
DynamiTE:

A 21st-Century Framework for Concurrent

Component-Based Design

Andrew John Hughes

11th of December 2009

This thesis is submitted for the degree of Doctor of Philosophy

Department of Computer Science
University of Sheffield

Abstract

The free ride for software developers is over. In the past, computer programs have
increased in performance simply by running on new hardware with ever increasing
clock speeds. Now, however, this line of development has reached its end and chip
designers are producing new processors, not with faster clocks, but with more cores.
To take advantage of the speed increases offered by these new products, applications
need to be redesigned with parallel processing firmly in mind.

The problem is that mainstream designs are still inherently sequential. Concur-
rency tends to be an afterthought that may be useful to gain a performance boost,
not an essential part of the design process. The current vogue for object-oriented
designs tends to also have the side-effect of making them heavily data-oriented which
doesn’t scale well; each shared element of data has to be protected from simultane-
ous access, resulting in operations becoming sequential again. In addition, the usual
methods for protecting data tend to be very low-level and error-prone.

In this thesis, we introduce a new design method whereby applications are con-
structed from small sequential tasks connected by intercommunication primitives.
Our approach is based on a two-stage process; first, the individual tasks are cre-
ated as independent entities and tested with appropriate inputs, then secondly, the
communication infrastructure between them is developed. We provide support for
the latter via the DynamiTE framework, which allows the interactions to be defined
using the terms of a process calculus. Depending on the developer’s background,
they can treat this as just another API, as a design pattern or as an algebraic ex-
pression which can be property checked for issues such as deadlocks. Either way,
the communication layer can be developed, tested and evaluated separately from
the tasks once it is known how the tasks will interface with one another.

To supplement DynamiTE, we define our own process calculus, Nomadic Time,
using a carefully chosen novel selection of constructs. Among the features of the
calculus are the ability to perform communication both locally (one-to-one) and
globally (one-to-many), and the flexibility to change the location of tasks during
execution. Security is paramount to the design of Nomadic Time and migratory
operations can be limited in two ways; by simple enumeration of possibilities or by
the optional typing of constructs to allow restriction on a task-by-task basis.

While it can’t eradicate all the problems inherent in designing concurrent appli-
cations, DynamiTE can make things easier by reducing the dependency on shared
resources and enhancing the reusability of concurrent components.

iv

Acknowledgements
This work was supported by a grant from the Engineering and Physical Sciences

Research Council (EPSRC) for the first three years.
Thanks to everyone else for keeping it bonkers!

Contents

1 Introduction 1

1.1 Rationale . 1

1.2 Status Quo . 2

1.2.1 Multiprogramming . 2

1.2.2 Resource Contention . 3

1.2.3 Semaphores and Monitors . 5

1.2.4 Interprocess Communication 11

1.3 Our Proposed Solution . 14

1.3.1 A Prototypical Application . 16

1.4 Contributions to Knowledge . 18

1.5 Structure of the Thesis . 20

2 Algebraic Process Calculi 24

2.1 Introduction . 24

2.2 The Calculus of Communicating Systems 26

2.2.1 The Dining Philosophers . 29

2.3 Advantages and Limitations of CCS 31

2.4 Conclusion . 33

3 Global Synchronisation 35

3.1 Introduction . 35

3.2 Temporal Process Language (TPL) 35

3.3 Extending TPL . 37

3.4 The Calculus of Synchronous Encapsulation 37

3.4.1 Timeouts . 38

3.4.2 Clock Stopping and Insistency 39

3.4.3 Encapsulation . 40

3.5 Conclusion . 41

v

vi CONTENTS

4 Mobility 44
4.1 Introduction . 44
4.2 Scope Mobility . 45

4.2.1 The π Calculus . 45
4.2.2 Variants of the π Calculus . 46
4.2.3 Advantages and Limitations of the π Calculus 52

4.3 Distribution and Migration . 53
4.3.1 The Distributed Join Calculus 58
4.3.2 The Ambient Calculus . 59
4.3.3 Variants of the Ambient Calculus 62
4.3.4 Advantages and Limitations of the Ambient Calculus 65
4.3.5 P Systems . 65

4.4 Comparing Modelling Approaches . 68
4.5 Bigraphs . 71
4.6 Conclusion . 72

5 Nomadic Time 74
5.1 Introduction . 74
5.2 Localising the Calculus . 76
5.3 Adding Mobility . 78

5.3.1 Location Mobility . 80
5.3.2 Process Mobility . 83

5.4 Bouncers . 84
5.5 The Semantics . 85
5.6 A Simple Example . 91
5.7 A Prototypical Application in NT . 95
5.8 Conclusion . 98

6 The DynamiTE Framework 100
6.1 Introduction . 100
6.2 Why Java? . 101

6.2.1 Concurrency Provision . 103
6.2.2 Popularity . 108

6.3 Mapping Theory to Practicality . 109
6.4 The Context of the Calculus . 114

6.4.1 The Plugin Abstraction . 116
6.5 The Evolver Framework . 118
6.6 A Prototypical Application in DynamiTE 123
6.7 Related Work . 131

6.7.1 Obliq . 131
6.7.2 Nomadic Pict . 134

CONTENTS vii

6.7.3 The Safe Ambients Abstract Machine 135
6.7.4 JavaSeal . 136

6.8 Conclusion . 138

7 Typed Nomadic Time 140
7.1 Introduction . 140
7.2 Existing Typed Calculi . 140

7.2.1 Type Systems for the π Calculus 141
7.2.2 Type Systems for the Ambient Calculus 143

7.3 Mobility Types for Nomadic Time . 145
7.4 DynamiTE and the Type System . 149
7.5 Typed Musical Chairs . 153
7.6 Conclusion . 154

8 Contributions and Future Work 156
8.1 Our Contributions . 156
8.2 Future Work . 160

8.2.1 Nomadic Time . 160
8.2.2 DynamiTE . 162
8.2.3 The Type System . 163
8.2.4 Other Applications . 164

Bibliography 165

A Progress 174

B Preservation 178

List of Figures

1.1 The Traditional Software Development Process 16
1.2 DynamiTE Variant of the Software Development Process 16
1.3 Structure of the Prototypical Application 18

2.1 Graph of a.0 | a.0 . 28
2.2 Graph of a.0 + a.0 . 28

4.1 Spatial diagram of m[in n.out n.P] | n[] 60
4.2 Spatial diagram of n[m[out n.P]] . 60
4.3 Spatial diagram of m[P] | n[] . 60
4.4 Example P System . 67

5.1 Derivation of Nomadic Time . 75
5.2 Clock Hiding in n[E | m[F | k[G]{σ}]{ρ}]{γ} 78
5.3 The Musical Chairs Environment . 92

7.1 Derivation of Typed Nomadic Time 145

viii

List of Tables

2.1 CCS Semantics . 29

3.1 CaSE Semantics . 42
3.2 Derivation of CaSE from CCS . 43

4.1 LCCS Dynamic SOS Rules . 54

5.1 Feature Summary from the Literature Survey 75
5.2 Core Semantics . 87
5.3 Mobility Semantics . 88
5.4 Structural Congruence Laws . 88
5.5 Derivation of Nomadic Time from CaSE 89
5.6 Summary of Processes and Derived Syntax for Musical Chairs 93

6.1 Translation Schema from NT to DynamiTE Process Subclasses . . . 110
6.2 Translation Schema from NT to DynamiTE Classes 110

7.1 Typing Rules from (Sangiorgi, 2002) 143
7.2 Types . 147
7.3 Timeout Types . 147
7.4 The Bouncer Type . 147
7.5 Mobility Types . 148
7.6 Structural Congruence Laws with Types 149

ix

Chapter 1

Introduction

1.1 Rationale

Recent changes in the direction of computer hardware development have created
an impasse in the domain of software engineering. Over the past few years, new
microprocessors have not seen the same increase in clock speed that has prevailed
over previous decades. Instead, the use of multiple ‘cores’ has become common,
due largely to physical limitations which prevent the individual elements of a single
processor core becoming any smaller. As a result, the performance benefits of these
new processors arise not from being able to execute a single task faster than before,
but from the parallel execution of many such tasks.

However, this leads to a problem. The existing dominant methods for designing
software systems are inherently sequential. Current imperative and object-oriented
programming languages are still founded on the principles of early computational
models, such as the Turing machine (Turing, 1936). These take an idealised view
of events where they always occur sequentially and in isolation. Programs are thus
still effectively written as a sequence of reads and writes to a form of memory. The
problem with this approach is that it runs into major issues when the execution of
other programs may cause changes to memory outside the remit of the program.
Imagine Turing’s model but with multiple heads, each running separate programs
yet still sharing the same tape – what happens if more than one head writes to the
same area of the tape?

In this thesis, we advocate a move towards systems where the focus is on interac-
tion between minimal sequential subsystems. Rather than building huge monolithic
structures, the same result can be achieved using a number of smaller components,
running in parallel. Such a strategy has been suggested in varying forms over the
years, but due to the perceived future evolution of the microprocessor, this is now an
essential requirement, rather than a design ideal or optimisation. We also provide

1

2 CHAPTER 1. INTRODUCTION

a formal grounding for such designs, based on academic research which has been
largely overlooked in the industrial sector. Security also forms an inherent part of
both the design and formal model by allowing restrictions to be imposed on the
communication between individual components.

In the remainder of this chapter, we provide a brief overview of the evolution of
concurrent processing, highlighting current issues arising from the flawed approach
of maintaining a sequential design which is becoming more and more distant from
reality. We also look at how restricted mutability and an emphasis on intercommu-
nication between smaller, more specific processes can provide a better solution, and
how this approach has been adopted in the past with varying success. We close with
a summary of the novelty of this work, and an overview of how this will be covered
in the later chapters of this thesis.

1.2 Status Quo

1.2.1 Multiprogramming

Concurrency is nothing new. The concept of executing multiple programs at the
same time has been in use since multiprogramming was first introduced back in the
1960s. But the same underlying model has remained. Parallelism is still seen as
an optimisation, beholden to the maintenance of the sequential standard. Utilising
concurrency within a program remains relegated to study as an advanced feature,
seldom taught and even less often practised. If parallelism is to become the dominant
means of exploiting the power of future hardware, this needs to change.

Multiprogramming was introduced as an efficiency measure. At the time, ma-
chines were available only on a per-institution rather than per-user level, so a batch
of jobs were submitted to the machine, each consisting of the program to run and
any associated data it needed to do so. The machine ran a relatively simple op-
erating system, which would take each job in turn and execute a specified series
of commands written in a batch job language. Such jobs would usually consist of
reading in the program, compiling it if necessary, and then executing it. During
execution, data was read in and the results of computation output for the user to
digest later.

It soon become clear that having an expensive processor sit idle while input
and output (I/O) operations took place was wasteful. To solve this problem, a
new generation of machines were introduced which provided a scheduler as part of
the operating system. Instead of running each job to completion before attempting
the next, the system read in multiple jobs to begin with, each forming a process
in memory. These processes consisted not only of the code to be executed, but
also included contextual information, such as the next instruction to execute (the

1.2. STATUS QUO 3

program counter) and environmental data (e.g. open file handles).
If a process being run by the system reached a point where it had to wait for

an I/O operation, the scheduler would move the process into a blocked state and
perform a context switch to begin the execution of another. Once the I/O operation
was complete, the blocked process would be reassigned to a ready state, making it
again eligible for execution.

All this remained completely invisible to the running processes, each of which
appeared to be running in complete isolation. The hardware provided memory pro-
tection, which prevented a process from accessing data outside its own memory space
and they remained largely oblivious to the fact that their execution was effectively
being paused and then resumed later. This was achieved by the scheduler storing the
register contents and program counter at the continuation point, and then restoring
these values before handing control back to the resumed process. The effect of such
operation was only noticeable if the running time of the process was recorded, as
such results were now dependent on factors such as system load and the arbitrary
choices of the scheduler. This was a big change in design, which paved the way for
the the introduction of objects and threads, and the same concepts are still used
today.

Over time, schedulers have been extended so as to switch jobs when a quantum
of time allocated to a process has been depleted. This ensures a greater degree
of fairness; a processor-intensive task which rarely blocks can no longer become
overly dominant. For batch systems, this wasn’t of great importance (provided the
process eventually terminated) as users submitted a job and then collected the results
later on. In this context, just utilising the time when a process was blocked had a
significant impact on perceived performance. However, with a move towards first
time sharing and then personal computer systems, it became necessary to ensure that
each process was given time to execute on a regular basis, so the system remained
responsive. This concept is referred to as preemption.

Finally, further performance enhancements were made possible by allowing pro-
cesses to have multiple threads of control and extending the scheduler to enable
switching between the individual threads within a process. The advantage of such
threading is that the threads share the same memory space and thus may inter-
operate more easily and more efficiently. The disadvantage is that it makes the
possibility of contention much more likely.

1.2.2 Resource Contention

Concurrency issues arise when multiple processes or threads contend for access to
the same resource. With threads, this is a frequent occurrence as they run the same
code and access the same variables. It also occurs with processes; although they
have their own memory space in which to operate, the resources provided by the

4 CHAPTER 1. INTRODUCTION

underlying operating system are shared by them all. An obvious example is the
filesystem. What happens if more than one process tries to access a file at the same
time? Unless only reads occur, the possibility of data corruption arises.

Such bugs, known as race conditions, are difficult to reproduce as they are heavily
dependent on timing. This is especially true of single processor systems, where con-
currency is merely simulated by the scheduler switching between processes. Whether
or not file corruption occurs depends on the choices made by the scheduler, which
in turn depend on a number of factors, such as system load. If many processes are
competing for the processor, then there is more chance of one which accesses the
same file being picked.

A print spooler is a program which allows a printer (another shared resource) to
be used by many processes while maintaining separation between individual jobs.
Without such a mechanism, one program may write a few lines to the printer, and
then be suspended by the scheduler. The program which is allowed to run next may
then also write to the printer, causing the user to end up with output from different
jobs mixed together.

Instead, the spooler tackles this concurrency problem by acting as an mediator
between the programs and the printer. However, such an application must be care-
fully designed to ensure it doesn’t fall foul of the same issue. Imagine the spooler
operates by reading a list of files to print from a shared file. When a process wants
to add a new job to the queue, it writes the filename as a new entry at the end of
the file:

int fd = open("/var/spool/print_jobs");

seek(fd, END_OF_FILE);

write(fd, "my_print_job");

close(fd);

Problems arise because such an operation is non-atomic; it is possible that the
process may be stopped by the scheduler while adding a job to the list (e.g. after
the seek function above), just as it may be stopped while writing to the printer. If
this happens, there is a possibility that whichever other process is scheduled in its
place could also choose to alter the queue. The result of such a collision depends on
the timing:

1. If the first program only opened the file, or was just about to close it, then
there will be no consequence. In the first case, the first program will move
to the end of the (now longer) file when it resumes and write its entry. In
the latter case, closing the file is just a matter of freeing resources and has no
effect on the file itself.

1.2. STATUS QUO 5

2. If the first program seeked to the current end of the file, then on resumption,
it will overwrite any data added in the meantime. If the new data is longer
than the older data, then the old data will simply be lost. If it is shorter, the
file will be corrupted.

The solution to these sort of problems is to limit access to a resource, so that a
process is forced to wait its turn.

1.2.3 Semaphores and Monitors

Such access limitations can be imposed by a semaphore, a solution first proposed
by Dijkstra (Dijkstra, 1968). A semaphore maintains an integer count which is
manipulated by two operations: up and down. The count can be used to limit the
number of threads of control active in a particular region. In effect, this is akin
to the scenario where a gate requires a token in order to allow someone (a thread)
to pass through, but the number of such tokens is limited. When a thread wants
to pass through the gate, it attempts to acquire a token by executing the down

operation. If the count maintained by the semaphore is greater than zero, then it
will be decremented and the thread can proceed through the gate. However, if it is
zero, there are no tokens left so the thread is forced to wait until one of the existing
tokens is returned. Tokens are returned by executing the up operation.

The up and down operations must be atomic; it should not be possible for such an
operation to be interrupted. If they can be, then the whole purpose of the semaphore
is defeated; a further solution would be needed to resolve the possible concurrency
issues that may occur inside the semaphore itself. Most operating systems provide
such atomicity by using support available at the processor level; a Compare And
Swap (CAS) operation updates a memory value only if the current value matches
the one given as an argument (i.e. it hasn’t been changed by another process or
thread).

Binary semaphores, where the count is either zero or one, are very common.
Such semaphores can be implemented in a simplified form known as a mutex, which
maintains a binary state (locked/unlocked) rather than a count. Locking a mutex
is equivalent to decrementing the count to zero via a down operation, and unlocking
it is the same as performing an up to return its value to one. The usage pattern is
the same for both: a thread first locks the mutex, does its work and then unlocks
the mutex to allow others access.

Mutexes can also be implemented at the file level as file locks, providing a solution
to the problem we encountered in the previous section:

int fd = open("/var/spool/print_jobs");

flock(fd, LOCK_EX);

6 CHAPTER 1. INTRODUCTION

seek(fd, END_OF_FILE);

write(fd, "my_print_job");

flock(fd, LOCK_UN);

close(fd);

The first call to flock acquires an exclusive lock (LOCK EX) on the file referenced
by fd (the file descriptor returned by the operation which opens the file). Let’s
assume that this process is stopped by the scheduler after the seek function exe-
cutes and another process is allowed to run. This second process executes the same
program. While it can successfully acquire a file descriptor for the file through the
open function, the flock function will block trying to obtain an exclusive lock. This
is because the lock is still held by the original process which has been descheduled
but has not yet relinquished the lock. When the original process is chosen again
by the scheduler, it can continue to write to the file, safe in the knowledge that no
other process has altered its contents in the interim. The final call to flock releases
the lock so the second process may now proceed.

Semaphores also have signalling capabilities; threads waiting to perform a down

operation are woken when an up occurs on the same semaphore. They can then
retry the down operation again and return, having decremented the value of the
semaphore, should the operation succeed on this attempt. Given that there may be
multiple waiting threads, there is no guarantee that a thread will become active; for
each up operation, only one down operation will be successful and any other threads
will again be forced to wait. Again, these race issues are why it is essential that the
up and down operations themselves are atomic.

Suppose we want to implement a bounded buffer which is accessed by multiple
threads. We need to use semaphores both to prevent possible race conditions when
modifications are made to the buffer, and to stall threads when the buffer is full (in
the case of adding a new item) or empty (when retrieving an item).

As in our previous example, a binary semaphore or mutex can be used to make
modifications to the buffer appear atomic; a thread wanting to operate on the buffer
needs to first acquire the token and will be unable to do so if another thread has
already taken it. Semaphores can also be used to monitor the state of the buffer,
and provide notifications to the producer and consumer threads when the buffer
empties or fills up, respectively.

produce()

{

item = produce_item();

down(empty);

down(mutex);

add_item_to_buffer(item);

1.2. STATUS QUO 7

up(mutex);

up(full);

}

consume()

{

down(full);

down(mutex);

item = remove_item_from_buffer();

up(mutex);

up(empty);

consume_item(item);

}

The above example provides an example implementation of such a buffer, us-
ing three semaphores: mutex, empty and full. The mutex semaphore is a binary
semaphore, which ensures a thread has exclusive access to the buffer by making
modifications to the buffer appear atomic; although the thread can still be inter-
rupted, any other threads trying to execute down(mutex) will be blocked until the
original thread relinquishes control.

The other semaphores are used to maintain a count of how many empty or non-
empty slots are available in the buffer. As the buffer is filled, the number of empty
slots goes down and the number of non-empty slots goes up. The inverse is true
when the buffer is emptied by the consume function. The empty mutex is initialised
with a value equal to the size of the buffer, while the full mutex begins with a
value of zero.

In the produce function, the thread first checks if there are any empty slots by
performing a down operation on the empty mutex. If the empty semaphore has a
non-zero value, as at the beginning, then there are available slots in the buffer and
the operation will return after decrementing the value by one. In this case, the
thread can then proceed to lock the buffer using the mutex and add an item to it.
It then releases the mutex and performs an up operation on the full semaphore,
increasing the number of slots in use and potentially allowing those threads waiting
in the consume function to proceed. The consume function is effectively the inverse
of the produce function; it checks the number of full slots to begin with, using the
full semaphore, and increases the number of empty slots when done.

The examples above are fairly simple, but already demonstrate some of the
problems inherent with the use of semaphores. A successful strategy for using them
requires placing acquisition and release calls in all affected locations and is extremely
prone to error. Suppose one of the processes above never relinquishes the lock on
the file. Or a thread never performs an up on the mutex. Other threads or processes

8 CHAPTER 1. INTRODUCTION

wishing to acquire the lock or mutex will be blocked forever. Similarly, it takes only
one miscreant to access the shared resource without attempting to acquire a lock to
make the whole process of locking redundant.

Semaphores don’t scale well either. For even a small program like the buffer
example above, three semaphores are required. In such a situation, the order of
acquisition also becomes important. If the order is wrong or differs between code
segments, deadlock can occur. Deadlocks happen when each process or thread is
waiting on a resource held by another waiting process. In the buffer example, simply
altering the order of the down calls in the consume function is enough to create a
potential deadlock situation. If a thread manages to acquire the mutex but is then
forced to wait for an up on the full semaphore, no other thread will be able to
acquire the mutex in the meantime. Only in the unlikely situation that a thread
has been stopped between the up(mutex) and the up(full) calls in the produce

function would this deadlock be resolved. In most cases, the other threads will
attempt to acquire the mutex before reaching the required up(full) call and so are
left waiting forever.

By far the biggest issue with these kind of problems is reproducibility. Just
as with the race conditions they are trying to avoid, bugs relating to semaphores
may not always manifest themselves. The example above is very likely to result
in deadlock, as it just requires the consume function to be called when the buffer
is empty and no other thread is accessing it. Other issues can be much harder to
diagnose.

Take two processes, A and B, both of which are trying to acquire a lock on the
two files, /etc/passwd and /etc/shadow in order to add a new user to the system.
If both processes acquire the locks in the same order, then all is well. If they don’t,
a deadlock may occur.

Let’s assume process A runs first. It acquires a lock on /etc/passwd. At this
point, we assume A has used its allocated quantum of processor time and so is
descheduled. A context switch occurs and process B begins to run. If B begins by
trying to acquire a lock on /etc/passwd, then it will simply block as A already
holds this lock. If, however, it tries to acquire a lock on /etc/shadow first, this
will succeed. We then get stuck in a deadlock; B blocks trying to acquire the
lock on /etc/passwd held by A, which will never be relinquished because A will
be blocked trying to acquire the lock on /etc/shadow held by B. Such problems
occur simply through an ordering mismatch, but can be extremely difficult to catch
through simulation or execution; in many situations, the process will acquire both
locks without being descheduled inbetween.

The solution to these problems is to abstract away from such intimate details
and allow the programmer to work at a more amenable level. One attempt at
doing so can be seen in the use of monitors (Hansen, 1973; Hoare, 1974). Rather

1.2. STATUS QUO 9

than worrying about the placement and sequencing of individual acquisition and
release calls, the programmer simply denotes which sections of code must be run in
mutual exclusion from one another. The compiler or virtual machine (depending
on whether the code is pre-compiled or not) then handles the process of adding the
required statements to ensure this. The concept of monitors is strongly linked to
the idea of objects, with the same common idea of data encapsulation; all variables
are private to the object and inaccessible from the outside. To read or modify the
data held by a monitor, one of its methods must be called. Once a thread is running
code in a particular method, no other thread may enter a method belonging to that
monitor. This ensures the thread safety of the data without the issues of acquiring
locks and lowers the potential for deadlocks.

While this provides a better alternative to the use of binary semaphores or mu-
texes, for a scenario such as the buffer example a notification mechanism is required
so that threads can wait for a particular event to occur and be notified by other
threads when it does. Monitors provide for this via the use of condition variables
and the wait and signal primitives. Just as with semaphores, one thread calls
the wait operation on a particular condition variable and then another thread calls
signal on the same variable when the situation has changed. The problem with
this approach is that it is just as prone to error as the use of semaphores; if the wait
and signal primitives are not used appropriately, then threads may be stalled. It
is still a very low-level solution.

Another issue with monitors, as implied above, is that they are heavily reliant on
support from the programming language being used. While semaphores just require
some means of performing an atomic change to an area of memory, monitors need the
compiler or virtual machine to be intelligent enough to parse the monitor structures
and convert them into appropriate uses of more low-level locking constructs. One
language in which support is provided is Java, as can be seen in the example below:

public class Buffer

{

public static final int BUFFER_SIZE = 5;

private int used = 0;

private Object buffer[BUFFER_SIZE];

public void produce()

{

Object item = produceItem();

synchronized

{

10 CHAPTER 1. INTRODUCTION

while (used == BUFFER_SIZE)

wait();

buffer[used] = item;

++used;

notifyAll();

}

}

public void consume()

{

Object item;

synchronized

{

while (used == 0)

wait();

--used;

item = buffer[used];

notifyAll();

}

consumeItem(item);

}

}

This is an implementation of the buffer example using monitors rather than
semaphores. There are two main differences between the Java implementation of
monitors and that proposed in the academic literature: the mutual exclusion is
limited to blocks of code marked with the synchronized keyword, rather than
encompassing the whole class, and the wait and signal operations are realised as
the wait and notifyAll methods of the Object class rather than being functions
applied to condition variables. One downside of these changes is that the addition
of selective mutual exclusion makes it prone to error; although it is more efficient
not to lock the entire class whenever any method is called, this also means that one
may forget to use the synchronized keyword just as one may forget to perform the
appropriate operation on a semaphore.

The similarities and differences between monitors and semaphores can be clearly
seen by comparing the two buffer examples. In the Java version, the use of the
empty and full semaphores is replaced by a while loop and the use of wait() and
notifyAll()1. The value these depend on is also made explicit in this version (see
the variable used), whereas it is an implicit part of the operations on the semaphores

1The use of the while loop, although slightly inefficient, is essential in ensuring that the con-
dition is still false once the thread has awoken.

1.2. STATUS QUO 11

in the earlier example. When produce is called, it tests to see if the buffer is full (the
used count is equal to the size of the buffer). If it is, then wait is called. The test
takes place in a while loop rather than a single if statement so that the condition
is tested again when the thread is awoken by the notifyAll() call. As before, if
many threads are waiting, it may be the case that the buffer is already full again by
the time a particular thread is allowed to execute.

The synchronized blocks behave in a way equivalent to those protected by
the mutex semaphore; the opening bracket is the down operation, while the closing
bracket is the up. Once a thread is executing code inside one of these blocks, no
other thread may enter such a block, whether this be the same one or another in the
same class. Modifications to the buffer and item variables only take place within
these blocks, thus ensuring that only one thread can change things at a time. Both
variables are marked private, making them invisible to code outside this class.

What is clear from our comparison is that there are few advantages to using mon-
itors; they are prone to similar low level errors to those we saw with semaphores,
and they also require support from the language being used, which may not always
be available. Ideally, we instead need to take a step back and limit the need for
such locks altogether by reducing the number of shared resources and the amount
of mutability inherent in our designs. Not only are existing designs prone to error,
but they also reduce the advantages of concurrent processing (having to acquire a
lock effectively makes operations single-threaded once again) and are reliant on the
existence of some form of shared memory. In distributed systems, shared resources
do not exist naturally but must instead be created artificially and may make pro-
cessing more inefficient. In the future, we want to be able to utilise the advantages
of massively parallel systems and this can only be achieved by reducing the need for
resource contention.

1.2.4 Interprocess Communication

To reduce resource contention, we need to focus on more short-lived processes which
interact directly with one another, rather than via the means of shared resources.
This is nothing new. However, it has never achieved universal acceptance as a design
paradigm because having to deal with the kind of concurrency issues outlined above
has traditionally been avoidable. This is no longer the case.

Although mainstream development has migrated from procedural programs to
the object-oriented paradigm, programs, once compiled, still tend to be monolithic
entities, with generally only a single thread of control. The notion of objects we see
being used is not that of Simula (Dahl, Myhrhaug & Nygaard, 1968), where they are
task-centric units with their own behaviour. Instead, it is one which is much more
data-centric. These objects allow data to be separated out into neat little bundles
and stimulate reuse by allowing hierarchies of derived behaviour to be created. But

12 CHAPTER 1. INTRODUCTION

there is no relationship between objects and threads; when a method of an object is
called, control switches from one object to another. If multiple threads are in use,
then the objects are shared between them and we see the kind of problems described
above.

Solving this takes more than simply establishing a one-to-one relationship be-
tween threads and objects, because each unit is designed with a focus on the data
being stored and not on the task being performed. Thus, for most designs, having
an object per thread would be terribly inefficient and, in some cases, preposterous.
For example, an implementation of a library system would have a Borrower object.
A typical system may have thousands of such borrowers, many of which are inac-
tive for weeks or months at a time. Having a thread for each would be ridiculously
wasteful.

Instead, the solution is again to use objects which are task-centric. In the library
example, the objects would focus on jobs such as issuing and returning books, and
dependent tasks such as obtaining data on a borrower or book from the database. In
either scenario, there will be contention for database access, but in the task-centric
variant, an object can be given the job of a database guardian, centralising all data
storage issues in one place.

There are many existing examples of this kind of component or service-based
design, but they have so far failed to become the mainstream approach. One of the
earliest is the notion of pipelines between processes, which originated from UNIX
systems2. Early UNIX programs were developed with the aim of doing a single task
and doing it well, unlike the feature bloat apparent in many of today’s applications.
For example, the command du, which calculates disk usage, doesn’t include an option
to sort the results. This is because there also exists a command, sort which can
order an arbitrary block of text in a number of ways. As such, there is no point
adding duplicate functionality to du when its output can just be fed in as input to
sort for those who desire this feature.

A pipeline is created in the shell by separating the two programs with a | symbol.
For our example, du -h | sort -n would do the job of outputting disk usage in
human-readable form (-h) and then sorting it numerically (-n). A similar solution
can be applied programatically using system calls such as pipe, fork and execve.
The pipe allows the output of one program (du) to become the input of another
(sort). Neither of the individual programs needs to be aware that this is happening.
As far as du is concerned, it is still sending output on its standard output channel.
The difference is that this channel has been changed externally so as to feed instead
into a pipe, the other end of which forms sort’s standard input channel.

2Other systems have since adopted this technique, including those such as MS-DOS which are
single-tasking and thus can not actually pass data between two processes. Instead, they make use
of pseudo-pipelines, where the first program outputs data to a temporary file and the second then
reads its input from that file.

1.2. STATUS QUO 13

This is a very simple solution, yet it elegantly solves the problem of sharing
the data between the two processes. If a pipe was not used, du would have to
store its results somewhere for sort to access. This could then result in contention
between the two processes for access to the resource. Instead, here the two are
working together rather than against each other by synchronising the passage of
data between them. Each is independent of the other and specific to its purpose.

Microkernels such as Mach (Rashid, Julin, Orr, Sanzi, Baron, Forin, Golub
& Jones, 1989), the GNU HURD (Bushnell, 1994) and MINIX 3 (Tanenbaum &
Woodhull, 2006) also utilise this idea of synchronous communication rather than a
monolithic design based around shared resources. In this context, it provides an
essential stability and security advantage; many services, such as device drivers, file
systems and network protocols, can operate at a similar level to user processes.

Some elements of the kernel require specialised operations which are only avail-
able when the processor is in a privileged mode of operation. However, these restric-
tions need not apply to the entire kernel. Device drivers are particularly notorious
for causing system instability by having this level of control. This is especially true
when such drivers are provided by third parties who are not as familiar with the
operating system code as the core developers.

To combat this, in MINIX 3, device drivers operate as separate privileged pro-
cesses. Unlike normal user-level processes, they have the ability to request direct
access to hardware but such access is achieved by passing messages to a minimal
kernel. The majority of the driver’s operation takes place in userspace and any low-
level access can be monitored and potentially prohibited. Other components can
operate with even fewer privileges; file systems and network protocols need only the
means to transfer a sequence of bytes to disc or down the wire.

The Mach kernel, developed at Carnegie Mellon University, takes a similar ap-
proach with the central mantra being one of multiple servers, which provide differ-
ent operating system services. The GNU HURD kernel is currently based on Mach,
though a number of more recent microkernels are now being considered, due to issues
with Mach’s design (Brinkmann & Walfield, 2007). Apple also adopted this design
for XNU, the Mac OS X kernel, but, while basing it on Mach, they greatly reduced
the design to a single server running a monolithic BSD-based kernel. MINIX 3,
XNU and the HURD all try to implement a component-based design while retain-
ing compatibility with existing monolithic UNIX systems, and so compromises have
to be made. While Mac OS X is easily the most widely used of these examples, it
has had to sacrifice the most to achieve this.

The traditional objection against such designs has been performance. Designs
based on intercommunication have always tended to be more elegant, but their
usage has tended to be restricted to distributed systems such as web services. In
these circumstances, any design approach necessitates utilising a potentially slow

14 CHAPTER 1. INTRODUCTION

connection to another system, and having a central resource upon which all others
rely becomes disadvantageous, due to the potential for failure. That said, the most
popular web services in use today do not follow the component-based design that
would allow the dream of composite web services (Norton, Foster & Hughes, 2005) to
become a reality; the likes of Facebook, Twitter and Last.fm (Various, 2009a; Various,
2009b; Last.fm, 2009) all provide web service interfaces which simply wrap an earlier
monolithic object-oriented design. Others, such as Amazon (Amazon, 2009), now
focus on providing a utility service, offering processing power and storage for a price,
while Google (Google, 2009) prefer to target users with complete applications.

We believe it is time to reëvaluate the benefits of systems focused on intercom-
munication between specialised components. With modern systems, the potential
performance disadvantage is becoming outweighed by the benefits of a cleaner and
more sustainable design. With the increasing prevalence of truly concurrent systems,
monolithic designs will face a clear disadvantage, as the potential for parallelism is
severely reduced by contention for shared resources.

1.3 Our Proposed Solution

There are already many examples of computational models which represent concur-
rent behaviour and its issues in the academic literature. We will cover some of these
in depth in chapters 2, 3 and 4. However, these have been largely ignored by the
software industry, as has one of their main uses; formal verification. This is primar-
ily due to inertia; developers have little time to invest in learning new techniques
and so stick to those they know and which have proved successful in the past.

Change does occur when there is little other sensible choice and it makes good
business sense to do so. We have already seen this with object-oriented programming
(OOP). It took about twenty years for OOP to become widely adopted from its initial
inception in academia, and even then, as we discussed in 1.2.4, it was in a different
form much closer to existing sequential models. The change happened as programs
became larger and their design made them more and more unmaintainable, to the
point where the cost of continuing to use existing models was more than adopting
a different technique, in this case OOP.

We have reached an equivalent juncture now with relation to concurrency. Pro-
grams have continued to become larger and more bloated with features, but the
increasing speed of microprocessors has allowed a state of equilibrium to be main-
tained. This is no longer so. Now, when users go out to purchase a new computer,
they are likely to get one with twice the number of processors than the one they
had before, rather than twice the speed. Because their programs will be largely
monolithic, they won’t see much of a performance increase in their new purchase;
the same application will still be running on a single processor of about the same

1.3. OUR PROPOSED SOLUTION 15

speed.

We are not the only ones to observe this need to make concurrency more central
to the design process. With the recent release of Mac OS 10.6 (Snow Leopard),
Apple have introduced a new application programming interface (API) called Grand
Central (Apple, 2009), which shifts the responsibility for managing threads to the
operating system. Developers instead design their code as a series of tasks, which
are submitted to the operating system through the API. They are then scheduled
and later executed using a pool of threads; this allows threads to be reused and thus
increases performance by reducing the amount of thread creation that takes place.
A similar approach is available to Java developers, which we discuss in detail as part
of 6.2.1.

Thus, software designers need to seriously start thinking about how they can best
utilise this new hardware and this undoubtedly requires a shift in the underlying
design. What we propose here is a compromise; we introduce a new framework,
DynamiTE (see chapter 6) with a task-oriented design methodology, which retains
as many familiar ideas as possible. Unlike efforts such as (Cardelli, 1995), (Turner,
1996), (Wojciechowski, 2000) and (Giannini, Sangiorgi & Valente, 2006), we avoid
introducing a completely new programming language. Instead, we build on top of
an existing one (Java) which is already familiar to many software developers and
which uses constructs with which they are already familiar. In doing so, we remove
a huge barrier to adoption; the implementation of the framework is no longer some
mysterious mass of code written in an obscure functional language, but a Java library
like any other which developers may even be able to contribute to with time. In this
form, it still provides the advantage of abstracting away from many of the low-level
details we saw in 1.2.3, while also being much more approachable.

We still follow these earlier examples in basing the framework on a theoretical
model. This allows us to leverage years of academic work in this area, and allows for
the possibility of reasoning over such programs in the future. However, we approach
this from the point of view of a software developer wanting an implementation with
the benefits of a theoretical basis, rather than as a process algebraist looking to
write code in their favourite calculus.

To this end, we base our framework on our own calculus, which comprises what
we believe to be some of the best of the existing ideas present in the literature.
We believe our particular combination to be novel, as are the way in which some
features are presented, in particular the notion of ‘bouncers’; its formation and use is
discussed at length in chapters 5 and 7. However, our primary aim is not to provide
a vastly superior calculus, but one which best suits its position at the core of our
framework.

16 CHAPTER 1. INTRODUCTION

Requirements // Design // Implementation // Testing

Figure 1.1: The Traditional Software Development Process

Tasks

**TTTTTTTTTTTTTTTT

Requirements

55kkkkkkkkkkkkkkk

))TTTTTTTTTTTTTTT
Implementation // Testing

Communication

44jjjjjjjjjjjjjjj

Figure 1.2: DynamiTE Variant of the Software Development Process

1.3.1 A Prototypical Application

The best way to demonstrate the use of a framework is through example. Hence,
through the course of this thesis, we present a music player application and show
how different elements of it may be developed using DynamiTE. We expect Dyna-
miTE to be usable with most existing software development processes, such as the
traditional one shown in Figure 1.1. The change we envisage is shown in Figure 1.2;
the singular design process is split into two separate stages, Tasks and Communica-
tion. We expect each task to go through the design process independently; it should
have a defined set of inputs and outputs and be verifiable without the others or the
communication infrastructure being in place. Similarly, we expect the communica-
tion infrastructure to be developed and tested separately before being integrated
with the tasks. As the design of the communication infrastructure is expressed in
a process calculus, it should be possible to use simulation techniques to verify its
behaviour and, in some cases, to prove properties such as the absence of deadlock,
prior to it being used with the tasks.

This independence within the development process should mean that develop-
ment itself can proceed in parallel. It is only at the final integration stage that the
whole system needs to be tested. The independent development of each task also
means that it should be more suitable for reuse in other systems as a result. For
our music system, we elide the design of the individual tasks, and focus on just the
design and implementation of the communication infrastructure as the part that’s
relevant here; these are covered in sections 5.7 and 6.6. At this juncture, we specify
the requirements for it as follows:

1.3. OUR PROPOSED SOLUTION 17

• The application should provide some form of interface with which the user can
interact.

• It should be able to take a wave file and return a sequence of sound data for
playback.

• It should be able to output the sound data through the speakers.

• It should be able to generate a spectral analysis of the sound data as a form
of visual feedback.

This is a minimal set, but is more than enough to demonstrate the process of
building up an application. Further features could be added, such as playlists, more
visualisations, support for further file formats, the use of tags and web services to
provide song metadata, etc.

Central to designing an application with DynamiTE is keeping two things in
mind; firstly, the application should be composed of components, each capable of
performing their own task, and secondly, the application itself should be capable of
being used as a component by others. The latter comes with the implicit assumption
that the application’s features are accessible by others, and that it remains relatively
lightweight so as not to introduce unnecessary and burdensome requirements.

In an object-oriented application design, the focus would be on the data i.e. the
songs being played. With a focus on function, we instead split the application up
by task as follows:

• The Inputter receives a file name as input, and produces a stream of wave
data from it as output.

• The Outputter receives a stream of wave data as input and produces output
via the speakers.

• The Visualiser receives a stream of wave data as input and produces a
graphical display as output.

• The Interface receives input from the user and uses this to provide input to
and control the other components.

Figure 1.3 provides a diagrammatic illustration of how data flows between the
various tasks. In later chapters, we will demonstrate how these components can be
formally modelled using our process calculus and how they may be implemented
using DynamiTE.

18 CHAPTER 1. INTRODUCTION

User

input

��

Interface

filename

��

Outputter

Inputter

wave data

55

wave data))

V isualiser

Figure 1.3: Structure of the Prototypical Application

1.4 Contributions to Knowledge

Through this thesis, we present the following contributions to knowledge which we
believe to be novel:

C1. The development of Nomadic Time, an algebraic process calculus with com-
positional global synchronisation, mobility and security provision via the
notion of ‘bouncers ’ (see chapter 5). This includes:

C1.1 The merging of clock hiding from the CaSE process calculus (Norton,
Lüttgen & Mendler, 2003) with the notion of distribution, so that the
boundaries of a locality (an environ in Nomadic Time) encapsulate the
behaviour within them. This makes a locality effectively an opaque
reusable component which can be integrated into other systems.

C1.2 The combining of this localised form of CaSE with structural mobility
primitives from the ambient calculus (Cardelli & Gordon, 1998) to
give a new mobile calculus with the local and global synchronisation
properties of CaSE.

C1.3 The addition of a pair of process mobility primitives which allow direct
process movement by synchronising on a name.

C1.4 The introduction of ‘bouncers’, which add a security mechanism to
the calculus by taking the general idea of co-mobility primitives from
the safe ambient calculus (Levi & Sangiorgi, 2003) and using them in
a new specialised process, attached to individual environs.

1.4. CONTRIBUTIONS TO KNOWLEDGE 19

C1.5 The creation of a set of structural congruence laws for Nomadic Time
(Table 5.4), allowing process terms to be simplified and the number
of semantic rules to be reduced.

C1.6 The provision of structured operational semantics for Nomadic Time
(Tables 5.2 and 5.3). These extend those from CaSE as demonstrated
in Table 5.5, extending the notion of prioritisation and adding new
rules to handle the introduction of environs and mobility primitives.

C1.7 The demonstration of the properties of prioritisation and time deter-
minacy inherent in the new calculus.

C2. The realisation of the aforementioned calculus as a design framework, Dy-
namiTE, through the implementation of its constructs as programmatic el-
ements in the Java programming language (see chapter 6). This allows the
specification of system interactions to be shifted directly from the theoretical
domain into an implementation backed by a formal methodology, with the
intention of improving industrial adoption of concurrent techniques. This
includes:

C2.1 The creation of a translation schema (Table 6.1), mapping process
terms in Nomadic Time to Java objects.

C2.2 The implementation of the operational semantics as methods in the
appropriate Java objects defined in the schema.

C2.3 The design and implementation of a plugin framework, allowing the
use of different process calculi and different side effects as the result
of performing a transition.

C2.4 The design and implementation of the evolver framework, allowing the
execution semantics to be both clearly denoted and interchangeable.

C3. The optional addition of a type system to Nomadic Time in order to allow
movement restriction to be based on the group membership of processes
(see chapter 7); we refer to this extended version as Typed Nomadic Time
(TNT). This includes:

C3.1 The design of a group type which can be applied to a Nomadic Time
process to restrict movement.

C3.2 The provision of typing rules (Tables 7.2, 7.3, 7.4 and 7.5) for the new
typed form of Nomadic Time.

C3.3 Proofs of type safety for the type system.

C3.4 The extension of DynamiTE to handle type systems in general, and
specifically TNT.

20 CHAPTER 1. INTRODUCTION

This work has already produced two peer-reviewed papers (Hughes, 2006; Hughes,
2007) and several presentations, both internal and external (at the British Collo-
quium of Theoretical Computer Science (BCTCS) 2006, the Relational Methods
in Computer Science (RelMiCS) PhD workshop 2006, the University of York and
Principles and Practice of Programming in Java (PPPJ) 2007).

1.5 Structure of the Thesis

The first half of this thesis focuses on existing research in order to provide the nec-
essary background material for the novel work presented in later chapters. Through
this evaluation, we make clear the motivation for our work and also allow this thesis
to remain relatively self-contained.

We begin the next chapter with a focus on the need for abstract models which
can represent concurrent systems and the problems inherent therein, as covered ear-
lier in this chapter. We then introduce existing research in this area in the form of
algebraic process calculi and proceed with an exploration of the Calculus of Con-
current Systems (CCS) (Milner, 1989b) in 2.2. This includes, in 2.2.1, an example
of how CCS can be used to model scenarios involving parallel behaviour, using Di-
jkstra’s ‘Dining Philosophers’ problem (Dijkstra, 1971). We close the chapter with
a critique of CCS (2.3), demonstrating how, while it provides a good foundation for
concurrent modelling, it does have its limitations.

One specific limitation of CCS covered at the end of the second chapter is its
inability to represent a compositional broadcast agent; by this, we mean one that
can synchronise with an undefined number of recipients and then proceed to do
something else. CCS can produce such agents that work with a known number
of recipients, but the semantics of the agent have to be changed if the number of
recipients changes. In chapter 3, we move onto the topic of global synchronisation
(as opposed to local synchronisation between two parties), which allows this problem
to be solved.

In 3.2, we introduce the Temporal Process Language (TPL) (Hennessy & Regan,
1995), which adds an abstract clock and a timeout operator to CCS. Together, these
allow prioritised choice; the progress of time has a lower priority than the progress
of work being done, so we can construct agents of the form ‘do X until there is no
more work to be done, then do Y’. Thus, we can design a compositional broadcast
agent in TPL as ‘broadcast until there are no more recipients, then do something
else’.

