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Abstract

Discolouration material has previously been shown to accumulate continually and ubiquitously
as cohesive layers in all drinking water distribution network pipes. Discolouration risk cannot
therefore be eliminated by one-off strategies such as pipe renewal or invasive cleaning. However
maintenance programmes of regular controlled flow increases have potential for long-term risk
management.

To facilitate the design and optimisation of these programmes, a new discolouration model is
proposed. This combines a novel sub-model of how the shear strength profile of material layers
changes due to accumulation with a material erosion sub-model that has similar behaviour
to the validated shear-stress-dependant PODDS erosion model. The accumulation sub-model
reflects the observation that material with shear strengths exceeding the imposed shear stress
accumulates at a rate invariant to this hydraulic force. These differing behaviours are facilitated
by modelling how the amount of wall-bound material varies over time for distinct shear strength
bands. This results in a model state that is more complex and powerful than PODDS but the
new model has fewer parameters.

The validity of the model was tested by calibrating model instances of a pipe rig experiment,
four distribution main flushes and three long-term trunk main monitoring programmes using
a verified software implementation of the model. The empirical model can be automatically
calibrated using swarm optimisation (as has been demonstrated) but in the one case where its
predictive power was tested it was found to be limited. However, the model’s present value
is as a framework for furthering the understanding of erosion and regeneration and, as more
accurate and complete datasets become available, refinements could result in a tool for medium
to long-term network management, including the design of flow conditioning programmes. The
model is now implemented in commercial network modelling software.
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“I have come to believe that the whole
world is an enigma, a harmless enigma
that is made terrible by our own mad
attempt to interpret it as though it had
an underlying truth.”

Umberto Eco
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2.21 Sensitivity of PODDS to error in the n parameter . . . . . . . . . . . . . . . . 68

4.1 Use case: explore model sensitivity to regeneration rate. . . . . . . . . . . . . . 73

4.2 Use case: explore model sensitivity to erosion rate. . . . . . . . . . . . . . . . 73

4.3 Use case: calibrate model so output correlates with historic observations. . . . 74

xvi



4.4 Use case: use model to design flow conditioning programmes. . . . . . . . . . 75

4.5 Change in PODDS model state and output during and after an erosion event. . 75

4.6 Changes in the PODDS model state and output due to the unvalidated material
regeneration mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.7 Discrepancy between conceptual understanding of material accumulation gained
through field and laboratory experiments and PODDS model regeneration
mechanism (different internal state but same turbidity response). . . . . . . . . 77

4.8 Discrepancy between conceptual understanding of material accumulation gained
through field and laboratory experiments and PODDS model regeneration
mechanism (different internal state and different turbidity response). . . . . . . 77

4.9 Interdependent factors influence accumulation rates . . . . . . . . . . . . . . . 81

4.10 Regeneration rate model can be refined over time. . . . . . . . . . . . . . . . . 81

4.11 Conceptual model: regeneration only occurs for τ > τa . . . . . . . . . . . . . 83

4.12 Conceptual model: discolouration material appears to bind to the wall in cohesive
layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.13 Conceptual model: erosion driven by excess shear stress, not absolute shear stress. 84

4.14 Options for conceptual model of erosion: shear strengths erode sequentially or
shear strengths erode simultaneously at rate that is constant with t and τ . . . 86

4.15 Flow profiles for potentially distinguishing erosion models that are sequential
and simultaneous with respect to τ . . . . . . . . . . . . . . . . . . . . . . . . 87

4.16 Option for conceptual model of erosion: shear strengths erode simultaneously
at rate that is constant with t for each τ but varies with τ . . . . . . . . . . . . 88

4.17 Option for conceptual model of erosion: shear strengths erode simultaneously
at rate that is constant with τ but varies with t. . . . . . . . . . . . . . . . . . 89

4.18 Quantity of wall-bound material not always linear with shear strength. . . . . . 90

4.19 Tds is a function of material erosion, accumulation and Tus. . . . . . . . . . . 92

4.20 Modelling pipes in series by chaining the inputs and outputs of multiple simulations. 94

4.21 The model permits some shear strengths of material to erode whilst others
regenerate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.22 ϕ (τi, t = 0) is monotonically increasing w.r.t. τ . . . . . . . . . . . . . . . . . 97

4.23 Variable/data dependency diagram for proposed model. . . . . . . . . . . . . . 99

5.1 Model demonstration #1: response to simple, stepped τa profile. . . . . . . . . 111

5.2 Model demonstration #1: heatmap of ϕ (τi, tj) for fig. 5.1 . . . . . . . . . . . 113

5.3 Relationship between dN/dt vs t and Tds vs t; peak turbidity occurs 1 · tt after
τa increase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

xvii



5.4 Changes in the spatial variation of turbidity during a modelled erosion event
due to advection and mixing. . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.5 Model demonstration #3: partial erosion and compound turbidity responses
caused by a complex τa profile. . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.6 Model demonstration #3: heatmap of ϕ (τi, tj) for fig. 5.5. . . . . . . . . . . . 115

5.7 Time-series simulation results showing PODDS and VCDM simulation results
can differ following a period of regeneration. . . . . . . . . . . . . . . . . . . . 116

5.8 Heatmap of ϕ (τi, tj) for VCDM simulation results shown in fig. 5.7. . . . . . . 116

5.9 C vs t and τc vs t for PODDS simulation results shown in fig. 5.7. . . . . . . . 117

5.10 Model demonstration #5: turbidity response for series of τa increments of
constant magnitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.11 Turbidity spikes in fig. 5.10 all follow same curve up to the turnover time. . . . 119

5.12 Model output less accurate if tracking very few τ bands. . . . . . . . . . . . . 120

5.13 Options for defining critical relative material quantity that want the model to
be able to resolve the erosion of. . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.14 (dN (t) /dt) / (max (dN (t) /dt)) vs t/td collapses onto a single curve, regard-
less of the value of βe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.15 (dN (t) /dt) / (max (dN (t) /dt)) vs t/td collapses onto a single curve, regard-
less of the value of τe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.16 τe depends on ∆τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.17 The time (in s) required for the complete depletion of the slowest eroding shear
strength band given different shear strength discretisation step sizes . . . . . . 128

5.18 Relative error from discretely calculating (a) the total amount of material to
have been released from the pipe wall and (b) the maximum release rate (plotted
against non-dimensional time) . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.19 Relative error from discretely calculating (a) the total amount of material to
have been released from the pipe wall and (b) the maximum release rate (plotted
against non-dimensional shear stress) . . . . . . . . . . . . . . . . . . . . . . . 131

5.20 Relative amount of material eroded per τ over dt at start of ideal erosion event. 131

5.21 Relative error from discretely calculating (a) the total amount of material to
pass out of the pipe and (b) the maximum downstream turbidity (plotted against
non-dimensional time) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.22 Relative error from discretely calculating the total amount of material to pass
out of the pipe (using a different expression to fig. 5.21a; plotted against
non-dimensional time) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.23 Relative error from discretely calculating (a) the total amount of material to
pass out of the pipe and (b) the maximum downstream turbidity (plotted against
non-dimensional shear stress) . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

xviii



5.24 As per fig. 5.18 but for narrower ∆t/tt range and different fixed value of
∆τ/τe (τa_lo, τa_hi). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.25 As per fig. 5.21 but for narrower ∆t/tt range and different fixed value of
∆τ/τe (τa_lo, τa_hi). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.26 As per fig. 5.19 but for narrower ∆τ/τe (τa_lo, τa_hi) range and different fixed
value of ∆t/tt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.27 As per fig. 5.23 but for narrower ∆τ/τe (τa_lo, τa_hi) range and different fixed
value of ∆t/tt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.28 Sensitivity of dN (t) /dt and Tds (t) to α. . . . . . . . . . . . . . . . . . . . . 142

5.29 Sensitivity of dN (t) /dt and Tds (t) to βr. . . . . . . . . . . . . . . . . . . . . 142

5.30 Sensitivity of
´ tmax

t0
Q (t) · Tds (t) dt to βr. . . . . . . . . . . . . . . . . . . . 143

5.31 τa (t) profile for distinguishing between α and βr. . . . . . . . . . . . . . . . 143

5.32 Sensitivity of dN (t) /dt and Tds (t) to higher values of βe. . . . . . . . . . . . 143

5.33 Sensitivity of dN (t) /dt and Tds (t) to lower values of βe. . . . . . . . . . . . . 144

5.34 Sensitivity of ϕ (τ, t) to βe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.35 Sensitivity of dN (t) /dt and Tds (t) to the shape of ϕ (τ, t0). . . . . . . . . . . 146

5.36 Q error impacts on τa and tt. . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.37 Sensitivity of dN (t) /dt and Tds (t) to Q . . . . . . . . . . . . . . . . . . . . . 148

5.38 Sensitivity of dN (t) /dt and Tds (t) to L. . . . . . . . . . . . . . . . . . . . . 148

5.39 Sensitivity of dN (t) /dt and Tds (t) to D. . . . . . . . . . . . . . . . . . . . . 149

5.40 Sensitivity of dN (t) /dt and Tds (t) to ks. . . . . . . . . . . . . . . . . . . . . 149

5.41 Sensitivity of PODDS to n parameter . . . . . . . . . . . . . . . . . . . . . . 151

5.42 Flow chart of FIT_SIMULT fitting method. . . . . . . . . . . . . . . . . . . . 158

5.43 Flow chart of FIT_NESTED fitting method. . . . . . . . . . . . . . . . . . . . 159

5.44 Flow chart of CALC_AND_FIT fitting method. . . . . . . . . . . . . . . . . . 160

5.45 Attempts to fit VCDM to target prediction VCDM-2 (no Q noise) using
FIT_SIMULT, FIT_NESTED and CALC_AND_FIT. . . . . . . . . . . . . . . 163

5.46 Attempts to fit VCDM to target prediction PODDS-2 (no Q noise) using
FIT_SIMULT, FIT_NESTED and CALC_AND_FIT. . . . . . . . . . . . . . . 164

5.47 Attempts to fit VCDM to target prediction VCDM-1 (see table 5.5; with Q
noise) using FIT_SIMULT, FIT_NESTED and CALC_AND_FIT. . . . . . . . 164

5.48 Fitting artificial erosion events given known non-trivial boundary conditions:
ϕ (τi,t0)shapes of target predictions. . . . . . . . . . . . . . . . . . . . . . . . 165

5.49 Target VCDM dataset VCDM-5, generated using noisy flow profile and ‘two
steps’ ϕ (τ, t0) shape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

xix



5.50 Attempt to fit VCDM to target dataset VCDM-5 (generated using noisy flow
profile and ‘half ramp’ ϕ (τi, t0) profile) using the FIT_NESTED method. . . . 168

5.51 Different methods for approximating ϕ (τi, t0) using cusps. . . . . . . . . . . . 169

5.52 Calibrate model by estimating ϕ (τi, t0) using data from one time period then
fit βr, βe and α over a successive period. . . . . . . . . . . . . . . . . . . . . 170

5.53 Maximum τa over a period can be used to polarise ϕ (τi, t) w.r.t. τ at the end
of that period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.54 Estimating ϕ (τi, t0) using both the τa profile over a period and an estimate of
βr (period > β−1

r ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.55 Estimating ϕ (τi, t0) using both the τa profile over a period and an estimate of
βr (period <β−1

r ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

5.56 Decomposing Tds into Tus and Tnet. . . . . . . . . . . . . . . . . . . . . . . . 177

6.1 Model parameters could be constant, linear or non-linear with τ . . . . . . . . . 181

6.2 Can study how erosion and regeneration processes vary with τ by increasing τa
in equal increments after a controlled ‘growth phase’. . . . . . . . . . . . . . . 183

6.3 Schematic of each pipe system. . . . . . . . . . . . . . . . . . . . . . . . . . . 184

6.4 Daily Q, Re and τa profiles during growth phase of rig experiment. . . . . . . . 185

6.5 Flow Q (t) and measured turbidity T2 (t) over the flushing phases of systems A
(subplot a) and B (b). T (t) is the turbidity per τa step with the background
turbidity of the previous step subtracted. . . . . . . . . . . . . . . . . . . . . . 187

6.6 Processed turbidity in the pipe rig for the last turnover at each τa level . . . . 188

6.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

6.8 The schematic of each pipe system as modelled. Roman numerals correspond
to the locations shown in fig. 6.3. . . . . . . . . . . . . . . . . . . . . . . . . . 189

6.9 VCDM fitted to the earlier parts of the flushing phase turbidity profiles. . . . . 190

6.10 VCDM fitted to the later parts of the flushing phase turbidity profiles. . . . . . 191

6.11 VCDM fitted to the flushing phase turbidity profiles after discounting the
turbidity responses from Steps 0 and 1. . . . . . . . . . . . . . . . . . . . . . 191

6.12 Results of fitting the VCDM to the PODDS-CI1 dataset . . . . . . . . . . . . 198

6.13 Results of fitting the VCDM to the PODDS-CI2 dataset . . . . . . . . . . . . 199

6.14 Results of fitting the VCDM to the PODDS-PE1 dataset . . . . . . . . . . . . 200

6.15 Results of fitting the VCDM to the PODDS-PE2 dataset. . . . . . . . . . . . 201

6.16 Schematic of trunk main TM-YR . . . . . . . . . . . . . . . . . . . . . . . . . 203

6.17 Time-series observations in trunk main TM-YR . . . . . . . . . . . . . . . . . 204

6.18 Time-series observations in trunk main TM-YR (Trial 1) . . . . . . . . . . . . 206

xx



6.19 Trunk main TM-YR fit attempt 1 (Trial 1) . . . . . . . . . . . . . . . . . . . . 206

6.20 Trunk main TM-YR fit attempt 1 (Trial 2) . . . . . . . . . . . . . . . . . . . . 206

6.21 Trunk main TM-YR fit attempt 1 (Trial 3) . . . . . . . . . . . . . . . . . . . . 207

6.22 Trunk main TM-YR fit attempt 2 (Trial 1) . . . . . . . . . . . . . . . . . . . . 208

6.23 Trunk main TM-YR fit attempt 2 (Trial 2) . . . . . . . . . . . . . . . . . . . . 209

6.24 Trunk main TM-YR fit attempt 2 (Trial 3) . . . . . . . . . . . . . . . . . . . . 209

6.25 Trunk main TM-YR fit attempt 2 (material condition at the start of trial 1) . . 210

6.26 Network schematic showing trunk main TM-NR . . . . . . . . . . . . . . . . . 212

6.27 Dataset for trunk main TM-NR used for VCDM calibration and validation . . . 213

6.28 Demonstration of detecting likely turbidity events from just a shear stress
time-series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

6.29 Attempting to remove the background turbidity by applying a low-pass Butter-
worth filter to Twtw_obs then subtracting the result from Tds_obs . . . . . . . . 218

6.30 Attempting to remove the background turbidity by applying a centred rolling
mean (middle subplot) and centred rolling 5th percentile to Tds_obs then in each
case subtracting the result from Tds_obs. . . . . . . . . . . . . . . . . . . . . . 220

6.31 Best model fit to TM-NR: fitting attempt 1, event 1 . . . . . . . . . . . . . . 222

6.32 Best model fit to TM-NR: fitting attempt 1, event 3 . . . . . . . . . . . . . . 222

6.33 Best model fit to TM-NR: fitting attempt 1, event 4 . . . . . . . . . . . . . . 223

6.34 Best model fit to TM-NR: fitting attempt 1, event 6 . . . . . . . . . . . . . . 223

6.35 Best model fit to TM-NR: fitting attempt 1, event 8 . . . . . . . . . . . . . . 223

6.36 Best model fit to TM-NR: fitting attempt 1, event 11 . . . . . . . . . . . . . . 223

6.37 Network schematic showing trunk main TM-WB . . . . . . . . . . . . . . . . . 225

6.38 Flow and turbidity data from the first two flow trials in trunk main TM-WB . . 226

6.39 Internal condition of the TM-WB trunk main . . . . . . . . . . . . . . . . . . 227

6.40 Dataset for trunk main TM-WB used for VCDM calibration and validation . . . 229

6.41 Trunk main TM-WB, VCDM fitting attempt, flow trial 1. . . . . . . . . . . . . 232

6.42 Trunk main TM-WB, VCDM fitting attempt, flow trial 2. . . . . . . . . . . . . 232

6.43 Trunk main TM-WB, VCDM fitting attempt, flow trial 3 . . . . . . . . . . . . 233

6.44 Trunk main TM-WB, VCDM fitting attempt, flow trial 4. . . . . . . . . . . . . 233

6.45 Trunk main TM-WB, VCDM fitting attempt, flow trial 5. . . . . . . . . . . . . 233

6.46 Trunk main TM-WB, VCDM fitting attempt, flow trial 6. . . . . . . . . . . . . 234

6.47 Trunk main TM-WB: the relative material quantity versus shear strength rela-
tionship at the end of the VCDM fitting attempt. . . . . . . . . . . . . . . . . 234

xxi



6.48 Predicting turbidity in trunk main TM-WB using the model calibrated during
the fitting attempt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

7.1 Design for a flow conditioning programme where the background flow is diurnally
varying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

7.2 Design for a flow conditioning programme where the background flow is constant248

7.3 Example operational management chart . . . . . . . . . . . . . . . . . . . . . 249

7.4 Demonstration of the use of VCDM alarms . . . . . . . . . . . . . . . . . . . 250

xxii



List of Tables

2.1 DWI water acceptability events in 2012 . . . . . . . . . . . . . . . . . . . . . 6

2.2 Some commonly used turbidity meters. . . . . . . . . . . . . . . . . . . . . . . 10

5.1 Comparing time-integral of turbidity and of material flux for turbidity spikes
shown in fig. 5.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2 Summary of the ways in which the mesh resolution impacts on the model outputs.139

5.3 Summary of model sensitivity to parameters, boundary conditions hydraulics
and pipe attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.4 Generic PSO configuration used for model fitting. . . . . . . . . . . . . . . . . 157

5.5 VCDM target attribute sets for generating target VCDM predictions (used for
testing the efficacy of several VCDM parameter fitting methods) given known
simple boundary conditions and negligible regeneration. . . . . . . . . . . . . . 162

5.6 PODDS target attribute sets for generating target PODDS predictions (used for
testing the efficacy of several VCDM parameter fitting methods) given known
simple boundary conditions and negligible regeneration. . . . . . . . . . . . . . 163

5.7 VCDM target attribute sets used to generate VCDM predictions datasets, in turn
used for testing efficacy of methods for fitting both erosion and regeneration
parameters given non-trivial boundary conditions . . . . . . . . . . . . . . . . 165

6.1 Dimensions of pipe systems A and B . . . . . . . . . . . . . . . . . . . . . . . 184

6.2 Q and corresponding τa steps imposed during flushing phase of rig experiment. 185

6.3 Several isolated flushing events for which the PODDS model has been success-
fully calibrated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

6.4 PSO Problem space boundaries used when validating the VCDM using the
datasets listed in table 6.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

6.5 Results of fitting the VCDM to the PODDS-CI1 dataset . . . . . . . . . . . . 197

6.6 Results of fitting the VCDM to the PODDS-CI2 dataset . . . . . . . . . . . . 198

6.7 Results of fitting the VCDM to the PODDS-PE1 dataset . . . . . . . . . . . . 199

6.8 Results of fitting the VCDM to the PODDS-PE2 dataset . . . . . . . . . . . . 200

6.9 Results of first attempt to fit the VCDM to the TM-YR trunk main dataset . . 205

xxiii



6.10 Results of second attempt to fit the VCDM to the TM-YR trunk main dataset 210

6.11 Dataset for trunk main TM-NR used for VCDM calibration and validation . . . 213

6.12 Fitting the VCDM to data from trunk main TM-NR: parameters and correlation
metrics resulting from the application of the FIT_SIMULT fitting method. . . . 221

6.13 Key events in the history of trunk main TM-WB regarding discolouration risk . 226

6.14 Stats for part of trunk main TM-WB dataset used for VCDM calibration and
validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

6.15 Results of attempt to fit the VCDM to the TM-WB trunk main dataset . . . . 231

7.1 Details of the best model calibration fits for all DWDS pipe lengths modelled in
§6. The first set of parameters for each pipe system is the result of trying to fit
to the earlier part of the flushing phase and the second set from trying to fit to
the later part. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

xxiv



Nomenclature

Acronyms

AC asbestos cement

API application programmer’s interface

ARMA auto-regressive moving average

BPT break pressure tank

CI cast iron

CLSM confocal laser scanning microscope

DI ductile iron

DMA district metered area

DOMS Distribution Operational Maintenance Strategies

DPM Discolouration Propensity Model

DRM Discolouration Risk Model

DWI Drinking Water Inspectorate (England and Wales)

DWDS drinking water distribution system

EPR evolutionary polynomial regression

EPS extracellular polymeric substances

FCV flow control valve

GIS geographic information system

GUI graphical user interface

HDPE high-density polyethylene

HPC heterotrophic plate count

ISE integral of squared errors

LUT look-up table

MAC Maximum Admissible Concentration

NOM natural organic matter

NSEI Nash Sutcliffe (Model) Efficiency Index

NTU nephelometric turbidity unit

PaVoC particle volume concentration

xxv



PE polyethylene

PODDS Prediction of Discolouration in Distribution Systems

PSD particle size distribution

PSM Particle Sediment Model

PSO particle swarm optimisation

PVC polyvinyl chloride

RPM Resuspension Potential Method

SCADA Supervisory Control and Data Acquisition

SNR signal-to-noise ratio

SR service reservoir

TOC total organic carbon

TPMU turbidity pseudo-mass unit

TSS total suspended solids

UoS University of Sheffield

UTC Coordinated Universal Time

VCDM Variable Condition Discolouration Model

VSS volatile suspended solids

WPS water pumping station

WSZ Water Supply Zone

WTW water treatment works

WHO World Health Organisation

Symbols

Aw Total internal surface area of the pipe
[
m2]

AS Area of pipe wall swept [m2]

b PODDS exponential coefficient of the discolouration potential [-]

bp Used when quantifying scattering effects. Particle shape factor (1.5 for spherical
particles)

c Mass of particles per unit volume of fluid (i.e. TSS)
[
kg ·m−3]

C PODDS discolouration potential per m2 of wall area [NTU ·m]

xxvi



∆Ce PODDS change in discolouration potential per m2 of wall area due to erosion
[NTU ·m]

Cmax The maximum theoretical PODDS discolouration potential per m2 of wall area
[NTU ·m] (can only be approached asymptotically)

D Pipe internal diameter, � [m]

DH Hydraulic diameter, equal to the diameter for a pipe with a circular cross-section[m]

Dp Particle diameter [m]

f Darcy Weisbach friction factor [−]

g Acceleration due to gravity [ms−2]

hf Flow-dependent head loss [m]

I0 Used when quantifying scattering effects. Intensity of incident light
[
J ·m−2 · s−1]

It Used when quantifying scattering effects. Intensity of transmitted light
[
J ·m−2 · s−1]

k PODDS gradient coefficient, which relates the discolouration potential to the shear
strength [NTU ·m · Pa−1]

ks Pipe roughness [m]

K Used when quantifying scattering effects. Extinction coefficient accounting for the
extent of reformation of the light beam after scattering behind the particle

K0 Used when quantifying scattering effects. Particle-size-independent component of
K

L Pipe length [m]

LL Used when quantifying scattering effects. Optical path length [m]

m Used when quantifying scattering effects. An (empirical) exponent of the wavelength
which is dependent on the particle size and refractive index

n PODDS exponential coefficient of eroding force [−]

n′ A function of Dp used when quantifying light scattering effects. Used to take
account of reduced exposure of particles to the light source as concentration
increases

N The absolute amount of material in the VCDM that is bound to each m2 of pipe
wall

[
TPMU ·m−2]

Np Number of particles per mL of fluid

N The set of natural numbers (non-negative integers)

P PODDS linear coefficient of the eroding force [NTU ·m · Pa−1 · s−1]

xxvii



P ′ PODDS linear coefficient of material accumulation [NTU ·m · Pa−1 · s−1]

R PODDS rate of supply from a m2 of wall area [NTU ·m · s−1]

R The set of real numbers

Re Reynolds number [−], the ratio of inertia to viscous forces

Q (t) Flow in pipe at time t[m3 · s−1]

Q Bulk flow [m3 · s−1]

Tds (t) Abbreviation of Tds_obs (t) or Tds_pred (t) (depends on context as to which) [NTU ]

Tds_obs (t) Turbidity observed at the downstream end of a pipe [NTU ]

Tds_pred (t) Turbidity predicted at the downstream end of a pipe [NTU ]

Tnet (t) Component of the turbidity observed at the downstream end of a pipe that is solely
due to material erosion within that pipe [NTU ]

Tus (t) Turbidity observed at the upstream end of a pipe [NTU ]

t Time since a datum [s]

t0 The amount of material at each tracked shear strength at time t0 be estimated
using the shear stress history over the period tL to t0 [s]

td VCDM characteristic time of material depletion [s]

tL See t0.

tt Pipe turnover time (length divided by bulk velocity at a given time)[s]

u Bulk velocity [m · s−1]

Vp Particle volume
[
m3]

α VCDM scaling parameter for translating from relative to absolute quantities of
discolouration material

[
TMPU · Pa−1 ·m−2]

βe VCDM relative material erosion rate factor
[
Pa−1 · s−1]

βr VCDM relative material regeneration rate
[
s−1]

γ To resolve a change in ϕ of 0.1 for a given shear strength, ∆t must be ≤ γ · td,
where γ ∈ [0, 1] [−]

ϕ (τ, t) The relative amount of material bound to each m2 of pipe wall with strength τ at
time t in the VCDM [−]

µ Dynamic viscosity [Pa · s]

ν Kinematic viscosity [m2s−1]

ρ Fluid density [1000 kg ·m−3]

xxviii



ρp Particle density [1000 kg ·m−3]

τa Shear stress at the pipe wall [Pa]

τc PODDS (scalar) material shear strength [Pa]

τe Excess shear stress of some discolouration material bound to the pipe wall i.e.
min (τa − τ, 0) [Pa]. τ is τc if using the PODDS model

τi One of a range of shear strengths at which the quantity of wall-bound material is
tracked by the VCDM [Pa]

τmax The maximum of the range of shear strengths tracked by the VCDM [Pa]

∈ Set membership e.g. if x belongs to the set of real numbers between a and b then
x ∈ [a, b]

∀ Universal quantification in predicate logic. Can be read as ‘for all’ e.g. x/2 =
x× 0.5 ∀x

[a, b] The infinite set of real numbers from a to b inclusive

[a, b) The infinite set of real numbers from and including a to but not including b

xxix



Chapter 1

Introduction

1.1 Discolouration in Water Distribution Systems

In recent years, water service providers and water industry regulators in the developed world
have come to recognise the importance of holistic approaches to maintaining the quality of
water provided to consumers. Both the World Health Organisation (WHO) and regulatory
bodies such as the Drinking Water Inspectorate (England and Wales) (DWI) promote proactive,
risk-orientated strategies for managing water quality that consider the entire journey from
catchment to consumers’ taps (WHO, 2005; DWI, 2005).

Traditionally water providers have focused on the impact of catchment management and
treatment processes on water quality, but the ways in which quality changes as water passes
through distribution networks are now receiving much more attention. The hydraulics and
water quality of distribution systems are difficult to characterise: distribution networks are
topographically complex bio-reactors with very large surface areas but are predominantly buried
infrastructure with limited monitoring opportunities.

Networks containing old unlined cast iron pipework may be associated with the supply of orange,
black or brown water, of chlorine depletion and of bacterial regrowth (Kirmeyer, 2000). In
the past, old mains associated with water quality problems have been replaced or (re)lined.
However, studies have shown that the supply of discoloured water may be associated with newer
plastic pipes as well as older corrodible pipes (Vreeburg et al., 2008). Also, recent initiatives
1have stressed the importance of striking a better balance between capital and operational
expenditure through consideration of whole life costs and so more water providers are appraising
and developing management strategies to help prolong the life of assets and ensure satisfactory
water quality.

The detection of orange, black or brown discoloured water at customers’ taps has been shown
to be the effect of a change in hydraulic conditions within the distribution network upstream.
Particulate matter continually accumulates on pipe walls, then is mobilised when the typical
peak flow per pipe is exceeded. Proactive, operational strategies have already been shown
to be a cost-effective means for reducing the likelihood of discolouration events in mains
historically associated with a high discolouration risk (Husband et al., 2011). This is achieved by

1E.g. Distribution Operational Maintenance Strategies (DOMS) in England and Wales (DWI, 2002).
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conditioning the particulate matter bonded to the pipe wall using controlled flow increases. In
addition, discolouration modelling can be used to predict the turbidity response from exceeding
the prevailing flows in distribution network. Such a management strategy can also be deployed
for non-metallic mains for which there may be a discolouration risk (Vreeburg and Beverloo,
2011); in this case asset replacement or refurbishment have little impact on discolouration risk
as the particulate matter originates from the bulk water, not directly from corrosion processes
(Vreeburg et al., 2008). Flow conditioning of mains results in systems that are more resilient to
increases in flow (Husband et al., 2011), such as those that result from bursts, valve operations
and anomalous customer demands.

A key issue relating to the use of flow conditioning for managing discolouration risk is that
the rates at which particulate matter re-accumulates as cohesive layers on pipe walls following
layer erosion are not well characterised. Models of material mobilisation processes exist and
have been verified in the field (Husband and Boxall, 2010a) but current models of material
accumulation do not reflect the processes knowledge gained through studying accumulation in
the field and laboratory .

An improved model of material erosion and accumulation plus the factors that influence
the latter would equip water providers with the means to better schedule and design flow
conditioning maintenance programmes. This would reduce the risk of customers being supplied
with discoloured water and would also benefit the whole life costing of those programmes.

1.2 Reader’s guide

Chapter 2: Literature review

The first part of the chapter focusses on discolouration as topic of concern for water companies,
what is presently known about discolouration material, how it accumulates on and erodes from
pipe walls and fourthly on the various strategies currently used for managing discolouration risk.
The second part discusses the development and usage of environmental and drinking water
network-specific models, progressing to an appraisal of the state of the art in discolouration
modelling as described in the academic literature.

Chapter 3: Aims and objectives

Chapter 4: Model development

This chapter assesses the requirements for discolouration modelling and proposes a conceptual
model for a new approach that has the potential to better fulfil those requirements than current
discolouration models. This conceptual model is encoded as a set of empirical numerical
formulations and algorithms for modelling discolouration processes at the pipe wall and in the
bulk water. The associated assumptions are explicitly stated.
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Chapter 5: Model verification, sensitivity analysis and fitting to data

The chapter begins with several demonstrations of the functionality of the model developed in
the previous chapter. After verifying at a high level that the model satisfies the conceptual
specification, the sensitivity of the model to its inputs, the mesh resolution and parameter values
are investigated. Finally, a method for fitting the model to data is developed and validated
using artificial datasets.

Chapter 6: Model validation

First, the model assumptions that need to be and can be validated are identified. The assumption
that the rates of discolouration material accumulation and erosion are invariant with shear
strength is then investigated using a realistic-scale laboratory pipe rig. In the second part of
the chapter the validity of the model as a whole is tested using four DMA flushing datasets
and three long-term trunk main datasets.

Chapter 7: Discussion and recommendations for future work

This chapter begins with an appraisal of the model’s ability to represent and predict discolouration
processes in real DWDS. Next, several practical applications for the model are explored. The
modelling requirements and assumptions are then revisited. The chapter concludes with ideas
for future related research.

Chapter 8: Conclusions
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Chapter 2

Literature review

2.1 Discolouration processes in DWDS

2.1.1 The need for research into DWDS water quality

The development of regulations and guidelines and the application of stringent practices have
ensured that potable water in the developed world is of high quality. In 2012, 99.96% of
regulatory water samples in England were compliant with the standards for England and
Wales (DWI, 2013a). However, there is a need to ensure that water quality remains high as
distribution system infrastructure deteriorates; ageing unlined cast iron pipework, common in
the UK, is often associated with water quality problems (Archuleta and Manwaring, 2002) and
the proportion of water quality incidents attributable to events and activities downstream of
WTW is on the rise (Gray, 2008).

Confidence in the quality of water entering distribution systems is gained through high-
resolution monitoring of treatment works finals. However, the processes and reactions that
occur downstream within pressurised distribution systems are difficult to study. Observing the
physical, chemical and biological reactions occurring within the bulk water and at the pipe wall
is made difficult by the subterranean nature, complex topologies and geographical extents of
these systems (see Fig. 2.1 and Costello et al. 2007).

2.1.2 What is discoloured water?

In the water industry the true colour of water is defined as the measurable effect of dissolved
substances on the absorption spectrum of water. Untreated water may have a noticeable colour
if it is from an upland source due to the presence of humic and fulvic acids. These substances
are removed during treatment (typically by coagulation and flocculation) (Ratnayaka et al.,
2009).

Water discolouration as experienced by consumers is typically due not to colour but to suspended
solids that slowly settle in fully quiescent conditions (Vreeburg and Boxall, 2007) or to air bubbles
coming out of solution as water with a high dissolved oxygen content that had previously been
at high pressures emerges from customers’ taps (DWI, 2010; WHO, 2011, p. 229). So-called
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Figure 2.1: Drinking water distribution network infrastructure is mostly buried and is both topologically
complex and spatially extensive, as can be seen in this plan of the mains and management areas that
comprise part of a DWDS (after Furnass et al. (2013)).

‘white water’, which is milky/cloudy due to aeration or the presence of fine chalk particles, is
not of great concern as there is no health risk associated with consuming white water.

Of greater interest and concern is discolouration due to suspended solids that have an orange,
black or brown hue due to their metal content (Seth et al., 2004; DWI, 2010). It is widely
accepted that such solids continually accumulate within distribution systems over time and can
be mobilised by a hydraulic disturbance such as an anomalous increase in flow then conveyed
through to consumers (see Fig. 2.2 and Vreeburg and Boxall, 2007).

Discolouration is typically quantified as turbidity in nephelometric turbidity unit (NTU). Tur-
bidity is a measure of how incident light is scattered by particulate matter entrained in the bulk
flow (Ratnayaka et al., 2009, p. 201, 218, 280).

2.1.3 Why is discolouration a concern?

In England and Wales utility companies have a duty to report events that have affected
consumers to the Drinking Water Inspectorate (England and Wales) (DWI). 9.36% and 22.84%
of the Not Significant/Minor and Significant events (respectively) that required investigation
by an inspector were due to the supply of discoloured water (table 2.1, compiled using data
from DWI, 2013b). Although discolouration incidents may have been the most common type
of Significant event, it must be said that a portion of these have causes that lie upstream of
the treated water transmission and distribution infrastructure.

The emergence of discoloured water from customers’ taps is of concern for several reasons:
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Figure 2.2: An illustrative figure demonstrating the current understanding that solid, light-scattering
material continually accumulates within drinking water distribution systems over time but can become
suspended and advected through to consumers as a result of an anomalous increase in hydraulic
conditions.

Table 2.1: Water acceptability events reported to the Drinking Water Inspectorate (England and
Wales) (DWI) (England and Wales) in 2012 where an inspector was required to investigate.

Not Significant/Minor Significant Serious/Major
Air in water 2 (0.85%) 0 0
Chemical 16 (6.81%) 9 (4.57%) 0
Discoloured water 22 (9.36%) 45 (22.84%) 0
Inadequate treatment 1 (0.43%) 27 (13.71%) 1 (20.00%)
Loss of supplies/pressure 49 (20.85%) 15 (7.61%) 0
Microbiological 34 (14.47%) 41 (20.81%) 0
Taste/odour 27 (11.49%) 10 (5.08%) 0
Health concern 3 (1.28%) 24 (12.18%) 0
Public concern 73 (31.06%) 17 (8.63%) 2 (40.00%)
Other 8 (3.40%) 9 (4.57%) 2 (40.00%)
Total 235 197 5
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Unsatisfactory aesthetics Turbidities above 4.0NTU can be detected by the naked eye
(WHO, 2011, p. 228-229); discolouration can therefore be detected by customers, unlike certain
chemical and microbiological water quality issues, albeit in a subjective manner. Discoloured
water can also stain laundry (DWI, 2013b).

In England and Wales the number of customer contacts regarding discolouration has fallen in
recent years from 70,643 in 2008 to 50,456 in 2012 (DWI, 2013b), which is in part due to capital
and operational works such as mains replacement and cleaning (DWI, 2013b). However, the
supply of discoloured water is still a cause for concern as 50,456 contacts regarding discolouration
is a significant proportion (38.1%) of the 132,470 contacts made in 2012 regarding water being
unacceptable to consumers (DWI, 2013b).

The Maximum Admissible Concentrations (MACs) for regulated inorganic substances
may be exceeded Unacceptable water aesthetics can ‘mask’ and distract from changes in
water quality that may impact on human health (DWI, 2009). The World Health Organisation
state that the presence of inorganic suspended solids in distribution systems may not always
be a health risk e.g. if the material is from “groundwater minerals or from post-precipitation
of calcium carbonate”(WHO, 2011, p. 228-229). However, when Cook (2007, p. 92) applied
regression to turbidity and iron concentrations recorded during hydraulic disturbances he found
that the UK regulatory limit for iron could be exceeded at relatively low turbidities (< 0.6NTU).

Potential microbial risk The turbidity of supplied water has been linked to health risks in
several studies (Mann et al., 2007). An increase in turbidity has been shown to negatively
correlate with residual disinfectant concentrations under certain conditions (LeChevallier et al.,
1981) through increasing chlorine demand (Gauthier et al., 1999a) and stimulating microbial
growth(WHO, 2011).

The majority of micro-organisms in chlorinated DWDSs are sessile bacteria that are attached to
the pipe wall or particle surfaces within biofilms (Batté et al., 2003; Srinivasan et al., 2008). A
biofilm is a heterogeneous matrix of microorganisms and extracellular polymeric substances (EPS)
that develops on and adheres to wetted surfaces and can protect organisms from disinfectant
(Gauthier et al., 1999b). They can contain “viruses and parasites” (LeChevallier, 2005; Douterelo
et al., 2013) and provide a mechanism for harbouring species that would not be able to grow in
a planktonic state. Increases in flow can result in the sloughing of microorganisms and pieces
of biofilm from the pipe wall (USEPA, 2006, p. 12), which could then pass through DWDSs to
consumers. However, the risk posed by the development and erosion of biofilms is limited as
the vast majority of microorganisms in DWDS biofilms are not pathogenic.

In many countries microbial risk is in part controlled using a disinfectant residual but, as high
concentrations of suspended material provides a chlorine demand, all chlorine residual may be
undesirably consumed by suspended particulate matter following a discolouration event, which
could increase the microbial risk downstream within the DWDS (Gauthier et al., 1999b).
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2.1.4 Characterisation of discolouration material

The particle size distribution (PSD) determined by Boxall et al. (2001) for a variety of UK
distribution networks had a modal diameter of 8 − 16µm (n=30). 70% of the material (by
counts) was less than 50µm in diameter. In the Netherlands, particle diameters have been
found to mostly lie within the range 3− 12µm (van Thienen et al., 2011b). The modal particle
diameter for samples from pipes within two Australian DWDSs was found to be 11µm (Ryan
et al., 2008, p. 26).

In the UK the specific gravity of discolouration material was found to be 1 to 1.3 (Boxall et al.,
2001). The mean specific gravity for twenty sites (pipes and tanks) in a study in Melbourne,
Australia, was found to be 1.64 (Ryan et al., 2008, p. 27).

Turbidity has been shown to positively correlate with iron and manganese concentrations
(Boxall et al., 2003b) in UK distribution systems, although the ratio of iron to manganese varies
considerably. Field studies have shown that increases in turbidity can correspond to increases
in lead, aluminium, zinc, copper and calcium concentrations (Seth et al., 2004; Barbeau et al.,
2005).

Discolouration material is also partly comprised of organic material (Gauthier et al., 1999a)
including microorganisms that have become entrained in the bulk flow through the partial
erosion of highly heterogeneous biofilms from the pipe wall (see §2.1.3 and Douterelo et al.,
2013). Numerous studies have reported on the relationship between turbidity and microbial
concentrations, including the following:

• Whilst monitoring hydraulic disturbances in DWDSs, Barbeau et al. (2005) found that
bacterial concentrations correlated significantly (P < 0.01) with TSS (r = 0.78) and the
log of turbidity (r = 0.69);

• Lehtola et al. (2006) found that turbidity, heterotrophic plate count (HPC) and enumer-
ated bacterial counts increased within a bench-top rig following sudden, large changes in
pressure.

The relationships between the microbial, abiotic organic and inorganic components of heteroge-
neous discolouration material can be complex: biofilms can corrode the walls of unlined iron
pipes (Lee et al., 1980; McNeill and Edwards, 2001; Wang et al., 2012) and can mediate the
deposition of iron and manganese from the bulk water (Sly et al., 1990; Douterelo et al., 2014).

To circumvent having to characterise the composition of discolouration material and the
aforementioned relationships, the material mobilised by a hydraulic disturbance is typically
considered to be homogeneous and principally defined by its light-scattering properties i.e.
quantified as turbidity.

2.1.5 Light scattering and measuring turbidity

Light in a medium can be scattered by suspended particles. For a given volume of medium, the
amount of scattering can be quantified in terms of the intensity of the incident light (I0) and
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intensity of the light that passes out of the volume (the transmitted light, It). The turbidity,
T , of the volume can then be expressed using a modified version of the Beer-Lambert Law :

T = 1
LL

ln
(
Io
It

)
(2.1)

where LL is the light path length through the volume (Clifford et al., 1995). The amount
and direction of light scatter is a function of various factors including the ratio of the the
representative diameter (volume over surface area) of particles suspended in the medium to the
wavelength of the incident light (WRC plc, 1994).

For particles that are small relative to the wavelength, light is dispersed by symmetric Rayleigh
scattering. However, for relatively large particles (where the diameter exceeds the wavelength)
light scattering is asymmetric: some light is symmetrically scattered due to reflection and
refraction but there is also much ‘forward scatter’ (away from the direction of the light emitter)
due to diffraction (Hulst, 1981). Particles of discolouration material should be considered
to be large with regards to this distinction as typical diameters (§2.1.4) are larger than the
incident wavelengths specified by the most common methods of measuring turbidity in DWDS
(860± 30nm for the ISO (2008) 7027 method and 400− 600nm for USEPA (1993) 180.1).

Each of the standards for measuring turbidity specifies the angle between emitter and detector
(including a tolerance), the wavelength of light, the bandwidth of that light, the units of
turbidity, the maximum optical path length and the range of turbidities over which the method
is valid (Ziegler, 2002). In Europe, the most common method is ISO (2008) 7027 , whereas
the USEPA (1993) 180.1 method is used in the US. Both methods require that light emitter
and detector be positioned perpendicularly (see fig. 2.3); a nephelometer is a turbidity meter
that quantifies scatter through 90◦ in NTU . With both methods, measurements are related
to a formazin standard where, in general terms, 1 formazin turbidity unit (FTU) = 1 NTU
(Ratnayaka et al., 2009, p. 218). For both ISO 7027 and USEPA 180.1, turbidity is linear with
the amount of light scattering over the range 0.012NTU to 40NTU at a site-specific level
(Sadar, 2003).

Turbidity should be measured on-site (WHO, 2011, p. 75) as turbidity is sensitive to particle
size and the particulate matter in a sample may flocculate over time. Care should be taken
that gases do not come out of solution due to depressurisation whilst monitoring turbidity as
the resulting bubbles can significantly affect readings (Husband and Boxall, 2008, 2011).

Some turbidity instruments are used for discrete offline sampling (e.g. HACH 2100Q; see
table 2.2). Others contain flow cells and can either be temporarily attached to hydrants/wash-
outs (e.g. Siemens Hydraclam, ATi A15/76) or permanently installed at strategic locations
(e.g. ABB 4690 or ATi A15/76 installed at a WTWs or service reservoirs (SRs)) for continuous
sampling. UK water providers have recently begun installing WTW-style permanent turbidity
monitoring in key trunk mains to allow for prompt, accurate feedback via Supervisory Control
and Data Acquisition (SCADA) whilst adjusting flows.

In recent years instruments have been developed for monitoring multiple water quality species
simultaneously at distribution system hydrants (Aisopou et al., 2010a). At present these devices
are insufficiently robust and accurate over multi-week or multi-month periods to be attractive
to water providers (Aisopou et al., 2011). However, as the technology improves these devices
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Figure 2.3: Turbidity is a measure of the proportion of light that is scattered through an angle (typically
90◦) by suspended particles. Here turbidity is being measured using an ATi A15/76 turbidity meter
(ATi, 2011), which is encapsulated within a flow cell.

Table 2.2: Some commonly used turbidity meters.

Instrument Type Range Accuracy Repeatability Resolution
HACH
2100Q
(HACH,
2010)

Portable discrete
offline sampling

0–1000
NTU

±2% of reading
plus stray light (≤

0.02)

±1% or 0.01 NTU
(whichever is

greater)

0.01 NTU on
lowest range

Siemens
Hydra-
clam

(Siemens,
2013)

Portable
continuous

sampling (fits onto
hydrants)

0.1-10
NTU

± 5% of reading
± 0.1 NTU

- 0.05 NTU

ATi
A15/76
(ATi,
2011)

Portable or
permanent
continuous

sampling (flow cell
or immersed head)

4/400
NTU

(0-4.000,
0-40.00,
0-400.0)
40/4000
NTU

(0-40.00,
0-400.0,
0-4000)

40/400 scale: ±
5% or ± 0.02

NTU, whichever is
greater

400/4000 scale: ±
10% or ±2 NTU,

whichever is
greater

- -

ABB
4690
(ABB,
2012)

Permanent
continuous

sampling (flow
cell)

0-40 or
0-400
NTU

Low range: ±2 %;
High range: ±5 %

or 0.3 NTU

0 to 200 NTU: <1
%

200 to 400 NTU:
2 %

Low range: 0.003
NTU

High range: 0.3
NTU

10



could be deployed to produce detailed datasets showing how parameters such as turbidity,
temperature, conductivity, Cl concentration and dissolved oxygen concentration vary temporally
and spatially over a distribution network (Gaffney and Boult, 2011; Leeder et al., 2012; Mounce
et al., 2014a).

Verberk et al. (2009) argued that turbidity data can provide a better understanding of cyclic
variation in particle loads for turbidities greater than 0.1NTU but particle counts can highlight
changes in water quality at low loads. Particle counter instruments can be used to give an
understanding of particle size distributions (Vreeburg, 2007) but the analysis of such data is
complicated by each timestep being associated with a discrete distribution rather than a scalar.

2.1.6 Guidance and regulation

The WHO recommends that turbidity in distribution networks should not exceed 1NTU so
as not to adversely affect the efficacy of the disinfection residual (WHO, 2011, p. 228-229):
the suspended solids that result in turbidity typically have an oxidant demand. The European
Commission’s Drinking Water Directive restates this guideline (for surface waters) (EC, 1998,
p. L 330/47). The WHO believe “large, well-run municipal supplies should be able to achieve
less than 0.5NTU before disinfection at all times and should be able to average 0.2NTU or
less” (WHO, 2011, p. 228-229). In the United States national regulations specify that turbidity
cannot exceed 1NTU for systems that use conventional or direct filtration and 5NTU for
systems that use other filtration methods (USEPA, 2009). The DWI specify that turbidity
should not exceed 4NTU at customers’ taps. In regulations regarding indicator parameters the
DWI states that the maximum turbidity at the outlets of treatment works should be 1NTU
(prior to disinfection if pre-treatment is used) (DWI, 2010); Dutch regulations are similar
(Verberk et al., 2009).

In England and Wales water quality regulations stipulate that turbidity should be sampled at
treatment works, service reservoirs and at customers’ taps (DWI, 2010). Continuous sampling
at treatment works using permanent instrumentation is sufficiently precise and accurate to
capture spikes in turbidity but step increases in turbidity within the distribution system are very
unlikely to be detected via regulatory sampling programmes due to the low spatio-temporal
resolution of the latter. Water providers are therefore typically notified of discolouration by
consumers (Mounce et al., 2012a).

2.1.7 Discolouration material sources

Developing strategies for quantifying changes in discolouration risk over time in a DWDS
requires an understanding of the possible origins of the particulate matter that accumulates
within its pipework.

2.1.7.1 Iron corrosion

Through the oxidisation of cast iron pipework and fittings soluble ferrous iron is released, scale
develops and corrosion by-products can be further oxidised to form ferric oxide precipitates
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(McNeill, 2000). Pipe flushing studies have shown that cast iron pipework exhibits a far greater
turbidity response to flow increases than plastic pipes (Husband and Boxall, 2011) due to the
mobilisation of those precipitates.

2.1.7.2 Bulk water sources

Notable discolouration responses have been detected in networks that do not feature any iron
mains (Vreeburg et al., 2008). The material source in these systems is likely to be the bulk
water itself. Highly-elevated turbidities are very occasionally due to sudden changes in raw
water quality or to major treatment works failures (DWI, 2011b, p. 64) but more frequent
turbidity spikes have also been correlated with the backwashing of treatment works filters
(Vreeburg et al., 2008). In addition, Fe or Al-bearing coagulants used at treatment works may
form discolouration materials (Husband and Boxall, 2011).

Discolouration material may develop within the distribution system itself: Vreeburg et al. (2008)
found that installing 0.1µm ultra-filtration immediately downstream of the treatment works
significantly reduced but did not eliminate the discolouration risk. Intra-network formation
of particulate matter may be the result of coagulation plus flocculation or bacterial growth.
Verberk et al. (2009) showed that particle volume concentration (PaVoC), the total dry-weight
TSS and inorganics in particulate form can increase with distance downstream of a WTW,
indicating that particulates form from the flocculation of oxidised solutes.

2.1.7.3 Other sources

Rapid changes in velocity such as can result from a pump trip or valve closure can generate
pressure waves within DWDS pipework (Brunone et al., 2000). Both very high and low
transient pressures can cause structural damage but low pressures can also cause water to be
sucked into the DWDS via cracks and leaks (LeChevallier et al., 2003; Besner et al., 2007a;
Collins and Boxall, 2013). This ingress has the potential to contaminate the system with
hazardous chemicals, viruses, bacteria (including fecal coliforms) (LeChevallier et al., 2003) and
presumably also inorganic particulate material. DWDS contamination with undesirable solutes
and particulates may also result from cross-connections and back-flow (USEPA, 2001) and also
from maintenance operations (e.g. DWI, 2011a, p. 64) and the associated cleaning flushes
(Besner et al., 2007b).

These sources of material are likely to be less significant than WTW breakthroughs or iron
corrosion due to their localised, transient nature.

2.1.8 The relationship between turbidity and TSS

Discolouration is primarily quantified as turbidity because changes in the aesthetic appearance
of drinking water result in complaints from customers and therefore drive action from water
companies. However, understanding how the light-scattering of suspended particulates relates
to the concentration of that suspension (total suspended solids (TSS); typically measured
in mgL−1 rather than as a relative volume) allows for the study of the processes that drive
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discolouration. If TSS can be measured then changes in particle loadings due to hydraulic
disturbances can be assessed; furthermore, if the size and density distributions of that material
are also known then the volume of material mobilised by a hydraulic disturbance can be
estimated, as can the thickness of that material prior to its detachment from the pipe wall.

Turbidity is not a precise measure of the volume nor the mass of suspended solids in a sample.
The “shape, size and refractive indices of the particles in suspension all affect their light-
scattering properties” (Ratnayaka et al., 2009, p. 218), with the peak intensity of scattered
light being for diameters of 0.5µm and intensity decreasing rapidly either side of that peak
(WRC plc, 1994). Over a very wide range of turbidities the relationship with particle loading is
far from linear, in part due to shadowing effects (WRC plc, 1994).

The nature and generality of the relationship between turbidity and TSS determines how easily
the former can be used as a proxy for the latter. If turbidity increases approximately linearly
with particle mass (and therefore volume) then turbidity will more linear with TSS than if
turbidity increases linearly with particle diameter, as for a spherical particle its volume Vp is
linear with its mass but is a non-linear function of its diameter Dp (Vp =

(
πD3

p

)
/6). The

literature offers various means for relating turbidity to particle size using the Beer-Lambert
Law but no consensus regarding whether this relationship is more linear if size is quantified by
particle volume or particle diameter. According to Kissa (1999):

T ∝
πN

ˆ ∞
0
D3
p · f (Dp) dDp

6Dp
(2.2)

where Np is the number of particles per mL and f (D) is a normalised PSD function. If all
particles are the same diameter then:

T ∝ πNDp
3

6Dp

∝ πNDp
2

6 (2.3)

I.e. turbidity is proportional to D2
p. Secondly, according to Clifford et al. (1995), the transmitted

intensity can be expressed as:

I = I0 exp
(
−bpLp
ρp

K

Dp
cn
′
)

(2.4)

where c is the mass of particles per unit volume of fluid (i.e. TSS), ρp is the density of
individual particles, bp is a shape factor (1.5 for spherical particles) and K is the extinction
coefficient accounting for the extent of reformation of the light beam after scattering behind
the particle. For particles > 4µm, K is very close to 1.0. The exponent n′ is a function of
Dp, and is included to take account of reduced exposure of particles to the light source as the
concentration increases. Combining eqs. 2.1 and 2.4 gives:
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T = bp
ρ

K

Dp
cn
′ (2.5)

so turbidity is likely to be non-linear with Dp. Thirdly, according to Reddy and Fogler (1981):

T = 1
Lp
· ln

(
I0
It

)
= Kπ

(
Dp

2

)2
N (2.6)

N is the concentration of particles and K is the scattering coefficient, where:

K = K0

(
Dp

2λ

)m
(2.7)

Here, K0 is the size-independent component of K, m is an (empirical) exponent of the
wavelength which is dependent on the particle size and refractive index. Therefore:

T = K0

(
Dp

2λ

)m
π

(
Dp

2

)2
N (2.8)

so turbidity is proportional to Dm
p ·D2

p and will only be linear with Dp if m = −1.

The experimental evidence for turbidity being linear with TSS (and therefore particle volume)
was stronger than the theoretical evidence but still mixed. Several European and North American
studies explored the linearity of this relationship over the range of turbidities typically seen
during DWDS flushing and for different source waters and pipe materials:

• Boxall et al. (2003a) found turbidity could serve as a useful proxy for TSS as the particle
size distributions associated with a number of discolouration studies were similar (UK,
French, Canadian and US DWDSs) and presented an approximately linear relationship
for converting turbidity to TSS (R2 = 0.78; zero intercept forced; turbidities up to
u 1000NTU ; sample size and pipe materials not stated).

• When flushing two sub-regions of a Dutch DWDSs containing only polyvinyl chloride
(PVC) and asbestos cement (AC) pipes, one of which was supplied with ultra-filtrated
water and both having six flushing locations and ~500 supply points, Vreeburg et al.
(2008) found different approximately linear relationships between turbidity and TSS for
each (R2 = 0.65, n = 12; R2=0.87, n = 12). This discrepancy was attributed to the
suspended material in the water that had been ultra-filtrated having different scattering
properties, and indicates that the turbidity to TSS relationship is source-water dependent.

• The light scattering properties of mobilised discolouration matter appear to vary with pipe
material and water source. Schaap and Blokker (2012) analysed turbidity and TSS data
from 300 Dutch distribution mains flushes. They found that the relationship between
the two variables was most linear when the data were grouped by water source and the
proportion of unlined cast iron (CI) within the distribution area (for all data R2 = 0.80;
for the aforementioned groups R2 ∈ [0.85, 0.93]). Besner et al. (2012) detail a study
in Waterloo, Canada, a city supplied from a variety of sources. Each of a number of
distribution pipes were each flushed once. A poor non-linear relationship was found when
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all data were collated (ln (TSS) = 0.5968 · ln (NTU) + 1.0232, R2 = 0.53, n = 180 (45
flushed pipe lengths, 4 samples per flush)) but more linear relationships were seen when
that data (plus data from flushes where TSS was only measured once) were grouped
by pipe material (CI: n = 16, R2 = 0.78; ductile iron (DI): n = 15, R2 = 0.68, PVC:
n = 54, R2 = 0.75).

• There is limited evidence of linearity in larger diameter trunk mains: Vreeburg and
Beverloo (2011) flushed two trunk Dutch mains, one AC and one PVC, and found
TSS = 0.3793NTU in the former (R2 = 0.95, n = 12, � = 315mm) but the
relationship was far from linear in the latter (TSS = 0.2571NTU , R2 = 0.46, n = 10,
� = 500mm).

• In contrast, Ryan et al. (2008) monitored a DWDS in each of six locations around
Australia and found no associations between particle size distribution, TSS and turbidity.
The modal particle size for ‘background’ flows was found to decrease with distance from
the WTW and within 100mm distribution mains towards the extremities of the network
most particles lay within the range 5−20µm, although second local PSD mode of 37µm
was found at all sites. When flows were elevated, the mobilised discolouration material
was found to be similar but possibly slightly smaller in diameter. The lack of a correlation
between TSS and turbidity may or may not be due to a difference in discolouration
material composition (and therefore light-scattering properties) between Australian and
European DWDSs: the material in some but not all Australian systems is dominated by
clay (Prince et al., 2000; Ryan et al., 2008).

• Chanson et al. (2008) summarised correlations between turbidity and TSS for several
studies of open waters. Eight of the quoted thirteen expressions were linear but the
degree of linearity was not specified.

Few have explored how the light scattering properties at a sampling point within a DWDS vary
over time and between hydraulic disturbances of different magnitudes. The aforementioned
study by Vreeburg et al. (2008) in part explored variation in suspended particle size in two
sub-networks over a year using particle counters but the collected data has been aggregated in
time in a way that does not allow for an exploration of the correlation between particle loading,
size distribution, turbidity and other factors of interest such as flow and metals concentrations.
Verberk et al. (2009) monitored size distribution (particle counter) data and turbidity in various
Dutch DWDSs over a week and found that trends in turbidity were not obvious or present in
total particle count time-series.

Verberk et al. (2009) highlight that, although there is merit in studying variation in light-
scattering properties when investigating discolouration processes, interpreting particle counter
data for this purpose can be difficult: each sample comprises a value for each of several size
bins (31 in the case of some of the sites monitored by Verberk et al. (2009)) rather than just a
scalar as is the case when measuring turbidity.

Particle count data can be aggregated to yield a univariate time series by converting to particle
volume concentration (PaVoC)

[
m3/m3] (Vreeburg et al., 2008; Verberk et al., 2009) but a

failure to account for asymmetry in particle geometries could result in large errors. Alternatively
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material fluxes past a sampling point can be quantified in units of mass (TSS) rather than
volume (PaVoC) by measuring dry weight (Vreeburg et al., 2008) but the temporal resolution
of this method is limited by needing to capture water for several hours to have enough mass
for analysis and by the drying process being offline and time-consuming.

In conclusion, turbidity may be sensitive to particle size and shape but taking and interpreting
measurements is simpler and quicker than for PaVoC and dried weight TSS analysis. Also, it is
not TSS that drives customer complaints regarding aesthetics but turbidity.

After conducting flushing operations, Cook and Boxall (2011) in the UK and Vreeburg and
Beverloo (2011) in the Netherlands made efforts to quantify the thickness of the cohesive layers
that had been eroded by the increases in flow. In both studies a linear relationship between
turbidity and TSS was assumed (Cook and Boxall, 2011) or calculated (Vreeburg and Beverloo,
2011) as was a particle density. The total volume of mobilised material could be calculated
then normalised by pipe internal surface area to give a thickness. Cook and Boxall (2011)
found that the flushing of previously undisturbed mains could generate notable turbidities from
layers estimated to be < 0.57mm thick. Therefore, discolouration in DWDSs is most likely due
to hydraulic disturbances causing the erosion of these thin layers rather than from the erosion
of large turbercles.

2.1.9 Transport of material from bulk water to wall

Discolouration material has traditionally been viewed as sediment that settles under gravity
along the pipe invert. However, Boxall et al. (2001) found that the size and density distributions
of discolouration material prohibits particles from settling under all but quiescent conditions.
Such conditions are rarely found in distribution systems so Boxall et al. (2001) concluded
that particles must be transported to the wall by other means and also that they will remain
entrained in the bulk flow as a wash load once mobilised. van Thienen et al. (2011b) concurred
that the migration of material from the bulk flow to the pipe wall cannot solely be due to
sedimentation under typical hydraulic DWDS conditions.

Vreeburg (2007, p. 66) dosed a laboratory rig containing a perspex pipe (� = 0.1m) with
iron flocs and found that the flocs collected over time around the entire circumference at bulk
velocities of 0.14ms−1 but only around the lower part of the pipe at 0.06ms−1 (fig. 2.4). This
indicates that radial transport processes may be significant at the higher velocity. It was not
stated whether the flocs used in the experiment were representative of discolouration material
with regards to diameter and density.

A correlation has been found between the quantity of wall-bound discolouration material,
measured using turbidity, and sessile biofilm, measured using microscopy techniques (Sharpe,
2013). Sharpe (2013) and Fish (2014) monitored biofilm growth around the circumference of a
high-density polyethylene (HDPE) pipe (� = 79.3mm) and found no statistical difference in
the microbial community or biofilm physical structure between the soffit, middle and invert of
the pipe.

The processes that drive solutes to the pipe wall are dependent on hydraulic regime and so it is
possible that the transport of fine suspended particles to the wall may also be dependent on the
Reynolds number (Re). There are several validated approaches to modelling solute transport
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(a) Flow 0.06m · s−1 (b) Flow 0.14m · s−1

Figure 2.4: Photographs of accumulated material within a � = 100mm Perspex pipe loop after four
days of re-circulation with high concentrations (10mg · L−1) of ferric chloride (Vreeburg, 2007, p. 62).

to the pipe wall; these are dependent on Re and molecular diffusivity (Biswas et al., 1993;
AWWA Research Foundation, 1996; Rossman, 2000). The radial transport of discolouration
particulates may be driven by similar processes due to particles being light enough to exhibit
Brownian motion.

van Thienen et al. (2011a) investigated whether radial transport processes such as turbophoresis,
the transport of particles down a turbulence gradient due to particle inertia, could contribute to
the migration of material from the bulk flow to the pipe wall. Turbulent diffusion was found to
be the radial transport processes that dominates radial transport as particle diameters and bulk
flow velocities are typically too small/low for inertia-driven mechanisms such as turbophoresis
to be significant.

2.1.10 Mechanisms for binding to the pipe wall

If discolouration material were held at the wall by radial transport processes alone then it
would all be evacuated upon the draining of the system. Vreeburg (2007, p. 67) found that
some material remained bound to the pipe wall of a rig after draining, indicating that the
material had cohesive properties. When Mn reacts with oxidants such as oxygen or chlorine it
precipitates and then accumulates on pipe and tank internal surfaces as a black ‘slime’ (Kohl
and Medlar, 2006; Ratnayaka et al., 2009). Fe-bearing corrosion scales can line the walls of Fe
pipes (McNeill, 2000).

Micro-organisms can become attached to pipe walls when they get sufficiently close that
attractive forces come into play; Dunne (2002) termed this primary adhesion mechanism
‘docking’. These sessile organisms then release EPS that allow them to more strongly adhere
to the wall (‘locking’). The resulting biofilm, which is predominantly comprised of extracellular
carbohydrates, proteins, DNA and live and dead organisms (Denkhaus et al., 2007; Jakubovics
et al., 2013) then provides a sticky surface along which the co-deposition of organisms (Batté
et al., 2003) and inorganic material (Zacheus et al., 2001) can occur. Husband et al. (2008)
found that metal uptake rates in a laboratory pipe rig were greater after four weeks into an
experiment than one week, suggesting that biofilm growth may a be precursor to metal oxides
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attaching to pipe walls. The two other stages of the biofilm life cycle are maturation (growth)
of the biofilm and detachment (Dunne, 2002), which could be the active detachment of single
organisms or could be due to sloughing driven by an increase in hydraulic forces (Stoodley et al.,
2001b). The cycle can then repeat through detached organisms then ‘docking’ at pipe/tank
walls again further downstream (Vaerewijck et al., 2005).

2.1.11 Macro- and micro-scale heterogeneity of discolouration material

Discolouration material does not form on pipe walls in entirely smooth layers. Spatial hetero-
geneity has been seen with the naked eye through the wall of a perspex pipe in a laboratory
pipe rig (fig. 2.4) and also through conducting internal inspections of drained-down trunk mains
(fig. 2.5).

Spatial heterogeneity has also been observed at the macro scale. Biofilms, a component of
discolouration material in DWDS (§2.1.3; §2.1.4), have been shown to vary somewhat in
the ratio of volume to coverage area (a proxy for thickness) between fields of view when
imaged in three dimensions using a Confocal Scanning Laser Microscope (Fish, 2014, §5.2.1.4).
Also, complex three-dimensional structures can be seen in biofilms that have developed over
twenty-eight days under conditions not unlike those in DWDS (fig. 2.6).

2.1.12 Shear-stress-driven discolouration material erosion

2.1.12.1 A velocity or shear-stress driven process?

It is widely acknowledged that particulate material at the pipe wall becomes entrained in the
bulk flow upon an increase in hydraulic forces. There are however several views on which factors
drive material erosion.

One theory of erosion is that discolouration material is comprised of loose sediments that are
mobilised when a threshold velocity is exceeded. However, this conflicts with the evidence in
§2.1.9 that the material is not sediment as particles are sufficiently small and light for them
not to typically settle under gravity in all but fully quiescent conditions.

Boxall et al. (2001) took an alternative view on discolouration material erosion and accumulation:
the particle size and density analysis described in §2.1.9 and “the observation of Mehta and
Lee (1994) that particles of this size range (< 20µm) normally exhibit cohesive properties” led
them to theorise that discolouration material binds to the pipe wall in cohesive layers that are
conditioned by the hydraulic shear stress (Boxall and Saul, 2005).

Vreeburg (2007) concurred with this argument after considering the gravitational settling
of non-cohesive sediment by Stokes’ law and its resuspension according to a Shields-based
empirical formula. Vreeburg (2007) concluded that the velocities required for the resuspension
of discolouration material (particle diameter ∈ [1, 25] µm and density ∈ [1050, 2600] kg ·m−3)
are sufficiently frequently exceeded in real DWDS for it to only be possible for material
to accumulate if it adheres to the pipe wall in cohesive layers. Subsequently, Pothof and
Blokker (2012) compared the Soulsby (1997) critical shear stress for mobilisation to shear
stresses experienced in real DWDSs. They also concluded that typical discolouration material
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Figure 2.5: The internal surface of a �=350mmm unlined DI trunk main, taken after the main had
been drained down. Image supplied by Wessex Water.

Figure 2.6: A Scanning Electron Microscope (SEM) image of a biofilm on the wall of a �=79.3mm
HDPE main (from Fish, 2014). The main was subjected to a low-varying diurnal flow pattern at 16°C
for twenty eight days, during which time a biofilm developed on the pipe wall. This image is of a biofilm
sample from after the main was subsequently flushed at a much higher flow rate.

19



(Ds < 25µm; ρs < 1.3 kg ·m−3) can not accumulate within DWDS pipework if it is non-
cohesive unless the daily peak hydraulic forces are always very low, suggesting that material
most likely develops in cohesive layers and classical non-cohesive sediment erosion models such
as those of Ackers and White (1973) and Soulsby (1997) are not representative of discolouration
material mobilisation processes.

Pothof and Blokker (2012) express the daily peak hydraulic force required for the mobilisation
of non-cohesive discolouration material of typical densities and diameters as a bulk velocity
(0.06m · s−1) yet the erosion of cohesive materials is typically considered to be driven by the
shear stress τa at the material/fluid boundary, which is a function of not just velocity but also
hydraulic radius and boundary roughness. Under steady state conditions the shear stress at the
pipe wall is as per eq. 2.9.

τa = ρgDH
hf
L

(2.9)

where

τa applied shear stress [N m−2]

ρ fluid density [kgm−3]

DH hydraulic diameter, equal to the diameter for a pipe with a circular cross-section
[m]

L pipe length[m]

hf flow-dependent head loss over the length of the pipe [m], which is defined as:

hf = f · u
2

2g ·
L

DH
(2.10)

known as the Darcy Weisbach formula (Chadwick, 2004), where

u bulk velocity
[
ms−1]

ρ fluid density
[
kgm−3]

g acceleration due to gravity
(
9.81ms−2)

f Darcy Weisbach friction factor [−], which is equal to:

f =


64
Re Re < 2000

0.25(
(log10

(
ks

3.7·D + 5.74
Re0.9

))2 4000 ≤ Re
(2.11)

assuming the Hagen Poiseulle formula for laminar flow (Bhave, 1991) and the Swamee Jain
approximation to the Colebrook White formula for turbulent flow (Bhave, 1991). For transitional
flow (2000 ≤ Re < 4000) , Re can be found by cubic interpolation within the Moody diagram
(Dunlop, 1991). Here:
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ks Nikuradse equivalent sand roughness [m]

Re Reynolds number [−], the ratio of inertia to viscous forces, which is equal to:

Re = ρUDH

µ
= UDH

ν
(2.12)

where

µ dynamic viscosity [Pa · s]

ν kinematic viscosity [m2s−1]

For reference, the influence of the bulk velocity and bulk flow on the shear stress at the pipe
wall is shown in fig. 2.7.

2.1.12.2 The erosion of conditioned material by the ‘excess shear stress’

Wall-bound discolouration material does not have a single shear strength but has a strength
versus quantity profile, where the lower bound of this strength range is typically the prevailing
shear stress i.e. the discolouration material is conditioned by the usual pipe hydraulics. The
strength profile of wall-bound material can be studied by increasing the shear stress in steps
above and beyond the ‘background’ shear stress, as illustrated in fig. 2.8 (after Husband and
Boxall, 2010a). In these examples note that more discolouration material is mobilised by
each flow step; were it non-cohesive sediment rather than cohesive layers then it would all be
mobilised by the first flow increase.

Intuitively one might assume that a trebling rather than doubling of the absolute shear stress
at the pipe wall would cause greater and quicker material erosion, but studies have strongly
indicated that the rate of erosion is dictated by the amount by which the shear stress at a given
time exceeds the current shear strength of the wall-bound material (henceforth this quantity
will be referred to as the excess shear stress), with this shear strength being shaped by the
prevailing shear stress.

Figure 2.7: The impact of (a) bulk velocity u and (b) bulk flow Q on the shear stress τa at the pipe
wall (diameter � = 150 mm; pipe roughness ks = 5 mm)
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(c) L = 380m; � = 89mm; PE
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(d) L = 272m; � = 72mm; PE (Husband and Boxall
(2010a) erroneously stated the length as 280m).

