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Abstract 

Fragmentation methods in tandem mass spectrometry are of critical importance for 

the analysis of biomolecular ions, and the development of new tools to effect 

fragmentation is therefore an area of great current interest. In this thesis, a 

potential new tool for initiating biomolecule fragmentation is investigated. This 

method combines low-energy collision induced dissociation, CID, with UV diode 

(375 nm) irradiation as a single fragmentation tool, named CID+UV. Initial 

experiments were conducted on the nucleobases uracil, adenine, thymine and 

cytosine complexed to an iodide ion. The results showed a significant increase in 

the amount of depletion of I-·uracil and I-·adenine using CID+UV when compared 

to conventional low-energy CID fragmentation, while I-.thymine and I-·cytosine 

showed no detectable enhanced depletion. To further investigate the possible 

fragmentation processes operating, UV laser photodissociation spectra of the I-

·uracil and I-·thymine clusters were obtained.  These spectra displayed strong 

absorptions associated with excitation of nucleobase centred chromophores, 

associated with production of an I- photofragment. CID+UV fragmentation was also 

tested as a fragmentation tool on the proteins melittin and angiotensin I human 

acetate. Melittin proved to be unsuitable for the experimental setup due to its m/z 

being beyond the range of the mass spectrometer. Angiotensin I human acetate 

showed several peaks unique for the CID+UV mass spectrum against the 

conventional CID results, demonstrating the potential of the new CID+UV as a new 

fragmentation tool. 
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Chapter 1: Introduction 

1.1 Fragmentation Methods in Tandem Mass Spectrometry 

Mass spectrometry is an important analytical technique with a variety of present 

day uses and applications since its invention a century ago1,2,3,4. For modern day 

research using mass spectrometers ion fragmentation techniques are of vital 

importance. This is especially true for the study of gas phase ions where the target 

ions are fragmented using one of a variety of different methods and the resulting 

peaks analysed to characterise the parent structure5. Without the ability to 

fragment an isolated parent peak there is little structural information that can be 

ascertained. This importance becomes even greater when dealing with soft 

ionization techniques such as electrospray ionization, ESI, which is classified as 

the softest ionization technique able to presently couple to a mass spectrometer5,6. 

In electrospray ionization mass spectrometry, ESI-MS, often only the parent ion 

will be present in the parent mass spectrum, since the technique is soft enough to 

transfer the parent ion to the gas phase without fragmentation6. 

The information gathered using fragmentation in a mass spectrometer is an 

essential process in the sequencing of biomolecules and allows researchers to 

probe the structure and hence functionality of a large variety of biological ions. As 

biomolecules can take on a large variety of different forms from small simple 

structures through to large proteins the chosen method for inducing fragmentation 

is of great importance, with different methods creating differing resulting fragment 

mass spectra, Fig.1.1. 
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Figure 1.1: Results of phosphorylated RKPRSRAE peptide taken from Ref 7 to 

highlight differences between fragmentation methods, recorded for CID and ECD. 

A: ESI mass spectrum. B: CID fragmentation spectrum. C: ECD fragmentation 

spectrum. 
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There are a variety of factors that control the differences between different 

fragmentation techniques and their ability to fragment different biomolecular ions. 

The maximum possible energy that a fragmentation method can introduce to a 

target ion is considered a limiting factor as the more strongly bound a biomolecule 

is the greater the amount of energy to induce fragmentation will be required8,9. A 

second important factor regarding the choice of fragmentation method is the range 

that the energy can scan across, by analysing a target ion across multiple points 

onset energies for different fragments can be recorded8,9. The different methods of 

fragmentation also have different timeframes specific to each one which also have 

to be considered against the limitations of the spectroscope in use, a selection of 

common methods are displayed in Fig.1.2 to emphasize the contrast. 

Common fragmentation techniques include both low and high energy collision 

induced dissociation9,10,11,12, CID, also known as collision activated dissociation, 

CAD, electron capture dissociation10,13,14,15,16, ECD, and electron detachment 

dissociation11,17, EDD. 
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Figure 1.2: Activation times for common activation methods. EID; Electron Induced 

Dissociation, SID; Surface Induced Dissociation, CA; Collisional Dissociation, 

IRMPD; Infra-Red Multiple Photon Dissociation, ICR-SORI CA; Ion Cyclotron 

Resonance Sustained Off-Resonance Irradiation Collisional Activation. Taken from 

Ref 8. 
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Low-energy CID is a process in which a target ion isolated inside the quadrupole 

ion trap of a tandem mass spectrometer is subjected to an electric field to 

accelerate it into a neutral buffer gas molecule. The impact transfers some of the 

kinetic energy from the target ion into internal energy which is quickly redistributed 

across all available bonds. By repeating this process multiple times a significant 

amount of energy can be transferred which can lead to bond breakage and ion 

fragmentation9,10. The total energy transferred can be easily varied by changing 

either the length of activation time or the strength of the electric field which leads 

to either more or less collisions over a total time frame or collisions with either a 

higher or lower collision energy respectively. The mechanisms at work for the CID 

of ions <500 Da has been researched in great detail with important work spanning 

throughout the last half a century9,10. However, the energy transfer mechanisms 

regarding ions >1000 Da, which for biomolecules includes ions of both peptides 

and proteins, is still unclear and under investigation to the present day9,10. 

The process of low-energy CID is a two-step process where the energy is firstly 

transferred onto the target ion via collisions to create an unstable yet excited state 

ion followed by the second step where the excited target ion breaks down into 

fragments11. An advantage of the intermediate excited state is that it allows an 

opportunity for the target ion to be influenced by a secondary source of energy, 

such as irradiation via photons from a laser beam and is an important factor 

regarding the work to combined CID and UV in this thesis. The low-energy CID 

method is the fragmentation process that is used in the mass spectrometers in this 

thesis and is explained in further detail in Section 2.1.4. 
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ECD can be used with a large range of different target ions with the positive, 

negative and neutral states all possible. However, for the detection of fragments in 

a mass spectrometer this commonly limits this potential just to polycationic parent 

target ions to produce singly charged positive ion fragments13. Additionally, 

polycationic parent ions are more commonly used with ECD as the electron 

capture cross section for a target ion is proportional to the square of the ion 

charge14. The process of ECD is the use of a heated filament to introduce low 

energy electrons, <0.2eV, to the isolated target ion10,11,13,14. The addition of this 

electron to a polycationic state causes charge neutralisation which generates a 

significant amount of energy which can transform into internal energy and lead to 

specific bond cleavage of the target ion structure backbone15,18. This method 

creates radical target ions and as such is a bond specific fragmentation tool for 

mass spectrometry15,18. For ECD in peptides the ‘hot hydrogen atom model’ is 

introduced to explain the mechanism that occurs. In this model after electron 

absorption a hydrogen radical is cleaved from the target ion with a high excess 

energy (~6 eV). This high energy hydrogen atom can transfer along the peptide 

and induce bond cleavage mainly regarding N-Cα and S-S bonds11,15. 

EDD is similar to ECD but with a detachment of an electron as the result11,17. As 

such, EDD is more commonly used in combination with polyanionic target ions to 

create singly charged negative ion fragments, effectively electron ionization11. 

What specifically determines this ionization as EDD is the ability to form local 

positive radical ions on a peptide chain, leading to charge neutralisation with a 

local electron and energy created which is capable of cleaving the backbone 

bonds and fragmenting the target ion11. Despite the similarities between ECD and 
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EDD, however, both methods are capable of producing different fragment mass 

spectra17. 

 

1.2 Mass Spectrometer Laser Fragmentation Methods 

The use of lasers of a variety of different wavelengths in combination with tandem 

mass spectrometers has created additional methods for the fragmentation of 

target ions. By absorbing either a single photon or multiple photons target ions can 

become excited which can lead to a variety of different reaction mechanisms 

dependant on the fragmentation method selected19,20,21,22,23. These laser induced 

fragmentation methods have the potential to form different fragment peaks in the 

mass spectra compared to collision induced and electron based fragmentation 

methods. Two common and significantly different laser fragmentation methods are 

infrared multiphoton dissociation, IRMPD10,19, and ultraviolet photodisociation, 

UVPD10,24. 

IRMPD is the process of irradiating a target ion with multiple photons in the infra-

red wavelength to excite upwards through the vibrational levels until dissociation 

occurs19, most commonly used is a CO2 laser which produces a continuous wave 

laser beam at 10.6 µm10,19. IRMPD can be thought of as being the laser equivalent 

of CID in such a way that it requires a two-step process where multiple photons 

are necessary to excite the target ion up through the vibrational energy levels in 

the first step and then the excited ion fragments in the second step10. Due to the, 

on average, considerably longer activation time required compared to other 

fragmentation methods IRMPD is more commonly coupled with a Fourier 
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transform ion cyclotron mass spectrometer where the ions are capable of being 

isolated for longer periods of time25. 

UVPD is the process of using a UV laser beam to ionize an electron to a point of 

excitement above its binding energy, thus removing the electron and leaving the 

target ion in an oxidised state19,21,24,26. The fragmentation that can then occur for 

UVPD is different from the methods described above as once the target ion has 

become oxidised in the first step it can either carry on to fragment independently 

or the oxidised ion can be stable enough that a second stage of isolation can be 

conducted using the tandem properties of the mass spectrometer and a different 

source of energy can be used to input energy and fragment the ion, most 

commonly CID21,24,26 which is referred to as activated-UVPD. 

 

1.3 Aims of Thesis 

Chapters 3, 4 and 5 of this thesis each contain different aims and direction 

regarding the research that was undertook. The aim of Chapter 3 and 5 was to 

research the potential of combining CID and UV light from a 375 nm diode laser as 

a new fragmentation tool for the fragmentation of biomolecules using tandem 

mass spectrometry. Chapter 3 used nucleobases complexed to iodide while 

Chapter 5 used doubly deprotonated proteins melittin and angiotensin I human 

acetate to analyse the effects of the CID+UV tool. 
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The aim of Chapter 4 was to further analyse the reaction mechanisms of I–.uracil 

and I–.thymine complexes when irradiated with UV photons of varying 

wavelengths. 
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Chapter 2: Experimental Setup 

2.1.1 Mass Spectrometer 

The two mass spectrometers used in this project are the Bruker AmaZon SL and 

the Bruker Esquire 6000, referred to henceforth as the AmaZon and Esquire 

respectively. Both mass spectrometers are electrospray ionization quadrupole ion 

trap mass spectrometers that use low-energy CID as a fragmentation tool. The 

mass spectrometers used in this thesis are standard commercial units that have 

been altered to allow for a laser beam to enter the ion trap. 

The AmaZon operates for a m/z range of 50-2200 at a scan rate of 8100 m/z/sec 

while the Esquire operates at a m/z range 50-3000 and at an identical scan rate. 

 

Figure 2.1: Schematic diagram of the mass spectrometer fundamental 

components. Diagram designed by N. Yoshikawa of the University of York. 
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2.1.2 Electrospray Ionization 

Electrospray ionisation, ESI, is an atmospheric pressure based process in which 

ions are transferred from a solution to the gas phase6,28,29. The process is labelled 

soft ionization meaning that the ions that originate in solution arrive in the mass 

spectrometer with little or no fragmentation of their structure. ESI can be operated 

in both positive and negative modes allowing for both cations and anions to be 

analysed respectively and allows for multiply charged ions to transfer into the gas 

phase which greatly increases the detectable mass range by folding of the m/z 

values6,28,29. 

