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ABSTRACT 
 

The biogeochemical cycling of nitrogen has been studied in detail at a predominantly acid 
grassland nature reserve, Hob Moor, just outside the city of York in the UK.  Because of the 
risk of more frequent and/or extended summer droughts as a potential consequence of 
climate change, particular attention was paid to the influence of drying and rewetting upon 
the mobility of mineral N species.  It was found that ammonification proceeds after net 
nitrification has ceased, and that subsequently nitrate is immobilized when the drying period 
is protracted.  It is suggested that this is probably due to uptake by drought-tolerant micro-
organisms. The experimental work showed that much of the first flush of nitrate after a 
period of drying is therefore attributable to stored nitrate, as long as the drying out period is 
not excessively long. 
 The mobility of ammonium-N in soils from Hob Moor was studied to test the 
hypothesis that in the heavily N-impacted soils at the site it would be more mobile than most 
soil scientists would predict, by measuring adsorption/desorption characteristics.  The 
absorption isotherms confirmed that ammonium in these soils is potentially mobile, and 
when mobilized below the rooting depth may pass to the adjacent stream around the edge of 
the site.  This helps explain the high ammonium-N and nitrate-N concentrations observed in 
this stream. 
 A developing interest in the Gaia hypothesis prompted the author to make a brief 
preliminary investigation of the idea that deciduous trees have evolved naturally to provide a 
close match between the dynamics of N release by litter decomposition and the dynamics of 
plant N requirement.  The experiment showed that initially the fresh litter with a high C/N 
ratio immobilized nitrate especially in the forest soil.  Under the relatively warm conditions 
of the experiment decomposition was rapid, and the immobilization was not sustained as 
would be predicted.  Further evaluation of this concept is advocated. 
 The extent of immobilization by litter prompted a study of long-term seasonality of 
trends in nitrate concentration throughout the River Derwent in North Yorkshire using data 
obtained from the Environment Agency.  It was thought that a ban on straw burning in 1993 
might have reduced winter annual nitrate concentration peaks and possibly increased summer 
minima.  The data partly supported this idea, but the timing match was not perfect, and it was 
thought that the foot and mouth disease impact and farmers’ responses to environmental 
concerns and policy and to increasing fertilizer and energy costs were probably also 
important. 
 Finally a study was made of the importance of storage conditions upon extractable 
ammonium and nitrate concentrations in soils.  Surprisingly nitrification was not sufficiently 
inhibited in some soils stored under refrigerated conditions overnight, and it is concluded 
that volumetric sampling and immediate extraction in the field may be a preferred option. 
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CHAPTER 1:  A REVIEW OF PAST RESEARCH INTO THE 

FACTORS CONTROLLING THE RATES OF 

TRANSFORMATION OF NITROGEN SPECIES 

IN SOIL 
 

1.1   Introductory preface 
Literally many thousands of papers have been published on every aspect of the nitrogen 

cycle.  Critically reviewing them all would (even if possible) have produced an 

excessively long thesis introductory chapter, and then have resulted in potentially 

wasteful repetition later, in the more selective and focused introductions in subsequent 

chapters.  The author therefore decided to make this first chapter relatively concise, and 

use his literature survey selectively to introduce where the ideas that form the basis of 

subsequent chapters emerged from.  More detailed literature surveys of the literature 

underpinning the research in individual chapters are included in those chapters, and 

excluded from this one, with the hope that this would make the thesis more readable. 

 

1.2   Forms and sources of plant-available nitrogen 
The forms in which N occurs are very important as their responses to environmental 

factors vary markedly.  Inorganic nitrogen occurs in four main chemical forms in the 

soil, alongside the massively predominant organic N.  The main inorganic N forms, 

apart from N2, are as follows: 

1. Ammonium (NH4
+) 

2. Ammonia (NH3) 

3. Nitrate (NO3
-)  

4. Nitrite (NO2
-) 

All the above forms of inorganic N are available to plants to a greater or lesser extent.  

In addition, there will be traces of gases such as N2O in the soil atmosphere and of 

course N2.  On the other hand organic N includes compounds like amino acids, proteins 

and more complex N compounds of humus. The organic N forms are not available to 

plants directly. 

 The N cycle is very complex and includes many transformations.  It is actively 

biotic in nature and therefore organisms influence it directly.  There are also abiotic 

transformations and processes in the cycle which include, for example, ionic adsorption 

of NH4
+ to clay particles, transformations attributable to fires, and oxidation of N2 to 
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NO3
- by lightning.  In most ecosystems (e.g. streams, lakes, coniferous forests, prairies, 

salt marshes) the processes in the basic nitrogen cycle are similar but specific organisms 

play different vital roles in transformations and the relative importance of individual 

processes varies. 

 In soils the availability of nutrient elements depends upon a range of biotic and 

abiotic factors.  These include soil moisture, acidity, salinity, soil particle size, nutrient 

input and activity of roots and microbes (Binkley and Vitousek, 1989; Mengel and 

Kirkby, 2001).  Fitter and Hay (2002) emphasised that the availability of N is largely 

under biological control while that of other nutrients is determined predominantly by 

inorganic equilibria.  The key procedures governing the formation and mobility of 

nitrogen species are mineralization, volatilization, nitrification, immobilization and 

denitrification (Black, 1968; Hellebrand, 1998). Figures 1.1 and 1.2 are typical 

schematic representations of the N cycle, and indicate its highly dynamic nature. 

 
 
Fig: 1.1  Key processes in the natural nitrogen cycle.  
 
Source: http://www.biology.ed.ac.uk/research/groups/jdeacon/microbes/nitrogen.html 
 



 3

 
Fig. 1.2 A more pictorial representation of the terrestrial nitrogen cycle, drawn from a 

localised and predominantly microbiological perspective. 
 
 Source: http://www.cdli.ca/courses/sci2200/unit01_org02_ilo04/b_activity.html 
 

1.2.1     Nitrification 
In 1890 Winogradsky discovered that nitrification was a two-step process and that 

Nitrosomonas and Nitrobacter were the organisms involved in this oxidative reaction 

(Stevenson and Cole, 1999).  Nitrification (part of the overall mineralization process) is 

the microbially mediated oxidation of NH4
+ to NO3

- carried out by autotrophic bacteria 

(Simek, 2000).  According to Prosser (1989) the two steps are performed by different 

groups of the ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB). 

The equations may be represented as follows (Brady and Weils, 1999).  

 

Step 1)  NH4
++1.5 O2→ NO2

-+ 2H+ +H2O+275 kJ energy 

Step 2)  NO2
-+ 1/2 O2→ NO3

-+ 76 kJ energy 

 

 Several researchers have reported results showing that acid coniferous forest 

soils nitrify, as discussed later in section 1.7.  The main ammonia-oxidizing bacteria 

have been reported to be Nitrosomonas and the main nitrite-oxidizing bacteria are 

Nitrobacter in soils (Bock et al., 1991).  Nitrification is a soil acidifying process (van 

Miegroet and Cole, 1984).  These bacteria play important roles in the nitrogen cycle 

because of the high bioavailability and relatively high mobility of nitrate.  Apart from 
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autotrophic nitrification, aerobic oxidation of ammonia can also be performed by 

various heterotrophic fungi and bacteria (Prosser, 1989; Killham, 1990).  Several studies 

have noted that heterotrophic nitrifiers are responsible for nitrification in some acidic 

coniferous soils (Killham, 1987 and 1990; Papen and von Berg, 1998; Brierley et al., 

2001; Jordan et al., 2005).  The results from a large number of studies applying specific 

inhibitors of autotrophic nitrification have revealed that heterotrophic nitrification does 

not play an important role in acidic coniferous forest soils (Stams et al., 1990; Stark and 

Hart, 1997; Paavolainen and Smolander, 1998; Rudebeck and Persson, 1998; Pedersen 

et al., 1999; Laverman et al., 2000; Ross et al., 2004; Burns and Murdoch, 2005). Many 

active ammonia-oxidizing Archaea were found in grassland soils (Leininger et al., 

2006). 

 

1.3 The importance of nitrogen to plants 
 Nitrogen is one of the most abundant elements in the Earth’s biosphere and a major 

constituent of living cells.  It is a key element in the metabolism of plants and essential 

for plant growth as a constituent of proteins, nucleic acid, chlorophyll and growth 

hormones.  It is required by plants in larger amounts than other nutrients and its 

deficiency in soil results in lower crop yields (Buresh et al., 1993; George et al., 1993).  

Soil nutrient availabilities, more often than any other environmental factor, limit the 

growth of agricultural plants and forest trees, but are also essential to soil 

microorganisms.  As a result, soil nutrients have wide-ranging and often surprising 

effects on ecosystem function, for example, by changing plant community composition 

when supplies are either deficient or excessive (Vitousek et al., 1997).  Nutrient 

deficiencies may limit the potential growth stimulation response of an ecosystem to 

elevated CO2 (Zak et al., 2000).  Human-induced global change is likely to affect soil 

nutrient availability, but much remains to be learned about the magnitude and even the 

direction of these effects.  To the author, climate change, and particularly potential 

disrupting effects of increased incidence and extent of droughts, therefore seemed a 

worthwhile research topic.  Hence the effects of drying and re-wetting are considered in 

some detail in Chapters 3 and 4. 

 The amounts of N required by plants differ greatly from one species to another, 

and, for any given species, with genotype characteristics and the environment (Viets and 

Hageman, 1971).  This suggests that, for a PhD study, it is sensible to concentrate on a 

single ecosystem type such as the grassland discussed in Chapter 2. 
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1.4 Importance of N transformations in soil 
Many scientists, for example Stevenson and Cole (1999), Compton and Boone (2002), 

Templer et al. (2003) and Grenon et al. (2004), have reported that soil N 

transformations, and hence N bioavailability to plants,  are microbially mediated 

processes influenced by composition and diversity of the soil microbial community, 

substrate quality and quantity, and environmental conditions.  These concepts are 

universally accepted and must therefore underpin the work in this thesis.  Several 

researchers (e.g. Tilman, 1987; Aerts and Berendse, 1988; Wedin and Tilman, 1996; 

Vitousek et al., 1997) have also concluded that changes in N availability can lead in 

changing dynamics of plant populations and their primary consumers and ultimately all 

species that depend on plants.  This, and my supervisor’s interest in discussing the Gaia 

hypothesis (Cresser et al., 2008), led to the idea behind Chapter 6, that the N cycle may 

be the heart of James Lovelock’s Gaia, and plants have evolved to have a low C:N ratio 

at senescence and litter fall so that litter decomposes slowly to conserve nutrient N until 

needed later by the same plant.  Increased N deposition from the atmosphere may 

modify the relative importance of several processes in the N cycle. Subsequently this 

may influence other elemental biogeochemical cycles (Aber et al., 1989; Vitousek et al., 

1997; Aber et al., 1998; Tietema et al., 1998; Lovett et al., 2000).  In this context it 

could clearly damage ecological niche by providing bio-available N too early, giving 

competitor plants a competitive edge. 

 According to several researchers, excess nitrogen can lead to eutrophication or 

levels of ammonia (NH3), nitrite (NO2
-), and nitrate (NO3

-) potentially toxic to humans, 

livestock and wildlife in aquatic systems (Cairns et al. 1990, Carpenter et al. 1998, 

Marco et al., 1999).  Lovelock (2006) would regard this as part of the “revenge of 

Gaia”. 

 

1.5 Nitrification in drainage waters and its links to ammonium 
Nitrifying bacteria are important in both soil and drainage water because they oxidize 

ammonium-N (NH4
+-N) to nitrate-N (NO3

--N), which is generally accepted to be a more 

mobile chemical species in soil (Sprent, 1987).  Tank et al. (2000) and Webster et al. 

(2003) investigated what influences NH4-N dynamics along streams.  They found 

uptake of ammonium by nitrifying bacteria negligible compared with its removal by 

other processes such as heterotrophic metabolism in-stream.  Others though have 

described nitrification as a quantitatively important in streams (Mulholland et al., 2000; 

Findlay and Sinsabaugh, 2003).  Despite these unresolved contrary opinions, few studies 
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have been conducted of potential variations in nitrification rate and what controls it 

(Bernhardt et al., 2002; Strauss et al., 2002).  Generally though, temperature, NH4
+-N 

availability, dissolved oxygen (DO), and pH have been perceived as the potential 

regulators of nitrification rates (Wild et al., 1971; Kuenen and Robertson, 1987).  

Strauss et al. (2002) examined 13 variables that might affect nitrification rates in 

sediments in 36 streams, NH4
+-N availability and pH predicted nitrification rates most 

effectively.  These studies, and the findings of Cresser et al. (2004) that NH4
+-N is more 

mobile in N-impacted upland soils in the UK than the vast majority of soil scientists 

believe, stimulated the author in Chapter 3 to investigate ammonium mobility in, and 

hence potentially from, acid soils under grassland near York. 

 

1.6  Disruptions of the natural N cycle 
The key processes that interact to regulate N species concentrations in soils include: 

nitrification, immobilization, nitrogen fixation, atmospheric deposition, mineralization, 

denitrification and leaching (Stoddard, 1994).  Nitrogen is the most abundant element in 

the atmosphere as molecular dinitrogen (N2), but only after N2 is converted into 

ammonium and/or nitrate  is it available to plants and microbes (Galloway et al., 2003).  

Ammonium has been found to be the preferred form of N for assimilation by microbes 

in many cultivated soils (Azam et al., 1993).  Nitrogen deficiency frequently limits 

forest productivity (Binkley and Hart, 1989; Paul and Clark, 1989; Reich et al., 1997), 

in spite of its great abundance in the atmosphere.  Human activities over the past 100 

years have more than doubled the rate of mineral-N production on the planet (Vitousek 

et al., 1997). This is because of industrial production of fertilizers atmospheric emission 

of N species from fossil fuel combustion and cultivation of symbiotically N- fixing 

crops (Smil, 2001).  

 

1.7 Forest soils 
There have been numerous reports of nitrification in acidic forest soils (e.g. Killham, 

1990; De Boer and Kowalchuk, 2001; Laverman et al., 2002; Bäckman and 

Klemedtsson, 2003; Bottomley et al., 2004; Laverman et al., 2005; Hart, 2006). For a 

long time nitrification was thought to be largely insignificant to nitrogen cycling in 

coniferous forest soils (Mintie et al., 2003) because several soil factors were regarded as 

suboptimal for nitrifying microorganisms.  High soil acidity, high C/N ratio, low 

nitrogen availability and/or the presence of chemical compounds from coniferous litter 

could all impede net nitrate production (de Boer and Kowalchuk, 2001; Kowalchuk and 
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Stephen, 2001).  The cycling of forest litter therefore seemed an important research 

topic to the author, and features at least to some extent in Chapter 6. 

 

1.8 Minimally managed/natural ecosystems 
Nitrogen is very often the most limiting nutrient in terrestrial ecosystems (Stark, 2000) 

and often limits their biological production (Schlesinger, 1997).  However, surplus 

nitrogen can have harmful effects.  For example, surplus N can facilitate increased 

losses of nutrient cations and increase soil and water acidity in forest ecosystems 

(Vitousek et al., 1997), while in aquatic ecosystems it may cause eutrophication 

(Carpenter et al., 1998; Marco et al., 1999).  Almost all the N that enters a terrestrial 

ecosystem by natural processes is derived from biological nitrogen fixation and 

atmospheric deposition (Stevenson and Cole, 1999).  

 

1.9 Importance of measuring nitrification rates 
To better understand soil fertility and ecosystem function it is necessary to be able to 

accurately assess nitrification rates in soils.  It is important to know how nitrogen is 

transformed from one nitrogenous compound to another and what factors regulate the 

transformation dynamics. 

 

 

1.9.1 Methods for measuring nitrification rates 
There are several possible approaches to quantifying nitrification rate.  Laboratory 

incubations under controlled moisture and temperature conditions are often employed.  

Net inorganic nitrogen species accumulation is then monitored after a selected time 

period from days to several months (Laverman et al., 2005; Kanerva et al., 2006).  In 

situ incubations of enclosed soils at field sites are regarded as more realistic by some 

researchers.  Again net inorganic nitrogen species accumulation is measured at the end 

of a few weeks or a few months (Vestgarden et al., 2003; Jussy et al., 2004; Fenn et al., 

2005; Hart, 2006).  However, the extent to which “realism” is enhanced if the soil has 

been removed from its associated vegetation must be regarded as questionable. 

Laboratory- or field-based incubations using isotopic labeling, in which changes 

in a 15N-labeled ammonium-N pool are measured over 1-3 days of incubation may be 

preferable (e.g. Scowcroft et al., 2004; Perakis et al., 2005).  Some authors just measure 

net nitrification rates over a short period (typically 1 day) in the laboratory (e.g. 

Bäckman and Klemedtsson, 2003; Ross et al., 2006). 
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1.9.2   Overview on methods 
The major criterion for choosing the suitable method for each study is based on the 

objectives of the study, particularly on the selected element of the nitrogen cycle under 

focus.  According to Binkley and Hart (1989), aerobic incubation under controlled 

environmental conditions is the most commonly employed method for assessment of 

nitrification.  They further concluded that none of the methods gives an exact, accurate 

assessment of the nitrification rates in a forest soil (Binkley and Hart, 1989).  

 

1.9.3 Factors affecting nitrification 

Under appropriate environmental conditions (e.g., electron acceptor and sabstrate), and 

in the presence of oxygen and NH4
+, the process of nitrification takes place extensively. 

Numerous rate-regulating variables have been suggested to be potentially influencing 

activities of nitrifying bacteria, including: NH4
+ availability, the competition for NH4

+ 

from other sinks (Jones et al., 1995; Verhagen et al., 1995; Strauss and Dodds, 1997), 

soil pH (Sarathchandra, 1978), soil temperature (Paul and Clark, 1989), oxygen 

concentration in the soil atmosphere (Wild et al., 1971; Stenstrom and Poduska, 1980; 

Kuenen and Robertson, 1987), and the availability (quantity and quality) of organic 

carbon (Verhagen and Laanbroek, 1991; Strauss and Dodds, 1997; Butturini et al., 

2000). 

 Bianchi et al. (1999) could explain > 74% of the variability in nitrification in a 

single area by variation in NH4
+ concentration.  However, it is improbable that such a 

single factor would control net nitrification over a large scale because other 

environmental factors would then be much more variable. 

 One regulatory factor that potentially could strongly affect net nitrification is the 

availability of organic carbon.  Carbon availability is both highly dynamic and spatially 

variable in streams, but high carbon availability favours microbial immobilization of N. 

Its concentration varies with the abundance of wetland zones in a drainage basin 

(Kortelainen, 1993; Gergel et al., 1999), with water retention times (Sedell and Dahm, 

1990), with catchment slope characteristics (Rasmussen, 1989),with drainage area 

contributing to discharge at different times during a storm event (Engstrom, 1987; 

Kortelainen, 1993), with discharge (and whether it is rising or falling (Sedell and Dahm, 

1990), and with  litter deposition and the subsequent leaching of organic molecules 

(McDowell and Fisher, 1976; Meyer et al., 1998).  In-stream nitrification is of interest to 

the author because of his interest in controls on seasonality trends for nitrate 

concentrations in the River Derwent in North Yorkshire, as discussed in Chapter 8. 
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1.10 Immobilization 
The conversion of inorganic N (NH4-N and NO3-N) to organic forms is biotic 

immobilization. This is the reverse process of mineralization, although the two 

processes must generally occur simultaneously in soils. 

 

1.11 Denitrification 
The process of NO3

- conversion to gaseous forms of N such as N2O and N2 by 

facultative and obligate anaerobes in soil is termed denitrification (Brady and Weil, 

1999). Some N2O is also evolved during nitrification (Sutka et al., 2006). Denitrification 

is important not only because it results in a loss of available N for plants, but also 

because N2O is a greenhouse gas 230-fold more potent than CO2 at trapping infrared 

radiation and it survives in the atmosphere 3-5 times longer than CO2 (Powlson, 1993).  

Besides denitrification, leaching of NO3
--N is regarded as another way that NO3

--N is 

lost from terrestrial ecosystems.  It occurs because NO3
- ions are not adsorbed 

significantly by negatively charged surfaces that occur in soils (Brady and Weil, 1999).   

 

Nitrate leaching is a concern in the present context not just because it decreases 

available N supply for plants and may acidify freshwaters and cause eutrophication of 

estuaries and coastal waters (Murdoch and Stoddard, 1992; Henriksen and Hessen, 

1997).  It also may contribute to denitrification in sub-soils and sediments.  The 

heterotrophic process of denitrification and can itself be limited by the availability of 

organic C in some aquatic environments however (Seitzinger, 1988). 

 

 Nitrogen mineralization (the release of ammonium from decomposing organic 

matter) is thought by many scientists to be controlled by the C:N ratio of the 

environment, although it should not be assumed that soil organic matter (and hence also 

C:N ratio) is homogeneous because dinitrification may also occur in subsoils and river 

sediments. Under high C:N ratio conditions nitrogen is more likely to be imobilized in 

microbial biomass, whereas under low C:N ratio conditions a net flux of ammonium 

into the environment is more likely (Schlesinger, 1997).   
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1.12 Identification of Gaps in Knowledge  
To know the impacts of nitrogen on all biological systems it is necessary to understand 

how nitrogen is transformed from one nitrogenous compound to another and what 

factors regulate the dynamics of these transformations.  The key processes may be the 

same or different, their relative importance changing according to different stages and/or 

different conditions.  A firm understanding of the biogeochemical nitrogen cycle is 

needed to address all the environmental challenges associated with assessing the 

importance of anthropogenically induced imbalances in ecosystem N cycling, such as 

those induced by global climate change (Houghton, 1997) or by acid rain (Driscoll       

et al., 2001). 

 A specific way to quantify changes brought in the soil N cycle by enhanced N 

availability is to measure rates of N mineralization and nitrification, two important 

microbial processes that govern the availability of N to plants and micro-organisms.  

These processes, usually measured as net N mineralization and net nitrification, can 

provide an accurate benchmark as to where the system is in terms of saturation, a 

condition where N availability exceeds biotic demand. Although several researchers 

have been working on the different aspects of the N cycle (e.g. Vitousek et al., 1997, 

Smil, 2001, Galloway et al., 2003), a fully comprehensive study allowing the 

quantification of nitrogen processes, is still one of the greatest challenges in N research.  

Other scientists (e.g. Jarvis et al., 1996; Powlson, 1997) have reported that mechanistic 

approaches of N processes may improve our understanding of the relationship between 

soil organic matter and N mineralization. 

 The soil organic matter pool may be split into an ‘active’ pool and a ‘passive’ 

pool (Jansson, 1958).  Indeed, mechanistic models (Smith et al. 1997; Jansson and 

Karlberg, 2001; Kätterer and Andrén, 2001) often divide the organic matter pool into a 

whole series of organic C pools, like a stabilized soil organic matter C pool,  a microbial 

biomass C pool and organic C pool from crops.  Each pool has a different turnover rate 

and assumes a characteristic C:N ratio (Rijtema and Kroes, 1991; Hansen et al., 1991).  

Each C pool is treated as a homogenous substrate following first order kinetics to 

simplify the model production.  The turnover rate of each individual pool may be 

modified by abiotic factors such as temperature, soil moisture or soil texture, generally 

by using empirically based relationships.  The C:N ratio of the organic matter in the 

individual pools determines whether net N mineralization or net N immobilization 

occurs.   



 11

 Validating models precisely is not possible, as the different pools of soil organic 

matter, in reality, can never be measured directly and they are therefore conceptual .  A 

model by Bosatta and Ågren (1985) and Ågren and Bosatta (1996) considers the 

decomposition of soil organic matter as progressing through a continuum, so organic 

matter is assumed to progress down a quality scale.  The mechanism of this approach is 

very complicated.  However, the concept is used to some extent in Chapter 6.  There it is 

assumed that forest litter, because of its high C:N ratio, initially immobilizes mineral N, 

but as the decomposing litter component C:N ratio progresses to lower values, 

eventually mineral N starts to become progressively more available. 

 

1.13 The research in this thesis 
As discussed in this chapter, because of the complexity of the N cycle and the timescale 

and resources available to complete a PhD in the Environment Department at the 

University of York, the author decided to concentrate his efforts upon unfertilized soils 

close to York and predominantly on N cycling under acid grassland at Hob Moor, as 

discussed in Chapter 2.  Chapters 3 and 4 were stimulated by the thoughts that climate 

change is likely to lead to increased occurrence of periods of drought in the UK, and 

hence more drying and re-wetting cycles that will disrupt the N cycle. 

 Chapter 5 was triggered by the desire to explain my supervisor’s observation that 

ammonium-N seemed to be imobilized at unexpectedly high concentrations into a 

stream that runs beside Hob Moor.  It seemed that measuring ammonium 

absorption/desorption characteristics in soils over a range of depth was the most 

appropriate way to answer this question.  This was made possible by allowing the author 

to use groups of second year environmental science students for two days to process the 

large number of samples in a short period of time, an essential requirement for this 

study.  The author designed and tested the experimental protocol, and closely supervised 

the students in the laboratory. He performed all the ammonium determinations himself, 

however. 

 Chapter 6 was prompted by a developing interest in viewing the N cycle from 

the perspective of the Gaia hypothesis.  The nature of this chapter and its results are 

unusual for a PhD thesis since several aspects remain speculative as it was a very 

preliminary evaluation of a set of novel ideas.  The author nevertheless thinks that this is 

an exciting contribution to understanding how atmospheric N pollutant deposition may 

be causing biodiversity change. 
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 Chapter 7 was stimulated by observations of higher than anticipated variation in 

ammonium and nitrate concentrations some experiments, and the need to know more 

about the sample preparation and storage condition constraints to the widely used 

operationally defined procedures for assessing mineral N species in field moist soils.  

This experiment too was only possible because my supervisor arranged for me to get 

access to a group of second year environmental science students for a 2-day practical 

session so that very tight processing time constraints could be met.  They were 

supervised closely throughout by the author. 

 

 Chapter 8 looks at spatial and temporal variations in nitrate-N concentrations in 

the River Derwent in North Yorkshire from the perspective of its having been declared a 

nitrate vulnerable zone, and to see if any of the preceding research helped to explain 

temporal trends found in 20-year runs of Environmental Agency data. 

 

 Finally, Chapter 9 briefly summarizes the conclusions from all the research and 

discusses their significance, but also suggests some possible future research avenues. 
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CHAPTER 2: SITE DESCRIPTIONS AND ANALYTICAL 

METHODS 
 

2.1  Introduction 
This chapter introduces the soils used in this study, and the analytical procedures 

employed in one or more subsequent chapters to measure soil properties that were 

thought probably to be regulating soil nitrogen species transformations and mobilities. It 

describes the major characteristics of the experimental sites used during the 

experimental studies.  

 

2.2 Site description 

2.2.1  Site selection rationale  
 Keeping in mind the hypotheses and research objectives of the thesis outlined at the end 

of Chapter 1, Hob Moor was selected as an experimental field site. Hob Moor has been 

affected for decades by anthropogenic N and S deposition, but no synthetic fertilizer 

additions have been made to the site for at least several decades (Claire Suddaby, 

personal communication). Therefore any changes in N status down soil profiles and 

current biochemical N transformations occurring are almost certainly responses to high 

levels of N deposition in this part of the UK (Hornung et al., 1995). Little research has 

been done on the site, though a poorly draining stagno-gley argillic brown earth profile 

from Hob Moor has been shown to contain 12.5 tonnes of N per hectare to 36 cm depth 

in a study of soil profile nitrogen storage (Crowe et al., 2004), the C:N ratio in that 

profile was <10 at all soil depths studied inspite of the fact that no fertilizer has been 

applied. The site has the advantage of being rapidly accessible from the Environment 

Department at the University of York and having soils with a diverse range of pH values 

and textures. Ready and rapid access was deemed to be important, because it was 

desirable to minimize N species transformations during transport back to the laboratory. 

 

2.2.2  Hob Moor 
The study site selected, Hob Moor, is just to the south of the city walls at York in the 

UK (53º57'30''N & 1º4'48''W, see Fig. 2.1). Hob Moor is a Local Nature Reserve 

covering an area of 36.4 ha of predominantly unfertilized grassland (see plates 2.1 and 



 14

2.2). The soils vary between naturally slowly permeable, seasonally wet, clay loams and 

more freely draining (and more acidic) very fine sandy loams and loamy sands (Plates 

2.3- 2.5 show a typical example). The area is thus dominated by seasonally wet pastures 

but has small peripheral patches of deciduous woodland. 

It has been cultivated in the distant past, and in some areas medieval ridge and 

furrow is also still visible (Smith, 2000). This needs to be considered when examining 

organic matter distributions in such soil profiles. In other areas residual impacts of 

ploughing in the Napoleonic era may be seen, usually though as parallel lines only on 

misty mornings or when the sun is very low or after heavy rainfall. Several grass tracks 

cross the moor (Fig. 2.1) and in 2002 a cycle track was established around the 

circumference. The management plan aims to maintain low nutrient status and high 

biodiversity of flora and fauna, birds and small mammals.  The pasture land is grazed by 

cattle for more than six months every year, in an attempt to help reduce nutrient status, 

though this was not the case in 2009 because of  the controls on animal movement. The 

site is dominated by perennial grasses, and currently the spreading of an area of thistles 

is becoming problematic. An attempt has been made to control this by hand weeding or 

hoeing by volunteers (Claire Suddaby, pers. comm.). Over the winter of 2007-08 cattle 

remained on the site because of restrictions in animal movement imposed by DEFRA. 

