearity of the compensation inductor. Nevertheless, the 2h powers are 

reduced significantly after compensation no matter the inductor is configured as Tap-10mH 

or Tap-20mH//20mH. 

 

Fig.6.13 2h powers without/with compensation under different loads. 

The harmonic analyses of the dq-axis voltages under rated load condition without/with 

compensation are shown in Fig.6.14. As shown in Fig.6.14(a), the 2h voltages in dq-frame 

without compensation are balanced, whose amplitudes are equal to each other. 

Correspondingly, the third harmonic phase voltages in Fig.6.15(a) are subtle, which indicates 

the armature reaction effect in the prototype PMSG is negligible. However, when the 

compensation inductors (Tap-10mH or tap-20mH//20mH) are connected in series, it can be 

seen that there are apparent third harmonic phase voltages, Fig.6.15(b) and (c) compared with 

that in Fig.6.15(a), which result in the unbalanced 2h voltages in dq-frame, Fig.6.14(b) and 

(c). When there are third harmonic voltages in the phase voltages, they will interact with the 

fundamental currents, which will result in a small portion of 2h power. Consequently, the 2h 

powers with the Tap-10mH and the Tap-20mH//20mH in Fig.6.13 are slightly different. 
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(a) 

 

(b) 

 

(c) 

Fig.6.14 Harmonic analysis of dq-axis voltages based on mechanical frequency. (a) Without 

compensation (balanced 2nd harmonics). (b) With compensation of Tap-10mH (unbalanced 

2nd harmonics). (c) With compensation of Tap-20//20mH (unbalanced 2nd harmonics) 

 

1 3 5 7 16 32 48 64
0
1
2
3

20
40
60
80

100

V
ol

ta
ge

 (
V

)

Harmonic order

 vd
 vq

1 3 5 7 16 32 48 64
0
1
2
3

20
40
60
80

100

V
ol

ta
ge

 (
V

)

Harmonic order

 vd
 vq

1 3 5 7 16 32 48 64
0
1
2
3

20
40
60
80

100

V
ol

ta
ge

 (
V

)

Harmonic order

 vd
 vq



 

154 
 

  

(a) 

 

(b) 

 

(c) 

Fig.6.15 Harmonic analysis of phase voltages in abc-frame based on mechanical frequency. 

(a) Without compensation. (b) With compensation of Tap-10mH (±3ɷe voltages). (c) With 

compensation of Tap-20//20mH (±3ɷe voltages). 
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6.4.2 Results without/with Compensation 

As shown in Fig.6.13, the configuration of Tap-20mH//20mH has better performance than 

the Tap-10mH in terms of the suppression of 2h power, Fig.6.13. Therefore, the configuration 

of Tap-20mH//20mH will be employed for compensation in this experiment. 

The results without/with compensation will be compared in this section. The drive works in 

balanced current control mode by adopting the PI-R control in PSRF in Fig.3.6. The d-axis 

and q-axis current references are assigned to 0A and -4A respectively. The speed is regulated 

to be 60 rpm by the servo machine. The experimental results of balanced current control 

without compensation have been presented in Fig.4.4 in Section 4.5.1. For the convenience of 

comparison with the proposed method with compensation, the phase currents, power, and DC 

bus voltage of the balanced current control without compensation are repeated in Fig.6.16(a), 

(c), and (d) respectively. Meanwhile, the dq-axis voltages are shown in Fig.6.16(b).  
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(c) 

 

(d) 

Fig.6.16 Balanced current control without compensation @60rpm. (a) Currents. (b) Voltages. 

(c) Power. (d) DC bus voltage. 

The experiment results with compensation are shown in Fig.6.17. As can be seen from 

Fig.6.16(a) and Fig.6.17(a), the 3-phase currents are quite sinusoidal, balanced and fairly 

regulated. Due to the inherent asymmetric impedances of the prototype machine shown in 

Fig.C.1, the output voltages without compensation are unbalanced, which is implied by the 

apparent 2h dq-axis voltages in dq-frame, Fig.6.16(b). Consequently, it will result in 2h 

power flowing towards the DC bus capacitors, Fig.6.16(c), and corresponding 2h DC bus 

voltage, Fig.6.16(d). 

0.0 0.5 1.8 1.9 2.0

-500

-480

-460

-440

-420

-400  p2

 

P
ow

er
(W

)

Time (s)

-2

0

2

4

6

8 e  m

R
ot

or
 p

os
it

io
n

(r
ad

)

1 3 5 7 16 32 48 64
0
5

10
15

420
430
440
450
460

 

 

P
ow

er
(W

)

Harmonic order

 p2

0.0 0.5 1.8 1.9 2.0

206

207

208

209

210  Vdc

 

V
ol

ta
ge

(V
)

Time (s)

-2

0

2

4

6

8 e  m

R
ot

or
 p

os
it

io
n

(r
ad

)

1 3 5 7 16 32 48 64
0.0
0.2
0.4

190
195
200
205
210

 

 

V
ol

ta
ge

(V
)

Harmonic order

 Vdc



 

157 
 

 

(a) 

 

(b) 

 

(c) 
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(d) 

Fig.6.17 Balanced current control with compensation @60rpm. (a) Currents. (b) Voltages in 

dq-frame. (c) Power. (d) DC bus voltage. 

 

With the proposed compensation in series, the 2h voltages in the dq-axis voltages in 

Fig.6.17(b) are suppressed significantly compared with that in Fig.6.16(b), which means the 

system is more balanced after compensation. The 2h power flowing towards the DC bus 

capacitors, Fig.6.17(c), is reduced significantly compared with that in Fig.6.16(c). Therefore, 

the 2h DC bus voltage, Fig.6.17(d), is correspondingly suppressed and smaller than that in 

Fig.6.16(d). 

6.4.3 Feasibility at Different Speeds and Loads 

To verify that the proposed method is feasible under different load conditions, the 

experiments under different load conditions (iq from -4A to 4A) at the speed of 60rpm are 

conducted. The 2h powers without and with compensation are shown in Fig.6.13. Compared 

with the 2h power without compensation, the 2h power with compensation is reduced 

significantly. According to (4.6), the 2h DC bus voltage will be correspondingly suppressed. 

To verify the proposed method is feasible at different speeds, the experiments at different 

speeds under rated current (-4A) conditions are conducted as well. The measured 2h power 

with rated current (iq=-4A) at different speeds are shown in Fig.6.18, which shows that the 2h 

power is reduced significantly at different speeds with compensation in series. As the 2h 

power decreases, according to (4.6), the 2h DC bus voltage will be correspondingly 
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suppressed as well. Overall, the system is more balanced than the original system after the 

compensation. 

 

Fig.6.18 2h power without/with compensation at different speeds (iq=-4A). 

 

6.5 Conclusion 

In this chapter, the unbalanced impedances in the asymmetric 3-phase PMSG compensated 

by external circuits in series is investigated. From the perspective of the 2h inductances in dq-

frame and the 2h power, it has been demonstrated that the original unbalanced 3-phsae 

system with unbalanced resistances, unbalanced self-inductances or even unbalanced mutual 

inductances can be modified to a balanced system by introduced external circuits in series in 

theory. With the compensation, the 2h power and DC bus voltage can be suppressed 

significantly. The proposed method is simple, which does not need extra power switches and 

any algorithm modifications as the compensation in parallel. The feasibility of this 

compensation is verified by elaborate experiments at different speeds and under different load 

conditions, although the compensation effective may be slightly affected by the non-linearity 

of the compensation inductance in practice. 
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Chapter 7 Control of Asymmetric Dual 3-Phase PMSG 

System with One Channel Failed 
Equation Chapter (Next) Section 1 

7.1 Introduction 

In Chapter 5, the control of asymmetric single 3-phase PMSG with compensation in 

parallel is investigated, while in Chapter 6, the control of asymmetric 3-phase PMSG with 

compensation in series is investigated. Both the compensation in parallel and in series can 

suppress the 2h DC bus voltage and torque in the PMSG system with asymmetric impedances. 

In this chapter, the research of suppressing the 2h DC bus voltage and torque ripple will be 

extended to dual 3-phase PMSG system. 

As the power level of wind turbines increases while considering the operational current 

limit of power devices [155, 156], the multi-phase machine and parallel two-level BTB 

converters [3] present a potential solution. One typical wind turbine drive system configured 

with dual 3-phase PMSG is shown in Fig.7.1, where two identical windings of dual 3-phase 

PMSG are supplied independently by two BTB inverters [10, 157, 158]. The DC buses of the 

two BTB inverters are isolated. In some cases, when one of the two BTB inverters is failed, 

only the healthy channel can keep working with only half power rating, while the remaining 

healthy set of 3-phase windings may be asymmetric, which will result in system asymmetries 

[79, 80, 159-162]. Consequently, it will result in the 2h DC bus voltage, 2h torque ripple and 

increased current THD of grid side. 

 

Fig.7.1 Dual 3-phase PMSG wind turbine drive system. 

In dual 3-phase PMSG drive system, the two sets of 3-phase windings may be physically 

separated. As shown in Fig.7.2, the windings of the first and the second set of the prototype 

dual 3-phase PMSG are denoted by the solid and dotted line respectively. When both 
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channels work normally with the same currents, the dual 3-phase PMSG can be treated as 

balanced single 3-phase machine with two sets in parallel and has symmetrical winding 

topology. For each phase winding, the other two phase-windings are always next to it. 

However, when one set of 3-phase windings, one channel of the rectifier or inverter units is 

failed, only the other healthy channel can keep working. If the set of 3-phase windings in the 

fault channel are disconnected, e.g., the second set is disconnected, as shown in Fig.7.2, the 

winding topology of the first set is asymmetric which results in unbalanced inductances, 

Fig.93. Therefore, the system will work under asymmetric conditions. In this case, the N-

sequence currents and the 2h power will be produced under conventional current control. The 

undesired N-sequence currents will result in the 2h torque ripple, while the undesired 2h 

power will flow through the DC bus capacitors and result in the 2h DC bus voltage ripple 

[113, 114, 143], capacitor power losses, temperature rise, and reduced lifetime [93]. 

 

Fig.7.2 Winding topology of the prototype dual 3-phase PMSG. 

To suppress the 2h DC bus voltage and torque ripple in the asymmetric PMSG system 

without deterioration of current THD of grid side, a compensation unit with H-bridge 

switches and compensation inductor (Topology-RL) in parallel with the DC bus is introduced 

in the Section 5.2 of Chapter 5. However, this method requires some extra hardware 

investment. Meanwhile, how to transfer the 2h power to the compensation unit is very 

complicated. An alternative compensation unit with half-bridge, inductor, and DC voltage 

source (Topology-RLE) in parallel with the DC bus is introduced in section 5.3 of Chapter 5. 

It has the same principle of transferring the 2h power to the compensation unit, but it is 

superior to the Topology-RL because of its half-bridge power switches, smaller compensation 

current, smaller copper loss, smaller size of inductor and simpler control. However, it still 

requires extra hardware investment and compensation current regulation, particularly a DC 

voltage source, which increases the cost of the whole system and complexity. 
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In Chapter 6, an external resistor and inductor (RL) network connected in series with the 

asymmetric PMSG is employed to compensate the unbalanced impedances of PMSG. With 

the introduced asymmetric RL network, the original unbalanced system is modified to a 

balanced 3-phase system after compensation. Therefore, with the balanced currents injection, 

the 2h power and DC bus voltage can be suppressed. Compared with the compensation in 

parallel in Chapter 5, the most attractive advantage is that no software modifications and 

extra power switches are required. However, it requires two external inductors with the same 

power rating of the machine. Meanwhile, how to activate the compensation circuit is a 

serious issue as it is not required in normal operation. 