Once the sample is dissolved into a solvent the sample solution is filled via 

hypodermic needle into a syringe and injected into the electrospray region, with 

use of a syringe pumped injection process, where the extraction of ions into the 

gas phase takes place6, Fig.2.2. 

 

Figure 2.2: Schematic diagram showing process of ESI from capillary tip to gas 

phase in positive mode. Taken from Ref 27. For negative mode the power supply 

is reversed and the signs on the analytes exchange positive to negative and vice 

versa. 
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ESI is capable of the formation of small, charged droplets with an efficiency that is 

affected by a variety of factors including flow rate, surface tension of solvent and 

concentration6. When these factors are increased the efficiency of the process is 

reduced requiring an increase of the electric field across the ESI cavity. At 

optimum conditions the electric field is in place between the spraying nozzle and 

the electrospray cavity created by a potential difference in the range of 3-4 kV. 

However, the electric field can only be raised to a certain value before electrical 

discharges take place. As an alternative to high electric fields a number of different 

variations on the capillary design exist with both mass spectrometer units in this 

thesis run with the variation of a sheath gas of nitrogen with adjustable flow rates 

that nebulizes the solution and assists in aerosol creation. 

The electric field that is in effect across the cavity affects the ions as they emerge 

from the tip of the spraying nozzle which, when the mass spectrometer is set to 

negative mode, attracts the negative ions to the edge of the droplet while the 

positive ions gather towards the nozzle itself6. This forms the emerging droplet of 

solution into a Taylor cone at the tip of the nozzle with the surface tension 

restraining the anions from the attractive force of the electric field. As the strength 

of the field is increased the anions eventually overcome this and break out of the 

Taylor cone as a jet of negative ions which evolves from the centre of the cone 

which then breaks down into a fine spray. The effect of the positive and negative 

ions travelling in different directions is called the electrophoretic mechanism31. Dry 

nitrogen gas is introduced at the skimmer as a form of heat to aid in desolvation 

which has adjustable temperature and flow rates30. 
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Fig.2.3 shows the mechanism behind solvent evaporation, a process which leads 

to droplets with an ever decreasing volume yet contain a constant quantity of 

charge and thus an ever increasing charge density. These droplets eventually 

reach a critical charge density called the Rayleigh limit32 and destabilise, ejecting a 

plume of even smaller droplets which after further desolvation and ejection cycles 

leads to analyte ions from the original sample solution in the gas phase11. 

 

Figure 2.3: Diagram displaying one proposed mechanism for the breakdown of 

droplets formed from the ejection of the Taylor cone with typical radius and charge 

quantity of droplets labelled. Insert displays shape of droplet during ejection in the 

process of tearing off of smaller droplets. Taken from Ref 27. 
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A skimmer then separates the ions from any remaining solvent or neutral 

molecules from the entering gas stream allowing only charged molecules to 

actually enter the mass spectrometer. The sprayer/skimmer for both mass 

spectrometers in this thesis is orthogonal in design; the two are offset so only ions 

that are electrostatically attracted toward it enter the skimmer aiding the separation 

of ions from solvent spray. 

 

2.1.3 The Quadrupole Ion Trap 

The quadrupole ion trap uses electric fields to contain charged particles in a 3-

dimensional space. This allows for the isolation, temporary trapping and 

subsequent activation of ions via CID before releasing them towards the detector. 

The isolation of a particular m/z range in the ion trap is carried out by a process 

called resonance ejection11,33. As the ions are suspended in the ion trap they each 

resonate with a particular frequency related to their m/z. By altering the strength of 

the electric fields in the ion trap ions the highest and lowest m/z value ions can be 

forced to destabilize and lost from isolation. By performing this process for both 

high and low fields, also called forward and reverse scanning, a range of m/z ions 

can be isolated11. 

The ion traps used in the mass spectrometer instruments in this thesis utilise the 

3-D ion trap design consisting of two hyperbolic electrodes combined with a 

hyperbolic ring electrode, Fig.2.4. The ions isolated in the ion trap are not kept 

stationary and instead have a continuous motion that is kept stable via the 

combined effects of the applied electric fields and the helium dampening gas34. 
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Figure 2.4: Diagram of a 3D quadrupole ion trap highlighting the three hyperbolic 

electrodes and the stable orbit of isolated ions formed by the effects of the electric 

fields with exit to detector marked on diagram. Taken from Ref 35. 

The ion traps in this thesis have been modified to allow laser beams to enter the 

ion trap. In the AmaZon this modification was done by the manufacturer. External 

modifications were done with the addition of two windows, for beam entry and exit, 

installed into the shell of the mass spectrometer unit while the ion trap ring 

electrode had a small hole drilled through on both sides. As the design of the ion 

trap had been altered examinations of the efficiency of the quadrupole were 

carried out by the supplier. The ion trap was re-tuned to correct the alterations 

effects on the efficiency of the ion trap. The seal produced by the windows which 

was necessary in keeping the vacuum for the ion trap was monitored by an array 

of pressure sensors through the mass spectrometer which allows the user up-to-

date knowledge regarding the pressure throughout the unit. 
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2.1.4 Collision Induced Dissociation 

Collision induced dissociation in a quadrupole ion trap, CID, is the process of 

using an electric field to induce multiple inelastic collisions of a target ion with 

small buffer gas molecules. In the mass spectrometer units used in this thesis the 

buffer gas is helium. The aim is to activate the target ion by transforming a small 

amount of the ions kinetic energy into internal energy after collision. The higher the 

electric field is set the faster the collision and the more energy imparted onto the 

target ion. After multiple collisions it is possible to impart enough energy to break 

bonds and fragment the target ion34. 

Equation 2.1, taken from Ref 12, shows the maximum possible fraction of energy 

that can be converted into internal energy, ECom, which is related to the mass of 

the ion, Mi, the mass of the target gas, Mt, which in this thesis is helium and the ion 

kinetic energy from the laboratory frame of reference, ELab. For the low energy 

collisions in this thesis the ECom is approximately at its maximum and thus equal to 

the actual amount transferred12. The trap control software is able to control the 

strength of the applied electric field in steps of 0.01 V which changes the ELab by 

small, discrete increments allowing for specific control over the energy transferred. 

         
  

     
                                                    2.1 

Finally the remaining ions are scanned out of the ion trap and a fragmentation 

mass spectrum is generated. 
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2.2.1 Diode Laser 

A diode laser is an electrically pumped pn-junction diode capable of generating a 

continuous fixed wavelength beam19,36,37,38,69. The pn-junction diode is the active 

material in the diode laser which consists of a combination of both a p-type and an 

n-type material joined on opposing sides of a thin, high resistance material called a 

junction. The n-type material is doped by substituting a group 5 element, chosen 

by having an occupied energy band only slightly lower in energy than the 

conduction band which allows for easy thermal excitation, into the silicon lattice 

which supplies an extra electron into the structure. The p-type is doped with a 

group 3 element, chosen by having an unoccupied energy band just above the 

valence band allowing for availability for electron recombination, into the silicon 

lattice which removes a potential electron from the structure leaving a vacant 

space, hole. As the junction is made from semiconductor material the diode laser 

falls into the category of a semiconductor laser19,26,36,37,38. 

The active medium is pumped via electric current which when applied in such a 

way so that the n-type section is supplied with electrons, forward bias, then 

electrons transverse from the n-type to the p-type36,37. As an electron travels from 

one section to the other it finds itself in an increasing population inversion as the 

concentration of local excited electrons decreases while available vacant holes 

increases which will inevitably lead to recombination via photon emission. The 

recombination process can occur independently of outside influence in a process 

called spontaneous emission but to create a laser beam with sufficient power the 

process of stimulated emission is required where the emitted photons of the 

desired wavelength are trapped inside the active medium to form an active cavity 
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via the use of mirrors, called an optical cavity. These photons are capable of 

instigating the recombination of electrons they pass which can emit a photon of 

identical wavelength. This process is repeated multiple times amplifying the 

photons with a portion of all photons released from the cavity forming the laser 

beam19,36,37. 

The diode laser used in this thesis is a 375 nm, 3.31 eV, continuous wavelength 

diode laser. It was purchased from Photonic Solutions and produces an average 

power of 40 mW. At this wavelength it is the bluest commercially available diode 

laser. The use of the diode laser is a simple procedure which involves using the 

control box to set the required voltage for the diode laser, 1.10 V, to produce a 

laser beam at the operational power which was checked with the use of an 

external power meter. The beam was directed using the optics setup described in 

Section 2.4.1. 

 

2.3.1 Nd:YAG OPO 

The Nd:YAG OPO laser is comprised of two separate components, the 

neodymium-doped yttrium aluminium garnet, Nd:YAG, and the optical parametric 

oscillator, OPO, which combine to provide a pulsed, variable wavelength laser 

beam. The Nd:YAG is a solid state laser as the active medium is a solid crystal of 

yttrium aluminium garnet that is doped with neodymium in its trivalent state, Nd3+. 

The laser is pumped by the use of a flash lamp which emits an intense series of 

flashes with a wide variety of wavelengths although the majority is in the visible 

spectrum making the Nd:YAG an optically pumped laser19,26,69. 
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The beam of photons is created by the radiative transition of an electron from one 

excited state down to a lower excited state, the energy gap between these two 

levels equals the desired wavelength of the emitted photon, Fig.2.5. To create the 

necessary population inversion and thus avoid the energy levels of the crystal 

becoming saturated the flashlamp pumps electrons from an energy level below the 

energy levels used in the creation of the photon up into energy levels above the 

energy levels used for photon creation19,26. The YAG lasers used in this thesis 

have an energy gap which generates a photon of 1.064 µm. 

 

Figure 2.5: Diagram showing energy levels involved in the emission of a laser 

beam of 946 nm, 1064 nm and 1322 nm. Taken from Ref 39. 
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The OPO contains no light source of its own and so is pumped by the Nd:YAG 

laser which for the Nd:YAG in this thesis has been tripled from 1.064 µm to 

355nm. Two conservation rules are fundamental for the function of the OPO, the 

conservation of energy and the conservation of momentum. 

The initial beam from the Nd:YAG is split into two different wavelengths which in 

total conserve the total energy of the original beam. The OPO contains a non-

linear crystal which conserves the momentum of the system is part of the optical 

cavity which amplifies the desired wavelength. By rotating the crystal the 

wavelength that is amplified changes, this allows the OPO to scan across a range 

of wavelengths. For the OPO in this thesis a final doubler is used. The entire 

process greatly reduces the energy of the laser produced from the initial laser. 

Two OPO lasers used to acquire the data presented in this thesis with each one 

accompanying each mass spectrometer. The range of powers used in the OPO 

lasers is 0-10 mJ in the UV wavelength range with pulses per second of 10 Hz. 

