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Abstract 

The current bottleneck preventing the wider application of time-resolved structural 

techniques is the ability to quickly and accurately trigger protein function across an 

ensemble of molecules either in solution or in crystallo. The fastest and most accurate 

approach to achieve protein function synchronisation is by using protein photocaging 

approaches. During this project, a new class of protein photocleavable crosslinking 

reagents was designed and synthesised. This novel crosslinking scaffold carries two α-

bromoacetate groups, which were shown to react with protein surface cysteines 

efficiently and cleanly. The crosslinker is released from the protein by UV irradiation, 

by photolysis of ortho-nitrobenzyl groups, cleaving the surface “staple” from the 

cysteine residues, leaving only a small methyl carboxylate group on the cysteine side 

chains. The cysteine “anchors” can be easily introduced by site-directed mutagenesis. 

This new set of reagents were developed as a new approach to protein photocaging 

which decouples the protein activation step from the protein chemistry being 

investigated. The photocage does not target residues directly involved in function but 

rather aims to restrict the conformational space explored by the protein, limiting 

essential dynamics and preventing function. This approach opens avenues for more 

widely applicable protein triggering methodology, potentially allowing for time-

resolved experiments to be performed in wider variety of protein classes than those 

investigated to date. 

To test these reagents, aspartate α-decarboxylase (ADC) was chosen as a model system. 

This enzyme catalyses the conversion of aspartate to β-alanine, a precursor of coenzyme 

A. ADC is expressed as an inactive zymogen which cleaves post-translationally, 

yielding a catalytic pyruvoyl group. The cleavage requires an additional activating 

partner, PanZ. Protein homogeneity is an essential requirement for a successful time-

resolved experiment and, therefore, the mechanism by which PanZ activates ADC was 

investigated. The crystal structure of the ADC-PanZ protein-protein complex was 

determined at high-resolution, as well as those of several ADC mutants. With the aid of 

complementary techniques (SAXS, ITC, MS, NMR, in cellulo studies) the molecular 

mechanism by which this protein-protein interaction promotes ADC activation was 

elucidated. The protein complex formation causes the formation of a strained, 

activation-competent conformation of the ADC peptide backbone at the site of 

cleavage. Furthermore, a novel negative feedback mechanism for pantothenate and CoA 

biosynthesis regulation in bacteria was discovered and proposed.  
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1 Introduction 

1.1 Structural studies of biomacromolecules 

The last century has seen the discovery and development of biophysical techniques that 

have allowed for the structure of (bio)molecules to be determined with great accuracy. 

The rate of development of the techniques and instrumentation has been exponential; in 

1912 the first X-ray diffraction studies allowed for the structures of simple metal 

halides to be determined (Bragg, 1913) and the first structure of a small organic 

molecule, hexamethylenetetramine, was solved a decade later in 1923 (Dickinson and 

Raymond, 1923). It took almost 50 years from these initial discoveries until the first 

protein structure was determined, that of myoglobin, in 1958 (Kendrew et al., 1958), 

but since then structural biology techniques have been in constant development and 

there now are more than 97,000 X-ray crystallography structures published in the 

Protein Data Bank (PDB).  

High-resolution structural information of biomacromolecules in combination with 

biochemical data has allowed for a much greater understanding of how macromolecular 

structure is related to function. From such studies structure-activity relationships can be 

extracted, which define the role of essential residues in protein function. For example, 

in the case of enzymes, the architecture of the protein explains how the substrate binds 

to the active site and defines which residues are responsible for the interactions between 

the enzyme and the substrate. The relative spatial arrangement of the functional groups 

of the amino-acid side chains and the substrate allows for a chemically relevant 

mechanism to be proposed. It also explains how the enzyme can recognise the substrate 

and how it is able to modulate the energy landscape of the chemical reaction allowing it 

to occur under physiological conditions. In the case of protein-protein and protein-DNA 

interactions, understanding the structure of the complexes allows for the determination 

of the, often large, binding interfaces and the basis for the high affinity and specificity 

of such interactions.  

These structure-activity relationships have been vital for the understanding of how 

proteins function and misfunction. Protein misfunction can lead to the disregulation of 

biological processes and cause disease. Knowing the structures of medically relevant 

targets has allowed for the design of small molecules that modulate protein activity. 

Many drugs that are currently on the market have been designed and developed to target 
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specific protein binding sites, such as HIV protease inhibitors and DNA replication 

inhibitors (Anderson, 2003, Simmons et al., 2010).  

One further very interesting application of structure-function relationships is the 

possibility of developing new artificial protein machines that are able to mimic protein 

function. As proteins are highly efficient and selective, such molecular machinery can 

have a great impact in industry, especially in making manufacturing processes more 

efficient and reducing waste (Samish et al., 2011, Khoury et al., Yu et al., 2014). 

1.1.1 Why aren’t high-resolution static structures enough? 

Undoubtedly, structural biologists are now proficient at determining high-resolution 

structures of macromolecules and their complexes, and this breadth of structural 

information has allowed for the in-depth study of protein mechanisms. Nevertheless, 

even such detailed, high-resolution information is severely incomplete, as it only 

provides a static, ensemble averaged picture of the system. It is well established that 

biomacromolecules are intrinsically flexible and that dynamics are intimately connected 

to function (Wand, 2001, Henzler-Wildman et al., 2007a).  

The conformational changes that occur during protein function span a wide range of 

time and length scales. Some structural changes are very small, such as the breaking of 

a covalent or a hydrogen bond, or the rotation of an amino acid side chain. Small 

movements are essential during enzyme catalysis, where the protein has to first bind the 

substrate tightly and then adapt its conformation to accommodate the different chemical 

intermediates and transition states along the reaction coordinate (Henzler-Wildman et 

al., 2007b, Klinman, 2013, Klinman and Kohen, 2013, Hanoian et al., 2015). 

Larger protein motions can involve single loops or helices (Malhotra et al., 2013), and 

even whole domains. Hinge motions are involved in the opening and closing of 

membrane proteins (Feld and Frank, 2014, Zhou and Robinson, 2014) and large 

rearrangements can occur during protein-protein interactions (Boehr et al., 2009). 

None of these motions are isolated events, rather they are usually correlated with 

changes across the whole protein (Eisenmesser et al., 2005). The timescales of 

conformational change are also intimately related to the length scale of structural 

change. Bond breaking or isomerisation occurs very rapidly (fs-ps), side-chain rotations 

in the ns time-regime and larger conformational changes on ms-s timescales (Fig. 1.1) 

(Gray et al., 2015, Levantino et al., 2015a). 
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Fig. 1.1 Timescales and length-scales of protein conformational changes, showing the biophysical structural probes 

able to capture such transitions by both time-resolved and non-time resolved approaches.  

Changes in protein conformation during function mean that structure-activity 

relationships also change over time and, therefore, the relationships derived from a 

static model are only absolutely valid for that exact conformational state of the protein. 

When structures for multiple conformers of a protein can be obtained, their involvement 

in specific stages of protein function can sometimes be rationalised with the aid of other 

biochemical data (Schnell et al., 2004). Nevertheless, the mechanisms by which 

proteins interconvert between conformations are difficult to probe and the structures of 

short lived, transient states are particularly elusive to standard structural techniques, 

making the static information obtained from routine structural studies severely 

incomplete. To fully understand how biomacromolecules perform their function, 

experiments must be able to probe both the structure and dynamics of the system over 

time. 

1.1.2 The role of protein dynamics in enzyme catalysis 

As well as the understanding of protein function gained from static structures, the 

dynamic properties of biomacromolecules must also be investigated, adding a fourth 

dimension to structural studies, time. For a complete description of a system, each 

conformational state adopted by a protein as it functions and the energy barriers for the 
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interconversion between states have to be defined (Henzler-Wildman and Kern, 2007). 

The dynamics of proteins can be classified according to the energy barriers associated 

with each conformational transition. Higher energy barriers are associated with slower 

movements and wider structural changes which occur at longer timescales (µs or 

slower). Many aspects of biological function occur within these timescales, such as 

catalysis, protein-protein interactions and folding. Such processes are characterised by 

distinct conformational changes that can sometimes be distinguished experimentally, 

such as different structures observed by crystallography or the ensembles of 

conformations obtained by NMR or EM. 

Faster timescales are associated with more local movements, such as loop motions and 

side chain rotations (ns-ps timescales) and even the bond breaking and making events 

that occur during an enzymatic reaction (fs). These faster dynamics are usually 

associated with a constant thermal fluctuation of the protein between structurally similar 

states, which contribute to the entropy of the system and are, therefore, involved in the 

thermodynamics of the system and vital for function. This entropic aspect can 

sometimes be visible in crystal structures from the analysis of temperature factors that 

define the level of displacement of atoms from their average position (Fraser et al., 

2011). 

NMR can provide information about protein dynamics at both short and long timescales 

from relaxation dispersion experiments (Kay, 2005). Recent NMR studies have 

uncovered protein motions of enzymes at various timescales under steady-state 

conditions. Three examples have been chosen to illustrate the importance of protein 

dynamics for enzymatic activity.  

Cyclophilin A 

The timescales of specific conformational oscillations of cyclophilin A during the 

catalysis of cis-trans isomerisation of prolyl peptide bonds (Fig. 1.2), have been 

determined and matched to those of the catalytic step from kinetic experiments 

(Eisenmesser et al., 2005). Residues exhibiting dynamics on timescales similar to the 

rate of catalysis were mutated and shown to affect substrate binding affinities and 

catalytic efficiency, supporting the proposal that the motions observed by NMR are 

directly involved in catalysis. 
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Fig. 1.2 Cyclophilin A enzymatic reaction and dynamics. (Top) the cis-trans isomerisation of proline containing 

peptides by cyclophilin A. A dipeptide is shown, with the general N-terminal amino acid side chain represented as R. 

(Bottom) cyclophilin A (PDB 4N1M), shown as a cartoon (teal) in complex with a Gly-Pro peptide (sticks with 

carbons coloured yellow). The 101Ala-Ser110 loop is shown in orange with Asn102 in sticks and the hydrogen bonds to 

the peptide as black dashed lines.  

This enzyme is a tractable model system to be studied by molecular dynamics, as the 

catalytic step does not involve bond breaking or making, greatly simplifying simulation 

of changes at the active site. Classical mechanics modelling was used to investigate the 

relationship between the conformational dynamics of cyclophilin A and the enzymatic 

reaction (McGowan and Hamelberg, 2013). These simulations have shown that there 

are conformational states shared between the substrate-bound and transition-state forms 

and that the enzyme optimises binding to the transition state by making use of a pre-

organised network of hydrogen bonds that are sampled from the substrate-bound state. 

Beyond the small fluctuations in the positions of active site residues that promote 

catalysis, larger conformational changes were also observed between the apo and bound 

structures, with changes to loops beyond the active site. One particularly interesting 

dynamic change is related to a loop adjacent to the active site (residues 101Ala-Ser110), 

which becomes more flexible upon binding of the substrate, allowing for the backbone 

of asparagine 102 to sample more conformations and form a hydrogen bond to the 

substrate, promoting the turnover step (Fig. 1.2).  
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Dimethylarginine dimethylamino hydrolase 

Dimethylarginine dimethylaminohydrolase (DDAH) catalyses the conversion of N,N-

dimethylarginine to L-citrulline (Fig. 1.3). N,N-dimethylarginine is involved in the 

regulation of nitric oxide synthase (NOS), which, in turn, maintains vascular tension in 

mammals (Leiper and Nandi, 2011). The active site is covered by a dynamic loop, L1 

(residues 17-27), which is unstructured in the apo form of the enzyme but becomes 

ordered upon binding of the substrate, shielding the active site (Fig. 1.3) (Murray-Rust 

et al., 2001).  

 
Fig. 1.3 DDAH enzymatic reaction and dynamics. (Top) the conversion of N,N-dimethylarginine to L-citrulline by 

DDAH. (Bottom) DDAH C254S mutant (PDB 1H70, teal cartoon) in complex with citrulline (sticks with carbons 

coloured yellow), The 17Gly-Asp27 loop is shown in orange, capping the active site. 

A combination of NMR, molecular dynamic simulations and fluorescence studies on the 

dynamics of the L1 loop and the remaining residues lining the active site have 

suggested that the rate limiting step of the reaction is correlated with the substrate 

binding step and, therefore, the conformational change of loop L1 (Rasheed et al., 

2014).     
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Dihydrofolate reductase 

The dynamics of dihydrofolate reductase (DHFR) have been extensively studied, 

characterised and implicated in catalysis (Luk et al., 2015). DHFR catalyses the 

reduction of dihydrofolate (DHF) to tetrahydrofolate in a hydride transfer reaction 

which requires NADPH as a cofactor (Fig. 1.4). Fast vibrational motions (in the fs-ps 

time regime) have been observed for different DHFR mutants and are proposed to 

promote the hydride-transfer step by sampling distances along the reaction coordinate 

through a network of coupled motions throughout the protein (Agarwal et al., 2002). 

DHFR also exhibits three distinct conformations - open, closed and occluded - of the 

highly mobile Met20 loop (residues 9-24), which are associated with the different 

ligand binding states of the enzyme and, therefore, the different steps along the catalytic 

cycle.  

 

Fig. 1.4 The enzymatic activity of DHFR and different Met20 loop conformations. (Top) the reduction of DHF to 

tetrahydrofolate catalysed by DHFR. NADPH is used as the reducing agent. (Bottom) the closed (teal), open (light 

blue) and occluded (dark blue) conformations of the DHFR Met20 loop (PDB 1RX3, 1RA9 and 1RC4 respectively). 

Methotrexate (a transition state mimic) and NADPH are shown as sticks (carbons coloured yellow and green 

respectively). 

The occluded and closed conformations have been previously observed by 

crystallography in different enzyme-ligand complexes, as shown in Fig. 1.5 (Sawaya 

and Kraut, 1997) and the distinct conformations have been associated with cofactor, 

product and substrate binding and release states. An open conformation is also visible in 

certain crystal forms and is thought to be associated with the interconversion between 
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the closed and occluded states, allowing for substrate binding and product release from 

the binding site. 

 

Fig. 1.5 The catalytic cycle of DHFR, showing the different enzyme complexes. The catalytic step reduces DHF 

tetrahydrofolate at the expense of the oxidation of NADPH to NADP+, with a clear conformational change of the 

Met20 loop from a closed to an occluded conformation. The enzyme then releases the oxidised cofactor to bind a new 

molecule of NADPH, which then promotes the release of the product.  

The millisecond Met20 loop motions have been experimentally correlated with rate of 

turnover (Bhabha et al., 2011), but the hypothesis that they’re directly correlated has 

been refuted by computational work (Adamczyk et al., 2011). This is one example of 

the potential pitfalls of the studies described in this section, where dynamic aspects of 

enzymes have been indirectly correlated with the rates of catalytic steps. Without the 

direct experimental visualisation of the conformational changes over the course of the 

catalytic cycle, incorrect associations can be made. Dynamics of enzymes are clearly 

essential for efficient catalytic activity and determining the correlation between 

structure and dynamics is vital for obtaining a complete understanding of the system. 

Only by direct visualisation of the structural and chemical changes of the protein in real 

time can these correlations be fully founded and irrefutable. This can be done by using 

time-resolved techniques, where the conformations and chemical steps adopted by the 

protein, as it functions, can be captured in real time. 

1.1.3 Time-resolved structural techniques 

A typical “pump-probe” time-resolved experiment is depicted in Fig. 1.6. The ensemble 

of molecules in a resting state is first triggered to initiate function (t = 0). The reaction is 

allowed to proceed for a specific amount of time, defined as Δt. After the first defined 

time-delay, Δt1, a probe pulse is applied, providing information about the exact 

conformational state of the system at t1. The experiment is repeated multiple times for 

each time point to increase both the quality and completeness of the data. The 

experiment is also repeated at different time delays (Δt2, Δt3… Δtn), providing sequential 

DHFRDHF
NADPH DHFR THF

NADP+

DHFR THF

DHFR THF
NADPH

DHFRNADPH

Closed conformation
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conformational information along the reaction pathway. This information can be 

interpreted as a “stop-motion” type movie, which, although simplified, describes the 

molecular motions of the protein as it functions.  

 

Fig. 1.6 Overview of a time-resolved experiment. Each coloured protein represents the ensemble of molecules in a 

distinct chemical or conformational state. At time 0, the ensemble is rapidly, and ideally uniformly triggered, starting 

the biological process. After a defined time delay (Δt1) the ensemble is probed to investigate the conformational state 

at that Δt after triggering. The experiment is repeated multiple times to increase the signal to noise and provide 

complete datasets and also repeated at different time points (Δt1-Δtn), revealing the sequential conformations adopted 

during function. 

A variation of this set-up can be defined as a “pump-probe-probe-probe” approach, 

where the biological process is initiated only once but probed multiple times at 

increasingly longer time delays. This approach is preferable, as it diminishes the amount 

of sample required for the experiment, but its feasibility is completely dependent on the 

experimental setup and, most importantly, on the sample itself. If the sample interacts 

with the probe - for example, if it becomes damaged - then multiple probing pulses must 

be used with caution.  

Although the principle behind a trigger-probe experiment is simple, the experimental 

set-up is not trivial and requires a highly interdisciplinary approach. When designing a 

time-resolved experiment many different aspects have to be considered (Levantino et 

al., 2015a), related to sample preparation, instrumentation and experimental 

requirements, as summarised in Fig. 1.7. The design and set-up of a time-resolved 

experiment requires a multitude of skills and relies on scientific teams that include 

hardware scientists and software specialists working alongside the chemists and 

structural biologists. The detailed intricacy of such an experiment is beyond the scope 

of this thesis, but some of the aspects are discussed below. 

Time

Trigger
t=0

Probe Probe Probe Probe

Different states

Δt1 Δt2 Δt3 Δt4 Δt5
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Fig. 1.7 Overview of important considerations for the design of a time-resolved experiment. The experiment has been 

divided into 3 main aspects: experimental requirements, sample and instrumentation, shown as 3 circles coloured 

blue, green and red respectively. Some detailed considerations regarding each section are shown. Where an aspect of 

the set-up is shared between different sections, it occupies the area shared by the circles. The possible triggering and 

probing techniques are grouped in dashed boxes under the corresponding header.  

The sample 

As in all structural studies of biomacromolecules, obtaining a suitable sample is the first 

concern. The protein needs to be available in sufficient quantities and, if overexpressed 

the protein constructs have to be stable and represent a biologically relevant state of the 

protein. The sample has to be homogeneous as the experiments are performed on 

ensembles of molecules, making a good purification protocol an essential requirement. 

The sample must also be active, which may require post-translational modifications or 

the presence of ligands or cofactors. For NMR studies, the protein has to be isotopically 

labelled and for diffraction experiments, it must be crystallised. Crystallisation is still an 

empirical process, where extensive screening may be necessary to obtain conditions that 

yield well-diffracting, homogeneous crystals that can also accommodate the 

conformational changes occurring during function. 
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Instrumentation 

When collecting time-resolved data, the main consideration is the required signal to 

noise ratio: how to accurately collect sufficient data for each time-point to make a 

meaningful measurement. Recent developments in hardware, such as brighter X-ray 

sources, more powerful electron microscopes as well as sensitive detectors, have made 

time-resolved diffraction, scattering and microscopy experiments feasible (Levantino et 

al., 2015a).  

The integration of sample delivery systems within the experimental set-up can also be 

challenging. In many cases, the sample has to be continuously exchanged (due to 

radiation damage or if the reaction of interest is irreversible). 

Data analysis is also non-trivial; merging of the data from repeated measurements at 

each time-point to give complete and meaningful datasets can be difficult, especially for 

diffraction and microscopy experiments. In addition, if more than one conformational 

state is present at any time-point, accurate deconvolution of the states is also necessary.  

The experiment  

The probe 

Biomolecular structural techniques can be divided into distinct classes, depending on 

the resolution and extent of information that can be obtained from the experiments. 

Solution based techniques such as small-angle X-ray scattering (SAXS) and wide-angle 

X-ray scattering (WAXS), give a global view of the biomolecular structure. SAXS 

provides information about the overall shape of the molecule and is especially useful to 

determine overall macromolecular properties or large conformational changes (Doniach, 

2001, Pollack and Doniach, 2009) whereas WAXS provides information on finer 

structural features, such as subtle changes in fold and secondary structure elements 

(Fischetti et al., 2004, Chen et al., 2008).  

High-resolution structural techniques that give global structural information about the 

system are X-ray diffraction, electron microscopy (EM) and nuclear magnetic resonance 

(NMR). All three techniques have practical limitations:  

- Crystallography requires homogeneous, well diffracting crystals, which can be 

difficult to obtain, especially from large proteins, biomacromolecular complexes 

and membrane proteins.  

- EM is mainly limited by particle size and the large quantity of micrographs 

needed. The protein has to be sufficiently large to be distinguishable within the 
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micrograph, and thousands of images of the particles in different orientations 

have to be averaged together to improve the signal to noise ratio. The achievable 

resolution depends on the amount of data available and the homogeneity of the 

sample.  

- Contrary to X-ray diffraction and EM, where the proteins are used in their native 

state without need for derivatisation, NMR requires the isotopic labelling of the 

sample with NMR active nuclei (15N, 13C). NMR is also limited by sample size, 

with smaller proteins being preferred (<60 kDa), although great advancements 

in isotopic labelling have recently been made to overcome this limitation (Tzeng 

et al., 2012).  

Spectroscopy is also a high-resolution technique, but only provides sparse local 

information. It is very sensitive and thus especially powerful for identifying fine 

changes in protein structures, such as changes in chemical environments of residues and 

bond-lengths. Proteins can be investigated in their native form or chemically modified 

site-specifically with probes. 

The trigger 

The “trigger” has to cause a change in the system that starts its function quickly and 

cleanly. The triggering event must be faster than the process under investigation. As 

mentioned previously, protein dynamics span a wide range of timescales, from fs to 

seconds (Fig. 1.1). Therefore, the triggering method that can be used is completely 

dependent on the speed of the process being investigated. Finally it must affect at least a 

significant fraction of the ensemble, sufficient to be detected by the probe. 

There are two main ways to trigger biological processes: rapid mixing and light 

excitation. Rapid mixing is slower, usually allowing for ms time-resolution (West et al., 

2008, Konuma et al., 2011), with the fastest reported continuous flow devices reaching 

100 µs time-resolution (Akiyama et al., 2002, Trebbin et al., 2014). Solutions of the 

protein of interest and a binding partner (small molecule, DNA or even a second 

protein) are mixed to trigger function. Δt is determined from the flow rate and the 

distance between the mixing point and the probe pulse interaction point (Fig. 1.8, left). 

This technique is applicable to virtually any system and can even tolerate 

microcrystalline slurries for diffraction experiments (Schmidt, 2013). Recent 

developments in microfluidic devices have also allowed for a dramatic decrease in the 

volume of sample required for the experiments.  
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Light excitation (Fig. 1.8, right) allows for much wider range of time-resolutions to be 

probed (fs-ms). Short laser pulses are used to either directly initialise a photochemical 

reaction, through the photolysis or isomerisation of a bond or excitation of a 

chromophore, or to create a temperature jump (Kubelka, 2009). Unsurprisingly, proteins 

that are naturally photoactivatable have been the main focus of recent developments in 

the field of time-resolved studies, but the majority of proteins are not naturally 

photoactivatable. In order to be able to use light as a trigger for non-naturally 

photoactivatable proteins, an artificial photosensitive moiety has to be chemically 

introduced into the system. This is done by photocaging: the introduction of a 

photocleavable protecting group at a strategic site on the protein or its binding partner 

that inactivates the system until the protecting group is removed by photolysis with a 

light pulse. 

 

Fig. 1.8 Triggering methods for reaction initiation. Optical pump pulses are shown as blue rectangles. Probe pulses 

are shown as orange rectangles. (Left) Rapid mixing. Two solutions are mixed together at t=0. Δt is defined by the 

distance between the probe pulse and the point of mixing along the flow tube. The method can be used to trigger 

protein function by delivering binders (both in solution and as microcrystalline slurries) with different binding 

partners (small molecules, proteins, DNA) or by changing conditions, such as pH. (Right) Light activation. The 

diagram shows two possible experimental set-ups: proteins in a rapid flowing solution (top) or static samples 

(bottom). Reaction is triggered by application of a laser pulse at t=0. For the static sample, Δt is simply defined by a 

time delay between the two pulses, whereas in flow, Δt is defined by the distance between the probe pulse and the 

area of the flow tube illuminated by the triggering laser pulse. 

1.1.4 Summary 

Although extremely complex, time-resolved experiments that yield global structural 

information (from X-ray diffraction and scattering and cryo-EM data) can be performed 

(Shaikh et al., 2014, Levantino et al., 2015a), yielding fascinating insights into whole 

protein dynamics and protein motions during function at a variety of timescales.  

For fast dynamic events (sub ms), the only systems that have been investigated with 

these techniques have been naturally photoactivatable proteins, meaning that the current 

bottleneck to making such techniques more widely applicable lies in the triggering 

methodology. For scattering experiments looking at relatively slow biological processes 

(slower than 100 µs), rapid mixing is a reasonable approach. For faster events, reaction 
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initiation has to be done by the use of light pulses, which require a non-trivial case-by-

case development of a photocaging strategy. The following section describes the 

available approaches for non-natural photoactivation of proteins and the problems 

associated with the technology currently available, leading onto the main aim of this 

project. 

1.2 Reaction triggering by light 

1.2.1 Naturally light-activated proteins 

Naturally photoactivatable proteins have been the main focus of time-resolved X-ray 

and scattering experiments, as these can be triggered reliably very fast both in solution 

and in crystals, often with extremely high yields. One such example is photoactive 

yellow protein (PYP), which has been extensively studied using time-resolved X-ray 

diffraction experiments (Schotte et al., 2012, Jung et al., 2013, Tenboer et al., 2014). 

PYP is a small (14 kDa), soluble blue light receptor. It is found in photosynthetic 

bacteria and is thought to be responsible for signalling cascades in the organisms that 

cause them to move away from sources of harmful (blue) wavelengths of light 

(Sprenger et al., 1993). In the ground state, the protein contains a trans-4-

hydroxycinnamic acid cofactor, which is covalently attached to a cysteine residue 

(Cys69) though a thioester bond (Yamaguchi et al., 2009). Upon absorption of a photon 

of light (400-475 nm, λmax=446 nm) (Nielsen et al., 2005), the trans-alkene isomerises 

to a cis-alkene (Fig. 1.9), triggering a cascade of structural changes through the protein, 

which eventually lead to the formation of a signalling state, pB1, which follows pB0 but 

has not been observed by X-ray crystallography due to crystal packing constraints 

(Meyer et al., 1987, Harigai et al., 2003). 