 
Plate 2.1: A general view across the moor in summer looking N.E. towards the city 
of York. York Minster is visible in the distance. Vegetation has been kept short by 
grazing cattle. 
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Plate 2.2: A view of the freely draining acid grassland area in the N.E. corner of 
the moor. The   area is mown infrequently to encourage biodiversity. 
 
 

 
Plate 2.3: Typical acid grassland brown earth soil profile at Hob Moor. This is one 
of the acid brown earth profiles sampled for the ammonium absorption/desorption 
experiments described in detail in Chapter 5. 
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  Plate 2.4: Exploring acid grassland brown earth soil profile at Hob Moor. 
   From Right to Left: Malcolm Cresser, Ishaq A. Mian and Muhammad Riaz. 

 

 
Plate 2.5: Sampling typical acid grassland brown earth soil profile at Hob Moor. 

 
 

The Holgate Beck runs along two sides of the site, and the management strategy 

should reduce the risk of nitrate leaching into the surface water.  However the beck is 

very prone to eutrophication, often supporting excessive aquatic plant species to the 

extent that its role in helping maintain local drainage can be restricted. The Beck is  part 

of the flood protection scheme of this  part of the city of York. It is maintained by 

Marston Moor Drainage Board, who, from time to time, apply herbicide to the stream 

channel. The killed vegetation is generally, however, simply deposited on the bank near 
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the acid grassland area. There it decomposes, returning nutrients to the stream and 

encouraging regrowth of aquatic plants. 

Nitrate-N concentrations in the Beck have been monitored in February each year 

since 2001, and ranged from 0.2 up to 7.8 mg l-1 (Cresser, unpublished results), 

However, some of this almost certainly comes from gardens and a sports field upstream 

of the moor. There can be little doubt that much N enters to the stream in water draining 

from Hob Moor however. In the context of this thesis it will be shown  that ammonium 

mobility down profiles may contribute to the stream N concentration and potentially to 

ground water contamination. Riaz et al. (2010b) have very recently reported that 

ammonium-N concentrations in the Beck  frequently exceeded those of  nitrate-N. 

The climate is highly changeable, having sunny summer months (June-

September) with an average temperature of 18-21 ºC.  November to January are the 

coldest and wettest months. The precipitation pattern also has high temporal variation 

and annual rainfall is 639 mm. October-November receives 34.7% of total rainfall. The 

variation in temperature is also prominent around the 13.5 ºC mean monthly 

temperature. June and July are the hottest two months with a 21 ºC average monthly 

temperature. The mean monthly relative humidity is 80.3%. Source: (www.metoffice.gov.uk). 

 

 
 
Figure 2.1: A simplified location map and map of Hob Moor. Ordinance survey © 
Crown copyright 2007.  
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2.3    Analytical methods used for studying soil  N transformations  and 

their dynamics 

 

2.3.1 Determination of soil moisture content 
In the laboratory on the same day that samples were collected, soils were spread 

temporarily on polythene sheets and carefully but quickly hand sorted wearing thin pre-

washed (with deionized water) rubber gloves to remove remaining roots as far as 

possible and any remaining small stones and then mixed thoroughly.  Approximately 

10-g duplicate sub-samples of each field moist soil were weighed into pre-weighed, 

dried foil dishes or porcelain basins, oven dried over night at 105 °C, cooled in 

desiccators, and reweighed to determine the moisture content from the loss on mass, 

expressed on an oven-dry weight basis. 

 

2.3.2 Measurement of soil C, N and C:N ratio  
The oven-dried soil residues obtained as described in section 2.3.1 were individually 

finely ground with a  Retsch ball mill for 3 minutes at 25 Hz and used for the 

measurement of soil C%, N% and C:N mass ratio on an Elementar Vario Macro C and 

N analyzer calibrated with glutamic acid. The steel grinding balls and containers were 

carefully cleaned with tissue and a brush between each sample. To minimize any 

possible effect of carry over of C and N between samples, samples were ground in depth 

sequence when soils from whole profiles were being studied. At the end of each run, the 

Vario Macro uses data from glutamic acid check standards, usually run after every 8 

samples, to compensate for small amounts of instrument response drift.  Because C and 

N concentrations were usually quite low, 150-200 mg samples were often used for 

analysis even though this gives a higher ash residue in the instrument. 

 

2.3.3 Extractable ammonium-N and nitrate-N 
Ten or 20-g sub-samples of field moist soil were weighed into labelled bottles. To each 

bottle 50 ml of 0.5 molar potassium chloride solution (0.5M KCl) was added.  The 

bottles and duplicate reagent blanks were shaken intermittently by hand for one hour, 

and the contents filtered through Whatman No. 42 filter papers.  The extracts were 

stored at < 4°C until analysis for ammonium-N and nitrate-N using a standard 

AutoAnalyser protocol with matrix-matched standards, as soon as  possible (generally 

the next day) after extraction. 
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2.3.4 Ammonium absorption characteristics 
Sub-samples of 10 +/- 0.1 g of each field moist soil (for which absorption isotherms 

were to be measured) weighed to an accuracy of +/- 0.01 g into nine labelled 120-ml 

plastic bottles. 

Nine stock solutions of ammonium chloride were prepared, containing the 

following concentrations of ammonium-N: 0.0, 0.2. 0.5, 1.0, 2.0, 5.0, 10.0, 20.0 and 

50.0 μg ammonium-N ml-1.  To each bottle in each series of 9, 50 ml of the appropriate 

ammonium-N solution was added.  The bottles were shaken vigorously by hand for 10 

minutes and then immediately filtered through Whatman No. 42 papers.  Extracts were 

refrigerated until the samples were analysed for ammonium-N using an AutoAnalyser 

(within 3 days).  When calculating the amounts of ammonium-N in solution, the volume 

of water contained in the field moist soil was added to the volume of solution added (50 

ml). The above spike sizes were selected after a preliminary trial and error experiment 

using two soils. These demonstrated significant differences between isotherms when 

ammonium was added as sulphate rather than chloride. This was attributed to suphate 

absorbtion reducing the mobile anion concentration. 

 

2.3.5 Measurement of soil pH 
The pH of soil was measured in duplicate, generally in both water and in 0.05 molar 

calcium chloride solutions, by adding 20 ml of water or CaCl2 to 10 g sub-samples of 

field-moist soil.  The mixtures were equilibrated with periodic agitation for 30 minutes 

prior to measurement of the soil pH with a glass/calomel combination electrode using a 

pH meter pre-calibrated with commercial standard buffer solutions at pH 4.0, 7.0 and 

10.1. The pH 7 buffer was used after every 8-10 samples to confirm instrumental 

stability.  

 

2.3.6 Cation exchange capacity and exchangeable base cations 
Exchangeable base cations and cation exchange capacity were measured by leaching 10-

g sub-samples of field moist soil held in a 50 ml plastic syringe barrel with 100 ml of 1 

molar ammonium acetate, washing out the non-absorbed ammonium with 100 ml of 

80% ethanol, and then leaching the absorbed ammonium with 1 molar sodium chloride, 

all from inverted 100-ml volumetric flasks (Marr and Cresser, 1983).  The final leachate 

was diluted back to 100 ml with the sodium chloride solution prior to determination of 

its desorbed ammonium content. In Chapter 5 these preparations were performed by a 
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group of second year BSc Environmental Science students closely supervised by the 

author, using the instructions given on the following page which were prepared by the 

author for the class use. This was necessary because a large number of samples had to 

be processed within a few hours for this chapter. The author performed all the 

ammonium determinations on an AutoAnalyser, however. 

 

2.3.7  Procedure for determination of exchangeable base cations and  

CEC  
 Insert 3.0 g of cotton wool into the bottom of a labelled leaching tube for each 

soil. 

 Weigh out 10 g of field moist soil (weighed to the nearest 0.01 g; record the 

weight) on a plastic boat. Do the next step at the same time at the same balance. 

 Immediately tip the soil carefully into the tube above the cotton wool plug.  If 

any soil adheres to the boat, reweigh the boat and adhering soil without re-taring, 

and subtract the residue weight from the original weight.  Hand in the weight of 

soil that actually went into the tube (in g) to Ishaq  Mian. 

 Add another 3.0 g of cotton wool above the soil. 

 Lightly compact the cotton wool plugs and soil. 

 Leach 100 ml of 1 molar ammonium acetate from an inverted 100-ml volumetric 

flask (as will be demonstrated to you) through the soil to make sure every cation 

exchange site is occupied by an ammonium ion (NH4
+).  Leaching should take at 

least 30 minutes.  If it is too fast, it may be necessary to compact the soil more.  

Collect the ammonium acetate that leaches through into a 100-ml volumetric 

flask, and if necessary dilute to the 100-ml mark with more ammonium acetate.  

Transfer this solution to a clean labelled plastic bottle (labelled with soil No and 

Amm. Ac.).  Save this solution as it contains exchangeable Ca2+, Mg2+, K+ and 

Na+, which will eventually be determined by AAS. Hold the labelled bottles to 

Ishaq Mian for checking. 

 Wash the initial 100-ml volumetric flask (the one that contained the leaching 

solution before it went through the soil) very carefully, by rinsing 4 times with 

tap water and 3 times with deionized water.  Fill it to the 100-ml mark with 80% 

ethanol solution and leach this through the soil.  This washes out any residual 

ammonium in the soil which was not held on cation exchange sites.  Collect the 

leachate in the empty collecting flask that you just emptied into a 125-ml plastic 
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bottle.  When the tube stops dripping, discard the wash solution down the sink, 

and wash the flask very carefully as before. 

 Add 100 ml of 1 molar sodium chloride solution to the flask that previously 

contained the 80% pure ethanol used for washing.  Leach this through the soil, 

collecting the leachate in another 100-ml volumetric that you have just carefully 

washed out. 

 Dilute the leachate to exactly 100 ml with sodium chloride. 

 Transfer the diluted solution to another clean labelled 125-ml plastic bottle 

(labelled with soil No and NaCl leachate), and hand the labelled sample to Ishaq  

Mian  for checking. 

 Thoroughly wash and rinse the empty volumetric flasks 4 times with deionized 

water and leave to drain.  

 

2.4 Conclusions 
To avoid unnecessary detail repetition, this chapter has described the site in some depth 

and analytical methods in detail. In future chapters, only brief descriptions are therefore 

used unless extra chapter specific detail is necessary. 
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CHAPTER 3:  POTENTIAL EFFECTS OF DRYING AND 

REWETTING ON N CYCLING IN SOIL UNDER 

HOB MOOR ACID GRASSLAND:                             

A PRELIMINARY INVESTIGATION 
 

3.1 Introduction 
The influence of natural drying and rewetting cycles in soils is currently a topic of 

considerable interest globally, because of possible effects that climate change may have 

on carbon exchange, especially as the greenhouse gases carbon dioxide and methane, 

between soils and the atmosphere (Wu et al., 2010).  Although C and N mineralization 

are thought to be triggered in semi-arid and arid ecosystems by periodic pulses of water 

availability (McIntyre et al., 2009), rather less attention apparently has been paid, to the 

impacts of such rewetting upon the nitrogen cycle, although comparable impacts are 

likely for N biogeochemical cycling. 

Baldwin and Mitchell (2000) reviewed the potential impacts of drying and 

rewetting of floodplain sediments in Australia.  They suggested that partial drying of 

previously very wet sediments could reduce N availability by providing adjacent local 

zones for nitrification and subsequent denitrification.  They also commented that 

complete desiccation could lead to “death of bacteria” and subsequent mineralization of 

N and P.  Their paper included a diagram of the N cycling for such systems, which 

suggested that they perceived the N released from dead bacteria became available to 

biota in the overlying water column, rather than to regeneration of the microbial 

biomass, which the author thinks is likely to be of comparable importance.    

Bottner (1985) found that rapid drying of soils for 8 – 10 days at 40 °C 

apparently destroyed a third to a quarter of the biomass in 4 successive drying and 

rewetting cycles.  The “dead” biomass is likely to constitute a substrate for subsequent 

regeneration of biomass.  Gordon et al. (2008) found that microbial biomass N was 

reduced significantly as a consequence of drying and rewetting.  They observed that the 

stress induced by drought stimulated greater nutrient leaching from improved grassland 

soil compared with unimproved grassland soil, and suggested that the greater abundance 

of fungi in the latter ecosystem was significant in terms of its greater resistance to 

drying impacts.  Landesman and Dighton (2010), based upon a two year water-

exclusion experiment in New Jersey Pinelands, concluded that, to a substantial degree, 
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microbial populations were adapted to tolerate often substantial periods of natural 

drought. 

It has been well known for decades that soil drying-rewetting cycles result in an 

increase in the  DOC concentration in soil solution, and hence potentially in drainage 

water (Kieft et al., 1987; Lundquist et al., 1999).  Williams and Xia (2009) investigated 

the nature of the organic matter that became soluble after soils had been subjected to 

drying at controlled moisture tensions and rewetting.  They concluded that the flush of 

soluble organic C following rewetting was not heavily dominated by the microbial 

osmolytes such as glycerine, betaine, glycerol, mannitol, proline etc. that might be 

expected, and that more research was needed into the processes involved. 

 

3.1.1 Effects of drying-rewetting cycle periods on soil C and N 

transformations 
It is recognized that drying and rewetting cycles may severely stress soil microbial 

communities (Fierer and Schimel, 2002).  Duration of the cycles clearly will be an 

important factor regulating the nature and extent of impact.  Fierer and Schimel (2002) 

subjected soils to laboratory simulated wetting drying cycles, applying 0, 1, 2, 4, 6, 9  or 

15 such cycles spread over a 2-month period.  They conducted the experiment so that 

the mean soil moisture content was constant for all samples however.  Respired CO2 

increased with number of cycles for soils from under oak wood, but not for a grassland 

soil.  Extractable-ammonium concentrations were low in both soils, and not affected by 

treatment.  They also found no significant effects of the stress treatments on the 

concentrations of 0.5M-extractable nitrate-N either 1 day or 7 days after application of 

the stress the final drying-rewetting stage, but a small but significant decrease after 6 

weeks delay. 

An example of an extreme drying period may be found in the work of Nobili et 

al. (2006), who examined the effect of rewetting soils that had been stored dry for 103 

years, and compared soil microbial biomass activity and concentration after rewetting 

with the values for soils stored air dry for different periods.  The CO2 evolution on 

rewetting was more than doubled by extended storage.  The ATP concentrations were 

lower in rewetted soils than values for corresponding field moist soils, but trends were 

variable and were not consistent.  The authors did conclude, though, that loss of 

viability during long-term storage occurred mainly over the earlier years.  Measurement 

of ATP has been used for some time as a useful index of recovery of microbial activity 

during rewetting (Ahmed et al., 1982). Working on much shorter time scales, Van-
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Gestel et al. (1993) reported that drying soil at 40 °C for 27 days immediately following 

addition of plant residues had a very pronounced impact upon microbial activity on 

subsequent rewetting.  They concluded that the actively growing part of the microbial 

biomass was hit hardest by periods of desiccation. 

 

3.1.2 Effects drying-rewetting cycles on C and N mineralization of 

litter residues 
Litter mineralization is a crucial part of the N cycle in natural and managed soil systems.  

Kruse et al. (2004) investigated the effect of drying and rewetting upon C and N 

mineralization in soils with a low organic matter content to which either compost or 

cotton leaf  litter had been added. The moisture effect was not significant in the control 

(un-amended) soils).  However, for the leaf litter-amended soil, N mineralization fell 

from 25 to 40% of the residue N being mineralised in continuously moist soil to -1.3 to 

6.9% in soil under fluctuating moisture conditions.  Decreases were smaller for the 

compost-amended soil. 

The conditions of rewetting appear to be important to the effects on microbial 

activity observed.  McIntyre et al. (2009) found that if soils became saturated as a 

consequence of rewetting, the rate of mineralisation was appreciably lower than when 

they were wetted up to a lesser extent. 

Muhr et al. (2010) reported that for microcosms containing organic horizons of 

soils from a Norway Spruce forest in Germany, drying and rewetting reduced C and N 

mineralisation and that the reduction increased with simulated drought duration.  Nitrate 

leaching was lowest from the microcosms subjected to the greatest drought, suggesting 

to the present author the possibility of at least partial nitrate immobilization during the 

drying period.  They commented that net nitrification was close to zero during the 

drought period.  It should be remembered, however, that effects on net nitrification 

response to drying/rewetting may be very different in surface soils and sub-surface soils 

(Xiang et al., 2008). 
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3.2 Aims of present experiment 
It is interesting to speculate on what happens to the net nitrate and net ammonium 

present in soil during the drying process itself, as this does not appear to have been done 

comprehensively in the papers reviewed in the introduction.  If a soil is ammonifying 

and nitrifying, it may be assumed that these processes will continue, especially within 

aggregates, during the early period of soil drying.  If the soil has been removed from 

vegetation, this would be likely to lead to an initial increase in the extractable 

ammonium-N and nitrate-N concentrations in the soil.  However, if the additional 

ammonium-N produced is nitrified, then ammonium-N concentration could remain 

initially quite similar.  However, some mineralized N would also be recycled through 

microbial biomass.  Thus both ammonium and nitrate could be incorporated into new 

biomass.  Clearly at this stage it is conceivable that a mis-match could occur between 

rates of mineral-N species production and microbial biomass N immobilization, since 

both processes are likely to respond differently to the changing desiccation conditions. 

As drying proceeds and some of the microbial biomass components that are 

more sensitive to desiccation start to die due to the desiccation stress, then substrate 

could become available to less susceptible components of the biomass.  At this stage it 

may be hypothesised that mineral N species would be at least partially incorporated into 

any new microbial biomass growth.  As soils become drier, however, the soil solution 

solute species concentrations become more concentrated, encouraging osmotic 

penetration of water through cell walls and microbial cell collapse. 

If nitrate-N immobilization as hypothesised above does not occur during later 

stages of drying, then rewetting would lead to an instantaneous apparent nitrate-N flush 

as residual nitrate-N retained in the dry soil is released.  If the flush is not instantaneous 

then it is necessary to invoke the slower process whereby the population of nitrifying 

organisms increases, followed by a delayed nitrate flush. 

It was therefore decided to collect duplicate samples of a freely-draining, brown-

earth, acid grassland soil from Hob Moor, just outside York, and allow them to dry out 

at room temperature. The KCl-extractable ammonium-N and nitrate-N concentrations 

were measured immediately and then at intervals over a 6-week period.  The soils would 

be rewetted, and N mineralisation monitored over 7 days.  For the drying experiment 

soils would be collected from five 20-cm depth increments, covering a total depth of 1 

m, as papers discussed in the introduction suggest depth may significantly influence 

response of net mineral N to desiccation. 
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The experiment will test the following hypotheses: 

 

 Nitrate-N and ammonium-N will increase over the early drying period. 

 Nitrate-N concentration will reach a maximum when nitrification rate 

becomes insignificant compared with microbial sinks for nitrate. 

 When nitrification becomes insignificant, ammonium-N concentration may 

undergo further increases for some time. 

 If some microbial activity continues, nitrate concentration may start to fall as 

a consequence of microbial immobilization. 

 If nitrate is immobilized, this will show up in a delay in any nitrate-N flush 

when the soil is rewetted. 

 

3.3 Materials and methods 

3.3.1 Field sampling 
The characteristics of the Hob Moor site were described in detail in Chapter 2.  The area 

sampled was in the part of the moor which is a freely draining acid grassland.  This was 

selected because it is fenced off from cattle which graze the rest of the Moor for about 6 

months each year.  However, it does occasionally receive urine and faeces from dogs 

being walked in the area, although observations suggest this animal fowling is 

predominantly adjacent to the paths, which were a few metres away from the sampled 

areas. 

Two soil pits, separated by about 10 m, were excavated to a depth of 1 m with 

the help of Riaz and Cresser in May 2007, taking care to leave one face undisturbed for 

sampling.  At each pit the surface vegetation from this face was carefully removed with 

a sharp, stainless steel carving knife with a serrated blade.  Samples were then collected 

to represent 20-cm depth increments from the bottom of the cleaned profile face 

upwards (to reduce risk of contamination from above) using a pointed stainless steel 

trowel.  Samples were taken from either side of the exposed profile face, to give 

duplicate field samples.  The samples were transferred to clean, pre-labelled polythene 

bags for immediate return to the laboratory and analysis. 
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3.3.2 Sample preparation and initial analysis 
Stones and obvious root fragments were removed as quickly as possible by hand.  Sub-

samples were then analysed on the same day that they had been taken for 0.5 M KCl-

extractable ammonium-N and nitrate-N (10:50 m:v), soil pH (in 0.5 M KCl at 2:1 

soil:solution to minimise mobile anion effects on soil pH profiles), and soil moisture 

content, as described in Chapter 2.  The residual dry soil, after measuring the weight-

loss the next day after oven drying, was finely ground and used to measure soil C%, N% 

and C:N ratio, again as described in Chapter 2.  All determinations were performed in 

duplicate, and means of the analytical duplicates were used to provide 4 mean values for 

the 4 field replicates (2 from each profile). 

 

3.3.3 Drying experiment 
The 4 field replicate residual soils from each of the 5 sampling depths increments were 

spread thinly (ca. 2 – 4 cm depth) to dry on sheets of heavy duty polythene in a 

laboratory which was not otherwise being used at the time.  After 5, 10, 15, 20 and 42 

days of drying, subsamples were taken for duplicate determination of 0.5 M KCl-

extractable ammonium-N and nitrate N using a Bran and Luebbe AutoAnalyser® -3  

with matrix-matched standards, and soil moisture content, as described in Chapter 2.  

All results were blank-corrected, and expressed on an oven-dried soil basis, taking into 

account the dilution effect of the residual water in the soils. 

 

3.3.4 Rewetting experiment 
Subsamples of the 4 field replicate residual soils from the 0-20, 20-40 and 40-60 cm 

depth samples were rewetted by the addition of deionized water.  Six sub-samples of 10 

g of each of the soils from these depths that had been dried for 42 days were weighed 

into clean polythene bottles, and 2 ml of water was added to each.  The bottles of 

moistened soil were shaken vigorously for 5 minutes.  Two subsamples of each soil 

were extracted immediately with 0.5 M KCl, two were extracted after 3 days of 

incubation and the final pair of duplicates after 7 days of incubation at room 

temperature.  The bottles of moistened soil were weighed, and during incubation 

deionized water was added to replenish any loss by evaporation. The ammonium-N and 

nitrate-N concentrations in the extracts were measured using an AutoAnalyzer as 

described in Chapter 2, and the masses of nitrate-N and ammonium-N per unit mass of 

soil were calculated, making a correction for the mass of added water. 
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3.4 Results 

 

3.4.1  Changes in extractable nitrate-N and ammonium-N during 

drying 
Figures 3.1 to 3.5 show how the extractable nitrate-N concentration changed over 42 

days of drying at room temperature for the 0 – 20, 20 – 40, 40 – 60, 60 – 80  and                 

80 – 100 cm depth increments, respectively.  The nitrate-N attained a maximum value at 

5 – 10 days for all depths, and then declined to a very low residual value.  A 3rd
 order 

polynomial equation was fitted in each case to the data over the first 20 days only.  

Although 4th order polynomials fitted the data well over 42 days, this resulted in some 

negative values of nitrate concentration between 20 and 42 days, so was deemed 

inappropriate. 

Figures 3.6 to 3.10 show how the extractable ammonium-N concentration 

changed over 42 days of drying at room temperature for the 0 – 20, 20 – 40, 40 – 60,    

60 – 80 and 80 –100 cm depth increments respectively. In this instance linear regression 

analysis suggested that ammonium-N concentration continued to increase linearly with 

time. 

 

 
Fig. 3.1 Change in KCl-extractable nitrate-N concentration in soil from 0-20 cm 
depth during drying over 42 days. The 4 points at each time are means of 
analytical duplicates for the field duplicates from the duplicate soil profiles.  
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Fig. 3.2 Change in KCl-extractable nitrate-N concentration in soil from 20-40 cm 
depth during drying over 42 days. The 4 points at each time are means of 
analytical duplicates for the field duplicates from the duplicate soil profiles.  
 

 
Fig. 3.3 Change in KCl-extractable nitrate-N concentration in soil from 40-60 cm 
depth during drying over 42 days. The 4 points at each time are means of 
analytical duplicates for the field duplicates from the duplicate soil profiles.  
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 Fig. 3.4 Change in KCl-extractable nitrate-N concentration in soil from 60-80 cm           
depth during drying over 42 days. The 4 points at each time are means of 
analytical duplicates for the field duplicates from the duplicate soil profiles.  
 

 
Fig. 3.5 Change in KCl-extractable nitrate-N concentration in soil from 80-100 cm 
depth during drying over 42 days. The 4 points at each time are means of 
analytical duplicates for the field duplicates from the duplicate soil profiles.  
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Fig. 3.6 Change in KCl-extractable ammonium-N concentration in soil from 0-20 
cm depth during drying over 42 days. The 4 points at each time are means of 
analytical duplicates for the field duplicates from the duplicate soil profiles.  
 

 

 
Fig. 3.7 Change in KCl-extractable ammonium-N concentration in soil from 20-40 
cm depth during drying over 42 days. The 4 points at each time are means of 
analytical duplicates for the field duplicates from the duplicate soil profiles.  
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Fig. 3.8 Change in KCl-extractable ammonium-N concentration in soil from 40-60 
cm depth during drying over 42 days.  The 4 points at each time are means of 
analytical duplicates for the field duplicates from the duplicate soil profiles.  
 

 

 
Fig. 3.9 Change in KCl-extractable ammonium-N concentration in soil from 60-80 
cm depth during drying over 42 days.  The 4 points at each time are means of 
analytical duplicates for the field duplicates from the duplicate soil profiles.  
 
  

 

y = 0.247x + 1.570
R² = 0.881

0

2

4

6

8

10

12

14

0 10 20 30 40 50

Am
mo

niu
m 

-N
 (m

g/k
g)

Day  Number

n = 24

P < 0.01

y = 0.194x + 1.758
R² = 0.797

0

2

4

6

8

10

12

0 10 20 30 40 50

Am
mo

niu
m 

-N
 (m

g/k
g)

Day  Number

n = 24

P < 0.01



 33

 
Fig. 3.10 Change in KCl-extractable ammonium-N concentration in soil from 80-
100 cm depth during drying over 42 days.  The 4 points at each time are means of 
analytical duplicates for the field duplicates from the duplicate soil profiles.  
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profiles, but then decreased significantly by day 7 for soils from 0-20 cm. The trend was 

similar for 20-40 cm but the decrease from day 3 to day 7  was not significant for profile 

A (Fig. 3.12).   

     
Fig. 3.11 Changes in ammonium-N and mineral-N concentrations in soils from 0 - 20 cm 
depth from profile A (left chart) and profile B (right chart) between the end of the 42-day 
drying period and following 1 (R1), 3 (R3) and 7 (R7) days of rewetting.  Each bar is the 
mean of 4 replicate determinations (2 analytical replicates x 2 field replicates). Bars for 
ammonium-N or for mineral-N with different letters differ significantly at P < 0.05. 

 
Fig. 3.12 Changes in ammonium-N and mineral-N concentrations in soils from     
20 - 40 cm depth from profile A (left chart) and profile B (right chart) between the 
end of the 42-day drying period and following 1 (R1), 3 (R3) and 7 (R7) days of 
rewetting.  Each bar is the mean of 4 replicate determinations (2 analytical 
replicates x 2 field replicates). Bars for ammonium-N or for mineral-N with 
different letters differ significantly at P < 0.05. 
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Fig. 3.13 Changes in ammonium-N and mineral-N concentrations in soils from     
40 - 60 cm depth from profile A (left chart) and profile B (right chart) between the 
end of the 42-day drying period and following 1 (R1), 3 (R3) and 7 (R7) days of 
rewetting.  Each bar is the mean of 4 replicate determinations (2 analytical 
replicates x 2 field replicates). Bars for ammonium-N or for mineral-N with 
different letters differ significantly at P < 0.05. 
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decline was not significant, whereas nitrification was higher at day 7 than at day 3 for 

profile B (Fig. 3.14) but again the apparent effect was not significant.  At 20-40 cm 

depth, on the other hand, both profiles gave their maximum nitrate-N concentrations at 

day 3, with marked immobilization by day 7 that was significant for profile B only (Fig. 

3.15).  The nitrate-N peak was at a much higher concentration for profile B than for 

profile A, as indicated by the difference between ammonium-N and total mineral-N for 

this profile at day 3, mentioned in the previous section.  Trends with time after rewetting 

were superficially similar for soils from 40-60 cm depths to those for soils from 20-40 

cm depths for both profiles, but again although nitrification appeared more substantial in 

profile B, no differences were significant.  

 Strictly speaking, of course it should be said that net nitrate production was 

higher in soil from profile B, because the extractable nitrate-N concentration depends 

upon initial nitrate-N concentration, nitrification rate, nitrate-N immobilization rate and 

any denitrification (though the latter was thought to be small as the soils were 

maintained under aerobic conditions). 