When one channel in Fig.7.1 is failed, e.g., the rectifier, inverter, or the one set of dual 3-

phase PMSG is failed, the methods in Chapter 5 and Chapter 6 can be applied to suppress the 

2h DC bus voltage and torque ripple without deterioration of the current THD of grid side. 

However, those methods require extra hardware investment that increases the system cost. 

By utilizing the 3-phase winding, rectifier, or inverter in the faulty channel that are still 

functional, there could be some more economical solutions that can suppress the 2h DC bus 

voltage and torque ripple. In this chapter, three control methods aiming for suppressing the 2h 

DC bus voltage and torque ripple with minimum or without any hardware investment will be 

investigated when one channel in Fig.7.1 is failed. 

7.2 Different Scenarios of Faults 

7.2.1 One Faulty Channel of 3-phase Windings 

When one set of 3-phase windings fails, as illustrated in Fig.7.3, the faulty set cannot 

transfer power from the wind to the grid anymore, and only the other healthy channel can 

keep working with half rated power. In this case, the dual 3-phase drive system becomes 

asymmetric single 3-phase PMSG drive system. To suppress the 2h DC bus voltage and 

torque ripple, the compensation in parallel in Chapter 5 and compensation in series in 

Chapter 6 can be adopted. 
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Fig.7.3 Dual 3-phase PMSG wind turbine drive system with one faulty set of 3-phase

windings. 

7.2.2 One Faulty Channel of Inverter 

As illustrated in Fig.7.4, when one channel of inverter units fails, the power from wind 

cannot be transferred to grid side through the faulty inverter any more. In this case, if the set 

of 3-phase windings in the faulty channel is disconnected, the compensation in parallel in 

Chapter 5 and compensation in series in Chapter 6 can be adopted to suppress the 2h DC bus 

voltage and torque ripple. Alternatively, the two sets of 3-phase windings can be connected in 

parallel, then the dual 3-phase PMSG is turned into a balanced single 3-phase PMSG with 

two branches in parallel, then the 2h DC bus voltage and 2h torque ripple can be suppressed 

naturally. Although the power capability of the machine can be fully utilized, only one set of 

inverter and rectifier in the healthy channel can deliver the power from the machine to the 

grid side. Therefore, the power rating is reduced to half rated power of the original system. 

 

Fig.7.4 Dual 3-phase PMSG wind turbine drive system with one faulty channel of inverter. 

7.2.3 One Faulty Channel of Rectifier 

When one channel of rectifier fails as illustrated in Fig.7.5, the wind power cannot be 

transferred through the faulty rectifier. In this case, to suppress the 2h DC bus voltage and 2h 

torque ripple, the compensation in parallel in Chapter 5 and compensation in series in 
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Chapter 6 can be adopted without utilizing the set of windings and inverter in the faulty 

channel. Or alternatively, the two sets can be connected in parallel, and then the dual 3-phase 

PMSG is modified to the symmetrical single 3-phase PMSG. Except that, the two separate 

DC buses can be connected together, with the two sets supplied with same currents, the dual 

3-phase PMSG is actually equivalent to the systematical single 3-phase PMSG. However, as 

only one channel of rectifier can be employed to deliver the power, the power rating is 

reduced to half rated power of original system. 

Compared with the compensation in parallel in Chapter 5 and compensation in series in 

Chapter 6, to implement the method of two sets in parallel or the DC buses in parallel, the 

hardware modification is much less since it only requires some power relays to connect the 

two sets in parallel or the DC buses in parallel together. Nevertheless, it still requires 

hardware investment, to further reduce the cost, in this chapter, another method will be 

proposed without any hardware investment and configuration at all, which will be detailed in 

the next section. 

 

Fig.7.5 Dual 3-phase PMSG wind turbine drive system with one faulty channel of rectifier. 

 

7.3 Proposed Methods 

As all aforementioned methods of compensation in parallel, compensation in series, two 

sets in parallel, and DC buses in parallel are all applicable for the scenario of one channel of 

rectifier fails, this scenario is chosen for investigation. Since the compensation in parallel has 

been discussed in Chapter 5 and the compensation in series has been discussed in Chapter 6, 

three other methods will be discussed in this section. 

7.3.1 Method 1- Two Sets in Parallel 

The Method 1 is illustrated in Fig.7.6(a), where the two sets of dual 3-phase PMSG 

windings are connected in parallel, both the two sets of 3-phase windings are employed to 
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transfer power from the wind turbine to the DC bus capacitors. However, since only one 

channel of rectifier and inverter is keep working, due to the power rating limit of the rectifier 

and inverter, the power volume of whole system is only half of the original system. 

Since the two sets of dual 3-phase machine are in parallel, the original dual 3-phase 

machine actually becomes a single 3-phase machine with symmetrical winding topology due 

to two branches in parallel Fig.7.2. Therefore, the inductances are balanced as shown in 

Fig.C.2. Consequently, the 2h power and DC bus voltage can be suppressed. Meanwhile, 

compared with the methods in Chapter 5 and Chapter 6, where only one set of windings is 

employed to transfer power, the equivalent resistance of two sets in parallel is only half of 

that in the single set. Therefore, the copper loss is also halved compared with the methods in 

Chapter 5 and Chapter 6. 

7.3.2 Method 2- Two DC Buses in Parallel 

Method 2 is illustrated in Fig.7.6(b), where the DC buses in two channels are connected 

together. Both two sets of windings and inverters are employed to transfer the power from the 

wind turbine to the DC bus capacitors. However, since only one channel of rectifier is kept 

working, due to the power rating limit of the rectifier, the power volume of whole system is 

only half of the original system. 

In Method 2, if the two sets of 3-phase windings are supplied with the same currents by 

two independent drives, the dual 3-phase machine can be treated as a balanced single 3-phase 

machine as that in Method 1. Therefore, the 2h power and DC bus voltage will be suppressed 

and the copper loss is also only half of that in the methods in Chapter 5 and Chapter 6. 

7.3.3  Method 3- N-sequence Currents Compensation 

The third method is illustrated in Fig.7.6(c), which does not require any extra hardware 

investment. When the second rectifier fails, Fig.7.6(c), only the first channel of rectifier will 

deliver the energy generated by the PMSG from the DC bus capacitors to the grid side. If the 

balanced currents are injected into the first set, the 2h power due to the asymmetries will flow 

into the DC bus. As the rectifier is trying to regulate the DC bus voltage, it will transfer the 

2h power to the gird side and then ruin the current THD of grid side. Therefore, to avoid the 

deterioration of current THD of grid side, the instantaneous power control should be 

employed to suppress the 2h power generated by the first set of 3-phase windings. 

Consequently, the 2h DC bus voltage in the healthy channel can be suppressed. 
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(a) 

 

(b) 

 

(c) 

Fig.7.6 Dual 3-phase PMSG drive system with one faulty rectifier. (a) Method 1: Two sets in 

parallel. (b) Method 2: DC buses in parallel. (c) Method 3: N-sequence currents 

compensation. 

 

However, as introduced in Chapter 2, the N-sequence currents in instantaneous power 

control will interact with the 3-phase back-EMFs and then 2h torque will be produced. To 

mitigate the 2h torque from the first set due to the N-sequence currents, the second set of 3-

phase windings and inverter can be utilized to cancel the 2h torque.  

Since the 2h torque is mainly contributed by the N-sequence currents, if the N-sequence 

currents in the first set are compensated by N-sequence currents in the second set, the 2h 

torque from the first set can be compensated by the 2h torque from the second set. 
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Consequently, the total 2h torque can be suppressed. Based on this principle, the whole 

control of Method 3 can be illustrated in Fig.7.7. This method is designated as N-sequence 

currents compensation. 

As shown in Fig.7.7, the first inverter works in constant power control mode by 

instantaneous power control, while the second inverter works in constant DC bus voltage 

mode. As detailed in Chapter 4, with the power reference for the first set, the P-sequence 

current references in PSRF id1
p*, iq1

p* and the N-sequence current references in NSRF id1
n*, 

iq1
n*can be derived by (4.25). id1

n*and iq1
n* are converted to N-sequence current references in 

PSRF id2ω1
*and iq2ω1

* by Tdq(2θe), where Tdq(θ) is the standard Park transformation (A.7). 

Then id2ω1
*and iq2ω1

* are deducted from the current references for the second set. Therefore, 

the N-sequence currents of the first set can be compensated by the N-sequence currents of the 

second set. 

To suppress the undesired 2h current reference in iq2
* from the DC bus voltage PI control of 

the second set which will produce the 2h torque, the bandwidth of the DC bus voltage PI 

controller should be low. As the second rectifier is isolated from the grid, it will not 

contribute the energy transition anymore. The energy is only consumed by the balanced 

resistors which are connected in parallel with the DC bus capacitors in reality. Usually, the 

resistance of the balanced resistors is very large and the consumed energy is negligible. 

Therefore, the average value of the active current iq2
* will be very small. 

As the N-sequence currents are introduced in the second set to cancel the 2h torque 

produced by the first set, there will be 2h power flowing into the DC bus of the second set, 

which will result in the 2h DC bus voltage. However, compared with the 2h DC bus voltage 

in the first channel, the 2h DC bus voltage in the second set would not result in the 

deterioration of the current THD of grid side. 
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Fig.7.7 Proposed Method 3 of N-sequence currents compensation. 
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7.3.4 Summary 

In the proposed three methods in this chapter, only some power relays are required to 

connect two sets of the machine in parallel in Method 1 and to connect the DC buses in 

parallel in Method 2. The copper loss is also only the half of that in Chapter 5 and Chapter 6. 

Meanwhile, the extra hardware investment in Method 1 and Method 2 is much lower. 

Furthermore, the cost can be further reduced by Method 3 without any hardware investment. 

However, in terms of control complexity, the methods of compensation in series in Chapter 6 

and the proposed Method 1 and Method 2 in this chapter are simpler without any software 

modifications. 

The methods which are applicable to suppress the 2h DC bus voltage and torque ripple in 

different scenarios of one channel failure can be summarized in TABLE 7.1. 

TABLE 7.1 METHODS FOR DIFFERENT SCENARIOS 

SCENARIOS Methods 

One faulty set of 3-phase windings  1. Compensation in parallel 

2. Compensation in series 

One faulty channel of inverter 1. Compensation in parallel 

2. Compensation in series 

3. Method 1(Two sets in parallel) 

One faulty channel of rectifier 1. Compensation in parallel 

2. Compensation in series 

3. Method 1(Two sets in parallel) 

4. Method 2(DC buses in parallel) 

5. Method 3(N-sequence currents compensation) 

7.4 Experiments 

The prototype dual 3-phase PMSG is shown in Fig.B.2 and the design parameters are 

shown in TABLE B. 1. The measured no-load inductances of the first set and of the two sets in 

parallel at the frequency of 120Hz are shown in Fig.C.1 and Fig.C.2 respectively. As can be 

seen from Fig.C.1(a) and corresponding harmonic analysis Fig.C.1(b), it is apparent that the 

mutual inductances are unbalanced as the average mutual inductance MAB is not equal to 

average mutual inductance MCA and MBC. When the two sets are in parallel, it can be seen 

from the measured inductances Fig.C.2(a) and corresponding harmonic analysis Fig.C.2(b) 

that the asymmetry of the mutual inductances is much smaller. 
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The test rigs for Methods 1, 2 and 3 are illustrated in Fig.7.8(a), (b) and (c) respectively. 