 

Fig. 1.9 The PYP photocycle. (Left) Isomerisation of the ground state (pG) of the trans-4-hydroxycinnamic acid 

cofactor to the cis pB0 intermediate upon absorption of a photon of light. (Right) PYP photocycle intermediates 

structurally characterised by Schotte et al (Schotte et al., 2012). 
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Pump-probe time-resolved Laue X-ray diffraction experiments have allowed for the 

differentiation of the structural intermediates of the PYP photocycle (Fig. 1.9) (Schotte 

et al., 2012). Data were collected on timescales ranging from 100 ps to 1 s, and allowed 

for the visualisation of the first intermediate pR0, a highly strained species which was 

too short lived to have been resolved in previous cryo-trapping (Kort et al., 2004) or 

even ns time-resolved Laue X-ray diffraction experiments (Ihee et al., 2005). The 

diffraction data were fitted to 4 structurally distinct intermediates, starting from a 

previously described kinetic model. The fraction of each intermediate at each time point 

was then calculated to best fit the electron density and these values evaluated to give a 

refined, structurally significant kinetic model. Structural changes are visible across the 

whole protein structure and are not limited to the vicinity of the chromophore. Recent 

studies using time-resolved serial crystallography at an X-ray free-electron laser have 

provided electron density maps with improved resolution and allowed further 

refinement of the relative populations of intermediates pR1 and pR2 at 1 µs post 

photoactivation (Tenboer et al., 2014).  

Other naturally photoactivated systems that have also been investigated by time-

resolved techniques include myoglobin (Schotte et al., 2003, Bourgeois et al., 2006, 

Levantino et al., 2015b), photosynthetic reaction centre (Baxter et al., 2004, Wöhri et 

al., 2010), haemoglobin (Ren et al., 2012, Schotte et al., 2013, Kim et al., 2015), 3-

isopropylmalate dehydrogenase (Hori et al., 2000) and trypsin (Singer et al., 1993). 

However, the vast majority of interesting protein targets are not naturally 

photoactivatable, making them even more challenging systems to work with.  

1.2.2 Photocaging 

A photocaging group is a small organic molecule that can be covalently attached to an 

essential residue within a protein or functional group on a ligand, inactivating the 

biological process. The photocage acts as a protecting group that can be liberated by 

photolysis with a light pulse of specific wavelength. There are many types of photo-

removable protecting groups, but only a few have been employed in the study of 

biological systems so far: ortho-nitrobenzyls (oNB), coumarins (Cm) and para-

hydroxylphenyls (pHP) (Corrie et al., 2005, Hagen et al., 2005, Mayer and Heckel, 

2006, Klán et al., 2013). The wavelength of maximum absorption (λmax), quantum 

yields (Φ) and rates of cleavage vary considerably for each class of compounds (see 

sections 4.1 and 9.6 for a detailed description of the spectroscopic properties, 

advantages and disadvantages of each of the three photocaging groups).  
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Substrate/ligand caging 

When a small molecule ligand or substrate is required for function, the photocleavable 

protecting group can be introduced by chemically synthesising a substrate/ligand 

derivative. This approach is widely applicable, but can be very challenging and has to 

be designed on a case-to-case basis. Firstly, the photocage has to be introduced at a site 

within the small molecule that inhibits function without completely inhibiting binding 

of the ligand to the protein, otherwise the time-resolution of the experiment becomes 

dependent on the post-photolysis rate of diffusion of the free ligand into its binding site. 

Once the photocaged molecule has been designed, the synthetic availability and ease of 

synthesis of the compound has to be evaluated. Even for simple chemicals, a good 

knowledge of synthetic chemistry is necessary to produce such molecules. 

Nevertheless, photocaged biochemically or physiologically active compounds have 

been in use for the last 3 decades. The first biologically relevant photocaged molecule 

was adenosine 5’-triphosphate (ATP), bearing either a 2-nitrobenzyl group (oNB, Fig. 

1.10, 1) or a 1-(2-nitrophenyl)ethyl group (oNPE, Fig. 1.10, 2) (Corrie et al., 2005). 

These compounds were used to investigate the function of a human sodium-potassium 

pump (Kaplan et al., 1978) under continuous illumination for decaging as well as in the 

first flash photolysis experiments to observe the interaction between myosin and actin 

with a ms time-resolution (McCray et al., 1980, Goldman et al., 1982). These initial 

studies, along with the flash photo-isomerisation of azobenzene derivatives (Lester and 

Nerbonne, 1982), were the dawn of the use of flash photolysis for the study of 

biological mechanisms.  

 

Fig. 1.10 Caged ATP with 2-nitrobenzyl and 1-(2-nitrophenylethyl) photoprotecting groups (1 and 2 respectively) 

and corresponding photolysis products: 2-nitrobenzaldehyde and 1-(2-nitrophenylacetone) (3 and 4 respectively), 

ATP and proton. The photocaging group is highlighted in red. 

Cyclic nucleoside monophosphates (cNMPs) bearing both oNB or coumarinyl 

derivatives (Fig. 1.11, 7 and 8 respectively) have been previously used to investigate 

spatial- and time-dependent aspects of signalling pathways inside cells, by measuring 

changes in potentials across cell membranes that occur on a ms timescale after the 

triggering of cyclic nucleotide-gated ion channels (Corrie et al., 2005). The rates of 
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cleavage of the photocaged cNMPs have not been reported for all the compounds, but 

where known vary between 3000 s-1 and 1.7 s-1 (Corrie and Trentham, 1993, Wang et 

al., 2002). 

 

Fig. 1.11 Adenosine 3’,5’-cyclic monophosphate (cAMP, 5) and guanosine 3’,5’-cyclic monophosphate (cGMP, 6) 

protected with 2-nitrobenzyl or coumarinyl photocleavable groups (7 and 8 respectively) used previously in time-

resolved studies. The photocaging moieties are highlighted in red. 

Other examples of previously used photocaged small molecules include glutamate 

(neuronal activity of glutamate-gated ion channels and glutamate transport) (Callaway 

and Yuste, 2002, Takaoka et al., 2004), γ-aminobutyric acid (synaptic events of GABA 

receptors) (Molnár and Nadler, 2000) and hormones (regulation of gene expression) 

(Lin et al., 2002, Link et al., 2004, Shi and Koh, 2004). The majority of photocaged 

biologically active compounds have been used in ex vivo, in cell based studies or on 

membrane bound proteins, for example, by measuring changes in current across the 

membranes or along neurons or triggering apoptosis by releasing toxic proteins in cells 

(Goldmacher et al., 1992, Hagen et al., 2005). Such experiments span µs to s timescales 

and can be done by laser photolysis or continuous illumination. However, although the 

experiment triggers a local increase in concentration of a biologically active molecule, it 

does not require full activation or homogeneous activation as the differences in signal 

are measured over time. A more in-depth discussion of photocaging applications in cell 

biology is beyond the scope of this thesis, as this work is focused on the use of 

photocaged compounds for biophysical studies instead. For more detailed reviews of in 

vivo studies using photocaged compounds see (Hagen et al., 2005, Mayer and Heckel, 

2006, Deiters, 2009, Lee et al., 2009, Yu et al., 2010).  

oNPE-caged guanosine triphosphate (GTP) was used for an early time-resolved 

crystallographic study of the GTPase mechanism of Ras. Ras is a GTP binding protein 

involved in cell signalling transmission pathways, which lead to downstream effects 

such as cell proliferation (Kinbara et al., 2003). GTP hydrolysis leads to the inactivation 

of Ras and its GTPase activity is slow in the absence of a second protein GAP (GTPase-

activating protein). In the absence of GAP, GTP hydrolysis is sufficiently slow that the 
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conformation of the active GTP-bound state and the intermediate GTP/GDP-bound state 

of Ras could be investigated. The experiment was performed by first triggering the 

system by the photolysis of the oNPE-GTP molecule using a xenon flash lamp 

(Schlichting et al., 1989) followed by X-ray diffraction data collection using a 

polychromatic X-ray source at two time-points following GTP de-caging (4 min and 14 

min (Schlichting et al., 1990). 

The first ms time-resolved crystallographic experiment of a single-turnover enzymatic 

reaction was performed in 1998 on isocitrate dehydrogenase (IDH), which catalyses the 

decarboxylation of isocitrate (9) to α-ketoglutarate (11) in the presence of NADP+ and 

Mg2+. The half-life of the enzyme-product complex is 10 ms (extendable to 50 ms by 

lowering the temperature or pH). The reaction was triggered by the photolysis of a 4,5-

dimethoxy-oNPE protected NADP+ molecule (12) using a short (0.5 ms) 450 nm light 

pulse (reported post-photolysis half-life of 0.05 ms) and diffraction data collected for 

10 ms on a polychromatic X-ray source after a 2 ms lag-time (Stoddard et al., 1998). 

 

Fig. 1.12 (Top) Overview of steps in the catalytic dehydrogenation of isocitrate (9) to α-ketoglutarate (11) by 

isocitrate dehydrogenase (IDH). The first step is the oxidation of isocitrate to oxalosuccinate (10). (Bottom) the 

structure of the photocaged NADP+ moiety (12) used in the time-resolved crystallographic study. The photocleavable 

moiety is highlighted in red. 

Protein photocaging 

As well as photocaging a substrate or ligand, the protein itself can also be photocaged. 

Site-specific incorporation of photocleavable protecting groups can be done via two 

distinct approaches – genetic incorporation of unnatural amino acids or using 

bioorthogonal reactions.  
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The site-specific* genetic incorporation of photocaged amino acids can be done using 

amber suppression, where an aminoacyl-tRNA synthetase and the corresponding tRNA 

are evolved to accept the desired unnatural amino acid and insert it into the protein 

sequence during mRNA translation in response to an amber stop codon integrated into 

the expression vector using site-directed mutagenesis (Fig. 1.13) (Lang and Chin, 

2014). The current library of photocaged unnatural amino acids that have successfully 

been genetically incorporated into proteins is very limited, although it continues to 

slowly expand with the recent advances in the field. Efforts have mainly focused on the 

incorporation of amino acids caged with oNB derivatives. Fig. 1.14 shows all the 

photocaged amino acids that have been successfully genetically incorporated into 

proteins (Young and Schultz, 2010, Davis and Chin, 2012, Lang and Chin, 2014). 

 
Fig. 1.13 Schematic of the genetic incorporation of unnatural amino acids (Lang and Chin, 2014). An orthogonal 

tRNA-synthetase/tRNA pair is evolved to accept an unnatural amino acid. During transcription, the unnatural amino 

acid is incorporated into the nascent protein polypeptide chain in response to an amber stop codon.  

  
Fig. 1.14 Overview of all the photocaged protein residues introduced site-specifically by amber suppression to date. 

oNB derivatised amino acids are most common: with L-alanine (13), L-serine (15), L-cysteine (16 and 17), L-lysine 

(18 and 19, releasing carbamate derivatives) and L-tyrosine (20 and 21). Coumarin photocaging has been 

incorporated into L-aminobutyric acid (14) (Young and Schultz, 2010, Davis and Chin, 2012, Lang and Chin, 2014). 

                                                
* Residue-specific incorporation of unnatural amino acids is also possible through selective pressure 
incorporation, leading to the substitution of all positions of a specific amino acid by an unnatural variant. 
This approach has not been used for photocaging and is undesirable as it causes global changes to the 
protein as well as the introduction of multiple chromophores which may lead to the observation of 
structural changes unrelated to protein function as well as decreasing the amount of available photons 
Johnson et al. (2010). 
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Alternatively, under specific circumstances, bioorthogonal reactions can be used to site-

specifically photocage a protein residue (Fig. 1.15). Cysteines are the most nucleophilic 

amino acids, and can be targeted by electrophilic photocaging reagents, such as α-

bromo methyl derivatives (22). Cysteines can also be selectively modified to 

dehydroalanines (24) post-translationally (Chalker et al., 2011), and further modified by 

a thiol containing photocage (25), such as 2-nitrobenzenemethanethiol or 4-

thiomethylcoumarin (Akita et al., 2005).  

 

Fig. 1.15 Direct bioorthogonal modification of surface cysteine residues with photocaging reagents that can be 

cleaved to yield the free cysteine. The cysteine residue can be reacted with an electrophilic bromo-methyl reagent 

(top, 22) or transformed to a dehydroalanine (24) using 1,4-dibromoadipamide (23) and reacted with a thiol 

containing reagent (bottom, 25). 

A final approach to making chemically modified proteins is native chemical ligation, 

where the protein is produced (semi-)synthetically (Fig. 1.16) (Bang and Kent, 2004, 

Durek et al., 2007). The part of the protein polypeptide chain bearing the desired 

photocaged residue and a C-terminal thioester (26) is synthesised chemically (Blanco-

Canosa and Dawson, 2008) and reacted with a second chemically synthesised or 

expressed peptide bearing an N-terminal cysteine (I, 27). The thioester ligated product 

(28) then undergoes an S-N acyl shift (II), to yield the full protein chain carrying the 

unnatural amino-acid (29). The procedure is performed under denaturing conditions and 

the protein has to be folded in vitro, so this approach is not be suitable for a wide range 

of proteins.  
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Fig. 1.16 Mechanism of native chemical ligation. A peptide carrying a C-terminal thioester group (26) is coupled to a 

second peptide bearing an N-terminal cysteine residue (27). The cysteine side chain attacks the thioester group (I), 

forming a thioester-ligated peptide (28), which undergoes an S-N acyl shift (II) to the desired full length peptide 

chain (29). 

Several classes of proteins have been photocaged using the different methods described 

above, including: 

- Protein kinases, by the direct cysteine chemical modification (Chang et al., 

1998), introduction of a photocaged thiophosphate moiety at an active site 

mutation T197C (Zou et al., 2002) or the genetic incorporation of a photocaged 

lysine at the ATP binding site (Gautier et al., 2011) 

- Cholinesterase, by modification with a photocleavable covalent inhibitor 

(Loudwig et al., 2003) 

- Lysozyme, by the incorporation of photocaged aspartate at the active site, using 

in vitro protein expression (Mendel et al., 1991) 

- Ion channels, by genetic incorporation of a caged tyrosine (Tong et al., 2001) 

- Immunoglobulin, by residue-specific lysine derivatisation (Kossel et al., 2001) 

-  Inteins, by the genetic incorporation of a photocaged cysteine (Ren et al., 2015).  

In all these examples, the modified proteins were shown to be de-activated (fully or 

exhibiting only very low residual activity) and activity could be recovered upon 

photolysis.  

Summary 

Photocaging of biological systems has been shown and used for the past few decades. 

There is enormous potential for the use of oNB, coumarin and pHP groups in the caging 

of proteins, substrates and ligands for efficient reaction triggering for time-resolved 

biophysical studies. Nevertheless, targeting protein-ligand binding-sites is challenging. 

The portfolio of current chemical probes for chemical modification of proteins is 

extensive, but residue-specific modifications with photocleavable groups that can be 

photolysed releasing the original amino acid side chain are limited to the chemical 

modification of cysteines or the genetic incorporation of the unnatural amino-acid. 

Labelling of ligands or substrates is much more widely applicable, but the synthesis of 
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the modified compounds can be very challenging, especially since many of the 

cofactors and ligands essential for protein  function contain stereocenters and multiple 

functional groups.  

The instrumentation and data analysis software necessary for time-resolved structural 

studies are continuously and rapidly evolving and have proven to be sufficiently 

powerful to allow for these studies to be successfully performed. Reaction triggering is 

clearly now the major bottleneck hindering the broader use of time-resolved techniques. 

Making protein photocaging technology widely applicable would relieve this bottleneck 

and greatly decreasing the complexity of the design of such experiments.  
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2 Project overview, objective and impact 

The aim of this project was to design photocaging reagents that could become widely 

applicable for the photocaging and photo-triggering of proteins, regardless of the nature 

of the protein, ligands or cofactors, by decoupling the reaction-triggering chemistry 

from the protein processes being observed during the time-resolved experiments. In 

practical terms, this means moving the photocaging moiety out of the protein active site, 

i.e. neither photocaging essential amino acids involved in function nor the substrate or 

ligands.  

Making a general reagent would decrease the complexity of the chemical synthesis 

currently involved in making specific photocaged substrates or ligands. Also, by 

making use of surface-cysteines as the target for bioconjugation of the photocaging 

reagents, the steps for protein modification would be simplified to the introduction of 

bioconjugational moieties by site-directed mutagenesis rather than requiring complex 

genetic incorporation of unnatural moieties.  

Instead of targeting active site groups, the new photocaging reagents developed here are 

intended to make use of the intrinsic protein dynamics known to be involved in 

function. Proteins are plastic and therefore adopt multiple conformations, some of 

which are active and some inactive. Using crosslinking compounds, dynamic regions 

can be rigidified, locking the protein in an inactive state. Release of this conformational 

“lock” by photolysis would then allow the protein to resume its normal dynamic 

behaviour and resume activity.  

The proposed novel approach for protein photocaging presented in this thesis is 

depicted in Fig. 2.1. The crosslinking reagents can be regarded as “conformational 

staples” which target engineered residues on the protein surface rendering the protein 

inactive, but retaining a substrate binding conformation. Upon cleavage of the “staple”, 

the protein is able to relax to its active conformation and on to all the conformational 

states required during function. 
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Fig. 2.1 Overview of the proposed new protein photocaging approach. Surface cysteine residues are introduced to the 

target protein by site-directed mutagenesis. The photocleavable crosslinker targets available cysteines specifically, 

“stapling” the protein in an inactive conformation. Upon photolysis, the crosslinker is cleaved and the protein allowed 

to resume function. Photolysis acts as the trigger which precedes the time-resolved measurements. 

A second advantage of this “allosteric” approach compared to traditional active-site 

photocaging approaches is that it removes the interference of the photocleavage by-

products with the system once it is triggered. The most widely used photocaging 

moieties (coumarin and ortho-nitrobenzyl groups) are of similar size to the side chains 

of the largest natural amino acids (tryptophan or tyrosine). The presence of such large 

fragments in the protein’s active site post-photocleavage can alter the conformations 

adopted by the protein or even block protein function until the by-product has diffused 

out of the active site, leaving the triggering under diffusion control and abolishing all 

efforts for fast synchronisation of the system.  

Aspartate α-decarboxylase (ADC) was chosen as the model protein for the crosslinking 

and cleavage studies of the photocleavable “stapling” reagents developed, as it has been 

well studied within the Webb group and can be overexpressed and purified easily 

(Webb et al., 2004, Webb et al., 2014). One of the main aim of this project was to make 

the technology available for time-resolved diffraction studies as well as solution studies, 

ADC has also been reproducibly crystallised within the Webb and Pearson groups, 

yielding consistently well diffracting crystals. The main disadvantage of using this 

system is that it requires a post-translational modification to become fully active. For X-

ray diffraction time-resolved studies, it is important to obtain fully active, homogeneous 
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protein for crystallisation and so understanding protein post-translational activation 

became an additional essential objective of this project.  

This thesis is therefore split into three main sections:  

- Understanding ADC activation in order to obtain clean, homogeneous and fully 

active protein 

- The design and synthesis of a novel class of protein photocleavable crosslinking 

reagents 

- The crosslinking and photo-release of ADC using the developed crosslinkers. 
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3 A molecular understanding of aspartate α-decarboxylase 

activation 

3.1 Introduction 

3.1.1 Pantothenate biosynthesis 

Pantothenate (vitamin B5) is an essential vitamin synthesised by a common pathway in 

bacteria, yeast and plants. The β-alanine biosynthetic pathway for incorporation into 

pantothenate differs between organisms, and only that of bacterial will be discussed 

here. In bacteria, β-alanine (30) is obtained from the decarboxylation of L-aspartate (31) 

by aspartate α-decarboxylase (ADC) (Fig. 3.1).  

 

Fig. 3.1 The biosynthetic pathway of pantothenate, showing the biosynthetic intermediates and enzymes involved in 

each step. α-ketoisovalerate (34) is hydroxymethylated to ketopantoate (35), which is reduced to D-pantoate (32). L-

aspartate (31) is decarboxylated to β-alanine (1) by ADC. D-pantoate (32) is condensed with β-alanine (30) to 

pantothenate (33), which is phosphorylated to phosphopantothenate (37). Phosphopantothenate regulates the 

biosynthesis of CoA (36) by a negative feedback mechanism. The PanD zymogen matures to its active form ADC in 

the presence of PanZ. 

β-Alanine is then condensed with D-pantoate (32) (by pantothenate synthetase, PanC) to 

give pantothenate (33). α-Ketoisovalerate (34) is hydroxymethylated to ketopantoate 

(35) by ketopantoate hydroxymethyl transferase (PanB), which is then reduced to D-

pantoate (32) by ketopantoate reductase (PanE). As these last two reaction steps are 

reversible and α-ketoisovalerate is also a precursor in L-valine biosynthesis (Maas and 

Vogel, 1953), the decarboxylation of L-aspartate to β-alanine becomes the first 

committed step towards pantothenate synthesis in bacteria, and onwards to the synthesis 

of coenzyme A (CoA, 36) and its thioesters (Fig. 3.2). Pantothenate is phosphorylated 

to phosphopantothenate (37) by pantothenate kinase (PanK), which is inhibited by CoA, 
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creating a negative feedback loop mechanism for the regulation of CoA biosynthesis 

(Rock et al., 2003).  

 

Fig. 3.2 The relationship between the biosynthetic pathways of pantothenate and L-valine. The precursors to both L-

valine and L-aspartate are in equilibrium in the cell. The decarboxylation of L-aspartate to β-alanine is irreversible 

and, therefore, the first committed step in the biosynthesis of pantothenate and CoA. 

3.1.2 PanD activation to ADC 

ADC was first purified in 1979 (Williamson and Brown, 1979). It was shown to be 

involved in β-alanine biosynthesis in E. coli and contains a covalently linked, 

catalytically active, pyruvoyl group. Pyruvoyl-dependent enzymes (van Poelje and 

Snell, 1990) are a small subset of enzymes which include various decarboxylases such 

as histidine decarboxylase (Snell, 1986) and S-adenosylmethionine decarboxylase 

(Pegg, 2009). The pyruvoyl is synthesised post-translationally by the rearrangement and 

cleavage of the protein backbone. ADC is expressed as an inactive pro-protein, PanD, 

which consists of a single chain, the π-chain, and assembles into a homotetramer. The 

post-translational modification starts with an N-O acyl shift between Gly24 and Ser25 

(Fig. 3.3). The hydroxyl group of Ser25 attacks the carbonyl carbon of Gly24 (I), 

forming an oxyoxazolidine ring (II), which ring-opens to an ester intermediate (III) 

(Albert et al., 1998). The ester then cleaves by β-elimination, to a C-terminal glycine 

(Gly24) and a dehydroalanine (IV), which then hydrolyses to the desired N-terminal 

pyruvoyl group (V). The resulting two peptide chains are termed the β-chain (1Met-

Gly24) and the α-chain (25Pyr-Ala126).  

The PanD residues essential for activation of PanD to ADC have been explored by site-

directed mutagenesis (Gelfman et al., 1991, Schmitzberger et al., 2003, Webb et al., 

2012, Webb et al., 2014). As expected, mutation of Ser25 to alanine yields a non-

activatable PanD mutant, while other mutations along the activation peptide greatly 

decrease the processing ability of ADC, likely due to distortions of the conformation of 

the loop. In the zymogen crystal structure, the carbonyl carbon of Gly24 is seen 

hydrogen-bonding to the fully conserved Thr57 side-chain (Schmitzberger et al., 2003). 
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This interaction may act to polarise the carbonyl group, aiding the nucleophilic attack 

by Ser25, and also stabilise the oxyoxazolidine ring intermediate (II). Site-directed 

mutation of Thr57 to valine yields a completely non-activatable PanD mutant (Webb et 

al., 2014). Thr57 is the only proximal residue besides Gly24 and Ser25 found to be 

essential for PanD activation. 

 

Fig. 3.3 Accepted mechanism for the activation of PanD to ADC at the start of this project (Webb et al., 2004). The 

Ser25 hydroxyl side-chain attacks the backbone carbonyl of the adjacent residue (Gly24), which is hydrogen-bonded 

to Thr57 in the zymogen crystal structure (PDB 1PPY, I) (Schmitzberger et al., 2003). The oxyoxazolidine ring 

opens (II) to the ester intermediate (III), which can then cleave by elimination to a dehydroalanine intermediate (IV). 

The dehydroalanine residue can then hydrolyse to the required pyruvoyl group, giving the fully active enzyme (V).  

Other residues, such as Tyr58, His11 and Asn72 (Webb et al., 2012) have also been 

investigated, but in all cases PanD activation was still observed (Schmitzberger et al., 

2003). This was surprising as it was expected that other residues would be involved as 

general acids or bases for the deprotonation of Ser25 (I), protonation of the amine 

during opening of the oxyoxazolidine ring (II) and β-elimination of the ester (III). At 

the time this study began, it was thought that the water molecules surrounding the 

activation site might act as general bases or that a large conformational rearrangement 

might be required for activation, which could involve more distal residues, not yet 

investigated by mutagenesis, in the mechanism. 

Post-translational rearrangements leading to backbone cleavage have been observed in 

other systems, such as the processing of inteins (Fig. 3.4, A) (Paulus, 2000), activation 

of N-terminal nucleophile (Ntn) hydrolases (Kim et al., 2006, Buller et al., 2012) and 

the autoproteolysis of SEA domains (Fig. 3.4, B) (Levitin et al., 2005, Johannson et al., 

2009). In most protein systems, post-translational cleavage or rearrangement of the 

backbone is auto-catalytic (Paulus, 2000), with the exception of a small subset of 
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proteins, for which the rate of modification is accelerated by accessory proteins 

(McDonald et al., 1998, Trip et al., 2011).  

 

Fig. 3.4 General mechanism of post-translational cleavage of Inteins (A) and other systems, such as Ntn hydrolases 

and SEA domains (B). X can be oxygen (Ser or Thr residues) or sulphur (cysteine residue).  

ADC is such a case, requiring an accessory protein is required for its full maturation. 

Overexpressed E. coli PanD activates slowly in vitro at 37 °C. The protein has to be 

incubated overnight at this temperature before significant levels of protein cleavage are 

observed (Nozaki et al., 2012). Furthermore, thermal activation of PanD leads to the 

formation of both the desired pyruvoyl cofactor, as well as a N-terminal serine by-

product, from the direct hydrolysis of the ester intermediate (Fig. 3.3, II) (Ramjee et al., 

1997). The presence of this by-product is clearly visible in the electron density of the 

published ADC crystal structure (PDB 1AW8) (Albert et al., 1998) and it has also been 

commonly found in other structures solved during the course of this investigation (i.e. 
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PDB 4ANO, Yorke, B.A. & Monteiro, D.C.F, unpublished results), but which will not 

be discussed in this thesis. Nevertheless, the formation of the serine by-product is a 

major problem with regard to the production of homogeneous and fully activated 

enzyme for biophysical studies and even more so for time-resolved structural studies, 

where the signal-to-noise ratio as well as the interpretation of the data can be 

challenging. Therefore, understanding the molecular basis of activation of PanD to 

ADC will allow for both a more in-depth understanding of the system as well as 

providing the means for the design of a robust protocol for the isolation of the fully 

active enzyme. 