 

 
Fig. 3.14 Changes in nitrate-N concentrations in soils from 0 - 20 cm depth from 
profile A (left chart) and profile B (right chart) between the end of the 42-day 
drying period and following 1 (R1), 3 (R3) and 7 (R7) days of rewetting.  Each bar 
is the mean of 4 replicate determinations (2 analytical replicates x 2 field 
replicates). No differences between times were significant at P < 0.05 at this depth. 
 

0

0.5

1

1.5

2

2.5

Day-42 R-1 R-3 R-7

N
it

ra
te

-N
 (

m
g

/k
g

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Day-42 R-1 R-3 R-7

N
it

ra
te

-N
 (

m
g

/k
g

)



 37

 
Fig. 3.15 Changes in nitrate-N concentrations in soils from 20 - 40 cm depth from 
profile A (left chart) and profile B (right chart) between the end of the 42-day 
drying period and following 1 (R1), 3 (R3) and 7 (R7) days of rewetting.  Each bar 
is the mean of 4 replicate determinations (2 analytical replicates x 2 field 
replicates). Bars with different letters only differ significantly at P < 0.05. 
 
 

 
Fig. 3.16 Changes in nitrate-N concentrations in soils from 40 - 60 cm depth from 
profile A (left chart) and profile B (right chart) between the end of the 42-day 
drying period and following 1 (R1), 3 (R3) and 7 (R7) days of rewetting.  Each bar 
is the mean of 4 replicate determinations (2 analytical replicates x 2 field 
replicates). Bars with different letters only differ significantly at P < 0.05. 
 

3.4.4 Variation in extractable ammonium-N after rewetting with depth 
Changes with soil depth in KCl-extractable ammonium-N concentrations following 

rewetting after a 42-day drying period are shown for the 2 soil profiles in Figs. 3.17 and 

3.18.  For profile A, 1 day after rewetting, extractable ammonium-N had decreased 

except at 20-40 cm.  For profile B it had decreased at 20-40 and 40-60 cm. Profile B at 

some depths had significantly more ammonium-N than profile A. 

   

0

0.2

0.4

0.6

0.8

1

1.2

Day-42 R-1 R-3 R-7

N
it

r
a

te
-N

 (
m

g
/k

g
)

ab
b

a

ab

0

1

2

3

4

5

6

Day-42 R-1 R-3 R-7

N
it

r
a

te
-N

 (
m

g
/k

g
)

b

a

bb

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Day-42 R-1 R-3 R-7

N
it

ra
te

-N
 (

m
g

/k
g

)

a

0

2

4

6

8

10

12

Day-42 R-1 R-3 R-7

N
it

ra
te

-N
 (

m
g

/k
g

)

b

a

bb



 38

  
Fig. 3.17   Changes in ammonium-N concentration in soils from different depths   
(0-20, 20-40 and 40-60 cm) for profile A and profile B after 42 days of drying (left 
chart) and 1 day after subsequent rewetting (right chart).  Bars are means of 4 
replicates. Where adjacent bars in a pair have different letters, there is a 
significant difference between profile A and B. 
 

  
 
Fig. 3.18 Changes in ammonium-N concentration in soils from different depths    
(0-20, 20-40 and 40-60 cm) 3 days (left chart) and 7 days (right chart) after 
rewetting following 42 days of drying for profile A  and profile B.  Bars are means 
of 4 replicates. Where adjacent bars in a pair have different letters. there is a 
significant differences between profile A and B. 
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between 0-20 and 20-40 cm by day 7, but net ammonification at 40-60 cm (Fig. 3.18). 
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Fig. 3.19   Changes in nitrate - N concentration in soils from different depths (0-20, 
20-40 and 40-60 cm) after 42 days of drying (left chart) and 1 day after subsequent 
rewetting (right chart) for profile A and profile B.  Bars are means of 4 replicates. 
Where adjacent bars in a pair have different letters, there is a significant 
difference between profile A and B. 
 

 
Fig 3.20 Changes in nitrate - N concentration in soils from different depths (0-20, 
20-40 and 40-60 cm) 3 days (left chart) and 7 days (right chart) after rewetting 
following 42 days of drying for profile A  and profile B.  Bars are means of 4 
replicates. Where adjacent bars in a pair have different letters, there is a 
significant difference between profile A and B. 
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highest nitrification in soil from 40-60 cm depth at day 3.  The reason for this is not 

obvious.  By day 7 (Fig. 3.20), there was strong evidence for nitrate-N immobilization, 

especially in the deeper soils.  

 

3.5 Discussion 
As stated in section 3.2, this preliminary experiment was set up to test the following five 

hypotheses: 

1. Nitrate-N and ammonium-N will increase over the early drying period. 

2. Nitrate-N concentration will reach a maximum when nitrification rate 

becomes insignificant compared with microbial sinks for nitrate. 

3. When nitrification becomes insignificant, ammonium-N concentration may 

undergo further increases for some time. 

4. If some microbial activity continues, nitrate concentration may start to fall as 

a consequence of microbial immobilization. 

5. If nitrate is immobilized, this will show up in a delay in any nitrate-N flush 

when the soil is rewetted. 

Conclusions related to each of these hypotheses are briefly discussed in turn in the 

following subsections. 

 

Hypothesis 1: Nitrate-N and ammonium-N will increase over the early drying period 

 

Net nitrate production did appear to increase consistently over the first 5 days of the 

drying period for soils at all depths. (Figs. 3.1-3.5).  Generally, the maximum nitrate-N 

concentration value tended to decline with soil depth, except for soil from 80-100 cm.  It 

is not possible here to say whether nitrification cessation is the cause of the maxima 

alone or nitrate starts to be immobilized by microbial cells (that are more drought 

resistant) more quickly than it is produced. Intuitively the former seems more probable, 

but the subsequent declines in nitrate concentration tend to suggest that immobilization 

is perhaps more important.  

Ammonium-N concentration apparently increased significantly with depth in 

soils from all soil depths, but there was no consistent trend with depth.  However, close 

examination of Figs. 3.6-3.10 seems to suggest that between days 10 and 15, ammonium 

concentration was starting to increase exponentially once net nitrification was zero or 

negative, at least for soils from 0-80 cm.  However, because of variation associated with 
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differences between the two soil profiles further experiments with more soils and greater 

replication would be needed to test this idea.   

 

Hypothesis 2: Nitrate-N concentration will reach a maximum when nitrification rate 

becomes insignificant compared with microbial sinks for nitrate 

 

The author had initially expected to see a plateau in nitrate versus drying time graphs, 

rather than distinct maxima.  However, there is no reason to suppose that there should 

be a close match between the soil moisture contents at which nitrification and microbial 

immobilization of nitrate-N cease.  If, as Landesman and Dighton (2010) suggest, 

microbial populations become adapted to drought, it seems probable that at least part of 

the microbial population is likely to be able to use nitrate under drought conditions.  

Possibly this part of the population might make use of osmolytes originating from less 

drought-tolerant organisms, which might explain why such chemical species do not 

accumulate in soil solution to the extent that might be anticipated, helping to explain the 

findings of Williams and Xia (2009).  However, this must remain speculative without 

further research. 

 

Hypothesis 3: When nitrification becomes insignificant, ammonium-N concentration 

may undergo further increases for some time 

 

The results appear to strongly support this hypothesis, which originated from the 

author’s preconception that at least part of the microbial biomass capable of contributing 

to ammonification would be more drought-tolerant than the nitrifier population. 

 

Hypothesis 4: If some microbial activity continues, nitrate concentration may start to 

fall as a consequence of microbial immobilization 

 

Before the experiment commenced, it was anticipated that this hypothesis would 

probably be disproved, because the experiment described in the next chapter was set up 

to test the idea that nitrate stored in soil after drying makes a substantial contribution to 

the well-documented nitrate flush on rewetting.  However it appears conclusive from the 

present experiment that nitrate-N is immobilized in later stages of drying.  It is possible 

that this reflects the important role being played by fungi in these acidic grassland soils.  

As mentioned in the introduction, Gordon et al. (2008) suggested that fungi were more 
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drought tolerant than bacteria.  It is not clear though whether “tolerance” in this context 

refers to survival or remaining metabolically active. 

 

Hypothesis 5:  If nitrate is immobilized, this will show up in a delay in any nitrate-N 

flush when the soil is rewetted 

 

In the rewetting experiment, at day 1 the soils showed, if anything, a decline in nitrate-N 

concentration compared with values obtained immediately after the drying period.  

However by the third day there was clear evidence of a nitrate flush in all soils.  This 

was short lived, however, and by day 7 nitrate-N concentration had fallen considerably 

in most soils compared with values observed 3 days after rewetting.  

 

3.6 Conclusions 
The experimental results supported all of the hypotheses listed in the introduction.  The 

extent of immobilization of nitrate in later stages of drying was greater than anticipated 

prior to the experiment, but undoubtedly for such acid grassland soils would contribute 

to the delay in the nitrate-N flush when dried soils are rewetted. 

The changes that occurred with the duration of the drying period were 

substantial, and present a problem when attempting to interpret the results of many of 

the earlier drying/rewetting experiments where data are gathered after one or a series of 

fixed-period drying cycles. 

The experiment showed that ammonium and nitrate production occurred in these 

soils at depths down to 100 cm, which is well below the rooting zone at this site.  In 

periods of drought, when plant growth, and hence plant N uptake, is likely to be 

severely restricted, it seems highly probable for these soils that ammonium-N will 

continue to be produced within the soil.  Under these conditions there is a high risk of 

such ammonium being mobile down the soil profile and possibly out of the profile into 

drainage waters.  However, the mobility on rewetting in early rainfall will presumably 

be dependent upon associated mobile anion concentrations. 

This experiment suggests that, for the acid soils under grassland at Hob Moor, 

net nitrate-N production continues for up to 10 days as soils dry out.  It was therefore 

decided to conduct a further experiment, which is described in the next chapter, to see if 

soils dried out for 6 days, when rewetted, release this stored nitrate, rather than a flush 

of nitrate emanating from a very rapid flush of nitrification within hours of rewetting. 



 43

CHAPTER 4:  WHAT CONTROLS THE NITRATE FLUSH WHEN     

AIR DRIED SOILS ARE REWETTED? 
 

4.1 Introduction  
Soils are regularly subjected to drying/rewetting cycles in many parts of the world, 

including the UK, and mineral-N flushes have often been documented from air-dried or 

partly-dried soils when rewetted, reputedly due to changes in microbial activities and 

diversity (Fierer et al., 2003). For example, reducing the water content of a coniferous 

forest litter layer material to 10% of dry weight for 12 days reduced microbial biomass 

C by 67% and markedly reduced respiration (Pulleman and Tietema, 1999). Subsequent 

rewetting to 340% resulted in significant flushes of respiration, soluble C and mineral N 

within a few hours.  Gordon et al. (2008) investigated the effects of drying and 

rewetting on the concentrations of inorganic N species in leachate from improved and 

unimproved grassland soils.  Nitrate leaching was increased by the stress from drying, 

especially in the improved soil. Thus soils that may be prone to extended drought 

periods often give a nitrate flush in the next precipitation event.  In Israel a rapid 

increase in nitrate concentration was noted in a mineral soil under shrub-land when the 

first winter rainfall rewetted dried soil, although in an adjacent forest soil an unexpected 

increase in nitrite concentration accompanied by only a small increase in nitrate 

concentration was observed (Gelfand and Yakir, 2008).  It was suggested that this might 

be due to different changes in microbial populations in response to summer stress for the 

two ecosystems. 

Such mineral N fluxes are of interest in both natural ecosystems and in some 

managed ecosystems.  Nitrate flushes may become a potential environmental issue when 

soil/vegetation mesocosms are used as bio-filters for the removal of inorganic N 

pollution from urban runoff. For example, when such filters were subjected to simulated 

drought periods of 4 to 6 weeks, nitrate concentrations always increased sharply in the 

subsequent first flush of outlet water (Hatt et al., 2007a, 2007b).  The flushes were only 

short lived, however which could support the concept of intracellular cell solute release 

following cell lysis in response to osmotic shock upon rewetting (Fierer et al., 2003).  

  However, although nitrate might make a contribution to osmo-regulation in 

microbial cells, its contribution is likely to be very small as the intracellular solutes 

released subsequent to dilution stress are predominantly thought to be organic 

compounds or potassium (Halverson et al., 2000).  Therefore the author started to 

consider other possible mechanisms that might produce a nitrate flush and decided that 
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the initial nitrate flush could partly be due to removal of nitrate accumulated in soil but 

not taken up by plants during drying rather than just cell lysis.  Ford et al. (2007) 

recently studied the effects of rewetting on mineralization in semi-arid grassland soils 

from Western Australia.  The concentration of nitrate initially extractable from their air-

dried soil was small (ca.1 mg  kg-1) compared with that subsequently produced when the 

soil was rewetted and incubated over 4 weeks.  At the 40°C incubation temperature that 

they used, nitrate accumulated in the soil quite rapidly over the first 2 to 3 days. This 

could produce a delayed flush via nitrification. Other researchers have concluded that 

microbial cells killed during soil desiccation were not major contributors to N flushes on 

rewetting (Van Gestel et al., 1991). The results of Ford et al. (2007) highlight the need 

to distinguish between the nitrate flux available for immediate mobilization from 

rewetted air-dried soils, and the nitrate subsequently produced in the soil once it has 

been rewetted.   

It seems probable that, as soils dry, water and associated solute species migrate 

to progressively smaller and smaller pores, so both the water and the solute that it 

contains might become unavailable to plants.  Such retained nitrate could be removed 

quite quickly during a subsequent rain storm event.  Any nitrate flush from a sudden 

burst of activity of nitrifiers and possibly also ammonifiers is only likely to occur later 

in rewetted air-dried soil.   

In an attempt to improve understanding of how extended drought periods might 

influence the dynamics of nitrate leaching to an adjacent stream from soils that have 

been heavily N-impacted by atmospheric deposition, it was decided to: 

 

 (1) Compare how nitrate production rates in a rewetted air-dried soil and the 

corresponding field moist soil change over time after first flushing out any stored 

residual nitrate or nitrate from cell lysis with a deionised water wash. However, because 

the results in Chapter 3 suggested nitrate immobilization after ca. 5+10 days drying, 

probably by drought-resistant fungi, it was decided only to use a 6 - day drying period in 

the study in this chapter. 

(2) Determine if ammonium substrate availability limits the initial rate of nitrification in 

a heavily N-impacted, dried or field-moist soil by testing whether ammonium spiking 

enhances the nitrification rate. 

(3) Conduct a nitrate spiking experiment to confirm that, if the net nitrate production 

rate after rewetting appears to be slow, this is not due to microbial immobilization of 

nitrate and/or localized denitrification. 
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4.2  Materials and methods 

4.2.1   Experimental   Site 
The soil used was from Hob Moor, taken from the permanent acid grassland near  York, 

as described in Chapter 2. The area is often quite dry, mean annual rainfall in the area 

being 639 mm. To recap briefly, the site is a Local Nature Reserve with a management 

plan to maintain low nutrient status and high biodiversity.  Small streams close to the 

moor edges have been shown in occasional analyses over seven years to contain 

variable nitrate concentrations up to 27 mg l-1, a high concentration for an unfertilized 

site that has received no synthetic fertilizer for at least six decades (Riaz et al., 2008).  

However, there is some input of drainage water from nearby houses, gardens and a 

sports field.  For the soils though, any ammonium or nitrate mobilized within the 

profiles would be from natural element cycling/recycling and/or from deposition of 

atmospheric pollution.  The moor is used for grazing cattle over the summer months, as 

part of the plan to maintain a low nutrient status, but they are excluded from the area 

sampled by fencing and a cattle grid. 

The soil chosen was a freely draining, sandy loam, as shown in plate 2.3, and 

therefore appropriate for comparison with soils likely to be used in biofilters.  In 

shallow layers of incubated moist soil it would not be prone to denitrification over 

planned incubation periods of up to 9 days. 

 

4.2.2 Soil preparation and moisture content measurement 
A bulk soil sample was collected on 14/12/2006 from the upper 20 cm of the soil 

profile, below approximately 1 cm of litter.  The soil was carefully, but quickly, hand 

sorted, using pre-washed rubber gloves to minimize risk of contamination, to remove 

any obvious root material and the few stones present.  To standardise conditions and 

make results from field moist soils directly comparable to those from air-dried soils, half 

of the thoroughly mixed bulk sample was air dried as a shallow layer (2-3 cm) on plastic 

trays for 6 days, and the other half was stored at 4ºC in a refrigerator.  The moisture 

contents of the field moist and air-dried samples were then determined in duplicate by 

oven drying at 105ºC overnight.     
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4.2.3 Incubation experiment 
To standardize conditions as much as possible, the masses of moist and air-dried soil 

equivalent to exactly 10.0 g of oven-dry soil were calculated and found to be 12.34 and 

10.28 g respectively.  Two series of sub-samples with these masses of moist and air-dry 

soil were packed into series of 50-ml syringe tubes to serve as leaching tubes, each 

being plugged at the bottom with 0.40 g of cotton wool. The cotton wool was weighed 

10 + 0.01g to allow precise compensation for possible contamination by using blanks.  

Duplicate blank tubes were also prepared with no soil.  All tubes and contents, and the 

blanks, were immediately leached over 2-3 h with 100-ml portions of deionised water to 

remove native nitrate-N, and then left to drain for 24 h.  The wash solutions were 

discarded. 

After 24 h, one third of each set of the tubes containing  previously air-dried or 

field moist soil was treated with 1 ml of deionised water, one third with 1 ml of solution 

containing 50 μg of ammonium-N (as ammonium sulphate), and the remaining third 

with 1 ml of solution containing 50 μg of nitrate-N as potassium nitrate.  Thus 10 tubes 

of moist soil and 10 tubes of air-dry soil received each N treatment. The N spike size 

was selected to give an N species N concentration value comparable to that of the native 

nitrate-N and ammonium-N concentrations. 

From each of these sets of 10 tubes, two tubes were leached with 100 ml of 0.5 

molar potassium chloride immediately after the N or water spike additions, and then 

further duplicates were leached after intervals of exactly 1, 2, 5 and 9 days. 

 

4.2.4  Soil analyses 
Soil analyses were performed as described in detail in Chapter 2, and are summarised 

only briefly here. 

 

4.2.4.1  Soil pH 
Soil pH was measured using a glass/calomel electrode and a pre-calibrated Thermo 

Orion pH meter at a 1:5 field-moist soil: deionised water ratio.  The solution was stirred 

thoroughly and allowed to stand for 30 minutes to equilibrate, then stirred again and pH 

was measured to the nearest to 0.1 pH unit.  
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4.2.4.2   Soil C:N ratio 
The soil C%, N% and C/N ratio were determined in duplicate using finely ground, oven 

dry soil sub-samples with an Elementar Vario Macro C & N analyser.  The oven dry soil 

samples were first ball milled into fine powder (as described in Chapter 2), and 

approximately 100-mg sub-samples were weighed to the nearest 0.1 mg into tin foil 

sample cups.  The samples were tightly wrapped to avoid any loss, and analysed for C 

(%), N (%) and C/N ratio, using glutamic acid as a calibration standard. 

 

4.2.4.3   Extractable ammonium-N and nitrate-N 
Extractable ammonium- and nitrate-N in the 0.5 molar KCl extracts were measured 

using a standard Bran and Luebbe two channel Auto Analyser® -3 with matrix-matched 

standards.  Whenever necessary, sample extracts were appropriately diluted off line with 

the 0.5 molar KCl extractant solution to give a final concentration below 2 mg l-1 for 

measurement.  All results were corrected for reagent blanks. 

  

4.2.5 Statistical analyses 
 
To investigate the significance of spike treatment effects on extractable ammonium-N 

and nitrate-N concentrations at individual times (T0 to T9), Tukey HSD multiple 

comparison was employed, taking treatment as grouping variable. Treatment effects 

were assumed significant at P<0.05.  To assess significance of differences over time, 

one-way ANOVA was used to compare means of extractable nitrate-N and ammonium-

N for distilled water- (DW), nitrate- and ammonium-spiked soil samples. Tukey HSD 

multiple comparison (α = 0.05) was used as post hoc test using time as grouping 

variable.  

 

4.3    Results 
The soil used was a very fine sandy silt loam with a pH value of 4.45.  The electrical 

conductivity of a saturated paste was 80.5 μS cm-1. The mean concentrations of C and N 

were 4.03% and 0.361%, respectively, and the mean CN ratio was 11.5. Figure 4.1 

shows how nitrate-N concentrations changed over the 9-day incubation period following 

the deionised water flush and subsequent spiking with either deionised water (the 

control), 5 mg of nitrate-N kg-1 of soil, or 5 mg of ammonium-N kg-1 of soil, for the air 

dried soil (upper chart) and for the field moist soil (lower chart). Table 4.1 summarises 
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the results of one-way ANOVA to compare differences over time in mineral-N species 

concentrations for each treatment. 

 

 Comparison of the results for the air-dried and field moist soils treated only with 

deionised water shows clearly that there was a substantial delay in the onset of 

nitrification following air drying and the soil wash (Fig. 4.1, upper chart, white bars), 

but nitrification was already very rapid in the field moist soil by T0, only 24 h after the 

water rinse (Fig. 4.1, lower chart, white bars), bearing in mind the fact that there was a 

period of 24 h between flushing with deionised water and the subsequent KCl leaching 

of ammonium and nitrate.  By day 5 and day 9, nitrate concentration had fallen 

significantly in the field-moist soil (Fig. 4.1, lower chart, white bars) compared with the 

initial concentration at time zero. 
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Fig. 4.1: Changes in concentration of extractable nitrate-N in air dry (upper bars) 
and field moist (lower bars) soils after spiking with deionised water, nitrate-N or 
ammonium-N over a 9 day incubation period at room temperature. All values are 
means of two replicates. Error bars indicate standard errors of means (+ 1 s.e.). 
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Comparison of the results for the air dried and field moist soils spiked with              

5 mg kg-1 nitrate-N shows that over the first five days of incubation, net nitrate-N for the 

air-dried soil increases by approximately this amount (Fig. 4.1, upper chart, compare 

grey and white bars).  There is a clear sign in Fig 4.1 of immobilization/loss of nitrate-N 

by T9 for the air-dry soil however.  In the field moist soil (Fig. 4.1, lower chart) 

substantial nitrate loss occurred by T5 and nitrate loss was still marked at T9. 

 Ammonium spiking of the air-dried soils confirmed the slow recovery of 

nitrification seen for the distilled water control soils (Fig. 4.1, upper chart, compare 

spotted and white bars).  It also showed that nitrate production was not ammonium 

substrate-limited throughout the 9-day incubation period as ammonium addition did not 

stimulate additional nitrification.  

 Nor did ammonium spiking stimulate substantial additional nitrate production in 

the ammonium-spiked field-moist soils (Fig 4.1, lower chart, compare spotted and white 

bars).   
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Fig 4.2: Changes in concentrations of extractable ammonium-N in air dry (upper 
bars) and field moist (lower bars) soils after spiking with deionised water, nitrate-
N or ammonium-N over a 9 day incubation period at room temperature. All values 
are means of two replicates. Error bars indicate standard errors of means.              
( + 1 s.e.). 

To confirm that ammonium substrate is not limiting nitrate production also 

requires evidence that the ammonium added during spiking has not been used by, or 

immobilised substantially in, microbial biomass.  Figure 4.2 shows how ammonium-N 

concentration changed over the 9-day incubation period following the deionised water 

flush and subsequent spiking with either deionised water (the control), 5 mg of nitrate-N 

kg-1 of soil, or 5 mg of ammonium-N kg-1 of soil, for both air-dried (upper chart) and 

field moist (lower chart) samples.  Figure 4.2 (note change of scale on the ammonium-N 

axes between upper and lower charts) suggests that most of the ammonium-N spikes 

added to field moist soil is still KCl-extractable throughout the incubation period. 
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It may be assumed that the nitrate production buildup over the 9 days seen in 

Fig. 4.1 (upper chart) for the rewetted air-dry soils (white bars) has arisen as a 

consequence of ammonium oxidation.  It appears that this oxidation has restricted 

significant ammonium accumulation within the rewetted air-dried soil after T1 (Fig. 4.2, 

upper chart, white bars).  Similar behaviour may be seen for the ammonium-N and 

nitrate-N spiked soils (i.e. build up of nitrate over the first day’s incubation, but 

subsequently much more constant ammonium-N concentration (Fig. 4.2, upper chart, 

grey and spotted bars).  In the field-moist soil, however, there was a significant decline 

in ammonium concentration between T0 and T2, regardless of whether or not an 

ammonium-N or nitrate-N spike had been added (Fig. 4.2, lower chart).  

Table 4.1: One-way ANOVA for time to compare means for extractable nitrate-N 
and ammonium-N concentrations in soil for DW-, nitrate and ammonium-spiked 
soil samples. Tukey HSD multiple comparison (α = 0.05) was used as post hoc test 
using time as grouping variable.  

Time 
(Days) 

Air Dry 
 

Nitrate-N (mg N/kg soil) 
 

Ammonium-N (mg N/kg soil) 
 

DW-Spiked 
 

NO3-Spiked 
 

NH4-Spiked 
 

DW-Spiked 
 

NO3-Spiked 
 

NH4-Spiked 

 
T0 0.485 c 

(0.045) 
7.190 bc 
(0.010) 

0.475 c 
(0.055) 

7.720 a 
(0.800) 

11.200 a 
(0.380) 

13.535 a 
(0.325) 

T1 1.495 bc 
(0.685) 

4.775 c 
(1.485) 

1.560 c 
(0.020) 

7.805 a 
(5.785) 

20.830 a 
(5.410) 

16.545 a 
(0.215) 

T2 2.115 bc 
(0.265) 

8.720 b 
(0.400) 

1.700 c 
(0.080) 

10.790 a 
(1.210) 

11.895 a 
(1.365) 

14.205 a 
(0.495) 

T5 4.860 b 
(0.630) 

11.105 ab 
(0.105) 

4.690 b 
(0.080) 

10.335 a 
(0.585) 

11.440 a 
(0.610) 

15.505 a 
(1.525) 

T9 10.620 a 
(1.280) 

13.040 a 
(0.190) 

10.345 a 
(1.223) 

11.500 a 
(1.020) 

12.685 a 
(0.742) 

15.080 a 
(1.530) 

  
Field Moist 

 
 Nitrate-N (mg N/kg soil) 

 
Ammonium-N (mg N/kg soil) 

 
 DW-Spiked 

 
NO3-Spiked 

 
NH4-Spiked 

 
DW-Spiked 

 
NO3-Spiked 

 
NH4-Spiked 

 
T0 2.300 a 

(0.210) 
8.190 a 
(0.070) 

2.070 a 
(0.270) 

3.615 a 
(0.035) 

3.935 a 
(0.255) 

8.985 a 
(0.075) 

T1 2.070 a 
(0.790) 

10.120 a 
(0.840) 

2.605 a 
(0.715) 

2.140 a 
(0.450) 

2.215 a 
(0.405) 

7.175 a 
(0.025) 

T2 2.030 a 
(1.010) 

10.770 a 
(0.150) 

3.995 a 
(1.005) 

1.810 a 
(0.110) 

1.210 a 
(0.120) 

5.915 a 
(0.375) 

T5 1.165 a 
(0.125) 

2.590 a 
(0.350) 

1.960 a 
(0.750) 

3.095 a 
(0.035) 

2.995 a 
(0.515) 

6.585 a 
(1.205) 

T9 1.525 a 
(0.035) 

5.420 a 
(4.210) 

1.230 a 
(0.410) 

3.165 a 
(1.265) 

2.155 a 
(1.055) 

7.465 a 
(2.295) 

All values are means of duplicate samples. Standard errors of means are enclosed in    
parentheses. Means in any column sharing only different letters at two times differ 
significantly at P<0.05. 
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4.4 Discussion 
The nitrate-N concentration results for the air-dried and field moist soils very clearly 

showed a marked delay in the onset of nitrification following air drying (Fig. 4.1, upper 

chart), but that nitrification was very rapid in the field moist soil over the 24 h after the 

deionised water flushing (Fig. 4.1, lower chart).   In the latter, nitrate concentration was 

>2 mg kg-1 at T0, only 24 h after the deionised water flushing.  As noted in the results 

section, by day 5 and day 9, nitrate-N concentration had dropped significantly in the 

field-moist soil compared with the nitrate-N concentration at T0.  It could be suggested 

that this decline is indicative of denitrification, but the soil layers in the bottles were 

shallow (<1 cm), bottles were loosely capped, and in the field the soil was very freely 

drained so it probably would not have had a population of anaerobes.  It is therefore 

extremely unlikely that the soils in the experiment were anaerobic.  There was no such 

trend in the air-dried soils, which were incubated under similar conditions, although 

these samples had slightly lower overall moisture content, and would in any case be less 

likely to become anaerobic.  It seems more likely therefore that the effect is due to the 

warmer temperature during the incubation, which could favour increase in microbial 

biomass and biomass turnover, and thus microbial immobilisation of nitrate-N. Such an 

effect, if it does occur, might be expected to occur later post air-drying, as the build up 

of microbial biomass (not just that involved in mineral N production) would be delayed.  

This is supported by the loss of nitrate after nitrate spiking of the air-dried soil by day 9 

(T9), which is clearly apparent in Fig. 4.1 (upper chart, comparing grey and white bars). 