 

2.4.1 Additional Apparatus for Laser Interfaced Mass Spectrometer 

Experiments 

The diode and YAG lasers both used a series of optics to direct the beam into the 

mass spectrometer ion trap. The optics used quartz prisms for the redirecting of 

the beam, a lens for focusing the beam with a focal point just before the entrance 

to the ion trap and adjustable irises to reduce beam power as required. 
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An electronic shutter was purchased from Thor Labs, model SH05, and was also 

included which is capable of opening and closing automatically once activated, 

blocking the laser beam from entering the ion trap. When in use the shutter would 

be in synchronisation with the filling of the ion trap and would only open for the 

fragmentation phase of the cycle and closed for the rest of the cycle. 
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Chapter 3: Investigating Fragmentation         

of Nuc
.
I
–
 Clusters with UV Photons Combined 

with CID Excitation
 

3.1.1 Introduction 

ESI Mass spectrometry is an important method for characterizing the structure of 

biomolecules via the fragmentation of mass-selected parent ions and analysis of 

fragmentation patterns40. However, the fragmentation of the ions requires many 

different fragmentation methods to provide the broadest range of structural 

information. Therefore, considerable current emphasis is placed on developing 

new fragmentation methods. In this chapter, we explore a new fragmentation 

method which combines a UV diode laser combined with CID excitation for the first 

time. 

Presently laser fragmentation combined with mass spectrometry uses the OPO 

and Dye lasers. However, each has various analytical constrictions such as 

recording time per single data point, a high level of user skill required to operate as 

well as the fragility of components which leads to a high degree of maintenance. 

There are also logistical factors to consider such as their large size, high cost of 

purchase and running as well as a high health and safety risk. A diode laser can 

be considered an excellent alternative to high powered pulsed lasers as a cheap, 

user friendly photon source. This chapter will cover the experimental investigation 

of a UV diode laser combined with CID excitation and whether this dual excitation 
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tool can excite an Nuc.I– complex across the electron detachment threshold, 

initiating an electron transfer from the I– to the nucleobase41,42,43, which can then 

fragment via dissociation of a temporary nucleobase anion. 

The fixed wavelength diode laser used in this thesis generates a continuous wave 

UV laser beam at 375 nm (3.31 eV). As an independent fragmentation tool this is a 

limited device capable of being applied only to molecular systems that contain 

absorption bands capable of fragmentation at energies below 3.31 eV. To effect 

electron detachment, the photon energy, Ehv, must be greater than the VDE of the 

target, Ehv > VDE. When the photon energy equals or exceeds the VDE electron 

detachment can occur. Alternatively if the photon energy is even slightly lower 

than the VDE value then no detachment occurs. With most biomolecule anions 

possessing VDE > 3.3 eV this greatly limits the ability of the diode laser in use with 

biomolecule analysis44. However, this example contains a crucial assumption that 

the target system was initially in its ground state. If the system was instead excited 

through the vibrational/rotational energy levels then the total energy of the system 

plus photon energy could exceed the electron detachment energy. In this chapter 

CID was investigated as a source of internal ion excitation as a precursor for UV 

photon absorption. 

CID is the process of engaging the target ion with collisions with a neutral buffer 

gas, converting kinetic energy of the ions into internal energy with the goal of 

breaking apart the bonds in molecular ions. However, for this project instead of 

breaking bonds, the goal of the CID excitation is to only transfer enough energy to 

raise the internal energy of the molecular ion to allow subsequent UV photon 
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absorption to then exceed the detachment energy of the anionic system studied 

here. In this work, we use CID in a quadrupole ion trap which has one major 

advantage of allowing small incremental increases in the ion energy via the 

alteration of the strength of the electric field in the ion trap which controls the ion 

kinetic energy. The advanced software in the commercial mass spectrometer 

allows for a great level of accuracy in the ion kinetic energy selected. 

The diode laser combined with the CID excitation can therefore be capable of 

removing an electron through exceeding the electron detachment threshold and 

subsequently leading to a free electron initiated chemical reactions such as those 

described in Section 3.4.2. For the first experiments, the source of the electrons 

was decided to be provided from a halide ion, specifically from iodide while the 

electron transfer acceptors were the nucleobase biomolecules adenine, A, uracil, 

U, cytosine, C, and thymine, T, guanine was not studied due to being insoluble in 

common solvents. The nucleobase-halide complexes shall be referred to hereon 

as Nuc.X– while the nucleobase-iodide anion complexes shall be referred hereon 

as Nuc.I– with the corresponding complexes for uracil, thymine, adenine and 

cytosine complexed to iodide referred to as U.I–, T.I–, A.I– and C.I– respectively. 

Halide ions have relatively low detachment energies and are also known to form 

stable molecular clusters with polar molecules. Iodide was chosen as the halide for 

these experiments as it possesses the lowest detachment energy. This trend 

continues for the respective nucleobase complex with the Nuc.I– complexes having 

the lowest detachment energy of all the Nuc.X– complexes31. This was an 

important factor as the required precluding CID excitation energy necessary to 
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enable UV photon excitation, ECID+UV, for CID+UV analysis could potentially 

exceed the energy required for complex dissociation, ECID, breaking bonds apart 

before the UV photon is capable of excitation. 

ECID+UV < ECID    3.1a 

ECID+UV > ECID    3.1b 

Equation 3.1a shows the desirable system where the amount of CID energy 

required for UV excitation to take place is lower than the amount for dissociation 

whereas Equation 3.1b is the unfavourable scheme where dissociation of the 

complex will have already occurred before UV excitation could take place. Ana 

Martı´nez and group31 have published abinitio calculation of the dissociation 

energy and VDEs for uracil complexes to different halogens which are as follows. 

All U.X– complexes are predicted to possess cluster dissociation energy of 1.2 eV 

with the exception of U.F– which had an energy of 3.7 eV. This distinctive value is 

due to U.F– adopting a distinctive structure. The VDEs for the remaining three U.X– 

complexes are U.Cl–, 4.7 eV, U.Br–, 4.4 eV, and U.I–, 4.2 eV. When considering the 

energy of the UV photon, 3.31 eV, that means that the ECID+UV from Equations 3.1a 

and 3.1b required for each halogen would be 1.39 eV, 1.09 eV and 0.89 eV for 

U.Br–, U.Cl– and U.I– respectively. U.Cl– and U.I– are the only two complexes that 

pass the requirement of possessing an ECID+UV below their respective ECID values 

of 1.2 eV. Although U.Cl– was a possible choice, however, it was decided that U.I–, 

with the largest margin between ECID+UV and ECID, would generate the best 

results45
. 
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3.1.2 Nuc.I– Complexes 

The main objective of this experimental work was to investigate the capacity of the 

diode laser when combined with CID excitation as a fragmentation tool for the 

analysis of biomolecules. Firstly, the actual ability of the UV photon, assisted by 

CID, to be absorbed needed to be proven possible, and secondly, it was 

necessary to compare the findings against previously published data of the 

mechanisms of Nuc.I– complex fragmentation. As such, it was of interest to 

understand the nature of the intercluster bonding in the Nuc.I– complex. 

The bonding in the Nuc.I– complex arises from the attraction of the negative I– and 

the electropositive hydrogen atom/s of the nucleobase, thus forming strong ionic 

hydrogen bonds41,42. Recent work by Ana Martı´nez and group involved abinitio 

calculations on non-conventional hydrogen bonding systems, which included the 

U.I– complex45. The results showed that for the particular case of uracil complexed 

to a halide the bond could be classified as an ‘ionic conventional hydrogen bond’, 

a conclusion that was based on the complex’s dissociation energy, 1.2 eV, 

intermolecular bond length, N1-H; 1.0 Å and H1-I; 2.6 Å, and bond angle, N1-H1-I; 

145o. 

Fig.3.1 shows the bonding in the U.I– complex. It can be clearly seen from Fig.3.1 

that the iodide is bonded at the positive end of the uracil molecular dipole, which is 

in agreement with the hydrogen bonding assignment above. In addition, this 

structure can be seen in Fig.3.2 to also occur for the T.I– complex with the iodide 

bonding in a similar way as in U.I–. 
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Figure 3.1: Diagram of the abinitio calculated structure of U.I– with the arrow 

indicator the dipole direction for the nucleobase. Hydrogen bond lengths are 

marked on the diagram as is the atom numbering scheme with 1,3 representing 

nitrogen and 2,4,5,6 representing carbon. Taken from Ref 41. 

 

Figure 3.2: Diagram of the abinitio calculated structure of the (a) T.I– and (b) U.I– 

complexes with bond distances for the hydrogen bond lengths labelled. Also, atom 

numbering is shown with 1,3 representing nitrogen, and 2,4,5,6 representing 

carbon. Taken from Ref 42. 
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3.2.1 Experimental 

To analyse whether any interaction between the UV photon and cluster had 

occurred, all the results were recorded for a range of CID energies both with and 

without the diode laser entering the ion trap for comparison.  Results solely from 

CID interaction shall henceforth be labelled simply as CID, while results recorded 

with the combination of CID and UV photons will be labelled CID+UV for the 

remainder of this thesis. Results were recorded over a range of CID energies 

where a span from 0.00 V to complete depletion of the parent peak shall be 

referred to hereon as a “single run” with each data point recorded representing a 

different CID energy. An automated method was set up using the mass 

spectrometer software for varying the CID energy. At minute intervals the program 

would increase the CID voltage by 0.01 V, commencing after the completion of the 

first reading at 0.00 V for one minute, which would then repeat continuously until 

the selected range of values was recorded. After ESI injection the cluster is mass 

selected and isolated in the ion trap with an accuracy of +0.05 m/z. 

Each run was repeated until the data obtained was consistent. Any anomalous 

readings were omitted from the results so as not to incorrectly affect any 

conclusions. Typical running settings of the AmaZon for the results recorded in this 

chapter are presented below in Table 3.1. 
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Table 3.1: Table displaying typical running settings for the AmaZon mass 

spectrometer used to acquire data in this chapter. 

Mass Range: 70-2200 m/z Polarity:  Negative 

Scan Speed: 32500 m/z/sec Scan Range: 50-1000 m/z 

Capillary Voltage: 2700 V Averages: 1 per data point 

End Plate Offset: -500 V Smart Frag:  Off 

Nebulizer: 10.00 psi Frag time: 1000 ms 

Dry Gas Flow: 6.00 l/min Frag Delay: 0 s 

Dry Temp: 100 oC Frag Width: 4 m/z 

Syringe Flow Rate: 250 µl /h Isolation Width m/z: 1 m/z 

 

The automatic ion tuning function of the mass spectrometer was employed to 

optimize the clusters of the different nucleobases. The ion current control, ICC, is 

a setting on the mass spectrometer that controls the amount of ions present in the 

ion trap. The ICC is variable between different Nuc.I– complexes with it on for U.I– 

and off for the other three complexes. U.I– had a target of ions of 1000000 and a 

max accrue time of 300 ms. T.I– and C.I– had a set accrue time of 1000 ms. A.I– 

had a set accrue time of 50 ms. These variations in settings adjusted the parent 

peak intensity to be closer to the optimum amount for the QIT. Once the complex 

was isolated the trap settings were then altered to deliver the optimum complex 

intensities for each system independently by adjusting ion trap values until the 
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intensity of the parent peak was judged to be a maximum compared to the 

background noise, but without loss of resolution of the peak. 