The following section (3.3) briefly covers a number of calculi that extend TPL and
provide the necessary stepping stones to the Calculus of Synchronous Encapsulation
(Norton et al., 2003) covered in 3.4. CaSE retains the notion of a timeout operator
(3.4.1), but incorporates multiple clocks and the notions of clock stopping (3.4.2)

1.5. STRUCTURE OF THE THESIS 21

and encapsulation (3.4.3). We provide examples and the operational semantics of
the calculus in 3.4, and return to CaSE further in 5 as the basis for our calculus.

Chapter 4 covers a number of mobile calculi, where the context of a process
can change during execution. There are two ways this can happen; via a change
in scope (4.2) or a change in physical structure (4.3). The foremost example of
scope mobility is the π calculus (Milner, 1999) which we explore in 4.2.1. This
extends CCS so that the name of a channel may become known to a process during
the course of execution, extending its scope. This is akin to passing a pointer or
memory reference to a function in a programming language; the recipient then has
knowledge of and can access something which it could not, prior to the call.

The following section (4.2.2) covers a number of variations of the π calculus,
including its asynchronous and polyadic forms, and some theoretical results with
regard to the expressivity and equivalence of its various forms. Another such ex-
tension is the Join calculus (Fournet & Gonthier, 1996), which is briefly covered in
4.2.2. Section 4.2.3 closes the discussion of scope mobility with a critique of the π
calculus and its derivatives.

In 4.3, we cover the notion of localisation; the process of giving a physical posi-
tion to a process. The initial discussion covers the use of localities within the area of
equivalence theory (Boudol, Castellani, Hennessy & Kiehn, 1993), before we move
onto the distributed form of the Join calculus (Fournet, Gonthier, Lévy, Maranget
& Rémy, 1996) (4.3.1) and the foremost proponent of located mobility, the ambient
calculus (Cardelli & Gordon, 1998) (4.3.2). We give examples of the various opera-
tors of the ambient calculus, before discussing the various extensions and derivatives
(4.3.3), as we did with the π calculus. Of particular note are safe ambients (Levi &
Sangiorgi, 2003), from which the form of mobility in our calculus, Nomadic Time, is
most closely derived. Again, we close with a critique of the various ambient-based
calculi in 4.3.4.

The final part of chapter 4 covers some more leftfield examples. In 4.3.5, we
explore P Systems (Păun, 2002), a dominant modelling language in the field of
biology which has some parallels with the ambient calculus previously discussed.
We look more closely at the comparison between the two in 4.4 where we compare
their different approaches to modelling biological scenarios. The final section (4.5)
deals with bigraphs (Jensen & Milner, 2004), a framework proposed by Milner which
aims to unify the various process calculi using a common representation.

The second part of the thesis introduces our own research and novel contribu-
tions. Chapter 5 introduces the Nomadic Time process calculus, a novel convergence
of ideas from CCS, CaSE and the safe ambient calculus. We begin by localising the
calculus (5.2), combining CaSE’s notion of encapsulation (3.4.3) with the concept
of localisation (4.3) to introduce environs and give our first contribution, C1.1. We
then add a form of structural mobility to this localised form of CaSE using the

22 CHAPTER 1. INTRODUCTION

primitives of the ambient calculus (5.3.1); this is contribution C1.2. Contribution
C1.3 occurs in 5.3.2, where we add two additional mobility primitives that allow
processes to be moved directly, without altering the hierarchical structure of the
localities. These reuse the names introduced by CCS, with the new mobility prim-
itives synchronising in the same manner as a co-name, but causing the process to
move location. The final addition to the calculus comes in 5.4, where we take the
idea of co-mobility primitives from the safe ambient calculus, but use them in a new
special type of process we refer to as a ‘bouncer’ or guardian of an environ; this is
contribution C1.4.

The following section 5.5 provides Nomadic Time with a set of structural congru-
ence laws and a structured operational semantics; these form contributions C1.5 and
C1.6. We close this section by showing how the properties of prioritisation and time
determinacy hold; this is contribution C1.7. We close the chapter with two sections
which give examples of the calculus in use; 5.6 demonstrates the way compositional
broadcast can be used with mobility through the example of a game of musical
chairs, while 5.7 provides the next stage in the development of our prototypical ap-
plication from 1.3.1 by providing the design of the communication infrastructure in
Nomadic Time.

Chapter 6 covers the development of the DynamiTE (Dynamic Theory Execu-
tion) framework, beginning with an explanation (6.2) of why we chose Java for our
initial implementation work. In 6.3, we then show how the process terms from
Nomadic Time are mapped onto Java objects and how these objects are then im-
plemented so as to return the possible transitions for each construct; these give
contributions C2.1 and C2.2. The next section, 6.4, describes the plugin frame-
work which allows DynamiTE to be used with different process calculi, and allows
the implementation of side effects, which may optionally be called when a transition
is followed; this represents contribution C2.3. In 6.5, contribution C2.4, the evolver
framework, is introduced, which allows the user to choose the execution semantics
to apply to the system they have developed. Section 6.6 returns to the prototypical
application with the implementation stage, showing how the design from 5.7 can
be directly implemented in DynamiTE and how this is simpler and less error-prone
than creating a bespoke communication structure for the application. We close the
chapter in 6.7 with coverage of related work in the area of concurrent frameworks, in-
cluding Obliq (Cardelli, 1995) (6.7.1), Nomadic Pict (Wojciechowski, 2000) (6.7.2),
the safe ambients abstract machine (Giannini et al., 2006) (6.7.3) and JavaSeal
(Vitek & Bryce, 2001) (6.7.4).

The following chapter (7) demonstrates how Nomadic Time may optionally be
extended with a type system to create TNT (Typed Nomadic Time). We begin by
looking at existing type systems. The first section, 7.2.1, covers type systems in the
context of the π calculus, including ‘sorts’ which enforce the requirement that the

1.5. STRUCTURE OF THE THESIS 23

number of items being sent matches the number being received. We then turn to
typing systems for the ambient calculus in 7.2.2 and cover the notion of groups. In
7.3, we take this idea of a group type and create our own for the Nomadic Time
process calculus, which is then used to give typing rules for the new Typed Nomadic
Time calculus; this forms contributions C3.1 and C3.2. Contribution C3.3 is found
in appendices A and B in the form of proofs of type safety for TNT. Section 7.4
returns to DynamiTE and shows how it can be extended to perform type checking,
using the example of supporting TNT; this is contribution C3.4. The chapter closes
with an example use of the type system (7.5) in the context of the musical chairs
example from 5.6.

Finally, chapter 8 summarises our contributions (8.1) and provides some sugges-
tions for future work. A number of ideas are proposed for the further development
of Nomadic Time (8.2.1), DynamiTE (8.2.2) and the type system (8.2.3), along with
other possible applications for the calculus (8.2.4).

Chapter 2

Algebraic Process Calculi

2.1 Introduction

In this chapter, we focus on concurrency from a theoretical perspective and introduce
one of the main algebraic models for modelling concurrent systems. The topics and
ideas discussed here lay the foundations for the calculi we will discuss in chapters
3 and 4, and, as a result, are of great importance in understanding the novel work
presented in chapters 5, 6 and 7.

Early computational models took a simple idealised view of the world, where
events occur sequentially and in isolation. Such a model is the universal Turing
machine (Turing, 1936) which has proven to be computationally complete; it is
capable of simulating all recursive functions. However, it does not directly model
concurrent execution.

If a model can have this level of computational power without attempting to
represent concurrent behaviour, why is it necessary to model concurrency at all?
Even though a method of modelling phenomena exists, and has a certain level of
expressivity, it doesn’t imply that it is the most appropriate for a particular context.
The existence of both Turing machines and the λ calculus already demonstrates this
point. While both have proven equivalent in power, they take different approaches to
achieving this. However, neither model can represent the possibility of two or more
events occurring at the same time, and thus can not be used to capture and evaluate
the potential problems which may occur, such as the race conditions illustrated in
the previous chapter.

To see the effect of concurrency on computation, consider a simple prototypical
example, as demonstrated by Milner (Milner, 1993a). Observe the following pro-
grams,

24

2.1. INTRODUCTION 25

x= 2; (P1)

x= 1;

x= x + 1; (P2)

where we assume that each line is an atomic action1.
In a sequential system, such as may be modelled by a Turing machine or the λ

calculus, both these programs set x to 2. In such a system, there is only a single
flow of control, so nothing else can modify the value of x.

However, in a concurrent system, multiple control flows or processes exist, each
running in parallel with the others. With P1, the value of x will always be equal
to two immediately after execution, as the assignment takes place within a single
atomic action. However, in P2, another process is free to modify x (assuming x is
globally accessible) between the assignment of the value 1 and the later summation
which makes x equal to 2.

Thus, if P2 is run in parallel with a third program,

x = 3; (P3)

then x may end up being either 2, 3 or 4, depending on whether P3 executes before
the first line, after the completion of P2, or after the first line respectively. With P1
and P3, only 2 or 3 can result (which one depends on the order the two programs
are run). Again, we have a race condition; the final value of x depends on the timing
of the various modifications to its value performed by the two programs. As we saw
in 1.2.3, the solution to this problem is to require each program to obtain exclusive
access to x (a lock) for the extent of its use.

This example demonstrates that modelling concurrency is not so much about
multiple programs executing at the same time, but instead concerns how they may
interact. If each program exists in its own isolated environment and doesn’t ac-
cess any common resources, then no interactions will take place and a sequential
model for each would be suitable. Indeed, this is the way most operating systems
handle running multiple programs. Thus, it follows that sequential models are not
distinct from concurrent models, but form a subset where this additional restriction
of isolation applies.

The problem is that using sequential models to design and evaluate programs is
becoming more and more detached from the reality of modern implementations. For
example, many programs now include a graphical user interface, which must have

1This is a simplification; for example, x = x + 1 actually involves three atomic actions – reading
the value of x, computing the value of x plus one and writing the result to x

26 CHAPTER 2. ALGEBRAIC PROCESS CALCULI

at least two concurrent threads of control to be operable; one is needed to await
and handle any user interaction, while the other actually executes the operations of
the program, even if that simply involves updating the display while idle. As multi-
core processors make more machines capable of true concurrency2 and distributed
computing paradigms, such as services, become more prevalent, the need to accu-
rately model the possible interactions increases. Concurrency raises issues outside
the reach of traditional sequential models of computation, so to adequately work
with concurrent systems, we need appropriate formal models to highlight potential
flaws and to allow us to account for any issues that may arise in the design of the
program. Many such models have been developed, and over the next three chapters,
we will consider a subset of these.

2.2 The Calculus of Communicating Systems

Algebraic process calculi model the interaction of concurrent processes using a
(usually small) set of algebraic operators, as opposed to the true concurrency of
Mazurkiewicz trace theory (Mazurkiewicz, 1977) or the graphical style associated
with Petri nets (Petri, 1962) and Hewitt’s Actor model (Hewitt, Bishop & Steiger,
1973). Interaction between processes is via message-passing, rather than via a com-
mon shared memory3 or a tuple space (Carriero & Gelernter, 1989).

The foundational calculi in this field are Hoare’s Communicating Sequential Pro-
cesses (CSP) (Hoare, 1978), Milner’s Calculus of Communicating Systems (CCS)
(Milner, 1989b) and Bergstra and Klop’s Algebra of Communicating Processes
(ACP) (Bergstra & Klop, 1984), all of which were first developed in the late 1970s
to early 1980s. CSP was originally developed as a programming language with a
relatively large syntax, while Milner aimed for a minimal calculus. Both calculi
have influenced each other, with CSP later being refined and given a theoretical
basis, following Milner’s work. ACP shares many of the ideas of CCS, and can be
regarded as an ‘alternative formulation’ (Bergstra & Klop, 1984), using a similar set
of operators to achieve a different goal.

In our work, the focus is on CCS, as it forms the basis for most of the other calculi
considered, including the π calculus (Milner, 1999) (see 4.2.1) and CaSE (Norton
et al., 2003) (see 3.4). Of the three foundational calculi, CCS has the smallest syntax
with additional features such as failure (represented in both CSP and ACP) needing
to be derived from or appended to this core set. From a theoretical perspective,

2In truly concurrent systems, operations are actually performed simultaneously, rather than
this being emulated by the system scheduler.

3Shared memory and message-passing are not orthogonal; a shared memory space may be
represented as a communicating resource in a message-passing system, while message queues can
be implemented using shared memory.

2.2. THE CALCULUS OF COMMUNICATING SYSTEMS 27

this is advantageous, as it makes reasoning over the calculus simpler, and, as will
be seen in later chapters, further syntax can be added to represent further features
if necessary.

In CCS, processes can be modelled as terms ranged over by E,F . These process
terms have the following syntax:

E,F ::= 0 | α.E | E\ a | E + F | (E | F) | X | µX.E | E[f] (2.1)

where α, a and f are explained below.
External behaviour is described using members of N , an infinite set of names,

and N , the corresponding set of co-names {a | a ∈ N}. These names are usually
used to represent channels upon which the processes communicate. The internal
behaviour of the processes is abstracted, represented simply by the silent action τ .
Under such an interpretation, a.E (where a ∈ N) represents a process whose first
action is an input on the channel a, whereas a.E (where a ∈ N) represents a process
which initially outputs on a. The behaviour of a process is thus described in terms of
atomic actions. This can be seen in the first two cases above, where 0 represents the
empty process (which exhibits no behaviour) and α.E represents action prefix (used
for the limited sequential composition of actions), where α ∈ A = N ∪N ∪ {τ}.

Thus, a basic process is defined as a sequence of inputs, outputs and silent
actions. Each step in the sequence is a state from which the process may perform
an action in order to transition to a new state. For example, a.E may perform the
action a and become E. We represent this using the notation a.E

a→ E.
For two processes to communicate with one another, they must synchronise; they

must perform a corresponding pair of actions (e.g. a and a) at the same time. For
this to occur, the two processes must be running in parallel. Parallel composition
in CCS is represented by the | operator. When two processes are composed in this
way, they may perform their corresponding input and output actions simultaneously,
resulting in a single τ transition which changes the state of both processes.

For instance, if E is considered to be a.E ′ and F to be a.F ′, then the process
formed by the composition of these two processes, E|F may initially perform one of
three actions, a, a or τ , to give three possible derivations:

1. E | F
a→ E ′|F

2. E | F
a→ E|F ′

3. E | F
τ→ E ′|F ′

This is illustrated in Fig. 2.1. To make the derivation of E|F deterministic, the
scope of a can be restricted. In CCS, an action or co-action can be paired with any
complementary action which is within its scope. To force the input of E to be paired

28 CHAPTER 2. ALGEBRAIC PROCESS CALCULI

a.E ′ | a.F ′

a.E ′ | F ′ E ′ | a.F ′

E ′ | F ′

a

��

a

��

amma 11

τ

��

Figure 2.1: Graph of a.0 | a.0

a.E ′ | a.F ′

F ′ E ′

a

��

a

��

Figure 2.2: Graph of a.0 + a.0

with the output of F above, the scope of a must be restricted so as to include only
E and F . This is handled by another operator in the core syntax, \. Its operand
a is the name of a channel whose scope is restricted to the process given as its left
operand. So, in this case, (E|F)\a appropriately limits the possible derivations to
just

τ→.
The remaining binary operator is +, which provides non-deterministic choice

between two processes. While the parallel composition operator represents two
processes running in parallel, + corresponds to the familiar idea of branching found
in sequential models. E and F thus represent two possible behaviours which may
or may not occur. Using the same two exemplar processes again, E + F may derive
as follows:

1. E + F
a→ E ′

2. E + F
a→ F ′

Again, this is illustrated in Fig. 2.2. There are clearly similarities between the
possible derivations from E|F and E + F , but with choice, there is no possibility
of synchronisation and only one of the two transitions, a and a is ever performed.
The other is lost after the process makes its decision, whereas with composition, it
is possible to perform both actions, one after the other.

2.2. THE CALCULUS OF COMMUNICATING SYSTEMS 29

Table 2.1: CCS Semantics

Act
−

α.E
α→ E

Sum1
E

α→ E ′

E + F
α→ E ′

Sum2
F

α→ F ′

E + F
α→ F ′

Par1
E

α→ E ′

E | F
α→ E ′ | F

Par2
F

α→ F ′

E | F
α→ E | F ′

Par3
E

a→ E ′, F
a→ F ′

E | F
τ→ E ′ | F ′

Rec
E

α→ E ′

µX.E
α→ E ′{µX.E/X}

Res
E

α→ E ′

E \ b
α→ E ′ \ b

α 6= b

Ren1
E

a→ E ′

E[f]
f(a)→ E ′[f]

Ren2
E

a→ E ′

E[f]
f(a)→ E ′[f]

The remaining operators in CCS handle recursion and relabelling. The process
µX.E binds X to E, so that later occurrences of X are replaced with E. For example,
µX.a.X can perform an a transition to become µX.a.X again. The function, f , in
E[f] has the type N → N and is used to rename actions and their complements.
For example, a.a.τ.0[a → b] is b.b.τ.0.

An operational semantics for CCS can be given in terms of a labelled transition
system, (P,A,→), where P is the set of CCS expressions formed from the above
syntax, A is as defined above and → ⊆ P ×A×P is the transition relation defined
in Table 2.1. We use E and F to range over process terms (P), α over the set of
actions (A), σ over the set of clocks (T), a and b over the set of names (N) and and
γ over N ∪ T .

2.2.1 The Dining Philosophers

To fully appreciate CCS, it is necessary to see how it may be used to model an
example scenario.

Dijkstra’s classic ‘Dining Philosophers’ problem (Dijkstra, 1971) illustrates fur-
ther issues which may arise in a situation where multiple processes must interact
to achieve their goal. In this scenario, five philosophers are seated around a table,
each with a plate of spaghetti and a fork. The philosophers divide their time be-
tween thinking and eating. In order to eat, a philosopher must obtain two forks,
necessitating some form of interaction. This is a common situation in concurrency,

30 CHAPTER 2. ALGEBRAIC PROCESS CALCULI

where multiple parallel processes (the philosophers) need to gain access to shared
resources (the forks).

In cases where things go awry, deadlock or starvation may result. For example,
if all the philosophers simultaneously pick up the forks on their left, then none of
them will be able to eat; they will all end up waiting for a fork held by another
philosopher. The system is said to be deadlocked, as none of the processes can
obtain a lock on the resource it needs, as a lock is already held by one of the other
processes4. Alternatively, starvation may result (literally in this case) if one of
the philosophers never stops eating and consequently never releases the forks; the
resources are unfairly distributed to the deficit of one of the processes.

Modelling this in CCS involves first ascertaining which processes form the basis
of the system. Clearly, each philosopher plays a part, so they should be represented
by processes. Returning to the original definition of the problem, each philosopher
may choose to eat or think. In CCS, this can be represented as:

Philosopher = Eating + Thinking (2.2)

where the philosopher is recursively defined as making the choice between Eating
or Thinking. Defining the latter is simple; thinking is simply some internal process
of the philosopher:

Thinking = τ.Philosopher (2.3)

The focus of the model is on the eating process, which requires access to the
system’s shared resources: the forks. Modelling this necessitates defining a protocol
whereby the philosopher may interact with the resource in order to obtain access to
it.

Eating = take.take.τ.replace.replace.Philosopher (2.4)

which needs to synchronise with two available forks if the philosopher is to be able
to eat (represented by τ) and then replace the forks again. It follows that the forks
must also be represented using the process

Fork = µX.take.Fork′ (2.5)

with two communication channels, take and replace. The fork begins its life on the
table from which it may be taken, represented here by the receipt of an input on the
take channel. Once this has occurred, the process becomes

4The solution to breaking this deadlock is to break the symmetry; if the fifth philosopher tries
to take the fork on the right first, he or she will be unable to proceed, but the first philosopher
will, using the fifth philosopher’s left fork.

2.3. ADVANTAGES AND LIMITATIONS OF CCS 31

Fork′ = replace.X (2.6)

which represents the state where the fork is in use by a philosopher. The fork
can’t be used again until it has received an input on replace, which causes X to be
expanded and the fork to wait for input on take again.

The system as a whole is modelled by running a number of philosophers and
forks in parallel, and restricting the scope of the fork channels in order to enforce
synchronisation.

Note that this CCS representation of the problem only models the narrative
version of the problem above. There is no attempt to resolve any of the competition
problems, and a strong element of non-determinism, as to which philosopher gets
which fork, still exists. It does, however, give a formal representation of the problem
and allows the effects of varying the relative numbers of philosophers and forks to
be observed via simulation.

Modifying this slightly gives a model that corresponds exactly to a specified
number of philosophers and forks, n. From the definitions above, multiple variants
may be generated, such that each philosopher and fork process has a unique sub-
script. For example, Philosopher becomes Philosopheri, where i = 1 . . . n. The
same subscripting also applies to the take and replace channels, so that they now
correspond to a specific fork. The original solution can thus be represented, as the
case where each Philosopheri initially performs the action takei (to take the left
fork) and then takei−1 (with the exception that when i − 1 = 0, we use n)5.

This model restricts which fork is taken by which philosopher (limiting the possi-
ble actions, and thus removing some non-determinism), but is still prone to questions
of non-deterministic choice (some philosophers may arbitrarily choose to think in-
stead) and fairness, with regards to action performance (if the actions are performed
in a depth-first manner6, only one philosopher may end up eating). These may be
regarded as implementational aspects of the model.

2.3 Advantages and Limitations of CCS

From its syntax, it is clear that CCS can model sequential behaviour using sequential
composition (α.E), non-deterministic choice (+) and 0. This further confirms the
intuition noted earlier that sequential programs are a subset of the larger set of
concurrent programs. This is illustrated by the + operator, which returns a smaller
set of possible derivations, from the same initial pair of processes, when compared

5Again, it is necessary to reverse the actions of Philosophern in order to obtain a solution that
does not deadlock.

6i.e. if an implementation always chooses to execute a particular philosopher’s choices first.

32 CHAPTER 2. ALGEBRAIC PROCESS CALCULI

with parallel composition (|). These sequential operators can also be used to convert
a set of parallel-composed processes into their equivalent interleavings.

CCS can model both sequential and concurrent programs, while still maintaining
a minimal syntax. A finite axiomatisation can even be defined, if the simultaneous
presence of parallel composition and recursion is avoided (Milner, 1989a). However,
one fairly obvious limitation is that there is no data in the model. The processes
discussed so far don’t explicitly communicate anything when they send or receive
signals. Instead, behaviour arises purely from synchronisation. It is possible to
extend CCS to represent this by adding the concept of value passing between pro-
cesses. A host of other process calculi have been based on such a variant of CCS,
and we will consider this in more detail as part of chapter 4.

CCS models are also relatively static; while processes may evolve (e.g. a.P may
become P), the communication structure doesn’t. Notably, if a process, E, knows
about the channels x and y initially, while F only knows about x (due to restriction
on y), this status can not change during the course of the various transitions inherent
in the system. The effect of restriction is more generally known as scoping and occurs
frequently with reference to variables in programming languages. CCS doesn’t allow
dynamic changes to the scoping of channels. Instead, scoping is fixed to the static
arrangement provided by the initial system, prior to any transitions. The addition
of dynamic scoping, often referred to as mobility, is the major contribution of the π
calculus, a language based on CCS covered in 4.2.

To conclude, there is another limitation of CCS which is less to do with a par-
ticular concept being absent from the language, instead being more related to its
central aspect: synchronisation. The problem here lies in the compositionality of
processes. While the structure of a CCS system remains compositional, because the
result of parallel composition is determined by the behaviour of the composed pro-
cesses together with the rules of the | operator, this is not true of the synchronisation
of arbitrarily many processes.

Consider broadcasting a signal to an arbitrary number of processes. Ideally, a
general broadcast agent should be defined which provides this behaviour. In CCS,
there are at least two ways of defining semantics for the agent, but not one that
provides a suitably compositional solution. Perhaps the most obvious is simply to
extend the familiar synchronisation of two processes. An input and output pair can
synchronise, so why not just create multiple pairs, one for each receiving process?
For example, transmitting a signal to two processes can be written simply as

o.o.0 | o.P | o.Q (2.7)

where the process on the left (in bold) forms the semantics for the broadcast agent
and the processes, P and Q, are the continuations of the input processes

This will work, but what happens when the broadcast agent needs to transmit

2.4. CONCLUSION 33

the signal to three processes?

o.o.o.0 | o.P | o.Q | o.R (2.8)

The semantics of the broadcast agent have to change. Simply composing the third
input will lead to one of the three being ignored by the original definition of the
broadcaster given above. So, simply enumerating multiple synchronisation pairs is
not sufficient to provide a compositional broadcast agent.

A second solution lies in recursion. If the problem with the previous solution lies
in the broadcasting agent doing too little (i.e. not transmitting to all the possible
receivers), then, by making it recurse, it will keep sending the output to whoever
will synchronise with it. Thus, the example for three inputs above becomes

µX.o.X | o.P | o.Q | o.R (2.9)

which works, and will continue to do so if a further input process is parallel com-
posed.

But there is still a problem for much the same reasons as the first solution.
This works fine on this small scale, but what happens when this agent is placed
in the context of a larger system? Once the agent starts its cycle of outputs, it
won’t stop as there exists no base case for this recursion7. An output on o will
always be available (within the scope of any restriction placed on that particular
channel) and the broadcasting process can never do anything else. The result is
a constantly cycling process, which, in an implementation of this model, would
continue to consume resources.

The true solution to this problem is to enable some form of global synchroni-
sation. This requires a separate entity, distinct from the processes involved in the
communication, which can be used to co-ordinate the synchronisation. In the next
chapter, a branch of process calculi is considered which provides just such a facility.

2.4 Conclusion

In conclusion, this chapter has taken a brief look at the field of concurrency mod-
elling, largely from the perspective of process calculi. Initially, it was shown that,
while universal Turing machines and the λ calculus can simulate any recursive func-
tion, their inherent sequential behaviour makes them unsuitable for modelling con-
current systems. CCS, in contrast, can model this kind of behaviour and in a succinct
manner. However, its minimal syntax also leads to some limitations. In the next
two chapters, we will look at some more process calculi, many of which use CCS as

7A base case may be introduced using non-deterministic choice, but there is no guarantee when
this will be invoked, if ever.

34 CHAPTER 2. ALGEBRAIC PROCESS CALCULI

their basis, and observe the benefits of features such as global synchronisation (see
chapter 3) and mobility (see chapter 4).

Chapter 3

Global Synchronisation

3.1 Introduction

In this chapter, we cover a number of process calculi that incorporate abstract time.
The notion of ‘time’ is generally associated with concrete real values, in units such as
minutes and seconds. Real-time process calculi, such as those described in (Moller
& Tofts, 1989; Satoh & Tokoro, 1993; Aceto & Murphy, 1996; Satoh, 1996; Beaten
& Middelburg, 2001; Lee & Zic, 2002; Lee, Philippou & Sogolsky, 2005), attempt to
model this. Instead, this section focuses on calculi that use clocks to provide global
synchronisation, as introduced in 2.3. While local synchronisation occurs between
two processes, the global form synchronises any number of processes using a clock
signal. For this, we don’t need to measure time itself; we just need an external
reference point that can be used to co-ordinate events.

Our central focus here is on CaSE (3.4) which we extend to create our own
calculus in chapter 5. However, we first turn our attention to its predecessor, TPL.

3.2 Temporal Process Language (TPL)

Hennessy’s Temporal Process Language (TPL) (Hennessy & Regan, 1995) extends
the CCS language discussed in 2.2 with a single clock, akin to a hardware clock
which emits a signal at an arbitrary point in time. These signal emissions are
controlled by a concept known as maximal progress, which allows each process to
make as much progress as possible before the clock ticks. Formally, this means that
all silent actions (τs) are performed before a σ action (which represents the clock
signal) occurs.

This is of little use unless the actions of the processes can actually depend on the
behaviour of the clock. The two are related via the addition of a timeout operator.
This takes the form

35

36 CHAPTER 3. GLOBAL SYNCHRONISATION

⌊E⌋(F) (3.1)

where E and F are processes. A process of this form can either follow a transition
from the process E, leaving only the continuation of E, or perform a σ transition
to become F . In short, F acts if E times out on the clock, σ. This is similar to
non-deterministic choice, in that we lose either E or F as the result of performing
a transition.

Here, however, the choice is determined by the clock, and thus effectively by the
other processes, as it is their behaviour which controls when the clock will tick. If E
can perform a silent action (τ), then the clock σ will be prevented from ticking by
maximal progress, forcing one of E’s transitions to be taken. For example, ⌊τ.E ′⌋(F)
has only one transition

τ→ which leads to the state E ′. If, however, we replace τ.E ′

with 0 to give ⌊0⌋(F), we have two possibilities:

1. ⌊0⌋(F)
σ→ 0

2. ⌊0⌋(F)
σ→ F

as both 0 and the timeout produce σ transitions. Thus, what we have is prioritised
choice; two alternatives are offered as with + but the higher priority of τ transitions
over σ transitions is instrumental in the choice of which transition to follow to the
next state.

With these additions, the problem of defining a suitable compositional broadcast
agent, as mentioned in 2.3, can be solved. Recall the second solution, which used
recursion. Now, with the addition of an external entity (the clock) and a way of
relating it to the processes involved (timeouts), a base case may be provided via
recognition of the point when no more synchronisations may occur. This can be
added to the earlier recursive solution

µX.⌊o.X⌋σ(0) | o.P | o.Q | o.R (3.2)

by simply adding a timeout which stops the recursion. This works because the syn-
chronisations of the input processes with the output of the broadcast agent generate
silent actions and thus invoke maximal progress. While there is a choice between
a silent action (due to the broadcasting agent synchronising with an input) and a
clock tick, the silent action always takes precedence and thus every possible synchro-
nisation occurs. Once no more synchronisations are possible, the clock is allowed to
tick and the recursion stops.

3.3. EXTENDING TPL 37

3.3 Extending TPL

The extensions to TPL considered here focus on expanding the scalability of the
language. As demonstrated above, TPL adequately provides for situations where
an arbitrary number of processes must synchronise. But what happens when a
solution, like the one above, is integrated into a larger system? With only one clock,
further problems occur. The use of the clock in one subsystem may conflict with
its use in another, and there is no clock available to co-ordinate the subsystems
themselves.

The Calculus for Synchrony and Asynchrony (CSA) (Cleaveland, Lüttgen &
Mendler, 1997) extends TPL with the idea of multiple clocks, drawn from PMC1

(Andersen & Mendler, 1994). However, while having multiple clocks allows the use
of differing patterns of synchronisation, it increases the number of clock ticks present
within the system. With five clocks, even the nil process has five possible transitions
(as clocks idle over nil).

CSA solves this to a limited extent by localising maximal progress to a pre-
defined scope for each clock. A more elegant solution is provided in the Calculus for
Synchrony and Encapsulation (CaSE) (Norton, Lüttgen & Mendler, 2003), which
introduces a clock hiding operator into the syntax. The effect of this is the intro-
duction of synchronous encapsulation, as hidden clocks emit τ actions (as opposed
to ticks) outside the operator’s scope. This can be used, in conjunction with restric-
tion, to produce a hierarchy of components. The actions of these subsystems can
be represented purely as silent actions, and, when combined with the global form
of maximal progress introduced by TPL and retained in CaSE, integrated into the
‘synchronous cycle’ (Norton et al., 2003) of clocks at the level above.

3.4 The Calculus of Synchronous Encapsulation

The syntax for CaSE, given in (Norton, 2005), is as follows:

E ,F ::= 0 | ∆ | ∆σ | α.E | E + F | E |F | ⌊E⌋σ(F) |
⌈E⌉σ(F) | µX.E | X | E \ a | E/σ

(3.3)

where E and F define possible process terms. We assume a countable set of actions,
A = N ∪ N ∪ {τ}, ranged over by α, where the elements of N are drawn from an
infinite set of names, and N is the corresponding set of co-names, {a | a ∈ N}. T
is a countably infinite set of clocks over which σ ranges. X ranges over a countably
infinite set of variables, which are used to bind process behaviour in recursive process

1PMC also differs from TPL in its use of insistent actions; all must be performed before a clock
tick.

38 CHAPTER 3. GLOBAL SYNCHRONISATION

definitions. 0, α.E , E + F , E |F , µX.E , X and E \ a retain their behaviour defined
in CCS, but now exhibit additional actions due to the presence of clocks.

There are now transitions for the 0 process, as, while the process has no explicit
behaviour, it can idle over the ticks of the clocks. This also applies to actions in
general:

a.0
σ→ a.0 (3.4)

assuming a clock context containing just the one clock, σ. Similarly, parallel com-
position and non-deterministic choice exist through time, so both sides can evolve
due to a clock tick, while the operator remains in place. This gives the following
possible derivations for a.0 | b.0 (where b 6= a):

1. a.0 | b.0
a→ 0 | b.0

2. a.0 | b.0
b→ a.0 | 0

3. a.0| b.0
σ→ a.0 | b.0

with the same clock context as above. The third derivation is duplicated for each
available clock that can tick over both sides of the composition. In cases where both
sides may synchronise, causing a τ transition, this takes precedence over the clock
transitions, due to maximal progress (see 3.1) and the original set of derivations for
parallel composition (see 2.2) are available instead.

The changes to non-deterministic choice are simpler, as the operator itself does
not generate silent actions. So, if both sides allow the clock to tick, then the following
derivations will occur:

1. a.0 + b.0
a→ 0

2. a.0 + b.0
b→ 0

3. a.0 + b.0
σ→ a.0 + b.0

again with the single clock, σ, as the context.

3.4.1 Timeouts

Moving on to the new operators, CaSE, as presented in (Norton, 2005), includes
two variants of the timeout operator, first seen in TPL. Recall from 3.1 that the
operator essentially allows a decision to be made, based on the presence of a clock
tick. In the general scenario,

3.4. THE CALCULUS OF SYNCHRONOUS ENCAPSULATION 39

⌊E⌋σ(F) (3.5)

F will act if E fails to, prior to a clock tick. If E can perform a τ action, then this
will prevent the clock tick and E will evolve. Both operators in CaSE maintain this
core behaviour, which is central to the concept of global synchronisation explained
earlier.

The difference between the two operators in CaSE lies in their behaviour with
regard to other clocks. With the fragile timeout, ⌊E⌋σ(F), any possible transition
on E will cause the removal of the timeout. So, with ⌊a.0⌋σ(b.0) and a clock context
of σ and ρ, the following derivations can occur:

1. ⌊a.0⌋σ(b.0)
a→ 0

2. ⌊a.0⌋σ(b.0)
σ→ b.0

3. ⌊a.0⌋σ(b.0)
ρ→ a.0

where both the a and the ρ transition leave only the left-hand side of the timeout.
The stable timeout differs by continuing to exist through time until some action

occurs. While it exhibits the same behaviour in response to actions or the tick of
the specified clock, the ticks of other clocks only cause the left-hand side to evolve;
the timeout itself is retained. Thus, ⌈a.0⌉σ(b.0) gives a different set of derivations:

1. ⌈a.0⌉σ(b.0)
a→ 0

2. ⌈a.0⌉σ(b.0)
σ→ b.0

3. ⌈a.0⌉σ(b.0)
ρ→ ⌈a.0⌉σ(b.0)

where the ρ transition no longer causes the dissolution of the timeout.

3.4.2 Clock Stopping and Insistency

The remaining operators further control the behaviour of the clocks. ∆ prevents all
clocks from ticking, while ∆σ prevents only the ticks of the specified clock, σ. ∆ is
similar to the CCS version of 0, as it has no possible transitions. ∆σ exhibits tran-
sitions for all other clocks within the current context. So, for a context containing
both σ and ρ, ∆σ has a single transition,

∆σ
ρ→ ∆σ (3.6)

which is replicated for any other clocks in the context, which are not equal to σ.
The stopping of clocks is used to provide insistency. Normally, a process a.P

has two possible derivations:

40 CHAPTER 3. GLOBAL SYNCHRONISATION

1. a.P
a→ P

2. a.P
σ→ a.P

with a clock context containing only σ. To ensure that the first of these two deriva-
tions occurs, or, in other words, to insist that a is performed before the next tick of
the clock, σ, ∆ is used. The semantics for an insistent prefix, α.P , may be given as:

[[α.P]]
def
= α.P + ∆ (3.7)

where the presence of ∆ prevents a σ transition from occurring on the right-hand side
of the choice, and thus for the choice as a whole (as both sides must move through
time simultaneously). This leaves only one available action,

a→, as required. Clearly,
insistency relative only to one particular clock may also be defined in a similar
manner, using ∆σ instead.

[[ασ.P]]
def
= α.P + ∆σ (3.8)

While on the subject of derived syntax, it is also possible to define a clock prefix,
akin to the existing action prefix:

[[σ.P]]
def
=⌈0⌉σ(P) (3.9)

where the stable timeout ensures that the σ.P will be retained until σ ticks, despite
the ticks of other clocks. As the only transitions for 0 are clock ticks, only a tick
from σ will cause the process to evolve and become P .

The two notions of a clock prefix and insistency can then be combined to give
an insistent clock prefix:

[[σ.P]]
def
=⌈∆⌉σ(P) (3.10)

which differs from a standard clock prefix by only ever allowing the one transition,
σ.P

σ→ P , whereas σ.P allows an arbitrary number of transitions from other clocks
before this occurs.

3.4.3 Encapsulation

Clock hiding is used to provide scoping for the ticks of a clock. Take the following
situation,

(P/σ) | Q (3.11)

where /σ hides the clock, σ, so that its ticks may only be seen by P . Q instead sees
a silent action each time σ ticks. Such clock hiding is central to the encapsulation

3.5. CONCLUSION 41

of components present in CaSE. When coupled with restriction, components can be
made to emit only silent actions from the perspective of external processes.

An operational semantics for CaSE can be given in terms of a labelled transition
system, (P ,A ∪ T ,→), where P is the set of CaSE expressions formed from the
above syntax, A and T are as defined above and → ⊆ P × (A ∪ T) × P is the
transition relation defined in Table 3.1. We use E and F to range over process
terms (P), α over the set of actions (A), σ and ρ over the set of clocks (T), a and
b over the set of names (N) and γ over N ∪ T . In Table 3.2, we show how the
semantics for CaSE expand on those for CCS2, presented in Table 2.1.

3.5 Conclusion

The main advantage of the timed calculi we have discussed here is that they allow,
via the introduction of global synchronisation, the construction of systems on a larger
scale than those that could be created purely with CCS. With CaSE, components
can be created which consist of multiple processes and clocks. These can then be
successfully integrated together to form new components.

Global synchronisation allows the problem of defining a compositional broadcast
agent, cited earlier in 2.3, to be solved, but these timed calculi still retain the
other problems with CCS we mentioned there. None of TPL, PMC, CSA or CaSE
explicitly includes data within the model. This is not necessarily a disadvantage, as
it is possible to model data implicitly, via the use of silent actions. Including data
explicitly in the model complicates formal reasoning and equivalence theories, so we
will also adopt the implicit approach.

More importantly, these calculi all still retain a static structure. The scope of
restriction or clock hiding doesn’t change as the processes evolve. This prevents these
calculi from being used to model mobile systems where these elements do change,
although they are perfectly suited to modelling static dataflow-oriented systems such
as those in (Norton & Fairtlough, 2004) and (Norton et al., 2005).

In contrast, the following chapter contains a discussion of calculi which, while
lacking the scalability of the timed languages just illustrated, can model mobile
systems.

2We go directly from CCS to CaSE in the table, but as noted above, some concepts were
introduced by intermediate calculi such as TPL.

42 CHAPTER 3. GLOBAL SYNCHRONISATION

Table 3.1: CaSE Semantics

Idle
−

0
σ−→ 0

Act
−

α.E
α→ E

Patient
−

a.E
σ→ a.E

Stall
−

∆σ
ρ→ ∆σ

ρ 6= σ

Sum1
E

α→ E ′

E + F
α→ E ′

Sum2
F

α→ F ′

E + F
α→ F ′

Sum3
E

σ→ E ′, F
σ→ F ′

E + F
σ→ E ′ + F ′

Par1
E

α→ E ′

E | F
α→ E ′ | F

Par2
F

α→ F ′

E | F
α→ E | F ′

Par3
E

a→ E ′, F
a→ F ′

E | F
τ→ E ′ | F ′

Par4
E

σ→ E ′, F
σ→ F ′, E | F

τ
9

E | F
σ→ E ′ | F ′

FTO1
E

τ
9

⌊E⌋σ(F)
σ→ F

FTO2
E

γ→ E ′

⌊E⌋σ(F)
γ→ E ′

γ 6= σ STO1
E

τ
9

⌈E⌉σ(F)
σ→ F

STO2
E

α→ E ′

⌈E⌉σ(F)
α→ E ′

STO3
E

ρ→ E ′, E
τ

9

⌈E⌉σ(F)
ρ→ ⌈E ′⌉σ(F)

ρ 6= σ

Rec
E

γ→ E ′

µX.E
γ→ E ′{µX.E/X}

Res
E

γ→ E ′

E \ a
γ→ E ′ \ a

γ 6= a

Hid1
E

σ→ E ′

E/σ
τ→ E ′/σ

Hid2
E

γ→ E ′

E/σ
γ→ E ′/σ

γ 6= σ

3.5. CONCLUSION 43

Table 3.2: Derivation of CaSE from CCS

Rule in CCS Use in CaSE
New Idle; Allows clocks to tick over 0

Act As in CCS
New Patient; Allows clocks to tick over the prefix α.E
New Prevents the clock σ from ticking

Sum1 As in CCS
Sum2 As in CCS
New Sum3; Allows clocks to tick over a summation
Par1 As in CCS
Par2 As in CCS
Par3 As in CCS
New Par4; Allows clocks to tick over | when not prevented by τs
New FTO1; Allows σ to tick, leaving F , when there are no τs
New FTO2; Allows anything but σ to precede, leaving E ′

New STO1; Allows σ to tick, leaving F , when there are no τs
New STO2; Allows α transitions to precede, leaving E ′

New STO3; Allows other clocks to tick over E, keeping the timeout
Rec As in CCS, but generalised to γ
Res As in CCS, but generalised to γ

New Hid1; Converts the hidden clock σ’s transitions to τs
New Hid2; Allows anything but σ to precede, retaining clock hiding

Chapter 4

Mobility

4.1 Introduction

Within the field of algebraic process calculi, there are two clear ways in which the
dynamic nature of a system is modelled. The most well-known is the form of mobility
present within Milner’s π calculus which allows the scope of a name to change as
the system evolves. This concept can be thought of in a similar way to the reference
passing that occurs in most programming languages; part of the program begins
with no knowledge of an entity, and later gains knowledge by obtaining a reference
to it.

Models in the π calculus are not really mobile in the sense of something moving
from one place to another. This isn’t possible, as there is no real notion of ‘place’
to begin with. However, the addition of this mechanism does allow the modelling of
dynamic systems, such as a mobile phone network (Milner, 1993a), and is sufficiently
expressive as to allow it to encode Church’s λ calculus (Milner, 1992).

A more naturalistic form of mobility is found in calculi which allow entities to
migrate. One of the primary exponents of this is Cardelli and Gordon’s ambient cal-
culus (Cardelli & Gordon, 1998), which groups composed processes inside ambients.
These ambients can be moved up and down a nested hierarchy of such objects, or
be destroyed. The calculus differs from those previously considered, in that it lacks
communication primitives. Surprisingly, the base syntax is sufficient to allow com-
munication to be encoded within them, and indeed the entire asynchronous form of
the π calculus can be represented.

The following two sections consider examples of both types of mobile calculi in
more detail.

44

4.2. SCOPE MOBILITY 45

4.2 Scope Mobility

4.2.1 The π Calculus

The π calculus (Milner, 1999) follows on from Milner’s earlier work on CCS discussed
in 2.2. Essentially, it is a value-passing form of CCS in which values and channels are
replaced simply by pure names. Thus, channels can be passed between processes,
as well as values, which means that their scope may change during execution.

To make this clearer, consider the syntax of the form of π calculus given in
(Milner, 1992)

E,F ::= 0 | xy.E | x(y).E | (a)E | (E | F) | !E (4.1)

which is a minimal version containing replication as opposed to recursion, with a a
channel name and x and y being defined below. Compare this with the syntax given
for CCS in Eqn. 2.1. The nil process, 0, is still present, as is parallel composition and
restriction (although in a new form, (a)E). Non-deterministic choice is present in
the original version of the π calculus presented in (Milner, Parrow & Walker, 1989),
but is removed from the version given in (Milner, 1992) due to the formulation of
semantics used there. !E is the syntax for replication, which replaces recursion in
this particular variant of the calculus to give a simpler theoretical treatment, while
still doing much the same job.

The main distinction between the two lies in the remaining element of the syntax:
prefixing. In CCS, a more general syntax, α.E, where α ∈ N ∪ N ∪ {τ}, is used
and includes input, output and silent actions. In the syntax given above for the
π calculus, the input (x(y)) and output (xy) syntax are given separately, and the
input prefix is binding1 like restriction. x and y are both names, where ‘x [is] the
subject and y the object ’ (Milner, 1992). Silent actions no longer appear in prefix
form, but do occur as τ.E in some variants of the π calculus.

The distinction between the π calculus and value-passing forms of CCS, which
also use this form of prefixing, lies in x and y being drawn from the same set in
the π calculus. In contrast, value-passing forms of CCS keep the two sets distinct,
so that the channel and value names do not intersect. This change is what gives π
calculus its power, as channels can now be used as the object of an input or output.
Thus,

x(y).yx.0 (4.2)

becomes perfectly valid.

1When an input is received on x, y is bound to the value of that input, which is then substituted
for y in the continuation of that process.