The prototype dual 3-phase PMSG is coupled with a servo machine, which is used to 

simulate the wind turbine. The servo machine is driven by the Siemens servo drive S120. In 

this case study, the second rectifier in Fig.7.6 is assumed to be failed. Therefore, the second 

channel cannot transfer the power generated by the dual 3-phase PMSG to grid side anymore. 

In the first channel, to simulate the first rectifier transferring the power from the DC bus 

capacitors to the grid side, a power resistor RL (100Ω) is used to consume the power 

generated by the PMSG. In the second channel in Fig.7.8, R1 and R2 are balancing resistors to 

balance the voltages of DC bus capacitors. 

It is worth noting that the number of pole pairs of the prototype machine is 16, therefore, 

the 32nd harmonic in the following harmonic analyses based on the mechanical frequency 

indicates the 2h component in electrical frequency. 
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(c) 

Fig.7.8 Illustration of test rig. (a) Method 1- Two sets in parallel. (b) Method 2 – DC buses in 

parallel. (c) Method 3- N-sequence current compensation. 

7.4.1 Method 1- Two Sets in Parallel 

As the two sets of 3-phase wingdings are connected in parallel in this method, the dual 3-

phase PMSG can be treated as a single 3-phase PMSG. Therefore, those current control 

strategies for single 3-phase machine can be employed here. In this experiment, the balanced 

current control PI-R in PSRF is employed and the q-axis current reference is -4A. The speed 

is regulated to 60rpm by the servo machine. 

The experimental results of Method 1 are shown in Fig.7.9. As only one inverter works and 

the two sets of 3-phase windings are connected in parallel, the inverter currents (the sum 

currents of two sets) rather than the phase currents in each set are measured. The inverter 

currents are shown in Fig.7.9(a), which is twice of the phase currents in each set in the 

Method 2, Fig.7.10(a). The sum of dq-axis currents of each set are shown in Fig.7.9(b), where 

there are no 2h currents, and consequently, the 2h torque in Fig.7.9(e) is insignificant. The 

sum of instantaneous power generated by the two sets is shown in Fig.7.9(c), which is twice 

of the power of each set in Method 2, Fig.7.10(c). As almost no 2h power generated by the 

two sets in parallel, Fig.7.10(c), the 2h DC bus voltage in Fig.7.10(d) is negligible. 
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(d) 

 

(e) 

Fig.7.9 Experimental results with Method 1. (a) Phase currents. (b) Currents in dq-frame. (c) 

Power. (d) DC bus voltage. (e) Torque. 

7.4.2 Method 2- Two DC Buses in Parallel 

In this experiment, the speed is regulated to 60rpm by the servo machine. The 2-individual 

current control [163], which controls the dq-axis current for each set individually, is applied 

to the dual 3-phase PMSG. The drive works in balanced current control mode, where the PI-

R control in PSRF is employed for each set. As there are two inverters working together in 
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Method 2, to achieve the equivalent power as that in Method 1, the current reference for each 

inverter is -2A in Method 2. 

The experimental results of Method 2 are shown in Fig.7.10. The phase currents in 

Fig.7.10(a) shows that the currents of each set are equal to each other. The dq-axis currents 

are shown in Fig.7.10(b), where the 2h currents in dq-frame are negligible. Since the two sets 

have same currents, the instantaneous power of the first set is equal to that of the second set, 

Fig.7.10(c). As the 2h power in each set is negligible, Fig.7.10(c), the total 2h power flowing 

into the DC bus is trivial, and therefore, the 2h DC bus voltage in Fig.7.10(d) is insignificant. 

As there are no N-sequence currents in the two sets of 3-phase windings, the 2h torque in 

Fig.7.10(e) is also suppressed effectively. 
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(e) 

Fig.7.10 Experimental results with Method 2. (a) Phase currents. (b) Currents in dq-frame. (c) 

Power. (d) DC bus voltage. (e) Torque. 

7.4.3 Method 3- N-sequence Currents Compensation 

In this experiment, the speed is regulated to 60rpm by the servo machine. The first drive 

works in constant power control mode with instantaneous power control and the power 

reference pout0_1
* in Fig.7.7 is -400W. The second drive works in constant DC-bus voltage 

control mode and the DC bus voltage reference is 200V in this case study. The experimental 

results of the first set and the second set are shown in Fig.7.11 and Fig.7.12 respectively.  
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(d) 

Fig.7.11 Experimental results of the 1st inverter with proposed Method 3. (a) Currents in abc-

frame. (b) Currents in dq-frame. (c) Power. (d) DC bus voltage. 

 

As the N-sequence currents are involved in the instantaneous power control, the phase 

currents of the first set are slightly unbalanced in Fig.7.11(a). In terms of the dq-axis currents, 

there are apparent 2h currents in Fig.7.11(b). As shown in Fig.7.11(c), the instantaneous 

active power is around -400W, according to the corresponding harmonic analysis, the 2h 

power is negligible, which shows that the power is regulated fairly well by the instantaneous 

power control. Consequently, the 2h DC bus voltage Vdc1 in the first channel, Fig.7.11(d), is 

suppressed as well. Since the 2h power flowing towards the DC bus has been suppressed, the 

current THD of grid side will be not ruined. 

The phase currents of the second set are shown in Fig.7.12(a). It can be seen that the 

current of phase X lags that of the phase Y, that means the N-sequence currents rather than 

the P-sequence currents in the second set are dominant. From the dq-axis currents in 

Fig.7.12(b), it can be seen that the amplitude of 2h currents are the same as that in the first set 

in Fig.7.11(b). However, the 2h currents in the first set and the second set are anti-phase. 

Therefore, the total 2h currents can be cancelled. As the N-sequence currents are injected into 

the second set, it can be seen that there is apparent 2h power in Fig.7.12(c), consequently, 

there is obvious 2h DC bus voltage in Vdc2, Fig.7.12(d). 
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(d) 

Fig.7.12 Experimental results of the 2nd inverter with proposed Method 3. (a) Phase currents. 

(b) Currents in dq-frame. (c) Power. (d) DC bus voltage. 

 
The torque of the first set with instantaneous power control is shown in Fig.5.6(d). For the 

convince of discussion, it is repeated here as Fig.86(a). The measured torque with the 

proposed Method 3 is shown in Fig.7.13(b). As the N-sequence currents in the first set are 

compensated by the N-sequence currents in the second set, the 2h torque generated by the 

first set is compensated by the 2h torque generated by the second set. Consequently, the 2h 

torque in total is suppressed effectively, Fig.7.13(b). 
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(b) 

Fig.7.13 Torque. (a) Single set with instantaneous power control. (b) Proposed Method 3. 

 

The disadvantage of the proposed Method 3 is that there is 2h DC bus pulsation in the DC 

bus capacitors in the second channel. However, since the 2h DC bus voltage in the first 

channel is suppressed, the deterioration of current THD of grid side is avoided. Considering 

the torque ripple is suppressed as well without any hardware investment, the proposed 

Method 3 is still a competitive method. 

7.4.4 Comparison 

The measured DC bus voltage and torque with balanced current control and instantaneous 

power control are shown in Fig.5.5 and Fig.5.6 respectively. As can be seen from the 

experimental results in Fig.5.5, the 2h torque under balanced current control in Fig.5.5(d) is 

very small, while the 2h DC bus voltage is significant, Fig.5.5(c). In contrast, the 2h DC bus 

voltage in instantaneous power control is suppressed effectively, Fig.5.6(c), while the 2h 

torque is deteriorated significantly, Fig.5.6(d). Neither of these two methods can deal with the 

2h DC bus voltage and the 2h torque simultaneously. 

As shown in Fig.7.9(d), Fig.7.10(d), and Fig.7.11(d), the 2h DC bus voltage has been 

suppressed effectively by the proposed Methods 1, 2 and 3 respectively. From the Fig.7.9(e), 

Fig.7.10(e), and Fig.7.13(b), it can be seen that the 2h torque has been suppressed effectively 

by the proposed Methods 1, 2 and 3 respectively. Therefore, the proposed methods can 

suppress the 2h DC bus voltage and torque simultaneously. 
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7.5 Conclusion 

In this chapter, three methods of suppressing the 2h DC bus voltage and torque ripple are 

investigated when one channel of the dual 3-phase PMSG drive system fails. In Method 1 of 

two sets of dual 3-phase windings in parallel and Method 2 of DC buses in parallel, the 2h 

DC bus voltage and torque ripple can be suppressed as the dual 3-phase PMSG can be treated 

as a balanced single 3-phase PMSG. In the Method 3, with the instantaneous power control 

applying for the first set of dual 3-phase PMSG, the 2h power and DC bus voltage in the first 

channel can be suppressed effectively; while the 2h torque generated by the first set is then 

cancelled by the second set with N-sequence currents compensation. With the proposed 

methods, the 2h DC bus voltage in the first channel can be suppressed without deterioration 

of current THD of the grid side and the 2h torque is also suppressed effectively. 
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Chapter 8 General Conclusions 
Equation Chapter (Next) Section 1 

8.1 Introduction 

This thesis focuses on the control of asymmetric PMSG system accounting for the 2h 

torque and 2h DC bus voltage. A comprehensive and systematic investigation has been 

undertaken. It includes the balanced current control, the improved power control and the 2h 

power compensation in the asymmetric single 3-phase PMSG system, and finally the research 

is extended to the asymmetric dual 3-phase PMSG system with one channel failed. 

Fig.8.1 Research structure and key features of each method. 
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From the aspects of the 2h DC bus voltage, 2h torque ripple, copper loss, control 

complexity and system cost, the brief summary of each control method introduced in this 

thesis is shown at the bottom of Fig.8.1, where the merits of them are highlighted as yellow. 

8.1.1 Current Control of Asymmetric PMSG 

The conventional PI current control in dq-frame is not applicable to suppress the N-

sequence currents of asymmetric PMSG due to its limited bandwidth and non-linear 

impedances in dq-frame. Three typical balanced current control methods, including PR 

control in αβ-frame, dual current control, and PI-R control in PSRF are reviewed and 

evaluated, which can suppress the N-sequence currents effectively. The relationship between 

these methods is revealed for the first time and can be summarized in TABLE 3.2. It can be 

concluded that 

 The conventional current control is not applicable in the asymmetric system for 

suppressing the N-sequence currents; 

 PR control in αβ-frame, dual current control, and PI-R control in PSRF are all capable of 

suppressing the N-sequence currents; 

 The PR control in αβ-frame is equivalent to the dual current control in theory; 

 The performance of PR control in αβ-frame is compromised in practice due to the ideal 

integral in the resonant control is replaced by an approximated low-pass filter transfer 

function; 

 The proportional gain of dual current control in PSRF and NSRF should be reduced to 

the half of the proportional gain in PR control in αβ-frame and PI-R control in PSRF; 

 PR control in αβ-frame, dual current control, and PI-R control in PSRF are robust to 

different asymmetries. 