After initial alignment of the diode laser the beam was then blocked from entering 

the mass spectrometer, and the I– peak was isolated in the ion trap with its 

intensity noted. Then the UV beam was unblocked and the amount of depletion of 

parent I– ion was observed. If full depletion occurred then the beam path was 

deemed sufficient, if partial/no depletion was observed then the optics were 

adjusted, translating the laser beam on an x/y axis parallel to the entry to the ion 

trap until a reading of sufficient depletion was noted. 

All chemicals were purchased from Sigma Aldrich, with tetrabutylammonium iodide 

used as the source of iodide ions. Nucleobases and tetrabutylammonium iodide 

were diluted in a methanol solvent to a concentration of approximately 10-4 M 

before being mixed in a 50/50 ratio tetrabutylammonium iodide to nucleobase. 

 

3.3.1 Results 

Figs.3.3-3.6 display the negative mode ESI-MS of the Nuc.I– solutions, illustrating 

formation of the required clusters. The spectra show that there are three significant 

peaks observed for each nucleobase complex over this mass range. The peak 

with the highest intensity at 126.8/126.9 m/z corresponds to the iodide ion. The 

other two peaks correspond to the deprotonated nucleobase anion, [Nuc-H]–, and 

Nuc.I– clusters. 
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Figure 3.3: Negative ion mode ESI-MS of the U.I– complex. Peaks; 110.9 m/z, 

126.9 m/z, 238.9 m/z represent [U-H]–, I– and U.I– respectively. 

 

Figure 3.4: Negative ion mode ESI-MS of the T.I– complex. Peaks; 125.0 m/z, 

126.8 m/z, 252.9 m/z represent [T-H]–, I– and T.I– respectively. Zoomed section 

represented by insert highlights peak m/z. 
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Figure 3.5: Negative ion mode ESI-MS of the A.I– complex. Peaks; 126.8 m/z, 

134.0 m/z, 261.9 m/z represent I–, [A-H]– and A.I– respectively. 

 

Figure 3.6: Negative ion mode ESI-MS of the C.I– complex. Peaks; 110.1 m/z, 

126.8 m/z, 237.9 m/z represent [C-H]–, I– and C.I– respectively. 
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The isolation and induced fragmentation of the Nuc.I– complexes in the ion trap 

allowed for the intensity of the complex peak to be recorded at different CID 

energies. This enabled the tracking of both the depletion of the parent peak and 

the production of any fragments throughout the process. The analysis of the data 

generated from the experiments for CID excitation saw a depletion in the parent 

peak for all Nuc.I– with a single fragment peak for I–, Fig.3.7 to 3.10. Analysis of the 

CID+UV results were, however, less informative with no fragments detectable in 

the mass spectra and have thus not been included. 

 

 

Figure 3.7: Mass spectrum of U.I– complex, CID excitation energy 0.34 V. Peaks at 

126.8 m/z, 239.1 m/z represent  I– and U.I– respectively. 
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Figure 3.8: Mass spectrum of T.I– complex, CID excitation energy 0.34 V. Peaks at 

126.8 m/z, 253.2 m/z represent  I– and T.I– respectively. 

 

 

Figure 3.9: Mass spectrum of A.I– complex, CID excitation energy 0.34 V. Peaks at 

126.8 m/z, 261.9 m/z represent  I– and A.I– respectively. 
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Figure 3.10: Mass spectrum of C.I– complex, CID excitation energy 0.34 V. Peaks 

at 126.8 m/z, 237.9 m/z represent  I– and C.I– respectively. 

 

By normalizing the data for the CID results it was possible to plot the parent peak 

intensities, IP, and fragment peak intensities, IF. The data was normalized using 

Equations 3.2.a and 3.2.b with the results for the parent peak normalized, PN, and 

fragment peak normalized, FN, plotted as Fig.3.11 to 3.14. The half energy, Eh, 

where the intensity of the parent peak drops to half its initial value after 

normalization, can be read from the normalized data. 
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Figure 3.11: % fragmentation curves for U.I–. Square symbols represent intensity 

of parent complex U.I– while circle symbols represent intensity of fragment I–.The 

Eh is 0.20-0.21 V. An average variation of less than 5% recorded between repeats. 

 
Figure 3.12: % fragmentation curves for T.I–. Square symbols represent intensity of 

parent complex T.I– while circle symbols represent intensity of fragment I–. The Eh 

is 0.12-0.13 V. An average variation of less than 10% recorded between repeats. 
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Figure 3.13: % fragmentation curves for A.I–. Square symbols represent intensity 

of parent complex A.I– while circle symbols represent intensity of fragment I–. The 

Eh is 0.29-0.30 V. An average variation of less than 8% recorded between repeats. 

 
Figure 3.14: % fragmentation curves for C.I–. Square symbols represent intensity 

of parent complex C.I– while circle symbols represent intensity of fragment I–. The 

Eh is 0.12-0.13 V. An average variation of less than 9% recorded between repeats. 
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3.3.2 U.I– Cluster 

The parent peak intensity for the U.I– complex is displayed in Fig.3.15 for both the 

CID and CID+UV results with a zoomed section plotted as Fig.3.16. There is a 

significant difference for the U.I– cluster intensity between the CID and the CID+UV 

parent intensities for excitation energies between 0.13-0.24 V and 0.28-0.38 V 

which, for the remainder of this chapter, are referred to as S2 and S4 respectively, 

while the regions 0.00-0.12 V and 0.25-0.28 V are referred to as S1 and S3, 

respectively. The data displayed in Fig.3.15 shows that the parent peak intensity 

for both CID and CID+UV remains at a constant value through region S1 followed 

by a significant separation of parent ion depletion over the S2 region. The parent 

ion intensity falls to 5% of the initial parent intensity for both sets of conditions over 

S3. 
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Figure 3.15: % decay curves for U.I–. Open symbols represent CID data and 

closed symbols represent CID+UV data. The three lines on the graph split the data 

into the four different sections with S1 ranging from 0.00-0.12 V, S2 from 0.13-0.24 

V, S3 from 0.25-0.28 V and S4 which ranges from 0.29-0.40 V. An average 

variation for CID+UV of less than 8% recorded between repeats. 

 

Figure 3.16: Expanded view of regions S3 and S4 from Fig.3.15 highlighting 

difference in parent intensity between the CID and CID+UV curves. 
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By replotting the CID excitation data, Fig.3.15, as a difference in intensity between 

one data point and its previous data point shows distinctive peaks which represent 

the maximum change in intensity for a respective increase of 0.01 V in electric 

field strength, Fig.3.17. Three peaks have distinctive maximum points labelled A-C 

with values of 0.12, 0.19 and 0.22 V respectively and a broader area labelled D 

with a range across 0.33-0.35 V also detectable. 

 

Figure 3.17: The change in parent peak intensity for the U.I– complex for CID of 

the selected data point (X) in respect to the previous data point (X-1) using the 

formula: (X-1) – X = Change in intensity. Peaks labelled A-C are maximum 

changes in intensity at points 0.12, 0.19 and 0.22 V respectively while peak D is 

less distinct and resides between the values 0.33-0.35 V. 
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The same analysis of the CID+UV data, Fig.3.15, was carried out and replotted in 

Fig.3.18. The peaks E and F are marked representing maximum changes in 

intensity for each data point respective of the previous data point. Point E has a 

value of 0.13 V while point F has a broad curve with a maximum between the 

values 0.30-0.32 V, extrapolated from the zoomed section in Fig.3.19. 

 

Figure 3.18: The change in parent peak intensity for the U.I– complex for CID+UV 

of the selected data point (X) in respect to the previous data point (X-1) using the 

formula: (X-1) – X = Change in intensity. Peak labelled E is a maximum change in 

intensity at point 0.13 V while peak F is less distinct and resides between the 

values 0.30-0.32 V. 
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Figure 3.19: Zoomed section from Figure 3.18 highlighting change in parent peak 

intensity for CID+UV results. 

When comparing the results from Fig.3.17 and Fig.3.18 the peaks A and E 

although appear close in CID energy to each other are almost certainly two 

independent peaks. This could be verified by referencing back to Fig. 3.15 in 

which the parent peak depletion of the CID+UV was the same as the parent peak 

depletion for the CID data for the values up to 0.12 V (peak A) yet CID+UV was 

vastly higher than CID for 0.13 V (peak E). Another observation regarding the 

same data is between the peaks D and F which appear in similar CID ranges for 

CID and CID+UV although peak F is from midpoint to midpoint 0.03 V shifted 

lower than peak D. This is backed by the results seen in Fig.3.15 where the parent 

peak depletion for the CID+UV is higher than that of the CID data. 
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3.3.3 T.I– Cluster 

The parent peak intensity for the T.I– complex was plotted as Fig.3.20 for both the 

CID and CID+UV results. From Fig.3.20 it is unclear whether there is any 

difference between the CID and CID+UV curves as data values from both sets are 

all within a small intensity difference of each other. The gradient of the curve for 

the CID+UV data is greater than for CID between the values 0.12-0.13 V. 

However, the slight difference that occurs at this range between the two sets of 

data could be theorised as just being a low initial average for the CID+UV results 

as raising this value brings the two sets into closer alignment although this 

alteration has not been plotted or used in this thesis beyond this statement. The 

T.I– complex results show that a proportion of the initial intensity of between 10-

15% is stable over a long range of CID values, drawing parallels to the results 

from U.I–. 
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Figure 3.20: % decay curves for T.I–. Open symbols represent CID data and 

closed symbols represent CID+UV data. An average variation for CID+UV of less 

than 10% recorded between repeats. 

 

3.3.4 A.I– Cluster 

The parent peak intensity for the A.I– complex was plotted as Fig.3.21 for both the 

CID and CID+UV results. There is a significant difference between the CID and the 

CID+UV data points which occurs between values 0.16-0.36 V. 
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Figure 3.21: % decay curves for A.I–. Open symbols represent CID data and 

closed symbols represent CID+UV data. An average variation for CID+UV of less 

than 9% recorded between repeats. 

The depletion curve for the CID interaction of A.I– draws a similarity to the U.I– 

results as the data shows a similar irregular pattern for the depletion of the 

complex parent intensity with several areas of no depletion throughout the results. 

As the same with the U.I– results, by replotting the A.I– data, Fig.3.21, as a 

difference in intensity between one data point and its previous data point, 

distinctive peaks in depletion can be observed, Fig.3.22. Between the ranges of 

0.14-0.25 V almost every alternative data point drops to approximately zero 

depletion followed by a rapid increase in depletion which repeats creating four 

distinct drops and four rises in intensity. 
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Figure 3.22: The change in parent peak intensity for the A.I– complex for CID of the 

selected data point (X) in respect to the previous data point (X-1) using the 

formula: (X-1) – X = Change in intensity. Values between the ranges of 0.14-0.25 

show a very inconsistent amount of depletion with almost every alternative value 

having approximately zero depletion. 