Figure 2.8: The discolouration material bound in cohesive layers to pipe walls has a strength versus
quantity profile that can be explored by repeatedly increasing the shear stress in steps above prevailing
levels (after Husband and Boxall, 2010a).

The importance of the excess shear stress as an eroding force is concisely illustrated in the first
of two case studies presented in Husband and Boxall (2012): (see fig. 2.9). In the studied trunk
main system, enabling works required that flows be increased in three distinct pipe lengths (A,
B and C). The relative increase in absolute shear stress was greatest in pipe C (it quadrupled)
but large turbidity responses were only seen for pipes A and B. Husband and Boxall (2012)
attributed this to A and B having experienced greater excess shear stresses as a result of the
increase in flow: in those two mains the relative difference in shear stress pre- and post-flow
increase was greater than for C (fig. 2.9), which would equate to a larger excess shear stress (if
the prevailing shear stress prior to the flow increase had conditioned the wall bound material so
it and the material shear strength were similar).

Studies of cohesive layers of particulate material in various research areas have found the
layer strengths to be conditioned by prevailing hydraulic forces and the rate and amount of
material erosion to be driven by the excess shear stress: such behaviour has been witnessed for
discolouration material (as mentioned above and in Husband and Boxall, 2010a), for biofilms
(through sloughing; Telgmann et al., 2004) and, in the field of marine geology, for cohesive
estuarine muds (Sanford and Maa, 2001).

Learning of the importance of the excess shear as an eroding force can reshape one’s under-
standing of which pipes in a DWDS are at greatest risk of causing discolouration. For example,
pipes such as dead ends that usually experience low, variable shear stresses can be associated
with the greatest discolouration risk.
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Figure 2.9: Flows in three pipe lengths (A, B and C) within a UK trunk main system were increased
above prevailing levels. The relative increase in absolute shear stress was greatest in pipe C but large
turbidity responses were only see in A and B, demonstrating that the excess shear stress (the target
shear stress minus the typical daily shear stress) is the primary driver of the erosion of cohesive layers of
discolouration material from pipe walls (after Husband and Boxall, 2012).

2.1.12.3 Unsteady hydraulics and transient pressure waves

Discolouration events are due to sudden increases in hydraulic forces yet eq. 2.9, an expression
for the Darcy-Weisbach shear stress, assumes simple steady-state hydraulic conditions (the fluid
has no inertia, has a constant density and is conveyed through inflexible conduits). The total
shear stress at the wall under unsteady conditions can far exceed that predicted by eq. 2.9
(Brunone et al., 2000). Naser et al. (2006) and Aisopou et al. (2010b) argue that discolouration
material erosion could be significantly affected by the unsteady shear stress as it can be three
to ten times the steady shear stress (Aisopou et al., 2010b).

Characterising and modelling unsteady shear stresses is difficult due to the complexity of the
transverse velocity profile under transient conditions. The sudden closure of a valve results
in the generation of transient pressure waves and in pressure gradients that decelerate the
(compressible) fluid; Brunone et al. (2000) showed experimentally that this can result in
momentary flow reversals near the wall due to the velocity being lower there than at the
centreline prior to the closure. In addition, under turbulent, unsteady conditions velocity profiles
can be temporarily asymmetric. As a result of the complexity and rapid variation in velocity
profile unsteady shear stresses can be high even though the bulk discharge for a pipe is relatively
low (Brunone et al., 2000).

Few have experimentally studied the impact of unsteady hydraulics on discolouration material
erosion. Mustonen et al. (2008) generated ‘pressure shocks’ within very narrow diameter lab
rig pipework after first allowing material to develop on its walls. These transients were found
to mobilise biofilms and ‘loose deposits’, however no attempt was made to quantify and model
the relationship between the dynamic pressure changes and material erosion.

There is also an unsteady shear stress at times where the bulk velocity is not changing rapidly:
this is due to turbulence. Its contribution to material erosion will most likely be dwarfed by the
viscous shear stress (eq. 2.9) as it is negligible within the laminar sub-layer (Graebel, 2001) and
the velocity fluctuations due to turbulence are minor compared to the time-averaged velocity
(Tennekes, 1972).
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2.1.12.4 Effect of temperature and wall-bound discolouration material quantity on
shear stress

The shear stress at the pipe wall is a function of Reynolds number (the ratio of inertia to
viscous forces) and so of the dynamic viscosity and density (eq. 2.12), both of which are
temperature dependent. However, the significance of this temperature dependency has not been
explicitly explored in the literature, most likely because of too many other discolouration-related
parameters such as biofilm growth and corrosion also being temperature dependent but not
being easy to control for.

Shear stress is also a function of wall roughness (eq. 2.11) but the impact of time-variance in
the amount of discolouration material bound to the pipe wall on roughness and shear stress has
also not been explored to date. Changes in roughness could potentially be detected through
measuring headloss over a pipe length whilst upping the flow in step increments.

2.1.13 The cycle of material accumulation and erosion

2.1.13.1 Introduction

Discolouration risk would potentially be simple to manage were it just a case of ensuring a
pipe had been cleaned (abrasively or hydraulically) once before an unavoidable increase in shear
stress. However, as is discussed in this section, discolouration material has been shown to
continually, repeatably and ubiquitously accumulate on pipe walls following a period of erosion.
Therefore, although discolouration risk can be reduced by one-off capital and operational
measures, these commonly need to be coupled to an ongoing operational programme (at least
in networks that cannot be entirely reconfigured/replaced to ‘design out’ the risk).

2.1.13.2 Quantifying discolouration material accumulation; using the integral of ma-
terial flux to quantify amounts of discolouration material

Water providers are keen to characterise material accumulation processes1 to inform the design of
operational strategies for managing discolouration risk. This is made difficult by the complexity
of subterranean DWDS and the physical and biochemical reactions that occur within them.
Erosion processes can be qualified and quantified through the direct measurement of turbidity
but the study of accumulation processes in the field and lab typically requires more indirect
methods given the processes’ largely latent nature. Most methods involve comparing the
turbidity response from two controlled hydraulic events (typically unidirectional pipe flushing)
that bookend a period over which accumulation is believed to have occurred (Blokker et al.,
2011; Husband and Boxall, 2011; Cook and Boxall, 2011; Vreeburg et al., 2008). The approach
taken by Husband and Boxall (2011) when studying accumulation in DMAs was as follows:

1. Select the pipe(s) to be flushed. Ideally, these should not have been affected by hydraulic
anomalies during the previous 1-4 years (duration depends on pipe material).

1Also referred to as material regeneration, although a more specific definition of regeneration is given in §4.
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2. Ensure that the pipes upstream are either cleaned first or are of a much larger diameter
so that a significant increase in flow in the ‘target’ pipe(s) will only have a negligible
impact on shear stresses upstream.

3. Open a hydrant at the downstream end of the target pipe(s) and flush whilst continually
monitoring turbidity and flow at/through the hydrant. In ‘through mains’ (not dead ends)
the flushing may need to be undertaken at night to reduce the error in flow measurements
should flow be monitored via a standpipe attached to the hydrant.

4. Turbidity, flow and pressure should be monitored until the turbidity of the water emerging
from the hydrant reaches the background levels seen prior to flushing. Turbidity should
ideally be monitored at a high temporal resolution (. 10s)

5. The amount of material mobilised per flush is then approximately quantified using
several different metrics such as (a) the peak turbidity during the flush, (b) the average
(presumably the arithmetic mean) turbidity or (c) turbidity integrated with respect to
time (with units of NTU · s), shown below:

ˆ flush_end

flush_start
Tds (t) dt [NTU · s] (2.13)

where

Tds (t) Observed turbidity at downstream end of the pipe (assuming that the water
at the upstream end has negligible turbidity) [NTU ]

t time [s]

6. A second flush is then conducted X months later during which flushing technicians aim
to achieve the same flow through the target pipe(s). The quantity of mobilised material
from this flush is calculated using the same metric as before.

7. The difference between the measures of the amount of mobilised material and time differ-
ence between the flushes provides either an absolute or relative measure of accumulation
or a relative measure (where the use of a relative measure requires the assumption that
the discolouration potential immediately prior to the first flush was maximal given the
prevailing hydraulic conditions and layers were not regenerating significantly). Hydraulic
disturbances between the flushes would of course affect such measures (Cook, 2007, p.
81).

8. Subtracting the amount of material mobilised by the second flush from the amount mo-
bilised by the first and dividing by the time difference gives an absolute accumulation rate.
Alternatively, division can be used in place of subtraction to give a relative accumulation
rate; this requires the assumption that the discolouration potential immediately prior to
the first flush was maximal given the prevailing hydraulic conditions and layers were not
regenerating significantly. Hydraulic disturbances between the flushes would of course
affect the accuracy of these accumulation rate estimates (Cook, 2007, p. 81).
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Methods based on this approach have been applied within DMAs to study if and how accumula-
tion processes vary with time/season, source water, asset characteristics and network topologies
(Cook and Boxall, 2011; Husband and Boxall, 2011).

In the aforementioned method, the amount of material mobilised per flush is best quantified
as turbidity integrated over the flush duration that metrics insensitivity to noise. The metric
can be thought of as being proportional to the mass of mobilised material so long as flow is
constant and turbidity is assumed to be proportional to TSS so can therefore be treated as a
concentration. This second assumption has been shown to be valid in many DWDS (§2.1.8).

If the flow is not constant, as is often the case during field studies of material shear strength
versus quantity profiles (see fig. 2.8), then this metric will produce erroneous results due to
it not including flow as a factor. Fig. 2.10 demonstrates the importance of quantifying the
total amount of material mobilised by a shear stress increase using both turbidity and flow to
calculate the material flux. Here the turbidity at the downstream end of the pipe, Tds, has been
discretely sampled every ∆t since time t0. Fluctuations in Tds have been driven by fluctuations
in pipe flow, Q, the latter having been sampled with the same frequency. Each turbidity
measurement at time t is assumed to be representative of the parcel of water that passed the
observation point over say t± (∆t/2). If turbidity is considered to be a pseudo-concentration
then the total amount of material per parcel is Tds (t) · Q (t) · ∆t (shown as green bars in
fig. 2.10). Integrating the material flux Tds (t) ·Q (t) that passes out of the pipe over the period
t0 and t therefore gives the total amount of material to have passed that observation point
between t0 and t (green line in fig. 2.10, hence the importance of considering both turbidity
and flow (eq. 2.14) when estimating the amount of material that has been mobilised from the
pipe wall using observed time-series data.

Aw ·N =
ˆ flush_end

flush_start
Q (t)Tds (t) dt (2.14)

where

Aw ·N the amount of material mobilised from each m2 of the pipe’s internal surface
(N ,[NTU ·m]) scaled by total wall area Aw

[
m2] to give the total amount of

mobilised material
[
NTU ·m3];

Tds (t) Turbidity at the downstream end of the pipe (here assuming that the water passing
into the upstream end has negligible turbidity) [NTU ];

Q (t) Pipe flow
[
m3 · s−1];

t Time [s].

Note that in circumstances where the turbidity at the upstream end is non-zero the material
flux and amount of mobilised material should be calculated using the net turbidity response
from the pipe, Tnet(t), rather than just the turbidity measured at the downstream end, Tds(t).

Returning to methods for quantifying material accumulation, others have used different ap-
proaches to that presented in Husband and Boxall (2011):
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Figure 2.10: An illustration of the importance of measuring the amount of material mobilised from a
pipe wall using the material flux passing the downstream end. The material flux (green) is the product
of the discretely sampled flow (shown in blue; Q) and downstream turbidity (red; Tds). Here, the
cumulative material flux is also shown (green line), this being the total amount of material to have
passed the observation point since time t0.

• Schaap and Blokker (2013) presented a variant of this method where the total amount
of material mobilised per flush is calculated in the same manner but is then divided by
pipe length to give a measure of Locally Accumulated Material (LAM). Previous studies
referenced by Schaap and Blokker (2013) indicated that most material is mobilised during
the first turnover per flush so Schaap and Blokker (2013) assumed mobilisation was
near-instantaneous and so were able to quantify LAM per metre of flushed pipework.

• Discolouration potential and thus accumulation can be quantified using the Resuspension
Potential Method (RPM) (Vreeburg, 2007). A 0.35ms−1 increase in bulk velocity is
imposed within a pipe for fifteen minutes, during which time turbidity is monitored. Five
aspects of the turbidity trace can then quickly be scored to give a RPM score between 0
(no discolouration risk) and 15.

• Gaffney and Boult (2011) explored whether mass fluxes could be used to quantify erosion
from and/or accumulation within a pipe segment but sampled turbidity at such a low
rate (15-30 mins) that it is possible turbidity spikes would not have been detected.

2.1.13.3 Accumulation: an ubiquitous, continual and repeatable process

Intuition suggests that the development of enough discolouration material on pipe walls to
cause detectable turbidity during flushing would be limited to unlined corrodible iron pipes
and/or pipes conveying water with a high particle loading. However, notable quantities of
discolouration material can accumulate in most if not all DWDS systems (groundwater and
surface water-fed) within pipes of a wide range of materials (including but not limited to unlined
CI, PE, PVC, AC and cement-lined CI) and diameters (Husband and Boxall, 2011; Blokker
et al., 2011). Material accumulation is therefore understood to be an ubiquitous process.
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When Blokker et al. (2011) flushed a variety of pipes within a Dutch distribution area on three
occasions (returning 17 then 24 months after the initial flushes) they found that decreasing
amounts of material were mobilised per flush yet their measure of the accumulation rate was
fairly constant, suggesting that material accumulation is continual, repeatable and potentially
linear. Lehtola et al. (2004b) showed diurnal variation in turbidity and other water quality
parameters for a Fe pipe with which there was a known discolouration risk; this suggests that
cohesive material layers are continually eroding and regenerating at the pipe wall. Studies in
the UK have also shown accumulation to be continuous (Husband et al., 2008, figs. 4-7, table
1), potentially linear (Husband and Boxall, 2008; Cook and Boxall, 2011; Husband et al., 2008)
over periods as short as a month and repeatable (Husband and Boxall, 2008).

Intuition suggests that accumulation may not be linear as seasonal fluctuations in parameters
such as temperature will accelerate/decelerate the biochemical aspects of material accumulation
processes. Such variation has not been detected in a number of studies as repeated flushing
has been conducted on an annual basis (e.g. Husband and Boxall, 2008) and/or the number
of flushes per flushing point has been very few (Blokker et al., 2011; Cook and Boxall, 2011).
All laboratory investigations into accumulation using pipe systems with hydraulics and water
quality comparable to real DWDSs have been too short in duration (up to one month) to
detect the effects of seasonal variation. However, Schaap and Blokker (2013) did identify a
positive relationship between temperature and material accumulation when a distribution main
was flushed thirty times in eighteen months. Also, single-month experiments in temperature-
controlled facilities have shown temperature to have a notable effect on material build-up
(Sharpe, 2013; see also §2.1.16.2 and §2.1.16.9).

The discolouration cycle repeats over different time frames: both between controlled or
unexpected anomalous flow increases but also over much shorter periods due to frequent variation
in demand, pumping and reservoir flows (Gaffney and Boult, 2011). Diurnal turbidity patterns
in distribution pipes typically show an increase overnight, attributable to corrosion/stagnation
(Vreeburg, 2007; Cook, 2007) but Cook (2007) presented examples of the turbidity reaching a
maximum at the same time as flow in areas dominated by domestic demand, indicating that
the patterns also reflect how material that has accumulated whilst flow was relatively low is
then eroded by the daily peak turbidity. Suboptimal WTW processes may also give rise to
frequent fluctuations in turbidity (Vreeburg et al., 2008).

2.1.13.4 Variation over time in the discolouration material strength versus quantity
relationship

For any sudden increase in flow the risk of exceeding regulatory turbidity limits is a function
of a) how much material is present at the pipe wall, b) the strength profile of that material
and c) the increase in shear stress. The relationship between the quantity and strength of
wall-bound material can be explored at any given moment by imposing a stepped shear stress
profile and measuring how much material is mobilised by each excess shear. This highlights
one of the principal issues associated with the study of discolouration material: it is difficult if
not impossible to characterise the system well without greatly disturbing it. However, once the
system has been disturbed and its state is known then this information could be used along
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with an understanding of how the relationship between strength and quantity changes over
time due to accumulation and erosion to estimate the state at a future time.

One way of exploring how material accumulates over different strength ranges is to impose a
stepped shear stress profile whilst measuring turbidity then repeat this exercise after a period
of accumulation. Husband and Boxall (2011) flushed 67 pipes in England then returned to
each site to flush one or more times using the same flow (and therefore shear stress) profiles,
with each visit being separated by a number of months. As can be seen from fig. 2.11, the
initial flush of each main generated more turbidity than subsequent flushes, implying that the
cohesive material layers had not accumulated to the point where they had reached a steady
state over the intervening period(s). However, a turbidity response can be seen during later
flushes for each increase in shear stress, indicating that all shear strengths of cohesive layers
are regenerating simultaneously.
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Figure 2.11: Turbidity data from the repeated flushing of DMA mains.

The findings of these field studies concur with those of laboratory experiments. Sharpe (2013)
connected three parallel pipe loops (HDPE; 203m long; � = 79.3mm) to a tank with a 24h
system residence time. The tank was fed with treated moorland run-off via an unlined CI trunk
main. After being cleaned using high flushing flows and super-chlorination, the pipes were
subjected to a 28-day material accumulation phase during which a different steady shear stress
was imposed at the wall of each pipe. During a subsequent material mobilisation phase, the
flow was increased in each pipe in turn, draining down the tank between the flushing of each
pipe. The flow and therefore shear stress were increased in steps, each of which was sustained
for three turnovers. Turbidity was monitored at the downstream ends of each pipe loop and was
normalised by the background turbidity prior to the mobilisation phase. The entire experiment
was conducted at first 8◦C then 16◦C. The recorded turbidity data (fig. 2.12) showed that

29



discolouration material with a variety of shear strengths had accumulated simultaneously over
the 28 days, rather than the material at the wall being dominated by stronger-bound material.2

Material quantity has been shown to increase across the strength profile over time, rather than
only very weak or quite strong material accumulating over periods of one to twelve months.
Whether this accumulation is invariant with shear strength at values greater than above the
shear stress has not yet been conclusively proven, although Cook (2007, p. 76) presented data
from the flushing of two DMAs where the proportions of material that accumulated over three
different strength ranges appeared to be constant between a number of pairs of flushes. It
should be noted that this conclusion in Cook (2007) was the result of the visual interpretation
of graphs rather than statistical analysis.

The possibilities of there being upper limits to the amount of material that can accumulate
within a given strength range (§2.1.14) and the strength with which material can adhere to the
wall (§2.1.15) are considered in the following sections.

2.1.14 The possibility of an upper bound to the accumulation over a shear
strength range

If it is known that material accumulates at all shear strengths over a range simultaneously then
one of the questions this gives rise to is whether the accumulation process can continue within
this range near-indefinitely or whether it ceases or significantly slows in time long before the
pipe becomes hydraulically impassible (fig. 2.13).

The question is difficult to answer conclusively in the field using techniques such as paired mains
flushes (§2.1.13.2), principally due to it being difficult to conduct paired flushing operations
under semi-controlled conditions that are separated by a sufficient duration to observe material
accumulation reaching the levels prior to the first flush. The majority of paired flushes conducted
to date in DMAs have been up to and including a year apart (Blokker et al., 2011; Cook
and Boxall, 2011; Husband and Boxall, 2011) and ‘full’ accumulation has not been observed
over such intervals; estimations of the duration required for ‘full’ accumulation are from linear
extrapolation (1.52 to 4.17 years for DMA pipework in England and Wales (Husband and Boxall,
2011)). Repeatedly flushing mains where the individual flushes are separated by intervals of
multiple years is made difficult by having to ensure that the shear strength range over which
one is measuring accumulation is only eroded by the scheduled flushes themselves and not by
flow increases in the several years before the first flush or between the flushes. In addition each
site would need to be revisited multiple times to ascertain whether the accumulation rate at a
given site only appears to decrease beyond a particular duration of accumulation period.

Laboratory rigs offer finer measurement and greater control of water quality and quantity during
such studies but to date the longest flushing studies explored material accumulation over just
twenty eight days (Sharpe, 2013; Fish, 2014), even shorter than the aforementioned field studies
so less suited to detecting a reduction in accumulation rates with time.

As an alternative to paired flushing, continuous monitoring of turbidity and flow also has
potential for studying temporal changes in discolouration processes. Husband et al. (2010b)

2This and the previous paragraph contain text that has been quoted from Furnass et al. (2014b).
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Figure 2.12: Results of laboratory studies into discolouration material accumulation (after Sharpe, 2013).
Material layers were developed over 28 days under a steady shear stress of 0.1Pa (0.2L · s−1) at 8◦C
and 16◦C. These layers were then eroded through imposing a series of discrete increases in shear stress.
The way in which turbidity data was normalised is described in the body of the text.

t

N
(τ
)

Figure 2.13: The amount of material N that accumulates on each unit area of pipe wall with strength
τ could either increase linearly with time or could trend towards a maximal level, as illustrated in this
diagram.
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reported the influence of interventions on discolouration processes in a pair of parallel trunk
mains (� = 1.8m, 1.5m; L = 20km) with a common inlet that had previously been operated
at particular flows for several years. The first intervention involved increasing the flow in the
� = 1.8m main to deliberately erode material in a controlled fashion to allow the � = 1.5m
main to be taken out of service for jet washing. The wider was later also jet washed. Continuous
monitoring at the common inlet and the downstream end of the narrower main showed that prior
to any interventions the turbidity at the downstream end was approximately five times greater
than the upstream end. This discrepancy was far less during the months following the brief,
controlled flow increase and was less again following the jet washing (fig. 2.14). One possible
explanation for these changes is that the material in the main had reached a maximal state prior
to the interventions but then fresh material could accumulate following the flow conditioning
and jet washing. Before the interventions, the particulate material forming within the main
through processes such as precipitation, coagulation and flocculation may have been passing
out at the downstream end due to it not being possible for more material to accumulate; such
material was then able to bind to the wall after the interventions. Alternatively it could have
been the case that the calibration slope of either the upstream or (more likely) the downstream
turbidity instrument was incorrect and the interventions caused a reduction in the proportion
of particulate material that passed out of the main having entered it at the upstream end.
Unfortunately the downstream turbidity monitoring data is limited to the period shown in
fig. 2.14 so it is not know whether the turbidity at the downstream end returned to its original
level with time, which, if seen, could indicate that the material quantity at the pipe wall has
reached a maximal level again.

Others have assessed the impact of flushing on regular turbidity fluctuations within DMA
mains (Cook, 2007; Gaffney and Boult, 2011; Mounce et al., 2014a). Gaffney and Boult
(2011) monitored pressure and turbidity at two locations within one DMA and four locations
within another at fifteen-minute resolution for five days before and fourteen days after flushing.
Through plotting the magnitude of turbidity events > 0.5NTU against their duration Gaffney
and Boult (2011) found that the resulting curves were similar for the first DMA but that
the magnitude and percentage of total monitoring time of events detected in the other DMA
actually increased after flushing. This contradicts the hypothesis stated previously that the
turbidity baseline and fluctuations would decrease following mains cleaning interventions due
to material being able to accumulate once again through flushing bringing the amount of
material at the wall below maximal levels. However, when Mounce et al. (2014a) undertook a
similar study but applied the CANARY event detection system (USEPA, 2010) to six months
of historical turbidity and pressure data from four monitoring locations within a DMA they
found flushing notably decreased the frequency of turbidity events. This could indicate that
accumulation had reached a maximal level prior to flushing.

Mounce et al. (2014a) also studied how for the four monitoring locations turbidity correlated
with (a) flow and (b) pressure at different temporal scales using a wavelet-based technique known
as Semblance Analysis (Cooper and Cowan, 2008). The hypothesis was that for fouled mains
turbidity would be positively correlated with flow and negatively correlated with pressure at the
daily scale. This was partly demonstrated in the results, where the correlation between turbidity
and the hydraulic signals ‘reversed’ following pipe flushing at two of the four sites, B and D. The
other two sites, C and E, were thought to be subject to atypical conditions so would not reflect
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Figure 2.14: Daily-averaged turbidity and flow records from a UK trunk main over 2006-2008, after
Husband et al. (2010b). Inset: 15-min flow and turbidity data during a period where flow was increased
to forcibly remove discolouration material (the absence of downstream data from May-Sept 2006 was
due to instrument recalibration).

this hypothesis. The change in correlation at B and D following flushing could be indicative
of the material bound the pipe walls then no longer being at maximum capacity regarding
discolouration material, allowing for material accumulation again. Mounce et al. (2014a) also
assessed whether any change in the daily turbidity cycle following flushing interventions could be
quantified using the daily standard deviation of turbidity at each monitoring location, possibly
averaged over each week. The calculated values were typically higher for the weeks before
flushing for two out of four sites.

There are also theoretical arguments for material accumulation within a strength range being
or not being finite. The thickness of biofilms may be limited by the diffusion of nutrients
through the EPS matrix. However, scale does not appear to be subject to such limitations:
a significant portion of the pipe diameter can become occupied by scale/tubercles over time
(although it is not known whether tubercles are erodible and can therefore be classed as
discolouration material), and in Australia much capacity in raw water mains has been lost due
to microbially-mediated iron deposition (Forward, 2004). Note that the conditions in raw water
mains are not necessarily comparable with those in DWDS and no drinking water mains are
known to have become as fouled due to discolouration material accumulation.

Another argument for the material that can accumulate with a given shear strength having
an upper bound is that the turbidity response from flushing previously undisturbed mains is
not infinite. However, it could be argued that accumulation in mains may be indefinite yet
slow enough so that the turbidity responses seen during flushing following a decade or more of
accumulation are not many orders of magnitude larger than what is seen after material has
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been accumulating over a year.

The evidence and theoretical suggestions for and against material accumulation over a given
strength range being bounded are mixed. It will be difficult if not impossible to demonstrate
bounded or indefinite accumulation given the need for long term monitoring and control and
the fact that the quantity of wall-bound discolouration material can presently only be easily
measured by disturbing it. In reality, it may be that the accumulation process neither stops
suddenly when the material at the wall reaches a certain quantity nor continues linearly until
the pipe is impassible but instead slows after an accumulation period longer than any studied
to date (see fig. 2.13). Also, the question may be irrelevant if shear stresses in DWDSs are
sufficiently variable that material at the corresponding shear strength ranges is rarely permitted
to accumulate for long enough for bounded and indefinite accumulation to be distinguishable.

2.1.15 The forces required to ‘clean’ a pipe

Knowing the minimum hydraulic force required to reduce discolouration risk to acceptable
levels is important for the operational management of DWDSs. One method of quantifying this
force has been to impose increasingly large velocities or shear stresses within pipes of different
materials and/or diameters to see if there is a limit beyond which those pipes emit no further
turbidity response. In the Netherlands such studies have resulted in the recommendation that
fouled distribution mains be pro-actively flushed by opening hydrants and raising the velocity
in the main to 1.5ms−1 for three turnovers (Vreeburg and Boxall, 2007). In the UK, Miller
(1994), cited by Vreeburg and Boxall (2007), proposed target flushing velocities that are a
function of pipe diameter and specific gravity, in keeping with classical sediment transport
theory.

In the Netherlands a change in the requirements for fire-fighting flows has permitted the
development of ‘self-cleaning’ DWDSs (Vreeburg and Boxall, 2007). These are dendritic
structures in which pipes get narrower towards the extremities of the network. Regular high
velocities and uni-directional flows ensure sediments do not accumulate in distribution systems
but are passed through to points of supply at acceptable concentrations (Blokker et al., 2010)
i.e. accumulation can be limited by capitalising on the diurnal discolouration cycle (§2.1.13).
The design maximum daily velocity is 0.4ms−1 (Vreeburg and Boxall, 2007) but through field
trials Blokker et al. (2010) found that peak velocities of 0.2− 0.25ms−1 every two days may
be sufficient to prevent fouling in AC and PVC pipes. Blokker et al. (2011) show how existing
networks can be made self-cleaning through adjusting valve positions to increase daily peak
velocities. However, for many DWDSs pipe downsizing, extensive valve reconfigurations and
material replacement are not practical options for reducing discolouration risk and may impact
on the ability to meet fire-fighting demands.

Increasing the bulk velocity to the Dutch recommended self-cleaning level on just one occasion
is not necessarily sufficient to remove all material from the walls of plastic pipes (Husband
et al., 2008, experiment series 2 (HDPE pipe)).

It may not be appropriate to quantify the cleaning force required to remove all material from
the pipe wall as a velocity; reference to critical velocities implies that erosion is driven by
classical sediment transport processes yet discolouration material has been shown to develop
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around the pipe circumference in cohesive layers and be too light once entrained to easily settle
as sediment (§2.1.9). Also, any maximum shear strength of discolouration material cannot
be deduced from the aforementioned target cleaning velocities as shear stress is a function of
the Darcy Weisbach friction factor (eq. 2.9) and therefore of pipe roughness and diameter (eq.
2.11) as well as bulk velocity).

Whether there is a maximum shear strength of wall-bound discolouration matter appears to
differ between pipe materials and the value of this threshold appears to vary for pipe materials
where a cleaning shear stress has been identified:

• During the flushing of two English DMAs Cook and Boxall (2011) found the maximum
shear strength of plastic-bound material to be ≤ 0.7Pa, yet no cleaning shear stress was
found for the AC and cement-lined Fe pipes in the vicinity: the shear stress was increased
to 8Pa in steps and more material was mobilised at each level.

• In a HDPE laboratory pipe system in which the hydraulics and water quality were largely
representative of a real DWDS, pipe turbidity responses were observed during one set of
experiments for increases in shear stress up to and including 5.7Pa (following a material
growth period) (Husband et al., 2008). In another set that used similar equipment, no
cleaning shear stress3 was detected (> 1.97Pa) in certain experiments but in others
little material was removed when the shear stress was increased above 0.43Pa (Sharpe,
2013). There is presently little understanding of how the cleaning shear stress in smooth
pipes such as those made of HDPE can be predicted from asset characteristics, bulk
water characteristics and system history.

• At the maximum shear stress3 imposed by Sharpe (2013) (2.45Pa), biofilms, known to
correlate with discolouration potential (Sharpe, 2013), were only partially eroded as the
majority of all proteins but a much smaller proportion of the cells and carbohydrates in
the biofilm had been removed. There may therefore be a (site-specific) upper limit to the
quantity of discolouration material in smooth-walled pipes but parts of the biofilm are
very difficult to erode and may still provide an adhesive coating to the internal surfaces
of DWDSs even after aggressive flushing.

• In rough-walled, unlined English CI pipes there does not appear to be a maximum shear
strength: during DMA flushing operations, Husband and Boxall (2010a) did not find
a shear stress above which no more material was mobilised from unlined CI. Husband
and Boxall (2010a) suggested that this could indicate that the corrosion process is not
shear-stress-limited but the other material accumulation processes that affect ferrous and
non-ferrous pipes are. However, this appears not to be true as no evidence of maximum
shear strengths has been found in non-corrodible AC and lined Fe pipes.

• Also, some English unlined CI pipes were found not to be self-cleaning even though the
daily maximum bulk velocity was approximately equal to the Dutch recommended self-
cleaning velocity of 0.4ms−1 (Husband and Boxall, 2011). However this recommended
self-cleaning velocity may not be applicable for unlined CI pipes due to it having been

3These shear stresses are not as quoted by Sharpe (2013) and Fish (2014); they were recalculated using eq.
2.9, the quoted diameter (� = 79.3mm), roughness (ks = 0.075mm), flow and the Swamee-Jain approximation
to the Colebrook-White formula.
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developed in a country where corrodible mains, with their higher roughnesses and therefore
shear stresses for the same diameter, make up a very small proportion of DWDS pipework
(Vreeburg, 2007).

In the few studies of discolouration processes in large diameter (� ≥ 200mm) trunk (transmis-
sion) mains (Vreeburg, 2007; Vreeburg and Beverloo, 2011; Seth et al., 2009; Husband et al.,
2013, 2011, 2010a,b; Saldarriaga et al., 2010) no evidence has been found for or against there
being a cleaning shear stress.

An understanding of the stresses required to remove biofilm from pipe walls is important as,
following the erosion of much discolouration material, the remaining sticky EPS could expedite
material accumulation. Abe et al. (2012) imposed mechanical shear stresses on laboratory-grown
biofilms using atomic force microscopy and found that a shear stress of 2.5 × 105 Pa was
required for the removal of almost all biofilm, a stress that is far higher than those required to
reduce discolouration risk to negligible levels in plastic pipes and is very unlikely to ever be
imposed within DWDSs.

There is no published evidence of discolouration material having a minimum strength.

In summary, the current discolouration risk can be minimised in plastic pipes by imposing a shear
stress greater than a threshold; however, there is disagreement as to the value of this threshold,
which may be due to it being partly site-specific. However, an understanding of the range
of values that this threshold could fall within for a given pipe can help bound discolouration
risk. There is mixed evidence for there being similar thresholds in AC and concrete-lined Fe
pipes and none for unlined CI mains, possibly due to material accumulation being partly due to
corrosion in unlined CI pipes. Further studies where much higher shear stresses are imposed
may help identify discolouration risk shear strength thresholds for a greater variety of pipes.
However, biofilm studies have shown that flushing can minimise discolouration risk at a given
moment in time that some cohesive biofilm may remain strongly adhered; this material has the
potential to promptly restart the discolouration cycle.

It should be noted that in some systems the system configuration (pump, reservoirs and pipes)
may not allow the flow and therefore the shear stress to be raised to the levels needed to clean
plastic pipes.

2.1.16 Factors that could influence accumulation rates

2.1.16.1 Introduction

System hydraulics are the primary driver of the maximum discolouration potential (the quantity
of material adhered to the wall at any given time) whereas water quality and asset attributes
such as pipe material appear to control accumulation rates (Cook and Boxall, 2011; Husband
and Boxall, 2011, 2007; Lehtola et al., 2006); for this reason it is sensible to discuss accumulation
in relative rather than absolute terms when investigating accumulation rates and the factors
that influence them.

Husband and Boxall (2011) presented expectations and measures of variance for the rates of
accumulation in various environments (e.g. Fe vs Al vs no coagulation; surface vs ground
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vs blended water source; corrodible vs non-corrodible mains). Basic bi-variate categorical
breakdowns of discolouration rates are presented by Husband and Boxall (2007, §4.2). However,
given the complex, interrelated nature of the physical, chemical and biological reactions
that are considered to contribute to discolouration material accumulation, it is thought that
predictive models of accumulation rates require through the application of multi-variate,
regressive methods to sufficient volumes of representative data. Work has already begun in
this area: Mounce et al. (2014c) used DMA flushing data from Husband and Boxall (2011) to
demonstrate how multivariate data analysis techniques can be used to identify and explore the
relationships between accumulation rate predictor variables (using a non-linear dimensionality
reduction technique known as Kohonen Self-Organising Maps) and also identify formulae of
varying complexity for accumulation rates using subsets of potential predictor variables (using
evolutionary polynomial regression (EPR)). Opher and Ostfeld (2011) also used multi-variate
data analysis techniques to investigate a similar problem: model trees (Quinlan, 1992), optimised
using genetic algorithms (Holland, 1992), were used to learn pipeline ‘biofouling rates’ from a
large number of predictor variables.

The following factors have the potential to influence discolouration material accumulation rates.

2.1.16.2 Temperature

The temperature of the bulk water and pipe wall influences all biochemical reactions within
a distribution system. Research indicates that microbial growth increases significantly when
temperatures exceed 16◦C (Dukan et al., 1996). The maxim that reaction rates double for every
10◦C increase in temperature (Connors, 1990) appears valid for biofilm growth in distribution
systems between 7◦C and 20◦C (Hallam et al., 2001). Increases in temperature also have the
capacity to expedite the corrosion of pipes, fittings and fixtures through influencing the solubility
of oxygen, viscosity, ferrous iron oxidation rates and microbial-mitigated corrosion processes
(McNeill, 2000). Disinfection residuals serve as biocides but can also expedite corrosion; the
bulk decay constant of chlorine has been found to vary significantly with temperature (Powell
et al., 2000); this could lead to deficient residuals at network extremities.

Temporal variation in water temperature is significant in distribution systems supplied with
surface water (3.9◦C − 32.2◦C over a year for a US DWDS supplied from a river (Potter,
2000); 3.2◦C − 20.2◦C over a year for a UK DWDS supplied with surface water (see Fig. 2.15)
but much less so for groundwater-fed systems.

The temperature of advected water can also vary as it moves from source to tap due to
heat transfer through pipe walls to/from backfill and the surrounding soil. Blokker and
Pieterse-Quirijns (2013) developed and validated a model of heat transfer from the subsurface
to advected water in DWDS and found that residence time had a greater effect on water
temperature than atmospheric temperature or the temperature of the source.

Several studies have explored how temperature influences discolouration material accumulation
rates. A strong positive relationship between bulk water temperature and regeneration rates
was identified by Schaap and Blokker (2013) when a Dutch distribution main was flushed
thirty times in eighteen months. Sharpe (2013) studied the impact of temperature (comparing
8◦C and 16◦C) and prevailing shear stress on accumulation rates in a realistic-scale HDPE
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Figure 2.15: Temperature variation in a surface-water-supplied DMA in the UK over the course of one
year (previously unpublished).

pipe rig over 28-days and found that accumulation, as measured by turbidity and Fe and Mn
concentrations during flushing, was most greatly influenced by temperature. She also noted that
temperature affected the strength profile of the wall-bound material: turbidity data recorded
during stepped flushing showed that the majority of material grown at 16◦C was eroded during
the first few step increases in shear stress but that material grown at 8◦C was distributed over
a wider range of strengths (fig. 2.12). It should be noted that it is not known if/how these
results would differ for non-plastic pipes, for different diameters and for different source waters.

2.1.16.3 Characteristics of raw water and water treatment works (WTW) finals

Water from upland sources is typically much richer in natural organic matter (NOM) than
groundwater and the concentration of organic substances is seasonal as it reflects the degree of
run-off. Full layer regeneration (relative accumulation of 100%) in the UK DMAs is typically
1.5 years for mains supplied with surface water versus 3 years for ground waters (Husband and
Boxall, 2011). To remove the NOM that gives water its natural colour it is common to dose
at treatment works with Fe or Al-bearing coagulants (Sharp et al., 2006). Coagulant demand
is a function of NOM concentration, composition and character (Sharp et al., 2006); failure
to appropriately tune the coagulation, flocculation and filtration processes at treatment stage
could lead to NOM or coagulant material passing into the distribution system (Cook, 2007,
p. 124). In addition, hydrophilic NOM fractions are much less easily removed by coagulation
than hydrophobic substances (Sharp et al., 2006). Husband and Boxall (2011) found that
more discolouration material collected in surface water-fed systems than ground-water supplied
networks and accumulation rates were greatest for systems in which Fe coagulants were used,
less for Al-coagulated networks and less again for non-coagulated systems.

Other aspects of the chemical composition of WTW finals could influence accumulation rates:
a decrease in pH could expedite corrosion; metals could precipitate as slimes on pipe walls;
the nutrients nitrate (difficult to remove at WTW) and phosphate (often added WTW to limit
cuprosolvency and plumbosolvency) could affect biofilm growth rates, as could dissolved CO2

and oxygen levels. Hard waters could provide calcite linings that have a positive impact on
corrosion rates (McNeill and Edwards, 2001) but provide the key nutrient Ca.

The concentration of effective disinfectant residual could also impact on accumulation rates.
Both oxygen- and chlorine-bearing compounds are capable of oxidising dissolved Fe and Mn to
more soluble forms (Sly et al., 1990).
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The particle loading downstream of the WTW should also be considered. Vreeburg et al.
(2008) studied material accumulation in a DWDS containing only non-corrodible pipes (AC
and PVC) and found that 0.1µm ultra-filtration reduced material regeneration times from
1-1.5 years to 10-15 years. Interestingly, the particulate matter that collected downstream of
the ultra-filtration unit was primarily organic whereas the material in mains not supplied by
the unit was mostly inorganic. The nature of WTW filter backwashing could also influence
accumulation rates (Vreeburg et al., 2008).

2.1.16.4 Asset characteristics

Material layers accumulate at on average 52% per annum in corrodible, unlined Fe DMA pipes
(calculated using the method presented in §2.1.13.2) but only 28% per annum in other DMA
mains (Husband and Boxall, 2011). This is most likely due to plastic pipes only being supplied
with discolouration material from the bulk water whereas Fe pipes also collect particulate matter
from corrosion processes (Husband and Boxall, 2010a, p. 92). No DWDS pipe materials are
immune to the accumulation of discolouration materials (Husband and Boxall, 2011). Other
material-related properties that have the potential to influence accumulation rates are: whether
Fe pipes are cast, ductile or galvanised; whether any protective scale in Fe pipes has recently
been removed through activities such as pigging (Vreeburg et al., 2004); the type and condition
of any pipe lining; the age of the main, which correlates with hydraulic roughness and the
likelihood of the pipe containing ‘legacy’ materials; the type of plastic as new (Lehtola et al.,
2004a) and older (Lehtola et al., 2006) PE mains can potentially release phosphorus, a key
nutrient, to the bulk water.

2.1.16.5 Pipe hydraulics

Flow magnitude Under steady state hydraulic conditions (and a constant temperature of
8°C) the magnitude of the invariable shear stress has been shown to be inversely related to the
amount of discolouration material at the (HDPE) pipe wall (Sharpe, 2013). This is unsurprising
given that weaker material can bind and remain bound under lower prevailing shear stresses.
Stoodley et al. (2001a) showed that biofilms grown under greater shear stresses have greater
shear strengths i.e. are conditioned by hydraulic forces.

Greater flow rates may, in addition to imposing greater shear stresses, also provide a greater
supply of suspended particulate discolouration material and biofilm precursors and nutrients.

Discolouration material accumulates within the laminar sublayer at the pipe wall (Pothof and
Blokker, 2012); Sly et al. (1990) hypothesise that this offers the material some protection
from erosion. This suggests that the thickness of the laminar sublayer might bound material
accumulation under constant flow conditions and an increase in flow may cause erosion through
material then projecting out beyond the extent of the laminar sublayer.

Flow variability Sharpe (2013) also studied the influence of steady state and two variable
diurnal flow patterns (imitation domestic demand profiles) on material accumulation. All three
patterns had the same daily mean shear stress but different standard deviations and were

39



imposed in near-identical realistic-scale laboratory HDPE pipe systems over twenty eight days
at 8°C. The magnitude of the daily peak stress was found to limit discolouration risk far more
than the daily mean shear stress or the minimum (night-time) shear stress, complementing
the objectives of the Dutch self-cleaning network design strategy (see §2.1.15). In addition,
biofilms grown under the variable flow conditioning patterns were found to be less susceptible
to erosion from flushing than biofilms grown under a steady state flow with the same daily
mean, corroborating Stoodley et al. (2001a)’s aforementioned findings.

Diameter-influenced mixing There may be less mixing in large-diameter, low-velocity trunk
systems than DMAs. This may result in a lower take-up of discolouration material and nutrients
to the pipe wall. Dispersion effects and incomplete mixing reactions are rarely modelled in
potable water networks (Andrade et al., 2010); under the turbulent conditions typically found
in DWDS there is negligible dispersion (Tzatchkov et al., 2009) so it is usually appropriate to
assume plug flow (no dispersion) and complete, instantaneous transverse mixing in pipes and
complete, instantaneous mixing at junctions.

Flow reversals Frequent flow reversals in pipe loops could influence accumulation rates as
material may settle out at a ‘tidal point’ due to low bulk velocities (Vreeburg and Boxall, 2007).

2.1.16.6 Network topologies

Discolouration materials appear to develop along the length of pipes rather than only in certain
areas (Boxall et al., 2003b), but in a single length of trunk main several kilometres long with a
constant pipe diameter, age and material it is possible that concentration (disinfectant, nutrient
and metals) and temperature gradients may cause variation in material accumulation rates
along its length. Oxidant and disinfectant concentrations have been shown to influence the
spacial variability of Mn deposition in DWDS (Sly et al., 1990). Verberk et al. (2009) reported
that PaVoC (see §2.1.8), TSS and volatile suspended solids (VSS) concentrations increased
as water moved from a WTW past two downstream monitoring points within the supplied
DWDS. A stream-wise increase in Fe concentrations in the absence of any Fe pipework was
indicative of iron oxidation, precipitation and flocculation. Vreeburg and Beverloo (2011) noted
that the ratio of Fe to Mn varied over the lengths of two trunk mains, which may indicate
that regeneration rates will differ along those mains. Increases in the concentrations of other
inorganics such as Si are suggestive of chemical interactions between the bulk water and the
surrounding AC mains. Discolouration modelling work by Husband et al. (2011) indicated that
more material had accumulated at the upstream end of a flushed English trunk main. Similarly,
Vreeburg and Beverloo (2011) noted that more material appeared to have collected at the
upstream end of a flushed Dutch trunk main (although, if erosion is not instantaneous, it is
not always possible to say with confidence where the mobilised material that emerges from a
pipe originated from).

Discolouration material can collect around fixtures and fittings. Husband et al. (2010b) and
Neilands et al. (2012) related turbidity spikes seen during flushing to features such as right-
angled bends and sumps using estimates of advection times. However, this approach is not
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always accurate (Schaap and Blokker, 2013) and requires the assumption that all material
affected by a shear stress increase is mobilised very quickly (to allow the response at the
downstream end of the pipe at a given time to be associated with a specific location upstream).

The assets upstream of a pipe of interest could influence accumulation rates, in particular
whether there is a Fe source upstream (Husband and Boxall, 2007). In discussions with the
author, a UK water provider representative noted that, for one particular network, a particular
measure of discolouration risk was much greater for plastic pipes that are downstream rather
than upstream of unlined Fe pipes. This is presumably due to corrosion of the Fe pipes providing
a supply of iron oxide particles.

The presence of service reservoirs upstream of a pipe of interest is suspected to affect ac-
cumulation rates (Husband et al., 2010b). Reservoirs could act as buffers of discolouration
material and could provide environments within which dissolved material precipitates and
particles flocculate and settle. Temperature variations in reservoirs could influence biofilm
growth rates. Also, service reservoirs are exposed to the atmosphere so may experience thermal
stratification and temperature fluctuations throughout the year; these in turn may influence the
temperature-dependent biological and chemical reactions associated with material accumulation
(e.g. biofilm growth; Sharpe, 2013).

2.1.16.7 Water age

Water age has been shown to be a useful proxy metric for water quality as it can be linked
to microbial growth rates, residual disinfection concentrations, bulk water temperature and
phosphate concentrations (Machell et al., 2009; Machell and Boxall, 2012). Mounce et al.
(2014b) have correlated stagnation (old water) in DWDS with high Fe concentrations. Water
age is of course a function of the DWDS topology (§2.1.16.6) and hydraulics (§2.1.16.5).

2.1.16.8 Combined effects

The processes that contribute to accumulation rates may not be entirely separable, such as in
the cases of microbially-expedited Mn deposition (Sly et al., 1990) and Fe corrosion (McNeill,
2000) and of the adhesion of oxide flocs to EPS.

2.1.16.9 Season

Many of the factors that may influence accumulation rates such as hydraulics (demand),
temperature, the quality of surface water supplies (O’Brien et al., 2008) and coagulant doses
are very likely to exhibit seasonal trends. It is anticipated that accumulation rates will reflect
these trends to some extent.

2.1.17 Discolouration risk management

2.1.17.1 Quantifying the current discolouration risk

As the accumulation of discolouration material is typically a continual and ubiquitous process
(§2.1.13.3), there is risk of discolouration in most DWDSs. This risk is a function of the strength
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versus quantity profile of wall-adhered material (§2.1.12.2; §2.1.13.4; §2.1.15; §2.1.16.5) and
of the likelihood of an unanticipated change in hydraulics due to a burst, the uncontrolled used
of a hydrant or sudden network reconfiguration (Randall-Smith et al., 2011). The discolouration
potential will vary considerably between systems as many factors influence the discolouration
material strength versus quantity relationship and how this changes over time (§2.1.15; §2.1.16).
If risk is not pro-actively quantified and managed then both controlled and unexpected increases
in system hydraulics have the potential to cause unacceptably turbid water to pass through to
consumers, which may result in complaints and regulatory penalties.

At present, discolouration potential is commonly assessed using flushing in one or more
representative pipes. A stepped flushing flow profile permits the study of the strength versus
quantity relationship (§2.1.13.4) whereas to opt for a constant flushing flow profile instead
yields worst case maximum turbidities. Flushing regimes can be designed and the results
interpreted using the RPM method (§2.1.13.2) so as to condense complex turbidity data down
to simple risk scores for use in prioritising and evaluating interventions, although the method’s
use of velocity thresholds may not allow risk to be accurately compared between pipes with the
same flushing bulk velocity but different flushing shear stresses as discolouration material is
held at the wall in cohesive layers (§2.1.12).

In DWDSs and pipes with high accumulation rates, water companies may want to measure the
current discolouration potential every few months. However, although customers are typically
informed before flushing is undertaken, valving operations and the temporary supply of turbid
water may cause inconvenience for customers. Also, frequent flushing may be undesirable
because of the volumes of water wasted, the risk of icing up impermeable surfaces and in
larger-diameter mains the costs/efforts associated with substantially elevating the shear stress.
Thirdly, and possibly most importantly, flushing is a point-in-time measure of discolouration
risk: flushing with a constant shear stress of τa at time t yields a discolouration response with a
peak turbidity of T and removes all material with a shear strength of less than τa (t); however,
the risk will then change with time due to material erosion and accumulation effects.

In addition to flushing, water companies may also reactively estimate discolouration risk using
customer contacts. Customers are well distributed throughout DWDS and are frequently
sampling water (Whelton et al., 2007). However, regulators may not view a reliance on
customers as sensors particularly favourably and contacts regarding discolouration only provide
very coarse information on a) the pipes from which discolouration material was eroded, b) the
onset time and c) the rate of increase, the maximum and rate of decrease of turbidity.

2.1.17.2 Interventions for risk reduction

Asset replacement Risk assessment programmes will often identify unlined Fe as being
associated with the greatest risk. Replacement with plastic mains will eliminate internal
corrosion as a discolouration material source, plus accumulation is slower in plastic pipes and
the discolouration potential is far less than in unlined Fe mains of the same geometry (Husband
and Boxall, 2011). However, the replacement of old Fe mains is expensive, disruptive and
according to the water industry regulator for England and Wales “unlikely to be economically
justifiable on the basis of a sole, aesthetic driver such as discolouration” (OFWAT (2000), cited
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by Boxall et al. (2003b)). In addition, the like-for-like replacement of non-corrodible mains will
not reduce discolouration risk.

Asset refurbishment Interventions such as the scraping, lining or pressure washing of Fe
mains (Ratnayaka et al., 2009, ch. 14) may bring about a temporary reduction in discolouration
risk but the associated network activities may cause disturbances that increase the discolouration
risk elsewhere in the network Husband et al. (2010b). Scale and tubercles can be physically
removed from mains by pigging, which increases hydraulic capacity and reduces friction losses
but may also expedite corrosion due to the exposure of unoxidised iron (Vreeburg and Boxall,
2007). As with pipe replacement, relining with plastic, resin or cement may reduce but will not
entirely eliminate discolouration potential.

Quality of WTW finals Tuning processes such as coagulant dosing, filter backwashing
(Vreeburg et al., 2008), phosphate dosing or pH control at the WTW could potentially decrease
accumulation rates but such measures are unlikely to reduce the current discolouration potential.

Mains flushing If numerous customer contacts or the flushing of a DMA main at a low flow
indicate a notable discolouration risk and it is anticipated that the main may be subjected to
high flows from a burst or network reconfiguration, it can then be flushed at the maximum
of those anticipated flows to remove all material that is weaker than the corresponding shear
stress. However, as mentioned earlier in this section this may inconvenience customers and risk
will increase following the intervention due to material accumulation.

An alternative to flushing to waste is what shall henceforth be referred to as flow conditioning,
where flows are periodically raised to erode discolouration material in a controlled fashion. This
material then passes out of the system at supply points in acceptable concentrations. These
ideas are central to the Dutch idea of self-cleaning distribution pipes (§2.1.15) where pipe
diameters have been chosen to allow natural variations in demand to remove most material
from smooth, non-Fe pipes. In the last decade an interest has developed in whether flow
conditioning could be used to manage risk in mains of much larger diameter (e.g. Husband
et al., 2011), as is discussed in the following section. Flow conditioning is in keeping with
regulators’ desire to bring about a better balance between capital and operational expenditure
(e.g. DWI, 2002).

Trunk mains: systems of concern Trunk or transmission mains, usually � > 200mm,
convey water from WTW to distribution networks of narrower diameter pipes, typically via
pumping stations and/or service reservoirs. These critical assets are of concern to water
providers with regards to discolouration risk as they lie upstream of large numbers of customers.
They may also only experience low conditioning shear stresses, meaning there may be much
weakly-bound material adhered to their large internal surfaces; the low shear stresses are due
to their large diameters and in many cases to DWDS buffering (such as balancing tanks and
water towers) further downstream limiting the impact of diurnal domestic demand variation
on pipe flow. However, in some parts of the world, such as the Netherlands, trunk mains may
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typically experience moderate to high shear stresses regularly due to diurnal demand and there
being little if any buffering. There are additional reasons for certain trunks being of less a
concern than local distribution pipework: (a) hydraulic constraints may not allow the shear
stress to be increased much beyond prevailing levels and (b) eroded material is passing into a
larger volume of water, resulting in smaller increases in turbidity.

There has been relatively little research published regarding discolouration processes in trunk
mains and the extent to which discolouration risk in trunks and in the DMAs they supply are
related (Seth et al., 2009; Husband et al., 2010b,a; Saldarriaga et al., 2010; Vreeburg and
Beverloo, 2011; Husband et al., 2011, 2013). The limited understanding of discolouration
processes in trunks is in part because these processes can only be observed through disturbing
the system, which in trunk mains is difficult for several reasons:

• Very long turnover times: it may not be possible to operate mains at higher flows for
prolonged periods without draining down upstream/downstream tanks;

• Experimental designs may require flows that are not easily achievable without network
reconfiguration and/or upping pumping levels;

• It is only occasionally possible to flush trunk mains to waste (e.g. Husband et al., 2010a)
due to the volumes of water involved and access points being few and far between. More
commonly, trunk mains are flow conditioned; it may therefore be necessary to discharge
flushing flow into just one compartment of a downstream reservoir in case regulatory
turbidity limits are exceeded. This compartment could then be drained to waste whilst
the other is used to ensure continuity of supply, although such wastage would not be
desirable.

The difficulty in increasing flows in trunk mains regularly impacts on the ability to characterise
material accumulation processes. Also, the few available trunk flow conditioning datasets all
relate to systems sufficiently disparate that it is difficult to generalise what is occurring within
them. On the other hand, it is in some ways easier to study discolouration processes in trunk
mains than DMA pipework as trunk systems have simpler topologies and in some senses can
be much better characterised i.e. hydraulic roughnesses are typically know at pipe level). Also,
several trunks now feature far more accurate and reliable turbidity and flow monitoring than
would be found in distribution systems.

The impact of accumulation in trunk mains can be estimated by studying if/how increases in
customer contacts and/or background turbidity levels are seen over a large area at approximately
the same time. Husband et al. (2010b) found that 41% of all customer contacts regarding
discolouration could be assigned to clusters spanning multiple DMAs; material erosion in trunk
mains was considered the most likely cause. In another study, turbidity was monitored at
hydrants in five DMAs over a multi-month period (Cook, 2007). 50% of the discolouration
incidents that occurred during that time appeared to have been caused by events upstream of
the DMA boundaries (in trunks) as the incidents did not correspond with increases in flow at
the DMA inlets and the incidents were detected at multiple locations within the DMAs.
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2.1.17.3 The use of flow conditioning in trunk mains

Husband et al. (2011) reported on how flow conditioning could be used to regularly mobilise
discolouration material within a particular trunk in a controlled manner so that it passes through
to points of supply at acceptably low levels. This required accurate, WTW-style permanent
turbidity monitoring and fine-grained flow control (an actuated flow control valve (FCV)), to
control the turbidity response at highly elevated flows where layer-eroding forces are most
sensitive to flow. Investing in such instrumentation may prove to be greatly worthwhile:
Husband et al. (2011) found that the cost of instigating a flow conditioning strategy was of
orders of magnitude less than asset replacement or refurbishment.

At present the use of flow conditioning in trunks is limited by the system constraints listed in
§2.1.17.2 but also by a lack of understanding: of how discolouration risk develops over time; of
how frequently to raise flows above prevailing levels; of the necessary magnitude of the flow
increases for conditioning; and of the resulting turbidity response. Studies and models that help
improve on this understanding would greatly aid the uptake and execution of flow conditioning
for trunks.

2.1.17.4 Whole-life costing of flow conditioning

Improved understanding along with predictive capabilities would also allow the whole-life costs
of this management strategy to be much better quantified. The capital costs associated with
the installation of the accurate flow and turbidity metering required for flow conditioning can
easily be ascertained but the long-term costs associated with the maintenance strategy are not
yet known.

Whole-Life Costing, also known as Life Cycle Costing (LCC) and Total Cost of Ownership
(TCO), is a means for estimating the expenditure associated with the whole life of an asset,
not just the cost of initiation (Skipworth et al., 2002a): the capital expenditure associated
with initialising an asset is often only a small proportion of the costs accrued over the life of
that asset (Read and Vickridge, 1997). Engelhardt et al. (2002) present a detailed method
for calculating whole-life costs and exploring the effects of undertaking different intervention
strategies.

There is a need to consider a number of factors when estimating the whole-life cost associated
with a high-discolouration-risk water main:

• Pumping (installation, operation and maintenance);

• Fines for exceeding regulatory water quality limits;

• Reservoir cleaning;

• Flow and turbidity monitoring (installation, operation and maintenance) inc. SCADA
links;

• Treatment of wasted water (if any).
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For a given main, the quantification of the above aids with the selection of the most appropriate
maintenance strategy, the development of asset management plans and in part determines the
cost to the consumer of supplied water. Other non-fiscal costs that may require consideration:

• The damage to a water provider’s reputation if discoloured water is supplied to customers;

• The carbon cost associated with pumping at elevated levels and of treating any water
that flows to waste;

• The volumes of water that flow to waste.

2.1.18 Discolouration processes: a summary

Over time particulate material accumulates on the internal surfaces of DWDS in cohesive
layers. The rate of accumulation on pipe walls is driven by several processes including corrosion,
adhesion and microbial growth and is an unknown, complex function of many parameters. The
material bound to the pipe wall is conditioned by the prevailing shear stress and is mobilised
when the shear stress is elevated. A drop in shear stress allows material to accumulate on the
pipe wall over the corresponding strength range.

In smooth DMA pipes, frequent fluctuations in demand can prevent a significant amount of
material from accumulating but in rougher, corrodible mains the variability of the shear stress
is insufficient to keep pipes ‘clean’ and discolouration risk due to material accumulation can
increase over time.

Unless this risk is pro-actively managed, increases in flow resulting from structural failures,
scheduled flow increases and network reconfiguration could cause notable material mobilisation
and the supply of water that is unacceptably turbid and has high metals concentrations.
Operational flexibility is paramount for the management of trunk systems: water companies need
to be able to conduct scheduled maintenance of WTW, pumping stations and service reservoirs
but also react promptly when such assets fail, all the while striving not to negatively impact on
water quality through generating discolouration. It is therefore important that discolouration
processes are well characterised in trunk mains to aid with the latter’s management but efforts
to this end are impeded by the heterogeneity of such systems and by the practical requirements
of trunk-specific discolouration studies.

Discolouration risk is difficult to measure directly due to it being associated with buried
infrastructure and because the system cannot easily be characterised without disturbing it (by
measuring the turbidity response from a controlled flow increase and assuming turbidity ∝
TSS). Water companies need a means for assessing the current discolouration risk, not as
complex, noisy flow and turbidity time-series but as a simple, comparable metric (such as a
shear-stress-driven version of the RPM) but also need a way of assessing how discolouration
risk and turbidity would change in the short, medium and long term under predicted future
hydraulic conditions and also under alternative scenarios.
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2.2 Modelling environmental systems

2.2.1 Introduction

Modelling provides a way of encoding the system state information and transaction rules in an
abstract form that allows for extrapolation. For this reason the following section covers the
present state of discolouration modelling including the degree to which current approaches are
capable of reflecting reality and meet the needs of industry such as supporting the design of flow
conditioning programmes. Strategies for developing environmental models and for modelling
DWDS hydraulics and water quality in general are also discussed.

There are numerous reasons for wanting to abstractly characterise complex systems using
models (Epstein, 2008); these include but are certainly not limited to:

• The ability to extrapolate the current system state in space and/or time and explore
alternative scenarios;

• Being able to plan and make decisions based on evidence rather than just intuition;

• Gaining an understanding of core dynamics;

• Refining data requirements and data collection processes;

• Testing and challenging current theories and prevailing wisdom;

• Exploring trade-offs and efficiencies.

“Essentially, all models are wrong, but some are useful” (Box, 1987): no model fully represents
reality nor should it. A 1:1-scale map would be unwieldy and offer few insights over observing
the system/world directly (Borges, 2000). What is required is the simplest representation
of reality that provides the required insight, Ockham’s Razor being a particularly important
philosophy in environmental science where all intricate, inter-dependent physical, chemical and
biological interactions and spatio-temporal heterogeneity cannot and most likely should not be
comprehensively represented.

This section begins by exploring the various types of environmental models and means for
developing them before moving on to consider how models are fitted to data and how quality
of fit can be assessed. Some coverage is given to how features can be extracted from complex,
noisy time-series datasets and also to software tools for developing and testing models. The
second part of this section considers current methods for modelling spatio-temporal variations
in water quality within DWDSs and how discolouration risk models have been developed
by building on these ideas. The workings, merits and deficiencies of these models are then
discussed.

2.2.2 Types of environmental models

Approaches to environmental modelling lie in a spectrum between entirely mechanistic,
knowledge/theory-driven process modelling (white box) and fully empirical data-driven modelling
(black box).
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Process modelling is a ‘bottom-up’ approach in which formulations are derived from first
principles i.e. from one’s understanding of the underlying physics, chemistry, microbiology
and/or economics (in the case of environmental engineering). It can explain the relationships
between underlying factors but is often non-trivial as the numerous influential factors and
interactions not being fully understood (Giustolisi and Savic, 2006).

By contrast, data-driven models are developed in a ‘top down’ fashion through analysing inputs
and outputs so as to develop a mechanism that maps the former to the latter (Solomatine
and Ostfeld, 2008). Data-driven “models can complement and sometimes replace physically-
based models” (Solomatine, 2002). Knowledge of the underlying processes can help inform
construction and testing but is not required; this can be liberating when trying to model systems
in which there are many complex interactions and not all of the contributing processes are
understood as there is no need to explicitly model the underlying chemistry, microbiology etc.
However, for that reason it cannot often offer the same degree of insight into the underlying
processes that link inputs to outputs as process modelling. Empirical models can be ‘black
box’ (entirely empirical) in design but are more often ‘grey box’ i.e. empirical constructs whose
design has been influenced to some extent by theory and observations.

Traditionally the structures of data-driven models have been anthropogenic. Formulations
are developed using complementary input and output datasets and the resulting models are
then used to make predictions given new, possibly unprecedented inputs. Some examples of
anthropogenic data-driven models:

• Chlorine decay: Biswas et al. (1993)

• Erosion of estuarine muds: Parchure and Mehta (1985); Mehta and Lee (1994); Sanford
and Maa (2001)

• Sewer sediment erosion: Skipworth et al. (1999)

• DWDS discolouration material erosion: Boxall and Saul (2005)

• Impact of free chlorine and temperature on biofilm growth: Hallam et al. (2001)

In recent years, machine-learned data-driven models have become increasingly common, no
doubt partly because of Moore’s law (Schaller, 1997). Here, input to output mappings are
learned by automated processes, although expert opinion can be used to bound the search
domain and determine the predictor variables and target. Common uses for data-driven models
include regression, classification and clustering. An overview of data-driven modelling using
machine learning, relevant pitfalls, typical methods and some example applications is given by
Solomatine and Ostfeld (2008). Other examples of this approach:

• Mathematical expressions of relative discolouration material accumulation rates, found
by applying EPR to DWDS flushing and asset data from various sites (§2.1.16.1).

• Genetic-algorithm-optimised ‘model trees’ of biofouling rates in DWDS pipes (Opher and
Ostfeld, 2011).

• The use of artificial neural networks for modelling the quality of raw (untreated), mid-
treatment and treated water has increased in recent years (Wu et al., 2014).
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• Multilayer perceptron artificial neural networks and M5 model trees for estuarine sedi-
mentation prediction (Bhattacharya and Solomatine, 2006).

• Semblance analysis for quantifying the correlation between flow and turbidity (Mounce
et al., 2014a).

Sometimes a single model may not be sufficiently accurate given the diversity of possible
inputs and the complexity of the system(s) that are to be modelled. Here it may be necessary
to chain together different sub-models in parallel or series, each of which could be entirely
data-driven, based on empirical formulations, process-aware or derived from expert knowledge.
The aggregate of these sub-models is known as a hybrid model (or a committee of models
or a modular model when different sub-models are trained using different regions of the data
(Solomatine and Ostfeld, 2008).

Uncertainty is an important consideration when designing and working with environmental
models. There can be numerous sources of uncertainty in a model (Walker et al., 2003):

• Inputs (imprecision; inaccuracy; missing data);

• Parameters and boundary conditions (imprecision; inaccuracy);

• Structure (e.g. certain effects are only crudely characterised);

• Numerical error

Having an understanding of the possible impact of these uncertainties can help determine
whether the model structure ought to allow for stochastic inputs and/or parameters. Model
structures may be sufficiently simple for key parameters to be modelled as density functions or
sufficiently complex that uncertainty propagation is only feasible using a Monte Carlo approach
(running a deterministic model numerous times with perturbed inputs).

Many environmental models require one or more time-series within their sets of inputs, have
an internal time-dependent state (i.e. are stateful) and return time-series as outputs. Takens’
Theorem (Takens, 1981) provides one approach to developing empirical stateful, time-series
models: dynamical systems (each of which are comprised of an input vector, output vector,
state vector and first-order differential transition functions) can be approximated using a sliding
window of scalar time-series data. Deyle and Sugihara (2011) generalised Takens’ theorem to
allow the latent system state to be ‘recovered’ from not only one but also multiple related
time-series inputs. A limiting factor is that this approach requires non-noisy data inputs, a
pre-requisite that often cannot be satisfied when observing and studying environmental systems.

2.2.3 Workflows for developing environmental models

Although the requirements for and types of environmental models vary enormously, there is
some consensus as what makes for a sound model development workflow (Jakeman et al.,
2006; Wainwright and Mulligan, 2004; van Waveren et al., 1999). The first task is to identify
the reasons for modelling and the modelling context. Reasons may be: to gain a better
understanding of a system, to estimate latent quantities, to extrapolate, to test alternative
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scenarios and/or to develop control systems. An associated task is to define the modelling
context, which includes the ‘use cases’ (needs/requirements) of the various stakeholders (such
as the model developer and the model user) and also the scope/extent of the model.

A conceptual model can then be developed which defines the inputs, dependencies, outputs,
prior knowledge and core assumptions. It is also necessary to consider whether inputs and
outputs will be linked by low-level representations of real-world processes or by high-level
empirical mechanisms and also decide on the forms of those interactions.

The next stage is to develop a model structure that reflects that conceptual model. The
structure may be derived from an understanding of the underlying processes, may be anthro-
pogenic empirical formulae or may be learned by automated means from data. There may be a
need to encode the model structure as software to allow a model instance to be efficiently
evaluated. Care needs to be taken when deciding on the number and nature of parameters: an
overparameterised model will overfit to noise in calibration data and will not generalise well
(Hsieh, 2009).

After this, the model implementation needs to be verified to ensure that it is representative of
the conceptual model. A method for calibrating the model also needs to be developed and
validated. The model sensitivity to its inputs and parameters needs to be explored.

Finally, the model should be evaluated (validated) to ensure that it can represent reality
and has sufficient predictive power. The testing of predictive capability should be done using
data not used for model calibration, which, if it is time-series data, should contain similar
events to the calibration data (Solomatine and Ostfeld, 2008). In simple cases fitting and
predictive performance can be quantified using an error metric; in more complex cases it
may be necessary to conduct additional/alternative testing such as analysing the ability to
accommodate unprecedented scenarios.

2.2.4 Methods for fitting models to data: model fitting as an optimisation
problem

2.2.4.1 Introduction

The calibration of environmental models can be posed an optimisation problem in which
the aim is to find a set of model parameter values that give a satisfactory correspondence
between a model prediction and real-world, noisy data. This approach is attractive and in some
cases necessary when calibrating empirical models as parameters cannot be set through taking
measurements or making calculations due to them being intangible quantities with no real-world
counterparts. Simple empirical models can often be calibrated using trial and error, but this
would not be feasible for more complicated models with many parameters and/or complicated,
poorly understood parameter spaces due to it being very expensive to thoroughly search the
problem space for the optimal parameters. Parameter covariance makes fitting models ‘by hand’
even more difficult if the modeller can only change and evaluate the effect of one parameter at
a time.

Finding a solution to an optimisation problem typically requires the following (Engelbrecht,
2005):
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• An objective function that is to be minimised (minimisation rather than maximisation is
the norm in the optimisation techniques community). For the aforementioned example
this function could be the ‘Bray Curtis distance’ (Scipy, 2012) between a time-series of
predictions and a time-series of real-world observations.

• A set of variables for which optimal values are sought e.g. model coefficientsm1,m2...mn.

• A set of variable constraints e.g. 0 < m1 < 1000.