The slow thermal activation suggests that an activating factor that accelerates PanD 

maturation to ADC (with clean pyruvoyl group formation) must be present in vivo 

(Ramjee et al., 1997). Despite this, for decades the post-translational rearrangement of 

ADC, and all other pyruvoyl-dependent enzymes, has been presumed to be 

autocatalytic. However, recently the accessory proteins for the activation of pyruvoyl-

dependent histidine decarboxylases, HdcB (Trip et al., 2011), as well as for the 

activation of PanD, PanZ (Nozaki et al., 2012, Stuecker et al., 2012a, Stuecker et al., 

2012b) have been discovered. 

3.1.3 PanZ: the activating factor for PanD maturation in vivo 

The gene panZ was first identified in 1990, in a region of the E. coli genome containing 

the genes for branched amino-acid transporters. The gene is located downstream of a 

region coding for proteins involved in branched chain amino acid transport but its 

deletion leads to pantothenate auxotrophy (Adams et al., 1990). PanZ, also known as 

YhhK, was subsequently found to be indirectly linked to the production of β-alanine, as 

mutations to the gene (in S. typhimurium) (Primerano and Burns, 1983) or its knockout 

(in E. coli) (Nozaki et al., 2012) cause β-alanine auxotrophy (Fig. 3.5). The mechanism 

of this remained unclear as all the enzymes involved in the pantothenate biosynthetic 

pathway (Fig. 3.1 PanB, PanE, PanC and ADC) had been overexpressed and purified 

and shown to catalyse each of the steps of the pathway without the need for further 

accessory proteins (Webb et al., 2004).  
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Fig. 3.5 Growth defects of ΔpanZ E. coli cells and growth recovery with hexaHis-tagged PanZ complementation, 

adapted from (Nozaki et al., 2012). Cell cultures were grown overnight in M9 glucose medium containing the 

indicated additives and show that ΔpanZ cells are β-alanine auxotrophs. 

A possible role for PanZ was proposed to be in PanD maturation. To test this 

hypothesis, Nozaki et al. investigated the role of PanZ in PanD activation in vivo by 

examination of the extent of PanD cleavage in ΔpanZ cells with and without 

complementation with PanZ (Fig. 3.6) (Nozaki et al., 2012). ΔpanZ cells showed no 

PanD activation, but complementation of the PanZ knockouts with a plasmid 

harbouring hexaHis-tagged PanZ recovered PanD cleavage, indicating that PanZ is the 

accessory protein necessary for efficient PanD activation in vivo (Fig. 3.6).  

 

Fig. 3.6 SDS-PAGE analysis of the activation of PanD in vivo showing the requirement of PanZ for cleavage 

(adapted from (Nozaki et al., 2012). PanD is detected by imunoblot analysis using an anti-FLAG antibody. PanD 

expressed in ΔpanZ cells is not activated. Cleavage is restored with the expression of PanZ by induction with IPTG. 

The PanZ sequence was annotated as a putative acyl-transferase as it carries a CoA 

binding motif. The 3D structure of PanZ was determined by NMR by J. Cort et al. 

(unpublished data, PDB 2K5T), confirming the binding of CoA. Nevertheless, no 

evidence of PanZ acetyltransferase activity could be observed using a radiometric assay 

with [1-14C]acetyl coenzyme A and site-directed mutagenesis of PanD-lysine residues 

did not affect PanD maturation (Stuecker et al., 2012a). 
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pantothenate and coenzyme A. (B) Growth of the ∆panZ (∆yhhK) mutant on agar plates of the M9 glucose medium with or without supplements

is indicated above each panel. Cell culture overnight was applied at a series of dilutions of 1:10. These cells were spotted on the plates and

incubated at 37°C for 2 days. Wild-type; MG1655, ∆panZ; SN202, ∆panZ/vector; SN202 harboring pCA24N(-GFP), ∆panZ/His-panZ; SN202

harboring pCA24N(-GFP)-his-panZ. (C) Growth of the panD-flag strain on agar plates of the M9 glucose medium with or without b-alanine. The
∆panD strain was used as negative control. Wild-type; MG1655, ∆PanZ; SN202, ∆PanZ-flag; SN208. (D) In vivo cleavage of panD-FLAG was

analyzed by SDS polyacrylamide gel electrophoresis (SDS-PAGE) and detected by immunoblot analysis using anti FLAG antibody. Wild type;

MG1655, panD-flag; SN208, ∆panZ, panD-flag; SN216. pCA24N(-GFP) was transformed into SN216 (V), and pCA24N(-GFP)-his-panZ expressing

His-PanZ are designated his-PanZ. Expression of his-PanZ was induced by IPTG. (E) In vitro cleavage of purified panD-FLAG was analyzed by SDS-

PAGE and detected by immunoblot analysis using anti FLAG (Upper) or anti His antibody (Lower). Purified His-PanZ (40 lmol/L) and PanD-FLAG

(2.5 lmol/L) are shown in lane 1, 2, respectively. Purified PanD-FLAG (2.5 lmol/L) was incubated at 37°C for 3 h with or without His-PanZ.

© 2012 The Authors. MicrobiologyOpen published by Blackwell Publishing Ltd. 299

S. Nozaki et al. Conservation of an Activator for panD Enzyme



 32 

3.1.4 β-Alanine biosynthesis and CoA regulation 

A possible role of PanD in CoA biosynthesis regulation was first proposed in 1982 by 

Cronan and co-workers (Cronan et al., 1982). Supplementation of E. coli cultures with 

β-alanine led to increased cellular levels of CoA. Pantothenate supplementation did not 

have as strong an effect on CoA biosynthesis as β-alanine, and therefore β-alanine 

supply was proposed to regulate CoA production. Nevertheless, a mechanism for such a 

regulatory role of ADC was not identified. The only regulatory step for CoA 

biosynthesis that has been so far identified and characterised is the phosphorylation of 

pantothenate (Fig. 3.1, 33) to phosphopantothenate (Fig. 3.1, 37) by pantothenate 

kinase, which is allosterically regulated by CoA (Yun et al., 2000, Rock et al., 2003). 

No other regulatory mechanisms involved in the production of earlier metabolites on the 

route to pantothenate had been identified when this project began.  

3.2 Results and Discussion 

The main aim of this project was to elucidate the mechanism by which PanZ promotes 

PanD maturation in vivo, as ADC was the test system chosen for the testing and 

application of the novel photocleavable crosslinkers. Obtaining a cleanly activated, 

homogeneous enzyme preparation is as important as adopting the correct caging 

strategy or collecting and interpreting the data in time-resolved studies.  

The PanD.PanZ interaction was investigated using a range of biophysical techniques, 

including X-ray crystallography and isothermal titration calorimetry (ITC). The results 

obtained allowed the proposal of a revised mechanism of activation of PanD to ADC. 

They also provided insight into a new mode of regulation of CoA biosynthesis in 

bacteria and the observation of previously unreported X-ray-induced protein chemistry. 

The methods used, observations and results are described in the following sections. 

3.2.1 Protein overexpression and purification 

ADC is a tetrameric enzyme, each 13.8 kDa protomer consisting of a six-stranded, 

double-ψ β-barrel. The overall complex is 50 Å in diameter and doughnut shaped, with 

a large central pore open to solvent. The four active sites are located at the protomer-

protomer interfaces. As discussed in the introduction to this chapter, the PanD(T57V) 

site-directed mutant does not undergo the post-translational modification that leads to 

activation to ADC. This mutant was therefore chosen for the biophysical 

characterisation of the PanD.PanZ protein complex to allow for a clear investigation of 

the protein-protein interaction with no interference from the activation reaction. 
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PanD(T57V) is expressed as the intact π-chain and does not undergo in vivo activation 

or thermal cleavage. The structure of this site-directed PanD mutant has recently been 

reported, showing the intact and unmodified protein backbone in the activation region 

(Webb et al., 2014).  

PanD(T57V) and PanZ were overexpressed and purified as described in sections 8.5 and 

8.6. Details regarding the optimisation of protein overexpression, SDS-PAGE analysis 

of the purified proteins and the size-exclusion chromatography traces can be found in 

section 9.1. In summary, N-terminally hexaHis-tagged PanD(T57V) was overexpressed 

in auto-induction media from previously transformed E. coli MG1655 ΔpanZ ΔpanD 

(DE3) cells and purified by nickel affinity chromatography and size exclusion 

chromatography. C-Terminally hexaHis-tagged PanZ (Nozaki et al., 2012) was initially 

overexpressed from E. coli BL21 Gold (DE3) cells using arabinose induction in the 

presence of pantothenate. The requirement for pantothenate during overexpression was 

later rationalised as overexpression of PanZ leads to β-alanine auxotrophy (see section 

3.2.6 for further discussion). N-Terminally and C-terminally hexaHis-tagged PanZ 

(Cort, 2009) was subcloned by Chris Bartlett (Wellcome Trust rotation student) into the 

pET28a vector for overexpression by auto-induction in E. coli MG1655 ΔpanZ ΔpanD 

(DE3) cells. The N-terminally tagged variant was found to be unable to interact with 

PanD. The inhibition of the interaction by the N-terminal hexaHis-tag was later 

rationalised, as the PanZ Met1 residue is involved in the protein-protein interface (see 

section 3.2.5 for details). Therefore, only the C-terminally tagged PanZ was used during 

this project.  

3.2.2 Calorimetry studies of PanZ.Coa and PanD(T57V).PanZ 

The binding affinity of PanZ for CoA was investigated by ITC. CoA was titrated into 

two different PanZ samples, from different purification runs (Fig. 3.7). The titrations 

show that ~60% of the protein is purified with CoA already bound and that the KD for 

the interaction is approximately 6.2 µM. The ability of PanZ to bind CoA is consistent 

with both the published structure of PanZ by NMR (PDB 2K5T), which shows a 

PanZ.CoA complex, and the initial annotation of the PanZ sequence as a putative acyl 

transferase. Dialysis of the protein against SEC buffer A allowed for partial removal of 

CoA, as seen by the decrease in the incompetent fraction for a CoA titration into PanZ 

(Fig. 3.7 C). Full removal of CoA from the sample by longer dialysis times caused 

precipitation of the protein. 
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Fig. 3.7 Titration of CoA into PanZ. All samples were in 50 mM Tris (pH 7.5), 100 mM NaCl and 0.1 mM DTT 

(SEC buffer A). (A) and (B) titration of 800 µM CoA into two different 100 µM PanZ samples, showing 0.60 and 

0.62 equivalents of CoA co-purified with the protein and KD values of 6.2 ± 0.5 µM and 5.2 ± 0.2 µM respectively. 

(C) titration of 400 µM CoA into dialysed 57 µM PanZ showing a KD of 9.40 ± 0.4 µM. 

The PanD.PanZ interaction was next investigated by ITC. It was expected that the 

PanD.PanZ interaction would compete with CoA binding to PanZ as this would be 

consistent with a model in which ADC activation is negative feedback regulated by the 

concentration of CoA in the cell. In this model, at high CoA concentrations CoA would 

compete with PanD for PanZ binding, lowering the amount of fully matured ADC in the 

cell. In turn, less β-alanine (and subsequently CoA) would be produced, down-

regulating the concentration of CoA in the cell. But, contrary to expectation, the 

titration of PanD(T57V) into PanZ showed a binding coefficient equal to the fraction of 

PanZ.CoA rather than apo-PanZ (PanD protomer to PanZ monomer, Fig. 3.8, A). 

Saturation of PanZ with CoA showed a clear upwards shift in the binding stoichiometry 

(Fig. 3.8, B), suggesting that the PanD(T57V).PanZ interaction is CoA dependent, 

rather than competitive (Monteiro et al., 2012). The binding affinity between the two 

proteins in the presence of CoA was found to be 240 nM.  

The protein-protein interaction was also investigated by ITC in the presence of acetyl 

CoA (AcCoA) instead of CoA, in order to improve the consistency of the titrations. 

Thermodynamic parameters from ITC varied slightly between runs and it was 

hypothesised that CoA may form disulphide-linked dimers in solution, disrupting the 

protein-protein interaction. Acetyl CoA is unable to form such dimers, and was 

therefore used in place of CoA in all subsequent experiments. The subsequent 
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PanD(T57V).PanZ titrations performed in the presence of AcCoA were more accurate, 

reproducible and showed a binding stoichiometry closer to 1 (Fig. 3.9).  

 

Fig. 3.8 ITC traces for the titration of (A) 400 µM PanD(T57V) (by protomer) into 60 µM PanZ without excess CoA 

and (B) 394 µM PanD(T57V) into 59 µM PanZ in the presence of 100 µM CoA. All samples were in 50 mM Tris 

(pH 7.5), 100 mM NaCl and 0.1 mM DTT (SEC buffer A). In the presence of excess CoA, the binding stoichiometry 

increases, indicating that the interaction is mediated by CoA. The KD for the protein-protein interaction in the 

presence of CoA was calculated to be 241 ± 38 nM. 

 

Fig. 3.9 Pairwise titration of PanD(T57V) into PanZ in the presence of 394 µM AcCoA (excess). All samples were in 

50 mM Tris (pH 7.5), 100 mM NaCl and 0.1 mM DTT (SEC buffer A). (A) 263 µM PanD(T57V) (protomer 

concentration) titrated into 35 µM PanZ. (B) 263 µM PanZ titrated into 35 µM PanD(T57V) (protomer 

concentration). The KD for the protein-protein interaction was found to be 35 ± 9 nM from globally fitting both 

titrations. 
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3.2.3 The PanD(T57V).PanZ interaction is CoA dependent 

To confirm the stoichiometry of the PanD(T57V).PanZ complex and unambiguously 

determine the dependence upon CoA for interaction, both mass-spectrometry and NMR 

experiments were conducted.  

Electrospray mass spectrometry (ESMS) was used to observe three protein complexes 

in the gas phase: the PanZ.CoA complex, the PanD(T57V) homotetramer and the 

PanD(T57V).PanZ.CoA complex (Monteiro et al., 2012). Dr Dale Shepherd collected 

the mass spectrometry data and assisted with interpretation of the spectra. The PanZ 

sample containing 1 eqv. of CoA showed three species corresponding to apo-PanZ, 

PanZ.CoA and PanZ.2CoA (15.614, 16.381 and 17.148 kDa respectively). This 

revealed that the protein retained sufficient tertiary structure to bind CoA in the gas 

phase. The ternary species was rationalised as a possible CoA dimer, from disulphide 

formation. The PanD(T57V) sample revealed two tetrameric species corresponding to 

the PanD(T57V) homotetramer and a smaller heterotetrameric species, thought to 

correspond to partial proteolysis of PanD(T57V) (63.0 and 61.7 kDa respectively). This 

hypothesis was confirmed by MS-MS to dissociate the heterotetramer into its 

constituents: the full protein (15.753 kDa) and a truncated polypeptide (14.442 kDa). 

Finally, the PanD(T57V).PanZ heterooctamer was investigated in the presence of 

excess CoA. Once again, two species were visible in the spectrum, corresponding to the 

PanD(T57V) tetramer bound to 3 and 4 equivalents of PanZ.CoA (128.8 kDa and 

112.43 kDa respectively). The 4:3 heteroheptameric species was thought to be 

correlated with the contamination of the PanD(T57V) sample with the truncated 

polypeptide. A simulated spectrum of the 4:4 and 4:3 PanD(T57V).PanZ.CoA species 

was compared to the experimental data and found to be in good agreement. The data 

supported the hypothesis that the PanD(T57V).PanZ complex only forms in the 

presence of CoA (Monteiro et al., 2012). 
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Fig. 3.10 ESMS studies of the PanD(T57V).PanZ interaction. (A) PanD(T57V) sample, showing two species 

corresponding to the expected homotetramer (63.012 kDa, blue) and a smaller heterotetramer (61.701 kDa, red). (B) 

PanD(T57V).PanZ.CoA sample in the presence of excess CoA, showing two species corresponding to PanD(T57V) 

with 4 PanZ.CoA (blue) and 3 PanZ.CoA (red) species bound (128.827 kDa and 112.428 kDa respectively). (C) 

simulated spectrum of the PanD(T57V).4PanZ.4CoA and PanD(T57V).3PanZ.3CoA complexes, matching the 

experimentally obtained spectrum in (B). 

To confirm the absolute requirement of CoA for the PanD(T57V).PanZ protein-protein 

interaction, an NMR experiment was devised. As the PanD(T57V).PanZ.CoA complex 

is ~120 kDa, it was expected that, upon binding of the two proteins, the slow tumbling 

rate of the resulting complex would cause severe broadening of the NMR signals, 

effectively making the spectrum disappear. Chris Bartlett (Wellcome trust PhD rotation 

student) overexpressed 15N-labelled PanZ from minimal media containing 15NH4Cl, 

purified the protein by nickel-affinity chromatography and SEC as described previously 

(Monteiro et al., 2015) and recorded four different 1H-15N HSQC NMR spectra, shown 

in Fig. 3.11: (A) a spectrum of the sample obtained from the purification of the protein, 

which shows multiple species in solution, confirming the presence of apo and CoA-

bound PanZ fractions; (B) a spectrum of PanZ in the presence of excess CoA, showing 

a single species corresponding to PanZ.AcCoA; (C) a spectrum of the apo-
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PanZ/PanZ.AcCoA sample mixed with 1 eqv. of PanD(T57V) (PanD protomer to PanZ 

monomer), showing a different spectrum to that of PanZ.AcCoA, therefore 

corresponding to the apo-PanZ fraction of the sample; and (D) a spectrum of AcCoA-

saturated PanZ mixed with 1 eqv. of PanD(T57V) (PanD protomer to PanZ monomer), 

showing obliteration of the PanZ protein signals and full complex formation. 

 

Fig. 3.11 NMR spectra of 15N-labeled PanZ (0.2 mM in SEC buffer A). Purified protein (grey) showed multiple 

species in solution, PanZ.AcCoA and apo.PanZ. Addition of AcCoA simplifies the spectrum (blue) to a single 

species, PanZ.AcCoA. Addition of PanD(T57V) to purified PanZ also simplifies the spectrum (red), but to a different 

species, apo.PanZ. Addition of PanD(T57V) to PanZ.AcCoA causes loss of all signals, indicating full complex 

formation (green). 

The addition of PanD(T57V) to the apo.PanZ/PanZ.AcCoA mixture yields a different 

spectrum to that of PanZ.AcCoA, meaning that only the PanZ.AcCoA fraction is 

capable of binding to PanD(T57V), causing the disappearance of PanZ.AcCoA signals 

and leaving a spectrum that corresponds to the unbound apo.PanZ fraction. Full 

spectrum disappearance, and, therefore, complete complexation of PanZ to 

PanD(T57V) is only observed when PanD(T57V) is added to a AcCoA saturated PanZ 

sample. This experiment confirmed that full PanD(T57V).PanZ protein complex 

formation only occurs in the presence of excess AcCoA, proving that the 

PanD(T57V).PanZ interaction is CoA dependent. 
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The CoA dependence of PanD binding to PanZ and, therefore, of the activation of PanD 

to ADC, opened two further questions beyond the understanding of the mechanism of 

PanD activation by PanZ: what is the role of CoA in the formation of the protein-

protein interaction, and whether PanD.PanZ complexation has an effect on CoA 

regulation in vivo. Alongside investigating the mechanism of PanD maturation by PanZ, 

the role of this protein-protein interaction in the regulation of CoA biosynthesis was 

also investigated. 

3.2.4 The PanD.PanZ protein complex structure 

Initial crystallisation screen 

PanD(T57V) and PanZ were mixed in a 1:1 (protomer to monomer) ratio in the 

presence of 2 equivalents of CoA * . The protein complex was concentrated to 

~4 mg mL-1. A 96 condition sparse matrix crystallisation screen (Crystal Screen I and 

II, Hampton Research) was set-up and very small crystals were obtained in 200 mM 

Li2SO4, 100 mM Tris pH 8.5 and 30% w/v PEG 4000 (18 °C). The crystallisation 

conditions were optimised and larger bipyramidal crystals (50 µm) were obtained in 100 

mM Tris pH 7.8-8.0, 180-220 mM Li2SO4 and 20% w/v PEG 4000 (Fig. 3.12, A).  

The crystals were cryo-protected by soaking for a few seconds in mother liquor 

containing 20% w/v glycerol, mounted on cryo-loops or meshes and flash cooled in 

liquid nitrogen. The crystals did not diffract on the in-house source. Preliminary data 

were collected at beamline I03 at Diamond Light Source (DLS) at 100 K with 

maximum resolution varying between 9.5 and 4.6 Å (see section 9.2). Data reduction in 

Xia2 (the automated integration, scaling and merging pipeline at DLS) (Winter, 2010) 

showed the protein crystallised in space group I422 (a=b=84.5 Å, c=154 Å, 

α=β=γ=90°).  

Phasing of the data was attempted using both Molrep (Vagin and Teplyakov, 1997) and 

Phaser (McCoy et al., 2007), using an ADC protomer as a search model (modified PDB 

1PPY) (Schmitzberger et al., 2003). In multiple datasets, apparent solutions for the 

tetramer could be found, some clearly incorrect, as the imposed 4-fold crystallographic 

symmetry did not yield the ADC tetramer. In all cases, no reasonable electron density 

was available for the PanZ monomers.  
                                                
* The initial crystallisation trials were performed concomitantly with the initial ITC binding assays and, 
therefore, excess CoA was used instead of AcCoA. The first batch of optimised crystals were obtained 
with excess CoA, but all the following crystallisation trays were set with excess AcCoA, as this coincided 
with the confirmation of PanD(T57V).PanZ binding in the presence of AcCoA by ITC. 
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As an alternative to phasing by molecular replacement, experimental phasing by 

anomalous diffraction was attempted, with both heavy metal and selenium 

derivatisation. Firstly, heavy metals were incorporated by soaking the crystals in mother 

liquor containing Os, W, Pt and Hg salts for a few minutes followed by back soaking 

for a few seconds. Data were collected at beamline I24 (DLS), but the anomalous signal 

obtained was insufficient for phasing. Nevertheless, three higher resolution datasets, to 

2.5-2.7 Å, were obtained from Hg(OAc)2-derivatised crystals. The crystal symmetry 

appeared to be P42212 with a much larger unit cell (a=b=176.1 Å, c=161.3 Å, 

α=β=γ=90°), containing 2 PanD(T57V).PanZ.AcCoA* octamers in the asymmetric unit 

cell (the unit cell contents were calculated using the Matthews coefficient calculator in 

CCP4) (Kantardjieff and Rupp, 2003). Data scaling and merging proved difficult, with 

bad statistics from Aimless (Evans and Murshudov, 2013). Closer analysis of the 

automated data reduction outputs from FastDP and Xia2 (Winter, 2010) showed space 

group ambiguity, with different data reduction strategies outputting varying crystal 

symmetries (P422 and I422). Data reduction in alternative space groups was attempted, 

followed by similar phasing strategies as previously described for the apo-crystals, but 

without success. Data were also collected for crystals derivatised with other metal salts 

((NH4)10H2(W2O7)6 and K2OsCl6). These had lower diffracting power and had, once 

again, ambiguous crystal symmetries (C2221 or P42212 for tungstate and P42212 or I422 

for osmium).  

Following the unsuccessful structure solution by heavy metal derivatisation,  

selenomethionine (SeMet) labelled PanZ was produced. SeMetPanZ was overexpressed 

in SeMet supplemented M9 minimal media using methionine auxotrophic E. coli B834 

(DE3) cells (see sections 9.1.3 and 8.5.3) (Sreenath et al., 2005) and the 

PanD(T57V).PanZ(SeMet).CoA complex was prepared similarly to the 

PanD(T57V).PanZ.CoA complex used previously. Unfortunately, the protein complex 

precipitated during crystallisation attempts using the established conditions. 

Second crystallisation screen 

A new 96 condition sparse matrix crystallisation screen (Crystal Screen I and II, 

Hampton Research) of the PanD(T57V).PanZ.AcCoA complex at a concentration of 

8 mg mL-1 yielded small square plates (Fig. 3.12, B)  in 100 mM sodium cacodylate 

                                                
*  The crystals used for these experiments were obtained during the second batch of optimised 
crystallisation, which coincided with the AcCoA ITC experiments. Therefore, the crystals were grown in 
excess AcCoA, rather than CoA as used in the previous batch. 
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pH 6.5, 1.4 M sodium acetate. Crystals were cryo-protected and cryo-cooled as before 

and initial data were collected at 100 K at beamline I24 (DLS), to a maximum 

resolution of 2.3 Å (see section 9.2). Indexing was ambiguous, with multiple possible 

solutions (I4, C222, P4222 and P422) obtained from automatic data reduction with Xia2 

(Winter, 2010). All the crystals were heavily twinned, with twin fractions calculated by 

Pointless (Evans, 2006) varying between 0.371 and 0.5. Space group ambiguity may be 

an artefact of twinning, where the twin axis can be misassigned as a crystal symmetry 

axis. Reducing the data in the correct space group is essential for correct structure 

solution. Data from the two highest resolution datasets, initially thought to be in space 

group P4222 were integrated again in P1 using XDS and scaled and merged in different 

space groups (P4, C222, P222, P21, P1) in Aimless (Evans and Murshudov, 2013). The 

best merging statistics (Rmerge and Rp.i.m.) were obtained in space group P21 (a=b=84.8 

Å, c=82.4 Å, α=β=γ=90°). Molecular replacement of the PanD protomer using Molrep 

(Vagin and Teplyakov, 1997) or Phaser (McCoy et al., 2007) in P21 and P1 was 

successful, but once again the PanZ monomer could not be placed. The phased data 

were analysed with Zanuda (Lebedev and Isupov, 2014) which suggested a further two 

possible space groups (P4212 and P21212).  

 

Fig. 3.12 Cryo-cooled PanD(T57V).PanZ.AcCoA crystals in nylon loops, aligned to the synchrotron beam. In both 

cases, the beam is 70 µm wide (red ellipse). (A) bipyramidal crystals obtained from 100 mM Tris pH 8.0, 200 mM 

Li2SO4 and 20% w/v PEG 4000. (B) square plates obtained from 100 mM sodium cacodylate, pH 6.5, 1.4 M sodium 

acetate. 

All other datasets collected from the further optimised crystallisation conditions 

suffered from similar pathologies as described. Although several methods were 

attempted to obtain correct indexing, no unambiguous solution for the whole protein 

complex showing defined electron density for PanD(T57V) as well as PanZ was 

obtained. It was suggested that some of the crystal pathologies observed could be 

associated with the 4-fold rotational symmetry of the PanD(T57V).PanZ.AcCoA 

complex, as described in the next section. 
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Twinning and structure solution 

Although twinning is a relatively common occurrence in protein crystallography and 

can cause difficulties during indexing and phasing, the fact that some of the datasets 

collected during the course of this project showed reasonable solutions for the ADC 

complex but no interpretable electron density for PanZ could also indicate crystal lattice 

perturbations. As the ADC tetramer has a 4-fold axis that could be associated with a 

crystallographic symmetry axis, if there were even small changes in the conformation of 

the PanZ molecules surrounding the tetramer, this could have resulted in the poorly-

defined electron density observed for PanZ. A pictorial representation of possible lattice 

deformations is shown in Fig. 3.13. 