It is worth noting the balanced current control can only be applied to reduce the torque 

ripple of the asymmetric PMSG with unbalanced impedances. If the 3-phase back-EMFs are 

unbalanced, the 2h torque ripple can be resulted from the interaction of P-sequence currents 

and N-sequence back-EMFs. 

The major problem of the balanced current control is that 2h power will be produced and 

consequently result in the 2h DC bus voltage ripple. 

8.1.2 Instantaneous Power Control of Asymmetric PMSG 

An improved instantaneous power control without sequential component decomposers is 
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proposed to suppress the 2h DC bus voltage under generalized unbalanced conditions. The P-

sequence and N-sequence output voltages are essential for the calculation of the P- and N-

sequence current references in the instantaneous power control. In the previous researches, 

the P- and N-sequence output voltages were usually extracted by some sequential 

decomposers, such as the time delaying method, notch filter method, or dual second-order 

generalized integrator (DSOGI) method, etc. In the proposed method, based on the PI-R(2ωe) 

control in PSRF to regulate the P-sequence current and N-sequence currents, the P-and N-

sequence output voltages are simply obtained from the output of the PI controller and 

resonant controller respectively. With the proposed instantaneous power control, the 2h 

power and the DC bus voltage can be suppressed effectively under generalized unbalanced 

conditions. The features of the proposed method can be summarized as 

 Effective suppression of the 2h power and DC bus voltage; 

 Simple, no sequential component decomposers such as the time delaying method, 

notch filter method, or dual second-order generalized integrator (DSOGI) method; 

 Robust to unbalanced impedances and unbalanced back-EMFs; 

 Based on output power control; 

 Simple implementation and current reference calculation; 

The problem of the proposed method is that it cannot achieve unity input power factor as 

the back-EMFs are usually unknown in 3-phase PMSG system without the access of neutral 

point. If the back-EMFs are known, the input-output-power control can be adopted. However, 

the sequential component decomposers are then required to extract the P-sequence and N-

sequence back-EMFs. 

Another problem of the proposed method is that the 2h torque ripple will be resulted from 

N-sequence currents although the N-sequence currents in instantaneous power control are 

helpful to suppress the 2h power.  

8.1.3 Control of Asymmetric PMSG (Compensation in Parallel) 

By transferring the undesired 2h power from asymmetric PMSG to the compensation unit 

in parallel with the DC bus rather than the grid side, the 2h DC bus voltage and 2h torque 

ripple can be suppressed simultaneously without ruining the current THD of grid side. Two 

power topologies of the compensation unit designated as Topology-RL and Topology-RLE 

and corresponding control method have been investigated. The comparison of the Topology-

RL and the Topology-RLE can be summarized in TABLE 5.4 and repeated as follows. 
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TABLE 8.1 

COMPARISON OF TOPOLOGY-RL AND TOPOLOGY-RLE 

Items Topology-RL  Topology-RLE 

Topology H-bridge + inductor Half-bridge + inductor  

+ DC voltage source vess 

Type of energy conversion 
in the compensation unit 

DC/AC DC/DC 

Energy storage device Inductor DC voltage source 

Type of compensation 
current 

Fundamental (1f) 2f+4f+8f+… in theory 

2f                  if vess>>vRL 

Implementation Complicated Complicated if Vess ≈ vRL  

Simple if vess >> vRL 

Compensation current Large Small 

Size of inductor Large Small 

 

The Topology-RL is constructed by full H-bridge switches and a compensation inductor. 

The main role of the inductor is acting as a passive energy storage device to exchange the 2h 

power with the DC bus. To compensate the 2h power from PMSG, the compensation current 

should be fundamental current and the 2h powers from the compensation unit and from 

PMSG should have same amplitude but anti-phase. Two PI controllers are employed to 

determine the amplitude and phase angle of the compensation current reference. As the size 

of inductor depends on the energy stored in the inductor, the inductor could be bulky if the 

asymmetries are very serve. 

The Topology-RLE is constructed by half-bridge switches, an inductor, and a DC voltage 

source. The DC voltage source acts as the storage device which exchanges 2h power with the 

DC bus. The main role of the inductor acts as current filter rather than storage device. As the 

voltage of DC voltage source is far higher than the voltage across the inductor, the 

compensation current is much smaller than that in Topology-RL, albeit with the requirement 

of an extra DC voltage source. Therefore, the size of inductor is smaller than that in 

Topology-RL. Although the second, fourth, eighth,…, harmonic currents should be injected 

into the compensation unit to thoroughly compensate the 2h power from the PMSG in theory, 

actually, the 2h current injection is satisfactory as the power generated by the inductor is 

negligible. 
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The advantages of compensation in parallel can be summarized as below 

 2nd harmonic power suppressed; 

 2nd harmonic DC bus voltage suppressed; 

 2nd harmonic torque avoided; 

 Without deterioration of current THD in grid side; 

 Feasible for different impedance asymmetries; 

 No involvement of the control in the grid side. 

The disadvantages of the compensation in parallel can be listed as 

 Extra hardware investment, such as power switches, compensation inductor, DC 

source, etc.; 

 Regulation of compensation current; 

 Increased system complexity. 

8.1.4 Control of Asymmetric PMSG (Compensation in Series) 

The original unbalanced 3-phase PMSG system with asymmetric impedances (unbalanced 

resistances, unbalanced self-inductances, or even unbalanced mutual inductances) can be 

modified to balanced system by adding an unbalanced 3-phase RL network connected in 

series with the PMSG. From the perspective of 2h inductances in dq-frame, the 2h 

impedances of the PMSG are cancelled by the 2h impedances of the introduced unbalanced 

RL network. From the perspective of 2h power, the 2h power generated by the PMSG is 

compensated by the 2h power generated by the introduced unbalanced RL network. Therefore, 

the N-sequence currents and the 2h power due to the system asymmetries can be suppressed 

naturally without any software modifications. 

The advantages of compensation in series can be summarized as below 

 2nd harmonic power suppressed; 

 2nd harmonic DC bus voltage suppressed; 

 2nd harmonic torque not ruined; 

 Without ruining current THD in grid side; 

 No extra power switches; 

 No compensation current regulation; 

 No software modification; 

 Robust under different load and at different speeds. 
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The disadvantages of compensation in series can be summarized as below 

 Extra hardware such as two external inductors in the compensation unit; 

 Slightly affected by the non-linearity of compensation inductor; 

 Compensation effect may be compromise by the saturation of PMSG. 

8.1.5 Control of Asymmetric Dual 3-Phase PMSG System with One Channel Failed 

To suppress the 2h DC bus voltage and 2h torque ripple in the dual 3-phase PMSG system 

with one channel failed, the compensation in parallel in Chapter 5 and the compensation in 

series in Chapter 6 can be employed if the faulty channel is disconnected. In addition, three 

more methods, i.e. the dual sets in parallel, DC buses in parallel and N-sequence currents 

compensation, are investigated for reduced cost. It has been verified that these three methods 

are also applicable to suppress the 2h DC bus voltage and the 2h torque ripple 

simultaneously. Method 1 of two sets in parallel and Method 2 of DC buses in parallel only 

require power relays to connect the two sets or two DC buses together. Meanwhile, they do 

not require any software modification. Method 3 of N-sequence currents compensation does 

not require any hardware investment at all. The comparisons of these different methods can 

be listed in TABLE 8.2. 

TABLE 8.2  

COMPARISON OF DIFFERENT METHODS 

Compensation Hardware Software Cost 
Compensation in parallel 
(Topology-RL) 

1. H-bridge switches 
2. Inductor 
3. Power relays 

Compensation current 
regulation 

High 

Compensation in parallel 
(Topology-RLE) 

1. Half-bridge switches 
2. Inductor 
3. DC voltage source 
4. Power relays 

Compensation current 
regulation 

High 

Compensation in series 1. 2 inductors 
2. Power relays 

No High 

Method 1 
(Two sets in parallel) 

Power relays No Low 

Method 2 
(DC buses in parallel) 

Power relays No Low 

Method 3 
(N-sequence currents 
compensation) 

No N-sequence current 
compensation 

No 

 



 

189 
 

8.2 Future work 

In this thesis, to suppress the 2h DC bus voltage and torque ripple without deterioration of 

current THD of grid side, the unbalanced impedances of asymmetric PMSG is accounted. 

However, how to suppress the 2h DC bus voltage and torque ripple when the back-EMFs are 

unbalanced is not investigated. As the back-EMFs are usually unknown without the access of 

the neutral point in reality, it will be a very challenge work without the information of back 

EMFs. 

The 2h power in the DC bus compensated by the compensation unit in parallel has been 

investigated. In theory, the compensation principle can be extended to other harmonics that 

are not investigated in this thesis. 

Usually, the flux-weakening control utilizes the output voltages to determinate the flux-

weakening current in the flux-weakening current control. As the voltages of asymmetric 

PMSG are unbalanced, how to deal with the unbalanced voltages in flux-weakening control 

will be an interesting and challenge work. 

Therefore, the proposed future research can be summarized as 

 Suppress the torque ripple when the back-EMFs are unbalanced; 

 Other power harmonics compensated in parallel; 

 Flux-weakening control of asymmetric PMSG; 
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Appendix A. Coordinate Transformation for 3-Phase System 

Equation Section  1 
The relationship between the stationary reference frame αβ-frame and the 3-phase 

coordinate system frame (abc-frame) in single 3-phase system is shown in Fig.A.1, which can 

be expressed as 

  2 /3 4 /32

3
j j

a b bF F F e F e F jF 
         (A.1) 

where Fa, Fb, and Fc represent the phase components in abc-frame respectively, Fα and Fβ are 

the α-axis and β-axis components, which can be obtained by the phasor projected to αβ-frame. 

According to the vector control theory for 3-phase machine, the components in abc-frame 

can be converted to components in αβ-frame by Clark transformation, which can be 

expressed as  
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where θs=π/6. The inverse Clark transformation can be expressed as  
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  (A.5) 

The relationship between αβ-frame and dq-frame is shown in Fig.A.2. By applying 

standard Park transformation to variables in αβ frame, the projection of phasor Fαβ on the d-

axis and q-axis of dq-frame can be expressed as (A.6) 

  d

dq
q

F F
T

F F





   

   
  

  (A.6) 

where  
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Fig.A.1 Clark transformation. Fig.A.2 Park transformation. 

 

(A.6) can also be rewritten as 

 j
dqF e F 

   (A.8) 

where 

 dq d qF F jF     (A.9) 

 F F jF       (A.10) 

The inverse Park transformation can be expressed as 

   1 d

dq
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FF
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(A.11) can also be rewritten as 

 j
dqF e F    (A.13) 
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Appendix B. Description of Test Rig 

Equation Section (Next) 
 

The experiment system is constructed based on dSPACE DS1006 control system, which is 

suitable for rapid research development and prototype verification. The setup of whole 

experiment test system is shown in Fig.B.1. The analog signals from current sensor, torque 

transducer and DC bus voltage sensor are converted to digital signals by the DS2004 high-

speed A/D board, and then transferred to the DS1006 processor board. The DS3001 

incremental encoder board is in charge of measuring the rotor position from the encoder and 

then sends the information to DS1006 processor board. Therefore, through the DS2004 and 

DS3001, the DS1006 gets all the information such as rotor position, currents, and DC bus 

voltage which are necessary for vector control. To output desired voltages, the DS1006 

processor board outputs PWM duty to DS5101 module, which will generate six channels of 

PWM signals according to the received PWM duty, and then the inverter will output PWM 

voltages according to the PWM signals received. 