Optimisation problems can be characterised by the following traits (Engelbrecht, 2005):

• The number and type (real-valued, integer-valued or categorical) of variables (parameters);

• The types of constraints used (just variable boundary conditions or additional equality
and/or inequality constraints);

• The number of optima (one (uni-modal) or more than one (multi-modal e.g. fig. 2.16));

• The number of objective functions (uni-objective or multi-objective);

If the objective function is differentiable and uni-modal then optima can be found using gradient-
based methods such as Brent’s algorithm (Brent, 1972). However, if it is not differentiable
and/or has local optima then stochastic optimisation techniques, also known as metaheuristics,
may be necessary. These use global search algorithms to compare the fitness (objective function
value) corresponding to various candidate solutions (sets of parameter values) from throughout
the problem space (the domain of all possible candidate solutions). Through such algorithms
exploring the entire problem space in a non-deterministic manner rather than searching around
a single current best candidate solution for a better one such algorithms are better at finding
global optima and avoiding ‘getting stuck’ in local optima (such as those shown fig. 2.16)
(Engelbrecht, 2005). Metaheuristics cannot guarantee finding the true optimum of a problem
space but typically return acceptable results, confidence in which can be increased if the
stochastic optimisation method is repeatedly applied to the same problem.

The more prevalent stochastic optimisation methods can be classified as being either evolutionary
or swarm-based.

2.2.4.2 Evolutionary optimisation and Genetic Algorithms

Evolutionary optimisation techniques such as genetic algorithms (Holland, 1992) mimic the
competition inherent in natural selection to iteratively move towards an optimal candidate
solution. A genetic algorithm typically includes the following steps (Nicklow et al., 2010; Opher
and Friedler, 2009):

1. For each of an initial set of candidate solution the corresponding set of variables (model
parameters) are encoded as a string to form virtual chromosomes.

2. The objective function is then evaluated for each chromosome to give each a measure of
fitness/performance.
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Figure 2.16: A two dimensional sinc function features many local optima and so are often used to test
the performance of optimisation algorithms i.e. verify that an algorithm almost invariably finds the
single global maximum rather than a local optimum.

3. A new generation of candidate solutions is then generated from the existing generation.
Chromosomes with greater fitness values are more likely to be selected in this evolutionary
process. To ensure that the problem space of all possible candidate solutions is well
explored there is ‘crossover’ (exchange) of genetic material between certain selected
chromosomes whilst other selected chromosomes are subjected to random mutations.

4. The process then repeats until convergence tolerances are met or a maximum number of
generations is reached.

Discrete, ordinal variables are most naturally suited to being encoded in strings of chromosomes
although real numbers can be encoded using direct value encoding (Sivanandam and Deepa,
2007).

2.2.4.3 Swarm optimisation and the particle swarm optimisation algorithm

Swarm optimisation methods are also stochastic but use collaboration rather than competition
between candidate solutions to converge on the global optima.

One of the more commonly-used techniques is particle swarm optimisation (PSO) (Kennedy
et al., 2001), which can be seens as being analogous to the way a flock of birds swarm to find
the optimal concentration of flies in three-dimensional space.

Each dimension corresponds to an optimisation problem variable (model parameter). For the
bird flocking problem, the objective function that needs to be minimised could take a set of
coordinates in three-dimensional space as its three parameters and return the reciprocal of the
concentration of flies at those coordinates. Initially a number of birds or particles (typically
between 20 and 50 (Eberhart and Shi, 2001)) are assigned random positions and velocities
within the problem space. The coordinates of each bird represent a candidate solution. The
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birds then move about this problem space over a number of timesteps. At each timestep each
bird calculates a new velocity based on three factors (Floreano and Mattiussi, 2008):

• Inertia: its current velocity vector

• Nostalgia: the problem space position in the bird’s memory since t = 0 where the fitness
value was greatest;

• Societal influence: the position of the neighbouring bird with the best fitness at the
current timestep (birds may use calls to communicate their current fitness values to each
other).

These factors are illustrated in fig. 2.17 using a sinc objective function (note that this is a 2D
rather than 3D objective for ease of representation on the page).

Each bird then moves to a new position given its new velocity vector. If at the end of a timestep
the best candidate solution in the swarm is good enough to allow some convergence criteria
to be satisfied the algorithm exits. A maximum number of iterations is typically specified to
ensure the algorithm terminates.

Two key advantages of PSO over evolutionary optimisation approaches such as genetic algorithms
are that PSO is purportedly much more efficient than genetic algorithms and the key algorithmic
components can be encapsulated in very little code (Kennedy et al., 2001). A possible
disadvantage of PSO is that it is not naturally suited to optimising problem involving categorical
variables (Floreano and Mattiussi, 2008).

Velocity component weights Explicit weightings and random variables are used to determine
the relative influence of the three velocity components. The inertia weight is often decreased
as the simulation progresses to ensure that the particles explore the full extent of the problem
space in the early timesteps then collectively hone in on one or more optima as the simulation
progresses (Xu and Rahmat-Samii, 2007). Typical weight values are given by Eberhart and
Shi (2001), Xu and Rahmat-Samii (2007) and Floreano and Mattiussi (2008). The random
variables take values in the range [0,1] and are only used to scale the nostalgia and societal
influence velocity components.

Particle neighbourhoods The neighbourhoods used to communicate fitness between particles
at a given timestep can be either geographic or societal. The set of particles that comprise the
societal neighbourhood of a distinct particle is invariant throughout a simulation (Floreano and
Mattiussi, 2008). The use of small neighbourhoods, such as the ring social topology in which
each particle has exactly two neighbours, are less likely to result in the algorithm getting stuck
in local minima than the global topology in which all particles communicate with all others.
However PSO may take a long time to converge if using smaller neighbourhoods.

Kennedy and Mendes (2002) studied the impact of using different topologies on convergence
speed and the accuracy of the result (the ability to avoid getting stuck in local minima). The
Von Neumann lattice in which each particle has exactly four neighbours (the number of particles
must therefore be a square) was recommended as a general-purpose topology.

Neighbourhood sizes of ≈ 15% of the swarm size are common (Eberhart and Shi, 2001).

53



Figure 2.17: A view of particle positions from five timesteps into an attempt to find the global minima
of a 2D objective function using PSO. The objective function, depicted using a heatmap for illustrative
purposes, is a 2D sinc function. Knowing that darker areas correspond to lower (‘better’) objective
function values, one can see that there is a global optimum at (0,0) but there are also many local
optima. Only a few timesteps have passed since the start of the simulation so there is limited evidence
of the particles converging on the global optimum; however, the optimum is eventually found after 68
timesteps to within the required accuracy of (0.001, 0.001). The arrows show the vectors that are to
be used for calculating a new velocity and position for particle 1: there is the current velocity vector
(‘inertia’), the vector to the position where particle 1 encountered the best objective function value to
date (‘nostalgia’) and the vector to the position of the swarm neighbour who currently has the best
objective function value (‘societal’).
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Problem space boundaries If a particle’s position is updated following the calculation of a
new velocity vector then there is a need to check that the new coordinates correspond to valid
values of the optimisation problem’s variables. It may not be possible to evaluate the objective
function using invalid values (Xu and Rahmat-Samii, 2007).

During particle relocation, particles can either be restricted or unrestricted by the problem
space boundaries. In the case of unrestricted relocation particles are allowed to move outside
the problem space but are assigned highly anomalous fitness values (without the objective
function being evaluated). Xu and Rahmat-Samii (2007) found that the restrictive, damping
boundary condition provides “robust and consistent performance”. This condition requires
that particles are moved back to the problem space boundary if they leave it; the sign of the
velocity component that caused the particle to move outside the problem space is then flipped
(‘reflection’) the particle and the component’s corresponding magnitude is reduced (‘damping’)
by multiplying a factor in the range [0, 1] (a loss of momentum).

Velocity limits To ensure that particles do not move too quickly past ‘good’ regions of the
problem space the maximum particle velocity can be set to a user-specified level or more simply
to the absolute size of the region bounded by the used problem space box bounds (Eberhart
and Shi, 2001).

Algorithm performance and implementations Although PSO is a simple and efficient
stochastic optimisation algorithm, execution times can still be notable for certain optimisation
problems and PSO configurations, particularly if the objective function is expensive to evaluate.
At each iteration during an optimisation run the objective function must be evaluated per
particle and hundreds of iterations may be required before a satisfactory optimum is found. As
PSO is a stochastic process, multiple runs may be required to increase confidence that the
global optimum has been found and that the results are sufficiently repeatable.

PSO execution times can be significantly reduced using parallel computing. The objective
function can be evaluated for multiple particle simultaneously to expedite single optimisation
runs. Also, multiple independent optimisation runs can be conducted in parallel to more
thoroughly explore the problem space and determine the reproducibility of results without
notably increasing execution times (Izzo, 2012). These two options are not mutually exclusive
and are trivial to implement as there are very few dependencies between parallel threads of
execution (it is an embarrassingly parallel problem (Wilkinson, 1999))

Existing implementations of the PSO algorithm include PyGMO (Izzo, 2012) and hydroPSO
(Zambrano-Bigiarini and Rojas, 2013).

2.2.4.4 Handling non-trivial constraints when using metaheuristics

There is no de-facto standard for implementing non-trivial parameter constraints (constraints
other than independent box bounds per parameter) when using evolutionary optimisation
algorithms or PSO. One approach is to lessen the influence of invalid candidate solutions
by including a penalty function within the objective function (Parsopoulos and Vrahatis,
2002). Consideration needs to be given to the form of this function: penalise too much and
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metaheuristics are more likely to get ’trapped’ in local minima; also, dynamically changing the
penalty values during a metaheuristic run can yield better results but requires yet more design
decisions and fine tuning (Parsopoulos and Vrahatis, 2002; Fuentes Cabrera and Coello Coello,
2007). An alternative approach when using PSO is to reinitialise the positions of invalid particles
but then simply ignore invalid candidate solutions when determining the best historical, current
social (neighbourhood) and current swarm candidate solutions (Hu and Eberhart, 2002); this
approach may be computationally simple but it can significantly reduce the number of candidate
solutions that are evaluated concurrently and so negatively impacts on the exploration of the
problem space. A third approach is to ‘repair’ invalid candidate solutions by updating them
to the nearest valid position in the problem space (Nicklow et al., 2010), but this introduces
complexity by requiring localised searches around invalid solutions. In summary, methods for
handling non-trivial constraints when using metaheuristics exist but all are problematic in some
respect (robustness, complexity, computational expense and or manual configuration/tuning
requirements).

2.2.4.5 Examples of the use of stochastic optimisation techniques in water engineer-
ing

Savic and Walters (1997) demonstrated the efficacy of genetic algorithms for determining
least-cost designs for DWDSs, an optimisation problem made difficult by the use of discrete
variables (e.g. pipe diameter), hydraulic constraints, local optima and multiple objectives. Yagi
and Shiba (1999) demonstrated how optimal fuzzy rule sets could be derived using genetic
algorithms for controlling sewer pumps. Nicklow et al. (2010) detail many examples of genetic
algorithms being used for parameter identification in the varied fields of “water distribution
systems, urban drainage and sewer systems, water supply and wastewater treatment, hydrologic
and fluvial modeling [and] groundwater systems”. Opher and Ostfeld (2011) used genetic
algorithms to optimise model-tree regression methods for learning pipeline biofouling rates from
a large number of predictor variables. In an article particularly relevant to this thesis McClymont
et al. (2013) built on the existing body of work relating to the use of genetic algorithms for
DWDSs pipe sizing by developing a multi-objective method for designing networks where the
hydraulic regimes are prohibitive to discolouration material accumulation. Farley et al. (2013)
showed how genetic algorithms could optimally subdivide DMAs for the purposes of rapidly
detecting bursts using pressure sensors. As mentioned in §2.1.16.1, Mounce et al. (2014c)
demonstrated how evolutionary polynomial regression (EPR) can be used to learn equations for
discolouration material regeneration rates from subsets of possible predictor variables; here a
genetic algorithm is used to refine a numerical regression model.

PSO has been used to design distribution networks with optimal topologies and pipe diameters
(Suribabu and Neelakantan, 2006), develop optimal reservoir management strategies (Reddy and
Nagesh Kumar, 2007), learn the optimal parameters of a lake water quality model (Campbell and
Phinn, 2009) , parameterise hydrological and hydrogeological flow models (Zambrano-Bigiarini
and Rojas, 2013) and learn formula parameters for solute mixing at DWDS junctions (Yu et al.,
2014).

56



2.2.5 Quantifying the dissimilarity between observations and predictions: cor-
relation metrics

To fit an empirical model to data using an optimisation method (§2.2.4) one needs a suitable
objective function that includes a measure of the dissimilarity/anti-correlation between some
observations and predictions4. In environmental and water engineering, model outputs are often
vectors that indicate how a quantity varies with time and/or space, so the fitting objective is
often to minimise the dissimilarity between 1D vectors of observations and model predictions
that correspond to the same temporal/spatial domain. An example of this is calibrating
hydraulic models so that time-series pressure predictions are within a tolerance of observed
pressures at hydrants monitored over a specific period (Walski et al., 2003).

The choice of dissimilarity metric for comparing series depends on the application and data:
metrics vary in their sensitivity to scale, shape and outliers. For example, the Chebyshev
distance is highly sensitive to outliers as it is solely a function of the greatest pairwise distance
between two vectors, whereas the Cosine distance and Pearson product-moment correlation
coefficient (Pearson’s r) are insensitive to differences in scale between their two inputs. For an
analysis of these sensitivities for fourteen dissimilarity metrics (many of which are commonly
used in environmental and water engineering) see Sonnenwald et al. (2013).

Dissimilarity metrics can also be classified by whether they are dimensional. When comparing
model fits for two systems only relative measures of error such as R2 (the Coefficient of
Determination) or the Nash Sutcliffe (Model) Efficiency Index (NSEI) (Nash and Sutcliffe,
1970) are appropriate. However, when comparing fits for a model of a single system, as required
when fitting model parameters through iterative optimisation, dimensional similarity metrics
such as the integral of squared errors (ISE) can be more powerful than relative measures
(Sonnenwald et al., 2013).

It is also important to be aware that different dissimilarity metrics have different ranges. For
example, the NSEI has a range of (−∞, 1) whereas R2 has a range of (−1, 1) (with 1 being
the ideal value for both) (Bennett et al., 2013).

2.2.6 Methods for signal decomposition and filtering

When analysing time-series data it is sometimes necessary to isolate different components of the
signal based on frequency. For example, one may wish to filter out low-frequency components,
leaving just high-frequency components relating to the process of interest. Alternatively, it may
be that the signal includes high-frequency noise that needs to be filtered out before further
analysis can be performed.

One of the simplest and better approaches to removing irregular noise from a time-domain-
encoded signal is the moving average filter (Smith, 1997), where:

1. A window is defined that contains a fixed number of samples at the start of the time-series
(the window must contain a proper subset of the time-series);

2. All data within the window is then aggregated as say the mean of that data;
4Dissimilarity rather than similarity as the convention with optimisation algorithms is to minimise.
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3. This aggregate value is assigned to the filter output at the start, middle or end of the
window period;

4. The window is then moved along one data point in the series (but retains its size) and
the process repeated until the window cannot be moved any further through the series.

Various aggregate functions can be used with moving average filters. The most common is
the arithmetic mean but the median or a quantile may perform better if the data within the
window is not normally distributed.

A more complex set of alternative means for removing unwanted components of a signal are
auto-regressive moving average (ARMA) filters. ‘Autoregressive’ means that the filter output is
self-referentially used as a filter input during the filtering process. One example of an ARMA
filter is a Butterworth filter, which has the attractive quality of providing a flat response over
most of the ‘passband’ (the range of frequencies not removed from the signal; (Smith, 1997)).

A (digital rather than analogue) Butterworth filter is parameterised by:

• The absolute cut-off frequency: the frequency where the power (amplitude squared) of a
filtered signal is half the power of the input signal;

• The Nyquist frequency, which is half the sampling frequency;

• The filter ‘order’;

• The type of filter e.g. ‘high-pass’ or ‘low-pass’, which retain only higher or lower frequency
components respectively.

There are numerous examples of the use of ARMA filters in water and environmental engineering.
For example, Misiunas et al. (2005) used a Butterworth filter to remove high-frequency noise
from pipe transient monitoring data whereas McKay et al. (2013) used a low-pass Butterworth
filter to isolate the frequency range relating to the processes of interest in river shear stress
data.

2.2.7 Modelling water quality in DWDSs

2.2.7.1 Importance of accurately characterising DWDS hydraulics

Simulating how the amount of discolouration material at the pipe wall and in the bulk water
varies in space and time can be thought of as a DWDS water quality modelling problem. A
sound understanding of the hydraulics of the system is a fundamental prerequisite for time-series
discolouration modelling and water quality modelling in general:

• The shear stress at the pipe wall drives material erosion;

• Advection is a function of the bulk water propagation delay;

• The degree of mixing at junctions is a function of the magnitude and concentrations of
inflows;
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• Bulk water concentrations/turbidity are a function of material erosion rates from the wall
and flow.

• Material accumulation rates are most likely a function of nutrient, carbon and disinfectant
residual supply rates along with temperature, which also may be a function of hydraulics
in DWDSs with long residence times.

To characterise their hydraulics, DWDSs are typically approximated as networks of vertices
(representing junctions, inflows and outflows and tanks) and one-dimensional edges (representing
pipes, valves and pumps) then solved for flow and pressure (Walski et al., 2003) at a series of
discrete times. Hydraulic DWDS solving software is readily available (DNV GL, 2010; Schneider
Electric, 2012; Bentley Systems Inc, 2013; Innovyze Ltd, 2014), including the open-source
EPANET application and software library (USEPA, 2008).

2.2.7.2 Fundamentals of modelling water quality in DWDSs

DWDS water quality solvers take the calculated time-series solution to hydraulic network
as input, either reading it in all at once or on a per-timestep basis. The majority of water
quality solvers (including EPANET) allow for the modelling of a single chemical species.
Concentrations in mass per unit volume at nodes and average concentrations for pipes are
calculated by considering:

• mass injection;

• growth/decay due to interaction with the bulk water;

• growth/decay due to interaction with pipe and/or tank walls;

• advection;

• mixing at junctions;

• mixing in tanks.

2.2.7.3 Advection and mixing

With most DWDSs water quality modelling applications it is assumed that Reynolds numbers
are high enough for the effects of diffusion and dispersion to be negligible. This allows advection
to be modelled relatively simply by assuming plug flow i.e. that the water moving through
a (one-dimensional) pipe is comprised of parcels each of which has a specific concentration
and does not mix/interfere with its neighbours. This is typically implemented by tracking the
movement of parcels through the network (Lagrangian transport; see fig. 2.18), migrating mass
in and out of nodes around junctions as parcels move into or out of them, but it is also possible
to instead track concentrations for fixed pipe sub-divisions (Euclidean transport) (see Rossman
and Boulos (1996), for more information on transport mechanisms).

Note that when modelling the advection of solutes and solute-like substances one may want
factor the instantaneous concentration at an observation point by the flow at that time; this
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yields a mass flux that, when integrated over time, gives the amount of mass that has passed
an observation point over a given period (as per §2.1.13.2).

Mixing models are usually simplistic. It is assumed that complete mixing occurs at pipe junctions.
Tank/service reservoir mixing models typically allow for complete mixing, last-in-first-out (LIFO),
first-in-first-out (FIFO) and/or simple 2-3-part compartmental models (for modelling mixing
and semi-stagnant zones).

2.2.7.4 Sources of error

An accurate understanding of contact times and water age is needed when modelling time-
dependent water quality processes in DWDSs but travel times predicted by existing hydraulic
models may be inaccurate. Such models are typically built to satisfy flow and pressure
tolerances through determining internal pipe roughnesses (Walski et al., 2003) that ensure
accurate headloss between calibration locations. To also calibrate for bulk velocities one needs
to adjust both roughness and internal diameter to account for a lack of hydraulic capacity due
to the build-up of scale/tubercles on the pipe wall (Boxall et al., 2004; Walski, 2004). However,
measuring velocities is difficult to do in practise due to the systems of interest being buried
infrastructure and utility companies are understandably reluctant to introduce tracers into their
networks (although this is sometimes permitted; see Skipworth et al. (2002b)).

Another source of error in water quality modelling comes from flow meter readings not always
being precise or accurate, which impacts on velocity and therefore solute/wash-load travel
time estimates. Even if the meters are accurate through being correctly sized for the adjoining
mains, aggregate flow data measurements are typically only transmitted via SCADA every
fifteen minutes (Burnell, 2003; Mounce et al., 2012b) so minimums and maximums may not be
captured. This could be significant for certain modelling applications (e.g. discolouration) but
not others (e.g. chlorine residual decay). Uncertainty in bulk velocities and travel times may
also arise from estimates of customer demand, which can be highly variable over a range of
timescales. However, stochastic demand modelling can help account for these uncertainties
(Blokker, 2010).
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Figure 2.18: Behaviour of segments In Lagrangian methods: (a) Time t; (b) Time t+∆t (after Rossman
and Boulos, 1996).
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2.2.7.5 Modelling the growth/decay of a single-specie

With single-specie DWDS water quality modelling, growth or decay are usually accounted for by
assuming zero, first or second-order reaction kinetics, that all other reactants are in abundance
and that temperature is invariant. In reality, concentrations of other reactants may be limiting
factors in the myriad of occurring reactions (Walski et al., 2003) and the spatio-temporal
variation in temperature in DWDSs may be significant (§2.1.16.2).

Bulk water reaction rate coefficients can be found relatively easily using bottle tests (Walski
et al., 2003) but quantifying wall coefficients can be more difficult. Firstly, the wall reaction
coefficient for a given pipe can only be quantified (at a moment in time) by measuring
growth/decay over its length and discounting the growth/decay due to bulk reaction(s); the
error in wall coefficient calculations therefore includes the error associated with the bottle tests
used to find the bulk reaction coefficient (Walski et al., 2003; Savic et al., 2009). Secondly,
finding the wall reaction coefficient in-situ for all required permutations of pipe type, water
source and environmental conditions requires extensive field work.

2.2.7.6 Modelling multiple reactants

EPANET MSX (Shang and Uber, 2008) allows for the modelling of interactions between multiple
chemical and biological species at the pipe wall and suspended/dissolved in the bulk flow (Shang
et al., 2007), thus making it easier to account for limiting reactants (Uber, 2009). The dynamics
of a specie can be expressed using mathematical formulae as either a) equilibria (for irreversible
or near-instantaneous reactions), b) rate laws involving the concentrations of other species or
c) formulas for the concentration at a given time that reference the concentrations of other
species. Species concentrations are tracked in the bulk water and at pipe walls over time.

Attempts have been made to use EPANET MSX to model complex sets of reactions such as
those relating to bacterial regrowth or monochloramine decay (Shang et al., 2007) but such
efforts can be limited by:

• The lack of an exhaustive understanding of the types of reactions that occur in distri-
bution systems or a lack of the resources required to calibrate a model containing all
interdependent reactions.

• Uncertainty regarding equilibrium constants and rate coefficients for reactions involving
bulk and/or wall species. As with single-specie water quality modelling, values must
typically be acquired through field tests and are highly site-specific (Shang et al., 2007).

EPANET MSX may provide more power and flexibility than single-species modelling but such
multi-species modelling is also more complicated and prone to error.

2.2.8 Discolouration modelling: the need for a data-driven approach

2.2.8.1 Introduction

Many different factors contribute to discolouration material accumulation and erosion in DWDSs
(e.g. §2.1.16). One could in theory model all the pertinent processes using a bottom-up,
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process-driven, white-box approach (§2.2.2) and a tool such as EPANET MSX (§2.2.7.6) but
in practise the number of interactions that would need to be characterised would make this
unwieldy if not infeasible. A more practical approach would be to attempt to relate several
key predictor variables to variations in turbidity to form a grey-box model that incorporates
calibrated empirical water quality models and hydraulic network solutions. Examples of this
approach are presented in the following sections.

2.2.8.2 The Prediction of Discolouration in Distribution Systems (PODDS) model

The empirical PODDS discolouration model (Boxall et al., 2001) does not attempt to model
corrosion processes, biofilm development, suspended iron flocs and chunks of biofilm directly;
instead, material erosion and accumulation are considered to be mechanisms by which turbidity-
causing homogeneous material can move between being bound to the pipe wall and being a
wash load suspended in the bulk water. The model tracks both the discolouration potential
of a pipe (the amount of material bound to the pipe wall at a given time) and the turbidity
response that would result from material erosion.

As turbidity had been shown to be approximately linear with TSS in many cases (§2.1.8) and
discolouration material only settles out under entirely quiescent conditions (§2.1.9), turbidity
was assumed to be a pseudo-concentration (and so the product of turbidity and bulk water
volume gives a material quantity in the abstract units of NTU ·m3).

2.2.8.3 PODDS concepts for material mobilisation

Discolouration material typically binds to the pipe wall in cohesive layers around the pipe
circumference (§2.1.10; rather than accumulates by gravitational settling along the pipe invert,
§2.1.12) and is eroded when the material’s cohesive strength is exceeded by the shear stress at
the pipe wall (§2.1.12). The mechanism within PODDS that codes for this conceptualisation
was inspired by mathematical models of the physical characteristics and erosion of estuarine
muds (Parchure and Mehta, 1985) and sediments in sewers (Skipworth et al., 1999).

Under PODDS, the (scalar) shear strength of the cohesive material bound to the pipe wall is a
function of the discolouration potential:

τc = Cb − Cmax
k

(2.15)

where

τc The current material strength [Pa];

C The ability to increase turbidity per unit volume of erodible material i.e. the amount of
material at the pipe wall

[
NTU m3];

Cmax An upper limit for C [NTU m3];

b A power term that has been removed since the model was first proposed as “no additional
quality of fit was obtained by allowing values of b other than unity” (Husband, 2010) [−]
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k A negative gradient term that relates yield strength and ability of layer to increase turbidity[
NTU m3 · Pa−1].

Should there be an excess shear stress (meaning that the shear stress τa (eq. 2.9) exceeds the
layer shear strength, τc) as a result of an anomalous increase in flow then the rate of supply to
the bulk flow is a non-linear function of that excess shear stress.

R = P (τa − τc)n (2.16)

R rate of supply from a m2 of wall area [NTU ·m · s−1]

P linear coefficient of eroding force [NTU ·m · Pa−1 · s−1]

n exponential coefficient of eroding force [−]

The n term prevents the units from balancing but the calibration of the model using field data
frequently requires it to be non-unity.

The rate of supply then determines both the increase in turbidity and the decrease in discoloura-
tion potential (eqs. 2.17 and 2.18 respectively).

∆T = R ·As
Q

(2.17)

T turbidity [NTU ] (note that Boxall et al. (2001) used the symbol N rather than T
but the latter has been used here for consistency throughout the thesis)

As area of pipe wall swept [m2]

Q bulk flow [m3 · s−1]

∆Ce = R ·∆t (2.18)

∆Ce change in discolouration potential per m2 of wall area due to erosion [NTU ·m]

The above equations assume that the material layers have reached a steady state prior to a
notable increase in flow i.e. the layers are as maximal as the prevailing hydraulics will allow
(Boxall and Saul, 2005). This assumption is invalid for situations where layers have been eroded
by a hydraulic event and are therefore regenerating prior to the modelled period of interest.
Previous data analysis has provided estimates of how long it might take the quantity of material
bound to the pipe wall to reach maximal levels (§2.1.16.3).

2.2.8.4 Calibrating and validating the PODDS erosion model

The parameters Cmax, k, P , n and τc (and b) are empirical and therefore a PODDS model
of a pipe network needs to be calibrated either by hand or less commonly using optimisation
techniques (see §2.2.4) such as genetic algorithms (Boxall and Saul, 2005); calibration requires
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the minimisation of the dissimilarity of turbidity predictions and observations (fig. 2.19). Flow
trials (flushing DMA pipework or raising flows in trunks) are used to generate the turbidity,
flow and headloss data required for model calibrations. Headlosses can either be estimated
(using eqs. 2.10, 2.11 and 2.12) or measured directly. Parameter sets are transferable between
sites to a degree. Parameter values from calibrated network models can be used to initialise
calibrations of similar networks prior to the values being adjusted by hand (Husband and Boxall,
2010a). For example, knowledge of the parameters found though calibrating a model of a trunk
system (Husband et al., 2010a) has greatly aided the calibration of models of other comparable
trunk networks.

Sensitivity analysis of the PODDS parameters have shown them to be highly sensitive to pipe
diameter, pipe material and source water (Boxall and Saul, 2005). The fitting the model to
data has been shown an indeterminate problem i.e. there is no unique set of model parameters
that gives the optimal fit. Aisopou et al. (2010b) found that two calibrations of the same
system (using a single flow and turbidity dataset that corresponded to a single discolouration
event) yielded very different parameter values. The ways in which the parameters covary
have not been investigated in the literature. The calibration of a hydraulic DWDS model can
also be indeterminate: there are an infinite number of diameter, roughness, flow and local
loss combinations that give the measured headloss and determining the ‘true’ values of those
parameters is not often possible given that they relate to buried infrastructure and roughness
and local losses are latent quantities (see fig. 2.20, Boxall et al. (2004) and Walski (2004)).

This indeterminacy can make model fitting difficult, particular as all PODDS parameters are
empirical. To ‘bootstrap’ the calibration of a given model, a sparse look-up table (LUT),
indexed by diameter and pipe material, has been compiled, containing values of k, P , n and
Cmax found from calibrating other models. This LUT is considered the intellectual property of
the PODDS project stakeholders5 and so has not been published (Husband and Boxall, 2010b).

The PODDS model of cohesive layer erosion has been validated for DMAs (Boxall and Saul,
2005; Husband and Boxall, 2010a) and trunk systems (Husband et al., 2010b,a, 2011): the
application of a stepped shear stress profile during flushing has been shown to yield discolouration
material at each stress level (Husband and Boxall, 2011).

5See http://www.podds.co.uk

Figure 2.19: Graphical output from the PODDS software, a modified version of EPANET (Rossman,
2000), showing the strong similarity after calibration of turbidity observations (green squares) and
predictions (red line) for a calibrated PODDS model.
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Figure 2.20: The calibration of hydraulic distribution network models is a indeterminate problem. For a
measured flow Q an infinite number of pairings of diameters (D) and roughnesses (ks) give the observed
headloss hL, as illustrated in this quantitative example.

Modelling work has been shown to support the evidence discussed in §2.1.15 of the material
bound to the walls of plastic pipes having a maximum strength. Husband and Boxall (2010a)
found that their ability to fit the PODDS model to flushing data from English plastic DMA
pipes decreased as the flushing shear increased. Better fits were obtained through limiting
the maximum material strength to 1.2Pa in certain pipes and 1.8Pa in others. The PODDS
formulations ensure that these ultimate strengths and material depletion are approached
asymptotically for a step increase in shear stress.

From discussions with the authors of PODDS it was learnt that the b parameter, the exponent
of the discolouration potential C, has never needed to be anything other than unity when
calibrating models. This and allows the units of eq. 2.15 to balance. In contrast, the n
parameter in eq. 2.16 often needs to be set to non-unity.

PODDS has been implemented by revising the water quality engine (Boxall and Saul, 2005)
included with the open-source EPANET DWDS modelling software (§2.2.7): the discolouration
material release from the pipe wall per timestep is first calculated using the PODDS formulae
then existing EPANET code handles the advection and mixing of material that is suspended in
the bulk water, including the ‘importing’ of material from upstream of the model boundary. To
assess discolouration risk using the software, one typically begins with conditioning the cohesive
layers by running a discrete time-series simulation with a flow profile that is representative
of the prevailing hydraulics. One then takes the final layer state from this simulation as the
starting state for a second simulation. This second simulation is used to predict the turbidity
response that will result from a flow time-series profile of interest (Boxall and Husband, 2007).

2.2.8.5 Limitations of the PODDS model

Representation of the material accumulation process The PODDS model was developed
to model material erosion from the pipe wall but a temperature-dependent accumulation mech-
anism was included with the other formulations in recognition of importance of accumulation
over timescales longer than those considered when only studying erosion. This mechanism was
not derived from lab or field studies or from physical principals but was instead a product of
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the authors’ engineering experience and intuition; it assumed that material layers regenerate
from strongest to weakest following their erosion (Boxall et al., 2001, eq. 9). However, field
and laboratory studies have shown that discolouration material accumulates on pipe walls at
all strengths over a range simultaneously (§2.1.13.4). If material accumulates at all strengths
simultaneously but then the weaker material erodes much quicker than the stronger (as indicated
by the validated PODDS erosion mechanism, eq. 2.16) then continual erosion and accumulation
will lead to there being different amounts of material at the wall with different strengths. This
situation is not something that PODDS can represent as it assumes the amount of material at
the wall is inversely proportional to a single scalar strength (eq. 2.15). The PODDS material
accumulation model is therefore incapable of accurately representing reality and cannot model
discolouration processes other than short-term erosion.

Modelling erosion due to unsteady hydraulics Under the PODDS model, material erosion
is only driven by the steady-state (Darcy Weisbach) shear stress (eq. 2.16) and yet under
transient conditions the unsteady shear stress could be much larger, even when there is little
net pipe flow (§2.1.12.3).

Attempts to couple the PODDS material erosion model to unsteady shear stress and advection
models have proved inconclusive:

• Naser et al. (2006) tried to represent the system hydraulics and calculate the turbulent
shear stress using a five-region 2-D model. For a presented case study their approach
was limited by their shear model not accounting for pipe roughness and the unsteady
shear stress being dominated by the roughness-dependent Darcy Weisbach shear stress.

• In contrast, the Vardy-Brown shear stress model (Ghidaoui and Mansour, 2002) used
by Aisopou et al. (2010a) for assessing the impact on discolouration material erosion
was dependent on roughness. For a case study hydraulic event the unsteady shear was
momentarily much larger than the steady state shear however there was no difference
in bulk water turbidity prediction between using the sum of the Darcy-Weisbach and
Vardy-Brown shear stresses or just the Darcy-Weisbach shear stress.

The insensitivity of the discolouration modelling conducted by Aisopou et al. (2010a) to
transients could have been due to the PODDS erosion rate factor P (found through trial and
error) being sufficiently slow and/or the duration and magnitude of the transient being such that
the erosion due to the transient was negligible. However, Aisopou et al. (2010a) only presented
one case study; the unsteady shear may cause significant erosion under other conditions.

The data requirements for 2D unsteady friction models such as those used by Aisopou et al.
(2010a) along with the complexity of the friction models are both much greater than their
1D steady-state counterparts. Aisopou et al. (2010b) used a timestep of 0.007 s but pressure
logging is rarely performed in DWDS at such fine temporal resolution and considerable effort is
required to keep loggers running due to the large volumes of data captured. Given these issues
and the infrequency of transient pressure events (between 0 and 2.2 per year in the systems
studied by Besner et al. (2010)) it may be difficult to justify the expense of modelling systems
using anything but 1D steady state hydraulics.
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The discrepancies between steady state versus dynamic hydraulics in the context of discolouration
risk have also been modelled without using PODDS. Pothof and Blokker (2012) modelled a
looped part of a Dutch distribution network using three different approaches: steady-state,
‘rigid column’ (including inertia effects) and water-hammer (modelled a compressible fluid and
the Young’s modulus of the pipe, allowing for accurate transient pressure wave propagation).
The aim was to assess whether different hydraulic solutions better correlated with the amount
of material that had accumulated in each of several pipe lengths. Hydraulic simulation results
were very similar between the steady-state and rigid column models, whereas oscillations of
u 0.02m · s−1 around the steady-state bulk velocity were predicted by the water-hammer
model. High-temporal-resolution observations flow measurements were not available to validate
this discrepancy.

Model sensitivity to the excess shear exponent term n The use of an exponent term
in the expression for the material erosion rate (eq. 2.16) causes an imbalance of units. This
term is also undesirable when fitting the model to data as small errors in n during calibration
can result in much larger errors when predicting the turbidity response for a subsequent large
increase in excess shear (fig. 2.21).

Accounting for longitudinal variation in discolouration processes Under the PODDS
model it is assumed that material accumulation and accumulation are longitudinally homoge-
neous along each pipe. However, there is some empirical evidence that indicates this may not
always be true (§2.1.16.6). The assumption might still be valid for the short pipe lengths found
in DMAs but may be less appropriate when modelling lengthy trunk mains, which can be of
greater interest when considering discolouration risk (§2.1.17.2).

To circumvent the limitations of this assumption, less-coarse spatial discretisation can be used:
by dividing what had assumed to be a homogeneous length of � = 344mm DI trunk main
into four sections and assigning each different PODDS parameters Husband et al. (2011)
improved the model fit during calibration. However, this partitioning was arrived at by trial and
error, presumably because the underlying software (EPANET’s water quality engine) would not
without modification allow for a more granular, gradient-based approach to modelling material
accumulation and erosion.

2.2.8.6 Other discolouration models

The Particle Sediment Model (PSM) The PSM (Ryan et al., 2008) was designed to model
a) sedimentation and resuspension from different points along pipe and b) accumulation of
material around the pipe circumference due to Van der Waals forces (comparable to the cohesive
layers in PODDS). However, as of 2008 only a) was implemented in software and the model
has not been referenced in the literature since. The inability of the reference implementation
to model the development and erosion of cohesive layers (as is required; see §2.1.9, §2.1.10,
§2.1.12, §2.1.13.4) limits its applicability.

The Discolouration Risk Model (DRM) and Discolouration Propensity Model (DPM)
The DRM (Dewis and Randall-Smith, 2005) was a framework for assessing the impact of
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Figure 2.21: A small error in PODDS n during calibration can yield much larger errors when making
subsequent predictions (here Q ∈ [0.002, 0.01], � = 100mm, ks = 5mm, L = 200m, PODDS
k = −0.3 , PODDS P = 0.0001, PODDS n = 1.5 (artificial turbidity ‘observation’), n = 1.6 (turbidity
prediction))

not only hydraulic increases on discolouration potential but also structural failures on turbidity
throughout a network. Little information has been published on how discolouration potential
was to be quantified.

The DRM has been superceded by the DPM (Randall-Smith et al., 2011; McClymont et al.,
2013), which brings together the risk framework and software of the former with the shear-
stress-driven mobilisation mechanism of the PODDS model. The daily maximum shear stress,
as calculated from a potentially unrepresentative hydraulic model, along with background water
quality data and pipe material are to be used to estimate the maximum discolouration potential
per pipe, although it is not clear how the background water quality data is incorporated into
the analysis. The proposed method for calibrating the per-pipe PODDS parameters is using
discrete samples and colour cards or turbidity data (Randall-Smith et al., 2011), although in
associated work McClymont et al. (2013) assumed that the empirical coefficients k and b are
constant over all pipes (with values of 2 and 1 taken from Boxall and Saul (2005)). The model
outputs are as follows:

• The discolouration potential given the pipe material and daily maximum shear stress;

• A burst score, which is the average impact that a burst in each pipe has on mobilisation
in all others;

• A closure score: the average impact that the closure of a pipe has on the shear stress
and therefore on mobilisation in all other pipes in the network;

• An ‘affected’ score: the average impact on a main from the failure (burst and closure) of
all other mains in the system).

The DRM has significant potential for managing discolouration risk within DMAs on a much
wider scale than just PODDS in isolation (particularly with regards to structural failure/pipe
closure impact assessments and scoring metrics for identifying the pipes that need to be kept
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clean). However, as the DPM is understood to be based on PODDS, it is subject to the same
limitations and therefore also lacks a valid mechanism for modelling material accumulation.

2.2.8.7 Data-driven models of material accumulation

The EPR technique has been applied to DWDS flushing and asset data to derive expressions of
relative discolouration material accumulation rates (Mounce et al. 2014c; first mentioned in
§2.1.16.1). The dataset that was studied featured values for up to thirteen predictor variables
plus an estimate of the relative accumulation rate for 67 pipe lengths, each of which had been
flushed more than once. The technique identifies polynomial expressions of a user-defined
complexity that most accurately map a subset of predictor variables to relative accumulation
rates. The variables found to have the greatest impact on accumulation rates were the
background iron concentration, the pipe material, whether the pipe lies within a loop and
the pipe volume, in that order. The accuracy of these models is believed to be a function
of the size and selectivity of the studied dataset, the number of predictor variables for which
data was consistently available, the degree to which the predictor variables are subjective (e.g.
‘loopedness’ or the presence of unlined CI upstream).

These results would be of greatest value to water providers if used as inputs to a modelling
framework for estimating the impact of erosion and accumulation over time.

2.3 Conclusions

At present water companies are able to quantify discolouration risk in mains that are not
self-cleaning at any given point in time using a scoring method such as the RPM or through
calibrating a discolouration model such as PODDS or the DPM. Short term predictions can
then be made of how the system will respond to an increase in hydraulic conditions, although
the use of exponent terms in PODDS can affect the accuracy of the model output. However, at
present no discolouration model includes a valid mechanism for modelling the accumulation of
cohesive layers, which has been shown to occur simultaneously over a range of shear strengths.

A model of both discolouration material erosion and accumulation has the potential to reflect
changes in the state of the material at the pipe wall and in the bulk water over periods of
weeks or months and therefore could be used to design, execute and potentially automate flow
conditioning regimes, which would be of greatest value in critical trunk mains. Such a model
may benefit from:

• Being built atop a 2D unsteady hydraulic model rather than a 1D steady state hydraulic
model although the necessity for this has yet to be fully demonstrated;

• Allowing for gradated longitudinal variation in discolouration potential and accumulation
rates;
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Chapter 3

Aims and objectives

The principle aim of this PhD was to develop a model that reflects the latest understanding
of how heterogeneous discolouration material accumulates on and erodes from the walls of
DWDS pipes over time. Such a model would be of value to water providers for the medium-
to long-term assessment and management of discolouration risk, with possible uses including
predicting the turbidity response from future flow profiles and designing non-invasive cleaning
programmes (‘flow conditioning’). This model needed an accumulation mechanism that reflects
the observation that material accumulates at shear strengths greater than the shear stress in
a way that is independent of shear strength. This needed to be coupled with a compatible
erosion mechanism that has the characteristics of the validated PODDS erosion model.

The objectives were as follows:

1. Identify the important behaviours that a new discolouration model should have, then
use this information, along with the process knowledge presented in §2.1, to develop a
conceptual model (presented in §4).

2. Identify a suitable approach that captures the conceptual model as mathematical formu-
lations, then encode as software (presented in §4).

3. Verify that this implementation reflects the conceptual model and explore the model’s
sensitivity to the most pertinent factors and input data features (§5).

4. Explore methods and requirements for calibrating the model (§5).

5. Validate key new model assumptions and investigate the validity of the model as a whole
and how well it generalises (§6).

6. Evaluate the practical functionality of the model and its potential value for DWDS
management (§7).
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Chapter 4

Model development

“Essentially, all models are wrong, but
some are useful.”

Box (1987, p. 424)

4.1 Introduction

§2 presented the details of how discolouration modelling could be improved to better describe
the relevant processes as we now understand them, in particular with regards to material
accumulation on the pipe wall. Attention now shifts to the functional requirements for a new
discolouration model. Different approaches that may conceptually satisfy those requirements are
evaluated using the evidence and theories covered in §2. A conceptual model of discolouration
material state, erosion and accumulation is then constructed from the most appropriate of
these approaches. This is then encapsulated as a set of formulations, which are in turn, along
with a water quality advection and mixing model, encoded as software. The chapter concludes
by summarising how the proposed model can conceptually satisfy a set of ‘use cases’.

4.2 Requirements for a new discolouration model

4.2.1 Use cases

A use case is a systems and software engineering term for stakeholder goals that should be
realisable upon completion of a project. Different stakeholders have differing needs: in environ-
mental modelling, researchers and modellers are particularly interested in issues pertaining to
model sensitivity and calibration whereas system operatives and strategic planners are interested
in how such predictive models can be used for medium to long term environmental/asset
management and in decision support.

An ideal set of use cases for a new discolouration model are listed below:

1. The model developer and modeller should be able to characterise the sensitivity of the bulk
water turbidity in DWDS pipework to the continual processes of discolouration material
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accumulation and erosion. For example, in fig. 4.1, the flow in a pipe is initially high then
drops and remains at a low level for a period before quickly increasing in magnitude (first
subplot). The amount of material that accumulates on the pipe wall (second subplot)
whilst the flow is low depends on the accumulation rate, so the amount of erosion that
results from the flow increase and therefore the resulting turbidity response also depends
on the accumulation rate (the turbidity responses for several different accumulation rates
are shown in the third subplot). Fig. 4.2 has a similar layout of subplots but shows how
for a step increase in flow (first subplot) the turbidity response depends on the rate of
erosion (third subplot);

2. The model developer and modeller should be able to use this knowledge to characterise
the sensitivity of the latent state of the material at the pipe wall to accumulation and
erosion, to refine understanding of the relationships between key variables and assess
the spatio-temporal heterogeneity in discolouration processes. The second subplots in
figs. 4.1 and 4.2 show how the state (in this case the amount) of material at the pipe
wall compares for a range of different accumulation (fig. 4.1) and erosion (fig. 4.2) rates;

3. The model developer should be able to consolidate this understanding by developing and
validating a time-series model of wall state (the amount and shear strength of material
on the wall) and bulk water state;

4. The modeller and/or software should be able to calibrate this model for a given system.
For example, in fig. 4.3, the pipe flow Q (t) for the period t0 to ’now’ has been perturbed
in steps (first subplot) so that over that period the amount of material at the pipe wall
(second subplot) increases due to accumulation (when τa is lower) then decreases due to
erosion (when τa increases). This results in an observed turbidity response (Tds (t) ‘Obs’
in the third subplot) that is a function of the amount of material at the wall at t0 and the
characteristics of the accumulation and erosion processes. Here the discolouration model
can be calibrated at ‘now’ by minimising the dissimilarity between turbidity observations
and time-series predictions (‘Pred A’ in the third subplot) over the period t0 to ‘now’;

5. The modeller and/or software should be able to update a calibrated model given new
time-series observations and make predictions and test scenarios given hypothetical
time-series inputs. For example, given a calibrated discolouration model that describes
the system state at ‘now’ in fig. 4.3 and two possible flow profiles for the period ‘now’ to
‘t2’ (black and blue lines in the first subplot), the model should be able to accurately
predict how the state of the material at the pipe wall (black and blue lines in the second
subplot) and the bulk water turbidity (third subplot) differ for those two inputs. Here,
the black future flow profile is predicted to cause a turbidity failure whereas the blue
profile is not.

6. The modeller and/or software should be able to design optimal, ongoing flow condition-
ing (§2.1.17.2) programmes for maintaining an acceptable level of discolouration risk,
particularly for trunk mains. For example, in fig. 4.4, discolouration modelling predictions
and sensitivity analysis have informed the design of a flow profile (first subplot) where
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Figure 4.1: Exploring the sensitivity of the discolouration model output and latent internal state to the
rate of material accumulation of discolouration material at the pipe wall. This is an illustrative figure
produced using the model that is developed later in this chapter.

Figure 4.2: Exploring the sensitivity of the discolouration model output and latent internal state to
the rate of material erosion of discolouration material from the pipe wall. This is an illustrative figure
produced using the model that is developed later in this chapter.
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Figure 4.3: A flow time-series Q (t) for a hypothetical pipe, beneath which is shown how the material
erosion and accumulation that result from corresponding fluctuations in shear stress τa (t) (which is
non-linear with flow) influence the total amount of material at the pipe wall (a latent quantity). This
material erosion causes increases in turbidity Tds (t) that are detected at the downstream end of the pipe
as shown; an illustrative regulatory limit ‘reg lim’ is depicted as a reminder that increases in turbidity
are not always unacceptable. This is an illustrative figure produced using the model that is developed
later in this chapter.

flow (and therefore shear stress) is periodically increased well above the prevailing level
for a short duration. The material that accumulates whilst the flow is at the lower level is
eroded from the pipe wall when the flow is increased to the higher level (second subplot).
This erosion causes increases in turbidity (third subplot) that are always well below the
regulatory limit. The magnitude and frequency of the regular flow increases periodically
remove material from the pipe wall so as to ensure that neither those increases nor
any other deliberate or unanticipated increases of up to the same magnitude can cause
regulatory failures with regards to turbidity.

4.2.2 The ability of PODDS to satisfy the use cases in §4.2.1

Use case #1: the way in which PODDS predicts changes in bulk water turbidity given a
calibrated model and a time series shear stress profile has successfully been validated for over
periods short enough for the effects of regeneration to be negligible (§2.2.8.4). Erosion process
parameters have been shown to be transferable between sites within similar characteristics,
although transferability is limited by the site-specific relationships between turbidity and TSS.
However, the need for and sensitivity to a power term (n; §2.2.8.5) that prevents dimensional
analysis indicate that the conceptual representation of the relationship between turbidity and
eroding forces could be improved upon.

The ability of PODDS to accurately model over longer periods is limited by its material accu-
mulation model not reflecting the current understanding of accumulation processes (§2.2.8.5).

Use case #2: PODDS can model the change in bulk water turbidity given a series of step
changes in shear stress, indicating that the encapsulated relationship between internal state
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reg. lim.

Figure 4.4: A flow time-series Q (t) for a hypothetical pipe, beneath which is shown how the material
erosion and accumulation that result from these fluctuations in flow influence the total amount of material
at the pipe wall. Here the periodic flow profile has been designed to limit the risk of unanticipated flow
increases causing unacceptable increases in turbidity Tds (t). This is an illustrative figure produced using
the model that is developed later in this chapter.

and eroding forces is valid (at least over periods of hours or days where the effect of material
accumulation is negligible). The key concept here is that the scalar shear strength of material
on the wall increases linearly (or near-linearly) whilst there is an excess shear stress (fig. 4.5).
It should be noted that more work could be done to assess whether updates to the amount and
strength of material at the pipe wall are still valid if increases in shear stress are not totally
conditioning i.e. if an increase in shear stress is sufficiently short-lived so as not to remove all
material weaker than that shear strength.

The sensitivity of the PODDS model’s internal state to material accumulation has not been
validated. PODDS assumes that the scalar shear strength of material on the wall increases
linearly whilst there is an excess shear stress (fig. 4.6) i.e. stronger material accumulates
before weaker material. However, observations indicate that material accumulates at all shear
strengths beneath τa simultaneously (figs. 4.6b and 4.6c; see also §2.1.13.4), hence the need
for a more accurate means for modelling accumulation.

This discrepancy between model predictions and observed behaviour is illustrated in fig. 4.7.

Figure 4.5: An illustration of the PODDS erosion model: (a) A step increase in shear stress τa at t = 5
hours within a particular pipe from 0.30Pa to 0.72Pa; (b) The amount of material C on the pipe
wall then decreases asymptotically whilst (c) the scalar shear strength of that remaining material τc

increases asymptotically; (d) the relationship between C and τc remains linear throughout this period of
erosion; (e) The resulting turbidity response as seen at the downstream end of the pipe. This figure was
produced using a software implementation of the PODDS model.
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Figure 4.6: An illustration of the PODDS material accumulation model: (a) A step decrease in shear
stress τa at t = 0 within a particular pipe from 0.80Pa to 0.40Pa (flow Q drops from 1.36L · s−1 to
0.96L · s−1); (b) The amount of material C on the pipe wall then increases linearly and (c) the scalar
shear strength of that remaining material τc decreases linearly to τa-limited levels; (d) as per the erosion
case, the relationship between C and τc is linear (in the PODDS formulations they are related by scalar
gradient term k); (e) No change in turbidity is seen at the downstream end of the pipe (any reduction
in turbidity due to material accumulation is assumed to be negligible). This figure was produced using a
software implementation of the PODDS model.

Here we see a short-lived increase in τa which erodes all material with τ < τ4. τa then
drops to and remains at τ1 for some time, allowing for the accumulation for material with
τ ∈ [τ1, τ4]. Field and lab experiments indicate that material accumulates at all shear strengths
simultaneously yet PODDS predicts that stronger material will accumulate before weaker
material (see the plots of material quantity versus τ for t2 and t3 in fig. 4.7). This difference in
behaviour is not always noticeable: if a maximal material quantity has accumulated and τa is
then increased in steps of sufficient duration to exhaust the corresponding shear strength ranges
then the validated PODDS erosion model can predict how material erodes (see t ∈ [t4, t7]);
however, if these increases in τa had occurred whilst material with τ ∈ [τ1, τ4] was in the
process of accumulating then the prediction per τa step would be far less accurate, as can be
seen in fig. 4.8.

To date, much of the understanding of the relationships between key variables relating to
discolouration processes has been gained from the analysis of field data rather than PODDS
modelling; this is not unexpected given the complexity of the underlying processes and the
use of a grey-box empirical model. Regeneration rates are anticipated to vary with many
time-dependent factors but to date furthering the understanding of the time-dependence of
regeneration using modelling rather than just labour-intensive fieldwork has been limited by
PODDS lacking a valid material accumulation mechanism.

Another potentially influential factor that could be explored more easily using modelling rather
than just fieldwork is longitudinal distance: there is evidence to suggest that there is some
longitudinal heterogeneity in discolouration processes (§2.2.8.5) but the reference PODDS
implementation does not allow for this to be modelled directly as pipe properties and model
parameters are assumed to be constant with length and with unit area of pipe wall respectively.
However, longitudinal heterogeneity in model parameters and state along a pipe can be
approximated by ‘daisy-chaining’ a sequence of models (§2.2.8.5).

Use case #3: as mentioned previously PODDS provides a validated means for modelling the
change in wall state and bulk water turbidity due to material erosion but not accumulation. It
can therefore only be used for modelling one more short periods over which accumulation is
assumed to be negligible and/or the amount of material at the pipe wall is maximal and has
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Figure 4.7: An illustration showing how, for a given shear stress (τa) profile, the relationship between
the amount of material per shear strength τ differs over the period t2 to t5 between the PODDS model
(shown in red) and the understanding garnered through field and lab experiments (shown in green) due
to the way in which PODDS models material accumulation. However, after t5 the validated PODDS
erosion model produces predictions that tally with observations. Note that the time axis is not to scale.
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Figure 4.8: If the step increases in flow shown in fig 4.7 had occurred sooner during the modelled
time period then, unlike in fig 4.7, the observed turbidity response differs from the turbidity response
predicted by PODDS due to the way in which material accumulation at the pipe wall was modelled over
the period t2 to t4a. Again, note that the time axis in this illustrative figure is not to scale.
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reached a steady state.

Use case #4: PODDS is often partially calibrated using parameters from similar systems then
a comparison of the turbidity response from a small flow perturbation to turbidity predictions is
made to refine those parameter values (§2.2.8.4). Any successor to PODDS may be easier to
calibrate if its erosion model is not highly sensitive to a power term (such as PODDS n) and if
the new model is not under-determined.

Use cases #5 and #6: a new model of material accumulation is required to accurately model
using a single parameter set a number of discolouration events over a continuous period long
enough for regeneration effects to be significant. To accurately model a notable increase in
flow following a period of regeneration, PODDS first requires recalibration using turbidity and
flow data from during a small controlled increase in flow due to the PODDS regeneration
mechanism not being valid: accurate medium- to long-term modelling is not possible using
a single parameter set. An improved regeneration model would greatly benefit the design of
flow conditioning programmes, particularly if coupled to an erosion model that is not highly
sensitive to a power term (such as n in PODDS).

In summary, what is required is a discolouration model with an erosion model that is similar to
that of PODDS but coupled with a material accumulation model where material accumulates
at all shear strengths below τa simultaneously and ideally without an equivalent to the n power
term.

4.3 Conceptual model

4.3.1 Introduction

This section presents a conceptual design for a model that satisfies the majority of use cases
listed in §4.2.1 by drawing upon theories and evidence from previous discolouration process
studies (§2.1) and modelling work (§2.2.7) and by providing possible mechanisms for addressing
the issues listed in §4.2.2. The conceptual model is comprised of two sub-models:

Wall state sub-model Describes how the amount of material at the pipe wall varies over a
range of shear strengths and changes over time due to material erosion and accumulation;

A material transport sub-model Describes how material that is eroded from the pipe wall
becomes entrained as a fine suspension in the bulk water and undergoes advection and
mixing.

4.3.2 Treating shear strength and material quantities as distributions and
functions of distributions rather than simple scalars

If the amount of material bound to the wall at a given time varies with strength in a non-linear,
potentially non-differentiable way (illustrative fig. 4.7) then this suggests that material quantity
should be a function of a range of shear strengths rather than a scalar shear strength, with
erosion and accumulation determining how this function changes with time. Treating shear
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strength as a scalar which is linearly (and inversely) proportional to the amount of material at
the wall (e.g. as per §2.2.8.3) results in a model of shear strength versus quantity that is at
times invalid and can yield inaccurate turbidity predictions (again, see fig. 4.7).

The erosion of wall-bound material has been shown to occur when and only when the shear
stress, τa, exceeds the shear strength, τ , of some of that material (§2.1.12.2); this knowledge
has been encoded in PODDS’ validated material erosion model (§2.2.8.3). If the material at
the wall has a shear strength range (rather than a scalar shear strength) at any given time,
then at any moment there could be some material at the wall that is weaker than the shear
strength and some that is stronger, hence PODDS’s rule for deciding if and when erosion is
occurring must be revised. Here it is postulated that the wall-bound material for which τ ≤ τa
is eroded whilst simultaneously material for which τa < τ < τmax accumulates on the pipe
wall, where τmax is the maximum possible τ with which material binds to the wall). Finite
values of τmax have been detected in certain pipe types such as PE pipes but not others such
as unlined CI (§2.1.15). τmax is comparable with the PODDS parameter τultimate (§2.2.8.4).

Material erosion is assumed to be driven solely by the steady shear stress as it has yet to be
conclusively demonstrated that the unsteady shear stress has a predictable and significant impact
on discolouration material erosion (§2.2.8.5). Also, the data requirements for establishing
a one-dimensional steady-state hydraulic model are far less than for a two-dimensional truly
dynamic model (§2.2.8.5).

The model proposed in this chapter shall henceforth be known as the Variable Condition
Discolouration Model (VCDM) as it tracks the amount of material at the pipe wall for a vector
of shear strengths (rather than a scalar shear strength).

4.3.3 Modelling material accumulation

Accumulation has been shown to be a process that occurs throughout all DWDS pipework
(§2.1.13.3) for τa < τ < τmax. As mentioned in §2.1.14, there is uncertainty as to whether
the accumulation of material with shear strengths within this range continues until the pipe
is hydraulically impassible or whether a steady state is reached before then. A material
accumulation model should either assume that accumulation is truly continual or is bounded
without there being further evidence to support greater model complexity. Evidence for and
against bounded and continual accumulation is limited: many of the field and laboratory studies
of material accumulation that used flushing have been of insufficient duration to see if/when
the quantity of wall bound-material eventually reached the level it was at prior to the first
flush. However, continuous monitoring has shown that in a number of cases the magnitude of
background turbidity variations and frequency of turbidity events decreased following flushing
and invasive cleaning operations, suggesting that material levels may have been maximal prior
to the interventions and so following cleaning interventions material can start passing from the
bulk water the the pipe wall again. Also, no DWDS mains have been found to be completely
impassible due to the build-up of erodible discolouration material (scale may accumulate over
time but is most likely sufficiently consolidated as to not be erodible by achievable hydraulic
forces, plus the shear stress would increase as the diameter decreases, limiting accumulation).
Given this evidence, it can be reasonably assumed for the purposes of this model that the
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amount of discolouration material that can accumulate with a given shear strength has an
upper bound.

This bound is assumed to be pipe-dependent as hydraulics have been shown to be one of the
most influential factors that controls the amount of material at the wall (§2.1.16.1). However,
there is insufficient evidence to assume that this threshold is time-varying. If the amount of
material with shear strength τ has a time-invariant upper bound then the accumulation process
can be considered to have a relative rather than absolute impact on that amount. Henceforth,
the term regeneration is used in preference to accumulation to emphasise the relative nature of
the accumulation process, with a pipe-specific yet time-invariant, linear scaling factor being
used to translate between relative quantities of discolouration material and quantities in units
that are a function of NTU .

Note that PODDS also places a calibration-specific upper bound on the amount of material
that can bind to the pipe wall (Cmax; see eq. 2.15) but this is a slightly different idea to that
proposed here as under PODDS the amount of material at the wall C can only reach Cmax
if the shear stress remains at 0 Pa for some time. Here, the amount of material over a high
strength range could be maximal whilst the shear stress is far from zero.

The (relative) regeneration rate is a function of many factors (§2.1.16), with many of these
being inter-dependent (fig. 4.9). Modelling this rate could in theory be achieved using a process
model of regeneration, but this would require a sufficiently-detailed understanding of these
inter-dependencies (a set of physical, chemical and biological reactions per distinct environment,
with the stoichiometry and kinetics/equilibria being characterised for each biological and
chemical reaction) so as to be difficult and impractical (§2.2.7.6). For the purposes of this
model regeneration is initially considered to be a simple, empirical rate that is a scalar and
time-invariant (eq. 4.1).

βr
[
s−1

]
(4.1)

As further data and process knowledge becomes available, this rate-based model can then be
refined through decomposition into empirical and process-aware sub-models of accumulation
mechanisms (such as corrosion and biofilm growth; Husband and Boxall (2011)) using a hybrid
modelling approach (fig. 4.10 and §2.2.2) and data mining techniques such as EPR (§2.2.8.6),
with some of the sub-models being time-dependent.

In this model, the regeneration rate is initially assumed to be invariant with respect to:

Time Field and laboratory studies have shown material accumulation to be continuous and
repeatable (§2.1.13.3). There is mixed evidence of regeneration being notably non-linear
with time, although it is expected that, as temperature has a significant effect on growth
rates (§2.1.16.2), that further evidence of seasonal variation in regeneration rates will
result from future field studies. The regeneration rate could be made temperature-
dependent if it can be proven to be necessary, but should initially be assumed to be
constant for the sake of parsimony. Note that the regeneration of a given shear strength
is considered to be linear up to the point where the quantity of material at that shear
strength is maximal, after which time there can be no further material accumulation
without there first being some erosion.
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Figure 4.9: A dependency graph for a subset of the myriad factors that influence discolouration material
accumulation rates. Here, D is internal pipe diameter and LSI is the Langlier Saturation Index (a
measure of calcite concentration; see McNeill (2000)).

Time
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Accumulation sub-model complexity
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k(x8,x9)

Figure 4.10: A model of the material accumulation rate can be refined over time as more data is
analysed, as illustrated in this conceptual diagram; increasing complexity should only be added when it
can be justified,
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Material shear strength The amount of regeneration over a given time period was believed to
be constant with shear strength in one field study (§2.1.13.4; based on visual interpretation
of bar graphs rather than statistical analysis) but the evidence from other studies
is inconclusive. However, without having significant evidence to the contrary, the
regeneration rate must be assumed to be constant with shear strength.

Angle to the pipe invert The regeneration rate is assumed to be constant around the pipe
circumference as a) the accumulation of discolouration material cannot principally by
driven by gravitational settling, b) no significant variation in biofilm quantity around the
pipe circumference has been detected and c) generic discolouration material has been
directly observed around the circumference of a transparent pipe that was operated at
a moderate flow rate (§2.1.9). There is limited evidence of more material collecting at
the invert rather than the soffit under certain conditions such as low flows (§2.1.9) but
this material is most likely comprised of atypically large particles and so will have a lesser
impact on discolouration given that turbidity is most sensitive to small particles (§2.1.8).

Longitudinal distance Material accumulation is not highly localised: material has been shown
to develop along the length of all mains (§2.1.16.6). There is some evidence of material
quantity varying along lengthy mains (§2.1.16.6), possibly due to faster regeneration rates,
but this is difficult to model directly due to the complexity of the inter-related processes
and the number of influential variables (chemical and microbial oxidation/deposition;
concentration gradients; temperature). Also, more material passing from the bulk water to
the wall means that particulate concentrations will be lower downstream, so regeneration
rates may be lower. However, it has not yet been demonstrated that regeneration rates vary
significantly with distance along the length of a main with otherwise uniform properties,
so material regeneration is therefore to be assumed to be constant with longitudinal
distance along each pipe and, as it is also invariant around the pipe circumference,
constant per unit of wall area.

The shear strength of a quantum of wall-bound material, like the regeneration rate, is assumed
to be time-invariant.

The behaviour of the described regeneration model over a time period ∆t is shown in fig. 4.11.
No material accumulates over ∆t with a shear strength less than the shear stress, the latter
being constant over ∆t. The amount of material at all shear strengths greater than the shear
stress is not maximal, so material over that shear strength range can accumulate over ∆t. The
amount of accumulation over ∆t is constant for that shear strength range.

4.3.4 Modelling erosion

4.3.4.1 The need for a new erosion model

The proposed discolouration model requires a material erosion mechanism to complement the
regeneration model described in §4.3.3. PODDS’ validated material erosion model (§2.2.8.3)
cannot be coupled to this regeneration model due to the latter having the unprecedented
requirement that the quantity of wall-bound material be tracked for a range of shear strengths
i.e. neither quantity nor shear strength are scalars.
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Figure 4.11: An illustration of the proposed model of discolouration material regeneration, showing the
accumulation per shear strength over time period ∆t. Note that here the shear stress τa is constant
over ∆t.

4.3.4.2 Shear stress as an eroding force

It is assumed that discolouration material has a fairly narrow and consistent particle size
distribution (PSD) and density distribution at a site-specific level; this argument is supported
by the findings of a number of (but not all) relevant field studies (§2.1.4). If discolouration
material were loose sediment then it would be re-suspended when a critical shear stress were
exceeded.

It is also assumed that discolouration material cohesively binds to the pipe wall and none settles
on the pipe invert as studies have shown that a portion of material is eroded from around the
circumference each time the shear stress τa is increased in steps above the prevailing level
(§2.1.12.2 and figs. 2.11 and 2.12), which would not be the case if the material was comprised
of loose deposits (§2.1.9). The amount of erosion is therefore driven by the excess shear
stress (the amount by which τa exceeds the shear strength of some material). This behaviour
is illustrated in fig. 4.12; note that in this figure it is assumed that τa does not exceed the
magnitude required to remove all material from the pipe wall (see §2.1.15) over the shown
time period.

A consequence of the amount of erosion being driven by the excess shear stress rather than
absolute shear stress is that a large increase in shear stress above prevailing levels has the
potential to cause more material mobilisation than a smaller increase above a much higher
prevailing shear stress (as seen in field data (§2.1.12.2 and fig. 2.9) but here also illustrated
conceptually in fig. 4.13).

The erosion rate is also considered to be a function of the excess shear stress: the validated
PODDS material erosion model along with validated models of the erosion of estuarine muds
all treat the erosion rate as a function of the excess shear stress (§2.2.8.3), although in the
latter field the linearity of this relationship varies between models.

Note that flow not only influences shear stress and material erosion but also the bulk velocity
and material advection.
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Figure 4.12: Discolouration material must cohesively bind to the pipe wall given the way erosion is
repeatedly seen (as downstream turbidity, Tds, when the shear stress, τa, is increased above the prevailing
level in steps. This is an illustrative figure produced using the model that is developed later in this
chapter.

Figure 4.13: If material erosion is driven by the excess shear stress rather than absolute shear stress
then the temporary increase in shear stress shown on the left-hand side of this conceptual diagram
would likely result in more mobilisation than the smaller increase at higher values shown on the right
(assuming that the only difference between these two environments are the prevailing and temporary
shear stresses).
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4.3.4.3 Sequential or simultaneous or layer erosion

The erosion of material for which there is an excess shear stress could be modelled in several
different ways should the quantity of material at a given time be tracked over time for each
of a range of shear strengths. One possibility is that for a large step increase in shear stress,
the material weaker than the new shear stress could erode sequentially from weakest-bound to
strongest-bound. This concept is illustrated for discrete quanta of material in fig. 4.14a. Here
the rate of erosion is assumed to be constant with time t. An alternative ‘variable-strength’
erosion model is one where all material with shear strengths between the old and new values of
shear stress (following a step increase) erode simultaneously at a time-invariant rate (fig. 4.14b).

The sequential erosion model shown in fig. 4.14a is arguably more intuitively accurate for
inorganic material at the micro scale: it could be conceptualised that the inorganic material
furthest from the pipe’s internal surface is most weakly bound and so erodes before more
strongly-bound material. The sequential model assumes a homogeneity of discolouration
composition over the pipe’s internal surface, with weaker material always atop stronger material.
In reality, the thickness of discolouration material has been seen to vary at the macro scale and
biofilms are understood to vary spatially in quantity and structure at the micro scale (§2.1.11):
chunks of biofilm can slough off into the bulk water (§2.1.10), indicating that cohesiveness
varies in a complex way with depth into the biofilm and the weakest parts of biofilms are not
always furthest from the pipe wall. The quantity versus shear strength profile therefore most
likely also varies across the pipe wall and so erosion is unlikely to be sequential with respect to
shear strength (from weakest to strongest) when considering the total material mobilised from
say 1m2 of wall.

Further evidence of spatial heterogeneity in biofilms was found by undertaking new statistical
analysis on biofilm distribution data from Fish (2014). In that study, three near-identical
recirculating pipe rigs (HDPE; � = 79.3mm) were operated with differing diurnal flow patterns
for 28 days, with replaceable sections of pipe wall being extracted for confocal laser scanning
microscope (CLSM) imaging of what was growing there at the start and end of that period.
By using multiple stains and imaging over a range of focal distances, Fish (2014) produced
three-dimensional representations of cell, carbohydrate and protein distributions. In total,
twenty-five fields of view were imaged at each end of that period and for each a measure of
volume per biofilm component was produced (see Fish (2014) for further details of the method).

To assess whether the spatial heterogeneity of biofilms increases over time, the distributions
of 25 volumes for each of cells, carbohydrates and proteins have been compared between the
start and end of the 28-day period for one of the three pipe loops (which had been operated at
a steady 0.4L/s over that time). The Brown-Forsythe test (NIST, 2013, §1.3.5.10: Levene
Test for Equality of Variances) was used to test the null-hypothesis that the two (non-normally
distributed) samples had the same variance. After removing an outlying biological sample (the
data for one field of view from the end of the period) the hypotheses that the variances of the
‘day 0’ and ‘day 28’ samples were the same for cells (Brown-Forsythe W statistic = 9.021),
carbohydrates (W = 6.102) and proteins (W = 5.455) were all rejected as the W statistics
exceeded the critical value of 4.042 at the P = 0.05 level. Histograms of the samples showed
that spatial variance in biofilm volume had increased in time as the biofilm had grown. The
model of material erosion where different shear strengths can erode simultaneously is therefore
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(a) A model of material erosion where material is
eroded sequentially from the weakest to the strongest
for at all shear strengths τ < τa, at a rate that is
constant with time t.

(b) A model of material erosion where the erosion
occurs at all shear strengths τ < τa simultaneously at
a rate that is constant with time t and shear strength
τ .