 

Fig. 3.13 Potential source for PanD(T57V).PanZ.AcCoA crystal lattice deformations. The PanD(T57V) tetramer is 

shown in green and different positions/conformations of PanZ in different shades of blue. The PanD(T57V) has a 

four-fold axis which may be associated with crystal symmetry. In a perfect crystal, PanZ would adopt the same 

conformation through the lattice. If PanZ adopts different conformations, lattice deformations may arise. 

To overcome these problems, three approaches were suggested. Firstly, avoid 

cryo-cooling-induced conformational changes of the relative protein orientations (i.e. 

collect the data at room temperature, RT). If PanZ is mobile, collecting the data at RT 

could allow for a single orientation to be captured, whereas cryo-cooling may lock the 

protein in several different conformational landscape energy minima, “blurring” the 

electron density for PanZ. A second option was to attempt lattice tightening by 

dehydration. Decreasing the water content in the crystal may restrict the flexibility of 

the proteins, at the risk of destroying the lattice completely if the crystal is too 

dehydrated. Successful lattice tightening can be translated into an increase in diffraction 

resolution or changes in crystal symmetry (Bowler et al., 2015). To achieve this, the 

crystals are mounted under a humidifying air stream and diffraction quality is monitored 

over a slow decrease in water content in the crystal. This is achieved by slowly 

decreasing the relative humidity of the air stream surrounding the crystal in 0.5 or 1% 

steps. The last approach is to screen for further crystallisation conditions that may yield 

an untwinned, well-diffracting crystal.  

90°

Perfect crystal Lattice deformationsADC tetramer with flexible PanZ
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A further seven 96-well sparse matrix commercial crystallisation screens were set-up 

[Crystal Screen HT 1 and 2, Index, Salt RX (Hampton Research), Morpheus (Molecular 

Dimensions) and Wizard I and II (Emerald Biosciences)], using 

PanD(T57V).PanZ.AcCoA at a concentration of 10 mg mL-1 with 2 eqv. of AcCoA (per 

PanZ monomer) to help stabilise the complex. From these, more than 120 potential 

crystallisation hits were obtained, and well-formed crystals from 5 conditions were 

chosen for initial screening and data collection at ID29 at ESRF. The data were to be 

collected at RT, to avoid cryo-cooling, and dehumidification was also attempted using 

the HC1 instrument (Sanchez-Weatherby et al., 2009).  

From all the crystals screened, one diffracted extremely well (crystallised in 200 mM 

potassium thiocyanate, 100 mM Bis-Tris propane pH 6.5, 20% w/v PEG 3350) and data 

were collected at RT, at 99.5% relative humidity, to 1.6 Å resolution (see section 9.2). 

Data were integrated in space group I4 (a=b=86.4 Å, c=81.0 Å, α=β=γ=90°) with Xia2 

(Winter, 2010) and scaled and merged using Aimless (Evans and Murshudov, 2013) 

with good statistics (Table 1). Molecular replacement using Molrep (Vagin and 

Teplyakov, 1997) successfully placed one PanD protomer (PDB 4AZD, with a contrast 

of 14.68) followed by one PanZ protein in the asymmetric unit cell (PDB 2K5T, with a 

contrast of 5.19). The structure was refined using Refmac5 (Murshudov et al., 2011) 

and manually rebuilt in Coot (Emsley et al., 2010). 

The new crystallisation conditions were then optimised to give square pyramidal 

crystals up to 300 µm in size, by varying the protein to mother liquor ratios. 10 µL 

hanging drops containing 4:1 protein:mother liquor ratios gave the largest crystals (Fig. 

3.14). A second dataset from these crystals was collected in-house at RT, to 1.7 Å 

resolution (see section 9.2). The data were integrated using HKL3000 (Otwinowski and 

Minor, 1997), scaled and merged using Aimless (Evans and Murshudov, 2013) and 

phased by molecular replacement using Molrep (Vagin and Teplyakov, 1997) using the 

structure obtained from the synchrotron dataset as a search model (Table 1). The in-

house structure was refined using Refmac5 (Murshudov et al., 2011) and manually 

rebuilt in Coot (Emsley et al., 2010) and found to be isostructural to the synchrotron 

structure. 
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Table 1 PanD(T57V).PanZ.AcCoA X-ray diffraction data reduction and refinement statistics 

 PanD(T57V).PanZ.AcCoA PanD(T57V).PanZ.AcCoA 
Data collection synchrotron in-house 
Space group I4 I4 
Cell dimensions     

    a, b, c (Å) 86.4, 86.4, 81.0 86.3, 86.3, 80.9 
    α, β, γ  (°)  90.0, 90.0, 90.0 90.0, 90.0, 90.0 
Resolution (Å) 59.1-1.61 (1.64-1.61) 33.7-1.70 (1.75-1.70) 
Rmerge (%) 5.8 (49.8) 3.7 (39.8) 
Rp.i.m. (%) 4.4 (41.2) 3.6 (36.6) 
<I> / sI 11.8 (1.6) 13.3 (2.2) 
Completeness (%) 97.4 (80.1) 99.7 (99.7) 
Redundancy 4.1 (2.6) 2.4 (2.3) 
Absorbed dose (kGy)* 70 20 
   
Refinement   

Resolution (Å) 59.1-1.61 (1.65-1.61) 29.52-1.70 (1.75-1.70) 
No. reflections 35579 (2180) 30609 (2242) 
Rwork (%)  12.9 (24.8) 14.4 (32.7) 
Rfree (%) 15.0 (26.2) 17.5 (36.2) 
No. atoms   

    Protein 2090 2064 
    Ligand/ion 53 65 
    Water 126 145 
B-factors   

    Protein (main chain) (Å2) 22.27 20.35 
    Protein (side chain) (Å2) 28.91 25.99 
    Ligand/ion (Å2) 28.19 20.35 
    Water (Å2) 35.55 32.45 
R.m.s. deviations   

    Bond lengths (Å) 0.029 0.023 
    Bond angles (°) 3.290 2.33 

 

 

Fig. 3.14 Optimised crystallisation conditions for the PanD(T57V).PanZ.AcCoA complex gave large (300 µm in the 

longest dimension), clean, square-pyramidal crystals. 

                                                
* Calculated using RADDOSE-3D (Zeldin et al., 2013) 
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3.2.5 Structural analysis of the in-house PanD(T57V).PanZ.AcCoA complex 

Overall architecture of the protein-protein complex 

As expected from the ITC binding studies, the PanD(T57V).PanZ.AcCoA complex is a 

heterooctamer. The complex is cross-shaped, with four PanZ protomers bound adjacent 

to the ADC loops that are cleaved post-translationally to form the active site. The 

AcCoA binding site is also adjacent to the protein-protein interface, consistent with the 

previously observed CoA-dependent complex formation. 

A 1:1 mixture of PanD(T57V) and PanZ was concentrated to ~10 mg mL-1, 2 eqv. of 

AcCoA were added and SAXS data collected at varying dilutions on beamline 4-2 of 

the Stanford Synchrotron Radiation Light Source (SSRL) by Dr Thomas Grant, Dr 

Edward Snell and Prof. Arwen Pearson to confirm that the heterooctameric structure of 

the PanD.PanZ.AcCoA complex obtained from X-ray diffraction corresponded to the 

true architecture of the complex in solution. The data were analysed with the help of Dr 

Thomas Grant (Monteiro et al., 2015). The experimental solution scattering data 

matched the crystallographic heterooctamer structure both at high and low scattering 

angles (Fig. 3.16, A). Fig. 3.16 shows the plot of the change in calculated scattering of 

the complex (I) with scattering angle (q) compared to the experimental data. Small 

deviations from the experimental data could be accounted for by including a small 

amount (32%) of a heterooctamer dimer, consistent with the packing in the crystal (Fig. 

3.16, B) along with the eight unresolved hexaHis-tags (one for each protomer) with 

each amino acid modelled as a sphere (Fig. 3.16, C). The modelled purification tags and 

calculated SAXS envelope are shown in Fig. 3.17. 
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Fig. 3.15 Architecture of the PanD(T57V).PanZ.AcCoA complex. PanD(T57V) protomers are shown in light and 

dark green, PanZ in blue and AcCoA in sticks coloured by atom colours (carbons in grey). PanZ binds next to the 

PanD(T57V) protomer interface, at the PanD processing (and active) site. AcCoA is found adjacent to the protein-

protein interface. The a and b axes of the unit cell are represented as black lines along with the 4-fold rotation axis as 

a black square. 



 

 47 

 

Fig. 3.16 Plot of ln q vs q (Å-1) of experimental and calculated SAXS data for the PanD(T57V).PanZ.AcCoA 

complex. The experimental data are shown in black. (A), (B) and (C) show the calculated scattering of the 

crystallographic heterooctamer (green) with 32% of octamer dimers (blue) and also the modelled 8 

crystallographically-unresolved hexaHis-tags (red) fitted against the experimental data. (D) shows the residuals of the 

fits. 

 

Fig. 3.17 Calculated SAXS envelope overlaid with the PanD(T57V).PanZ.AcCoA complex structure obtained by X-

ray crystallography. PanD(T57V) is shown in green, PanZ in blue, CoA as sticks (coloured by atom and with carbons 

in grey) and the modelled crystallographically unresolved hexaHis tags as orange spheres. The purification tags were 

modelled as single spheres for each residue of the peptide chain. 
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Acetyl coenzyme A binding places PanZ in a PanD(T57V)-binding competent 

conformation 

The solution structure of PanZ was previously elucidated by NMR spectroscopy in the 

presence of excess CoA by Cort et al. (Northeast Structural Genomics Consortium, 

PDB 2K5T, Fig. 3.18). The structure of PanZ in the PanD(T57V).PanZ.AcCoA 

complex was found to be very similar to that of CoA-bound PanZ in in solution. The 

Pan 26Tyr-Val33 loop is the most dynamic region in the solution data and it also 

corresponds to a region with high B-factors in the X-ray structure. As the AcCoA 

binding site is directly involved in the protein-protein interface and AcCoA is required 

for binding (as shown by ITC, ESMS and NMR in sections 3.2.2 and 3.2.3), it is likely 

that binding of CoA (or its thioesters) places PanZ in a PanD-binding competent 

conformation. The acetyl group of AcCoA points away from the protein-protein 

interface, supporting the findings of Stuecker et al. that PanZ does not act as an acetyl 

transferase during PanD activation (Stuecker et al., 2012a). 

 

Fig. 3.18 Overlay of the structure of PanZ in complex with PanD(T57V) and AcCoA (dark blue) with the previously 

reported solution structure of PanZ in the presence of CoA (light blue, PDB 2K5T, 3 lowest energy conformers 

shown). The 26Tyr-Val33 loop (black circle, right) is poorly resolved in the X-ray electron density and also adopts 

multiple conformations in the NMR structure ensemble. 

Binding of AcCoA to PanZ appears to stabilise the PanZ 66Leu-Gly76 loop (Fig. 3.19) 

through several hydrogen bonds (Leu66, Val68, Gly76, Gln79), electrostatic 

interactions (Arg74 to the pyridoxal phosphate), metal chelation (Mg2+ to Thr72 and the 

pyrophosphate) and cation-π interactions (Arg74 to the adenosine ring). This loop then 

forms part of the interface with PanD, crossing above the ADC C-terminal tail. 
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Fig. 3.19 Stereo images of the AcCoA binding site in PanZ, showing the interactions between the residues, the CoA 

moiety and Mg2+. Mg2+ is shown as a grey sphere and AcCoA in sticks coloured by atom (carbons in grey). PanZ is 

shown in blue, with residues interacting with AcCoA as sticks, coloured by atom (carbons in blue). Hydrogen bonds 

and electrostatic interactions are shown as black lines and cation-π interactions as red lines. 

The PanD(T57V) C-terminal tail is an integral part of the protein-protein interaction 

The PanZ 66Leu-Gly76 loop, 43Arg-Leu48 loop and N-terminus sandwich the 

PanD(T57V) C-terminal tail (Fig. 3.20), bridging the protein-protein interface, through 

electrostatic interactions (PanZ-Arg75 to PanD(T57V)-Glu40), direct hydrogen bonds 

(PanZ-Thr72 to PanD(T57V)-Val123, PanZ-Glu46 to PanD(T57V)-Tyr22 and PanZ-

Asn45 to PanD(T57V)-Gly23), van der Waals interactions (PanZ-Phe44 to 

PanD(T57V)-Pro122) and several water mediated hydrogen-bonding interactions. The 

PanZ-Asn45 to PanD(T57V)-Gly23 hydrogen bond is of considerable importance and 

will be discussed in the section dedicated to the mechanism of PanD post-translational 

modification (section 3.2.7). 
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Fig. 3.20 Stereo-views of the PanD(T57V).PanZ.AcCoA interaction. PanD(T57V) is shown in green, PanZ in blue 

and AcCoA as sticks coloured by atom (carbons grey). Interacting residues from PanD(T57V) and PanZ are shown as 

sticks coloured by atom (carbons green and blue respectively). Hydrogen bonds as black dotted lines, cation-π 

interactions as red dotted lines and van der Waals interactions as orange dotted lines. (Top) the PanZ 66Leu-Gly76 and 
43Arg-Leu48 loops and N-terminus sandwich the PanD C-terminal tail above and below. (Middle) The main 

interactions of AcCoA with the PanZ 66Leu-Gly76 loop, organising it to bridge the protein-protein interface. (Bottom) 

The interactions between the PanZ 43Arg-Leu48 loop and N-terminus and PanD. 
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On binding of PanZ, the PanD(T57V) C-terminal tail (120Ala-Ala126) becomes an 

integral part of the protein-protein interface. This was surprising as the hydrophobic 

C-terminal chain of ADC is intrinsically disordered and is unstructured in the majority 

of published ADC crystal structures, with the exception of that of the ADC(N72A) site-

directed mutant, where it becomes ordered due to a crystal packing interaction (Webb et 

al., 2012). Therefore, the importance of the C-terminus of ADC for binding of PanZ 

was investigated by ITC. A truncated mutant, PanD(T57V/K119STOP) was generated 

by site-directed mutagenesis, overexpressed in auto-induction media and purified as 

previously described for the PanD(T57V) mutant (see sections 9.1 and 8 for further 

details).  

Titration of PanD(T57V/K119STOP) against PanZ.AcCoA (Fig. 3.21, B) showed no 

measurable binding compared to the titration of PanD(T57V) against PanZ.AcCoA 

(Fig. 3.21, A), confirming that the PanD C-terminal tail is essential for the protein-

protein interaction. Interestingly, the alignment of ADC protein sequences across 

different bacteria shows that the C-terminal peptide is fully conserved across all PanZ 

producing bacteria (Fig. 3.22), further supporting its role as an essential component in 

PanD.PanZ protein complex formation. 

 

 

Fig. 3.21 ITC titrations of (A) 263 µM PanD(T57V) into 35 µM PanZ.AcCoA in the presence of excess AcCoA 

(400 µM) and (B) 35 µM PanD(T57V/K119STOP) intro 263 µM PanZ.AcCoA in the presence of excess AcCoA 

(394 µM). All samples were in 50 mM Tris (pH 7.5), 100 mM NaCl and 0.1 mM DTT (SEC buffer A).  Truncation of 

the PanD C-terminal tail shows no measurable binding to PanZ compared to the full-length protein. 
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P. aeruginosa    110 NQLSHTSEAIPIQVA                126 
E. coli          110 NEMKRTAKAIPVQVA                126 
E. carotovora    110 NELQRQAKAIPVQVA                126 
Y. pestis        110 NQLQRKAKAVPVQVA                126 
C. glutamicum    110 NRIVALGNDLAEALPGSGLLTS-RSI     136 
S. coelicolor    110 NRIVGLGADASEPVPGSDQERSPQAVSA   139 
M. tuberculosis  110 NKPIDMGHDPAFVPENAGELLDPRLGVG   139 
T. thermophilus  110 NRILEVRKG                      120 
L. pneumophila   111 NRLKEIRPERIGVKSRIPYPA          133 
C. crescentus    110 NLIKKAA                        118 
B. subtilis      110 NQIIEMLGAEKAGTIL               127 
S. aureus        110 NVIIEMIHEKENTIVL               127 
H. pylori        110 NEILEK                         116 

 
Fig. 3.22 PanD sequence alignment. The conserved C-terminal region across all PanZ producing bacteria (P. 

aeruginosa, E. coli, E. carotovora and Y. pestis) is highlighted in yellow. 

3.2.6 The ADC.PanZ complex is involved in CoA biosynthesis regulation 

The data obtained to this point in the project suggest a positive feedback role of PanZ in 

regulating CoA biosynthesis, as the PanD.PanZ interaction is CoA dependent. At low 

CoA concentrations, PanZ exists as apo-PanZ, which is not able to bind to PanD. PanD 

activation to ADC, does not occur, halting β-alanine and, consequentially, CoA 

production. At high CoA concentrations, PanZ exists mainly as the PanZ.CoA species, 

which is able to bind to and promote PanD activation to ADC. Therefore, at high CoA 

concentrations ADC should be mainly activated and able to catalyse the conversion of 

L-aspartate to β-alanine, which, in turn, would lead to an uncontrolled increase in the 

cellular pools of pantothenate and CoA (Fig. 3.23). 

 

Fig. 3.23 PanZ-mediated, positive feedback loop of CoA biosynthesis suggested by ITC, NMR and X-ray 

crystallography data. At high CoA concentrations, PanZ mainly exists as PanZ.CoA which is able to bind to the PanD 

zymogen, activating it to ADC. ADC then catalyses the conversion of L-aspartate to β-alanine, a precursor to CoA.  

As CoA biosynthesis is negatively feedback regulated downstream of aspartate by the 

interaction of CoA with pantothenate kinase, which phosphorylates pantothenate, (Rock 

et al., 2003), β-alanine would be continuously produced and excess pantothenate 

excreted out of the cell (Jackowski and Rock, 1981), while still keeping the 

concentration of CoA roughly constant. This mechanism for the production of CoA is 

both unexpected and unreasonable in a biological context, as it would lead to the 

exhaustion of the cellular pools of aspartate. Therefore, further investigations were 
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carried out in order to determine whether the PanD.PanZ interaction could act to 

negatively regulate CoA biosynthesis, potentially via a mechanism unrelated to the 

PanZ-mediated PanD activation. 

As PanZ is a CoA sensor (it binds CoA) it was hypothesised that it could perform a 

secondary function, beyond the acceleration of PanD activation, in regulating CoA 

biosynthesis. As the structures of PanD(T57V) (PDB 4AZD) (Webb et al., 2014) and 

ADC (PDB 1PPY) (Schmitzberger et al., 2003) are similar, PanZ.CoA could possibly 

also bind to the activated enzyme and, since the protein-protein interaction surface is 

adjacent to the active site, potentially act as an inhibitor of ADC. Under these 

circumstances, then PanZ would perform two distinct functions: activation and 

inhibition of ADC. As the PanD.PanZ interaction is CoA dependent, then this 

secondary function would lead to a negative feedback loop mechanism of CoA 

biosynthesis. To explore this hypothesis, the binding affinity of PanZ.CoA to the 

activated enzyme, WT ADC, was investigated by ITC, the structure of the WT 

ADC.PanZ.AcCoA complex solved by X-ray crystallography and the effect of 

PanZ.AcCoA upon ADC catalysis assessed both in vitro and in vivo.  

Protein purification 

WT PanD was overexpressed in auto-induction media using the same protocol as for 

PanD(T57V) and previously transformed E. coli C41 (DE3) cells harbouring a pRSETa 

plasmid encoding the protein. Using WT E. coli cells allows for the overexpressed 

PanD protein to be efficiently activated to ADC by heating the collected cell pellet at 

37 °C overnight prior to storage at -80 °C (see section 9.1.6). This is hypothesised to be 

due to the presence of endogenous PanZ, which can activate the zymogen. Therefore, 

WT PanD was obtained from non-heated cell pellets and WT ADC from heated cell 

pellets. The purification was carried out as previously described for PanD(T57V) and 

the extent of cleaved WT ADC analysed by tris-tricine SDS-PAGE (see sections 9.1.5, 

and 8).  

WT PanD.PanZ.AcCoA and WT ADC.PanZ.AcCoA crystal structures 

The non-activated protein was crystallised with PanZ.AcCoA (WT PanD.PanZ.AcCoA 

complex) using the same crystallisation conditions as for the PanD(T57V).PanZ.AcCoA 

complex. The crystals were cryo-protected by soaking for a few seconds in mother 

liquor containing increasing concentrations of glycerol (5%, 10% and 20% w/v) and 

cryo-cooled in liquid nitrogen. Data were collected at beamline I04-1 (DLS), to 1.2 Å 
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resolution. Data were integrated with Xia2 (Winter, 2010), scaled and merged using 

Aimless (Evans and Murshudov, 2013) and did not appear to be twinned, suggesting 

that the previous twinning problems were either not caused by cryo-cooling but rather 

are related to the crystal form, or that the affinity of PanZ for the WT protein is tighter, 

limiting the conformational flexibility of the complex. Data were phased by molecular 

replacement using Molrep (Vagin and Teplyakov, 1997) with the 

PanD(T57V).PanZ.AcCoA structure as a model. The structure was refined using 

Refmac5 (Murshudov et al., 2011) and rebuilt manually using Coot (Emsley et al., 

2010) (Table 2).  

The WT PanD.PanZ.AcCoA complex was very similar to the 

PanD(T57V).PanZ.AcCoA complex. PanZ binds ADC across the active site (Fig. 3.24), 

supporting, from a structural point of view, the hypothesised inhibitory effect of PanZ 

on ADC catalysis. As expected, WT PanD is seen to be completely activated, 

confirming that PanZ.AcCoA is able to efficiently promote the maturation of the 

zymogen to the active enzyme, though, surprisingly, residue 25 shows a tetrahedral 

moiety, rather than the expected planar geometry of the catalytic pyruvoyl group. The 

density was best modelled as a hydrated pyruvoyl (Fig. 3.24), which could arise from 

changes in the electrostatic environment around the active site upon binding of PanZ or 

be due to the crystallisation buffer composition.  

To determine whether the tetrahedral centre formed upon the interaction of the two 

proteins or if it was in fact correlated with the activation process, thermally-activated 

WT ADC was also complexed with PanZ in the presence of 2 eqv. of AcCoA (per PanZ 

monomer) and crystals grown under the same conditions as for the WT 

PanD.PanZ.CoA complex. The crystals were handled, data collected and reduced and 

the structure solved as described for the WT PanD.PanZ.AcCoA complex. Once again, 

the active site showed clean cleavage of the peptide backbone at residue Gly24, with the 

presence of the tetrahedral moiety at residue 25, showing that this is associated simply 

with the formation of the protein complex, rather than with the activation process. This 

structure also confirms that thermal activation of PanD to ADC can be done in cellulo, 

without the formation of serine hydrolysis by-products as described in section 3.1.2 and 

visible in the first ADC crystal structure (PDB 1AW8) (Albert et al., 1998). In practical 

terms, the fastest and easiest protocol for the production of fully active ADC from PanD 

overexpression is by expressing the protein in WT E. coli cells and then heating the cell 

pellets at 37 °C overnight, rather than by incubation of PanD and PanZ.AcCoA.     
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Lastly, it was important to determine whether the hydrated pyruvoyl appears only at 

cryo-temperatures or if it was a genuine, stable feature of the complex, even at RT. A 

second dataset for the WT ADC.PanZ.AcCoA complex from a crystal from the same 

crystallisation batch was collected at RT on the in-house X-ray source. Data were 

integrated with XDS (Kabsch, 2010) and scaled, merged, phased and refined as 

described for the cryo-temperature synchrotron dataset (Table 2). The electron density 

at the pyruvoyl centre was once again clearly tetrahedral, confirming that it was the 

electrostatic environment surrounding the ADC active site in the crystal that stabilises 

the hydrated form of the pyruvoyl preferentially to the α-ketoamide.   

 

Fig. 3.24 The WT ADC.PanZ.AcCoA complex, showing the interaction of the two proteins at the active site. WT 

ADC is shown in yellow, PanZ in blue and CoA as grey sticks. 2Fo-Fc map contoured at 1 σ. (A) PanZ.AcCoA binds 

adjacent to the ADC active site. The main residues in the enzyme active site are shown as sticks (Lys9, His11, Tyr22, 

Glu23, Glu24, Pyr25, Arg54, Tyr58) and the hydrogen bond between ADC-Glu23 and PanZ-Asn45 is shown as 

dashes. (B) and (C) the ADC active site showing the pyruvoyl in a hydrated form. The electron density shows a clear 

tetrahedral moiety. The hydrated pyruvoyl (Pyr25) is stabilised by a network of hydrogen bonds to adjacent residues. 

One hydroxyl group is a H-bond acceptor from Thr57 and the second hydroxyl group a H-bond donor to Asn72-CO 

backbone and a H-bond acceptor from Gly24-NH backbone.  
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Table 2 WT PanD.PanZ.AcCoA X-ray diffraction data reduction and refinement statistics 

 WT PanD. 
PanZ.AcCoA 

WT ADC. 
PanZ.AcCoA 

WT ADC. 
PanZ.AcCoA 

Data collection synchrotron synchrotron in-house 
Temperature 100 K 100 K RT 
Space group I4 I4 I4 
Cell dimensions      
    a, b, c (Å) 85.9, 85.9, 80.1 86.6, 86.6, 79.9 86.4, 86.4, 81.1 
    α, β, γ  (°)  90.0, 90.0, 90.0 90.0, 90.0, 90.0 90.0, 90.0, 90.0 
Resolution (Å) 29.28-1.16 

(1.18-1.16) 
42.78-1.25 
(1.27-1.25) 

43.19-1.85 
(1.89-1.85) 

Rmerge (%) 7.7 (56.7) 9.2 (76.3) 15.4 (77.1) 
Rp.i.m. (%) 5.4 (39.5) 5.4 (47.4) 12.3 (55.5) 
<I> / sI 9.0 (2.1) 7.4 (7.0) 5.8 (1.6) 
Completeness (%) 99.6 (93.7) 99.8 (99.9) 100.0 (100.0) 
Redundancy 5.1 (4.4) 3.6 (3.4) 4.4 (4.4) 
    
Refinement    
Resolution (Å) 60.72 (1.16) 42.78 (1.25) 43.18 (1.85) 
No. reflections 99822 (6688) 75141 (5473) 24079 (1752) 
Rwork (%)  10.8 (19.1)  11.4 (20.9) 14.91 (28.9) 
Rfree (%) 11.5 (20.2) 14.4 (23.9) 18.89 (25.1) 
No. atoms    
    Protein 2126 2118 2129 
    Ligand/ion 112 92 58 
    Water 290 269 124 
B-factors    
    Protein (main chain) 

(Å2) 15.11 14.75 26.20 

    Protein (side chain) (Å2) 21.50 19.48 31.17 
    Ligand/ion (Å2) 21.74 22.63 31.33 
    Water (Å2) 33.14 32.10 35.42 
R.m.s. deviations    
    Bond lengths (Å) 0.034 0.034 0.019 
    Bond angles (°) 2.86 2.84 2.15 

 

PanZ inhibits ADC catalysis 

The active site of ADC is composed of residues from two adjacent subunits. The 

enzyme contains a number of fully conserved residues, the vast majority of which are 

located close to the active site (Webb et al., 2004). The catalytic mechanism of ADC 

starts with the condensation of L-aspartate with the pyruvoyl group, forming an iminium 

intermediate (Fig. 3.25, II). The β-carboxylate forms a salt-bridge to Arg54 and the α-

carboxylate makes an ionic interaction with Lys9, which, in turn, is hydrogen-bonded to 

His11 and Tyr58. The C-terminus of the β-chain of ADC (24Gly-Tyr22) is mobile and 

can adopt different conformations, visible in the structure of the enzyme (PDB 1AW8) 
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(Albert et al., 1998) and also in the crystal structures of ADC with different ligands 

bound to the active site (Yorke, Monteiro et al., unpublished results)*. Once bound, L-

aspartate undergoes decarboxylation at the α-carboxylate (Williamson and Brown, 

1979) to an enolate (III), which is then protonated by Tyr58 (Saldanha et al., 2001) to 

the β-alanine iminium intermediate (V). The product is then released by hydrolysis, 

regenerating the pyruvoyl group (VI).  