The test rig is shown in Fig.B.2. The prototype asymmetric PMSG is coupled with a servo 

machine driven by the Siemens servo drive S120, which is used to simulate the wind turbine. 

The encoder MHGE 400 with hollow shaft is employed to measure the rotor position and 

speed, while the torque transducer is employed to measure the PMSG’s torque. A power 

resistor RL (100 Ω) is parallel with the DC bus in each set to consume the power generated by 

the generator. 

The prototype PMSG is a dual 3-phase PMSM with 96 slots/32 poles and zero shifted angle 

between two sets of 3-phase windings. The corresponding winding topology is shown in 

Fig.B.3, where the first and second winding sets are denoted by the solid and dotted line 

respectively. When the two sets are healthy and work together with the same current in each 

set, the dual 3-phase PMSG can be treated as a symmetrical single 3-phase machine with two 

branches in parallel. However, when one set fails, e.g. the second set fails and only the first 

set (A1,B1,C1) keeps working, the winding topology is asymmetric, which results in 

unbalanced mutual inductances as shown in Appendix C.  

In the experiments in Chapter 3, Chapter 4, Chapter 5, and Chapter 6, to verify the research 

on single 3-phase PMSG, the second set of 3-phase windings in the prototype dual 3-phase 

PMSG is disconnected deliberately. 
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Fig.B.1 Setup of experimental system. 

 

 

Fig.B.2 Test rig. 

Servo 
machine 

Prototype 
PMSG 

Torque 
transducer 

Encoder 



 

194 
 

A1 C1 B1 A1 C1 B1

 
Fig.B.3 Winding topology of the dual 3-phase PMSM prototype. 

The design parameters are shown in TABLE B. 1 

TABLE B. 1 

DESIGN PARAMETERS OF THE PROTOTYPE DUAL 3-PHASE PMSM 

Parameters Value Parameters Value 

Pole pairs 16 No-load PM Flux linkage (Wb) 0.9 

Resistance (Ω) 3.76 Shifted angle between two sets 0 

Rated RMS current (A) 2.83 Encoder resolution 4096 

Rated speed(rpm) 170 Rated frequency(Hz) 45.33 

Rated torque(Nm) 171 Rated power(kW) 3 
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Appendix C. Inherent Asymmetries of the Prototype PMSG 

Equation Section (Next) 
In this section, the inherent asymmetries of the prototype PMSG will be presented, which 

include the inherent asymmetries in the resistances, inductances and back-EMFs. Since the 

first set and the second set are identical, the measurements of resistances, inductances and 

back-EMFs in each set are only conducted on the first set. 

C.1 Resistances 

The resistances of the 3-phase windings in the first set of prototype machine are listed in 

TABLE C. 1, which are measured by the HIOKI LCR meter IM3533-01. It can be seen from 

TABLE C. 1 that the resistance network is fairly balanced because the maximum difference 

between the phase resistances and the average resistance is only 0.02 Ω, which is only 0.5% 

of the average resistance and is negligible. 

TABLE C. 1 
RESISTANCES OF THE PROTOTYPE MACHINE 

Resistances Values 

RA :Resistance of phase A(Ω) 3.94 

RB :Resistance of phase B(Ω) 3.95 

RC :Resistance of phase C(Ω) 3.91 

Ravg:Average resistance (Ω) 3.93 

 

C.2 Inductances 

The inductances of the first set are measured by HIOKI LCR meter IM3533-01 in constant 

current mode (10mA). The measured results and the fitted curve of inductances at the 

frequency of 120Hz are shown in Fig.C.1(a), while the corresponding harmonic analyses are 

shown in Fig.C.1(b). As can be seen from Fig.C.1(b), the self-inductances are quite balanced 

with approximately the same DC value and 2h components, while the mutual inductances are 

obviously unbalanced as the average mutual inductance in MAB is significantly different with 

that in MCA and MBC. 

Since the phase self-inductances and mutual inductances as function of angle have been 

measured. According to (3.10), the inductance in αβ-frame can be obtained. Hereafter, the 

inductances in dq-frame can be obtained according to (3.34). The inductances in αβ-frame 
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and in dq-frame are shown in Fig.C.1(c) and (d) respectively. As there are apparent inherent 

asymmetry of mutual inductances, Ld, Lq, and Mdq in dq-frame have apparent 2h inductances, 

which is in accordance with (3.38). 
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(d) 

Fig.C.1 Measured inductances of the first set. (a) Measured inductances. (b) FFT analysis of 

measured inductances. (c) Inductances in αβ-frame. (c) Inductances in dq-frame. 

 

The inductances of the two sets in parallel are measured by HIOKI LCR meter IM3533-01 

in constant current mode (10mA). The measured results and the fitted curve of inductances at 

the frequency of 120Hz are shown in Fig.C.2(a), while the corresponding harmonic analyses 

are shown in Fig.C.2(b). The inductances in αβ-frame and in dq-frame are shown in Fig.C.2(c) 

and (d) respectively. As can be seen from Fig.C.2(b), the self-inductances are quite balanced 

with approximately the same DC and 2h components, and meanwhile, the mutual inductances 

are much more balanced than that in Fig.C.1(a). Consequently, the 2h inductances in Ld, Lq, 

and Mdq, Fig.C.2(d) are much smaller than that in Fig.C.1(d). 
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(b) 

 

(c) 

 

(d) 

Fig.C.2 Measured inductances with two sets in parallel. (a) Measured inductances. (b) FFT 

analysis of measured inductances. (c) Inductances in αβ-frame. (c) Inductances in dq-frame. 
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According the modeling of self-inductances(2.14), mutual inductances (2.15) and measured 

results of inductances in Fig.C.1 and Fig.C.2, the coefficients of the inductances of the 

prototype machine can be summarized in TABLE C. 2. 

TABLE C. 2 

COEFFICIENTS OF INDUCTANCES OF THE PROTOTYPE MACHINE 

Inductances (mH) Single set Two sets in parallel 

DC self-inductance  LA0= 18.131 

LB0= 17.897 

LC0 =17.853 

LA0= 16.129 

LB0= 15.956 

LC0 =15.874 

2h self-inductance LA2= 1.096 

LB2= 1.116 

LC2= 1.226 

LA2= 1.322 

LB2= 1.311 

LC2= 1.492 

DC mutual-inductance MAB0=1.049 

MBC0=10.776 

MCA0= 10.873 

MAB0=5.199 

MBC0=6.999 

MCA0= 6.986 

2h mutual-inductance MAB2= -1.201 

MCA2= -1.336 

MBC2= -1.278 

MAB2= -1.088 

MCA2= -1.046 

MBC2= -0.979 

 
For simplicity, the coefficients in TABLE C. 2 can be simplified in TABLE C. 3 with average 

value. 

TABLE C. 3 

MODELING OF INDUCTANCES OF THE PROTOTYPE MACHINE 

Inductances (mH) Single set Two sets in parallel 

DC self-inductance  L0=LA0= LB0= LC0 =17.960 L0=LA0= LB0= LC0 = 15.987 

2h self-inductance LA2= LB2= LC2= 1.146 LA2= LB2= LC2= 1.375 

DC mutual-inductance  M0 = MAB0=1.049 

MCA0= MBC0= 10.825 

M0=MAB0= MCA0= MBC0=6.395 

2h mutual-inductance MAB2= MCA2= MBC2= -1.272 MAB2= MCA2= MBC2= -1.038 

 

C.3 Back-EMFs 

The measured back-EMFs of the first set at the speed of 60rpm are shown in Fig.C.3(a), 

while the harmonic analyses of the back-EMFs are shown in Fig.C.3(b). As can be seen from 
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the harmonic analysis, the average back EMFs is 92.29V, the maximum deviation from the 

average back EMFs is 0.153V, which is 0.17% of the average back EMFs and indicates that 

the back-EMFs are quite balanced despite of the 3-phase windings asymmetry. 

 

(a) 

 

(b) 

Fig.C.3 Back-EMFs of the prototype machine. (a) Waveform of the back-EMFs. (b) 

Harmonic analyses of back-EMFs. 
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Appendix D. Current Control For Dual 3-Phase PM Synchronous Motors Accounting 

For Current Unbalance and Harmonics 

Equation Section (Next) 
This appendix proposes an improved vector space decomposition current control scheme 

for dual 3-phase permanent magnet (PM) synchronous motors having two sets of 3-phase 

windings spatially shifted by 30 electrical degrees. A PI and resonant (2nd) controller is 

developed for eliminating the current unbalance in αβ sub-plane, which is effective 

irrespective of the degree of current unbalance, whilst PI plus multi-frequency resonant (2nd 

and 6th) control is employed to eliminate the current unbalance, the 5th and 7th current 

harmonics in z1z2 sub-plane. Compared with existing methods only accounting for current 

unbalance in z1z2 sub-plane, the proposed method has taken into account the current 

unbalances in both z1z2 and αβ sub-planes and can eliminate them simultaneously at the 

steady state of operation. Consequently, the full compensation of current unbalance can be 

achieved, by which both the current unbalance between two sets and current unbalance 

between phase windings in each set are eliminated. Meanwhile, the 5th and 7th current 

harmonics caused by non-sinusoidal back EMF and inverter non-linearity can also be fully 

compensated. The effectiveness of proposed method is verified by a set of comparative 

experiments on a prototype dual 3-phase PM machine system. It shows that fully balanced 

currents without the 5th and 7th current harmonics at the steady state of operation can be 

achieved. 

D.1 Introduction 

Dual 3-phase motor drives exhibit outstanding advantages [155, 156, 164-167], such as 

reduced phase current rating, low DC link current harmonics, less torque ripples, improved 

efficiency [167], excellent fault tolerant characteristics and higher reliability at system level. 

Consequently, dual 3-phase motor drives are widely used for electric ship propulsion, 

locomotive traction, electric and hybrid electric vehicles, “more-electric” aircraft [168], wind 

power generation [169] and high-power industrial applications, etc. 

In 1993, the dual 3-phase induction machine fed by two sets of voltage source inverters was 

investigated in [170], as shown in Fig.D.1, one set being designated as ABC, the other set as 

XYZ shifted by 30° electrical degrees. Due to the configuration of induction motor having 

two sets of balanced windings, with phase shift of 30° electrical degrees, sixth harmonic 
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torque pulsations produced by two sets of windings respectively are anti-phase and therefore 

can be completely eliminated [155]. 

6
s

 

 

Fig.D.1 Dual 3-phase system [170]. 

Nowadays, numerous control strategies such as direct torque control (DTC), predictive 

control and vector control have been developed for dual 3-phase driver system. The DTC has 

the advantages of low machine parameter dependence and fast dynamic torque response and 

its application in drive control of dual 3-phase induction motor was discussed in [171]. In 

order to obtain equivalent dynamic torque response as DTC, a preferred alternative is the 

predictive control, which has been applied in dual 3-phase drives in recent research [172-176]. 

However, its applicability is hindered due to high cost in computation, whereas the vector 

control is popular thanks to its simplicity. 