Figure 4.14: Discolouration material erosion could be modelled by considering material to erode from
the weakest to the strongest sequentially or erode at all shear strengths simultaneously. The simplest
instances of both approaches are presented in these conceptual diagrams: it is assumed that there is
initially maximal accumulation at τ > 0.1 then there is a step increase in τa from 0.1 to 0.9. Here, both
the label in each rectangle and the rectangle shading indicate in which timestep that the corresponding
relative portion of material with a corresponding shear strength erodes, with darker shading denoting
that a portion erodes earlier following the step increase in shear stress.

intuitively preferable as it can account for this heterogeneity.

Designing tests to differentiate the aforementioned simultaneous and sequential erosion models
and validate one of them is non-trivial as in many situations the model outputs should be similar:
for situations where an increase in τa always results in complete erosion over the affected τ
range the models are undistinguishable (fig. 4.15, example A). However, rapid variation in
τa may only cause the partial erosion of material within a τ range; subsequent erosion could
allow the models to be distinguished, either by studying the shape or number of material flux
responses (fig. 4.15, examples B and C respectively). Here, material flux is the product of
sampled turbidity and flow at each timestep (as defined in eq. 2.14 and justified in §2.1.13.2).

In practise these distinctions may not be easy to observe:

• Short lived changes in τa that result in partial rather than exhaustive erosion of the
material within a shear strength band might not be easy to engineer, particularly if
the erosion rate is sufficiently fast that partial erosion is difficult to achieve: network
operators must transition between flow levels in a controlled manner to avoid generating
transient pressure waves (§2.1.7.3). For this reason, a sequence of rapid changes in τa is
unlikely to occur under standard operational conditions and therefore it is less important
to distinguish the two models in this case. However, such rapid changes in flow may
result from a structural failure and the subsequent valve operations required for isolation,
ensuring continuity of supply and repair, so there is still a need to select the most accurate
erosion model.

• Advection and mixing processes may have a dominating effect on the observed turbidity
response, obscuring the aspects of the signal that could differentiate the two models.

• τa must be controlled so that maximal regeneration can be reached over a wide shear
strength range prior to the start of the tests, something that is not easy to achieve given
that it may take up 1.5 to 4 years to reach maximal regeneration in DMA pipes (§2.1.14).
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Figure 4.15: Three example shear stress τa (t) profiles (A, B, C) along with illustrations of the likely
material flux response and change of state wall predicted by two possible material erosion models. Here,
material flux is the product of sampled turbidity and flow at each timestep (as defined in eq. 2.14 and
justified in §2.1.13.2). In the illustrations of wall state at particular times, red shear strength bands
are not affected by the most recent increase in τa but blue ones are, with darker blue material eroding
more quickly than lighter blue material. Erosion model 1 erodes material sequentially from weaker τ to
stronger (see also fig. 4.14a) whilst erosion model 2 erodes all material for which there is an excess shear
stress at the same rate, regardless of τ (see also fig 4.14b). In case A, the shear stress initially drops
significantly to allow regeneration to occur at weaker τ ; maximal regeneration is then reached before
τa increases in steps of equal magnitude back up to the original level, where each step is of sufficient
duration for complete erosion to occur over the affected τ range. Case B is similar but the first of the
two τa step increases is too short to fully erode the affected τ range. Case C is also similar to case A
but the first τa increase is prefixed by a high-magnitude but short increase in τa that only partly erodes
the affected τ range.
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4.3.4.4 More complicated erosion models

An erosion model where material erodes at all shear strengths simultaneously as opposed to
sequentially from weak to strong may be intuitively preferable (§4.3.4.3) but there are several
forms that such a model could take:

• The simplest form is one where the erosion rate is constant with shear strength and time,
as described previously (fig. 4.14b);

• The erosion rate could be variable with shear strength but constant with time. This
permits the weaker-bound material to erode more quickly (fig. 4.16), in keeping with the
interest in the rate of erosion being a function of the excess shear stress.

• Conversely, the erosion rate could be variable with time but constant with shear strength
(e.g. fig. 4.17, where the erosion rate per shear strength is actually a function of the
relative amount of material with that shear strength).

4.3.4.5 Chosen erosion model

These three erosion models are preferable to the simpler ‘simultaneous’ erosion model (fig. 4.14b)
as the aggregate rate of material erosion slows over time in a similar manner to an existing
validated erosion model (§2.2.8.3) rather than ceasing abruptly. However, the shear-strength-
variable yet time-invariant erosion model (fig. 4.16) has been chosen for use with the regeneration
model presented in §4.3.3 for two reasons:

• It allows for non-serial layer erosion so can account for spatial heterogeneity in material
composition;

• It can ensure that the erosion rate is a function of the excess shear stress.

Although the chosen erosion and regeneration conceptual models best encode the current
understanding of material erosion and accumulation they may not actually describe the workings

Figure 4.16: Illustration of an erosion model where all shear strengths erode simultaneously at a rate
that is constant with time for each shear strength but, unlike the model shown in fig. 4.14b, varies
between shear strengths, with the weaker material eroding more quickly.
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Figure 4.17: Illustration of an erosion model where all shear strengths erode simultaneously at a rate
that is constant with shear strength but, unlike the model shown in fig. 4.14b, varies in time, with the
rate of erosion for all shear strengths slowing over time.

of the underlying latent physical, chemical and biological processes particularly accurately.
However this is unimportant if the model generates acceptable outputs for the range of inputs
of interest and is of minimal complexity.

Finally, as with the conceptual model of material regeneration, the erosion process is assumed
to be homogeneous with respect to longitudinal distance and the angle to the pipe invert for a
given pipe.

4.3.5 A complex system state

Combining the chosen material erosion and regeneration conceptual models results in a model
where the material per shear strength can erode or regenerate independently. Over time, this
can lead to a complex, non-linear relationship developing between material quantity and shear
strength as a result of fluctuations in the shear stress (e.g. fig. 4.18). Henceforth, the term
wall state will be used to mean the relative amount of wall-bound material at each tracked
shear strength.

An empirical model is preferable to a process-aware model given the large number of factors
that influence discolouration-related processes. The material quantity versus shear strength
relationship is considered to be sufficiently complicated for it not be possible to learn model
structure solely from data through empirical machine learning. Using Takens’ theorem for
‘recovering’ latent model state using time-series inputs (§2.2.2) is also inappropriate as observed
flow and turbidity signals are not free of noise. The most suitable approach is believed to be a
grey-box (§2.2.2) empirical model consisting of anthropogenic formulations that have been
informed by field and lab studies.

The proposed conceptual model tracks the relative amount of material at the pipe wall per
shear strength. Without placing bounds on the modelled shear strength there would be a need
to maintain an understanding of relative quantity over an infinite shear strength range, which
is neither computationally practical nor does it have any meaning in terms of the underlying
processes.

There is no need for the upper bound of the modelled shear strength range to be greater than
the maximum shear stress that the main is anticipated to experience: material stronger than
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Figure 4.18: Top: an artificial shear stress time-series profile. Bottom: a conceptual illustration of the
relationship between material quantity and shear strength at five points along that time-series. Here,
over short time-scales material quantity appears to be linear with shear strength yet this is not the case
over longer time-periods due to regeneration effects.

this maximum shear stress will never be eroded so cannot influence discolouration risk. The
lower bound of the shear strength range could conservatively be set to approach a limit of
0Pa (as per PODDS) to allow material regeneration at very weak strengths during past/future
periods of extremely low flow.

4.3.6 Modelling discolouration material in the bulk water: advection, mixing
and reactions

Models of the wall state and material erosion/regeneration are only useful for assessing and
predicting discolouration risk if they are coupled to a model of how material propagates through
the DWDS. This is because the driver for discolouration modelling is water quality at the
locations at which customers are sampling and regulatory samples are taken. Several processes
relating to mass transport need to be considered: advection, mixing and bulk reactions (§2.2.7).
These are relatively simple to model if the following assumptions, which were considered true
for PODDS, remain valid given the current understanding of the relevant processes:

4.3.6.1 Mobilised material does not settle

The majority of discolouration material remains suspended as a wash load once mobilised under
all but quiescent conditions. Settling velocity analysis given the size and density distributions
of discolouration material particles from various DWDSs indicates that this is valid (§2.1.9), at
least in the regions where these studies were conducted.
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4.3.6.2 Turbidity is a pseudo-concentration; pseudo-masses of material

If turbidity is treated as a concentration over the range of turbidities typically seen in DWDSs
then existing DWDS water quality models (§2.2.7) can be used to model advection, mixing and,
potentially, reactions too. Also, if turbidity is a concentration then discolouration material can
be quantified by multiplying turbidity by a dilution volume. The change of wall state scaling
parameter mentioned in §4.3.3 can then be set to translate a relative change in the amount of
material bound to a unit area of pipe wall to an absolute quantity in the same pseudo-mass
units as the product of turbidity and dilution volume.

Here it is assumed that turbidity can be treated as a pseudo-concentration: several (but not
all) studies show that turbidity is approximately linear with TSS for large, aggregated datasets
(§2.1.8). However, that relationship can be much stronger if data are grouped by water
source or pipe material, which suggests that the assumption that turbidity can be treated as a
pseudo-concentration is only valid at a site-specific level and turbidity ‘concentrations’ cannot
be compared between sites. At certain sites turbidity was not found to be linear with turbidity
but these are a minority of the sites studied to date.

It is preferable to model turbidity as a concentration and quantify wall-bound material in
turbidity pseudo-mass units rather than model TSS directly as:

• Although TSS is a more transferable measure of material quantity, conversion to/from
TSS introduces additional error and complexity and TSS cannot be measured as cheaply
or continually as turbidity (§2.1.8);

• Turbidity is good measure of the public perception of water quality, which is one of the
main drivers for managing discolouration risk.

A pre-requisite of treating turbidity as proxy for TSS and therefore a pseudo-concentration is
that turbidity is directly proportional to the volume fraction of particles in the fluid. Turbidity
must therefore be linear with particle volume and so linear with D3

p yet there is an intuitive
argument for turbidity, a measure of light scattering, being more linear with Dp than D3

p.
However, for three different theoretical expressions for turbidity presented in §2.1.8 turbidity
would only be proportional to Dp under very specific conditions. This does not indicate that
turbidity is more linear with D3

p than Dp, only that it is unlikely to be linear with Dp.

Here it is assumed that the site-specific relationship between turbidity and TSS is invariant
with time and is also invariant for ‘background’ and (re)mobilised material.

4.3.6.3 Dispersion and diffusion are negligible; lateral mixing is instantaneous

There is insufficient evidence that dispersion and/or diffusion have a significant impact on the
distribution of suspended discolouration material (§2.1.16.5), most likely as DWDS flows are
rarely non-turbulent. Dispersion may occur at low Reynold’s numbers in large-diameter trunk
mains but this has yet to be conclusively demonstrated. Advection can therefore be modelled
using one-dimensional plug flow (§2.2.7.3) and mixing at junctions and transverse mixing in
pipes can be assumed to be instantaneous.

91



4.3.6.4 The upstream turbidity is known or can be estimated

Turbidity as observed at the downstream end of a pipe is not only a function of the release
of material from the pipe wall but also of the material that is passing into the upstream end
of the main (fig. 4.19). Therefore, to model how the turbidity at the downstream end of a
main changes over time one must know or be able to estimate the turbidity at the upstream
end. At the upstream extent of a discolouration model the turbidity profile of the inflow can
be treated as a boundary condition by common DWDS water quality modelling methods in a
similar manner to how chlorine dosing is typically modelled.

4.3.6.5 The modelling scope is the extents of a single pipe length

For the purposes of developing the model it is useful to restrict the model scope to that of a
single pipe length (e.g. fig. 4.19). There is then no need to couple the discolouration material
release model to a fully-featured mass transport system that can iteratively solve for flows and
pressures in looped systems and includes reservoir routing models; instead a simple plug-flow
advection model can be used, allowing for easier prototyping. A series of pipe lengths with
differing hydraulic or asset characteristics can collectively be modelled in a ‘daisy-chained’
fashion: the turbidity predictions from modelling the most-upstream pipe are supplied as input
when modelling the change of state and turbidity for the next pipe downstream, and the output
from that sub-model is used as input when considering the next pipe downstream etc. (fig.
4.20). Losses and eddies at pipe joints/enlargements are to be ignored as the the mobilisation of
material from fixtures and fittings are to be ignored as the relationship between these localised
effects and discolouration material accumulation have not yet been well characterised (although
in some cases have been observed; see §2.1.16.6).

Reducing the system complexity to a single pipe length does not necessarily impede model
validation as there is greater interest in the long-term modelling of discolouration risk in trunk
mains than in narrower distribution pipes (at least in the UK; some reasons given in §2.1.17.2)
and trunk systems feature relatively few take-offs and are rarely looped (apart from at large
scales) so can often be approximated as series of pipe lengths.

Figure 4.19: The turbidity at the downstream end of a main, Tds, is a function of material erosion,
material accumulation (although to a possibly negligible extent) and the turbidity of the water flowing
into the upstream end, Tus.
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Another advantage of limiting the model scope to one or more contiguous pipe lengths is that
there is then no need for a storage mixing model; to date the propagation of discolouration
material through reservoirs and tanks of different structures has not been characterised.

4.3.7 Summary

A conceptual model of discolouration material erosion, regeneration and pipe wall state has
been presented. The output from this model, the rate of material release from the pipe wall, can
along with an understanding of system hydraulics be fed as input into an existing distribution
network water quality model so as to account for advection and mixing and to calculate turbidity
at locations of interest/concern.

By novelly treating the discolouration material bound to the pipe wall as a relative quantity per
shear strength, at any given time material within a lower shear strength range can erode whilst
stronger material can accumulate. This continuous and concurrent erosion and accumulation
has the potential to allow the accumulation process to be more accurately modelled and permit
the relationship between the total amount of material and shear strength to be non-linear,
which observations indicate is required (see §2.1.13, conceptually illustrated using figs. 4.8 and
4.7).

4.4 Model formulations

In this section a set of terms and formulations are defined that encapsulate the conceptual
model described in §4.3, after first defining the units used by several of those terms.

4.4.1 Units for quantifying discolouration material: TPMU

In previous work (e.g. Boxall et al., 2001, 2003a), volume and area featured in the units of
wall state, model parameters and model output, such as:

• the amount of material on the wall of a given pipe in NTU ·m3 (turbidity as a pseudo-
concentration (justification for this assumption is given in §4.3.6.2) multiplied by dilution
volume of fluid);

• the amount of material per m2 of wall in NTU ·m;

• shear stress in N ·m−2.

Factorising with respect to length obfuscated the nature of those units. Shear stress is
henceforth to be expressed in Pascals (Pa; 1Pa = 1N ·m−2) and quantity of material in
turbidity pseudo-mass units (TPMUs) (a pseudo-mass), where

1TPMU = 1NTU ·m3 (4.2)

Not explicitly including m in units of material quantity and parameters that were derived from
turbidity measurements ensures that those units are more tangible.
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Figure 4.20: Discolouration material release and propagation can be modelled for a heterogeneous series
of pipes by conducting a simulation per pipe using a simple advection model then supplying the output
of each sub-model as input to the next sub-model downstream.

4.4.2 Formulations for state change and material release from the pipe wall

One of the key concepts of the model is that the amount of wall-bound discolouration material
is tracked per shear strength over time (§4.3.2). Let ϕ (τ, t) be the quantity of discolouration
material bound to a unit area of pipe wall with strength τ at time t. Let ϕ (τ, t) ∈ [0, 1] be the
amount of material present at the wall with a given shear strength; the range [0, 1] denotes
that this a relative rather than absolute quantity (§4.3.3).

Let the rate of change of ϕ (τ, t) with time be as per eq. 4.3.

∂ϕ(τ, t)
∂t

=

−βe · (τa (t)− τ) τa ≥ τ

βr τa < τ
(4.3)

The first case of the case statement in eq. 4.3 corresponds to material erosion: material with
a given shear strength erodes if there is an excess shear stress at the given time (τa (t) ≥ τ)
and there is some material at the wall with that shear strength (ϕ > 0). βe is an erosion
rate coefficient with units Pa−1s−1. This expression is negated to ensure erosion results in a
decrease in the amount of material ϕ.

Eq. 4.3 satisfies the conceptual requirements that:

• All shear strengths erode simultaneously rather than sequentially (§4.3.4.3) but

• the weaker material erodes more quickly following a step increase in τa as the rate of
erosion per τ is a function of excess shear stress τa (t)− τ and

• the total rate of erosion (over the τ range) decreases over time (§4.3.4.4 and fig. 4.16)
rather than is linear and then stops abruptly.

The second case of eq. 4.3 relates to the material accumulation process: for all shear strengths
for which there is no excess shear stress (τa (t) < τ) and the material quantity has not reached
a maximal level, material regenerates at a rate βr

[
s−1] that is constant with time and shear

strength (as per the conceptual specification in §4.3.3).
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The amount of material is limited to the range [0, 1] as the amount of material per shear
strength is to be modelled as a relative quantity. This clipping requires that the partial derivative
in Eq. 4.3 be evaluated iteratively (eq. 4.4) over a discrete mesh bounded by τ ∈ [τmin, τmax]
and t ∈ [tmin,tmax]. Here τmin is 0Pa and τmax is case-specific (e.g. it could be the maximum
shear stress that a main could ever experience as per §4.3.5).

ϕ (τi,, t) = ϕ (τi,, t−∆t) +
(
dϕ (τ, t)
dt

·∆t
)

(4.4)

Note that eq. 4.3 allows the material per shear strength to erode and regenerate independently
of other shear strengths.

To determine the total rate of material release from a unit of wall area, the change in the
amount of material over the entire range [τmin, τmax] must be aggregated. This is shown in
eq. 4.5, where the result is then converted from relative to absolute units of material quantity
using a linear scaling parameter α (introduced in §4.3.3) with units of TPMU · Pa−1 ·m−2.
The negation ensures that there is a positive material release rate dN (t) /dt (with units of
TPMU ·m−2 · s−1) for a decrease in the amount of wall-bound material 1.

dN (t)
dt

= −α ·
τa≥τi∑
i

ϕ (τi, t)− ϕ (τi, t−∆t)
∆t ·∆τ (4.5)[

TPMU

m2 · s

]
=

[
TPMU

m2 · Pa

] [−]
[s] [Pa]

In eq. 4.5, the summation is only over the eroding shear strengths at time t; material accu-
mulation is assumed to have a negligible effect on the bulk water turbidity (and vice versa)
so shear strengths that are accumulating are not considered in this summation. The rate of
accumulation is therefore only modelled (indirectly) using the βr parameter. For example, in
fig. 4.21 the calculation of the material release rate from the pipe wall over the time-step ∆t
only considers the mobilisation of material with τ ∈ [0.6, 2.1] Pa but not how the accumulation
over τ ∈ (0.6, 2.1]Pa slightly reduced the net material release rate.

The three model parameters βe, βr and α are treated as scalars. There is insufficient evidence
for any being significantly variable with respect to t or (absolute) τ ; good justification is needed
for making say βr temperature- and therefore time-dependent as this will increase the model
complexity.

4.4.3 Sub-models and formulations for material transport

The output of the wall state change and material release model, dN (t) /dt, is supplied as an
input to a mass transport model. As mentioned in the conceptual model section (§4.3.6), this
mass transport model needs to advect both material passing into the upstream end of a given
pipe length and material released from the wall into the bulk water.

1The model formulations presented in §4.4 were previously published in Furnass et al. (2014b). Note that
the units of α and dN (t) /dt as shown in Furnass et al. (2014b) are incorrect. The definitions and units in §4.4
should be considered to be definitive.
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Figure 4.21: The model formulations allow material for which there is an excess shear stress to erode
whilst simultaneously the material with shear strengths greater than the shear stress can accumulate up
to a maximal level (illustrative diagram).

An analytical transport solution is not appropriate: an iterative method is required as the
input dN (t) /dt cannot be evaluated analytically and another key input, pipe flow, is a
non-differentiable function of time. A Lagrangian transport model, where discrete water
parcels/segments of constant concentration are tracked as they move down a pipe (further
described in §4.3.6), satisfies the conceptual requirements outlined earlier in §4.3.6 (one-
dimensional plug flow and a means for defining an upstream concentration profile as a boundary
condition, but no immediate requirement for a storage mixing model). More specifically, a
time-driven Lagrangian transport model has been chosen over other Lagrangian and Eulerian
models that offer similar functionality as it is computationally efficient and is less affected
by numerical dispersion (Rossman and Boulos, 1996). With this model, parcel positions and
concentrations are updated at regular time intervals.

The migration of mobilised material from the pipe wall into well-mixed Lagrangian water
parcels/segments can be calculated as per the pseudocode shown in alg. 4.1 (near identical
to the transport algorithm used in EPANET (Rossman, 2000, p. 41)). Note that in this
pseudocode the symbol ← represents variable assignment. At each time t each parcel has
a known volume, concentration and position relative to all other parcels, with the combined
volume of all parcels equalling that of the pipe.

At the upstream end of the modelled pipe, a volume of water is added at each timestep that is
equal to the flow Q integrated over the timestep i.e. Q (t) ·∆t. For the purposes of efficiency
new water segments are not added the upstream end at every timestep: the incoming turbidity,
Tus (t), at a given time t is used to either set the concentration of a new segment with that
volume or the most upstream parcel is augmented by that volume, and Tus (t) along with the

Algorithm 4.1 Calculating material release into the bulk water for a pipe p at time t.
procedure pipe_wall_react(t, p,D, L, dN (t) /dt,∆t)

for all s ∈ p.segments do
s.wall_area← π ·D · L · s.volume/p.volume
s.concentation← s.concentration+ dN (t) /dt ·∆t · s.wall_area/s.volume

end for
end procedure
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segment’s current concentration are used to assign a volume-weighted average.

In a complementary way, water is removed from the downstream end of the pipe at each
timestep. The ‘mass’ (material) that passes out of the pipe during the timestep is then divided
by the total pipe discharge over that period to give a downstream (nodal) concentration, which
in this case is the downstream turbidity Tds (t).

For each timestep the water that passes into and is discharged from the pipe only spends half
of that time within the pipe. The material release into these two volumes of water therefore
needs to be halved to account for this.

These three processes, material being released from the pipe wall to the bulk water, water and
material passing into the upstream end of the pipe and water and material passing out via a
‘monitoring point’, are calculated in series for each timestep of a simulation and all timesteps
are solved iteratively (assuming that the time-series solutions of the discolouration material
release model (§4.4.2) and the single pipe hydraulic model are already available).

4.4.4 Boundary conditions

The temporal boundary condition for the pipe wall model is the relative amount of material per
shear strength band at the start of the simulation i.e. ϕ (τi, t = 0). The model formulations
do not allow the amount of material at a given shear strength band to exceed that of a band
of the same width but greater magnitude. The wall state and therefore the wall boundary
condition ϕ (τi, t = 0) must therefore be a monotonically increasing function with respect to
shear strength τ e.g. fig. 4.22.

The temporal boundary condition for the bulk transport model is the array of concentrations
(here, turbidities) of each Lagrangian water parcel at t = 0. All parcel concentrations need to
be initially set to a constant value as there is insufficient information to do otherwise. This
means that if the turbidity at the upstream end of the modelled pipe is non-zero at the start
of the simulation then that background turbidity signal will only be reflected in the model
output after the duration of one pipe turnover (allowing for variability in the flow rate). It is
not uncommon for other water quality models such as those for age to also require a ‘bedding
in’ period at the start of each simulation before the output becomes representative (Machell
and Boxall, 2012).

Figure 4.22: The boundary condition at the pipe wall is ϕ (τi, t = 0), which is a monotonically increasing
function with respect to τ . An illustrative example of a monotonically increasing pipe wall boundary
condition is shown here.
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The spatial boundary condition of the bulk transport model is the time-series turbidity profile
of water coming in to the modelled pipe, as mentioned in §4.3.6.4 and §4.4.3.

4.4.5 Variable dependencies

The relationships between all quantities explicitly referenced by the proposed model are shown
in fig. 4.23 (with the addition of temperature and fluid density, which are not explicitly included
in the model as the impact of variation in those factors in real DWDS is considered to be
negligible). Note that flow and pipe diameter influence both the material erosion process (by
affecting shear stress) and material transport.

4.4.6 A note on parsimony

The formulations and algorithms presented in this section were made only as complex as could
be justified given the available field and laboratory observations and intuitive understanding
of discolouration and other water quality and hydraulic processes. An over-parameterised,
overly-complex mode is not only more difficult to fit but may also be too flexible and therefore
prone to over-fitting (§2.2.3).

4.5 Implementation as software

4.5.1 Requirements

The proposed formulations (§4.4) and underlying conceptual model (§4.3) need to be encoded
as software in a way that allows for the exploration of sensitivity with respect to parameters
and data inputs and for model verification and validation.

This reference implementation should be quick to develop and easy to comprehend and
modify, at least until the model has been successfully validated. An application programmer’s
interface (API) plus additional user interface components offers more versatility than a monolithic
application with a rich graphical user interface.

The software should also be efficient with respect to CPU time, memory usage and computational
complexity i.e. the execution time increases at an acceptable rate as the problem size, a function
of the cardinality of the input vectors, increases. Efficient execution along with the ability to
execute multiple simulations in parallel greatly expedites the model fitting process when using
methods such as swarm optimisation or genetic algorithms (§2.2.4) to find the parameters that
minimise the dissimilarity between predictions and observations.

The software needs to solve a numerical problem where the rate of change of inputs, state and
outputs varies with time (it may be months between short, sharp discolouration incidents): it is
therefore more computationally efficient for the software to allow for and use a variable rather
than fixed resolution mesh w.r.t. time when modelling using historical data. Being able to vary
the mesh resolution with respect to shear strength is also advantageous for similar reasons.
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Figure 4.23: Interdependencies between quantities relating to the VCDM model. ks: pipe roughness; S0:
hydraulic gradient; τa: shear stress; t: time; f : Darcy Weisbach friction factor; Re: Reynolds number;
Q: flow; D: internal pipe diameter; ρ: fluid density; βe, βr and α: VCDM parameters; ϕ (τ, t): relative
amount of material on the pipe wall with strength τ at time t; ϕ (τ, t0): relative amount of material on
the pipe wall with strength τ at time t0; dN (t) /dt: rate of material release per unit area of pipe wall;
L: pipe length; Tus: turbidity at the upstream end of the pipe of interest; Tds_pred: predicted turbidity
at the downstream end of the pipe of interest. Variation in the parameters in grey boxes is not directly
modelled by the proposed model.
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4.5.2 Implementation options

EPANET (§2.2.7), the open-source hydraulic and water quality modelling library, command-line
application and graphical application, is commonly used as a base for investigating variations
on traditional DWDS modelling approaches (e.g. Andrade et al., 2010). It cannot be used in its
original form for modelling discolouration as its single-specie water quality engine does not track
the quantity of specie at the pipe wall: when PODDS was integrated into EPANET (§2.2.8.4)
the water quality engine, input and output functions, API and graphical user interface (GUI)
were all modified to allow additional pipe and node parameters to be set, to track the wall
state and to allow material to be released into the bulk water, which was then advected and
mixed using in-built functions. Let us label the option of implementing the proposed model by
forking (modifying) the PODDS version of EPANET as PODDS_C.

Alternative means for encoding the model as software were to use the multi-species extension
(MSX) to EPANET (§2.2.7.6), either through supplying models using input files (henceforth
referenced as MSX_F ) or through modification of its source code (MSX_C).

The other option that was considered was to develop a bespoke software library rather than fork
an existing project (BESP). The programming language Python (Lutz, 2011) is a good choice
for this task as it is interpreted and dynamically typed, facilitating rapid prototyping, data
exploration and experimentation, yet can interface with statically typed, compiled extension
modules for expediting computationally-intensive tasks (e.g. via Cython (Behnel et al., 2011)).

4.5.2.1 Encoding state change, material release and material transport

For PODDS_C, the PODDS + EPANET water quality engine and API would need to be
modified so that firstly the wall state were a vector rather than a scalar and secondly the model
initialisation and state change rules reflected the needs and formulations of the proposed model.
As with PODDS, the advection and mixing of released material would be simulated using a
single-specie water quality model, as if discolouration material were an inert solute.

MSX-derived solutions (MSX_F and MSX_C) offer in-built support for tracking the quantity of
one (or more) species at the pipe wall and in the bulk water. MSX input files allow water quality
equilibrium, rate and formula expressions to be defined for pipes and tanks but the grammar of
these expressions is sufficiently limiting that it is difficult to encode the formulations of the
proposed model in this way (MSX_F), particularly in a manner that allows for the tracking of
material quantities over a large range of shear strength bands. However, the MSX expression
parsing and evaluation rules could be rewritten to allow for this by modifying the MSX source
code (MSX_C).

Another disadvantage of the MSX_F approach is that the predicted turbidity response lags
by one timestep behind flow changes as dN/dt is updated outside of the MSX timestep code.
This error may be significant if the timestep duration is as long as fifteen minutes unless it is
accounted for.

A bespoke solution coded in a language that allows for rapid prototyping (BESP) would allow
for easy, transparent encoding of the proposed model’s formulations. However, it would require
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functions for estimating shear stress and for the advection and mixing of a water quality specie;
this functionality is already provided for PODDS_C, MSX_C and MSX_F.

4.5.2.2 Model scalability

The four implementation options differ in their ability to scale to meet potential future modelling
needs.

Rapid prototyping The ease of development afforded by Python (BESP) could make sen-
sitivity analysis and extensions to the model (e.g. a transport mechanism that can model
dispersion) much easier than for PODDS_C or MSX_C.

Multi-specie sub-models of material regeneration The regeneration rate parameter
βr is to be decomposed into regeneration sub-models if/when there is sufficient data and
understanding to allow those sub-models to be justified and mathematically articulated (fig. 4.10).
In future the dependencies of βr may include parameters that in reality significantly vary over
short spatio-temporal scales. It would therefore be desirable (yet not currently essential) to allow
these parameters to be accurately represented within the model as bulk water or wall species.
Such multi-species, multi-phase modelling would be possible under MSX_F and MSX_C but
not PODDS_C. Support for this could be included within BESP, albeit with additional time
requirements.

Multi-pipe models Working with multi-pipe models would be much easier if using software
that is based on EPANET (inc. MSX) as EPANET can iteratively solve for flows and pressures
in large, complex, looped networks containing devices such as pumps and regulating valves.
Enabling the modelling such systems using BESP would require considerable development effort;
BESP is therefore seen as being a simple means for verifying and validating the proposed model,
after which the formulations can be incorporated into a more complex, powerful modelling
framework e.g. PODDS_C or MSX_C. However, strictly dendritic multi-pipe networks could
be modelled using BESP by modelling each pipe in turn using a breadth or depth first traversal
starting from the most upstream node: the output from each sub-model could be supplied as
an input to the next pipe(s) downstream (as per fig. 4.20).

4.5.2.3 Performance scalability

Variable mesh resolution EPANET/MSX-based implementations require that the duration
of hydraulic and water quality timesteps be constant throughout a simulation, whereas BESP
permits the timestep duration to vary, reducing the computational requirements over parts of
the input time-series where the there was little temporal variation (§4.5.1).

Efficient CPU and memory usage EPANET and MSX are both statically typed and compiled
so are fast and make efficient use of memory. Statically typed, compiled software such as
code written in C or Fortran is particularly well suited to numerical computing such as solving
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DWDS models as all arrays and matrices are homogeneously typed and so elements can be
iterated over very efficiently in memory as the size in bytes of each element is known in advance.
However, care is required when making changes to software such as EPANET that is written in
C as memory management, and therefore avoiding memory leaks, is entirely the responsibility
of the programmer.

Conversely, interpreted Python is slow for numerical work as its native enumerable data types
are heterogeneous collections of objects and so iterating over a ‘list’ in Python requires that the
size and position of each object be determined at run-time, which greatly limits performance
for enumerables containing many elements. However, Python has libraries that allow the more
numerical parts of a given application to be stored and manipulated using datastructures and
routines written in low-level, compiled programming languages such as C:

• NumPy (van der Walt et al., 2011) provides functions for creating homogeneous C
arrays/matrices and for fast vectorised operations on those arrays. This is achieved
through much of NumPy being compiled Python extension modules.

• pandas (McKinney, 2013) does the same but for tabular labelled data (similar to the
way that tables in spreadsheets have column and row labels). Both it and NumPy
have functions for efficiently reading and writing numerical data from/to files and for
timestamp and time delta manipulation.

• Cython (Behnel et al., 2011) allows Python code to be compiled as a Python extension
module, with a user-defined amount of static typing, allowing complicated algorithms
that cannot be expressed in terms of vectorised operations to compiled as a library then
accessed from Python. Cython can also be used to create Python wrappers around
libraries that were originally written in C or C++ such as EPANET/MSX.

Multiple concurrent simulations It is desirable to run many simulations simultaneously
when exploring the parameter space of a model using Monte Carlo simulations (Metropolis
and Ulam, 1949) or trying to fit the model to data using an automated method such as PSO
(§2.2.4). EPANET and MSX are not well suited to such tasks: the extensive use of global
variables means they are not thread-safe unless statically compiled into an executable; multiple
instances of that program could then be executed concurrently but this approach is convoluted,
particularly with regards to inputs and extracting outputs from the various program instances.

With a Python-based approach sub-processes could be spawned in a way that is more easy for
the programmer to manage. Unfortunately, as with PODDS_C, MSX_F and MSX_C, there is
no way of running simulations entirely concurrently using threads (which could be far more
memory efficient than using parallel processes) as Python has a Global Interpreter Lock that
prevents multiple threads from executing simultaneously, even on a multi-core machine2.

4.5.2.4 Data input, output and user interface

The EPANET and MSX user interfaces (EPANET: GUI, command-line and API; MSX: command-
line and API only) are well understood within academia and industry. However, these interfaces

2Note that the Global Interpreter Lock can be temporarily be released for certain functions within Python
extensions written directly in C or using Cython, which permits parallel execution those functions.
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along with file parsing and file generating functions would have to be modified for PODDS_C,
MSX_F and MSX_C to allow for the input of an array shear strength bands, an array of the
initial amount of material per band and for the output of the final amount of material per band.

BESP affords far simpler means for inputting and outputting numerical data. NumPy and
pandas can be used to read and write delimited text files or efficient binary files in formats such
as HDF5 (The HDF Group, 2014; McKinney, 2013). Complicated plots can be created using
the matplotlib library Hunter (2007). The IPython Notebook (McKinney, 2013) is a literate
programming environment where blocks of code, formatted text along with outputs such as
code-generated data and graphs can be brought together within an interactive document,
allowing analysis and demonstrations to be more easily reproduced, shared and comprehended
(through the use of in-line documentation).

4.5.2.5 Dependencies

PODDS_C, MSX_X and MSX_F have no dependencies (other than MSX on EPANET),
whereas BESP requires NumPy, matplotlib3, a library of hydraulic functions and optionally
depends on Cython, pandas and IPython.

4.5.2.6 Chosen approach

For the purposes of validating the proposed model for a single pipe, BESP was considered
to offer the best balance of efficiency and ease of development and the greatest flexibility
with respect to model fitting and sensitivity analysis. These benefits were seen to more than
compensate for having to develop code to calculate shear stresses and model advection and
mixing.

4.5.3 Overview of implementation

The pyvcdm Python package provides VCDM class with which discolouration material release
models can be instantiated then executed for a given time-series before then modelling advection
and mixing for that process i.e. the wall state change and material release code is largely
decoupled from the advection and mixing code.

A model can be instantiated using this Python code:

my_model = pyvcdm.VCDM(times_v,

strength_v, init_cond_v,

applied_shear_v,

removal_rate, regen_rate, alpha)

The parameters of these methods are as follows:

times_v A 1D array (of type numpy.ndarray) of time offsets since a datum t0, in s, over
which to simulate. Allows for variable mesh resolution with respect to t;

3It would be impractical to code array manipulation and plotting libraries from scratch.
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strength_v A 1D array of the extents (in Pa) of the shear strength bands at which the
relative amount of material will be tracked over time. Allows for variable mesh resolution
with respect to τ ; note that the excess shear stress per shear strength band is calculated
with respect to the mid-points of the bands defined by strength_v;

init_cond_v ϕ (τi, t = t0); a 1D array of the relative amount of material, a unit-less quantity,
of all layers at t = t0. Each element must be in [0, 1], with 1 indicating maximal material
present. Must have one fewer element than strength_v i.e. have as many elements as
there are shear strength band mid-points;

applied_shear_v A vector of values of shear stress per timestep [Pa]. Must be the same
cardinality as times_v.

removal_rate βe; Scalar coefficient, in Pa−1 · s−1, that describes the ease with which the
relative amount of material per shear strength decreases upon erosion as a function of
the excess shear strength;

regen_rate βr; Scalar coefficient, in s−1, that describes the rate at which the relative amount
of material per shear strength increases due to material regeneration;

alpha α; Scalar coefficient, in TPMU ·m−2 · s−1, that is used to convert the relative amount
of material mobilised to absolute units.

Once a model has been instantiated the material release can then be simulated for the
previously-supplied time-series:

my_model.sim(cython=True)

Here, the iterative change of wall state and material release calculations can be performed
using a Cython function for far greater performance than could be achieved using native Python
code.

The material release simulation results can then be advected to the downstream end of a
single pipe using a time-driven Lagrangian mass transport model (again written in Cython for
performance). The turbidity at the upstream end of the pipe of interest can be supplied as an
input to the transport model (§4.4.3).

my_model.advect(Q_v, D, L, init_num_segs,

upstream_conc_v=None,

conc_tol=0.05, cython=True)

The parameters of the advect method are as follows:

Q_v A 1D array of pipe flow in m3 · s−1, with the same cardinality as times_v. This should be
consistent with the applied_shear_v, k_s and D function arguments given that shear
stress is a function of flow, diameter and pipe roughness;

D Uniform pipe diameter in m;
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L Pipe length in m;

init_num_segs At the start of the advection process the pipe volume is initially divided into
a number of equal-sized segments of zero turbidity;

upstream_conc_v A 1D time-series array of turbidities in NTU corresponding to the upstream
end of the pipe. The array should have the same cardinality as times_v;

conc_tol Tolerance in NTU used to determine whether a new segment should be added to
the upstream end of the pipe at a particular timestep (see §4.4.3).

Functions for hydraulic calculations have been encapsulated within a separate Python package,
pyhyd4, which includes functions for calculating hydraulic quantities from both scalar and
vector (array) inputs. The most useful function for modelling material erosion is the following
for calculating the shear stress at the pipe wall, which solves eqs. 2.9, 2.10, 2.11 and 2.12:

shear_stress(D, Q, k_s, T=10.0, den=1000.0)

where

D Internal diameter in m;

Q Flow in m3 · s−1;

k_s Nikuradse roughness height in m;

T Temperature of the bulk water, which defaults to 10◦C. Dynamic viscosity is a function of
temperature and therefore the Reynolds number and friction factor are too;

den Bulk water density, which defaults to 1000 kg ·m−3.

4.6 Summary of model assumptions

The assumptions made in §4.3 and §4.4 have been collated and enumerated here for quick
reference.

Assumptions particular to just the VCDM

1. At a given time, all wall-bound material with a shear strength less than the shear stress
is subject to erosion whilst simultaneously all material with a shear strength greater than
the shear stress is subject to accumulation i.e. weaker material may erode whilst at the
same time stronger material accumulates.

2. Weaker-bound material erodes more quickly than stronger material: all strengths for
which there is an excess shear erode simultaneously at rates that are constant with time
but variable with excess shear.

4https://github.com/willfurnass/pyhyd
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3. The relative regeneration rate, βr, is pipe specific but constant with shear strength and
time (so is not significantly affected by rapid changes in bulk water quality such as
discolouration material erosion events).

4. The other two model parameters, α and βe, are also constant with shear strength and
time.

5. The shear strength of a quantum of wall-bound discolouration material is constant with
time.

Assumptions particular to both PODDS and the VCDM

1. The wall state (quantity of wall-bound material versus shear strength profile), erosion
rates and regeneration rates are invariant with longitudinal distance and angle to the
invert along a pipe length with constant asset characteristics (diameter, roughness and
material) and longitudinally homogeneous hydraulics (bulk flow).

2. The amount of material that can accumulate on the pipe wall with a shear strength in a
given range has a time-invariant upper bound, allowing erosion and regeneration to be
considered in relative terms.

3. The maximum shear strength with which discolouration material can bind to the wall is
pipe-dependent and invariant with time.

4. The minimum shear strength of wall bound material is time-invariant and approaches the
limit of 0Pa.

5. The relative rate of erosion is solely a function of the excess shear stress, which is the
amount by which the steady-state shear stress exceeds the shear strength for a quantum
of material.

6. The relationship between turbidity and TSS at a given site is linear and invariant of time
and also, for eroded material, the shear strength and longitudinal position along the
homogeneous pipe prior to erosion. Turbidity can therefore be treated as a concentration
and modelled as a water quality species. The effects of coagulation, flocculation and
precipitation are negligible.

7. Bulk water turbidity is not significantly reduced by material accumulating on the pipe
wall.

8. Material remains suspended once mobilised.

Assumptions commonly made when modelling DWDS hydraulics and water quality

1. The dispersion and diffusion of solutes and suspensions that behave like solutes are
negligible and lateral mixing is instantaneous.

2. Dynamic hydraulic effects do not significantly contribute to the shear stress at the pipe
wall.
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4.7 Conclusions

In this chapter a conceptual model was proposed for more accurately modelling the shear
strength profile of the discolouration material that accumulates around the circumference of
DWDS pipe walls. The key advance of this Variable Condition Discolouration Model (VCDM)
is that the state of the pipe wall at a given time is a relative quantity of material for each
of a range of shear strengths, as opposed to all material bound to the pipe wall only having
a scalar strength. Each of the tracked shear strengths can be eroded or accumulate more
material independently of all other shear strengths. This permits the accumulation process to
be modelled in a distinct manner from the erosion process rather than simply being the inverse:
weaker material can erode more quickly than stronger material for shear strengths less than the
shear stress, yet shear strengths above the shear stress can accumulate at all shear strengths
simultaneously and at the same rate, in concordance with field and laboratory observations.

Tracking material quantity over time for a range of shear strengths rather than for a single shear
strength requires a novel approach to modelling excess-shear-stress-driven material erosion. It
was not possible to distinguish the several possible conceptual models of erosion that were
considered in this chapter given the available historical data so the most intuitive option was
selected: all shear strengths for which there is an excess shear stress erode simultaneously but
at a linear rate that is proportional to the excess shear stress.

The VCDM model has fewer parameters than PODDS, the parameters being: a relative erosion
rate factor βe, a relative regeneration rate βr, and a scaling factor α for converting from
relative to absolute quantities of discolouration material. The wall state boundary condition
for t = 0 is the relative material quantity per tracked shear strength, which is a non-trivial
monotonically-increasing function of τ . The complexity of the VCDM wall state model is
greater than that of the PODDS model but only as complex as is required to represent the
observed characteristics of material erosion and regeneration processes.

The proposed VCDM formulations calculate the change in relative material quantity at the
pipe wall due to material erosion and regeneration, determine the total material release into the
bulk water from each unit area of pipe wall then this material is advected to the observation
point at the downstream end of a single pipe by a time-driven Lagrangian transport model.

The wall state and mass transport formulations need to be evaluated using an iterative and
discretised rather than analytical approach. These formulations have been encoded as Python
software.

At the start of the chapter several ‘use cases’ for a new discolouration model were defined
(§4.2.1). As has been demonstrated, the proposed model has the potential to characterise the
sensitivity of both the bulk water turbidity and the latent wall state to the continual processes
of discolouration material and erosion (use cases #1, #2 and #3). In the next chapter, §5, the
mesh independence of this numerical model is assessed and sensitivity analysis is undertaken on
the mesh resolution, model parameters and the boundary conditions. It concludes with analysis
of how the empirical model can be calibrated (use case #4) using artificial data. The following
chapter, §6, explores how successfully the model can be calibrated and validated using data
from real DWDS (use cases #4 and #5). The final use case, #6, is the ability to use the
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discolouration model to design optimal mains flow conditioning programmes; this is discussed
in §7.
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Chapter 5

Model verification, sensitivity
analysis and fitting to data

“Model verification is substantiating that
the model is transformed from one form
into another, as intended, with sufficient
accuracy. Model verification deals with
building the model right. ”

Balci (1997)

5.1 Introduction

This chapter consists of three sections:

• A demonstration of the functionality of the model proposed in §4, including the verification
of model formulations and implementation (confirming that the model satisfies the
conceptual specification);

• An exploration of the sensitivity of the model output to the model parameters, inputs
(hydraulics and asset characteristics) and boundary conditions (initial system state).

• The development and validation of a method for fitting the model to data.

5.2 Demonstrations of model functionality

Five demonstrations of the model are presented in this section, which collectively cover various
aspects of model functionality:

1. The impact of a simple step increase in shear stress on the model state, the rate of
material release from the pipe wall and the turbidity at the downstream end of the pipe;
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2. The rate of material release time-series is partially obscured when transformed by bulk
water transport processes into the downstream turbidity time-series;

3. Fluctuations in shear stress can result in the partial erosion of shear strength bands.
This demonstration explores firstly the impact of partial erosion on the model state and
outputs, and secondly how, under certain circumstances, distinct releases of material
from the pipe wall cannot easily be distinguished from the turbidity signal;

4. The VCDM and PODDS models can differ following periods of material regeneration;

5. Erosion is driven by the excess shear stress and the importance of quantifying discolouration
material using the time-integral of material flux (not just of observed turbidity).

5.2.1 First example: model response to a simple, stepped shear stress profile

The functionality of the model concepts and formulations proposed in §4.3 and §4.4 and
implemented as per §4.5 is demonstrated in fig. 5.1 using artificial inputs. Figures depicting
simulation data in a similar manner appear throughout the remainder of this thesis, hence there
is a need to explain this graphical representation.

The four subplots of fig. 5.1 are time-series plots corresponding to the same time period (in
this case 1000 s):

• The uppermost subplot, fig. 5.1-i, shows the variation in shear stress at the wall of a
single pipe; this was calculated from a diameter D, roughness ks and flow profile Q. In
this example, the flow (not shown here) and shear stress profiles increase and decrease in
a simple stepped fashion;

• The second subplot shows how the relative amount of wall-bound material, ϕ (τi, t),
varies for three different shear strength (τ) bands during the simulation. A value of 1 for
a given shear strength band indicates that there is maximal material present with that
shear strength and a value of 0 indicates that band is fully depleted;

• The third subplot, fig. 5.1-iii, shoes the profile of the rate of material release, dN/dt,
from each m2 of pipe wall due to all eroding shear strength bands (not just the three
shown in the second subplot);

• The fourth subplot, fig. 5.1-iv, shows the turbidity that was predicted at the downstream
end of the modelled pipe. Note that here it is assumed that the turbidity of water that
enters the upstream end of the pipe is zero, so the downstream turbidity profile, Tds,
shown in this subplot is solely a function of material erosion from within the pipe.

In fig. 5.1-ii, the relative amount of wall-bound material ϕ (τi,t) was plotted for just three
shear strengths for the purposes of concisely illustrating how erosion and accumulation are
conceptually being modelled; however ϕ (τi, t) was tracked for a total of 250 discrete shear
strengths over a contiguous range.

In fig. 5.1-ii, all three of the shown shear strengths are simultaneously eroded by the first step
increase in τa, with the weakest material being eroded more quickly (as per the conceptual

110



Figure 5.1: A demonstration of how the proposed model generates a turbidity response at the downstream
end of a single pipe. From top to bottom: (i) A time-series shear stress profile (one of the model
inputs); (ii) the relative material quantity ϕ (τi, tj) for an illustrative selection of shear strengths
τi ∈ {0.2, 0.3, 0.4}, which varies with time due to erosion and regeneration; (iii) the rate of material
release from the pipe wall dN (tj) /dt due to the erosion of all layers weaker than the shear stress; (iv) the
turbidity response (one of the model outputs). Pipe diameter D = 75mm, roughness ks = 0.1mm and
length L = 20m; timestep ∆t = 0.5 s; 250 shear strength bands (∆τ = 0.0026Pa); boundary conditions:
if τi < τa (t = 0) then ϕ (τi, tj = 0) = 0 else ϕ (τi, tj = 0) = 1 (see eqs. 4.3 and 4.4); erosion rate factor
βe = 0.1Pa−1 · s−1; regeneration rate βr = 0.005 s−1; scaling factor α = 4.0TMPU · Pa−1 ·m−2;
flow Q ∈ [0.68, 1.75] L · s−1. Note that in this example the rate of material regeneration has been set
to a high value to permit the effects of erosion and regeneration to be clearly visualised on a single plot.
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requirements in §4.3.4). Material with shear strengths of 0.2 Pa and 0.3 Pa then regenerates
simultaneously at the same rate (as per the requirements in §4.3.3) to a maximal level (see
the requirements in §4.3.3) when τa drops to below 0.2 Pa. Upon a second step increase in
τa, only the strongest of the three explicitly depicted shear strengths withstands the eroding
forces. All three identified strengths then subsequently regenerate simultaneously at the same
rate again when τa drops down to 0.1 Pa. Figures 5.1-iii and 5.1-iv show two spikes in the
material release rate, dN/dt, and the downstream turbidity, Tds, caused by the two periods
when τa was most elevated. Note that in this example the regeneration rate is extremely fast
to allow the effects of erosion and regeneration to be visualised using a single scale.

Time-series figures such as fig. 5.1 can benefit from being paired with heat maps where the
relative quantity of material is rendered as colour for all modelled shear strength bands and
every timestep, not just for a select few shear strengths. An example heatmap is shown in
fig. 5.2, which corresponds to the simulation depicted in fig. 5.1. Such plots allow temporal
changes in material quantity over the entire modelled shear strength range to be visualised.

5.2.2 Second example: signal transformation due to advection and mixing;
the peak turbidity occurring one turnover after a shear stress increase

This example further demonstrates how advection and mixing transform the material release
signal into the turbidity signal detected at the downstream end of the pipe. A step increase
in shear stress results in an increase in the rate of mass release from the pipe wall (fig. 5.3).
Observe that the downstream turbidity profile is visually quite different from the material release
rate profile; this is due to the latter being transformed into the former by advection and mixing.

The change in concentration of each Lagrangian water parcel over time is shown in fig. 5.4. One
can see that, following the increase in shear stress, parcel concentrations increase as they move
down the pipe due to the material release rate being finite and them continually incorporating
more material for a period. This explains why the peak turbidity occurs exactly one turnover
after the step increase in shear stress (see fig. 5.3): the water parcel that is at the upstream
end of the modelled pipe at the time of the step increase has received more eroded material
than any other by the time it reaches the downstream end.

5.2.3 Third example: partial erosion and compounded turbidity responses

In a third example, shown in the time-series fig. 5.5 and heatmap fig. 5.6, one can see that short
periods of elevated shear stress can result in the incomplete erosion of material (see fig. 5.5-ii
where t ∈ [1500, 3100] s; this requires that the erosion rate factor βe is not low relative to the
duration of those periods). As per the first example (§5.2.1), the regeneration rate βr was made
very fast to allow the effects of erosion and regeneration to be visualised using a single scale.
Also, note that all depicted material shear strengths regenerate simultaneously at the same rate
up to maximal level over the period t ∈ [3100, 7500] s; these shear strengths are then eroded
by the step increases in τa over t ∈ [7500, 10000] s. Thirdly, observe that there were several
separate releases of material from the pipe wall over that period (fig. 5.5-iii) yet these responses
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Figure 5.2: Variation in the relative amount of wall-bound material ϕ (τi, tj) with respect to discrete
shear strength τi and time tj for the simulation results shown in fig. 5.1. White indicates shear strengths
that are completely depleted (i.e. ϕ (τi, tj) = 0); black indicates maximal material at a shear strength
(i.e. ϕ (τi, tj) = 1).

Figure 5.3: The material release dN/dt and downstream turbidity time-series Tds profiles that result
from a step increase in shear stress τa in a single pipe (where all shear strengths affected by this increase
were maximally regenerated over t ∈ [0, 40]). The step increase occurs at 40 s, shown by a dashed and
dotted line, and that time plus the duration of one pipe turnover is shown with a dashed line.

Figure 5.4: Variation in turbidity with distance along the single pipe referenced in fig. 5.3 during a
material erosion event. Here the discretely tracked Lagrangian water parcels have been shaded to indicate
their turbidity. Black corresponds to zero turbidity whereas white corresponds to the maximum turbidity
experienced during the whole event (the same level as the peak in the second subplot of fig. 5.3).
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had become far less distinct by the time they had been advected to the downstream end of the
modelled pipe (fig. 5.5-iv). This illustrates how the processes of advection and mixing obscure
and limit our understanding of state and change at the pipe wall.

5.2.4 Fourth example: a comparison of the VCDM and PODDS models

The simulation results shown in fig. 5.7 demonstrate how the proposed VCDM model and the
PODDS model represent the wall state and the regeneration process differently and, importantly,
illustrates how the turbidity predictions of these two models differ given the same observational
data as inputs.

The simulation begins with a ‘flushing phase’, during which the shear stress increases in steps of
equal magnitude. Both models show material being mobilised for each step increase, illustrating
the desired characteristic that the material at the pipe wall has a strength profile. Note that,
when modelling the erosion of maximally regenerated material, the output of the two models is
similar.

During a subsequent, lengthy ‘growth phase’, the shear stress remains at a low, constant value,
permitting the regeneration of shear strengths that had been eroded during the preceding
flushing phase. Finally, there is a second flushing phase; this has an identical shear stress profile
to the first flushing phase.

The models are distinguished by their turbidity predictions for flushing phase 2. The PODDS
model predicts that only the stronger shear strengths affected by erosion during flushing phase 1
will have been able to notably regenerate by the start of flushing phase 2. The VCDM, however,
predicts a similar turbidity spike for each of the step increases in shear stress during flushing
phase 2, demonstrating that different shear strengths have been regenerating simultaneously; it
is this response that more accurately reflects observations on material accumulation (§2.1.13.3)
and encapsulates the conceptual requirements for regeneration presented earlier (§4.3.3).

The changes of wall state (i.e. the strength versus relative material quantity profile) are shown
for the VCDM and PODDS in figs. 5.8 and 5.9 respectively. Fig. 5.8 shows the weaker material
regenerating at the same rate at all strengths simultaneously, as per the VCDM conceptual
specification in §4.3. The PODDS regeneration mechanism shown in fig. 5.9 differs in that,
at the start of the growth phase, the material has a greater shear strength than at the end,
therefore material cannot be regenerating at the same rate at all shear strengths simultaneously.

Note that the PODDS simulation results shown in figs. 5.7 and 5.9 were not calculated using
the EPANET-based implementation (§2.2.8.4) but using functionality included in the pyvcdm

Python module (§4.5.3) for ease of simulation and sensitivity analysis.

5.2.5 Fifth example: Erosion being driven by the excess shear

This example demonstrates how the model responds to equal step increments in shear stress,
in terms of both the amount and rate of erosion per step.

In the simulation depicted in fig. 5.10, a hypothetical pipe of interest has been operating under
a constant flow, Qbg, for long enough prior to t = 0 such that the material at the wall at t = 0
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Figure 5.5: A third demonstration of the proposed model using artificial data. From top to bottom: (i)
Time-series shear stress profile for a single pipe; (ii) relative material quantity ϕ (τi, tj) for an illustrative
selection of shear strengths τi ∈ {0.25, 0.35, 0.40, 0.50} Pa; (iii) rate of material release from the pipe
wall dN (tj) /dt; (iv) turbidity response at downstream end of pipe. Diameter D = 200mm, roughness
ks = 3.0mm and length L = 350m; timestep ∆t = 1.0 s; 1000 shear strength bands (∆τ = 0.0006Pa);
if τi < τa (t = 0) then ϕ (τi, tj = 0) = 0 else ϕ (τi, tj = 0) = 1 (see eqs. 4.3 and 4.4); erosion rate factor
βe = 0.1Pa−1 · s−1; regeneration rate βr = 0.005 s−1; scaling factor α = 1.0TMPU · Pa−1 ·m−2;
flow Q ∈ [5.0, 10.0] L · s−1. As per fig. 5.1 the rate of material regeneration has been set to a high
value to permit the effects of erosion and regeneration to be clearly visualised on a single plot.

Figure 5.6: Variation in relative material condition ϕ (τi, tj) with respect to discrete shear strength
τi and time tj for the simulation results shown in fig. 5.5. White indicates shear strengths that are
completely depleted (i.e. ϕ (τi, tj) = 0); black indicates maximal material at a shear strength (i.e.
ϕ (τi, tj) = 1).
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Figure 5.7: Simulations comparing the outputs from VCDM and PODDS models for a given set of
pipe parameters (D = 200 mm; L = 200 m; ks = 3 mm) and a given hydraulic time-series profile
(dt = 3.47 s; Q ∈ [7.2, 21.5] L · s−1; τa ∈ [0.3, 2.6] Pa. Details of the VCDM and PODDS model
configurations shown in the respective captions of figs. 5.8 and 5.9. The subplot layout is as per fig. 5.1,
albeit with subplots iii and iv including PODDS simulation outputs (green lines) in addition to those
from the VCDM simulation (blue lines).

Figure 5.8: Change of the relative material quantity (wall state) with time for the VCDM simulation
depicted in fig. 5.7. Model configuration: 1000 strengths tracked (∆τ = 0.0026); boundary conditions:
if τi < τa (t = 0) then ϕ (τi, tj = 0) = 0 else ϕ (τi, tj = 0) = 1; βe = 0.1Pa−1s−1; βr = 0.00003 s−1;
α = 1.0TPMU · Pa−1 ·m−2.
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Figure 5.9: Change of (a) the total amount and (b) the scalar shear strength of discolouration material
at the wall with time for the PODDS simulation depicted in fig. 5.7. Model configuration: boundary
condition τc (t = 0) = τa (t = 0) Pa; k = −1.0TPMU · Pa−1, P = 0.02TPMU ·m−2 · Pa−1 · s−1;
n = 1.2; Cmax = 100.0TPMU ; regeneration parameters: P ′ = 0.00003TPMU ·m−2 · Pa−1 · s−1

but temperature shear strength power terms were both zero (see Boxall and Saul (2005) for details of
the PODDS regeneration model’s formulations and parameters).

is in a steady state and all shear strengths are either fully depleted or maximally regenerated.
More concisely, if the shear stress at Qbg is τa_bg then

ϕ (τ, t = 0) =

0 τ ≤ τa_bg

1 τ > τa_bg
(5.1)

During the simulation the shear stress is increased in steps of equal magnitude above τa_bg,
with each step causing the complete depletion of the corresponding shear strength range. This
in turn results in a turbidity spike being seen at the downstream end of the hypothetical pipe.
The turbidity response per step increase is partly characterised by the amount of material
mobilised per step increase, which should be a constant between all shear strengths if:

• τa was increased in equal increments i.e. there was a constant excess stress for each step;

• All shear strengths affected by the step increase were maximally regenerated beforehand;

• There was negligible regeneration over the duration of the simulation;

Figure 5.10: The turbidity response predicted by the VCDM for a series of step increases in shear stress
of equal magnitude. D = 79.3mm; L = 203.799m; ks = 0.075mm; Q (t) ∈ [0.72, 7.00] L · s−1;
τa (t) ∈ [0.09, 5.64] Pa; ∆τa = 1.11Pa; τ ∈ [0.09, 5.64] Pa; ϕ (τi, t0) = 1; five pipe turnovers per τa

level; = βe = 0.1Pa−1s−1; βr = 0.0 s−1; α = 1.0TPMU · Pa−1m−2s−1. The water passing into the
upstream end, Tus, had a turbidity of 0NTU .
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• Each shear stress level was sustained until all affected shear stresses had been fully
depleted and the turbidity reduced to background levels again;

• The model implementation is valid with regards to this test.

The step duration should be a linear function of the turnover time to ensure that each step is
of sufficient duration for the turbidity to return to background levels before its end. This is
because the peak turbidity and the rate of decay are functions of turnover time (and therefore
flow) as seen in §5.2.2, which varies between steps.

Intuition suggests that the amount of discolouration material that is mobilised per shear stress
step can be quantified by integrating turbidity with respect to time over the step duration.
However, as mentioned in §2.1.13.2, if we are assuming that turbidity is proportional to TSS
and so is a site-specific pseudo-concentration (§4.3.6.2) then this is an invalid measure of
material quantity. Instead, the pseudo-concentration should be multiplied by flow to give the
material flux past the turbidity measurement point per second; the integral of this derived
time-series over the duration of each shear stress step is then a measure of the total amount of
material mobilised over that step (eq. 2.14). Table 5.1 presents both metrics for the simulation
depicted in fig. 5.10; the integral of turbidity with respect to time varies between shear stress
steps but the integral of the product of turbidity and flow does not, as should be the case if
the same amount of material was mobilised per shear stress step.

It is useful to be able to quantify discolouration material using the integral of material flux
when working with observational data, such as when assessing regeneration rates by repeatedly
flushing a given pipe length (§2.1.13.2). However, the VCDM model output should be turbidity
rather than material flux as material flux is not a regulated parameter and turbidity is a better
proxy for water consumers’ perception. Turbidity is therefore presented in preference to material
flux in the majority of the relevant modelling output plots throughout the remainder of this
thesis.

The treatment of turbidity as a pseudo-concentration is not novel (the assumption was made
in PODDS; see §2.2.8.2). However, previous attempts to quantify material regeneration rates
using DMA flushing data have not always recognised that this assumption requires quantities
of eroded material to be quantified using material flux when the flow varies within or between
flushes (§2.1.13.2).

Returning to the simulation shown in fig. 5.10, an additional model characteristic that can be
demonstrated is the similarity of material erosion rates following each shear stress step increase

Table 5.1: The amount of material mobilised per shear stress step in the VCDM simulation depicted in
fig. 5.10 is a constant. The integral over the duration of each step of the product of flow and ‘observed’
turbidity reflects this (third column), but the integral over each step of just turbidity (second column)
does not as it is not a valid metric for comparing quantities of discolouration material.

τa step
´ step_end
step_start Tds (t) dt

´ step_end
step_start Tds (t) ·Q (t) dt

1 18468.63 56.46
2 13002.01 56.61
3 10548.70 56.64
4 9113.00 56.83
5 8107.19 56.76
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of constant magnitude above τa_bg. These consistent shear stress steps all give rise to the
same excess shear stress, which should be directly proportional to the rate of erosion (eq. 4.3)
for a verified model implementation.

If the turbidity responses from all step increases are offset so they all start from the same
moment in time then one can see from (fig. 5.11) that:

• All responses follow a common upward-trending curve;

• Each response reaches a step-specific peak at the step-specific turnover time;

• Each response decays by following a curvature that is common to all steps but has a
different temporal offset per step.

Discounting the effects due to differing rates of advection, the erosion rate can be seen to be
constant for a unit of excess shear stress.

5.3 Sensitivity of the model to the mesh resolution

5.3.1 Introduction

Exploring the sensitivity of the output(s) of an empirical model to variation in inputs is important
for several reasons. Firstly, there is a need to verify that the model output(s) do not scale
aggressively/erroneously with the mesh resolution should the model require a discretised solution.
The VCDM mesh resolution is defined by ∆t and ∆τ .

Secondly, there is a need to determine an acceptable trade-off between mesh resolution and
model accuracy. For example, a VCDM simulation featuring too few τ bands will be inaccurate
(fig. 5.12); having a greater number of τ bands allows for a better assessment of the sensitivity
of the model to variables that influence the shape of turbidity predictions. However, if ∆τ is
too small then τ bands will be nearly indistinguishable and computational requirements may be
excessive.

Figure 5.11: The set of turbidity responses shown in fig. 5.10 but offset so they all start from the same
moment in time.
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Figure 5.12: A VCDM simulation in which the relative amount of material at the pipe wall is tracked
over time for only a small number of τ bands could be quite inaccurate, as illustrated in this diagram.
The output will be sensitive to the discretisation interval for larger values of ∆τ .

Sensitivity analysis is also valuable for qualifying and quantifying how discretisation intervals
(∆t; ∆τ), model parameters (βe; βr; α), time-varying inputs (hydraulic quantities Q, τa
and the excess shear stress τe1) and time-invariant inputs (pipe characteristics D, ks and L)
influence each other and the model outputs. The identification of parameter/input covariance
is of importance as if say two parameters have a similar impact on model output(s) then the
fitting of the model to data may be an indeterminate problem.

In this section, the relationships between model state/outputs and the mesh resolution are first
qualified by analytical means, then these relationships are quantified and satisfactory mesh
resolutions identified through numerical analysis. The expressions that result from the former
are not only useful for studying the influence of mesh resolution but more generally explain
how the various quantities pertaining to the model relate and also help identify characteristic
times and shear strengths of the model.

5.3.2 Scalar measures of model outputs

The relationship between model inputs, parameters and outputs can be most easily qualified and
quantified if vector and matrix outputs are aggregated as one or more scalars, each describing
one characteristic of the outputs. For example: one metric might be a measure of scale, another
might be a measure of rate and a third might be an integral over time.

The VCDM outputs have been reduced to the following four metrics, two of which are functions
of the wall state sub-model and the others are functions of both the wall state and material
transport sub-models:

• The total amount of material to be released from the pipe wall during a simulation can
be determined directly from the output of the wall state sub-model (eq. 5.2, in which Aw
is the pipe’s internal surface area

[
m2]). This allows the sensitivity of the total amount

1Henceforth the excess shear stress shall be defined as τe (τ, τa (t)) = min (τa (t) − τ, 0), abbreviated as
τe (τ, τa) if t is obvious from the contents or just as τe if both τ and τa are obvious from the context.
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of erosion to the mesh resolution to be explored independently of the material transport
sub-model.

Aw ·
ˆ tmax

0

dN (t)
dt

dt [TPMU ] (5.2)

• An expression for the total amount of material mobilised during a simulation can also be
derived from the output of the material transport model (eq. 5.3), which in turn requires
a solution to the wall state sub-model. Eqs. 5.2 and 5.3 are conceptually equivalent for a
given simulation if the simulation is continued for long enough that all mobilised material
passes out of the end of the pipe and the material transport sub-model is not a source of
error.

ˆ tmax

0
Q (t) · Tds (t) dt [TPMU ] (5.3)

• The maximum rate of material release from the pipe wall over the duration of the
simulation, which is solely a product of the wall state sub-model:

max
t∈[0,tmax]

dN (t)
dt

[
TPMU ·m−2 · s−1

]
(5.4)

• The maximum turbidity predicted at the downstream end of the modelled pipe over
the duration of the simulation, which is a function of both the wall state and material
transport sub-models and, for non-trivial flow profiles, cannot be derived from just the
wall state sub-model output, dN (t) /dt. The error associated with this metric is of
particular interest to model users (see use case #1 in §4.2.1).

max
t∈[0,tmax]

Tds (t) [NTU ] (5.5)

5.3.3 Resolving the depletion of a shear strength band within a timestep for
a simple modelling case

Consider a simple VCDM model where:

• The flow increases from one steady level to another instantaneously and immediately at
t = t0, causing an increase in shear stress, τa, from τa_lo to τa_hi;

• The shape of the boundary condition profile (the relative amount of wall-bound material
per shear strength at t = t0) is very simple (eq. 5.6);

ϕ (τ, t0) =

0 τ < τa_lo

1 τ ≥ τa_lo
(5.6)

• The result of the increase in τa is therefore that all material at the pipe wall where
τa_lo ≤ τ ≤ τa_hi is completely eroded over the course of the simulation if the simulation
is long enough i.e. the relative material quantity, ϕ, per shear strength τ ∈ [τa_lo, τa_hi]
decreases from 1 to 0 during the period t ∈ [t0, tmax].
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To be able to accurately resolve the erosion of a τ band τi from a maximal level to full depletion
(i.e. ∆ϕ (τi) = −1) this erosion must occur over at least one simulation timestep. Given that
the amount of erosion at τi over ∆t is τe · βe ·∆t (eq. 4.3), ∆t therefore needs to be small
enough to satisfy the following inequality:

τe (τi, τa) · βe ·∆t ≤ |∆ϕ (τi, t0)|

≤ 1 (5.7)

This can be rearranged to give an expression for the maximum ∆t for which the complete
erosion of τ band τi can be resolved in ∆t:

∆t ≤ 1
τe (τi, τa) · βe

(5.8)

For the previously-defined modelling case, the ∆t required for accurately resolving the erosion
of discrete τ bands is most sensitive to the shear strength of the weakest τ band for which
τe > 0 and ϕ (τ, t0) > 0 (let this be referenced here as τmin). This is because τe is largest for
this shear strength, causing it to erode faster than all others:

∆t ≤ 1
τe (τmin, τa (t0)) · βe

(5.9)

The right-hand-side of eq. 5.9 can be considered a characteristic time of the wall state sub-model.
Let this quantity be known as td (see eq. 5.10). The d subscript serves as a reminder that this
characteristic time relates to material depletion. Here τi = τmin and t = t0.

td (τi, τa) = 1
τe (τi, τa) · βe

(5.10)

5.3.4 Sensitivity w.r.t. ∆t: more complex boundary conditions

Let us briefly digress from considering the simple boundary conditions of eq. 5.6. To resolve
the erosion of partially regenerated material when the shear stress increases, it is not sufficient
for ∆t to satisfy the inequality of eq. 5.9. For example. to resolve the erosion of the lowest,
non-depleted shear strength band, τmin, that is 15% regenerated at t = t0 then |∆ϕ| for τmin
can be no more than 0.15 during ∆t (whereas for fully-regenerated bands |∆ϕ| can be no more
than 1). Therefore, in this case ∆t must satisfy:

∆t ≤ 0.15 · td (τmin, τa) (5.11)

This upper bound for ∆t may be accurate but could be overly sensitive to the erosion of a
very small (potentially negligible) amount of weakly-bound material (see the shaded region
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ϕ (τi ≤ τ ≤ τj , t0) in fig. 5.13a). This is due to ϕ being a monotonically increasing function
with regards to τ (§4.4.4). The result of this could be an unnecessarily-small upper bound to
∆t. Also, this approach requires an accurate estimate of ϕ (τmin, t0), which may not be trivial
to estimate from historic shear stress data for t < t0.