 

Fig. 3.25 Mechanism of L-asparate decarboxylation by ADC (Webb et al., 2004). L-Aspartate binds at the ADC 

active site, forming a salt bridge to Arg54 (I), promoting the formation of the iminium intermediate (II). The α-

carboxylate is cleaved to give the enolate intermediate (III), which is protonated by Tyr58 (IV) (Saldanha et al., 

2001) to the β-alanine iminium intermediate (V). The product is then released by hydrolysis (VI). 

In vitro assays 

The assay for ADC catalysis is difficult due to the lack of a suitable chromophore in the 

enzyme, substrate or product. One way to assay the turnover rate is to monitor the heat 

of reaction. Heat evolution can monitored directly by ITC (Todd and Gomez, 2001) and 

is directly proportional to enthalpy. Enthalpic changes during catalysis are mainly 

dominated by the cleavage of the substrate to release CO2 (Fig. 3.25, II) and also from 

the protonation of the enolate intermediate (Fig. 3.25, IV). This method has been 

previously shown to be a good method to assay a range of enzymatic reactions, 

                                                
* Crystal structures of ADC with different ligands bound at the active site show a large degree of 
flexibility for the C-terminus of the β-chain. These structures will not be discussed in this thesis but are 
currently being prepared for publication. 
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including those of DHFR, trypsin, creatine phosphokinase and urease (Todd and 

Gomez, 2001).  

The activity of ADC in the presence of different PanZ concentrations was investigated 

by ITC using a multiple injection approach. The titrations and data fitting were 

performed by Dr M. E. Webb as part of this project. Twenty-five aliquots of L-aspartate 

were injected into ADC, allowing just enough time for the system to equilibrate 

between the injections. The titration was repeated in the presence of 0.5 and 2 

equivalents of PanZ.AcCoA. Fig. 3.26 shows the data fitted from the titrations. Upon 

addition of 0.5 eqv. of PanZ.AcCoA ADC activity is reduced to 50% and with 2 eqv. of 

PanZ.AcCoA only 10% activity is recovered. This assay clearly shows that, not only 

does PanZ.AcCoA bind to activated ADC, but complex formation results in ADC 

inhibition.  

 

Fig. 3.26 Relative rates of turnover of WT ADC (2.5 µM, protomer concentration) at varying L-aspartate 

concentrations in the presence of 0, 0.5 and 1.0 eqv. of PanZ.AcCoA (per ADC protomer). In the presence of 0.5 eqv. 

of PanZ.AcCoA (1.3 µM), the relative rate of catalysis is approximately halved, whereas in the presence of 2 eqv. of 

PanZ.AcCoA, only 10% of activity is recovered. 

The concentrations of ADC and PanZ.AcCoA used in this ITC assay were considerably 

above the binding affinity between the proteins. To investigate PanZ inhibition of ADC 

further, a second assay was set up where ADC turnover over the course of several hours 

was monitored by 1H NMR spectroscopy. As the enzyme has a slow turnover rate and 

the substrate and product are simple organic molecules, a 1H NMR spectrum of the 

reaction mixture can be recorded and the percentage turnover extrapolated from the 

ratio between the aspartate Cα/Cβ and β-alanine CH2 signals. 

WT ADC (100 nM) was mixed with varying concentrations of PanZ (200 nM, 1 µM 

and 10 µM) with 2 equivalents of AcCoA (400 nM, 2 µM and 20 µM respectively). 
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0.5 mM L-aspartate (~3×KM) was added to the protein mixtures and the samples 

incubated at 37 °C. Aliquots were taken at 2, 4 and 24 h intervals, mixed with D2O and 
1H NMR spectra collected immediately with a water suppression pulse sequence. Three 

experiments were run with excess AcCoA added (100 µM) and three without. Two sets 

of spectra for two ADC turnover time-courses in the presence of low PanZ 

concentrations are shown in Fig 3.27. The spectra show a decrease in L-aspartate 

concentration and an increase in β-alanine concentration, meaning that ADC is able to 

catalyse the reaction and that the percentage turnover can be estimated from the NMR 

integrals. The experiments showed that at low PanZ concentrations (200 nM and 1 µM), 

ADC is not inhibited, and the majority of the substrate had been consumed after 24 

hours. Nevertheless, at 10 µM PanZ, the enzyme is almost completely inhibited, with 

only 5% turnover occurring after 24 hours in the presence of excess AcCoA (Fig. 3.28). 

The concentration dependence of the inhibition of ADC by PanZ may indicate a 

possible competitive mode of inhibition. Further experiments using different substrate 

concentrations would have to be performed to support this hypothesis. 

 

Fig. 3.27 Representative traces of 1H NMR experiments to follow the conversion of L-aspartate to β-alanine by ADC, 

in the presence of different PanZ concentrations. Spectra were recorded in 10% D2O with a water suppression pulse 

sequence. The traces correspond to two experiments with and without excess AcCoA added. Both experiments were 

run with 100 nM WT ADC, 200 nM PanZ and 0.5 mM L-aspartate in 50 mM phosphate buffer (pH 7.4), 100 mM 

NaCl. The signals corresponding to L-aspartate and β-alanine are labelled. The excess AcCoA complicates the 

spectrum but does not obscure the amino acid signals. 
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Fig. 3.28 The percentage inhibition of WT ADC by PanZ calculated from 1H NMR spectra. WT ADC is able to 

catalyse the conversion of L-aspartate to β-alanine in the presence of 1 µM and 10 µM PanZ, but is inhibited in the 

presence of 10 µM PanZ. All experiments were carried out with 100 nM WT ADC in 50 mM phosphate buffer (pH 

7.4), 100 mM NaCl and 0.5 mM L-aspartate. Spectra were recorded in 10% D2O with a water suppression pulse 

sequence. 

In cellulo assays 

The effect of PanZ upon ADC catalysis was also investigated in vivo. This work was 

performed by Dr S. Nozaki as part of this project. ΔpanZ knockout cells were 

transformed with a pBAD24.PanZ-his plasmid and grown in M9 minimal media agar 

plates with and without β-alanine supplementation. ΔpanZ cells are β-alanine 

auxotrophs and, therefore, cannot grow without β-alanine supplementation, as PanD 

cannot be activated to ADC in vivo in the absence of PanZ and β-alanine is essential for 

bacterial production of pantothenate and CoA. Uninduced ΔpanZ cells carrying the 

pBAD24.PanZ-his plasmid recovered growth in the absence of β-alanine 

supplementation, due to leaky overexpression of PanZ which complements the 

knockout strain. The experiment was repeated in M9 minimal media containing 

arabinose, which triggers overexpression of PanZ. When PanZ is overexpressed, the 

cells became β-alanine auxotrophs once again, showing that higher concentrations of 

PanZ also act to inhibit ADC catalysis in vivo. 
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Fig. 3.29 In cellulo investigation of the effect of PanZ on ADC catalysis. Serial dilutions of E. coli cells were grown 

in M9 minimal media with and without β-alanine supplementation. ΔpanZ knockout cells are β-alanine auxotrophs 

and do not grow in the absence of β-alanine. When complemented with a pBAD24.PanZ-his plasmid, leaky 

expression of PanZ recovers cell growth in the absence of β-alanine. Under overexpression conditions (agar with 

arabinose), cells containing the pBAD24.PanZ-his plasmid become β-alanine auxotrophs once again. 

Conclusion 

The inhibitory effect of PanZ on ADC catalysis, observed both in vitro and in cellulo, 

indicates a role for PanZ in negatively regulating CoA production in vivo. In fact, this 

regulatory mechanism may be the primary function of PanZ. These data suggest a 

model where PanZ acts primarily as a CoA sensor, binding tightly to ADC when the 

CoA concentration in the cell is high, inhibiting ADC catalysis and slowing down the 

production of β-alanine. As CoA is depleted, the ADC.PanZ.CoA complex dissociates, 

releasing ADC and restoring β-alanine production. Higher concentrations of β-alanine 

then lead to increased concentrations of CoA, eventually promoting once again the 

complexation of ADC with PanZ.CoA, therefore creating a negative feedback loop 

mechanism for CoA biosynthesis (Fig. 3.30). Two further mechanisms related to this 

feedback loop act to control the concentrations of β-alanine, L-aspartate and CoA. First, 

at high L-asparate concentrations, PanZ.CoA must compete for ADC binding and 

pantothenate will still be produced, any excess of which can be excreted from the cell 

(Jackowski and Rock, 1981). Second, ADC undergoes inactivation after ~300 

turnovers, which also allows for a more gentle equilibration of the cellular pools of 

these metabolites (Webb et al., 2004, Konst et al., 2009). 

The X-ray structures give two possible mechanisms for the inhibition of ADC by PanZ: 

PanZ occludes the binding site, preventing the formation of the substrate-enzyme 

complex, and appears to promote the stabilisation of the pyruvoyl group in a hydrated 

form, which is unsuitable for catalysis. By binding at the ADC active site for inhibition, 

PanZ may have evolved a secondary function in accelerating PanD activation in some 

organisms. As this activation step is irreversible, PanZ has only to bind once and 

transiently to ADC to catalyse enzyme activation, and this can thus still occur even at 

low CoA concentrations.  
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Fig. 3.30 Proposed mechanism for the regulation of CoA biosynthesis in vivo. PanZ binding to CoA is dependent on 

CoA concentration in the cell.  PanZ.CoA is able to bind to PanD, activating it to ADC in a irreversible step. Even at 

low CoA concentrations, PanD activation should still occur, although the binding of PanZ.CoA to PanD/ADC would 

be only transient. PanZ.CoA is able to stay bound to ADC, inhibiting catalysis, until the concentration of CoA drops, 

causing the complex to dissociate and allowing ADC to resume catalysis. Increased levels of β-alanine would 

increase the levels of CoA once more, promoting the association of the proteins and generating a negative feedback 

loop mechanism. 

3.2.7  How PanZ accelerates PanD activation 

A close comparison of the structure of PanD(T57V).PanZ.AcCoA complex with the 

previously published structure of the PanD zymogen (PDB 1PPY) (Schmitzberger et 

al., 2003) gave insight into the mechanism of PanD activation by PanZ. Both structures 

are isostructural throughout for PanD, with the exception of the PanD 17His-Tyr22 loop 

in the free zymogen, which precedes the region of activation PanD-23Glu-Cys26. The 

loop is unstructured in the free PanD zymogen (Fig. 3.31, yellow, Fig. 3.32 A). Upon 

binding to PanZ, the loop is shifted 6.4 Å upwards, adopting a beta-sheet conformation, 

as seen in the PanD(T57V).PanZ.AcCoA complex (Fig. 3.31, green). From the 

structural overlays, the position of the PanD-17His-Tyr22 loop in the free zymogen is 

incompatible with the position of PanZ-Asn45 in the complex. PanD-Tyr22 is fully 

conserved (sequence alignment shown in section 9.7.1) and has not, so far, been shown 

to be involved in ADC catalysis. Its conservation may, therefore, indicate a function in 

promoting PanD post-translational cleavage, and this was indeed observed in the 

PanD(T57V)-PanZ.AcCoA structure. The aromatic ring of Tyr22 packs against the side 

chain of PanZ-Asn45 and the Cγ carbon of PanD-Glu19 (Fig. 3.33). These interactions 

promote the formation of the β-sheet at PanD residues 17His-Gly19.  
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Fig. 3.31 Overlay of the PanD(T57V).PanZ.AcCoA complex structure (PDB 4CRZ, green) (Monteiro et al., 2015) 

with the major conformer of the PanD zymogen structure (PDB 1PPY) (Schmitzberger et al., 2003), focusing on the 

processing loop. The 23Glu-Ser25 region is similarly structured, whereas the preceding region corresponding to 
17His-Tyr22 is shifted 6.4 Å upwards upon binding of PanZ (shown in blue).  

 

Fig. 3.32 Conformations of the mobile loop of the PanD zymogen in the previously reported X-ray structure (PDB 

1PPY) (Schmitzberger et al., 2003). (A) The free, unstructured chain, well resolved in the electron density. (B) The 

second structure corresponds to the higher energy conformation of the chain, noticeable by the poorly defined 

electron density. 
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Fig. 3.33 Packing of residues in PanD upon binding of PanZ. PanD(T57V) (Monteiro et al., 2015) is shown in green 

and PanZ in blue. The PanD processing conformation is maintained by the formation of two parallel and an anti-

parallel β-sheets (residues 16Thr-Asp19, 68Ile-Asn72 and 29Asn-Tyr22). PanZ-Asn45 stacks against the fully conserved 

PanD-Tyr22, which, in turn, interacts with PanD-Glu19, promoting the formation of the β-sheet and the 

reorganisation of the PanD-23Glu-Cys26 activation peptide. 

As the unstructured conformation of the PanD-17His-Tyr22 loop is preferentially adopted 

by the free, non-processed PanD zymogen, it is clearly an incompetent conformation for 

activation of PanD to ADC. The structured conformation, consisting of three β-sheets, 

is adopted by both the PanD(T57V)-PanZ.AcCoA as well as the free fully activated 

enzyme (PDB 1AW8) (Albert et al., 1998), indicating that adoption of this 

conformation is essential for enzyme maturation. Interestingly, this activation-

competent PanD conformation of the PanD-17His-Tyr22 loop can also be observed in a 

small percentage of the uncleaved WT zymogen structure in one of the two proteins 

present in the asymmetric unit (Schmitzberger et al., 2003). The electron density from 

which this minor conformation was modelled is badly defined (Fig. 3.32, B), an 

indication that the conformation is unstable. As the enzyme activates slowly in vitro 

(Ramjee et al., 1997) it is hypothesised that, once the zymogen is expressed, the PanD-
17His-Cys26 loop can adopt multiple conformations in the absence of PanZ and that the 

activation-competent conformation, although unfavoured, is still thermally accessible, 

which would account for many of the early reports of PanZ-independent PanD 

activation. 

The conformational changes within the PanD-17His-Tyr22 loop, along with the direct 

interaction of PanZ-Asn45 with the backbone amide of PanD(T57V)-Glu23 (Fig. 3.20), 

cause subtle, but crucial downstream conformational changes to the PanD-23Glu-Cys26 

processing loop. The PanZ-Asn45 residue had been previously reported to be essential 

for PanZ to promote PanD maturation (Nozaki et al., 2012). These changes are 

responsible for promoting the N-O acyl shift required for post-translational cleavage of 

PanD to ADC. 
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The conformation of unstructured PanD-17His-Tyr22 loop seen in the free zymogen 

clearly shows why this conformation is activation-incompetent. The first step in the 

N-O acyl shift mechanism is the nucleophilic attack of the PanD-Ser25 hydroxyl on the 

adjacent PanD-Gly24 carbonyl carbon. The relative spatial arrangement of the reactive 

centres in the major conformation seen in the zymogen structure is clearly incompatible 

with the required nucleophilic attack as the PanD-Ser25(OH) and PanD-Gly24(CO) are 

4.2 Å apart and parallel to each other (Fig. 3.34, left). Upon binding of PanZ, the 

carbonyl group of PanD-Gly24 rotates more than 90° upwards, hydrogen bonding to 

PanD-Tyr58* instead of PanD-Thr57 (Fig. 3.34, right)†. The hydroxyl of PanD-Ser25 

forms a hydrogen bond to the backbone carbonyl of PanD-Glu23. In the new 

conformation, the distance between the PanD-Ser25 hydroxyl and the carbonyl of 

PanD-Gly24 is reduced to 3.2 Å and the reaction centres are placed in an almost 

perpendicular position relative to each other. This new arrangement of the reaction 

centres is much more compatible with the conformation required for orbital overlap for 

the nucleophilic attack.  

 

Fig. 3.34 Conformations of the free WT ADC zymogen (yellow) (Schmitzberger et al., 2003) and PanD(T57V) 

(Monteiro et al., 2015) in complex with PanZ (green). In the WTADC zymogen, Gly24 hydrogen bonds to Thr57. 

The carbonyl group of Gly24 and the hydroxyl group of Ser25 are parallel to each other and 4.2 Å apart, in a 

conformation incompatible with nucleophilic attack. Upon binding of PanZ, Gly24 rotates upwards, hydrogen 

bonding to Tyr58 and is placed perpendicular to the hydroxyl group of Ser25. The two groups are now 3.1 Å apart in 

a conformation more compatible with nucleophilic attack.  

                                                
* Previous studies have shown that mutation of Tyr58 to phenylalanine does not abolish ADC activation. 
The hydrophilic environment surrounding the activation peptide can likely provide a new hydrogen-
bonding partner to Gly24 even in the absence of Tyr58. 
† The orientation of the side chain of Asn72 differs between the two models. As N and O atoms are 
indistinguishable in the electron density, the correct assignment of rotamers has to be based on chemical 
observations. In 4CRZ structure, Ans72 has been built with a rotamer that satisfies the hydrogen-bonding 
requirements of Ser25.  
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The 24Gly-Ser25 amide bond is severely distorted in the PanD(T57V).PanZ.AcCoA 

complex, with the orientation of the N-H and C=O bonds diverging from planarity. The 

distortion is also visible in the conformation adopted by PanD-Ser25, which occupies a 

Ramachandran disallowed region (Fig. 3.35). These distortions and deviations suggest 

that the activation loop of PanD is held in a high-energy conformation when binding to 

PanZ.  

 

Fig. 3.35 Ramachandran plot of PanD(T57V).PanZ.AcCoA (Monteiro et al., 2015), showing two outliers: Ser25, 

located in the activation loop of PanD(T57V) and Ser30, located in a mobile loop in PanZ, with poorly-defined 

electron density. Plot made using RAMPAGE (Lovell et al., 2003). 

Such conformationally-induced post-translational modifications have already been 

described for other systems, such as Ntn-hydrolases, where active-site peptides can 

explore multiple conformations, only one of which can undergo autoproteolysis (Buller 

et al., 2012). This class of enzymes uses cis-autoprocessing to cleave an internal peptide 

bond which yields a catalytically active N-terminal amine (Dodson and Wlodawer, 

1998). The N-O acyl shift can use threonine, serine or cysteine residues, but the specific 

geometries of the reactive conformations of each nucleophile are still unknown. The 

mechanisms and structural constraints of auto-catalytic post-translational modifications 

are difficult to study due to the difficulty of trapping a biologically relevant cleavage 

precursor. Recently, Buller et al. were able to elucidate the structure of an unprocessed 

Ntn-hydrolase. The slow, but activation competent mutant T282C, where the threonine 

nucleophile is mutated to a cysteine nucleophile, was trapped in two conformations at 

the cleavage site. From the geometrical analysis of the arrangement of the residues, one 

of the conformations was suggested to be competent for autoproteolysis whereas the 

other was incompetent. This flexibility of the cleavage peptide suggests that the protein 

can explore multiple conformations and that cleavage is initiated when the correct 
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geometry is adopted. The reactive conformation is favoured as it relieves steric clashes 

and torsion strains. 

3.2.8 The PanD(S25A).PanZ.AcCoA complex 

To verify that the observed distorted conformation of the PanD(T57V).PanZ.AcCoA 

activation peptide was caused by PanZ binding to PanD(T57V) rather than being an 

effect of the site-directed mutagenesis, the interaction of a second non-activatable PanD 

mutant, PanD(S25A), with PanZ.AcCoA was investigated. Binding of the two proteins 

was first investigated by ITC: pairwise titrations of PanD(S25A) into PanZ.AcCoA and 

PanZ.AcCoA into PanD(S25A) showed a 4-fold decrease in binding affinity of the 

proteins compared to the binding of PanD(T57V) to PanZ.AcCoA (KD=157 nM 

compared to 35 nM for PanD(T57V), Fig. 3.36). The difference in binding affinity was 

mainly due to a difference in the entropic contribution to binding (ΔS=-26.6 cal 

mol-1 K-1 for PanD(S25A) compared to -5.8 cal mol-1 K-1 for PanD(T57V)), rather than 

enthalpic contributions (ΔH=-10.2 kcal for PanD(S25A) compared to -9.3 kcal mol-1 for 

PanD(T57V)). The activating loop may be more flexible in PanD(S25A), suffering a 

higher entropy change upon binding to PanZ.AcCoA. 

 

Fig. 3.36 Pairwise titration of PanD(S25A) into PanZ.AcCoA and PanZ.AcCoA into PanD(S25A). (A) titration of 

257 µM PanD(S25A) into 32 µM PanZ in the presence of 394 µM AcCoA. (B) titration of 263 µM PanZ.AcCoA into 

35 µM PanD(S25A) in the presence of 400 µM AcCoA. 

The PanD(S25A).PanZ.AcCoA complex was crystallised using the previously 

optimised protocol. Smaller, square pyramidal crystals (50 to 100 µm) were obtained 

from the same crystallisation conditions used for the previous complexes and data were 
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collected in-house at RT to 2.1 Å resolution. The data were processed and the structure 

solved in the same way as the PanD(T57V).PanZ.AcCoA in-house structure (Table 3). 

Table 3 PanD(S25A).PanZ.AcCoA in-house X-ray diffraction data reduction and refinement statistics 

 PanD(S25A).PanZ.AcCoA 
Data collection in-house 

Space group I4 
Cell dimensions    

    a, b, c (Å) 86.3, 86.3, 80.8 
    α, β, γ  (°)  90.0, 90.0, 90.0 

Resolution (Å) 33.7-2.10 (2.15-2.10) 
Rmerge (%) 18.1 (62.1) 
Rp.i.m. (%) 15.5 (51.7) 
<I> / sI 5.7 (1.8) 

Completeness (%) 99.5 (99.8) 
Redundancy 3.2 (3.1) 

  
Refinement  

Resolution (Å) 33.7-2.10 (2.15-2.10) 
No. reflections 16351 (1238) 

Rwork (%)  17.27 (24.5) 
Rfree (%) 23.7 (32.2) 

No. atoms  

    Protein 2021 
    Ligand/ion 62 

    Water 62 
B-factors  

    Protein (main chain) (Å2) 24.29 
    Protein (side chain) (Å2) 28.57 

    Ligand/ion (Å2) 28.47 
    Water (Å2) 26.86 

R.m.s. deviations  

    Bond lengths (Å) 0.019 
    Bond angles (°) 2.09 

 

The complex was once again identical to the previously solved structures, with only 

small deviations in the activation peptide region. Strain is again observed as a 

Ramachandran disallowed conformation, this time of Gly24 instead of Ser25 (Fig. 

3.37). PanZ-Asn45 binds to the backbone of PanD(S25A)-Glu23 as in the 

PanD(T57V).PanZ.AcCoA structure, causing the 17His-Tyr22 loop to adopt the 

activation-competent conformation. Due to the smaller size of alanine compared to 

serine a different conformation of residues 24 and 25 is seen. The carbonyl carbon of 

Gly24 is rotated away from Tyr58 and the methyl group of Ala25 points towards Thr57 

(Fig. 3.38). The previously reported structure of the PanD(S25A) mutant also shows a 

different conformation for the activation loop to that adopted by the PanD(S25A) 
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mutant when in complex with PanZ.CoA, confirming that the strained conformation 

adopted by the PanD.PanZ.AcCoA complexes is promoted by PanZ binding and that the 

high-energy conformation observed is not caused by the site-directed mutation of Thr57 

or Ser25. 

 

Fig. 3.37 Ramachandran plot of PanD(S25A).PanZ.AcCoA, showing Gly24, located in the activation loop of 

PanD(S25A), as an outlier. 

 

Fig. 3.38 Comparison of the PanD(S25A).PanZ.AcCoA complex to the previously reported structure of PanD(S25A) 

(PDB 1PQE (Schmitzberger et al., 2003)). In the PanD(S25A).PanZ.AcCoA complex, PanD(S25A) is shown in dark 

blue and PanZ in teal. 1PQE is shown in orange (Left) The PanD(S25A).PanZ.AcCoA activation loop showing the 

2Fo-Fc map contoured at 1 σ. (Right) detail of the activation loop, showing the structural differences that occur upon 

PanZ binding to S25A, causing the strained conformation, with hydrogen-bonds in black dashed lines. 

3.2.9 PanZ promotes PanD activation by “mechano-chemistry” 

The Ramachandran disallowed conformation adopted by Ser25 in the 

PanD(T57V).PanZ.AcCoA complex suggests that binding of PanZ to PanD(T57V) 

promotes strain and distorts the activation region of ADC. This strain was captured 

more clearly in the PanD(T57V).PanZ.AcCoA dataset collected with the synchrotron 

X-ray source. The in-house and synchrotron structures are virtually identical, with the 

exception of the activation site. The in-house collected dataset showed the 24Gly-Ser25 

peptide intact, as expected, as PanD(T57V) cannot undergo activation or cleavage by 
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PanZ or thermally (Webb et al., 2014). Surprisingly, the synchrotron dataset showed a 

clear break in the electron density between the two residues (Fig. 3.39). With no prior 

indication of post-translational cleavage of this ADC mutant in any biochemical or 

X-ray structural data collected either in-house or with a synchrotron source, the 

cleavage must be promoted due to the complexation of PanD(T57V) with PanZ.AcCoA. 