The conventional vector space decomposition (VSD) control for dual 3-phase induction 

motor was introduced in [177]. According to matrix transformation, the fundamental and 

harmonics in voltage, current, and flux vectors were projected to three sub-planes viz. αβ, 

z1z2, o1o2, which were orthogonal to each other. Therefore, the induction motor could be 

controlled separately in these sub-planes with full decomposition. However, the impedance in 

z1z2 sub-plane, related with the leakage inductance and phase winding resistance [177-179], is 

very small. Consequently, even if there are only small 5th and 7th voltage harmonics in z1z2 

sub-plane, the resulting 5th and 7th current harmonics will be very large. Although they are 

not related to the electromechanical energy conversion [177], it will affect the total harmonic 

distortion (THD) and efficiency. In order to suppress the 5th and 7th voltage harmonics, 

several PWM strategies [177] [180-183] were introduced to synthesize the voltage command 

in αβ sub-plane and maintain zero voltage in z1z2 sub-plane during each PWM period. 

However, there are still abundant 5th and 7th current harmonics due to the inverter non-

linearity [86]. 

The conventional VSD current control scheme for dual 3-phase motor has only two current 
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regulators [177], The voltage references in αβ sub-plane were regulated by PI controller 

while the voltage references in z1z2 sub-plane were assigned to zero with the assumption that 

the system is symmetrical. In this case, the currents in z1z2 sub-plane were not controlled by 

closed loop. Since there are inevitable asymmetries in reality, there will be fundamental 

currents in z1z2 sub-plane [184]. This will cause current unbalance, i.e. the currents of phase 

ABC and phase XYZ are unbalanced - not only the current amplitudes of two sets are not 

equal, but also the phase displacement will not be exactly 30° electrical degrees [184]. In 

order to achieve balanced currents, current control schemes with current unbalance 

compensation are needed in real applications. 

In fact, the conventional VSD current control is not sufficient for regulating all the current 

components (currents in αβ and z1z2 sub-plane). In order to control the current of dual 3-phase 

machine effectively, 4 current regulators at a minimum are needed in reality [185], which can 

be mainly categorized into two types.  

The first type is the double synchronous reference frames current control, which controls 

the two sets of windings separately, as presented in [163, 165] for induction motors and in 

[166, 186] for permanent magnet (PM) motors. The two individual current controllers in the 

double synchronous reference frames share the same current reference from a speed 

controller. Although this method can provide excellent performance for current unbalance 

compensation between two sets, it cannot compensate the current unbalance between phase 

windings in each set. Meanwhile, there are mutual coupling voltages between two sets of 3-

phase windings, which are hard to compensate completely, and hence, its dynamic torque 

performance may be affected. In order to eliminate the effect of mutual coupling between two 

sets of windings, an additional matrix was introduced in [136]. The original double 

synchronous frames were converted to new double synchronous frames without mutual 

coupling between two frames. Consequently, this improved double synchronous frames 

model is actually equivalent to the VSD model with full decomposition. It could produce 

good dynamic torque performance and exhibit the capability of compensating the current 

unbalance [187]. However, only PI control was employed for current unbalance 

compensation, which was incapable to eliminate the current unbalance caused by different 

type of asymmetries due to limited bandwidth [86]. Meanwhile, the 5th and 7th current 

harmonics were only suppressed to some extent due to the limited bandwidth of PI control. 

The second type is the VSD current control with unbalance compensation. The method 

presented in [188] was based on the conventional VSD current control [177], of which two 
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additional PI regulators are used for current unbalance compensation. This method could 

provide excellent dynamic torque performance without the influence of coupling voltages 

between two sets. However, the current unbalance was compensated by forcing the d-q axis 

currents of the second set to follow those of the first set, the control performance may 

deteriorate if the current of the first set is distorted. 

The current unbalance can also be compensated by minimizing the currents in z1z2 sub-

plane to be zero. In [189], currents in z1z2 sub-plane were controlled by a proportional-

resonant (PR) current controller to eliminate the fundamental current in z1z2 sub-plane [184], 

by which the current unbalance between two sets could be consequently eliminated. 

However, the current unbalance between phase windings in each set as well as the 5th and 

7th current harmonics were not taken into account. 

In [86], the 5th and 7th current harmonics caused by the inverter non-linearity were 

compensated for a dual 3-phase induction machine drive system. Meanwhile, a generic 

modeling of asymmetry of a dual 3-phase phase system was presented, which included both 

the asymmetry between two sets and asymmetry in each set. Due to different type of 

asymmetries, positive and negative sequence currents could be generated in z1z2 sub-plane 

[190]. A combination of anti-synchronous PI and synchronous PI could be a good alternative 

to achieve the optimal compensation of current unbalance in z1z2 sub-plane [86]. However, 

the current harmonics in αβ sub-plane caused by asymmetry, which corresponds to current 

unbalance between phase windings in each set, are not considered. Meanwhile, it is only 

focused on six-phase induction machines. 

In this appendix, an improved VSD current control scheme for dual 3-phase PMSMs 

accounting for the current unbalance and the 5th and 7th current harmonics is proposed. 

Compared with the method presented in [17], the proposed method has taken into account the 

compensation of current unbalance in both z1z2 sub-plane and αβ sub-plane, which 

correspond to the current unbalance between two sets and between phase windings in each set, 

respectively. In addition, the influence of the non-sinusoidal back electromotive force (EMF) 

of permanent magnet synchronous machine (PMSM) and inverter non-linearity, which 

generates the 5th and 7th current harmonics, is also investigated in details. The current 

unbalance in z1z2 sub-plane and the 5th and 7th current harmonics is simply compensated by 

extending the method presented in [17] to dual 3-phase PMSM while the current unbalance in 

αβ sub-plane is compensated by a proposed 2nd order harmonic compensator. The 

effectiveness of proposed method is finally verified by a set of comparative experiments on a 
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prototype dual 3-phase PMSM, which shows that the proposed current control has excellent 

performance at the steady state of operation although the dynamic torque performance will be 

slightly influenced. 

D.2 Mathematical Model of Dual 3-phase PMSM 

Generally, there are two types of mathematical model for dual 3-phase motor. The first is 

the 2-individual single 3-phase model [163, 165, 166, 186], which treats dual 3-phase motor 

as two single 3-phase motors with coupling between two sets. The second is VSD model, 

which treats the dual 3-phase motor as one unit with different harmonics in different sub-

planes [177]. The VSD model is prevailing because of its total decomposition, clear 

harmonics mapping, and easy to extend to multi-phase motor system. 

According to VSD theory for dual 3-phase motor, through matrix transformation, the 

variables in real frame are mapped to three orthogonal sub-planes αβ, z1z2, o1o2 and different 

harmonics are mapped to different sub-planes [177]. The fundamental and (12k±1)th, k=1, 2, 

3… harmonics were projected to αβ sub-plane, the (6k±1)th, k=1, 3, 5… harmonics, 

including 5th and 7th harmonics, were mapped to z1z2 sub-plane, and the zero sequence 

current harmonics (3kth current harmonics, k=0,1,2…) were mapped to o1o2 sub-plane. The 

transformation can be described as (D.1) 

 
 
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   (D.1) 

where F stands for voltage, current, or flux; a, b, and c stand for each phase of the first set of 

3-phase windings; x, y, and z stand for the second set of 3-phase windings. The matrix [T6] 

can be expressed as (D.2) 
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  (D.2) 

where θs = π/6. In the three sub-planes, the αβ sub-plane is related with electromechanical 

energy conversion, the currents in z1z2 sub-plane make no contribution for torque generation 

if the flux is sinusoidal, and there are no currents in o1o2 sub-plane for 3-phase system [177].  
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After the variables in αβ sub-plane are obtained, by applying Park transformation(A.6), the 

synchronous mathematical model in dq-frame can be obtained. Assuming that the induced 

back EMF is sinusoidal, eddy current and hysteresis losses, mutual leakage inductance, and 

saturation are neglected, two sets of windings are symmetric, the voltage equation in dq-

frame, z1z2 sub-plane and o1o2 sub-plane of the ideal dual 3-phase PMSM can be expressed as 

(D.3)-(D.5) respectively [191]. 

 
 
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where 
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  (D.6) 

where p is differential operator, Rs is the stator winding resistance. Lsl is the stator leakage 

inductance. Ld and Lq are the dq-axis self-inductances of each phase respectively. ψfd is the 

permanent magnet flux. ω is the electrical angular speed. id, vd, iq, and vq are the dq-axis 

currents and voltages for dual 3-phase machine respectively. vffd_d and vffd_q are the decoupling 

voltages in dq-frame. iz1, iz2, vz1 and vz2 are the currents and voltages in z1z2 sub-plane 

respectively. io1, io2, vo1 and vo2 are the currents and voltages in o1o2 sub-plane respectively.  

The equivalent circuit for (D.3)-(D.5) can be expressed in Fig.D.2. From Fig.D.2, it can be 

seen that the control for dual 3-phase PMSM is decomposed completely. The vector control 

for dual 3-phase PMSM could be as simple as vector control for single 3-phase PMSM.  

D.3 Proposed Current Control Scheme 

In this section, the principle of current unbalance compensation will be firstly introduced, 

and then two major sources causing 5th and 7th current harmonics will be analyzed in details. 

Followed by the principle of 5th and 7th current harmonics compensation, an improved VSD 

current scheme accounting for current unbalance and 5th and 7th current harmonics will be 

proposed. 
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Fig.D.2 Equivalent circuits for dual 3-phase PMSM. (a) d-axis equivalent circuit in αβ sub-

plane, (b) q-axis equivalent circuit in αβ sub-plane, (c) Equivalent circuit in z1z2 sub-plane, 

(d) Equivalent circuit in o1o2 sub-plane. 

A. Current Unbalance Compensation 

The asymmetry in dual 3-phase driver system is inevitable due to the asymmetry between 

two sets of windings, asymmetry between windings in each set and asymmetry in power 

inverter. According to [86], the unbalanced currents can be expressed as a combination of 

positive and negative sequence currents, which are caused by different type of asymmetry 

[190]. When id=0 control strategy is employed, the unbalanced currents of each set can be 

expressed as (assuming no phase angle lead/lag between positive and negative sequence 

current for simplicity). 

 2 2
1 1 2

j j

m mi k I e k I e
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        
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where coefficients ki, i=1, 2, 3,4, depend on the type of the asymmetry [86]. iαβ1 and iαβ2 are 

the currents of phase ABC and phase XYZ in αβ frame respectively. θ is the rotor position. 

The variables in z1z2 sub-plane can be converted to a new frame, designated as dqz frame, 

by using the matrix conversion of [Tdqz]. 
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where F is v, i, or ψ, which is corresponding with voltage, current, and stator flux, 

respectively. 

From (D.7), (D.8) and the inverse Clark transformation, the current of each phase can be 

obtained. Then, iz1 and iz2 can be calculated by (D.1) and expressed as (D.11). It can be seen 

there are fundamental currents in z1z2 sub-plane, which is in accordance with [184]. 
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After the transformation(D.10), idz and iqz in dqz frame can be expressed as 
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It can be seen that negative and positive sequence currents in (D.11) are converted to DC 

currents and 2nd order harmonics in (D.12) in dqz frame respectively. By eliminating the DC 

values and 2nd order current harmonics in dqz frame, the current unbalance in z1z2 sub-plane 

can be eliminated. It is equivalent to the method presented in [86], where combination of 

synchronous frame PI and anti-synchronous frame PI were used to obtain full compensation 

of current unbalance in z1z2 sub-plane. 