This approach could be made less sensitive to the erosion of a small amount of material if the
critical relative amount of material that must be resolved is the mean over the shear strength
range from the minimum τ where ϕ (τ, t0) > 0 up to the minimum τ where ϕ (τ + ∆τ, t0) = 1
(dotted line in fig. 5.13b):

∆t ≤
´ τj+∆τ

0 ϕ (τ, t0) dτ
(τj + ∆τ) · τe (τi, τa (t0)) · βe

(5.12)

≤
´ τj+∆τ

0 ϕ (τ, t0) dτ
τj + ∆τ · td (τi,τa (t0)) (5.13)

However, now an understanding of how the historic τa profile has impacted on the boundary
conditions ϕ (τ, t0) is required for an even greater τ range than for the previous approach.

A third option for determining a rule for an upper bound to ∆t is to simply strive to resolve
the depletion of shear strength bands for which the relative amount of material at the wall is
greater than a threshold γ i.e. ϕ (τ, t0) ≤ γ where γ ∈ [0, 1]. For example, one may wish to
resolve the erosion of all bands that are at least to 10% regenerated (so γ = 0.1; see fig. 5.13c).

An advantage of this option is that finding an upper bound for ∆t does not depend on already
having an accurate estimate of ϕ (τ, t0); one only requires an estimate of ϕ (τmin, t0), where
τmin is the lowest shear stress that is not depleted at t0. Using this approach the upper bound
for ∆t becomes:

∆t ≤ γ · td (τmin, τa (t0)) γ ∈ [0, 1] (5.14)

This third approach is to be the one taken here due to its pragmatic simplicity. It has the
additional advantage of placing limits on the computational effort required to conduct a
simulation: approaches (a) and (b) are more likely to identify a low upper bound for ∆t that
results in a unwieldy number of calculations being required over a lengthy time series simulation.
For the modelling case outlined at the start of §5.3.3, γ is of course 1 (eq. 5.9).

Note that although the inequalities in eqs. 5.9 and 5.14 describe upper bounds of ∆t that
afford the accurate resolution of the erosion of τ bands, numerical sensitivity analysis is still
required to determine how model outputs vary with ∆t and decide upon heuristics for selecting
an appropriate ∆t for a given modelling scenario.

5.3.5 Sensitivity w.r.t. ∆t: dependence on βe and τe

When considering how the VCDM state and output metrics (§5.3.2) vary with the simulation
timestep, ∆t, for the modelling case described in §5.3.3, one must be aware that these
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Figure 5.13: When deciding which simulation timestep values allow for the adequate resolution of the
depletion of shear strength bands, there are several ways of defining the critical relative material quantity
(dashed red line) that informs this rule. Three options are shown in this conceptual diagram. Options a
and b derive this critical quantity using estimates of the wall state boundary conditions ϕ (τ, t0) arrived
at by studying historic shear stress time-series. Alternatively, this critical quantity can just be a threshold
γ e.g. γ = 10% of the maximum material quantity per shear strength band, as shown in (c).

relationships are dependent upon:

• βe, as this is a rate parameter (with units of
[
Pa−1 · s−1]);

• τe, the excess shear stress, as a larger τe results in more rapid erosion (eq. 4.3) and
therefore a smaller ∆t is needed to accurately represent the steeper material erosion
curve.

• βr, but this is largely irrelevant as a value of ∆t that provides sufficient accuracy for
erosion will almost certainly offer accurate temporal resolution for modelling regeneration
given that the latter is a much slower process (erosion to depletion occurs in only a few
pipe turnovers (§2.1.12.2; §2.1.13.4) yet regeneration takes 1.5 to 4 years (§2.1.14)).

Any rules or heuristics for selecting a value of ∆t that gives a desired level of model accuracy
should therefore be independent of βe and τe to ensure that those rules are generic. The impact
of ∆t can be studied independently of βe and τe if t and ∆t are expressed relative to the
wall state characteristic time td (i.e. non-dimensionally) rather than as absolute values. This
independence can be demonstrated by plotting the material release rate versus absolute and
non-dimensional time for the modelling scenario presented at the start of §5.3.3. The differing
curves in fig. 5.14a show that dN/dt versus t varies with βe, but these curves all collapse to
a single curve if dN/dt is normalised by max (dN/dt) and t is normalised by td (i.e. time is
plotted as td (τa_hi, τa_lo) = t · (τa_hi − τa_lo) · βe; fig. 5.14b). Curves of dN/dt versus t for
various τe (achieved by varying τa_hi between simulations; fig. 5.15a) also collapse to a single
curve if normalised in the same manner (fig. 5.15b).

A consequence of ∆t being dependent on βe and τe is that to appraise or select a value of
∆t for a given modelling scenario one must know βe and τe. The implications of this will be
discussed subsequently.
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Figure 5.14: For a step increase in τa from τa_lo to τa_hi at t = t0 and simple VCDM boundary
conditions (ϕ (τ < τa_lo, t0) = 0 and ϕ (τ ≥ τa_lo, t0) = 1) (a) shows curves of dN/dt resulting from
simulations with various values of βe that collapse to a single curve (b) if dN/dt is normalised by
max (dN/dt) and t is normalised by td (τa_lo, τa_hi) (b). Note that in the legend τe ≡ τa_hi − τa_lo.

Figure 5.15: For a step increase in τa from τa_lo to τa_hi at t = t0 and simple VCDM boundary
conditions (ϕ (τ < τa_lo, t0) = 0 and ϕ (τ ≥ τa_lo, t0) = 1) (a) shows curves of dN/dt resulting from
simulations with various values of τe at t0 that collapse to a single curve (b) if dN/dt is normalised by
max (dN/dt) and t is normalised by td (τa_lo, τa_hi) (b). Note that in the legend τe ≡ τa_hi − τa_lo.
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5.3.6 Sensitivity w.r.t. ∆t: complex flow profiles

So long as ∆t is chosen/appraised using the maximum possible/achievable shear stress for the
pipe of interest as an estimate of τe (§5.3.5) then it does not matter if or how pipe flow (and
therefore shear stress) vary with t as the most limiting case has been considered.

5.3.7 Relationship between the mesh discretisation steps

Before progressing to numerically exploring the sensitivity of the model with respect to ∆t or
∆τ , it is first necessary to consider whether the mesh discretisation intervals ∆t and ∆τ are
covariant with regards the model outputs. If they are independent, then the sensitivity to ∆t
can be assessed independently of ∆τ and vice versa.

For a given discrete shear strength band τi, bounded by τi_lb and τi_ub (with difference ∆τ),
the excess shear stress is calculated as follows:

τe (τi,τa) = max

(
τa −

τi_lb + τi_ub
2 , 0

)
(5.15)

If, for the modelling case at the start of §5.3.3, ∆t must be ≤ td = 1/τe (τi, τa) · βe for the
complete erosion of a shear strength band τi to be resolvable in ∆t (eq. 5.9) then the upper
bound for ∆t (given this expression) is most restrictive for larger value of τe. The bounds
of the weakest shear strength band, τ1, (with width ∆τ) are therefore the most critical for
determining ∆t.

Looking at fig. 5.16 one can see that for the subplot where the τ discretisation is more
fine-grained (lower subplot) the τe for the weakest shear strength band τ1 is larger. τe therefore
varies with ∆τ . An implication of this is that ∆t is dependent on ∆τ : the minimum ∆t for the
resolution of complete shear strength band erosion depends on τe (eq. 5.9) and τe varies with
∆τ . This relationship is shown in eq. 5.16, where eq. 5.15 has been substituted into eq. 5.9.

∆t = 1
τe (τi, τa (t)) · βe

= 1
min

(
τa (t)− τi_lb+τi_ub

2 , 0
)
· βe

(5.16)

However, this relationship is weak if ∆τ is small as there is little change in τe as the number of
τ bands is increased for ∆τ � τa. The mesh discretisation intervals ∆t and ∆τ can therefore
be considered to be independent if ∆τ � τa.

5.3.8 Smaller values of ∆τ result in lengthier material release profiles

A second way in which model outputs are dependent on ∆τ is that for smaller values of ∆τ
the material release rate (and therefore the downstream turbidity) takes more time to decay to
zero following a step increase in shear stress. This can be a source of error when evaluating
metrics by integrating over time (i.e. eqs. 5.2 and 5.3) for simulations of a finite duration.

The relative erosion rate, βe · τe, is lowest for a shear strength band τj with a mid-point only
just less than τa i.e. as τe approaches zero. The time required for the complete depletion of
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Figure 5.16: For a given shear stress τa at time t the excess shear stress τe (τi, τa) varies depending
how coarsely the modelled shear strength range is discretised, as can be seen in this illustrative diagram.

band τj can be found as follows (note that τa is invariant after the step increase at t0). Firstly,
given:

|∆ϕ (τj , t ∈ [t0, t])| = 1 = βe · τe (τj , τa) · t (5.17)

This can be rearranged to give:

t = 1
βe · τe (τj , τa)

(5.18)

If τj is the shear strength band for which the mid-point is closest to but less than τa then that
mid-point is:

τj = floor
(
τa
∆τ −

1
2

)
·∆τ + ∆τ

2 (5.19)

This is because:

• floor (τa/∆τ) is the number of whole τ bands below τa;

• floor (τa/∆τ) ·∆τ is the upper bound of the corresponding shear strength range;

• the −1/2 and +∆τ/2 are necessary as we want to find the τ band mid-point closest to
τa.

Substituting into the previous equation gives the time required for shear strength band τj to
become fully depleted:

t = 1
βe · τe

(
floor

(
τa
∆τ −

1
2

)
·∆τ + ∆τ

2 , τa
) (5.20)
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Figure 5.17: The time (in s) required for the complete depletion of the slowest eroding shear strength
band given different shear strength discretisation step sizes (see eq. 5.20; here simulations were conducted
with βe = 0.002Pa−1 · s−1, τa = 4.5Pa and ∆τ ∈ [τa/1000, τa/10]).

This time will be greater for smaller values of ∆τ , as can be seen in fig. 5.17.

For a simulation over the period t0 to tmax the model output metrics eqs. 5.2 and 5.3 will both
be under-estimates if t, calculated using eq. 5.20, exceeds tmax.

A simple yet not entirely satisfactory method to reduce the impact of ∆τ on eqs. 5.2 and 5.3 is
to only evaluate the integrals in those equations for times where dN/dt and Tds (respectively)
are greater than a relative threshold, such as (max (dN/dt)) /1000 or (max (Tds)) /1000, over
t0 to tmax. This will eliminate the long tails that lengthen as ∆τ gets smaller. This treatment
of long tails is primarily of interest when conducting numerical sensitivity analysis; it is far less
relevant to the modeller when studying real pipes as the signal-to-noise ratio (SNR) is likely to
dominate the turbidity due to erosion when the latter drops by a couple of orders of magnitude
following an erosion event.

5.3.9 Sensitivity w.r.t. ∆t and ∆τ : numerical exploration

5.3.9.1 General approach

The aim here is to qualify and quantify how evaluations of the model output metrics listed in
§5.3.2 change as ∆t and ∆τ vary in size between justifiable upper bounds and lower bounds
that approach the infinitesimal.

The identified, quantified relationships need to ideally be independent of simulation inputs
and parameters (e.g. pipe length or the α parameter) so that this knowledge can be used to
estimate the discretisation error associated with any model configuration.

To achieve this, one can first non-dimensionalise the numerical metrics listed in §5.3.2 by
normalising by entirely analytical expressions that are conceptually equivalent for a particular
model configuration. These non-dimensionalised terms can then be plotted against a non-
dimensional measure of ∆t or ∆τ (e.g. ∆t/td, ∆t/tt or ∆τ/τe (τmin, τa (t))) to elucidate the
(ideally linear but potentially non-linear) relationship between the relative error in that term
and the non-dimensional mesh resolution dimension. This error relationship is independent
of the model configuration (inputs and parameters) so long as the conditions of conceptual
equivalence between the two components of the non-dimensional model output metric remain
valid. For example:
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numerical output metric
equivalent analytical metric = relative err func

( ∆t
a characterstic time

)

given conditions {A,B,C}

5.3.9.2 Error in the total amount of material released from the pipe wall

The metric eq. 5.2 must be evaluated numerically and is dependent on both ∆t and ∆τ . This
metric can be non-dimensionalised by considering the simple model configuration described in
§5.3.3.

Let there be a step increase in shear stress from τa_lo to τa_hi that, over the period t ∈ [t0, tmax],
completely erodes only the material that had previously been maximally regenerated. The
relative change in material quantity per shear strength τi over t ∈ [t0, tmax] is:

∆ϕ (τi, t ∈ [t0, tmax]) = 1 (5.21)

Therefore the absolute change in material quantity over τ ∈ [τa_lo, τa_hi], given eqs. 4.3, 4.4
and 4.5, is:

∆N = α

ˆ τa_hi

τa_lo

∆ϕ (τi, t ∈ [t0, tmax]) ∆τ (5.22)

= α (1 · τe (τa_lo, τa_hi)) (5.23)

This is the total amount of material released per m2 of wall area during t ∈ [t0, tmax] . The
error that results from the numerical evaluation of eq. 5.2 (using, say, the trapezoid rule) can
therefore be non-dimensionalised as follows:

Aw ·
´ tmax

0
dN(t)
dt ∆t

Aw · α · τe (τa_lo, τa_hi)
=

´ tmax

0
dN(t)
dt ∆t

α · τe (τa_lo, τa_hi)

[
TPMU ·m−2 · s−1 · s

TPMU · Pa−1 ·m−2 · Pa

]
= [−] (5.24)

This expression is only valid if tmax is large enough so that all shear strengths affected by the
increase in τa are fully depleted before t = tmax. The peak turbidity always occurs at the
turnover time, tt, following a step increase in τa, so tmax should therefore here be a large
multiple of tt.

Results For a model configuration as per §5.3.3, the scalar eq. 5.24 was first plotted against
the non-dimensional simulation timestep, ∆t/td, when evaluated for a variety of timestep
sizes td/i where i ∈ {16, 15, ..., 2, 1, 0.5}. Here τe = τa_hi − τa_lo. This process was then
repeated for a variety of multipliers for τe, L, D, ks, βe and α (all results shown in fig. 5.18a)
to confirm non-dimensionality. τe was varied by scaling τa_lo = τa (t < t0). The integral in
eq. 5.24 was evaluated using the trapezoid method over t ∈ [t0, 30 · tt], ignoring times where
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Figure 5.18: For a simple simulation where the shear stress increases from τa_lo to τa_hi at t = 0 (a)
shows the non-dimensionalised (relative) error from discretely calculating the total amount of material to
have been released from the pipe wall over the simulation (with caveats detailed in the body of the text)
whereas (b) shows the relative error from discretely calculating the maximum rate of material release
from the pipe wall during the simulation. The sensitivity of these two relative metrics was explored
with regards to a normalised measure of timestep whilst the shear strength step was held constant.
Simulations were conducted for various multipliers of τe (τa_lo, τa_hi), L, D, ks, βe (all results plotted
here) to confirm that the identified error relationship was not dependent on any of those five factors.

dN/dt <
(
maxt∈[t0,tmax]dN/dt

)
/1000 for the reason outlined in §5.3.8. ∆τ was fixed at

τe/1000.

∆t was found to have a very small influence on the discretisation error in eq. 5.2, with this
error being larger for ∆t/td > 1 (fig 5.18a). The effort to non-dimensionalise the model output
metric were successful as all lines for different values of τe, L, D, ks, βe and α collapsed onto
the same line. As can be seen, there was a constant error of u 1.6% due to ignoring the ‘long
tail’ when evaluating the integral.

The sensitivity of eq. 5.24 was also explored with respect to ∆τ ∈ {τe/i} where i ∈
{5, 10, 20, 50, 100,200, 400, 600, 800} i.e. τe was considered to be a characteristic shear strength
of the system and sensitivity was investigated for values of ∆τ that were whole fractions of the
excess shear stress. The timestep was set to a fixed value ∆t = tt/256. When evaluating Tds,
times when dN/dt <

(
maxt∈[t0,tmax]dN/dt

)
/1000 were again ignored when integrating over

time.

The error in eq. 5.24 was found to be low (1.7%) for ∆τ/τe < 0.05 and negligible for greater
values of ∆τ/τe (fig. 5.19a).

5.3.9.3 Error in the maximum rate of material release from the pipe wall

The other output metric that is solely a function of the wall release sub-model and not of
the material transport sub-model is eq. 5.4. The error associated with evaluating this metric
numerically for a given mesh resolution can also be non-dimensionalised in the context of the
simple model configuration in §5.3.3.

If t < td (again, τe = τa_hi − τa_lo) then for t ∈ [t0, t0 + dt] the change in the relative amount
of material at the pipe wall is the dark blue shaded area in fig. 5.20.
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Figure 5.19: For a simple simulation where the shear stress from τa_lo to τa_hi at t = 0 (a) shows the
non-dimensionalised (relative) error from discretely calculating the total amount of material to have
been released from the pipe wall over the simulation (with caveats detailed in the body of the text)
whereas (b) shows the relative error from discretely calculating the maximum rate of material release
from the pipe wall during the simulation. The sensitivity of these two relative metrics was explored
with regards to a normalised measure of shear strength step whilst the timestep was held constant.
Simulations were conducted for various multipliers of τe (τa_lo, τa_hi), L, D, ks, βe (all results plotted
here) to confirm that the identified error relationship was not dependent on any those five factors.

Figure 5.20: The dark blue area in this illustrative diagram is the relative amount of material eroded
over dt following a step increase in shear stress from τa_lo to τa_hi at t = 0.
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The material for which τ = τa_hi experiences negligible erosion, whereas the most erosion over
dt will be for τ = τa_lo. From fig. 5.20 and eq. 4.3, it can be seen that the rate of change in
the amount of wall-bound material (the area of the dark blue triangle) is:

ˆ τa_hi

0

∂ϕ (τ, t)
∂t

dτ = βe · τe (τa_lo, τa_hi)2

2 (5.25)

The maximum material release rate per m2 of pipe is therefore:

dN (t)
dt

= α · βe · τe (τa_lo, τa_hi)2

2 (5.26)[
TPMU

m2 · s

]
=

[
TPMU

Pa ·m2

] [ 1
Pa · s

] [
Pa

1

]2

The error from numerically evaluating eq. 5.4 can be conceptually non-dimensionalised by
normalising it by eq. 5.26, as shown in eq. 5.27. Here, ∆t is used to indicate that the numerator
is evaluated numerically.

2 ·maxt∈[t0,tmax]
(
dN(t)

∆t

)
α · βe · τe (τa_lo, τa_hi)2

[
TPMU ·m−2 · s−1

TPMU ·m−2 · s−1

]
= [−] (5.27)

Results Varying ∆t was found to have no impact on the numerical evaluation of eq. 5.4
(fig. 5.18b) for smaller values of ∆t/td. For ∆t/td > 1.0, the discretisation error increased
linearly.

Varying ∆τ had no impact on the numerical evaluation of eq. 5.4 (fig. 5.19b).

5.3.9.4 Error in the total amount of eroded material as observed at the downstream
end of the pipe

The error from the numerical evaluation of eq. 5.3, which is a function of both the wall state
and material transport models, can be non-dimensionalised in the same way as eq. 5.2, only
here the wall area does not cancel between numerator and denominator:

´ tmax

0 Q (t) · Tds (t) ∆t
Aw · α · τe (τa_lo, τa_hi)

(5.28)

Again, this expression is only valid if tmax is large enough so that all shear strengths affected
by the increase in τa are fully depleted before t = tmax.

The error in eq. 5.28 was quantified for different values of ∆t normalised by tt i.e.

{∆t/ (tt/i) | i ∈ {16, 15, ..., 2, 1}}

rather than by td as the intention was to quantify one measure of error in the material transport
model, of which tt (but not td) is a characteristic time.
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The discretisation error in eq. 5.28 is a function of both the wall state and material transport
sub-models. The portion of this error due that stems solely from discretisation within the
transport model can be quantified by normalising the total amount of material detected at the
end of the pipe during the simulation by the total amount of material released from the pipe
wall (see eq. 5.29).

´ tmax

0 Q (t) · Tds (t) ∆t
Aw ·

´ tmax

0
dN(t)
dt ∆t

(5.29)

Results

The value of ∆t impacts considerably on the numerical error in eq. 5.3. Performing linear
regression on all lines in fig. 5.21a results in a mean gradient m = −0.488 [−], a mean y-axis
intercept c = 0.996 [−] and a mean R2 of 1.000. The relative error in eq. 5.3 for a given ∆t is
therefore:

0.996− 0.488 · ∆t
tt

(5.30)

Note that when evaluating the numerator in eq. 5.3 that the long ‘tail’ of the dN/dt profile
was not truncated as this resulted in a y-axis intercept that was closer to the true value of c = 1
(c = 0.984 if the tail of dN/dt is truncated). Also, note that model sensitivity was explored for
∆t < tt to ensure that water parcels did not pass through the pipe undetected.

The attempt to non-dimensionalise the error in eq. 5.28 with respect to ∆t was not entirely
successful: the lines in fig. 5.21a corresponding to different values of τe, L, D, ks, βe and α
almost but not quite collapsed onto a single line. This discrepancy can be seen to be due to the
wall state model as if one plots eq. 5.29 against ∆t/tt all lines collapse onto one (fig. 5.22).

The similarity of figs. 5.21a and 5.22 indicates that the error in eq. 5.28 is almost all due to
the discrete mass transport model solution. Here the long tail of dN/dt was not truncated
when calculating both the numerator and denominator of eq. 5.29.

The error in eq. 5.29 was found to be variable but low (< 1.9) for ∆τ/τe < 0.05 and a constant
0.2% for greater values of ∆τ/τe (fig. 5.23a).

5.3.9.5 Error in the maximum turbidity experienced at the downstream end of the
pipe

The maximum turbidity following a step increase in τa at t0 occurs at the turnover time tt
(§5.2.2), when material mobilised from along the entire length of the pipe wall at different
times all converges at the downstream end of the pipe at the same time. The concentration at
the downstream end of the pipe at tt can be thought of being a function of the concentration
of each of a number of water parcels where the mobilised material in each has been in transit
for different durations. The concentration of each parcel is the material release rate at a time t
(dN/dt, where t ∈ [t0, tt]), factored by ∆t and the internal surface area to volume ratio, 4/D.
Integrating this expression over t ∈ [t0, tt] gives the total concentration at the downstream
end of the pipe due to the concurrent arrival of all of these parcels. The error that results
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Figure 5.21: For a simple simulation where the shear stress increases from τa_lo to τa_hi at t = 0 (a)
shows the non-dimensionalised (relative) error from discretely calculating the total amount of material
to have been mobilised and passed out of the pipe during the simulation (with caveats in the body
of the text) whereas (b) shows the relative error from discretely calculating the maximum turbidity
predicted at the downstream end of the pipe during the simulation. The sensitivity of these two relative
metrics was explored with regards to a normalised measure of timestep whilst the shear strength step
was held constant. Simulations were conducted for various multipliers of τe (τa_lo, τa_hi), L, D, ks, βe

(all results plotted here) as a check for the identified error relationship being independent of those five
factors; this was found not to be the case for (b).

Figure 5.22: For a simple simulation where the shear stress increases from τa_lo to τa_hi at t = 0, this
figure shows the non-dimensionalised (relative) error from discretely calculating the total amount of
material to have been mobilised and passed out of the pipe during the simulation (with caveats in the
body of the text). It is conceptually similar to fig. 5.21a but here the error metric is calculated in a
different manner (in a way that ensures the error is solely a function of the transport sub-model rather
than from the wall state sub-model too).

134



Figure 5.23: For a simple simulation where the shear stress increases from τa_lo to τa_hi at t = 0 (a)
shows the non-dimensionalised (relative) error from discretely calculating the total amount of material to
have been mobilised and passed out of the pipe during the simulation (with caveats in the body of the
text) whereas (b) shows the relative error from discretely calculating the maximum turbidity predicted
at the downstream end of the pipe during the simulation. The sensitivity of these two relative metrics
was explored with regards to a normalised measure of the shear strength step whilst the timestep was
held constant. Simulations were conducted for various multipliers of τe, L, D, ks, βe (all results plotted
here) to confirm that the identified error relationship was not dependent on any those five factors.

from numerically evaluating the expression for peak turbidity in eq. 5.5 (a function of both the
material transport and wall state sub-models) can be non-dimensionalised by dividing by this
integral (a function of just the wall state sub-model) to give eq. 5.31.

maxt∈[t0,tmax] Tds (t)
4
D ·
´ tt
t0

dN(t)
dt ∆t

,

[
TPMU ·m−3

m−1 · TPMU ·m−2 · s−1 · s

]
= [−] (5.31)

Note that in this case the denominator is not an analytical expression; it requires the numerical
evaluation of the wall state sub-model so includes the error from that sub-model. However,
this error should cancel between numerator and denominator, resulting in an expression for the
error that arises solely from the numeric evaluation of the material release model.

Results

Fig. 5.21b indicates that efforts to non-dimensionalise the error with regards to ∆t were not
entirely successful: the lines corresponding to simulations run with different values of τe, L, D,
ks, βe and α did not collapse to a single line in this figure (for ∆t/tt < 0.1). One explanation
for this is that the attempt to normalise eq. 5.31 so that it was solely a function of the transport
sub-model were not entirely successful and so it was therefore inappropriate to plot eq. 5.31
against the timestep normalised by tt as tt is solely a characteristic time of the transport
sub-model. If the error is also a function of the wall state sub-model then eq. 5.31 should
ideally be plotted against a composite of tt and the wall state characteristic time td . However,
it is not known if it is possible to combine these terms.

Eq. 5.31 was found to be invariant with regards to ∆τ/τe (fig. 5.23b).

Note that the long tail of dN/dt was again clipped when evaluating the numerator and
denominator of eq. 5.31 and exploring the sensitivity with regards to ∆t and ∆τ .

135



5.3.9.6 Repeating the numerical sensitivity analysis using refined mesh resolution
ranges and constants

The numerical sensitivity analysis presented so far in §5.3.9 indicates that the sensitivity of
certain model output metrics to ∆τ may have been undertaken for sub-optimal values of ∆t
and vice versa. An iterative approach is therefore required to find regions of the mesh resolution
space that are stable in both dimensions i.e. with regards to both ∆t and ∆τ .

When exploring the sensitivity of model output metrics to ∆t, the value of ∆τ was previously
fixed at ∆τ ≥ τe/1000 yet figs. 5.19 and 5.23 indicate that the model output to be more
stable for ∆τ ≥ τe/20. Also, the wall state sub-model outputs are potentially more stable
when ∆t ≤ td (τa_lo, τa_hi) (fig. 5.18) and the material transport metrics are more stable for
∆t ≥ tt/5 (fig. 5.21b). However, the significance of these lower bounds for ∆t/tt and ∆τ/τe
should not be overstated for two reasons: firstly, the results suggesting that ∆t should be
> tt/5 were derived from partially unsuccessful non-dimensionalisation (fig. 5.21b) and, secondly,
reducing ∆τ below τe/20 only has a small (%2) effect on results (figs. 5.19a and 5.23a).

Repeating the sensitivity analysis for non-dimensional measures of ∆t that satisfy these
constraints and for ∆τ fixed at τe/20 confirms that the outputs from the wall state sub-model
and material transport sub-model (figs. 5.24 and 5.25 respectively) are less sensitive to ∆t for
this ∆τ value.

The wall state sub-model was also found to be less sensitive to ∆τ after refining the mesh
resolution space, as can be seen in fig. 5.26. Note that here ∆t was normalised by tt (rather
than td as had been done previously in fig. 5.19).

Refining the mesh resolution space appeared to reduce the maximum error in the total amount
of material to be mobilised as quantified using the transport model output and various ∆τ/τe
(fig. 5.27a). However, all lines plotted in fig. 5.27a do not collapse down to a single line.
One possible reason for this is that shear strength has not been non-dimensionalised in an
appropriate way, yet fig. 5.27b shows that the peak turbidity is invariant with this form of
non-dimensionalised shear strength for the refined mesh resolution space.

Figure 5.24: The sensitivity of the wall state sub-model to a non-dimensionalised measure of ∆t given
a normalised value of ∆τ . This sensitivity analysis is identical to that presented in fig. 5.18 but here
output metrics have been calculated for a narrower ∆t/td range (≤ 1) and ∆τ/τe was fixed at a higher
value (1/20 rather than 1/1000).
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Figure 5.25: The sensitivity of the material transport sub-model to a non-dimensionalised measure of
∆t given a normalised value of ∆τ . This sensitivity analysis is identical to that presented in fig. 5.21
but here output metrics have been calculated for a narrower ∆t/tt range (0.2 ≤ ∆t/tt ≤ 1) and ∆τ/τe

was fixed at a higher value (1/20 rather than 1/1000).

Figure 5.26: The sensitivity of the wall state sub-model to a non-dimensionalised measure of ∆τ given
a normalised value of ∆t . This sensitivity analysis is identical to that presented in fig. 5.19 but here
output metrics have been calculated for a narrower ∆τ/τe range (1/20 ≤ ∆τ/τe ≤ 1/2) and ∆t was
constrained by ∆t/td = 1 rather than ∆t/tt = 1/256.

Figure 5.27: The sensitivity of the material transport sub-model to a non-dimensionalised measure of
∆τ given a normalised value of ∆t. This sensitivity analysis is identical to that presented in fig. 5.23
but here output metrics have been calculated for a narrower ∆τ/τe range (1/20 ≤ ∆τ/τe ≤ 1/2) and
∆t was constrained by ∆t/tt = 1/5 rather than ∆t/tt = 1/256.
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5.3.9.7 Discussion and Summary

The results from investigating the sensitivity of the proposed model to the mesh resolution
(given the resolution ranges/values from §5.3.9.6) are summarised in table 5.2.

From this analysis, it can be concluded that the mesh resolution for a simulation should satisfy
the following constraints (for τe = τa_hi − τa_lo and td = ((τa_hi − τa_lo) · βe)−1):

∆t ≥ td/16 (5.32)

≤ td (5.33)

< tt (5.34)

∆τ ≤ τe/2 (5.35)

Numerical results indicate that the model is less sensitive to mesh resolution if the following
constraints are also satisfied, although these are of lesser significance for the reasons given in
§5.3.9.6. In particular, although table 5.2 indicates that the error associated with ∆t is more
stable for ∆t ≥ tt/5, this should not be used as a lower bound for ∆t as this relationship is
not non-dimensional (see fig. 5.21) and so is not transferable between model configurations.

∆t ≥ tt/5 (5.36)

∆τ ≥ τe/20 (5.37)

Importantly, mesh resolution constraints have been found that minimize the discretisation error
in the peak turbidity prediction. It is this output metric that is of greatest importance to water
users and therefore to network operatives when assessing the effect of a real or hypothetical
flow increase.

In practise, these constraints need to be used with a safety margin when modelling real
DWDS pipes to allow for imprecise and/or inaccurate model inputs (such as systematic flow
measurement error or inaccurate roughness estimates (if used for calculating shear stress)). It
is suggested that lower and upper bounds be increased and decreased by 10% respectively.

When evaluating these constraints, there is a need to scale td (τa_lo, τa_hi) by 0 < γ ≤ 1 as
per §5.3.4 when ϕ (τa_lo, t0) < 1. Secondly, it is preferable to select a ∆τ value from the lower
end of the range enclosed by the constraints to minimise the dependence of ∆τ on ∆t (see
§5.3.7).

Several factors impede the use of these constraints for identifying a suitable mesh resolution
prior to solving a particular model instance. Firstly, due to a dependence on td, several
constraints depend on βe, which is a quantity that cannot be easily be determined precisely
before model calibration. However, prior model calibrations of similar mains may give an
imprecise understanding of βe). Alternatively, βe could be found in advance using an iterative
method (find the βe that gives the best fit to observations given an assumed ∆t then find
the best ∆t given the found βe until the process converges on acceptably good values of ∆t
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Table 5.2: Summary of the ways in which the mesh resolution impacts on the model outputs. ∆t has
been substituted for dt in the expressions referenced in the first column to indicate that it is the numerical
evaluation of the expressions that is of interest. Here, τe = τa_hi−τa_lo so td = ((τa_hi − τa_lo) · βe)−1.
Also, max is over the range t ∈ [0, tmax].

Output metric Error metric Studied mesh resolution
range

Comments re
error

Aw ·
´ tmax

0
dN(t)
dt ∆t

´ tmax
0

dN(t)
dt

∆t
α·τe

1/16 ≤ ∆t/td ≤ 1
∆τ/τe = 1/20

Invariant

(eq. 5.2) (eq. 5.24) 1/20 ≤ ∆τ/τe ≤ 1/2
∆t/td = 1

Invariant

max (dN (t) /∆t) 2·max
(

dN(t)
∆t

)
α·βe·τe

2
1/16 ≤ ∆t/td ≤ 1

∆τ/τe = 1/20
Invariant

(eq. 5.4) (eq.5.27) 1/20 ≤ ∆τ/τe ≤ 1/2
∆t/td = 1

Invariant

´ tmax

0 Q (t) ·
Tds (t) ∆t

´ tmax
0 Q(t)·Tds(t)∆t
Aw·α·τe(τa_lo,τa_hi)

1/5 ≤ ∆t/tt ≤ 1
∆τ/τe = 1/20

Inversely
proportional to

∆t/tt
(eq. 5.3) (eq. 5.28) 1/20 ≤ ∆τ/τe ≤ 1/2

∆t/tt = 1/5
Invalid non-

dimensionalisation.
max (Tds (t))

max Tds(t)
4
D
·
´ tt

t0
dN(t)

dt
∆t

1/5 ≤ ∆t/tt ≤ 1
∆τ/τe = 1/20

Invariant

(eq.5.5) (eq. 5.31) 1/20 ≤ ∆τ/τe ≤ 1/2
∆t/tt = 1/5

Invariant

and βe). Secondly, several constraints are dependent on τe, which is undesirable as τe is a
time-dependent quantity. For certain constraints, τe could be approximated by max (τa), the
maximum shear stress that the pipe is anticipated to experience, but this is only appropriate
for situations where substituting max (τa) for τe results in a more restrictive constraint. Given
the difficulty of estimating βe and τe prior to deciding upon a mesh resolution, it is instead
recommended that only eq. 5.35 be used in advance of deciding upon a mesh resolution and
the other constraints be used to appraise a mesh resolution for an existing, calibrated model.

This sensitivity analysis has focussed on the sensitivity of model outputs to mesh resolution
for just erosion events. Similar analysis could have been conducted for regeneration in which
expressions of model output were non-dimensionalised using ∆t/βr, the characteristic time
required for complete regeneration in one timestep. However, such analysis would be redundant
given that complete erosion occurs over several turnovers (§2.1.12.2; §2.1.13.4) yet regeneration
takes years (§2.1.14) and so the model is far more sensitive to the characteristic time for
material depletion, td, than that characteristic time of regeneration.

It should be noted that this sensitivity analysis is subject to several limitations. Firstly, the
error in the total amount of material to pass out of the end of pipe increases linearly with ∆t
(fig. 5.25a). Secondly, attempts to identify a non-dimensional relationship between this model
output metric and ∆τ were unsuccessful (fig. 5.27a). These issues are thought to be due to an
artefact of the transport model’s implementation (the precise nature of which is unknown).
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5.4 Sensitivity of the model to its parameters

In this section, the influence of the model parameters (βe, βr and α) on the model outputs is
considered.

When considering what factors most significantly influenced the mesh resolution (§5.3) there
was little need to consider material regeneration given that material erosion is a much faster
and therefore more sensitive process. The sensitivity to the mesh resolution was therefore
investigated for just a short-term erosion event and regeneration was assumed to be negligible.
Such a basic model configuration is of course insufficient for studying the sensitivity of the
model to the regeneration rate βr; in this section the model configuration is therefore as follows:

• No material was bound to the pipe wall at the start of the simulation i.e. ϕ (τ, t0) = 0;

• Following t0, there were three months of constant low flow (with shear stress τa = τa_lo),
allowing discolouration material to accumulate on the pipe wall;

• The shear stress then instantaneously increased from τa_lo to τa_hi, causing material
erosion, as a result of a trebling of pipe flow;

• The simulation ended one hour after the flow increase.

A series of twenty simulations was conducted for each of the three parameters. Within each of
these three sets of simulations the parameter of interest was linearly varied over a specified
range whilst the other two parameters were held constant. The bounds of each parameter
range was determined through speculative exploration of the problem space: it was not possible
to make more justifiable choices given the empirical nature of the model and parameters. The
constant parameter values were the means of the ranges used in the sensitivity analysis.

5.4.1 Sensitivity to α and βr

The α parameter simply scales both the material release rate, dN/dt, and turbidity prediction,
Tds, linearly over the studied parameter range (figs. 5.28a and 5.28b).

The βr parameter has what initially appears to be a similar effect on the turbidity prediction
(fig. 5.29b) but is actually quite distinct: it linearly scales the peak turbidity (but not the entire
turbidity profile) over a certain range then converges on an upper limit (fig. 5.29b). Unlike α,
it also changes the shape of the turbidity response. This difference in effect can be explained
by looking at how the parameters influence the rate of material release from the pipe wall:

• If βr is small then partially-regenerated shear strengths are depleted in one timestep when
τa increases to τa_hi (see fig. 5.29a). A slug of turbid water then passes down and out
of the pipe without it notably increasing in turbidity, resulting in a downstream turbidity
profile that is almost constant from soon after the τa increase up to one turnover time
later (when the turbid slug begins to pass out of the pipe).

• If βr is larger then the shear strengths affected by the τa increase take multiple timesteps
to erode and so the maximum dN/dt is constant over this range (see fig. 5.29a). The
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turbidity prediction is more arched and scales more linearly with βr over this range of βr
values.

• If βr is larger still then maximal regeneration is achieved before τa increases to τa_hi.
The effect of this is that βr ceases to scale the turbidity output, as can be more clearly
seen in fig. 5.30, where the total amount of material that is mobilised (calculated using
the integral of material flux as per eq. 2.14) is plotted against the values of βr used in
the sensitivity analysis.

The α and βr parameters could in principle be distinguished using dN/dt. However, as dN/dt
is non-trivial to measure in practise, understanding of the system behaviour must be entirely
deduced from the turbidity response observed at a specific location along the pipe of interest:
certain flow profiles, such as that in fig. 5.31 where particular a flushing profile is imposed
at irregular intervals, could allow the parameters to be more easily distinguished using Tds,
whereas others do not (figs. 5.28b and 5.29b).

5.4.2 Sensitivity to βe

The parameter βe has a different effect on the turbidity response to α and βr. Like βr, it
influences the scale and shape of both the dN/dt and Tds responses (fig. 5.32) but in a more
notable way. Note that larger (faster) values of βe have little impact on the scale of the Tds
profile (fig. 5.32b).

Much smaller values of βe have a very different effect on the Tds profile (fig. 5.33): the rise in
turbidity is linear rather than curved. This is due to the rate of erosion being sufficiently slow
that a number of timesteps pass before any eroding shear strength is depleted, with the net
erosion rate from the pipe wall therefore being constant for a period as the erosion rate per
eroding shear strength is not time-dependent (see fig. 5.33a and the heatmaps in fig. 5.34).

5.4.3 Implications for fitting the model to data

The most significant model output for water consumers is the maximum turbidity at points
of supply; all three parameters are therefore of importance in this regard as they all scale the
turbidity prediction at the downstream end of the modelled pipe.

Ideally, one would want each parameter of an empirical model to have an easily distinguishable
effect on the model output(s); however, if all three parameters of the proposed model influence
the scale of the downstream turbidity prediction then this is not the case here. The proposed
model must therefore be fitted to data using a method that is robust in the face of such
indeterminacy and/or be fitted to datasets containing features that allow the effects of the
parameters to be distinguished (e.g. fig. 5.31).

5.5 Sensitivity to the model boundary conditions

To assess the sensitivity of the model to the boundary conditions defined in §4.4.4, one only
needs to consider the influence of the initial wall state (the relative amount of material per
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Figure 5.28: Exploring the sensitivity of the turbidity output to the α parameter. Larger values of
the parameter under examination are depicted in lighter shades of grey. � = 76mm; L = 400m;
ks = 5mm; Q over first 90 days = 2L · s−1 (∆t = 900 s); Q over following 1 hour = 6L · s−1

(∆t = 900 s); τ ∈
[
τa

(
�, 2L · s−1, ks

)
, τa

(
�, 6L · s−1, ks

)]
(1000 τ bands); ϕ (τ, t = 0) .

Figure 5.29: Exploring the sensitivity of the material release from the pipe wall and the downstream
turbidity to the βr parameter. Larger values of the parameter under examination are depicted in lighter
shades of grey. Simulation configuration as per fig. 5.28.
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Figure 5.30: Exploring the sensitivity of the total amount of material mobilised (quantified using eq.
2.14) to regeneration rate (VCDM βr parameter). Simulation configuration as per fig. 5.28. The
amount of material mobilised from the wall during the simulation increases with the regeneration rate
until the regeneration rate is u 1.3× 10−7 s−1; increasing the regeneration rate above this value has no
impact on the total amount of material that is eroded.

τ
a
(t
)

t

Figure 5.31: Particular τa profiles such as the one illustrated above can potentially allow the effects α
and βr to be distinguished more easily.

Figure 5.32: Exploring the sensitivity of the turbidity output to the βe parameter. Larger values of the
parameter under examination are depicted in lighter shades of grey. Simulation configuration as per
fig. 5.28.
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Figure 5.33: Exploring the sensitivity of the turbidity output to the βe parameter using lower βe than
in fig. 5.32. Larger values of the parameter under examination are depicted in lighter shades of grey.
Simulation configuration as per fig. 5.28. Note that the time axis scales differ to figs. 5.28 and 5.29
and 5.32).

Figure 5.34: Exploring the sensitivity of the wall state, ϕ (τ, t), to faster values (left-hand subplot) and
slower values (right-hand subplot) of βe. The βe values used in the left-hand and right-hand subplots
were the means of the ranges explored in figs. 5.32 and 5.33 respectively. Simulation configuration as
per fig. 5.28.
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shear strength at t0) as the initial bulk water state is ideally known and invariant between
model calibrations.

A series of five simulations were conducted in which there was a step increase in shear stress
from 1.0Pa to 3.0Pa. Each simulation was initialised with a different boundary condition
shape (ϕ (τ, t0); see fig.5.35a): these defined the relative amount of material present at the
pipe wall solely for τ ∈ [1.0, 3.0] Pa and were ramped, stepped or constant with respect to
τ . The amount of material eroded from the increase in shear stress was the same for all five
simulations as all boundary condition shapes had the same area beneath them and the elevated
shear stress level was sustained for long enough that all material with τ < 3.0Pa was eroded.

The shape of the wall state boundary condition influences both the shape and scale of the
resulting material release rate and turbidity predictions (figs. 5.35b and 5.35c). As mentioned
previously, βe and βr do too (see figs. 5.29, 5.32 and 5.33). To distinguish the effects of
ϕ (τ, t0), βe and βr when fitting the model to data one therefore needs to either:

• Have a good understanding of ϕ (τ, t0) from knowing and studying historical data
(τa (t < t0)) and/or

• Simulate over a long enough period for the effect of an estimate of the boundary condition
ϕ (τ, t0) to influence only the first part of the simulation. In the worst case, this duration
would need to be at least β−1

r , the time required for complete regeneration.

5.6 Model sensitivity to hydraulics and pipe attributes

5.6.1 Sensitivity to flow magnitude

The pipe flow profile, Q, influences both the release of material from the pipe wall and the
advection of suspended material:

• The eroding force that drives the rate of material release from the pipe wall is the excess
shear stress, which is a function of the absolute shear stress at a particular time (eq. 4.3).
The absolute shear stress is a non-linear but monotonically increasing function of absolute
flow (fig. 2.7).

• The advection of suspended material within a pipe is linearly related to flow if ‘plug flow’
is assumed (§2.2.7.3). The time of the peak turbidity following a step increase in shear
stress is a function of flow as it occurs one turnover after that increase (§5.2.2).

Fig. 5.36 demonstrates how uncertainty in flow impacts on turbidity predictions. If the measured
flow is greater than the true flow then this impacts on both the eroding force and advection i.e.
(the effects do not negate each other):

• Material is predicted to be mobilised quicker as the excess shear stress is greater.

• The peak turbidity and total amount of material that is mobilised are both greater as a
larger excess shear stress results in a greater range of shear strengths being eroded.
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Figure 5.35: (a) shows a variety of wall state boundary condition (ϕ (τ, t0)) shapes, all of which bound
the same area i.e. the amount of material at the pipe wall is the same for all (assuming a common value
of α). (b) and (c) shows the simulated effect of a step increase in erosion that removes all material
within the strength range shown in (a). The shape of the wall state boundary condition influences both
the shape and scale of the predicted material release rate, dN/dt and turbidity response, Tds.

Figure 5.36: Exploring the sensitivity of (a) the material release rate and (b) downstream turbidity
prediction to flow error. For the blue dotted turbidity profile the simulation configuration is as per fig.
5.28. For the green solid line turbidity profile the configuration was the same but the τa profile and the
limits of the studied τ range were derived after multiplying the flow profile by 1.5; however, the original
flow profile was supplied to the advection routine. For the red dotted and dashed turbidity profile the
simulation configuration was as per the green solid line profile but the scaled-up flow profile was supplied
to the advection routine. Note that a 50% error in flow is unrealistic but here clearly demonstrates the
sensitivity of the model outputs to flow.
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• The peak turbidity is predicted to occur sooner as the turnover time is shorter (fig. 5.36b).

In the related fig. 5.37b, one can see that:

• The magnitude of the turbidity response is non-linear with flow;

• The duration between the flow increase and the peak of the resulting increase in turbidity
is non-linear with flow;

Flow, like the model parameters (§5.4), influences both the shape and scale of turbidity
response. However, this is not thought give rise to a greater degree of indeterminacy and
therefore be an impediment for fitting the model to data as both flow and shear stress can
be measured/estimated and therefore accurately input into the model (unlike the empirical
parameters).

5.6.2 Sensitivity to pipe length

The length, L, of the modelled pipe influences the turnover time for a given flow and therefore
the time of the peak Tds following a step increase in τa (see §5.2.2 for an explanation as to
why) i.e. it impacts on how the dN/dt profile is transformed into Tds (fig. 5.38). However, it
does not influence the upward curve of Tds to the peak nor the downward curve following the
peak as it does not influence the rate of material release along the pipe length nor the rate of
regeneration.

5.6.3 Sensitivity to the pipe internal diameter

The magnitude of the predicted turbidity profile, Tds, scales in a negative, non-linear way with
pipe diameter, D, (fig. 5.39) due to the relationships between D and τa (which contributes
to the eroding force) and D and the bulk velocity u for a given flow Q (material transport)
also being non-linear. In addition, D influences the turnover time for a given u so, like Q, also
influences the time of the peak turbidity.

5.6.4 Sensitivity to the pipe roughness

The pipe roughness, ks, also scales the Tds profile (fig. 5.40) but in a positive way that is more
linear2 than for D.

5.6.5 Summary of sensitivity analysis and implications for model fitting

The sensitivity of the proposed model to the model parameters, boundary conditions, hydraulics
and measurable pipe properties and are summarised in table 5.3. Mesh discretisation intervals
∆t and ∆τ have not been included as the sensitivity of model outputs to both was previously
summarised in table. 5.2.

2The slight non-linearity in the referenced figure is possibly due to inaccuracies from calculating shear stress
using the Swamee-Jain approximation to the Colebrook-White formula.
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Figure 5.37: Exploring the sensitivity of (a) the material release rate and (b) downstream turbidity
prediction given a range of different flow profiles. The simulation configuration is as per fig. 5.28 but
the fifteen different simulations were conducted; these used the flow profile corresponding to that of fig.
5.28 multiplied by a factor between one and three (factors were linearly spaced over that range). The
darkest and lightest lines shown correspond to flow flow factors of one and three respectively.

Figure 5.38: Exploring the sensitivity of the turbidity output to the length, L, of the modelled pipe.
Simulation configuration is as per fig. 5.28. Simulations were conducted for each of twenty L values,
with these values being linearly spaced over the range shown in the figure title. The results for larger
values of L are shown in lighter shades of grey.
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Figure 5.39: Exploring the sensitivity of (a) the material release from the pipe wall and (b) the turbidity
output to the internal diameter D of the modelled pipe. Simulation configuration is as per fig. 5.28.
Simulations were conducted for each of ten D values, with these values being linearly spaced over the
range shown in the subplot titles. The results for larger values of D are shown in lighter shades of grey.

Figure 5.40: Exploring the sensitivity of (a) the material release from the pipe wall and (b) the turbidity
output to the roughness ks of the modelled pipe. Simulation configuration is as per fig. 5.28. Simulations
were conducted for each of ten ks values, with these values being linearly spaced over the range shown
in the subplot titles. The results for larger values of ks are shown in lighter shades of grey.
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Table 5.3: A summary of how model parameters, boundary conditions, pipe hydraulics and measurable
pipe attributes influence the model outputs. Here ‘+ve’ and ‘-ve’ are abbreviations for positive and
negative respectively and ‘lin’ stands for linear.

Output dN (t) /dt Tds (t)
Influence

on Scaling Shape Scaling Shape

α
+ve lin. w.r.t.

dN/dt
No +ve lin. w.r.t

Tds
No

βr

+ve non-lin.
with dN/dt for
small values only

Yes

+ve lin. scaling
of peak and +ve
non-lin. scaling
of entire profile
until βr nears an
upper bound;

Yes (for βr
values below a
upper bound)

βe

+ve lin. w.r.t.
dN/dt; -ve

non-linear with t
Yes +ve non-lin.

with Tds
Yes

ϕ (τ, t = 0) Yes Yes Yes Yes

Q
+ve non-lin with

dN/dt
Yes

+ve non-lin.
with Tds; -ve lin.

with t
No

D
-ve non-lin. with

dN/dt
Yes

-ve non-lin. with
Tds; +ve non-lin.

with t
No

ks
+ve non-lin.

with dN (t) /dt Yes +ve, almost-lin.
with Tds (t) No

L No No Yes, for short
pipes only

The time of the
peak (falls at the
turnover time)
but not the
curvature

to/from the
peak

150



5.6.6 Assessing the need for an equivalent term to the PODDS excess shear
power term

The parameters βe and α are thought to offer similar functionality to the PODDS n parameter
(§2.2.8.3) by being able to collectively alter both the shape and scale of the predicted turbidity
output for a step increase in shear stress during a simulation short enough for the effects of
regeneration to be negligible. See figs. 5.28, 5.32 and 5.33 which show the sensitivity of the
VCDM to βe and α and fig. 5.41 which shows the sensitivity of PODDS to n. This suggests
that there is no need for an equivalent to the undesirable PODDS n term in the VCDM, which
is beneficial for the reasons given in §2.2.8.5.

The initial wall state boundary conditions also influence the shape and scale of the turbidity
response (§5.5) so also contribute to the VCDM’s ability to reproduce the effect of the PODDS
n parameter without needing to include a similar power term in the VCDM formulations.

5.7 Model calibration: fitting the model parameters

5.7.1 Introduction

Without calibration (being fitted to real-world data), the model proposed in §4 cannot be
used to simulate how bulk water turbidity and the properties of wall-bound discolouration
material change over time within a given pipe. Every combination of pipe, source water
and environmental conditions could result in different material accumulation and erosion
characteristics (§2.1.12.2; §2.1.14; §2.1.15; §2.1.16) which need to be represented by different
parameter values. Therefore, when constructing a model of a pipe (a model instance), the
modeller needs to find parameter values and boundary conditions that ensure the instance
state and outputs are sufficiently representative of reality over a period of interest. For the
most accurate representation, the calibration process should be repeated for every distinct pipe
length, although this requirement could be relaxed if pipes are deemed to have sufficiently
similar properties (as is often done when calibrating PODDS).

Figure 5.41: The PODDS turbidity response to an instantaneous step increase in shear stress τa (at t0)
for different values of the n parameter.
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It is challenging if not impossible to obtain satisfactory parameter and boundary condition
values for a given pipe by direct measurement of system properties: the parameters βe, βr
and α are empirical constructs that have no physical or biochemical meaning, whereas the
initial shear strength profile of material bound to the wall, ϕ (τ, t0), cannot currently be directly
measured in a timely, representative and non-destructive way (§2.1.18). Sharpe (2013) and
Fish (2014) (see §2.1.9, §2.1.11, §2.1.13.4) were able to study biofilm structures in a largely
non-destructive way in realistic-scale pipe systems but discolouration material is not solely
comprised of biofilm material and their microscopy methods are too labour-intensive to easily
be regularly repeated.

The inversion of mathematical models can provide another means for finding appropriate
parameter values: the expressions that comprise the model can be reformulated to allow
model parameters and/or boundary conditions to be calculated using observed outputs (and
measurable system properties). However, this approach is also not applicable in this case as
the material transport sub-model cannot be inverted: given time-series of flow and turbidity
measurements, one cannot determine where and when the observed suspended discolouration
material left the pipe wall upstream. One therefore cannot calculate when the state of the
wall-bound material changed and so cannot calculate quantities relating to this state such as
the wall state boundary conditions and the three main parameters. The inability to derive a
generic, inverted form of the model from its original formulations is principally due to flow
and shear stress being non-trivial functions of time. This makes it impossible to separate the
turbidity signal observed at the downstream end of a pipe into the system responses that
resulted from distinct increases in shear stress. Advection processes therefore partly obscure the
observer’s view of if, when and how the wall state changed as a result of variation in pipe flow.

A more viable means for calibrating the proposed model is to fit a model instance by minimising
the dissimilarity between observed data and model predictions (§2.2.4). This involves:

1. Taking a consistent set of observations regarding the pipe(s) of interest;

2. Assigning values to model parameters and boundary conditions (either arbitrarily or using
some prior knowledge of the studied system);

3. Making a model prediction corresponding to part or all of the observation period;

4. Quantifying the similarity of observations and predictions;

5. Then either:

(a) Accepting the model is sufficiently calibrated or

(b) Reiterating steps 3-5 after refining the parameter and boundary conditions.

Empirical models can be fitted to data ‘by hand’ (without automation) through trial and
error where the parameter space (the potentially infinite set of all possible parameter values)
is relatively small and/or well understood. For example, the PODDS parameter space has
previously been explored using Monte Carlo simulations (Boxall and Saul, 2005) and also
by fitting the model to many different pipe lengths (e.g. Husband and Boxall, 2010a). This
resulted in knowledge of how parameters were somewhat transferable between pipe lengths and
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of the effect of changing different parameters, allowing models to presently be calibrated by
hand. At present, a modeller can often calibrate a PODDS model instance relatively quickly by
bootstrapping the fitting process by starting with parameter values from previously successful
calibrations of models of similar systems (§2.2.8.4).

A less manual approach is believed to be required for calibrating the model proposed in §4.
The rationale for this is as follows:

• The parameter space is (presently) far less well known than that of PODDS, although
some understanding of likely regeneration rates can be gained from studying data from
repeated mains flushing (§2.1.13.2, §2.1.14) and the shear strength profile at the start of
a simulation can be estimated using the prior shear stress history (subsequently explored
in §5.8). Calibrating the proposed model for a given system could therefore involve a
fairly exhaustive search of the parameter space.

• An exhaustive search could prove costly given the dimensionality of the problem space (the
number of modeller-tunable values: βe, βr, α and the values of the boundary condition
array) and that each dimension is a continuous range rather than a set of discrete values.

• Multiple parameters have similar effects on the shape and scale of model outputs (as can
be seen in table 5.3), suggesting that the fitting of the prosed model is an indeterminate
problem i.e. a potentially infinite number of parameter sets can offer a similar model
fit (as is also the case for PODDS; see §2.2.8.4). The instinctive approach to hand
calibration of adjusting one parameter at a time may therefore not be appropriate; a
holistic approach to refining parameter values is required to lessen the chance of finding
a fit that is locally but not globally optimal.

There are other reasons for the model being non-trivial to fit to data. Firstly, the proposed
model and PODDS can only be fitted by comparing turbidity predictions from model instances
to turbidity observations. The state of discolouration material bound to the internal surfaces of
buried pipes and other assets cannot easily be directly measured (§2.1.18). There is a need to
derive much information about the system of interest from a signal (bulk water turbidity) whose
information content is limited by the spatial and temporal sampling resolution (observation
via a limited number of sampling points is depicted in fig. 4.19). For example, the hydrants
available for sampling bulk water turbidity along the length of a main may be far enough apart
that pipe properties such as material and diameter notably vary over that distance, making the
interpretation of turbidity observations more difficult. Hydrants could be particularly widely
spaced in trunk systems (§2.1.17.2). The temporal resolution may also be low relative to model
characteristic times such as tt and td .

Secondly, and on a related note, certain latent quantities that define a calibrated model are
more difficult to derive from turbidity observations than others. It is more challenging to
characterise the highly latent material accumulation process (including the regeneration rate)
for a pipe than to quantify the material erosion model (including the wall state and erosion rate)
as, given flow and turbidity signals, information regarding accumulation can only be deduced
from two or more characterised erosion events. The number, nature and spacing of events in
the input signals and the SNR of those signals are important for calibrating the latent model
quantities with sufficient accuracy (e.g. fig. 5.31).
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For example, certain events in the turbidity signal may allow the erosion process and shear
strength profile at the pipe wall to be characterised but there is insufficient information to
quantify the regeneration rate. Pipe flow may therefore need to be deliberately increased
in a controlled manner on one or more occasions to generate enough observational data for
accurate calibration with regards to regeneration. Such interventions are often undertaken
when calibrating the PODDS erosion model (§2.2.8.4). Note that manipulating flow for model
calibration not only produces useful observations but also disturbs the system in a destructive
manner, hence the need for such flow (and shear stress) increases to be precisely and accurately
controlled.

5.7.2 An idealised method for fitting the proposed model to data

Returning to the question of how to fit the model to data, an automated fitting method is
considered to be far preferable to hand fitting for the reasons outlined in the previous section.
To this end, the calibration of model parameters can be formulated as an optimisation problem
(as per §2.2.4) that can be solved via automated means:

• The objective function to be minimised is an appropriately sensitive scalar measure of
the dissimilarity between turbidity observations and model instance turbidity predictions
over the calibration period;

• The parameters to be optimised are βe, α and βr (unless one is confident that the
duration of the simulation period is negligible compared to the time required for full
regeneration);

• The optimisation constraints are independent parameter bounds for βe, α and βr: all
three parameters must be positive and finite.

The wall state boundary conditions can also be fitted by optimisation, although this is not the
only way of arriving at values for them. Options for fitting/estimating the wall state boundary
conditions are discussed in more detail in §5.8.

5.7.3 Objective function

The dissimilarity metric used in the objective function for this optimisation problem needs to
satisfy the following requirements:

• The metric value should approach a known finite limit such as 1 if the observation and
prediction vectors are very similar;

• The objective function is to be used to fit parameters that collectively influence both
shape and scale (table 5.3); the dissimilarity metric should therefore be sensitive to
differences in both shape and scale between input vectors;

• The metric should not be overly sensitive to outliers as the SNR of turbidity instrumenta-
tion can be affected by degassing and moving/knocking;
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• The metric should be trivial to calculate as it may be necessary to execute an objective
function thousands of times if fitting the model using an optimisation method similar to
those detailed in §2.2.4.

The dissimilarity metric should also be dimensional rather than relative as this should aid fitting
(§2.2.5).

The integral of squared errors (ISE) was chosen as it is moderately sensitive to the magnitude of
transformations, is very insensitive to noise, is simple to calculate (eq. 5.38) and is dimensional
(Sonnenwald et al., 2013).

ISE (Tobs, Tpred) =
∑

(Tobs (t)− Tpred (t))2 ∀t ∈ tcompare (5.38)

where tcompare is the set of times at which errors are to be calculated (which do not need to
be contiguous).

It may be necessary to pre-process one or both of the time-series inputs to the dissimilarity
metric:

• One of the time-series may need to be resampled to ensure a one-to-one pairing of
‘observation’ and prediction values (i.e. a common time-series ‘index’). This may result
in ‘missing’ (N/A) values;

• Missing values in turbidity observation time-series may need to be infilled using say linear
interpolation, back-filling or forward-filling. Alternatively, times when one of the two
metric inputs is missing can be ignored when calculating the metric.

It may be necessary to ignore certain timesteps/period when calculating the dissimilarity metric,
such as:

• Periods when a turbidity meter was known to be generating erroneous data (when the
flow was zero or the instrument was moved/connected/disconnected);

• Periods between turbidity ‘events’ when the background turbidity is not negligible and
cannot easily be accounted for.

5.7.4 Fitting by optimisation

5.7.4.1 Approaches for finding a global optimum

If the problem space is complicated and multi-dimensional then one needs a way of searching
for the global optimum in an efficient manner. Exhaustive search for the best fitting parameters
(given wide possible ranges for each parameter) is not appropriate, even if the process is
automated.

It has conservatively been assumed that the problem space for fitting the proposed model to
data is complicated (non-convex and multi-modal) as multiple parameters have a similar effect
on predictions over certain temporal scales that could be difficult to distinguish by trial and
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error (§5.7.1). Also, testing for a convex problem space given the variety of possible time-series
model inputs is non-trivial. If the problem space is not convex and uni-modal then simple
deterministic gradient descent methods are unsuited to this optimisation problem (§2.2.4):
such methods are very sensitive to how they are initialised and may struggle to find the global
optimum (the parameters that give lowest dissimilarity metric value and therefore the best
model fit).

A better approach is to use a stochastic optimisation method that intelligently explores different
parts of the problem space simultaneously so as to increase the probability of finding the global
optimum (§2.2.4). Also, the stochasticity makes such methods more robust when presented
with noisy data. Two methods that have been used to success in environmental engineering
(§2.2.4.5) are genetic algorithms and particle swarm optimisation (PSO), which mimic biological
evolution (§2.2.4.2) and the swarming of fish and birds (§2.2.4.3) respectively so as to (be
likely to) find global optima.

5.7.4.2 Chosen optimisation algorithm: PSO

PSO is considered preferable to a genetic algorithm for fitting the proposed model to data.
Genetic algorithms have the advantage over PSO of being able to optimise both numerical and
categorical parameters (§2.2.4.2). However, no input parameters are categorical so PSO is a
more attractive method in this case due to its simplicity and efficiency of design, implementation
and execution (§2.2.4.3).

The PSO configuration options used when fitting the proposed model to data are specified in
table 5.4 (bar the specific parameter space bounds and convergence tolerance values as these
more case-specific).

5.7.4.3 Chosen PSO implementation

Although various implementations of PSO exist (§2.2.4.3), the version used in this project,
pyshoal3, was developed by the author to provide the features and satisfy the requirements
listed in table 5.4. pyshoal is a Python package that provides a simple API. Once instantiated,
an optimisation run continues until convergence tolerances are satisfied for a contiguous number
of iterations or a maximum number of iterations is reached. The outputs following a run are
the best objective function parameter values found during the run, the value of the objective
function given those parameter values and the number of iterations. The software allows for the
optimisation of arbitrary objective functions (which can take any number of parameters) and
can execute objective functions in parallel using multiple processes for reducing the execution
time of a single optimisation run (§2.2.4.3).

5.7.5 Optimising model parameters

The process of developing and verifying a method for fitting the proposed model to data can
be made simpler by first considering how best to fit just the model parameters to observations

3https://github.com/willfurnass/pyshoal
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Table 5.4: Generic PSO configuration used when fitting the proposed model to data.

Option Choice Reason/reference

Number of particles 25

Smallest square number in the
recommended range of 20-50
(§2.2.4.3). Must be a square
number if using Von Neumann
neighbourhoods (see ‘particle
neighbourhoods’ below).

Parameter space box bounds
(valid parameter ranges)

(No generic values as case
specific) -

Particle initialisation Uniformly distributed within
parameter space box bounds

No justification for using more
complicated methods such as
Latin Hypercube sampling
(Wymer, 2007).

Velocity component weights

Inertia weight decreases linearly
from 0.9 to 0.4 over the total
number of optimisation run
iterations; nostalgic and
societal weights are both 2.1

References listed in §2.2.4.3.

Problem space boundary
handling

Restrictive, damping boundary
conditions See §2.2.4.3.

Maximum particle velocity The absolute size of the region
bounded by the box bounds. See §2.2.4.3.

Particle neighbourhoods
Social rather than geometric;
exactly four neighbours per
particle (Von Neumann lattice)

See §2.2.4.3.

Maximum number of iterations 500 -

Convergence tolerance check

The algorithm terminates
before the maximum number of
iterations if the ‘best’ position
in the swarm changes by less
than a similarly-dimensioned
tolerance threshold over five
PSO iterations.
Tolerance thresholds not
specified here as they are
case-specific.

-
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given known boundary conditions then progressing on to consider how to fit/estimate the
boundary conditions. Both ‘sub-methods’ can then be combined to fully calibrate a model.

5.7.5.1 Fitting model parameters simultaneously

One approach to calibrating the model parameters is to fit all three parameters simultaneously
given static and time-series observations of pipe and bulk water properties, a PSO configuration
(including parameter bounds) and known wall state boundary conditions (ϕ (τ, t0)). This
approach, illustrated in fig. 5.42, shall henceforth be referred to as FIT_SIMULT.

5.7.5.2 Fitting model parameters in a nested fashion

The efficacy of FIT_SIMULT for accurately calibrating VCDM model parameters may be limited
by those parameters affecting turbidity predictions in similar ways under certain conditions
(table 5.3). A more robust approach could be to fit parameters in a nested fashion.

Let us momentarily consider the case of material erosion without regeneration. The α parameter
has a much simpler effect on the model output than βe as it influences the scale but does not
influence the shape of turbidity predictions (fig. 5.28), whereas βe influences both scale and
shape (figs. 5.32 and 5.33). The effects of the two parameters can be separated to some extent
by searching for just the optimal βe value for an erosion event using the PSO objective function
but then within that function finding the α value that best complements the current candidate
βe value. This ‘inner’ optimisation is relatively trivial: α can be found by a deterministic,
gradient-based method such as Brent’s algorithm4 (§2.2.4), as α only linearly influences the
scale of output. The objective function of this inner optimisation can again be the ISE between
time-series turbidity observations and predictions.

The two nested objective functions required for this approach (henceforth referred to as
FIT_NESTED) can be seen in fig. 5.43.

5.7.5.3 Fitting a subset of model parameters after calculating others

An alternative approach to finding the values of α and βe that give the best model fit for erosion
events is to first calculate α directly from data then subsequently fit βeusing PSO. Again,

4Implemented in Python as scipy.optimize.brent.

Figure 5.42: A data flow chart showing how all three VCDM parameters can be fitted to data
simultaneously using PSO (FIT_SIMULT method).
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Figure 5.43: A data flow chart showing how the VCDM erosion parameters α and βe can be fitted
to data in a nested fashion using PSO and Brent’s algorithm(Brent, 1972) (FIT_NESTED method).
Here, the bracket is the range of starting values used to initialise Brent’s algorithm (not the parameter
bounds).

like FIT_NESTED this method (henceforth be referred to as CALC_AND_FIT) attempts to
separate the effects of βe and α. What follows demonstrates how α can be calculated from
data.

Let us assume that over a time period t ∈ [t0,∞] that regeneration is negligible (βr = 0 s−1),
that the shear stress τa increased from τ1 to τ2 over that period and that all material with a
strength τ ∈ [τ1, τ2] was fully regenerated at t0 and was fully depleted at t =∞. Let us also
assume that the bulk water turbidity, Tds, was solely a function of the erosion of this material
and not of the influx of material from upstream of the pipe of interest.

The total amount of material mobilised as a result of the excess shear stress τe = τ2 − τ1 can
be determined by integrating the flux of material exiting the pipe over t ∈ [t0,∞] (eq. 5.3).
The total amount of material to be mobilised can also theoretically be calculated by integrating
the material release per m2 of wall area over t ∈ [t0,∞] then multiplying by the pipe wall area
(eq. 5.2). Therefore:

ˆ ∞
t0

Q (t) · Tds (t) dt = Aw ·
ˆ ∞
t0

dN (t)
dt

dt (5.39)

Although the execution of a VCDM simulation requires solving of discrete integrals, here
continuous integrals can and have been used for simplicity. Substituting in a concise form of
eq. 4.5 yields:

ˆ ∞
t0

Q (t) · Tds (t) dt = Aw ·
ˆ ∞
t0

(−α)
ˆ τ2

τ1

∂ϕ (τ, t)
∂t

dτ dt (5.40)

By factoring −α outside the integral then reversing the order of integration, it can be seen
that the integration and differentiation with respect to time can be simplified like so:
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ˆ ∞
t0

Q (t) · Tds (t) dt = −α ·Aw ·
ˆ ∞
t0

ˆ τ2

τ1

∂ϕ (τ, t)
∂t

dτ dt (5.41)

= −α ·Aw ·
ˆ τ2

τ1

ˆ ∞
t0

∂ϕ (τ, t)
∂t

dt dτ (5.42)

= −α ·Aw ·
ˆ τ2

τ1

∆ϕ (τ, t) dτ (5.43)

If the relative amount of material at the wall ϕ (τ, t) goes from being maximal (1) to nothing
(0) over the period t ∈ [t0,∞] for all τ ∈ [τ1, τ2] then ∆ϕ (τ, t) = −1 and so

ˆ ∞
t0

Q (t) · Tds (t) dt = −α ·Aw ·
ˆ τ2

τ1

(−1) dτ (5.44)

Evaluating the integral gives

ˆ ∞
t0

Q (t) · Tds (t) dt = α ·Aw · (τ2 − τ1) (5.45)

= α ·Aw · τe (5.46)

Therefore, α can be calculated using eq. 5.48 given the conditions specified earlier in this
subsection. An optimal, complementary βe value can subsequently be found using PSO (as
illustrated in fig. 5.44).

α =
´∞
t0
Q (t) · Tds (t) dt
Aw · τe

(5.47)

u
∑ti≤tmax
i=0 Q (t) · Tds (ti) ∆t

Aw · τe
(5.48)

This expression can be used to find optimal values for α and β

The conditions required for CALC_AND_FIT to be a valid method can be summarised as
follows:

Figure 5.44: A data flow chart showing how optimal VCDM erosion parameters α and βe be found
during model calibration by first calculating α directly from data (using eq. 5.48 that is independent of
βe) then finding the best βe value using PSO (CALC_AND_FIT method).
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• τa increases from τ1 to τ2 during the period [t0, tmax];

• This causes the complete erosion of the material for which τ1 ≤ τ ≤ τ2 i.e. ∆ϕ = −1
over [t0, tmax];

• To accurately quantify this complete erosion using just Tds (t), Tds (t) must be effectively
zero by tmax;

• Complete erosion requires that the amount of material at the pipe wall must initially
have been maximal i.e. the boundary conditions must be ϕ (τ1 ≤ τ ≤ τ2, t0) = 1.