 

Fig. 3.39 The activation peptide in the PanD(T57V).PanZ.AcCoA complexes. PanD(T57V) is shown in green, PanZ 

in teal and the 2Fo-Fc map as a grey mesh contoured at 1 σ. (Left) in-house dataset, showing the intact peptide chain; 

(Right) synchrotron dataset showing the cleaved chain. In the synchrotron dataset, the electron density map shows 

two alternate conformations for both the terminal methyl carboxylate in Gly24 and the hydroxyl side-chain of Ser25. 

To distinguish whether the cleavage was caused by X-ray dose-dependent 

fragmentation of the polypeptide backbone during data collection or whether 

complexation of PanD(T57V) with PanZ could lead to the formation of some ester 

intermediate (Fig. 3.3, III) which could be more easily hydrolysed during data 

collection, both the PanD(T57V).PanZ.AcCoA and PanD(S25A).PanZ.AcCoA 

complexes in solution were treated with hydroxylamine. Hydroxylamine is a good 

nucleophile and reacts readily with esters. Solutions of both complexes and individual 

proteins with and without AcCoA were incubated at 37 °C overnight with added 

hydroxylamine. The samples were boiled at 100 °C for 10 min, SDS-PAGE loading 

buffer was added and the samples boiled for a further 10 min. The solutions were 

loaded onto 10% Tris-tricine SDS-PAGE gels. All proteins ran intact through the gel, 

showing single bands for each of the proteins at the expected molecular weight (~15 

kDa), confirming that PanZ binding to PanD(T57V) or PanD(S25A) does not generate a 

unstable or easily hydrolysable species and that peptide bond cleavage must have 

occurred during X-ray irradiation of the complex in the crystal. 

The crystal structure shows clear formation of a C-terminal carboxylate at Gly24 and a 

Ser25 residue (both visible in two distinct conformations). The cleavage did not 
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promote pyruvoyl formation and, as PanD(T57V).PanZ.AcCoA is not easily 

hydrolysable, a different cleavage mechanism must occur in the X-ray beam.  

 

Fig. 3.40 SDS-PAGE analysis of the treatment of PanD(T57V) and PanD(S25A) and corresponding complexes with 

hydroxylamine. Lane 1: protein ladder; then, from left to right, lanes 2-11: PanD(T57V).PanZ.AcCoA with HONH2, 

PanD(S25A).PanZ.AcCoA with HONH2, PanD(T57V) with AcCoA and HONH2, PanD(S25A) with AcCoA and 

HONH2, PanZ.AcCoA with HONH2, PanD(T57V) with AcCoA, PanD(S25A) with AcCoA, PanZ.AcCoA, 

PanD(T57V) with PanZ, PanD(S25A) with PanZ. 

X-ray radiation can interact in different ways with a (protein) crystal (Shmueli, 2010). 

First, the X-ray photons can collide elastically with the atoms, the resulting coherent 

scattering giving rise to the diffraction pattern. The X-rays can also collide inelastically, 

where some of the energy is transferred to electrons, resulting in an excited state which 

then relaxes back to the ground state releasing a lower energy photon. And finally, the 

X-ray photon can be completely absorbed by the atom, causing the expulsion of a 

photoelectron from the inner electron shells. This expulsion of photoelectrons is the 

major source of radiation damage during X-ray diffraction experiments.  

Photoelectrons cause a cascade of ionization events (estimated at ~500 events per 12 

keV photoelectron), as well as thermal heating, disruption of the crystal lattice and bond 

scissions (O'Neill et al., 2002). Radiation damage manifests globally as a reduction in 

diffraction intensity and resolution, increase in unit cell size, worse data reduction 

statistics (Rmerge) and increased disorder (Wilson B value) with increasing X-ray dose. It 

also manifests locally as site-specific chemical changes which may lead to biologically 

irrelevant artefacts that can make interpretation of the biological structure difficult 

(Garman, 2010). Damage is considerably more pronounced at RT compared to cryo-

temperatures, as ionised species can diffuse easily through the crystal. With the recent 

great increases in synchrotron source brilliance, radiation damage at cryo-temperatures 

has also become more pronounced, as more photoelectrons are produced and these can 

still diffuse through the crystal at 100 K.  
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Specific structural damage within the biomacromolecule occurs by the cleavage of 

covalent bonds. Certain bonds are more susceptible to radiation damage, and, therefore, 

specific functional groups will undergo chemical changes at different rates (Weik et al., 

2000). At cryo-temperatures, damage is dominated by the tunnelling of electrons 

through the protein backbone until an electron-affinic site is found. Disulphide bonds 

break first (Weik et al., 2002), followed by decarboxylation of glutamate and aspartate 

residues, tyrosine dehydroxylation and cleavage of the methyl group in methionines.  

As the protein crystal is composed of 20% to 80% mother liquor by volume, water 

molecules account for a large percentage of photoionization events, producing !OH 

radicals as well as solvated electrons, H! radicals and other species (Ward, 1988). At 

cryo-temperatures, radicals are unable to diffuse through the crystal. But, at RT, the 

ionised species can diffuse and interact with the protein, spreading the radiation-induced 

changes quickly.  

The PanD(T57V).PanZ.AcCoA structure obtained from synchrotron data collection did 

not show any evidence of global radiation damage. The data collection strategy was 

designed carefully to maximise the crystal life-time, but even during careful data 

collection at RT, radiation damage is common. A careful analysis of the structure and 

electron density (both Fo-Fc and 2Fo-Fc) maps showed only minor cleavage of the 

PanZ-Cys127-PanZ-Cys94 disulphide bond and partial cleavage of PanZ-Met1. Neither 

decarboxylation of glutamates or aspartates nor oxidation of the AcCoA phosphate 

groups was observed. One clear radiation-induced chemical change was the full 

oxidation of the PanD(T57V)-Cys78 (Fig. 3.41). As electrons are strongly reducing and 

!OH radicals oxidizing (Ravelli and McSweeney, 2000), these observations suggest that 

the main source of radiation-induced chemical modifications to the proteins during this 

RT synchrotron data collection was caused by !OH radical chemistry.  

As the crystal tolerated the full data collection and no “typical” radiation induced 

damage is visible, the cleavage of the 24Gly-Ser25 amide bond, clearly visible as 

negative difference electron density when the intact chain is modelled, is a completely 

novel radiation-induced chemical event, specific to this protein complex system. To 

date, no instances of radiation-induced cleavage of protein backbone amide bonds have 

been reported. Amide bonds are not good electron sinks or easily susceptible to radical 

chemistry. As discussed previously, binding of PanZ to PanD(T57V) causes a 

conformational change in the cleavage peptide, placing Gly24 and Ser25 in the correct 

geometry for nucleophilic attack and also in a strained conformation, reflected in the 
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Ramachandran disallowed conformation of Ser25. The cleavage of the amide bond in 

the synchrotron dataset confirms the high-energy state of the new conformation of the 

peptide chain, as a ground state amide bond would not undergo radiation-induced 

cleavage. The chemistry is likely promoted by a hydroxyl radical attack on the carbonyl 

carbon of the highly distorted, high-energy amide bond, causing cleavage of the bond to 

the N-terminal serine and C-terminal glycine residues. 

The amount of radiation dose absorbed by a crystal during X-ray data collection is 

measured in Grays (1 Gy=1 J Kg-1). The dose absorbed by the crystals during in-house 

and synchrotron data collection was calculated with RADDOSE 3D (Zeldin et al., 

2013), and found to be 20 kGy and 70 kGy respectively. Dose is the only significant 

difference between the two datasets collected and so this cleavage event seems to be 

dose-dependent. This observation is in accordance with previous studies (Southworth-

Davies et al., 2007), that show that X-ray radiation-induced chemical and structural 

changes to protein crystals during data collection is dose-dependent. 

From the structural information and radiation-induced chemistry described here, a 

revised mechanism for the activation of PanD can now be proposed. First, the PanD 

activation loop, 23Glu-Cys26 (Fig. 3.42, I), undergoes a conformational rearrangement 

upon binding of PanZ. This forces the loop into a high-energy, “activating” 

conformation: the Gly24-Ser25 amide bond is severely distorted and susceptible to 

nucleophilic attack and the hydroxyl group of Ser25 is placed close proximity and in the 

correct conformation for nucleophilic attack upon the Gly24 carbonyl (II). Tyr58 

hydrogen bonds to the carbonyl of Gly24, aiding the formation of the oxyoxazolidine 

ring intermediate (III). Thr57 can then act both as proton donor and acceptor during the 

ring opening and β-elimination steps  (III, IV). This new proposed role of Thr57 as the 

hydrogen donor/acceptor, couples the final two steps leading to the dehydroalanine 

intermediate, avoiding the possible direct hydrolysis of the ester intermediate, 

commonly seen as a side reaction during the thermal activation of PanD. The 

conformation observed in the PanD(T57V).PanZ.AcCoA structure also shows a clear 

hydrogen bond between the Ser25 hydroxyl and the backbone carbonyl of Glu23, which 

acts as a proton shuffling residue to aid the deprotonation of Ser25. 
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Fig. 3.41 The asym
m

etric unit cell of the PanD
(T57V

).PanZ.A
cC

oA
 structure. PanD

(T57V
) is show

n in green, PanZ in teal and A
cC

oA
 as grey sticks. The 2F

o -F
c  m

ap is contoured at ± 3 σ (light green 

and red) and ± 4 σ (dark green and red). 4 sites typically prone to radiation dam
age are highlighted (C

ys127-C
ys94, G

lu97, M
et1 and G

lu9) show
ing no or m

inim
al dam

age. C
ys78 is fully oxidised. The 

A
D

C
 processing loop is m

odelled intact to show
 the clear difference density m

ap indicating full cleavage. 
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Fig. 3.42 Proposed revised mechanism of PanD activation to ADC in PanZ producing bacteria. The mechanism can 

be generalised to all PanD homologues, if the first conformational change is caused by folding of the protein 

backbone after translation. The PanD backbone adopts the reactive conformation upon binding of PanZ (II) which 

allows for the nucleophilic attack of Ser25 on the distorted Gly 24 carbonyl. Tyr58 stabilises the ring intermediate 

(III), which collapses to the ester intermediate (IV) with protonation from the Thr57 hydroxyl. Ester cleavage occurs 

by β-elimination mediated by Thr57 to a dehydroalanine (V), which then hydrolyses to the pyruvoyl group. 

Conformational strain leading to amide distortions, which, in turn, translate into a loss 

of resonance stabilisation of the amide bond, making it susceptible to attack, have been 

suggested in recent structural and theoretical studies of the Muc1 SEA domain 

(Johansson et al., 2008, Sandberg et al., 2008). Like ADC, the SEA domain undergoes 

autoproteolysis by an N-O acyl shift mechanism, employing a serine as the nucleophile. 

The uncleaved protein chain cannot be easily accommodated in the folded protein. As a 

consequence of folding, the cleavage peptide is distorted, lowering the free energy 

barrier of activation and placing the residues in the correct geometry for the initial 

nucleophilic attack. Mutations to the core of the protein that lower the melting 

temperature of the protein also affect the rate of cleavage of the peptide. 

3.3 Conclusion 

This project was initiated parallel to the photochemical work to understand the 

molecular basis of the maturation of PanD to ADC and the involvement of PanZ as an 

activation catalyst. Using ITC, the two proteins were shown to interact tightly and to 

form a heterooctameric protein complex. The binding interaction was also shown to be 
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CoA dependent, firstly from the ITC data and then later supported by both native mass 

spectrometry and NMR.  

Novel X-ray structures of WT ADC in complex with PanZ as well as two PanD mutants 

(PanD(T57V) and PanD(S25A)) in complex with PanZ, confirming the requirement of 

CoA for the interaction, were determined. The crystallographic studies were non-trivial 

and required extensive screening and the careful design of diffraction experiments to 

overcome the crystal pathologies encountered (low resolution, twinning and lattice 

deformations). With the introduction of cryo-cooled techniques for crystal handling and 

improvement of crystal life-times during data collection, RT data collection has fallen 

into misuse. It is a more time-consuming and labour intensive way of collecting data at 

synchrotrons but, with the current advancements in hardware and software, it is a 

technique that is gaining some revival. For this project, it was resorted to as an attempt 

at improving diffraction quality but the data also captured much more interesting 

aspects of the system. A clear, radiation-induced backbone cleavage of the 

non-processing mutant PanD(T57V) in complex with PanZ.AcCoA allowed for the 

proposal of a new cleavage mechanism of PanD to ADC, where the 23Glu-Ser25 loop 

region adopts a high-energy, strained, cleavage-competent conformation upon the 

binding of PanZ. The distortion of the 24Gly-Ser25 amide bond, as well as the tightening 

of the loop and placement of the nucleophilic Ser25-OH group in a better position for 

attack on the Gly24 carbonyl group explain, from a chemical point of view, how this 

N→O acyl shift is efficiently promoted in vivo. 

Crystallisation of PanD with PanZ.AcCoA showed complete activation of the enzyme, 

which indicates that PanZ.CoA is able to efficiently catalyse the maturation of PanD to 

ADC, without the formation of hydrolysed side-products. The complex was structurally 

similar in the PanD(T57V), PanD(S25A) and WT ADC complexes: PanZ binds to the 

same interface in all cases, across the active site. PanZ binds to ADC, regulating its 

activity, as shown by the decrease of catalytic activity of ADC in the presence of PanZ 

in vitro (by ITC and 1H NMR assays) as well as a β-alanine auxotrophic phenotype in 

E. coli cells overexpressing PanZ, and this has led to a proposal for a new mode of 

regulation of the CoA biosynthetic pathway.   

As both the PanD.PanZ.AcCoA and ADC.PanZ.AcCoA structures were isostructural 

they show that PanD can be efficiently activated to ADC either thermally, by heating 

the expression E. coli cell pellet containing the overexpressed zymogen at 37 °C prior to 
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purification, or by incubation with PanZ.CoA. For simplicity and ease, thermal 

activation was chosen as the preferred method for the preparation of fully active ADC.   
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4 Synthesis of photocleavable crosslinkers 

4.1 Introduction 

Photocaging of bioactive molecules is a non-trivial process and, although the first 

studies date back to the 1970s (Kaplan et al., 1978) and numerous papers regarding the 

synthesis, photolysis and use of these compounds are available, the information about 

the spectroscopic and chemical properties of caged biomolecules is scarce and 

incomplete. This lack of information is mainly due to the nature of the work. Most 

photocaged compounds have been used in cellular studies where fast time-resolution is 

not a requirement and the photocages are released using continuous, low-power 

illumination (Hagen et al., 2005). The described rates and yields of cleavage of these 

compounds are difficult to compare as, usually, the percentage of cleavage is quoted 

without a reference to the power of the illumination source used. Furthermore, similar 

photocaging groups have been photolysed at varying wavelengths in different studies. 

With the scarcity of comparable information, in most cases, the relative efficiency of 

different photocaging approaches can only be evaluated qualitatively.  

Nevertheless, some studies about the effect of substituents, leaving groups and cleavage 

conditions on the efficiency of photolysis and product release of photocages have been 

previously reported (Corrie et al., 2005, Klán et al., 2013). Most of the information 

available is qualitative, where different scaffolds are compared under dissimilar 

conditions. In cases where both rate and yield of photocleavage information is available, 

the values are usually calculated from the fragmentation of the compounds following a 

short (ns) high-power pulse of light. In many studies though, the yield of cleavage has 

only been determined using continuous, low-power irradiation, and the time necessary 

for release of the compound is quoted instead. This information is useful for compounds 

employed in cellular studies, where the processes being investigated are slow (seconds 

to minutes) but not for fast time-resolved studies, where a well-defined triggering time 

is necessary.  

The efficiency of cleavage is defined as the percentage of release of compound after the 

photolysing light pulse and is influenced by both the extinction coefficient (ε, 

proportion of photons absorbed) and quantum yield (ϕ, fraction of molecules that cleave 

following absorption of a photon) of the photocaged system. The quantum yield is 

dominated by the nature of the photocaging scaffold (e.g. ortho-nitrobenzyl, coumarin 

or para-hydroxyphenyl, Table 4) as this determines the de-caging mechanism. Higher 
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extinction coefficients improve the photolysis efficiency, as the compound is able to 

absorb light more strongly, although this must be balanced with the sample thickness. 

Although the time-resolved X-ray diffraction experiments for single turnover systems 

require a significant percentage of the molecules in the ensemble to be triggered 

simultaneously and this can be promoted by a higher ε, compounds with very high ε 

will absorb light so strongly that laser penetration through the sample will be very low.  

The extinction coefficient can be modulated by the addition of substituents to the 

chromophoric centre, where electron-donating groups tend to lead to an increase in the 

value of ε (see section 4.1.1) (Corrie et al., 2005, Klán et al., 2013). Even with these 

general guidelines, the exact spectroscopic and chemical properties of a photocaged 

compound can only be fully determined once the compound is synthesised. 

Nevertheless, a small overview of the aspects to consider when designing a 

photocleavable scaffold is given below. For a more extensive description of some of the 

trends observed for ortho-nitrobenzyl (oNB), coumarin (Cm) and para-hydroxylphenyl 

(pHP) photoprotecting group scaffolds see section 9.6.*  

Table 4 General properties of photocaging groups 

 

   

group o-nitrobenzyl coumarin p-hydroxyphenyl 
λmax (nm) 254-345 320-390 280-304 

εmax (M-1cm-1) 600-27000 6000-20000 9000-15000 
φ† 0.64-0.01 0.02-0.30 0.9-0.03 

k (s-1) 10 - 3×104 1×108 - 2×109 1×107 - 2×109 
solubility (H2O) Poor-Medium Poor-Medium Good 

 

The focus of this project was on the design and synthesis of novel and stable 

photocleavable crosslinking reagents that can be used to crosslink a protein and also that 

can release two cysteine residues upon photolysis. The choice of photocage was mainly 

based on the synthetic availability of the general designed scaffold, but, nevertheless, it 

is important to understand how altering photocaging groups affects their performance 

during photolysis. 
                                                
* For a non-exhaustive list of examples of caged compounds to date, please see section 9.5. 
† The range of values is quoted as a trend relative to the range of λmax. ϕ tends to decrease with increasing 
λmax for oNB and p-hydroxyphenyl groups and tends to increases with λmax for coumarins. 
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4.1.1 Photocaging scaffolds 

The main considerations guiding the design of new photocaging strategies are: 

Wavelength of photolysis  

Proteins and nucleic acids have absorption maxima at wavelengths of 280 nm and 

260 nm respectively. Ideally, a photocaged compound will absorb light at longer 

wavelengths, to avoid filtering of the laser light by the macromolecule which 

lowers the number of photons available to be absorbed by the photocage and may 

also lead to UV-induced chemical damage to the protein (Bensasson et al., 1993). 

Especially for time-resolved experiments, the laser power and pulse length used has 

to be optimised to obtain rapid and uniform decaging across all the molecules in the 

sample and avoid radiation damage.  

Rate of photolysis 

The timescales of the processes that can be observed during a time-resolved 

experiment are completely dependent on how quickly the system is triggered. The 

rate of decaging has to be faster than that of the reaction of interest. The timescales 

achievable are completely dependent on the photocaging moiety used, as the 

chemical mechanism of decaging dictates how fast the product can be released 

(Table 4). oNB photocages are the slowest (ms-µs, see section 9.6.1), followed by 

coumarins and pHP groups (ns, see sections 9.6.2 and 9.6.3). 

Yield of compound release 

Ideally, all the product molecules should be released from the photocaged 

derivatives upon irradiation. A low decaging yield can be caused by low penetration 

of the triggering laser through the sample, which is especially problematic for dense 

samples (such as crystals) or when targeting highly absorbent samples (with very 

high ε). Another cause for partial decaging is a low quantum yield of the photocage, 

which is a property of the compound itself. Nevertheless, it is still possible to obtain 

useable data from fractional triggering of the sample, as long as the event is well 

synchronised and sufficient molecules are released to obtained a good 

signal-to-noise ratio, by accounting for the unreacted fraction of the sample during 

data analysis, as long as the level of excitation can be determined (Ren et al., 1999).  
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Solubility and stability 

Photocaging groups are aromatic and, in most cases, poorly soluble in aqueous 

buffers. A small percentage of organic solvent (dimethyl sulfoxide or dimethyl 

formamide preferentially) may have to be used to aid solubility, but the 

concentration of organic solvent tolerated is dependent on the protein and the 

sample conditions. Furthermore, the photocaged compounds must be stable in the 

specific buffer used for at least the duration of the experiment, but preferentially for 

several days to aid sample preparation. 

Synthetic availability 

Taking all of the above considerations into account, in principal optimal 

photocaged compounds for each specific experiment can be designed, but it is also 

important to ensure that the compound can be synthesised easily and cleanly, and in 

sufficient quantity for characterisation and use in the time-resolved experiment. 

4.2 Photocleavable crosslinker design and rationale 

Beyond the aspects related to the photocaging moiety, several other details must be 

considered when designing the photocleavable crosslinker scaffolds. The proposed 

compounds aimed to fulfil as many of the following requirements as possible: 

- Bioconjugation reactivity: two cysteine-reactive moieties to selectively and 

cleanly crosslink to engineered protein surface cysteine residues; 

- Length: variable crosslinking length through an extendable linker to afford a 

high degree of control over conformational locking; 

- Photolysis: clean cleavage of the crosslinker and release of the conformational 

lock; 

- Photolysis products: cleavage should yield a minimally modified protein, 

releasing two free cysteines where possible.  

Two general scaffolds that could accommodate these requirements were designed (Fig. 

4.1). In the first design, both caged cysteines are attached to a single photolabile group. 

The cage may release each cysteine sequentially to yield the fully deprotected protein, 

although such compounds have not been described in literature and, therefore, the exact 

mechanism of cleavage of such a scaffold can only be extrapolated. The second design 

resembles a more typical photocaging strategy, where each cysteine residue is released 

by the cleavage of one photocage. In this case, two photolabile moieties are linked 

through an inert and extendable linker and each carry one cysteine-reactive moiety. 
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Fig. 4.1 Cartoon representation of two possible photocleavable crosslinker scaffolds that fulfil the specifications 

described above. In both cases, the chromophore is represented as a blue box, the cysteine-bioconjugating moiety as 

an orange circle, the possible extendable linker regions as dashed, green lines and the photocleavable bonds crossed 

with a red line. 

4.3 Alkyl bis-α-bromo-oNB crosslinkers 

 

Fig. 4.2 General structure of the previously published alkyl bis-α-bromo-oNB crosslinkers, showing the different 

components: 4,5-dimethoxy-oNB chromophore (blue), extendable alkyl linker (green), cysteine-reactive secondary 

bromides (orange) and the photocleavable bond in red. 

At the start of this project, only one family of compounds had been previously reported 

in the literature that matched this desired set of characteristics (Omran and Specht, 

2009b, Omran and Specht, 2009a). The reported scaffold contained two 4,5-dimethoxy-

oNB (DMoNB) groups connected by an extendable alkyl linker (38, Fig. 4.2). The 

DMoNB Cα is brominated, which should selectively react with surface cysteine 

residues. The compounds cleave upon UV irradiation at 364 nm, releasing the free 

cysteines, and the expected mechanism of cleavage is shown in Fig. 4.3 (Il'ichev et al., 

2004). Crosslinker 38 is first bioconjugated to the protein via two surface cysteines 

(39). The “stapled” protein can then be irradiated with UV light, causing the excitation 

of the photocage (40), which decays to the aci-nitro intermediate 41. Intermolecular 

rearrangement leads to a cyclic intermediate (42) which can cleave, releasing a cysteine 

reside to give the nitrobenzyl ketone by-product (43).  

This family of bis-α-bromo-oNB compounds (Fig. 4.2) was synthesised first. The 

described synthetic route varied depending on the length of the linker group and initial 

work was carried out on the shorter (n=1 and n=2) crosslinkers. The shortest 

crosslinkers were investigated first (n=1), as these would yield the tightest control over 

conformational locking, with reduced flexibility compared to the longer scaffolds (n=3). 
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Fig. 4.3 Expected reaction and cleavage mechanism for the crosslinkers. The di-bromo crosslinker (38) reacts with 

cysteine residues on the protein surface, stapling the protein (39). Upon UV irradiation, the compound is placed in a 

singlet excited state (40), which decays to an aci-nitro intermediate (41). This intermediate then cyclises to a 

benzisoxazoline ring (42), which opens, releasing the cysteine residues and yielding the nitroso by-product (43). 

4.3.1 Synthesis of 1,3-dibromo crosslinkers 

 

The synthetic route to the 1,3-dibromo-oNB crosslinker (44) is shown in Fig. 4.4 

(Omran and Specht, 2009a). Claisen condensation of ethyl 3,4-dimethoxy benzoate (45) 

with 3,4-dimethoxy acetophenone (46) yields the first intermediate, a 1,3-diketone (47). 

The reported reaction conditions used benzene at reflux temperature. To avoid the use 

of benzene, the reaction was attempted in toluene instead. The 1,3-diketone (47) was 

obtained in moderate yields with longer reaction times (36 h) and at higher temperatures 

(110 °C). 1,3-Diketone 47 had to be reduced to the corresponding 1,3-diol (48) prior to 

nitration, as the 1,3-unsaturated system leads to deactivation of the ring towards 

electrophilic aromatic substitution. The 1,3-diol 48 was obtained quantitatively using a 

standard sodium borohydride reduction protocol but the following nitration step to 

compound 49 was unsuccessful. To avoid over-nitration of the highly activated ring 

(due to the two methoxy substituents), the reaction was performed at low temperature 

(-50 °C). LC-MS analysis of the reaction showed the presence of tetra-nitrated species, 

even with low-temperature quenching of the reaction mixture, possibly from the 

formation of unstable alkyl-nitrates from the alcohols as the crude products decomposed 

during flash chromatography. 
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Fig. 4.4 Proposed synthetic route to 1,3-bis(bromo)-1,3-bis(oNB) crosslinker (44). a) NaH (1.1 eqv.), dry PhMe, 110 

°C, 36 h, 33%; b) HNO3, AcOH, 0 °C-RT, 24 h, 60%; c) Ac2O, HNO3, 0 °C-RT, 3 h, 69%; d) NaBH4 (3 eqv.), 

CH2Cl2, MeOH, RT, 40 min, 99%. 

To overcome the nitration problems, a second synthetic route was designed, starting 

from ethyl 2-nitro-4,5-dimethoxy benzoate (50) and 2-nitro-4,5-dimethoxy 

acetophenone (51). The precursors were easily nitrated using HNO3/AcOH (Knesl et 

al., 2006) and HNO3/Ac2O (Dyer and Turnbull, 1999) mixtures respectively, but the 

Claisen condensation step to 1,3-diketone 52 was unsuccessful using the previously 

employed conditions, with both starting materials recovered and no evidence of 

conversion visible by either TLC or LC-MS. 