If the current unbalance in z1z2 sub-plane is eliminated, idz and iqz will be zero. In this case, 

the following equation can be obtained from (D.12) 

 1 3 2 4,    k k k k   (D.13) 

Equation (D.13) means the unbalance between two sets of 3-phase windings is eliminated, 

and two sets have same positive and same negative sequence currents. However, it does not 

mean k2 and k4 are zero. If k2 and k4 are non-zero, negative sequence currents will still exist in 

(D.7) and (D.8), which indicates the phase currents in each set are still unbalanced. 

In [86], the current unbalance in z1z2 sub-plane was considered. However, the current 

unbalance in αβ sub-plane was not considered. When the currents are unbalanced, there will 
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have positive and negative sequence currents in αβ sub-plane as well. From (D.7), (D.8) and 

the inverse Clark conversion, the current of each phase can be obtained. Then, iα and iβ can be 

calculated by (D.1) and expressed as 
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By applying Park transformation (A.6) to (D.14), the dq-axis currents can be expressed as 

(D.15). 
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From (D.15), it can be seen that when there are negative sequence currents in each set 

caused by asymmetry, the 2nd order current harmonics may exist in dq-axis currents (k2 + k4 

≠ 0). If the 2nd order harmonics in dq-frame are eliminated as well, which means: 

 2 4 0k k   (D.16) 

by combining (D.13) and (D.16) together, the following equations can be obtained: 

 1 3 2 4,    0k k k k    (D.17) 

In this case, iαβ1 in (D.7) will be equal to iαβ2 in (D.8). Meanwhile, there are only positive 

sequence currents exist, which means the currents are totally balanced, viz. balance between 

two sets and between windings in each set. 

The current unbalance in αβ sub-plane has significant influence on torque ripple. For 

example, the 2nd order torque ripple will be generated due to the interaction between the 

negative sequence currents and positive sequence fluxes in αβ sub-plane. If the current 

unbalance can be completely compensated, there are only positive sequence currents in αβ 

sub-plane. If the fluxes are unbalanced, there will have positive and negative sequence fluxes 

in αβ sub-plane, which have similar expression as (D.14). The positive sequence currents in 

αβ sub-plane will interact with positive and negative sequence fluxes in αβ sub-plane and 

generate average torque and 2nd order torque ripple. However, if the fluxes are balanced and 
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the asymmetry is caused by resistor or inverter asymmetry, there are only positive sequence 

fluxes in αβ sub-plane. In this case, the 2nd order torque ripple will not be generated. 

B. Fifth and Seventh Current Harmonics Compensation 

In [86], a 6th order resonant controller was employed to compensate the 5th and 7th current 

harmonics caused by dead-time effect for asymmetric 6-phase machine. However, for the 

dual 3-phase PMSM, the 5th and 7th current harmonics are not only resulted from the 

inverter non-linearity, but also from the non-sinusoidal back EMF.  

1) Due to Non-Sinusoidal Back EMF 

There are the 5th and 7th harmonics in the back EMF inevitably in reality [166]. The back 

EMFs of phase A and phase X of the prototype machine are shown in Fig.D.3 (a). The line 

back EMFs of phase ABC are shown in Fig.D.3(b). From Fig.D.3(b), it can be seen that the 

line back EMF profiles are not pure sinusoidal, with abundant harmonics, being dominated 

by the 5th and 7th harmonics, as shown in Fig.D.3 (c). After matrix transformation (D.2) and 

(D.10), the 5th and 7th flux harmonics are mapped to the 6th flux harmonics ψfdz and ψfqz in 

dqz frame, Fig.D.3 (d).  
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(c) 

 

(d)  

Fig.D.3 Measured back EMFs. (a) Phase back EMF, (b) Line back EMF between Phases A 

and B, (c) Harmonic analysis of line back EMF between Phases A and B, (d) Flux in dqz

frame obtained from measured back EMFs. 

 

2) Due to Inverter Non-linearity 

According to [192, 193], the distorted phase voltage caused by inverter non-linearity is 

related with the phase current direction, which can be simplified as 

 _ ( )*phs dead phs deadV sign i V  (D.18) 

where phs stands for phase A, B, C, X, Y, or Z, Vdead stands for the magnitude of distorted 

voltage caused by inverter non-linearity. 

Assuming Vdead is equal to 2V, from the harmonic analysis of VA_dead shown in Fig.D.4(a), 

it can be seen that abundant odd voltage harmonics exist in VA_dead. Since the fundamental 

distorted voltages can be effectively compensated by PI controller and the 3rd voltage 

harmonics have no influence in the 3-phase system, the 5th and 7th voltage harmonics will 

have dominant effect on current harmonics.  
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The distorted voltages for each single 3-phase system in dq-frame are shown in Fig.D.4(b) 

when the id=0 control strategy is employed. DVd1, DVq1, DVd2 and DVq2 are the distorted dq-

axis voltages for phase ABC and XYZ respectively. The abundant 6th voltage harmonics 

caused by inverter non-linearity will cause the 6th current harmonics in dq-axis currents of 

each single 3-phase.  

 

(a) 

 

(b) 

 

(c) 

Fig.D.4 Distorted voltage caused by non-linearity of inverter. (a) Harmonic analysis for 

distorted voltage for phase A, (b) Distorted voltages in dq-axis for each set of single 3-phase, 

(c) Distorted voltage in dq-frame and dqz frame for dual 3-phase. 
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The distorted voltages in dq-frame and dqz frame for dual 3-phase system are shown in 

Fig.D.4(c). DVd and DVq are the distorted dq-axis voltages for dual 3-phase system. It is 

worth noting that there are no 6th voltage harmonics in DVd and DVq, while the 12th voltage 

harmonics are significant. It means it will cause the 12th current harmonics in dq-axis 

currents for a dual 3-phase system. DVdz and DVqz are the distorted voltages in dqz frame, and 

the 6th voltage harmonics are dominant in dqz frame, Fig.D.4(c), which will generate 

corresponding current harmonics in dqz frame. 

3) Principle of Fifth and Seventh Current Harmonics Compensation 

Considering the non-sinusoidal back EMF and inverter non-linearity, the 5th and 7th 

current harmonics in phase currents are inevitable. In order to reduce the current total 

harmonic distortion and increase efficiency, they should be eliminated. 

Assuming the 5th and 7th harmonics in the phase current, voltage or flux can be expressed 

as (D.19) 
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 (D.19) 

where θ5 and θ7 are the offset electrical angles of the 5th and 7th harmonics respectively. F5 

and F7 are the amplitudes of the 5th and 7th harmonics respectively. 

By converting the variables of each set shown in (D.19) to dq-frame respectively, the 

following relationship can be obtained. 
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 (D.20) 

where Fd1_6th and Fq1_6th are dq-axis 6th harmonics for phase ABC, Fd2_6th and Fq2_6th are dq-

axis 6th harmonics for phase XYZ. The equation (D.20) means the 5th and 7th harmonics in 

real frame are converted to 6th harmonics in dq-axis for single 3-phase ABC and XYZ 

respectively, they have same amplitude, but anti-phase. 

By applying matrix (D.2) to (D.19), the 5th and 7th harmonics will be projected to z1z2 sub-

plane, and then by applying (D.9) to variables in z1z2 sub-plane, the 5th and 7th harmonics 
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will be converted to the 6th harmonics in dqz frame. It can be concluded that the 6th current 

harmonics in dqz frame have the following relationship. 
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From (D.21), it can be seen that by suppressing the 6th current harmonics in dqz frame, the 

6th current harmonics in dq-frame for each set can be suppressed simultaneously. 

Consequently, the 5th and 7th current harmonics in each phase can be suppressed 

simultaneously. 

C. Proposed Current Control Scheme 

The PI controller is incapable of eliminating AC errors because of its limited bandwidth. 

To eliminate AC errors in steady state operation, the PR control, which could track sinusoidal 

signal reference with zero error if the reference signal had a fixed frequency, was introduced 

in [96-98]. The modified PI control with resonant control (PI-R) was used widely in 3-phase 

grid current control when the grid voltage was unbalanced or not sinusoidal [106, 109, 194-

199]. In this appendix, the resonant control will be employed to eliminate the current 

unbalance and the 5th and 7th current harmonics. 

The proposed current control scheme is shown in Fig.D.5. *
dzi  and *

qzi  are assigned to zero 

aiming for current unbalance and the 5th and 7th current harmonics compensation in z1z2 sub-

plane. Since there are no currents flowing in o1o2 sub-plane, the voltages in o1o2 sub-plane 

are assigned to zero. Compared with the conventional VSD current scheme [177], current 

control in dqz frame is included, PI control is used to regulate the DC error, while the multi-

frequency resonant controls are used to eliminate the 2nd and 6th current harmonics in dqz 

frame. 

Unlike the method presented in [86], which only considered the current unbalance in z1z2 

sub-plane for dual 3-phase induction motor system, the proposed method considers the 

current unbalance in z1z2 and αβ sub-plane for dual 3-phase PMSM simultaneously. The 

proposed resonant control is employed to eliminate the 2nd order current harmonics in dq-

frame caused by current unbalance. 

It is worth noting that the practical resonant control is usually implemented by replacing the 

ideal integral with an approximated low-pass filter transfer function [96]. The gains and cut-

off frequency of low-pass filter are very important considering the stability [96]. However, it 
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is beyond the scope of this appendix. For simplicity, the cut-off frequency is chosen as 1/200 

times of resonant frequency, and the integral gain of resonant control is set to be the same as 

the integral gain of PI control [86]. 

By matrix (D.22) conversion, the output of current controllers for idz, iqz are converted to 

1zv , 2zv . 
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 (D.22) 

After all the voltages of six-dimensions v
 , v

 , 1zv , 2zv , 1ov , 2ov  are obtained, the phase 

voltage references can be obtained by the inverse [T6] transformation (D.23), and then, the 

conventional SVPWM strategy is applied for PWM generation. 
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Fig.D.5 Current control flowchart of proposed method. 
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D.4 Experiments 

The hardware platform to evaluate the effectiveness of the proposed method is constructed 

based on dSPACE DS1005. The experimental setup is shown in Fig.D.6. The prototype dual 

3-phase PMSM is coupled with a permanent magnet DC motor, which is connected with an 

adjustable power resistor used as load. The dual 3-phase driver is constructed by two single 

3-phase drives, which have same power inverter topology as Fig.D.1. The calculation rate of 

the current loop is configured to be 10 kHz, which is the same as the PWM frequency. The 

currents are sampled by DS2002 A/D board in dSPACE system, which has 16-bit resolution. 

The corresponding current sample resolution is 0.38mA. The 2µs dead-time is used to avoid 

short-circuit of power switching bridge. Two independent SVPWM modulators for each 

single 3-phase are used for PWM generation. The design parameters of prototype dual 3-

phase PMSM are shown in TABLE D. 1. The design principle of PI parameters is the same as 

that in [70] and the overall time delay including the PWM output delay, current sampling 

delay and processing delay, is approximately 1.5 times of PWM period. Thus, the optimized 

PI parameters can be derived by setting the damping factor to 0.707 and are listed in TABLE 

3.3. 