• Regeneration is negligible over [t0, tmax].

The requiring of very simple boundary conditions and for the turbidity response to drop to
negligible levels at the end of the calibration period means this method is applicable for far
fewer model configurations and input datasets than FIT_SIMULT and FIT_NESTED.

5.7.5.4 Estimating/bounding the α parameter using known values of the PODDS k

parameter

The fitting or calculating of α can be aided by comparing that parameter to the k parameter in
PODDS. The parameters have been found to be equivalent given the pre-conditions required
for the use of the CALC_AND_FIT method. The value of α can therefore be estimated and/or
bounded using the k values from successfully calibrated PODDS models of pipes with similar
pipe materials and diameters.

Martin Jackson of Wessex Water and the PODDS Consortium5 noted6 that the total amount of
material mobilised from a step increase in shear stress (quantified as the material flux integrated
over time) divided by the pipe surface area and excess shear stress is the negative of the
PODDS k parameter (eq. 5.49). Both this expression and k have units of TPMU ·Pa−1 ·m−2.
This equivalence was validated by making a PODDS prediction using a known value of k then
‘recovering’ that value using eq. 5.49.

k u −
∑ti≤tmax
i=0 Q (t) · Tds (ti) ∆t

Aw · τe
(5.49)

Note that eq. 5.49 is identical to that for calculating α (eq. 5.48) (bar the negative sign),
so here the absolute values of α and k are equivalent. Previously identified values of k can
therefore be used to bound α when using Brent’s method as part of FIT_NESTED or to
directly estimate α when using CALC_AND_FIT.

5.7.5.5 Validating the three parameter estimation methods

Fitting artificial erosion events given known simple boundary conditions The ability of
FIT_SIMULT, FIT_NESTED and CALC_AND_FIT to fit the proposed model to a variety of
short-term erosion events was explored using artificial PODDS and VCDM ‘target’ predictions,

5http://www.podds.co.uk
6In personal correspondence on 24th April 2013.
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generated using known parameters and boundary conditions. The set of VCDM or PODDS
model parameters, flow levels and pipe attributes associated with each of these target predictions
shall henceforth be know as a target attribute set.

For each erosion event, the flow increased instantaneously at t = t0. For the VCDM target
predictions, the relative amount of material at t0 was 1 for shear strengths above the prevailing,
constant shear stress before t0 (corresponding to flow of Qcond), and was 0 for shear strengths
below the prevailing shear stress. For the PODDS target predictions, the shear strength before
t0 was the shear strength at Qcond. No regeneration occurred over the simulations. The VCDM
and PODDS target attribute sets are shown in tables 5.5 and 5.6 respectively; asset attributes
were chosen to be representative of a variety of pipes. The simulation timesteps were from
t0 to five hours in 5 s increments and pipe lengths were chosen so that the turnover time at
Qflush (and peak turbidity) occurred at t0 + 3600 s.

Each of the eight erosion event models were used to generate two predictions: one with the
idealised step increase in flow and a second after having added noise to the flow profile to
mimic natural fluctuations in flow7. Each of the methods FIT_SIMULT, FIT_NESTED AND
CALC_AND_FIT was then used to try to recover the βe and α VCDM parameter values (or
PODDS k value) for each of the resulting 8× 2 model predictions, resulting in 8× 2× 3 model
fits and ISE values. The boundary conditions used to generate the predictions were provided as
inputs to the fitting processes.

The PSO configuration used for testing these model fitting methods was as per table 5.4 with
the following parameter bounds and convergence tolerances:

• Parameter box bounds:

– α ∈
[
1× 10−7, 10

]
; the bounds of α were set by acknowledging the conceptual

equivalence with the PODDS k parameter (§5.7.5.4; under certain conditions). The
bounds encompass the (negative of the) range of k values found by successfully
calibrating a variety of PODDS models by hand (Husband and Boxall, 2010b);

– βe ∈
[
1× 10−7, 10

]
; there is no known direct equivalent of βe in the PODDS model

so, without a posteriori knowledge, the bounds of βe were simply set to the same
range as α.

• Convergence tolerances (all need to be satisfied over five iterations for the algorithm to
terminate; all are an order of magnitude smaller than the corresponding lower bounds):

7The noise was generated by finding the moving average of a time-series of uniformly sampled values.

Table 5.5: Target attribute sets used for generating target VCDM predictions given known simple
boundary conditions (ϕ (τ ≤ τa (D,Qcond, ks) , t0) = 0; ϕ (τ > τa (D,Qcond, ks) , t0) = 1) and negli-
gible regeneration (βr = 0 s−1). The target predictions were used for testing the efficacy of several
VCDM parameter fitting methods.

Quantity D ks Qcond Qflush L βe α

Units mm mm L
s

L
s m 1

Pa·s
TPMU
Pa·m2

VCDM-1 75 0.1 1 4 3259 0.002 1.0
VCDM-2 203 5.0 1 6 667 0.002 1.5
VCDM-3 400 0.3 4 40 1146 0.005 1.0
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Table 5.6: Target attribute sets used for generating target PODDS predictions given known simple
boundary conditions (Cmax = 100TPMU ·m−2; τc (t0) = τa (D,Qcond, ks)) and negligible regeneration
(βr = 0 s−1). The target predictions were used for testing the efficacy of several VCDM parameter
fitting methods.

Quantity D ks Qcond Qflush L P n k

Units mm mm L
s

L
s m TPMU

Pa·m2·s − TPMU
Pa·m2

PODDS-1 150 0.1 1 9 1833 0.02 1.2 -3.5
PODDS-2 100 0.1 1 6 2750 0.0002 2.5 -0.5
PODDS-3 50 0.1 4 9 16501 0.0002 3.0 -0.5
PODDS-4 89 5.0 1 6 3480 0.00022 3.0 -0.5
PODDS-5 700 0.25 15 500 4677 0.005 1.0 -3.0

– α : 1× 10−8;

– βe : 1× 10−8.

The results were as follows:

All three fitting methods were successful at recovering βe and α for the three VCDM predictions
with non-noisy flow profiles. The accuracy of the CALC_AND_FIT method was worse for
VCDM predictions where the turbidity was notably greater than zero by the end of the modelled
time period (e.g. fig. 5.45); this is because the error in the calculated estimate in α is greater
for tmax �∞ (see eqs. 5.48 and 5.48).

The flow-noise-free PODDS target predictions were slightly more difficult to fit; the target
prediction and the best turbidity predictions identified by the fitting methods often differed
slightly in shape (e.g. fig. 5.46). This was not due to the VCDM not having a power term like
PODDS’ n, which is known to influence shape (fig. 5.41), as fits were slightly inaccurate even
for target predictions made using n = 1. The difference in shape and scale between target and
prediction profiles was not particularly large, indicating that the VCDM was able to provide
similar functionality to the validated PODDS erosion model.

The predictions generated using noisy flow profiles proved more difficult to fit: on several
occasions the FIT_SIMULT and FIT_NESTED methods both returned values of βe that were
far too fast (e.g. fig. 5.47), yielding low ISE values but finding model fits that were unlikely to
offer accurate predictions for t > tmax. The CALC_AND_FIT method proved more robust,
suggesting that only having to fit one of the two erosion parameters that influence the scale of

Figure 5.45: Attempts to fit the VCDM to target prediction VCDM-2 (see table 5.5; without flow noise)
using the following methods: (a) FIT_SIMULT (βe = 0.002; α = 1.50; ISE = 1.6× 10−14; converged
after 141 iterations); (b) FIT_NESTED (βe = 0.002; α = 1.50; ISE = 4.4× 10−9; 45 iterations); (c)
CALC_AND_FIT (βe = 0.002; α = 1.41; ISE = 39; 52 iterations). The red line is pipe flow, which
increased at t = 0 s (see table 5.5).
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Figure 5.46: Attempt to fit the VCDM to prediction PODDS-2 (see table 5.6without flow noise)
using the following methods: (a) FIT_SIMULT (βe = 0.0037; α = 0.46; ISE = 2374; converged
after 163 iterations); (b) FIT_NESTED (βe = 0.0033; α = 0.49; ISE = 4129; 64 iterations); (c)
CALC_AND_FIT (βe = 0.0033; α = 0.48; ISE = 3563; 66 iterations). The red line is pipe flow, which
increased at t = 0 s (see table 5.5).

turbidity prediction is easier when the flow is unstable, most likely a result of both βe and α
influencing the scale of turbidity predictions.

Fitting artificial erosion events given known non-trivial boundary conditions Given
that the ability to track the amount of material at different shear strengths over time is a key
feature of the proposed model it was important to verify that the proposed fitting methods
could recover βeand α given more complicated boundary conditions i.e. non-trivial values of
ϕ (τ, t0). This was important as in practise it is unlikely that the amount of material at the
pipe wall is constant with shear strength.

The FIT_SIMULT and FIT_NESTED methods were used to fit the proposed model to:

• target predictions made using three different VCDM target attribute sets (table 5.5),

• which were made with and without noisy flow profiles and

• six different profiles for ϕ (τ, t0) (fig. 5.48), which were known (and not fitted/estimated)
by the fitting methods.

The CALC_AND_FIT method is not appropriate when ϕ (τ, t0) is non-trivial; it has the
precondition that ϕ (τ, t0) must be polarised around a particular shear strength (§5.7.5.3).

The error between target predictions and ‘fitted’ predictions was negligible for the majority of
the 3× 2× 6 = 36 optimisation runs. However, for a particular target prediction made using a
noisy flow profile, both FIT_SIMULT and FIT_NESTED found near-identical but erroneous

Figure 5.47: Attempt to fit the VCDM to prediction VCDM-1 (with flow noise) using the following
methods: (a) FIT_SIMULT (βe = 10.0; α = 0.71; ISE = 12746; 89 iterations); (b) FIT_NESTED
(βe = 9.85; α = 1.14; ISE = 19281; 144 iterations); (c) CALC_AND_FIT (βe = 0.0025; α = 1.13;
ISE = 1508; 63 iterations). The red line is pipe flow, which increased at t = 0 s (see table 5.5).
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Figure 5.48: Fitting artificial erosion events given known non-trivial boundary conditions: ϕ (τi,t0)shapes
of target predictions are (a) Full regeneration; (b) half regeneration; (c) steep ramp; (d) shallow ramp;
(e) four steps; (f) two steps.

fits; the βe value was far too fast in both cases. These results could not be reproduced when
repeating these two fitting attempts with different noise, suggesting that the fitting process
input data contained insufficient information to distinguish βe and α, or possibly that there is
a need to take the best results of more than one fitting attempt for each PSO configuration.
A second FIT_SIMULT result also had an overly quick βe but otherwise the results for both
fitting methods were very similar.

Fitting both erosion and regeneration for artificial observations given non-trivial bound-
ary conditions It is important to be able to reliably fit the parameters relating to regeneration
as well as those relating to erosion. A third set of fitting tests were performed to see how
well FIT_SIMULT and FIT_NESTED could recover βe, α and βr. Target predictions were
generated for all 36 permutations of:

• Three sets of asset characteristics and VCDM parameters;

• Non-noisy versus noisy flow (with the added noise here being generated using a random
walk);

• Six different ϕ (τ, t0) profiles (fig. 5.48).

Table 5.7: VCDM target attribute sets used to generate VCDM predictions used for fitting both erosion
and regeneration for artificial observations given non-trivial boundary conditions. Timesteps per turnover:
200 during each of the two flushes, 10 during the intervening period.

D ks Qcond Qflush L βe α β−1
r Turnovers

per
flush

Time
between
flushes

Units mm mm L
s

L
s m 1

Pa·s
TPMU
Pa·m2 years - years

VCDM-4 75 0.1 0.5 4 300 0.002 1.0 0.2 5 0.2 / 4
= 0.04

VCDM-5 203 5.0 1 6 1000 0.002 1.5 0.5 3 0.5 / 12
= 0.04

VCDM-6 400 0.3 4 40 3000 0.005 2.0 1.5 3 1.5 / 15
= 0.1
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The flow profile of each of these predictions consisted of two periods of higher flow (emulating
pipe flushes) separated by a long period of low flow (e.g. fig. 5.49), allowing regeneration to
occur between the two erosion events. The regeneration rate parameter, βr, and duration of
the low flow period were chosen so that maximal regeneration had not occurred by the start of
the second flush, the effect of this being that the both the amount of material mobilised and
the shape of the resulting turbidity response differed between the two flushes.

The PSO configuration was as per the first set of fitting tests described in this section but
with bounds and a convergence tolerance defined for the βr parameter. Complete regener-
ation has previously been estimated by linear extrapolation to take 1.5 to 4 years in DMA
mains (§2.1.14). As the reciprocal of βr is the minimum time required for complete regen-
eration to occur following complete material depletion, the bounds of βr were set to the
reciprocals of 0.2 to 10 years i.e. βr ∈ [1/(86400.× 365× 10), 1/(86400.× 365× 0.2)] s−1

=
[
3.17× 10−9, 1.58× 10−7] s−1. The convergence tolerance was set to 1× 10−10 s−1, one

order of magnitude less than the lower bound.

The ability of the FIT_SIMULT and FIT_NESTED methods to recover the parameters of each
of the 36 target datasets was investigated, requiring 72 distinct fitting tests. As PSO is a
non-deterministic metaheuristic that is likely but not guaranteed to find the global optimum
(§2.2.4), each of this set of fitting tests was attempted up to three times to achieve a satisfactory
fit. This required the qualification of fit in a generic way so as to define a numeric threshold
for what is considered acceptable. Absolute measures of the dissimilarity between observations
and predictions (e.g. ISE) are of no use here as they are test-specific (§2.2.5). The Coefficient
of Determination (R2; see eq. 5.50) was used as a non-dimensional means for quantifying and
comparing model fits in a test-independent way. This relative dissimilarity metric was chosen
because it is sensitive to the type and magnitude of signal transformations but not to the
number of data points in the time-series nor to signal noise (Sonnenwald et al., 2013). A given
fitting test was reattempted up to two times if R2 < 0.95 (where 1 is ideal).

R2 =


∑(

(ai − a) ·
(
bi − b

))
√∑

(ai − a)2 ·
∑(

bi − b
)2


2

(5.50)

Figure 5.49: Target VCDM dataset VCDM-5 (see table 5.7), generated using a noisy flow profile and
the ‘two steps’ boundary condition (ϕ (τ, t0)) shape. Time has been condensed in the middle of the
time axis for the purposes of visualising all data within a single figure.
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All attempts at all 72 fitting tests converged in less than 500 PSO iterations. For all fitting
tests where noise had not been added to the flow signal, the value of R2 was effectively 1.00
and the ratio of the fitted parameters to the target parameters was unity (to 2 d.p.) other than
in one case where those ratios were 99.77%, 100.23% and 92.77% for βe, α and βr respectively.

Fitting target datasets with fluctuating flow profiles proved more difficult. More than one
attempt was required for twelve of the 36 corresponding fitting tests. For seven of those tests,
a good fit (R2 ≥ 0.95) was found on the second or third attempt8, indicating that, for these
cases, satisfactory model fits could be achieved given enough PSO runs. For another of the
36 tests, R2 increased over three fitting attempts but no satisfactory solution was found. It is
not known whether a good fit would have been found through conducting more than three
fitting attempts. However, for four tests, the same R2 was found for each of the three fitting
attempts, suggesting that there was insufficient information in the inputs to the optimisation
method for truly optimal parameter values to be easily found.

Common to all unacceptable fits was a very high βe value (the fitted value was on average
2221 times greater than the target value amongst these fitting attempts). Note that βe was
the only one of the three parameters for which there was no prior information to inform the
bounds during model fitting. These results indicate that the upper bound of βe should be
reduced from 10 to say 1.0 or 0.1 to avoid local optima.

One fitting method was not obviously preferable to the other: four of the FIT_SIMULT
tests required multiple attempts whereas eight of the FIT_NESTED tests required multiple
attempts. However, of the subset of tests where no acceptable solution was found after three
attempts, only two tests were associated with FIT_SIMULT but three tests were associated
with FIT_NESTED. As both methods perform similarly well, FIT_SIMULT is the preferred
method as FIT_NESTED is less computationally efficient.

There were no obvious correlations between the shape of ϕ (τi, t0) and the ease of fitting.

For the satisfactory model fits, it was the βr parameter that was associated with the greatest
relative error. The mean and minimum of the ratios of the fitted parameter value to the target
value were 0.92 and 0.38 (fit shown in fig. 5.50), indicating that the fitting methods are prone
to underestimating βr and that the fitting method inputs do not contain sufficient information
to accurately characterise regeneration using the chosen dissimilarity metric (which could result
in unacceptable predictions following model calibration). This raises questions about whether
the target/observed data needs to feature more than two erosion events and/or less rapidly
fluctuating flow for parameter errors to be detectable using ISE and for regeneration to be well
characterised.

In summary:

• 500 PSO iterations is sufficient for convergence;

• FIT_SIMULT and FIT_NESTED perform equally well but FIT_SIMULT is computation-
ally more efficient;

• Flow profiles with both large infrequent plus small and rapid changes result in datasets
that are more difficult to fit than those for which flow changes in simple steps;

8The flow profile was constant across attempts.
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Figure 5.50: Attempt to fit the VCDM to target dataset VCDM-5 (see table 5.7; generated using a noisy
flow profile and the ‘half ramp’ ϕ (τi, t0) profile) using the FIT_NESTED method. Fitted parameter
values: βe = 1.981× 10−3, α = 1.548, βr = 2.44× 10−8 s−1 (ISE= 20.4, R2 = 0.977, 303 iterations).
Note that βr of VCDM-5 was considerably faster: βr = 2.44× 10−8 s−1 for a β−1

r of 0.5 years.

• Fitting attempts for which R2 < 0.95 should be retried up to two times;

• The shape of the (known) ϕ (τi, t0) profile had no notable impact on the difficulty of
fitting;

• Empirical evidence suggests that the upper bound of βe should be reduced to less than
10 (e.g. 0.1) so as to avoid local optima.

• Certain datasets contain insufficient information to accurately calibrate the βr parameter
using either the FIT_SIMULT or FIT_NESTED method.

5.8 Fitting/estimating the wall sub-model boundary conditions

5.8.1 Introduction

Calibrating the proposed model requires the fitting to data of not only the three empirical
parameters but also the initial amount of material per shear strength at the pipe wall, ϕ (τi, t0).
Different options for fitting these boundary conditions are explored in this section, as are
suggestions for using the most appropriate of these options in conjunction with the FIT_SIMULT
parameter fitting method.

5.8.2 Fit the initial amount of material at every modelled shear strength band
using PSO

One option is to consider ϕ (τi, t0) as being a vector of model parameters, with m being the
number of modelled shear strength bands and i ∈ {1, 2, ...,m}. These plus the parameters
βe, α and βr could be fitted through optimisation using a variant of the FIT_SIMULT (or
FIT_NESTED) method.

This approach may be intuitively appealing but it increases the complexity of the fitting
optimisation problem. Firstly it increases the dimensionality of the problem space from 3 to
3 + m, where sensitivity analysis has indicated that m should be up to 20 for a given step
increase in τe (table 5.2). Finding an optimal solution to the fitting problem in this space will
be more difficult and computationally expensive. Secondly, it requires non-trivial metaheuristic
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constraints. PSO by default assumes that all parameters are independent so would allow
ϕ (τi, t0) to freely vary with respect to τi for each candidate solution. However, if ϕ (τi, t0)
must be monotonically increasing (§4.4.4) then inter-parameter constraints are required to
ensure that ϕ (τi, t0) ≤ ϕ (τi+1, t0). Such constraints are non-trivial to enforce when using
PSO: penalty functions require manual configuration and tuning, ignoring invalid candidate
solutions limits the problem space exploration and replacing invalid solutions with valid ones
requires that PSO be augmented with a local search method (see §2.2.4.4).

5.8.3 Reducing the complexity of the wall state boundary condition vector by
approximation using cusps

The dimensionality and therefore the complexity of fitting both the three model parameters
and the wall state boundary conditions can be reduced if those boundary conditions are treated
not as a freely-varying but monotonically increasing vector, ϕ (τi, t0), but as a simple shape.

For example, one could assume that at t = t0 all shear strengths less than a ‘cusp’ value are
fully exhausted while all shear strengths greater than that (but less than τmax) are maximally
regenerated (ϕ (τ ≤ τcusp, t0) = 0 and ϕ (τ > τcusp, t0) = 1; see fig. 5.51a). This requires the
fitting/estimating of just 3 + 1 parameters rather than 3 +m. Note the conceptual similarity
between τcusp and the PODDS (scalar) material shear strength (τc).

Introducing a second cusp and linearly interpolating the relative quantity of material between the
two cusps (fig. 5.51b) offers greater flexibility whilst only increasing the number of parameters
(and the number of dimensions of the fitting problem space) by one. Additionally, the relative
amount of material at strengths lower than the first cusp could be set to > 0 and/or the
amount greater than the higher cusp to < 1 (fig. 5.51c) at a cost of one or two more
parameters/dimensions (taking the total to ≤ 9). One issue with using two cusps is that, like
the method presented in §5.8.2, complexity is introduced by inter-parameter constraints being
required to ensure the monotonicity of ϕ (τ, t0) (specifically to ensure τlow_cusp ≤ τhigh_cusp

and ϕlow_cusp < ϕhigh_cusp), although the constraints are only one or two in number rather
than the m− 1 needed by the method in §5.8.2.

An issue with all forms of this method is that in some cases it may not be flexible enough to
approximate the wall state boundary condition vector with sufficient accuracy: shear stress

Figure 5.51: This illustrative diagram shows different methods of reducing the complexity of the wall
state boundary conditions ϕ (τi, t0) to a small number of vertices. (a) all shear strengths less than
a shear strength could be assumed to be fully depleted whilst all others are maximally regenerated.
(b): all shear strengths less than a shear strength τlow_cusp could be fully depleted, all shear strengths
greater than a second shear strength τhigh_cusp (where τhigh_cusp > τlow_cusp) could be maximally
regenerated and linear interpolation could be used to determine the quantity of material over the
range [τlow_cusp, τhigh_cusp]. In certain circumstances there may be sufficient evidence for the shear
strengths outside [τlow_cusp, τhigh_cusp] not to be minimal or maximal (e.g. (c)) i.e. to be limited to
[ϕlow_cusp, ϕhigh_cusp].
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levels in trunk mains (the pipes of greatest concern; §2.1.17.2) may change level multiple times
over the period required for full regeneration (potentially 1.5 - 4 years; §2.1.14), which should
result in boundary vector profiles that are more stepped than the simple profiles shown in fig.
5.51. Also, for the simplest single-cusp model the relative amount of material greater than
τcusp may be an over-estimate.

There are however situations where the simplest single-cusp method may be appropriate e.g.
where:

• the conditioning shear stress is known to have been largely invariant before the period of
interest or

• there is insufficient information, time-series or otherwise, to justify a more complex
approach.

5.8.4 Estimate the wall state boundary conditions using the shear stress his-
tory

Fitting the wall state boundary condition vector by optimisation is clearly non-trivial; primarily
due to the difficulty in finding an appropriate trade-off between flexibility and complexity when
forming the optimisation problem.

A different approach is to use knowledge of system dynamics and variable dependencies to
estimate the boundary condition vector (as opposed to treating the system to be calibrated
as a black box). In particular, the shear stress history up to a given moment in time can be
used to estimate/bound that vector at that moment. The model parameters can then be fitted
independently of that vector using data from a time period starting at that moment (see fig.
5.52).

During a time period t ∈ [tL, t0] of say one week (here tL is the start of a ) there will be
temporary and non-temporary increases in shear stress. If the maximum shear stress over this
period is τa_crit then this indicates that there will be little if any material for which τ < τa_crit

by the time t = t0. For the case of simplicity one can assume that the erosion rate factor βe is
sufficiently fast relative to the duration of the shear stress increases and so all shear strengths
less than τa_max are fully depleted by t0. Also, one can assume that regeneration is negligible.

Figure 5.52: The wall state boundary condition vector, ϕ (τ, t0) can be estimated using shear stress (τa)
data from one time period, tL to t0. The model parameters βe, α and βr can then be fitted using shear
stress and turbidity (Tds) time-series data for t0 to a future time, tc, as illustrated here.
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The shear stress signal during [tL, t0] conveys very little information about the amount of
material for which τ > τa_crit at t0. It is therefore sensible to assume the worst case scenario,
which is that the shear strengths for which τ > τa_crit are maximally regenerated at t0.

This approach to estimating ϕ (τi, t0) is illustrated in fig. 5.53. Note that with this method it
is assumed that, as well as erosion being instantaneous, regeneration is negligible.

Here, the length of the period tL to t0 is crucial. The estimate of the wall state vector may be
inaccurate if the period is too short to contain much information about fluctuations in shear
stress. The chance of a high peak in shear stress occurring just before tL but its impact on the
wall state vector not being accounted for is greater for shorter periods. However, estimating
ϕ (τi, t0) using a longer period may also result in inaccurate estimates of the wall state vector
as the assumption that regeneration is negligible over tL to t0 is less valid as t0 − tL increases.
Say that the peak shear stress, τa_crit, over tL to t0 occurs just after tL and that the shear
stress is then lower for some time until t0. This method would estimate that all shear strengths
for which τ < τa_crit are fully depleted at t0 yet if t0 − tL is long enough some of them will
have significantly regenerated so ϕ (τi < τa_crit, t0) will be an underestimate.

The method is very sensitive to variation in shear stress: if erosion is assumed to be instantaneous
then a single high data point could significantly affect the wall state estimate. However, in
reality that momentary increase in shear stress could be too short-lived for much erosion to
occur, so the calculated wall state at t0 would undesirably be an underestimate.

5.8.5 Estimate the wall state boundary conditions using the shear stress his-
tory and an approximate regeneration rate

The method presented in §5.8.4 can be made more accurate by estimating the wall state vector
using not only the shear stress profile calculated from the flow history over the period tL to t0
but also an estimate of (the reciprocal of) the regeneration rate, for the reason given at the
end of §5.8.4.

The reciprocal of the regeneration rate, β−1
r , is the time required for material at any strength

to fully regenerate following complete depletion (assuming no erosion occurs). Estimates of

Figure 5.53: The maximum shear stress, τa_crit, over a period tL to t0 (a) can be used to directly
estimate ϕ (τi, t0), the amount of material per shear strength at t0 (b), as illustrated here. It is assumed
that erosion is instantaneous, regeneration is negligible and so at t0 shear strengths less than τa_crit are
fully depleted and those greater than τa_crit are conservatively assumed to be fully regenerated. Here
the time tL is the start of a period that leads up to time t0.
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this regeneration time have been estimated for DMA pipes of a variety of pipe materials and
supplied with various source waters (§2.1.14).

Let us assume that our estimate of β−1
r is longer than the period tL to t0 for which we can

calculate the shear stress profile from flow data. An example shear stress profile is shown in
black in fig. 5.54a. Let the duration before t0 since a particular material shear strength τi was
exceeded by the shear stress τa be represented by the function

exe (τi, τa (t) , tL, t0) (5.51)

which evaluates to ∞ if τi was never exceeded by τa (t) between tL and t0. Again, the material
erosion rate factor, βe, is assumed to be fast enough so that complete material erosion occurred
when each material strength was last eroded i.e.

ϕ (τi,t = t0 − exe (τi, τa (t) , tL, t0)) = 0 (5.52)

The relative amount of material at t0 is therefore the time over which a shear strength has
been regenerating prior to t0 divided by the reciprocal of the estimated regeneration rate, all
clipped to the range [0, 1] (eq. 5.53). The result of this is the red line in fig. 5.54b.

ϕ (τi, t0) u clip

(
exe (τi, τa (t) , tL, t0)

β−1
r

, [0, 1]
)

(5.53)

Here it is assumed that βr is constant w.r.t. t over the period tL to t0 (for the reasons given in
§4.3.3), although this method could be adapted should a model of the relationship between βr
and recorded time-varying parameters such as temperature be incorporated into the proposed
model.

It is thought that the time required for complete regeneration, β−1
r , will often be longer than

the period tL to t0 for which there is data available for calculating the shear stress: regeneration
times are estimated to be up to four years (§2.1.14) yet reliable flow data for calculating the
shear stress may not be available over such durations due to flow meter and/or SCADA issues.
Under these circumstances a variant of the above method is required.

Let the maximum shear stress between tL and t0 again be τa_crit. The relative amount of
material at t0 with strengths less than τa_crit can be unambiguously estimated using eq. 5.53

Figure 5.54: Illustration showing how one could calculate the wall state boundary condition vector,
ϕ (τi, t0), from a historical shear stress profile, τa, that is longer than the estimated time required for
complete regeneration, β−1

r .
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(see the red line in fig. 5.55a). However, the amount of material at t0 with strengths greater
than τa_crit cannot be calculated as it could have been regenerating

1. since as long ago as t0 − β−1
r (blue line in fig. 5.55a; ϕ (τi, t0) is therefore maximal i.e.

1),

2. just since tL if there was a large shear stress spike immediately before tL (green line in
fig. 5.55b; ϕ (τi, t0) is therefore (t0 − tL) /β−1

r ) or

3. for a given strength τi it could have been regenerating since some time between t0− β−1
r

and tL. This time is ‘unknowable’, therefore one can only calculate upper and lower
bounds for ϕ (τi, t0) as per 1 and 2 above.

The more historical flow data that is available and the more the duration t0 − tL approaches
β−1
r , the more similar the lower and upper bounds of ϕ (τi, t0) are.

Note that it is not appropriate to refer to the upper and lower bounds of ϕ (τi, t0) as worst and
best cases as, after estimating ϕ (τi, t0) and then fitting the parameters to data (at t = tc in
fig. 5.52), what was thought of as the ‘best case’ for ϕ (τi, t0) may be associated with a higher
α value (output scaling factor) which may result in a greater turbidity response being predicted.

If applying the method prior to fitting βr (using FIT_SIMULT) then there is a need to
acknowledge the uncertainty in the estimation of βr used here. This understanding of the
expectation of / variance in βr for a given system will be informed by βr values found through
the prior analysis/modelling of similar systems. Prior information on regeneration rates exists
for DMAs but not for trunk mains, for which a high variance in βr may need to be assumed.
The conclusion from studying the effect of using the fastest and slowest estimates of βr on the
upper and lower bounds of ϕ (τi, t0) for a trunk main model may be that the ‘upper upper’
bound and ‘lower lower’ bound may be sufficiently dissimilar for the method to have negligible
benefit in estimating/bounding ϕ (τi, t0).

Another unattractive quality of this method is that it requires the assumption that If a particular
shear stress was reached at any point between tL and t0 then all material weaker than that
strength was instantly eroded i.e. βe is assumed to be effectively infinite prior to t0. This
makes the method very sensitive to short-lived shear stress spikes that in reality only cause
partial conditioning.

A method of yielding upper and lower estimates of boundary conditions is in theory valuable but
it could prove difficult to couple it to the FIT_SIMULT parameter fitting method. Decisions

Figure 5.55: Illustration showing how one could estimate the wall state boundary condition vector ϕ (τi, t0)
from a historical shear profile, τa, that is shorter than the time required for complete regeneration, β−1

r .
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would need to be made regarding if/how to propagate the upper and lower boundary condition
estimates through a PSO run and if/how the βr PSO bounds should be informed by the fastest
and slowest βr values used to estimate the boundary conditions.

5.8.6 Estimate the wall state using VCDM conditioning

The wall state can more easily be estimated using historical time-series data and without the
need for assumptions regarding erosion rates and regeneration rates by using the VCDM itself
rather than an additional method.

First, identify a period over which to calibrate the model that starts with flows being particularly
high. Next, set ϕ (τi, t0) to trivially be 1 for all modelled shear strength bands. Start a VCDM
simulation and allow the shear stress profile to erode material naturally i.e. erosion is not
assumed to be instantaneous as βe has a finite value. The initial turbidity response will be
erroneous as material erodes but over time the model wall state will converge on the true wall
state.

With this approach the wall state can be estimated and the parameters fitted simultaneously
using FIT_SIMULT. This will work best if, within the PSO objective function, the timesteps
corresponding to the most erroneous parts of the turbidity prediction (the initial conditioning)
are ignored when calculating the correlation between predictions and observations.

The extents of the calibration period are important: if the flow is low at the start of the period
but is high(er) shortly before then the modelled wall state could take months to converge to
the true value. However, if the highest flow during the calibration period occurs early on then
convergence would be much quicker and when calculating the correlation of observations and
predictions within the PSO objective function one may simply need to ignore say five turnovers
after this high flow period to allow the material that occurred during the wall state conditioning
to pass out of the modelled pipe.

This approach to estimating the wall state is simple, requires no more assumptions regarding
processes/parameter values than the VCDM (unlike that of §5.8.4 and §5.8.5) and neatly
integrates with the FIT_SIMULT method. One disadvantage is that, like §5.8.4 and §5.8.5, it
requires months if not years of historical flow data. Another is that it does not provide any
measure of the uncertainty in the estimate of the wall state. A third is that knowing when
to ignore turbidity responses when calculating the ISE may in cases where the flow profile is
highly variable not be obvious. However, if the calibration period flow profile is of sufficient
duration and begins with a large flow event then it may the most attractive option.

5.8.7 Estimating the wall state boundary condition using generalisations/ ob-
servations of the data

Another simple approach is to use high-level knowledge of the flow history and or relationship
between flow and turbidity to arrive at simple boundary conditions (simple as per the single-cusp
shape described in §5.8.3). For example, if it is known that the flow has been constant for
many months before and at the start of the calibration period then one might assume that
relationship between the relative amount of material at the pipe wall and shear strength is
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polarised around the average shear stress during the first few days of the calibration period.
Alternatively, one may observe that a main only produced a turbidity response when the shear
stress exceeded a particular level and so use that level to polarise the material quantity versus
shear strength relationship.

This is a subjective, potentially overly-simplistic approach but it may be useful when fitting
to esoteric datasets. A similar approach is often taken by modellers to decide on an initial τc
value when calibrating PODDS models.

5.8.8 Discussion and summary

In this section several possible ways for fitting or otherwise estimating the wall state are
presented. These vary in flexibility, complexity, their assumptions and the ease of integration
with the chosen parameter fitting method; none are ideal for all situations and choosing one over
the another depends on factors such as the size and timing of flow events within a calibration
period, the quantity of available historic flow data and the accuracy of flow data.

The method where the initial amount of material at every modelled shear strength band is fitted
using PSO (§5.8.2) thought to be too complicated to be practical (due to the increase in fitting
problem dimensionality and the need for inter-dimensional fitting constraints). Estimating the
wall state boundary conditions using the shear stress history (§5.8.4) and possibly an estimate
of the regeneration rate (§5.8.5) requires the assumption that erosion is instantaneous, which
is not believed to be justifiable. This leaves the methods where simple boundary conditions are
fitted (§5.8.3) or estimated (§5.8.7) or alternatively the wall state is simply allowed to converge
to an accurate solution over time (VCDM conditioning; see §5.8.6)

5.9 Determining the ‘net turbidity response’ within a pipe

When attempting to calibrate a VCDM model for a particular pipe, the simplest, ideal scenario
is that downstream turbidity observations, Tds, are solely a function of discolouration processes
within that pipe, as the turbidity of water passing into that pipe is negligible. In practise, as
will be seen in the next chapter, Tds is often also shaped by Tus ( previously mentioned in
§4.3.6.4). The two most likely reasons for this are:

• Fluctuations in source water turbidity (e.g. due to treatment processes and interactions
in reservoirs and at blending junctions) are of notable magnitude compared to turbidity
response due to material erosion. The impact of this is illustrated using artificial data in
fig 5.56;

• Increases in flow may cause erosion in the pipe of interest but also in pipes further
upstream. Note that this is less likely to be the case if:

– The asset(s) upstream of the pipe of interest is a service reservoir or pipework
of greater diameter or lesser roughness, so the an increase in flow only causes a
significant increase in shear stress in the pipe of interest;
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– Unidirectional flushing operations have been sequenced so that the pipes upstream
of the pipe of interest are flushed first, ensuring a clear water front (Vreeburg and
Boxall, 2007) when flushing that pipe;

If Tus is not negligible then one needs to discount Tus before or during the VCDM fitting
process so that only the net turbidity response, Tnet, is modelled by the VCDM. Tus can be
discounted before the fitting process by removing its effect from the Tds signal to yield Tnet.
The model is then fitted to the Tnet signal. It is trivial to derive Tnet by subtracting Tus lagged
by the turnover time from Tds if the bulk velocity, u, is time-invariant (eq. 5.54). However,
this is unlikely to be the case during turbidity events given that changes in shear stress drive
erosion. The simple expression in eq. 5.54 cannot be directly calculated for cases where bulk
velocity (and turnover time) is time-varying as the effect of Tus on Tds (t) is not just a function
of the turnover time at time t but also the (changing) turnover times as material passes down
the pipe of interest. A tractable approach is to supply Tus to a Lagrangian transport model to
model advection to the end of the pipe then subtract this signal from Tds to give Tnet.

Tnet (t) = Tds (t)− Tus
(
t− L

u

)
(5.54)

Alternatively Tus can be supplied as a turbidity boundary condition during the model fitting pro-
cess: it can used as input to the VCDM’s Lagrangian transport function (the upstream_conc_v

parameter in pyvcdm (§4.5.3)).

Both approaches are obviously most accurate if Tus was directly observed using a second
turbidimeter but when analysing historical datasets or in situations where a second turbidimeter
was not available, could not be fitted or malfunctioned it may be necessary to estimate Tus
using signal processing such as those described in §2.2.6.

5.10 Conclusions

The model formulations and implementation were verified. Demonstrations of model
functionality confirmed that the model’s formulations and software were a satisfactory im-
plementation of the conceptual model. In particular, discolouration material was shown to
regenerate at different shear strengths simultaneously, in keeping with observed behaviour.

The (numerical) evaluation of the proposed model requires the discretisation of both time and
shear strength; the sensitivity to mesh resolution (∆t and ∆τ) was therefore explored both
analytically and numerically. Several characteristic values of the model were identified through
the analytical studies, such as the minimum timestep required for resolving the erosion of a
shear strength (td) and the minimum timestep required to prevent a water parcel from passing
through a pipe undetected (the turnover time, tt).

∆τ was found to be analytically dependent on ∆t but it can be considered independent if ∆τ
is notably less than the shear stress. Also, one effect of the chosen erosion model is that ∆τ
analytically influences the rate at which turbidity decays following an erosion event: in theory
finer discretisation results in longer turbidity ‘tails’, but in practise this is unlikely to be relevant
as such tails are anticipated to be dominated by the system SNR.
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Figure 5.56: The turbidity response detected at the downstream end of a pipe of interest, Tds(t), is a
function of the turbidity of water passing into that pipe, Tus(t), after that material has been advected
to the downstream end, and the latent turbidity signal due to the erosion of discolouration material
from the pipe wall (the net turbidity response, Tnet(t)). Here, Tus(t) and, by extension, Tnet(t), were
produced using the mass transport model coded as part of the reference software implementation of the
VCDM.

The sensitivity to the mesh resolution was investigated numerically with regards to four scalar
measures of model output, resulting in a set of bounds for ∆t and ∆τ that minimise the effect
of discretisation error due on the model outputs.

The sensitivity of the model to inputs and parameters was explored. The model may
be non-trivial to fit to data and the fitting process may be indeterminate for certain model
instances: sensitivity of the model parameters and boundary conditions showed that there
are multiple ways to change the shape and scale of turbidity predictions (for erosion events)
by changing these quantities. The sensitivity to the magnitude of flow changes, pipe length,
internal pipe diameter and pipe roughness were also investigated; these also notably affected
the shape and size of turbidity responses but this is less problematic for the purposes of model
fitting as those quantities are easier to measure/estimate than the latent parameters and
boundary conditions.

A method for fitting instances of the model to data was developed and verified under
idealised conditions. Methods for fitting the three model parameters and boundary con-
ditions were developed independently then combined. Several options were considered for
fitting the parameters. The chosen ‘FIT_SIMULT’ option uses PSO to fit all three param-
eters simultaneously, the objective function here being the ISE of turbidity predictions and
observations.

The performance of FIT_SIMULT and of alternative methods was explored by trying to ‘recover’
the parameters used to generate artificial turbidity predictions. The chosen method was no less
suited to fitting the model to erosion events and regeneration periods than any other method
but was simpler and more efficient than the alternatives. For certain model configurations,
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multiple fitting attempts were required to achieve R2 > 0.95 due to the stochastic nature of
PSO; in others the fitting process appeared to contain insufficient information to recover the
‘target’ model parameters.

Methods for fitting or estimating the wall state boundary conditions. Several different
methods were considered. These differ in their assumptions (regarding parameter values) and
requirements (regarding the availability and variability of historical flow data). Three of these
methods were considered to be suitable for developing a VCDM model of a real pipe.

Methods for isolating/fitting just the net turbidity signal In situations where the incom-
ing turbidity is not negligible compared to the turbidity response due to erosion, the incoming
turbidity signal must be discounted to prevent it from limiting the quality of model fit.
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Chapter 6

Model validation

“Model validation is substantiating that
the model, within its domain of
applicability, behaves with satisfactory
accuracy consistent with the [modelling
and simulation] objectives. Model
validation deals with building the right
model.”

Balci (1997)

6.1 Introduction

In chapter 5, the proposed model was verified i.e. the VCDM formulations and reference
implementation were shown to satisfy the conceptual specification set out in the earlier parts
of chapter 4. However, this model is of little practical value unless it can be demonstrated that
the assumptions that underpin the model are valid and that the model can be calibrated to
reflect and predict reality with acceptable accuracy.

The first part of this chapter identifies the unvalidated assumptions made when developing
the model that are most critical regarding its usefulness. The assumptions that could feasibly
be tested were investigated under controlled laboratory conditions using a pipe rig of realistic
proportions.

In the second part, the validity of the model as a whole is explored by calibrating model
instances of several DMA and trunk mains using historical datasets and the calibration method
developed in §5.7 and §5.8, the latter having been adapted to accommodate the non-ideal
characteristics of real world data and systems. The accuracy of predictions following calibration
is also tested.
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6.2 Testing model assumptions

6.2.1 Introduction

Not all of the model assumptions listed in §4.6 could/needed to be tested. Those common to
the proposed model and the field-validated PODDS erosion model or common approaches to
DWDS hydraulic or water quality modelling did not need to be re-evaluated.

The following two assumptions, both specific to the proposed model, were tested:

1. The model parameters are invariant with (absolute) shear strength. The motiva-
tion for investigating this assumption was that the model would be far more complex if βe,
βr and/or α were a function of shear strength (fig. 6.1): the dependency on shear strength
would need to be parameterised, yielding more model variables, a greater parameter space
and a model that is more difficult to calibrate and use. To test for differing erosion and
regeneration characteristics between several shear strength bands, an experiment was
conducted in a system of realistic scale but under laboratory conditions (for accurate
flow/shear stress control over a multi-month period); this is covered subsequently in
§6.2.2.

2. The model parameters are invariant with time. Again, model complexity would be
far greater if βe, βr and/or α were found to be time-varying by a significant amount.
However, testing for time-variance in discolouration processes under controlled laboratory
conditions is non-trivial due to the required time-scales. For example, it is not practical to
conduct a laboratory experiment once per quarter for one or two years to study seasonal
variation in regeneration rates. Instead, the assumption has been implicitly tested by
calibrating and validating real trunk main models over multi-year time periods (§6.3.4
and §6.3.5).

Several other assumptions were also specific to the proposed model but testing them was
not possible, at least within the scope of this project:

1. Holistically, weaker and stronger shear strength bands erode simultaneously. This
assumption, illustrated in fig. 4.16, is difficult to validate as different conceptual models
of material erosion are only distinguishable under certain conditions such as partial erosion
(see figs. 4.15 and 4.15) that will be difficult to establish in practise. However, it may
not matter if the erosion model does not accurately reflect the true nature of underlying
physical processes if it produces satisfactory results.

2. The rate of material erosion is constant with time but not with shear strength.
As per the above.

3. A quantum of wall-bound material has an invariant shear strength. This is unlikely
to be true but it cannot be disproved. It is not possible to monitor the strength of a
quantum of discolouration material over time: one cannot observe the state of a quantum
of material without altering it.
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Figure 6.1: The assumption made in §4 was that the model parameters βe, α and βr do not vary
with the shear strength of wall-bound discolouration material. Alternatively, they could vary linearly or
non-linearly with shear strength, as illustrated here.

4. Bulk water turbidity is not significantly reduced by material regeneration. With
perfectly accurate and calibrated turbidity instrumentation upstream and downstream of
a length of main it would be possible to test this assumption by looking for a notable
drop in turbidity over the main under invariant flow conditions (no erosion). However, in
practise it would be difficult ensuring a constant enough flow to test this in a pipe long
enough for any turbidity drop to be notable relative to signal/instrument noise.

The following assumptions were also not tested as they are common to the VCDM model
and the validated PODDS erosion model:

1. Discolouration processes (and model parameters) are invariant with the angle to the pipe
invert.

2. Discolouration processes (and model parameters) are invariant with longitudinal distance
along a pipe.

3. Dispersion effects are insignificant.

4. Transient pressure waves and unsteady shear stresses do not impact on material erosion.

5. Material does not settle as sediment except under quiescent conditions.

6. Turbidity is proportional to TSS

6.2.2 Experimentally verifying the assumption that model parameters are in-
variant with shear strength1

6.2.2.1 Theory

If/how the model parameters vary with shear strength can be tested by conducting operations
similar to those described in the demonstration of VCDM capabilities presented in §5.2.5.

1This section contains text that has been quoted and adapted from Furnass et al. (2014a).
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Take a pipe where the diameter, roughness, bulk velocity and flow are invariant along its length
and its internal surfaces are entirely devoid of discolouration material and biofilm. If this is
supplied with water of a consistent quality and experiences low shear stresses for several months,
then discolouration material will accumulate over a wide range of shear strengths.

Following this ‘growth phase’, the variation in the characteristics of discolouration material with
shear strength can be studied by increasing the shear stress in steps and studying the turbidity
response per step. The model formulations ensure that both the rate and amount of erosion are
functions of the excess shear stress; therefore to study whether parameters vary with absolute
shear strength one needs to increase the shear stress during the experiment in steps of equal
magnitude to control for excess shear stress (i.e. each step gives the same excess shear stress).

During this ‘flushing phase’, let each shear stress step be sustained for a sufficient number
of turnovers for all affected shear strengths to be fully depleted and all mobilised material
discharged from the pipe (see fig. 6.2). Given these conditions the total amount of material
mobilised per step can be quantified as the observed material flux integrated over the duration
of each flow step (see §2.1.13.2, §5.2.5 and eq. 5.3; assuming that the background turbidity is
negligible).

Here the amount of material mobilised per step is a function of how long the corresponding
shear strength band had been regenerating for when it was eroded (and depleted), the relative
rate of material accumulation (encoded as βr) and the maximum material capacity and light
scattering properties of that shear strength band (encoded as α). If the quantity of mobilised
material is invariant between shear stress steps and all corresponding shear strengths have been
accumulating for the same duration then both βr and α are therefore invariant with shear
strength. Note that flushing phase is assumed to be sufficiently short relative to the growth
phase that each of the shear strength bands mobilised during the flushing phase has had the
same amount of time to regenerate when they are successively eroded. Another assumption is
that discolouration processes are longitudinally homogeneous along a pipe length of consistent
diameter, roughness and pipe material.

Quantifying the amount of material mobilised per shear stress step as the integral of material
flux is preferable to quantifying it using the peak turbidity (eq. 5.5) per step:

• The latter is not independent of the erosion rate factor, βe, as that parameter also
influences the scale of the turbidity response (§5.4) yet we wish to separately test that
βe is invariant with shear strength;

• Material flux integrated over time will be less sensitive to flow and turbidity measurement
error.

It is not possible using this test to distinguish the effects of βr and α; one can only say
both or neither are invariant with shear strength. A lengthier experiment involving multiple
successive regeneration periods of differing durations (e.g. fig. 5.31) would be required to
differentiate them; this would be of interest if it could be demonstrated that at least one of the
two parameters varies with shear strength.

To test for erosion rate factor βe being invariant with shear strength the turbidity responses
from all steps should follow the same upward curve to the turnover time (fig. 5.11). This is
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Flushing phase

Figure 6.2: Under controlled conditions, increasing the shear stress in equal increments following a
lengthy growth phase allows the variation in erosion and regeneration processes with absolute shear
stress to be explored. This requires uneven flow increments due to the non-linear relationship between
flow and shear stress. The step increase in shear stress at the very start of the simulated flushing phase
shown here is somewhat sacrificial: it sets a minimum shear strength that is just above the maximum
shear stress of the preceding growth phase, reducing the uncertainty in the state of the weakest material
that results from slight variations in shear stress over the growth phase.

only true if all steps mobilise the same amount of material, so βr and α must already been
shown to be invariant with shear strength before this test can be performed.

Let us define a null hypothesis and two alternative hypotheses:

H0 All three model parameters, βr, α and βe, are constant with shear strength.

HA1 The parameters βr and α (the perceived amount of accumulated material after a given
time) are constant with shear strength but βe is not.

HA2 One or both of βr and α vary with shear strength and it cannot be determined whether
βe does.

6.2.2.2 Experiment

These hypotheses were tested under controlled laboratory conditions but using two independent
pipe systems of a scale partially representative of DWDS pipework. There are several reasons
why it is advantageous to conduct such an experiment using a dedicated experimental pipe rig
rather than in the field:

• Greater control of variations in water quality including temperature (which can have a
domineering impact on regeneration rates; §2.1.16.2);

• Accurate, high-resolution, monitoring of turbidity and flow (particularly if there are no
branches);

• Accurate, fine-grained flow control, which is important when moving between higher
flows due to the non-linear relationship with shear stress (see fig. 2.7). Also, flow can be
controlled over lengthy periods as it is not demand-driven;

• The ability to erode discolouration material and increase bulk water turbidity without
there being a risk of affecting customers.
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The pipe systems, A and B, were each structured as per fig. 6.3 and table 6.1, with the length
of HDPE pipe per system being sufficient so that discolouration processes are dominated by
what occurs at the pipe wall and not erosion and accumulation within the tank and around
hydraulic devices such as pumps and valves. Pipe diameters were typical for DMA mains in the
UK, ensuring that system hydraulics are largely representative of distribution system mains.
The pipe system configurations were similar to those used by Sharpe (2013) and Fish (2014)
(previously referenced in §2.1.13.4), the main differences being the type of turbidity monitoring
hardware and the monitoring/control software.

Table 6.1: Dimensions of pipe systems A and B

Capacity
[
m3] Distance [m]

System Tank Tank & pipes i-ii ii-iii iii-iv iv-v v-vi
A 0.486 1.527 8.46 181.76 0.31 9.30 16.50
B 0.486 1.493 9.10 181.76 0.31 9.30 9.00

The internal surfaces of the pipe systems were initially cleaned by dosing with sodium hypochlo-
rite to 20mg ·L−1 then pumping at the maximum attainable flow rate (7L · s−1) for 24 hours.
During the subsequent growth phase water partially recirculated within each system but the
outflow to waste from each tank and the inflow from supply were controlled to give a 24-hour
hydraulic residence time. This prevented stagnation and provided a constant renewal of free
chlorine and a background concentration of inorganic and organic matter. Supply was via an
unlined CI trunk main from a works that treats peaty moorland run-off using iron coagulant.
The room temperature was controlled at 16◦C as fluctuations in temperature can have a
dominant effect on accumulation rates (Sharpe, 2013).

System monitoring, control and data logging were all automated. Proportional integration (PI)
controllers, implemented using Labview (Elliott et al., 2007) software and hardware, varied the
pump speed to maintain 20m of hydrostatic pressure at monitoring point P2. The same system
continually monitored flow using Flownetix ultrasonic meters and manipulated an actuated
valve so as to follow user-specified flow profiles.

During the growth phase (85 and 86 days in pipe systems A and B respectively) the diurnal
hydraulic profiles shown in fig. 6.4 were imposed. These profiles differed for the purposes of
a coincident experiment that is not discussed here. This phase was followed by a flushing
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Figure 6.3: Schematic of each pipe system.
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phase where the shear stress was increased in both systems in steps of 1.11Pa up to the
maximum flow as per table 6.2. Each step was sustained for five turnovers to ensure complete
erosion over the affected shear strength range. The shear stress during Step 0 was just higher
than the shear stress experienced in either system during the growth phase, thus ensuring a
consistent minimum shear strength across both systems at the start of the flushing phase. Flow
and pressure set-points and measurements along with turbidity readings were logged every 5 s
during this phase (and every 5 minutes during the growth phase).

Table 6.2: Flow rates and corresponding shear stresses imposed during the flushing phase.

Flow step 0 1 2 3 4 5
Flow Q [L · s−1] 0.72 3.06 4.35 5.37 6.23 7.00
Shear stress τa [Pa] 0.09 1.12 2.31 3.42 4.54 5.65

Shear stress, τa, was determined using a roughness (0.075mm) previously calculated by
Husband et al. (2008) for the same pipe diameter and material plus eqs. 2.9, 2.10, 2.11 and
2.12. For these calculations, the pipe diameter was assumed to be a constant 79.3mm as the
length of the section where it was 50mm (see table 6.1) was assumed to be negligible w.r.t.
the total length of pipework. Also, this narrower section lay downstream of turbidity meter T2,
so the shear stress only changed (increased) after the second turbidity monitoring point, before
water returned to and was mixed within the tank.

During each system’s flushing phase, turbidity was monitored at locations T1 and T2. Turbidity
meter optics were cleaned at the end of the growth phase. The turbidity within each system
increased over the flushing phase due to the recirculation of mobilised material, making H0

more difficult to test. The intention had been to measure the net response between T1 and T2

and discount for recirculation effects by modelling the advection of the signal detected at T1 to
the position of T2 then subtracting this from the signal recorded at T2; however this was not
possible as T1 in both systems failed and so only the T2 signal could be analysed.

Each system was hydraulically isolated from mains supply during its flushing phase; because of
this, the outflows from turbidity meters T1 and T2 were returned to the relevant tank rather
than allowed to go to waste so as to prevent tank depletion and pump trips. The impact of
these flows on the tank turbidities has been ignored in the following data analysis due to the
negligible magnitude of the flows compared to those in the � = 79.3mm pipes (0.85L ·min−1;
found by solving the Bernoulli and Darcy Weisbach equations for flow). The signal propagation
delay due to flow from the monitored pipe section to the turbidity meters is said to be negligible

Figure 6.4: Flow, Reynolds number and shear stress diurnal profiles imposed over the 85 to 86-day
growth phase.
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for the same reason.

The control system increased the pump speed quickly but asymptotically at the start of each
flow step to lessen the risk of transient shear stresses impacting on the wall-bound discolouration
material. The rate of increase was not constant with excess shear stress but was a function
of measured flow. The method for increasing flows that was programmed into the LabView
control software was to allow 15 s per 1L · s−1 increase with a minimum of one minute for the
operation. There was therefore concern that the characteristics of this control system could
limit the ability to study the relationship between the erosion rate and shear stress, particularly
at higher flow rates where the time taken to reach the set point was a greater proportion of
the turnover time. However, the effects of the way in which flows were increased between steps
was found to be negligible (discussed subsequently in §6.2.2.7).

6.2.2.3 Tests adapted for a recirculating system with only one turbidity meter

To test H0, there was a need to distinguish the material mobilised by each τa step. This was
done by iteratively subtracting the mean of T2 (t) over the final turnover of a particular step
from T2 (t) over the entire following step (whilst ensuring the result was non-negative). Let this
derived signal be T (t). Although this data pre-processing partially accounted for recirculating
by removing the ‘background’ turbidity from each step, it did not account for signal obscuration
due to the recirculation of mobilised material during a single step, which will be seen following
one turnover time into each step. The tests outlined in §6.2.2.1 therefore cannot be applied
without modification, as material recirculation affects the integral of the product of T (t) and
flow over each step (and therefore the perception of material accumulation) and the upward
curve of the T (t) spike per step (and the perception of material erosion). Those theoretical
tests can however be adapted to accommodate these constraints:

• The perceived accumulation (and βr and α) are constant with shear strength if the
integral of the material flux over the last turnover per step is constant (assuming that
after five turnovers erosion has reached steady state and the system is well-mixed).

• The erosion rate is constant with shear strength if the perceived accumulation is constant
with and the curvature of T (t) is the same for the first turnover of each step (before
unaccountable-for recirculation effects are first seen).

6.2.2.4 Data analysis results

Fig. 6.5 shows the flow and turbidity per system during the flushing phase along with the
derived turbidity signal T (t) for which the ‘background’ turbidity due to recirculation has been
partially removed. An erosion response per τa step can be seen in T (t); no upper limit to τ
(i.e. τmax) was found. Note that the drop in turbidity after Step 2 is due to 6-9 minutes of
data being cut from the flow and turbidity time-series: the pumps were stopped over this time
for microbial sampling (for a coincident experiment and not discussed further here).

The turbidity signal T (t) over the last turnover per τa step (fig. 6.6) indicates that the same
amount of material accumulated per unit τ during the growth phase over most of the studied
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(b)(a)

Figure 6.5: Flow Q (t) and measured turbidity T2 (t) over the flushing phases of systems A (subplot
a) and B (b). T (t) is the turbidity per τa step with the background turbidity of the previous step
subtracted.

strength range (Steps 3-5 in system A; Steps 2-5 in system B). However, proportionally more
material accumulated at weaker strengths. Here the amount of material mobilised per step,
Aw ·N , was calculated as the time-integral of material flux and is expressed in TPMU (eq. 4.2).
The assumption that erosion would have reached a steady state and the system be well mixed
before the fifth and final turnover per τa step appears to be valid: there is little if any rise in
turbidity over the fifth turnover. Note that the drop in turbidity during Step 5 in system B was
due to a momentary pump trip during the previous turnover. Perceived accumulation appears
to be constant with τ for all but the weakest strengths, allowing the relationship between the
erosion rate factor βe) and absolute τ to subsequently be assessed for all but the weaker end
of the studied shear strength range.

Fig. 6.7 shows T (t) for the first turnover of each τa step bar Step 1. The SNR prevents a
conclusion from being drawn as to whether the curvature of all responses is the same and the
erosion rate (and therefore βe) is constant with shear strength. The SNR is not unsurprising:
the ATi A16/76 turbidity meter has an accuracy of the greater of ±5% and ±0.02NTU when
the output range is set to 0− 40NTU . Systems A and B both show a slower rise in T (t) over
the first turnover of Step 3; the reason for this is not known.

6.2.2.5 Data analysis discussion

The perceived material accumulation was not found to be constant with shear strength over
the entire studied τ range in pipe systems A and B; H0 has therefore been rejected in favour
of HA2. The implication of this is that βr and α are not constant with τ and the variance
of βe with τ cannot be conclusively decided. However, the results also indicate that all three
parameters are constant with τ for all but the weakest-bound material.

It is not possible using the data from this experiment to determine whether it was βr and/or
α varying with τ that caused more material to be detected at the lower end of the studied
strength range. These effects could be distinguished in future by repeating the experiment with
differing growth phase durations (somehow controlling for seasonal variation in source water
quality) and/or using particle counting equipment to study if and how particle diameters and
therefore light-scattering properties vary with τ .

There is a question of whether the amount of perceived material is greater for shear strengths
above the maximum conditioning shear strength of the growth phase, or whether the perceived
amount of material is greater over an absolute shear strength range. The two pipe systems
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(a) (b)

Figure 6.6: Processed turbidity T (t) for the last turnover at each τa level, which is a measure of the
amount of material per discrete τ range. (a) and (b): pipe systems A and B respectively. Figures in
parentheses are the integral of material flux over the last turnover of each flow step (after removing the
‘background’ turbidity from previous flow steps).

(a) (b)

Figure 6.7: Processed turbidity T (t) for the first turnover at each τa level bar Step 1. The curvature of
T (t) is a measure of how the erosion rate and amount of accumulated material vary with absolute τ .
(a) and (b): pipe systems A and B respectively.

experienced different daily maximum shear stresses over the growth phase yet exhibited similar
responses during the flushing phase, suggesting that distinct turbidity responses for Step 1 were
due to there being more material over an absolute shear strength range. Overall, more material
was mobilised in system A, which could be due to differences in growth or flushing conditions
(e.g. different nutrient fluxes and/or growth phase shear stress profiles) but the differences
were slight.

6.2.2.6 Modelling method

In addition to testing the hypotheses listed in §6.2.2.1 using an entirely data-driven approach,
the flushing phase experimental results were also modelled numerically using the developed
VCDM implementation. Modelling the experiment has the advantage over the data-driven
analysis of the VCDM implementation of being able to account for recirculation effects by
modelling advection and mixing. This negates the need for ad-hoc methods for removing the
background turbidity at the start and during each flow step. However, the modelling approach
has a number of disadvantages compared to the data-driven analysis: the model requires the
calibration of parameters and assumptions need to be made with regards to boundary conditions
and tank mixing models.

The implemented material transport method required some adaptation to allow it to model a
recirculating system featuring a tank. For each simulation timestep other than the first:

1. React all water parcels in the pipe length comprised of sections iii to iv, iv to v and v to
vi (see fig. 6.8); let this pipe length be known as SENSOR_TO_TANK;

2. Determine the turbidity at the tank inlet;
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Figure 6.8: The schematic of each pipe system as modelled. Roman numerals correspond to the locations
shown in fig. 6.3.

3. Calculate a new tank turbidity, assuming complete, instantaneous mixing and a full tank;

4. React all water parcels downstream of the tank and upstream of the turbidity sensor
(pipe sections i to ii and ii to iii in fig. 6.8);

5. React all water parcels in the pipe length comprised of sections i to ii and ii to iii (see
fig. 6.8); let this pipe length be known as TANK_TO_SENSOR;

6. Advect material from the tank into the TANK_TO_SENSOR pipe length.

7. Advect material out of the TANK_TO_SENSOR pipe length and calculate a nodal
turbidity at the turbidity meter tapping point.

8. Determine the material that has passed in to SENSOR_TO_TANK from
TANK_TO_SENSOR.

The following assumptions were made when fitting the VCDM to the flushing phase data from
pipe systems A and B:

• Regeneration was negligible;

• Tank mixing was instantaneous and negligible;

• The change in diameter downstream of the turbidity sensor tapping point was not
important and so for ease of modelling all pipework could be treated as having an internal
diameter of 79.3mm for the reasons given previously in §6.2.2.2.

• The shear strength range of interest, [τmin, τmax], was from the lower to upper bound of
the modelled flushing phase shear stress profile. A turbidity response is seen from every
step increase in shear stress so there was no evidence of a ‘cleaning’ shear stress (see
§2.1.15) and so no justification for setting τmax to any less than the maximum shear
stress. The range [τmin, τmax] was discretely modelled as 1000 shear strength bands.

• The relative amount of material at the start of the flushing phase was (at least initially)
assumed to be maximal (i.e. 1) over the modelled shear strength range. Flow step 0 then
served the purpose of conditioning the wall state (like the VCDM wall state conditioning
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method described in §5.8.6). Any shear strength initially being maximally regenerated
was unlikely given that full regeneration is estimated to take 1.5 to 4 years (§2.1.14) yet
the duration of the experiment was approximately 90 days. However, this inaccuracy
was not relevant to the testing of hypothesis H0; what was important was that at the
start of the flushing phase all shear strengths greater than the shear stress of step 0 were
considered to have the same relative amount of material as they had been regenerating
for the same duration during the growth phase and there was insufficient evidence to say
that material regeneration varies with shear strength (§2.1.13.4).

• The background turbidity at the start of the flushing phase was 0.06NTU , which was
the average turbidity during the growth phase.

• The time period during which there was no flow for several minutes (for biofilm sampling;
see §6.2.2.4) was removed from the modelling input time-series to simplify the modelling
process as the turbidity observations during this period were erroneous (due to settling
effects).

Both the ideal (stepped) and measured (asymptotically increasing) flow profiles were used
to generate VCDM predictions to assess if/how non-instantaneous flow increases and small,
momentary flow fluctuations influenced predicted turbidities.

The VCDM was fitted to data iteratively by hand rather by using PSO.

6.2.2.7 Modelling results

No values of βe and α could be found that gave an accurate turbidity prediction over all shear
stress steps: it was only possible to achieve good fits to the earlier (fig. 6.9) or later (fig. 6.10)
part of the turbidity profile for each pipe system. As can be seen from these figures, two sets
of flow profiles were used to generate VCDM predictions: Q_ideal is the desired (set point)
flow whereas Q_high_sens is the measured flow. The differences between the two sets of
predictions were small, even though the measured flow asymptotically approaches the set point
at the start of each flow step and the measured flow includes several rapid fluctuations due to
pump and control system instabilities.

Figure 6.9: The VCDM was fitted to just earlier turbidity observations from pipe systems A (left subplot;
βe = 0.005; α = 0.038) and B (right subplot; βe = 0.015; α = 0.032). Here T_ATi_b is the series
of turbidity observations (T2). For each pipe system the model was first fitted using the ideal flow
profile (Q_ideal, yielding T_ds_pred_Q_ideal) and then again using the measured flow (Q_high_sens,
yielding T_ds_pred).

190



Figure 6.10: Similar to fig. 6.9 but here the VCDM was fitted to just later turbidity observations from
pipe systems A (left subplot; βe = 0.0014; α = 0.022) and B (right subplot; βe = 0.001; α = 0.018).

The data-driven analysis of §6.2.2.4 indicated that the material at weaker strengths (material
eroded by Step 1) has different characteristics. If the turbidity responses from Steps 0 and 1
are removed from the turbidity profile that is supplied to the model then far better model fits
can be achieved. (fig. 6.11).

Here background turbidity response was removed by

1. Calculating the mean turbidity over the last turnover of Step 1;

2. Subtracting this value from the entire turbidity profile

3. Clipping all turbidities less than the ‘background turbidity’ (0.06NTU) to that value.

Also, the boundary conditions were changed so that all shear strengths less than the (ideal)
shear stress during Step 2 were initially depleted; this ensured that the model did not predict a
turbidity response for Steps 0 and 1.

6.2.2.8 Conclusions and implications

Both sets of results indicated that the characteristics of discolouration material are not entirely
consistent with shear strength, despite the entirely data-driven analysis and semi-empirical
modelling differing in how rigorously recirculation effects were accounted for and in data analysis
relying on fewer assumptions regarding discolouration processes. More material appears to be

Figure 6.11: Similar to figs. 6.9 and 6.10 but here the VCDM was fitted to turbidity observations from
pipe systems A (left subplot; βe = 0.0025; α = 0.016) and B (right subplot; βe = 0.0017; α = 0.013)
after discounting the turbidity responses from Steps 0 and 1. These predictions were generated using
just the measured flow profile (not the ideal (set-point) flow profile).
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present at the weakest shear strengths following a period of regeneration. It is not possible to
say with confidence whether the erosion rate also differs for weaker shear strengths.

An implication of these findings is that a VCDM model that is calibrated using shear-strength-
invariant parameters and time-series data from a period where the shear stress varied widely
may overestimate the amount of material present at the weakest shear strengths. Alternatively,
the amount of material at all but the weakest strengths may be underestimated if the model is
calibrated by imposing only small increases in shear stress. It is worth noting that the results
indicate that the assumption that ϕ (τ, t) is a monotonically increasing function (§4.4.4) may
not always be valid (at least for the studied pipe rig).

It is not possible to directly compare the experimental results presented here with those from
previous stepped flushing studies conducted under laboratory conditions. Although there is a
strong argument for treating turbidity as a concentration (§4.3.6.2) and therefore quantifying
the amount of material mobilised by integrating material flux over the duration per flow step
(to give a pseudo-mass; §2.1.13.2), previous studies (Husband et al., 2008; Sharpe, 2013)
quantified material mobilised per step solely as a function of turbidity (a pseudo-concentration).

It should be noted that these findings pertain to two plastic pipes of the same diameter, roughness
and material; the experiment should be repeated for a variety of pipes and environmental
conditions to confirm whether the findings are universal. Also further experiments comprised of
multiple regeneration periods of different durations could allow for the effects of βr and α to
be distinguished and so determine whether one or both vary with shear strength. In addition,
the experimental setup could be improved by (a) using two working turbidity meters (as per fig.
6.3) for easier and more accurate recirculation effect compensation and (b) using two working
pressure transducers per pipe system to calculate shear stress directly from measured headloss
(rather than by using a previously calculated roughness).

Experimental work and PODDS modelling has indicated that discolouration material (particularly
in plastic pipes) has a maximum strength (which may or may not be pipe/environment-specific;
see the references to τultimate in §2.1.15). Given that these studies have not explored the
relationship between shear strength and material quantity with much granularity, it may be the
case that the results of those studies support and are explained by the results of this experiment
e.g. the PODDS modelling in Husband and Boxall (2010a) could be interpreted as indicating
that the distribution of discolouration material prior to flushing was weighted towards the
weaker end of the modelled shear strength range.

The fitted parameter values presented in §6.2.2.7 differed between pipe systems A and B,
particularly in the case of βe (see figs 6.9, 6.10 and 6.11). The reason for this is not known, but
it may have been difficult to fit βe (a rate factor parameter) consistently due to recirculation
effects (and the data pre-processing steps used to compensate for those effects) causing turbidity
to appear to rise more or less rapidly than it did in reality. Alternatively, fits may have been
sub-optimal and inaccurate as in this case they were found by hand rather than using PSO. A
third possibility is that the growth phase shear stress profile influencing how quickly material
with much higher shear strengths is eroded given a unit excess shear stress. If this hypothesis
could be proven, it would be in conflict with the VCDM assumption that variations in shear
stress at lower levels do not influence the behaviour/state of discolouration material properties
with higher shear strengths (so long as there is no excess shear stress).
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The parameter values of the fitted model instances presented in §6.2.2.7 should not be considered
accurate: the relative amount of material per shear strength at the start of the flushing phase
was erroneously assumed to be maximal for simplicity (it is unlikely full regeneration occurred
in three months), so the fitted α parameter values are overly small to compensate for this.

Further work is required to determine whether the identified difference in the accumulation
process over different τ bands is actually significant for managing discolouration risk and
proactive network management: if it is not then accumulation could be assumed to be invariant
with τ , so as not to increase the complexity of the parameters of the discolouration model.