An important conclusion from this study is that rapid nitrate flushes following 

rewetting of dry soils that have often been attributed to surges in soil microbial activity 

are, in practice, more likely due to flushing out of residual nitrate from the soil that has 

been produced and stored during the drying phase or nitrate from cell lysis, as discussed 

in the introduction. This is only clear here because of careful selection of a 6–day drying 

period. This was short enough to make risk of net nitrate immobilization prior to 

rewetting very small. 

The results for air-dried and field moist soils spiked with 5 mg kg-1 nitrate-N 

over the first five days (Fig. 4.1, comparing grey and white bars) provided little 

evidence of immobilisation/loss of nitrate-N for air-dried soil (Fig. 4.1, upper chart), but 

for the field-moist soil nitrate loss occurred by T5, and was still marked at T9 (Fig. 4.1, 

lower chart).  However, it should be pointed out that the soil used had a quite low C: N 

ratio, which would lower the risk of microbial immobilisation.  It is well known that 
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nitrate additions to soils with high C:N ratios may result in immobilization of nitrate in 

the short term. 

Nitrate production in the previously air-dried soil was not ammonium-substrate 

limited throughout the 9-day incubation because ammonium spiking of the soil did not 

stimulate additional nitrification (Fig. 4.1, upper chart, compare spotted and white bars).  

Ammonium spiking also failed to stimulate nitrate production significantly in the field-

moist soils (Fig. 4.1, lower chart).  This ties in well with the observation that ammonium 

added during spiking of the soil used was not noticeably immobilised into microbial 

biomass.  As outlined in the results, Fig. 4.2, lower chart, shows that the added 

ammonium-N spike was still KCl-extractable over the 9-d test period, especially from 

the field-moist soil.  Atmospheric pollution of the Hob Moor soils by N deposition is 

high, and the soils there consequently have a low C:N ratio. 

For the air-dry soils, the increasing (over time) oxidation of ammonium to nitrate 

(Fig. 4.1, upper chart) prevented ammonium accumulation within the re-wetted soil 

(Fig. 4.2, upper chart).  In the field-moist soil, however, regardless of whether or not an 

ammonium-N or a nitrate-N spike had been added, ammonium concentration declined 

significantly between T0 and T2.   For the ammonium- and nitrate-spiked soils, this 

could be at least partially due to nitrification over the corresponding time period. 

One of the most conspicuous effects of the drying/rewetting cycle is the very 

rapid rise (by T0) in ammonium-N concentration following drying/rewetting (Fig. 4.2, 

compare white bars and note change of scale on ammonium-N concentration axes).  It is 

almost certain, after the highly significant increases shown in Chapter 3, that 

ammonification continues for a while during the drying stage, possibly after nitrification 

has slowed or stopped, and not all residual ammonium would have been leached out by 

the soil washing stage with deionised water.  Subsequently it appears that ammonium 

production and nitrification rates approximately match in the rewetted soils.  For 

Californian oak wood and grassland soils it has been found that ammonium 

concentrations remained low and unaffected by wetting/drying stress cycles, but it was 

concluded that effects of repeated wetting/drying cycles on nitrate concentrations in soil 

could last for several weeks (Fierer and Schimel, 2002).  Appel (1998) reported a 

mineral N flush following drying/rewetting cycles from an arable soil in Germany, 

which he related to mobilization of non-biomass organic N.  Van Gestel et al. (1993) 

suggested that non-biomass organic residues contributed to flushes of mineral N after 

drying/rewetting, but thought that at least part of the flush was due to microbial biomass 

killed by drying.  
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  Because of the sharp rise in ammonium N noted above following drying in this 

experiment, the net result here too was a mineral N flush, but a delay of a few days will 

occur before this manifests itself as an enhanced nitrate-N concentration.  It should be 

remembered that the field moist soils had been stored at < 4°C for six days while half of 

the soil was drying, and this would have slowed the production of ammonium-N in the 

stored soil during this period. 

 

4.5 Conclusions 
The results of this experiment support the hypothesis for the acid soil used here that any 

rapid initial flush of nitrate from rewetted soil would have to have originated either from 

lysis of microbial cells or from residual nitrate stored in soil as it dried out.  There is 

then be a second nitrate flush as the nitrifier population re-establishes.  At this stage, 

ammonium accumulated in the soil during the drying stage may be nitrified, further 

contributing to the delayed nitrate flush.  Further work is needed however to assess the 

relative importance of these mechanisms. In the soil from this site, ammonium substrate 

was not limiting nitrification.  This was as expected, bearing in mind the high level of N 

deposition at the site, which would also include redistributed inputs from manure from 

the cattle grazing the site over the summer and early autumn months.  It must be 

remembered, though   the experiment gave clear results because the preliminary study in 

Chapter 3 allowed selection of an appropriate droughting period of 6 days. 
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CHAPTER 5:  IS AMMONIUM MOBILE IN NITROGEN-IMPACTED 

UNFERTILIZED GRASSLANDS?  A CRITICAL 

REASSESSMENT 
 

5.1 Introduction  
Although the previous chapters indicated that, under dry conditions, ammonium may 

accumulate in soils, becoming potentially mobile when soils are rewetted, it is generally 

assumed that ammonium-N deposition to soils and/or ammonium-N produced insitu in 

soil is immobile, especially when compared to nitrate-N.  Brady (1990), for example, 

discusses nitrate leaching from soils comprehensively, but lists only five fates for 

ammonium, namely appropriation by micro-organisms, plant uptake, inter-layer 

fixation, volatilization to the atmosphere, and nitrification; he makes no mention of 

ammonium leaching; Nitrate leaching is also extensively considered in texts on soil 

management (e.g. Fullen and Catt, 2004), but potential ammonium losses by leaching 

are again generally ignored.  They are occasionally considered when agricultural soils 

are being studied, however.  For example, Page et al. (2003) investigated whether 

ammonium leaching might explain the high ammonium concentrations they had 

observed below 1 m depth in vertisols near Warra in Queensland, Australia, but from 

the soil Q/I characteristics concluded that it was unlikely.  Microbial inoculation 

experiments by the same group suggested that the elevated ammonium pool at depth 

was attributable primarily to a low nitrification rate (Page et al., 2002). However, 

Matschonat and Matzner (1995), after studying Q/1 relationships for acid forest soils, 

concluded that although ammonium absorption was not a major risk for N in the long 

term, it was an important consideration when assessing seasonal N species dynamics 

and transport.  

  Leaching losses of nitrogen from agricultural soils are widely perceived as being 

“mainly NO3” (Burt and Haycock, 1993).   According to Hornung and Langan (1999), 

when comparing effects of inputs of pollutant N as NHy  and NOx  to forests, soil 

systems largely retain ammonium inputs, whereas nitrate inputs are essentially leached.  

Wilson and Emmett (1999) noted that forest soils are a key sink for ammonium-N inputs 

as ammonium applications were retained whereas nitrate was leached.  Williams and 

Anderson (1999) reviewed the extensive literature showing retention of ammonium-N 

inputs to soils.  They reported very little evidence for significant ammonium mobility 

except from litter horizons, but concluded that such ammonium was generally in any 

case retained lower in the soil profile.  However, they did note that some leaching of 
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ammonium was observed in the CORE project when soil cores from 6 forest sites along 

an N and S pollution gradient were reciprocally transplanted between sites (Raubach    

et al., 1995). 

  In the context of the assessment of the impacts of deposition of atmospheric N 

pollution, significant nitrate leaching from an unfertilized catchment is regarded as the 

most appropriate indicator of nitrogen saturation (Aber et al., 1989; Henrikson and 

Posch, 1995). However Heathwaite et al. (1990, 1993) have suggested that ammonium-

N also may make a significant contribution to leaching losses from heavily grazed 

grasslands. Wachendorf et al. (2008) have recently demonstrated significant 

concentrations of ammonium-N in water seeping from zero-tension lysimeters 

containing soil exposed to cattle urine.  Ammonium-N concentrations in soil may 

become very high under animal dung and urine patches.  Ammonium-N leaching was 

included conceptually, but not mechanistically, in the process-based MERLIN model 

when it is used for prediction of retention and losses of inorganic N from catchments 

(Ferrier et al., 1995).  Land use distribution is used in the INCA model to predict the 

concentrations of ammonium-N and nitrate-N in waters of major rivers (Whitehead et 

al., 1998a; 1998b). 

   In rivers draining unfertilized upland catchments in Scotland, the marked 

dominance of inorganic N in river water by nitrate rather than ammonium may be 

greatly reduced and distinctive seasonal trends in ammonium-N concentration observed 

that reflect trends in biological activity (Clark et al., 2004).  For the heavily N-impacted 

River Etherow upland-moorland catchment in England, Cresser et al. (2004) showed 

that elevated ammonium-N concentrations in river water were associated with periods 

of high discharge and acid flush events.  Highest concentrations were observed in 

tributaries in which water originating from surface, organic-rich soil horizons made a 

greater relative contribution to total discharge.  This possibly ties in with the high 

ammonium production in litter horizons as discussed earlier in this Chapter.  They 

showed also that in the N and S pollution-impacted organic surface soils of the 

catchment the biological immobilization/transformation of ammonium-N inputs was so 

slow that conditions approached cation-exchange equilibrium, making ammonium 

leaching much more probable.  The latter observation prompted  Riaz et al. (2008) to  

quantify N-species transformation rates in seven soil profiles at Hob moor, near York, 

down to depths below the rooting zone to see if they could confirm the likelihood of 

ammonium being mobilized down unfertilized soil profiles in an N-impacted lowland 

area; they showed that such mobilization could be occurring, and that the ammonium-N 
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could subsequently be nitrified at depth, thereby contributing to the nitrate load in an 

adjacent stream under base-flow conditions.   

  In the present study, the ammonium-N absorption characteristics of surface and 

sub-surface grassland soils from five profiles in the same locality as that studied by Riaz 

et al. (2008) were investigated further, (1) to see whether they provided additional 

confirmation of the probable mobility of ammonium to depth and (2) to examine, and 

attempt to explain, any spatial variation seen in the ammonium-N absorption 

characteristics in a range of unfertilized grassland soils.  It was decided to adopt two 

complementary experimental approaches, absorption isotherm methodology and intact 

core leaching. The latter approach was used by Riaz as part of a joint experimental 

study. It was recognized from the outset that spatial variations in rates of soil organic N 

mineralization and microbial immobilization processes during the author’s absorption 

experiments might complicate the interpretation of the absorption behaviour following 

additions of known ammonium-N spikes, especially as the experimental sites are 

intermittently grazed by cattle, but it was envisaged that this would primarily be 

problematical at low ammonium input concentrations, and less of a relevant problem 

with the intact core leaching experiments. 

 

5.2  Materials and methods 

5.2.1    Sampling date and site description 

Soil samples and cores were taken on 30/04/2008 from Hob Moor in York, England 

(53º57'30''N & 1º4'48''W), a 36.4 ha local nature reserve predominantly covered by 

unfertilized grassland.  The site and its location were fully described in Chapter 2.  Soils 

used in this study vary from poorly permeable, seasonally wet, clay loams that are near 

neutral, to freely draining, and much more acidic, fine sandy loams and loamy sands.  

To recap briefly, the reserve management plan aims to maintain a high biodiversity of 

flora and fauna, birds and small mammals  by keeping the soils at low nutrient status.  

Cattle are brought in to graze for ca. six months each year in an attempt to reduce 

nutrient status. The site is dominated by perennial grasses.   

   Although no synthetic fertilizer has been applied for at least several decades, the 

site has been affected heavily by atmospheric N and S deposition, which will influence 

N cycling in soil profiles (Hornung et al., 1995).  Crowe et al. (2004) have shown that a 

stagno-gley argillic brown earth profile from the site contains 12.5 tonnes of N   per  
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hectare to 36 cm depth, and the soil C:N mass ratio consistently was <10  as mentioned 

in Chapter 2.   

 

5.2.2 Soil sampling 
Five pits were sampled in duplicate below any litter horizon (from opposite sides of the 

pits), at 2 soil depths, 0-15 cm and 15-30 cm.  The bulk of the roots and any stones were 

removed before bagging field replicate samples of ca. 500 g, to give 4 bags of soil from 

each profile, and 20 soil samples in total. 

  In addition on the same day, 2 intact soil cores were collected by Riaz from each 

profile to 30 cm depth in 33-cm long, square section tubes. The soil was cut flat at the 

bottom of each tube with a sharp knife and a polythene bag was attached to the tube to 

retain the soil during transfer back to the laboratory. 

 

5.2.3   Soil analyses 

5.2.3.1    Soil moisture content 
In the laboratory on the same day that samples were collected, the soils were carefully, 

but quickly, hand sorted to remove the rest of the roots as far as possible and any 

remaining small stones and mixed thoroughly, with assistance from a group of 

undergraduate students supervised by the author to speed up the process.  

Approximately 10-g duplicate sub-samples of each soil were oven dried at 105 °C to 

determine the moisture content. 

 

5.2.3.2   Measurement of soil C, N and C:N ratio  
The oven-dried soil residues obtained as described above were individually finely 

ground with a ball mill for 3 minutes at 25 Hz (See Chapter 2) and used for the 

measurement of soil C%, N% and C:N mass ratio on an Elementar Vario Macro C and 

N analyzer calibrated with glutamic acid. 

 

5.2.3.3   Initial extractable ammonium-N and nitrate-N 
For each of the 5 soil profiles, 20-g sub-samples of each field moist soil were weighed 

into a series of 8 labelled bottles (2 depths x 2 field replicates x 2 analytical replicates).  

To each bottle 50 ml of 0.5 molar potassium chloride solution (0.5M KCl) was added.  

The bottles and duplicate reagent blanks were shaken for one hour, and the contents 

filtered through Whatman No. 42 filter papers.  The extracts were stored at < 4°C until 
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analysis for ammonium-N and nitrate-N using a standard AutoAnalyser protocol with 

matrix-matched standards (See Chapter 2). 

  The residual field-moist soils were stored in clearly labelled bags in a fridge (to 

minimize microbial transformations of N species within the soil) until used for 

measurement of ammonium-N absorption characteristics two days later.   

 

5.2.3.4   Ammonium absorption characteristics 
Sub-samples of 10 +/- 0.1 g of each field moist soil were weighed to an accuracy of +/- 

0.01 g into one of 20 series (2 field replicates x 2 depths x 5 profiles) of nine labelled 

120-ml plastic bottles. These were used to assess absorption characteristics by the 

procedure outlined in Chapter 2. 

  Nine stock solutions of ammonium chloride were prepared, containing the 

following concentrations of ammonium-N: 0.0, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0 and 

50.0 μg ammonium-N ml-1. To each bottle in each series of 9, 50 ml of the appropriate 

ammonium-N solution was added.  The bottles were shaken vigorously for 10 minutes 

and then immediately filtered through a Whatman No. 42 papers.  Extracts were 

refrigerated until analysis using an AutoAnalyser (within 3 days).  When calculating the 

amounts of ammonium-N in solution, the volume of water contained in the field-moist 

soil was added to the volume of solution added (50 ml). Blanks with no soil were put 

through an identical procedure. 

 

5.2.3.5   Measurement of soil pH 

The pH of each soil was measured in duplicate in both water and in 0.05 molar calcium 

chloride solution, adding 20 ml of water or CaCl2 to 10 g sub-samples of field-moist 

soil.  The pastes were equilibrated with periodic agitation for 30 minutes prior to 

measurement of the soil pH with a glass/calomel combination elctrode.  

 

5.2.3.6   Cation exchange capacity 

Cation exchange capacity was measured by leaching 10-g sub-samples of field moist 

soil with 100 ml of 1 molar ammonium acetate (ammonium ethanoate), washing out the 

non-absorbed ammonium with 100 ml of 80% ethanol, and then leaching the absorbed 

ammonium with 1 molar sodium chloride.  The final leachate was diluted back to 100 

ml with the sodium chloride solution prior to determination of its desorbed ammonium 
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content.  Results were corrected for mean ammonium concentration in triplicate blanks. 

As described in Chapter 2, to obtain results immediately after sampling, these 

determinations were performed by a group of undergraduate environmental science 

students under close supervision by the author. 

 

5.2.4  Intact core experiments 

The intact cores used were 65 mm x 65 mm in cross section by 33 cm in length.  

Because of the importance of mobile anion concentration to cation mobility, they were 

subjected to simulated rainfall containing 10 mg l-1 sodium chloride rather than 

deionized water.  This part of the experiment was designed and performed by Riaz as 

part of his PhD thesis research. The simulated rain was applied in 76 ml doses, 

corresponding to 20 mm rain per application. Six applications were made over 10 days, 

and drainage water was collected and removed and analysed the day following 

application.  However, for profile D there was no drainage at zero tension, so a MOM 

Eijkelkamp rhizon soil solution sampler, 10 cm long and 2.5 mm in external diameter 

and attached to 60 ml syringe, was inserted at that base of each soil core, and the water 

was sampled with the syringe (Riaz, pers. Comm.). 

5.3  Results 

5.3.1  General soil properties 
Selected analytical data for soils from the five profiles are summarised in Table 5.1. The 

results are listed individually for analytical replicates (denoted by 1 & 2 in the sample 

No.), and the field replicates (denoted by a & b). The sites were selected to give 2 acid 

grasslands (profiles A and B) and 3 near-neutral grasslands (C – E).   The results of the 

ammonium N absorption studies are presented in a slightly unconventional format in 

Figs. 5.1 and 5.2. Results are plotted separately for the individual field replicates to 

provide an indication of variability for individual profiles.  The forms of the plots are 

unusual and reasons for these are discussed in section 5.4.3.  Figures 5.3 to 5.7 show the 

same data plotted as conventional absorption isotherms.  
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Table 5.1: Selected physico-chemical properties of soils from the 5 profiles (A – E).  Under 
“Soil No.” for individual determinations a and b denote field replicate results and 1 and 2 
denote analytical replicate results.  Thus data for a1, a2, b1 and b2 can only be compared 
across rows for C%, N% and C:N mass ratio and for initial ammonium-N and initial 
nitrate-N, as a1 across arrow involves 4 individual sub-samples. 

Profile, Soil No. 
and Depth 

pH 
(water) 

pH 
(CaCl2) 

Initial 
ammonium-N 

mg/kg 

Initial 
nitrate-N 

mg/kg 

C% N% C:N mass 
ratio 

A 0-15a1 4.3 3.05 3.43 0.65 4.75 0.336 14.1
A 0-15a2 4.32 3.00 3.16 0.66 3.92 0.277 14.2
A 0-15b1 4.42 3.05 2.48 1.06 3.20 0.245 13.1
A 0-15b2 4.41 3.12 2.86 0.86 3.08 0.236 13.0
A 15-30a1 4.33 3.23 1.47 0.72 2.73 0.197 13.9
A 15-30a2 4.36 3.20 1.86 0.72 2.50 0.194 12.9
A 15-30b1 4.32 3.26 2.93 0.68 2.78 0.195 14.3
A 15-30b2 4.32 3.23 2.45 0.74 2.30 0.179 12.8
B 0-15a1 4.81 3.32 4.93 0.78 7.69 0.438 17.6
B 0-15a2 4.78 3.31 7.80 1.10 5.45 0.347 15.7
B 0-15b1 4.55 3.22 5.78 0.57 4.75 0.324 14.7
B 0-15b2 4.56 3.25 4.08 0.53 4.91 0.329 14.9
B 15-30a1 4.32 3.33 1.28 0.64 2.25 0.170 13.3
B 15-30a2 4.35 3.32 1.50 0.85 2.24 0.165 13.5
B 15-30b1 4.40 3.33 2.15 0.75 1.88 0.159 11.9
B 15-30b2 4.33 3.29 1.84 0.84 2.42 0.173 14.0
C 0-15a1 5.98 4.32 7.06 0.47 4.92 0.418 11.8
C 0-15a2 5.99 4.36 6.41 0.21 4.89 0.416 11.8
C 0-15b1 6.06 4.47 2.39 0.94 5.10 0.432 11.8
C 0-15b2 6.04 4.48 1.99 0.48 5.12 0.444 11.5
C 15-30a1 5.53 4.07 5.79 0.74 2.13 0.209 10.2
C 15-30a2 5.54 4.04 6.17 0.79 2.24 0.215 10.4
C 15-30b1 5.47 4.06 4.35 0.53 2.52 0.236 10.6
C 15-30b2 5.46 4.03 5.49 0.48 2.81 0.259 10.9
D 0-15a1 6.40 4.84 4.80 0.34 3.76 0.35 10.8
D 0-15a2 6.56 4.76 8.60 1.10 3.79 0.348 10.9
D 0-15b1 6.39 4.86 4.66 0.88 3.84 0.35 11.0
D 0-15b2 6.34 4.80 4.02 0.63 3.67 0.341 10.8
D 15-30a1 6.49 5.06 4.96 0.50 2.82 0.275 10.3
D 15-30a2 6.57 5.11 4.87 0.34 2.76 0.272 10.2
D 15-30b1 6.64 5.09 3.95 0.92 2.97 0.293 10.2
D 15-30b2 6.84 5.09 3.35 0.42 3.14 0.295 10.6
E 0-15a1 5.86 4.47 1.51 0.35 4.11 0.319 12.9
E 0-15a2 5.86 4.30 1.53 0.35 4.35 0.338 12.9
E 0-15b1 6.16 4.36 1.46 0.50 4.86 0.386 12.6
E 0-15b2 6.05 4.37 1.30 0.83 4.51 0.353 12.8
E 15-30a1 6.01 4.17 1.52 0.36 2.41 0.198 12.2
E 15-30a2 5.84 4.34 1.60 0.42 2.42 0.200 12.1
E 15-30b1 6.28 4.44 1.58 0.55 2.07 0.179 11.6
E 15-30b2 6.19 4.50 1.39 0.84 1.99 0.169 11.8
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Table 5.2: Mean CEC values and associated standard deviations and soil 

 textures of soils from the 5 profiles (A – E) at 0 - 15 cm and 15 - 30 cm depths.  
Profile Depth 

(cm) 

Mean CEC 
(mmol+ kg-1) Std. 

dev. 
Mean Carbon 

(%) 

Texture 

A 0-15 86.8 25.4 3.74 Fine sandy loam 

A 15-30 84.6 30.7 2.58 Very fine sandy loam 

B 0-15 90.5 4.3 5.70 Very fine sandy loam 

B 15-30 53.1 4.9 2.20 Fine sandy loam 

C 0-15 137.6 41.4 5.01 Silty clay loam 

C 15-30 74.1 6.9 2.43 Silty clay loam 

D 0-15 62.8 23.3 3.77 Silty clay loam 

D 15-30 63.6 11.2 2.92 Silty clay loam 

E 0-15 56.3 11.9 4.45 Fine sandy loam 

E 15-30 72.1 27.0 2.22 Fine sandy silt loam 
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Figure 5.1: Relationships between ammonium-N remaining in solution and 
ammonium-N added, both expressed as mg per kg of oven-dry soil, for duplicate 
field samples from 0-15 cm (broken lines, diamond and square symbols) and 15-30 
cm (solid lines, circle and triangle symbols). 

 

 
 
 
 
 

0

100

200

300

400

500

0 100 200 300 400 500

A
m

m
o

n
iu

m
 -

N
 in

 s
o

lu
ti

o
n

 
(m

g
/k

g
 s

o
il)

Ammonium-N added (mg/kg)
Profile A

A0-15a

A0-15b

A15-30a

A15-30b
0

100

200

300

400

500

0 100 200 300 400 500

A
m

m
o

n
iu

m
 -

N
 in

 s
o

lu
ti

o
n

(m
g

/k
g

 s
o

il)

Ammonium-N added (mg/kg)
Profile B

B0-15a

B0-15b

B15-30a

B15-30b

0

100

200

300

400

500

0 100 200 300 400 500

A
m

m
o

n
iu

m
 -

N
 in

 s
o

lu
ti

o
n

   
(m

g
/k

g
 s

o
il)

Ammonium-N added (mg/kg)
Profile C

C0-15a

C0-15b

C15-30a

C15-30b

0

100

200

300

400

500

0 100 200 300 400 500

A
m

m
o

n
iu

m
 -N

 in
 s

o
lu

ti
on

 
(m

g
/k

g
 s

o
il)

Ammonium-N added (mg/kg) 
Profile D

D0-15a

D0-15b

D15-30a

D15-30b

0

100

200

300

400

500

0 100 200 300 400 500

A
m

m
o

n
iu

m
 -

N
 in

 s
o

lu
ti

o
n

(m
g

/k
g

 s
o

il)

Ammonium-N added (mg/kg)
Profile E

E0-15a

E0-15b

E15-30a

E15-30b



 65

 
 
 

 
 
 

Figure 5.2: Relationships between ammonium-N remaining in solution and 
ammonium-N added, both expressed as mg per kg of oven-dry soil, for duplicate 
field samples from 0-15 cm (broken lines, diamond and square symbols) and 15-30 
cm (solid lines, circle and triangle symbols), plotted on enlarged scale for additions   
< 50 mg kg-1.  
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Figure 5.3: Relationships between ammonium-N absorbed and in solution for 
duplicates field samples from profile A (0-15 cm and 15-30 cm). 
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Figure 5.4: Relationships between ammonium-N absorbed and in solution for 
duplicate field samples from profile B (0-15 cm and 15-30 cm). 
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Figure 5.5: Relationships between ammonium-N absorbed and in solution for 
duplicate field samples from profile C (0-15 cm and 15-30 cm). 
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Figure 5.6: Relationships between ammonium-N absorbed and in solution for 
duplicates field samples from profile D (0-15 cm and 15-30 cm). 
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Figure 5.7: Relationships between ammonium-N absorbed and in solution for 
duplicate field samples from profile E (0-15 cm and 15-30 cm). 
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As might be expected, agreement was much closer between analytical replicates 

than between field replicates, and was generally good considering determinations for pH 

and initial ammonium-N and nitrate-N were conducted on field-moist soil sub-samples.  

The C, N and C:N values were obtained from 10-g sub-samples of field-moist soil after 

oven drying and grinding.  The pH data confirmed the acidic status of profiles A and B.  

These more acidic profiles displayed higher C:N ratios; they were observed in the field 

to have more pronounced litter layers, but the soils sampled under the litter horizon did 

not have significantly higher carbon concentrations than the less acidic soils sampled 

except perhaps for profile Ba, (Table 5.1).  The soil textures are shown in Table 5.2, 

together with the mean values of cation exchange capacity (CEC) and their associated 

standard deviations, and mean % carbon values to see if these indicate to what extent 

soil organic matter content dictates CEC. The standard deviations for CEC were quite 

high, which probably reflects the limitation of using 10-g sub-samples of field moist 

soil. 

 

5.3.2  Absorption at high ammonium-N additions 
Figure 5.1 shows the relationships for the 5 profiles between the amount of ammonium-

N remaining in solution and the amount of ammonium-N added under the experimental 

conditions used.  The results were  also presented in this way and with constant scales 

for all profiles to clearly visually indicate what proportion of added ammonium 

remained potentially mobile (in solution).  Especially for additions above ca. 50 mg of 

ammonium-N per kg of soil there are marked differences both with depth in the profile 

and between the soil profiles in their ammonium-N absorption characteristics.  Profile C 

showed consistently the strongest absorption of ammonium-N at both depth increments 

for high ammonium-N inputs.  Hand texturing indicated all soils from this profile were 

silty clay loams, and the 0 – 15 cm soil from profile C had the highest CEC value (Table 

5.2). 

Profiles D and E generally showed less absorption than profile C, although the 

silty clay loam from 0 – 15 cm at profile D showed only slightly less absorption than the 

silty clay loam at the corresponding depth from profile C (Fig. 5.1, broken lines).  

Absorption was greater in the surface soil of profile D (i.e. less ammonium remained in 

solution) than in the sub-surface soil, whereas the opposite was true for profile E.  The 

silty clay loam surface horizon of profile D absorbed more ammonium than the sub-

surface silty clay loam, in spite of their very similar mean CEC values; for profile E, 
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where the surface soil was a fine sandy loam, the sub-surface soil, which showed greater 

absorption, was a slightly more finely textured fine sandy silt loam.   

 The most acid soil profile, (A), behaved differently from all other soil profiles in that 

at high ammonium-N inputs absorption was negligible, and in fact desorption occurred 

from the sub-soils for both field replicates  so more was left in solution than had been 

added (Fig. 5.1).  The soils of this profile were a fine sandy loam at the surface above 

very fine sandy loam.  This textural trend was reversed in the other acidic soil profile 

(B), as was the relative extent of the absorption at high ammonium-N inputs, but 

desorption was not apparent (Fig 5.1). 

 

5.3.3 Absorption/desorption at low ammonium-N additions 
Figure 5.2 shows the absorption/desorption relationships for the 5 profiles on an 

enlarged scale for additions of below 50 mg of ammonium-N per kg of soil.  Again 

there are marked differences both with depth in the profile and between the soil profiles 

in their ammonium absorption characteristics.  However, on comparing Figs 5.1 and 5.2 

profile by profile, the relative trends with depth were often reversed at low 

concentrations.  As might be expected when using biologically active, field moist soils 

there was more pronounced variation at the lower concentrations.  In spite of this it is 

clear that often desorption is observed below 2 mg ammonium-N kg-1 additions.  Even 

when significant ammonium-N absorption is occurring at inputs of around 10 - 20 mg 

ammonium-N kg-1, it is important to note that ca. 1- 2 mg kg-1 remains in the solution 

phase. 