 

3.3.5 C.I– Cluster 

The results for C.I– are similar to that of T.I– as the there is no clear observation 

from plotted data for UV interaction impacting on the parent peak intensity for the 
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data, once again like T.I–, for CID+UV is slightly greater than that for CID during 

the depletion curve although the significance of such a relatively small difference is 
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Figure 3.23: % decay curves for C.I–. Open symbols represent CID data and 

closed symbols represent CID+UV data. An average variation for CID+UV of less 

than 14% recorded between repeats. 
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increasing dipole value of the nucleobase decreased the amount of energy 

required to fragment the complex using CID. The CID fragmentation of A.I– takes 

approximately 0.20 V to go from zero fragmentation to complete depletion. This is 

the longest of all the nucleobases with U.I– taking 0.12 V, C.I– taking 0.08V and T.I– 

taking only 0.06 V although these values for U.I– and T.I– are only for the first 

depletion curve. Total depletion occurs at approximately the same CID value for 

A.I–, T.I– and U.I– at approximately 0.37 V, 0.36 V and 0.38 V respectively while C.I– 

is drastically quicker at only approximately 0.18 V. While these CID fragmentation 

ranges for the different nucleobases vary considerably in length the CID+UV 

depletion always completes in a range of always less than 0.10 V for all 

nucleobases. 

For the U.I– complex despite vastly different depletion speeds during the range of 

CID values for S2 both CID and CID+UV results reach a level in S3 at 

approximately 5% initial intensity which remains at a constant intensity value until 

S4. As this value is shared by both CID and CID+UV results implies that there are 

almost certainly two different channels in effect in the U.I– results. T.I– shows the 

same as from U.I– that two different channels are in effect for the T.I– complex. The 

CID+UV data for all Nuc.I– complexes showed no fragment peaks in the results. A 

proposed theory regarding this is that if any I– fragments are formed from the CID 

excitation component then the UV photons from the diode laser become capable 

of ionizing the I– due to the removal of the solvating effect of the nucleobase, an 

effect which shifts the VDE of the iodide above the diode laser energy. 
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An additional point to consider is the fact that for the CID data a complete 

transformation from parent to daughter peak is not observed with a final intensity 

for the iodide peak being considerably lower than the initial parent peak intensity. 

This could be due to multiple fragmentation pathways with only one creating the 

observed I– peak and another creating a final product without a charge and thus 

undetectable using this experimental setup. Alternatively the loss might simply be 

a related to the experimental setup such as the detector’s differing sensitivity for I– 

and Nuc.I– complexes. 

 

3.4.2 Further Discussion of the U.I– Cluster 

From Fig.3.15 it is clear that the UV photon is interacting with the U.I– complex 

once CID excitation energy has occurred with several different channels occurring 

labelled as Peaks E and F. However, the exact total energy for the channels at 

these peaks is uncertain as CID is a measure of electric field strength in the QIT 

while the laser beam is in eV per photon, two values which are not directly 

compatible for addition without further analysis so instead an indirect approach 

was undertaken by comparison to published literature. Table 3.2 shows the CID 

electric field values for the Peaks A – F and the ratio between these values and 

the value for Peak A. 
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Table 3.2: Table displaying CID electric field values for U.I– depletion maximums, 

peaks A - F from Fig.3.17 and Fig.3.18, and the ratio between each peak’s value 

and the value for Peak A. Mid points were taken for the values for the broad peaks 

D and F. Peaks E and F are in bold as the photon energy has not been included in 

this table. 

 

 
A B C D E F 

CID Energy of 

Depletion Maximum / V 
0.12 0.19 0.22 0.34 0.13 0.31 

Ratio To Peak A 1.00 1.58 1.83 2.83 1.08 2.58 

 

The group by Burrow47,48,49,50 have published several papers regarding 

dissociative electron attachment to the uracil molecule. They demonstrated that in 

the production of the dehydrogenated uracil anion there were two sharp peaks at 

the electron energies of 0.69 eV and 1.01 eV and one broad peak at 1.7 

eV47,48,49,50
. 

The values 0.69 eV and 1.01 eV matched to vibrational feshbach resonances 

between the dipole bound anion and neutral uracil molecule for the second and 

third vibrational energy levels of the neutral caused by hydrogen tunnelling through 

the energy barrier to dissociation48,49,50. The neutral uracil has a value for the N1-H 

vibrational stretch’s first vibrational level of 0.432 eV49 while the dipole bound 

anion state has a electron binding energy calculated twice as 93+7 meV51 and 

86+8 meV52. This value is very low due to the electron in the dipole bound state of 
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uracil having no significant effect on the geometric structure48, existing instead in a 

diffuse orbital cloud of the molecule position off the molecular framework48, 

Fig.3.24. This is in contrast to the valence bound state in which the electron 

occupies the π* orbital of the uracil, altering the molecular geometry by causing 

ring puckering to take place48. The broad value at 1.7 eV was explained as the 

energy equal to the 2π orbital anion state for uracil49
. 

 

Figure 3.24: Diagram of energy levels of the electron in the dipole bound state, the 

energy level of the σ* and the neutral state for uracil. Taken from Ref 49. 

The ratio between the quoted values of 0.69 eV, 1.01 eV and 1.7 eV from the 

Burrows results are in a 1 : 1.46 : 2.46 ratio with each other. These line up within 

10% of the ratio values for peaks A, B with D being less accurate at just under 

15% difference, Table 3.3. 
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Table 3.3: Table displaying CID energy values and ratios from Table 3.2 with 

values and ratios from Ref 48 and 49 included. 

 

 
A B C D E F 

CID Energy of Depletion 

Maximum / V 
0.12 0.19 0.22 0.34 0.13 0.31 

Ratio To Peak A 1.00 1.58 1.83 2.83 1.08 2.58 

Dissociation Energy from 
Burrow Group from Ref 34 and 

35 / eV 
0.69 1.01 - 1.7 - - 

Ratio of Burrow Group Values 1.00 1.46 - 2.46 - - 

 

Table 3.3 shows evidence that the peaks A, B and D are connected to the 

mechanisms from the published data by the Burrow group47,48,49,50 and that the 

published values in eV could be used as benchmarks in the construction of a 

relationship between the strength of the CID electric field and total energy of 

complex in eV for the U.I- complex, Equation 3.5. 

(5*EV)+0.1 = EeV             3.3 

Equation 3.5 shows the calculated linear relationship between the electric field 

strength of the CID, EV, and the total energy in eV, EeV, with an additional constant 

added as an adjustment which can be understood as the complex having to 

already possess energy greater than zero regardless of other factors. 
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The second and third vibrational feshbach resonances are two of the values used 

to construct the above relationship for CID into eV, with the first vibrational level 

not included as there were no published results for that point. This is due to the 

energy level of the first vibrational level being equal to 0.432 eV49 which can be 

seen from Fig.3.24 as lower than the dissociation level disallowing hydrogen 

tunnelling as a form of dissociation and removing the possibility for the Burrow’s 

experimental setup to record it. However, the cluster excitation presented in this 

chapter do not relying on this mechanism, so it was possible that evidence for this 

level would be observable using the current experimental setup. On inspection of 

Fig.3.15 there is a potentially small dip in the parent peak intensity depletion 

between the values of 0.10-0.40 V which would correspond to a conversion of 

0.15-0.30 eV using Equation 3.3. This is lower than the quoted value for the first 

vibrational level which might imply that the two are actually not connected or that 

Equation 3.3 is not fully complete. As an alternative explanation for the dip in 

intensity the first vibrational stretching band for the dipole bound uracil has a value 

of 0.34 eV48 which is closer to the calculated value in eV stated above. 

As noted in section 3.1.1, the Martı´nez group45 have published abinitio 

calculations of the U.I– complex, specifically a value of 1.2 eV for the dissociation 

energy of the complex. When that value is used in Equation 3.3 a result of 0.22 V 

is produced which is in perfect agreement with peak C. This adds further evidence 

to the relationship created using Equation 3.3 and implying that peak C is related 

to the dissociation of the complex. 
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Equation 3.3 was used to convert the CID energy results into total energy in eV 

plots which are presented in Fig.3.25 and Fig.3.26. Fig.3.26 represents CID+UV 

results so when interaction with the UV photon is considered combined with CID 

energy a value of the photon energy, 3.31 eV, must be added to the eV scale to 

create a value for the total energy of interaction for the complex. This would take 

the initial range from 0.00-2.10 eV to a new range of 3.31-5.41 eV. 

 

Figure 3.25: Figure 3.17 replotted using Equation 3.3 to convert CID energy to 

total energy in eV. 

-4

-2

0

2

4

6

8

10

12

14

16

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00C
h

an
ge

 in
 P

ar
e

n
t 

In
te

n
si

ty
 /

 A
rb

 U
n

it
s 

Calculated CID Energy / eV 



  
 

 

55 
 

 

Figure 3.26: Figure 3.18 replotted using Equation 3.3 to convert CID energy to 

total energy in eV. 

 

Dan Neumark and group have published several papers containing both abinitio 

calculations and experimental data on the U.I– and the T.I– complexes.41,42,43
.
 The 

experimental work used femtosecond time-resolved photoelectron spectroscopy 

which gathered experimental results showing time evolution of the energies of the 

photodetached electron and time dynamics, with computational work including 

geometric structures for the complexes of the U.I– and T.I– and their charge 

transferred complexes. The UV energy employed for photoionization of the 

electron ionizes it from the iodide, and the resulting free electron would either 

escape from the complex or interact with the π* antibonding orbital of the 

nucleobase and form a Nuc– associated to the iodine atom. 
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The first two papers of Neumark and co-workers studied transient negative ions of 

the U.I– complex, with the second also covering the T.I– complex. By using two 

lasers, one to excite the iodide electron until photoionization and the other to probe 

the electrons kinetic energy and thus to deduce the binding energy, the lifetime 

and kinetics of the ejected electron were measured and information was 

extrapolated by the group to fit proposed theories regarding the mechanics of the 

electron within the complex43. The results of the experimental work carried out by 

the Neumark group are shown in Fig. 3.27 and Fig. 3.28 with key features A – D 

labelled.  

 

 

Figure 3.27: One photon photoelectron spectroscopy results for the U.I– complex at 

different excitation energies with peaks labelled A-C. Taken from Ref 43. 
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Figure 3.28: Time resolved photoelectron spectroscopy and optimized U.I– 

complex with peaks A, C and D labelled. Taken from Ref 43. 

Feature A, Fig.3.27, has its centre at the binding energy of 4.11+0.05 eV53, and 

represents the VDE of iodide in the complex having been shifted due to the 

interaction with uracil. This is in alignment with the peak E from Fig.3.18 of this 

work, which is calculated using Equation 3.3 to have an energy of 4.06 eV. 

Calculations carried out by the Neumark group calculated the VDE at 4.13 eV in 

good agreement with the above values53
. Feature C, Fig.3.27 and Fig.3.28, 

represents zero, or near zero, energy kinetic electrons theorised to have been 

ejected from the charge transferred state via vibrational autodetachment. The 

results show it could be seen to exist at a wide range of excitation energies with 

the most prominent at 4.69 eV43 and 4.77 eV42. However, investigation regarding 

the results generated in this chapter showed no evidence of any resonance in the 

results presented here at these energies. 
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As discussed above, a number of different processes can follow 

photoexcitation42,43. 

  eUIUI ][][ *
             3.4a 

HHUIUI   ][][ *
            3.4b 

  **][ UIUI                3.4c 

  eUU *         3.4d 

If the assumption is made that the electron does not charge transfer onto the uracil 

then the depletion for peak E from Fig.3.19 can be assigned to the VDE. However, 

if the assumption is made that the charge transfer does take place then a number 

of channels are possible from Equation 3.4a-d that match the results for CID+UV. 