In the interest of time, and because it was important to investigate early on whether this 

class of compounds had the desired reactivity for protein conjugation, the short 

crosslinkers were abandoned at this stage and instead the longer crosslinkers (53, n=3) 

were synthesised. In contrast to the shorter 1,3-crosslinkers, the nitration step for the 

longer 1,5-crosslinkers could be performed on the 1,5-diketone intermediate instead of 

the 1,5-diol, and it was therefore expected that the previously described synthetic 

problems would not be encountered. 
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4.3.2 Synthesis of 1,5-dibromo crosslinkers 

 

The synthetic route to the 1,5-crosslinker (53) is shown in Fig. 4.5 and is applicable to 

all compounds of this scaffold with linker lengths of 3 or more carbons. The 1,5-

diketone homodimer (54) was synthesised from the Friedel Crafts acylation of vetrarole 

(55) with glutaryl chloride (56) in moderate yields. The work-up of the reaction proved 

challenging, with the formation of emulsions from aluminium complexes. Quenching of 

the reaction using Rochelle salts did not improve the work-up but quenching into a 2 M 

HCl/ice slurry with very slow warming to RT (overnight stirring) gave clear layers 

which could be better extracted, although without improvement of the isolated yield. 

The 1,5-diketone (54) was nitrated to compound (57) using a TFA/HNO3 mixture at 0 

°C, reduced quantitatively to the 1,5-diol (58) using a standard sodium borohydride 

reduction protocol and easily brominated using acetyl bromide with catalytic HBr to 

give the desired 1,5-dibromo crosslinker (53) as a 1:1 mixture of diastereomers.  

 

Fig. 4.5 Synthetic route to 1,5-bis(bromo)-1,5-bis(oNB) crosslinker (53). a) AlCl3 (2.4 eqv.), -10 °C – 0 °C, 5 h, 22%; 

b) HNO3 (2.6 eqv.), TFA (8 eqv.), CH2Cl2, -15 °C - 0 °C, 2 h, 53%; c) NaBH4 (4 eqv.), CH2Cl2, MeOH, RT, 45 min, 

99%; d) acetyl bromide (3 eqv.), HBr (20 mol%), 0 °C-RT, 1.5 h, 99%. 

4.3.3 Reactivity studies 

Omran et al. performed the crosslinking experiments, in the presence of 20 eqv. of N-

benzoylcysteine methyl ester as a surrogate for protein surface cysteines, in 50% EtOH 

in phosphate buffer (pH 7.3). This protocol was considered unsuitable for protein 

modification for several reasons: firstly, the high percentage of ethanol will probably 

not be compatible with most proteins. The high equivalents of protein would also be a 
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problem, as protein expression yields may not be sufficient and separating the modified 

and unmodified proteins would be very difficult. 

The crosslinking reactions were therefore performed with two eqv. of cysteine or other 

thiol containing small molecule (Fig. 4.6) and followed by LC-MS. Crosslinker 

consumption was monitored using the UV trace for each run. An overview of the 

experiments performed is summarised in Table 5.  

 

Fig. 4.6 Schematic of derivatisation of the 1,5-dibromo crosslinker (53) with thiols, to give 1,5-dithiols (59). 

In all cases, the crosslinker was still visible after 4 h – none of the reactions went to 

completion. Cysteine was used first as the nucleophile, followed by cysteine ethyl ester 

as it was thought that cysteine might not be fully soluble if in its zwitterionic form. No 

change was visible when performing the reaction in the same buffer/EtOH conditions 

described in the literature, using only 2 eqv. of nucleophile. The following reactions 

were attempted with benzyl mercaptan (BnSH), so the reactions could be followed 

better using UV absorption. Tetrabutylammonium iodide (TBAI) was used as an 

additive, to see if some exchange of the bromides to iodides could occur and accelerate 

the reaction, but no change was observed between conditions with and without TBAI. 

Some single crosslinking was visible in most cases, occurring faster at higher pH (pH 

8.0 rather than 7.4), as expected for a nucleophilic substitution. Higher concentrations 

also increased the rate of reaction and the compounds tolerated DMSO:buffer mixtures. 

As none of the conditions attempted led to complete consumption of the crosslinkers or 

clean formation of the doubly substituted product, it was concluded that these 

compounds bearing secondary bromides were not sufficiently reactive for protein 

bioconjugation. Nevertheless, differences were noticed when exchanging the organic 

solvent and pH, indicating better reactions in DMSO rather than EtOH and at pH 8.0 

compared to pH 7.4, which should be taken into account when performing future 

crosslinking experiments. 

 

MeO

MeO OMe

Br Br

NO2

MeO

MeO OMe

S S

NO2

2xR-SH

R R

O2N

OMe

53 59
O2N

OMe



 

 87 

Table 5 Investigation of crosslinking ability of 1,5-dibromo crosslinkers (CL, 53) 

Solvent Thiol [thiol] 
(mM) 

[CL] 
(mM) Additive pH Conclusions 

1:1 
EtOH:buffer Cys 2 1 - 7.4 

Cysteine and CysOEt are sparingly 
soluble in 50% ethanol 

1:1 
EtOH:buffer CysOEt 2 1 - 7.4 

1:1 
EtOH:buffer CysOEt 2 1 TBAI 7.4 

CH2Cl2 BnSH 2 1 - - 

Crosslinking does not occur in the 
absence of buffer. 

CH2Cl2 BnSH 2 1 TBAI - 

1:4 
CH2Cl2:EtOH BnSH 2 1 - - 

1:4 
CH2Cl2:EtOH BnSH 2 1 TBAI - 

1:1  
DMSO:buffer BnSH 2 1 - 7.4 

The crosslinking is very slow with 1 mM 
crosslinker.  

Addition of TBAI has no effect. 1:1  
DMSO:buffer BnSH 2 1 TBAI 7.4 

1:1  
DMSO:buffer BnSH 5 2.5 - 7.4 

Reaction is faster at pH 8.0. 

Changing the concentration of DMSO 
from 50% to 33% has no effect on rate of 

reaction. 

1:1  
DMSO:buffer BnSH 5 2.5 - 8.0 

1:2  
DMSO:buffer BnSH 5 2.5 - 7.4 

1:2  
DMSO:buffer BnSH 5 2.5 - 8.0 

 

4.4 α,α-Di(bromoacetyl) toluene crosslinkers 

In order to improve the reactivity of the crosslinkers towards thiol containing 

compounds and, therefore, cysteines, a more reactive bioconjugation moiety had to be 

engineered into the scaffold. α-Bromoacetates are not as reactive as α-iodoacetates, but 

still react readily and exclusively with sulfhydryl groups when used in equimolar 

concentrations (Hermanson, 2008a). Furthermore, as carboxylates are good leaving 

groups, photolytic cleavage of the crosslinkers to the cysteine methyl carboxylates 

should be fast. Therefore, the newly designed scaffold carries two α-bromoacetate 

groups, both attached to the same photocleavable moiety (Fig. 4.7). Such compounds 

have not been previously described in the literature and the possible hydrolysis of the 

ci-esters in buffer was of concern in the design of the crosslinker. Nevertheless, cyclic 

acetals bearing benzyl groups have been previously used as linkers for protein affinity 

purification. 6-Membered ring cyclic acetals were shown to be stable in buffer, even in 

the presence of TFA 1% (Lee et al., 2015). 
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Fig. 4.7 General scaffold design for the α,α-di(bromoacetyl) toluene photocleavable crosslinkers. One photocaging 

moiety is attached to two α-bromoacetates which can react readily with cysteines and cleave sequentially to methyl 

carboxylates. 

As these photocleavable di-bromoacetyl compounds are completely novel, the cleavage 

mechanism of the crosslinkers can only be speculated. In the case of oNB based 

crosslinkers, the first moiety is likely to be released by a typical oNB photolysis 

mechanism as shown in Fig. 4.3 (Klán et al., 2013). The α,α-di(bromoacetyl)-ortho-

nitrotoluene (60) is reacted with two cysteines to give the crosslinked moiety (61). 

Upon absorption of a photon, the nitrobenzyl moiety cleaves, releasing the first cysteine 

methyl carboxylate group (62) and forming a nitroso-anhydride intermediate (63). This 

nitroso intermediate is no longer photocleavable and, therefore, the anhydride will have 

to fragment, possibly by hydrolysis to 2-nitrobenzoic acid (64), to release the second 

methyl carboxylate (Fig. 4.8). Therefore, although the crosslinking reagent is 

symmetrical, the cleavage mechanism is expected to occur in two distinct steps, which 

are expected to have very different rates as the hydrolysis step is likely to be slow (c.f. 

k~3×10-3 s-1 for acetic anhydride in H2O) (Gold, 1948) in comparison to the first 

photolysis reaction, which is expected to occur on ms timescales (see section  9.6.1). 

 

Fig. 4.8 α,α-Di(bromoacetyl)-ortho-nitrotoluene (60) reaction and cleavage. The crosslinker (60) reacts with two 

surface cysteines to yield the crosslinked protein (61). Photolysis of the chromophore leads to the release of one of 

the cysteine anchors as a cysteine methyl carboxylate (62) and yields a 2-nitrosobenzyl anhydride group (63), which 

is still attached to the second cysteine residue. The anhydride intermediate then slowly hydrolyses to 2-nitroso 

benzoic acid (64), releasing the second cysteine residue. 

In the case of coumarinyl crosslinkers, a different cleavage profile is expected (Fig. 

4.9). The 4-(α,α-dibromo)methyl coumarin (65) is reacted with the two surface cysteine 

residues to yield the crosslinked protein (66). Upon absorption of a photon, the 

coumarin is promoted to an excited state (67), which undergoes heterolytic cleavage 

releasing the cysteine methylcarboxylate (62). The resulting carbocation (68) is 
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quenched by the buffer, giving an alcohol intermediate (69). This species should then 

still be able to absorb a second photon (70), releasing the second cysteine methyl 

carboxylate residue (62) in a similar fashion to the first. Diol 72 would probably be 

short lived, collapsing to aldehyde 73. Although the photolysis events would have to be 

sequential, coumarins have higher absorption cross-sections and generally much faster 

cleavage rates (10s of ns) compared to oNB derivatives. A second possible mechanism 

involves the direct fragmentation of alcohol intermediate 67 to diol 64. 

 

Fig. 4.9 7-(α,α-Di(bromoacetyl))-methylcoumarin reaction (65) and cleavage. The crosslinker (65) reacts with two 

surface cysteines to yield the crosslinked protein (66). Photolysis of the chromophore leads to the release of one of 

the cysteine anchors as a cysteine methyl carboxylate (62) and yields a coumarinyl carbocation (68), which 

hydrolyses to an alcohol (69) in buffer. This intermediate is still attached to the second cysteine residue but is able to 

absorb a second photon, undergoing a similar cleavage mechanism to release the second cysteine residue and another 

coumarinyl cation intermediate (71). The carbocation hydrolyses to a diol (72), which quickly interconverts to the 

coumarinyl aldehyde (73). 

In order to simplify the initial synthesis and to allow for rapid testing of this novel class 

of crosslinkers for reactivity towards cysteines and stability in aqueous solutions, a non-

cleavable, benzyl crosslinker was synthesised first. 

4.4.1 Synthesis 

The non-cleavable α,α-(dibromoacetyl) toluene crosslinker (74) was synthesised from 

benzaldehyde (75) and bromoacetic anhydride (Fig. 4.10). Previously reported 

procedures for the synthesis of diacetyl toluene require heating benzaldehyde in neat 
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acetic anhydride. As bromoacetic anhydride is a solid and considerably more expensive 

than acetic anhydride, reactions in solvent (CCl4 and MeCN) with silica-supported 

sulphuric acid as a catalyst were investigated first, but no conversion was observed 

(Table 6). Bromoacetic anhydride melts at 40 °C, and therefore the reaction was 

attempted in neat anhydride. It was found that high temperatures gave better yields, and 

the dibromoacetyl toluene compound was obtained in excellent yield from overnight 

heating at 85 °C. The product was a slow-crystallising, colourless oil, which could be 

triturated in cold hexane to remove any traces of anhydride and bromoacetic acid. Since 

the 1H NMR spectra of a mixture of the starting materials and of the product are very 

similar, product formation was confirmed by IR, where the C=O stretch frequencies 

shift from 1832 cm-1 for bromoacetic anhydride to 1763 cm-1 for the product. 

 

Fig. 4.10 Synthesis of the α,α-di(bromoacetyl) toluene non-photocleavable crosslinker. a) bromoacetic anhydride 

(1.5 eqv.), 85 ° C, 16 h, 75%. 

Table 6 Attempted reaction conditions for the synthesis of di-(bromoacetyl) toluene 

Solvent [PhCO] 
(mM) 

(BrAc)2O 
(eqv.) 

T 
(°C) catalyst Time 

(h) Conclusions Ref. 

CCl4 720 1 RT H2SO4/SiO2 48 Silica supported 
sulphuric acid is not an 

efficient catalyst 

(Olah and 
Mehrotra, 

1982) 
MeCN 1150 1 60 H2SO4/SiO2 20 (Kavala and 

Patel, 2005) 

Neat - 1.5 60 - 16 High temperatures and 
longer reaction times are 

required 
 

(Rahman and 
Jahng, 2007) Neat - 1.5 85 - 3 

Neat - 1.5 85 - 16 

4.4.2 Reactivity and stability studies 

The α,α-di(bromoacetyl) toluene crosslinker (74) was first investigated for reactivity 

towards thiols. The reaction was followed by LC-MS, so a dilution series of the 

crosslinker in MeCN was carried out first to check the detection limits of the 

spectrometer. Good UV and MS traces were obtained down to 5 mM crosslinker 

concentration in MeCN (Fig. 4.11).  
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Fig. 4.11 LC-MS run of a 5 mM solution of the α,α-(dibromoacetyl)toluene crosslinker (74) in MeCN. From top to 

bottom: base-peak chromatogram showing the counts on the ion detector during the LC run, showing one major peak 

at 2.05 min retention time; UV chromatogram during the LC run showing one main UV peak corresponding to the 

main peak on the chromatogram; extracted ion chromatogram for the expected mass for the crosslinker, matching 

both the UV and MS peaks; m/z spectrum of the major peak, showing a mass of 389.0, corresponding to the 

crosslinker adduct with Na+. 

The compound was dissolved to a concentration of 5 mM in buffer (50 mM potassium 

phosphate pH 8.0, 100 mM NaCl, 5 mM TCEP) containing a varying concentration of 

MeCN (10-35%) and found to be insoluble up to 30% MeCN, with the appearance of 

heavy oil emulsions. The same procedure was used to check for solubility in 

buffer/DMSO mixtures instead, where white suspensions were visible up to 15% 

DMSO, but with no oily droplets formed.  

Crosslinking experiments in 35% MeCN/buffer or 35% DMSO/buffer mixtures with 

2 eqv. of mercaptopropionic acid (76) were set up and the reaction followed by LC-MS. 

The reaction was slow in MeCN with both crosslinker and mono-substituted product 
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(77) still visible after 30 min. The LC trace also showed several impurities, including 

the formation of an additional heavier by-product. The reaction did not proceed to 

completion, even with prolonged reaction times.  

 

Fig. 4.12 The reaction of the α,α-(dibromoacetyl)toluene crosslinker (74) with mercaptopropionic acid (76), through 

the mono-substituted intermediate (77) to the expected di-substituted product (78).  

The reaction was much faster and cleaner in 35% DMSO/buffer, reaching completion 

within 30 min with no observable mono-substituted intermediate (77). Only two species 

were visible after this time, corresponding to the desired di-substituted product (78) and 

a small amount of the same heavy by-product observed in the reaction in MeCN.  

Although the reactions were run in high percentages of DMSO, this was mainly due to 

the high concentrations needed for observation of the compounds by LC-MS. In 

practice, the reactions with proteins will be carried out at much lower concentrations 

(down to ~10 µM), which should allow for a much lower percentage of organic solvent 

to be used. Therefore, it was concluded that the new crosslinkers bearing α-acetyl 

bromides were sufficiently reactive and compatible with protein bioconjugation.  
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Fig. 4.13 LC-MS traces of the reaction of α,α-(dibromoacetyl)toluene (74) with mercaptopropionic acid (76), in 35% 

MeCN and 35% DMSO in buffer. Both the UV and base peak chromatograms are shown. The starting material (blue, 

74), mono-substituted intermediate (yellow, 77), product (green, 78) and heavy by-product (orange) are highlighted. 

The reaction in DMSO is much cleaner and faster than that in MeCN. 

For further characterisation of the crosslinker, α,α-(dibromoacetyl)toluene (74) was 

derivatised with ethane thiol on a larger scale, in MeCN in the presence of triethylamine 

(Fig. 4.14).  

 

Fig. 4.14 Reaction of α,α-(dibromoacetyl)toluene (74) with ethane thiol. a) EtSH (20 eqv.), NEt3 (4 eqv.), MeCN, 3 

h, RT, 33%. 

The stability of both the crosslinker (74) and α,α-di(ethanethiol) toluene (79) in buffer 

at different pH was investigated next, using 1H NMR spectroscopy. The compounds 

were dissolved in 50% d6-DMSO in buffer at varying pH (50 mM potassium phosphate 

pH 3.0-8.0, 100 mM NaCl) and the 1H NMR spectrum recorded with a water 
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suppression pulse sequence at different time intervals. The α-proton signal of the 

crosslinker was compared to the PhC2/C6 proton signal of the aldehyde to give a ratio 

of the two species and, therefore, an approximate measure of hydrolysis. The α-proton 

signal overlays with the PhC3/C5 aldehyde proton signals so the integral was calculated 

as the difference between the total signal for both protons and that of the PhC2/C6 

proton.  

The crosslinker (74) was found to be unstable across the whole pH range, with full 

hydrolysis to the aldehyde within 1 h at pH 7.0-8.0. Hydrolysis was slower at lower pH, 

but 30% hydrolysis was still observed within 2.5 h at pH 3.0. The decomposition of the 

di(bromoacetate) mainly occurs from base-catalysed hydrolysis, but the compound is 

still susceptible to acid-catalysed hydrolysis. 

 

Fig. 4.15 1H NMR spectra of the α,α-(dibromoacetyl) toluene crosslinker (74) in 50% d6-DMSO in buffer at different 

pH (50 mM potassium phosphate pH 3.0-8.0, 100 mM NaCl). 1H NMR spectra were recorded between 1h and 2.5 h 

after sample preparation. From top to bottom: 100% d6-DMSO; pH 3.0 at 160 min, pH 4.0 at 140 min, pH 5.0 at 120 

min, pH 6.0 at 100 min, pH 7.0 at 80 min, pH 8.0 at 60 min, and benzaldehyde in at pH 7.0. 

The thiol derivative (79) was more stable, hydrolysing to give benzaldehyde only after 

16 h at pH 8.0 and not showing any hydrolysis at pH 5.0 and below (Fig. 4.16). The 

presence of the α-bromides promotes faster hydrolysis rates and allows for acid-

catalysed hydrolysis of the di(acetate) core. Although the bioconjugated crosslinker was 

still not stable above pH 7.0, hindering its wider application, especially in 

crystallographic studies where the pH of the crystallisation conditions can be an 
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essential factor in obtaining well-diffracting crystals, it was nevertheless deemed 

important to investigate the synthetic availability of the photocleavable derivatives. 

 

Fig. 4.16 1H NMR spectra of the stability studies of the α,α-(di(ethylthio)acetyl) toluene derivative (79) in 50% d6-

DMSO in buffer at different pH. From left to right: spectra at 20 min, 150 min and 16 h. From top to bottom: pH 3.0, 

pH 4.0, pH 5.0, pH 6.0, pH 7.0, pH 8.0 and benzaldehyde at pH 7.0. 

4.4.3 Synthesis of photocleavable derivatives 

Although the synthesis of the toluene crosslinker was simple and high yielding, 

attempts at synthesising the corresponding 7-methoxy coumarinyl and 4,5-dimethoxy-2-

nitrobenzyl crosslinkers (80 and 81 respectively) were unsuccessful, mainly due to 

solubility issues. Both aldehyde precursors (4-formyl-7-methoxycoumarin, 82, and 4,5-

dimethoxy-2-nitrobenzaldehyde, 83) were synthesised as described in sections 4.5.3 and 

4.5.4, respectively, and subjected to the same reaction conditions used for the synthesis 

of the toluene crosslinker (74), by heating in bromoacetic anhydride.  

 

Fig. 4.17 Attempted synthesis of the coumarinyl and oNB crosslinkers (80 and 81 respectively). 
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4-formyl-7-methoxycoumarin (82) was sparingly soluble in bromoacetic anhydride, 

with solutions only obtained after several hours of heating. Overnight heating at 85 °C 

showed no consumption of the starting materials and heating at 120 °C led only to the 

decomposition of the anhydride, with no consumption of the coumarin. Several reaction 

conditions were attempted, as shown in Table 7, including acid and base catalysis and 

microwave irradiation. Heating the coumarin in 10 equivalents of bromoacetic 

anhydride at 85 °C led to the formation of product 80 (as seen by LC-MS), but the 

compound decomposed during purification by flash chromatography. Trituration of the 

crude mixture in hexane and distillation of the excess anhydride did not yield pure 

products, and the crude mixture decomposed back to the starting material over time, 

indicating that the product was unstable. Simultaneously, a similar approach was taken 

to obtain the oNB crosslinker (81) from 4,5-dimethoxy-2-nitrobenzaldehyde (83) 

although also unsuccessfully. The reaction conditions attempted are shown in Table 8.  

 

Table 7 Reaction conditions attempted for the synthesis of the 7-methyl-α,α-(dibromoacetyl) coumarin (80) 

Solvent (BrAc)2O 
(eqv.) 

T 
(°C) catalyst Time 

(h) Notes Ref. 

CH2Cl2 3 RT Cu(OTf)2 16 Reaction does not proceed in 
solvents in the presence of a 

strong Lewis acid. 

(Lata 
Chandra et 
al., 2000) MeCN 3 RT Cu(OTf)2 16 

Neat 1.5 85 BrCH2COBr 16 
Reaction may require more 

(BrAc)2O eqv.  Neat 1.5 85 BrAcNa 16 

Neat 2.5 85 BrAcNa 16 

Neat 1.5 85 - 16 Longer reaction times and more 
(BrAc)2O eqv. lead to product 
formation. Product does not 

tolerate flash chromatography. 

(Rahman 
and Jahng, 

2007) 
Neat 4 85 - 4 

Neat 10 85 - 24 

Neat 10 100 - 16 Starting materials decompose 
above 85 °C. 

 
Neat 10 80+140 - 0.5+0.5 

Microwave irradiation. Product 
is visible by LC-MS but does 

not tolerate flash 
chromatography. 

 



 

 97 

Table 8 Reaction conditions attempted for the synthesis of the α,α-(dibromoacetyl)-ortho-nitrobenzene (81) 

Solvent (BrAc)2O 
(eqv.) 

T 
(°C) catalyst Time 

(h) Notes Ref. 

Neat 1.5 85 BrCH2COBr 16 The reaction does not proceed 
with up to 3 eqv. of (BrAc)2O – 
the starting material is even less 
soluble than the oNB derivative. 

 

Neat 1.5 85 - 18 (Rahman 
and Jahng, 

2007) Neat 3 85 - 16 

MeCN 3 RT Cu(OTf)2 16 
Reaction does not proceed in 

solvent with strong Lewis acid 
catalysis. 

(Lata 
Chandra et 
al., 2000) 

Neat 10 80+120 - 1 
Microwave irradiation. Product 
visible by LC-MS but starting 
materials mainly decomposed. 

 

 

The synthesis of the photocleavable derivatives required considerable optimisation. 

Their apparent instability to flash chromatography indicated an inherent instability of 

the scaffolds and, along with the instability of the non-cleavable compound in aqueous 

solutions at pH 7.0 and above, the di(acetyl) scaffold was considered not suitable for 

further development. Since ester functional groups are found in a number of biological 

small molecules (such as acetyl coenzyme A), it was proposed that the instability of this 

scaffold was due to the gem-di(acetyl) group rather than generally caused by the 

introduction of the (bromo)acetate bioconjugating groups.  

A singly-bromoacetylated toluene derivative was synthesised to check for stability. 

Benzyl-1-methyl-1-bromoacetate (83) was easily synthesised from α-methyl benzyl 

alcohol (84) and bromoacetyl bromide in the presence of NaHCO3 as a base. 83 was 

reacted with ethanethiol in MeCN with NEt3 to give the thiol derivative. 

 

Fig. 4.18 Synthesis of benzyl 1-methyl-1-bromoacetate (83) and benzyl 1-methyl-1-(ethylthio)acetate (85). a) 

bromoacetyl bromide, NaHCO3 (3 eqv.), MeCN, 0 °C-RT, 2 h, 82%; b) EtSH (10 eqv.), NEt3 (2 eqv.), MeCN, RT, 

3 h, 94%. 

Both compounds were subjected to stability studies similar to those carried out with the 

dibromoacetyl crosslinker (74). 5 mM solutions of each compound in 50% d6-

DMSO/buffer mixtures at varying pH (50 mM potassium phosphate pH 3.0-8.0, 

100 mM NaCl) were prepared and 1H NMR spectra collected with a water suppression 

pulse sequence at 1 h and 16 h intervals. The percentage hydrolysis was accounted for 
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using the ratio of the integral of the signal corresponding to the methyl group, as it was 

easily distinguishable from the remainder chemical shifts.  

For the bromoacetyl compound (83), the signal shifts from 1.45 ppm to 1.31 ppm for 

the hydrolysis of the acetate group at the carbonyl carbon (84). A shift of the same 

signal to 1.46 ppm was suspected to correspond to hydrolysis of the α-bromide instead 

(86).  

 

Fig. 4.19 Hydrolysis of benzyl 1-methyl-1-bromoacetate (83), showing the changes in chemical shifts of the methyl 

group, depending on the hydrolysed moiety. Hydrolysis at the ester carbonyl causes a shift from 1.45 ppm to 

1.31 ppm (84) and at the α-bromide group a shift from 1.45 ppm to 1.46 ppm (86). 

The single bromoacetate (83) compound is much more stable than the dibromoacetyl 

compound (74), where no hydrolysis of the acetate group is visible after 16 h in solution 

at pH up to 6.0 and 22-50% hydrolysis at pH 7.0-8.0, whereas the dibromoacetyl 

compound hydrolysis completely within 1 h at pH 7.0-8.0 and also undergoes rapid 

hydrolysis at lower pH (Fig. 4.20). The α-bromide group is also partially hydrolysed 

over 16 h (25-50% across pH 3.0-8.0). Since the bioconjugation reaction should occur 

much faster than the hydrolysis of the conjugating group (Hermanson, 2008a), this was 

not considered detrimental. The ethanethiol derivative (85) was found to be very stable, 

with no hydrolysis observable by 1H NMR spectroscopy after 16 h in solution (Fig. 

4.21). Therefore, the α-bromide group activates the ester moiety towards base-catalysed 

hydrolysis, which is no longer observed once the compound is derivatised to the α-

thiother.  