 

5.3.4   Intact core leachates 
Figure 5.8 shows the ammonium-N and nitrate-N concentrations measured by Riaz 

(pers. comm.) in leachates from the duplicate intact core mini-lysimeters for profiles A 

to C and E and from rhizon samplers inserted close to the base of cores from profile D.  

The use of rhizon samplers proved essential for profile D because of the negligible 

drainage from its intact cores.  Ammonium was detected in every sample analyzed.  

Nitrate-N was leached from cores from profiles A, B and C, and for A and B nitrate-N 

concentration always exceeded that of ammonium-N.  For profile C, however, 

ammonium-N concentration sometimes exceeded that of nitrate-N and for profiles D 

and E ammonium-N-concentration was always higher.  Indeed, no nitrate was detected 

in the rhizon samples from profile D or in 5 of the 12 samples from profile E. 
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5.4  Discussion 

5.4.1  Evidence for mobility of ammonium-N 
At low input concentrations of ammonium-N in the absorption experiments a substantial 

proportion of the ammonium input was absorbed by the soil (Fig. 5.2), but nevertheless 

a significant amount of ammonium-N remained in solution and must be regarded as 

potentially mobile.  For example, from Fig. 5.2, at an input of 10 mg ammonium-N    

(kg of soil)-1, ca. 1 – 2 mg kg-1 remains in the solution phase.  At higher input 

concentrations (Fig. 5.1), progressively more ammonium-N remains in solution, and 

hence potentially mobile.  Even when no ammonium-N was added, in almost every 

instance some water-soluble ammonium-N was found. 

 

5.4.2 What controls differences in ammonium-N absorption 

characteristics? 
Inputs of ammonium-N at this site will come from the atmosphere and from in-situ 

mineralization of organic matter, including inputs in plant litter, animal faeces and 

urine.  In another study of the acidic grasslands at this site very high rates of ammonium 

production in the litter horizons were found but with negligible nitrification (Riaz, pers. 

comm.).  Thus the mineral soils sampled in the present study below the litter layer at 

profiles A and B would be receiving a high ammonium-N input via infiltrating 

precipitation. The mechanism for this is discussed in the next section.  The absorption 

characteristic plots for profiles A and B, when compared with those for the other 

profiles (Fig. 5.1), show much weaker absorption (or sometimes desorption) compared 

with the plots for profiles C and D, which had much less pronounced litter layers.  

   

  The soils in profiles C and D were silty clay loams, whereas those in A and B 

were fine/very fine sandy loams (Table 5.2).  Profile E was a fine sandy loam 

overlaying a fine sandy silt loam, and its absorption characteristics were generally closer 

to those of profiles A and B than those of profiles C and D.  Thus texture seems to be 

very important.  However the CEC data (Table 5.2) do not indicate that this is due to 

CEC differences.  CEC was measured in this study using 10-g sub-samples of field 

moist, hand-sorted soil, so the standard deviation was, not surprisingly, quite high, as 

mentioned in section 5.3.1.  Nevertheless, the effect of texture seems not to be due 

simply to CEC, and could instead reflect drainage influences.  For profile D especially, 

the very low drainage rate suggests that any external nitrate input, or any nitrate 
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produced in situ, is denitrified, providing a nitrogen sink which facilitates subsequent 

ammonium-N retention.  This may be compounded by vegetation N removal by grazing 

by cattle, which was conspicuous at profiles C, D and E but absent at profiles A and B.

  

   The other factor that must be important to the mobility of cations through soils is 

the associated mobile anion concentration.  In a recent study of mineral N leaching from 

sub-tropical soils treated with ammonium hydrogen carbonate, Qian and Cai (2007) 

found that nitrification resulted in sufficient leaching of nitrate as a mobile anion to 

stimulate ammonium leaching from their freely draining soils.  Figure 5.8 clearly shows 

high nitrification rates for profiles A and B in the present study. Although samples were 

stored in a fridge when not being used immediately, it is very probable that nitrate 

production contributes to the greater ammonium-N mobility for soils from profiles A 

and B. 
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Figure 5.8: Changes in ammonium-N (upper chart) and nitrate-N (lower chart)    
concentrations in core leachates over 10 days from duplicate (denoted by a and b) 
intact 30-cm cores from the 5 profiles (A – E).  Rhizon samplers were inserted to 
extract samples from Da and Db from 07/05/2008 because of the complete lack  of 
drainage at zero tension. Samples were  generated  by Riaz and analyzed jointly by 
him and the author. 
 
 

5.4.3   Conventional Absorption Isotherms 
For ease of interpretation, and to demonstrate the potential mobility of the ammonium 

ions within the N deposition-impacted grassland soil profiles, results were initially 

presented and discussed using plots of ammonium-N in solution versus ammonium-N 

added, both being expressed in terms of mg of ammonium-N per kg of soil.  For 

completeness they are also presented (Figs. 5.3 – 5.7) in more conventional absorption 

isotherm format (Bohn et al., 1979). 
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 In this experiment soils were sampled from two depth increments below the litter 

horizon.  This means that, under field conditions, the upper layer especially would have 

received inputs from ammonium-N produced by mineralization in the overlying litter 

horizon, and this would be especially pronounced for the most acidic profiles, A and B, 

which had distinct litter layers.  Thus part of the initial ammonium-N (Table 5.1) could 

have been derived from this source, and part from in-situ mineralization of soil organic 

N.  However, the ammonium produced by ammonification in the litter would not 

initially be mobile.   

The equation usually given for ammonification is: 

RNH2 + H2O + H+  ↔  ROH + NH4
+  

It may be assumed that the protons consumed would effectively originate from the 

cation exchange sites, where they would be replaced subsequently by the ammonium.  It 

may be hypothesised here that these ammonium cations would have very limited 

mobility initially, because of the lack of associated mobile anions.  However, 

ammonium under field conditions could subsequently be displaced by inputs of either 

Na+ and Mg2+ from sea-salts in precipitation or in dry deposition, or H+ in acid 

deposition, which would be accompanied by Cl-, SO4
2- and NO3

-.  It is suggested that 

these processes together help explain, for the most acid soils of profile A, why 

ammonium absorption is relatively weak, and desorption occurs for the three highest 

spike additions in soil from 15-30 cm depth (Fig. 5.3).  In this absorption isotherm 

experiment, additional chloride has been added, which would facilitate desorption 

compared to what would happen naturally under field conditions.  The KCl-extractable 

ammonium-N concentrations in acidic litter horizons at Hob Moor are an order of 

magnitude or more higher than those in the underlying mineral soil horizons (Riaz, pers. 

comm.).  The solution concentrations in the isotherm experiments are substantially 

higher for the 0-15 cm layers of profiles A and B than they are for the 0-15 cm layers of 

profiles C and D.  Profiles A and B had coarser textures, so might be expected to have 

lower CEC values.  The low pH of profile A would also reduce its CEC.  Therefore it 

might be expected that ammonium could be more readily displaced from these soils, and 

especially from profile A, as was observed in practice. 

As mentioned earlier, the equilibrated solution concentrations of ammonium-N 

are appreciably lower for profiles C and D than for profiles A and B (compare x axis 

scales in Figs. 5.5, 5.6 and 5.3 & 5.4).  The former soils had higher pH values and more 

earthworm activity was observed at the time of sampling (though this was not 

quantified).  Thus they did not have well developed litter horizons as the litter would 
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have undoubtedly been more mixed throughout the sampling depth.  Therefore they 

would not have received the same elevated input of ammonium flushed from an 

overlying litter layer.  Greater soil uniformity is the probable explanation for the greater 

similarity between results at 0-15 and 15-30 cm for profiles B and C than was seen for 

the most acid soil of profile A.  As mentioned in section 5.3.1, profile B had a higher 

organic C% than profile A, and also had a higher C:N ratio at 0-15 cm, suggesting 

possibly greater mixing of organic matter in profile B.  The difference in absorption 

isotherms between the two sampling depths is much less pronounced for profile B than 

for profile A. 

In spite of their heavier textures and higher pH values, soils from profiles C and 

D did not in fact appear to have significantly higher CEC values (Table 5.2).  They 

probably have been experiencing greater plant N uptake, as vegetation was 

conspicuously more lush at profiles C and D than on the more acid soils of profiles A 

and B.  It was noticeable that soils from profiles C and D had significantly lower C:N 

ratios than the soils from the other profiles, which probably reflects greater 

decomposition rate of the organic matter in the soil over most of the year.  However, 

grazing cattle would have removed vegetation (and the N it contains) from profiles C 

and D for at least a decade, so, in spite of the low C:N ratio, ammonium-N production 

may be occurring at a lower rate down these profiles, thus facilitating ammonium-N  

absorption.   At profiles A and B grazing is only by rabbits, as fences prevent the cattle 

from reaching these sites.  

The absorption isotherms for profile E differed from those for all the other 

profiles, especially for soils from 0-15 cm.  Following addition of 10 mg l-1 ammonium-

N, strong desorption occurred in both replicates, but some absorption occurred for more 

concentrated spike additions (Fig. 5.7).  The reasons for this are unclear, and the effect 

may be due to chance variations in the sub-samples of field moist soil used, especially 

as profile E was from an area grazed by cattle. However the curious effect is 

reproducible between the replicates.  Further work would be needed to see if it is 

reproducible in adjacent soils and over time.  Up to the additions of 10 mg l-1 

ammonium-N, soils from 0-15 cm of profile E behave moderately similarly to soils from 

15-30 cm  of profile A, and have a quite similar texture to these soils (Table 5.2), but the 

profile E soils are much less acidic. 
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5.4.4 Does C:N ratio influence soil ammonium concentration? 
The results in Table 5.1 show that soil C:N mass ratio is consistently significantly 

higher in the two more acidic soil profiles, A and B  compared with the other three 

profiles, especially compared to profiles C and D, and generally decreases with 

increasing soil pH; this is more readily apparent when the results are compared 

graphically, as in Figs. 5.9 – 5.10.  

 
Figure 5.9:  Change in soil C:N mass ratio for the five profiles (A – E) between   
0-  15 cm and 15-30 cm for duplicate field samples (a and b) analysed in duplicate 
(a1 & a2 and b1 & b2). 

 

 
   Figure 5.10: Change in soil pH (in water) for the five profiles (A – E) between  
   0-15 cm and 15-30 cm for duplicate field samples (a and b) analysed in duplicate 
   (a1 & a2 and b1 & b2).  
  

This trend might be expected from the lower decomposition rates expected in the more 

acidic grassland soils.  However, although the highest mean soil C% was for the 0 – 15 

cm soil from profile B, Tables 5.1 and 5.2 provide no consistent indication of greater 
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organic matter accumulation in the more acidic profiles (A and B) compared with the 

other three profiles, so at this site quality rather than quantity of soil organic matter is 

apparently influenced by pH.   

 It was thought that the soil N:C ratio, together with CEC and nitrification rate,  

might be a factor regulating the initial soil ammonium-N concentration, and hence also 

important to the soils’ responses to subsequent ammonium-N additions.  When the data 

were analysed together (i.e. for both soil depths), no significant correlation was found 

between soil mean initial ammonium-N concentration and N:C mass ratio.  However a 

statistically significant correlation did exist for the mean values for the 15-30 cm soils 

(Fig. 5.11).  Only mean values can be plotted here because replicates a and b differ for 

the CEC determination and the determinations of C and N%. More data would be 

needed to see if this relationship has any predictive value.  

  It is highly probable that in the most acidic 0 – 15 cm soils, (profiles A and B) 

leached ammonium inputs from litter decomposition are playing a dominant role in the 

N cycling in the underlying soils, in contrast to the other profiles where faunal mixing of 

organic matter would play a greater role at the higher pH values.  At the time of 

sampling it was noted that profiles A and B both had very clear and distinctive litter 

horizons because of the poor mixing of organic litter by the limited soil fauna at the very 

low pH, and this would account for the lack of obvious or consistent increase in soil C% 

(Table 5.1) in the samples taken for these experiments from below the litter layer.   

Earthwork activity was conspicuous in profiles C – E. 

 
   Figure 5.11: Relationship between mean initial ammonium-N 
   in soils from 15-30 cm at sites A to E and mean soil N:C mass  

     ratio. 
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5.5  Conclusions 
The results from both the author’s experimental approaches and the microcosm leaching 

experiment of Riaz clearly indicate that ammonium in N-impacted, unfertilized 

grassland soils may be considerably more mobile than previously thought, and 

ammonium translocation down profiles may be playing an important role in N cycling 

in such soils.  This is certainly true at the Hob Moor site and will be especially the case 

where high local ammonium inputs arise from animal faeces and urine.  If ammonium 

leaches to below the rooting zone it is likely to be nitrified in sub-soils and contribute to 

nitrate leaching to surface waters and/or groundwater, although some amelioration may 

occur as a consequence of denitrification at poorly drained sites.  When designing 

experiments to quantify N species transformation dynamics in isolated soil samples, it is 

important to consider the possibility that initial N status may be critically dependent in 

the ammonium production in, and translocation from, overlying soil horizons.  
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CHAPTER 6:     IS THE LOW C:N RATIO OF FOREST LITTER AN 

EVOLUTIONARY STRATEGY TO HELP 

CONSERVE ECOLOGICAL NICHE?  

A PRELIMINARY ASSESSMENT 

 

6.1 Introduction 
In a recent co-authored reappraisal of the terrestrial nitrogen cycle with a view to 

understanding pollutant N impacts, Cresser et al. (2008) suggested that plant evolution 

may have been driven by the requirement for a locally sustainable match of the 

dynamics of soil N supply with those of plant N requirement.  They hypothesised that 

atmospheric pollutant N deposition may be adversely affecting plant biodiversity by 

inducing a dynamic mis-match between plant N needs and soil N supply.  Following on 

from this, it could be further hypothesised that, in pristine environments where N supply 

is invariably limiting to plant growth, deciduous tree leaf litter needs to decompose 

slowly, or possibly not at all, at low winter temperatures when plant N uptake 

requirements are very low.  It would therefore be beneficial for leaf litter immediately 

following litter-fall to have a high C:N ratio, thereby favouring N immobilization by 

biomass associated with the slowly decomposing litter.  As litter starts to be 

mineralized, the C:N ratio of the decomposing residue would decrease, eventually 

reducing the probability of further N immobilization by microbial biomass and thereby 

eventually increasing plant bio-available N supply. 

Recent experimental studies of the potential responses of soils from sub-arctic 

heath to the enhanced litter inputs from birch (Betula pubescens ssp. Tortuosa) that 

might be anticipated in response to global warming showed that net mineralization of P 

and microbial growth rate both increased with litter addition, whereas the inorganic N 

pool in soil cores incubated under field conditions decreased (Rinnan et al., 2007).  

Moreover, ammonium concentrations did not change significantly in response to litter 

additions and nitrate was not detectable (Rinnan et al., 2008).  This, and their 

observation that in this relatively clean environment mineralized N was immobilized in 

biomass for all treatments, including the controls (Rinnan et al., 2007), suggest that 

fresh litter inputs do not lead to immediate increase in inorganic N pools, supporting the 

idea of immobilization at least in the short to medium term.  Potthast et al. (2010) 

recently compared the mineralization of Setaria sphacelata grass with a C:N ratio of 33 
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with that of Bracken with a ratio of 77 in pasture soils of southern Equador and reported 

reduction in the pools of available organic carbon and nitrogen. 

Mungai et al. (2006) investigated the effects of added litter quality on soil C and 

N dynamics.  They compared effects of tree litter from Pecan, Silver Maple, Chestnut 

and Black Walnut (with C:N ratios of 42.3, 33.6, 59.3 and 33.1 respectively) with those 

of bluegrass, maize and soybean litters (C:N 19.1, 28.3 and 19.7 respectively).  While 

soybean litter enhanced net N mineralization, all other litter types immobilized N for 

various periods of time. Although litter from the crop species gave significantly higher 

soil C mineralization rates, attributed to their lower lignin concentrations and C:N ratios 

and higher N concentrations, than the tree litter types, there were no obvious differences 

in N dynamics. 

If litter C:N ratio is a major factor regulating the recycling of N, it raises the 

interesting question as to whether litter in higher N deposition areas has a lower ratio, 

making it potentially more readily mineralizable.  Studying the effect of N deposition on 

litter decomposition from oak (Quercus robur L), Månsson and Falkengren-Grerup 

(2003) concluded that litter quality had been modified in a way that increased C and N 

mineralisation.  They pointed out that although there was a lower C:N ratio in litter from 

the more N-impacted area, this was not reflected in differences in microbial biomass 

C:N ratio, and suggested that this might reflect a relatively small contribution of 

biomass attacking fresh litter to the total biomass present. 

The above papers support the concept generally that high a C:N ratio in plant 

residues initially would favour immobilization of nitrogen.  It is reasonable to suggest, 

however, that as litter started to decompose the C:N ratio would fall, until eventually 

mineral nitrogen would become progressively more bio-available.  In regions with a 

climate similar to that of the UK, with warm summers but cold winters, plants would 

benefit in evolutionary terms if the seasonality of mineral-N production from plant litter 

decomposition was closely matched to the seasonality of the same plant species mineral-

N requirements.  In this chapter, therefore, my hypotheses are: 

 

 There is naturally a dynamic match between plant N requirements and mineral N 

production in soil.   

 Plant continued occurrence is favoured when this dynamic match is good (i.e. 

close dynamic match favours creation of an ecological niche).    

 Diffuse N pollution could adversely affect biodiversity by inducing a dynamic 

mis-match between soil mineral N supply and plant N requirements.  
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 Deciduous litter therefore has evolved naturally, with a high C:N ratio, to help 

retain mineral N species produced during winter months when tree N uptake is 

low. 

 As litter decomposes, its C:N ratio falls until microbial N immobilization is less 

favoured.  Plant-available N then increases. 

 

If the hypotheses can be proved to be correct it would be of high relevance to agencies 

responsible for formulation of pollution abatement policies.  If a high level of diffuse 

pollution induces such a dynamic mis-match, biodiversity change would be an 

inevitable consequence, and inorganic N leaching would be likely to be more substantial 

in winter, and even more likely to occur in summer in N-impacted areas. 

 For this preliminary assessment of the hypothesis, it was decided to conduct an 

experiment using foliage from a single tree species, collected over a period of several 

months to obtain a range of C:N ratios, to assess how litter C:N ratio of litter 

amendments to a local woodland soil influenced net mineral-N production in that soil.  

The hypothesis therefore was that net mineral N production rate would be more rapid in 

soils with a litter amendment with a low C:N ratio compared with the rate in the same 

soil when the litter had a high C:N ratio.  The experiment, designed by the author, 

would be partially conducted by an undergraduate environmental science student, Claire 

Stephens, for her honours project in 2009-2010, under close supervision by the author.  

The analyses, and this interpretation of the results, were, however, all performed by the 

author. 

6.2 Experimental design 

6.2.1 Foliar sampling and preparation 
Leaves from Hazel (Corylus avellana) were sampled by the author in June (22.06.2009), 

August (22.08.2009) and October (24.10.2009)  to get “litter” with a range of C:N 

ratios.  It was anticipated that the C:N ratio would be highest in the October litter and 

lowest in the litter from the younger leaves collected in June.  Leaves were cut at 

random from a single tree growing on Little Hob Moor, immediately adjacent to the 

main Hob Moor site that is fully described in Chapter 2.  It was decided that using 

foliage all taken from a single tree would minimise the risk of other potential sources of 

variation in the litter chemical composition apart from C:N ratio, although C, O and H 

concentrations of the litter would also vary with age, as indeed would concentrations of 

other major and trace nutrients (Marr and Cresser, 1983). 
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Because they had to be stored for extended periods over the summer and early 

autumn months, the foliar samples were all dried at 70°C and homogenized by pushing 

the crumbly, dried material by hand through a 4.75-mm stainless steel sieve.  A 4.75-

mm sieve was used, rather than a finer mesh size, because it was thought that excessive 

shredding of the foliar material would expose too much surface area, making the 

simulated litter decomposition conditions even less realistic than they already were.  

Sub-samples were oven dried and ball-milled for C and N analysis using a C  & 

N analyzer, as described in Chapter 2. 

 

6.2.2  Soil sampling, preparation and analysis 
A mineral soil was sampled from a woodland area at the eastern edge of the University 

of York Heslington campus.  The soil was collected from under beech trees, from the 

upper 10 cm depth below the thin litter layer present in October, and taken back to the 

laboratory, sieved through a 2.8-mm sieve to remove any stones and roots, and 

thoroughly mixed.  A 2.8-mm sieve was chosen, rather than the more normal 2-mm 

sieve used in soil science, to allow some small aggregates to pass through and minimise 

the amount of soil disturbance at least to some extent. 

 Sub samples of the soil were analysed for moisture content by oven drying, so 

that results could all be calculated on an oven dry weight of soil basis, and the oven dry 

soils were ball-milled to fine powders and analysed in duplicate for C%, N% and C:N 

mass ratio, as described fully in Chapter 2. 

 

6.2.3  Experimental  set-up 
On 17.10.2009, a 15-g sub-sample of field-moist soil was added to each of sixty 250-ml 

screw-cap glass jars. Either 0, 0.5, 1.0 or 2.0 g of dried litter and 4 ml of de-ionized 

water were added in triplicate to the soils in the loosely capped glass jars.  During 

incubation at room temperature, caps were balanced on the tops of jars to maintain 

aerobic status and minimise water losses. Jars were weighed and water was added as 

necessary to maintain constant weight, approximately every 2 to 3 days. 

KCl-extractable ammonium-N and nitrate-N were measured after 7 days and 14 

days, as described in Chapter 2. Results were corrected for the moisture content of the 

initial soil and the added water. 
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6.3  Results 

6.3.1   Seasonal changes in litter C:N ratio 
Figure 6.1 shows the results of the duplicate analyses of soil and litter samples for C:N 

ratio.  Litter C:N ratio was always higher than soil C:N ratio and increased consistently 

with age at sampling time.  Differences between pairs of results were all significant at 

P<0.001 (Tukey post hoc test). 

 

 

 
Fig. 6.1.  The C:N ratio of the woodland soil and the hazel foliar   

samples in June, August and October 2009.  
 
 

6.3.2  Effects of treatments on extractable ammonium-N and nitrate-N 

in soil 
Figure 6.2 shows the mean values from analysis of triplicate samples for extractable 

ammonium-N and nitrate-N concentrations at the end of 7 days of incubation.  Only one 

set of triplicate controls was prepared for, and sampled at, the first sampling, so in this 

Fig. the bars for controls for June, August and October litters are, in fact, identical.   It is 

very obvious when the results for samples with litter added are compared with the 

results for the controls that both ammonium-N and nitrate-N are immobilized to a very 

substantial extent by the presence of small amounts of litter, and that, in percentage 

terms, nitrate-N is immobilized more strongly than ammonium-N.  It is clear also in this 

figure that, in the litter-amended samples, in marked contrast to the control samples, 
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there was less nitrate-N than ammonium-N, regardless of the date on which the foliage 

was sampled to produce litter.   

It appears that the amount of litter in the amendment is important.  For the June 

and August litter, soils with 2 g of litter apparently contained more extractable 

ammonium-N than soils with 1 or 0.5 g of litter added in their amendments.  However, 

there was only significant immobilization of ammonium-N with 1 g of June litter or    

0.5 g of August or October litter.  Although it appeared that for the October litter, the 

treatment with 1 g of litter added produced more ammonium-N than the 2 g litter 

treatment or the  0.5 g litter treatment, the difference was not significant.   

 

 

 
Fig. 6.2.  Effect of litter treatments on ammonium-N (upper chart) 
and nitrate-N (lower chart) concentrations in soil compared with 
the controls after 7 days of incubation.  The x axis shows the 
month the leaves were sampled and the keys show the mass of the 
litter in grams.  In each chart bars in a group with only different 
letters differ significantly (P<0.05).   

 
Evidence for immobilization of soil N by litter was much stronger for nitrate-N.  The 

0.5, 1 and 2 g litter treatments all produced significantly less nitrate-N than the control 

treatments, regardless of when the litter was collected.  For the treatment with litter 

collected in June, there was no significant effect of the amount of litter added.  For the 
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August litter treatment, the effect of litter amount on nitrate-N concentration was 

significant, with both the 0.5 g treatment and the 1 g treatment giving significantly 

lower nitrate concentration than the 2 g treatment, suggesting that when sufficient litter 

was present nitrification rate started to exceed immobilization rate.  For the October 

litter treatment, 2 g of litter resulted in a significantly higher nitrate-N concentration that 

0.5 g of litter (result not shown). 

 The effects of litter were much more variable after 14 days of incubation 

compared with those after 7 days.  Nitrate-N concentration still exceeded ammonium-N 

concentration for the controls, as after 7 days.  However, after 14 days, nitrate-N 

concentration consistently exceeded ammonium-N concentration, except for the soil 

amended with 0.5 g of June litter.  This is in marked contrast to the results after 7 days. 

 

 
Fig. 6.3.  Effect of litter treatments on mean ammonium-N, nitrate-N 
and mineral-N concentrations in soil compared with the controls after 
14 days of incubation.   The x axis shows the mass of the litter. There 
was no significant effect of litter sampling date or mass of litter used 
for any litter sampling date. 

 

There were no significant differences attributable to either size of litter 

amendment or litter sampling date for either soil ammonium-N concentration or soil 

nitrate-N concentration after 14 days.   
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6.4 Discussion 

6.4.1   Seasonal changes in litter C:N ratio 
The change over time in the foliar C:N ratio was a significant decline over time, as 

hypothesised.  It may be concluded then that, to a first approximation, the 3 “litter” 

samples subsequently used were reasonable starting materials for the purposes of the 

present experiment.  It could be argued that concentrations of all major and trace 

nutrient elements could also have been varying between the 3 sets of litter (Marr and 

Cresser, 1983) and not just C:N ratio.  The author, however, was of the opinion that this 

possibility was acceptable, and the approach he adopted was almost certainly more 

realistic than alternative experiments in which, for example, a selection of organic 

compounds with a range of C:N ratios was used instead of plant material.  If litter could 

have been collected from along an N deposition gradient, this probably would not have 

given sufficient variation in C:N ratio to meet the needs of the experiment.  In the 

present experiment, even the June “litter” had a C:N ratio as high as 25:1, and this was 

clearly high enough to favour mineral N immobilization.   

 An alternative in future experiments might be to use pot-grown species treated 

with variable rates of N fertilizer, and collect genuine, fallen, litter.  Even that though 

might not be more appropriate, and indeed probably wouldn’t work.  In field 

experiments with fertilized cereal crops, for example, it has been shown that there is 

only a period of about two months during the growing season when plant tissue N 

concentration is significantly related to initial soil N supply (O’Neill et al., 1983 a and 

b), and by the time senescence sets in, any such relationship is lost. The purpose of the 

experiment was to assess the concept that plants have evolved naturally so that litter has 

a high C:N ratio to conserve N from litter over winter as it is first stored, then 

decomposes, in soil, and the author believes that his approach is the most appropriate 

starting point to test this idea.   
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6.4.2 Effects of treatments on extractable ammonium-N and nitrate-N 

in soil 
As stated in the introduction, the aim of this chapter was to make a simple preliminary 

evaluation of 5 hypotheses, namely: 

 There is naturally a dynamic match between plant N requirements and mineral N 

production in soil.   

 Plant continued occurrence is favoured when this dynamic match is good (i.e. 

close dynamic match favours creation of an ecological niche).    

 Diffuse N pollution could adversely affect biodiversity by inducing a dynamic 

mis-match between soil mineral N supply and plant N requirements.  

 Deciduous litter therefore has evolved naturally, with a high C:N ratio, to help 

retain mineral N species produced during winter months when tree N uptake is 

low. 

 As litter decomposes, its C:N ratio falls until microbial N immobilization is less 

favoured.  Plant-available N then increases. 

 

Each of these will now be briefly discussed in turn to assess to what extent each 

hypothesis is supported by the experimental data produced. 

 

Hypothesis 1: There is naturally a dynamic match between plant N requirements and 

mineral N production in soil   

 
This stated that there is naturally a dynamic match between plant N requirements and 

mineral N production in soil.  Clearly this hypothesis was not comprehensively tested in 

this experiment.  However, immobilization of a large part of the N mineralized from 

decomposing litter is a crucial prerequisite for this hypothesis to be true.  The 

experiment provided very clear evidence for immobilization in the first week, especially 

for nitrate, and the extent of this is likely to be attributable to a large degree to the high 

litter C:N ratio, based upon the references cited in the introduction.  That said, when the 

litter to soil ratio was higher it was clear that N retention was generally slightly less 

efficient.  When however 2 g of the oldest (October) litter was used, it is interesting to 

observe that there was less extractable ammonium-N than for 2 g of the June and 

August litters.  This supportive point might be countered by the point that 1 g of 

October litter gave higher extractable ammonium-N than either 1 g of June litter or 1 g 

of August litter.  However, it must be realised that net ammonification is being 
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considered in this set of data, and clearly more ammonium could be being produced but 

subsequently more immobilized and re-immobilized for the 1 g of October litter.   