46 CHAPTER 4. MOBILITY

This also has an effect on restriction. Recall that, in CCS, (a.0|a.0)\a restricts
the scope of a to just the two processes, a.0 and a.0, making a synchronisation the
only possible action which may be performed. Now consider the following processes
defined using the π calculus:

(a)(a(x).xa.0 | ay.0) | y(z).P (4.3)

where the scope of a is again restricted, this time to the two processes a(x).xa.0 and
ay.0. If these two processes synchronise, the system evolves to:

(a)(ya.0 | 0) | y(z).P (4.4)

with x becoming bound to the channel name, y. This shows how the π calculus
allows channel names to be passed between processes, but it is the next transition
that is really interesting. ya.0 will pass the channel name, a, to y(z).P , which is
outside the scope of the restriction imposed on a. As a result, the scope of a is
extruded :

(a)(0 | 0 | P{a/z}) (4.5)

so as to include the process, P , in which a is now substituted for z. Further, one of
the structural congruence rules of the π calculus (Milner, 1992):

(x)(P | Q) ≡ P | (x)Q if x not free in P (4.6)

may be used to perform scope intrusion, giving:

0 | 0 | (a)(P{a/z}) (4.7)

as the channel a no longer occurs in the other two processes. These changes in
scope are central to the concept of mobility within the π calculus. They reflect the
dynamic environment of the processes represented, and give the calculus a greater
expressivity.

4.2.2 Variants of the π Calculus

Multiple variants of the π calculus exist, including various evolutions of the syntax
and semantics. As noted above, replication is only introduced in the version of the
calculus given in (Milner, 1992), which also defines a reduction-based semantics. The
earlier tutorial papers (Milner et al., 1989) instead use recursion and a structured
operational semantics, based on a labelled transition system.

The polyadic π calculus (Milner, 1993b) is a more distinct variant. Essentially,
this involves a syntactic change to input and output, so that a tuple is used, as

4.2. SCOPE MOBILITY 47

opposed to the single names used in the monadic π calculus2. Having this as a core
part of the syntax provides advantages in representing abstractions and giving a
natural sort discipline3. However, it is also possible to simply provide an encoding
of this in the monadic variant.

Doing so is not simply a matter of transmitting each value in sequence; the
operation needs to respect the atomicity implicit in the use of multiple names.
Observe the following example from (Milner, 1993b):

x(yz) | xy1z1 | xy2z2 (4.8)

where the process on the left should receive either y1 and z1 or y2 and z2. With the
following semantics,

[[x(yz)]]
def
= x(y).x(z) (4.9)

[[xyz]]
def
= xy.xz (4.10)

the two sending processes can interfere with one another. y will become bound to
either y1 or y2 on the first synchronisation, which is fine, but z may then receive
whichever of these two remains instead of the second element in the tuple. This
happens because there is no link between the two synchronisations. Thus, each
subsequent transmission results in a new competition between the two processes as
to who actually synchronises with the receiver.

The solution to this problem is to make use of a private channel. Before trans-
mitting any of the names that form part of tuple, the sending process passes a
reference to a new channel to the receiver. The receiver then uses this channel to
receive the contents of the tuple, rather than relying on an existing channel, which
may be prone to interference. Thus, the semantics become:

[[x(yz)]]
def
= x(w).w(y).w(z) (4.11)

[[xyz]]
def
=(w)(xw.wy.wz) (4.12)

where w is the new private channel created to facilitate the process of transmitting
the tuple. This ability to encode the polyadic variant in the original monadic calculus
implies that the new syntax fails to yield any greater expressivity, but this is not
really the motivation behind this extension. Instead, what this provides is a more
natural way of transmitting information, which makes modelling relatively complex
systems easier.

2This is a term used to refer to the original π calculus in retrospect.
3Sorts are a way of applying typing to the π calculus, which will be covered further in section

7.2 on typed calculi.

48 CHAPTER 4. MOBILITY

The asynchronous π calculus (Honda & Tokoro, 1991; Boudol, 1992; Sangiorgi,
2001) deliberately reduces the level of expressivity in order to simplify reasoning
and provide a better framework for distributed implementations. The output pre-
fix, xy.E is replaced with xy.0, so that there is no continuation after an output.
In the original synchronous π calculus, the behaviour of the continuation, E, is
blocked until a synchronisation with a recipient can occur. This doesn’t occur in
the asynchronous variant, as there is no longer any behaviour dependent on this
output occurring.

Synchrony can be emulated in the asynchronous polyadic π calculus, just as
synchronous messaging frameworks, such as TCP, can be implemented on top of
an asynchronous network. The receiver simply has to acknowledge receipt of the
message by replying to the sender. The following semantics are given for the monadic
prefixes in (Bugliesli, Castagna & Crafa, 2001):

[[cx.P]]
def
=(r)(cxr | r.P) (4.13)

[[cy.P]]
def
= c(yr).(r | P) (4.14)

where r is not free in P and r.P is a syntactic abbreviation for r().P i.e. the input
is an empty tuple. The output is encoded as the transmission of a tuple containing
two names: x, the original name being sent, and r, a new channel created to receive
the acknowledgement from the recipient. This runs in parallel with another process
that awaits an input on r before continuing with P . For example,

cx.P | cy.Q

≡ (r)(cxr | r.P) | c(ys).(s | Q)

→ (r)(r.P | r | Q{x/y})
→ P | Q{x/y}

(4.15)

Thus, the original synchronous behaviour is emulated, as P will not evolve until the
receiver has obtained the private channel, r, and replied.

Other changes to the calculus are also commonly adopted to reduce its expres-
sivity, thus making more proofs feasible. These include:

• input localisation (Merro, 2001), whereby a link received from another process
can not be used for input. For example, a process a(x).P may not use x as a
channel upon which to receive input in P .

• uniform receptiveness (Sangiorgi, 1999), where the input end of a link occurs
only once syntactically and is replicated so as to be always available.

4.2. SCOPE MOBILITY 49

• input-guarded replication, which is not just restricted to uniform receptiveness
variants, but is generally used as a more restricted form of replication (so the
replication operator becomes !a(x).P rather than !P).

The final variant of the π calculus considered here is the extension to higher-
order operations. The most obvious change to make in this direction is to allow
processes to be exchanged. Such a second-order form of the calculus is given by
the Calculus of Higher Order Communicating Systems (CHOCS) (Thomsen, 1989),
which actually predates the π calculus itself. This extended CCS with mobility by
allowing processes, rather than channel names, to be transmitted.

The more general area of higher-order π calculus, and the theory behind it, is
covered in Sangiorgi’s thesis (Sangiorgi, 1993). It defines an extension to the π
calculus, HOπ, which not only allows the transmission of names (first-order) and
processes (second-order), but also parametrised processes of arbitrarily high order
(ω-order). This is best illustrated by some examples, drawn from (Sangiorgi, 1993).
In the simplest case, an ‘executor’ process can be defined, x(X).X, which will receive
and then execute an arbitrary process. Placing this in an appropriate context,

xP.Q | x(X).X (4.16)

the process on the left, xP.Q, will transmit the process, P , to the executor before
continuing as Q. Thus, following the synchronisation of the two processes, this
system evolves to become:

Q | P (4.17)

where the process P having being substituted for X.
A more complex example is given by considering Milner’s encoding of the natural

numbers (Milner, 1993b). A natural number, n, is encoded as a series of outputs on
y, the number of which is equal to n (represented as yn), followed by a transmission
on z to indicate zero and thus, the end of the number:

[[n]]
def
=(y, z)yn.z (4.18)

Using HOπ, the addition of these numbers can be encoded in a very simple way. In
the π calculus, summation is achieved via an indirect reference to the two numbers,
using channel names. In HOπ, the parametrised processes or agents that represent
the numbers can be used directly in the representation of addition. Thus, actu-
ally adding the two numbers together becomes a simple matter of running the two
concurrently, and linking them via a common channel.

A Plus agent, which performs the addition of two numbers, can be defined as
follows:

50 CHAPTER 4. MOBILITY

Plus
def
=(X,Y)(y, z)((x)(X〈y, x〉 | x.Y 〈y, z〉)) (4.19)

where both X and Y are agents with two parameters, corresponding to y and z
respectively in the definition of [[n]] above. The operation of this agent is best
demonstrated by example. Assume X is two and Y is three, represented in HOπ as:

X(y, z)
def
= y.y.z (4.20)

Y (y, z)
def
= y.y.y.z (4.21)

and retaining the same representation used for [[n]] above. When X and Y are passed
to the Plus agent, X is instantiated with a new private channel, x, in place of z
in the above. Y is then prefixed with an input on this same channel, so that the y
outputs occurring in Y only execute after those in X. This leads to the following
sequence of transitions:

y−→ y−→ τ−→ y−→ y−→ y−→ z−→ (4.22)

which is close to the sequence that occurs for the representation of five in HOπ:

y−→ y−→ y−→ y−→ y−→ z−→ (4.23)

Formally, the two are weakly bisimilar. A bisimulation is a symmetric binary
relation between two processes, which exists if each process can simulate the be-
haviour of the other. R is such a relation iff, for all pairs of processes (p, q) in R
and all actions, α4:

1. P
α→ P ′ =⇒ ∃Q′ such that Q

α→ Q′ and (P ′, Q′) ∈ R

2. Q
α→ Q′ =⇒ ∃P ′ such that P

α→ P ′ and (P ′, Q′) ∈ R

For a weak bisimulation, τ transitions are effectively ignored. A series of such
transitions,

τ→ τ→ τ→ . . . is abbreviated to
τ⇒ and

τ⇒ a→ τ⇒ is deemed equivalent to
a→. As the additional τ transition in the Plus-based derivation is the only differ-
ence between the two, the two can be deemed equivalent under the rules of weak
bisimulation.

Returning to HOπ, the most interesting point about this calculus is not that
it provides the means to formulate abstractions of the type just demonstrated, but
that, in doing so, it adds no further expressivity. Indeed, Sangiorgi, in his thesis

4The bisimulation definition given here is more applicable to the static systems of CCS. Although
it holds for this simple example, a more detailed method of bisimulation is required to handle the
dynamic binding that occurs in the π calculus and its derivatives.

4.2. SCOPE MOBILITY 51

(Sangiorgi, 1993) demonstrates how a HOπ calculus can be represented in the π
calculus. Thus, just as with the polyadic variant, the benefit of using HOπ comes
not from increased expressivity, but from the additional ease it provides in modelling
certain scenarios.

The Join Calculus

The Join calculus (Fournet & Gonthier, 1996) takes the asynchronous π calculus
as its basis, and focuses on providing a formalism better suited as the basis for a
distributed implementation.

Take the following example of a π calculus process given in (Lévy, 1997):

x(y).P | x(z).Q | xa (4.24)

where two processes are waiting to receive input on x. The problem with imple-
menting this in a distributed setting is that there is no concept of location with the
π calculus. Each of the two receiving processes or receptors5 may be located at an
arbitrary distance both from each other and from the transmitter, xa. As a result,
a distributed consensus problem arises as to which of the two receptors will receive
the transmission.

The join calculus provides a solution to this problem by altering the syntax of
the π calculus. The asynchronous variant of the syntax given in Eqn. 4.1 becomes:

P,Q ::= 0 | def D in P | (P | Q) | x〈ṽ〉 (4.25)

D,E ::= J ⊲ P | D ∧ E | T (4.26)

J, J ′ ::= x〈ṽ〉 | (J | J ′) (4.27)

with T being the empty definition and a clear focus on linking the receptors in D
to the emissions occurring in P (both represented by the same syntax, x〈ṽ〉). The
use of this is most clearly demonstrated by example:

def (x〈y〉 ⊲ P) ∧ (x〈z〉 ⊲ Q) in x〈a〉 (4.28)

which has essentially the same behaviour as the π calculus example presented earlier.
x〈y〉 ⊲ P receives an input, y, on x and then continues as P . x〈y〉 is said to guard
P , and multiple such guards may be applied to a single such process. Multiple such
receptors may be defined via use of the ∧ operator.

It is impossible to provide an exact equivalent to the earlier series of π calculus
processes, as the changes in the join calculus now prevent such scenarios from being
created. Instead, the equivalent of this join calculus example in the π calculus is:

5The join calculus uses an analogy with chemistry to describe its behaviour, based on the
CHemical Abstract Machine (CHAM) (Berry & Boudol, 1992).

52 CHAPTER 4. MOBILITY

(x)(!(x(y).P | x(z).Q) | xa) (4.29)

where the scope of x is restricted to the def expression and the inputs are replicated,
so as to be always available. Thus, a channel x is always localised to a particular
set of emitters and receptors.

Clearly, the join calculus, as a reformulation of the asynchronous π calculus with
a new syntax, can not be used to express anything which can’t be expressed in
the π calculus. However, it has a lot of advantages in endowing the calculus with
distributive properties at the syntactic level.6

4.2.3 Advantages and Limitations of the π Calculus

The π calculus is a powerful formalism drawn from a minimal abstract syntax. As
noted at the start of this section, it is capable of encoding the λ calculus and so it
follows that it is also capable of simulating any recursive function.

The problem is that this makes it a little too powerful in some cases. From
(Sangiorgi, 2002), we can see how much more difficult the additional power given by
the π calculus makes proving termination. In contrast, a sufficiently restricted form
of CCS provides a trivial proof. In the same paper, Sangiorgi also touches on some-
thing which seems common within the literature (Fournet & Gonthier, 1996; Ama-
dio, 1997; Wojciechowski, 2000; Stefani, 2003); while the expressiveness of the π
calculus is interesting, it is necessary to restrict it in order to actually have some-
thing which is generally useful for reasoning over or using as the basis for a full
programming language.

Another problem with the π calculus is that it carries with it a trait from CCS.
Namely, it can’t be used to model synchronisation with an arbitrary number of
processes in a compositional way. This was considered earlier in 2.3 for CCS, and
solved in 3.1 using the additions to the calculus given by TPL. While the π calculus
has a notion of mobility and is thus more expressive than CCS, it still lacks an
external entity with which to co-ordinate such a transaction.

A common motif reoccurs here, that was touched on earlier in the introduc-
tion to this review; even though something has a certain level of expressivity, it
doesn’t follow that it is the most appropriate mechanism for modelling a particular
phenomenon. This also holds for the distributed calculi considered in 4.3. The π
calculus may already model mobility, but these calculi do so in a different way, which
may prove more suitable in a particular context.

6Such changes have also been made using the restrictions imposed by an appropriate type
system (Sangiorgi, 1999).

4.3. DISTRIBUTION AND MIGRATION 53

4.3 Distribution and Migration

Allowing the scope of a name to change during execution is one possible way of
modelling dynamic behaviour, but it isn’t the only way. The concept of mobility
naively implies the physical movement of processes, but, as shown above, this is
not what actually happens in the π calculus. To do so requires some notion of
distribution; this can be provided by localities, a term used to refer generally to a
higher-level form of grouping, above that of processes. This concept has been ap-
plied to various calculi, in different forms, in order to model physical sites (Nomadic
Pict, Wojciechowski, 2000), administrative or security domains (the Ambient Cal-
culus and the Seal Calculus, Cardelli & Gordon, 1998; Vitek & Castagna, 1999) and
biological cells (Brane Calculi, Cardelli, 2004), but can theoretically be applied in
any context where the grouping of processes is useful. Localities can be used simply
for observation or as a means to further control the behaviour of the processes encap-
sulated within them. They are generally named, so as to provide a communication
target or a known destination for a migrating entity.

Originally, localities were used to distinguish between processes in order to pro-
vide further equivalence theories. Take the following simple CCS-based example
process:

Spec
def
= in.τ.out.Spec (4.30)

which forms the specification for the behaviour of a system that receives an input,
processes it and then returns the output. The actual implementation may differ
from the specification by instead involving two processes:

Receiver
def
= in.a.Receiver (4.31)

Sender
def
= a.τ.out.Sender (4.32)

which communicate over another channel, a. If these two processes are run concur-
rently:

(Receiver | Sender) \ a (4.33)

with the scope of a restricted, they are weakly bisimilar (see 4.2.2) to one another.
The specification performs the following derivations:

in−→ τ−→ out−→ (4.34)

prior to recursing and becoming Spec again, whereas the implementation produces:

in−→ τ−→ τ−→ out−→ (4.35)

54 CHAPTER 4. MOBILITY

Table 4.1: LCCS Dynamic SOS Rules

Act1
−

a.E
a−→
l

l :: E
for any l ∈ Loc Act2

E
a−→
u

E ′

l :: E
a−→
lu

l :: E ′
Act3

−
τ.E

τ→ E

with the extra τ transition caused by the synchronisation on a. As weak bisimulation
effectively ignores τ actions, the two are judged to be equivalent. If the specification
was to include a further τ action, for an arbitrary reason, prior to the out, then
the two would also be strongly bisimilar. To summarise, the difference between the
two sets of derivations is negligible, according to the bisimulation, yet the actual
difference between the specification and its implementation is fairly significant. The
specification effectively requests a monolithic solution, but weak bisimulation allows
the final implementation to be distributed over multiple processes.

In most situations, this is beneficial. It means that the specification can be met
by a concurrent system, composed of multiple processes running in parallel, super-
fluous τ transitions aside. When a distinction between the number of processes used
is required, a finer equivalence is needed. Location bisimulation (Boudol, Castellani,
Hennessy & Kiehn, 1993) provides exactly that, by assigning locations to processes
and using them as part of the relation between processes.

Essentially, this means that each transition is annotated with a location name.
In (Boudol et al., 1993), a located variant of CCS is defined, LCCS, which adds
an additional piece of syntax, l :: E to signify that a process E is located at l.
This association is made within the operational semantics, of which there are two
variants. The static approach allocates locations initially, while the dynamic method
generates a new location for each non-silent transition. Here, the focus is on the
latter, shown in Table 4.1, which essentially gives each process a causal path, by
explicitly representing the number of transitions that have been performed.

The semantics, as with those for CaSE and TNT given in chapter 5, are based
on a labelled transition system. The possible behaviour of a process is defined as a
series of labelled transitions from one process to another, which are later used as
the basis for the bisimulation-based equivalence theories shown earlier. The rules
presented here are only a subset of those for LCCS, being those that are relevant to
the use of locations. The remaining rules for summation, parallel composition and
restriction are as for CCS itself, with the additional inclusion of the location on the
transition. These are discussed informally in section 2.2, and also appear as part of
the CaSE semantics.

The rule, Act1, handles the initial assignment of a location for any action, a.E,

4.3. DISTRIBUTION AND MIGRATION 55

where a ∈ N ∪ N (i.e. a 6= τ) and Loc is simply a set of location names. The
rule states that the process may perform a transition to the process l :: E. The
transition itself is annotated with both the action a and the new location, l, which
causes the locations to appear in the sequence of transitions for each process (and,
thus, the equivalence theory).

Act2 is a continuation of Act1, which handles processes that have already been
assigned a location. If the process itself, E, can perform some action, a, with the
location, u, to become E ′, then so can the located version of E. The interesting part
of this rule is how the location is used in the new transition. The u from the new
transition is concatenated with the l from the current location, so the transition
depicts the specific route the process has taken through each location. The final
rule, Act3, simply handles silent actions, which are unaltered from their behaviour
in CCS, and have no association with locations.

How this actually works in practise is best shown by reconsidering the earlier CCS
example. Recall the specification defined in 4.30. This is a process with essentially
three actions, in, τ and out, which may be localised via use of the LCCS semantics
given above. As the process begins its life in an unlocated form, Act1 is applied to
assign it a location:

in.τ.out.Spec
in−→
l

l :: τ.out.Spec (4.36)

where l is an arbitrary location name7. The evolution of the resulting process,
l :: τ.out.Spec utilises both Act2 and Act3. Act2 provides the appropriate transition
for such a located process, but its behaviour is based on that of the unlocated
process, which in this case is τ.out.Spec. Thus, Act3 is used to yield:

τ.out.Spec
τ→ out.Spec (4.37)

which is then applied as the precondition for Act2 to give:

l :: τ.out.Spec
τ−→
l

l :: out.Spec (4.38)

As u is effectively the empty string, ǫ, in this case, due to the τ transition being
unlocated, the result of the concatenation, ul, is simply l.

The final derivation again combines the use of Act2 with another rule. This time,
the action is a member of N , so Act1 is used to give the derivation of the unlocated
variant, out.Spec:

out.Spec
out−−→
k

k :: Spec (4.39)

7The name is arbitrary in the sense that it doesn’t matter what the name is, but, as the later
discussion of bisimulation shows, the location names must be assigned in some kind of regular
fashion to facilitate comparison.

56 CHAPTER 4. MOBILITY

where k is again an arbitrary location assigned to the new visible action. Merging
this with the main process using Act2 gives:

l :: out.Spec
out−−→
lk

l :: k :: Spec (4.40)

resulting in a final process with a causal path of two locations, l and k.
But how does this help distinguish the specification from its dual process im-

plementation shown previously? First, it is necessary to extend the definition of
bisimulation given in 4.2.2 to incorporate the localised transitions of LCCS. Recall
that a bisimulation is a symmetric binary relation between two processes, which
exists if each process can simulate the behaviour of the other. R ⊆ LCCS ×LCCS
is a dynamic location bisimulation relation iff, ∀(p, q) ∈ R ∧ a ∈ N ∪N ∧ u ∈ Loc:

1. P
a−→
u

P ′ =⇒ ∃Q′ such that Q
a−→
u

Q′ and (P ′, Q′) ∈ R

2. Q
a−→
u

Q′ =⇒ ∃P ′ such that P
a−→
u

P ′ and (P ′, Q′) ∈ R

3. P
τ→ P ′ =⇒ ∃Q′ such that Q

τ→ Q′ and (P ′, Q′) ∈ R

4. Q
τ→ Q′ =⇒ ∃P ′ such that P

τ→ P ′ and (P ′, Q′) ∈ R

This is the strong variant that observes τ transitions. A localised version of weak
bisimulation merely requires satisfying the first two conditions. As the earlier com-
parison between the two processes was made using weak bisimulation, it is this weak
variant of dynamic location bisimulation that will be used here.

The implementation with two processes, shown in 4.31, had the following tran-
sitions using plain CCS:

in−→ τ−→ τ−→ out−→ (4.41)

whereas the specification exhibits the following behaviour in LCCS:

in−→
l

τ−→
l

τ−→
l

out−−→
lk

(4.42)

To compare the two, it is necessary to give a similar localised treatment to the
transitions for the implementation. Clearly, the τ transitions will be relatively un-
affected, and, under a weak form of bisimulation, are irrelevant anyway. Essentially,
the two sequences being compared are:

Specification (Localised) Implementation
in−→
l

out−−→
lk

in−→ out−→

4.3. DISTRIBUTION AND MIGRATION 57

when the τ transitions are ignored. To localise the latter of these, it is necessary
to look back to the original two processes from which these transitions are derived.

The first,
in−→, arises from the Receiver as follows:

in.a.Receiver
in→ a.Receiver (4.43)

which, when localised, becomes:

in.a.Receiver
in−→
l

l :: a.Receiver (4.44)

So, the first of the two transitions should be
in−→
l

when LCCS is used.

However, the use of a makes things a little complicated. It appears in both the
Receiver (as just shown) and the Sender as a visible action (a and a respectively),
but these combine to become a τ action when the two are run in parallel. The above
makes it appear that the Receiver will evolve to l :: k :: Receiver, by assigning a
further location to a, but this doesn’t match with the higher-level behaviour of the
composed processes. Thus, to make assigning locations easier, it is better to look
instead at the sequences of transitions from each process, rather than their explicit
definitions:

in−→ τ−→ (Receiver)

τ−→ τ−→ out−→ (Sender)

where the τ transition arising from the synchronisation is given for both. From this,
it is a simple matter of assigning a location to each observable action:

in−→
l

τ−→ (Localised Receiver)

τ−→ τ−→ out−−→
l

(Localised Sender)

and merging the two to give a localised version of both the specification and its
implementation:

Specification (Localised) Implementation
in−→
l

out−−→
lk

in−→
l

out−−→
l

which illustrates a clear difference between the two.
For the first transition, both are capable of performing

in−→
l

and can thus match

each other. However, the relation breaks down on the second transition which

58 CHAPTER 4. MOBILITY

compares
out−−→
lk

with
out−−→
l

. Under a normal weak bisimulation, these two transitions

would be judged equivalent, as only the action is available for comparison; both
perform an out. However, a localised bisimulation requires the locations to also
match, which fails here. The specification has a longer causal path, as its single
process has performed two visible actions. In contrast, the two processes involved in
the implementation have performed one action each, resulting in two separate paths
with a length of one.

This shows that localities can be used to provide a stronger equivalence theory;
a dynamic location bisimulation can distinguish more processes than a standard
bisimulation. As stated earlier, localities are now more commonly used in calculi
which exhibit mobility in the form of migration, where they are used to group
arbitrary numbers of processes. The locality gives the grouping a context, which
may change during execution of the system, via the movement of the locality or
its constituent processes. What follows is a further examination of such distributed
calculi, including those which have arisen from existing non-distributed formalisms,
such as the Join calculus.

4.3.1 The Distributed Join Calculus

By adding localities, (Fournet, Gonthier, Lévy, Maranget & Rémy, 1996) defines a
distributed variant of the Join calculus shown in 4.2.2. The extended syntax is as
follows:

P,Q ::= 0 | def D in P | (P | Q) | x〈ṽ〉 | go〈b, κ〉 (4.45)

D,E ::= J ⊲ P | D ∧ E | T | a[D : P] (4.46)

J, J ′ ::= x〈ṽ〉 | (J | J ′) (4.47)

with the additional syntax of a[D : P] representing input channels located at a, the
name of the locality. P is used to ‘initialise’ the locality. The names are globally
scoped and unique to a particular definition, so:

def a[D : P] ∧ a[D′ : Q] ⊲ R in S (4.48)

is disallowed. The syntax allows localities to be nested to form a hierarchical struc-
ture, with each node in the tree corresponding to a different location. All receptors
for a channel must occur in the same location. The following is disallowed,

def a[x〈y〉 ⊲ P : S] ∧ b[x〈z〉 ⊲ Q : R] in T (4.49)

as one receptor for x, P , is defined in location a and the other in location b. Instead,

4.3. DISTRIBUTION AND MIGRATION 59

def a[x〈y〉 ⊲ P ∧ x〈z〉 ⊲ Q : R] in T (4.50)

may be used, where both P and Q are in location a.
Migration may occur using the new process construct, go〈b, κ〉. Rather than the

process itself migrating, this operator causes the surrounding location to migrate and
become an immediate sub-location of b. Upon completion of the migration, an empty
message is emitted on κ. This allows other processes to block until the migration is
complete, by waiting for receipt of this completion message. For example,

def a[D : (P | go〈b, κ〉)] in S | def b[E : Q]in T (4.51)

reduces to:

def b[E : Q | (def a[D : (P | k〈〉)] in S)]in T (4.52)

when go〈b, κ〉 is expanded, with a now a sub-location of b.
The distributed join calculus is an interesting example of how an existing calcu-

lus (the π calculus in this case) can be both adapted to suit a different purpose or
remove perceived deficiencies (as shown in 4.2.2) and then later extended to incor-
porate mobility via distribution, via the simple addition of localities and a migration
primitive. The advantage of this is that the new calculus can build on the estab-
lished theory of the original calculus, instead of having to start from scratch. This
differs from the approach taken by the ambient calculus, which instead begins again
from first principles, in an attempt to formalise this more spatial form of mobility
in a minimal fashion.

4.3.2 The Ambient Calculus

The ambients within the ambient calculus (Cardelli & Gordon, 1998) are a form of
locality. Each ambient can contain processes and other ambients, allowing a nested
structure of ambients to be formed. This topology is dynamic; new ambients may be
created and existing ones moved or destroyed during execution. Within the formal
syntax of the calculus,

E,F ::= 0 | M.E | (νn)E | (E | F) | n[E] | !E (4.53)

the ambients are represented by the term n[E], where n is an ambient name. In
comparing this with the syntax given for CCS in Eqn. 2.1 and that of the π calculus
from Eqn. 4.1, some apparent similarities can be seen, especially with regard to the
latter. The same nil process, 0, is present, as is parallel composition and replication.
(νn)E looks similar to restriction8. Continuing on this presumption, M.E may be

8This is the syntax used in versions of the π calculus later than (Milner, 1992).

60 CHAPTER 4. MOBILITY

Figure 4.1: Spatial diagram of m[in n.out n.P] | n[]

Figure 4.2: Spatial diagram of n[m[out n.P]]

considered to be the prefixing already seen in CCS and the π calculus. However,
the syntax for M is

M ::= in n | out n | open n (4.54)

which is quite different from that of action prefixing. The ambient calculus has no
concept of channels; the only names present refer to ambients (so (νn)E restricts
these). What M provides is a set of mobility primitives, known as capabilities.
Processes emit these in order to alter the structuring of the ambients, and thus
perform the physical migration of ambients and the processes within them.

Perhaps the most confusing aspect of capabilities is that they are emitted by
the process, but it is the ambient that actually moves. For example, if process P is
defined as in n.0, then performing this action has the effect of moving the ambient
in which P resides inside n, rather than just P . Likewise, out n is the converse and
moves the surrounding ambient outside n.

Such behaviour is best illustrated by an example. Suppose the process,
in n.out n.P begins its life in the ambient m (Fig. 4.1). Performing the first
action, in n, moves its surrounding ambient, m, inside n (Fig. 4.2). The converse,
out n, then moves m back outside n, resulting in a return to the original ambient
structure (Fig. 4.3), but with the process having evolved into P .

Figure 4.3: Spatial diagram of m[P] | n[]

4.3. DISTRIBUTION AND MIGRATION 61

open n is quite different. It alters the structure, just as in and out do, but
rather than moving ambients, it destroys them. It is also applied to a child ambient
rather than to the surrounding ambient, so open m.P | m[Q] (as in (Cardelli &
Gordon, 1998)) reduces to P | Q.

There are also issues with regard to the applicability of capabilities and the use
of the names. A capability may only cause movement to occur when at least one
applicable ambient is available. As such, movement is heavily dependent on context,
and specifically the availability of an appropriately named ambient. Applicability is
dependent upon the capability involved:

• For in m, there must be a sibling of the surrounding ambient named m.

• For out m, the parent of the surrounding ambient must be named m.

• For open m, there must be a child of the surrounding ambient named m.

All three capabilities are non-deterministic. The same ambient name may occur
more than once, and each occurrence is regarded as being distinct. As a result,
the reduction of a capability includes a choice if there is more than one applicable
ambient present. For example, open m.P | m[Q] | m[R] has two possible derivations,

1. open m.P | m[Q] | m[R] → P | Q | m[R]

2. open m.P | m[Q] | m[R] → P | m[Q] | R

The issue of non-determinism illustrates the behaviour that occurs when there is
more than one applicable ambient. What about when there are none? The process
stalls, and can not move on until such an ambient becomes available. This is akin to
the situation in channel-based calculi, such as CCS or the π calculus, where a name is
restricted, but the appropriate co-name is not available to provide synchronisation.
For example,

(a.P)\a (4.55)

may never progress to become P as there is no a for a to synchronise with. This
behaviour is particularly relevant with respect to out m, where the sole use of the
name is to stop the surrounding ambient leaving its parent if the names don’t match.

The restriction of ambient names, via (νn)E, combined with mobility means that
scope extrusion is also present in the calculus. Just as the transmission of a name
outside its scope causes extrusion in the π calculus, the restriction of ambient names
may float outward as necessary. Scope intrusion is also possible in both calculi, as
demonstrated by the presence of the structural congruence rule,

62 CHAPTER 4. MOBILITY

(νn)(P | Q) ≡ P | (νn)Q if n 6∈ fn(P) (Struct Res Par)

which allows the restriction of n to be removed from P if the name doesn’t occur
free within its body.

4.3.3 Variants of the Ambient Calculus

A general problem within concurrency is the possibility of interference. This was
touched on briefly in the introduction to this review, where the value of x differed due
to a race condition. In the ambient calculus, redex interference (Levi & Sangiorgi,
2003) is an issue, and is related to the non-determinism mentioned above.

Take the example process from (Levi & Sangiorgi, 2003).

n[in m.P] | m[Q] | m[R] (4.56)

It is unclear what the environment of P will be, following the reduction of the
capability, in m. There are two alternatives,

1. n[in m.P] | m[Q] | m[R] → m[n[P] | Q] | m[R]

2. n[in m.P] | m[Q] | m[R] → m[Q] | m[n[P] | [R]]

resulting from the two redexes formed between n[in m.P] and m[Q], and n[in m.P]
and m[R]. If one contracts, resulting in a reduction, the other is no longer possible.
However, in this case, all three processes, P , Q and R, can still interact following
either reduction.

In another example from the same paper,

open n.P | open n.Q | n[R] (4.57)

again with two possible interactions

1. open n.P | open n.Q | n[R] → P | open n.Q | R

2. open n.P | open n.Q | n[R] → open n.P | Q | R

the resulting process includes a process, either open n.Q or open n.P , which is stuck
until such a time as another ambient named n appears as a child. This may never
occur. These kinds of interference, referred to in (Levi & Sangiorgi, 2003) as plain
interferences, may occur in other calculi. The equivalent in the π calculus would be:

xz.P | x(y).Q | x(y).R (4.58)

where again a reduction will occur between one of the two:

4.3. DISTRIBUTION AND MIGRATION 63

1. xz.P | x(y).Q | x(y).R → P | Q{z/y} | x(y).R

2. xz.P | x(y).Q | x(y).R → P | x(y).Q | R{z/y}

and the remaining process, either x(y).Q or x(y).R, will be blocked.
Another more serious form of interference may occur in the ambient calculus,

due to the provision of differing interactions (in m, out m and open m). These grave
interferences occur when an ambient is involved in two reductions occurring as the
result of different types of capability. Take the example process,

open n.0 | n[in m.P] | m[Q] (4.59)

in which two reductions can occur that are logically different. While the inter-
ferences described above are a representation of the kind of race conditions and
non-determinism that would be expected in any concurrent model, for example, to
represent competition for resources, grave interferences are usually unexpected and
typically represent errors in the model. This process may perform two radically
different reductions,

1. open n.0 | n[in m.P] | m[Q] → 0 | in m.P | m[Q]

2. open n.0 | n[in m.P] | m[Q] → open n.0 | m[n[P] | Q]

where either n is destroyed, thus preventing the latter movement of P in to m
as it has no surrounding ambient, or n moves inside m and is no longer available
to be destroyed by open n.0. Clearly, only one of these reductions is likely to be
intentional.

Levi and Sangiorgi’s calculus of Mobile Safe Ambients (Levi & Sangiorgi, 2000;
Levi & Sangiorgi, 2003) presents a solution to this. It introduces a notion of co-
capabilities, which enforce a pairing of mobility primitives before a reduction can
be made. The result of this is that the ambient being entered, exited or opened is
aware of what is taking place, and may react accordingly.

With these co-capabilities in place, the reduction rules for the calculus run as
follows:

n[in m.P1 | P2] | m[in m.Q1 | Q2] → m[n[P1 | P2] | Q1 | Q2] (SafeIn)

m[n[out m.P1 | P2] | out m.Q2 | Q2] → n[P1 | P2] | m[Q1 | Q2] (SafeOut)

open n.P | n[open n.Q1 | Q2] → P | Q1 | Q2 (SafeOpen)

where, in each case, the capability must be able to synchronise with a co-capability in
the relevant ambient for the reduction to take place. For example, in SafeIn, in m.P1

64 CHAPTER 4. MOBILITY

must pair up with in m.Q1 in the ambient m. As a result, Q1 can react appropriately
to the change in structure, based on the fact that it knows the movement has
occurred.

The changes in the calculus of safe ambients, though simple, have a dramatic
effect on the ability to construct an algebraic theory for the calculus and prove
properties, especially when coupled with an appropriate type system9. Essentially,
they represent a move from asynchronous to synchronous mobility primitives. The
calculus of controlled ambients (Teller, Zimmer & Hirschkoff, 2002) restricts be-
haviour further, by requiring that a co-capability must appear in both the source
and the destination. Thus, an in m capability requires permission both to leave
its current location and to enter the destination ambient. This is useful for the
specific application of the calculus, controlling resources, but is excessive in most
circumstances.

A further variant of the ambient calculus is the calculus of boxed ambients
(Bugliesli, Castagna & Crafa, 2001). This removes the open capability altogether,
replacing it with a form of directed communication inspired by the Seal calculus
(Vitek & Castagna, 1999). Processes remain within their initial ambient perma-
nently (hence the term ‘boxed’) and only the structure of the ambient topology
changes via the in and out capabilities. Messages may be sent locally, upwards or
downwards, but not to siblings.

An example process from (Bugliesli et al., 2001) is:

n[(x)pP | p[〈M〉 | (x)Q | q[〈N〉↑]]] (4.60)

where n, p and q are ambients, both (x)s are inputs and 〈M〉 and 〈N〉 represent
outputs. The use of the superscript on (x)p indicates a downward communication
into the ambient p, while the use of ↑ in 〈N〉↑ indicates an upward communication
directed at the parent ambient. Thus, (x)Q may synchronise with either 〈M〉 locally
or the upward communication from 〈N〉. (x)pP must synchronise with 〈M〉, as the
only output in p.

The ideas behind the boxed ambients calculus result in a formalism which is
more suited to communication-focused modelling, where the destruction of locations
would be unnatural. Both it and the original ambient calculus have their own
particular niche, being suited to particular applications. In contrast, the latter is
clearly more suited to situations where the removal of a locality corresponds to a
similar event in the real-world situation being modelled.

9In this case, the type system ensures single-threadedness, where only one process within an
ambient may exercise a capability.

4.3. DISTRIBUTION AND MIGRATION 65

4.3.4 Advantages and Limitations of the Ambient Calculus

The most interesting aspect of the ambient calculus is that, while it includes no
communication primitives, it can encode the asynchronous π calculus (see 4.2.2).
This seems to imply that it is possible to model mobility in a more natural way
without losing much of the expressivity of the π calculus. On consideration , this
seems a little less surprising as ambient names exhibit the same scope extrusion seen
with channel names in the π calculus. With this in mind, it is not too difficult to see
that ambient names could be used to mimic channel names, with synchronisation
being emulated by two processes performing some kind of interaction within the
same ambient.

However, the representation of synchronisation illustrated in (Cardelli & Gordon,
1998) seems to suggest that the ambient calculus may still have problems dealing
with the kind of global synchronisation needed for the compositional broadcast agent
considered in 2.3. The operation is performed by destroying and recreating ambients,
as a signal to the other process involved in the synchronisation. Extending this
would seem to require using more ambients, which again leads to the problem of
enumerating the number of entities who wish to synchronise. As before, this is
possible but not compositional; every time synchronisation is performed with a
different number of agents, the semantics of the process must be recreated.

Thus, the ambient calculus and the π calculus have more in common than is
initially apparent, and the choice between the two seems to be largely based on the
most natural formalism for a particular task.

4.3.5 P Systems

While providing a way of modelling concurrent spatially-oriented systems, P Systems
(Păun, 2002; Păun, Rosenberg & Salomaa, 2009 (to appear)) arise from the area
of formal language theory and re-writing rules rather than process calculi. They
are considered here, as there exist a number of similarities between them and, for
example, the ambient calculus both in providing a distributed model of computation
and in finding applications in the area of biological modelling. Below, a basic P
system with priorities is introduced.

A transition P system with priorities (Păun, 1998) of degree n, where n ≥ 1 is
represented as:

Π = (V, µ,M1, . . . ,Mn, (R1, ρ1), . . . , (Rn, ρn), i0) (4.61)

where:

• V is an alphabet of objects.

• µ is the membrane structure, containing n membranes.

66 CHAPTER 4. MOBILITY

• Mi, where 1 ≤ i ≤ n, is a multiset of objects from V which are contained in
membrane i.

• Ri, where 1 ≤ i ≤ n is an evolution rule associated with one of the membranes,
i. The corresponding ρi is a partial-order relation which determines the priority
of the rule. The rules are rewriting rules of the form a → v, which causes a to
be replaced by v; where a ∈ V and v ∈ (V × Tar)∗, Tar = {here, out, in|1 ≤
i ≤ n}. The set Tar of target regions gives all the possible derivations for
symbols occurring on the right-hand side of each rule. Rules of the form
a → vδ indicate the membrane will disappear after its application.

• i0 is a number between 1 and n which specifies the output membrane where
the result of the computation should be found.

Any of the multisets, rules or priority relations may be empty. Evolution occurs
in parallel, in a synchronous fashion involving all membranes (referred to as maxi-
mal parallelism). A universal clock is assumed to exist, which breaks the evolution
of the system into cycles. Objects may move between membranes and membranes
may be broken, causing their objects to flood into the membrane above and their
rules to disappear. Such behaviour has echoes of the ambient calculus described in
4.3.2, where ambients may be destroyed by the open primitive and processes may
move around the ambient hierarchy (but only within an ambient). The notion of
synchronous clock cycles also recalls the discrete timed calculi of chapter 3, where
evolution can also be bounded by clock cycles in a synchronous fashion. An in-
teresting distinction is commonly made in P systems; the outer membrane or skin
membrane is assumed to be special. For example, at least in a biological context,
the system is assumed to terminate if the outer membrane is destroyed (biologically,
the external membrane has been broken and thus the organism falls apart).

Consider the following example P system (Fig. 4.4),

Π1 = (V, µ,M1,M2,M3,M4, (R1, ρ1), (R2, ρ2), (R3, ρ3), (R4, ρ4), 4)

V = {a, b, b′, c, f}
µ = [1[2[3]3[4]4]2]1

M1 = ∅, R1 = ∅, ρ1 = ∅
M2 = ∅, R2 = {b′ → b, b → b(c, in4), r1 : ff → af, r2 : f → aδ}, ρ2 = {r1 > r2}
M3 = {af}, R3 = {a → ab′, a → b′δ, f → ff}, ρ3 = ∅
M4 = ∅, R4 = ∅, ρ4 = ∅

where the only membrane that initially contains any objects is M3. In M3 are two
objects, a and f . f only matches one rule, f → ff , which causes the number
of fs to double on each evolution. For a, there are two rules and one is chosen

4.3. DISTRIBUTION AND MIGRATION 67

Figure 4.4: Example P System

non-deterministically. If the first, a → ab′, is applied, then an additional object b′

appears, and the rule may be applied again as an a is still present. If a → ab′ and
f → ff are applied for n steps, then n instances of b′ and 2n occurrences of f are
present.

If the second a rule a → b′δ, is applied, the δ causes the membrane, M3, to be
dissolved. At this point, there will be one extra b′ and one extra f resulting from
the application of this rule and f → ff , respectively, and no a. This changes the
configuration of the system to become:

µ = [1[2[4]4]2]1

M1 = ∅, R1 = ∅, ρ1 = ∅
M2 = {b′n+1, f 2n+1}
R2 = {b′ → b, b → b(c, in4), r1 : ff → af, r2 : f → aδ}, ρ2 = {r1 > r2}
M4 = ∅, R4 = ∅, ρ4 = ∅

The three rules that were present in M3 are lost, while the objects float into the
membrane above, M2. In this configuration, n represents the number of times the
pair of rules a → ab′ and f → ff were applied prior to this, and is greater than or
equal to zero.

In M2, a priority relation exists that forces ff → af to be given precedence over
f → aδ. As a result, whenever it is possible to apply ff → af (i.e. there are two f
objects), it will be applied instead of f → aδ. The other two rules manipulate the
b′ objects. First, they are all converted in to b objects. This will always occur, as

68 CHAPTER 4. MOBILITY

there are at least two f objects in M2 to begin with, which means ff → af will be
applied rather than f → aδ which destroys M2. Each time ff → af is applied, the
number of f objects halves.

The remaining rule, b → b(c, in4), will evolve once for each occurrence of ff , of
which there are n. M2 contains n + 1 b objects, all converted from the b′ objects
that were in M3. As long as there is an even number of f objects, the two rules
b → b(c, in4) and ff → af will be applied, halving the number of f objects and
creating n + 1 c objects in M4 (via (c, in4)), while the number of b objects remains
the same.

When only one f object is left, f → aδ will be applied, resulting in M2 being
destroyed and the following configuration:

µ = [1[4]4]1

M1 = {a2n+1, bn+1}, R1 = ∅, ρ1 = ∅
M4 = {c(n+1)2}, R4 = ∅, ρ4 = ∅

No further evolution is possible, as there are no more rules. c(n+1)2 is the final
output, as M4 is the output membrane.

Further variants of P systems exist. Tissue P systems use a graph-based structure
rather than the tree shown here, while population P systems also incorporate an
environment and use a dynamic graph as an associated structure of it. There are
also timed variants of P systems; rules are usually assumed to apply instantaneously,
but in the timed variants they can take a specific duration.

4.4 Comparing Modelling Approaches

Biological systems are inherently concurrent, being focused on the behaviour of
multiple entities from low-level molecules, through bacteria and other bodies, to
full cellular structures and beyond. Models which incorporate spatial distribution,
such as the ambient calculus (4.3.2) and P systems (4.3.5) are especially useful for
representing the structure of real-world biological entities.

Such modelling is becoming commonplace within the literature (Regev, Silver-
man & Shapiro, 2001; Regev, Panina, Silverman, Cardelli & Shapiro, 2004; Pérez-
Jiménez & Romero-Campero, 2006), where concurrent models represent an alter-
native to the use of ordinary differential equations (ODEs). The usual approach
is to create a model of the system within the formalism and then perform simula-
tions. Such simulations rely on reducing the non-determinism within the model by
introducing a stochastic semantics. In each of the biochemical stochastic π calculus
(Regev et al., 2001), the BioAmbient variant (Regev et al., 2004) and P systems

4.4. COMPARING MODELLING APPROACHES 69

(Pérez-Jiménez & Romero-Campero, 2006), these are based on Gillespie’s algorithm
(Gillespie, 1977).