One channel is that photoexcitation or vibrational dissociation of the electron 

occurs after charge transfer which would leave a neutral U.I complex which would 

be undetectable, Equation 3.4a. 

The CID+UV data had no uracil ions detected in the results so Equation 3.4c 

cannot be the correct channel unless immediately progressing to Equation 3.4d. In 

Equation 3.4d the uracil anion was formed and the iodine was dissociated followed 

by the uracil anion then immediately ionized or vibrationally dissociated before 

reaching the detector which would also account for no fragments in the results. 
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Hydrogen atom loss from the complex, Equation 3.4b, is the final possibility which 

would leave a detectable fragment that was different from the parent peak. The 

Neumark group were unable to detect any evidence for the fragment in their 

results as the VDE of the electron in that system was calculated to have a value 

above 3 eV which was impossible to detach using their setup42,43
. However, this 

value is in the range of the UV photon from the diode laser from this chapter’s 

setup so the probability of this being formed but also ionized before detection is 

possible. 

In addition to the above there were two further alternative mechanisms that were 

discussed by Neumark and co-workers but not which should be noted: 

 Excitation of the π electron in uracil into the π* orbital which is then followed 

by charge transfer across from the iodide into the now available π orbital. 

However, this was deemed unlikely due to trends in recorded results43
. 

 A value of 5.30 eV was quoted for a detachment feature to the 2P1/2 state of 

iodide. However, at that high energy all parent intensity would have been 

depleted using this chapters experimental setup, presuming the equation 

for CID to eV is correct, so there would be no possibility to observe that 

channel29. 
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A third paper by Neumark and co-workers41 used the same experimental set up 

but applied excitation energies that were lower than used before, this time 

focusing at energies around the VDE of the U.I– electron, 4.11 eV. The focus of the 

results of this paper was on the two different bound states of the charge 

transferred uracil, the dipole bound and the valence bound state41. From 

experimental work the diagram in Fig.3.29 was produced showing the relationship 

between the dipole bound, valence bound and neutral uracil plotted against energy 

and ring puckering. It was theorised that there were two different mechanisms for 

the formation of the valence bound state of the uracil anion both using the dipole 

bound state as an intermediate, the first mechanism at an energy range of (-110)–

100 meV either side of the VDE of the complex, 4.11 eV, and the second 

mechanism at an energy range of 550-790 meV above the VDE of the complex 

which are labelled as B and A on Fig.3.29 respectively. 

Although there is at first glance a good correlation between the CID+UV data and 

the transition between states to explain the two depletion curve results of the 

complex the argument cannot include the UV photon energy in its explanation as 

the CID data also has the same two depletion curves. This means that any 

mechanism involvement has to solely depend on the CID excitation energy. That 

being said, the possibility of the enhanced dissociation of the CID+UV through the 

change in states as opposed to the CID mechanisms is a possibility. 
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Figure 3.29: Energy level diagram for uracil neutral, dipole bound states, DB 

anion, and valence bound states, VB anion. Notations A and B represent theorised 

mechanisms for the transition from DB to VB state. Taken from Ref 41. 

 

3.4.3 U.I– Cluster Tautomers 

The two depletion curves for the U.I– complex can be explained in terms of 

tautomers. If the uracil molecule that formed the complex with the iodide was a 

tautomer of the standard uracil then the chemistry of the complex could be vastly 

altered, especially if the changes affected the N1 or C6 atoms where the iodide 

hydrogen bonds onto the nucleobase. A charge transferred state can undergo 

tautomerization using vibrational energy with an energy barrier quoted as 40 kcal 

mol-1 42, or approx. 1.7 eV, which matches perfectly with the value of peaks D and 

F. The increase of the iodide fragment peak intensity increases with increasing 

CID until the ranges for peaks D and F where any increase is either so low as to 

be unobservable or none. This would imply that there is a second mechanism at 
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work, different from the first mechanism for the first depletion curve that is 

depleting the remaining parent peak intensity but not releasing an iodide as a 

fragment. 

If a portion of the solution of complex gathered enough energy in the transfer from 

solution phase to gas phase that the complex was already in the dipole bound 

state when it was isolated then the mechanisms from Fig.3.22 can be used with 

the dipole bound state as an alternative starting point for the complex. In addition 

Neumark quotes a value of between 550 meV41 and 790 meV41 to excite the 

dipole bound state to form a valence bound state with an approximately average 

value of 0.670 eV. As already mentioned the calculated value for peak D using 

Equation 3.3 was 1.8 eV. This value is the right amount for a dipole bound ion to 

be vibrationally excited enough to transform into a valence bound state which 

would immediately emit excess energy as the downward vertical transition takes 

place back to a valence bound ground state which could then continue to be 

vibrationally excited until dissociation from the valence state took place. 

 

3.5.1 Conclusion 

This chapter had the objective of researching the combination of the UV photon 

with CID excitation energy for the fragmentation and analysis of nucleobases in 

both experimental work and literature review. There is significant evidence to show 

that the U.I– and A.I– complexes for the CID+UV excitation data showed 

enhancement in parent peak depletion over CID excitation. However, there was 
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considerably less, if any, depletion for the T.I– and C.I– complexes. This is possibly 

due to the dissociation energy being lower than the amount of energy required to 

reduce the electronic energy transition gap, Equation 3.1b. 

However, despite its success the UV laser has flaws as a fragmentation tool as 

discovered in this experimental setup. A major problem is that any fragments 

created in the ion trap are unable to be shielded from the continuous beam of UV 

photons and have the possibility of absorbing an additional photon and undergoing 

secondary reactions. This was demonstrated in the results generated in this 

chapter where no fragments for CID+UV were recorded despite CID data showing 

a large peak for iodide for all nucleobases. This means that with the present 

experimental setup the results recorded cannot be assumed to be only parent 

peak fragmentation. Alternatively the problem may reside in the continuous wave 

properties of the diode laser. If this was the case then the addition of a beam 

chopper would reduce exposure time and could significantly impact results 

gathered. 

Throughout this chapter CID data was collected for the nucleobases with a 

noticeable trend in the amount of energy required to dissociate the complex, a 

value that is strongly related to bonding strength of the complexes, compared to 

the dipole moment, with the exception of T.I–. A.I– required the largest CID energy 

to dissociate followed by U.I–, C.I– then T.I– compared with the trend in increasing 

dipole moments with A.I– as the lowest followed by T.I–, U.I– and C.I– as the 

strongest. 
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The range of the depletion for each Nuc.I– complex with CID interaction varied 

considerably for each nucleobase. One possible explanation of these observations 

is the presence of tautomers (Section 3.4.3) where uracil and thymine have 

significant differences between tautomers that two separate depletion curves are 

recorded which can be expanded to include the adenine results. For adenine there 

was a considerably long depletion curve recorded which could be possible if, like 

uracil and thymine, there existed multiple tautomers of adenine which were close 

enough in their chemistry with the iodide that the separate depletion curves 

overlap to the extent that it appears only a single curve exists. 
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Chapter 4: UV Laser Photodisociation 

Spectroscopy of the U
.
I
–
 and T

.
I
–
 Complexes 

4.1 Introduction 

In the present day the link between UV radiation and damage caused to DNA is 

widely known with the photons causing a variety of alterations to the double helix 

sequence54,55,56. However, more recent work has been involved in redefining how 

the damage is done to the DNA with the inclusion of an indirect channel for 

radiation damage to DNA as well as the traditional direct channel. Low energy, <3 

eV, electrons formed from the absorption of high energy UV photons can cause 

fragmentation in molecules adjoining the site of absorption leading to 

fragmentation and recorded loss of hydrogen from the nucleobases57,58. 

Isolated, gas phase anion nucleobase complexes have been the focus of several 

recent laser spectroscopy studies. Laser photoexcitation of such clusters can 

provide insight into nucleobase excited state dynamics, as well as nucleobase-free 

electron interactions. The Dessent group have published results regarding the 

laser photodisociation spectroscopy of the U.Pt(CN)4
2- and the U.Pt(CN)6

2- 

complexes53,59. Results showing absorption bands in the regions of 4.70eV59 and 

4.90 eV59 which were assigned to the π–π* chromophore with fragmentation 

products quoted for complex fission, nucleobase proton transfer and electron 

detachment. 
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In Chapter 3 a UV diode laser was used in combination with CID energy to initiate 

fragmentation of Nuc.I– complexes. Although, CID excitation alone resulted in 

production of the I– fragment for all of the Nuc.I– complexes, the UV+CID 

experiments gave no observable fragment ions despite an enhanced parent ion 

depletion being observed for U.I– and A.I–. In this chapter, it is explored whether 

ionic photofragments are produced by single photon excitation of the Nuc.I– 

complexes using a tuneable pulsed Nd:YAG OPO laser source. 

While the UV diode laser generates a continuous laser beam, the OPO laser is a 

pulsed laser which operates at 10 Hz. When additionally combined with a shutter, 

the beam was chopped, reducing the amount of laser pulses that interact with an 

isolated ion packet in the QIT over one isolation phase. This has the advantage of 

reducing the probability of any ionic fragments absorbing a second photon and 

thus undergoing secondary fragmentation or electron loss. In addition, the 

tuneable wavelengths produced by the OPO allow investigation into how cluster 

fragmentation and cluster depletion varies as a function of wavelength. The 

wavelength dependant cluster depletion can then be compared to the CID and 

CID+UV cluster depletion measurements presented in Chapter 3. 

The U.I– and T.I– were chosen for study in this set of experiments, as these cluster 

have been previously studied by Neumark and co-workers using time resolved 

photoelectron photodetachment spectroscopy41,42,43. These experiments provided 

evidence for nucleobase-free electron interactions (nucleobase transient negative 

ions), but key questions remained about the resulting fragmentation channels 

since ionic photofragments could not be detected with the experimental set up. 
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4.2 Experimental 

The mass spectrometer instrumental details and the ESI processes adopted in this 

chapter are the same as those outlined in Section 3.2.1. All variable settings, 

including the ion trap, were adjusted to optimize the required cluster complex 

intensity in the parent ion mass spectrum. The chemicals used in this chapter are 

the same as those detailed in Section 3.2.1. The results for the U.I– cluster were 

obtained using the Bruker Esquire mass spectrometer, while the T.I– cluster results 

were obtained on the Bruker AmaZon. 

The UV photons were supplied by the Nd:YAG OPO’s outlined in the experimental 

section. The complexes were scanned by the OPO with a range of set wavelength 

intervals. For each wavelength a measurement of the parent peak initial intensity 

was recorded with the laser beam blocked from entering the ion trap, IO, followed 

immediately afterwards by a second recording of the parent intensity with the laser 

beam allowed into the ion trap, I. 