 It might be concluded that the results after 14 days incubation do not support the 

hypothesis.  Unfortunately no low temperature incubation facility was available to the 

author and Claire Stephens, so the preliminary experiment had to be performed at room 

temperature.  This was around 18-20˚C, in spite of the fact that windows were left open 

all day to try to keep temperature low.  If I was performing further experiments on this 

topic, I would undoubtedly use ambient outdoor temperatures and work on a far larger 

scale with sampling intervals being more frequent over winter months. Suffice to say 

here that the high levels of ammonification and nitrification at this sort of temperature in 

the second 7 days actually support the idea that as soils warm up, eventually bio-

available mineral-N starts to be produced in the soil. 

 

Hypothesis 2: Plant continued occurrence is favoured when this dynamic match is 

good (i.e. close dynamic match favours creation of an ecological niche)    

 
This hypothesis was that plant continued occurrence is favoured when the dynamic 

match between N supply and N requirement is close (i.e. close dynamic match favours 

creation of an ecological niche).  Clearly this must remain speculative, since in this 

preliminary evaluation, no attempt was made to assess likely dynamics of plant N 

uptake.  At least it is possible to say that the experiment provided evidence that under 

the warm conditions likely to stimulate plant growth mineral-N would become more 

available. 

 
Hypothesis 3: Diffuse N pollution could adversely affect biodiversity by inducing a 

dynamic mis-match between soil mineral N supply and plant N requirements  

 
Diffuse N pollution could adversely affect biodiversity by inducing a dynamic mis-

match between soil mineral N supply and plant N requirements, must again remain 

speculative.  Further experiments, involving external ammonium-N or nitrate-N 

additions and under more realistic temperature regimes, would be needed to test the 

idea, to see if mineral-N became more available earlier in areas of high N deposition.  If 

it did, this could clearly provide a more competitive edge to plant species that came into 

active growth earlier in the year. Longer term experiments with mixed plant 
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communities would be needed to show that the outcome was biodiversity change 

however. 

 

Hypothesis 4: Deciduous litter therefore has evolved naturally, with a high C:N ratio, 

to help retain mineral N species produced during winter months when tree N uptake 

is low 

 
It was hypothesised that deciduous litter has evolved naturally, with a high C:N ratio, to 

help retain mineral N species produced during winter months when tree N uptake is low.  

Although litter does indeed clearly immobilize mineral N, the dynamics are more 

complex than the author initially envisaged.  Figure 6.4 shows the raw data for the 

triplicate nitrate-N concentration determinations for all the foliar samples (“litter”) 

collected in June, August and October.  It was hoped that less nitrate would be found for 

the October litter, which had the highest C:N ratio, because of greater immobilization.  

However, this was only true when 2 g of litter was added to 15 g of soil.  Under those 

conditions the October litter gave the lowest nitrate-N concentration, but, on the other 

hand, the August litter gave a higher concentration than the June litter.  When 1 g of 

litter was used, it appeared that June litter was most efficient at immobilizing nitrate-N.  

However, this merely serves to indicate the complexity of the system, since only net 

nitrate-N production could be measured in this preliminary study.  The possibility 

cannot be ruled out that if the June litter is more readily degradable because of its more 

favourable C:N ratio, the litter will be colonized more rapidly, giving a greater biomass 

to potentially immobilize N.  Unfortunately biomass C and N were not measured in this 

experiment. 
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Fig. 6.4  Raw data after 7 days of incubation, grouped according to litter 
amount and as triplicates for each litter sampling date (plotted as sampling 
month). 

 

Although the N immobilization effect of litter is very clear overall therefore, the hope 

that October litter with the highest C:N ratio would immobilise N from the native pool 

of N in the soil and from litter early mineralization more effectively than August and 

June litters was optimistic.  The importance of litter-to-soil ratio is perhaps clearest of 

all data are presented in a different format for the 7-day incubation.  This has been done 

in Fig. 6.5.  It is clear that as litter mass is increased there is a tendency towards greater 

production of mineral-N (here as nitrate-N) out-competing mineral-N immobilization. 

 
Fig. 6.5 Effect of sample mass, using all data 
regardless of leaf sampling date, on nitrate-N 
concentration after 7 days. 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ju
ne

Ju
ne

Ju
ne

A
ug

A
ug

A
ug O
ct

O
ct

O
ct

Ju
ne

Ju
ne

Ju
ne

A
ug

A
ug

A
ug O
ct

O
ct

O
ct

Ju
ne

Ju
ne

Ju
ne

A
ug

A
ug

A
ug O
ct

O
ct

O
ct

N
it
ra
te
‐N

 (m
g/
kg

 so
il)

<‐‐‐0.5 g Litter‐‐‐‐> <‐‐‐1.0 g Litter‐‐‐‐>

<‐‐‐2 .0g Litter‐‐‐>

y = 0.075x ‐ 0.0226
R² = 0.5459

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 0.5 1 1.5 2

N
it
ra
te
‐N

 (m
g/
kg
)

Amount of litter (g/15 gsoil)



 93

  
Hypothesis 5: As litter decomposes, its C:N ratio falls until microbial N 

immobilization is less favoured.  Plant-available N then increases 

 
Direct evidence to support the hypothesis that, as litter decomposes, its C:N ratio falls 

until microbial N immobilization is less favoured is not attainable directly from this 

experimental design.  In future experiments litter contained in litter bags should be used 

to test this hypothesis directly, to study how plant-available N increases as litter C:N 

ratio falls.  However, it may be concluded, as mineralized soil and litter N were so 

readily immobilized, that there must have been at least a small decrease in the system 

C:N ratio as decomposition progressed. 

 

6.5 Conclusions 
This preliminary experiment, run at room temperature, showed dramatic mineral N 

immobilization by litter initially, favouring mineral N retention. However, it also 

showed strong competition between mineral N species production rates and 

immobilization rates at the temperature used.  More experiments are needed over longer 

time scales and at more appropriately seasonal temperatures to properly test the 

hypotheses further.  One aspect that emerged very strongly was the role of litter in 

nitrate immobilization in soils in winter.  This will be investigated further in a later 

chapter and in a paper by the author (Mian et al., 2010a) on possible causes of changes 

in seasonal trends in nitrate concentrations over 20 years in the River Derwent in North 

Yorkshire.  This is thought to be especially important as it seems likely that ammonium-

N is more mobile than previously thought, as indicated in Chapter 5 (Mian et al., 2009).  

In 1992, straw and stubble burning was banned in UK, resulting in incorporation 

of litter into soil post 1993. In Chapter 8 the author will investigate whether this led to a 

reduction in seasonal peaks in winter nitrate-N concentrations in the River Derwent in 

North Yorkshire. 
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CHAPTER 7:  HOW STABLE ARE SOILS FOR THE             

DETERMINATION OF AVAILABLE N? 
       

7.1 Introduction 
The assessment of soil nitrogen availability has long been a topic of great interest in 

both agricultural and natural environmental contexts, and over many years much effort 

has gone into evaluating procedures for assessing N availability (Bremner, 1965; 

Keeney and Bremner, 1966; Fox and Piekielek, 1978).  

Typically, ca. 95% of the nitrogen in soils is present in the form of organic 

nitrogen, almost totally in the soil solid phase and/or in biomass.  In the absence of 

recent fertilizer or pollution inputs, only ca. 5% of the total N or less is present in 

inorganic forms following organic-N mineralization to ammonium, nitrite or nitrate.  

Most of the ammonium produced will be held as the NH4
+ cation on negatively charged 

cation-exchange sites in the soil, whereas nitrate (NO3
-) is relatively mobile in soil 

solution and drainage water.  To assess the amounts of N in these inorganic, bio-

available forms, either soil solution is extracted directly (e.g. Ross and Bartlett, 1990) or 

fresh, field moist soil is extracted with potassium chloride solution (Bremner, 1965).   

It is well known that drying and rewetting of soils modifies the composition of 

soil solutions (e.g. Walworth, 1992) and Chapters 3 and 4 of this thesis and references 

therein.  It is therefore generally claimed that the determination of extractable 

ammonium and nitrate should be conducted on fresh, field-moist soils if the results are 

to be meaningful (Bremner, 1965), because if the soil is dried and rewetted a surge of 

mineralization may occur (Bremner, 1965; Fierer et al., 2003; Gordon et al., 2008; Mian 

et al., 2008).  Recently, though, Mian et al. (2008) and Chapter 4 demonstrated that the 

first flush of nitrate from rewetted soil  after 6 days of drying was stored nitrate, and that 

it took a few days for new nitrate production by microbial activity, possibly supporting 

the idea that nitrate might be better determined in rapidly air-dried soil.  Westfall et al. 

(1978) suggested drying within 12 hours of collection as an acceptable compromise 

when measuring extractable nitrate as a basis for fertilizer recommendations, as changes 

in concentration would be small.    

Once soil is removed from the plant root environment, plant uptake of inorganic 

N species is eliminated, so mineralized N species may start to accumulate in the moist 

soil, or N species may be immobilized microbially or chemically. It has long been 

recognized that how, and how long, soils are handled prior to analysis may have a large 

impact upon the concentrations of extractable mineral N species found.  For example, 
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nitrate concentrations over seven days increased dramatically in seven soils when 

incubated at 30°C, stored at room temperature or left on a sunny window ledge, and by 

almost 50% even when they were refrigerated (Westfall et al., 1978).   Ross and Bartlett 

(1990) observed large increases in nitrate concentrations in soil solutions from forested 

spodosols within 24 h when soils were stored in a refrigerator at 3°C.  Bremner (1965) 

reviewed early studies which demonstrated that even rapid freezing of stored soil 

samples at -15°C could result in significant changes in concentrations of subsequently 

extracted mineral N species. 

 

For results to be comparable between soils and between sampling dates, the 

results must be expressed on an oven-dry soil mass basis.  Therefore while one sub-

sample of a fresh moist soil is being extracted with molar KCl, a second, weighed sub-

sample of moist soil is oven dried at 105°C so that the amounts of extractable 

ammonium-N and nitrate-N per kg of oven dry soil may be calculated.  Correction must 

be made for the moisture present in the soil, which will slightly dilute the KCl extract. It 

was decided, in the interests of future researches and because of the time it take to 

process large numbers of samples to study how stable mineral-N concentratons are in 

field moist soils. 

  

The purpose of this chapter is to assess how important it is to use really freshly 

sampled soils if extractable ammonium and nitrate are determined on field moist soils.  

To do this on 12 soil samples, 12 pairs of experienced, but closely supervised, 

undergraduate students were each asked to collect and analyse a soil sample in duplicate 

so that all the soils could be prepared, and extraction commenced, within 30 minutes of 

collection from the field.  Sufficient soil was collected for each pair to start to extract 

subsamples of the fresh soil and measure soil moisture content within this time frame, 

and also to store further subsamples in a refrigerator or left out at room temperature 

overnight prior to extraction, to test the hypotheses that any changes seen would be 

small after refrigerated storage, but more significant after room temperature storage.  

Very little seems to have been published on the need for speed of analysis, which is 

difficult to achieve in practice when a substantial number of samples is to be analysed. 
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7.2  Materials and methods 

7.2.1 Field Sampling 

To ensure that samples could be extracted as rapidly as possible after collection, three 

permanent grassland sites and three deciduous woodland sites were selected 

immediately adjacent to the University of York campus.  Twelve pairs of closely 

supervised students each collected duplicate samples of soil, each about 1 kg, with 

stainless steel trowels from 0-6 cm or 6 – 12 cm depths below the surface at their 

allocated site.  As much vegetation as possible and any obvious stones were removed at 

the time of sampling by spreading briefly on clean polythene sheets.  The samples were 

then placed in clean, labelled polythene bags for transport back to the laboratory.  At 

one grassland site the root growth and branching was so extensive that rapid sampling 

near the surface proved impractical, so this soil was sampled instead at 10-20 and 20-30 

cm depths. 

 

7.2.2 Sample Preparation and Analysis 
Back in the laboratory, the soil was again spread on polythene sheets, and any remaining 

obvious roots or stones were removed as quickly as possible and each sample was 

thoroughly mixed (ca. 10 minutes for all samples).  Immediately 10-g sub-samples of 

each soil were weighed in duplicate into pre-weighed and labelled foil dishes, and two 

further 10-g sub-samples weighed in duplicate into labelled 120-ml plastic bottles.  The 

soils in foil dishes were placed into an oven at 105°C to dry for at least 8 h, cooled in 

desiccators and reweighed to quantify the moisture contents of the field moist soils.  To 

the subsamples in plastic bottles 100 ml of 0.5M KCl was added, and the bottles were 

capped and shaken intermittently for 1 h.  The mixtures were then filtered through 

Whatman No. 42 papers into clean, dry labelled bottles, and the extracts were stored in a 

refrigerator until the following day.  Duplicate KCl blanks were also filtered so that a 

blank correction could be applied. 

 Each of the residual soil samples was divided into two subsamples and each was 

transferred to a pre-labelled sealed polythene bag.  One set of samples was stored 

overnight at room temperature, and the other set was transferred immediately to a 

refrigerator for storage at 2-4 °C overnight.  The following morning, 16 h later, 

duplicate 10-g sub-samples from all samples from both sets of storage conditions were 

extracted with 100 ml portions of 0.5M KCl as described above for the fresh samples. 
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7.2.3 Determination of N Species 
The concentrations of ammonium-N and nitrate-plus-nitrite-N in the soil extracts were 

determined by automated colorimetric analysis, using a standard Bran and Luebbe 

AutoAnalyzer®-3  manifold and matrix-matched standards.  The masses of ammonium-

N and nitrate-N in 100 ml of KCl extract plus the volume (ml) of soil water (calculated 

from the loss in weight of separate 10-g sub-samples that had been oven dried) were 

calculated, and used to quantify the mass of each N species per kg of oven dry soil. 

 

7.3 Results 
The amounts of ammonium-N, nitrate-plus-nitrite N, and total mineral-N, were 

calculated in mg per kg of oven-dry soil, for fresh field-moist soil, for moist soil after 

storage for ca. 16 h in a refrigerator, and for moist soil after storage for ca. 16 h at room 

temperature.  Figures 7.1 and 7.2 show the effects of storage conditions on the N species 

results for the three grassland soils for the upper and lower soil layers respectively; 

Figures 7.3 and 7.4 show the corresponding results for the three sets of mixed deciduous 

woodland soils. 

 

7.3.1  Differences in nitrate-plus-nitrite-N concentrations with storage 

conditions 
For grassland surface soils, storage in a refrigerator for 16 h prior to extraction had no 

significant effect upon nitrate-plus-nitrite-N concentration, but significantly enhanced 

its concentration in all three grassland sub-soil samples.  Storage for 16 h at room 

temperature caused no further statistically significant enhancement compared with 

refrigerated storage for these three sub-soils (Fig. 7.2) or for the surface soils however 

(Fig. 7.1).  On the other hand, for G2 and G3 near-surface soils, room temperature 

storage gave higher nitrate-plus-nitrite concentration than immediate extraction        

(Fig. 7.1).  It should be remembered that G1 was only sampled from below the surface 

at 10-20 cm rather than at 0-6 cm, and it behaves like the grassland sub-soil with no 

significant difference between refrigerated and room temperature storage (Figs. 7.1 and 

7.2). For the woodland soils the variation in nitrate-plus-nitrite-N concentration was 

higher, and changing storage conditions therefore had no statistically significant effect 

on the results (Figs. 7.3 and 7.4). 
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7.3.2  Differences in ammonium-N concentrations with storage 

conditions 
Refrigerated storage for 16 h prior to extraction had no significant effect upon 

ammonium-N concentration for grassland surface soils, nor did it significantly change 

its concentration in all three grassland sub-soil samples. Although ammonium-N 

concentrations generally declined slightly during storage of the grassland soils at room 

temperature for 16 h, there was no statistically significant change compared with 

refrigerated storage for the three sub-soils (Fig. 7.2) or for two of the near-surface soils, 

an exception being G3 from 0-6 cm (Fig.7.1).   

 For the woodland soils, although ammonium-N concentration generally fell 

following storage, the effect was not statistically significant for the near-surface soils 

(Fig. 7.3) or for the W3 sub-soil regardless of storage temperature.  However, the 

decline following storage prior to extraction was significant at P<0.05 for woodland 

sub-soils W1 and W2 (Fig. 7.4).  There was no effect of storage temperature for these 

two soils, however. 

 

7.3.3 Differences in total mineral-N concentrations with storage 

conditions 
For woodland near-surface soils, moist soil storage in a refrigerator or at room 

temperature for 16 h before extraction had no significant effect upon mineral-N 

concentration for 5 of the 6 soils, but significantly reduced mineral-N concentration in 

one woodland lower layer soil.  For this soil there was no statistically significant change 

after room temperature storage compared with refrigerated storage (Fig. 7.4). 

 

7.3.4 Differences in N species concentrations with depth 
For all soils, nitrate-plus-nitrite concentrations were significantly (P<0.05) higher closer 

to the surface, However ammonium-N did not vary significantly with depth. 

 

7.3.5 Differences in N species concentrations between sites 
Nitrate-plus-nitrite-N concentrations were significantly higher in the grassland soils than 

in the woodland soils at both depths.  Although the ammonium concentrations looked 

slightly higher in the woodland soils, an independent-t test showed that the difference 

was not significant. 
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Figure 7.1: Changes in a) NO3-N, b) NH4-N and c) Mineral-N (mg N/kg soil) at 0-6 cm depth (except   
G-1 where depth was 10-20 cm) in 3 grassland profiles. All values are means of duplicate soil samples. 
Error bars are standard error of means. Bars with different letters differ significantly at P <0.05. 
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Figure7.2: Changes in a) NO3-N, b) NH4-N and c) Mineral-N (mg N/kg soil) at 6-12 cm depth (except   
G-1 where depth was 20-30 cm) in 3 grassland profiles. All values are means of duplicate soil samples. 
Error bars are standard error of means. Bars with different letters differs significantly at P<0.05. 
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Figure7.3: Changes in a) NO3-N, b) NH4-N and c) Mineral-N (mg N/kg soil) at 0-6 cm depth in 3 
woodland profiles. All values are means of duplicate soil samples. Error bars are standard error of means. 
Bars with different letters differ significantly at P<0.05. 
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Figure 7.4: Changes in a) NO3-N, b) NH4-N and c) Mineral-N (mg N/kg soil) at 6-12 cm depth in 3 
woodland profiles. All values are means of duplicate soil samples. Error bars are standard error of 
means. Bars with different letters differ significantly at P<0.05. 
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7.4 Discussions 

The effect of soil storage conditions 

 

7.4.1 Grassland soils 
For the near-surface grassland soils stored in a refrigerator, an apparent nitrification 

effect on nitrate-plus-nitrite-N concentration for G2 or for G3 was not significant.  

However, the effect became statistically significant for all three of the lower horizon 

soils under refrigerated storage for 16 h (Fig. 7.1).  This probably reflects a higher 

population of nitrifiers or more favourable conditions for nitrification in the lower soil 

layers.  Changes in the nitrate concentrations found after storage represent the combined 

overall effect of nitrification and microbial immobilization, so it is also possible that 

immobilization may be higher in the soil nearer the surface which visibly appeared at 

the time of sampling to have a higher density of roots. 

 Storage at room temperature overnight compared with refrigerated storage did 

not cause any significant additional enhancement in nitrate-plus-nitrite-N concentration 

for any of the grassland soils (Figs. 7.1 and 7.2).  However, for G3 surface soil from 0-6 

cm, the significant decline in ammonium during room temperature storage compared 

with refrigerated storage could be indicative of enhanced nitrification, perhaps 

combined with immobilization. 

In the near-surface grassland soils, total mineral N was significantly enhanced by 

16-h storage only for G2, and to the same extent regardless of storage temperature.  This 

reflects the nitrification during storage in this soil, although the enhancement in nitrate-

plus-nitrite-N concentration was significant only after storage at room temperature (Fig. 

7.1). Total mineral N increased during storage in a refrigerator in two of the lower layer 

grassland soils (G2 + G3, Fig 7.2), again reflecting the consistently significant 

nitrification in the lower layer soils.  It is noticeable in Fig. 7.2 that nitrification induced 

enhancement was greater for these G2 and G3 soils.  Storage at room temperature 

compared to refrigerated storage caused no further significant enhancement in total 

mineral N. 

 

7.4.2 Woodland soils 
The woodland soils behaved  differently from the grassland soils, with no significant  

net nitrification effect during storage for either near-surface or lower-layer soils during 

either refrigerated storage or room temperature storage.  Following ideas from Chapter 
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6, however, it is possible, looking at the consistent decline in NO3-N concentration         

(Fig. 7.3)  that immobilization exceeds nitrate production. The KCl-extractable 

ammonium decreased significantly for the W1 + W2 lower-layer soils, probably via 

microbial immobilization of N because of the lack of any evidence for significant 

nitrification.  Other studies in the author’s laboratory have clearly shown significant 

immobilization of ammonium during incubation of grassland soils at ambient outdoor 

winter temperatures (Bhatti and Cresser, unpublished results).  This was attributed to 

elimination of atmospheric pollutant N inputs during incubation, which shifts the 

relative dynamics of N species transformation processes. 

 

7.4.3 The factors likely to be regulating the amounts of N species 

found 
In this experiment, pairs of trained undergraduate students were used to speed up the 

fresh field moist soil extraction process as much as possible.  In reality, often individual 

workers bring substantial numbers of soils back to their laboratory in cool boxes, and 

analyse soils as quickly as possible on the same day or after refrigerated over-night 

storage.  These experiments have shown that modest, but statistically significant, 

amounts of nitrification may occur during 16 h of refrigerated storage for grassland sub-

soils, and perhaps even more surprisingly that refrigeration did not improve the sample 

stability significantly compared to storage for 16 h at room temperature.  Remaining 

visible roots and stones were removed as quickly as possible in the laboratory by hand 

sorting prior to analysis and/or storage.  There can be little doubt that, during this period 

of about 10 minutes, the soil warms up significantly.  Although the soils were then 

immediately returned to the refrigerator, cooling would have taken a significantly longer 

time, and much of the nitrification may have occurred during this phase.  This may be 

facilitated by the thorough mixing of the soils, again by hand, prior to sub-sampling, 

which could redistribute pockets of higher ammonium concentration and the population 

of nitrifiers.    

There was evidence in this experiment of ammonium immobilization in two 

woodland lower-layer soil samples.  This too occurred to similar extents during 

refrigerated storage and room-temperature storage.  As mentioned above, other studies 

have demonstrated significant immobilization of ammonium during incubation of soils 

at ambient outdoor winter temperatures, attributed to removal of atmospheric pollution 

ammonium- and ammonia-N inputs (Bhatti and Cresser, unpublished results).  These 

were shown to exceed in-situ ammonium production by mineralisation of soil organic N 
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at winter temperatures.  This would explain why ammonium-N immobilization is 

favoured in these forest soils even at low temperature, especially as any forest litter 

brought down into the mineral soil by soil fauna has a high C:N ratio, which would 

again favour N immobilization.  Early work on ammonium-N immobilization, and the 

difficulty it presents for assessing available mineral N in soils, has been thoroughly 

discussed by Bremner (1965). 

 

7.5 Conclusions 
The results highlight both practical constraints in, and more general limitations of, 

operationally-defined procedures for assessing the amounts of available N in soils.  The 

main practical constraint is the speed with which samples need to be prepared and 

extracted, which is a potentially serious problem if a substantial number of samples is 

returned to the laboratory in a cool box for subsequent extraction and N species 

determination.  It appears that the most reliable approach might be to sample soil by 

volume in the field and add the measured volume of soil to a known volume of molar 

KCl solution, bringing other sub-samples of moist soil back to the lab to measure 

moisture content.   This is currently being investigated by Bean, an MSc student in the 

author’s department. Refrigerated storage, either during transit or in the laboratory, will 

not be sufficient to stop N speciation change, as other workers have found (Westfall et 

al., 1978; Ross and Bartlett, 1990).  Moreover, the extent of change will vary from soil 

to soil, depending upon land use and probably a range of soil characteristics. 

  

 The N cycle is complex, because it involves interactions of anthropogenic and 

soil-derived N species inputs, their transformations in soil, and the dynamics of plant N 

uptake. Often too it involves very dynamic soil hydrological conditions. This brings into 

question how useful operationally defined procedures as commonly practised really are 

for assessing bioavailability, or potential bioavailability, of N.  Measuring potentially 

mineralizable N (Haney et al., 2008; Kadono, 2009; Nyiraneza et al., 2009) or 

extractable organic N (MacLean, 1964; Stanford, 1968; Michrina et al., 1982) are 

probably more meaningful approaches. On the other hand, with careful randomization 

of sample handling time experiments such as those conducted by the author in earlier 

chapters are still valid for providing quantitative indicators of relative treatment effects. 
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CHAPTER 8:  SPATIAL AND LONG-TERM TEMPORAL TRENDS 

IN NITRATE CONCENTRATIONS IN THE RIVER 

DERWENT NORTH YORKSHIRE AND ITS NEED 

FOR NVZ STATUS 

 

8.1 Introduction 
Although ammonium-N leaching has been shown in this thesis to be significant for soils 

from Hob Moor, nitrate leaching is more widely seen as a potential problem in both 

fertilized and semi-natural, minimally managed, soils.  Since the concept of nitrogen 

saturation of soils was introduced by Aber et al. (1989) there has been growing concern 

in areas not impacted directly by fertilizer use about the long-term trends in nitrate 

concentration in surface waters.  Tipping et al. (2008) pointed out that steep slopes, 

areas of outcropping or bare rock and limited soil depth, together with lower plant N-

uptake, facilitate N leaching in upland catchments in the UK and northern Europe that 

are subject to high levels of N deposition; however, they reported that no consistent 

pattern is being shown in time-series trend plots for sensitive areas.  They supported this 

statement by reference to the conclusions in the comprehensive study by Stoddard et al. 

(1999) for the period from 1980-1995 for sites across N. America and Europe, and in a 

later study by Evans and Monteith (2001), based upon a similar geographical area, 

which found no change for 35 of 56 sites, but either increases or decreases in the 

remainder.  Assembling data collected over 50 years, Tipping et al. (2008) were able, 

however, to demonstrate highly significant trends for increasing nitrate concentration 

over time (P<0.001) for two lakes in Cumbria in N.W. England.  They also 

demonstrated that the nitrate fluxes from feeder streams were significantly (P<0.02) 

correlated to the area of rankers soil in the stream catchments; they concluded that these 

soils were responsible for the increase in nitrate over time because of the limited 

capacity of the highly organic soils to retain atmospheric N inputs, and that nitrate 

leaching from the other dominant soil type, brown podzols, was not significant. 

 It has been known for  fifteen years that peat soils in areas with even quite 

modest N deposition may have a very limited capacity to retain nitrate when compared 

with adjacent podzols, so stream-water nitrate concentrations increase in streams 

wherever peat is extensive in the adjacent riparian zone (Black et al., 1993).  Thus 

limited abundance of peat soils and rankers may be one factor influencing the lack of 

significant increases in nitrate concentration over time in some semi-natural catchments.  
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Another factor may be the time taken for soils to become N saturated.  This is 

notoriously difficult to predict because of the complexity of predicting the spatial 

variation in soil properties, especially those related to soil N concentration, at a 

landscape scale (Crowe et al., 2004).   

One of the key factors controlling whether or not atmospheric N deposition is 

retained within the soils of a catchment is the rate at which any incoming N species 

(ammonia, ammonium and/or nitrate) is converted to other forms.  Cresser et al. (2004) 

used laboratory incubation experiments to demonstrate that ammonium inputs to heavily 

N-impacted organic soils in the UK were transformed to organic N or nitrate very 

slowly.  As a consequence ammonium could accumulate on the cation exchange sites 

until equilibrium was attained.  At this point ammonium leaching may start to occur, 

and ammonium is found in adjacent surface waters (Cresser et al., 2004).  The same 

paper also demonstrated that nitrate transformations were very slow in acidified organic 

soils, making nitrate susceptible to leaching, especially during storm events, even over 

the summer months. 

 Recently Riaz et al. (2008) have been testing the hypothesis that if ammonium is 

now leaching to adjacent freshwaters in heavily N-impacted areas, then it is likely to be 

leaching down soil profiles too at many sites.  It may thus pass below the rooting zone 

to lower soil horizons, and subsequently be nitrified at depth in the soil profile thus 

becoming susceptible to leaching to ground water and/or to surface waters as a ground 

water end member.  It was suggested here and in Chapter 5 that this mechanism may 

further enhance nitrate concentrations in streams draining acid grasslands. 

 More recently, there has been growing concern too about nitrate contamination 

of both surface waters and ground waters from agricultural practices.  This led, in 2002, 

to substantial regions of the UK being declared Nitrate Vulnerable Zones (NVZ), 

largely in response to the European Implementation of Nitrates Directive 91/676/EEC.  

The subsequent legislation limited quantities of fertilizer and manure that could be 

applied and the times of year over which applications could be made, as well as 

regulating manure storage conditions and amounts and spreading procedures. In 

agricultural catchments this would be expected to lead to a relatively rapid beneficial 

response in late autumn/winter nitrate concentration peaks, as well as a possible slower 

(and less dramatic) response as the riparian zone soil N cycle changed over several 

years. 