The algorithm selects which reaction occurs next and the necessary advancement
of the system’s ‘clock’ (a real time value in this context, rather than some discrete
notion). A probability is associated with each reaction, so that the algorithm basi-
cally runs as follows:

1. a0 is calculated as the sum of the probabilities.

2. Two random numbers, r1 and r2, are generated from a uniform distribution
over the unit interval 0 to 1.

3. Calculate the waiting time for the next reaction, τi = 1
a0

ln(1
r1

)

4. Take the index, j, of the reaction such that

j−1∑

k=1

pk < r2a0 ≤
j∑

k=1

pk where pk is

the kth probability.

5. Return the pair (τi, j)

determining which one occurs. Slight alterations are made in distributed models
to handle the rules arising from different localities. For example, the P systems
model (Pérez-Jiménez & Romero-Campero, 2006) adapts the algorithm to form a
multi-compartmental variant, which treats each membrane separately, to a degree,
while also taking into account that activity in one membrane may affect others.

Clearly, different formalisms offer different approaches. In the original π calculus
approach of (Regev et al., 2001), the focus was solely on communication with biolog-
ical compartments abstracted as private channels. The model given for BioAmbients
(Regev et al., 2004) is more natural due to the explicit realisation of these compart-
ments.

Take the following example from (Regev et al., 2004),

System ::= molecule[Mol] | . . . | molecule[Mol] | cell[Porin]
Mol ::= enter cell1.Mol + exit cell2.Mol

Porin ::= accept cell1.Porin + expel cell2.Porin

(4.62)

which demonstrates a membranal pore, which molecules use to pass through a mem-
brane. Both the cell and the molecules are represented by ambients. Each molecule
is controlled by a process, Mol, which, at any time, has the option of performing
either an enter or an exit. Similarly, the Porin process, which represents the
membranal pore, may accept or expel.

70 CHAPTER 4. MOBILITY

Within the BioAmbient calculus, movement is synchronous and takes place by
the pairing of an enter and accept action (the equivalent of in) or an exit and
expel action (equivalent to out). The first action in each case is used by the moving
process. Both must also mention the same channel name (cell1 and cell2 here).
In the case of the system shown above, both Mol and Porin permanently offer their
halves of this pairing. However, the spatial context makes one of them inapplicable.
Initially, exit and expel won’t synchronise, as Mol is not inside the ambient from
which it is being expelled. Likewise, once it has entered, it can’t do so again, even
though the actions make this possible.

Models such as this seem a little unnatural as molecules are modelled as both an
ambient and a process. This is because only ambients may move but only processes
can emit the necessary mobility primitives to do so. The notions of mobility present
in the ambient calculus, including this idea, have been carried across, even though it
doesn’t directly adopt the primitives of the ambient calculus; the style is still more
akin to the π calculus.

In contrast, (Pérez-Jiménez & Romero-Campero, 2006) takes a different ap-
proach using P systems, representing signals and proteins directly as objects in
the membranes. One particular application of this technique is quorum sensing.
This is a gene regulation system where a population of bacterial cells communicate
in order to regulate the expression of certain genes in a co-ordinated way which is
dependent on the size of the population. (Pérez-Jiménez & Romero-Campero, 2006)
presents a model of this phenomenon in vibrio fischeri, a marine bacterium, using a
P system10:

Πvf = (O, {e, b}, µ, (w1, e), (w2, b), . . . , (wn+1, b),Rb,Re)

O = {OHHL,LuxR,LuxR-OHHL,LuxBox ,LuxBox -LuxR-OHHL}
w1 = ∅
wi = {LuxBox} where 2 ≤ i ≤ n + 1

where each bacteria is represented as a membrane, b, within an environment mem-
brane, e. The alphabet, O, contains the signal, OHHL, the protein, LuxR and the
regulatory region, LuxBox , in addition to the protein-signal complex (LuxR-OHHL)
formed and its regulatory region, LuxBox -LuxR-OHHL. The initial configuration
shown above leaves the environment empty and places just the genome, LuxBox ,
inside each bacteria membrane to start production of the signal and the protein. Rb

and Re contain the rules which affect the bacteria and the environment respectively.
The reader is referred to the full paper for full details of these.

10This method of defining the configuration differs slightly from that in 4.3.5, as it also includes
a set of labels, rather than assuming that the natural numbers are used.

4.5. BIGRAPHS 71

There are similarities between process calculi and P systems, even though they
arose from two different communities. Many of the same techniques and properties
have been proven to apply to both, and it is possible to translate a P system into
a process calculus form to take advantage of model checking techniques originally
designed for a process calculus. The difference in their backgrounds also results in
some interesting differences in their design and the way they are used; P systems
arise from language generation and thus the rules are applied in parallel, while on the
other hand, process calculi are usually based around transitions and communication.
The choice of which one is best to use really depends upon the use to which it is
being put; P systems make sense when there is structure inherent in the model and
the various process algebraic techniques lend themselves to situations with a large
amount of communication that needs to be monitored.

4.5 Bigraphs

Bigraphs (Jensen & Milner, 2004; Milner, 2005) are an attempt at providing a uni-
fying framework, able to represent both spatial relationships (locality) in the style
of the ambient calculus (see 4.3.2) and link-based-relationships (connectivity) seen
in the π calculus (see 4.2.1). Their particular application area is within pervasive
computing, where a mixture of both concepts is needed to represent both movement
through space and the change in relationships between agents.

The nodes in a bigraph support a dual structure, hence the name. On one
level, there are nodes nested within nodes, representing locality. This is called the
place graph. These nodes have ports which are connected via links to form a link
graph. Each node has a control with an arity that defines the number of ports. The
two graphs share nodes, but are otherwise independent. Nesting can only occur in
nodes with a non-atomic control. These can also be active or passive. The former
allows reactions to occur within the node. Holes may occur in bigraphs, where other
bigraphs can appear.

Within this model, it is possible to encode both the π calculus and the am-
bient calculus. Take the following rule from the asynchronous π calculus without
summation,

xy | x(z).P → P{y/z} (4.63)

which represents synchronisation. In (Jensen & Milner, 2004), Milner encodes this
as a bigraph with two controls, send and get, both of which have an arity of two. To
represent the fact that the output prefix has no continuation in the asynchronous π
calculus, send is declared atomic. get is non-atomic but inactive.

The node get includes a nested hole with the port z. This represents the contin-
uation P , with z being the name bound on input. The port z is linked from the hole

72 CHAPTER 4. MOBILITY

to get itself. send has two ports: x, which is also connected to get, and y. With
these concepts in place, the reaction may be represented as:

sendxy | getx(z)� → x | y/(z)� (4.64)

the send node disappearing afterwards, leaving y connected to z and x unused.
Similarly, (Jensen & Milner, 2004) shows how the in capability from the ambient

calculus:

n[in m.P1 | P2] | m[Q] → m[n[P1 | P2] | Q] (4.65)

may be encoded using two controls, amb and in, both with an arity of one. The
two ambients involved are represented by instances of amb, while in is an atomic
control representing the process that emits the capability. The amb control is non-
atomic and active, each ambient containing a hole which represents their continued
behaviour,

The ambient names are represented as the node’s single port. In the case of the
ambient named in the capability, this is also linked to the in instance. To model
the reaction above, n is connected to the port of one amb, while m is connected to
both the other amb and in. The reaction is then encoded as:

ambn(inm | �0) | ambm�1 → ambm(ambn�0 | �1) (4.66)

where the similarities between the two are clear.
Bigraphs provide an interesting framework for unifying the two disparate con-

cepts outlined above in 4.2 and 4.3. It will be exciting to see how this theory devel-
ops, and whether it can also be used to encode the discrete time notions described
in chapter 3.

4.6 Conclusion

The π calculus seems to provide the best of both worlds, being able to model con-
current systems and still retain the expressiveness of the λ calculus. However, a key
limitation was identified which reinforced the idea that expressivity only makes a
model capable, and not suitable, for simulating any recursive function: modelling
global synchronisation via a broadcasting agent. This limitation seems to hold for
both CCS and the π calculus, and it is also likely that it applies to many other pro-
cess calculi, such as the ambient calculus, a formalism that provides a more natural
form of mobility via structural changes.

Biology was also considered briefly (see 4.4), as a motivating paradigm. P sys-
tems seem the most natural formalism in this area and there are clear parallels
between P systems and ambient calculi, especially in their use of structure. In

4.6. CONCLUSION 73

the next chapter, we take the general concepts of structural change and migrating
objects present in both, and combine them with CaSE to create a new calculus;
Nomadic Time.

Chapter 5

Nomadic Time

5.1 Introduction

This chapter introduces the process calculus used as the basis for DynamiTE, No-
madic Time, in which timed processes are mobile. In the preceding chapters, we
have looked at a number of existing calculi and the features of the main ones1 are
summarised in Table 5.1. Synchronisation refers to the single transition arising from
the pairing of a name and a co-name running in parallel, which is fundamental to
CCS (see 2.2) and is retained in TPL, CaSE, the π calculus and our own Nomadic
Time. It is usually used to represent sender-receiver communication between two
processes. Timeouts were introduced in our discussion of TPL in 3.2 and solved the
problem of providing a compositional broadcast agent. Multiple clocks and clock
hiding allow this feature to scale up to larger systems.

Scope mobility is a concept introduced by the π calculus (see 4.2.1), allowing
processes to gain knowledge of communication channels during execution, thus in-
creasing their scope. Localities were discussed in 4.3 and allow distribution to be
modelled. Location mobility refers to the movement of localities, including all con-
tents, as provided by the in m and out m operations of the ambient calculus from
4.3.2. Destruction refers to the ability to destroy a locality. This can be seen in
the use of open m in the ambient calculus or the dissolution of a membrane in P
Systems (see 4.3.5). Co-migration refers to the need for a mobility primitive to syn-
chronise with a corresponding co-mobility primitive, as in the in m and in m pairs
found in the safe ambients calculus (see 4.3.3). Finally, process mobility refers to the
ability to directly move a process from one locality to another, without changing the

1We miss out some covered earlier due to space restrictions, but it should be clear how these
fit into the matrix. CSA bridges the gap between TPL and CaSE with timeouts and multiple
clocks, but no clock hiding. The join calculus has the same features as the π calculus, while the
distributed join calculus adds localities to the feature set. The boxed ambients calculus is the same
as the ambient calculus, but without destruction; it has directed communication instead.

74

5.1. INTRODUCTION 75

Table 5.1: Feature Summary from the Literature Survey

CCS TPL CaSE π Amb. Safe P NT
Amb. Systems

Synchronisation
√ √ √ √ √

Timeouts
√ √ √

Multiple Clocks
√ √

Clock Hiding
√ √

Scope Mobility
√

Localities
√ √ √ √

Location Mobility
√ √ √

Destruction
√ √ √ √

Co-Migration
√ √

Process Mobility
√ √

CCS

abstract time

��

Ambient Calculus

co−mobility

��

CaSE

C1.1

**

Safe Ambients

C1.2,4

ss

Nomadic T ime

Figure 5.1: Derivation of Nomadic Time

structure of the localities. P Systems have something close to this in that an object
can move between membranes, but these objects don’t have any behaviour; the Dπ
calculus (Riely & Hennessy, 1998) and the M3 calculus (Coppo, Dezani-Ciancaglini,
Giovannetti & Salvo, 2003), derivatives of the π calculus and the ambient calculus
respectively, provide examples of the same idea being applied to processes.

As can be seen from the table, Nomadic Time (NT) has the features of both
CaSE and the safe ambients calculus, from which it draws its inspiration2. This
is illustrated in Figure 5.1, which also shows how our creation of Nomadic Time
fits in with our contributions to knowledge. Over the first half of this chapter,
we go through this process in detail. CaSE (Norton et al., 2003) (itself a timed

2The only missing feature of Nomadic Time, according to the table, is scope mobility; this
could be added in just the same way CCS was extended to create the π calculus but it would be
superfluous, given we already have a form of mobility based on localities.

76 CHAPTER 5. NOMADIC TIME

derivative of CCS) is first extended with localities (see 5.2), merging them with
clock hiding to give contribution C1.1. We then introduce location mobility in
the style of the ambient calculus (see 5.3.1), as well as a form of objective process
mobility which reuses the concept of name-based synchronisation from CCS and
CaSE; this gives contributions C1.2 and C1.3. At this stage, we have a calculus
which provides both the ability to migrate processes during execution and to perform
global synchronisation in a compositional manner. Finally, we introduce the concept
of co-mobility primitives from the safe ambients calculus, but rather than applying
these to normal processes, we introduce ‘bouncers’ (see 5.4), which guard a particular
locality (an environ in Nomadic Time). This effectively gives each environ a security
policy, allowing the migration primitives which effect it to be restricted; the bouncers
define which mobility actions may be performed and how many times. This addition
forms contribution C1.4.

The second half of this chapter contains the operational semantics of the calculus,
including a set of structural congruence rules (see 5.5); these form contributions
C1.5 and C1.6. We also demonstrate how the properties of prioritisation and time
determinacy are provided by the semantics; this is contribution C1.7. Finally, we
close with a comprehensive example (see 5.6) demonstrating both the mobility and
global synchronisation features of the calculus, and the application of the calculus
to our prototypical application (see 5.7).

5.2 Localising the Calculus

Localisation, discussed in detail in 4.3, effectively adds another level of grouping to
the calculus. A set of composed processes may be contained within one locality, a
notion which is often used in the modelling of distribution. This idea, which can be
taken to its logical conclusion by forming a hierarchy of such localities, has echoes
of the notion of clock hiding within CaSE, as described in 3.4.

Thus, the first step in the evolution towards NT is to combine these two hi-
erarchical concepts by effectively localising CaSE. The notion of components and
encapsulation is explicitly realised by an environ, which also handles the hiding of
clocks. As a result, the clock hiding operator from CaSE disappears, being replaced
by a new operator which allows the creation of environs. The bounds of the environ
define both a new group and the scope of the clock hiding. The syntax for localised
CaSE is thus:

E ,F ::= 0 | ∆ | ∆σ | α.E | E + F | (E | F) | ⌊E⌋σ(F) |
⌈E⌉σ(F) | µX.E | X | E \ a | m[E]~σ

(5.1)

where ~σ is a set of clocks and m represents an arbitrary environ name3. In particular,

3Note that although names are added to the environs here, this is not really necessary at this

5.2. LOCALISING THE CALCULUS 77

m may be equal to the empty string, ǫ, thus facilitating the use of anonymous
environs. This allows the semantics of CaSE’s clock hiding to be encoded:

[[E/σ]]
def
= [E]{σ} (5.2)

thus making localised CaSE a conservative extension. The environs form a forest
structure, due to the ability to nest environs to an arbitrary depth and the possibility
of multiple environs occurring at the top level.

Recall the example of clock hiding given in (3.11):

(P/σ) | Q (5.3)

This becomes:
[P]{σ} | Q (5.4)

in localised CaSE, or:
m[P]{σ} | Q (5.5)

if an arbitrary name, m, is assigned to the environ. Just as with the clock hiding
operator, the clock σ is hidden outside the environ, m, causing its ticks to be visible
only to P .

With this extension the set of visible clocks for a particular environ may be
obtained by finding the set difference between T and the union of the sets of clocks
of its child environs. For example, consider the more complex scenario:

n[E | m[F | k[G]{σ}]{ρ}]{γ} (5.6)

where the top-level environ, n, contains a process E and a further sub-environ, m.
Likewise, m contains both a process, F , and the sub-environ, k. Finally, k contains
just the single process, G. The set of clocks for the environ k is {σ} and its parents
are m (with the set {ρ}) and n (with {γ}). Thus, the set of visible clocks for k is
T \∅, as it has no child environs. which means that G, located in k, can see the ticks
of all clocks.

F , by comparison, can only see the ticks of the clocks in T \{σ} as σ is hidden
outside k. E, in the top-level environ, n, can only observe silent actions resulting
from the two hidden clocks, ρ and σ, but can see the ticks of γ and any other clocks
in T , its set of visible clocks being T \{σ, ρ}.

This is illustrated in Figure 5.2 which shows the scope of each clock. The smallest
circle represent the scope of σ, and contains just the process G. The middle circle
represents the scope of ρ and incorporates F and the environ k in which G resides.
The largest circle represents the scope of γ, which covers the entire system. Within
each circle, the ticks of the respective clock are visible. Outside it, they become
silent actions.

stage; they provide nothing more than a way to refer to environs in talking about a system.
However, they are necessary for providing migration as discussed in 4.3

78 CHAPTER 5. NOMADIC TIME

Figure 5.2: Clock Hiding in n[E | m[F | k[G]{σ}]{ρ}]{γ}

5.3 Adding Mobility

Localised CaSE makes the notion of components and encapsulation clearer than
in the original calculus, by allowing them to be given explicit names. However, it
doesn’t provide a great deal of extra functionality4. The most natural progression
from this stage is to add mobility. For this, the primitives of the ambient calculus are
adopted, as they provide a very natural and simplistic formalism, which builds on
the component-oriented nature of the calculus, now explicitly realised by environs.
This is shown in more detail in 5.3.1.

In addition, NT allows the movement of individual processes. In the ambient
calculus, only ambients can move, which restricts the separability of processes. For
a given group of processes, the size of the group may only change by:

1. One of the processes becoming 0. Both NT and the ambient calculus include
a structural congruence law,

E | 0 ≡ E (5.7)

which allows such processes to be removed.

2. The process splitting into two or more processes via parallel composition. For
example, in m.(E|F) enters the ambient, m, and then splits into two separate
processes, E and F .

4Although the semantics could be adapted so as to use the environs for bisimulation, as in 4.3.

5.3. ADDING MOBILITY 79

3. Another process opening the ambient, causing the set of processes to merge
with those in the parent.

What the ambient calculus doesn’t allow is for a selected process or group of
processes to be moved from one ambient to another. That process or group must
be in its own ambient for this to happen.

Take the example process,

m[E | F | G] | n[0] | H (5.8)

where E, F , G and H are all processes and m and n are ambients. The topology
of this process may change in several ways, as outlined above. Any of the four
processes might evolve to 0, or fork into two or more processes. In addition, E, F or
G may emit an in n capability, causing the ambient m to move inside n. Similarly,
H may perform an open m, causing m to be removed and the top-level to include
all four processes.

So, several events may occur but there are also some that are intuitive, but
difficult to achieve. For instance, all three processes in m must move as a unit,
whether this is to the top-level due to an open capability or as a result of m moving
in to n. Moving one process, E for example, requires the interaction of both E itself
and another process at the final destination.

To move E to the top level on its own requires converting it to the form,

Emov
def
= z[out m.E] (5.9)

where z is a new name, which doesn’t occur free in either E, F , G or H. The effect
is clearer when this is placed in context,

m[z[out m.E] | F | G] | n[0] | H (5.10)

where it can be clearly seen that the new capability prefixed on E will cause the new
surrounding ambient, z, to move outside of m. To actually have E at the top-level,
and not E nested in an ambient, requires the presence of a top-level process to open
the z ambient. This results in something along the lines of:

m[z[out m.E] | F | G] | n[0] | H | open z.0 (5.11)

to truly encode the movement of E alone. Moving just E into n is even more
convoluted:

m[z[out m.in n.E] | F | G] | n[open z.0] | H (5.12)

and neither are particularly natural. NT instead provides this functionality as a
base part of the syntax, which will be explored in 5.3.2.

80 CHAPTER 5. NOMADIC TIME

Finally, it should be noted that the scope of an action is implicitly restricted to
the bounds of an environ within NT. For instance, in the following process:

a.P | m[a.Q]{σ} (5.13)

synchronisation between the two processes is not permitted as they lie on either
side of an environ boundary. This is not an issue, as the presence of mobility allows
processes to move into a situation where the co-action is in scope. In addition, NT
(at present) does not incorporate the scoping of environ names; see 8.2.1.

5.3.1 Location Mobility

To add an ambient calculus style of mobility, the existing syntax of localised CaSE
is extended with a mobility prefix, M.E , to give:

E ,F ::=0 | ∆ | ∆σ | α.E | E + F | (E | F) | ⌊E⌋σ(F) |
⌈E⌉σ(F) | µX.E | X | E \ a | m[E]~σ | M.E (5.14)

where M is further defined as:

M ::= 6m | 7m | �m (5.15)

with m again representing the name of an environ. The behaviour of these primitives
is identical to the behaviour of their equivalents in the ambient calculus (6m being
in m, 7m being out m and �m being open m)5, so just a short recap of section
4.3.2 is given here, using the syntax above.

When a process emits an 6m capability, the surrounding environ may move into
a sibling environ with the name, m. Given the context,

m[E]∅ | n[0]∅ (5.16)

or, diagrammatically,
m

��

n

��

E 0

if E is defined as
E

def
= 6n.E ′ (5.17)

then this will allow the derivation

m[6n.E ′ | n[0]∅]∅
6n→ n[m[E ′]∅ | 0]∅ (5.18)

5The mnemonics 6m, 7m and �m are used to prevent confusion with the names of actions.

5.3. ADDING MOBILITY 81

to occur, giving
n

~~||
||

||
||

��?
??

??
??

?

m

��

0

E ′

Similarly, defining E ′ to be

E ′ def
= 7n.E ′′ (5.19)

allows the converse
n[m[7n.E ′′ | 0]∅]∅

7n→ m[E ′′]∅ | n[0]∅ (5.20)

to take place, returning us to
m

��

n

��

E ′′ 0

as 7n allows the surrounding environ to move outside a parent environ named n. As
noted above, these are fairly dull, both being identical to the same primitives in the
ambient calculus. The behaviour of �m is more interesting, due to its interaction
with the environ’s clock environment.

Take the example context,

m[E | n[F]{σ}]{ρ} (5.21)

or, diagrammatically,
m

~~||
||

||
||

 A
AA

AA
AA

A

E n

��

F

where E is defined as
E

def
= �n.E ′ (5.22)

and thus may cause the environ, n, to be destroyed

m[�n.E ′ | n[F]{σ}]{ρ}
�n→ m[E ′ | F]{σ,ρ} (5.23)

giving
m

~~||
||

||
||

 A
AA

AA
AA

A

E F

82 CHAPTER 5. NOMADIC TIME

and causing the two clock environments to merge. As a result, not only does the
context of F change with respect to nearby processes, as in the ambient calculus,
but now E is also affected. Prior to the emission of �n, E could only see ticks from
the clock ρ. The ticks of σ were converted to silent actions by the environ barrier.
Following the dissolution of the environ, n, these ticks become visible to E. So, the
open capability in NT not only changes the environ hierarchy, but also the clock
context within the parent environ.

Just as in the ambient calculus, the reduction of capabilities is subject to the
availability of applicable environs, thus allowing for stalled capabilities (when there
are none) and non-determinism (when there are several). For example, the process

m[�n.E | n[F]{σ} | n[G]{γ}]{ρ} (5.24)

or, diagrammatically,

m

{{ww
ww

ww
ww

w

�� A
AA

AA
AA

A

�n.E n

��

n

��

F G

has two possible derivations

1. m[�n.E | n[F]{σ} | n[G]{γ}]{ρ}
�n→ m[E | F | n[G]{γ}]{σ,ρ}

m

{{ww
ww

ww
ww

w

�� A
AA

AA
AA

A

�n.E F n

��

G

2. m[�n.E | n[F]{σ} | n[G]{γ}]{ρ}
�n→ m[E | n[F]{ρ} | G]{γ,ρ}

m

{{ww
ww

ww
ww

w

�� A
AA

AA
AA

A

�n.E n

��

G

F

5.3. ADDING MOBILITY 83

and, as a result, two different resulting clock contexts. In the full calculus, this
non-determinism is restricted by the notion of bouncers, introduced in section 5.4,
which reduce the possibility of grave interferences (see 4.3.3).

5.3.2 Process Mobility

In NT, the mobility prefix is further extended as follows:

M ::= 6m | 7m | �m | on β 6 m | on β 7 m (5.25)

where β ∈ N refers to an action. While the location mobility described above is
subjective (the process requesting the move does the move), process mobility, in
this form, is objective. The process which emits one of the two new capabilities
synchronises with a partner process on the given action, and it is this partner which
actually moves. The partner will be a process in the same environ, due to the
scoping of actions described above.

Such behaviour is initially difficult to understand, but can be made clearer with
a simple example. Take the process,

on go 6 m.E | go.F | m[0]{σ} (5.26)

where E is emitting the capability on go6m, but it is go.F that will actually move,

on go 6 m.E | go.F | m[0]{σ}
on go6m→ E | m[F | 0]{σ} (5.27)

with the continuation, F , continuing to evolve in the environ m.
Encoding process mobility in this objective form doesn’t prevent it from being

used to perform subjective movement. As processes can fork, a process that wishes
to move can evolve into a situation where it is composed in parallel with a new
process that exhibits the required capability. To demonstrate the converse action,
out, in the scenario above, F can be defined as

F
def
= leave.F ′ | on leave 7 m (5.28)

where the process on the right moves the one on the left outside m. In context, this
performs as follows:

E | m[leave.F ′ | on leave 7 m.0]{σ}
on leave7m→ E | F ′ | m[0]{σ} (5.29)

to give a final process which is very similar to the original.
More generally, a subjective process movement may be encoded as

[[6m E.F]]
def
= z.E | on z 6 m.F (5.30)

where e is the process that will move in to m, F is the continuation and z is a new
name. The converse is pretty much the same:

[[7m E.F]]
def
= z.E | on z 7 m.F (5.31)

84 CHAPTER 5. NOMADIC TIME

5.4 Bouncers

This description of NT is concluded by the addition of the final element, the bounc-
ers. Named after the staff who restrict access to a night club6, the bouncer is an
additional property of an environ which appears in the top right of the expression.
It has no real behaviour of its own, but instead performs the job of protecting the
environ, being a process with a limited choice of available constructs7. The bouncer
provides a structured selection of co-primitives (6, 7 and �), similar to those in
(Levi & Sangiorgi, 2003) (see section 4.3.3) and dictates which mobility transitions
may occur, and when.

The full syntax of NT may now be given as:

E ,F ::= 0 | Ω | ∆ | ∆σ | α.E | E + F | E |F | ⌊E⌋σ(F) |
⌈E⌉σ(F) | µX.E | X | E \ A | m[E]F~σ | M.E

M ::= 6 m | 7m | �m | on β 6 m | on β 7 m | 6 | 7 | �

(5.32)

with Ω representing the bouncer with no behaviour (the equivalent of 0). For a
process or environ to enter another environ, its bouncer must allow this to occur by
providing the corresponding 6 co-capability. Likewise, it must provide 7 to allow
a process or environ to leave. With regard to the destruction of an environ, the
environ’s bouncer must allow it to be removed by providing a � co-capability.

Recall the example given in 5.3.1.

m[6n.E ′] | n[0] (5.33)

With the addition of bouncers, this becomes:

m[6n.E ′]Ω | n[0]6.Ω (5.34)

where, again, a syntactic abbreviation of m[E]F for m[E]F{} is used when the clock

context is empty. The environ m has Ω as its bouncer, as no movement affects it8.
The bouncer for n is defined as 6.Ω, which allows the movement of m into n to
occur:

m[6n.E ′]Ω | n[0]6.Ω 6→ n[m[E ′]Ω | 0]Ω (5.35)

but any subsequent behaviour is disallowed, as the bouncer of n has now evolved
to also be Ω. Note that the transition is labelled with a 6 to represent the syn-
chronisation. This is a member of a set of high priority transitions (denoted H),

6American usage: doorman/woman.
7This limited choice is only explicitly imposed by the type system. There is no restriction in

the abstract syntax.
8In contrast, the most permissive bouncer is µX.(6.X + 7.X + �.X) which always allows any

movement to occur.

5.5. THE SEMANTICS 85

which includes τ and the mobility transitions, 6, 7 and �. If a process may emit
a transition in H, then low-priority transitions are prevented from occurring. This
also applies in CaSE, where H is simply {τ}.

There is a distinct advantage to using a high priority label here. It allows move-
ments to be treated in the same way as synchronisations (which emit τ), so that they
also form part of the synchronous clock cycles, via maximal progress, allowing them
to be used for broadcasting in the same compositional style demonstrated in chap-
ter 3 for actions. This notion is central to the example presented in section 5.6. In
addition, generalising to a set of such labels rather than simply using τ throughout
means will can still distinguish between synchronisations and movements.

Using bouncers, it becomes possible to specify how many entities (processes or
environs) may enter or leave an environ. As bouncers can recurse, the number can
be unlimited. For example, the bouncer:

µX.6.6.7.7.X (5.36)

allows two entities to enter, but two must then leave before another can enter. On
the subject of exiting an environ, the synchronisation with 7 works in the same way
as 6:

n[m[7n.E ′′]Ω | 0]7.Ω 7→ m[E ′′]Ω | n[0]Ω (5.37)

Finally, the destruction of an environ is probably the easiest of the three to
understand. Again, using an example from 5.3.1,

m[�n.E ′ | n[F]{σ}]{ρ} (5.38)

it may be endowed with bouncers to give:

m[�n.E ′ | n[F]�.Ω
{σ}]Ω{ρ} (5.39)

This allows the following synchronisation to occur:

m[�n.E ′ | n[F]�.Ω
{σ}]Ω{ρ}

�→ m[E ′ | F]Ω{σ,ρ} (5.40)

in which the clock contexts merge, the actions of F become available to E and the
bouncer of n disappears along with n itself.

5.5 The Semantics

This section gives NT an operational semantics in terms of a labelled transition sys-
tem, (P ,L,→), defined up to structural congruence. P is the set of NT expressions;
L the alphabet comprising actions, clocks and mobility primitives; and → the tran-
sition relation. Transitions with labels in A are known as action transitions, those in

86 CHAPTER 5. NOMADIC TIME

T as clock transitions and those in {6,7,�} as mobility transitions. The transition
relation, → ⊆ P × L × P is defined in Tables 5.2 and 5.3. We use E, F and G to
range over process terms; σ and ρ over the set of clocks (T); α over the set of actions

(A); h over H; a and b over S def
= (L \ {τ})∪{6m, 7m, �m}∪{on β 6m, on β 7m};

κ over A ∪ {6,7,�}; γ over A ∪ T ∪ {6,7,�} and A ranges over a subset of S.

Structural congruence is the least congruence relation that satisfies the laws given
in Table 5.4, allowing structural rearrangement and simplification of process terms.
A, B and C range over subsets of S. Notably, the rules allow multiple restriction
operators to be combined into a single set (StrResRes).

Table 5.2 shows the core operational semantics, some of which are derived from
those of CaSE given in Table 3.1; the derivation is summarised in Table 5.5. Idle
and Patient represent the progress of time over 0 and action prefixes respectively.
Act allows an action to be performed, with an appropriately labelled transition,
with the process continuing as E. Stall represents the stopping of a specific clock,
σ, allowing transitions to occur for any other clock, ρ. All of these are taken directly
from CaSE.

New to Nomadic Time is the rule SCong, which links the structural congruence
rules to the labelled transition system, and the rules Cap1 and Cap2 which allow the
mobility prefix, M, to evolve. The former allows commutativity to be implied by
the presence of structural congruence, so Sum1 and Par1 from CaSE are sufficient
to describe the behaviour of the summation and parallel composition operators
for single actions. Sum2 and Par3 represent the passage of time over these two
operators. Note that time must be able to pass on both sides, and that the restriction

E | F
h
9 enforces prioritisation. Again, these are taken directly from CaSE but this

time with minor changes to include the mobility primitives (by replacing α with κ)
and to prevent the progress of time in the presence of any high priority transitions
(h), not just τ ones.

Par2 encapsulates synchronisation; when one of the processes can perform an
action and the other can perform the matching co-action, a silent action is performed
and both evolve. FTO1 and STO1 are essentially identical, allowing the dissolution

of the timeout via a tick of the associated clock, σ, on the provision that E
h
9. The

difference between the two timeouts is shown by FTO2, STO2 and STO3. FTO2
is a general rule for the fragile timeout, which allows E to be performed and the
timeout removed on the occurrence of any transition other than the clock tick. For
the stable timeout, the effect of clocks and actions are separated. According to
STO3, clocks other than σ may tick, but the timeout stays in place. STO2 handles
the removal of the stable timeout, due to an action performed by E. Again, these
expand on the CaSE equivalents by including mobility primitives and high priority
transitions as above.

Recursion is provided by Rec, which performs substitution of X for the body of

5.5. THE SEMANTICS 87

Table 5.2: Core Semantics

Idle
−

0
σ−→ 0

Act
−

α.E
α→ E

Patient
−

a.E
σ→ a.E

Stall
−

∆σ
ρ→ ∆σ

ρ 6= σ

Sum1
E

κ→ E ′

E + F
κ→ E ′

Par1
E

κ→ E ′

E | F
κ→ E ′ | F

Sum2
E

σ→ E ′, F
σ→ F ′

E + F
σ→ E ′ + F ′

Par2
E

a→ E ′, F
a→ F ′

E | F
τ→ E ′ | F ′

Par3
E

σ→ E ′, F
σ→ F ′, E | F

h
9

E | F
σ→ E ′ | F ′

FTO1
E

h
9

⌊E⌋σ(F)
σ→ F

FTO2
E

γ→ E ′

⌊E⌋σ(F)
γ→ E ′

γ 6= σ STO1
E

h
9

⌈E⌉σ(F)
σ→ F

STO2
E

κ→ E ′

⌈E⌉σ(F)
κ→ E ′

STO3
E

ρ→ E ′, E
h
9

⌈E⌉σ(F)
ρ→ ⌈E ′⌉σ(F)

ρ 6= σ

Rec
E

γ→ E ′

µX.E
γ→ E ′{µX.E/X}

Res
E

γ→ E ′

E \ A
γ→ E ′ \ A

γ 6∈ A

LHd1
E

σ→ E ′

m[E]B~σ
τ→ m[E ′]B~σ

σ ∈ ~σ LHd2
E

h→ E ′

m[E]B~σ
h→ m[E ′]B~σ

LHd3
E

ρ→ E ′, E
σ
9, E

h
9

m[E]B~σ
ρ→ m[E ′]B~σ

ρ 6∈ ~σ, σ ∈ ~σ Cap1
−

M.E
M→ E

Cap2
−

M.E
σ→ M.E

SCong
E ≡ E ′, E ′ γ→ F ′, F ′ ≡ F

E
γ→ F

88 CHAPTER 5. NOMADIC TIME

Table 5.3: Mobility Semantics

InEnv
E

6m→ E ′, B1
6→ B′

1

n[E]B2

~σ | m[G]B1

~ρ

6→ m[G | n[E ′]B2

~σ]
B′

1

~ρ

OutEnv
E

7m→ E ′, B1
7→ B′

1

m[G | n[E]B2

~σ]B1

~ρ

7→ n[E ′]B2

~σ | m[G]
B′

1

~ρ

Open
E

�m→ E ′, B1
�→ B′

1

n[E | m[F]B1

~σ]B2

~γ

�→ n[E ′ | F]B2

~γ∪~σ

ProcIn
E

a→ E ′, F
on a6m−−−−→ F ′, B1

6→ B′
1

((E | G) \ A) | F | m[H]B1

~σ

6→ (G \ A) | F ′ | m[H | E ′]
B′

1

~σ

ProcOut
E

a→ E ′, F
on a7m−−−−→ F ′, B1

7→ B′
1

m[((E | G) \ A) | F]B1

~σ

7→ E ′ | m[(G \ A) | F ′]
B′

1

~σ

Table 5.4: Structural Congruence Laws

StrSum1 E + F ≡ F + E
StrSum2 E + (F + G) ≡ (E + F) + G
StrPar1 E | F ≡ F | E
StrPar2 E | (F | G) ≡ (E | F) | G
StrIdent E | 0 ≡ E

StrResRem 0 \ A ≡ 0
StrResRes E \ A \ B ≡ E \ A ∪ B

5.5. THE SEMANTICS 89

Table 5.5: Derivation of Nomadic Time from CaSE

Rule in CaSE Use in Nomadic Time
Idle As in CaSE
Act As in CCS and CaSE

Patient As in CaSE
Stall As in CaSE

Sum1 Now includes mobility actions, κ replaces α
Sum2 Redundant due to SCong
Sum3 Sum2; As in CaSE
Par1 Now includes mobility actions, κ replaces α
Par2 Redundant due to SCong
Par3 Par2; As in CCS and CaSE
Par4 Par3; with τ generalised to h

FTO1 τ generalised to h
FTO2 As in CaSE
STO1 τ generalised to h
STO2 Now includes mobility actions, κ replaces α
STO3 τ generalised to h

Rec As in CaSE
Res As in CaSE

Hid1 LHd1; Clock hiding changed to environ, now uses sets of clocks
New LHd2; allows high-priority transitions
Hid2 LHd3; Clock hiding changed to environ, now uses sets of clocks
New Cap1; allows mobility primitives to be performed
New Cap2; allows time to run over mobility primitives
New SCong; integrates the structural congruence laws

90 CHAPTER 5. NOMADIC TIME

the recursion as soon as any transition, γ, occurs. The Res rule defines restriction,
which disallows any transitions for the given name. Both rules are taken directly
from CaSE.

The rules LHd1 and LHd3 are based on Hid1 and Hid2 in CaSE, but with
the clock hiding operator replaced by the new syntax for an environ. With this
syntactic change also comes a change from the hiding of a single clock, σ, in CaSE,
to the hiding of a set of clocks, ~σ. For LHd1, the Nomadic Time equivalent of
Hid1, this adds a side condition whereby the σ used in the transition must now be
a member of the set ~σ; in CaSE, the two are simply equal. Likewise, LHd3, the
equivalent of Hid2, defines σ as a member of ~σ and ρ as not being a member. The
effect of the two rules is that clock transitions for clocks which are members of ~σ
become τ transitions, while the others are retained as is. The latter only occurs
on the provision that there are no transitions from clocks in ~σ as these result in τ
transitions being created which have a higher priority than clock transitions.

The three remaining rules, LHd2, Cap1 and Cap2 are new to Nomadic Time.
The rule LHd2 simply allows high priority transitions (h) to be visible outside the
environ. Note that we don’t allow actions (i.e. members of N and N) to cross the
boundaries of an environ so communication can not take place between a process
on the outside and one on the inside. The Cap1 and Cap2 rules are simply the
equivalents of Act and Patient but for the mobility primitives.

Consequently,

Proposition 1 The semantics exhibit the following properties:

1. prioritisation; E
σ→ implies E

h
9

2. time determinacy; E
σ→ E ′ and E

σ→ E ′′ implies E ′ = E ′′. ⊓⊔

These properties can be observed directly from the rules. The transition E
σ→

is produced by the rules Idle, Patient and Cap2, and retained over summation
(Sum2), parallel composition (Par3), timeouts (FTO1, FTO2, STO1 and STO3),

recursion (Rec), restriction (Res) and environs (LHd3) where E
h
9. The rule LHd1

provides the conversion of ticks emitted by the hidden clocks to silent actions: if E
can perform a σ transition, then it performs a τ transition in any context where σ
is hidden. As τ is one of the possible values of h, the presence of transitions for the
clocks being hidden prevents transitions being created for those that are not hidden
in LHd3. The property is implicit for summation, recursion and restriction as, if the
composed processes can perform a σ transition, then it must not be blocked by a h
transition. The presence of time determinacy is obvious from the Idle, Patient and
Cap2 rules which generate σ transitions as the process (0, α.E or M.E) remains
unchanged as a result of performing

σ→.

5.6. A SIMPLE EXAMPLE 91

The semantics in Table 5.3 focus on mobility and are completely new to Nomadic
Time. InEnv allows a 6 transition to occur and n to move into m if matching 6m
and 6 transitions are available from the process 6m.E and bouncer, B1. Conversely,
OutEnv concerns the interaction between 7m.E and 7, allowing a 7 transition to
occur and n to move outside m. Likewise, �m causes a � transition to occur when
both an �m and an � transition are available. The named environ, m, is destroyed
along with its bouncer, and the two clock contexts are unified.

Finally, ProcIn and ProcOut describe the movement of processes between en-
virons. In both rules, E moves due to a mobility primitive which is part of F . This
occurs if an a transition takes place in the presence of matching on a6m and 6, or
on a7m and 7, actions. An appropriate mobility transition (6 or 7) is emitted as
a result of this three-way synchronisation. In both, we include the use of restriction
on E | G so as to show how E escapes its scope. Process mobility, in this form, is
objective. The process which emits the mobility primitive synchronises with a part-
ner process, and it is this partner which actually moves. The partner is necessarily
a process in the same environ, due to the scoping of actions described above.

5.6 A Simple Example

Consider the familiar children’s game of musical chairs. The conduct of the game
can be divided into the following stages:

1. The players begin the game standing. The number of players is initially equal
to the number of chairs.

2. The music starts.

3. A chair is removed from the game.

4. The music stops.

5. Each player attempts to obtain a chair.

6. Players that fail to obtain a chair are out of the game.

7. The music restarts. Any players who are still in the game leave their chairs
and the next round begins (from stage three).

The winner is the last player left in the game. A model of this game can be created
using the NT process calculus.

The game environment is represented using environs. In the musical chairs sce-
nario, each chair is represented by an environ, as is the ‘sin bin’, to which players are
moved when they are no longer in the game. These environs are all nested inside a

92 CHAPTER 5. NOMADIC TIME

Figure 5.3: The Musical Chairs Environment

further environ which represents the room itself. This is not a necessity, but makes
for a cleaner solution; it allows multiple instances of the system to be nested inside
some context, each performing its own internal interactions and entering into the
synchronisation cycle of the larger system.

The environ structure is represented graphically by Fig. 5.3 and in the calculus
by the equation shown below.

room[chair[0]CB | chair[0]CB | sinbin[0]SB | P | P | GM]Ω{σ} (5.41)

where m[E]F is abbreviated from m[E]F{}. The players themselves are represented
by processes. This allows them both to interact and to move between environs. A
gamesmaster process is also introduced. This doesn’t play an active role in the game
itself, but is instead responsible for performing the administrative duties of removing
chairs from the game and controlling player movement. The process definitions are
summarised in Table 5.6, and make use of the derived syntax for a clock prefix, σ.P ,
shown in 3.4.2. Their names are shorthand for Chair Bouncer (CB), Sinbin Bouncer
(SB), Games Master x (GMx), Player (P), Moving Player (MP), Player in Chair
(PiC), Player Leaving Chair (PLC) and Leaver (L).

The presence of music is signified by the ticks of a clock, σ. A tick from σ is
also used to represent the implicit acknowledgement that everyone who can obtain
a chair has done so, and that the remaining player left in the room has lost. With
regard to the bouncers of the environs, the room environ is not prone to either
destruction or the entry or exit of other environs, having a bouncer simply equal
to Ω. This retains the encapsulation of the model as a single room environ, and
prevents other processes or environs from interfering with its behaviour.

The definition of appropriate bouncers is essential for the chairs (5.42) and the
sinbin (5.43). It is the chair bouncer that enforces the implicit predicate that only
one player may inhabit a chair at any one time, while the sinbin bouncer prevents
players leaving the sinbin once they have entered.

To model stage one of the game, n player processes and n chair environs are
placed in the room. The advantage of using NT for this model is that the actual
number of players or chairs is irrelevant. They need not even be equal. The calculus

5.6. A SIMPLE EXAMPLE 93

Table 5.6: Summary of Processes and Derived Syntax for Musical Chairs

CB
def
= µX.(6.7.X + �.Ω) (5.42)

SB
def
= µX.6.X (5.43)

GM1
def
= σ.GM2 (5.44)

GM2
def
= �chair.GM3 (5.45)

GM3
def
= σ.GM4 (5.46)

GM4
def
= µX.(⌈on sit 6 chair.X⌉σ(GM5)) (5.47)

GM5
def
= µX.(⌈on leave 6 sinbin.X⌉σ(GM1)) (5.48)

P
def
= σ.σ.MP (5.49)

MP
def
=⌈sit.P iC⌉σ(L) (5.50)

PiC
def
= σ.σ.PLC (5.51)

PLC
def
= on stand 7 chair.0|stand.P (5.52)

L
def
= leave.0 (5.53)

allows the creation of a compositional semantics, as discussed in chapter 1, which
works with any n.

For the purposes of demonstration, n is assumed to be two to give the following
starting state:

room[chair[0]CB | chair[0]CB | P | P | GM1]Ω{σ}. (5.54)

The room and chairs appear as shown earlier. The player processes (5.49) simply
wait until two clock cycles have passed, the end of each being signalled by a tick from
σ. The intermittent period between the ticks (the second clock cycle) represents the
playing of the music.

Stage two, where the music is started, is thus represented simply by the first tick
of σ,

room[chair[0]CB | chair[0]CB | P | P | GM1]Ω{σ}
σ−→ room[chair[0]CB | chair[0]CB | σ.MP | σ.MP | GM2]Ω{σ}

(5.55)

which the gamesmaster (GM1 (5.44)) also waits for, before evolving into GM2
(5.45). The second cycle, prior to the music stopping, is used to remove a chair

94 CHAPTER 5. NOMADIC TIME

from the game. Maximal progress, as explained in section 1, ensures that this
occurs before the next clock tick, as the removal emits a high priority action, �.
The transition from stage three to stage four is thus as follows:

room[chair[0]CB | chair[0]CB | σ.MP | σ.MP | GM2]Ω{σ}
�−→ room[chair[0]CB | σ.MP | σ.MP | GM3]Ω{σ}

(5.56)

with one of the two chairs being chosen non-deterministically. The second tick then
occurs, leading in to stage five and the most interesting part of the model.

room[chair[0]CB | σ.MP | σ.MP | GM3]Ω{σ}
σ−→ room[chair[0]CB | MP | MP | GM4]Ω{σ}

(5.57)

The aim of stage five is to get as many player processes as possible inside chair
environs. This is handled by again relying on maximal progress to perform a form
of broadcast that centres on mobile actions, as briefly mentioned in 5.3.2. Rather
than sending a signal to a number of recipients, a request to move into a chair (see
(5.47) and (5.50)) is delivered instead.