The action spectra for both the U.I– and T.I– complex were recorded across a 

range of wavelengths with analysis focused on the amount of depletion of the 

parent peak and any fragments produced. By monitoring the amount of depletion, 

a measurement that is equivalent to the level of UV absorption for the complex, 

across a range and by converting the wavelength of the laser beam into eV the 

results could be plotted in the style of absorption against energy. The absorption of 

UV photons for parent peaks of both complexes were normalized using Equation 

4.1, this allowed for each data point to be more accurately compared to each other 

with I and IO representing parent peak intensity with and without laser interaction 



  

 

68 
 

respectively and with λ and E representing wavelength and energy, in joules, of 

the laser beam respectively. 

   (
  
 
)

   
     4.1 

4.3 Results 

A representative parent ion mass spectrum is displayed in Fig.4.1, to illustrate that 

the U.I– cluster is produced at good ion intensity. A peak corresponding to 

uncomplexed iodide is also visible. 

 

Figure 4.1: Negative ion photofragment mass spectrum of the solution U.I– 

complex. Laser set at 260 nm with energy 0.3 mJ. Peaks 238.6 m/z, 126.7 m/z 

represent U.I– and I– respectively. 

Fig.4.2 and Fig.4.3 show a distinct increase in the absorption by the parent peak at 

a maximum energy value of 4.84 eV. A fragment iodide peak is recorded which 
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increases in intensity to coincide with the parent peak reduction with a maximum 

also at 4.84 eV. This maximum absorption value of 4.84 eV is close to the 

midpoint for the second depletion curve calculated for U.I– from Chapter 3 of 4.96 

eV. The slight difference in the two values can be explained by Equation 3.3 for 

the conversion of CID to eV producing values that are slightly high once 

extrapolated above 1.2 eV, the highest value from Chapter 3 that produced good 

agreement with published data. 

 

Figure 4.2: Photodepletion (absorption) spectra of U.I– complex parent peak 

across the 4.0−5.8 eV range. 
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Figure 4.3: Photofragment action spectra of I– complex parent peak across the 

4.0−5.8 eV range. 

 

 

Figure 4.4: Aqueous absorption spectra of Uracil, 0.1 mM highlighting absorption 

band at 4.8 eV. Taken from Ref 59. 
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A representative mass spectrum can be seen in Fig.4.5 for the results for the T.I– 

complex with peaks recorded at 252.6 and 126.6 m/z for T.I– and I– respectively. 

 

Figure 4.5: Negative ion photofragment mass spectrum of the solution T.I– 

complex. Laser set at 260 nm with energy 0.4 mJ. Peaks 252.6 m/z, 126.6 m/z 

represent T.I– and I– respectively.  

The results for the thymine complex were repeated twice with two different ranges 

for photon energy and with different laser beam powers which are displayed in 

Fig.4.6 and Fig.4.7. Both plots show a distinct increase in both the depletion of the 

parent peak and a rise in the fragment produced at maximum energy of 4.59-4.86 

eV and 4.84 eV respectively while Fig.4.7 shows a second absorption curve with a 

maximum between 4.00-4.07 eV with iodide also being the only recorded fragment 

produced for both recorded ranges. 

As mentioned iodide was an observable peak in the results and the intensity 

matched up with the absorption maximums for the parent peak. However, because 

of the large variation in intensity due to the values being near zero for the iodide 

peaks the results have not been plotted. 
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Figure 4.6: Photodepletion (absorption) spectra of T.I– complex parent peak across 

the 3.6−5.8 eV range. 

 

Figure 4.7: Photodepletion (absorption) spectra of T.I– complex parent peak across 

the 3.5−5.5 eV range. 
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4.4 Discussion 

The values for the maximum absorptions of the U.I– and T.I– complexes at 4.84 eV 

and 4.59-4.86 eV respectively compare to the second depletion curves calculated 

from Chapter 3 with both sets of thymine results having values slightly shifted to 

lower energies than the uracil results. An alternative theory is that the interaction 

of the UV photon is at a similar maximum because the iodide is interacting with the 

photon and not the nucleobase. The reason why the thymine result would be 

slightly shifted to a lower energy could be explained by the solvating effect of the 

thymine being slightly less shielding than the effect of the uracil. The maximum 

absorption of U.I– also matches well with the quoted values from the Dessent 

group of 4.90 eV and 4.70 eV as maximum absorptions for Pt(CN)6
2-.U and 

Pt(CN)4
2-.U complexes respectively59 and an absorption maximum of 4.8eV can be 

observed in Fig4.4.
 These values are reported as being related to the π-π* 

absorption band for the uracil molecule which was mentioned in Chapter 3 as 

being antibonding along the N1-H bond, weakening the complex bonding causing 

iodide to fragment which is reflected in the results recorded in this chapter. 

The results for T.I– in Fig.4.7 show two absorption curves at close proximity while 

U.I– only shows evidence of one curve. It might have been possible that U.I– would 

show a second absorption curve but the laser beam energy dropped significantly 

at the edge of the scanning range, possibly to a point below the required energy to 

detect fragmentation. If the wavelength range could have been extended below 4 

eV with significant laser energy then a different set of results might be possible. 
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In the U.I– results there were a few small data points at 111.1 m/z which would 

represent the deprotonated uracil anion. However, this result is highly sceptical 

due to the almost zero intensity of these peaks with coincidental noise peaks being 

a more likely explanation. 

Although a fragment peak for iodide was recorded for both complexes the 

difference between parent intensity depleted and iodide fragment formed is very 

high. For U.I– the conversion between parent peak depletion and fragment peak 

formation only equals approximetely 5% at the data point 4.84 eV. This leaves a 

considerable amount of the parent peaks intensity unacounted for which could be 

explained by either a second fragmentation mechanism which left only neutral 

fragments, undetectable by the mass spectrum or simply a problem in the 

experimental setup such as the detector sensitivity mentioned in Section 3.4.1. 

 

4.5 Conclusion 

The results from Chapter 3 for both the U.I– and T.I– complexes show second 

depletion curves. These curves match in energy with the results from this 

chapter’s experimental work. In Chapter 3 one proposal for these second depletion 

curves was conversion between the dipole and valence bound states using CID 

energy to convert between the two. However, in this chapter there was no CID 

energy involved in the experimental procedure so for the proposal of transfer from 

dipole to valence bound states to still be true the absorption bands from this 

chapter would have to be coincidentally in the same energy region. 
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Chapter 5: Study of the Interactions of UV 

Photons Combined with CID Excitation 

Energy on Proteins Melittin and Angiotensin 

5.1.1 Introduction 

The process of UV photodetachment dissociation, UVPD, is an important tool for 

the gathering of data regarding the sequencing of biomolecules. UVPD is a 

process which uses UV laser irradiation to ionize an electron from a multiply 

charged anion to create a oxidised radical species which is often unstable and 

thus leads to fragmentation24,61,62,63. Using the tandem properties of the mass 

spectrometer the oxidised target ion can be isolated and fragmented using CID 

excitation in a process labelled activated electron photodetachment, activated-

EPD24. To photodissociate an electron from the target ion the electron must 

overcome its binding energy which generally exists across an energy range of 0–5 

eV24. The diode laser used in this experiment only covers the lower half of this 

range, 3.31 eV, so if proved plausible there exists a high potential for the 

preliminary CID excitation in combination with the diode laser for the purpose of 

sequencing biomolecules. 

Comparison of the reaction mechanisms between a UV activated target ion which 

is then CID fragmented against a target ion which is only CID excited has provided 

considerable interest regarding the sequencing of peptides and proteins. Work by 

Dugourd and co-workers has published results for the peptides leucine-enkephalin 
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(protonated) and gramicidin A (sodiated) which has shown that using activated-

EPD as a fragmentation tool revealed multiple fragment peaks in the mass 

spectrum that were not observable with CID excitation alone60. 

Chapter 3 has shown strong evidence for the agreement that CID+UV can 

fragment a molecular ion, as illustrated for Nuc.I– clusters. In this chapter this 

excitation method is applied to protein ions to observe the effects of the same 

method on a considerably larger biomolecule and record any findings that occur. 

In this chapter, the interaction of CID+UV with two proteins is investigated, namely 

melittin and angiotensin I human acetate, referred hereafter as angiotensin. The 

structure of angiotensin is displayed in Fig.5.1.  

 

Figure 5.1: The sequence of amino acids in angiotensin. Taken from Ref 64. Asp, 

aspartic acid, Arg, argenine, Val, valine, Tyr, tyrosine, Ile, isoleucine, His, histidine, 

Pro, proline, Phe, phenylalanine, Leu, leucine. 
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Fig 5.2 and Fig.5.3 represent results taken from Ref 24 for the CID and the UVPD 

fragmentation methods for angiotensin. Fig.5.3 highlights the observable 

difference in the fragmentation mass spectra obtained using these two methods. 

 

 

Figure 5.2: Mass spectrum of [M-2H]2– angiotensin after laser irradiation of 262 nm 

with parent peak of 647.25 m/z with zoomed insert highlighting doubly 

deprotonated singly charged angiotensin. Taken from Ref 66. 
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Figure 5.3: a) MS3 of the isolated [M-2H]2–. Fragment and subsequent CID 

fragmentation with insert highlighting isolated peak. The isolated fragment was 

formed via UV ionization of the [M-2H]2– parent peak. b) MS2 of [M-H]– parent ion 

with subsequent CID fragmentation with insert highlighting isolated peak. 

Significant differences in fragment mass spectra are clearly observed between the 

two methods. Taken from Ref 66. 
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5.2.1 Experimental 

Both the mass spectrometer setup and the ESI methods employed in this chapter 

are the same as those described in section 3.2.1. All variable instrument settings 

were adjusted for detection of the maximum intensity for the target ion. The 

proteins used in this chapter were purchased from Sigma-Aldrich in solid form 

powder and dissolved in methanol in a volumetric flask. The proteins studied were 

isolated in their doubly deprotonated 2- charge states. The dianionic species were 

selected so that if electron detachment occurred a monoanionic fragment would 

remain which is still detectable in the mass spectrometer. 

 

5.3.1 Melittin Results 

The effects of photodetachment dissociation on melittin were studied by Lemoine 

and co workers65. Using a QIT to isolate the target [M-2H]2– ion a UV laser beam 

of 260 nm from a Nd:YAG OPO was applied which was capable of producing the 

[M-2H]–. photofragment which was then fragmented further using CID65. 

The [M-2H]2– anion of Melittin were inside the operating m/z range of the mass 

spectrometer at an m/z value of 1422.0 the doubly deprotonated 1- anions, m/z of 

2844.0, were too high. The AmaZon mass spectrometer settings were altered to 

run at an extended range to include the 1- charge states but this, however, had a 

significant trade off against the resolution of the mass spectrometer. The mass 

spectrum of the Melittin sample with under high resolution settings is displayed in 

Fig.5.4 with the peak 1422.0 representing the [M-2H]2– anion. 



  
 

 

80 
 

 

Figure 5.4: Mass spectrum of melittin solution with high resolution. 

The chemistry was expected to allow for the ionization of one of the 2- charge 

state electrons for the doubly deprotonated melittin followed by the CID induced 

fragmentation of the photofragments48. However, due to this it was deemed that 

melittin was unable to be analysed further using the present experimental setup. 