6.3 Model validation using field datasets

6.3.1 Requirements and potential issues when calibrating models of real mains

In §6.2.2.6 and §6.2.2.7 the developed model was shown to largely be capable of representing
discolouration processes in a particular pipe rig. However, this does not constitute validation as:

• It was a single system and is not representative of all source waters, diameters, pipe
materials, roughnesses etc.

• It was not possible to accurately calibrate model parameters (§6.2.2.8) βr and α could
not be distinguished nor could βr be calculated.

• At the end of the growth period material on the walls of the pipe loops was only partly
regenerated.

It is therefore necessary to show that the model can represent discolouration processes in a
variety of real DWDS pipes.

Calibrating models of real DWDS pipes is typically more complicated than exploring model
behaviour using artificial data (as was done in §5). Some of the key issues are as follows:

• The modelled main(s) may not be homogeneous with respect to diameter, pipe material,
roughness and flow, particularly if the main is several kilometres in length. Ideally, turbidity
should be monitored at locations where there is a known change in pipe properties to
provide boundary conditions that allow the model to be fitted to pipe sections with
longitudinally homogeneous properties.

• Ideally turbidity will have been continuously sampled at the upstream and downstream
ends of the modelled main(s) over a period of interest. However, if only the downstream
turbidity could be / has been sampled then signal processing techniques (§2.2.6) may
be needed to distinguish the turbidity response due to erosion within the main from the
signal due to imported material.

• To model both shear-stress-driven erosion and advection one requires a hydraulic model
of the mains(s) of interest. The relative roughness of a hydraulic model may accurately
predict headlosses but the absolute roughness and diameter may be inaccurate (§2.2.7.4),
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resulting in erroneous estimations of water quality travel times. Ideally one would calibrate
DWDS models using both flow and velocity data but measuring both requires the use of
tracers, which is problematic for network operatives so is rarely done in practice. However,
occasionally temporal offsets between observed and predicted turbidity spikes can help
determine how much usable internal diameter has been lost since a (corrodible) pipe was
installed or last lined and/or since a hydraulic model was last calibrated.

• Given that full regeneration is estimated to take at least 1.5 years (§2.1.14) it is desirable
to calibrate a discolouration model using at least a couple of months worth of flow
and turbidity data (ideally at least two years worth of data if one wishes to investigate
whether seasonal/temperature effects influence regeneration rates). However, the more
data that is captured, the more likely the calibration dataset is to have been affected
by issues such as instrument drift, error or failure. Data pre-processing is required to
remove/interpolate over periods of bad data (e.g. outliers, series of suspiciously constant
values, negative values). Also signal processing techniques (§2.2.6) may be required to
account for changes in the turbidity baseline that are due to instrument drift.

• To confidently calibrate a model of material erosion and regeneration one needs a dataset
containing a number of shear stress events and for those events to have resulted from
turbidity responses significantly greater than the background turbidity fluctuations (i.e.
a high SNR is required). For a time-series dataset of several years in duration a shear
stress event detection method may be useful for determining the periods over which it is
particularly important that observations and model predictions tally.

• The temporal resolution of flow and turbidity data should be high relative to the turnover
time (§5.3.9.7) (and ideally td, but this cannot be determined in advance of calibration
due to td being dependent on the βe parameter).

• Time-series inputs to the model may need to be lagged to account for inaccurate time-
stamps and may need to be re-sampled to ensure all time-series that comprise a calibration
dataset share a single, consistent time-series index (although the model allows for a
time-varying ∆t).

Strategies for addressing these are presented in the following model calibration case studies.
The first of these studies validates the proposed erosion model using data from the flushing
of four DMA mains. The validity of the regeneration model is then explored using long-term
monitoring data from three trunk mains.

6.3.2 Validating the VCDM erosion model by fitting to DMA flushing data

6.3.2.1 Objectives

The proposed model of material erosion differs from the validated PODDS erosion mechanism
so it must be independently validated. This is easiest to achieve using field data obtained
during the flushing of previously undisturbed mains:
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• The relative material quantity at strengths greater than a threshold such as the estimated
daily maximum can be assumed to be maximal and the relative material quantity at
strengths less than that threshold can be assumed to be minimal. The boundary conditions
of the wall state sub-model are therefore trivial to define.

• The duration of mains flushes are sufficiently short relative to the time required for
full regeneration (particularly for DMA mains) that regeneration can be assumed to be
negligible over duration of a flush. The βr parameter can therefore be set to 0 s−1 in
any model of a single flush, simplifying the fitting process.

By ‘previously undisturbed’ it is meant that prior to flushing a main experienced a regular (most
likely daily) flow pattern over the course of many months (ideally years). Husband and Boxall
(2010a) presented PODDS model calibrations for four such flushes and quantified the fit using
a relative correlation metric.

This section explores the accuracy and precision (repeatability) with which the VCDM can
be fitted to several of the isolated flushing event datasets presented in Husband and Boxall
(2010a) and compares the quality of model fit (using a relative dissimilarity metric; see §2.2.5)
and the values of fitted parameters to the corresponding PODDS calibrations. Here model fits
to different datasets are quantified using the NSEI metric Nash and Sutcliffe (1970) (rather
than R2 using during the third set of fitting tests in §5.7.5.5) for comparison with results
presented in Husband and Boxall (2010a). The NSEI is calculated as per eq. 6.1, where mi is
measurement t of n, pi is prediction i of n, and m is the mean of all measurements.

NSEI = 1−
∑n
i=1 (mi − pi)2∑n
i=1 (mi −m)2 (6.1)

The range of the NSEI is [−∞, 1] , with 1 corresponding to maximum correlation between
observations and predictions.

6.3.2.2 Characteristics of flushed reaches

The VCDM was fitted to each of the four isolated flushing events listed in table 6.3; these
datasets were chosen for validating the VCDM erosion model as they collectively feature a
variety of pipe materials, roughnesses and source waters.

The shear stress profile during each flush had been calculated by Husband and Boxall (2010a)
using roughness values that were either estimated (PODDS-PE1 and PODDS-PE2) or calculated
using headloss measurements (PODDS-CI1 and PODDS-CI2). To successfully hydraulically
calibrate PODDS-CI2, Husband and Boxall (2010a) needed to reduce the internal diameter
by 25mm and use a roughness of 12.5mm, indicating that this pipe is in poor condition and
is heavily tuberculated. It was important that the roughnesses of the unlined CI pipes were
determined by hydraulic calibration as the relative roughness of these pipes was fairly high and
shear stress is a non-linear function of relative roughness.
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Table 6.3: Several isolated flushing events for which the PODDS model has been successfully calibrated
(details in Husband and Boxall (2010a)). The flush references given in the first column are specific
to this document (for cross-referencing purposes) and were not used by Husband and Boxall (2010a).
The figure references in the final column relate to Husband and Boxall (2010a), not this document.
Note that PODDS-PE1 and PODDS-PE2 were previously referenced in §2.1.12.2 (figs. 2.8c and 2.8d
respectively). In Husband and Boxall (2010a) the length of PODDS-CI2 was incorrectly stated as 230m
and the length of PODDS-PE2 was incorrectly stated as 280m in figs. 5 and 11 respectively. The
diameter shown in parentheses is the value found through hydraulic calibration (see Husband and Boxall,
2010a). The NSEI values shown in brackets are for all but the last flow step per flush.

ID Source Material D [mm] L [m] ks [mm] PODDS fit (NSEI)
PODDS-CI1 Groundwater Unlined CI 95.49 660 3 0.86 (fig. 3)
PODDS-CI2 River water Unlined CI 76 (51) 93 12.5 0.72 (fig. 5)
PODDS-PE1 River water PE 89 380 0.01 <0 (0.35) (fig. 9)
PODDS-PE2 River water PE 72 272 0.01 <0 (0.45) (fig. 11)

6.3.2.3 Fitting method

The VCDM was calibrated using each of the flushing datasets listed in table 6.3 by using the
FIT_SIMULT method (5.7) to fit the erosion parameters βe and α but not the regeneration
rate, as regeneration was assumed to be negligible during each modelled flush (i.e. βr u 0 s−1).

The wall state boundary conditions were fitted using a single cusp approach (§5.8.3): the
relative amount of material at the start of the simulation was polarised around a shear strength
τc, which, like βe and α, was fitted by FIT_SIMULT. Here τc is conceptually similar to the
eponymous term in the PODDS model. It is reasonable to assume simple, polarised wall
sub-model boundary conditions given that the studied DMA flushes were in pipes that were
believed to have been undisturbed for many months (or possibly years) beforehand (§6.3.2.1).
This boundary condition estimation method had several advantages over others proposed in
§5.8:

• It requires little historical data: little if any historical data is available for DMA flushes;

• It does not require an accurate estimate of the prevailing flow: this is useful as prior
information of the prevailing shear stress in DMA mains (such as from hydraulic models)
may not be particularly accurate; Identified τc values can be compared τc values used in
PODDS simulations.

A fourth quantity was fitted by FIT_SIMULT, this being the maximum shear strength, τmax,
with which material can be bound to the walls of pipes (see §4.4.2). This term is comparable
to the PODDS τultimate term (§2.2.8.4). τmax was only fitted for the two PE pipes as no
evidence of a maximum shear strength has been found in CI pipes (§2.1.15). Attempts to fit
PODDS-PE1 and PODDS-PE2 using PODDS indicated that the ability to fit the two datasets
was greatly increased by ensuring τultimate < max (τa) (Husband and Boxall, 2010a).

The PSO configuration used for model fitting was as per table 5.4, with the PSO problem
space bounds defined in table 6.4. The upper bound for βe was set to 1 rather than 10 as
used in §5.7.5.5 to steer PSO away from parameter values that are obviously erroneous but are
associated with low ISE values. For each parameter fitted by PSO, the convergence tolerance
was a tenth of the lower bound of that variable. Each FIT_SIMULT run was executed five
times to determine the repeatability of model fitting.
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Table 6.4: PSO Problem space boundaries used when validating the VCDM using the datasets listed in
table 6.3.

Quantity Lower bound Upper bound
βe 0.0001 1
α 0.0001 2000

τmax 0.0001 max (τa) · 1.1
τc 0.0001 max (τa) (2nd elevated shear stress level for PODDS-CI1)

6.3.2.4 PODDS-CI1 results (downstream-most reach)

In Husband and Boxall (2010a) PODDS-CI1 was modelled two reaches of unlined CI due to
these reaches having slightly different D and ks values. The VCDM was only fitted to the
downstream-most of the two reaches (370m in length) as the upstream and downstream
turbidity observations required to determine the net turbidity response (§5.9; required for
accurate modelling) were only available for this reach. This also simplified the modelling
process: if modelling two reaches with differing static properties then two daisy-chained models
(potentially with different α and βe parameters) would be required (§4.3.6.5), but if just
modelling the downstream reach then only a single VCDM model is required as D and ks are
consistent over that reach.

Turbidity observations showed that the turbidity response from the second flow increase was
much larger than that from the first. The PSO bounds for τc where therefore set so that it
could only take values in the range 0.0001Pa up to the shear stress following the second flow
increase.

Fig. 6.12 shows the turbidity observations and the five turbidity predictions that resulted from
the multiple FIT_SIMULT runs. Fitted quantities per FIT_SIMULT run along with NSEI
values and the number of PSO iterations are listed in table 6.5.

Here the FIT_SIMULT process proved highly repeatable: the fitted βe and α parameters are
consistent over the five PSO runs, as is the NSEI. The slightly greater variability of τc, along
with the maximum number of iterations being reached for the first three runs, indicate that τc
was the most difficult quantity to fit given the specified tolerance; however the magnitudes of
the fitted τc values are plausible given the prevailing and elevated shear stress levels.

The NSEI is comparable to that achieved for PODDS (table 6.3), but it is believed that a better
model fits could have been achieved if the unprocessed flow or turbidity observation time-series
had been lagged so that increases in flow and turbidity commenced from the same moments

Table 6.5: Results of fitting the VCDM to the PODDS-CI1 dataset five times using PSO. The fitted
variables were the βe and α VCDM parameter values, the cleaning shear strength, τmax, and the
polarising shear strength, τc. Also shown is the relative similarity between prediction and observation
time-series (NSEI) and the number of iterations the PSO algorithm took to converge.

Run βe α τmax τc NSEI Iterations
0 0.000640 0.593 N/A 1.087 0.889 213
1 0.000641 0.593 N/A 1.058 0.889 134
2 0.000641 0.593 N/A 1.084 0.889 163
3 0.000641 0.593 N/A 1.080 0.889 93
4 0.000641 0.593 N/A 1.024 0.889 219
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Figure 6.12: Results of fitting the VCDM to the PODDS-CI1 dataset. Thydr_91_obs and Tflush_wo_obs

are the turbidity observed at the upstream and downstream end of the modelled 370m reach respectively;
Tds_pred_0, Tds_pred_1...Tds_pred_4 are the turbidity predictions generated by five different PSO runs,
which are sufficiently similar that only Tds_pred_4 appears to have been plotted here.

in time. Such lagging appears to have been performed by Husband and Boxall (2010a) but
details of this are not provided in that article.

6.3.2.5 PODDS-CI2 results

The results of the five FIT_SIMULT runs for fitting the VCDM to the PODDS-CI2 dataset are
presented in fig. 6.13 and table 6.6.

The βe parameter values appear less consistent than for PODDS-CI1 but are all within the
convergence tolerance of each other. The α values are very similar but the τc value varies
considerably; however the NSEI is very consistent over the five runs, indicating that this
particular fitting problem is not particularly sensitive to τc. Again, the τc values appear to be
plausible given the understanding of variation in τa. The NSEI is again comparable to that
achieved for PODDS.

Note that shape of the turbidity response during the first flow step of the flush differs between
the unprocessed data plotted in figs. 6.13 and the relevant figure in Husband and Boxall
(2010a): the first six-point turbidity spike was removed from the latter. This spike corresponds

Table 6.6: Results of fitting the VCDM to the PODDS-CI2 dataset five times using PSO.

Run βe α τmax τc NSEI Iterations
0 0.000501 0.582 N/A 4.076 0.740 154
1 0.000507 0.587 N/A 4.393 0.740 146
2 0.000487 0.573 N/A 3.612 0.739 190
3 0.000509 0.590 N/A 4.503 0.740 219
4 0.000498 0.582 N/A 3.990 0.740 154
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Figure 6.13: Results of fitting the VCDM to the PODDS-CI2 dataset. Tinter_obs is the turbidity observed
at an intermediate point between the upstream (Tus_obs) and downstream (Tds_obs) monitoring points.
Again, Tds_pred_0, Tds_pred_1...Tds_pred_4 are the turbidity predictions generated by five different PSO
runs.

to multiple data points and so it was not considered justifiable to remove it prior to this analysis.

6.3.2.6 PODDS-PE1 results

The results of the five FIT_SIMULT runs for fitting the VCDM to the PODDS-PE1 dataset
are presented in fig. 6.14 and table 6.7.

Four out of the five fits were fairly consistent in terms of both parameter values and NSEI, with
the NSEI being similar to that achieved by Husband and Boxall (2010a) for PODDS. However,
the third FIT_SIMULT run yielded a very high βe value and a negative NSEI. This serves as
a reminder of the importance of conducting multiple runs when using a metaheuristic such
as PSO that is not guaranteed to return optimal parameter values (§2.2.4). Both the τmax
and τc values are plausible given the understanding of τa variation. Aside from the obviously
erroneous fit, the most difficult value to fit is again τc.

Table 6.7: Results of fitting the VCDM to the PODDS-PE1 dataset five times using PSO.

Run βe α τmax τc NSEI Iterations
0 0.013771 0.465 1.903 0.002 0.363 296
1 0.011269 0.504 1.779 0.007 0.385 127
2 0.753448 0.688 4.148 3.331 -2.571 176
3 0.011269 0.504 1.779 0.002 0.385 157
4 0.011269 0.504 1.779 0.007 0.385 124
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Figure 6.14: Results of fitting the VCDM to the PODDS-PE1 dataset. Again, Tobs_inter is the turbidity
observed at an intermediate point between the upstream (Tobs_us) and downstream (Tobs_ds) monitoring
points. Again, Tds_pred_0, Tds_pred_1...Tds_pred_4 are the turbidity predictions generated by five different
PSO runs.

6.3.2.7 PODDS-PE2 results

The results of the five FIT_SIMULT runs for fitting the VCDM to the PODDS-PE2 dataset
are presented in fig. 6.15 and table 6.8.

This dataset proved far more difficult to fit than the other three: parameter values and the
NSEI varied considerably between PSO runs, the NSEI was negative for all but one run, βe was
the lower bound of its range after one run, yet all runs converged before the maximum number
of iterations (500).

The NSEI is greater than that of the PODDS fit in Husband and Boxall (2010a) over the full
duration of the flush.

One possible explanation for this flush being difficult to fit is that the downstream turbidity
observations were incomplete and/or partially erroneous. The background turbidity at the

Table 6.8: Results of fitting the VCDM to the PODDS-PE2 dataset five times using PSO.

Run βe α τmax τc NSEI Iterations
0 0.008173 7.488 8.323 8.196 -0.778 215
1 0.001210 0.272 9.608 0.023 -0.037 187
2 0.000936 0.310 3.541 0.016 -0.382 296
3 0.000100 350.392 5.703 8.457 -2.173 77
4 0.000879 0.544 3.954 0.006 0.181 154
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‘
Figure 6.15: Results of fitting the VCDM to the PODDS-PE2 dataset.

downstream monitoring location before the flush was greater than the background after the
flush yet the turbidity at the upstream end of the pipe reach and at the intermediate monitoring
point varied little during the flush. This indicates that the change in background levels was due
to error in the downstream monitoring rather than a change in the turbidity of water flowing in
to the main.

6.3.2.8 Conclusions

• The VCDM erosion model is able to fit the first two datasets well. The best correlations
between predictions and observations were similar for the VCDM and PODDS. The
ability to fit the fourth dataset, PODDS-PE2, is believed to have been hampered by data
quality. There is therefore no strong evidence for making changes to the design of the
VCDM erosion model.

• The fitting process is mostly repeatable, although it is necessary to run FIT_SIMULT
multiple times to confirm this repeatability (see the single erroneous fit identified when
fitting PODDS-PE1).

• The ability to fit the model is impacted by data quality, hence certain reasonable data
requirements should be met:

– The timestamps associated with flow and turbidity time-series observations should
be accurate.

– The magnitude of turbidity observations at both the upstream and downstream
ends of the reach of interest should be accurate to allow the ‘net’ turbidity response
from the pipe of interest to be determined.
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• Fitting the (simple) boundary conditions using FIT_SIMULT yielded plausible results.
Converting the mean τc of the five PSO runs2 yielded conditioning flows that were of
sensible magnitude for DMA pipes: 2.7L · s−1, 0.8L · s−1, 0.2L · s−1 and 0.2L · s−1 for
PODDS-CI1, PODDS-CI2, PODDS-PE1 and PODDS-PE2 respectively. For each dataset
the spread in the values of τc found by PSO indicated that the τc convergence tolerance
was overly tight given the input data, model structure and/or calibration method.

• The VCDM modelling provides mixed evidence for the cleaning shear stress within the
two PE pipes being less than the maximum shear stress experience over each flush.

– PODDS-PE1: τmax was less than max (τa) for four of the five PSO runs;

– PODDS-PE2: τmax was less than max (τa) for three of the five PSO runs.

6.3.3 Trunk main case study TM-YR: fitting to flow trials3

6.3.3.1 Motivation and system configuration

The proposed model is only of greater value than PODDS if both its erosion and regeneration
mechanisms can be shown to be valid. The simplest way of validating the regeneration
mechanism is to assess whether it can sufficiently accurately represent the turbidity response
during a series of flow trials where the response is primarily due to erosion within a homogeneous
pipe. Ideally:

• The flow trials would be separated by periods of lower, recorded flow during which time
eroded shear strengths can regenerate.

• The boundary conditions could be estimated with confidence as either (a) the shear stress
during the first trial is greater than during any subsequent trial or (b) there is a sufficient
duration of accurate flow data before the first trial for any inaccuracies in the boundary
condition estimate to be irrelevant by the time of the first trial (§5.8.6).

Three flow trials that satisfy these criteria were conducted over 72.2 days in a trunk main in
Northern England. Here this main is referred to as TM-YR. Treated impounding reservoir water
is pumped from the WTW up TM-YR to a SR 3.7 km away. TM-YR is a concrete-lined DI
main with an internal diameter of 440mm. Discolouration issues associated with the main
persisted following the upgrade of the WTW filters, suggesting that turbidity events were due
to material mobilisation within the main. Three flow trials were then conducted in 2009 to
qualitatively assess the erosion and discolouration characteristics of the main. Fig. 6.16 is a
schematic of the system. Note that further details of the system configuration and the first of
these trials can be found in Seth et al. (2009).

The shear stress prior to, during and between the three trials (2009-04-08, 2009-04-22 and
2009-06-18) can be seen in the first subplot in fig. 6.17; upstream and downstream turbidity

2Bar runs 0 and 3 for PODDS-PE2 as the τc values for these runs were unrealistically high so were considered
outliers.

3This section contains text that has been quoted and adapted from Furnass et al. (2014b).
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Figure 6.16: A schematic of trunk main TM-YR. Water passes through a WPS at the outlet of a WTW
then uphill to a SR. Turbidity and flow at the WTW /WPS are continually logged every 15 minutes
via SCADA. Additional temporary, higher-resolution turbidity and flow monitoring was undertaken
during the three flow trials (although not all of the three locations were monitored at a higher temporal
resolution during every trial).

observations are shown in the subplots below that. Shear stress was estimated by converting a
Hazen Williams C value of 120 (taken from a calibrated hydraulic model) and converting it to
a Darcy Weisbach roughness of 0.1mm.

6.3.3.2 Data collation and pre-processing

The trunk main was modelled as a single length as it is of a consistent diameter and pipe
material, does not feature any branches and there is limited evidence for longitudinal variation
in material accumulation and erosion processes (§2.1.16.6).

The following time-series data were collated:

• Pipe flow: ∆t = 1min for flow trials 1 and 3; ∆t = 15mins for trial 2 and between
trials.

• Turbidity at the downstream end of the main: ∆t = 10 s for trials 1 and 3; ∆t = 5
to 25mins for trial 2 (spot sampling); no monitoring between trials.

• Turbidity at the upstream end of the main: i.e. WTW finals; ∆t = 15mins.
Trial-specific monitoring was performed during trials 1 and 3 with ∆t = 10 s.

These time-series were combined as a single dataset (fig. 6.17) with a variable timestep duration.
This involved:

1. Lagging the per-trial time-series to account for perceived inaccuracy in the recorded
timestamps. The following lags gave the maximum cross-correlation between per-trial flow
data and the lower-resolution long-term flow observations recorded at the WTW/WPS
via SCADA:
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Figure 6.17: Three flow trials were conducted in trunk main TM-YR on 2009-04-08, 2009-04-22 and
2009-06-18. As can be seen from the first subplot, the flow and shear stress were also briefly elevated
on three other occasions including on 2008-03-28, which is over a year before the first flow trial. The
τa and Tus_obs profiles shown here are composites of low-temporal-resolution long-term monitoring
data and higher-resolution monitoring during trials. As can be seen, the downstream SR inlet was only
monitored during trials 1, 2 and 3. The mean and median of Tus_obs were 0.10 NTU and 0.06 NTU
respectively, whereas the mean and median of Tds_obs (just during trials 1 to 3) were 2.40 NTU and
0.65 NTU respectively.

Trial 1 2 3
Lag [minutes] -49 -60 -54

2. Removing and linearly interpolating over outlying turbidity values e.g. a single high
upstream turbidity value during the first trial that did not correlate with a flow increase.

3. Removing all but the first of duplicate timestamps.

4. Resampling the trial data at a resolution of exactly 10 s.

5. Ensuring the flow and turbidity data for each trial are all valid by infilling any resulting
missing values using either forward filling (flow data) or time-aware linear interpolation
(turbidity data) and clipping any negative values to a minimum of zero (needed for the
turbidity data during trials). Linear interpolation was used for the turbidity data as a
more sophisticated interpolation mechanism could not be justified given the non-smooth
nature of turbidity signals.

6. Splicing the high-temporal-resolution per-trial data into the long-term flow and turbidity
data, then infill any resulting missing values using linear interpolation. A shear stress
profile was then calculated from this composite flow profile.

6.3.3.3 Modelling TM-YR: Fitting attempt 1

During the first flow trial, Tds_obs does not start to increase (and therefore no material is
mobilised) until the shear stress exceeds 4.28Pa (fig. 6.18). This information was used to set
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the boundary conditions4: for the first attempt at modelling TM-YR, the model was fitted
from the start of trial 1 to the end of the third trial and it was assuming that all tracked shear
strengths less than or equal to 4.28Pa were fully depleted at the start of the simulation and all
other tracked shear strengths at that time were fully regenerated (as per the second example in
§5.8.7).

The amount of material at the wall was tracked for 100 shear strength bands covering the
range 0 to 11.13Pa. The three model parameters were fitted using the FIT_SIMULT method
(see fig. 5.42). The parameter box bounds were:

• βe :
[
1× 10−7, 0.1

]
Pa−1 · s−1

• βr :
[
3.169× 10−9, 3.169× 10−7] s−1 (equivalent to [1/10, 1/0.1] years)

• α : [0.01, 100] TPMU · Pa−1 ·m−2

The convergence tolerances were a tenth of the lower box bounds.

The upstream turbidity profile was used as an input to the Lagrangian transport mechanism to
model the influx of suspended material from upstream.

As in §5.7, the objective function was the ISE of downstream turbidity observations and
predictions. This dissimilarity metric was only calculated for timesteps where the observed
turbidity exceeded 0.5NTU : preliminary investigations indicated that this prevented the
fitting process being inadvertently steered by low magnitude turbidity variation and possibly
measurement inaccuracy before and after trial flow increases.

Results of the fitting attempt are shown in table. 6.9 and figs. 6.19, 6.20 and 6.21. Again,
the fitting process was repeated three times to account for the non-deterministic nature of
PSO. The quality of fit was quantified using the R2 correlation metric, in keeping with the
FIT_SIMULT validation tests (§5.7.5.5) but not the validating of the erosion model (§6.3.2),
where the NSEI was used instead (to allow for a comparison with previously published results).
The R2 metric was calculated for the same subset of timesteps as the ISE. Note that the y-axis
scales of figs. 6.19, 6.20 and 6.21 all differ.

4Note that this threshold was previously incorrectly given in Furnass et al. (2014b) as 3.15Pa rather 4.28Pa.

Table 6.9: Results of the first attempt to fit the VCDM to the TM-YR trunk main dataset. β−1
r , (the

reciprocal of the fitted relative regeneration rate parameter) expressed in years, is an estimation of how
quickly a shear strength band could reach maximal regeneration after being fully depleted.

Config Run βe βr α ISE PSO itrs β−1
r [yrs] R2

1 0 0.033083 6.642× 10−8 0.544 30153.361 283 0.477 0.702

1 1 0.001744 5.308× 10−7 0.658 22040.922 241 0.597 0.775

1 2 0.000333 1.033× 10−7 0.705 16236.069 81 0.307 0.825
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Figure 6.18: During trial 1 there was negligible erosion until the shear stress exceeded 4.28Pa.

Figure 6.19: Comparing turbidity observations and three predictions made during the first attempt to fit
the model to the TM-YR dataset. Only trial 1 is shown here.

Figure 6.20: Comparing turbidity observations and three predictions made during the first attempt to fit
the model to the TM-YR dataset. Only trial 2 is shown here.
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Figure 6.21: Comparing turbidity observations and three predictions made during the first attempt to fit
the model to the TM-YR dataset. Only trial 3 is shown here.
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Although the R2 values of the three fitting runs were reasonable, the model over-predicted the
turbidity response from all flow trials apart from during the second flow step of trial 3. The
first shear stress step during trial 3 does not exceed the maximum shear stress of trial 2; the
affected shear strengths are therefore very likely to be in the earlier stages of regeneration at
the start of trial 3 yet much mobilisation is predicted by the three runs for the first shear stress
step of trial 3. This is believed to be due in part to the overly fast regeneration rate values
identified by FIT_SIMULT: 0.3 to 0.6 years for full regeneration is unlikely given the evidence
from numerous previous field trials (see §2.1.14).

Also note the variability of the fitted parameters between the three FIT_SIMULT runs: there is
two orders of magnitude between the lowest and highest βe values.

6.3.3.4 Modelling TM-YR: Fitting attempt 2

A second attempt was made to fit the model to the TM-YR dataset, this time using more
historical shear stress information to shape the estimate of the material quantity versus strength
relationship (ϕ (τ, t)) at the onset of trial 1.

The model was fitted to data from the period starting at 2008-03-27 (the first period of elevated
flow shown in fig. 6.17), up until the end of the collated, pre-processed dataset (2009-07-31).
The wall state was estimated using VCDM conditioning (§5.8.6): the amount of material at the
pipe wall was assumed to be maximal for all tracked shear strengths at midnight on 2008-03-27,
then the shear stress increase on that day and the shear stress variation over the subsequent
376 days before trial 1 all informed the ϕ (τ, t) estimate at the start of trial 1 (by which time
the modelled wall state will more accurately reflect reality). Erroneous turbidity predictions
during the model ‘bedding in’ period during 2008 do not affect the fitting process as, within
the FIT_SIMULT objective function, the ISE was again only calculated for times during trials
when Tds_obs > 0.5NTU .

Results of the second fitting attempt are shown in table. 6.10 and figs. 6.22, 6.23 and 6.24.
Again, note that the y-axis scales of these figures differ.

Figure 6.22: Comparing turbidity observations and three predictions made during the second attempt to
fit the model to the TM-YR dataset. Only trial 1 is shown here.
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Figure 6.23: Comparing turbidity observations and three predictions made during the second attempt to
fit the model to the TM-YR dataset. Only trial 2 is shown here.

Figure 6.24: Comparing turbidity observations and three predictions made during the second attempt to
fit the model to the TM-YR dataset. Only trial 3 is shown here.
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Table 6.10: Results of the second attempt to fit the VCDM to the TM-YR trunk main dataset.

Config Run βe βr α ISE PSO itrs β−1
r [yrs] R2

2 0 0.001807 6.135× 10−9 0.944 10728.279 108 5.166 0.930

2 1 0.001807 6.137× 10−9 0.944 10728.279 96 5.164 0.930

2 2 0.001807 6.138× 10−9 0.944 10728.279 87 5.163 0.930

The three sets of parameters found using the FIT_SIMULT method are far more consistent
than those that resulted from the first fitting attempt and the quality of fit (R2) is notably
greater. However, the model fits over-predict the amount of material mobilised at weaker shear
strengths during trial 1 and slightly under-predicts the turbidity response during trial 2.

Interestingly, the three FIT_SIMULT runs during the second fitting attempt do not predict the
amount of material per shear strength at the start of trial 1 to be polarised around 4.28Pa
(fig. 6.25). This explains why the predicted turbidity responses were inaccurate during the first
part of trial 1 and indicates that this fitting attempt also used inaccurate estimations of the
boundary conditions.

6.3.3.5 Modelling TM-YR: Discussion and conclusions

The second method produced a better overall fit, but the turbidity response predicted for trial 1
was inaccurate for both fitting attempts; neither method of estimating the boundary conditions
proved to be entirely suitable.

The inability to fit the model accurately to data could be due to the regeneration model being
invalid and/or one of the following:

• Comparing the shear stress and turbidity response profiles during the three trials indicated
that the shear strengths that had been eroded during trials 1 and 2 were not further
eroded during trial 3. The same is likely to be true of trial 2 as the separation of trials
1 and 2 is less than that of 2 and 3 (but this cannot be proven due to the way the
flow during trial 2 was not increased in steps). The turbidity responses were therefore
primarily due to the erosion of long-undisturbed shear strengths and the dataset therefore
contained little information regarding regeneration to calibrate to.

Figure 6.25: The predicted relative quantity of wall-bound material versus shear strength relationship at
2009-04-08 08:56, which was the start of flow trial 1 (fitting attempt 2).
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• Also, Q and Tus_obs were not measured at a high temporal resolution during trial 2 so
may not have been accurately accounted for. Likewise, short-lived flow and turbidity
spikes may have occurred before or between the trials that were not accurately captured
by the fifteen-minute-averaged logging.

• During trial 3, Tus_obs only started to increase after Tds_obs did, indicating that the
attempts to account for inaccurate per-trial timestamps (by lagging so as to maximise
cross-correlation of flow series) were not entirely successful.

Lessons learned from these fitting attempts:

• Most importantly, the ability to validate the VCDM may depend on the quantity and
quality of information describing regeneration processes: it may be easier to fit the model
to systems where historical flow increases were separated by longer periods or systems
with faster regeneration kinetics (such as unlined iron pipes).

• The accurate timestamping of long-term and short-term monitoring data reduces the
need for lagging to ensure maximum consistency of a dataset and other forms of data
pre-processing: if the flow and turbidity data are misaligned then this limits the extent to
which the model can be fitted to the combined dataset.

• The ability to fit the model to data can sometimes be improved if the dissimilarity metric
used within the FIT_SIMULT objective function is only calculated for times when the
observed turbidity is great enough to indicate that material erosion has been occurring.

6.3.4 Trunk main case study TM-NR: fitting to a longer, continual dataset

6.3.4.1 Motivation and system configuration

In this case study, the model was fitted to a long time-series dataset where the spacing between
certain shear stress increases was such that significant regeneration could occur (unlike for
TM-YR; see 6.3.3.5). The dataset was also longer (22 months in duration) and featured more
monitored turbidity events than that available for TM-YR. To the author’s knowledge, turbidity
has only been monitored over multi-month periods in a very small number of trunk mains, and
turbidity meters were only installed in these systems in the last five years. The analysis and
modelling of this trunk main therefore presents a novel opportunity to study continual erosion
and regeneration over an extended period.

Trunk main TM-NR is a large-diameter (800mm), long (15 km), lined steel trunk main that is
situated in the north-east of England. The main runs between a break pressure tank (BPT)
and a SR (fig. 6.26), conveys treated impounding reservoir water and has historically conveyed
flows in the range 8× 103m3 · d−1 to 24× 103m3 · d−1.

Flow and turbidity monitoring have been deployed at the downstream end of trunk main TM-NR
for several years at the time of writing. To the author’s best knowledge, turbidity has been
continually monitored for more than a few days in only five or six trunk mains in the UK and
no trunk main has been monitored for as long as TM-NR. The dataset used for calibrating the
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Figure 6.26: A network schematic showing the location of trunk main TM-NR in relation to the supplying
WTW and various SRs and BPTs. TM-NR is steel, is 15 km long and has an internal diameter of
800mm. The schematic also shows the locations of continuous flow (Q) and turbidity (NTU) monitoring
equipment.

VCDM corresponded to the period 2010-01-31 at 15:30 to 2011-11-03 at 09:15 (61512 records
at 15 minute intervals).

Unfortunately, the turbidity at the upstream end of TM-NR was not monitored over this period,
which impacts on the ability to distinguish turbidity due to erosion from the walls of TM-NR
from turbidity due to the importing of particulate material from upstream (§5.9). It was
therefore necessary to calibrate and validate the VCDM using an estimate of Tus. Although Tus
had not been directly observed, turbidity observations from the supplying WTW (see fig. 6.26)
provided some information on the baseline turbidity of water passing into the trunk main
system. However, this turbidity signal will most likely have been transformed due to material
accumulation/mobilisation within the 42 km of trunk main and the BPTs that lie between the
WTW and the upstream end of TM-NR.

Several data pre-processing operations were performed:

• Outer-joining the Q, Tds_obs and Twtw_obs time-series to form a single dataset, using the
timestamp as the joining key;

• Converting flows to SI units (m3 · s−1)

• The timestep was typically 15 minutes but with some steps of 30 minutes, so the dataset
was resampled at 15-minute resolution and the resulting null values were in-filled using
linear interpolation.

• A shear stress profile was calculated using the flow profile, diameter (800mm) and a
roughness of 0.5mm (taken from a calibrated hydraulic model).

The resulting dataset is shown in fig. 6.27 and summarised in table 6.11. Note that the turbidity
instruments/loggers appear to have been set to overly restrictive ranges as the maximum values
of Tds_obs and Twtw_obs are exactly 5.0NTU and 1.0NTU respectively. Turbidity spikes that
exceed these thresholds will therefore be poorly represented in the captured data.
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Figure 6.27: Flow and turbidity dataset from trunk main TM-NR used for calibrating and validating the
VCDM. Note that the upper bound of the turbidity y-axis scale has been set to 1NTU to show the
variation between erosion events of the turbidity of the WTW finals (Twtw_obs) and the turbidity at the
downstream end of TM-NR (Tds_obs).

Table 6.11: Basic statistics of the TM-NR dataset that was used for calibrating and validating the
VCDM.

Q tt (Q > 0) Tds_obs Twtw_obs

count 61512 61512 61512 61512
mean 0.161 15:51:05 0.103 0.054
std 0.055 11:32:40 0.108 0.025
min 0.000 07:08:07 0.020 0.000
25% 0.122 10:30:30 0.070 0.040
50% 0.170 12:17:35 0.090 0.050
75% 0.199 17:09:07 0.110 0.060
max 0.294 47 days 02:58:24 5.000 1.000
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6.3.4.2 Shear stress event detection: identifying the times in lengthy datasets when
increases turbidity are likely to occur

Given a dataset of shear stress and turbidity time-series pertaining to a single DMA flushing
operation (e.g. the observations shown in fig. 6.12), it is usually trivial to identify the times
at which there would be a net turbidity response: such responses should follow an increase
in shear stress. For continuous shear stress and turbidity datasets covering periods of many
months or years (e.g. fig. 6.27), identifying the times when turbidity events are most likely
is less easy without automation. The motivation for identifying the times of likely events is
that the data over these periods best describes the discolouration characteristics of the main of
interest. Model validation can therefore be tailored to better qualify/quantify the ability of the
VCDM to characterise the processes of interest by focussing on these disjoint subsets of the
time-series dataset.

Turbidity events due to erosion within a pipe are most likely when the pipe shear stress exceeds
the recent maximum. The set of likely turbidity events of a given dataset can be identified
using the following automatable method:

1. For each timestamp t, mark t as being an event time if τa (t) exceeds the maximum of
the previous t_win seconds;

2. (Optional) All identified events that correspond to just a single timestamp should be
classified as not being events as they could just be due to measurement error;

3. For all remaining events, consider all timestamps within n_turnovers×tt after each
event to be part of that event, thus allowing for discolouration material propagation
following the flow increase.

This method has been implemented using several functions that have been packaged with the
Python reference implementation of the VCDM (pyvcdm). Given the number of times the
data at each timestamp is visited by the method, the functions have been implemented as a
compiled Cython (Behnel et al., 2011) module for efficiency. The relevant functions are:

• pyvcdm.eventdetect.is_event(time_offset_array, shear_stress_array,

t_win, ignore_start=False): returns an array of boolean values, where ‘true’

indicates that an event occurred. time_offset_array is the time in seconds since the
start of the dataset. t_win is the duration in seconds over which to calculate the recent
maximum shear stress. ignore_start indicates whether to consider the start of the
time-series to be an event by default.

• pyvcdm.eventdetect.ignore_single_point_events(event_array): this is typi-
cally called with the output of the first function as input and again returns an array of
boolean values, where ‘true’ indicates that an event occured and that event is not just
an isolated data point.

• pyvcdm.eventdetect.is_propagated_event(time_offset_array, flow_array,

event_array, n_turnovers, D, L): typically called with the output of the first or
second functions.

214



The value of t_win obviously has a considerable impact on the number of events that are
identified: if t_win is set too low, then many events are identified but a notable proportion of
those may correspond to negligible increases in turbidity as insufficient time has passed since
the last event for much regeneration to have occurred. If t_win is set too high, then valuable
information regarding erosion and regeneration may be ignored through not being associated
with an event period.

The value of n_turnovers is also a trade-off: if it is too low, then the tail or even the peak of
the majority of turbidity responses may not fall within identified events, but if it is too high
then distinct turbidity responses may be inadvertently amalgamated as a single event.

This event detection method was applied to the TM-NR dataset. Single point events were not
ignored as single higher flow values may be significant when flow is only sampled every 15
minutes. n_turnovers was set to 5 , the same number of turnovers that each flow step was
sustained for in the rig experiment detailed in §6.2.2. t_win was set 14× 86400 s (fourteen
days), a value that resulted in good correlation between event periods and turbidity increases.
The result was the identification of 37 distinct events. Fig. 6.28 shows a portion of the TM-NR
dataset with event times superimposed on the Tds_obs profile as red crosses.

6.3.4.3 Estimating the net turbidity response from trunk main TM-NR

The VCDM can only model the net turbidity response, Tnet, for a given pipe if the turbidity
of water passing into the upstream end, Tus, is negligible or observations/estimations of it
can be supplied as boundary conditions to the advection mechanism (§5.9). Without this
compensation the ability to fit the model by minimising a time-series dissimilarity metric will be
significantly impacted: the offset between predictions and observations over a long time-series
that is due to Tus will dwarf the differences between predictions and observations that are
due to material erosion. Plotting Tds_obs for TM-NR (see fig. 6.27) shows that Tus is not
negligible neither is it constant: higher frequency, higher magnitude components that appear
to correspond to material erosion sit atop a lower frequency baseline, where the duration of
variations relative to the turnover time indicate that baseline fluctuations are due to changes in
the incoming water or potentially to instrument drift.

As mentioned previously, Tus was not measured directly during the study period. Turbidity was
recorded further upstream at the supplying WTW, Twtw_obs, but this monitoring location is
42 km upstream of TM-NR and there are two BPTs en-route, so the unprocessed Twtw_obs

signal was not considered to be representative of Tus. It is therefore necessary to compensate
for Tus by transforming either Twtw_obs or Tds_obs into an estimate of Tus. Five options for
achieving this were explored.

Option 1: Estimating Tnet by applying a low-pass Butterworth filter to Twtw_obs A
low-pass Butterworth filter (§2.2.6) was applied to Twtw_obs in an attempt to remove higher
frequency components from the signal and provide an estimate of the background turbidity
signal at the downstream monitoring point.

Tnet_est = Tds_obs − low_pass_butterworth(Twtw_obs) (6.2)
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(a) All 39 identified shear stress events are shown in red. A subset of these events have been enumerated
for purposes discussed later in this section.

(b) The correlation between shear stress and turbidity for a small number of shear stress events (these
events being shown in red).

Figure 6.28: Demonstration of detecting likely turbidity events from just a shear stress time-series. Here
the method presented in §6.3.4.2 was applied to the TM-NR dataset using a time window of fourteen
days and a propagation duration of five pipe turnovers.
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Here it is assumed that the true, latent Tus signal was somewhat periodic, allowing it to be
isolated using filters. Also, the time required for turbid water to travel from the WTW to the
downstream monitoring point was assumed to be sufficiently small relative to the cut-off period
(the reciprocal of the cut-off frequency) for (a) advection time to be negligible and so (b) there
not to be a need to lag the Butterworth input signal or filtered signal in the following.

In fig. 6.29, Tnet_est has been plotted along with Tds_obs. The red crosses superimposed on
Tnet_est indicate the previously identified event times (the times at which Tds_obs is most likely
to be driven by the effects of material erosion within the modelled pipe; see §6.3.4.2).

For successful removal of the background turbidity, one wants a filter that results in:

• The net turbidity response estimate, Tnet_est, being above zero for the majority of events;

• The baseline Tnet_est between events being close to zero (although there may be periods
following identified events when there are turbidity responses due to erosion if the
identified event was short and sharp enough not to cause full conditioning).

The effect of using different filter cut-off periods was investigated using an IPython Notebook
(Perez and Granger, 2007; Shen, 2014): the impact of setting the cut-off period to a value in 5
to 720 days could be instantly visualised using an IPython Notebook ‘slider widget’5. The filter
order was set to 2.

No cut-off period was found for which both of the above criteria were satisfied: certain values
resulted in periods where Tnet_est would be considerably negative whereas other values did
remove enough of the background turbidity signal, resulting in Tnet_est being > 0NTU between
most events (see fig. 6.29).

Options 2 and 3: Estimating Tnet by applying a moving average filter to Twtw_obs Two
other approaches that were investigated involved estimating Tus by applying a rolling mean
or rolling 5th percentile to Twtw_obs to remove the undesirable higher-frequency components.
Tnet could then be estimated by subtracting the result, Tus_est, from Tds_obs:

Tnet_est = Tds_obs − rolling_mean(Twtw_obs, window_size) (6.3)

Tnet_est = Tds_obs − rolling_percentile(Twtw_obs, 5th, window_size) (6.4)

Both rolling aggregate functions are types of moving average filter (§2.2.6). ‘Centred’ moving
averages were produced: the value calculated for each position of the moving window was
associated with position at the centre of the window. This approach resulted in no filter output
values being assigned to the positions within half the window size of the extremities of the
time-series. These positions were infilled by repeating the first and last non-null values out to
the very start and end of the time-series.

The reason for comparing these two moving average filters is that the rolling mean is simpler
(requires one fewer parameter) whereas the rolling percentile can be more robust when the

5See https://ipython.org/_static/sloangrant/sloan-grant.html. Last accessed 2015-03-30.
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Figure 6.29: Attempting to remove the background turbidity by applying a low-pass Butterworth filter
to Twtw_obs then subtracting the result from Tds_obs. Filter order was 2. Cut-off period was 10 days.
Red crosses are times at which a ‘shear stress event’ occurred (t_win=14 days; see §6.3.4.2).

data within the moving average window is not normally distributed, possibly as a result of it
containing short-lived spikes (as can be the case with turbidity data).

The impact of the moving average window size was explored using interactive widgets within
the IPython Notebook but again it was not possible to identify a moving average window
size that ensured most spikes in Tnet_est were above zero and the majority of the signal at
non-event times was close to zero.

Options 4 and 5: Estimating Tnet by applying a Butterworth filter or moving average
filter to Tds_obs The conclusion that was drawn from trying to estimate Tnet by applying
filters to Twtw_obs was that Twtw_obs is sufficiently distinct from Tds_obs, possibly due advection
lag or to discolouration processes along the mains upstream of the pipe of interest, that
Twtw_obs cannot be used to estimate Tnet.

The ability to estimate Tnet using just Tds_obs (rather than Twtw_obs) was then explored. Four
different approaches were investigated:

• Estimate Tnet by applying a high-pass filter to Tds_obs to remove the (lower-frequency)
background turbidity:

Tnet_est = butterworth(Tds_obs, cutoff_period, type = high_pass, order = 2) (6.5)

• Estimate Tus by applying a low-pass filter to Tds_obs to remove the higher-frequency
components then subtracting the result from Tds_obs to give Tnet_est:

Tnet_est = Tds_obs − butterworth(Tds_obs, cutoff_period, type = low_pass, order = 2)
(6.6)
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• Estimate Tus by finding the rolling mean or rolling 5th percentile of Tds_obs then sub-
tracting the result from Tds_obs to give Tnet_est:

Tnet_est = Tds_obs − rolling_mean(Tds_obs, window_size) (6.7)

Tnet_est = Tds_obs − rolling_percentile(Tds_obs, 5th, window_size) (6.8)

Again, the efficacy of these methods for estimating a suitable Tnet signal was explored using
IPython Notebook interactive widgets. Only the last of these methods, eq. 6.8, yielded an
acceptable result: this was using a window size of approximately 10 days (fig. 6.30).

Conclusions For the TM-NR dataset, the net turbidity response from the pipe of interest
can be most rationally estimated from observations of the turbidity passing out of the pipe of
interest, Tds_obs, by subtracting the rolling 5th percentile (with a window size of ten days) of
Tds_obs from Tds_obs. It is not possible to properly validate this estimate without measurements
of the turbidity passing into that pipe, but turbidity at the upstream extent of the pipe has
not been directly observed. However, the chosen filtering mechanism results in a signal that
has the desired qualities of the magnitude between identified shear stress events being near
zero and the magnitude during identified shear stress events being much higher. The rolling
percentile is believed to be effective here as it is not overly affected by sudden sharp spikes in
the filter input data (unlike the rolling mean).

6.3.4.4 Model fitting

Fitting attempt 1 The model was first fitted to the entire dataset bar the first three days.
The amount of material at the wall was tracked for 100 shear strength bands covering the
range of shear stresses experienced over the fitting period. The shear stress was fairly constant
over the first few months of the dataset, allowing the amount of material per shear stress at
the start of the fitting period to be polarised around the mean shear stress of the three previous
days (similar to the first example in §5.8.7). The relative amount of material present at shear
strengths greater than this polarising shear stress at the start of the fitting period was simply
assumed to be zero but this may not have been the case in reality.

Again, the three model parameters were fitted using the FIT_SIMULT method (see fig. 5.42).
The parameter box bounds were the same as used in §6.3.3 apart from the lower bound for
βe. This was a factor of two greater than that of §6.3.3 so as to steer the fitting process
away from regions of the parameter space associated with poor fits and unlikely βr values, and
to increase the repeatability of the fitting process. Again, the convergence tolerances were a
tenth of the lower box bounds. Here the objective function was the ISE of estimations (based
on observations) and predictions of the net turbidity response (not the downstream turbidity,
so there was not a need to supply an upstream turbidity profile to the Lagrangian transport
mechanism). To focus the fitting mechanism on the processes of interest, the ISE and R2 were
only calculated from after five turnovers into the fitting period (to discard erroneous turbidity
predictions during the model ‘bedding-in’ period) during shear stress events using the method
of §6.3.4.2. Results are shown in table 6.12.
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Figure 6.30: Attempting to remove the background turbidity by applying a centred rolling mean (middle
subplot) and centred rolling 5th percentile to Tds_obs then in each case subtracting the result from
Tds_obs. The window size here was 10 days. Red crosses are times at which a ‘shear stress event’
occurred (t_win=14 days; see §6.3.4.2).

Fitting attempt 2 The fitting approach was identical apart from the period of the dataset
that was used, which was from midnight on the day of the highest shear stress (2011-01-29)
to the end of the dataset, and the boundary conditions. The wall state was estimated using
VCDM conditioning (§5.8.6) to see if this resulted in a better fit than using generalisations
based on information from network operators and initial flow trends (§5.8.7). The advantage
to focussing on this period was that any observed erosion response could safely be assumed
to be due to regeneration and the initial wall state could be polarised with greater confidence
(assuming that the highest shear stress was fully conditioning).

Fit attempt 3 This attempt was identical to attempt 1 apart from allowing the regeneration
rate to vary over time as a function of temperature. Including such a dependency in the fitting
process allows the impact of temperature-driven variations in source water characteristics and
changes in soil/backfill temperature to be accounted for; both factors have been shown or are
expected to influence material accumulation processes (§2.1.16). Seasonal/temperature-driven
changes in source water are more likely to be significant in mains supplied with surface water
(such as TM-NR). βr was made temperature-dependent (and therefore time-varying) by:

1. Acquiring monthly mean atmospheric temperature data for the relevant region of the
country from the UK Met Office6;

2. Resampling the temperature data using the time-series index of the fitting period dataset,
using linear interpolation to infill null values;

6http://www.metoffice.gov.uk/pub/data/weather/uk/climate/datasets/Tmean/date/England_E_and_NE.txt
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3. Within the objective function, calculating a time-dependent regeneration rate using eq.
6.9, where m is a scaling factor and θ is the temperature in oC.

βr (t) = βr +m ·
(
θ (t)− θ

)
(6.9)

4. When fitting βe, α, βr and m using FIT_SIMULT, m was restricted to the following
range to ensure that βr could not be negative at any time.10−12,

lower_bound
(
βr
)

∣∣∣mint
(
θ (t)− θ

)∣∣∣
 (6.10)

Fit attempt 4 This was similar to attempt 2 but used the temperature-dependent regeneration
rate of attempt 3. Note that making βr temperature-dependent increases the complexity of
the model (§4.4.2) as here an additional parameter is required. The purpose of exploring this
temperature dependence in fitting attempts 3 and 4 was to see if this additional complexity
was justifiable and beneficial.

Results The parameters identified using FIT_SIMULT for each of the four fitting approaches
are shown in table 6.12, as are the ISE and R2 correlation metrics and the reciprocal of the
(mean or constant) βr, expressed in years.

The following observations were made:

• The longer fitting period used in attempts 1 and 3 resulted in a better fit than for attempts
2 and 4, although no fitting attempt yielded a high-quality fit (R2 never exceeded 0.311).

• After increasing the lower PSO bound of βe from 10−7 (results not shown here) to 10−5

all fitting attempts bar attempt 3 were consistent over three runs.

• The regeneration rates found during attempts 2 and 4 are unlikely: they are far faster
than rates found by linear extrapolation during previous (DMA) studies (§2.1.14).

Table 6.12: Fitting the VCDM to data from trunk main TM-NR: parameters and correlation metrics
resulting from the application of the FIT_SIMULT fitting method.

Config Run βe βr m α ISE PSO itrs β−1
r [yrs] R2

1 0 7.650× 10−5 1.717× 10−8 N/A 5.472 131.751 122 1.846 0.311
1 1 7.650× 10−5 1.717× 10−8 N/A 5.472 131.751 86 1.846 0.311
1 2 7.650× 10−5 1.717× 10−8 N/A 5.474 131.751 75 1.845 0.311

2 0 4.005× 10−5 3.169× 10−7 N/A 0.858 4.722 69 0.100 0.177
2 1 4.002× 10−5 3.170× 10−7 N/A 0.852 4.722 87 0.100 0.177
2 2 4.005× 10−5 3.169× 10−7 N/A 0.861 4.722 101 0.100 0.177

3 0 7.650× 10−5 1.717× 10−8 1.003× 10−12 5.471 131.751 102 1.846 0.311
3 1 1.062× 10−5 5.307× 10−8 2.130× 10−10 7.755 135.531 88 0.597 0.274
3 2 1.062× 10−5 5.352× 10−8 3.691× 10−11 7.702 135.522 205 0.592 0.274

4 0 3.980× 10−5 3.169× 10−7 4.862× 10−10 0.847 4.723 110 0.100 0.177
4 1 3.952× 10−5 3.168× 10−7 3.157× 10−10 0.842 4.722 161 0.100 0.177
4 2 3.952× 10−5 3.165× 10−7 4.090× 10−11 0.846 4.721 84 0.100 0.177
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• Allowing βr to vary with temperature did not improve the model fit (R2). This is
potentially due to (a) the form of the relationship between temperature and βr and/or
(b) the PSO bounds of the m scaling parameter not being appropriate.

Quality of best Tnet predictions during shear stress events Looking closer at the time-
series predictions associated with the fitting attempt with the highest R2 (fitting attempt
1) provides further information about how and when the fitting was successful/unsuccessful.
Thirteen of the 39 shear stress events identified using the method outlined in §6.3.4.2 were
studied (these events are enumerated in fig. 6.28a).

The fit to the earlier events in the dataset was often reasonable but several increases in turbidity
were not and could not have been predicted as they do not correspond to flow increases
within TM-NR e.g. during event 1 on 2010-06-12 (fig. 6.31) and during event 3, late on
2010-08-14 (fig. 6.32). These increases in turbidity are most likely due to the importing of
material from upstream TM-NR or potentially in the case of event 3 from more material having
accumulated at the upstream end of TM-NR. Having Tus observations for defining turbidity
boundary conditions would therefore have been beneficial when modelling TM-NR. Note that
although there is a tank at the upstream end of TM-NR that it unlikely to smoothen/dampen
the upstream turbidity signal as it a BPT and will therefore be small with a short residence
time and limited mixing.

The efforts to discount the unobserved Tus signal using the centred, rolling 5th percentile of
the Tds observations were not always successful. For example, the baseline turbidity during
event 4, shown in fig. 6.33, is elevated in a way that will have a notable impact on time-series
correlation metrics such as the ISE. It will also impact on the scale-insensitive R2 metric
if the efficacy of the background turbidity removal method varies over the duration of the
fitting period. However, it should be noted that the relative changes in the net turbidity during
event 4 were reasonably accurately predicted and, for the most part, the method for turbidity
background compensation was effective e.g. during event 6 (fig. 6.34).

The SNR during much of the dataset following the peak shear stress (i.e. the fitting period
for fitting attempts 2 and 4) was very low, principally because the observed turbidity signal
was also very low (but still within the range of values over which light scattering intensity is
proportional to turbidity (§2.1.5)). For a number of shear stress events (e.g. event 8, shown
in fig. 6.35), the magnitude of turbidity responses was similar to the turbidity digitisation
resolution. The low resolution of the turbidity observations during this period could explain

Figure 6.31: Best model fit to TM-NR: fitting
attempt 1, event 1 (see also fig. 6.28a)

Figure 6.32: Best model fit to TM-NR: fitting
attempt 1, event 3 (see also fig. 6.28a)
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Figure 6.33: Best model fit to TM-NR: fitting
attempt 1, event 4 (see also fig. 6.28a)

Figure 6.34: Best model fit to TM-NR: fitting
attempt 1, event 6 (see also fig. 6.28a)

why the R2 from fitting attempts 2 and 4 was low (as the signal was less accurate) and the
identified parameters were less plausible than for fitting attempts 1 and 3. Also, events during
the later part of this period such as events 10, 11 (fig. 6.36) and 13 were over-predicted. This
is surprising given that these events mobilised material that had been regenerating over the
summer, when one might expect regeneration rates to be higher, yet one interpretation of the
time-series plots is that less material had regenerated than anticipated. Another is that the
erosion rate over this period was an over-estimate, resulting in turbidity increases that were
too short and sharp and a third is that short, sharp increases in flow were not captured by the
fifteen-minute-averaged flow observations.

6.3.4.5 Discussion and summary

Although the R2 of the best model fits was relatively low, visual assessment of turbidity
predictions during the major shear stress events indicated that the model was representing the
key discolouration processes to an extent. There were however periods where the best model
fits correlated less with the estimate of the net turbidity response and there were turbidity
events that the model could not account for. There are several suspected reasons for this,
including: the net turbidity response being estimated using Tds_obs rather than calculated using
both Tus_obs and Tds_obs, so the importing of material from upstream of TM-NR only being
crudely accounted for; the flow observations being unrepresentative of short, sharp spikes in flow
due to each data point being the average of a fifteen-minute period; the turbidity responses
during a large portion of the dataset being small relative to the turbidity digitisation step.

The period used for model calibration was found to have an impact on the quality of model
fit and plausibility of identified parameters. Attempts to fit the model to just the second part

Figure 6.35: Best model fit to TM-NR: fitting
attempt 1, event 8 (see also fig. 6.28a)

Figure 6.36: Best model fit to TM-NR: fitting
attempt 1, event 11 (see also fig. 6.28a)
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of the dataset (attempts 2 and 4) yielded poorer results, most likely due to the paucity of
shear-stress-driven turbidity events significantly larger than turbidity digitisation step. This
highlights the conflicting needs of network operatives and modellers: the former want to
manage mains so that flow increases are carefully controlled and turbidity is always low, whereas
modellers need turbidity events (below the regulatory limit) to calibrate and validate their
discolouration risk models.

The regeneration rate associated with the best model fits was u 1.8 years, a value that is
plausible given regeneration rates derived during previous studies (§2.1.14).

The more complex model forms where βr was permitted to vary with temperature surprisingly
did not allow for more accurate model fits. Either the inaccuracies stemming from data
availability/quality issues were too dominant, the form of the temperature dependent relationship
was not appropriate or regeneration rates vary less with season/temperature than was anticipated.

The amount of mobilisation being over-estimated at the end of summer 2011 was unexpected.
As stated previously, hypotheses for this are that the FIT_SIMULT-identified value of βe
was too high or eroding shear stress spikes during the summer were not captured by the
fifteen-minute-averaged flow data.

It is unknown to what extent the overly-narrow ranges used when logging turbidity have limited
the ability to fit the model to the dataset. Ideally, all turbidity logging should be able to record
values from effectively zero to hundreds of NTU, with the number of bits per sample being
chosen to provide a high (e.g. 0.01− 0.02NTU) resolution.

6.3.5 Trunk main case study TM-WB: fitting to a long dataset containing
flow trials then testing predictive performance

6.3.5.1 Site description

The third trunk main case study, like the study of TM-NR, made use of a multi-year dataset
for model calibration but this dataset featured deliberate flow trials. These resulted in no-
table increases in turbidity and provided valuable information for characterising erosion and
regeneration processes.

Trunk main TM-WB (see fig. 6.37) is supplied with groundwater and runs between two SRs
in the south-west of England (SR1 and SR2). The reach referred to as TM-WB is a series
of mains of varying materials (AC and unlined DI), diameters, and flows, due to there being
various take-offs along its length.

Network operators want to be able to rapidly increase flows in TM-WB from ≈ 1100 ·m3 ·day−1

to > 2800 ·m3 · day−1 in the event of a WTW fail, SR fail or major burst without there being
a negative impact on water quality. However, several deliberate, controlled flow increases (‘flow
trials’) indicated that there is a significant risk of discolouration if flows are elevated above
typical levels.

On 2008-08-06, flows were increased whilst monitoring turbidity at two locations: where the
material changes from AC to DI (node N5 in fig. 6.37) and at the inlet to the downstream
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P1: AC
L=1187mm
⌀=450mm
ks=1.5mm

P2: AC
L=1854mm
⌀=450mm
ks=1.5mm

P4: AC
L=773mm
⌀=300mm
ks=1.5mm

P3: AC
L=41mm
⌀=350mm
ks=1.5mm

P6: DI
L=846mm
⌀=344mm
ks=3.0mm

P5: AC
L=1156mm
⌀=300mm
ks=0.5mm

P7: DI
L=2510mm
⌀=344mm
ks=3.0mm

P8: DI
L=2731mm
⌀=344mm
ks=3.0mm

N1

N2 N3

N4

N6

N7

N5

0-4.8 L/s
Stepped daily

0.7-3.3 L/s
Domestic

12-35L/s
Domestic

1-5.8 L/s
Domestic

Inflow infreq stepped.
Inflow and turbidity
on telemetry

SR1
182m AOD

SR2
169m AOD

Figure 6.37: A network schematic showing the key attributes of the pipes (P1-P8) of trunk main
TM-WB, including which sections are AC and which are unlined DI, the length (L) per section, internal
diameter (D) and the roughness (ks; taken from a calibrated hydraulic model). Flow and turbidity are
logged via telemetry every 15 minutes at the inlet to the downstream SR (permanent turbidity meter
installed in March 2012). The schematic also shows the take-offs along the length of the main as they
are represented in the hydraulic model of TM-WB, including the range of demand flows per node, the
type of flow profile (domestic or stepped) and the duration over which the flow profile patterns repeat.
The shown internal diameters are from the calibrated hydraulic model of TM-WB.

SR (SR2) (Husband et al., 2011). The increase in turbidity detected at SR2’s inlet (fig. 6.38)
exceeded the regulatory limit, but the response detected at N5 was much less, indicating that
most of the material eroded during the trial had been mobilised within the length of unlined DI.

During each of a number of subsequent flow trials, the maximum flow was raised closer to
the target conditioning flow of 2800m3 · day−1, with the intention that, once the target flow
was attained, the flow in the main could be periodically elevated back up to that level (i.e.
flow conditioning; see §2.1.17.2) to ensure any necessary rezoning and routing around failed
treatment/storage facilities would not cause discolouration. An actuated valve and permanent
turbidity meter were then installed at the inlet to SR2 to facilitate accurate flow control and
remotely-managed flow conditioning, with a turbidity observation being logged (almost) every
15 minutes via SCADA from the date of commissioning (March 2012) onwards. Some of the
key events in the history of TM-WB regarding discolouration risk management are shown in
table 6.13.

The water company responsible for TM-WB are currently managing discolouration risk using
regular flow trials to condition the main to flows approaching 1600m3 · day−1 above typical
demand. However, there is considerable interest and value in modelling how the amount
of material on the pipe wall develops between trials, as this would allow the risk associated
with postponing a trial to be quantified and permit the optimisation of the flow conditioning
programme with regards to discolouration risk, energy, discharged water, fiscal cost and/or
man hours.
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Figure 6.38: Superimposed turbidity and flow data for 6 km DI section from first two trials (after
Husband et al., 2011). Trials were separated by 351 days.

Table 6.13: Key events in the history of trunk main TM-WB regarding discolouration risk. Note that
during the flow trials turbidity was often recorded at a high temporal resolution but the flow measured by
the meter at the downstream SR meter continued to be recorded only every 15 minutes (via SCADA).

Date Comment Tds_obs monitoring
2008-08-06 Flow trial 0 Discrete sampling at

SR2 sampling tap
2009-09-27 Flow trial 1 ∆t = 10 s; N5 and SR2

sampling tap)
2010-12-07 Flow trial 2 ∆t = 900 s
2010-12-14 Flow trial 3 ∆t = 10 s
2011-01-18 Flow trial 4 ∆t = 11 s
2011-02-01 Flow trial 5 ∆t = 10 s
2011-06-21 Flow trial 6 ∆t = 11 s
2012-03-08 Permanent turbidity meter commissioned for

SR2 inlet
∆t = 60 s

2012-03-13 Permanent turbidity meter connected to
telemetry system

∆t = 900 s via SCADA
from that date onwards

2012,
mid-Sept

Main drained down to repair a leak. This
permitted the inspection of the internal surface
(fig. 6.39).

N/A
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Figure 6.39: The TM-WB main was drained down during September 2012 to repair a leak. This allowed
for the visual inspection of condition of the pipe wall. Part of the DI section is shown here.

6.3.5.2 Previous PODDS modelling

Previous attempts to model the first two TM-WB flow trials using PODDS were presented by
Husband et al. (2011). Only the DI section was modelled as the AC was not considered to pose
much discolouration risk. SR inflow data and turbidity data from the upstream end of the DI,
N5, were used as model inputs. Parameters from a calibrated model of a different (steel) trunk
main were used to ‘bootstrap’ the calibration process then parameter values were manually
adjusted (not using PSO) to increase the similarity of turbidity observations and predictions.

Husband et al. (2011) found through trial and error that the model fit could be improved if the
unlined DI section of TM-WB were split into three subsections (846m+ 2510m+ 2731m =
6087m), each with a distinct roughness or PODDS regeneration rate (previously mentioned in
§2.2.8.5). Modelling the upstream-most subsection as having a higher roughness or non-zero
PODDS regeneration rate in effect emulated there being more material at the upstream end of
the main (given the nature of the PODDS model). No longitudinal variation in roughness could
be found using pressure monitoring and fig. 6.39 suggests that there was little tuberculation,
so the modelling results were believed to provide some evidence for discolouration processes
varying along the length of pipes that are believed to have uniform characteristics (see also
§2.1.16.6).

6.3.5.3 Objectives for modelling TM-WB using the VCDM

The principle objective was to model the impact of erosion and regeneration on the amount
of material within the DI reach over a multi-year period. Field data has indicated that the
discolouration risk associated with the DI reach is notably greater than for the AC reaches
so only the 6087m DI reach was explicitly modelled using the VCDM. This simplifies the
modelling process as the DI reach, unlike the AC reaches, has a consistent nominal diameter
along its length and is also assumed to be consistent with regards to flow (i.e. leakage is
negligible and there are no take-offs) and roughness (Husband et al., 2011, could not detect
variation in roughness with distance along the DI using headloss measurements). The modelled
6087m pipe was assumed to have an internal diameter of 344mm and a Darcy Weisbach
roughness of 3mm (values taken from a calibrated hydraulic model).
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A second objective was to test the accuracy of the calibrated model by comparing turbidity
observations and predictions for a period following the calibration period.

6.3.5.4 Data pre-processing

The following steps were taken to pre-process the time-series model input data:

1. Import the flow and turbidity time-series SCADA data. Express the flow data in
m3 · s−1. Replace turbidity data where the meter was obviously offline or reading exactly
zero with null values. Clip the minimum flow to zero.

2. Import per-trial, high-resolution downstream turbidity data. Clip the minimum
to 0NTU , interpolate over null values using time-aware linear interpolation, remove
records with repeated timestamps, combine with Tds_obs SCADA data to form a single
time-series.

3. Combine all flow and turbidity time-series as a single dataset with a common time-
series index (which is the mathematical union of the indexes of all combined time-series).
This requires some up-sampling and results in null values being associated with some
timestamps.

4. Infill null values. Fill forwards over one or more null values in the flow series. Infill
missing turbidity values during trials and after the permanent turbidity meter was installed
using time-aware linear interpolation.

5. Estimate Tnet by subtracting the centred, rolling 5th percentile of Tds_obs (with a
time window of ten days) from Tds_obs itself, as was also done for trunk main TM-NR
(§6.3.4.3). The application of a centred, moving average function results in null values at
the extremities of the output series: nulls at the end of the output series were infilled by
filling forwards but the values at the start of the series were left null as the first part of
the moving average input, Tds_obs, was also null (for months before the first flow trial).

6. Identify the times when increases in flow are likely to cause turbidity events using
the method presented in §6.3.4.2. Here t_win was 28 days, single-data-point events
were not ignored and n_turnovers was 5.

7. Estimate Tnet. As with TM-NR this could only be done using Tds_obs (although Tus_obs
data was captured during flow trials it was not available at the time of modelling/writing):
the centred, rolling, 5th percentile of Tds_obs was subtracted from the unprocessed Tds_obs
signal to give Tnet_est. A rolling percentile window size of 10 days offered the best
correlation between times when flow increases were likely to cause turbidity increases in
TM-NR and observed turbidity increases (see §6.3.4.2 for details of the method). Prior
to applying the moving average function, null turbidity values between trials were infilled
with zeros to ensure that the removal of the background turbidity signal was not overly
aggressive. Again, null values at the extremities of Tnet_est resulting from the application
of the moving average function were infilled by filling backwards and forwards using the
first and last non-null values.

228



8. Calculate the shear stress profile.

The resulting dataset is shown in fig. 6.40.

Figure 6.40: Shear stress and turbidity dataset from (the DI part of) trunk main TM-WB used for
calibrating and validating the VCDM. The days on which flow trials 1 to 6 (see table 6.13) were
conducted are shown as dashed lines. One can see that continuous turbidity data was available from
March 2012, when a permanent turbidity meter was installed and connected to SCADA.

6.3.5.5 Model fitting method

The model was first fitted over a u 1633-day period up to the end of trial 6 (after which there
were significant turbidity fluctuations due to the commissioning of the permanent turbidity
meter; many of these were due to instrument error during/after installation rather than material
erosion within TM-WB). Basic statistics describing this portion of the dataset are shown in
table. 6.14.
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Table 6.14: Basic statistics of the part of the TM-WB dataset that was used for calibrating and validating
the VCDM. Note that flows and turnover times relate to the DI section of TM-WB and that turnover
times were only calculated for strictly positive flows.