If a chair is available, then a player process will enter it (the choice of chair and
player is non-deterministic). This will cause a high priority action to occur, which
takes precedence over the clock tick. Thus, when the clock eventually does tick, it is
clear that no more players can enter chairs. Using clocks in this manner makes the
system compositional ; in contrast to other models, players and chairs can be added
without requiring changes to the process definitions. In this running example, there
are two players, but only one chair, which results in a single 6 transition:

room[chair[0]CB | MP | MP | GM4]Ω{σ}
6−→ room[chair[PiC]7.CB | MP | GM4]Ω{σ}

(5.58)

that causes one of the MP processes to move in to a chair, and become a PiC
process. This is followed by the σ transition, which marks the move to stage six.

room[chair[PiC]7.CB | MP | GM4]Ω{σ}
σ−→ room[chair[σ.PLC]7.CB | L | GM5]Ω{σ}

(5.59)

Both stage six and seven proceed in a similar way. Stage six sees essentially the
same broadcasting behaviour applied to the losing players (see (5.48) and (5.53)).
The difference is that stage six demonstrates something which wouldn’t be possible
without mobility: the broadcast is limited to those player processes which remain in
the room. As communication between processes in different environs is disallowed

5.7. A PROTOTYPICAL APPLICATION IN NT 95

in NT, an implicit scoping of the broadcast occurs. In the example, stage six again
sees just one � transition:

room[chair[σ.PLC]7.CB | L | GM5]Ω{σ}
�−→ room[chair[σ.PLC]7.CB | GM5]Ω{σ}

(5.60)

which results in the remaining MP (now a losing process, L) moving to the sinbin.
Due to space constraints, the sinbin environ is not shown in the above derivations.
It may be factored in to the above as follows:

sinbin[0]SB | L | GM5
6−→sinbin[0]SB | GM5

(5.61)

where the L process evolves to become a simple 0 process. The broadcast is again
terminated by a tick from σ,

room[chair[σ.PLC]7.CB | GM5]Ω{σ}
σ−→ room[chair[PLC]7.CB | GM1]Ω{σ}

(5.62)

which, in this case, also signifies the music starting up again. The remaining players
leave their chairs:

room[chair[PLC]7.CB | GM1]Ω{σ}
7−→ room[chair[0]CB | GM1 | P]Ω{σ}

(5.63)

and the system essentially returns to the beginning, with n − 1 chairs and n − 1
players.

5.7 A Prototypical Application in NT

Recall that in 1.3.1 we specified a series of requirements for a music player applica-
tion:

• The application should provide some form of interface with which the user can
interact.

• It should be able to take a wave file and return a sequence of sound data for
playback.

• It should be able to output the sound data through the speakers.

• It should be able to generate a spectral analysis of the sound data as a form
of visual feedback.

96 CHAPTER 5. NOMADIC TIME

Now that we have our process calculus to work with, we can provide a formal
design for this application, which can then be converted directly into a real-world
application using DynamiTE in the next chapter.

First, we will consider the reading of the wave file. The simplest solution is:

In
def
= i.µX.τ.o.X (5.64)

where the filename is read in on i and processed to produce some sound data in the
τ action. The data is then output on o. We then recurse, continuing to produce
more sound data and output it on o9.

From this, we can already determine some things about the other processes in
the system:

• The interface (Intf) must output on i to trigger In into starting to produce
sound.

• The speaker output (Out) must read on o to obtain the sound data and send
it to the speakers.

• The spectral analyser (Analy) must read on o to obtain the sound data and
produce the visual feedback.

and definitions for Out and Analy follow fairly trivially10:

Out
def
= o.τ.0

Analy
def
= o.τ.0

(5.65)

This already highlights one problem with the current In process. Both Out and
Analy need to synchronise with it on the o channel, but it currently only performs
one o action. Thus, on each loop within In, one of the two will synchronise and the
other will miss out.

From 3.2 and 5.6, we already know the best way to solve this; with a timeout. In
needs to recurse over the o action until it can no longer synchronise with a recipient,
at which point it reads the next piece of sound data; this is exactly the same logic

9At some point, the τ process will reach the end of the file; there isn’t an obvious way of
representing this in the design so we just have to assume that, in the implementation, the internal
τ process will terminate the thread running In. We could use X + 0 at the end, but then we are
representing the end of the process as being non-deterministic, when it is in fact determined by
the file.

10We could represent these processes outputting on channels representing the speakers and dis-
play respectively, but in reality these are going to be system calls in the τ process, just as the τ in
In performs reading and decoding operations on the file to produce sound data

5.7. A PROTOTYPICAL APPLICATION IN NT 97

as we employed for the compositional broadcast agent in 3.2. As a result, In now
looks like this:

In
def
= i.µX.τ.µW.⌈o.W ⌉σ(X) (5.66)

We bind W to ⌊o.W ⌋σ(X) so that each time o is performed, we return to our original
state. When In is running in parallel with Out and Analy :

IntSys
def
= i.µX.(τ.µW.⌈o.W ⌉σ(X) | o.τ.0 | o.τ.0) (5.67)

the presence of both o and o will allow a τ transition to occur (rule Par2 in the
semantics), which in turn inhibits σ. Once both have occurred, σ transitions can
occur and will cause recursion to occur via the expansion of X. Our structural
congruence rules (SCong) mean that we can simply discard the two 0 processes left
behind by Out and Analy .

There is one remaining issue with this construction; the internal τ actions of Out
and Analy will also cause In to continue to recurse on W rather than reading the
next piece of input. The solution to this is to also synchronise these two processes
on σ:

Out
def
= o.⌈∆⌉σ(τ.0) (5.68)

so that now, once input has been received on o, Out waits until σ becomes unimpeded
and is able to tick; ∆ produces no transitions, so neither STO2 or STO3 can be
applied, while STO1 requires the absence of any high priority transitions, which
includes τ transitions. This should allow all three processes to continue with their
internal processing. The same definition can be applied to Analy .

Of course, we could provide a much simpler solution by just performing o twice.
The advantage of this solution, as we have discussed before, is that we can add any
number of other processes that need to synchronise on o without having to alter our
definition of In.

All that remains to complete our definition of this system is to define the inter-
face. This is simply a means of translating user actions into calls to our internal
system. This can be as simple as:

Intf
def
= useri.(i.0|IntSys) (5.69)

But what does useri synchronise with? This comes from the user and is outside
the system itself:

on begin 6 player.0 | begin.useri.0 | player[Intf]6.Ω
{σ} (5.70)

Our system is now encapsulated in an environ, player. To start the player, a client
must enter player and synchronise on useri. The bouncer of the player environ

98 CHAPTER 5. NOMADIC TIME

allows only one process to enter, by providing only one 6 with which to synchronise.
The clock σ is hidden outside the environ so all the ticks from within player appear as
silent actions to those outside (see LHd1). As all the other transitions performed by
Intf will also be silent actions, being a mix of internal τ actions and synchronisations
between i and o, processes outside player can use the presence of these transitions
to determine whether or not Intf is active or not.

We have deliberately kept the design as simple as possible to make it easier to
digest and to reduce the complexity of the corresponding implementation we will
cover in 6.6 as part of our discussion of DynamiTE. There are many more things that
could be represented, not the least being a way of stopping playback once begun!

5.8 Conclusion

In this chapter, we introduced our process calculus, Nomadic Time, giving the first
set of novel contributions (C1.1 through C1.7) in this thesis. Nomadic Time ex-
tends the CaSE process calculus described in 3.4 with the notions of localities (see
4.3) (C1.1) and migration (see 4.3.2) (C1.2 and C1.3). We also introduced the
notion of ‘bouncers’ (C1.4), a security mechanism which allows the number and
type of mobility operations which may be performed on an environ (our term for a
locality in NT) to be defined. The first half of the chapter (5.2 to 5.4) demonstrated
how each of these features was layered onto the calculus from the stage before, with
CaSE as our starting point.

In 5.5, we presented the operational semantics for Nomadic Time (C1.6). With
respect to the core semantics, although they are partially derived from CaSE, there
was still a significant amount of novel work involved in ensuring that the derived
rules correctly covered the new possibilities introduced by the expanded syntax and
transitions available in Nomadic Time. For example, Cap1 and Cap2 were not
present in initial revisions, but without these, the transitions upon which the mo-
bility semantics (Table 5.3) rely would simply not exist. We believe our formulation
of the mobility semantics to be novel; while the general concepts embodied within
them are present in the Ambient Calculus and its derivatives, the semantics of these
calculi are not constructed as structural operational semantics. We thus believe
those presented here to be fairly unique, especially with regard to the presence of
co-mobility primitives from the bouncers.

Unlike CaSE, Nomadic Time also has a set of structural congruence rules (C1.5).
These allow two of the rules from CaSE (Sum2 and Par2) by defining the summation
and parallel composition operators to be commutative. They also allow redundant
0 processes and restriction operators to be removed, and for a pair of restriction
operators to be unified into one. Section 5.5 also demonstrates how the properties
of prioritisation and time determinacy hold for our new calculus (C1.7).

5.8. CONCLUSION 99

The final sections demonstrated how the calculus may be used via two motivating
examples; the first (5.6) aimed to demonstrate each of the features of the calculus
in action, while the second (5.7) expanded on the application specified in 1.3.1 from
a more real-world perspective.

In the next chapter, we show how Nomadic Time may be used to construct a
concurrent programming framework in the Java programming language. We refer to
this framework as the DynamiTE (Dynamic Theory Execution) framework, and this
forms the second set of novel contributions (C2.1 to C2.4) in this thesis. The first
half of the chapter focuses on different elements of DynamiTE; the implementation
of the Nomadic Time syntax and semantics as Java objects (6.3; C2.1 and C2.2),
the plugin framework (6.4; C2.3) and the provision of execution semantics via the
evolver framework (6.5; C2.4). We then use DynamiTE to implement a prototypical
application, using the design from 5.7 to construct corresponding Java classes which
meet the requirements in 1.3.1. Finally, we cover some other existing attempts to
provide implementations of process calculi in 6.7.

Chapter 6

The DynamiTE Framework

6.1 Introduction

In this chapter, we introduce DynamiTE, the Dynamic Theory Execution frame-
work. This provides the solution we first proposed in 1.3, using the Nomadic Time
(NT) calculus introduced in chapter 5 as a foundation for application development.
When using DynamiTE, programmers compose NT processes, realised as Java ob-
jects, to create a working system. The framework handles running these processes,
in parallel if necessary, and negotiates the communication between them. Both fea-
tures are provided by leveraging existing facilities in the underlying Java virtual
machine and class library.

The first half of this chapter explores the design of the framework and its initial
implementation in the Java programming language. In 6.3, we describe how No-
madic Time processes are mapped onto Java objects (see 6.3) with the provision of
a translation schema (C2.1) and examples of how the semantics are implemented
(C2.2). The next section, 6.4, deals with practicalities beyond simply implementing
the syntax of the calculus; we describe how the context of the calculus is represented
and also how we attach additional side effects to transitions via the plugin frame-
work (C2.3). In 6.5, we look at the final piece of the jigsaw; executing the processes
in order to produce behaviour. The execution semantics are embodied in the evolver
framework (C2.4), which allows the programmer to swap in different implementa-
tions, depending on whether they want to simply examine all the possible transitions
of a process or to follow a single deterministic route with side effects.

Finally, we show how DynamiTE can be used to create an implementation of
the application we introduced in 1.3.1 (see 6.6), before closing with a brief look at
other similar concurrent frameworks in 6.7. But first, we discuss why we chose Java
as the host language for DynamiTE and what advantages and disadvantages this
brings to its implementation.

100

6.2. WHY JAVA? 101

6.2 Why Java?

The first implementation of the Java programming language was released in 1995 by
Sun Microsystems. It takes the form of a block structured language with a syntax
akin to C or C++. However, unlike programs written in those languages, Java
applications tend to be compiled to platform-independent Java bytecodes which
are then executed by a Java Virtual Machine or JVM. This allows the same Java
program to be executed on multiple platforms without the need for recompilation.
With this new operating environment comes the removal of a number of features
found in Java’s predecessors and the restriction of others, with the aim of creating
a safer and more portable language:

• No pointer manipulation. All primitive types in Java (integer, floating
point numbers, booleans and single characters) are passed by value. All ob-
jects are stored and passed as pointers or references to their location in mem-
ory. These pointers are immutable, removing the ability to perform pointer
arithmetic (e.g. for iterating over arrays) and with it, a host of problems inher-
ent with inappropriate memory access. For example, attempts to use a null

pointer are caught by the virtual machine and produce a checked exception,
rather than causing a segmentation fault which brings down the entire process.

• All arrays are bounds checked. A major cause of errors and security issues
in C and C++ programs is the possibility of buffer overflows, where programs
write to memory beyond the end of an array. In Java, such errors are prevented
by the virtual machine; any attempt to access an index outside the bounds
of an array causes a checked exception to be thrown and direct access to the
array’s memory is forbidden by the lack of pointer manipulation.

• All memory management is performed by a garbage collector. While
allowing manual memory management allows the programmer greater control,
it leads to an equivalent to the issue we saw with semaphores in 1.2.3; every
allocation must be paired with a later deallocation to avoid the possibility of
an application leaking memory. The problem is even more pronounced with
regard to memory management as, while the acquisition and release of a lock
tend to occur in close proximity to one another, allocation and deallocation
can occur in quite disparate parts of the application. Java instead makes use
of existing research into garbage collectors which allocate memory as needed
and periodically reclaim it. The downside of this is that the garbage collector
has to use processor time to perform its scans which would otherwise be used
by the application. However, as new garbage collection techniques, such as
concurrent and generational collectors, become prevalent, this disadvantage is
further outweighed by the prospect of chasing memory leaks.

102 CHAPTER 6. THE DYNAMITE FRAMEWORK

• Lack of unsigned types. All integer types in Java use a bit to store the
sign of the value, with no equivalent unsigned types that instead use this
bit to store larger values. This makes bitwise operations (and (&), or(|) and
not(~)) more inefficient as they need to operate on the type one size above
(bytes (28) on shorts (216), shorts on ints (232), etc.). Indeed, section 15.22.1
of the Java language specification (Gosling, Joy, Steele & Bracha, 2005) states
that binary numeric promotion (as defined in 5.6.2) should be applied to the
operands, causing them to be converted to integer or long integer levels of
precision before the operation is performed. Thus, it logically follows that it
is impossible to work with unsigned long integers (264) without resorting to
the overhead of a class which implements arbitrary precision integers, such as
java.lang.BigInteger. Unsigned types continue to be proposed for addition
to the Java language, but no such extension is scheduled for the next release
(Java 7) in early 2010.

Although these changes are made at the expense of flexibility for the programmer
and possible efficiency gains, they save time overall in chasing bugs caused by mem-
ory allocation errors, buffer overflows or leaks. Besides, the Java Native Interface
(JNI) can be used to implement certain methods in C, should the need arise. Many
of the methods provided by the Java class library do just that, usually to make use
of a platform-specific application programming interface (API). Doing so has some
overhead and means losing the safety and memory management benefits of Java,
but is possible when a native library needs to be used to facilitate reuse.

Performance has been a common criticism of Java, not just because of these
features but also because the Java bytecodes it uses must be either interpreted or
compiled into native code at run time. This is much less of an issue than it once was,
due to advances in virtual machine design and Just-In-Time (JIT) compilation tech-
niques. Theoretically, JIT compilation should eventually exceed the performance of
code compiled Ahead-Of-Time (AOT) as it can take advantage of information only
available at runtime. This includes knowing the exact platform on which the code
will execute and being able to make better optimisations based on statistics gath-
ered through execution (e.g. better branch prediction). For example, HotSpot, the
virtual machine used by Sun’s implementation of Java, only uses the JIT compiler
to create native code when it believes the code is used enough (‘hot’ enough) to
make doing so worthwhile.

Of these changes, the absence of unsigned types is the only one that seems to have
no advantage, other than simplifying the language. Many file formats and network
protocols include unsigned types, so working with them in Java becomes harder
than is necessary. Although their absence may have made sense in earlier versions
of the language, the complexity of understanding unsigned arithmetic now seems
trivial when compared with the existential type system and its lack of reification

6.2. WHY JAVA? 103

which was introduced by the addition of ‘generics ’ in Java 5. We thus hope that
they may make an appearance in Java 8.

6.2.1 Concurrency Provision

From the perspective of implementing DynamiTE, one advantage of Java is its broad
support for concurrency. Java is one of the few languages to have an implementation
of monitors, a feature we demonstrated in 1.2.3. It has also had support for threads
from the very beginning, with support as a core part of the virtual machine rather
than as an auxiliary library (the approach used for C). Java’s platform independence
means that the same threading constructs and semantics, as mandated by the VM
specification (Lindholm & Yellin, 1999), can be used across all operating systems
supported by a Java virtual machine. The actual implementation is provided by the
virtual machine and class library, which may either map them on to native threads
or provide green threads, where the virtual machine itself creates and schedules
threads. The main disadvantage of the latter is that blocking calls to the operating
system performed by one thread will cause the virtual machine and all its threads to
be blocked; as the system is unaware of the presence of the threads, its only option
is to block the entire VM process. Green threads are however much faster to create
and synchronise, as everything takes place within the VM. They can also match
the required thread semantics exactly, rather than having to map those provided by
the operating system’s threads. While earlier versions of Sun’s implementation used
green threads, native threads are now used on all supported platforms.

The result of this early adoption of multithreading is that its implementation in
Java is reasonably mature and well-tested. With Java 5, this support was greatly
expanded as a result of research led by Doug Lea and incorporated into the Java plat-
form via JSR166 and the java.util.concurrent packages (Goetz, Peierls, Bloch,
Bowbeer, Holmes & Lea, 2006; Lea, 2009).

The extensions provided by JSR166 take the form of a host of new classes,
backed by support in the virtual machine. The Java language itself is not altered.
It provides support for:

• Atomic Variables. These provide replacements for integer, long integer and
reference fields which can be updated in an atomic fashion, which are safer
than volatile variables and more efficient than locking. The Java memory
model allows operations which alter the value of normal fields to be reordered
by the VM as a form of optimisation, as long as this reordering is not visible
from within the same thread. However, this means that other threads may
see the changes in the wrong order or not at all. Marking a field as volatile
makes the VM aware that it may be accessed by multiple threads, causing
updates to be made visible to all threads immediately. However, volatile

104 CHAPTER 6. THE DYNAMITE FRAMEWORK

fields are still prone to race conditions when used in non-atomic operations
such as incrementing a value or performing a conditional update1. The usual
solution is to obtain a lock on the class every time the variable is altered; this
provides both the update guarantees of a volatile variable and blocks other
threads trying to obtain the same lock. Atomic variables provide an alternate
solution by allowing the processor’s CAS operation (see 1.2.3) to be used. This
is usually more efficient than locking the entire class, which will involve the
VM performing a CAS operation on the lock at some point anyway. While
locking takes a pessimistic approach to thread safety by blocking all other
threads, CAS operations are optimistic; the update is attempted, and if it
fails, we try again until it succeeds. Implementing such a check successfully
is even more prone to error than locking, as the programmer has to ensure
they check the result of the CAS and loop accordingly, but it is usually much
more efficient when contention is low. With the addition of atomic variables
to Java, programmers now have the choice of using either.

• Explicit Locks. As we saw in 1.2.3, Java has implicit reentrant locking via
the synchronised keyword. Their use, however, is limited; there is only one
lock per class, so all its variables must be protected by the same lock, and
threads are always blocked until they either acquire the lock or the thread
is interrupted by Thread.interrupt(). The ReentrantLock class provides a
more advanced version with the following additional features:

– tryLock() can be called to perform a non-blocking acquisition of the
lock. It immediately returns with true if the lock was acquired, and
false if it wasn’t.

– tryLock(long, TimeUnit) can be called to perform a timed acquisition.
If the lock is available, it acquires it and returns immediately. Otherwise,
it blocks. However, unlike the implicit lock provision and the lock()

method, it will become unblocked after the given timeout and return
false.

– The lock can operate in a fair mode, where threads acquire the lock in
the order they requested it. Both implicit and explicit locks default to
unfair behaviour, which permits barging (jumping the queue) if a new
thread happens to request a lock when it is unheld. Unfair locks are
much faster2, but fairness is sometimes needed to ensure correctness.

1e.g. in if (x == 4) x = 5, it is possible for x’s value to have been changed by another thread
before the assignment but after the comparison

2If threads are not allowed to jump the queue, then we end up blocking and descheduling a
thread which could have quite happily acquired the lock but isn’t allowed to do so because of the
fairness policy

6.2. WHY JAVA? 105

A class can have multiple instances of an explicit lock, just like any other
variable, and this benefit is utilised by ReentrantReadWriteLock. This class
provides both a shared (read) lock and an exclusive (write) lock. Multiple
threads can acquire the read lock, but to acquire the write lock, both locks must
be unheld. This can be used to make classes more efficient when compared
with the brute force approach of enforcing mutual exclusion for all operations.
For example, a collection class can allow multiple threads to read values as long
as there is no thread altering the collection. Locks, and other implementations
such as Semaphore, are based on AbstractQueuedSynchronizer (Lea, 2004)
which provides a common framework thread queues.

• Explicit Condition Queues. As in the case of locks, Java already has its
own implicit condition queues, accessible via the wait, notify and notifyAll

methods. These also have similar limitations to the implicit locks; only one
queue is available per class and either one or all threads must be notified. With
only one condition queue, the usability of notify to alert a single thread is
extremely limited; using it is dangerous if there is more than one condition
as the wrong thread may be awoken, and it is inefficient unless a change in
the condition means that one and only one thread may proceed. The former
can be observed in the buffer example of 1.2.3 where there are two conditions:
used == BUFFER SIZE and used == 0. The latter is observable in a ‘gate’
scenario where multiple threads queue up waiting for a condition to hold,
and then all proceed when it does. Explicit condition queues address these
issues by allowing a class to have multiple condition queues. Each Condition

is obtained from a Lock by a call to Lock.newCondition and that same lock
must be held when calling its methods. In the buffer example, the synchronized
blocks would be replaced by the use of explicit locks and the calls to wait and
notifyAll by await and signal calls on one of two Condition objects. The
signal method can now be used rather than signalAll, awakening just one
thread, as we know the thread will be waiting for the condition whose state
has changed and no other. This avoids waking all threads and having all but
one go back to sleep.

• Executors and Thread Pools. The new classes provide a framework for
executing tasks in the form of the Executor interface. This decouples the
process of submitting a task from how it is executed. Tasks (in the form of an
object which implements the Runnable or Callable interface) are submitted
to an Executor instance, and then performed in a manner determined by
the Executor implementation. The Executors class provides a number of
pre-defined instances:

– A single thread executor, which performs tasks sequentially.

106 CHAPTER 6. THE DYNAMITE FRAMEWORK

– An executor with a fixed size pool of threads.

– An executor with an unbounded pool that grows and shrinks as demand
allows.

– An executor with a fixed size pool of threads and delayed or periodic task
execution.

The programmer is also, of course, free to define their own implementation.
This feature is very useful for implementing parallel composition in DynamiTE
as each process may be submitted to an executor, the choice of which is left
up to the user of the framework.

• New Collections. The standard Java collections apply an all-or-nothing ap-
proach to thread safety; either the instance is unsafe for multithreaded use
(as with instances of the Java 1.2 classes – HashMap, ArrayList, etc.) or ev-
ery method call locks the class (as with the legacy classes such as Vector and
Hashtable or the 1.2 classes when wrapped by the synchronizedX methods in
Collections). The JSR166 extensions provide a new set of collections which
utilise the features listed above. For example, ConcurrentHashMap provides a
hash map which utilises lock striping ; the map is protected by multiple read
and write locks which protect only a segment of the whole map each. Thus,
not only can multiple readers access the map concurrently, but it may be pos-
sible to perform multiple writes concurrently if they effect different areas of
the map. The new collections also include various BlockingQueue implemen-
tations, which implement the producer-consumer model we demonstrated with
the buffer example in 1.2.3. One such implementation is SynchronousQueue

which closely matches the semantics of synchronous channels in Nomadic
Time; it has no storage so a thread performing a put blocks until a receiving
thread calls take.

With these additions, the programmer is given a lot of control and flexibility
when implementing concurrent programs in Java, and we will leverage many of
these features when implementing DynamiTE. Having essential components such
as locks and concurrent collections already available and well tested makes it much
easier to meet the requirements of the framework.

Other languages are not so lucky. In C and C++, threads are provided by
an operating system library and thus vary depending on platform. The POSIX
standard for threads attempts to overcome this by providing a standard threading
interface and semantics for POSIX systems. While POSIX-based systems including
GNU/Linux, Solaris, FreeBSD and Mac OS X all provide implementations. the
problem remains with systems that do not provide such by default, notably Microsoft
Windows.

6.2. WHY JAVA? 107

Haskell has been slow to introduce threading support. Although the Concurrent
Haskell (Jones, Gordon & Finne, 1996) extension was originally proposed in 1996, it
does not form part of the Haskell 98 standard and the GHC documentation still lists
it as experimental. Both Hugs and the Glasgow Haskell Compiler (GHC), the two
main implementations of Haskell, provide an implementation of Concurrent Haskell’s
Control.Concurrent module, they do so using green threads. As mentioned above,
while these are faster than native threads, blocking calls to the operating system,
such as I/O, will cause all threads to be blocked. A workaround is provided in GHC
when it is built with the -threaded option; it uses a pool of worker threads to
execute Haskell code and switches to a new one when a safe foreign call is made.
It also allows native threads via forkOS when built in this manner. As with C, this
makes Haskell’s thread behaviour dependent on the underlying system as opposed to
providing a standard set of operations and semantics; whether threads are provided
and how well they perform depends entirely on which implementation of Haskell is
being used.

However, functional languages in general should be a good basis for concurrency.
They already operate in a task-oriented manner through pure functions ; data is fed
in, manipulated as desired and the result output without altering memory. Those
that do alter memory, and thus could lead to concurrency issues, are clearly denoted
(e.g. by monads in Haskell), reducing the amount of code that has to be checked
for race conditions.

It is thus a pity that they are not more widely used and their concurrency
facilities not more well developed. This is changing, however. GHC has recently
been extended with support for Software Transactional Memory (STM) (Harris,
Marlow, Jones & Herlihy, 2005), which provides a new atomic function and STM

monad for implementing transactions. The STM logs all actions and then performs
a single atomic commit, provided there are no conflicts with other updates. This
allows Haskell programmers to compose new atomic transactions from others, and
moves the need to ensure atomicity away from each individual function to the caller,
who can only invoke them from within an atomic environment.

Erlang (Armstrong, Virding, Wikström & Williams, 1996) is another interesting
case, as both it and DynamiTE focus on message passing between processes as op-
posed to shared data and locking. Erlang differs in that it operates asynchronously,
collecting messages in a mailbox on a per-process basis and filtering which ones are
received in any one operation. However, synchronous delivery can be implemented
by requiring messages to be acknowledged. The main limitation of current Erlang
implementations is that they use green processes; unlike green threads, these don’t
share state but they do have the same downside that a blocking system call from
one will cause them all to become blocked by the system.

Both Erlang and Haskell provide an interesting environment in which to imple-

108 CHAPTER 6. THE DYNAMITE FRAMEWORK

ment a framework like DynamiTE. Indeed, we hope that the majority of the design
explained here in 6.3 can be applied to most languages with sufficient threading sup-
port. However, there is another reason for our choice of Java as the initial prototype
language.

6.2.2 Popularity

Popularity is rarely a good reason to do anything but, in combating developer inertia,
it is a good weapon to have. The simple fact is that most of today’s developers know
Java and sometimes little else; it (or its close relative, C#) is taught as part of most
computer science degrees and is used as the language of choice for many applications,
especially in the area of enterprise web applications.

As we discussed in 1.3, easing the barriers for adoption is an essential aspect
in influencing developers to try something new. With DynamiTE, we are already
advocating the idea of using message passing rather than state manipulation to Java
developers, a body of programmers who will generally be more familiar with object-
oriented design techniques which focus on manipulating data. Adding the prospect
of learning an entirely new language is not going to help our case, and we believe
this to be the main reason other solutions have not moved far beyond their academic
roots. Instead, DynamiTE is developed as a Java class library like any other, which
leverages standard features of the Java platform and which can be further developed
by the very people that use it.

We will be the first to admit that Java has issues; its age means that with hind-
sight many design decisions can now be seen as flawed and attempting to change this
leads us to consider the bane of all programming languages – backwards compati-
bility. Most features, good or bad, are now enshrined in the language and further
development rightly takes a conservative attitude to avoid breaking the huge body
of existing code already in use. This means that APIs are deprecated rather than
removed, causing the class library to become more bloated than ever, and new lan-
guage features such as generics take years to appear and even then have to be limited.
No consensus has yet been reached on how closures should be implemented, so they
will not appear in Java 7 either. These issues are here to stay; Java is unlikely
to ever have a type system as advanced as that of most functional languages or a
separation between pure and impure functions. But with these come maturity and
a vast body of developers which we believe to be far more useful in achieving our
goal than the possibilities of a perfect but niche language. Java is also the language
with which we are most familiar, and thus it makes sense to experiment first using
Java and then turn to other languages.

6.3. MAPPING THEORY TO PRACTICALITY 109

6.3 Mapping Theory to Practicality

In this section, we show how the syntactic constructs of NT introduced in chapter
5 are mapped on to Java classes by the DynamiTE framework. Within DynamiTE,
developers can create concurrent applications simply by implementing the specific
behaviour they require in appropriate subclasses. Recall the syntax of NT from 5.32:

E ,F ::= 0 | Ω | ∆ | ∆σ | α.E | E + F | E |F | ⌊E⌋σ(F) |
⌈E⌉σ(F) | µX.E | X | E \ A | m[E]F~σ | M.E

M ::= 6 m | 7m | �m | on β 6 m | on β 7 m | 6 | 7 | �

(6.1)

Each process term (E ,F) above becomes a class that implements Process:

public interface Process

extends State

{

Set<Transition> getPossibleTransitions();

Process substitute(String var, Process proc);

}

A rough translation schema is given in 6.1, where sigma is an instance of Clock,
clockSet is a set of instances of Clock, alpha is an instance of a subclass of Action,
beta is an instance of Name, mobprim is an instance of a subclass of MobPrim and
proc and proc2 are further instances of subclasses of Process. Note that Name

is a subclass of Action and EnvIn, EnvOut, Open, ProcIn and ProcOut are all
subclasses of MobPrim while the NIL, OMEGA, DELTA constants are instances of the
class to which they belong. Similarly, BOUNCER IN, BOUNCER OUT and BOUNCER OPEN

are instances of anonymous subclasses of MobPrim. Operation follows a top-down
approach; the complete system is represented by a single instance of one of these
classes which, in most cases, will be an operator that composes together further
instances as appropriate. Table 6.2 supplements the schema, by showing how names,
co-names, silent actions and clocks are converted into objects. The first three are
all subclasses of Action, more details of which can be found in 6.5.

The Process interface itself extends the marker interface, State. This, along
with Transition, forms part of our implementation of a labelled transition system,
found under the lts subpackage. By making implementations of Process also
implement State, they can be used as the start and finish state in the transitions
represented by the Transition class. The label used by the transition is provided
by a subclass of Action, which also allows for the possibility of side effects, which
we cover in 6.5.

Each Process is required to implement getPossibleTransitions() and it is in
this method that the operational semantics found in tables 5.2 and 5.3 are realised

110 CHAPTER 6. THE DYNAMITE FRAMEWORK

Table 6.1: Translation Schema from NT to DynamiTE Process Subclasses

[[0]] = Nil.NIL

[[Ω]] = Omega.OMEGA

[[∆]] = Delta.DELTA

[[∆σ]] = new Stall(sigma)

[[α.E]] = new Prefix(alpha, proc)

[[E + F]] = new Sum(proc, proc2)

[[E | F]] = new Par(proc, proc2)

[[⌊E⌋σ(F)]] = new To(proc,sigma,proc2)

[[⌈E⌉σ(F)]] = new STo(proc,sigma,proc2)

[[µX.E]] = new Rec("X", proc)

[[X]] = new Var("X")

[[E \ A]] = new Res(proc, "X")

[[m[E]F~σ]] = new Env("m",proc,proc2,clockSet)

[[M.E]] = new MobPrefix(mobprim, proc)

[[6m]] = new EnvIn("m")

[[7m]] = new EnvOut("m")

[[�m]] = new Open("m")

[[on β 6 m]] = new ProcIn(beta, "m")

[[on β 7 m]] = new ProcOut(beta, "m")

[[6]] = MobPrim.BOUNCER IN

[[7]] = MobPrim.BOUNCER OUT

[[�]] = MobPrim.BOUNCER OPEN

Table 6.2: Translation Schema from NT to DynamiTE Classes

[[a]] = new Name("a")

[[a]] = new Coname("a")

[[τ]] = Subclass of Tau
[[σ]] = new Clock("sigma")

6.3. MAPPING THEORY TO PRACTICALITY 111

in Java code. The simplest implementation is found in the representation of ∆,
realised as the class Delta, as it has no transitions.

public Set<Transition> getPossibleTransitions()

{

return Collections.emptySet();

}

The other method in Process, substitute(String,Process) is primarily used
to implement recursion. The arguments passed to substitute are the variable
name and the process bound to that name respectively, and the implementation is
expected to return the same process with this substitution applied.

We implement substitution in this manner so that it is independent of the syntax
of the calculus. Nomadic Time is implemented in DynamiTE by deriving from
classes which implement CaSE, which in turn derive from those implementing CCS.
Of these, only CCS has an implementation of recursion:

public Set<Transition> getPossibleTransitions()

{

Set<Transition> trans = new HashSet<Transition>();

for (Transition t : proc.getPossibleTransitions())

{

Process end = (Process) t.getFinish();

trans.add(new Transition(this,

end.substitute(var, this),

t.getAction()));

}

return trans;

}

as the same rule is used in all three calculi. Because the new constructs in CaSE and
Nomadic Time all provide an implementation of substitute, the call to substitute
in the CCS implementation of recursion (provided by a class called Rec with variables
proc and var) will still work, even when one of these forms the final state, end.

The above implementation of recursion highlights a common pattern in the se-
mantics, which is visible both in their formal representation and the Java version;
the rules reference one or more component processes, and create new transitions
based on the transitions of these processes. As a result, most of the implementa-
tions of getPossibleTransitions() in DynamiTE operate by looping over the set

112 CHAPTER 6. THE DYNAMITE FRAMEWORK

of transitions from each component process, checking if they meet the prerequisites
for one of the rules and then creating new transitions3.

Recursion is probably one of the simplest examples of this. From its semantics,

Rec
E

γ→ E ′

µX.E
γ→ E ′{µX.E/X}

we can see that it applies its transformation to all transitions (γ ranges over all
possible labels), and the only change it makes is to apply substitution to E ′, repre-
sented in Java as the final state of the Transition object (t.getFinish()). Thus,
all the new transitions returned perform the same action (t.getAction()), have the
current instance of Rec as the start state and a final state derived from the original
via substitution.

Implementing the | operator, via the Par class, is a more involved task. In CCS
alone, | features in three of its operational rules: Par1, Par2 and Par3 (see table
2.1). CaSE adds a further rule, Par4, to deal with the passage of time over the
operator (see table 3.1). With Nomadic Time, the first two rules are combined
due to structural congruence4, but a further five are introduced (InEnv, OutEnv,
Open, ProcIn and ProcOut) to handle mobility. All of these are handled in much
the same way as Par3 (inspect the composed processes and their transitions, and
apply as required) so we will just look at the CCS implementation here for brevity:

public Set<Transition> getPossibleTransitions()

{

Set<Transition> trans = new HashSet<Transition>();

// Par1

for (Transition t : left.getPossibleTransitions())

{

Process nextLeft = (Process) t.getFinish();

trans.add(new Transition(this,

new Par(nextLeft, right),

t.getAction()));

}

// Par2

for (Transition t : right.getPossibleTransitions())

{

3It is possible to make the implementations shown here more efficient, firstly by retrieving the
transitions of the subprocesses simultaneously using separate threads and secondly by caching the
result so that future calls don’t recompute the transitions.

4This makes no difference to the implementation; it merely cuts down on the number of rules
that need to be listed in the semantics. The case of F

α→, which is missing in the rules for Nomadic
Time, is handled by a combination of StrPar1 (E | F ≡ F | E) and SCong

6.3. MAPPING THEORY TO PRACTICALITY 113

Process nextRight = (Process) t.getFinish();

trans.add(new Transition(this,

new Par(left, nextRight),

t.getAction()));

}

// Now find pairs for synchronisation (Par3)

Set<Transition> syncTrans = new HashSet<Transition>();

for (Transition t : trans)

{

String label = t.getAction().getLabel().getText();

if (Context.getContext().isRegisteredName(label))

{

for (Transition t2 : trans)

{

String label2 = t2.getAction().getLabel().getText();

if (Context.isConame(label2) &&

label.equals(Context.convertLabelToName(label2)))

{

Par finish1 = (Par) t.getFinish();

Par finish2 = (Par) t2.getFinish();

Action sync = new Sync(t, t2);

if (!finish1.left.equals(left) &&

!finish2.right.equals(right))

syncTrans.add(new Transition(this,

new Par(finish1.left, finish2.right),

sync));

else if (!finish1.right.equals(right) &&

!finish2.left.equals(left))

syncTrans.add(new Transition(this,

new Par(finish2.left, finish1.right),

sync));

}

}

}

}

trans.addAll(syncTrans);

return trans;

}

The class Par maintains references to the two composed processes as left and
right. Thus, Par1 and Par2 are implemented by iterating over the transitions of

114 CHAPTER 6. THE DYNAMITE FRAMEWORK

these processes, as with recursion. For each original transition, each iteration pro-
duces a new transition, with the Par instance as the start state, the same transition
action as the original (t.getAction() and a new Par instance as the final state,
where one argument is the unchanged process (either left or right) and the other
is the final state of the original transition. Looking at Par1,

Par1
E

α→ E ′

E | F
α→ E ′ | F

it should be clear how this corresponds to the behaviour described there, if E is
left and F is right.

The majority of the method is spent handling Par3:

Par3
E

a→ E ′, F
a→ F ′

E | F
τ→ E ′ | F ′

which represents synchronisation. The implementation loops over the set of new
transitions5, searching for a process which performs a name (E

a→ E ′). For each one
it finds, it iterates over the transitions again, this time in search of the corresponding
coname. If it finds a match, and both transitions originate from different processes,
then it creates a new τ transition, using this instance of Par as the start state, an
instance of Sync as the action and a final state created by joining together the two
final states from each transition in a new Par instance. The two transitions from
which the transition was derived, t and t2, are stored by the Sync action.

The Par implementations for CaSE and Nomadic Time are created by extending
this class and creating further transitions, based on their additional rules. The other
constructs, including +, the timeout operators and clock hiding are also implemented
in much the same way. DynamiTE itself is concerned with more than just generating
the transitions of a process from its semantics, however, and in the next section we
see how this is handled by considering a class introduced in the implementation of
Par above: Context.

6.4 The Context of the Calculus

Beyond the operational semantics, there are two important issues involved in repre-
senting a process calculus programatically:

5We could equally loop over the transitions of left and right, but we’d then need to store
these together in another new set. It seems slightly more efficient to iterate over the new transitions
and decompose them as needed, adding any resulting transitions to a new set which is then added
to the other new transitions at the end.

6.4. THE CONTEXT OF THE CALCULUS 115

1. We need to know the context in which algebraic constructions in the calculus
will operate. This includes the sets of names and co-names (from CCS), the
set of clocks (from CaSE) and the environ names (from Nomadic Time); the
foundations on which our semantic rules are built. Although this is not es-
sential for implementing CCS, where the names and co-names appear as part
of the prefix construct α.E, it is a necessary part of both CaSE and Nomadic
Time. Both these calculi have rules defined with respect to the set of clocks,
but this set is not defined by other constructs in the calculus. Instead, time
is always present and we need to know the set of clocks to derive even the
transitions for the 0 process using the Idle rule. The Context class maintains
these, and more, in DynamiTE and we will look at this in more depth in the
remainder of this section.

2. We need to know the execution semantics for each process. These answer
questions such as: what happens when there are multiple transitions from a
particular process? And are there any side-effects to performing a transition?
In DynamiTE, these semantics are encoded using the Evolver framework,
which we cover in 6.5.

In the implementation of Par in the previous section, we saw how the current
Context instance could be used to find out whether or not a label referred to a
name, using isRegisteredName(String). In our implementation of CCS, all names
and co-names are registered with the Context. This happens automatically on the
user’s behalf as part of the construction of a Name or Coname instance, or as part
of generating the transitions for the renaming operation, E[f]. This centralised
checking of names and co-names gives two primary advantages over just allowing
the use of any arbitrary string:

1. We can prevent the silent action, τ , being used as a name or co-name. In CaSE
and Nomadic Time, we can also prevent conflicts with clock names, environ
names and the new mobility primitives such as 6.

2. We can enforce registration (and thus existence of the name or co-name) as
a pre-requisite for other methods. This is especially useful in working with
channels (see 6.4.1).

As a repository for names and co-names, Context becomes an appropriate place
for other methods related to their use. As a result, it also includes a number of static
utility methods which are used with co-names; these are convertLabelToName,
convertConameToLabel and isConame, each of which take a single String argu-
ment. In our implementation, we differentiate names from co-names by marking each
letter with a combining macron (so a becomes a). convertConameToLabel(String)

116 CHAPTER 6. THE DYNAMITE FRAMEWORK

creates these labels from the original name, and convertLabelToName(String) re-
turns the original name by removing the macrons. The isConame(String) method
is a simple method which just checks to see if any macrons are present in the name.
The benefit of abstracting all these methods out into the Context class is that we
can later change the way co-names are represented by modifying just one class.

The other main use for the Context is as the user’s interface to the plugin
framework. We have already touched on how DynamiTE supplies implementations
for multiple calculi: CCS, CaSE and Nomadic Time. One way this is made possible is
by making the implementation as generic as possible; we avoid relying on the specific
structure or types in a particular calculus, separating them out into methods which
can be overridden by other implementations as with substitute(String,Process).
Another aspect of this is allowing the user to select which calculus they want to work
with at run-time. This is made possible by the plugin framework.

6.4.1 The Plugin Abstraction

In the Par implementation in 6.3, we obtain an instance of Context not by calling
a construct but using Context.getContext(). When using DynamiTE, only one
global instance of Context exists6, which is created at startup by a ContextFactory.
As with Context, an instance of ContextFactory is obtained using a static method
rather than a constructor. The user calls ContextFactory.getInstance, supplying
three String arguments; the name of a process calculus, a channel implementation
and a locality implementation. The two latter arguments are used to determine the
execution semantics for synchronisation and movement respectively. The returned
ContextFactory will be able to supply a Context instance for the specified process
calculus which uses the given channel and locality implementations. If one can not
be found, an UnsupportedContextException is thrown.

DynamiTE supplies an implementation of ContextFactory in the form of the
DynamiTEContextFactory. It in turn probes for classes which implement Calculus,
ChannelFactory and LocalityFactory and an instance of it is returned to the user
if it finds an implementation of each which meets the user’s requirements. Once the
user has obtained an instance of ContextFactory, they can call getContext on it to
return a Context instance. This is stored using the static method
Context.setContext(Context), and later retrieved by Context.getContext().

Although this may sound convoluted and unnecessary, it makes the framework
much more flexible and ready for future extension, while giving the user greater
freedom of choice. A new calculus can be implemented simply by creating an im-
plementation of Process for each construct and an instance of Calculus. The

6Should DynamiTE be used across multiple host virtual machines, then there may be multiple
instances, but these communicate between each other to provide one central store.

6.4. THE CONTEXT OF THE CALCULUS 117

same goes for new channel and locality implementations, and the option is there for
the entire ContextFactory to be replaced if needed. From the user’s perspective,
everything can be handled in a single line of code:

Context.setContext(ContextFactory.getInstance("CCS",

"threaded", "dummy").getContext());

which supplies an implementation of CCS with threaded channels and a dummy
locality implementation.

One advantage of using Java is that support for dynamically probing for im-
plementations at runtime is built into its class library. The library itself already
includes a number of frameworks which work in this fashion (including image I/O,
sound and XML support) and the java.util.ServiceLoader API provided in 1.6
makes it easy for developers to define new ones. In the plugin subpackage, Dyna-
miTE provides a means of using this API to support plugins:

public static <T extends Probeable> Map<String,T>

probePlugins(ServiceLoader<T> sl)

{

Map<String,T> map = new HashMap<String,T>();

for (T probeable : sl)

{

Config.logger.config(String.format("Loaded plugin: " +

"%s %d.%d.%d%s", probeable.getName(),

probeable.getMajorVersion(), probeable.getMinorVersion(),

probeable.getMicroVersion(), probeable.getAdditionalInfo()));

map.put(probeable.getName(), probeable);

}

return Collections.unmodifiableMap(map);

}

Plugins are required to implement the interface Probeable, so that the name and
version information can be obtained programatically. In DynamiTE, the Calculus,
ChannelFactory and LocalityFactory interfaces all extend Probeable so
DynamiTEContextFactory need only call the above method with an appropriate
service loader for the interface and it will receive back a Map linking names to in-
stances of implementations of that interface. Most of the actual work is done by
ServiceLoader which reads from a text file named after the interface, which con-
tains a list of implementing classes. The DynamiTE framework supplies such text
files for its implementations of ContextFactory, Calculus, ChannelFactory and
LocalityFactory. The ServiceLoader loads a listed class each time its next()

method is called7, and returns an instance of it, which probePlugins then stores in

7This happens indirectly in probePlugins via each iteration of the for-each loop.