 

(a) 

 

(b) 

Fig.D.6 Experimental setup for dual 3-phase PMSM drive. (a) Test dual 3-phase PMSM, (b) 

Dual 3-phase drive system. 
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TABLE D. 1 

PARAMETERS OF PROTOTYPE DUAL 3-PHASE PMSM 

Parameters Value 

Resistance (Ω) 1.096 

Leakage inductance (mH) 0.875 

d-axis self-inductance (mH) 2.141 

q-axis self-inductance (mH) 2.141 

Flux linkage (Wb) 0.075 

Pole pairs 5 

Power (W) 240 

DC link voltage(V) 40 

 
TABLE D. 2 PARAMETERS OF REGULATORS 

Parameters Value 

Proportional gain of PI in dq-frame 24.33 

Integral gain of PI in dq-frame  3654.43 

Integral gain of resonant controller in dq-frame 3654.43 

Proportional gain of PI in dqz frame 2.92 

Integral gain of PI in dqz frame  3654.43 

Integral gain of resonant controller in dqz frame 3654.43 

 

A. Fifth and Seventh Current Harmonics Compensation 

In this experiment, the driver works in constant current control mode without/with the 5th 

and 7th current harmonics compensation, and iq reference is 1.5A. The test results without 

compensation are shown in Fig.D.7. It can be seen that the currents of phases A and X are not 

pure sinusoidal, Fig.D.7(a), and the 5th and 7th current harmonics are dominant. After iz1, iz2 

are transformed to idz, iqz in Fig.D.7(b), obvious 6th harmonics can be found in idz, iqz. It can 

also be seen that the dq-axis currents id1, id2 in Fig.D.7(c) and iq1, iq2 in Fig.D.7(d) for each set 

have 6th current harmonics, but they are anti-phase, which is in accordance with (D.20). 

Consequently, there is no 6th current harmonic in id and iq for dual 3-phase system.  

The test results with compensation are shown in Fig.D.8. The current profiles of phase A 

and X in Fig.D.8(a) are more sinusoidal than that in Fig.D.7(a) due to the 6th current 

harmonics of idz, iqz in Fig.D.8(b) are eliminated. The 6th current harmonics in d-axis current 
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id1 and id2 for each single 3-phase in Fig.D.8(c) are effectively suppressed compared with 

those in Fig.D.7(c). The 6th current harmonics in q-axis current iq1 and iq2 for each single 3-

phase in Fig.D.8(d) are effectively suppressed compared with those in Fig.D.7(d).  

It is worth noting that id and iq in Fig.D.8 are corresponding to the right y-axis of Fig.D.8 (c) 

and (d), respectively. An interesting phenomenon is that id in Fig.D.7(c) and Fig.D.8(c) has 

distinct 12th current harmonics, while iq in Fig.D.7(d) and Fig.D.8(d) does not have apparent 

12th current harmonic. This is because the 12th voltage harmonics caused by inverter non-

linearity in d-axis is larger than that in q-axis, as shown in Fig.D.4(c). 
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(d)  

Fig.D.7. Measured results without 5th and 7th harmonics compensation. (a) Phase A and X 

current and harmonic analysis, (b) idz and iqz and harmonic analysis, (c) d-axis current and 

harmonic analysis, (d) q-axis current and harmonic analysis 
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(c) 

 

(d) 

Fig.D.8 Measured results of proposed method with the 5th and 7th harmonics compensation

(a) Phase A and X current and harmonic analysis, (b) idz and iqz and harmonic analysis, (c) d-

axis current and harmonic analysis, (d) q-axis current and harmonic analysis. 

B. Current Unbalance Compensation in Steady State Operation 

In this experiment, a 0.5Ω resistor is deliberately connected in series with phase A. The 

system works in constant current mode, and the reference of ia is 1.5A. The measured phase 

current and idz, iqz of conventional VSD current control without current control in z1z2 sub-

plane are shown in Fig.D.9(a)(b) respectively. Fig.D.9 (a) shows that ia and ix are seriously 

unbalanced. idz and iqz have obvious 6th current harmonics in Fig.D.9 (b). From the harmonic 

analysis of idz and iqz shown in the lower part of Fig.D.9 (b), it can be seen that the 6th current 

harmonics, DC value and 2nd order current harmonics are dominant. The id and iq current 

profiles and corresponding harmonic analysis are shown in Fig.D.9 (c) and Fig.D.9 (d) 

respectively. It can been seen that there are the 2nd current harmonics in id and iq, which is in 

accordance with (D.15). 

The experimental results with PI-R(6th) control in dqz frame are shown in Fig.D.10, which 

shows that the phase current profiles in Fig.D.10(a) have been improved significantly 
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compared with those in Fig.D.9(a). In addition, as can be seen from Fig.D.10 (b), the 

dominant DC value and 6th current harmonic in idz and iqz have been eliminated compared 

with those in Fig.D.9(b). Furthermore, it is also evident that the 2nd current harmonics in 

Fig.D.10 (b) are suppressed greatly compared with that in Fig.D.9(b). However, from 

Fig.D.10 (b), there are still residual 2nd current harmonics in idz and iqz while there are also 

residual 2nd current harmonics in id and iq, as shown in Fig.D.10 (c) and Fig.D.10 (d). 
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(d) (d) 

Fig.D.9 Measured results without current 

control in z1z2 sub-plane and PI control in dq-

frame with an additional resistor 0.5Ω in 

series with phase A (a) Phase A and X currents 

and harmonic analysis, (b) idz and iqz and 

harmonic analysis, (c) id and iq, (d) Harmonic 

analysis of id and iq. 

Fig.D.10 Measured results with PI-R(6th) 

control in dqz frame and PI control in dq-

frame with an additional resistor 0.5Ω in 

series with phase A (a) Phase A and X 

currents and harmonic analysis, (b) idz and iqz

and harmonic analysis, (c) id and iq, (d) 

Harmonic analysis of id and iq. 

 

To eliminate the 2nd current harmonics in dqz frame, the PI-R(6th) control in dqz frame 

with an additional 2nd order resonant control in dqz frame is employed, which is equivalent 

to the method presented in [86]. As can be seen from the experimental results shown in 

Fig.D.11, it is evident that although the phase current profiles shown in Fig.D.11(a) change 

insignificantly compared with those in Fig.D.10(a), the 2nd current harmonics in idz and iqz 

shown in Fig.D.11(b) have been eliminated effectively compared with those in Fig.D.10(b). 

However, there are still slight 2nd current harmonics in id and iq, as can be seen from 

Fig.D.11(c) and Fig.D.11(d). 
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(b) (b) 

(c) (c) 

 

(d) (d) 

Fig.D.11 Measured results with PI-

R(6th+2nd) control in z1z2 frame and PI 

control in dq-frame with an additional resistor 

0.5Ω in series with phase A. (a) Phase A and 

X currents and harmonic analysis, (b) idz and 

iqz and harmonic analysis, (c) id and iq, (d) 

Harmonic analysis of id and iq. 

Fig.D.12 Measured results of proposed current 

scheme with an additional resistor 0.5Ω in 

series with phase A. (a) Phase A and X 

currents and harmonic analysis, (b) idz and iqz

and harmonic analysis, (c) id and iq, (d) 

Harmonic analysis of id and iq. 

 
The measured phase currents with the proposed method are shown in Fig.D.12(a) and are 
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very sinusoidal. idz, iqz and corresponding harmonic analysis are shown in Fig.D.12(b), it can 

be seen that the DC value, the 2nd current harmonics and 6th current harmonics are 

eliminated. Furthermore, from the id and iq current profiles in Fig.D.12(c) and corresponding 

harmonic analysis in Fig.D.12(d), it can be seen the 2nd current harmonics in dq-frame are 

eliminated effectively as well. 

In some applications, the bandwidth of PI control may be relatively low due to the low 

PWM switching frequency [70], especially in high power applications. In order to extend the 

current unbalance compensation strategy in some applications with low bandwidth and to 

demonstrate a clearer effect of the proposed 2nd order current harmonic compensation in dq-

frame when the system is asymmetry, the experiment with reduced gains and lower 

bandwidth is conducted and shown in Figs. 12 and 13. The PI-R gain values in dq-frame are 

deliberately reduced to 1/10 of that shown in TABLE 3.3, while the gain values in dqz frame 

remain the same. 

The experimental results with PI-R (6th and 2nd) control in dqz frame and PI control in dq-

frame, which is equivalent to the method presented in [17], are shown in Fig.D.13. From 

Fig.D.13(b), it can be seen that the 2nd current harmonics in dqz frame are eliminated, 

whereas the current unbalance in αβ sub-plane is still significant, Fig.D.13(a). Consequently, 

there are still obvious 2nd order current harmonics in dq-frame, Fig.D.13(c) and (d). The 

experimental results with the proposed method including the compensation of the 2nd order 

current harmonics in dq-frame, are shown in Fig.D.14. It can be seen that the 2nd current 

harmonics in dqz frame are eliminated, Fig.D.14(b), while the 2nd order current harmonics in 

dq-frame are also eliminated as shown in Fig.D.14 (c) and (d). Consequently, as can be seen 

from Fig.D.14(a), the currents in αβ sub-plane will be balanced. 
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(b) (b) 

(c) (c) 

(d) (d) 

Fig.D.13 Measured results with PI+R(6th+2nd) 

control in dqz frame and PI control in dq-frame 

with an additional resistor 0.5Ω in series with 

phase A. (a) Currents in αβ sub-plane and 

harmonic analysis, (b) idz and iqz and harmonic 

analysis, (c) id and iq, (d) Harmonic analysis of 

id and iq. 

Fig.D.14 Measured results of proposed 

current scheme with an additional resistor 

0.5Ω in series with phase A. (a) Currents in 

αβ sub-plane and harmonic analysis, (b) idz

and iqz and harmonic analysis, (c) id and iq, 

(d) Harmonic analysis of id and iq. 

 

Overall, the proposed current control could be regarded as a competitive alternative for the 

elimination of current balance of dual 3-phase PMSM. Although the complexity of the 
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current control is increased, this issue can be ignored in reality thanks to the fast development 

of micro controllers. 

C. Dynamic Performance Comparison 

Although the proposed method can achieve fully balanced currents, the dynamic 

performance of drive system will be slightly affected by the extra 2nd order current 

harmonics compensation in dq-frame. The step current response with/without 2nd order 

resonant control in dq-frame is shown in Fig.D.15. The iq reference current is stepped from 

1A to 1.5A. It can be seen that the settling time with compensation is longer than that without 

compensation because the use of resonant controllers in dq-frame will affect the decoupling 

control of the dq current. 

 

Fig.D.15 Current step response with/without 2nd order harmonics compensation in dq-frame 

in αβ sub-plane. 

D.5 Conclusion 

This appendix has proposed an improved VSD current control scheme for dual 3-phase 

PMSMs having two sets of 3-phase windings spatially shifted by 30 electrical degrees. 

Compared with existing methods only accounting for current unbalance in z1z2 sub-plane, the 

proposed method has taken into account the current unbalances in both z1z2 and αβ sub-planes 

and can eliminate them simultaneously at the steady state of operation. Consequently, the full 

compensation of current unbalance can be achieved, by which both the current unbalance 

between two sets and current unbalance between windings in each set are eliminated. 

Meanwhile, the 5th and 7th current harmonics caused by non-sinusoidal back EMF and 

inverter non-linearity can also be fully compensated. The effectiveness of proposed method is 

verified by a set of comparative experiments on a prototype dual 3-phase PM machine system. 

It shows that completely balanced currents without the 5th and 7th current harmonics at the 
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steady state of operation can be achieved. Since this research only investigates the steady 

state performance of current control, it will be full of challenge to take into account the 

improvement of the dynamic torque performance in our future research. 
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