 

5.3.2 Angiotensin Results 

The angiotensin ion contains two different chromophores that can absorb UV 

photons which are phenol and phenyl60. The effects of photodetachment 

dissociation on angiotensin were also studied by Lemoine and co workers66. Using 

a QIT the target [M-2H]2– ion a UV laser beam of 262 nm from a Nd:YLF was 

applied which was capable of producing the [M-2H]–. photofragment which was 

then fragmented further using CID66. A second isolation stage on the [M-2H]– 

photofragment with subsequent low energy CID excitation produced a 
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considerable range of fragments. This is in contrast with the fragmentation peaks 

observed by just performing isolation plus low energy CID on the [M-2H]– parent 

ion, where very little fragmentation was observed66. 

 

Angiotensin has a mass of 1296.48 which means that the [M-2H]2– anion equals a 

value of 647.24 m/z and a [M-2H]– anion equal to 1294.48 m/z. As both of these 

values fit into the mass spectrometer m/z range with the original high resolution 

settings the analysis could continue with 647.24 as the parent peak. 

 

Figure 5.5: Mass spectrum of angiotensin parent peak for [M-2H]2–. 

 

Table 5.1 shows results for both observed peaks and not observed peaks from the 

CID and CID+UV results obtained in this experiment. Values 624.8 m/z, 1234.8 

m/z and 1293.8 m/z in bold were not observed in any results but respective 2-/1- 

m/z charged peaks were. 
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Table 5.1: Table of [M-A]2– and [M-B]– fragment peaks from parent peak [M-2H]2– 

at 646.9 m/z. Bold values 624.8 m/z, 1234.8 m/z and 1293.8 m/z were not 

observed in results but respective 2-/1- m/z charged peaks were. Peak 1217.7 m/z 

and peak 1218.6 m/z are from CID+UV and CID results respectively. 

[M-A]2– Peak / m/z [M-B]– Peak / m/z 

599.8 1199.6 

608.8 1217.7 / 1218.6 

617.4 1234.8 (Not Observed) 

624.8 (Not Observed) 1249.6 

629.9 1258.7 

638.3 1275.7 

646.9 1293.8 (Not Observed) 

 

Fig.5.6 and Fig.5.7 both show mass spectra of results for angiotensin with CID+UV 

interaction and represent all the observed peaks in the 2- charge state. There was 

no observable difference between the fragment peaks for both the CID and 

CID+UV excitation within the range 598-621 m/z so only one set of fragment mass 

spectra has been included in this thesis. The fragments were observed in groups 

of approximately 4-6 peaks with each peak approximately 0.5 m/z separate. This 

presented excellent evidence for the parent peak/fragments existing in the 2- 

charge state as a difference of 0.5 m/z equals a gain/loss of 1 mass unit for an ion 

that is in the 2- charge state. Fig.5.8 and Fig.5.10 display results for CID+UV 

interaction while Fig.5.9 and Fig.5.11 show results for CID interaction with 

significant differences between the two sets of results. 
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Figure 5.6: Fragment mass spectrum of angiotensin peak 646.9 m/z with CID+UV 

interaction at a zoomed section of 598-621 m/z. Individual peaks within group 

have a separation of 0.50 m/z which is representative of 2- charged peaks. 

 

Figure 5.7: Fragment mass spectrum of angiotensin peak 646.9 m/z with CID+UV 

interaction at a zoomed section of 628-651 m/z. Individual peaks within group 

have a separation of 0.50 m/z which is representative of 2- charged peaks. 
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Fig.5.8 and Fig.5.9 show two peaks for the interaction of CID+UV at 1199.5 m/z 

and 1217.7 m/z and while the second peak was observable with only CID it was at 

a considerably lower intensity while the first peak was not observable at all. 

 

Figure 5.8: Fragment mass spectrum of angiotensin peak 646.9 m/z with CID+UV 

interaction at a zoomed section of 1217-1223 m/z. Individual peaks within group 

have a separation of 1.0 m/z which is representative of 1- charged peaks. 

 

Figure 5.9: Fragment mass spectrum of angiotensin peak 646.9 m/z with CID 

interaction at a zoomed section of 1217-1223 m/z. Individual peaks within group 

have a separation of 1.0 m/z which is representative of 1- charged peaks. 
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For Fig.5.10 and Fig.5.11 three peaks were observable for CID+UV at 1249.6 m/z, 

1258.7 m/z and 1275.7 m/z while the same range for CID interaction was without 

observable fragments. 

 

Figure 5.10: Fragment mass spectrum of angiotensin peak 646.9 m/z with CID+UV 

interaction at a zoomed section of 1248-1282 m/z. Individual peaks within group 

have a separation of 1.0 m/z which is representative of 1- charged peaks. 

 

Figure 5.11: Fragment mass spectrum of angiotensin peak 646.9 m/z with CID 

interaction at a zoomed section of 1248-1282 m/z. Note intensity scale is on a 

magnitude of 10x Fig.5.10 and without observable peaks. 
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Further isolation on the fragment peaks for a subsequent further CID stage was 

not possible in the current experiment as the intensity of the CID+UV fragment 

ions was not sufficient to allow further analysis. 

 

5.4.1 Discussion 

The fragments in the range of 1217-1223 m/z showed considerable difference 

regarding the mass spectra generated for CID and CID+UV. The CID+UV results 

had a greater population of peaks in this range which lead to a variety of different 

potential reaction channels. Three different mechanisms are proposed below for 

the reaction channels regarding these additional CID+UV fragment peaks 

observed in the data, this is then followed by assignment of each fragment peak to 

the most likely proposed mechanism: 

1. The parent peak ion was fragmented by CID and the resulting fragments 

were ionized by the UV photon. 

2. The parent peak ion was ionized by the UV photon. The oxidised fragment 

was then fragmented by CID and/or formed an unstable radical anion 

species which fragmented. 

3. The parent peak ion was fragmented by CID and the resulting fragments 

were ionized by the UV photon. These created oxidised fragments were 

unstable species which leads to a second fragmentation. 

Mechanisms 2 and 3 are supported by research which claims that fragmentation 

can take place for oligonucleotides in a relatively short period of time after 
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ionization. This was coined as the formation of a ‘hot’ oxidized product where the 

ionizing photon was greater than the binding energy of the removed electron 

leaving additional energy in the ion24. 

Peaks 1199.6 m/z, 1258.7 m/z and 1275.7 m/z are observed [M-B]– fragment 

peaks and all have respective [M-A]2– charge peaks observed in the fragmentation 

mass spectra, Table 5.1. These [M-B]– peaks are thought to be formed via the 

photodetachment dissociation from their respective [M-A]2– fragments, mechanism 

1. 

Peak 1249.6 m/z had no [M-A]2– peak in the results which eliminates mechanism 1 

as a possible source of this peak although both mechanism 2 and 3 are still 

plausible. The mass of this peak is approximately the loss of a CO2 group from the 

[M-2H]2– parent peak. There has been recorded evidence for the formation of a 

CO2
- anion via CID excitation which supports the possibility for mechanism 267,68. 

In Ref 66 a peak was recorded for this mass in regards to UV activation for the 

ionization of the [M-2H]2– angiotensin to [M-2H]– which then fragmented with a loss 

of 44 m/z. This peak was not observed when analysis of the [M-2H]– charge state 

was isolated and fragmented without the initial UV activation. 

The analysis of the peaks at 1217.7/1218.6 m/z was more complex than the 

previous fragments. This peak was present in both the CID and CID+UV mass 

spectrum results which would initially imply a reaction channel that was producible 

through CID alone. However, the intensity was considerably higher for the CID+UV 

interaction and the ratio of intensities for the individual peaks either side of the 

central peak were greatly different, thus the different m/z values used. This 
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indicates the possibility for a second formation channel with a possible channel 

outlined below. 

The 2- charge state fragment at m/z 608.8 was formed through CID as it is present 

in both CID and CID+UV mass spectra. This fragment peak was then ionized by 

UV photon interaction into the 1- charge state. This ionized fragment would 

possess an m/z value of 1217.6 which effectively identical to the results for the 

CID+UV interactions recorded, mechanism 1. 

 

5.5.1 Conclusion 

There is significant recorded evidence that CID+UV fragmentation has produced a 

range of peaks from the model protein angiotensin that would have been 

unavailable if only one of the tools had been implemented or using both tools to 

independently generate data. 

An analysis of the fragment ions produced indicates that radical formation occurs 

in the CID+UV fragmentation method which suggests that the process of CID+UV 

as an ionization tool was successful, however, without the [M-2H]– peak recorded 

it cannot be certain. 
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Chapter 6: Final Conclusions 

This thesis researched the possibility to link a diode laser with CID excitation to 

create a new tool for the mass spectrometry analysis of biomolecules. Throughout 

this thesis there has been significant data both recorded and discussed showing 

evidence that this new tool has been effective. Chapter 3 showed excellent 

agreement with the enhancement of parent peak depletion for two of the 

complexes studied with Chapter 4 showing additional data on the 

photofragmentation of the uracil and thymine iodide complexes. Chapter 5 created 

fragment peaks unique to either CID or UV used independently on the protein 

angiotensin. 
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Further Work 

The research conducted in Chapters 3 and 4 can be furthered by the analysis of 

different biomolecules and comparing the resulting fragment mass spectra for CID, 

CID+UV and UV photons from Nd:YAG OPO. As only the uracil and adenine 

nucleobases when complexed to iodide showed any CID+UV enhanced interaction 

by using different biomolecules the capabilities of this potential new fragmentation 

tool could be deduced. Biomolecules that would be of immediate interest would be 

the nucleosides and nucleotides which contain the original nucleobases in their 

structure but have additional chemical side chains, which could have varying 

effects on the reaction channels. 

In Chapter 5 the use of CID+UV compared to CID created several different peaks 

in the fragment mass spectrum. However, the ionized parent peak was unable to 

be isolated. An alternative experimental setup to the CID excitation would be using 

IRMPD. The IR laser would be capable of exciting all the bonds in the target ion 

simultaneously without the intermediate step of a high local energy through 

collision that requires distribution. The IRMPD+UV ionization tool has the potential 

to be a significant analytical tool in the analysis of proteins. However, due to the 

larger activation times required for IRMPD compared to CID an FTICR would be 

more compatible with the laser. 

 



  

 

91 
 

Abbreviations 

A Adenine 

C Cytosine 

CA Collisional Dissociation 

CAD Collision Activated Dissociation 

CID Collision Induced Dissociation 

ECD Electron Capture Dissociation 

EDD Electron Detachment Dissociation 

Eh Half Energy 

EID Electron Induced Dissociation 

EPD Electron Photodetachment Dissociation 

ESI Electrospray Ionization 

ESI-MS Electrospray Ionization Mass Spectrometry 

ICC Ion Current Control  

ICR-SORI CA 
Ion Cyclotron Resonance Sustained Off-Resonance 

Irradiation Collisional Activation 

IRMPD Infrared Multiphoton Dissociation 
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Nuc Nucleobase 

SID Surface Induced Dissociation 

T Thymine 

U Uracil 

UV Ultraviolet 

UVPD Ultraviolet Photodisociation 

VDE Vertical Dissociation Energy 
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