118 CHAPTER 6. THE DYNAMITE FRAMEWORK

the map.
The Context class stores and provides indirect access to the implementations

chosen via the ContextFactory. For instance, calling getSyntax() on the current
Context instance will return the set of syntactic constructs which form the calculus
currently in use. The Calculus instance is also used in the process of registering
a name; the Context calls the Calculus implementation to obtain the transition
label for the name, which gives the Calculus a chance to veto the choice. This is
used by the CCS class to prevent τ being used as a name, by returning an instance
of CCSLabel, the constructor of which contains the following check:

if (label.equals(TAU))

throw new IllegalArgumentException(TAU +

" is a reserved label.");

where TAU is a unique instance of CCSLabel. The other instances maintained by
Context are used in the execution semantics which we will cover next.

6.5 The Evolver Framework

For DynamiTE to actually be useful to users for building concurrent applications,
it needs to do something more than just evaluating an algebraic construct and
providing the possible transitions according to the semantics of the calculus. For
an application, such as our music player example (see 1.3.1 and 5.7), to actually
work, the user needs to be able to define their own internal behaviour and share the
results.

The evolver and channel frameworks provide this facility. An implementation
of the Evolver interface implements the method evolve(Process) according to its
own particular execution semantics. Through this method, it is the Evolver instance
that makes decisions such as which transition to follow to find the next state and
also whether to process any side effects. Side effects take the form of additional
methods which may optionally be called after a transition has been followed. As
we saw in 6.3, each transition references an Action; this is an abstract class which
provides a method perform() for the purpose of implementing side effects.

DynamiTE provides a simple implementation of Evolver called Simulator which
ignores side effects. While this is of little use for applications, it is useful for testing
design constructs as it allows the possible transitions from a process to be visualised.
All Simulator does is take a Process and loop over its transitions, calling itself re-
cursively with each final state. In this way, it explores the possible transitions in a
depth-first manner, until it reaches a process with either no transitions or where all
transitions have equal start and end states. The latter condition prevents it looping

6.5. THE EVOLVER FRAMEWORK 119

forever over states with just clock transitions or simple forms of infinite recursion,
such as µX.a.X.

public void evolve(Process p)

{

System.out.println("Evolving process: " + p);

Set<Transition> trans = p.getPossibleTransitions();

System.out.println("Possible transitions: " + trans);

for (Transition t : trans)

{

State f = t.getFinish();

if (f instanceof Process)

{

if (f.equals(p))

System.out.println("Not following transition " + t);

else

{

System.out.println("Following transition " + t);

evolve((Process) f);

}

}

}

}

A more practical Evolver is a more complex undertaking; further research in this
area is suggested in 8.2.2. It has to make choices as to which transition to pick when
several are presented; although CaSE and Nomadic Time have a notion of priority
in maximal progress, choices must still be made between the ticks of different clocks,
or between a clock tick and an action. These choices form the execution semantics of
an Evolver implementation, and there is plenty of room for further experimentation
in this area.

Returning to the notion of side effects, the channel framework is accessed through
four subclasses of Action, three of which are also used in Prefix, the implementa-
tion of α.E:

1. The class Name is used to represent the use of a name as part of the process
α.E. It is also a subclass of Action and implements perform() by reading
from an InputChannel and storing the result.

2. Likewise, the class Coname represents the use of a co-name in α.E and imple-
ments perform() by retrieving a value from storage and transmitting it over an
OutputChannel.

120 CHAPTER 6. THE DYNAMITE FRAMEWORK

3. The Tau class is the last of the three classes used in α.E and is used for the
internal action, τ . Implementing perform() for Tau is left to the user, who
can use it to implement arbitrary sequential behaviour as required.

4. The Sync class is created through Par (see 6.3) and is a subclass of Tau which
implements perform() using the two synchronising transitions provided to it
on construction.

The InputChannel and OutputChannel instances are obtained from the
ChannelFactory, via the Context, and provide read() and write(Object) meth-
ods respectively. Although there is currently no realisation of data within the formal
layer of the calculus, this only matters to the extent that we wish transmitted data to
alter the constructs themselves via substitution8. Data can be transferred between
processes and used within internal actions without having to be explicitly realised
at the formal level. The operation of these I/O operations, and the creation of a
suitable environment in which this may happen, is left to the implementation of the
ChannelFactory and there are a multitude of ways of doing so. These range from
simple mechanisms like files and sockets to complex interprocess communication
protocols such as Java’s Remote Method Invocation (RMI), the Common Object
Request Broker Architecture (CORBA) and web services. The plugin nature of the
channel architecture means that any of these possibilities may be used and more
besides.

DynamiTE provides a sample implementation, ThreadedChannelFactory, built
on a SynchronousQueue; the read and write operations are performed by synchro-
nising two different threads and transferring the data directly. Thus, if read is called,
and another thread is not already waiting in the write method, it will block until
this is the case. The same is true for write. As noted above, the ChannelFactory is
also responsible for creating the necessary environment for these operations, so the
ThreadedChannelFactory has to ensure that appropriate threads are created and
used. A hook, runInParallel(Process, Process) is used for this purpose and is
called indirectly by the constructor of Par.

Data storage is also provided by the ChannelFactory. The channel I/O oper-
ations are automated side-effects of following a transition labelled with a name or
co-name, so user code (implemented in a Tau subclass) must be able to access any
values retrieved and store new ones when it is itself performed. The ChannelFactory
provides storage repositories, keyed by the name of the channel, for this purpose.
When a user wishes to transmit a value, they call store(String,Object), where

8The π calculus (see 4.2.1) is an obvious example of such behaviour, which goes to the extreme
of not only allowing data to be transferred but also references to channels which can then later be
used in the language constructs. This, in essence, provides the form of mobility present in the π

calculus.

6.5. THE EVOLVER FRAMEWORK 121

the first argument is the channel name and the second the data to store. Later, the
performance of a Coname with that channel name will lookup the data and transmit
it to the corresponding Name. User code in a further Tau implementation can then
retrieve this using retrieve(String), passing to it the name of the channel and
receiving back the data. The ThreadedChannelFactory implements this by storing
data in a ThreadLocal, so that it is only retrievable by the same thread that stored
it:

public void store(String name, Object data)

{

ThreadLocal<Object> store = repositories.get(name);

if (store == null)

{

ThreadLocal<Object> newStore = new ThreadLocal<Object>();

store = repositories.putIfAbsent(name, newStore);

if (store == null)

store = newStore;

}

store.set(data);

}

The repositories variable stores an instance of ConcurrentHashMap, which
guarantees that retrieval operations will always return results which reflect the most
recently completed operations. As we described in 6.2.1, ConcurrentHashMap is
thread-safe while also being much more efficient than Hashtable which locks the
entire collection on any operation. These guarantees do not, however, help in per-
forming a sequence of operations on the map; specifically, the map may still be
changed by another thread in the interim period between performing a get and a
put.

This applies to the method above, as we need to check whether or not a
ThreadLocal instance has been created for a particular channel name, and if not,
create one. The initial get operation will return null if we have not yet created a
mapping between that channel name and a ThreadLocal. However, in the time it
takes for this thread to check the return value and create a ThreadLocal, another
thread may have added such a mapping. The ConcurrentMap interface (which
ConcurrentHashMap implements) provides an additional operation for just this is-
sue: putIfAbsent. This provides an atomic version of the following code:

if (map.containsKey(key))

return map.get(key);

else

return map.put(key, value);

122 CHAPTER 6. THE DYNAMITE FRAMEWORK

If, as in the most likely case, a mapping has not been added since our initial
get, then the putIfAbsent call folds down to a normal put call. The put method
returns either the previous value of the mapping or null if there wasn’t one. In
this case, it will always return null as the containsKey call has already ensured no
mapping exists. Thus, if null is returned, we know that our new ThreadLocal was
used for the mapping. If the return value is not null, then another thread managed
to add a mapping before us, and the ThreadLocal we created is simply discarded
when we leave the scope of the if block in which it was created.

The complexity of this operation again shows how difficult it can be to make
operations involving shared objects thread-safe. The advantage of using DynamiTE
is that the user doesn’t have to come into contact with this. The user merely store
a value and the framework handles the thread safety issues involved. Providing
these kind of reusable generic constructs makes it much easier to build concurrent
applications that are thread-safe.

From this discussion, it should now be clear how concurrent applications are
created in DynamiTE; the user constructs Process instances which match their
design in the process calculus, and provides Tau subclasses for the actual work
performed by the application. Data is passed between Tau subclasses via the channel
framework.

DynamiTE also provides hooks for a locality framework, which allows side effects
to take place on the performance of mobility actions, just as the channel frame-
work provides side effects for synchronisation. At present, DynamiTE simply has a
dummy implementation for this, but this has great scope for being used to imple-
ment process migration. Migrating an active process is not a simple operation – not
only must the continuation of the code be transferred, but any local data must also
migrate. Using the Nomadic Time process calculus as our basis allow us to achieve
a significant amount of simplification here; the transferred process is already sepa-
rated from other code within the system by virtue of the moving process being in
the form of a Prefix instance. When the action is matched to the one used for the
mobility operation, the Process instance is transferred to its new location. There
is no need to deal with code that is currently being executed. We also know exactly
what data to be transferred, as this is centrally managed by the channel framework.
Again, this is an interesting area for future work (see 8.2.2).

Now we have explored DynamiTE, the next section provides a walkthrough ex-
ample of creating an application using the framework, following on from 1.3.1 and
5.7. We also compare this implementation with a standard implementation using
low-level concurrency primitives, thus allowing us to evaluate whether our claims
made in 1.3 hold true.

6.6. A PROTOTYPICAL APPLICATION IN DYNAMITE 123

6.6 A Prototypical Application in DynamiTE

In 5.7, we created a design for the music player application using the Nomadic Time
calculus. This resulted in a system defined by the following equations:

Out
def
= o.⌈∆⌉σ(τ.0)

Analy
def
= o.⌈∆⌉σ(τ.0)

IntSys
def
= i.µX.(τ.µW.⌈o.W ⌉σ(X) | Out | Analy)

Intf
def
= useri.(i.0|IntSys)

App
def
= player[Intf]6.Ω

{σ}

(6.2)

In this section, we will see how these constructions can be turned into Java
objects. The process is fairly simple, and results in a system which leverages the ex-
isting concurrency work performed in the development of the DynamiTE framework.
We then look at how the same application could be written without the framework,
using objects in shared memory.

The operators in the above all map to Java classes as we saw in 6.3; ∆ is im-
plemented by Delta, the stable timeout by STo, recursion by Rec and the environ
by Env. The channels, i, o and useri are represented using instances of Name and
Coname. Thus, all that remains is the internal silent actions τ .

Each silent action is represented by a different subclass of Tau and its perform()
method is implemented so as to do the actual work required of the application. The
implementation for the silent action used in Out looks something like this:

public class Out

extends Tau

{

public void perform()

{

Context ctx = Context.getContext();

Object soundData = ctx.retrieve("o");

if (soundData != null && soundData instanceof byte[])

{

play((byte[]) soundData);

}

else

{

throw new InternalError("Didn’t receive sound data.");

}

}

124 CHAPTER 6. THE DYNAMITE FRAMEWORK

}

The perform() method first retrieves the data from the "o" repository, where
it should have been placed earlier by the o action. If it is successfully, the data is
played out on the speakers. In the unlikely case that something went wrong, and
the expected data is not held in the repository, we throw an error.

The implementation for the silent action in Analy is identical, except that the
sound data retrieved is visualised rather than played. The one for In is slightly
more complicated, as we have to both store and retrieve from different repositories:

public class In

extends Tau

{

private InputStream is;

public void perform()

throws IOException

{

if (is == null)

{

Context ctx = Context.getContext();

Object fileName = ctx.retrieve("i");

is = new FileInputStream((String) fileName);

}

byte[] soundData = readAndProcessData(is);

ctx.store("o", soundData);

}

}

This time we allow the use of the retrieved value by the file routines throw up
any issues. If this is the first time the τ action is encountered, then the filename
is retrieved from the "i" repository where it was stored by the earlier i action and
an InputStream created so that data may be read from the file. After this, and on
each subsequent invocation, data is read from the stream, processed and store in a
byte array in the "o" repository.

Now we have our silent actions, we can construct our processes:

Context.setContext(ContextFactory.getInstance("NT",

"threaded", "dummy").getContext());

Context ctx = Context.getContext();

6.6. A PROTOTYPICAL APPLICATION IN DYNAMITE 125

Clock sigma = new Clock("\u03C3"); \\ u03C3 = sigma in Unicode

Name output = new Name("o");

Process out = new Prefix(output,

new STo(Delta.DELTA, sigma, new Prefix(new Out(), Nil.NIL));

Process analy = new Prefix(output,

new STo(Delta.DELTA, sigma, new Prefix(new Analy(), Nil.NIL));

Process inLoop = new Prefix(new In(), new Rec("W",

new STo(new Prefix(new Coname("o"), new Var("W")), sigma,

new Var("X"))));

Process intSys = new Prefix(new Name("i"),

new Rec("X", new Par(new Par(inLoop, out), analy)));

Process intf = new Prefix(new Name("useri",

new Par(new Prefix(new Coname("i"), Nil.NIL), intSys)));

Set<Clock> hiddenClocks = new HashSet<Clock>();

hiddenClocks.add(sigma);

Process app = new Env("player", intf,

new MobPrefix(MobPrim.BOUNCER_IN, Omega.OMEGA),

hiddenClocks);

If the above is compared with Eqn. 6.2, it should be clear how each term is
turned into a instance of a Java class. The references to Delta.DELTA, Nil.NIL,
MobPrim.BOUNCER IN and Omega.OMEGA refer to singleton instances, as none of these
have any variable attributes, and the constructors of Name, Coname, Clock and Env

register the new entity with the Context. At the end of running this code, we are
left with a Context containing the names i,o and useri, the conames i and o, the
clock σ, the environ player, and an instance app which can be passed to an Evolver

instance to run the application.
The same application can be implemented without DynamiTE in innumerable

ways, but one thing holds for all of them; they must either include provisions to
ensure thread safety or be purely single threaded. Writing such an application using
a single thread produces an unworkable result; while the sound data is being output,
nothing else can be done so any visualiser will be out of sync with the sound being
played. Additionally, no data will be being read while this is happening, so the
application has to rely on there being enough time between the data has been sent
to the speakers and the actual sound finishing for it to read more data and send it.
This becomes even more unlikely when the visualiser is factored in.

Thus, we will assume that any sensible implementation, like our DynamiTE-
based application, will use a thread for each of the input, output and visualisation
processes. Unlike with DynamiTE, we now have to consider how the sound data
will be stored and how it will be shared between threads. For simplicity, we start
by just considering the input and output threads:

126 CHAPTER 6. THE DYNAMITE FRAMEWORK

public class Player

{

private BlockingQueue<byte[]> queue;

private String fileName;

public void input()

{

InputStream is = new FileInputStream((String) fileName);

while (true)

{

byte[] soundData = readAndProcessData(is);

queue.put(soundData);

}

}

public void output()

{

while (true)

{

byte[] soundData = queue.take();

play(soundData);

}

}

public static void main(String[] args)

{

fileName = args[0];

queue = new LinkedBlockingQueue();

Thread input = new Thread(new Runnable()

{

public void run() { input(); }

}, "input");

Thread output = new Thread(new Runnable()

{

public void run() { output(); }

}, "output");

input.join();

output.join();

6.6. A PROTOTYPICAL APPLICATION IN DYNAMITE 127

}

}

We’ve kept the implementation as close as possible to that for In and Out above,
including not handling the end of the file. Realistically, the thread should terminate
when this happens. Although the similarities between the two should be clear, so
should the differences. In this example, we have had to consider both how data is
stored and how the methods are run; these are handled by the channel and evolver
frameworks respectively in DynamiTE. The BlockingQueue is thread-safe, so the
threads can not corrupt the data structure if two or more happen to try and perform
an operation on the queue at the same time. This is the same as the locks used
in 1.2.3 with the locking occurring inside the collection rather than visibly in the
surrounding code. The take operation also blocks if the queue is empty until an
item is added9; again the behaviour inside the queue is akin to what we saw with
signalling in 1.2.3.

This works fine for this example, but there is an immediate problem if we want
to introduce the visualiser into the mix; the take operation performed on the queue
by both output and the new visualise method will remove the item from the
queue so one thread will get a particular value and the other one won’t. There are
a number of possible solutions to this. For example:

1. We can replace the queue with an indexed collection and remember which
index was last used. The new collection also has to be thread-safe and we put
ourselves at risk of running out of memory as the queue will only ever increase
in size.

2. We add each item to the queue twice. This makes the input method dependent
on the number of consuming threads. It also means we have to add our own
external locking to ensure that one of the consumers does not perform a take

while the items are being added, and we have to check on each iteration that
we are getting a new value and not a copy of the previous one still waiting to
be taken by the other thread.

Below we provide an implementation of the second solution:

public class Player

{

private static final int NUMBER_OF_CONSUMERS = 2;

9The put operation also blocks if a capacity is given for the list on creation; we don’t do so
here.

128 CHAPTER 6. THE DYNAMITE FRAMEWORK

private Queue<byte[]> queue;

private String fileName;

public void input()

{

InputStream is = new FileInputStream((String) fileName);

while (true)

{

byte[] soundData = readAndProcessData(is);

synchronized (this)

{

for (int a = 0; a < NUMBER_OF_CONSUMERS; ++a)

queue.offer(soundData);

notifyAll();

}

}

}

public void output()

{

byte[] soundData = null;

while (true)

{

synchronized (this)

{

while (queue.peek() == soundData ||

queue.peek() == null)

{

wait();

}

soundData = queue.poll();

notifyAll();

}

play(soundData);

}

}

public void visualise()

6.6. A PROTOTYPICAL APPLICATION IN DYNAMITE 129

{

byte[] soundData = null;

while (true)

{

synchronized (this)

{

while (queue.peek() == soundData ||

queue.peek() == null)

{

wait();

}

soundData = queue.poll();

notifyAll();

}

visualise(soundData);

}

}

public static void main(String[] args)

{

fileName = args[0];

queue = new LinkedList();

Thread input = new Thread(new Runnable()

{

public void run() { input(); }

}, "input");

Thread output = new Thread(new Runnable()

{

public void run() { output(); }

}, "output");

Thread analy = new Thread(new Runnable()

{

public void run() { visualise(); }

}, "analy");

input.join();

output.join();

}

}

This is clearly more complicated than the example with just input and output;
although it still decomposes nicely, we have to handle synchronisation ourselves.

130 CHAPTER 6. THE DYNAMITE FRAMEWORK

We dispense with the BlockingQueue as we need to obtain a lock anyway to ensure
the atomicity of the multiple offer calls in input and the checks in output and
visualise. Both the output and visualise methods are very similar and it would
be a very good idea to generalise these in a Consumer superclass; as we noted in
1.2.3, the correct placement of locking and signalling constructs is prone to simple
errors so anything we can do to simplify this and minimise the risk is advantageous.

The consumer methods now loop until peek returns a new unseen value. When
we reach this loop, peek may return one of three things:

1. It may be null if nothing has yet been added or both values from the last run
have been retrieved.

2. It may equal the previous value, indicating that the other consumer has not
yet read its data.

3. It may be a new unseen value which is neither null or equal to soundData.
In this case, we exit the loop, remove the value from the queue and notify any
waiting threads that the thread has changed.

If either of the first two conditions hold, wait is called, causing the thread to
relinquish its lock and sleep until notified by a call to notifyAll. This solution
should be thread safe as presented, but it should also be obvious how a simple
misplaced call could break this; thread safety is a very fragile property.

It should be clear from this example that DynamiTE makes implementing this
a lot simpler; not only do we not have to worry about locking the data structure
and signalling other processes at the correct points, we have a solution which works
for any number of consumers without changing input. The only way that would be
possible here is by a hack to use the names of threads as identifiers whether they are
consumers or not; not a very elegant solution. The abstraction in DynamiTE also
means that a simple one line change to the channel factory being used can turn an
application communicating between threads as above, to one communicating over a
network with no other changes to the application.

In summary, we think DynamiTE has achieved its goals; it abstracts away many
complex and fragile pieces of code which ensure thread safety, in much the same way
as the concurrency collection classes do in the class library. They are replaced by
simple abstract concepts such as store and retrieve calls to the repositories. In
implementing DynamiTE, we believe we have also made it approachable for existing
Java programmers, both for building their own applications and for contributing to
DynamiTE itself. By learning the meaning of a small number of algebraic concepts,
they can leverage the power of DynamiTE to create applications limited only by the
plugin factories being used.

6.7. RELATED WORK 131

6.7 Related Work

In this final section, we look briefly at the existing body of research concerned with
providing concurrent frameworks, including those based on process calculi.

The π calculus has been the subject of much of this work, primarily due to its
status as the most prevalent mobile process calculus. Obliq (Cardelli, 1995) and
Pict (Turner, 1996) are both programming languages with semantics founded in the
π calculus, while Nomadic Pict (Wojciechowski, 2000) extends Pict by introducing
distribution, a feature not usually present in the π calculus. The Seal calculus
(Vitek & Castagna, 1999) is an example of yet another distributed variant of the π
calculus, and this has also lead to an implementation in the form of JavaSeal (Vitek
& Bryce, 2001). However, the ambient calculus has not been neglected, and an
implementation exists in the form of the safe ambients abstract machine (Giannini,
Sangiorgi & Valente, 2006). In the remainder of this chapter, we look at these
implementations in more detail.

6.7.1 Obliq

Obliq was originally developed by Luca Cardelli in 1995, prior to his work on the
ambient calculus. While being an object-oriented language, it has no notion of
classes in the same way that languages like C++ and Java do. Objects are instead
constructed directly and assigned to variables:

let o =

{

x => 3,

inc => meth(s,y) s.x := s.x+y; s end

next => meth(s) s.inc(1).x end

}

In the above example, an object is created with two methods, inc and next. The
first argument of a method is explicitly named (s in the above) but always contains
a reference to the object itself (this in Java), rather than some argument passed by
the method call. The object instance is assigned to o, so the only way of executing
its methods or manipulating its values is via either o itself or a clone of it (created
by clone(o). The method inc increases the value of x by y, while the method next

uses this method to give the next value of x. Methods implicitly return the value
computed by their body; s and s.inc(1).x respectively in this case.

Objects in Obliq contain only fields, but these fields can contain methods, aliases
and values. The latter including procedures, which differ from methods in not having
a reference to the object as their first argument. Fields are dynamically typed, so,

132 CHAPTER 6. THE DYNAMITE FRAMEWORK

for example, even if x is given the value 3 initially, it can later be assigned a method.
An alias allows an operation to be redirected; for example a.x := alias y of b

end makes any attempt to access a.x equivalent to accessing b.y.
The main feature of Obliq is that it contains concurrency and remote invocation

primitives. The following implements the producer/consumer queue we saw in 1.2.3
in Obliq:

let queue =

(let nonEmpty = condition();

var q = [];

{ protected, serialized

write =>

meth(s,elem)

q := q @ [elem];

signal(nonEmpty);

end,

read =>

meth(s)

watch nonEmpty until #(q)>0 end;

let q0 = q[0];

q := q[1 for #(q)-1];

q0;

end;

}

);

The field nonEmpty is assigned a condition queue, like the implicit one provided to all
objects in Java, while q stores the data. The protected modifier prevents external
modification to the fields (the equivalent of declaring them all private in Java),
while serialized is akin to acquiring a mutex at the beginning of each method and
releasing it at the end. The latter thus ensures that the queue is only manipulated
by one thread at a time, and also works in tandem with the condition queue. The
watch statement is equivalent to wait, except that it is slightly safer as the need to
loop over a condition is tied to the waiting process by the use of unique syntax as
opposed to a method call. The statement translates to while (q.length() == 0)

{ wait(); } in Java. Likewise, signal is equivalent to notifyAll.
The following code:

let t = fork(proc() queue.read() end, 0);

queue.write(3);

let result = join(t);

6.7. RELATED WORK 133

shows how the queue can be used. A separate thread, t, is forked to read from
the queue. This is necessary as the call will block until the queue’s length becomes
greater than zero. We then write the value 3 to the queue, and wait using a join

call for t. Once t has awoken and read from the queue, it should return a result of
3 which ends up in result.

Remote invocation works in the same style as protocols such as CORBA (OMG,
2009) and Java RMI (Sun, 2008); a name server allows objects to be registered with
a name, allowing them to be looked up and retrieved. The following Obliq code
implements object migration:

let migrateProc =

proc(obj, engineName)

let engine = net_importEngine(engineName, namer);

let remoteObj = engine(proc(arg) clone(obj) end);

redirect obj to remoteObj end;

remoteObj;

end;

The procedure takes two arguments: the object to migrate (obj) and the remote
site to migrate it to (engineName). The invocation of net importEngine obtains a
reference to an execution engine from the name server, namer. Execution engines
accept a procedure as an argument, which is then run at the remote site; thus
clone(obj) is run not locally but at the site of engineName so that remoteObj

ends up being a reference to the remote clone. The redirect statement then acts
as a shorthand for aliasing each field in the local obj to point to remoteObj so that
future invocations on obj access the remote clone.

Obliq has two advantages over traditional languages:

1. Threads, condition queues and remote invocation are built into the language
as primitives, so developers do not have to depend on external libraries.

2. It can be given a semantics using the π calculus (Merro, Kleist & Nest-
mann, 2002), which allow its form of migration, known as object surrogation,
described above to be proved correct.

However, on the downside, Obliq requires the user to learn the syntax and se-
mantics of a completely new language, as well as giving up any existing libraries that
may be available for development in the language they traditionally work in. It also
doesn’t particularly simplify anything; locking still has to be performed at the same
intricate level of granularity as in a language like Java, while foregoing the much
greater base of experience and libraries available in that language. This is unlike
our framework, DynamiTE, where locking and transmission of data is abstracted

134 CHAPTER 6. THE DYNAMITE FRAMEWORK

away via the use of storage repositories, and the user can work in the familiar Java
programming language, thus having only to learn a fairly small API in order to use
the framework. In all, Obliq is interesting as a piece of early research in this area,
but we don’t see it being of much practical use.

6.7.2 Nomadic Pict

Pict is a programming language based on the asynchronous π calculus (see 4.2.2).
Nomadic Pict extends this by adding in a notion of distribution; users can create
agents which migrate between sites, and channels are located at a particular site.
An example Nomadic Pict program looks like this:

new answer : ^String

def spawn [s:Site prompt:String] =

(agent b =

(migrate to s

<a@s’>answer!(sys.read prompt))

in

()

)

(spawn ! [s1 "How are you? - "]

|spawn ! [s2 "When does the meeting start? - "]

|answer ?* s = print!s)

The code runs inside an agent a located at the site s’. It defines a function
spawn which, when called, creates an agent b which migrates to the supplied site
s. Once at s, the agent attempts to output on the channel answer which is located
back at site s’ and attached to agent a, having being created by the new statement.
The value transmitted is first input by the user, who is first prompted with the
string supplied to the spawn function.

The agent a itself spawns three processes, two of which call spawn. The third
forms the other end of the communication with agent b by waiting for input on
answer. The use of ?* for input as opposed to just ? makes the input replicated
using the ! operator from the π calculus, so it is always available. When the program
is run, the first two processes will migrate to s1 and s2 respectively. They then
prompt the user with their respective messages, and return the user’s input to agent
a via the answer channel. The third process in a prints whatever is received.

Perhaps the clearest thing about Nomadic Pict from this example is that it is not
the most readable of languages. Being designed primarily as a way of programming
in the π calculus rather than as a usable language means that the syntax leads some-
thing to be desired and is fairly inaccessible for those who don’t know the calculus in

6.7. RELATED WORK 135

detail. On the positive side, this does give the language a strong formal background
and semantics, and unlike Obliq, it has a rich type system with polymorphism and
subtyping. This can be seen above where answer is declared as ^String, a channel
type which both inputs and outputs values of type String. This type itself is a
subtype of both !String (an output channel which sends a String) and ?String

(an input channel expecting a String).
Most of the criticisms we had of Obliq do apply to Nomadic Pict however. While

it represents interesting research, and could prove very useful in some areas, it is
not suitable as a general purpose language for the masses.

6.7.3 The Safe Ambients Abstract Machine

Something closer to our work on DynamiTE is the abstract machine PAN for safe
ambients (Giannini, Sangiorgi & Valente, 2006). Safe ambients were discussed back
in 4.3.3; they provide a form of the ambient calculus which is protected from grave
interferences by requiring each mobility action (in, out and open) to be matched by
a corresponding co-action. We adopt the same idea ourselves in Nomadic Time with
bouncers, but unlike the co-actions in the safe ambient calculus, ours must only be
used by the bouncer which is located on each environ.

There are also similarities between our implementation, DynamiTE, and PAN,
as both are implemented in Java. They differ, however, in that with PAN, the im-
plementation takes the form of an abstract machine which is first formally specified
and then implemented in Java. Rather than attaching Java code to certain terms
in the calculus, as in DynamiTE, PAN users write their programs in the abstract
machine, and the code is then compiled and executed by the Java implementation,
which maintains a 1:1 relationship between ambients and threads. As this means the
input to PAN is a slightly extended form of the safe ambient calculus, the present
implementation described in (Giannini et al., 2006) would need to be extended fur-
ther ‘to embed this core language into a real language’. Interestingly, the authors
also mention that an ‘orthogonal direction would be to make the ambient constructs
into a framework’; this sounds very similar to what we have now with DynamiTE.
Sadly, we have been unable to find any details of further work beyond this paper.

The majority of the paper is concerned with the design of the abstract machine
itself, rather than the implementation. The main focus is on clearly defining the
separation between the logical distribution of the ambients derived from terms in
the safe ambient calculus, and the physical distribution used by the machine. This
work is fairly generic, and could also be applied as a means to formalise and clarify
the use of environs within DynamiTE; these also have a logical distribution given
by Nomadic Time and a physical distribution as defined by the LocalityFactory.

A term in the safe ambient calculus is mapped onto a flat physical topology of
located ambients. For example, given the following safe ambient construct:

136 CHAPTER 6. THE DYNAMITE FRAMEWORK

n[P1 | P2 | m1[Q1] | m2[Q2]] (6.3)

A located ambient has the form h : n[P]k, where h is the location of the ambient
and k is the location of the parent. For the above, we end up with three locations: h,
k1 and k2, all of which co-exist at the same level; there is no hierarchical topology to
the locations as there is for the ambients. This gives us h : n[P1 | P2]root, k1 : m1[Q1]h
and k2 : m2[Q2]h, where the subambient relationship between n and m1, and likewise
n and m2, is represented by the use of h in the latter two terms rather than by
physical placement.

This changes how the mobility operations proceed as well; in and out have no
effect on the physical structure, as they simply change the parent location. The open
operation does cause a physical move, as the processes within the destroyed ambient
are moved into the parent. For example, if P1 = open k1.P

′
1 and P2 = open k1.P

′
2,

then k1 would be destroyed and Q1 would move into h, giving h : n[P ′
1 | P ′

2 | Q1]root.
This representation makes a lot of sense, and relates closely to how we foresee a

full LocalityFactory implementation operation mapping the logical to the physical.
Thus, although work on the implementation of PAN seems to have come to a halt, we
can make use of the research the project produced by feeding it into the development
of DynamiTE.

6.7.4 JavaSeal

The final piece of related work we will consider is the Seal calculus (Vitek &
Castagna, 1999). This is probably the closest of those covered here to DynamiTE;
it was designed with implementation in mind (Vitek & Bryce, 2001), specifically ‘se-
cure distributed applications’, and uses a similar technique of ‘cherry-picking’ some
of the best features from other calculi to create a new one that best fits the proposed
goal of the project.

The implementation of the Seal calculus, the JavaSeal Mobile Agent Kernel, also
uses a similar approach to DynamiTE, with the constructs of the calculus represented
as objects:

public abstract class Seal

implements Runnable, Serializable

{

public static Seal currentSeal();

public static void dispose(Name subseal);

public static void rename(Name subseal, Name subseal);

public static SAF wrap(Name subseal);

public void run();

}

6.7. RELATED WORK 137

A Seal instance is wrapped for migration by stopping its threads and serialising
its contents into a byte array. Both when a seal is created and when it is unwrapped
following migration, a Strand is created for it and the run method is invoked.
Each Strand instance is bound to the particular Seal instance that created it, and
provides the necessary mapping on to Java threads.

Formally, just as Nomadic Time combines the ambient calculus with CaSE, the
Seal calculus takes the synchronous polyadic π calculus, and adds localities to it,
in the form of seals. One of the main differences between Nomadic Time and the
Seal calculus is that the latter uses channels for migration, rather than applying
the ambient set of mobility primitives (in, out and open). Seal migration takes
place objectively over channels, with the local process as the sender and the remote
process as the recipient.

The action prefix, α.E, in the Seal calculus has four forms:

1. xη(~y)

2. xη(λ~y)

3. xη{y}

4. xη{~y}

The first two handle the communication of names, as in the π calculus, and the
second two are for the transmission of seals. Channels exist within a certain location,
and η is used to direct the communication. It takes one of three values: η ::= ⋆| ↑ |n,
where ⋆ refers to a local channel, ↑ to a channel in the parent seal and n to a channel
in a child seal. Communication occurs between either a pair of corresponding local
prefixes, or between a local prefix and a remote prefix such as x⋆(λy) and xn(z), or
x⋆(λz) and x↑(y). Access restriction can be enforced via the use of portals and the
openηx syntax; for remote interaction to take place, the corresponding open action
must be provided by a process running in parallel with the process offering the local
prefix, in the same way that a co-capability must be provided in the Safe Ambients
calculus or a bouncer in Nomadic Time. For example, in

opennx.S1 | x⋆(λz).zn().S2 | n[x↑(y).open↑y.P1 | y⋆().P2] (6.4)

the provision of opennx allows communication to occur between x⋆(λz) and x ↑ (y),
and open↑y does likewise for zn() and y⋆().

As with PAN, it seems that development on the Seal calculus has stopped, espe-
cially as regards the implementation work. Further research into the calculus itself
has been performed (Castagna, Ghelli & Nardelli, 2001; Castagna & Nardelli, 2002)
since the initial publication of the Seal calculus, but this now also seems to have

138 CHAPTER 6. THE DYNAMITE FRAMEWORK

finished. Unfortunately, it seems common in the academic community for implemen-
tations to be written as a proof of concept, but then not taken any further. Outside
academia, even the newest approaches are still relatively low-level; the latest offering
is CUDA (NVIDIA, 2009), a C-style parallel processing language for programming
NVIDIA graphics processing units (GPUs). The development direction with frame-
works and languages like CUDA is usually the inverse of the academic case; little
research goes into formalising it but it does get heavily used in real-world situations
to produce results, some of which may be true.

6.8 Conclusion

As far as implementations go, we believe our work to be novel in approaching the
task of translating a calculus with both global discrete time and mobility into a
usable programming framework. We also seem to be one among only a few research
projects to create an implementation in an existing programming language and allow
users to work with it in that language; of the above, this only applies to JavaSeal.
This is a shame, as it means otherwise good ideas are let down by the implementation
being simply unapproachable for the majority of software developers.

Through our example in 6.6, we saw how DynamiTE achieves its goal of sim-
plifying the creation of concurrent applications by abstracting away many complex
and fragile pieces of code which ensure thread safety, replacing them with simple
abstract concepts such as store and retrieve calls to the repositories. By learning
the meaning of a small number of algebraic concepts, programmers can leverage the
power of DynamiTE to create applications limited only by the plugin factories being
used.

In this chapter, we have presented the overall structure of the DynamiTE frame-
work for concurrent systems, giving the second set of novel contributions (C2.1
through C2.4) in this thesis. This includes the translation from Nomadic Time to
a process framework (C2.1) with an implementation of the operational semantics
(C2.2), the plugin framework for introducing side effects (C2.3) and the evolver
framework for working with execution semantics (C2.4). We believe that the frame-
work provides a unique way of developing concurrent systems. It provides features
which have already proved advantageous in a theoretical setting, such as the n-ary
process synchronisation mechanism described in chapter 3 and mobility. The ex-
istence of a formal theory for DynamiTE’s behaviour gives many advantages over
more ad-hoc approaches, potentially allowing the underlying design to be rigorously
examined before being applied to the implementation. The behaviour of the system
may be established clearly and unambiguously in the underlying process calculus
before implementation even begins, giving a solid grounding on top of which the
individual tasks may be developed.

6.8. CONCLUSION 139

In implementing DynamiTE, we believe we have also made it approachable for
existing Java programmers, both for building their own applications and for con-
tributing to DynamiTE itself. The actual implementation of the DynamiTE frame-
work is still in heavy development; the code is available at:

https://savannah.nongnu.org/projects/dynamite/

and patch submissions are welcome. At its lowest level, it provides a means of
simulating the operations of the Nomadic Time process calculus, allowing them to
be more clearly understood. In application, it can provide a useful mechanism for
structuring concurrent programs, clearly dividing internal behaviour and interpro-
cess communication. The possibility to add further implementations of the channel
and locality factories, via the plugin mechanism, also means that fairly complex con-
cepts can then be leveraged by the programmer in the same simple manner provided
by the framework.

In the next chapter, we look at how Nomadic Time, and DynamiTE in turn, can
be extended with a type system, providing the final set (CC3.1 to CC3.4) of novel
contributions. We begin the chapter with a look at existing work on type systems
for process calculi in 7.2, before moving onto the design of our typing rules (C3.2)
using a group type for processes (C3.1) to define further restrictions on migration.
The standard type safety proofs of progress and progression are given (C3.3), before
we again return to DynamiTE in 7.4 to show how it may be extended to support
this new type system (C3.4).

https://savannah.nongnu.org/projects/dynamite/

Chapter 7

Typed Nomadic Time

7.1 Introduction

A type system is a common addition to a process calculus. This is especially true,
when the intended use of the calculus is as the basis for a programming language or
a distributed system, which is the case here. In this final chapter of original research,
we demonstrate how Nomadic Time may be extended with a type system based on
the notion of groups (see 7.3). In Typed Nomadic Time, each process is assigned
to a group (C3.1), which then determines which environs it may reside in, open,
leave or enter. This can be used to restrict movement based on which process is
attempting to do so, rather than by enumeration of possible actions, the mechanism
employed by our bouncer construct. These restrictions are enforced by the typing
rules for Nomadic Time (C3.2), for which we prove type safety (C3.3).

Section 7.4 looks at how this typed form of Nomadic Time may be used in the
DynamiTE framework described in 6. We extend the process framework from 6.3
using a new TypedProcess interface, which allows the objects from our translation
schema (Table 6.1) to provide typing rules in addition to operational semantics
(C3.4). We close the chapter in 7.5 by returning to the musical chairs example from
5.6, showing how the type system may be applied to it and the result implemented
using DynamiTE.

But before we enter into the technicalities of how this is all implemented, we
first present some existing type systems used in other process calculi, including the
origins of this group-based system.

7.2 Existing Typed Calculi

Type systems can be used to restrict the calculus in ways that aren’t always possible
via mere manipulation of the syntax and semantics. Adding a type system can be

140

7.2. EXISTING TYPED CALCULI 141

as simple as formalising implicit notions, such as the use of in m as a capability
and not as part of a path (Cardelli, Ghelli & Gordon, 2002) or the fact that the x
in x(y) should represent a link and not a mere value (Sangiorgi, 2002). It may also
provide more complex intuitions, by distinguishing individual entities, controlling
mobility (Cardelli, Ghelli & Gordon, 2002; Levi & Sangiorgi, 2003) or resources
(Riely & Hennessy, 1998) or even providing a full subtyping relation (Pierce &
Sangiorgi, 1996; Merro & Sassone, 2002). This section considers a few examples of
such type systems for both the π calculus (7.2.1) and the ambient calculus (7.2.2).

7.2.1 Type Systems for the π Calculus

Various type systems have been introduced for the π calculus in the literature,
ranging from the simple notion of sorts introduced by Milner (Milner, 1999) to
those introduced for a specific purpose (Sangiorgi, 2002) and more complex sys-
tems involving subtyping (Pierce & Sangiorgi, 1996). Here, sorts are considered
followed by a brief look at the distinction between values and links made by San-
giorgi (Sangiorgi, 2002) for the purpose of proving termination.

Sorts

The earliest notion of types was introduced by Milner in (Milner, 1993b; Mil-
ner, 1999). The discipline of sorts is simply a way of representing ‘the length and
nature of the vector of names a name may carry in communication’ (Milner, 1993b).
Formally, a sort is a partial function,

ob : Σ → Σ∗ (7.1)

mapping a name to a vector of names. From this, it is simple to define a sort for
all communications in CCS and CaSE as {NAME 7→ ()} (as nothing is passed) and
the monadic π calculus as {NAME 7→ (NAME)}.

Take the simple example of a buffer,

Buf
def
=(in, out)(in(x).outx.Buf〈in, out〉 (7.2)

which simply receives a value on in and transmits it on out. x may be assigned the
sort s1 7→ S, where S is the unknown sort of the buffered value and s1 is an arbitrary
name for the new sort. From this, it follows that both the in and out channels have
the sort s2 7→ (s1), as they both receive or transmit x.

The purpose behind introducing sorts is to make explicit the need to match the
number of values being received with the number being sent. Matching the length of
these vectors becomes a necessity when dealing with the polyadic π calculus, which

142 CHAPTER 7. TYPED NOMADIC TIME

doesn’t have the same uniform sort for all channels as is present in CCS, CaSE or
the monadic π calculus.

Consider the example from (Milner, 1999) of two processes, P and Q:

P
def
= x(y).yuv.0 (7.3)

Q
def
= xy′.y′(w).Q′ (7.4)

where the parallel composition of these two processes should be disallowed. This is
made clear following the first reduction that would result from such a composition:

P | Q → y′uv.0 | y′(w).Q′ (7.5)

where Q transmits y′ to P . P then tries to use y′ to transmit two values, u and v,
whereas y′ is only used with one, w, in the input of Q. Applying an appropriate
sort discipline,

u : s1 7→ S

v : s2 7→ T

w : s3 7→ (s1)

y : s4 7→ (s1, s2)

y′ : s5 7→ (s1)

(7.6)

allows the typing of x to be prevented by distinguishing between types based on
the length of the sort. In P , x must have a sort of length two, while in Q, its
sort would only be of length one. This kind of type system formalises an intuition
already adopted implicitly (that the length of the input vector should equal that of
the output vector), which is a common methodology for type systems.

Typing for Termination

A similar realisation of implicit assumptions is made by Sangiorgi (Sangiorgi, 2002)
and is used to prove termination for a subset of possible π calculus processes. The
type system is used to explicitly realise the order of a name. The types use the
simple grammar,

T ::= #T | unit (7.7)

where unit represents a value and a series of # symbols is used to represent the level
of indirection which exists between the value and the current name. For example,
#unit is the type of a first-order link, representing a name which is used to pass

7.2. EXISTING TYPED CALCULI 143

Table 7.1: Typing Rules from (Sangiorgi, 2002)

T-Out
⊢ v : #T,⊢ w : T,⊢ M

⊢ vw.M

T-Inp
⊢ v : #T, x ∈ T,⊢ M

⊢ v(x).M

T-Res
xi ∈ #Ti for some Ti(1 ≤ i ≤ n),⊢ M

⊢ (x1 . . . xn)M

values between processes. A type with more than one # represents a higher-order
link, which is used to pass links between processes.

This notion is used within the fragment of the type system shown in Table 7.1 to
restrict the possible types used in input and output prefixing, and restriction. The
rule T-Out ensures that an output prefix, vw.M , is only typeable if:

• v is at least a first-order link (it has one or more #s)

• w has a type, T

• The continuation, M , is typeable

which prevents v from being a simple value. Similarly, T-In restricts v to being at
least a first-order link in v(x).M and T-Res ensures that each restricted name is a
link.

These are all ideas that are adopted implicitly in using the π calculus to model
systems, but, when not enforced by a type system, these properties can not be
included in proofs. The type system in Sangiorgi’s paper, although simple, allows a
set of processes which are syntactically correct, but logically flawed, to be excluded
by only considering processes which are typeable.

7.2.2 Type Systems for the Ambient Calculus

Early work (Cardelli & Gordon, 1999) on providing a type system for the ambient
calculus focused on typing the derived communication primitives and specifically
the values being exchanged. While interesting, this doesn’t really relate to the focus
of the calculus, spatial mobility. In (Cardelli, Ghelli & Gordon, 1999; Gordon &
Cardelli, 1999), a first attempt is made at providing types for mobility, via mobility
and locking annotations. Mobility annotations are used to mark an ambient as

144 CHAPTER 7. TYPED NOMADIC TIME

mobile (∨) or immobile (y), where mobile ambients may be involved in movement
operations using the capabilities in and out. Locking annotations control the use
of open; locked ambients (•) may not be the target of an open capability, while
unlocked ambients (◦) may.

A more general theory is given in (Cardelli et al., 2002) with the introduction of
groups. Rather than simply specifying whether or not an ambient can move or be
destroyed, the type system is more specific as to which ambients may effect others.
To avoid dependent types (Coquand & Huet, 1988), where the types are dependent
on the values being typed, an intermediary notion of a group is introduced. This
is also advantageous in that it allows a series of ambients to have the same typing,
while typing in relation to a single ambient is still possible by having a group with
only one member.

For example, given two ambients m and n, the types should express that n can
enter m. A dependent formalisation would say that n has the type CanEnter(m),
while, using groups, m is given the type G (where G is a group) and n is typed
as CanEnter(G). Within the type system itself, ambients are allocated to groups
via the use of a group binder, (νG). Just like the ambient binder, (νn), the scope
of this may extrude outwards. However, the type system prevents it from ever
encapsulating ambients which did not form part of its initial scope (i.e. it only tracks
the movements of ambients that are a member of that group). Within (Cardelli
et al., 2002), groups are used to assign properties to its members, such as the type
of communication possible and the control of crossing or opening ambients.