 Changes in land use and management apart from changes in fertilizer application 

may have a strong impact upon nitrate concentrations in river waters over longer 
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timescales.  Tetzlaff et al. (2007), for example, studied changes in water chemistry over 

26 years in two small streams at the Loch Ard catchment in central Scotland.  In one, 

partial clear felling of the Sitka Spruce (Picea sitchensis) resulted in a rapid ca. 6-fold 

increase in nitrate concentration, and the effect was still noticeable (though at a reduced 

level) several years later.  In the other, clear felling had a much smaller effect, because 

the felling was in smaller areas and brash was collected and removed.  From a study of 

14 catchments distributed across the UK, Gagkas et al. (2008) concluded that, under 

high flow conditions, nitrate concentration was significantly correlated with the 

percentage broadleaf woodland cover.  Thus any change in woodland cover within the 

time frame of a time series plot should be taken into account when interpreting long-

term trends, especially if the woodlands are in, or close to, the riparian zone.  For rivers 

in the Humber Basin, including the Derwent which is considered in detail in this study, 

Davies and Neal (2004) showed a significant negative curvilinear relationship between 

nitrate concentration and the percentage upland semi-grass cover, though this could 

simply reflect both the higher point source N pollution inputs from urban areas and 

diffuse and point source pollution from arable agriculture where they dominate over 

upland grassland.  Suffice it to say here that even quite small increases in urban 

development may mask potential long-term trends attributable to pollution impacts.  

Koo and O’Connell (2006) demonstrated the importance of using % arable, grassland 

and woodland data when modelling nitrate concentrations in the River Kennet in 

southern England with a view to designing a management strategy for the chalk 

catchment. 

 There is a strong tendency to consider the biogeochemical cycling of nitrogen in 

isolation in the context of assessing pollution impacts, except perhaps occasionally in 

the context of soil and freshwater acidification (Stoddard et al., 1999) and interactions 

with the carbon cycle.  However, the strong pH dependence of many steps in the 

nitrogen cycle should not be overlooked.  Especially when a liming subsidy was 

available to UK hill farmers, large amounts of lime were applied to British uplands 

(Goulding and Black, 1998).  These undoubtedly would have resulted in the 

mineralization of very large quantities of organic matter within previously more acidic 

upland soils, leading, via ammonification and nitrification, to nitrate production and 

transfer to surface waters and ground waters.  The effects of liming are slow where 

mixing by soil fauna is limited, and it may take several years for liming to take effect 

even a few centimetres below the surface.  Conversely, return to more acidic conditions 

is also likely to be slow, which could result in a slow decline in nitrate concentrations in 
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associated streams over a decade or longer.  In arable agricultural areas, nitrate inputs 

are invariably associated with applications of nitrogen fertilizers by most authors, and 

the effects of liming to optimise soil pH for agriculture are generally ignored.  However, 

with the current expansion of the use of organic manures and composts in organic 

agriculture, this should probably not be the case in future. 

It also may be advisable to consider more closely the use of composts and lime 

in urban gardens in some areas, alongside the use of nitrogenous fertilizers by 

gardeners.  The risk of over-watering to prevent scorching of lawns if weather remains 

too dry is common practice in the author’s experience. Moreover the water being 

applied is frequently tap water, which may itself contain much higher concentrations of 

nitrate than rain water.  This nitrate, with use of a sprinkler, may have inadequate time 

to be taken up by biomass before passing below the rooting zone and on to ground 

water. 

 Very recently it has also been demonstrated that use of road salt in winter may 

seriously disrupt the nitrogen cycling in soils down slope of roads, again predominantly 

via the increase in soil pH that it causes (Green and Cresser, 2008 a and 2008b; Green et 

al., 2008).  The pH of organic-rich upland soils may increase by as much as 2 pH units, 

resulting in dramatic decreases in soil organic matter content.  The pH shift is caused by 

cation exchange, with retention of Na+, Ca2+ and Mg2+ from the road salt and loss of 

ammonium and H+.  It was shown that the enhanced mineralization and nitrification 

especially can cause a highly significant increase in nitrate concentrations in rivers 

down slope of, and running parallel to roads (Green and Cresser, 2008a).  The 

consequences of ammonium displacement by road salt depend upon the drainage 

patterns in the catchment. 

 A further confounding factor when attempting to interpret long-term trends 

found for nitrate concentrations in river water is the influence of ground water draining 

from permeable bedrock.  This has been eloquently discussed by Neal et al. (2006), 

when they were considering the temporal trends in, and influence of discharge upon, 

nitrate concentrations in tributaries of the upper Thames.  Jackson et al. (2008) have 

warned that the delay in response of nitrate concentrations in ground waters to current 

agricultural practices may mean that further rises may be unavoidable even if the most 

stringent constraints are imposed upon agriculture.  Wade et al. (2006) found it difficult 

to decide which was most robust between a model in which nitrate concentration was 

controlled by soil- and ground-water inputs, and one in which in-stream processes were 

important. Another crucial factor is the strong positive curvilinear relationship often 
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found linking nitrate concentration to discharge, as reported by Jarvie et al. (2005) for 

the River Avon tributaries in Hampshire in southern England.  

 Several studies have noted the strong seasonal trend in nitrate concentrations in 

surface waters, with nitrate concentrations peaking in winter and falling, sometimes to 

values below the detection limit, in summer when biotic uptake is maximal (e.g. Johnes 

and Burt, 1993; NEGTAP, 2001; Smart et al., 2005; Neal et al., 2006; Tetzlaff et al., 

2007; Tipping et al., 2008). Indeed models are available for predicting such seasonal 

variation (Casey and Clarke, 1979; Walling and Webb, 1984; Burt et al. 1988; Smart et 

al., 2005).   

 Based upon this review of the literature, the author hypothesises that a 

consequence of N saturation of minimally managed soils often associated with 

headwater catchment areas is likely to be a shift in summer minima to higher values as a 

consequence of N saturation.  Such a shift should be detectable visibly in long-term 

(decadal) time series plot data.  In more agricultural areas it might be anticipated that 

peaks in nitrate concentrations in late autumn/winter would decline as more efficient use 

is made of N fertilizers and manures through growing farmers’ awareness of seasonal 

losses and high energy and fertilizer costs over recent years.  The dramatic effects of 

litter on nitrate-N retention, as reported in Chapter 5, could also mean that the ban on 

straw and stubble burning introduced in England and Wales late in 1992 (Turley et al., 

2003) would have reduced winter nitrate leaching.  An early study a year after the ban, 

using porous cup tension lysimeters, confirmed the feasibility of this idea (Nicholson et 

al., 1997). 

 It was decided to use a 20-year run of data for 9 sampling sites along the River 

Derwent in North Yorkshire to test the following hypotheses, while bearing in mind all 

the potential causes of spatial and temporal variation in nitrate concentration highlighted 

earlier.  It is hypothesised that (1) there would be a tendency for nitrate concentration to 

increase relatively (i.e. in % terms) over time most markedly at sites in which the land 

use was predominantly moorland and rough, unimproved grazing, because in areas with 

more arable agriculture farmers would automatically tend to be applying less nitrogen 

fertilizer and/or manure than hitherto to meet crop requirements; and (2) in more 

agriculturally-impacted zones of the catchment, nitrate concentrations would be higher 

overall than in more upland areas, but winter maxima should have become less 

pronounced over time, especially post 1993, reflecting the ban on straw and stubble 

burning, and again post 2002, reflecting both legislative impacts and growing awareness 
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of the nitrate pollution issue, increased use of buffer strips, better timing of manure and 

fertilizer applications, and higher fertilizer prices over recent years.  

  

However, further factors may need to be considered for the Derwent.  The 

catchment is susceptible to occasional flooding in places, and has flood plains that may 

be regularly inundated.  After such occurrences nitrate concentrations may fall as a 

consequence of denitrification in soil and/or the flood sedimentary deposits (Forshay 

and Stanley, 2005).  Moreover, even before the introduction of NVZ status to part of the 

catchment in 2002, the outbreak of Foot and Mouth disease in 2001 led to the slaughter 

of many animals in North Yorkshire and the East Riding of Yorkshire, that might have 

had a beneficial impact by reducing the manure load in the area, and hence nitrate 

leaching to surface waters. 

 

8.2 Methods 
Data were provided by the Environment Agency for nitrate-N concentrations for 9 sites 

along the River Derwent in North Yorkshire in England.  The site locations are shown in 

Fig. 8.1.  GIS was used to calculate the area and the land cover distribution of the 

catchment upstream of each sampling point.  The land cover data used was the CEH 

1990 data.  To avoid having too many classes and making interpretation unnecessarily 

complex, several of the original CEH land cover classes present were combined for 

simplicity.  Grass moor, Open dwarf shrub moor, Dense dwarf shrub moor, Bracken, 

Scrub/orchard, Upland bog, Inland bare ground, Lowland bog and Open dwarf shrub 

heath were combined to give a land use class termed “Moorland”.  Grass heath, 

Mown/grazed turf and Meadow/verge/semi-natural were classed as “Grassland”.  

Suburban/rural development and Continuous urban were termed “Urban/infrastructure”.  

The small amount of Felled forest was incorporated into Evergreen woodland as 

“Evergreen woodland”. “Deciduous mixed woodland” and “Fresh water” were as in the 

original data set.  A small area was “Unclassified”.  Thus 8 classes were used for this 

assessment. 
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Fig. 8.1.  Map showing river water sampling sites along the River 
Derwent  (circles) and sewage treatment works (triangles). 

 

 Details of the terrain within each sub-catchment are included where appropriate 

in the discussion.  Suffice it to say here that preliminary visual analysis suggested that 

two catchments, Forge Valley and Malton, would be most likely to show N saturation 

effects because their Moorland and grassland were visually around 50%.  The 

agricultural and urban impact just downstream of Malton was thought likely to be 

insufficient to mask an increase in mean nitrate concentration because of the network of 

tributaries draining a relatively very large area of moorland feeding into the Derwent 

just upstream of Malton (Fig. 8.1). 
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 Data on animal numbers for the East Riding of Yorkshire and North Yorkshire 

were obtained from statistics on the DEFRA web site.  These data are not available at 

farm level, so can only provide a general indication of likely relative animal losses 

subsequent to the Foot and Mouth outbreak in the catchment. 

 In addition to using Environment Agency data for this evaluation, the river 

system was also sampled and analysed for N species at 29 points during a dry period 

from 19-23 March, 2009.   Sampling points were selected to give good coverage of both 

moorland-dominated and agriculture-dominated land use.  Nitrate was determined by 

both ion chromatography and automated colorimetric analysis using a standard 

manifold.  There was no significant difference between results obtained by the two 

techniques. 

 

8.3 Results 
Table 8.1 shows the sub-catchment area and distribution of land use upstream of each of 

the first eight sampling points.  No digitised data were available below Derwent Bridge, 

so the corresponding information is not reported for the Loftsome Bridge sampling 

point.  As this is only 6.5 km south of the Derwent Bridge sampling point, and the 

surrounding land is agricultural and quite flat, this omission is not important.  Table 8.2 

shows the % area distribution of land use in the additional catchment area on 

progressing down stream from one sampling point to the next.  Table 8.3 shows changes 

in animal numbers over time in N. Yorkshire and the East Riding of Yorkshire.  These 

provide a general indication of losses from fertilizer and  manure in the region only, as 

data were not available at farm or catchment level. 

 In addition to using EA data, 29 points on the river system were sampled by 

Begum and Ridealgh during a dry period from 19-23 March, 2009, as mentioned in 

section 8.2, and the waters analysed for N species.  The results are shown in Table 8.4. 

Figures 8.2 to 8.4 show the time series plots of nitrate concentration for the 9 

monitoring sites, moving progressively from Forge Valley near the top of the catchment 

down to Loftsome Bridge.  As expected, the nitrate-N concentrations are overall lowest 

at Forge Valley (Fig. 8.2), and have increased steadily since 1988 over the next 15 years 

(to month 180) but now annual mean values appear to be attaining a plateau.  The 

Pearson correlation coefficient for the relationship between annual mean nitrate 

concentration and year (plot not shown) was 0.482, which is significant at the 0.01 level.  

The seasonality is indistinct, suggesting precipitation pattern and changes in 

hydrological pathway are at least as important as seasonality. 
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Classification 
Group 

Forge 
Valley 

SE987860 

Sherburn 
 

SE962796 

Yedingham 
 

SE893797 

Malton 
 

SE787715 

Low 
Hutton 

SE765677 

Howsham 
Bridge 

SE732625 

Sutton 
Lock 

SE704475 

Derwent 
Bridge 

SE707364 

Unclassified 1.28 1.12 1.19 0.99 1.00 1.03 1.15 1.53 

Urban/urban 
infrastructure 

1.60 5.24 6.19 4.81 4.84 4.77 4.60 4.54 

Fresh water 0.00 0.02 0.01 0.01 0.01 0.02 0.02 0.02 

Evergreen 
woodland 

26.94 14.65 11.04 6.37 6.32 6.01 5.50 4.97 

Deciduous/  
mixed wood 

9.79 6.46 5.57 5.66 5.64 5.67 5.29 5.55 

Arable 6.83 28.01 35.86 31.94 32.14 33.32 35.91 37.39 

Moorland 33.18 21.00 17.21 24.44 24.27 23.41 21.54 19.61 

Grassland 20.37 23.49 22.92 25.78 25.80 25.78 26.01 26.40 

Upstream 
area (km2) 

120.8 250.8 337.5 1414.8 1428.7 1511.3 1679.4 1881.0 

 
Table 8.1.  Percentage distribution of land use class at the top 8 of the 9 sampling 

sites along the River Derwent. 
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 % Cover of Extra Area 
Classification  Group  Forge 

Valley to 
Sherburn

Sherburn 
to 

Yedingham

Yedingham 
to Malton 

Malton 
to Low 
Hutton

Low 
Hutton to 
Howsham 

Bridge 

Howsham 
Bridge to 

Sutton 
Lock 

Sutton 
Lock to 
Derwent 
Bridge 

Unclassified 1.0 1.4 0.9 2.0 1.6 2.2 4.7
Urban/urban 
infrastructure 

8.6 
8.9 4.4 7.7 3.6 3.1 4.0

Fresh water 0.0 0.0 0.0 0.0 0.2 0.0 0.0
Evergreen woodland 3.2 0.6 4.9 1.2 0.6 0.9 0.6
Deciduous/mixed wood 3.4 3.0 5.7 3.5 6.2 1.9 7.7
Arable 47.7 58.6 30.7 51.4 53.8 59.1 49.8
Moorland 9.7 6.2 26.7 6.8 8.5 4.7 3.5
Grassland 26.4 21.3 26.7 27.3 25.5 28.0 29.7

 
         Table 8.2.  Percentage distribution of land use class in the additional catchment area on progressing 
                            downstream between the 9 sampling sites along the River Derwent. 
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     _______  ___________________ __________________ ____________________ ____________________ 

YEAR       ER         NY      ER       NY       ER        NY             ER            NY 
  ___ ______ ______ ________ ________ ____________________________ ________________ 

2000 56,329  413,096 619,990 783,817 110,654 2,077,156 1,184,676 2,979,517 
2001 56,476  385,548 575,690 700,098 105,164 1,793,702 1,321,990 3,028,308 
2002 51,679  368,676 528,283 658,079   91,389 1,675,339 1,454,922 3,058,479 
2003 52,896  383,150 449,968 588,897   85,920 1,746,518 1,920,756 3,029,876 
2004 55,088  388,658 508,286 597,152   83,782 1,798,769 1,767,898 3,265,715 
2005 52,771  379,033 504,837 561,430   85,715 1,817,514 1,496,277 3,099,391 
2006 50,797  366,720 528,968 598,174   92,890 1,772,569 1,138,099 3,937,094 
2007 52,939  396,344 481,340 569,306   87,934 1,761,878 1,039,559 3,531,634 

__________________________________________________________________________________________________ 
 

Table 8.3.  Changes in animal numbers in the East Riding of Yorkshire (ER) and North Yorkshire (NY) over the period    
of the foot and mouth outbreak in 2001, based upon DEFRA statistics available from the DEFRA web site. 
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 Sampling point Grid Ref Upstream Catchment Land Use Nirate NH4-N 
      mg/l mg/l 
Un-named chalk stream SE 957 777 Flat area of high quality grassland & arable; sheep on bank. 68.1 0.097 

Ellis Beck SE 900 777 Flat arable and grassland 62.1 0.177 

Drainage channel north of Yedingham SE 896 796 Arable & grassland. 61.3 0.026 

Marrs Beck (tributary to Holbeck) SE 670 766 Mainly agriculture, some woodland. 45.1 0.023 
South channel parallel to Derwent at 
Sherburn SE 954 794 Agricultural, including much arable. 44.4 0.032 

Derwent at Yedingham  SE 891 795 Approximately 36% arable plus mix of moorland, grassland and woodland. 43.2 0.065 

Derwent at Sherburn SE 954 795 Approximately 30% arable plus mix of moorland, grassland and woodland. 36.4 0.086 

Sherburn Cut SE 954 784 Mixture of flat arable & grassland and sloping grassland. 33.5 0.042 

Holbeck SE 669 773 Agriculture, but woodland & moorland on steeper slopes; includes community at Ampleforth. 27.0 0.033 

Ruston Beck at Sherburn Ings SE 954 796 Flat arable & grassland. 22.0 0.066 

Etton Gill at Helmsely (tributary to Rye)  SE 613 835 Arable, riparian woodland & improved grassland. 20.2 0.006 

Derwent at Forge Valley SE 987 860 Predomimantly moorland, grassland & woodland; ca. 7% arable. 19.3 0.022 

Sea Cut Malthorpe Farm SE 979 883 As Forge Valley. 19.2 0.012 

Welldale Beck at Yedingham SE 896 796 Predominantly grassland and some arable; minor urban. 19.1 0.064 

Derwent at West Ayton SE 987 848 Predominantly moorland, grassland and woodland; ca. 7% arable. 18.8 0.008 

Derwent at Cockran Foot SE 968 892 Similar to Forge valley, but slightly less agriculture. 18.2 0.012 

Rye at South of Helmsley SE 613 835 Moorland by headwaters on upper slopes; wooded riparian zones; some grassland & arable. 16.0 0.008 

Black Beck near Langdale End SE 942 908 Predominantly forestry plus some agriculture/improved grassland on gentle slopes. 10.5 0.004 

Derwent at Langdale End SE 943 909 Predominantly moorland and woodland; patches of arable. 9.4 0.009 

Hodge Beck SE 677 856 Large area of sloping moorland & riparian woodland; grassland & arable in low, flatter areas. 9.3 0.034 

Bilsdale Beck at  Chop Gate SE 558 993 Moorland & improved grassland; some agriculture. 7.8 0.017 
Rye above Ladhill Beck south of Hawnby SE 543 893 Large area of moorland & woodland; some improved grassland. 7.8 0.008 
Seph at Chop gate (confluence of Bilsdale 
Beck & Raisdale Beck) SE 558 992 Predominantly moorland and improved grassland; some woodland. 7.5 0.044 

Dove at Kirkbymoorside SE 708 863 Predominantly sloping moorland; some riparian woodland; some grassland & arable. 7.0 0.011 

Raisdale Beck at Chop gate SE 558 992 Moorland, woodland & improved grassland. 7.0 0.038 

Rye at Shaken Bridge SE 559 883 Large areas of moorland; some woodland, including in riparian zone. 6.7 0.009 

Ladhill Beck (tributary to Rye) SE 546 899 Moorland with small patches of riparian zone woodland; some grassland;some grassland & minor arable. 6.0 0.008 

Seph at Laskill SE 562 908 Large area of moorland; some woodland; some grassland on lower slopes. 5.4 0.014 

Ledge Beck at Grange SE 573 961 Extensive sloping riparian woodland; regenerating burned moorland. 1.6 0.007 

 
Table 8.4.  Nitrate and ammonium-N concentrations in water samples across the upper Derwent catchment during a dry period from 19-23/03/2009. 
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  Fig: 8.2 Time series plots from 1988-2008 for Forge Valley, Sherburn and Yedingham. 
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   Fig. 8.3 Time series plots from 1988-2008 for Malton, Low Hutton and Howsham Bridge. 
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Fig: 8.4 Time series plots from 1988-2008 for Sutton Lock, Derwent Bridge and Loftsome Bridge. 
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 Overall, nitrate-N concentrations are higher at Sherburn and Yedingam compared to 

those at Forge Valley (Fig. 8.2), reflecting the greater influence of agricultural land.  The 

arable % land use increases from 6.83 to 28.01 and 35.86 on moving down stream between 

the sites (Table 8.1).  However, three interesting trends are readily apparent.  The first is 

that the clear increasing trend in mean nitrate-N concentration seen at Forge Valley is no 

longer discernable (not significant) at Sherburn, and less significant (Pearson coefficient = 

0.357) at Yedingham (where no data were available over the first 4 years).  The second is 

that clearer mid to late summer maxima (rather than minima) can be seen at Sherburn over 

the past 8 years.  The third is that values in summer often showed some low concentration 

episodic minima over the first ten years but these are subsequently less noticeable, 

suggesting that summer leaching is now higher than it used to be a decade or longer ago, 

and winter leaching is lower.  Trends in the time series plots are quite similar, but not 

identical, at Sherburn and Yedingham. 

 Compared with that above Yedingham, the catchment upstream of Malton has more 

moorland and grassland, and less arable land in percentage cover terms (Table 8.1).  Nitrate 

concentration therefore falls slightly overall compared with that at Yedingham (Figs. 8.2 

and 8.3), and there appears to be a steady increase between 1990 (month 25) and 2000 at 

Malton, followed by a plateau.  The Pearson correlation at Malton was 0.443 between mean 

nitrate concentration and year, significant at the 0.01 level.  The mid to late winter maxima 

are distinctive over the first 12 years, but subsequently become hard to detect.  The timing 

of minima is variable over the first 12 years, between summer and autumn, and no 

distinctive minima can be seen over the past 8 years (Fig. 8.3). 

 The Low Hutton site is just below the Malton site, so the changes in land use and 

catchment area (Table 8.1), and thus also in water nitrate-N concentrations (Fig. 8.3), are 

negligible.  Even at Howsham Bridge the small additional area of arable agricultural land 

has a very small impact.  The concentration increase overall over time (the N-saturation 

effect)  is still very obvious over the first eight years, and the late winter maxima are again 

clear over the first 10 years after 1990, but subsequently become hard to discern (Fig. 8.3).  

Overall, the mean annual nitrate increased (coefficient significant at < 0.01) over the 

assessment period.  Generally summer minima are at higher values over the second half of 

the period for which data were available for Howsham Bridge.  Even here the nitrate-N 
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concentration is still lower than that at Yedingham because of the large input of water 

draining moorland and grassland just above Malton; moorland plus grassland is >49% at 

Howsham Bridge, compared with just over 40% at Yedingham. 

 With a growing relative influence of arable agriculture and grassland and a decline 

in relative influence of moorland (Table 8.1) on progressing down stream through the 

Sutton Lock and Derwent Bridge sites, there is a further slight increase in the overall 

nitrate-N concentration, and the N-saturation effect is still readily discernable (Fig. 8.4).  

The seasonality effect of agricultural use of fertilizers (strong late winter maxima in nitrate-

N concentration) over the first 12 years of data collection at Derwent Bridge is extremely 

clear, and at both sites summer minima are higher but winter maxima have declined over 

the past 10 years.  By the Loftsome Bridge site, 6.3 km further south, the time series plot is 

still quite similar to that for the Derwent Bridge site, though there is more variability over 

the first three years of monitoring (Fig. 8.4). 

 

8.4 Discussion 

8.4.1 Forge Valley 
The Derwent rises in a valley to the south side of Fylingdales Moor, flowing initially east 

then south east.  To the north is Calluna moorland, but on the south side of the valley lies 

the coniferous woodland of Langdale Forest.  Tributaries join the Derwent from both sides 

of the valley, including Woof Howe Grain from the forest.  The river then flows south 

between the eastern side of Langdale Forest and the west side of Broxa Forest (both 

coniferous), being joined by Jugger Howe Beck and Bloody Beck from the south eastern 

corner of Fylingdales Moor (High Moor), and Cowgate Slack draining Harwood Dale 

Forest (also coniferous).  Several other tributaries join as the river flow south/south east 

towards Forge Valley, including Black Beck from Dalby Forest, White Beck through Deep 

Dale and Troutsdale Beck from Trouts Dale to the west, and Whisperdales Beck and 

Lowdales Beck from the east.  The latter will be influenced by farming activity in the area.  

Minor roads run parallel to the River Derwent along approximately one third of its length to 

this point, so some road salting influence is possible, but this should be minor.  Salting 

effects via pH effects would in any case depend upon hydrological conditions.  There are a 

number of isolated dwellings, but their influence too should be small.  Therefore evidence 
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for N saturation induced by atmospheric deposition might be expected at this site and is 

clearly visible in Fig. 8.2 as a steady increase in annual mean nitrate-N concentration.   

 The catchment area upstream of the sampling point at Forge Valley is 120.8 km2, 

and much of the area is hilly (up to >290 m).  Moderate to steep slopes are frequent.  It has 

been documented that steep (20-40°) slopes facilitate nitrate transfer to rivers in British 

upland catchments (Smart et al., 2005).  Rivers in catchments with steep slopes tend to be 

more flashy than lowland rivers, and nitrate concentration may increase with discharge 

(Jarvie et al., 2005). It is therefore reasonable to suggest that a strong hydrological pathway 

effect at Valley Forge is masking the strong seasonality effect often reported for nitrate-N 

in heavily N-impacted British upland catchments (Clark et al., 2004; Cresser et al., 2004; 

Smart et al., 2005).  The high variability that this causes means that a large data set is 

needed over several years to detect long-term trends in such a catchment. 

 

8.4.2 Sherburn 
Below Forge Valley some influence on the Derwent is likely from East and West Ayton, 

and the small sewage treatment works (STW) to the west of Seamer, and this is reflected in 

the >3-fold increase in Urban/urban infra structure land use (Table 8.1).  The river flows 

south through the Seamer Ings, and in this area, though relatively small compared with the 

upstream catchment area, the river is likely to be significantly influenced by agriculture.  

Arable agriculture increased from 6.83 % at Forge Valley to 28.01% at Sherburn.  In fact, 

close to the Forge Valley sampling site, water is regularly re-routed from the Derwent via a 

sea cut to the North Sea as part of the flood protection system down-stream, so the effects 

of agriculture at Sherburn and Yedingham especially may be larger than would be 

anticipated.  As the Derwent starts to flow towards the west through Sherburn Ings and 

Brompton Ings, the River has been re-routed, but again there should be a significant 

agricultural influence.  This could be expected to partly reduce the impact of N saturation 

on winter nitrate concentration peaks if farmers are applying less N fertiliser over the past 

decade than over the one before in response to falling fertilizer need by crops because of 

increasing N deposition inputs and to increasing fertilizer prices.  Declines in animal 

numbers, especially for pigs from 2001 (Table 8.3), could also be potentially beneficial, as 

could straw incorporation post 1993.  Maxima are no greater over the past decade than they 
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were in the previous decade (Fig. 8.2).  The catchment area upstream of the sampling point 

at Sherburn is 250.8 km2, so the additional 130 km2 compared with Forge Valley suggests 

that the agricultural influence should be substantial.  It would be anticipated that the N-

saturation impact on nitrate concentration would be less evident winter peaks at Sherburn, 

with reduced fertilizer inputs over time, though it should still be evident in higher summer 

minima from enhanced nitrate in ground water end members.  Also, if straw incorporation 

reduces nitrate leaching in winter, as the residue litter C:N ratio falls over the late 

winter/early spring period, this retained N could start to be released in early summer.  

Higher summer minima certainly appear to be the case in Fig. 8.2.  Overall though, the 

nitrate-N concentration should be higher at Sherburn than at Forge Valley because of the 

substantially greater agricultural impact, and it has approximately doubled on average 

compared with Forge Valley at any time over the 20-year sampling period.  Change in 

catchment area would not be expected to give a pro-rata change in nitrate concentration 

because of differences in hydrological behaviour above and below Forge Valley.  The area 

above Forge Valley has more steep slopes as mentioned earlier and almost certainly higher 

precipitation, and is more influenced by lower order streams.  Also some water is 

periodically diverted via a sea cut. 

 

8.4.3 Yedingham 
The sampling site at Yedingham is only 6.9 km west of that at Sherburn, so only a slightly 

greater agricultural influence might be expected.  Arable agriculture has increased from 

28.01% at Sherburn to 35.86%.  Sampling here commenced only in 1992, but between 

1992 and 2007 it would be expected that the water chemistry at Yedingham and Sherburn 

would be very similar, with a slight further increase in average nitrate-N concentration at 

Yedingham, and further decline in the distinctive nitrate maxima for reasons given in the 

previous section.  The catchment area upstream of the sampling point at Yedingham is only 

337.5 km2, an increase of only 86.7 km2 compared to the area at Sherburn.  Thus only a 

small further increase in nitrate concentration compared with Sherburn would be expected, 

and that is what is observed in practice.  Minima have moved to higher values over the past 

10 years, indicative of a breakthrough effect causing enhanced summer leaching.  Nitrogen 

pollution occurs throughout the year, and leaching to subsoils is highly likely through late 
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autumn and winter.  This N may be retained at least partially below the rooting depth, and 

then contribute to nitrate leaching from subsoils in the subsequent summer.  In a totally 

unfertilized, but heavily N-impacted, grassland soil close to York, Riaz et al. (2008) have 

reported that both ammonium and nitrate may be mobilized down soil profiles to below the 

rooting depth where soil pH often increases, soil C:N ratio is reduced, and nitrification 

enhances nitrate  mobilization from sub soils to adjacent streams via ground water end 

members.  This is probably what is responsible for the lack of any conspicuous and 

consistent minima in nitrate-N concentration at Yedingham over the past decade. 