Q tt (Q > 0) τa Tds_obs Tus_est Tnet_est

count 187048 187048 187048 30342 187048 30342
mean 0.017 09:21:01 0.180 1.697 0 1.697
std 0.004 09:00:37 0.078 1.290 0 1.290
min 0.000 04:34:58 0.000 0.000 0 0.000
25% 0.016 07:52:37 0.134 0.519 0 0.519
50% 0.017 09:21:34 0.155 1.496 0 1.496
75% 0.020 10:03:38 0.217 2.668 0 2.668
max 0.034 109 days 03:07:31 0.632 51.066 0 51.0659
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VCDM conditioning (§5.8.6) was used to estimate the wall state. The highest shear stress over
the calibration period was near the beginning, some time before trial 1 (see fig. 6.40). It was
therefore thought that by setting the initial amount of material per tracked shear strength to 1,
the wall state would quickly converge on accurate values during this early period of elevated
shear stress. When fitting and assessing the quality of fit, Tnet_est and Tnet_pred were only
compared during trials; erroneous turbidity predictions during the ‘bedding-in’ period before
the first trial therefore had no impact on the fitting process. During simulations, 100 strength
bands were tracked These corresponded to the range [0, 0.654] Pa, with the upper bound
being the maximum shear stress over the duration of the entire dataset (not just the fitting
period).

The model was fitted to the dataset using the same PSO box bounds and convergence tolerances
used when fitting the TM-YR dataset (see §6.3.3). Again, the FIT_SIMULT method was
executed three times with the same inputs to assess the repeatability of the PSO fitting process.

6.3.5.6 Fitting results

The parameters identified by the three repeat runs of FIT_SIMULT were very consistent
(table. 6.15) and the correlation with (slightly transformed) observations was reasonably good(
R2 u 0.7

)
. The estimated duration required for full regeneration (β−1

r ) was shorter than the
1.5 years estimated for unlined Fe mains in DMAs (§2.1.14); this is not implausible given
that regeneration processes in trunk mains have not previously been characterised and may
have different kinetics to DMAs given the proximity to treatment works, different flow regimes,
higher oxidant concentrations etc.

Table 6.15: Results of the attempt to fit the VCDM to the TM-WB trunk main dataset.

Run βe βr α ISE PSO itrs β−1
r [yrs] R2

0 0.000341 3.5× 10−8 8.251 15965.608 104 0.905 0.709

1 0.000341 3.5× 10−8 8.250 15965.608 99 0.905 0.709

2 0.000341 3.5× 10−8 8.251 15965.609 109 0.905 0.709

Per-trial estimations and three predictions of the net turbidity (§5.9) are shown in figs. 6.41,
6.42, 6.43, 6.44, 6.45 and 6.46. For several trials, the discrepancies between observations
and predictions appear to be a result of Tus not having been sufficiently discounted: the
baseline Tnet_est value before any flow increase is notably greater than 0NTU. It may have
been possible to achieve a better model fit had accurate Tus observations been available for
use as model inputs, which would have negated the need to estimate Tus using rolling 5th
percentile of Tds_obs.

Another potential source of error is the timestamping of flow and/or turbidity data during trial
6: the temporal offset between turbidity observations and predictions is approximately an hour
and the trial is the only one of the six that was conducted when the UK was operating on
British Summer Time rather than Greenwich Mean Time, suggesting that the timezone of the
flow or turbidity data timestamps is incorrect.
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As with previous PODDS modelling (§6.3.5.2), the VCDM was unable to represent the unusual
shape of Tnet during trial 1, which may have been due to Tus observations not having been
available for use as model inputs in this case, or may be due to regeneration processes not being
consistent with length along the DI section of TM-WB. βr, α, βe or ϕ (τ, t0) could potentially
vary with longitudinal distance to give the impression that more material was mobilised from
the upstream end of the DI reach (variation in roughness and diameter were previously ruled
out (§6.3.5.2)).

Figure 6.41: Trunk main TM-WB, VCDM fitting attempt, flow trial 1.

Figure 6.42: Trunk main TM-WB, VCDM fitting attempt, flow trial 2.

6.3.5.7 Accuracy of predictions using the calibrated model

The accuracy/validity of the calibrated model was explored by predicting the turbidity response
over the part of the dataset not used for calibration (from after trial 6 on 2011-06-22 at
09:12:17 to 2013-10-17 at 13:00:00, which is approximately 848 days). The values of ϕ (τ, t)
from the final timestep of the calibration simulations (see fig. 6.47; this varied by very little
between runs) was used as the wall state boundary condition when simulating from 2011-06-22
at 09:12:17 onwards. Note that the relationship between shear strength and relative material
quantity at that time was not trivial and not something that the PODDS model could represent;
this gives weight to the VCDM design decision of allowing relative material quantity to vary
freely (or at least monotonically increasingly) with shear stress.

The correlation between Tnet_est and Tnet_pred over this period was not as strong as for the
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Figure 6.43: Trunk main TM-WB, VCDM fitting attempt, flow trial 3. The turbidity observations (and
therefore the Tnet_est profile) featured large turbidity spikes between 09:30 and 12:00: these are believed
to be due to the stopping of flow (and settling/resuspension within the turbidimeter) and/or degassing
rather than a discolouration response from TM-WB.

Figure 6.44: Trunk main TM-WB, VCDM fitting attempt, flow trial 4.

Figure 6.45: Trunk main TM-WB, VCDM fitting attempt, flow trial 5.
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Figure 6.46: Trunk main TM-WB, VCDM fitting attempt, flow trial 6.

Figure 6.47: Trunk main TM-WB: the relative material quantity versus shear strength relationship at
the end of the VCDM fitting attempt.
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period used for fitting the model. R2 was:

• 0.041 if only considering timestamps where Tnet_est was not null;

• 0.015 if considering timestamps where Tnet_est was not null and the aforementioned event
detection method has flagged the timestamp as belonging to an event. It is surprising
that this dissimilarity value is slightly lower.

Of the fourteen identified flow events where the increase in flow above prevailing levels was
notable:

• 2 were fairly accurate (figs. 6.48a and 6.48b), including the very last event on 2013-09-24
(fig. 6.48b), ~824 days after the calibration period;

• 9 turbidity responses were over-predicted (e.g. on 8th, 18th/19th and 31 May 2012 in
fig. 6.48c and 11th September 2012 in fig. 6.48d) , some significantly so;

• 1 was under-predicted;

• 2 predictions were too lengthy and low in magnitude (i.e. initially under-predicting but
then over-predicting).

The Tnet_est signal included two classes of feature that could not be explained by the model:

• Multi-point turbidity spikes at the end of a period when flow was temporarily zero (e.g.
on 13th/14th September 2012 in fig. 6.48d); these spikes are most likely due to the
re-suspension of settled material in the turbidity meter’s flow cell;

• Clusters of single-point increases above the turbidity baseline with no corresponding flow
variations (e.g. prior to the flow increase in fig. 6.48a and during 9th-16th May 2012 in
fig. 6.48c), most likely due to measurement noise and/or degassing;

• Multi-point increases above the turbidity baseline with no corresponding flow variations,
which could be due to the importing of discolouration material into the upstream end of
TM-WB. Without turbidity monitoring data from the upstream end of TM-WB, it is not
possible to test this theory.

6.3.5.8 Discussion and conclusions

When fitting the model to six distinct flow trials in TM-WB, the FIT_SIMULT method proved to
be highly repeatable, both in terms of identified parameter values and net turbidity profiles. The
identified maximum regeneration duration of 0.9 years is plausible given understanding gained
from previous field studies. It is believed that the quality of model fit, although reasonable,
could have been improved had upstream turbidity observations been available for use as model
inputs, and had timestamps been accurately recorded for all modelled flow trials. The turbidity
response to the first trial corroborated Husband et al. (2011)’s theory that, immediately prior
to that trial, discolouration process characteristics varied with distance along TM-WB.
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(a) Predicting turbidity in trunk main TM-
WB: first strongly-correlating turbidity in-
crease on 24th/25th April 2015. Note the
Tnet_est noise prior to the flow increase; this
cannot be explained by the recorded flow ob-
servations and may be due to instrument error
and/or degassing.

(b) Predicting turbidity in trunk main TM-WB:
second strongly-correlating turbidity increase
on 24th September 2013.

(c) Predicting turbidity in trunk main TM-WB:
the turbidity responses on 8th, 18th/19th and
31 May 2012 were over-predicted by the cali-
brated model. The Tnet_est noise during the
period 9th-16th May 2012 cannot be explained
by the recorded flow observations and may be
due to instrument error and/or degassing.

(d) Predicting turbidity in trunk main TM-WB:
the turbidity response from the flow event on
11th September 2012 was over-predicted by
the calibrated model. Note the subsequent
large spikes in turbidity (clipped to a maxi-
mum recordable value of 5NTU) after the
flow in TM-WB was raised above zero: these
are most likely due to the resuspension of ma-
terial within the turbidity meter flow cell and
not to material erosion within TM-WB.

Figure 6.48: Predicting turbidity in trunk main TM-WB using the model calibrated during the fitting
attempt. Red crosses are flow events, identified by an automated method, that are likely to cause
material erosion.
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Predicting forwards from the end of the calibration period yielded mixed results: the turbidity
increases associated with nine of fourteen flow increases were over-predictions, although another
two of the fourteen turbidity increases were reasonably accurately predicted, including one over
two years after the end of the calibration period. Several issues made assessing the accuracy of
the prediction more difficult: the resuspension of material within the turbidity meter flow cell
following the restarting of flow in the main, rapid turbidity fluctuations with no corresponding
flow variations and longer/larger turbidity increases with no corresponding Tnet increase.

Upstream turbidity observations would have been useful for determining which turbidity increases
were due to imported material. Their availability would also have negated the need to estimate
Tnet using the rolling fifth percentile of Tds_obs, a process that could have yielded different
results for the calibration period of short, discrete trials versus the subsequent period of continual
monitoring due to the window size used with that moving average function. Any resulting
difference in Tnet_est characteristics between calibration and prediction period may explain why
the predictions after the calibration period were often under-estimates.

6.4 Conclusions

• The assumption that certain discolouration process characteristics are constant with
shear strength were tested using a realistic-scale laboratory pipe rig. The amount of
accumulated discolouration material was found to be consistent for all but the weakest
shear strengths (§6.2.2.8). An implication is that a calibrated model may over-predict the
amount of material at weaker shear strengths or under-predict for greater shear strengths.
It is not yet known whether this finding applies to all pipes, whether it is significant
for discolouration risk management nor whether the erosion rate is constant with shear
strength (this assumption could not be independently tested). However, it should be
noted that the model was able to accurately represent many (but not all) turbidity events
during four DMA case studies (erosion only; §6.3.2) and three trunk main case studies
(erosion and regeneration; §6.3.3, §6.3.4, §6.3.5) whilst retaining the assumption that
the three model parameters are constant with shear strength. Parameter values from
fitted models differed somewhat between the two pipe systems, more notably for βe.
This could be due to recirculation effects and imprecise attempts to compensate for
them, to fitting by hand rather than using PSO or to material eroding in one system
faster than the other. There is insufficient information to prove any of these suggestions,
but the third suggestion warrants further investigation as if the erosion rate of stronger
material is dependent on the magnitude and fluctuation of a much lower shear strength
during a preceding growth phase then this is in conflict with the VCDM assumption
that the erosion and regeneration of different shear strength bands can be calculated
independently.

• The developed model could represent three out of four DMA stepped flushing events as
accurately as the validated PODDS model, with ability to fit the model to the fourth
event believed to be limited by data accuracy. This indicates the chosen empirical erosion
model is capable of generating results that reflect reality, even though internally it may
not be based on physical principles.
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• Three additional case studies explored the ability of the developed model to simulate both
erosion and regeneration in trunk mains. The model fits produced using the FIT_SIMULT
method were able to represent a number of (but not all) turbidity events over multi-
month calibration periods in pipes of different materials and diameters and supplied
with different source waters. The way in which well-fitted events and less-well-fitted
events were interspersed indicates that the model is partially capable of representing
discolouration processes. A number of data availability / quantity issues limited the
ability to determine the extent to which the model was accurate / valid:

– For trunk mains TM-NR and TM-WB no upstream turbidity observations were
available so the net turbidity response (the signal to be modelled) had to be
estimated by taking the centred, rolling 5th percentile of the downstream turbidity
observations. This worked well for discounting imported material and instrument
drift in the majority of cases. However there were several turbidity events (particularly
in TM-NR) where the model could not represent the net turbidity estimate due to
the latter featuring increases that appear to be the result of mobilisation upstream
of the modelled mains.

– In TM-NR the model under-predicted regeneration after a long period of relatively
low flow. This could potentially be due to short, sharp flow spikes that were not
captured or accurately represented by the fifteen-minute-averaged flow observations.
Alternatively this could be due to the material at lower strengths having different
properties in this case; if so, this is different behaviour to that seen in the pipe rig as
less rather than more material was predicted at lower strengths. Another possibility
is that the regeneration rate decreased during the period of low flow; however this is
unlikely as flow was lower over summer, a time when one would expect regeneration
to be quicker if it is a temperature-dependent process. To ensure that flow spikes
are detectable in long term flow monitoring data it is recommended that the 95th
percentile be recorded every fifteen minutes instead of/as well as the mean. Also,
in future the extent to which the rolling 5th percentile of the downstream turbidity
observations is representative of the upstream turbidity could be validated using
data from one or more trunk mains that were continuously monitored at both ends.

– The timestamps associated with the higher-frequency time-series data captured
during several flow trials were found to be inaccurate. It is important that flow and
turbidity timestamps are accurate as the model cannot represent observations if
increases in turbidity appear to occur too early relative to the causal increase in
shear stress.

• The model fitting process yielded more accurate predictions, more plausible βr values and
was more repeatable if the wall state at the time one wants to start modelling turbidity
responses accurately was informed by more antecedent flow data.

• The quality of model fit was also dependent on the calibration dataset featuring multiple
pairs of shear stress and corresponding turbidity events events, with these being greater
than the baseline turbidity signal and the digitisation threshold. Ideally these events
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need to be separated by a period of say three months so that a detectable amount of
regeneration can occur over that period.

• Regeneration rates were plausible for the best fits of model to data from trunk mains
TM-YR, TM-NR and TM-WB.

• The fitting process was aided by only calculating correlation metrics when turbidity
exceeded a threshold (TM-YR), during shear stress events (TM-NR) or during flow trials
(TM-WB). A method developed for identifying shear stress events (and accounting for
discolouration material propagation delay) proved useful here.

• For trunk main TM-NR a fourth parameter was fitted using FIT_SIMULT to allow
for temperature/seasonal variation in βr. Interestingly, the best model fits for the
assumed relationship between temperature and βr were when βr was effectively time-
invariant and independent of temperature. However, this case study did demonstrate
how the regeneration rate parameter could be substituted for a more complex sub-model,
functionality that may become more important if future field/lab studies provide data
that supports such complexity.

• Although the model of TM-WB fitted the calibration data well, attempts to predict just
over two years forwards in time yielded mixed results, with the majority of the shear
stress events during that time being over-predictions. However, an event near the end
of that period was fitted very accurately so the prediction error might not be the result
of a steady drift of the represented latent state but may instead be due to the model
capturing some but not all of the key characteristics of discolouration processes.

• There was some limited evidence of discolouration processes varying with distance along
TM-WB, although this variation has not been quantified.
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Chapter 7

Discussion and recommendations for
future work

7.1 Holistic appraisal of model performance

Details of the best calibration fits for all seven DWDS pipe lengths modelled in §6 are shown
in table 7.1.

Overall quality of calibrations The model was able to represent DMA erosion events in
unlined CI pipes well. The fits to erosion events in plastic DMA pipes were not as good, even
if the maximum shear strength is explicitly limited, but the same was also true for the PODDS
model (Husband and Boxall, 2010a). This indicates that one or more of the VCDM / PODDS
erosion models and the τmax / τultimate concepts need to be refined.

The best quality of fit metrics for the two medium-diameter trunk mains (TM-YR and TM-WB)
were good and were notably higher than for the largest diameter trunk main (TM-NR). This
could be due to the TM-NR dataset lacking higher resolution flow and turbidity data during flow
events (i.e. 15-minute-averaged data under-representing peak shear stresses), to discolouration
processes being slightly different in TM-NR and/or to the Tnet estimation method being less
effective for TM-NR. A useful test of the impact of using low-temporal-resolution data would be

Table 7.1: Details of the best model calibration fits for all DWDS pipe lengths modelled in §6. The first
set of parameters for each pipe system is the result of trying to fit to the earlier part of the flushing
phase and the second set from trying to fit to the later part.

Pipe(s) Material D [mm] Fit config βe βr α β−1
r (yrs) ˆτmax τ̂c R2 NSEI

PODDS-CI1 Unlined CI 95 N/A 6.41× 10−4 N/A 0.593 Unk. N/A 1.058 - 0.889

PODDS-CI2 Unlined CI 76 (51) N/A 5.038× 10−4 N/A 0.585 Unk. N/A 4.241 - 0.74

PODDS-PE1 PE 89 N/A 1.123× 10−2 N/A 0.504 Unk. 1.779 0.005 - 0.385

PODDS-PE2 PE 72 N/A 8.79× 10−4 N/A 0.544 Unk. 3.954 0.006 - 0.181

TM-YR Concrete-lined DI 440 2 1.807× 10−3 6.137× 10−9 0.944 5.164 Unk. N/A 0.930 -

TM-NR Lined steel 800 1 7.650× 10−5 1.717× 10−8 5.472 1.846 Unk. N/A 0.311 -

TM-WB Unlined DI 344 N/A 3.41× 10−4 3.500× 10−8 8.251 0.905 Unk. N/A 0.709 -

Rig sys A HDPE 79.3 N/A 5× 10−3 N/A 0.038 Unk. Unk. 0.09 - -
1.4× 10−3 N/A 0.022 Unk. Unk. 0.09 - -

Rig sys B HDPE 79.3 1.5× 10−2 N/A 0.032 Unk. Unk. 0.09 - -
1× 10−3 N/A 0.018 Unk. Unk. 0.09 - -
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to log at a high rate such as once per 10 s then compare best model fits between that dataset
and a subsampled version where each datapoint represented the mean of multiple datapoints in
the original dataset.

Clearly, the accuracy and precision of the magnitudes and timings of time-series model inputs
can be limiting factors for the quality of model fit.

Predictive power The prediction made using the calibrated TM-WB model did not correlate
strongly with observations: many turbidity events were over-predicted but a small number of
events were predicted accurately (note that it is preferable to over-predict turbidity events than
under-predict). As this was only one prediction, there is insufficient evidence to dismiss the
model as having no potential for extrapolation, testing scenarios or designing flow conditioning
programmes. As stated in §6.3.5, the quality of prediction was limited by the method for
estimating Tnet (in the absence of Tus observations) being only partly effective and also by
not being able to model resuspension within the instrument head after the restarting of flow.
Other possible reasons for the low correlation of observed and predicted turbidity:

• The model was over-fitted to the calibration period.

• The model formulations including the regeneration sub-model may be insufficiently
representative of reality (although the fit to the calibration period was fairly good).

• Discolouration process characteristics could have differed between the calibration period
and the prediction period. For example, a change in WTW processes could have brought
about a change in βr.

For the prediction made using the TM-WB it was not possible to quantify how the error in
the latent wall state increased over time. However, it is noteworthy (or possibly coincidence)
that one of the two accurately predicted turbidity events occurred at the end of the two-year
prediction, after a number of over-predicted events.

Plausibility of fitted βr values The (fitted) annual regeneration rate for the TM-YR trunk
main (§6.3.4) is 19.4%, which is far lower than the expectations for a DMA pipe with similar
properties (not unlined Fe: 28%; supplied with surface water: 55%; Fe coagulation used: 49%;
no unlined CI upstream: 27% (Husband and Boxall, 2011, ignoring variances)). This could
be due to the proximity to the supplying WTW (see §2.1.16.7 and §2.1.16.6), the pipe being
relatively new so the concrete lining being in better condition, the diameter being much larger
than for the pipes flushed by Husband and Boxall (2011) (§2.1.16) or to the dataset the model
was fitted to containing little information about regeneration processes (§6.3.3.5), resulting in
an inaccurate estimate of βr.

The annual regeneration rate in TM-NR (54.2%) was very much in keeping with the expectations
for DMA pipes also supplied with surface water (55%) and with some unlined Fe pipes upstream
(54%). However, although TM-NR is purportedly lined, its regeneration was closer to the
expectation for unlined Fe pipes (52%) than other types of pipes (28%) (although the low R2

indicates that it may be inaccurate). One explanation for this is that the lining of this trunk
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main has deteriorated. It should also be noted that here the regeneration rate is not atypical
for DMA pipes, even though the internal diameter of TM-NR is approximately a factor of ten
greater.

For TM-WB, the annual regeneration rate was found to be 110.5%, which is far faster than
the expectations for DMAs (Husband and Boxall, 2011) and is particularly surprising given
that the main is supplied with groundwater (§2.1.16.3). Through studying mains with fast
regeneration rates such as TM-WB, it may be possible to better validate the assumption that
material accumulation over a given shear strength range is bounded (see §4.3.3 and §2.1.14).

Ultimately, the sample of three trunk mains does not allow any strong conclusions to be drawn
about if/how regeneration rates differ between trunk mains and DMA pipes. Calibrated VCDM
models of a greater number and variety of trunk mains (e.g. large-diameter AC and PE trunk
mains and pipes with diameters larger than 1m) are required to further the understanding of
how the potential factors listed in §2.1.16 influence regeneration rates.

Plausibility of fitted α values For trunk mains TM-WB, TM-NR and TM-YR, the best
fitted α parameter was factors of ten, five and two (respectively) greater than for the four
narrower flushed DMA pipes referenced in §6.3.2. The PODDS k parameter was shown to be
conceptually equivalent to the VCDM α parameter (§5.7.5.4) and the absolute magnitude of k
for calibrated PODDS models is also often larger, or at least more variable, for D ≥ 150mm
(unpublished calibration parameters obtained from the PODDS project steering group1). The
best fitted α value is similar between the four DMA pipes, regardless of diameter and whether
the pipes are PE or unlined CI. This could indicate that large diameter differences have a more
significant impact on α than pipe material. However, the fit to PE pipes is poor so the α
identified for those pipes could be inaccurate.

The chosen Tnet estimation method (§6.3.4.3) has been shown to be only partly effective;
any error resulting from this method may cause turbidity spikes to be over/under-represented,
leading to error in the fitted value of α (the amount of material per unit pipe wall and per unit
shear strength) and the other two parameters.

Plausibility of fitted βe values The highest (fastest) fitted erosion rate factor was associated
with one of the PE DMA pipes. There may be a valid relationship between diameter and
βe as, although the quality of the VCDM fits for DMA PE pipes was poor, the PODDS P
parameter, which is conceptually similar and has the same units, was previously also found
to be greater for narrow plastic pipes (unpublished calibration parameters obtained from the
PODDS project steering group). Similarly, the lowest (slowest) βe value was associated with
the largest diameter trunk main, TM-NR, although it may be that the βe values found through
applying FIT_SIMULT to the TM-NR data are subject to error as βe is a rate-like parameter
and the sampling resolution was only fifteen minutes.

Plausibility of fitted τmax values The best values of τmax identified by fitting the model to
flushes in PE DMA pipes PODDS-PE1 and PODDS-PE2 were lower than max (τa) during the

1http://www.podds.co.uk
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flushes, indicating that the flushes may have removed all material from the pipe walls. These
values were lower than the τultimate values found by Husband and Boxall (2010a) when they
calibrated PODDS models of the same two datasets: the VCDM τmax values were 1.78Pa and
3.96Pa for PODDS-PE1 and PODDS-PE2 and the PODDS τultimate values were 1.2Pa and
1.8Pa (§2.2.8.4). This indicates that τmax and τultimate may not be conceptually equivalent
and adds to the uncertainty regarding the magnitude and factors of ‘cleaning’ shear stresses in
DMA pipes (§2.1.15).

A reason for the poorer fits in plastic pipes could be that the maximum shear strength in either
all pipes or just plastic pipes (τmax in the VCDM; τultimate in PODDS) is not a crisp value. A
smoother transition is more plausible but it may be difficult to demonstrate this by experimental
means. Also, the VCDM would need to be made more complicated if ∂ϕ/∂t were dependent on
shear strength at higher shear strengths in plastic pipes. Another possible explanation for the
behaviour of discolouration material in plastic pipes is that τultimate and τmax are conceptually
invalid but their use allow models to be fitted to pipes where there was more material present at
the weakest shear strengths, as was observed in the pipe rig experiment presented in §6.2.2 and
is supported by visual interpretation of the results for plastic pipes shown in Husband and Boxall
(2010a), fig. 6.14 and fig. 6.15. More material being present at the weaker shear strengths
is not something that the VCDM can represent if ϕ (τ, t) is required to be a monotonically
increasing function (§4.4.4). However, τultimate and τmax are conceptually consistent with
the proven idea of self-cleaning, entirely dendritic networks of self-cleaning pipes (§2.1.15). A
third option is that both of the other two possibilities are true: more material accumulates at
the weakest shear strengths, at least in plastic pipes, and there is a shear stress above which
more material can be removed from the wall, although this may not have been reached in the
modelled DMA mains.

An implication of these hypotheses is that the material strength versus shear strength relationship
may not be a monotonically increasing function (as had been originally assumed; see §4.22).

Plausibility of fitted τc values The fitted τc values were plausible (§6.3.2.8) but cannot be
compared to the τc values used in the PODDS modelling presented by Husband and Boxall
(2010a) as the latter are not available at the time of writing.

Repeatability The repeatability of the calibration process can be assessed in different ways
for a given pipe:

• Across multiple PSO runs given the same boundary conditions and regeneration sub-model;

• Between different fitting configurations (using different boundary configurations and/or
regeneration models).

In the first of those two cases, the FIT_SIMULT (PSO) fitting approach was repeatable for
the two CI DMA mains flushes (§6.3.2), for trunk main TM-YR fitting attempt 2 (§6.3.3), for
all TM-NR fitting attempts bar the third one (§6.3.4) and for trunk main TM-WB (§6.3.5).
The PODDS-PE1 DMA flush case study and the FIT_SIMULT performance tests in §5.7.5.5
demonstrated the importance of running FIT_SIMULT multiple times given the same inputs to
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account for PSO being a non-deterministic process that is likely but not guaranteed to find the
global optimum. The calibration of PODDS-PE2 (§6.3.2) was not repeatable. This is believed
to be due to data quality and potentially to assumptions regarding the maximum shear strength
being overly simplistic.

The first attempt to fit TM-YR (§6.3.3) was also not repeatable, indicating that the choice
of boundary conditions and how the wall state is conditioned at the start of the simulation
impact on the ease of fitting. This is also true of TM-NR (§6.3.3): inconsistencies between the
four fitting attempts demonstrate that the fitting process is sensitive to the choice of boundary
conditions.

In this thesis the model was only calibrated for a small number of pipes (nine in total). A
better understanding of the repeatability of the calibration process will come through fitting
the model to a greater variety of distinct systems.

It should be noted that the fitted parameters from the two rig experiment pipe systems, A and
B, should have been very similar but were not. This is discussed more in §7.5.

Model error Several mesh resolution constraints for minimising model error were presented
in §5.3.9.7. The first of these, eq. 5.34, was that ∆t should always be less than the turnover
time; this was true for all pipe rig and field study models presented in §6. A second constraint
was that the shear strength step, ∆τ , should be much smaller than the shear stress (eq. 5.3.7).
This was found not to be true for any of the three trunk mains2: ∆τ was less than the minimum
strictly positive shear stress in all three systems. Another was that the timestep should always
be less than td (eq. 5.32); this was true for the the models of all three trunk mains2. Here
max (τa) was used instead of τe to simplify the calculation of td, which results in a slightly
more restrictive constraint. The βe used to calculate the td was taken from the best fit (table
7.1).

Other mesh resolution constraints were not tested because either they were nonsensical for
cases where the most restrictive case was very restrictive for cases where τe approaches zero or
because the constraints were not valid due to the attempts to base them on non-dimensional
expressions being unsuccessful.

7.2 Value of the modelling framework including practical appli-
cations

7.2.1 Designing optimal flow conditioning programmes

Once validated, the model is anticipated to be of greatest use for designing flow conditioning
programmes for trunk mains (§2.1.17.2; §2.1.17.3) due to the facility for modelling accumulation
and erosion over periods of months/years. At present, flow conditioning is used to manage
discolouration potential in a small number of UK trunk mains but these programmes have been
developed using trial and error, have not been optimised with regards to metrics such as cost
and energy and may not be flexible i.e. the system state may not be known/quantifiable if

2Not checked for the pipe rig nor the DMA flushing trials.
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there is a change to the schedule. In this sub-section, the outline of a method is presented for
designing optimal flow conditioning programmes using the VCDM (use case 6 in §4.2.1).

To begin with, the process requires a VCDM model instance that is representative of reality,
either through it having been calibrated very recently or from the system state having been
updated using flow data from after the end of the calibration period.

The modeller needs to have a good understanding of how flow is expected to vary due to typical
operation in the coming weeks/months/years. For example, this may be a constant level, a
daily pattern or a weekly pattern. Flows are expected to follow this pattern for long enough to
warrant developing a flow conditioning programme. The modeller also needs an estimate of the
largest flow magnitude that the modelled main may experience in the coming weeks/months.
There is no need to anticipate the rise up to this elevated flow level; assuming an instantaneous
increase up to this level gives a worst case estimate of discolouration risk. This flow magnitude
may be:

• A function of the maximum pumping rate for rising mains;

• The maximum flow that may result from a burst. This could be estimated using the
standard orifice equation (Pudar and Liggett, 1992);

• The maximum pipe flow that would be required if a WTW with a specific outflow or a
parallel main or SR were taken out of service;

• A maximum derived from a combination of the above.

This ‘target flow’ corresponds to the maximum shear stress and therefore the maximum shear
strength that needs to be modelled. Ideally the model should have been calibrated over a period
where the shear stress reached this level to ensure that estimates of the amount of material at
higher strengths are accurate.

For a main conveying a diurnally-varying flow, a flow conditioning programme might take the
form of fig. 7.1. Given that the daily peak flow is short-lived, it may be necessary to boost that
peak over several consecutive days during each flow conditioning programme cycle. Increasing
the additional flow in steps up to the target flow level will yield smaller turbidity responses
than if the target flow is achieved on all of those consecutive days. The principle aim when
designing the programme is to guard against the worst case shear stress increase, which is an
instantaneous increase up to the target level just before the start of the next flow conditioning
cycle.

The design of this programme can be considered an optimisation problem. One of several ways
of posing this problem is presented here. The optimisation variables are:

• ts: The number of seconds into each flow pattern after which extra flow is added.

• te: The number of seconds extra flow is then added for.

• rp: The number of flow pattern repeats in a flow conditioning programme cycle (see
fig. 7.1).
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Figure 7.1: An illustrative design for a flow conditioning programme. The flow within the main varies
diurnally, so additional conditioning flow must be added to the peak daily flow for each of several
consecutive days. Additional conditioning flows are shown as blue dashed lines. The worst case erosion
event that the programme is designed to protect against is the instantaneous increase in shear stress
(red dashed line) up to the target level (green dotted line). The aim is to design conditioning programme
so that the resulting turbidity response is always less than a threshold (green dashed line). Symbols are
explained in the text.

• rq: The number of flow pattern repeats at the start of that cycle when extra flow is
added to the peak of the pattern e.g. 3 repeats of a daily flow pattern.

• Q1: The magnitude of the first extra flow period during each flow conditioning programme.
The shear stress could be linearly increased to the target shear stress over rq repeats of
the flow pattern (e.g. over 3 days, as shown in the example).

The objectives are to:

• Minimise rq.

• Minimise pumping/energy costs.

• Minimise the number of changes of pump status/speed. This minimises the risk of
generating transients, pump wear (if applicable) and minimises man hours (if flow
changes must be manually controlled, either locally or remotely using an actuated valve).

While the constraints are that:

• rq < rp

• There is no material with a strength less than the target shear stress bound to the pipe
wall from rq flow patterns into a flow conditioning cycle. This ensures that the flow
conditioning programme is a statistically stationary process and is therefore repeatable.

• max(Tds) < a particular threshold throughout the flow conditioning programme, even if
the flow instantaneously increases to the target level during the last flow profile peak
before the start of the next conditioning cycle.

• SR levels do not drop below minimum specified levels.
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• ts + te < the flow pattern duration.

If instead the main of interest terminates at a SR then the optimisation problem can be
expressed differently, as there is no need to ensure that the periods of elevated flow occur at
the same time as the short-lived daily peak. Fig. 7.2 shows an example programme for a main
with an effectively constant background flow. Such a programme could be designed by solving
an optimisation programme where the variables are:

• sq: The number of flow steps during each flow conditioning programme.

• tq: The duration of each flow step relative to the turnover time.

• trech: The duration between flow steps, during which upstream and/or downstream SRs
can be recharged.

• Q1: The magnitude of the first extra flow period during each flow conditioning programme.
The shear stress could be linearly increased to the target shear stress over the sq flow
steps.

• tp: Duration of a flow conditioning programme cycle.

The objectives are to:

• Minimise the combined duration of all flow steps and intervening trech periods.

• Minimise pumping/energy costs.

• Minimise the number of changes of pump status/speed.

The constraints are that:

• The combined duration of all flow steps and intervening trech periods is less than tp.

• There is no material with a strength less than the target shear stress bound to the pipe
wall after the combined duration of all flow steps and intervening trech periods. Again,
this is to ensure that the conditioning programme is a stationary and so repeatable
process.

• max(Tds) < a particular threshold throughout the flow conditioning programme, even
if the flow instantaneously increases to the target level just before the start of the next
conditioning cycle.

• SR levels do not drop below minimum specified levels.

For all cases, a turbidity threshold of say 1NTU would offer a reasonable margin of error below
the typical regulatory limit of 4NTU (§2.1.6). Note that in certain areas it may be necessary
to use a lower turbidity threshold to prevent metals concentrations from exceeding regulatory
limits; for example, Cook et al. (2015) estimated using linear regression that Fe would exceed
the regulatory limit of 200µg · L−1 for turbidities greater than 0.6NTU (note that this not a
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Figure 7.2: An illustrative design for a flow conditioning programme. Here the background flow in the
main is effectively constant. The flow is periodically increased in steps (dashed blue lines) to remove
material weaker than the target shear strength from the pipe wall. Gaps between these steps allow
upstream and downstream SR to recharge. The worst case erosion event that the programme is designed
to protect against is the instantaneous increase in shear stress (red dashed line) up to the target level
(green dotted line). The aim is to design conditioning programme so that the resulting turbidity response
is always less than a threshold (green dashed line). Symbols are explained in the text.

universal rule as this relationship depends on source water characteristics and the treatment
scheme).

The optimisation problem is better attempted using a genetic algorithm (§2.2.4.2) than PSO
as genetic algorithms are well suited to multi-objective problems with non-trivial constraints. A
solution to the optimisation problem, plus capital costs associated with the commissioning of
monitoring and control hardware, could inform an assessment of the whole life cost (§2.1.17.4)
of the programme. This may be of value for comparing operational and capital expenditure
between flow conditioning programmes and other asset management schemes.

Note that if PODDS was used for designing programmes like those presented here, then it
would overestimate the amount of material mobilised from later, higher shear stress steps during
each cycle (see §5.2.4).

Once a programme has been designed and is being implemented, accurate on-line turbidity
monitoring would be useful for the continual validation of the model. If scheduled conditioning
flow increases must be brought forwards or postponed, then the optimisation process could be
re-visited to accommodate this.

Some water providers such as Northumbrian Water Ltd in the UK have started using real-time
monitoring and automated control systems such as Aquadapt (Bunn and Reynolds, 2009) for
maintaining optimal pumping schedules. Such systems continually solve complex optimisation
problems and can adjust pumps and actuated valves to reflect the solutions to these problems.
The design and automated execution of flow conditioning programmes could potentially be
incorporated within such control systems for integrated network management.
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7.2.2 Scenario testing and smart alarms

A real-time model, continually updated using flow data from SCADA and periodically validated
using turbidity data, also has potential for providing real-time operational guidance and alarms.

Operators may want to know what the impact of a near-term future flow increase would be on
bulk water turbidity (use case #5 in §4.2.1). Operators may also want to know by how much
they could increase the flow in the near future without exceeding a turbidity threshold. This
could be posed as a simple optimisation problem. Again, assuming an instantaneous increase
in flow gives a worst case estimate. Alternatively, operators could be presented with a real-time
operational management chart that demonstrates the maximum turbidity that will result from
any number of instantaneous flow increases over a range (illustrative example shown in fig. 7.3).

Another use for near-term predictions using a calibrated VCDM models is for alerting operators
when a recent increase in flow is predicted to cause the bulk water turbidity to exceed a
threshold. Promptly decreasing the flow may then prevent this turbidity threshold from being
breached. An illustration of this idea is shown in fig. 7.4. Here, the flow in the target pipe
doubled at a particular time (subfig. a). If simulations are continually being performed using
the current model state and extrapolations of flow, then the model may predict that the bulk
water turbidity will exceed the regulatory limit (subfig. c). If this raises an alarm and operators
are then able to reverse the flow increase within a short period (e.g. 15 minutes; see subfig. b),
then this may prevent turbidities from increasing to those levels (subfig. d).

This method will be particularly effective in trunk mains with long turnover times, where there
is considerable delay between an increase in flow and the peak turbidity after one pipe turnover.

More sophisticated methods of flow extrapolation could be used e.g. using the first- or
second-order derivative of the flow time-series.

7.2.3 Revisiting the modelling use cases

In §4.2.1, it was specified that the model developer should be able to characterise the sensitivity
of bulk water turbidity (use case #1) and latent wall state (#2) to continual erosion and
regeneration, then develop a time-series model of the pipe wall state and bulk water state (#3).
The current understanding of the sensitivity of the material quantity versus strength to erosion

Figure 7.3: An illustrative operational management chart showing for a particular main and moment in
time the impact of various instantaneous flow increases on the peak bulk water turbidity.
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Figure 7.4: If, following a flow increase (a) the turbidity is predicted to exceed a threshold (c),
operators may then be able reduce the flow (b) in response to a VCDM alarm. This could prevent
the turbidity threshold from being exceeded (d) if the operators respond quickly enough (in this case
< 1 hour). The example here was produced using the following VCDM configuration: D = 250mm;
ks = 3mm; L = 6 km; Qlo = 0.02m3 · s−1; Qhi = 0.04m3 · s−1; βe = 0.002Pa−1 · s−1; βr = 0 s−1;
α = 0.2TPMU · Pa−1 ·m2; ϕ (τ < τa_lo, t = 0) = 0; ϕ (τa_lo ≤ τ < τa_hi, t = 0) = 1.

and regeneration was encapsulated in the VCDM conceptual model (§4.3) and associated,
verified formulations and software (§4.4; §4.5). Sensitivity analysis showed that different
parameters and physical quantities could have similar effects on the bulk water turbidity, hence
the importance of modellers using an automated, multi-variate optimisation method when
fitting the model to data. The modelling framework also offers model developers the ability to
further the understanding of the sensitivity of discolouration processes to factors such as bulk
water temperature and longitudinal distance: models can be fitted to different lengths of a
network reach or different periods/seasons then parameters and model states compared between
these models. Alternatively, βr could be replaced with a sub-model that is temperature/season
dependent to see if/how this improves model fit.

Use case #4 was that the modeller should be able to calibrate a model of a particular pipe
and #5 was that he/she could then use this calibrated model to make predictions and test
scenarios. Using the developed fitting process, accurate model fits were achieved for two out of
four studied DMA flushing events (i.e. erosion but no regeneration) and and two out of three
long-term trunk main datasets (erosion and regeneration). This fitting process proved robust in
certain cases but is sensitive to the availability and accuracy of upstream turbidity data, to the
availability of information for informing the wall state boundary conditions and to the number,
magnitude and spacing of hydraulic events during the calibration period. As shown in §6.3.5.7,
functionality exists for taking a calibrated VCDM model then predicting forwards in time using
measured or hypothetical flow data. For the one case where predictive capability was tested
the overall accuracy was low but a couple of events were predicted accurately. Improved data
quality and more granular regeneration sub-models may result in more accurate predictions.

250



The final use case, #6, was the modeller is able to design optimal flow conditioning programmes.
A framework for this is presented in §7.2.1 that, once the model has been shown to be capable of
making accurate predictions, would allow discolouration potential to be managed over extended
periods whilst minimising costs.

7.3 Comparing the VCDM to other discolouration models / risk
assessment methods

The VCDM was able to represent isolated erosion events as well as the PODDS model when
fitting the erosion parameters and fitted, polarised boundary conditions (§6.3.2). Also, the
VCDM was also able to closely approximate various artificial PODDS predictions in §5.7.5.5.
The model fits presented in §6.3.2 and §5.7.5.5 were achieved without the need for an equivalent
to PODDS’ n parameter. In §5.6.6, sensitivity analysis showed for a step increase in shear
stress the VCDM erosion parameters can transform scale and shape of the turbidity response in
a similar way to n. The VCDM not needing an equivalent power term is an attractive quality as
the PODDS model was very sensitive to n and its inclusion in PODDS prevented dimensional
analysis (§2.2.8.5). Another advantage of not requiring an n equivalent is that erosion can be
modelled using two empirical parameters rather than three. However, these two parameters, α
and βe, cannot always be determined independently (see §5.7.5.3).

Both PODDS and the VCDM have means for representing the material bound to the wall
having a maximum shear strength. With PODDS this is achieved by specifying Cmax (then
calculating τultimate from it using k; see §2.2.8.4), with the VCDM this is done by limiting the
upper bound of the tracked shear strength range, τmax. The VCDM is more flexible as it offers
a cleaner separation of quantities that code for the maximum amount of material on the pipe
wall and the maximum shear strength.

It is recommended that the VCDM be used in preference to PODDS for modelling erosion
events as the VCDM is as representative of reality when using polarised boundary conditions
and βr = 0 s−1 but has fewer parameters. In addition, the VCDM has a regeneration model
that reflects characteristics observed in numerous field studies so it has potential for long-term
modelling, although the predictive capability has presently only been tested for one case study
and has not yet been validated.

If all material in a shear strength range [τ1, τ2] is eroded after which there is a period of
regeneration then:

• The models will predict the same turbidity response for each of a number of subsequent
flow steps if the regeneration period is long enough for all to have reached maximal levels
before the flow increases again.

• The models will predict differing responses for the step increases if the corresponding shear
strength bands are only partially regenerated at the end of that period, with the behaviour
of the VCDM more closely reflecting observed regeneration process characteristics.

Since the start of this PhD, both PODDS and the VCDM have now been implemented within
the (commercial) Synergi DWDS modelling software (DNV GL, 2010), making it easier for
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companies to switch to using the VCDM and saves having to convert models from commercial
formats to EPANET formats for use with PODDS. However, at present the FIT_SIMULT
calibration is not implemented within Synergi, so calibrating VCDM models using Synergi may
be non-trivial.

Too little is known about the PSM model (§2.2.8.6) to draw many comparisons. If the proposed
van der Waals wall attraction model is ever implemented then it may provide similar functionality
to the VCDM.

The DPM (§2.2.8.6) provides an automated means for exploring the impact of hydraulic
scenarios (failures and pipe ‘closures’) on turbidity, with turbidity responses being predicted
using PODDS. The DPM could be of greater value if coupled to an accurate VCDM model
that is continually being updated using flow data from SCADA. The DPM could continually
and exhaustively calculate the impact of closures/breaks in any pipe in an ‘all-mains’3 model
on a subset of those trunk/critical pipes for which ‘on-line’ VCDM models were available
(calibrating the VCDM for all pipes in an all-mains model would be infeasible).

7.4 Ideal field test for validating and demonstrating the advan-
tages of the new model

There is relatively little high-quality data available for validating the VCDM and proving that it
can represent material regeneration more accurately than PODDS. Presented in this section
are requirements for an ideal field test that should clearly demonstrate the differences between
the two models. The pre-requisites for the test are as follows:

• The pipe length should be homogeneous with regards to pipe wall material, diameter
and age (and therefore relative roughness). There should be no take-offs, so the pipe is
also homogeneous with regards to flow and shear stress (assuming negligible leakage).
This allows the VCDM to be tested with the simplest system configuration: a single pipe
length over which the model parameters are hypothesised to be constant

• Flow monitoring in the pipe is via an in-pipe meter (not via a standpipe and hydrant/wash-
out, as has been done during DMA flushing fieldwork (§6.3.2)) and so provides absolute
measures of flow and is accurate (even at low flows).

• Reservoirs upstream and downstream of the pipe length allow the flow in the pipe to
be controlled independently of diurnal variation in customer demand and allow the flow
to be raised considerably above typical levels. There are no significant constraints on
how/when water is transferred from the upstream to the downstream reservoir. Reservoir
capacities are such that they can be considered just physical boundaries rather than
constraining elements with finite capacities. These pre-requisites offer flexibility when
designing a field test flow profile. Flow control should be facilitated by a FCV to ensure
changes are prompt and precise.

3‘All mains’ models feature all DWDS pipes in a certain area bar customers’ service pipes i.e. trunk and
DMA pipework.
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• Historic flow data should be studied to determine the typical operational maximum, Q1.
A higher but achievable ‘target’ flow level, Q2, should be identified through hydraulic
modelling. of the system. The shear stresses at each of these levels (τ1,τ2), along with all
subsequent shear stress estimations should be calculated using a roughness value derived
from from headloss measurements over the reach A to B during pre-test flow increases.

• The pipe length should have access points (e.g. hydrants, wash-outs, quadrina points) to
allow for turbidity monitoring.

• Two of these monitoring points, A and B, should be separated by enough distance for
the corresponding turnover time at Q2 in that main to be much larger (e.g. a factor
of two larger) than the logging timestep (§5.3.9.7). Requirements for the timestep are
specified below.

• There should be few if any fixtures/fittings between A and B that might cause local
accumulation or local headlosses (§2.1.16.6).

• Turbidity should be logged at each of A and B. This should be done using instruments
of the same make/model using the ISO 7027 measurement standard (§2.1.5) and the
same logging discretisation regime. Both should be well-calibrated before the start of the
test.

• The timestamps of all logged data are unambiguously expressed in terms of Coordinated
Universal Time (UTC) in the ISO 8601 format. All loggers should have synchronised
clocks.

• The shear stress step should be much less than the largest excess shear stress (e.g.
< 0.01 ·max (τe)) as indicated by model sensitivity analysis (§5.3.9.7). Here, τ2 should
be used as an approximation of max (τe).

• If the aforementioned criteria regarding the timestep is satisfied, there is no justification
prior to starting the test for the logging frequency to be any greater than once every
10 s, which is a common, achievable logging frequency during discolouration field trials.
Flow and turbidity should be logged at the same temporal resolution and at the same
timestamps. The flow data should be the 95th percentile rather than the volumetric mean
of each timestep to ensure that peak shear stresses are represented in the aggregated
data.

Given these prerequisites, the test can be conducted as follows:

1. Elevate the shear stress at the pipe wall to τ2, thus removing all material at the pipe
wall with a shear strength in [0, τ2].

2. Decrease the shear stress to a lower level, τ1, and wait for the material with shear
strengths in [0, τ2] to partly regenerate. This period should be long enough so that
there is significant regeneration but to distinguish the PODDS and VCDM, it should
not be so long that maximal regeneration has occurred. Also, the test is simplest if
the regeneration period is short enough for the bulk water to experience little seasonal
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variation in temperature, allowing βr to be considered constant with time. As it was
estimated that material can fully regenerate in as short a period as 0.9 years (table 7.1;
§2.1.16.3), the regeneration period should be three months. Over this period, the shear
stress can fluctuate but should not be permitted to exceed τ1.

3. At the end of this period, elevate the flow in steps where each is sustained for long
enough for all material with a shear strength lower than the corresponding shear stress
to be eroded and pass out of the modelled pipe. The first step should increase the flow
to just above τ1, if the shear stress was lower than that at that time; this ensures that
prior to the remaining flow increases that all material has been regenerating for the same
duration and has a known minimum strength. Four subsequent flow increases up to Q2

will provide measures of the perceived amount of accumulation and the rate of erosion
for each of four contiguous shear strength bands.

4. Attempts should then be made to fit the VCDM and PODDS to the logged data using
the FIT_SIMULT method (§5.7.5.1). The models should be fitted from the start of the
regeneration period where the shear strength profile of the wall-bound material is known,
allowing model boundary conditions ϕ(τ, t0) (VCDM) and τc (PODDS) to be estimated
with confidence. The models should be fitted to Tnet_obs, which can be estimated using
the upstream and downstream monitored turbidity data, the logged flow data and a
Lagrangian transport model (§5.9).

Under PODDS, the weakest-bound material regenerates before the stronger-bound material
(2.2.8.5) yet the VCDM reflects the observation that all shear strengths appear to regenerate
simultaneously. Therefore, the automated FIT_SIMULT method will not find a combination of
PODDS model parameters that results in as good a fit as can be achieved using the VCDM.
The test described above could be repeated for different pipe materials and source waters to
confirm that this result is universal.

This test could also be useful for investigating:

• The impact of using 15-minute-averaged data as model inputs and calibration references,
by subsampling higher frequency turbidity and flow signals (§7.1);

• Whether the assumption that accumulation reduces the bulk water turbidity is valid,
by studying the discrepancy between the downstream turbidity measurements and the
upstream turbidity measurements (lagged using a Lagrangian transport model to account
for material advection along the main) under non-eroding conditions.

• The experiment presented in §6.2.2 could be repeated in a non-recirculating system to
generate further evidence for more material appearing to have accumulated at weaker
strengths over the flushing phase (§6.2.2.8) and ϕ (τ, t) not increasing monotonically
with τ (§7.1).
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7.5 Revisiting the model assumptions and future research oppor-
tunities

The conceptual model assumed that all three model parameters were time-invariant. In
three trunk main studies, the model was accurately calibrated (R2 > 0.7) for two out of three
mains whilst retaining that assumption. However, the limited quality of the best fit for TM-NR
and the limited prediction for TM-WB could indicate that allowing the regeneration rate to
vary with time may lead to improved accuracy/performance. The way in which βr can be
substituted for a (slightly) more complex, time-varying expression was demonstrated in §6.3.5,
but the form of the modelled relationship between regeneration and atmospheric temperature
was possibly too simple as it didn’t improve the calibration and the relationship between
atmospheric temperature and bulk water temperature is known to be non-trivial (Blokker and
Pieterse-Quirijns, 2013). Quantifying the regeneration rate for a greater variety of systems
through VCDM modelling could further the understanding of how the many factors listed in
§2.1.16 influence regeneration rates. This in turn could inform the PSO bounds when fitting.
A more directed approach could be to use machine learning techniques such as EPR (§2.2.8.7)
to learn from paired flushing data not only the likely parameters but also the structure and key
factors of an improved regeneration sub-model. However, this is weighted towards narrower
distribution pipes as there is presently insufficient information on regeneration in trunk mains
for either data-driven analysis or determining the degree of commonality with regeneration
in DMAs. Another way in which the regeneration sub-model could be refined would be to
drive it using Blokker and Pieterse-Quirijns (2013)’s bulk water temperature model, which
would account for heat transfer from subsurface to advected water (§2.1.16.2). Blokker and
Pieterse-Quirijns (2013) found that bulk water temperature was more influenced by residence
times than atmospheric temperature, so making βr a function of the model output could
introduce longitudinal variation in regeneration rates for lengthy trunk mains. Any increase in
the complexity of the regeneration model must be justifiable as it will make the model more
difficult to fit and increases the risk of over-fitting.

The assumption that the three model parameters were constant with shear strength had
to be rejected (§6.2.2.8), although it has yet to be demonstrated that the differing behaviour of
the weakest-bound material is significant for the management of real DWDS. Further laboratory
studies involving multiple regeneration periods (see fig. 5.31) are required to determine which of
βr and α (or both) vary with shear strength. Also, it would be useful to know if the finding that
more material accumulates at the weakest shear strengths is reproducible in pipes of different
diameters (e.g. large trunk mains) and materials (e.g. AC and unlined Fe). Thirdly, further
experiments could confirm whether more material accumulates within an absolute shear strength
range or whether more material accumulates at shear strengths just above the prevailing shear
stress.

The fitting (by hand) of the VCDM to the data collected for each of rig subsystems A and B
resulted in two different parameter sets, with βe being more noticeably different than α (βr was
not fitted). Possible causes are (a) recirculation effects and attempts to compensate for them
impacting on signal quality, (b) fitting by hand rather than using PSO and (c) the growth phase
shear stress profile, which differed between the subsystems, resulting in different characteristics
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at higher shear strengths (§6.2.2.8). This hypothesis, if true, would conflict with the the
assumption that the regeneration and erosion history of weaker shear strengths does not
directly influence the current state/behaviour at greater shear strengths (§4.3.5, §4.4.2).
Further experimental evidence should be captured to determine whether this experimental result
is repeatable. It is recommended that this evidence is produced by re-running the experiment
described in §6.2.2 to save having to find two identical pipes as part of a field test (such as
that in §7.4).

Two assumptions particular to the erosion sub-model were that material erodes at a rate that
is constant with time but variable with shear stress (with weaker material eroding more
quickly than stronger material). It is non-trivial to validate these assumptions and they may
not accurately reflect the underlying physical processes. However, the quality of fits for the
majority of modelled DMA erosion events and trunk main datasets suggest that they may be
sufficiently valid.

Another core assumption was that the shear strength of a quantum of material is time-
invariant. This is unlikely to be true as, for example, biofilms undergo a cycle of primary
adhesion, secondary adhesion and death and/or detachment (§2.1.10). An interesting study
could be to develop an entirely distinct wall erosion/regeneration sub-model that more closely
represents this cycle, then compare the accuracy and ease of use to the VCDM. This alternative
approach could model material attaching with a certain strength then the strength of that
material changing over time, functionality that has the potential to be considerably more
complex than the VCDM if material quantities, initial binding shear strengths and current shear
strengths are all tracked over time.

Both the VCDM and PODDS make the assumption that turbidity is always proportional to
the intensity of light scattering yet the ISO 7027 and USEPA 180.1 measurement standards
only consider the relationship between the two to be linear over the range [0.012, 40] NTU
(§2.1.5). For some of the case studies presented in §6, the maximum observed turbidity
exceeded the upper limit of this range, these being TM-WB (51 NTU; §6.3.4) PODDS-CI1
(82 NTU; §6.3.2), PODDS-CI2 (600 NTU; §6.3.2), and PODDS-PE2 (92 NTU; §6.3.2). The
turbidity in TM-NR over the studied period may also have exceeded 40 NTU but the recorded
values had a maximum of exactly 5.0 NTU, indicating that instrument output may have been
clipped to a maximum of 5 NTU and the true maximum over that period was not recorded.
The linearity/non-linearity of turbidity and light scattering does not explain why more material
was detected at weaker shear strengths (§6.2.2.8), why some pipes seem to have an ultimate
shear strength (which may be the same or a related phenomenon; §2.1.15 and §6.3.2) nor why
the VCDM and PODDS do not fit data from plastic pipes as well as for corrodible pipes:

• The model fit was quite good for pipes PODDS-CI1 and PODDS-CI2 where the maximum
turbidity was > 40 NTU;

• The model was unable to accurately fit the turbidity data from all shear stress steps in
the two pipe rig subsystems (§6.2.2), even though the maximum turbidity was < 40 NTU

• The VCDM and PODDS model fits for PODDS-PE1 were poor yet the maximum turbidity
< 40 NTU.
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The significance with respect to the VCDM of turbidity potentially being non-linear with light
scattering at higher turbidities is therefore not known.

On a related matter, turbidity was assumed to be linear with TSS. The results presented
in §6 do not explicitly contradict this. However, if the constant of proportionality differed
between the weaker wall-bound material and the stronger-bound material, due to for example
biofilm composition and so potentially light scattering properties varying with depth (Fish et al.,
2015), then this might explain more material being detected at weaker shear strengths in §6.2.2
and/or also might partly explain why the amount of material in plastic pipes appears to tail off
as one approaches higher shear strengths (§2.1.15). Turbidity was selected over TSS as the
model output as it more closely relates to customer perceptions, although the model would be
no more complex if it predicted TSS rather than turbidity (but it would be more difficult to
collate calibration data).

Further work could improve the understanding of the relationship between turbidity, TSS
and shear strength. The turbidity versus TSS relationship has been quantified through much
fieldwork yet these experiments have not focussed on whether this relationship is constant over
a series of contiguous shear strength bands. To investigate this, complementary turbidity and
TSS measurements could be taken during each step of a stepped flushing experiment. The
pipe length would need to be long enough to capture enough water and material per shear
stress step for the sample drying and weighing required for sTSS measurement to be accurate.
Ideally, particle count measurements (see §2.1.5) should also be taken during each flow step
to confirm that the PSD is consistent over the flushing experiment, as light scattering and
therefore turbidity are a function of particle diameter (§2.1.5). Although there are numerous
advantages to performing stepped flushing experiments in a laboratory rig (§6.2.2.2, it may
be preferable to conduct this experiment in a real DWDS where there is no recirculation of
material as extending the background turbidity preprocessing described in §6.2.2.3 To TSS
data and count data for multiple particle size bins may be non-trivial. If turbidity is found to
be non-linear with TSS over a wide range of shear strengths then the parameter that codes for
turbidity/light scattering, α, may need to be made a function of τ in the VCDM.

Discolouration processes were assumed to be homogeneous with longitudinal distance. This
could not be validated for the presented case studies due to the lack of intermediary sampling
(there was an intermediary sampling point in TM-YR but the data obtained from this location
was limited and of poor-quality). If the assumption is invalid then this will be most significant
for trunk mains, the pipes of greatest concern, due to their length. It may not be a coincidence
that, for the three trunk mains modelled in §6, the quality of the best fit negatively correlated
with pipe length. Further field studies could qualify and quantify longitudinal heterogeneity by
calibrating a VCDM model of each of several contiguous lengths of a trunk main and comparing
fitted parameter values between the lengths. This would require a trunk main of constant
diameter and material with no take-offs to be monitored at least three (ideally more) locations.
In addition to turbidity, pressure should also be sampled for the purpose of testing whether
the headloss and therefore the roughness varies between monitored lengths. If longitudinal
heterogeneity is detected, then the significance of this needs to be quantified. If it is significant
then the developed modelling approach should be augmented, either by adapting the model
formulations (which may make the model much more complex, or, more pragmatically, by
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finding the optimal number of daisy chained sections a pipe needs to be modelled as to provide
a sufficiently accurate result.

Material accumulation was assumed to have a maximal level. In theory, it may be possible to
validate this assumption by studying a fast-regenerating main such as TM-WB, but in practise
it may not be possible to control the necessary factors over a sufficient duration to conduct
such a test.

The model was able to represent discolouration processes using just steady-state hydraulics.
However, the unsteady shear stress has the potential to influence shear stress and previous
experimental results have showed that the bulk water turbidity increased due to transient
pressure waves (§2.1.12.3). To date, no attempts at modelling erosion using the unsteady shear
stress have been successful and experiment work has not quantified both transient pressure
waves and the resulting impact on material at the wall. There is therefore an opportunity to
characterise that relationship through controlled laboratory/field work, which in turn could
lead to improved understanding of how (in)signficant unsteady hydraulics are to discolouration
modellers.

The aim of this thesis has been to model the discolouration risk associated with pipes i.e. it
has been implicitly assumed that impact of other classes of assets on bulk water turbidity is
negligible. However, a calibrated VCDM model instance of a trunk main that supplies a SR
might overestimate the turbidity at the customers’ tap as the SR will provide some attenuation.
A study of how discolouration material propagates through SRs, considering both residence
time distributions and settling velocities, could be useful for determining if, when and how SRs
should be treated when modelling discolouration in DWDS.

The VCDM uses the same material transport model as PODDS, which was developed for use
in DMA pipes. However, given the current interest in operational management strategies for
trunk mains up to 1.8m in diameter (Husband et al., 2010b), it may be necessary in future
to revisit some of the associated assumptions. In very large diameter trunk mains, the effects
of dispersion and diffusion may no longer be negligible and lateral mixing may not be
instantaneous (§4.3.6.3). Also, the prevailing bulk velocities in such mains may be sufficiently
low that material may not always remain suspended as a wash load once mobilised: a
member of the PODDS steering group has reported that, in one large main with a very low
velocity profile, material appears to be easily resuspended following a period of deliberately
elevated flow. Through further studies, the nature of settling, resuspension, transport and
mixing in large-diameter trunk mains can be investigated to determine whether those effects are
detectable and significant. Such investigations may be driven by ‘top-down’ VCDM modelling
using the simplest set of justifiable assumptions or, in contrast, by ‘bottom-up’ physical analysis
using, for example, measured PSDs and settling/resuspension velocity calculations.

7.6 Future work

The opportunities for future related work, many of which were discussed in more detail earlier
in the chapter, are summarised below:

• Further modelling to validated the VCDM’s predictive functionality, using new and
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extended trunk main monitoring datasets as they become available (ideally with upstream
turbidity monitoring data) (§7.4).

• Develop and justify more granular, time-dependent regeneration rate sub-models.

• If the model can be shown to produce accurate predictions when used with more accurate
data and possibly a refined regeneration sub-model then design and implement flow
conditioning programmes for real DWDS and quantify the whole life costs of these
programmes (§7.2.1). Also, implement a turbidity smart alarm using a real-time VCDM
model.

• Further investigate more material accumulating at weaker shear strengths: test for
universality, absolute versus relative shear strength ranges and try to confirm which of
βr and α (or both) varying with shear strength is the cause of the identified behaviour.
Collecting stepped flushing data from water companies could help with this.

• Develop and test an alternative discolouration model where the strength of material
changes over time, emulating biofilm growth and decay.

• Perform field studies to qualify and quantify longitudinal heterogeneity in discolouration
processes, updating the VCDM and/or modelling guidelines if any additional complexity
can be justified.

• Confirm whether turbidity is proportional to TSS for material eroded from contiguous
shear strength bands by measuring turbidity, particle counts and TSS during stepped
flushing experiments.

• Repeat the rig experiment and model fitting to the resulting flow and turbidity data to
provide further evidence for the growth phase shear stress profile influencing (or not) the
fitted model parameters.

• Validate the use of the rolling 5th percentile of the downstream turbidity observations as
a proxy for the upstream turbidity using data from one or more trunk mains that were
continuously monitored at both ends.

• Confirm the impact of using fifteen-minute-averaged flow and turbidity data for model
instantiation and calibration using sub-sampling.

• Experimentally quantify the effect of unsteady hydraulics including transient pressure
waves on discolouration potential.

• Ascertain if/how propagation through SRs affects the turbidity signal, developing a
SR-level discolouration model if necessary.

• Quantify whether the VCDM will scale to very large diameter trunk mains without needing
to revise any model assumptions.

• As mentioned in §7.3, demand from the UK water industry has encouraged DNV GL
to implement the PODDS and VCDM formulations within an add-on module for their
Synergi DWDS modelling software DNV GL (2010). This module could not be used
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in this project as it was only very recently released. However, now it can be used
by water providers to assess the potential of the VCDM and help further validate its
potential. All the same, it would be of benefit to the research community to have an open
source implementation of the VCDM that includes greater hydraulic modelling and water
quality modelling functionality than pyvcdm. Following on from the possibilities discussed
in §4.5, a good solution could be to incorporate the VCDM within EPANET MSX,
therefore allowing for the solving of multi-pipe dentritic and looped models. Another
benefit of this solution would be that the regeneration rate could be a function of the
concentrations/densities of multiple bulk water and pipe wall species. Complementing the
VCDM+MSX API with a GUI could facilitate high-level access to the software, allowing
models to be built more quickly and easily.
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Chapter 8

Conclusions

This thesis presents a semi-empirical model of how discolouration material accumulates on and
is eroded from the walls of DWDS pipes, for the purpose of tracking discolouration potential
over an extended period (weeks or months). The motivation for this research is to equip water
providers with a tool for assessing how different interventions and incidents will impact on
bulk water turbidity and for developing and optimising flow conditioning programmes for the
non-invasive cleaning of critical pipes.

The key advance of the Variable Condition Discolouration Model (VCDM) is the representation
of the latent material quantity versus shear strength relationship of heterogeneous, wall-bound
discolouration material as a relative amount for each of a number of contiguous shear strength
bands, where each band can erode or regenerate independently (§4). This empirical construct
permits the erosion and accumulation mechanisms to function differently, in keeping with
observed behaviour: field and laboratory studies have previously shown that material weaker
than the shear stress erodes from weakest to strongest but, for shear strengths greater than
the shear stress, material appears to accumulate in a way that is independent of shear strength
(§2.1.13.4).

The model has three scalar parameters: a relative accumulation rate (βr), a relative erosion rate
factor (βe) and a scaling factor (α) that converts the rate of material released from the pipe
wall to units that are a function of the industry-standard NTU (§4.4; §4.4.5). The variability
of the three parameters with shear strength was tested by allowing material to accumulate
on the walls of two realistic pipe rigs over three months then increasing the shear stress in
equal increments whilst monitoring turbidity (§6.2.2). Analysis and modelling of the flow and
turbidity data showed that the model assumption βr and α are constant with shear strength was
valid for all but the weakest studied shear strengths. It is not known if this result is common to
all DWDS pipe materials and source waters. Test dependencies meant that the variability of
βe with shear strength could not be confirmed.

The βr parameter is assumed to be constant with time, as at present there is insufficient
quantified understanding of the factors that influence accumulation processes for them to be
represented by anything more complex. However, the VCDM can be considered a framework
where βr could be made dependent on asset and bulk water characteristics if further laboratory
and field work is conducted to develop a more granular accumulation sub-model. The potential
for switching between accumulation sub-models has here been demonstrated for a trunk main
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where the effect of making βr dependent on atmospheric temperature, a likely factor, was
investigated (§6.3.4).

Models of four DMA flushes show that the erosion sub-model of the VCDM can represent erosion
events as well as the validated PODDS discolouration model but using just two parameters
to describe erosion rather than four. These results, along with verification tests where the
VCDM was fitted to PODDS predictions, do not disprove the chosen empirical structure of the
erosion sub-model, this being that each shear strength band erodes at a rate that is constant
with time (until the band is depleted) and weaker bands erode more quickly than stronger
bands. This permits non-serial layer erosion, so can account for spatial heterogeneity in material
composition, and can ensure that the erosion rate is a function of the excess shear stress (a
key characteristic of the validated PODDS erosion model). It is proposed that the VCDM
replace the PODDS discolouration model: it provides the same erosion functionality with
fewer parameters, makes the same assumptions regarding the relationship between turbidity
and TSS, uses the same tested mass transport model, but it also includes an accumulation
mechanism that far more closely resembles observed behaviour. The combined effect of these
erosion and regeneration mechanisms is that, as the shear stress varies over time, the material
quantity versus shear strength relationship can become a non-trivial, monotonically increasing
function (§4.3.5; fig. 6.47); this latent state is not something that the PODDS formulations
can represent (§4.2.2).

The validity of the model for representing both erosion and regeneration was explored using
three multi-month/year trunk main monitoring datasets (§6.3.3; §6.3.4; §6.3.5). This was
a novel opportunity as at present very few long-term DWDS turbidity monitoring datasets
exist and until now there has been no modelling framework suitable for representing such data.
However, the small number of available datasets limit the assessment of the generality of the
VCDM.

For each of the three modelled trunk mains and for the four DMA flushes, model parameters
were fitted using the robust, automatable particle swarm optimisation (PSO) metaheuristic,
as sensitivity analysis showed that there were many similar ways in which model parameters
and measurable/calculable properties, such as flow and pipe diameter, could influence the
shape and scale of time-series model outputs (§5.4; §5.4.3; §5.5; §5.6). The PSO objective
function was the error between time-series turbidity observations and predictions, optionally
only calculated at times when erosion events were likely. A novel method was developed to
estimate when those events would occur (§6.3.4.2). Model boundary conditions (the upstream
turbidity time-series and the initial quantity per shear strength band) were fitted/estimated
using one of three methods depending on factors such as the availability of historic flow data
(§5.8).

The quality fit was high for two of the three modelled trunk mains (§6.3.3; §6.3.5) and was
found to depend on the boundary condition estimation method, the fitting period and the
presence and characteristics of flow events during that period. Fitted regeneration rates were
plausible given the results of previous studies (§7).

The model is of value to water providers if it can make accurate turbidity predictions once
calibrated. This capability was tested for one trunk main dataset (§6.3.5.7). Turbidity was
over-estimated for the majority of fourteen shear stress events during the prediction and two
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events were predicted accurately. Calibration and predictive errors are in part due to a lack
of upstream turbidity data but could also be due to over-fitting, to model formulations being
partly invalid or to how flow data was aggregated when first recorded.

Although the predictive capability has not yet been conclusively proven, the developed model
has been shown to capture much of the known behaviour of discolouration material and has
been validated as far as possible given the presently available data.

the model was recently implemented in commercial software (DNV GL, 2010, latest release
as of May 2015). The VCDM software used during model development (§4.5) was designed
for rapidly validating the model for simple trunk main systems (§2.1.17.2) and so could only
model a single pipe (§4.3.6.5; §4.5.2.2) or multiple pipes in series (§4.3.6.5); the commercial
implementation is not subject to this limitation.

This model that encapsulates the latest understanding of discolouration processes (5.2) can in
future be refined using knowledge gained from calibrating models of a variety of different systems
and by using machine learning techniques to build regeneration sub-models (§7.5; §2.2.8.7). The
resulting improvements in predictive accuracy should allow the development of asset management
strategies where shear stresses are periodically increased so that anticipated/unexpected flow
increases do not cause unacceptable turbidities. Using a calibrated VCDM model, the magnitude,
duration and spacing of controlled shear stress increases could be optimised to keep the
discolouration potential below a threshold whilst minimising operational expenditure and energy
(§7.2.1). Additionally, a model instance could be continually updated using data streams
for SCADA so as to allow operators to promptly explore the impact of changes in flow and
to provide pre-emptive alarms for turbidity failures (§7.2.2). These proposed developments
would further enhance the potential of the model presented in this thesis for the medium term,
pro-active management of discolouration potential.
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