The types of messages or exchanges may specify either no communication (Shh)
or a tuple of partners for the communication:

S, T ::= Shh | W1 × · · · × Wk (7.8)

For example, in the simplest form of the calculus, Agent[Shh] represents a group
called Agent, the members of which may not exchange values. Nesting is possible, so
Place[Agent[Shh]] represents a Place where groups of Agents may stay and continue
to be silent.

The full type system, given in (Cardelli et al., 2002), includes these exchange
types along with types to control the opening and crossing of ambients. Groups are
parametrised over F ,

F ::=y G,◦ H, T (7.9)

with the final form of ambient type being GyG′[F]. G′ represents the groups that
the ambient may cross via objective moves (introduced in the same paper), while G
includes the groups that the ambient may cross via standard subjective movement.
Finally, H distinguishes the groups whose ambients may be open e, while T is as
defined above.

7.3. MOBILITY TYPES FOR NOMADIC TIME 145

M3

((R
R

R
R

R
R

R
R Typed Ambients

tti i i i i i i i i

Typed Nomadic T ime

Figure 7.1: Derivation of Typed Nomadic Time

A similar system is adopted by the type system of the M3 calculus (Coppo,
Dezani-Ciancaglini, Giovannetti & Salvo, 2003), but, as this is based on boxed am-
bients (see 4.3.3), no control of open is required. It does introduce a new set of
groups, however, to handle the lightweight process mobility presented. In both
cases, the type system has a positive effect on the calculus. Not only does it alle-
viate some of the syntax ambiguity, but it also allows a more fine-grained notion
of mobility, where specific ambients can be made immobile or unable to cross a
particular ambient.

Type systems were also briefly considered as a way of restricting the behaviour
of a process algebraic model. These tend to explicitly reduce the expressivity of the
formalism in order to ensure that unwanted constructs can not be created by making
them untypeable. This also makes it easier to prove properties of the calculus.

7.3 Mobility Types for Nomadic Time

In this section, we consider the specification of a simple type system for Nomadic
Time, which fulfils two main goals:

1. It ensures the sanity of a given syntactic construction, which is implicit in the
earlier examples. This is primarily achieved by ensuring that normal process
primitives and the primitives used by bouncers remain distinct. For example,
6n.6.0 should not be a valid bouncer, especially as 6n suggests that the
bouncer (and its environ) should move inside n.

2. It extends and refines our control over mobility by adding a secondary mech-
anism orthogonal to the use of bouncers.

Our type system is inspired in part by those given for the ambient calculus
(see 7.2.2), specifically the notion of groups presented in (Cardelli et al., 2002) and
(Coppo et al., 2003); see Figure 7.1. However, the structure of the groups and the
typing rules are novel. Each process is assigned a group type, which determines the

146 CHAPTER 7. TYPED NOMADIC TIME

use of the mobility primitives. Each group is a tuple comprising four sets of environ
names1:

• R – Environs in which the process may reside
• O – Environs which it may open
• L – Environs which it may leave
• E – Environs which it may enter

L and E form subsets of R, as clearly, if a process may enter or leave an
environ, it must also be able to reside within it. As an example, consider the group
({n}, ∅, ∅, {n}). Processes of this type may enter and reside in n, but, once there,
they may not leave. They also lack the ability to destroy n. We write g(R), g(O),
g(L) and g(E) for the components of the group g.

The type system is presented in Tables 7.2, 7.3, 7.4 and 7.5; the general syntax
for a type T is given by

T ::= G | Bouncer

G ::= g | G ⊕ G | G ⊗ G

where g : Group ranges over group types.

The rule T-Env states that if ξ of type T is a member of Γ, then a typing
derivation ⊢ ξ : T may be made in the context of Γ. This forms the basis of all later
rules. Notice that our system is naturally polymorphic; 0, ∆ and ∆σ can have any
group type g. In contrast, Ω can only be typed as a Bouncer (Table 7.4), and any
variable X can take any type prior to being bound, thus distinguishing them from
the behaviourally equivalent process, ∆.

The remaining rules in Table 7.2 allow types to be applied in accordance with
the various operators present in the calculus. When handling the binary operators,
we use the rules T-Sum and T-Par to construct appropriate composite types that
maintain the groups used on either side. The rules for timeouts (Table 7.3) follow
much the same design as the rules for the summation operator.

In the rules for the bouncers (Table 7.4), BRec allows recursive bouncers to be
defined, while BIn, BOut and BOpen allow an existing bouncer, B, to be prefixed
with one of the three bouncer primitives (6, 7 and �). BSum simply allows the
result of composing two bouncers with the summation operator, + to be typeable
as well.

The mobility types (Table 7.5) form the remaining focus of our type system; the
type g of an environ m[E]B~σ is that of its encapsulated process E, subject to the
constraint that m ∈ g(R) and B is a Bouncer. Consequently, if m[E]B~σ is of type
g : Group, this implies that m ∈ g(R). Similar sanity checks are performed in the
other rules. For T-EnvIn, we check that the group of n allows it to enter m (and also
reside there, given E ⊆ R as discussed earlier). The T-EnvOut rule is similar, but

1Each group g is defined abstractly to be of kind Group.

7.3. MOBILITY TYPES FOR NOMADIC TIME 147

Table 7.2: Types

T-Env
ξ : T ∈ Γ

Γ ⊢ ξ : T
T-Nil

Γ ⊢ g : Group

Γ ⊢ 0 : g

T-Stop
Γ ⊢ g : Group

Γ ⊢ ∆ : g
T-Stall

Γ ⊢ g : Group

Γ ⊢ ∆σ : g

T-Var
Γ ⊢ t : T

Γ ⊢ X : t
T-Act

Γ ⊢ E : g : Group

Γ ⊢ α.E : g

T-Rec
Γ ⊢ E : g : Group

Γ, X : g ⊢ µX.E : g
T-Res

Γ ⊢ E : g : Group

Γ ⊢ E \ a : g

T-Sum
Γ ⊢ E : g : Group, F : g′ : Group

Γ ⊢ E + F : g ⊕ g′
T-Par

Γ ⊢ E : g : Group, F : g′ : Group

Γ ⊢ E | F : g ⊗ g′

Table 7.3: Timeout Types

T-FTO
Γ ⊢ E : g : Group, F : g′ : Group

Γ ⊢ ⌊E⌋σ(F) : g ⊕ g′

T-STO
Γ ⊢ E : g : Group, F : g′ : Group

Γ ⊢ ⌈E⌉σ(F) : g ⊕ g′

Table 7.4: The Bouncer Type

BNil
−

Γ ⊢ Ω : Bouncer
BRec

Γ ⊢ B : Bouncer

Γ, X : Bouncer ⊢ µX.B : Bouncer

BIn
Γ ⊢ B : Bouncer

Γ ⊢ 6.B : Bouncer
BOut

Γ ⊢ B : Bouncer

Γ ⊢ 7.B : Bouncer

BOpen
Γ ⊢ B : Bouncer

Γ ⊢ �.B : Bouncer
BSum

Γ ⊢ B,B′ : Bouncer

Γ ⊢ B + B′ : Bouncer

148 CHAPTER 7. TYPED NOMADIC TIME

Table 7.5: Mobility Types

T-Environ
Γ ⊢ E : g : Group,B : Bouncer,m ∈ g(R)

Γ ⊢ m[E]B~σ : g

T-EnvIn
Γ ⊢ n[E]B~σ : g : Group,m ∈ g(E)

Γ ⊢ n[6m.E]B~σ : g

T-EnvOut
Γ ⊢ k[E]B1

~σ : g : Group,m ∈ g(L), n ∈ g(E)

Γ ⊢ n[m[k[7m.E]B1

~σ]B2

~ρ]B3

~γ : g

T-Open
Γ ⊢ E : g : Group, F : h : Group,m ∈ g(O), n ∈ h(E)

Γ ⊢ n[�m.E | m[F]B1

~σ]B2

~ρ : g

T-ProcIn
Γ ⊢ E | F : g ⊗ g′ : Group,m ∈ g(E)

a.E | on a 6 m.F : g ⊗ g′ : Group

T-ProcOut
Γ ⊢ E | F : g ⊗ g′ : Group,m ∈ g(L), n ∈ g(E)

Γ ⊢ n[m[a.E | on a 7 m.F]B1

~σ]B2

~ρ : g ⊗ g′ : Group

we must also check that k can enter n as well as being able to leave m. In T-Open,
E is the process that performs the mobility primitive, �m (subject to the constraint
m ∈ g(O)). However, the destruction of m also has an effect on its process (F). As
a result, F must have an appropriate type, h, such that F can reside in the parent
environ, n, after m is removed. The final two rules T-ProcIn and T-ProcOut are the
equivalents of EnvIn and EnvOut for processes; the group g concerned is that of
E, while the group g′ of F can be anything. Note that deciding whether an environ
name occurs in a group that is a composite type (g⊕ g′ or g⊗ g′) requires matching
the group to the appropriate term it was connected with prior to composition. For
example, if 6m.E | F has the type g ⊗ g′, then, by Par, 6m.E has type g and F
has type g′. Thus, it is g(E) that must contain m. In general use, the environ name
must appear in either of the composed groups for g ⊕ g′, and in both for g ⊗ g′, the
latter being the Cartesian product of the two sets.

For clarity, we also show how the structural congruence laws of 5.4 interact with
the type system in Table 7.6. Notably, the decomposition of g⊕g′ and g⊗g′ depend
on the ordering correspondence between the composed processes and the composed
types, so the types are also swapped over in StrSum1 and StrPar1. In StrIdent,
the type corresponding to the 0 process is also removed. For the other rules, the
types are identical on both sides.

Our type system also exhibits the standard properties of type safety :

7.4. DYNAMITE AND THE TYPE SYSTEM 149

Table 7.6: Structural Congruence Laws with Types

StrSum1 E + F : g ⊕ g′ ≡ F + E : g′ ⊕ g
StrSum2 E + (F + G) : g ⊕ (g′ ⊕ g′′) ≡ (E + F) + G : (g ⊕ g′) ⊕ g′′

StrPar1 E | F : g ⊗ g′ ≡ F | E : g′ ⊗ g
StrPar2 E | (F | G) : g ⊗ (g′ ⊗ g′′) ≡ (E | F) | G : (g ⊗ g′) ⊗ g′′

StrIdent E | 0 : g ⊗ g′ ≡ E : g
StrResRem 0 \ A : g ≡ 0 : g
StrResRes E \ A \ B : g ≡ E \ A ∪ B : g

1. Progress : A well-typed term is not stuck. It can either take a step according
to the operational semantics or is one of ∆, Ω or X.

2. Preservation: If a well-typed term takes a step of evaluation, then the resulting
term is also well-typed.

Proofs of these are given in appendices A and B respectively.

7.4 DynamiTE and the Type System

Extending DynamiTE to support the type system of Typed Nomadic Time (TNT),
and type systems in general is relatively simple. We first extend the Process inter-
face to create a new interface, TypedProcess:

public interface TypedProcess

extends Process

{

Type getType()

throws UntypeableProcessException;

}

With TypedProcess, we extend the contract for implementing a process by one
method: getType. This either returns the type of the process, or throws an exception
if the process is untypeable. The type of a process is represented by a new hierarchy
of classes, all of which implement the Type marker interface. Thus, in the same way
the syntax of a calculus is represented as a set of classes which implement Process,
so its type system is represented by a set of classes which implement Type. The
Calculus interface (introduced in 6.4.1) becomes:

public interface Calculus

150 CHAPTER 7. TYPED NOMADIC TIME

extends Probeable

{

public Collection<Class<? extends Process>> getSyntax();

public Collection<Class<? extends Type>> getTypeSystem();

public Label getLabel(String label);

}

The methods getSyntax and getLabel(String) were both provided before,
and return the syntax and transition labels for the calculus respectively, the latter
also acting as a validation mechanism. The new method is getTypeSystem which
returns the classes that represents valid types; for TNT, getTypeSystem represents
T (see 7.3) just as getSyntax represents the process terms E and F (see 5.32). We
implement the method for TNT as follows:

public Collection<Class<? extends Type>> getTypeSystem()

{

Set<Class<? extends Type>> types =

new HashSet<Class<? extends Type>>();

types.add(ProcessType.class);

types.add(BouncerType.class);

return types;

}

The classes have a common suffix of ‘Type’ to avoid conflicts with the syntax
classes. The BouncerType class is simple, providing a singleton instance to represent
the type. To represent P , there are three further subclasses of ProcessType: Group,
SumType and ProdType. To handle the constraints imposed by group membership,
such as m ∈ g(E), ProcessType requires its subclasses to implement the follow
methods:

public interface ProcessType

extends Type

{

boolean canResideIn(String environ);

boolean canOpen(String environ);

boolean canLeave(String environ);

boolean canEnter(String environ);

}

These are implemented in Group using sets provided by the user. For SumType

and ProdType, the check is performed on the appropriate constituent type. The
implementations of getType for each process term follow fairly straightforwardly

7.4. DYNAMITE AND THE TYPE SYSTEM 151

from the type system given in 7.2, 7.3, 7.4 and 7.5. For instance, implementing
BNil is just a matter of adding the following method to the Omega class:

public Type getType()

{

return BouncerType.BOUNCER;

}

Those which contain the g : Group prerequisite are more complicated. Just
as with names, clocks and environs, the available groups are created by the user
and registered with the Context. To create the association between a process and a
group to begin with, the classes Nil, Delta, Stall and Var (those that don’t contain
an instance of Process) gain an additional constructor which records the group of
the process. This has the effect of making Nil and Delta no longer singletons.
Instead, the class is implemented as follows:

public class Delta

extends Process

{

public static final Delta DELTA = new Delta();

private Delta()

{

this(null);

}

public Delta(Group g)

{

this.g = g;

}

public Type getType()

{

return g;

}

}

We still allow instances of these classes to be constructed without a group
(getType() will return null) so as to still support Nomadic Time. The other
classes likewise implement getType() in accordance with the typing rules, so that
the group of the overall process is derived from that of its constituents. For example,
the implementation for Sum looks like this:

152 CHAPTER 7. TYPED NOMADIC TIME

public Type getType()

{

return new SumType(left.getType(), right.getType());

}

where left and right are the processes composed by the + operator.

All the implementations of getType() we have shown so far always succeed.
This is not the case with the mobility typing rules implemented in subclasses of
ModPrefix. For example, we implement getType() in InEnv as follows:

public Type getType()

{

ProcessType procType = proc.getType();

if (procType != null &&

procType.canEnter(env))

{

return procType;

}

else

{

throw new UntypeableProcessException(this);

}

}

The call to procType.canEnter(String) ensures that m ∈ g(E) holds. The actual
code executed by the call depends on the type of procType; for a Group, the check
only searches the single E set belonging to that group, but for ProdType, it must
ensure that m is in the E set of both composed groups.

Finally, the type checks may be performed at runtime by an evolver that supports
them. We add an additional interface, TypedEvolver, to evolve a TypedProcess:

public interface TypedEvolver

{

void evolve(TypedProcess p);

}

When the checks are made and how the evolver reacts to them are left up to each
implementation.

7.5. TYPED MUSICAL CHAIRS 153

7.5 Typed Musical Chairs

With our typed variant of Nomadic Time, TNT, we can control the movement
of processes in a much more fine grained manner using groups. This allows us to
enhance the musical chairs example from 5.6 so that only processes with a group type
where chair ∈ Chair(R) ∩ Chair(E) are allowed to enter the chair environ. This
is a stronger requirement than that exhibited by the bouncers; the chair bouncer
CB = µX.(6.7.X+�.Ω) dictates that a process must leave the chair before another
may enter it, but it does not say anything about which processes can occupy the
chair in the first place. In the untyped version, it is perfectly possible for a rogue
process to enter a chair and not leave. If that process is the only inhabitant (which
will be the case, given that the chairs are initially empty), it can prevent a chair
from being used properly.

We can see this by considering a simplified version of the full musical chairs
system, concentrating solely on the movement of the player into the chair:

GM4
def
= µX.(⌈on sit 6 chair.X⌉σ(0))

MP
def
=⌈sit.0⌉σ(0)

(7.10)

We replace the processes PiC, L and GM5 from the definitions in 5.6 with 0 so as
to keep the example here simple and focus on the use of the type system to restrict
movement. If we consider the type rule T-ProcIn, we can see that the final type of
sit.0 | on sit 6 chair.X will be g ⊗ g′, and thus that 0 will be of type g and X of
type g′. We also know that chair ∈ g(E) must hold, so we can derive that the type
of 0 in sit.0 must be at least ({chair}, ∅, ∅, {chair}).

The process MP as a whole has a type g⊕g′ (from STO), where g corresponds to
sit.0 and thus has to meet the requirement chair ∈ g(E). The constraint g ⊕ g′(E)
is satisfied if only one of the two groups meets the constraints; thus having g do so
is enough. The GM4 process has a type of the same form, g′′⊕ g′′′, again due to the
stable timeout. This is maintained over recursion by T-Rec, so when we compose
GM4 and MP to form MP | GM4, we end up with the type (g ⊕ g′) ⊗ (g′′ ⊕ g′′′)
through the rule T-Par. From this, only g ⊕ g′ is constrained, as this maps to g
in the rule T-ProcIn. As we have already seen, it is sufficient for one of these to
meet the requirements for the composite process to do so. Thus, we need only an
appropriate type for the 0 in sit.0 for the entire process to be typeable.

Why is this useful? As implied above, this makes the requirements to enter
the chair environ stricter; if we have a process Rogue that has the same definition
as MP but has the type ({chair}, ∅, ∅, ∅), then this process will be blocked from
entering the chair in the typed variant of the calculus, but not in the untyped form.
Placing this form of MP , which ends in 0 rather than becoming PiC, in the original
untyped game will prevent the chair it enters from being used subsequently, as the

154 CHAPTER 7. TYPED NOMADIC TIME

initial move will use the 6 offered by the bouncer and there is nothing in the chair
environ to synchronise with the 7 now offered.

Just as we did in 6.6, we can convert this directly from the formal notation into
objects in DynamiTE:

Name sit = new Name("sit");

Group g = new Group(new String[]{"chair"},null,null,

new String[]{"chair"});

Prefix moving = new Prefix(sit, new Nil(g));

Clock sigma = new Clock("\u03C3");

MobPrefix sitAction = new MobPrefix(new ProcIn(sit, "chair"),

new Var("X"));

Process gm4 = new Rec("X", new STo(sitAction, sigma, Nil.NIL));

Process mp = new STo(moving, sigma, Nil.NIL);

Process chairMovement = new Par(mp, gm4);

Process bInOut = new MobPrefix(MobPrim.BOUNCER_IN,

new MobPrefix(MobPrim.BOUNCER_OUT, new Var("Y")));

Process bOpen = new MobPrefix(MobPrim.BOUNCER_OPEN, Omega.OMEGA);

Env chair = new Env("chair", Nil.NIL,

new Rec("Y", new Sum(bInOut, bOpen)), null);

Process app = new Par(chair, chairMovement);

We create a new instance of Group which is allow to reside in and enter an environ
named "chair". This group is then assigned to an instance of Nil prefixed by
the name sit. The type is passed through the Process instances according to the
typing rules and will eventually be checked to ensure that "chair" is a member of
both the R and E sets when the ProcIn instance is reached. The group instance
above will pass this type check. Were one of the arguments to be replaced with
null, then it would fail with a UntypeableProcessException.

7.6 Conclusion

In this chapter, we presented the typed variant of our calculus, Typed Nomadic
Time or TNT, giving the third and final set of novel contributions (C3.1 through
C3.4) in this thesis. Following consideration of a number of type systems from the
literature, including the use of sorts for typing communication (see 7.2.1) and the
use of groups to restrict ambient movement (see 7.2.2), we created our own group
type (C3.1) and formed a set of typing rules using it (C3.2) in 7.3. While the
general idea of group-based restriction is taken from existing ambient type systems,
we believe our construction here and its associated type system to be novel. As is

7.6. CONCLUSION 155

standard in the literature, we proved type safety for TNT by showing that typed
processes may progress, and that types are preserved correctly in doing so (C3.3).

We closed the chapter by showing how DynamiTE could be modified to support
TNT in 7.4 (C3.4), and put this into practise in 7.5 by adapting the musical chairs
example. Just as DynamiTE is not intended to be strongly tied to Nomadic Time as
its process calculus, the same is true of the typed variant of DynamiTE and TNT;
we expect that other type systems could be implemented in the same manner for
other process calculi.

To conclude, we believe that our type system provides a useful optional addition
to Nomadic Time. It can be employed, when needed, to provide a finer level of
access control than the simple approach of enumerating possible actions used by
bouncers. There are possibilities for extending the type system further, which we
will discuss in 8.2.3 as part of the next and final chapter on future work.

Chapter 8

Contributions and Future Work

This final chapter summarises our contributions to knowledge from 1.4, before turn-
ing to the discussion of possible future work in 8.2.

8.1 Our Contributions

We have presented the following contributions to knowledge which we believe to be
novel:

C1. Nomadic Time, an algebraic process calculus with compositional global syn-
chronisation, mobility and security provision via the notion of ‘bouncers ’
(see chapter 5). This includes:

C1.1 The merging of clock hiding from the CaSE process calculus (Norton
et al., 2003) with the notion of distribution, so that the CaSE term
E/σ becomes m[E]B{σ} in Nomadic Time. In CaSE, clock hiding is
used as a form of encapsulation; hiding a clock makes its ticks appear
as silent actions to processes outside the scope of the clock hiding
operator. We can think of the processes encapsulated by the scope
of the clock hiding operator as forming a component, and so it seems
natural to name it. The localised form of clock hiding present in
Nomadic Time allows this through the use of named environs (such
as m in the previous example). Note that we use a set of clocks in
Nomadic Time, so a CaSE term like E/σ/ρ can be simplified to just
m[E]B{σ,ρ}.

C1.2 The combining of this localised form of CaSE with structural mobil-
ity primitives from the ambient calculus (Cardelli & Gordon, 1998)
to give a new mobile calculus with the local and global synchroni-
sation properties of CaSE. This adds a new process form, M.E , to

156

8.1. OUR CONTRIBUTIONS 157

the existing syntax of CaSE, where M is one of 6m, 7m and �m,
each in turn exhibiting the behaviour of in m, out m and open m
from the ambient calculus. We change the name of the operators in
Nomadic Time to make them more distinct from our existing names
and co-names, which aren’t present in the ambient calculus.

C1.3 The addition of a pair of process mobility primitives which allow di-
rect process movement by synchronising on a name. We add two new
alternatives to M, namely on a6m and on a7m. Just as a process,
a.P , can synchronise with a.Q in CCS or CaSE, it can also synchro-
nise with on a 6 m.Q or on a 7 m.Q in Nomadic Time. If such a
synchronisation happens, not only does a.P becomes P , but it is also
moved inside or outside of m. This kind of direct process migration
appears in few process calculi, and we believe this particular form,
which leverages the existing synchronisation process, to be unique.

C1.4 The introduction of ‘bouncers’, which add a security mechanism to
the calculus. The range of M is again extended to include 6, 7 and
�, which correspond to in m, out m and open m respectively from
the safe ambient calculus. The difference between their use in the
safe ambient calculus and their use in Nomadic Time is that these
co-actions must come from a process which is attached to the top-
right of an environ such as B in m[E]B{σ}. This is why the operators
themselves do not need to name an environ.

C1.5 The creation of a set of structural congruence laws for Nomadic Time
(Table 5.4), allowing process terms to be simplified and the number of
semantic rules to be reduced. With these rules in place, we were able
to drop the Sum2 and Par2 rules taken from CaSE’s semantics. They
are also useful in cases where, for example, a number of processes have
evolved to 0 e.g. 0 | 0 | 0 can be rewritten as 0 using StrIdent.

C1.6 The provision of structured operational semantics for Nomadic Time
(Tables 5.2 and 5.3). These extend those from CaSE as demonstrated
in Table 5.5, extending the notion of prioritisation and adding new
rules to handle the introduction of environs and mobility primitives.
The main contributions in the semantics come from formulating ap-
propriate structural operational semantics for the new mobility prim-
itives, especially with regard to the three-way synchronisation present
in the process mobility operators, and the generalisation of ideas from
CaSE to incorporate mobility. The latter includes the creation of a
notion of high priority transitions; this includes τ transitions and the
transitions which occur when a mobility synchronisation (e.g. 6m
and 6m) takes place. So, although a number of the rules are derived

158 CHAPTER 8. CONTRIBUTIONS AND FUTURE WORK

from CaSE, they have had to be extensively re-examined to ensure
that they work correctly in the context of the new mobility primitives.

C1.7 The demonstration of the properties of prioritisation and time de-
terminacy inherent in the new calculus. This follows on from the
semantics and explicitly shows how the high priority transitions de-
fined there prevent any clock transitions from taking place.

C2. The realisation of the aforementioned calculus as a design framework, Dy-
namiTE, through the implementation of its constructs as programmatic el-
ements in the Java programming language (see chapter 6). This allows the
specification of system interactions to be shifted directly from the theoretical
domain into an implementation backed by a formal methodology, with the
intention of improving industrial adoption of concurrent techniques. This
includes:

C2.1 The creation of a translation schema (Table 6.1), mapping process
terms in Nomadic Time to Java objects. This was largely a mechanical
process of turning the syntax into objects, but there are a few areas
that required more finesse. In particular, it was necessary to create
0, Ω, ∆ and the bouncer primitives as singletons in order to avoid
there being multiple distinct instances of them. Having only a single
instance of each reduces memory usage and means that two separate
references to them can be judged equivalent by comparing just the
references and not the objects referred to. The Action framework
is also notable, particularly as it is the abstract notion of Tau which
connects the intercommunication mechanism provided by DynamITE
to the user’s own code.

C2.2 The implementation of the operational semantics as methods in the
appropriate Java objects defined in the schema. This was again a
largely mechanical process, but did require significant testing to get
right. It also had the additional benefit of showing whether the se-
mantics performed as expected in a practical situation.

C2.3 The design and implementation of a plugin framework, allowing the
use of different process calculi and different side effects as the result of
performing a transition. As with any plugin framework, the full merits
of this remain to be discovered, as other alternate implementations are
developed and used with it. It does provide an important separation
between the calculus, the framework and the side-effecting mechanism
which will hopefully mean that others can use DynamiTE even if they
do not wish to use Nomadic Time. We believe DynamiTE to be novel

8.1. OUR CONTRIBUTIONS 159

in this respect, allowing other calculi to be used and also for existing
implementations to be extended; so calculi that extend each other in
the theoretical domain can also do so at the implementation level.
This is the case with CCS, CaSE and Nomadic Time, which, as noted
earlier, share the same implementation of recursion (Rec).

C2.4 The design and implementation of the evolver framework, allowing
the execution semantics to be both clearly denoted and interchange-
able. By providing just two implementations in DynamiTE – the
Simulator, which explores all transitions in a depth-first fashion, and
the RandomExecutor, which follows one transition at random – it is
already possible to evaluate the communication semantics with the
former, change a single line of code, and execute the process (includ-
ing side effects) with the latter.

C3. The optional addition of a type system to Nomadic Time in order to allow
movement restriction to be based on the group membership of processes
(see chapter 7); we refer to this extended version as Typed Nomadic Time
(TNT). This includes:

C3.1 The design of a group type which can be applied to a Nomadic Time
process to restrict movement. Although the idea of a type system
based on groups is derived from existing work on type systems for
ambient calculi (see 7.2.2), our particular form of group, using the
sets R (resides in), O (opens), L (leaves) and E (enters) is believed
to be novel.

C3.2 The provision of typing rules (Tables 7.2, 7.3, 7.4 and 7.5) for the new
typed form of Nomadic Time. Again, we believe these to be novel. In
a number of cases, the rules are obvious, with the majority of work
focusing on handling what happens when two groups converge (T-
Sum, T-Par, T-FTO and T-STO) and the actual use of the groups
in the mobility rules (T-EnvIn, T-EnvOut, T-Open, T-ProcIn and T-
ProcOut). We believe the rules to be useful in providing an additional
layer of security, above and beyond the bouncer mechanism, when
required.

C3.3 Proofs of type safety for the type system. These were largely me-
chanical but areas such as handling substitution required significant
thought, and they did expose some holes in the type system which
led to it being further revised and rectified.

C3.4 The extension of DynamiTE to handle type systems in general, and
specifically TNT. This has many similarities with C2.1 and C2.2,

160 CHAPTER 8. CONTRIBUTIONS AND FUTURE WORK

with the processes in the translation schema from C2.1 now imple-
menting TypedProcess and the typing rules being implemented in a
similar manner to the way the operational semantics were in C2.2.
In addition, we had to decide how to best represent the group type,
leading to the ProcessType interface and its subclasses, and how to
signal a failure to type a process in an appropriate way, for which a
specific exception type was used.

8.2 Future Work

In this final section, we look at a number of ideas with regard to further developing
the process calculus Nomadic Time (8.2.1), the DynamiTE framework (8.2.2) and
the type system (8.2.3). We also touch on other possible applications for Nomadic
Time and its typed derivative, TNT (8.2.4).

8.2.1 Nomadic Time

Separation of Syntax

At present, the syntax represents bouncers as a form of process for simplicity. This
has the advantage of being minimal, but also means that there are number of possible
constructs that we would prefer to deem illegal (e.g. the use of bouncers with the
timeout operators or Ω being used as a ‘normal’ process term). In chapter 7, we
showed how the type system could be used to make such terms invalid, but in
hindsight it would better to have a more verbose syntax which rules these out from
the start.

Equivalence

The main element lacking in the current version of Nomadic Time is some notion
of equivalence. This is necessary to be able to compare processes, and brings the
additional benefit of being able to reduce them to a simpler form. This would also
ripple through to DynamiTE in the implementation of an equals method for the
Nomadic Time implementations of Process, which currently only return true where
both objects are the same instance.

Any bisimulation theory for NT would be based on the labelled transition sys-
tem defined by the semantics. In particular, the semantics share a lot in common
with those of CaSE, for which a form of bisimulation-based equivalence (temporal
observation congruence) already exists. Nomadic Time introduces a number of new
transitions, including the three mobility transitions (6, 7 and �) and the compo-
nent transitions formed from terms in M which pair up to generate 6, 7 and �.

8.2. FUTURE WORK 161

Thus, any equivalence theory would need to consider issues such as whether 6m is
equivalent to 6n; do we consider only that an ‘in’ action is being performed or do
we also take into account the specific environ involved?

Mobility affects the topology of the process, and thus the difference between two
processes may not be fully realised simply by looking at transitions. For example,
m[n[6m.0]Ω∅]Ω∅ and m[6m.0]Ω∅ both produce a 6m transition along with one for each
member of T . Assuming T is the same for both, the difference in topology is not
discernable from merely the set of possible transitions.

Scoping of Environ Names

Back in 5.3, we noted that Nomadic Time does not yet support the scoping of names.
In the ambient calculus, (νn)E is used to restrict the scope of the ambient name,
n, to within E, thus allowing only mobility operations which form part of E to use
the name n. Instead, Nomadic Time currently assumes that all environ names are
available globally. While in most cases this isn’t a problem, as references to environs
relate to siblings or parents, it becomes an issue if a process moves location and now
refers to an environ it wouldn’t have before.

For example, in

n[m[7n.P | 6 k.Q]B1

σ]B2

ρ | k[R]B3

γ (8.1)

the environ m may move outside n1, due to 7n.P , giving:

n[0]B2

ρ | k[R]B3

γ | m[P | 6 k.Q]B1

σ (8.2)

In such a situation, 6k.Q may now cause m to move inside k, but, prior to the
move, it couldn’t as k wasn’t a sibling of m. It is, of course, possible that such
behaviour was intentional and such changes in context are, after all, the point of
having migration in the calculus to begin with. However, the current calculus does
not give the user the option of preventing such situations from occurring. Adding a
scoping operator, in a similar manner to the ambient calculus, would allow the two
references to k in the above to remain distinct from one another and prevent the
6k from operating on the k environ.

Note that the above assumes that the bouncer B3 will allow m to enter. Similarly,
the type of the processes could also be used to control access to k with TNT. Both
these existing mechanisms reduce the damage inherent in the use of global names,
but they don’t remove it altogether.

1Assuming appropriate bouncers are available.

162 CHAPTER 8. CONTRIBUTIONS AND FUTURE WORK

Bigraphs

Back in 4.5, we look at Milner’s unifying framework of bigraphs (Jensen & Milner,
2004) and saw how these could be used to represent both features of both the π
calculus and the ambient calculus. It would be interesting to see if Nomadic Time
could also be represented in the same framework. The biggest challenge here is
likely to be incorporating the notion of time, and so it may be best to first try and
represent a simpler calculus such as TPL.

8.2.2 DynamiTE

As we hinted at in chapter 6, there are still a number of areas we wish to explore in
the future. These include:

• The development of further Evolver implementations which implement a vari-
ety of execution semantics. This gives the possibility of experimenting with ad-
ditional constraints and levels of priority, which may later be formally adopted
in the calculus.

• Expanding the locality framework so that we actually move code and data
between processes or even hosts via a network.

• The addition of data to the clock signals, allowing them not only to act as
phasing signals but also as a mechanism for broadcast data.

• The development of a parser and/or graphical design tool so that processes
can be constructed from algebraic terms or diagrams, rather than Java code.

There are also plenty of possibilities for further work in providing more complex
implementations of the plugin services such as interprocess communication via web
services and supporting other process calculi. Hopefully, third parties may also wish
to get involved in this area.

The Abstract Nomadic Time Machine

In 6.7.3, we looked at the abstract machine PAN which is used to provide an im-
plementation of the safe ambients calculus (Giannini et al., 2006). Our existing
translation schema from Nomadic Time to DynamiTE, given in Table 6.1, goes
directly from the calculus to a programming language, Java. With an abstract ma-
chine in the same vein as PAN, but for Nomadic Time, we could instead express the
translation in more general terms. The syntactic constructs of Nomadic Time would
be translated into operations using the abstract machine, while DynamiTE would

8.2. FUTURE WORK 163

no longer implement the calculus directly, but instead provide an implementation
of the abstract machine.

By providing this additional layer of abstraction, we have an implementation of
Nomadic Time that exists at a more formal level. This allows us to prove properties
of this implementation, without having to contend with the complicated seman-
tics of a programming language such as Java. It may also be possible to express
other calculi using the same abstract machine, thus giving a general framework for
implementations of process calculi.

Implement Bigger Applications with DynamiTE

Through the course of this thesis, we’ve shown how DynamiTE and its associated
development process can be used to take an application through the usual stages
of requirements analysis (1.3.1), design (5.7) and implementation (6.6). For this,
we used the example of a music player with a fairly limited set of requirements.
While this is fine as an easily digestable example here, to really prove the utility of
DynamiTE, we need to develop some big examples using the framework and prove
that it really helps with concurrent applications on a scale where tracking down race
conditions and deadlocks starts to become intractable.

8.2.3 The Type System

More Advanced Types

There are a number of ideas that could be further investigated:

• The addition of types to actions and/or clocks. In 8.2.3, we explore one pos-
sibility for the former, but there may be more.

• Bouncers only have a single rudimentary type; this could be extended. Alter-
natively, the syntactic form of bouncers could be removed altogether, with the
same functionality instead being provided by the type system.

• It may be worth implementing the types in a theorem prover and deducing
results, such as proofs of consistency.

Nomadic Time Extended With Data

At present, the calculus does not explicitly represent the passing of data in any form.
When synchronisation occurs on a channel, a, it simply produces a τ transition.
Within DynamiTE, the transfer of a single Object from sender to recipient takes
place. This may be inefficient if many objects need to be sent, and it would be
preferable to transfer multiple items in a single synchronisation. It would also be

164 CHAPTER 8. CONTRIBUTIONS AND FUTURE WORK

preferable if the type of the data was represented, so that the type expected by the
receiver matches that sent by the sender.

Both of these could be implemented via the type system. The matching of the
number of items being sent with those received could also be performed through
additions to the syntax and semantics, but also has the downside of introducing a
new set of names; we already have distinct sets of names (N), co-names (N) and
clocks (T) along with the names used by environs.

Such an extension would draw on Milner’s work on sorts (see 7.2.1) and allow
synchronisation to proceed only when the following holds for a : ~x and a : ~y:

1. The length n of ~x (#x) must equal the length of ~y (#y).

2. For each element xi in ~x, the corresponding element in ~y, yi, must have the
same type ti.

The types used in ~x and ~y are not members of T (see 7.3), but are user-defined.
In DynamiTE, for example, t1 may be String. Thus if a is defined as having the
type (t1, t2, t3), it can only synchronise with a if it also has the type (t1, t2, t3).
Clearly, the second rule could be widened to allow a subtyping relation between the
two types, rather than equivalence.

Explicit Type Assignment

At present, there is no explicit assignment of types to processes in the type system.
We assume that the user either adds their own axioms to fix the type of a process,
or that the type of a process is derived; for example, we can derive a suitable type
for 6m.0 through the knowledge that m ∈ g(R) must hold. In the DynamiTE
implementation of the type system (see 7.4), types are assigned when constructing
Nil, Delta, Stall and Var instances. This could also be added to the formal version
by modifying the syntax and semantics to use 0 : T , ∆ : T and ∆σ : T .

8.2.4 Other Applications

There may be other domains in which our calculus will find applicability. Pervasive
computing may be one such area, as may web services and biological modelling.
In addition, its relation to P systems (4.3.5) and the ability to encode it using a
bigraph (4.5) would form interesting areas of study.

Bibliography

Aceto, L. & Murphy, D. (1996). Timing and Causality in Process Algebra, Acta
Informatica 33(4): 317–350.

Amadio, R. (1997). An Asynchronous Model of Locality, Failure and Process Mobil-
ity, Proc. of the Second International Conference on Coordination Languages
and Models (COORDINATION ’97), number 1282 in Lecture Notes in Com-
puter Science, Springer, pp. 374–391.

Amazon (2009). Amazon Web Services. Last checked: 10/08/2009.
URL: http: // aws. amazon. com/

Andersen, H. R. & Mendler, M. (1994). An Asynchronous Process Algebra
with Multiple Clocks, Proc. of the 5th European Symposium on Programming
(ESOP ’94), number 788 in Lecture Notes in Computer Science, Springer,
pp. 58–73.

Apple (2009). Grand Central Dispatch: A Better Way to Do Multicore. Last
checked: 15/09/2009.
URL: http: // www. apple. com/ macosx/ technology/

Armstrong, J., Virding, R., Wikström, C. & Williams, M. (1996). Concurrent
Programming in Erlang, Prentice Hall.

Beaten, J. C. M. & Middelburg, C. A. (2001). Process Algebra with Timing: Real
Time and Discrete Time, in J. A. Bergstra, A. Ponse & S. A. Smolka (eds),
Handbook of Process Algebra, North-Holland, London; Amsterdam, chapter 10,
pp. 627–684.

Bergstra, J. A. & Klop, J. W. (1984). Process Algebra for Synchronous Communi-
cation, Information and Control 60: 109–137.

Berry, G. & Boudol, G. (1992). The Chemical Abstract Machine, Theoretical Com-
puter Science 96: 217–248.

165

http://aws.amazon.com/
http://www.apple.com/macosx/technology/

166 BIBLIOGRAPHY

Boudol, G. (1992). Asynchrony and the π-Calculus (note), Technical Report RR-
1702, INRIA-Sophia Antipolis.

Boudol, G., Castellani, I., Hennessy, M. & Kiehn, A. (1993). Observing Localities,
Theoretical Computer Science 114: 31–61.

Brinkmann, M. & Walfield, N. H. (2007). A Critique of the GNU Hurd Multi-Server
Operating System, ACM SIGOPS Operating Systems Review .
URL: http: // www. gnu. org/ software/ hurd/ hurd/ critique. html

Bugliesli, M., Castagna, G. & Crafa, S. (2001). Boxed Ambients, in N. Kobayashi &
B.C.Pierce (eds), Theoretical Aspects of Computer Software: 4th International
Symposium (TACS ’01), number 2215 in Lecture Notes in Computer Science,
Springer, pp. 38–63.

Bushnell, T. (1994). Towards a New Strategy of OS Design, GNU’s Bulletin 1.
URL: http: // www. gnu. org/ software/ hurd/ hurd-paper. html

Cardelli, L. (1995). Obliq: A Language with Distributed Scope, Computing Systems
8: 27–59.

Cardelli, L. (2004). Brane Calculi - Interactions of Biological Membranes, in
V. V. Danos (ed.), Proc. of the International Conference on Computational
Methods in Systems Biology (CMSB 2004), number 3082 in Lecture Notes in
Computer Science, Springer, pp. 257–280.

Cardelli, L., Ghelli, G. & Gordon, A. D. (1999). Mobility Types for Mobile Am-
bients, Proc. of the 26th International Colloquium on Automata, Languages
and Programming (ICALP ’99), number 1644 in Lecture Notes in Computer
Science, Springer, pp. 230–239.

Cardelli, L., Ghelli, G. & Gordon, A. D. (2002). Types for the Ambient Calculus,
Information and Computation 177: 160–194.

Cardelli, L. & Gordon, A. D. (1998). Mobile Ambients, Proc. of the 1st Intl.
Conference on Foundations of Software Science and Computation Structures
(FoSSaCS ’98), number 1378 in Lecture Notes in Computer Science, Springer,
pp. 140–155.

Cardelli, L. & Gordon, A. D. (1999). Types for Mobile Ambients, Proc. of the 26th.
Annual Symposium on Principles of Programming Languages (POPL ’99),
ACM Press, pp. 79–92.

Carriero, N. & Gelernter, D. (1989). Linda in Context, Communications of the ACM
32(4): 444–458.

http://www.gnu.org/software/hurd/hurd/critique.html
http://www.gnu.org/software/hurd/hurd-paper.html

BIBLIOGRAPHY 167

Castagna, G., Ghelli, G. & Nardelli, F. Z. (2001). Typing Mobility in the Seal
Calculus, in K. Larsen & M. Nielsen (eds), Proc. of the 12th International
Conference on Concurrency Theory (CONCUR ’01), number 2154 in Lecture
Notes in Computer Science, Springer, pp. 82–101.

Castagna, G. & Nardelli, F. Z. (2002). The Seal Calculus Revisited: Contextual
Equivalence and Bisimilarity, Proc. of the 5th International Conference on
Foundations of Software Science and Computation Structures (FoSSaCS ’02),
number 2556 in Lecture Notes in Computer Science, Springer, pp. 85–96.

Cleaveland, R., Lüttgen, G. & Mendler, M. (1997). An Algebraic Theory of Multi-
ple Clocks, Proc. of the 8th International Conference on Concurrency Theory
(CONCUR ’97), number 1243 in Lecture Notes in Computer Science, Springer,
pp. 166–180.

Coppo, M., Dezani-Ciancaglini, M., Giovannetti, E. & Salvo, I. (2003). M3: Mobil-
ity Types for Mobile Processes in Mobile Ambients, Proc. of Computing: the
Australasian Theory Symposium (CATS ’03), Vol. 78 of Electronic Notes in
Theoretical Computer Science, Elsevier, pp. 1–34.

Coquand, T. & Huet, G. (1988). The Calculus of Constructions, Information and
Computation 76: 95–120.

Dahl, O.-J., Myhrhaug, B. & Nygaard, K. (1968). SIMULA 67—Common Base
Language, Norwegian Computing Center.

Dijkstra, E. W. (1968). Co-operating Sequential Processes, Programming Languages
pp. 43–112.

Dijkstra, E. W. (1971). Hierarchical Ordering of Sequential Processes, Acta Infor-
matica 1(2): 115–138.

Fournet, C. & Gonthier, G. (1996). The Reflexive Chemical Abstract Machine
and the Join-Calculus, Proc. of the 23rd. Annual Symposium on Principles of
Programming Languages (POPL ’96), pp. 372–385.

Fournet, C., Gonthier, G., Lévy, J.-J., Maranget, L. & Rémy, D. (1996). A Calculus
of Mobile Agents, Proc. of the 7th International Conference on Concurrency
Theory (CONCUR ’96), number 1119 in Lecture Notes in Computer Science,
Springer, pp. 406–421.

Giannini, P., Sangiorgi, D. & Valente, A. (2006). Safe Ambients: Abstract Ma-
chine and Distributed Implementation, Science of Computer Programming
59(3): 209–249.

168 BIBLIOGRAPHY

Gillespie, D. T. (1977). Exact Stochastic Simulation of Coupled Chemical Reactions,
Journal of Physical Chemistry 81(25): 2340–2361.

Goetz, B., Peierls, T., Bloch, J., Bowbeer, J., Holmes, D. & Lea, D. (2006). Java:
Concurrency in Practice, Addison Wesley.

Google (2009). Google Apps. Last checked: 10/08/2009.
URL: http: // www. google. com/ apps/

Gordon, A. D. & Cardelli, L. (1999). Mobility Types for Mobile Ambients, Technical
Report MSR-TR-99-32, Microsoft Research.

Gosling, J., Joy, B., Steele, G. & Bracha, G. (2005). The Java Language Specifica-
tion, Third Edition, Addison Wesley.

Hansen, P. B. (1973). Shared Classes, Operating System Principles pp. 226–232.

Harris, T., Marlow, S., Jones, S. P. & Herlihy, M. (2005). Composable Memory
Transactions, Proceedings of the Symposium on Principles and Practices of
Parallel Programming (PPoPP ’05).

Hennessy, M. & Regan, T. (1995). A Process Algebra for Timed Systems, Informa-
tion and Computation 117(2): 221–239.