 

8.4.4 Malton 
Substantial differences might be anticipated in water chemistry between water samples 

taken at Yedingham and those taken at Malton, because of the influence of the River Rye 

that joins the Derwent just above Malton (Fig. 8.1).  The impact of the agricultural area 

above this confluence point downstream of Yedingham will be smaller compared with the 

very large area of moorland and grassland, and lesser area of woodland that drains towards 

the south and into the Rye before it joins the Derwent.  The river system includes Raisdale 

Beck and Tripsdale and Tamhole Becks, draining Bilsdale West Moor and Bilsdale East 

Moor into the River Seph as it flows south to join the Rye, Benfield Gill draining East 

Moors and Pockley Moor to join the River Ricall which, in turn, flows into the Rye.  The 

Seph and the Rye will both be subject to some influence of road salting from the B1257 

road, which runs parallel to the Seph for more than 10 km and could enhance nitrate 

concentration in the river through the year (Green and Cresser, 2008a).  The town of 

Helmsley could significantly influence water quality in the Rye.  Kikrbymoorside will have 

some influence on the River Dove before it joins the Rye.  Overall though, the influence of 

the river system will undoubtedly be strongly dominated by water draining from the 

complex network of higher order rivers draining the moors, as the urban/urban 

infrastructure % is lower at Malton  (4.81%) than at Yedingham (6.19%, Table 8.1).  The 

catchment area upstream of the sampling point at Malton increases to 1414.8 km2, an 

increase of 1077.3 km2 compared with the 337.5 km2 at Yedingham.  Therefore it may be 

predicted that water from the Malton site would show as strong an influence, or even a 

stronger influence, of atmospheric N deposition and N saturation in time series plots than 
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water from the Forge Valley site, and the increase overall between 1990 and 2007 is very 

clear in Fig. 8.3.  Because of the dilution with the influx of water derived from the moors 

and the N-impacted acid upland soils being drained, it might also be expected that a steady 

increase over the years in summer nitrate inputs would be noticeable at this site, as indeed 

observed (less conspicuous summer minima in Fig. 8.3), but late winter fertilizer or liming-

derived nitrate peaks would be reduced even more as a consequence of the expected lower 

fertilizer inputs and possibly some straw incorporation and declining animal numbers.  This 

input dilutes the overall nitrate-N concentration in the River Derwent at Malton compared 

to values at Yedingham.  These effects are all visible comparing Fig. 8.3 and Fig. 8.2. 

 

8.4.5 Low Hutton 
The Low Hutton site is just 4 km to the south west of the Malton sampling site, and should 

provide a clear indication of any effect that the town of Malton has upon the quality of 

water in the River Derwent, but the overall Urban/urban infrastructure only increases from 

4.81 to 4.84% (Table 8.1).  The increase in upstream catchment area between the two sites, 

by 13.9 km2 to 1428.7 km2, is relatively very small, and tributaries joining the Derwent in 

this stretch are also minor, draining predominantly agricultural land.  Little difference 

would be expected therefore between the two data sets for Malton and Low Hutton, and 

little difference is seen in Fig. 8.3.  Because of the relative closeness of the sites and the 

small volume of additional water entering the main river, the Low Hutton water data also 

display evidence of N saturation over the 20-year sampling period with higher and less 

obvious summer minima and similar or lower winter maxima over the second decade of 

sampling, but an overall increase since 1990. 

 

8.4.6 Howsham Bridge 
The next sampling point at Howsham Bridge, 6 km south west of Low Hutton, also adds 

only modestly to the catchment area (an extra 82.6 km2 compared with the total upstream 

area of 1511.3 km2).  The area is rather more hilly, but still predominantly agricultural.  A 

number of small villages and their interlinking network of minor roads will have a small 

impact, as may the main A64 route running south west of Malton.  The impact of these 

would be expected to be minor, because of the relatively small size of the additional 
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catchment area and the decline in the overall urban/urban infrastructure % (Table 8.1).  

Arable land % increases further, and the seasonal effect over the first 10 years is very 

noticeable in Fig. 8.3, but subsequently declines.  The saturation effect can still be seen, but 

overall nitrate concentration has, if anything declined slightly over the past 10 years.  

 

8.4.7 Sutton Lock 
Agriculture (arable and grassland) increases further on moving down stream to Sutton Lock 

Table 8.1, and Fig. 8.4 shows very similar temporal trends for this site to those seen for 

Howsham Bridge in Fig. 8.3.  The N saturation effect is still clear, but the overall increase 

seems to be predominantly due to greater nitrate leaching in summer, and again there is no 

increase in winter nitrate concentration maxima.  Tributaries flowing into the Derwent from 

both east and west would benefit from NVZ status from 2002 onwards here and further 

downstream too, and this effect is marked. 

 

8.4.8 Derwent Bridge 
Agriculture (arable and grassland) increase again by Derwent Bridge, and moorland 

becomes less influential (Table 8.1).  Seasonality becomes even more pronounced and 

consistent between 1990 and 2000 (Fig. 8.4), with sharp maxima initially in 

January/February and late summer/autumn minima.  Both have become markedly less 

pronounced over the past 7-8 years.  Here too the increasing trend from 1990 to 2000 is 

very clear, with no subsequent further increase.  In the lower reaches of the catchment the 

NVZ constraints imposed in 2002 would start to come into effect. 

 

8.4.9 Loftsome Bridge 
The nitrate data at this southern-most site closely resemble those at Derwent Bridge, though 

with greater initial variability in the time series plot.  It is interesting to note that although 

both the Derwent Bridge and the Loftsome Bridge sites have a greater % arable plus 

grassland land use than Yedingham, the latter still exhibits greater overall nitrate-N 

concentrations.  This may well reflect loss of nitrate from the floodplains of the river 

(Forshay and Stanley, 2005) where the Ings are flooded quite regularly on the flat areas 
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adjacent to the river channel.  The benefits of NVZ designation in 2002 should be greatest 

(in terms of improved sub-catchment areas) at this point. 

 

8.5 Conclusions 
The data presented here fit well on the plot of nitrate concentration versus % upland area in 

catchments published by Davies and Neal (2007).  They also help to explain why such 

diverse long-term trends have been observed for the nitrate concentrations in rivers around 

the world in N-impacted regions (Stoddard et al., 1999; Evans and Monteith 2001; de Wit 

et al., 2008; Rogora et al., 2008; Tipping et al., 2008).  At Forge Valley, the long-term trend 

in nitrate concentration was almost masked by the high variability attributable to diversity 

of hydrological pathways over time, which in turn relates to catchment topography.  

Nevertheless a long term trend attributable to a combination of direct leaching of nitrate 

and leaching of ammonium down profiles followed by nitrification below the rooting zone 

was clearly apparent.  Further down stream at Sherburn, however, no such long-term trend 

was apparent, and it is suggested that this is due to farmers consciously or sub-consciously 

responding to the “free N fertilizer” associated with atmospheric N inputs and higher 

fertilizer and energy costs, straw incorporation post 1993, and the relative size of wooded, 

moorland and agricultural areas.   

 The downside of this “free” fertilizer is that it is applied throughout the year, and 

may thus be leached to depth in soil profiles when plant uptake is low, lowering the C:N 

ratio at depth in the soil.  It is likely to lead also to some ammonium accumulation at depth, 

and subsequent nitrification of this will cause nitrate to leach to ground water or surface 

waters.  In the chalky strata across part of the Derwent catchment, ground water inputs at 

low flow conditions may be very important, and help to cause the increase (i.e. decline in 

conspicuousness) over the past decade in the values of nitrate “minima” associated 

normally with summer months in both upland rivers and agricultural catchments.   

 Water from the Derwent at Malton is strongly influenced by input from the uplands 

and shows a clear increase in nitrate concentration over 10 years from 1990, followed by a 

plateau and markedly reduced variability.  However, in the two previous years nitrate 

concentration seemed to be declining, a trend that was reflected downstream at Low Hutton 

and Sutton Lock.  This means that the strength of the breakthrough relationship depends 
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upon the sampling period duration.  An 18 year sampling period gives a strong relationship 

at almost all of the study sites, whereas a 10 year sampling period starting around 1998 

would suggest no significant trend, or possibly even a slight declining trend.  This suggests 

that it is important to look very carefully at catchment characteristics when interpreting 

results. 

 In terms of nitrate pollution, the Yorkshire River Derwent appears to be a relatively 

quite clean river compared with many in the UK, and farmers may well ask why in 2009 

the whole catchment has been assessed to be a NVZ.  In an attempt to answer this question, 

as described earlier, the river system was sampled and analysed for N species at 29 points 

during a dry period from 19-23 March, 2009.  The results (Table 8.4) clearly indicate that 

many agricultural areas are making a significant contribution to the total nitrate load in the 

river, whereas upland areas provide relatively clean water that dilutes arable agricultural 

impacts.  The whole area though contributes to the high nitrate concentrations at a point 

well down stream used to justify NVZ designation of the whole catchment.  For example, 

the Derwent Bridge data over the 15 years from 1990 to 2004 (Fig. 8.4) may be used to 

predict the 95 percentile nitrate-N concentration in 2010 if no remedial action was taken; 

the result would exceed the critical value of 11.29 mg/l for nitrate-N which equates to 50 

mg/l for nitrate.  This would be sufficient to justify declaration of the whole catchment 

upstream as a NVZ.  Such a modelling approach is clearly more sensible than using recent 

data if controls on nitrate leaching are to continue for water quality protection. 

 

8.5.1  Should the River Derwent in N. Yorkshire be a NVZ? 
It is easiest to understand how the imposition of NVZ status was decided by looking at a 

specific example.  The sampling site at Sherburn has been selected here, as its catchment 

has typical mixed land use of a UK catchment on the edge of the uplands.  Information 

obtained directly from the DEFRA Magic web site for the NVZ designation at Sherburn is 

as shown below. 
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Surface Water NVZ (England)  
Type 

of 
NVZ 
in 

2006 

Id. of Lowest 
Catchment 

Easting 
of 

Highest 
Nitrate 
in 2004 

Northing 
of 

Highest 
Nitrate 
in 2004

Type of 
Catchment 

(1 or 2) 

Nitrate 
Monitored 

in 2004 
mg/l 

Nitrate 
Predicted 

in 2010 
mg/l 

Nitrate 
Predicted 
by Model 

mg/l 

Confidence 
of Model 

Prediction 

Easting 
of 

Lowest 
Point

Northing 
of 

Lowest 
Point 

SW GB204027064270 470900 436400 1 60.4695 40.756 35.89976 CONFIDENT 
PASS 485489 423709 

Although the model prediction is a confident pass, because the future predicted TON 

concentration  would not exceed 11.29 mg N l-1 for 5% or more of the time at Sherburn,  the 

catchment is still designated as a NVZ because of high monitored values (60.5 mg nitrate   

l-1) downstream at the map reference given  for the highest nitrate, namely 470900 434600.  

This grid reference corresponds to the EA sampling point at Derwent Bridge.  Figure 8.5 

shows a time series plot of the EA data for the Sherburn sampling point, made available to 

farmers who wished to appeal against implementation of NVZ status to their holding over 

the period 1990 to 2004.  Here total oxidized N has been plotted, rather than nitrate-N, as 

there were a number of missing nitrate-N values in the nitrate data set in the earlier years.  

The highest TON value was 10.94 mg/l in January 1991.  This corresponds to only 48.4 mg 

nitrate l-1).  Thus the 95 percentile value also must be < 50 mg nitrate l-1) at Sherburn from 

direct measurement.  The 60.5 mg nitrate l-1 does not apply at Sherburn itself.  However, 

based upon EA monitoring data, it does not apply to any other Derwent monitoring site 

either, including Derwent Bridge. 

 
Fig. 8.5. Changes in TON from January 1990 to the end of 2004 at the 

Sherburn sampling site on the River Derwent, from the data made 
available from the Environment Agency to Farmers via DEFRA. 
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Figure 8.6 shows the time series plot of the EA data for the Derwent Bridge 

sampling point over the period 1990 to 2004, that were made available to farmers who 

wished to appeal against implementation of NVZ status to their holding.  At no point over 

this period did the Derwent at Derwent Bridge exhibit a concentration above the critical 

concentration of 11.29 mg N l-1, which corresponds to 50 mg nitrate l-1.  This implies that 

the Environment Agency extrapolation of the line to 2010 must have suggested to them that 

the 95 percentile value by 2010 would have reached or exceeded these critical 

concentration values.  It should be remembered that the modelling approach employed by 

the Agency was assuming that the variation about the trend line would remain similar to 

that seen over the period 1990 to 2004.  If this assumption is made, then recurrence of high 

winter peaks in nitrate concentrations such as those observed in 1995, 1996 and 1997 in or 

around 2010 could just lead to an unacceptably high 95 percentile value. 

 

 
 Fig. 8.6.  Changes in TON from January 1990 to the end of 2004 at the Derwent 

Bridge sampling site on the River Derwent, from the data made available 
from the Environment Agency to Farmers via DEFRA. 

 
 Farmers might well argue that growing environmental awareness about nitrate pollution 

issues and the high costs of fertilizer and energy make such recurrences very improbable.  

If the above figure is compared with the time series plot presented earlier for the Derwent at 

Derwent Bridge which covers the period up to 2008, it does seem that high winter nitrate 

peaks are unlikely.  However, it must be remembered that the lower reaches of the River 
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Derwent catchment have been in a nitrate vulnerable zone since 2002, so the consistent 

reduction in the severity of the annual winter nitrate peaks might simply be reflecting the 

success of the NVZ policy. The EA could therefore be justified in assuming that the 

substantial winter peaks in nitrate concentrations could resume if the imposition of NVZ 

status did not continue.  However, the issue that remains unresolved in cases such as this 

one where the justification for failing status is questionable is whether oxidized N inputs 

from waste water treatment works and nitrate-N inputs originating from atmospheric 

pollutant deposition have been taken adequately and appropriately into account.  There 

remains room for debate over these crucial points. 
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CHAPTER 9:  SUMMARY OF MAIN FINDINGS OF THE 

         THESIS, GENERAL CONCLUSIONS, AND 

         SUGGESTIONS FOR FUTURE RESEARCH 
 

9.1 The origins, aims, and successes of the research reported in 

this thesis 
On moving to York to study for a PhD supervised by Professor Cresser, it seemed 

sensible to design a project that was complementary to the activities of other 

members of his research group who were devoting their time to improving 

understanding of the nitrogen cycle.  The group was, and is, interested especially in 

the fate and impacts of atmospheric pollution on terrestrial ecosystems, and how 

impacts on soil systems subsequently have an impact also upon surface waters.  This 

involved selecting topics, based upon an initial literature search and discussions with 

my supervisor, where it was hoped that I could make a significant contribution to 

understanding how the N cycle works without excessively overlapping the research 

of other group members.  Therefore, in the following discussion, their research is 

also briefly mentioned where appropriate. 

 

9.1.1 Chapters 1 and 2 
As discussed in Chapter 1, a literature review rapidly revealed that the N cycle is 

highly complex, with many established facts known about it but sometimes 

apparently conflicting research results too.  Therefore, with the resources available to 

complete a PhD at the University of York in the available timescale, it was essential 

to focus primarily of one ecosystem type close to York.  Acid grassland at Hob Moor 

was selected, as discussed in Chapter 2, because it provided a diverse range of soil 

textures and hence drainage characteristics and pH values, because it was 

conveniently close for field sampling, and because it was known (Cresser, personal 

communication) that concentrations of ammonium-N in an adjacent small stream 

were unexpectedly high.  However, later the author gave in to the need to do at least 

one study (in Chapter 6) using tree litter, because it has hoped that this would 

complement the research of another group member who was investigating the effect 
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on nitrate mobility of incorporation of grassland litter into soil (Riaz, personnal 

communication). 

 

9.1.2   Chapter 3 
No members of the group were investigating the effects of soil drying and rewetting, 

apart from Muhammad Riaz (Riaz, personal communication), who only planned 

drying periods of up to 3 days in some of his intact core microcosm experiments.   

As mentioned in Chapter 1, therefore, Chapter 3, and to some extent Chapter 4 which 

is discussed later, were instigated by the idea that climate change would increase 

occurrence, and probably extent, of periods of drought in the UK, and hence result in 

more drying and re-wetting cycles that would almost certainly disrupt the N cycle 

and potential transport of N to surface waters.  A literature search on this topic 

suggested that previous studies had been based upon before-and-after measurements 

for one or more drying/wetting cycles, so it was decided that it would be worthwhile 

to measure how extractable N changed at intervals over an extended period of drying 

and then also at intervals over a period after rewetting, to fill a gap in knowledge.  

 This decision proved to be excellent, because the results for extractable 

ammonium, and even more so for extractable nitrate, were surprising.  Before 

starting the experiment, the author thought it highly probable that ammonification 

and nitrification would continue for a few days, progressively slowing down and then 

stopping.  It was thought that plots of extractable ammonium-N and nitrate-N versus 

time over the drying period would both reach plateaus, as stored mineralized-N 

species would be extracted but no more mineralization of N was occurring; however, 

it was thought that these plateaus would not necessarily coincide in time, if 

ammonium supply started to impact upon nitrification rate. 

 In practice, ammonification apparently continued over the 42-day duration of 

the experiment, and was still apparently occurring at a significant rate.  It can only be 

speculated here that some components of the microbial population (but probably not 

nitrifiers!) were extremely tolerant of drought conditions, still functioning under near 

total desiccation conditions.   These then could explain the immobilization of nitrate 

seen in the latter part of the drying phase of this experiment. 
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 The significance of these results is that the results of other drying-wetting 

cycle experiments on the N cycle will change, possibly quite dramatically, with the 

duration of drying period.  It would be interesting to see if the nitrate immobilization 

after extended drying periods occurred elsewhere.  It could clearly be ecologically 

highly beneficial under desert conditions for maintaining N supply in such 

ecosystems. 

 

9.1.3  Chapter 4  
When the work for this thesis was being planned, Cresser had just returned from a 

short period of research at Monash University in Australia, and gave a seminar on 

work he had been doing there with Deletic and her colleagues on the use of large 

boxes of vegetated soil for treating urban runoff to remove nitrate, phosphorus and 

heavy metals.  He had come up with the idea in Australia that nitrate flushes after 

prolonged dry periods were primarily due to sudden removal of nitrate stored in soils 

as they dried out, rather than an incredibly rapid flush of nitrification.  He postulated 

that the latter would be a slower effect.  He had been able to model this processes 

(Cresser, unpublished results), but had no experimental data to confirm that his 

assumptions about how the N cycle was functioning during drying out were correct 

when he was developing the model.  The idea of Chapter 4 was to test this 

hypothesis.  Fortunately, the results in Chapter 3 allowed selection of an appropriate 

drying period of 6 days for the study in Chapter 4, because at 6 days stored nitrate-N 

would be close to a maximum value for the test soil used. 

 The results confirmed the hypothesis that stored nitrate was flushed out fairly 

quickly, and would contribute significantly to the first flush of nitrate from urban 

runoff treatment systems seen when a heavy rain storm follows a few days of very 

dry conditions.   The flush due to nitrification in Chapter 4 followed much more 

slowly; the ammonium-N spiking showed that the production of nitrate was not 

ammonium limited, and that the nitrifier activity was still increasing at day 9.   The 

results in Chapter 4, and in the paper that resulted from it (Mian et al., 2008), 

confirmed the finding that the ammonium pool continues to increase over an 

extended period of drying, because the soil extractable ammonium-N concentrations 

were much higher from dried soils than from the field- moist soils.  The author 
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believes that the findings are also important in more natural ecosystems, and should 

be considered in the development of models for predicting temporal variations in 

nitrate concentrations in catchment runoff, or indeed in models that attempt to predict 

nitrate passage to groundwater. 

 

9.1.4   Chapter 5 
As mentioned in Chapter 1, the research in Chapter 5 was triggered by a need to 

explain why ammonium-N was apparently being mobilized at unexpectedly high 

concentrations into a stream that runs beside Hob Moor.  Measuring ammonium 

absorption/desorption characteristics in soils over a range of depths was an 

appropriate way to test the idea that ammonium-N might be more mobile in soil 

solution that the author and (based upon my literature survey at the start of Chapter 

5, most soil scientists apart from my supervisor, believed. 

 The problem when the research idea was first envisaged was that, 

experimentally, it required a large number of samples and sub-samples to be 

processed extremely quickly, because it was widely perceived that N speciation in 

samples may change dramatically during storage, even for quite short periods.  In the 

author’s view, the results would only be meaningful, however, in terms of their 

intended use for assessing risk of ammonium leaching from soils to surface waters at 

Hob Moor, if the experiments were performed with field-moist Hob Moor soils.  This 

was made possible in an innovative way by allowing the author to use groups of 

second year environmental science students for two days to collect and process the 

large number of samples in a short period of time.   The author, however, started 

several weeks in advance of the time-tabled classes, so that he could design and test 

the experimental protocol.  He subsequently closely supervised the students when 

they were performing the field sampling and the laboratory experimentation, before 

analyzing all the filtrates for ammonium-N and nitrate-N himself. 

 The results of the absorption isotherm experiments, which were published in 

Environmental Pollution (Mian et al., 2009), very conclusively demonstrated that 

ammonium is mobile within, and potentially from, the soils at Hob Moor, regardless 

of texture and potential drainage status, but that there were differences in mobility 
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between surface and sub-surface soils between the more acid and freely draining 

soils and the more poorly draining soils. 

 This finding is important in a number of contexts.  At Hob Moor, from 

personal observations, it is clear that Marston Moor Drainage Board has difficulty in 

keeping the stream, which is part of the flood protection system for York, clear of 

aquatic vegetation.  It appears that ammonium inputs to the stream are likely to be 

facilitating eutrophication, and these may be originating from atmospheric inputs of 

ammonia and ammonium and from animal excrement on the parts of the Moor used 

to graze cattle for part of the year under the Moor management scheme.  The results 

also suggest that much more attention should be paid to the point made by 

Heathwaite et al., (1990, 1993) that ammonium leaching might be a potential 

problem from intensively grazed grasslands.  It must be pointed out though that 

ammonium was still very mobile in the un-grazed, freely draining soils at Hob Moor. 

 

9.1.5  Chapter 6 
The research in Chapter 6 was stimulated by the author’s developing interest in the 

potential research benefits of viewing the N cycle from the perspective of the Gaia 

hypothesis after he had contributed to a joint paper with his supervisor on this topic 

(Cresser et al., 2008).  The results clearly showed the importance of litter with a low 

C:N ratio to the immobilization of nitrate in winter months.  Although several 

hypotheses formulated in the chapter were, and must remain, speculative, the author 

nevertheless thinks that this a potentially important contribution to understanding 

how atmospheric N pollutant deposition may be causing biodiversity change, as 

mentioned in Chapter 1.   

 Even though not every hypothesis could be unequivocally proven in this brief 

preliminary experiment, when the results are considered alongside those of (Riaz et 

al., 2010 a and b) which have shown that incorporation of grass litter from Hob Moor 

into soil also dramatically reduces winter nitrate leaching, they become very relevant 

to policy makers who are trying to reduce nitrate concentrations in UK rivers.  The 

ban on straw burning in England and Wales, introduced at the end of 1992 

(Nicholson et al., 1997; Turley et al., 2003), may have played a not insignificant role 
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in reducing nitrate concentrations seen in Rivers such as the Derwent in North 

Yorkshire, as described in Chapter 8.  

 

9.1.6   Chapter 7 
With the wisdom of hindsight, the research in Chapter 7 should perhaps have been 

completed before any of the work in Chapters 2-6 was even started.  In reality, 

however, it was stimulated by the author’s observations of unexpectedly high 

variations in ammonium and nitrate concentrations between replicates for a few of 

his experiments, regardless of how careful he had been with pre-washing apparatus, 

and the desire to know more prior to doing any more research on N species 

transformation.  This suggested the need to investigate how soil sample preparation 

and storage conditions impacted upon the results of determinations of mineral N 

species in field moist soils to gain insight into how stable soil N speciation was.  In 

other words, how fast do samples need to be processed and how safe is it to store 

them overnight prior to analysis if they are, or are not, kept in a refrigerator.  For this 

experiment too my supervisor arranged for me to get access to a group of second 

year environmental science students for a 2-day practical session.  This was the only 

conceivable way that very tight processing time constraints could be complied with.  

The students were supervised closely throughout by the author. 

 The study showed that significant changes, especially in nitrate concentration, 

occurred over 16 h under refrigerated conditions, especially in grassland sub-soils, 

and these were reflected in total mineral-N levels.  Surprisingly, storage at room 

temperature for the same time caused no significant additional net nitrate production.  

Extractable ammonium concentrations often fell significantly during storage, 

especially in woodland soil samples, probably via microbial immobilization as well 

as nitrification.  In the paper that emerged from the study (Mian et al., 2010b), it was 

suggested that volumetric sub-sampling in the field and immediate addition to a 

known volume of KCl solution might be more reliable than methodology currently 

employed by many soil scientists.  This was the most important conclusion from 

Chapter 7. 

 When the findings were first considered they caused the author momentarily 

to panic.  This fortunately faded rapidly when the nature of the earlier experiments 
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was considered.  For the time series plots in Chapters 3 and 4, storage of field moist 

soils was not an issue at all.  For the work in Chapter 5, samples were all processed 

very rapidly because of the use of a large group of students, so changes during 

storage in mineral N speciation should have been minimal.  Nor would storage time 

have been an issue in the simulation experiment in Chapter 6.  Therefore the 

cautionary note that emerges from the research in Chapter 7 should be a take-away 

message to the author and others for future research. 

 

9.1.7   Chapter 8 
Chapter 8 reported the results of an investigation of the spatial and temporal 

variations in nitrate-N concentrations in the River Derwent in North Yorkshire from 

the perspective of its having been declared a nitrate vulnerable zone.  It was hoped 

that research from preceding chapters would help to explain temporal trends found in 

20-year runs of data that had kindly been supplied by the Environment Agency.   In 

the Chapter, and the paper published in Science of the Total Environment that 

emerged from it (Mian et al., 2010a), some justification was found to support, or at 

least to explain, the Environment Agency and DEFRA decision to declare the whole 

of the Derwent catchment a nitrate vulnerable zone, though it would be easy to 

support a contrary viewpoint on the basis that farmers are unlikely to revert to 

previous poor practices, and, where their contribution to nitrate pollution is small, are 

being penalized for discharge of effluent from sewage treatment works. 

 It was found that winter nitrate leaching has declined over the past decade in 

agriculturally impacted parts of the catchment, but this could not be explicitly 

attributed to the ban on straw burning and increase subsequently in straw and residue 

incorporation.  It is suggested that greater farmer awareness of environmental issues, 

better animal husbandry, higher fertilizer and energy costs, and the foot and mouth 

outbreak may all have contributed to the trends observed.  Interestingly, in 

agriculturally impacted areas, summer minima are now higher than in past decades, 

and that could be due to greater retention of nitrate in winter enhancing nitrate 

leaching in the following summer. 
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9.2 Suggestions for future research 
 The results reported suggest a number of possible avenues for future research.  The 

drying/re-wetting experiments described in Chapters 3 and 4 throw some light on 

what is occurring, but it would be interesting to investigate the changes in the nature 

of the microbial population over time.  It is speculated in the thesis that some 

microbial species are much more tolerant of desiccation, and it would be interesting 

to test this idea further, possibly using soils from the edges of a range of desert 

regions to study the N cycle in such soils.  In any case it would be important to 

extend the experiment reported in Chapter 4 to more soils, to see how variable the 

position of the nitrate maximum during drying was in other soils.   

 It would be interesting to extend the absorption isotherm experiments 

described in Chapter 5 to soils from areas which have been much less subject to 

atmospheric N deposition than North Yorkshire.  It seems probable that decades of 

high levels of N deposition would change the nature of the soil organic matter, which 

could be modifying absorption desorption characteristics.  No attempt was made in 

the present research to see whether the solubility of organic matter, assessed by 

measuring DOC, would help to explain differences in the absorption isotherms 

between soils.  This could also be a fruitful avenue for research. 

 One aspect of my research that was very beneficial was the use of moderately 

large groups of closely supervised, but suitably experienced, students to allow the 

processing of large numbers of samples.  This allowed some experiments to be 

performed which would otherwise have been impossible because of time constrains 

for sample preparation.  The author found this to be extremely valuable in his 

research, and more consideration should be given to exploiting such a valuable 

resource in the University context in future. 

 Finally, after Chapter 7, it was suggested that volumetric sampling might be 

the best way forward for assessing potential plant-available N in soils.  If this is 

done, moisture content can be measured on separate volumetric soil sub-samples, so 

results could still be expressed on an oven dry weight basis if deemed desirable.  

That said, plant roots explore volumes of soil, not masses of soil! 
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