Hewitt, C., Bishop, P. & Steiger, R. (1973). A Universal Modular Actor Formalism
for Artificial Intelligence, Proc. of the 3rd International Joint Conference on
Artificial Intelligence, pp. 235–245.

Hoare, C. A. R. (1974). Monitors, An Operating System Structuring Concept,
Communications of the ACM 17: 549–557.

Hoare, C. A. R. (1978). Communicating Sequential Processes, Communications of
the ACM 21(8): 666–677.

Honda, K. & Tokoro, M. (1991). An Object Calculus for Asynchronous Commu-
nication, in M. Tokoro, O. Nierstrasz, P. Wegner & A. Yonezawa (eds), Proc.
of the European Conference on Object-Oriented Programming (ECOOP ’91),
number 512 in Lecture Notes in Computer Science, Springer, pp. 133–147.

Hughes, A. (2006). Nomadic Time (extended abstract), in R. Schmidt & G. Struth
(eds), Proc. of the PhD Programme at Relational Methods in Computer Sci-
ence/Applications of Kleene Algebra (RelMiCS/AKA) 2006, number CS-06-09
in University of Sheffield Technical Reports, pp. 60–64.
URL: http: // www. dcs. shef. ac. uk/ ~ andrew/ papers/ relmics06. pdf

http://www.google.com/apps/
http://www.dcs.shef.ac.uk/~andrew/papers/relmics06.pdf

BIBLIOGRAPHY 169

Hughes, A. (2007). A Framework for Mobile Java Applications, Proceedings of the
5th International Symposium on Principles and Practice of Programming in
Java (PPPJ ’07), pp. 243–248.
URL: http: // www. dcs. shef. ac. uk/ ~ andrew/ papers/ framework. pdf

Jensen, O. H. & Milner, R. (2004). Bigraphs and Mobile Processes (revised), Tech-
nical Report UCAM-CL-TR-580, University of Cambridge, Computer Labora-
tory.

Jones, S. P., Gordon, A. & Finne, S. (1996). Concurrent Haskell, Proceedings of the
Symposium on Principles of Programming Languages (POPL ’96).

Last.fm (2009). API – Last.fm. Last checked: 10/08/2009.
URL: http: // www. last. fm/ api

Lea, D. (2004). The java.util.concurrent Synchronizer Framework, Proceedings of
the PODC Workshop on Concurrency and Synchronization in Java Programs
(CSJP ’04).

Lea, D. (2009). Concurrency JSR-166 Interest Site. Last checked: 11/08/2009.
URL: http: // g. oswego. edu/ dl/ concurrency-interest/

Lee, I., Philippou, A. & Sogolsky, O. (2005). A Family of Resource-Bound Real-
Time Process Algebras, Short Contributions from the Workshop on Algebraic
Process Calculi: The First Twenty Five Years and Beyond, Vol. NS-05-03 of
BRICS Notes, pp. 151–154.

Lee, J. Y. & Zic, J. (2002). On Modeling Real-time Mobile Processes, Proc. of the
25th Australasian Conference on Computer Science, Vol. 17 of Conferences in
Research and Practice in Information Technology Series, pp. 139–147.

Levi, F. & Sangiorgi, D. (2000). Controlling Interference in Ambients, Proc.
of the 27th. Annual Symposium on Principles of Programming Languages
(POPL ’00), ACM Press, pp. 352–364.

Levi, F. & Sangiorgi, D. (2003). Mobile Safe Ambients, ACM Transactions on
Programming Languages and Systems (TOPLAS) 25(1): 1–69.

Lévy, J.-J. (1997). Some Results in the Join-Calculus, Proc. of the Third Interna-
tional Symposium on the Theoretical Aspects of Computer Software (TACS ’97),
number 1281 in Lecture Notes in Computer Science, Springer.

Lindholm, T. & Yellin, F. (1999). The Java Virtual Machine Specification, Second
Edition, Prentice Hall.

http://www.dcs.shef.ac.uk/~andrew/papers/framework.pdf
http://www.last.fm/api
http://g.oswego.edu/dl/concurrency-interest/

170 BIBLIOGRAPHY

Mazurkiewicz, A. (1977). Concurrent Program Schemes and their Interpretations,
Technical Report AIM PB-78, Computer Science Department, University of
Aarhus.

Merro, M. (2001). Locality in the π-Calculus and Applications to Object-Oriented
Languages, PhD thesis, Ecoles des Mines de Paris.

Merro, M., Kleist, J. & Nestmann, U. (2002). Mobile Objects as Mobile Processes,
Information and Computation 177: 195–241.

Merro, M. & Sassone, V. (2002). Typing and Subtyping Mobility in Boxed Ambients,
in L. Brim, P. Janar, M. Ketinsky & A. Kuera (eds), Proc. of the 13th Inter-
national Conference on Concurrency Theory (CONCUR ’02), number 2421 in
Lecture Notes in Computer Science, Springer, pp. 304–320.

Milner, R. (1989a). A Complete Axiomatisation for Observation Congruence of
Finite-State Behaviours, Information and Computation 81(2): 227–247.

Milner, R. (1989b). Communication and Concurrency, Prentice-Hall, London.

Milner, R. (1992). Functions As Processes, Mathematical Structures in Computer
Science 2(2): 119–141.

Milner, R. (1993a). Elements of Interaction: Turing Award Lecture, Communica-
tions of the ACM 36(1): 78–89.

Milner, R. (1993b). The Polyadic π-Calculus: a Tutorial, in F. L. Bauer, W. Brauer
& H. Schwichtenberg (eds), Proc. of the NATO Advanced Study Institute on
Logic and Algebra of Specification, Springer, pp. 203–246.

Milner, R. (1999). Communicating and Mobile Systems: The π Calculus, Cambridge
University Press.

Milner, R. (2005). Pervasive Process Calculus, Short Contributions from the Work-
shop on Algebraic Process Calculi: The First Twenty Five Years and Beyond,
Vol. NS-05-03 of BRICS Notes, pp. 180–183.

Milner, R., Parrow, J. & Walker, D. (1989). A Calculus of Mobile Processes, Parts
I and II, Technical Report ECS-LFCS-89-86, University of Edinburgh.

Moller, F. & Tofts, C. (1989). A Temporal Calculus of Communicating Systems,
Technical Report ECS-LFCS-89-104, University of Edinburgh.

BIBLIOGRAPHY 171

Norton, B. (2005). Behavioural Types for Synchronous Software Composition, Proc.
of the Workshop on Foundations of Interface Technologies (FIT ’05), Electronic
Notes in Theoretical Computer Science (ENTCS), Elsevier.
URL: http: // www. dcs. shef. ac. uk/ ~ barry/ RealType/ FIT05. pdf

Norton, B. & Fairtlough, M. (2004). Reactive Types for Dataflow-Oriented Software
Architectures, Proc. of the 4th Working IEEE/IFIP Conference on Software
Architecture (WICSA ’04), Vol. P2172, IEEE Computer Society Press, pp. 211–
220.
URL: http: // www. dcs. shef. ac. uk/ ~ barry/ RealType/ WICSA04. pdf

Norton, B., Foster, S. & Hughes, A. (2005). A Compositional Operational Semantics
for OWL-S, Proc. of the 2nd International Workshop on Web Services and
Formal Methods (WS-FM 2005), number 3670 in Lecture Notes in Computer
Science, Springer, pp. 303–317.
URL: http: // www. dcs. shef. ac. uk/ ~ andrew/ papers/ WSFM05. pdf

Norton, B., Lüttgen, G. & Mendler, M. (2003). A Compositional Semantic Theory
for Synchronous Component-Based Design, Proc. of the 14th Intl. Conference
on Concurrency Theory (CONCUR ’03), number 2761 in Lecture Notes in Com-
puter Science, Springer, pp. 461–476.
URL: http: // www. dcs. shef. ac. uk/ ~ barry/ RealType/ CONCUR03. pdf

NVIDIA (2009). CUDA Zone. Last checked: 09/09/2009.
URL: http: // www. nvidia. com/ object/ cuda_ home. html

OMG (2009). Document Access Page. Last checked: 27/10/2009.
URL: http: // www. omg. org/ technology/ documents

Pérez-Jiménez, M. J. & Romero-Campero, F. J. (2006). P Systems, a New Compu-
tational Modelling Tool for Systems Biology, Transactions on Computational
Systems Biology VI: 176–197.

Petri, C. A. (1962). Kommunikation mit Automaten, PhD thesis, Institut für In-
strumentelle Mathematik.

Pierce, B. C. & Sangiorgi, D. (1996). Typing and Subtyping for Mobile Processes,
Mathematical Structures in Computer Science 6(5): 409–454.

Păun, G. (1998). Computing with Membranes, Technical Report 208, Institute of
Mathematics of the Romanian Academy.

Păun, G. (2002). Membrane Computing: An Introduction, Springer-Verlang.

http://www.dcs.shef.ac.uk/~barry/RealType/FIT05.pdf
http://www.dcs.shef.ac.uk/~barry/RealType/WICSA04.pdf
http://www.dcs.shef.ac.uk/~andrew/papers/WSFM05.pdf
http://www.dcs.shef.ac.uk/~barry/RealType/CONCUR03.pdf
http://www.nvidia.com/object/cuda_home.html
http://www.omg.org/technology/documents

172 BIBLIOGRAPHY

Păun, G., Rosenberg, G. & Salomaa, A. (eds) (2009 (to appear)). The Handbook of
Membrane Computing, Oxford University Press.

Rashid, R., Julin, D., Orr, D., Sanzi, R., Baron, R., Forin, A., Golub, D. & Jones,
M. (1989). Mach: A System Software kernel, Proceedings of the 34th Computer
Society International Conference (COMPCON ’89).

Regev, A., Panina, E. M., Silverman, W., Cardelli, L. & Shapiro, E. (2004). BioAm-
bients: An Abstraction for Biological Compartments, Theoretical Computer
Science 325(1): 141–167.

Regev, A., Silverman, W. & Shapiro, E. (2001). Representation and Simulation of
Biochemical Processes Using the Pi-Calculus Process Algebra, in R. B. Alt-
man, A. K. Dunker & T. E. Klein (eds), Proc. of the Pacific Symposium on
Biocomputing, Vol. 6, pp. 459–470.

Riely, J. & Hennessy, M. (1998). A Typed Language for Distributed Mobile Pro-
cesses, Proc. of the 25th. Annual Symposium on Principles of Programming
Languages (POPL ’98), ACM Press, pp. 378–390.

Sangiorgi, D. (1993). Expressing Mobility in Process Algebras: First-Order and
Higher-Order Paradigms, PhD thesis, The University of Edinburgh.

Sangiorgi, D. (1999). The Name Discipline of Uniform Receptiveness, Theoretical
Computer Science 221(2): 457–493.

Sangiorgi, D. (2001). Asynchronous Process Calculi: the First- and Higher-Order
Paradigms, Theoretical Computer Science 253(2): 311–350.

Sangiorgi, D. (2002). Types, or: Where’s the Difference Between CCS and π?, Proc.
of the 13th International Conference on Concurrency Theory (CONCUR ’02),
number 2421 in Lecture Notes in Computer Science, Springer, pp. 76–97.

Satoh, I. (1996). Time and Asynchrony in Distributed Computing, PhD thesis, Keio
University.

Satoh, I. & Tokoro, M. (1993). A Timed Calculus for Distributed Objects with
Clocks, Proc. of the 7th European Conference on Object-Oriented Programming
(ECOOP ’93), number 707 in Lecture Notes in Computer Science, Springer,
pp. 326–345.

Stefani, J.-B. (2003). A Calculus of Kells, Proc. of the 2nd European Association
for Theoretical Computer Science International Workshop on Foundations of
Global Computing (FGC ’03), Vol. 85.1 of Electronic Notes in Theoretical Com-
puter Science, Elsevier, pp. 40–60.

BIBLIOGRAPHY 173

Sun (2008). Trail: RMI. Last checked: 17/09/2009.
URL: http: // java. sun. com/ docs/ books/ tutorial/ rmi/ index. html

Tanenbaum, A. S. & Woodhull, A. S. (2006). Operating Systems: Design and Im-
plementation (3rd Edition), Prentice Hall.

Teller, D., Zimmer, P. & Hirschkoff, D. (2002). Using Ambients to Control Re-
sources, in L. Brim, P. Janar, M. Ketinsky & A. Kuera (eds), Proc. of the
13th International Conference on Concurrency Theory (CONCUR ’02), num-
ber 2421 in Lecture Notes in Computer Science, Springer, pp. 288–303.

Thomsen, B. (1989). A Calculus of Higher Order Communicating Systems, Proc.
of the 16th. Annual Symposium on Principles of Programming Languages
(POPL ’89), ACM Press, pp. 143–154.

Turing, A. M. (1936). On Computable Numbers, With an Application to the
Entscheidungsproblem, Proc. of the London Mathematical Society, Series 2,
Vol. 42, pp. 230–265.

Turner, D. N. (1996). The Polymorphic Pi-calculus: Theory and Implementation,
PhD thesis, The University of Edinburgh.

Various (2009a). API – Facebook Developer Wiki. Last checked: 10/08/2009.
URL: http: // wiki. developers. facebook. com/ index. php/ API

Various (2009b). Twitter API Documentation. Last checked: 10/08/2009.
URL: http: // apiwiki. twitter. com/ Twitter-API-Documentation

Vitek, J. & Bryce, C. (2001). The JavaSeal Mobile Agent Kernel, Autonomous
Agents and Multi-Agent Systems 4(4): 359–384.

Vitek, J. & Castagna, G. (1999). Seal: A Framework for Secure Mobile Computa-
tions, Proc. of the ICCL ’98 Workshop on Internet Programming Languages,
number 1686 in Lecture Notes in Computer Science, Springer, pp. 47–77.

Wojciechowski, P. T. (2000). Nomadic Pict: Language and Infrastructure Design
for Mobile Computation, PhD thesis, The University of Cambridge.

http://java.sun.com/docs/books/tutorial/rmi/index.html
http://wiki.developers.facebook.com/index.php/API
http://apiwiki.twitter.com/Twitter-API-Documentation

Appendix A

Progress

A well-typed term is not stuck. It can either take a step according to the operational
semantics or is one of ∆, Ω or X.

Theorem 1 If Γ ⊢ P : t : T then either P → P ′, P = ∆, P = Ω or P = X.

Proof. By induction on a derivation of P : t. At each step, we assume that the
desired property holds for all subderivations and proceed by case analysis on the
final rule in the derivation. We assume that T is non-empty; if instead T = ∅ then
∆σ and 0 are equivalent to ∆ and are possible values for P .

Case T-Nil:
If the last rule in the derivation is T-Nil, then we know from the form of the rule
that P must be the process term 0. From the Idle rule in the semantics, 0 has a
transition for each clock σ ∈ T and so is not stuck.

Case T-Stop:
If the last rule in the derivation is T-Stop, then we know from the form of the rule
that P must be the term ∆.

Case T-Stall:
If the last rule in the derivation is T-Stall, then we know from the form of the
rule that P must be the process term ∆σ. From the Stall rule in the operational
semantics, ∆σ has a transition for each clock ρ where ρ 6= σ and so is not stuck.

Case T-Var:
If the last rule in the derivation is T-Var, then we know from the form of the rule
that P must be the process term X.

Case T-Act:
If the last rule in the derivation is T-Act, then we know from the form of the rule
that P must be the process term α.E. The operational semantics provide two rules,
Act and Patient, so that α.E has a transition α.E

α→ E and additional transitions
α.E

σ→ α.E for each clock σ ∈ T . So the term is not stuck.

174

175

Case T-Rec:

If the last rule in the derivation is T-Rec, then we know from the form of the rule
that P must be the process term µX.E. From the rule Rec in the operational
semantics, µX.E has a transition

γ→ for each such transition that occurs from E.
By the induction hypothesis, we know E is not stuck so µX.E is also not stuck as
it either has the same transitions, or E = ∆, E = Ω or E = X.

Case T-Res:

If the last rule in the derivation is T-Res, then we know from the form of the rule
that P must be the process term E \ a. From the rule Res in the semantics, E \ a

has a transition
γ→ for each such transition from E, minus those where γ = a. We

know by the induction hypothesis that E is not stuck. If E has transitions, then
E \ a also has transitions as a will never match cases where γ ∈ T (produced by
the base rules Idle and Patient) or γ ∈ H (produced by Par3, LHid1, InEnv,
OutEnv, Open, ProcIn and ProcOut). Otherwise, E = ∆, E = Ω or E = X. In
either case, E \ a is not stuck.

Case T-Sum:

If the last rule in the derivation is T-Sum, then we know from the form of the rule
that P must be the process term E + F . By the induction hypothesis, neither E or
F are stuck and the rules Sum1 and Sum2 cause any transitions from the composed
processes to also hold for E + F . Thus either E + F has transitions, or both E and
F are one of Ω, X or ∆. For both, E + F is not stuck.

Case T-Par:

If the last rule in the derivation is T-Par, then we know from the form of the rule
that P must be the process term E | F . The same logic applies as for the summation
case using the rules Par1 and Par2. Using the rules Par3, InEnv, OutEnv, Open,
ProcIn and ProcOut, E | F can also produce further transitions. So E | F is not
stuck.

Case T-FTO:

If the last rule in the derivation is T-FTO, then we know from the form of the rule
that P must be the process term ⌊E⌋σ(F). Again, we know E and F are not stuck

from the induction hypothesis. All transitions
γ→ produced by E hold for ⌊E⌋σ(F)

with the exception of the case where γ = σ. In this case, there is a transition
⌊E⌋σ(F)

σ→ F . If E = X or E = ∆, then the transition ⌊E⌋σ(F)
σ→ F is still

present, as E has no transitions and thus E
h
9. Therefore, ⌊E⌋σ(F) is not stuck as

it always has transitions.

Case T-STO:

If the last rule in the derivation is T-STO, then we know from the form of the rule
that P must be the process term ⌈E⌉σ(F). The proof here is the same as for T-
FTO, the only difference between the two being that FTO2 is split into the two
rules STO2 and STO3, so that the timeout is preserved for

ρ→ where ρ 6= σ.

176 APPENDIX A. PROGRESS

Case BNil:
If the last rule in the derivation is BNil, then we know from the form of the rule
that P must be the process term Ω.

Case BRec:
If the last rule in the derivation is BRec, then we know from the form of the rule
that P must be the process term µX.B and the same proof holds as for T-Rec using
the Rec rule from the operational semantics.

Case BIn:
If the last rule in the derivation is BIn, then we know from the form of the rule
that P must be the process term 6.B. The operational semantics provide two rules,

Cap1 and Cap2, so that M.E has a transition M.E
M→ E and additional transitions

M.E
σ→ M.E for each clock σ ∈ T . So the term is not stuck.

Case BOut:
If the last rule in the derivation is BOut, then we know from the form of the rule
that P must be the process term 7.B. The same proof applies as for BIn.

Case BOpen:
If the last rule in the derivation is BOpen, then we know from the form of the rule
that P must be the process term �.B. The same proof applies as for BOpen.

Case BSum:
If the last rule in the derivation is BSum, then we know from the form of the rule
that P must be the process term B + B′. The same proof applies as for T-Sum,
using the operational semantics rule Sum.

Case T-Environ:
If the last rule in the derivation is Environ, then we know from the form of the rule
that P must be the process term m[E]B~σ . The operational semantics provide three

rules, LHd1, LHd2 and LHd3, so that m[E]B~σ has a transition m[E]B~σ
h→ E for each

transition
h→ produced by E and additional transitions M.E

ρ→ M.E for each clock
ρ ∈ T where ρ 6∈ ~σ. Any transitions E

σ→ E ′, where σ ∈ ~σ convert to transitions of
the form m[E]B~σ

τ→ m[E ′]B~σ . Transitions produced by the rules Act and Cap1 are not
propagated, but the assumed presence of clocks means that at least one transition
will always apply to m[E]B~σ , so the term is not stuck.

Case T-EnvIn:
If the last rule in the derivation is T-EnvIn, then we know from the form of the
rule that P must be the process term n[6m.E]B~σ . As with the cases BIn, BOut and
BOpen, transitions arise from the rules Cap1 and Cap2, so the term is not stuck.

Case T-EnvOut:
If the last rule in the derivation is T-EnvOut, then we know from the form of the
rule that P must be the process term n[m[k[6m.E]B1

~σ]B2

~ρ]B3

~γ . The proof is the same
as for T-EnvIn, BIn, BOut and BOpen.

Case T-Open:

177

If the last rule in the derivation is T-Open, then we know from the form of the rule
that P must be the process term n[�m.E | m[F]B1

~σ]B2

~ρ . The same proof applies as

for T-EnvIn and T-EnvOut, with the addition of the transition P
�→ n[E | F]B2

~ρ

resulting from the Open rule which causes the environ m to be destroyed.
Case T-ProcIn:

If the last rule in the derivation is ProcIn, then we know from the form of the rule
that P must be the process term a.E | on a6m.F . In a similar manner to T-Open,
transitions are produced by the Cap1 and Cap2 rules in addition to the possibility

of process movement arising from the ProcIn rule, P
6→ m[E]B~σ | F so P is not

stuck.
Case T-ProcOut:

If the last rule in the derivation is T-ProcOut, then we know from the form of the
rule that P must be the process term n[m[a.E | on a7m.F]B1

~σ]B2

~ρ . As with T-ProcIn,
transitions are produced by Cap1 and Cap2 rules in addition to the possibility of

process movement arising from the ProcOut rules, P
7→ n[a.E | m[F]B1

~σ]B2

~ρ , so P is
not stuck. ⊓⊔

Appendix B

Preservation

If a well-typed term takes a step of evaluation, then the resulting term is also well-
typed.

Theorem 2 If Γ ⊢ P : t : T and P → P ′, then there exists t′ : T such that
Γ ⊢ P ′ : t′.

Proof. By induction on a derivation of P : t. At each step, we assume that the
desired property holds for all subderivations and proceed by case analysis on the
final rule in the derivation.

Case T-Nil:
If the last rule in the derivation is T-Nil, then we know from the form of the rule
that P must be the process term 0 and t must be the type g where g : Group. From
the semantics (Idle), 0 has a transition 0

σ→ 0 for each clock σ in T . In each case,
P ′ = 0 which, by the T-Nil rule, has type g so our proposition is satisfied.

Case T-Stop:
If the last rule in the derivation is T-Stop, then we know from the form of the rule
that P must be the process term ∆ and t must be the type g where g : Group. From
the semantics, there are no transitions for ∆ so there is nothing to prove.

Case T-Stall:
If the last rule in the derivation is T-Stall, then we know from the form of the rule
that P must be the process term ∆σ and t must be the type g where g : Group.
From the semantics (Stall), ∆σ has a transition ∆σ

ρ→ ∆σ for each clock ρ in T
where ρ 6= σ. In each case, P ′ = ∆σ which, by the T-Stall rule, has type g so our
proposition is satisfied.

Case T-Var:
If the last rule in the derivation is T-Var, then we know from the form of the rule
that P must be the process term X and t must be some type t. From the semantics,
there are no transitions for X so there is nothing to prove.

178

179

Case T-Act:
If the last rule in the derivation is T-Act, then we know from the form of the rule
that P must be the process term α.E and t must be the type g where g : Group.
From the semantics, there are two subcases:

Subcase Act:
The Act rule from the semantics provides the transition α.E

α→ E, so P ′ is E. From
the subderivations of the T-Act typing rule, we know that E : g : Group so we can
apply the induction hypothesis to obtain P ′ : g.

Subcase Patient:
From the Patient rule of the semantics, α.E has a transition α.E

σ→ α.E for each
clock σ in T . In each case, P ′ = α.E which, by the T-Act typing rule, has type g
so our proposition is satisfied.

Case T-Rec:
If the last rule in the derivation is T-Rec, then we know from the form of the rule
that P must be the process term µX.E and t must be the type g where g : Group.
From the Rec rule of the semantics, µX.E has a transition to E ′{µX.E/X} for any
transition γ which can be performed by E. In each case, P ′ = E ′{µX.E/X} so we
need to show that this is well-typed. From the subderivations of the T-Rec typing
rule, we know that E : g : Group so we can apply the induction hypothesis to obtain
E ′ : g : Group. So, we just need to show that the well-typedness of E ′ is preserved
when the substitution ({µX.E/X} is performed.

Lemma 1 If Γ, x : S ⊢ P : t and Γ ⊢ x : S then Γ ⊢ P{x/X} : t

Proof. By induction on a derivation of the statement Γ, x : S ⊢ P : t. For a
given derivation, we proceed by cases on the final typing rule. There is only one
case where X appears and this is V ar, where P = X and t = g. There are two
possible subcases:

Subcase Match: x = X
If X matches the bound variable being substituted, x, then it becomes x, which we
know is well-typed from the precondition.

Subcase NoMatch: x 6= X
If X does not match the bound variable being substituted, x, then it remains as X,
which is typeable using the T-Var rule.

⊓⊔
Case T-Res:

If the last rule in the derivation is T-Res, then we know from the form of the rule
that P must be the process term E \ a and t must be the type g where g : Group.
From the Res rule of the semantics, E \a has a transition to E ′ \a for all transitions
(γ) which can be performed by E where γ 6= a. In each case, P ′ = E ′ so we need
to show that this is well-typed. From the subderivations of the T-Res typing rule,

180 APPENDIX B. PRESERVATION

we know that E : g : Group so we can apply the induction hypothesis to obtain
E ′ : g : Group.

Case T-Sum:

If the last rule in the derivation is T-Sum, then we know from the form of the
rule that P must be the process term E + F and t must be the type g ⊕ g′ where
g, g′ : Group. From the semantics, there are two subcases:

Subcase Sum1:

The Sum1 rule from the semantics provides the transition E +F
κ→ E ′, so P ′ is E ′.

From the subderivations of the T-Sum typing rule, we know that E : g : Group so
we can apply the induction hypothesis to obtain P ′ : g.

Subcase Sum2:

From the Sum2 rule of the semantics, E + F has a transition E + F
σ→ E ′ + F ′

for each clock σ in T . In each case, P ′ = E ′ + F ′. From the subderivations of the
T-Sum typing rule, we know that E : g : Group and F : g : Group and by applying
the induction hypothesis, we know both E ′ and F ′ are well typed. As a result, we
can apply T-Sum to give P ′ : g ⊕ g′.

Case T-Par:

If the last rule in the derivation is T-Par, then we know from the form of the rule that
P must be the process term E | F and t must be the type g⊗g′ where g, g′ : Group.
From the semantics, there are eight subcases:

Subcase Par1:

The Par1 rule from the semantics provides the transition E | F
κ→ E ′ | F , so

P ′ is E ′ | F . From the subderivations of the T-Par typing rule, we know that
E : g : Group and F : g′ : Group so we can apply the induction hypothesis to obtain
E ′ : g and the T-Par typing rule to give E ′ | F : g ⊗ g′.

Subcase Par2:

From the Par2 rule of the semantics, E | F has a transition E | F
τ→ E ′ | F ′ when

E and F synchronise. In this case, P ′ = E ′ + F ′. From the subderivations of the
T-Par typing rule, we know that E : g : Group and F : g′ : Group and by applying
the induction hypothesis, we know both E ′ and F ′ are well typed. As a result, we
can apply T-Par to give P ′ : g ⊕ g′.

Subcase Par3:

From the Par3 rule of the semantics, E | F has a transition E | F
σ→ E ′ | F ′ for each

clock σ in T , as long as E | F does not contain a high priority transition (
h
9). In

each case, P ′ = E ′ +F ′. From the subderivations of the T-Par typing rule, we know
that E : g : Group and F : g : Group and by applying the induction hypothesis,
we know both E ′ and F ′ are well typed. As a result, we can apply T-Par to give
P ′ : g ⊕ g′.

Subcase InEnv:

181

From the InEnv rule of the semantics, E | F has a transition E | F
6→ E ′ | F ′

where E takes the form n[G]B2

~σ and F is m[H]B1

~ρ . Following the transition, P ′ =

m[H | n[G′]B2

~σ]
B′

1

~ρ . If this is well-typed, then, by using T-Environ, we know H | n[G′]B2

~σ

has type g : Group, B′
1 : Bouncer and m ∈ g(R). According to T-Par, g = g′ ⊗ g′′,

so H has type g′ and locvnG′B2
~sigma has type g′′. Again, T-Environ gives G′ : g′′′ :

Group, B2 : Bouncer and n ∈ g′′′(R).
From the subderivations of the T-Par typing rule, we know that E : g : Group

and F : g′ : Group and by applying the induction hypothesis, we know both G′

and B′
1 are well typed. As F is well-typed, then H must be well-typed by the rule

T-Environ. Thus P ′ is well-typed.
Subcase OutEnv:

From the OutEnv rule of the semantics, E | F has a transition E | F
7→ E ′ | F ′

where E takes the form H and F is n[G]B2

~σ . Following the transition,

P ′ = n[G′]B2

~σ | m[H]
B′

1

~ρ . Using T-Par, we know that P ′ : g ⊗ g′, n[G′]B2

~σ is of

type g and m[H]
B′

1

~ρ is of type g′.
From the subderivations of the T-Par typing rule, we know that E : g : Group

and F : g′ : Group and by applying the induction hypothesis, we know both G′

and B′
1 are well typed. By T-Environ, n[G′]B2

~σ is well-typed as G′ and B2 (from the

original F) are well typed. Similarly, m[H]
B′

1

~ρ is well-typed as H is well-typed (from
the original E) and B′

1 is well-typed. Thus P ′ is well-typed.
Subcase Open:

From the Open rule of the semantics, E | F has a transition E | F
�→ E ′ | F ′ where

E takes the form G and F is m[H]B1

~σ . Following the transition, P ′ = n[G′ | H]B2

~σ∪~ρ.
Using T-Par, we know that P ′ : g ⊗ g′, G′ is of type g and H is of type g′.

From the subderivations of the T-Par typing rule, we know that E : g : Group
and F : g′ : Group and by applying the induction hypothesis, we know both G′ and
B′

1 are well typed. By T-Environ, as m[H]B1

~σ is well-typed, H (from the original F)
is also well typed. Thus P ′ is well-typed.

Subcase ProcIn:
From the ProcIn rule of the semantics, E | F has a transition E | F

6→ E ′ | F ′.

Following the transition, P ′ = m[E ′]
B′

1

~σ | F ′. Using T-Par, we know that P ′ : g ⊗ g′,

m[E ′]
B′

1

~σ is of type g and F ′ is of type g′.
From the subderivations of the T-Par typing rule, we know that E : g : Group

and F : g′ : Group and by applying the induction hypothesis, we know both E ′, F ′

and B′
1 are well typed. By T-Environ, m[E ′]

B′

1

~σ is well-typed as both E ′ and B′
1 are.

Thus P ′ is well-typed.
Subcase ProcOut:

From the ProcOut rule of the semantics, E | F has a transition E | F
6→ E ′ | F ′.

Following the transition, P ′ = E ′ | m[F ′]
B′

1

~σ . Using T-Par, we know that P ′ : g ⊗ g′,

182 APPENDIX B. PRESERVATION

E ′ is of type g and m[F ′]
B′

1

~σ is of type g′.
From the subderivations of the T-Par typing rule, we know that E : g : Group

and F : g′ : Group and by applying the induction hypothesis, we know both E ′, F ′

and B′
1 are well typed. By T-Environ, m[F ′]

B′

1

~σ is well-typed as both F ′ and B′
1 are.

Thus P ′ is well-typed.
Case T-FTO:

If the last rule in the derivation is T-FTO, then we know from the form of the rule
that P must be the process term ⌊E⌋σ(F) and t must be the type g ⊕ g′ where
g, g′ : Group. From the semantics, there are two subcases:

Subcase FTO1:
From the FTO1 rule of the semantics, ⌊E⌋σ(F) has a transition ⌊E⌋σ(F)

σ→ F for

each clock σ in T as long as E
h
9. In each case, P ′ = F . From the subderivations

of the T-FTO typing rule, we know that F : g : Group so P ′ is thus well-typed.
Subcase FTO2:

The FTO2 rule from the semantics provides the transition ⌊E⌋σ(F)
γ→ E ′, so P ′ is

E ′ where γ 6= σ. From the subderivations of the T-FTO typing rule, we know that
E : g : Group so we can apply the induction hypothesis to obtain P ′ : g.

Case T-STO:
If the last rule in the derivation is T-STO, then we know from the form of the rule
that P must be the process term ⌈E⌉σ(F) and t must be the type g ⊕ g′ where
g, g′ : Group. From the semantics, there are three subcases:

Subcase STO1:
From the STO1 rule of the semantics, ⌈E⌉σ(F) has a transition ⌈E⌉σ(F)

σ→ F as

long as E
h
9. So, P ′ = F . From the subderivations of the T-STO typing rule, we

know that F : g : Group so P ′ is thus well-typed.
Subcase STO2:

The STO2 rule from the semantics provides the transition ⌈E⌉σ(F)
κ→ E ′, so P ′ is

E ′. From the subderivations of the T-STO typing rule, we know that E : g : Group
so we can apply the induction hypothesis to obtain P ′ : g.

Subcase STO3:
From the STO3 rule of the semantics, ⌈E⌉σ(F) has a transition ⌈E⌉σ(F)

ρ→ F

for each clock ρ in T as long as E
h
9 and ρ 6= σ. In each case, P ′ = ⌈E ′⌉σ(F).

From the subderivations of the T-STO typing rule, we know that E : g : Group and
F : g : Group so we can apply the induction hypothesis to ensure E ′ and F ′ are well
typed. By then applying T-STO, we know that P ′ is well-typed.

Case BNil:
If the last rule in the derivation is BNil, then we know from the form of the rule
that P must be the process term Ω and t must be the type Bouncer. From the
semantics, there are no transitions for Ω so there is nothing to prove.

Case BRec:

183

If the last rule in the derivation is BRec, then we know from the form of the rule that
P must be the process term µX.B and t must be the type Bouncer. From the Rec
rule of the semantics, µX.B has a transition to B′{µX.B/X} for any transition γ
which can be performed by B. In each case, P ′ = B′{µX.B/X} so we need to show
that this is well-typed. From the subderivations of the T-Rec typing rule, we know
that B : Bouncer so we can apply the induction hypothesis to obtain B′ : Bouncer.
We know from our previous lemma in the T-Rec case that the well-typedness of B′

is preserved when the substitution ({µX.B/X} is performed, so P ′ is well-typed.

Case BIn:

If the last rule in the derivation is BIn, then we know from the form of the rule
that P must be the process term 6.B and t must be the type Bouncer. From the
semantics, there are two subcases:

Subcase Cap1:

The Cap1 rule from the semantics provides the transition M.E
M→ E, so P ′ is E.

From the subderivations of the BIn typing rule, we know that B : Bouncer so
P ′ : Bouncer.

Subcase Cap2:

From the Cap2 rule of the semantics, M.E has a transition M.E
σ→ M.E for each

clock σ in T . In each case, P ′ = 6.E which is the same as P so our proposition is
satisfied.

Case BOut:

If the last rule in the derivation is BOut, then we know from the form of the rule
that P must be the process term 7.B and t must be the type Bouncer. From the
semantics, there are two subcases:

Subcase Cap1:

The Cap1 rule from the semantics provides the transition M.E
M→ E, so P ′ is E.

From the subderivations of the BOut typing rule, we know that B : Bouncer so
P ′ : Bouncer.

Subcase Cap2:

From the Cap2 rule of the semantics, M.E has a transition M.E
σ→ M.E for each

clock σ in T . In each case, P ′ = 7.E which is the same as P so our proposition is
satisfied.

Case BOpen:

If the last rule in the derivation is BOpen, then we know from the form of the rule
that P must be the process term �.B and t must be the type Bouncer. From the
semantics, there are two subcases:

Subcase Cap1:

The Cap1 rule from the semantics provides the transition M.E
M→ E, so P ′ is E.

From the subderivations of the BOpen typing rule, we know that B : Bouncer so
P ′ : Bouncer.

184 APPENDIX B. PRESERVATION

Subcase Cap2:

From the Cap2 rule of the semantics, M.E has a transition M.E
σ→ M.E for each

clock σ in T . In each case, P ′ = �.E which is the same as P so our proposition is
satisfied.

Case BSum:

If the last rule in the derivation is BSum, then we know from the form of the rule
that P must be the process term B + B′ and t must be the type Bouncer. From
the semantics, there are two subcases:

Subcase Sum1:

The Sum1 rule from the semantics provides the transition E +F
κ→ E ′, so P ′ is E ′.

From the subderivations of the BSum typing rule, we know that B : Bouncer so we
can apply the induction hypothesis to obtain P ′ : Bouncer.

Subcase Sum2:

From the Sum2 rule of the semantics, E + F has a transition E + F
σ→ E ′ + F ′ for

each clock σ in T . In each case, P ′ = B′′ + B′′′. From the subderivations of the
BSum typing rule, we know that B : Bouncer and B′ : Bouncer and by applying
the induction hypothesis, we know both B′′ and B′′′ are well typed. As a result, we
can apply BSum to give P ′ : Bouncer.

Case T-Environ:

If the last rule in the derivation is Environ, then we know from the form of the rule
that P must be the process term m[E]B~σ and t must be the type g : Group. From
the semantics, there are three subcases:

Subcase LHd1:

From the LHd1 rule of the semantics, m[E]B~σ has a transition m[E]B~σ
τ→ m[E ′]B~σ as

long as E
σ→ E ′ and σ ∈ ~σ. So, P ′ = m[E ′]B~σ . From the subderivations of the T-

Environ typing rule, we know that E : g : Group and, by the induction hypothesis,
E ′ is also well-typed. By then applying T-Environ to the well-typed terms E ′ and
B, we can see that P ′ is well-typed.

Subcase LHd2:

From the LHd2 rule of the semantics, m[E]B~σ has a transition m[E]B~σ
h→ m[E ′]B~σ .

So, P ′ = m[E ′]B~σ . From the subderivations of the T-Environ typing rule, we know
that E : g : Group and, by the induction hypothesis, E ′ is also well-typed. By
then applying T-Environ to the well-typed terms E ′ and B, we can see that P ′ is
well-typed.

Subcase LHd3:

From the LHd3 rule of the semantics, m[E]B~σ has a transition m[E]B~σ
ρ→ m[E ′]B~σ for

each clock ρ in T as long as ρ 6∈ ~σ and E
σ
9 where σ ∈ ~σ. In each case, P ′ = m[E ′]B~σ .

From the subderivations of the T-Environ typing rule, we know that E : g : Group
and, by the induction hypothesis, E ′ is also well-typed. By then applying T-Environ
to the well-typed terms E ′ and B, we can see that P ′ is well-typed.

185

Case T-EnvIn:

If the last rule in the derivation is T-EnvIn, then we know from the form of the
rule that P must be the process term n[6m.E]B~σ and t must be the type g : Group.
From the semantics, there are two subcases:

Subcase Cap1:

The Cap1 rule from the semantics provides the transition M.E
M→ E, so P ′ is n[E]B~σ .

From the subderivations of the T-EnvIn typing rule, we know that E : g : Group so
by the T-Environ rule P ′ is well-typed.

Subcase Cap2:

From the Cap2 rule of the semantics, M.E has a transition M.E
σ→ M.E for

each clock σ in T . In each case, P ′ = n[6m.E]B~σ which is the same as P and thus
well-typed.

Case T-EnvOut:

If the last rule in the derivation is T-EnvOut, then we know from the form of the
rule that P must be the process term n[m[k[6m.E]B1

~σ]B2

~ρ]B3

~γ and t must be the type
g : Group. From the semantics, there are two subcases:

Subcase Cap1:

The Cap1 rule from the semantics provides the transition M.E
M→ E, so P ′ is

n[m[k[E]B1

~σ]B2

~ρ]B3

~γ . From the subderivations of the T-EnvOut typing rule, we know
that E : g : Group so by multiple application of the T-Environ rule P ′ is well-typed.

Subcase Cap2:

From the Cap2 rule of the semantics, M.E has a transition M.E
σ→ M.E for each

clock σ in T . In each case, P ′ = n[m[k[6m.E]B1

~σ]B2

~ρ]B3

~γ which is the same as P and
thus well-typed.

Case T-Open:

If the last rule in the derivation is T-Open, then we know from the form of the
rule that P must be the process term n[�m.E | m[F]B1

~σ]B2

~ρ and t must be the type
g : Group. For the case of F , we use the induction hypothesis to retain well-
typedness. For �m.E, there are three subcases in the semantics:

Subcase Cap1:

The Cap1 rule from the semantics provides the transition M.E
M→ E, so P ′ is

n[E | m[F]B1

~σ]B2

~ρ . From the subderivations of the T-Open typing rule, we know that
E : g : Group so by application of the T-Par and T-Environ rules P ′ is well-typed.

Subcase Cap2:

From the Cap2 rule of the semantics, M.E has a transition M.E
σ→ M.E for each

clock σ in T . In each case, P ′ = n[�m.E | m[F]B1

~σ]B2

~ρ which is the same as P and
thus well-typed.

Subcase Open:

The Open rule from the semantics allows P
�→ P ′, so P ′ = n[E | F]B2

~ρ . From
the subderivations of the T-Open typing rule, we know that E : g : Group and

186 APPENDIX B. PRESERVATION

F : g : Group so by application of the T-Par rule P ′ is well-typed.
Case T-ProcIn:

If the last rule in the derivation is T-ProcIn, then we know from the form of the
rule that P must be the process term a.E | on a 6 m.F and t must be the type
g ⊗ g′ : Group. There are five subcases in the semantics, two of which we have
already proved for the case T-Act; for a.E, we know that it can progress by the Act
or Patient rule and still be typeable, and in these cases P ′ is also well-typed via the
T-Par rule.

Subcase Cap1:
The Cap1 rule from the semantics provides the transition M.E

M→ E, so P ′ is
a.E | F . From the subderivations of the T-ProcIn typing rule, we know that F : g :
Group so by application of the T-Par rule P ′ is well-typed.

Subcase Cap2:
From the Cap2 rule of the semantics, M.E has a transition M.E

σ→ M.E for each
clock σ in T . In each case, P ′ = a.E | on a 6 m.F which is the same as P and thus
well-typed.

Subcase ProcIn:
The ProcIn rule from the semantics allows P

6→ P ′, so P ′ = m[E]B~σ | F . From
the subderivations of the T-ProcIn typing rule, we know that E : g : Group and
F : g : Group so by application of the T-Environ and T-Par rules P ′ is well-typed.

Case T-ProcOut:
If the last rule in the derivation is T-ProcOut, then we know from the form of the
rule that P must be the process term n[m[a.E | on a7m.F]B1

~σ]B2

~ρ and t must be the
type g ⊗ g′ : Group. There are five subcases in the semantics, two of which we have
already proved for the case T-Act; for a.E, we know that it can progress by the Act
or Patient rule and still be typeable, and in these cases P ′ is also well-typed via the
T-Par and T-Environ rules.

Subcase Cap1:
The Cap1 rule from the semantics provides the transition M.E

M→ E, so P ′ is
n[m[a.E | F]B1

~σ]B2

~ρ . From the subderivations of the T-ProcIn typing rule, we know
that F : g : Group so by application of the T-Par and T-Environ rules P ′ is well-
typed.

Subcase Cap2:
From the Cap2 rule of the semantics, M.E has a transition M.E

σ→ M.E for each
clock σ in T . In each case, P ′ = n[m[a.E | on a 7 m.F]B1

~σ]B2

~ρ = P and is thus
well-typed.

Subcase ProcOut:
The ProcOut rule from the semantics allows P

7→ P ′, so P ′ = n[a.E | m[F]B1

~σ]B2

~ρ .
From the subderivations of the T-ProcOut typing rule, we know that E : g : Group
and F : g : Group so by application of T-Environ and T-Par, P ′ is well-typed. ⊓⊔

	Introduction
	Rationale
	Status Quo
	Multiprogramming
	Resource Contention
	Semaphores and Monitors
	Interprocess Communication

	Our Proposed Solution
	A Prototypical Application

	Contributions to Knowledge
	Structure of the Thesis

	Algebraic Process Calculi
	Introduction
	The Calculus of Communicating Systems
	The Dining Philosophers

	Advantages and Limitations of CCS
	Conclusion

	Global Synchronisation
	Introduction
	Temporal Process Language (TPL)
	Extending TPL
	The Calculus of Synchronous Encapsulation
	Timeouts
	Clock Stopping and Insistency
	Encapsulation

	Conclusion

	Mobility
	Introduction
	Scope Mobility
	The Calculus
	Variants of the Calculus
	Advantages and Limitations of the Calculus

	Distribution and Migration
	The Distributed Join Calculus
	The Ambient Calculus
	Variants of the Ambient Calculus
	Advantages and Limitations of the Ambient Calculus
	P Systems

	Comparing Modelling Approaches
	Bigraphs
	Conclusion

	Nomadic Time
	Introduction
	Localising the Calculus
	Adding Mobility
	Location Mobility
	Process Mobility

	Bouncers
	The Semantics
	A Simple Example
	A Prototypical Application in NT
	Conclusion

	The DynamiTE Framework
	Introduction
	Why Java?
	Concurrency Provision
	Popularity

	Mapping Theory to Practicality
	The Context of the Calculus
	The Plugin Abstraction

	The Evolver Framework
	A Prototypical Application in DynamiTE
	Related Work
	Obliq
	Nomadic Pict
	The Safe Ambients Abstract Machine
	JavaSeal

	Conclusion

	Typed Nomadic Time
	Introduction
	Existing Typed Calculi
	Type Systems for the Calculus
	Type Systems for the Ambient Calculus

	Mobility Types for Nomadic Time
	DynamiTE and the Type System
	Typed Musical Chairs
	Conclusion

	Contributions and Future Work
	Our Contributions
	Future Work
	Nomadic Time
	DynamiTE
	The Type System
	Other Applications

	Bibliography
	Progress
	Preservation