From these studies, it was concluded that the α-bromoacetyl bromide moieties were 

appropriate for bioconjugation to cysteine residues, with better reactivity profiles in 

DMSO/buffer mixtures compared to MeCN/buffer mixtures. Although the 

dibromoacetyl compound (74) was unstable, the single bromoacetate was considerably 

more stable and completely stable when derivatised to the thioether. A new scaffold was 

designed bearing α-bromoacetate groups as bioconjugation moieties, with a spacer 

group linker in-between, as described in the next section.  
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Fig. 4.20 1H NMR spectra of the stability studies of benzyl 1-methyl-1-bromoacetate (83) in 50% d6-DMSO in buffer 

at different pH. From left to right: spectra at 120 min and 16 h. From top to bottom: pH 3.0, pH 4.0, pH 5.0, pH 6.0, 

pH 7.0 and pH 8.0. 

 

Fig. 4.21 1H NMR spectra of the stability studies of benzyl 1-methyl-1-theylthioacetate (85) in 50% d6-DMSO in 

buffer at different pH. From left to right: spectra at 120 min and 16 h. From top to bottom: pH 3.0, pH 4.0, pH 5.0, 

pH 6.0, pH 7.0 and pH 8.0. 
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4.5 Third generation crosslinkers 

4.5.1 Design and rationale 

In order to obtain a cysteine-reactive and stable crosslinker, two α-bromo acetyl 

moieties had to be engineered at two distinct cleavage sites into the new scaffold design. 

Therefore, the new compound contained two photocages, connected by an extendable 

linker chain, as shown in Fig. 4.22. For simplicity of the synthesis, the linker chain was 

designed as an alkene moiety as two symmetrical photocaging groups could be joined 

through a metathesis step.  

 

Fig. 4.22 General scaffold design for the α-bromo acetyl photocleavable crosslinkers. Two photocages are linked 

through an extendable alkene chain and each is flanked by an α-bromo acetyl moiety for attachment to cysteines and 

easy release as a carboxylate. 

4.5.2 Synthesis of bis-phenyl non-cleavable crosslinker 

As done for the previously designed scaffolds, a non-cleavable compound, using a 

phenyl ring in place of the photocaging group, was synthesised first to test for the 

synthetic route, stability of the compound in buffer and reactivity towards thiols. The 

synthetic route is shown in Fig. 4.23. The racemic 1-phenylprop-2-en-1-ol (87) was 

synthesised from benzaldehyde (75) via a Grignard reaction with vinylmagnesium 

bromide (Cornil et al., 2014) and resolved kinetically using a non-specific lipase from 

Candida antarctica B (Štambaský et al., 2008). The chirality and enantiomeric excess 

of the resolved S-alcohol ((S)-87) was confirmed by reaction with both R and S 

Mosher’s acyl chlorides to give the diastereomeric (S,R)- and (S,S)-Mosher’s esters 

(Fig. 4.24, 88 and 89) (Mallavadhani and Rao, 1994). The 1H NMR spectra of the two 

diastereomers obtained was analysed and compared to that of the parent secondary 

alcohol to give ΔδS-R – differences in chemical shifts between the diastereomers, 

especially noticeable for the alkenyl protons – which were used to assign the relative 

spatial arrangement of the substituents, and, therefore, the chirality of the parent alcohol 

((S)-87). Mosher’s esters preferentially adopt conformations as shown in Fig. 4.24 and 

the benzene ring on the MTP moiety shields the closest group, causing a lower chemical 

shift. As is clearly visible in insert a from Fig. 4.25, the chemical shifts for the alkenyl 
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protons are shifted downfield for the S-ester (89) compared to the R-ester (88), which 

means that the alkene group is shielded in the R-ester (88), indicating that the alcohol is 

the S-enantiomer, as shown in Fig. 4.24.  

 

Fig. 4.23 Synthesis of the alkenyl bis-toluene non-cleavable crosslinker (94). a) Vinylmagnesium bromide (1.2 eqv.), 

dry THF, 0 °C, 4 h, 81%; b) Novozyme 435 (26 mg/mmol), isopropenyl acetate (4.2 eqv.), dry PhMe, 4 Å molecular 

sieves, 40 °C, 16 h, 72%; c) KOH (1.05 eqv.), MeOH, 50 °C, 2 h, 90%; d) Pyridine (2 eqv.), bromoacetyl bromide (2 

eqv.), dry CH2Cl2, 0 °C, 2 h, 83%; e) i) Hoveyda-Grubbs II catalyst (10 mol%), dry CH2Cl2, 45 °C, 40 h, ii) 

CNCH2CO2K (22 mol%), MeOH, RT, 1 h, 45%; f) Pyridine (2 eqv.), bromoacetyl bromide (2 eqv.), dry CH2Cl2, 0 

°C, 2 h, 82%; N-acetyl cysteine (1.1 eqv.), NEt3 (2.2 eqv.), MeCN, RT, 1 h, 86%. 

 

Fig. 4.24 Pictorial representation of the method for the confirmation of the chirality of (S)-1-phenylprop-2-en-1-ol 

((S)-87) by Mosher’s ester derivatisation and 1H NMR analysis. 
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Fig. 4.25 1H
 N

M
R

 spectra of M
osher’s esters. The (S,S)-diastereom

er (89) is show
n in red (top) and the (S,R

)-diastereom
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The enantiomeric excess of the S-alcohol ((S)-87) was determined using the 1H NMR 

spectrum of the crude (S,R)-diastereomer compound, prior to flash chromatography. 

Two signals for the alkenyl CH are clearly visible, corresponding to the two different 

(S,R) and (R,R) diastereomers. From the integrals a 62% ee was calculated. 

Upon confirmation of the chirality of the (S)-alcohol ((S)-87), the (R)-acetate ((R)-90) 

was hydrolysed using KOH in MeOH with heating and the (R)-alcohol obtained 

((R)-87) used to test the bromoacetylation step (Fig. 4.26). Initial reactions of the (R)-

alcohol ((R)-87) with bromoacetyl bromide and sodium hydrogen carbonate in MeCN 

yielded an unexpected major product 91, which was thought to arise from the 

rearrangement of the allyl bromoacetate. This problem was overcome by using pyridine 

in CH2Cl2 instead (Sawant and Jennings, 2006).* For further characterisation, the (R)-

bromoacetate ((R)-92) was also reacted with N-acetyl cysteine in MeCN in the presence 

of triethylamine to give the cysteine derivative 93. From the 1H NMR spectrum only 

one diastereomer was visible, confirming that the (R)-alcohol ((R)-87), and, therefore, 

the (R)-α-bromoacetate ((R)-92), had high enantiomeric purity (>90% ee). 

 

Fig. 4.26 Reaction of the (R)-allyl alcohol ((R)-87) with bromoacetyl bromide (2 eqv.) and the two products observed 

by 1H NMR using different reaction conditions. a) NaHCO3 in MeCN yielded the rearranged product 91. b) Pyridine 

(2 eqv.) in CH2Cl2 yielded the desired bromoacetate (R)-92 in 83% yield. c) reaction of allyl bromoacetate (R)-92 

with N-acetyl cysteine (1.1 eqv.), NEt3 (2.2 eqv.) in MeCN, 86% yield.  

The allyl-bromoacetate (R)-92 was subjected to similar stability studies as described 

previously, and found to be stable across the same pH range (3.0-8.0) with no apparent 

hydrolysis over 20 h. The (S)-allyl alcohol ((S)-87) was then derivatised to the (S)-allyl 

bromoacetate ((S)-92) using the same conditions as for the synthesis of the (R)-allyl 

bromoacetate ((R)-92). The first metathesis experiment was carried out with the (R)-

allyl alcohol ((R)-87), followed by the (S)-bromoacetate ((S)-92). A summary of the 

conditions attempted is shown in Table 9. Initial conditions for the metathesis of the 

allyl alcohol compound showed no conversion in the presence of 2nd Generation Grubbs 

catalyst (GII). Metathesis of the bromoacetate was attempted instead, as it was thought 

                                                
*  It was also important to note that yields improved considerably when using freshly purchased 
bromoacetyl bromide, which hydrolyses over time to bromoacetic acid and HBr. 
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that the ester group may allow for further coordination to the Ru centre. Some 

conversion was visible in the presence of GII. 1st Generation Grubbs catalyst (GI) did 

not promote any metathesis, with no product visible by TLC or LC-MS. 2nd generation 

Hoveyda-Grubbs catalyst gave the highest yield for the dibromoacetate product (94) and 

cleaner reactions with longer reaction times. HGII catalyst is known to be more efficient 

at coupling electron deficient alkenes (Chatterjee et al., 2003). The catalyst was easily 

removed by treatment of the reaction mixture with potassium isocyanoacetate, which 

complexes with Ru metal and can be easily removed by flash chromatography, giving 

clean products as off-white solids.  

Table 9 Metathesis reaction conditions attempted for the synthesis of the non-cleavable crosslinker 

SM [SM]* 
(mM) Catalyst [cat.] 

(mol%) 
T 

(°C) 
Time 
(h) 

Yield 
(%) 

Ru 
chelation Notes 

R-
OH 200 GII 5 40 16 0 - Alcohol does not undergo 

cross-metathesis but α,α-
bromoacetate does. Flash 

chromatography not suitable 
for Ru removal. 

S-
AcBr 78 GII 5 40 16 35 - 

R-
AcBr 78 GII 5 40 16 20 - 

R-
AcBr 400 GII 10 40 16 40 - Higher GII catalyst loading 

needed. S-
AcBr 400 GII 5 40 40 - THMP† 

S-
AcBr 400 GI 5 40 16 - THMP GI is not a suitable catalyst 

S-
AcBr 200 HGII 5+5 40 40 45 KICAc‡ 

HGII gives highest yield. 
KICAc chelation protocol is 
best for reaction clean-up. 

 

1H NMR stability studies of the (S,S)-di(bromoacetate) crosslinker (94) were attempted, 

but the compound was very insoluble in 50% d6-DMSO in buffer at the concentrations 

necessary for clear signal detection using the water-suppression pulse sequence. 

Nevertheless, the compound was taken through to protein modification studies (see 

section 5.3). Concomitantly, the synthesis of cleavable crosslinkers carrying oNB or 

coumarinyl moieties was initiated, as described in the following sections. 

                                                
* Reactions were run in dry and degassed CH2Cl2. 
† Tris(hydroxymethyl)phosphine. 10×catalyst loading in NEt3. Stirred at RT. (Maynard and Grubbs, 
1999) 
‡ Potassium 2-isocyanoacetate. 4×catalyst loading as a solution in MeOH. Stirred at RT. (Galan et al., 
2007) 
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4.5.3 Synthesis of oNB crosslinker 

A route to the oNB crosslinker (95) based on the synthesis of the benzyl version was 

developed by C. Forde (MChem student with the Warriner group) and then repeated as 

part of this project to provide material for protein crosslinking studies. The oNB 

photocleavable crosslinker was synthesised as shown in Fig. 4.27.  

 

Fig. 4.27 Overall synthesis of the alkenyl bis-oNB photocleavable crosslinker (95). a) HNO3 (15 eqv.), 0 °C, 3 h, 

85% yield; b) Vinylmagnesium bromide (1.5 eqv.), dry THF, -78 °C-RT, 16 h, 70%; c) i) Hoveyda-Grubbs II catalyst 

(5 mol%), dry CH2Cl2, 45 °C, 16 h, ii) CNCH2CO2K (25 mol%), MeOH, RT, 1 h, 93%; d) bromoacetyl bromide (2 

eqv.), pyridine (2 eqv.), CH2Cl2, 0 °C, 1 h, 26%, 9:1 mixture of diastereomers. 

The parent 4,5-dimethoxy-2-nitrobenzaldehyde (83) was easily obtained from the 

nitration of commercially available 3,4-dimethoxybenzaldehyde (96) in neat nitric acid. 

The aldehyde was reacted with vinylmagnesium bromide at low temperature to give the 

racemic allylic alcohol (97). C. Forde attempted a variety of strategies for the kinetic 

resolution of the racemic oNB allylic alcohol, including enzymatic resolution (Chen and 

Xiang, 2011) and alternative routes using Ir-catalysed reactions (Lyothier et al., 2006, 

Roggen and Carreira, 2011). However, the kinetic resolution attempts were 

unsuccessful and the synthesis was continued with the racemic mixture. The 1,4-diol 

scaffold (98) was obtained in very good yield as a mixture of diastereomers from the 

metathesis of the racemic alcohol in the presence of 2nd generation Hoveyda-Grubbs 

catalyst. This compound was found to be extremely insoluble and was isolated by 

gravity filtration of the metathesis reaction mixture (after treatment with potassium 
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isocyanoacetate in methanol for the removal of Ru contaminants). Bromoacetylation to 

the final crosslinker (95) was carried out as previously described, in a lower yield than 

expected, due to contamination of some of the fractions from flash chromatography 

containing the desired product with an unidentified, coloured impurity. The identity of 

the final product was confirmed by both HRMS and NMR. The 1H NMR spectrum 

showed a 9:1 mixture of the two diastereomers. As the two compounds show the same 

retention value by thin layer chromatography in hexane:ethyl acetate mixtures and no 

separation by LC-MS, the apparent separation of the diastereomers by flash 

chromatography was surprising.  

Due to the very low solubility of the final compound, no stability studies of the 

crosslinker in solution were attempted, but the crosslinker was taken forward to test for 

protein crosslinking and cleavage as described in section 5.3. 

4.5.4 Synthesis of bis-coumarinyl scaffold 

The synthesis of the coumarinyl crosslinker (99) was attempted simultaneously with 

that of the oNB crosslinker (95). A similar synthetic route to that previously described 

was followed (Fig. 4.28).  

The parent 4-methyl-7-methoxycoumarin (100) was first synthesised in large scale 

using a Pechman condensation of 3-methoxyphenol (101) and the ethylacetoacetate 

(102) in sulphuric acid. Oxidation to the 4-formyl-7-methoxycoumarin (82) was 

initially performed following a common protocol for the allylic oxidation of 4-

methylcoumarins using selenium dioxide (Wang et al., 2007, Huynh et al., 2012), but 

the reactions were found to be difficult to scale-up, mainly due to the large quantities of 

toxic selenium contaminated waste which required bleaching due to stench. The product 

yields also varied, possibly due to the age of the oxidant.  

A second route to the 4-formyl-7-methoxycoumarin (82) was attempted. 4-

chloromethyl-7-methoxycoumarin (103) was synthesised similarly to the 4-methyl-7-

methoxycoumarin (100), from 3-methoxyphenol (101) and ethyl 4-chloroacetoactetate 

(104). Direct hydrolysis of the 4-chloromethylcoumarin (103) to the 4-

hydroxymethylcoumarin (105) in water was attempted, but the procedure found to be 

unreliable in large scale due to the large volume of water needed (very dilute reaction 

mixtures are necessary) and the formation of hydrochloric acid, which causes the 

reaction to stall and slow down, especially when working at larger scales. Neutralisation 

of the acid (up to pH 8) with sodium bicarbonate led to the acceleration of the reaction 
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but also the rapid formation of a by-product from the rearrangement of the coumarin 

under basic conditions. Therefore, the 4-chloromethylcoumarin (103) was instead 

substituted to the coumarinyl acetate (106), which was subsequently hydrolysed in 

EtOH/HCl to the 4-hydroxymethylcoumarin (105) followed by oxidation to the 4-

formylcoumarin (82) in reasonable yield using pyridinium chlorochromate (PCC).  

Although this route increased the number of steps to the final crosslinker and required 

the use of a chromium oxidant (toxic), the yields were consistent and the amount of 

toxic waste produced was reduced considerably. 4-Formyl-7-methoxycoumarin (82) 

was reacted with vinylmagnesium bromide in dry THF to give the allyl alcohol (107), 

which was taken through to the 1,4-methylcoumarin-1,4-diol (108) using the same 

conditions as described previously to obtain the 1,4-oNB-1,4-diol scaffold (Fig. 4.27, 

98). The metathesis product was found to be very insoluble, and was once again 

recovered by gravity filtration of the reaction mixture after treatment with potassium 

isocyanoacetate in MeOH for the removal of Ru contaminants.  

The bromoacetylation of the 1,4-methylcoumarin-1,4-diol (108) to the final coumarinyl 

crosslinker (99) was attempted using the standard conditions employed for all other α-

bromoacetyl compound synthesised previously, but without success, as the 1,4-

methylcoumarin-1,4-diol (108) was even less soluble than the 1,4-(2-nitrobenzyl)-1,4-

diol (98). Several conditions were attempted, including DMF/CH2Cl2 mixtures (Tang et 

al., 2012), PTSA catalysis (Dhakane et al., 2014) and neat bromoacetyl bromide, but in 

all cases heavy emulsions appeared during work-up and the crudes could not be purified 

by flash chromatography. HPLC was also attempted, but with only 3% yield.  

Coumarinyl allyl alcohol 107 was converted to the corresponding bromoacetate (109) 

and cross-metathesis attempted using the same conditions as described previously for 

the benzyl bromoacetate (94), but no product was formed. Therefore, the coumarinyl 

crosslinker was abandoned. 
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Fig. 4.28 Overall synthetic route to the alkenyl bis-coumarinyl photocleavable crosslinker scaffold 99. a) H2SO4, 0 

°C, 3 h, 60%; b) NaOAc (3 eqv.), AcOH, 120 °C, 20 h, 64%; c) 3:1 EtOH:HCl, 78 °C, 45 min, 98%; d) PCC (1 eqv.), 

MgSO4, dry CH2Cl2, RT, 16 h, 49%; e) Vinylmagnesium bromide (1.2 eqv.), dry THF, 0 °C, 3 h, 34%; f) i) Hoveyda-

Grubbs II catalyst (5 mol%), dry CH2Cl2, 45 °C, 16 h, ii) CNCH2CO2K (25 mol%), MeOH, RT, 1 h, quantitative; g) 

bromoacetyl bromide (2 eqv.), pyridine (2 eqv.), CH2Cl2, 0 °C, 1 h, 38%. 
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4.6 Conclusion 

During the course of this project, three different photocleavable crosslinker scaffolds 

were investigated. The first scaffold had been previously described by Omran et al. and 

was composed of two cleavable oNB moieties capable of releasing two cysteine 

residues upon UV irradiation (Omran and Specht, 2009a, Omran and Specht, 2009b). 

The crosslinker was designed to be bioconjugated by reaction of cysteine amino acids 

on the protein surface with secondary bromides at the benzylic positions of the oNB 

groups. One of the described compounds, bearing a propyl linker between the two 

chromophores (53), was synthesised according to the literature and tested for reactivity 

towards thiols in solution. The secondary bromides were found to be insufficiently 

reactive towards thiol containing molecules and, therefore, not useful for the clean 

modification of proteins by crosslinking.  

To overcome the lack of reactivity, a novel crosslinker carrying two α-bromoacetate 

bioconjugating moieties to be cleaved by UV irradiation of one single chromophore was 

designed (Fig. 4.7). Both acetates would cleave from the benzylic position, making the 

overall molecule an acetal derivative. Although cyclic acetals have been previously 

described as suitable groups in linkers for protein affinity purification tags (Lee et al., 

2015), the α,α-dibromoacetate toluene crosslinker synthesised here (74, section 4.4) was 

found to be susceptible to hydrolysis in buffer, especially at high pH (8.0). This 

observation along with difficulties encountered in the synthesis and isolation of both the 

oNB and coumarinyl derivatives (81 and 80 respectively) rendered these compounds 

unsuitable for further development. Nevertheless, the α-bromoacetates were tested for 

reactivity towards mercaptopropionic acid in buffer and found to be suitable moieties 

for bioconjugation. This knowledge was employed in the redesign of the molecules, 

yielding the third generation crosslinkers described. 

A crosslinker carrying two benzyl groups linked by an alkene spacer and one α-

bromoacetate moiety at the benzylic position for protein bioconjugation was designed 

and synthesised (Fig. 4.22, section 4.5.2). The compound was used to test the synthetic 

route and an enantiomerically enriched crosslinker was obtained (94). The equivalent 

oNB compound was also successfully synthesised (95), although as a mixture of 

diastereomers as the kinetic resolution strategies employed to resolve the first chiral 

intermediate in the synthetic route (97) were unsuccessful. Nevertheless, both 

compounds were taken through to protein modification studies as described in the next 
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section. Unfortunately, attempts to synthesise the faster-cleaving, coumarinyl 

crosslinker were unsuccessful, mainly due to the insoluble nature of the compound.   
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5 Protein crosslinking and photocleavage studies using the 

third generation crosslinking reagents 

5.1 Protein crosslinking in biological investigations 

Protein crosslinking has been used to investigate diverse aspects of protein activity. Its 

most common use is to target protein-protein interactions, where crosslinkers target 

both proteins and the efficiency of crosslinking is distance-dependent. Crosslinking 

between the proteins occurs only when the proteins are in a complex, even if just 

transiently, creating a covalent link that then allows for isolation and characterisation of 

the interacting partners (Trakselis et al., 2005, Tang and Bruce, 2009). Information on 

both the identity of the binding partners and the binding interface can be obtained. The 

chemical crosslinkers can carry a variety of functional groups, which can target specific 

amino acid side chains, such as sulfhydryls, carboxylates or amines, and have variable 

lengths and even photo-reactive groups, where crosslinking only occurs in response to 

UV irradiation (Hermanson, 2008b, Hermanson, 2008c). Chemical crosslinking can also 

offer information about protein structure, by providing distance constraints between 

specific residues in the protein sequence, which allow for the modelling of the 3D shape 

of the protein, supporting protein fold prediction (Mouradov et al., 2008, Leitner et al., 

2010).  

Chemical crosslinking has also been used to probe protein dynamics. Membrane 

transporters are known to adopt very distinct conformations during function and X-ray 

crystallographic structures of such proteins in “inward-open” and “outward-open” states 

have been previously published (Forrest et al., 2011, Waight et al., 2013, Zhou et al., 

2014). Crosslinking of residues that are in close proximity in one conformation but 

distal in a different conformation has been shown to block or hinder transport activity 

for nucleoside transporters (Valdés et al., 2012), serotonin transporters (Tao et al., 

2009) and glutamate transporters (Jiang et al., 2011). All these studies have looked at 

activity of the transporters, rather than the dynamic or structural changes that occur as a 

result of crosslinking. Dutta et al. have used crosslinking to show that the blocking of 

the interconversion between the “inward-open” and “outward-open” conformations of 

an E. coli multidrug transporter, EmrE, leads to protein inactivation (Dutta et al., 2014). 

By using a hetero-bifunctional crosslinker capable of reacting with a cysteine residue 

(S107C, introduced by site-directed mutagenesis) and a lysine residue 7.3 Å away, the 

transporter conformation was locked (determined by NMR), preventing the 
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interconversion between the inner and outward open conformations and inhibiting 

transport of ethidium (in-cell assay). 

5.2 Aspartate α-decarboxylase as a test system 

The final stage of this project was to test the crosslinking and photolysis properties of 

the novel crosslinkers described in section 4.5. The test system chosen for the study was 

aspartate α-decarboxylase (ADC, see section 3). The C-terminus of the β-chain of ADC, 

residues 22Tyr-Glu24, is highly flexible and can be seen in two distinct conformations in 

the crystal structure of the WT enzyme (PDB 1AW8) (Albert et al., 1998). The 

flexibility of this region is a known characteristic of ADC and has been seen in several 

structures of the enzyme bound to different ligands, including glutamate, serine, cysteic 

acid and 1-methyl-L-aspartate (unpublished results). The loop flanks the active site of 

the enzyme, shielding the substrate from the bulk solvent. It was hypothesised that the 

mobility of the loop is related to substrate binding and product release and that during 

decarboxylation, Gly24 caps the active site to exclude water molecules. 

 

Fig. 5.1 Schematic representation of the two conformations of the ADC 22Tyr-Gly24 loop. (A) “closed” conformation. 

The residues close across the binding pocket opening, shielding it from water. Rotation around the Cα-N bond of 

Tyr22 gives the “open” conformation, shown in (B), where the binding pocket is exposed. 

Locking of the loop into a non-active conformation has the potential to slow or block 

ADC turnover. Three initial pairs of sites for the introduction of cysteine residues for 

crosslinking were chosen. Each pair of cysteines should react with one crosslinker 

molecule, effectively stapling the loop into a fixed conformation. The three pairs also 

afforded different crosslinking lengths. Alongside the introduction of the cysteine 
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“anchors”, two native cysteine residues (Cys26 and Cys78) were also mutated to avoid 

side reactions with the crosslinker. 

5.2.1 Site-directed mutagenesis 

This work was carried out in parallel with the structural studies. Three site-directed 

PanD mutants were generated by mutagenesis, each containing two residues mutated to 

cysteine and two cysteines removed: 

- PanD H17C/E23C/C26S/C78A 

- PanD D19C/E23C/C26S/C78A 

- PanD E23C/C26S/A62C/C78A 

Glu23 was chosen as the common cysteine “anchor” for all the PanD mutants as it 

adopts two very distinct conformations in the WT enzyme structure (PBD 1AW8). 

His17, Asp19 and Ala62 were then chosen to form the cysteine anchor pairs with 

Glu23. The side-chains of all three residues are located at the surface of the protein, 

rather than towards the core of the fold, and are also in close proximity to Glu23, 

spanning approximate crosslinking distances of 6 to 16 Å, depending on the cysteine 

pair and the conformation of the 21His-Glu24 loop (Fig. 5.2).  

 

Fig. 5.2 The proposed sites for the introduction of cysteine anchors for crosslinking of ADC. ADC is shown as a 

cartoon in green. The mutations have been simulated in Pymol starting from PDB 1AW8 (Albert et al., 1998); the 

figures do not represent a solved crystal structure of the mutant. (A) the two different conformations of loop 
21His-Glu24 an “open” conformation where the residues do not shield the active site, and a “closed” conformation, 

where the active site is shielded from solvent. The “closed” conformation is expected to be the active conformation, 

as it is adopted in ADC-ligand complexes (Yorke & Monteiro, unpublished results) (B) the approximate crosslinking 

distances between the E23C/H17C, E23C/D19C and E23C/A62C cysteine pairs in the open state. (C) the 

approximate crosslinking distances between the E23C/H17C, E23C/D19C and E23C/A62C cysteine pairs in the 

closed state.  

The tetramutants were generated in parallel following a standard site-directed 

mutagenesis protocol (described in detail in section 8.4.3). The mutagenesis primers 
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were designed following standard primer design guidelines as described in section 

8.4.1. Firstly, single PanD mutants (E23C, H17C, D19C, C26S, A62C and C78A) were 

generated from mutagenesis of the pRSETA-ADC-WT vector plasmid (Saldanha et al., 

2001). Following PCR, the mixtures were checked by agarose gel electrophoresis for 

the presence of large DNA fragments, which confirm a successful amplification of the 

plasmid, and transformed into E. coli XL10 cells. The plasmids were extracted from 

minicultured colonies using a miniprep protocol and sequenced to verify whether the 

desired mutation was successfully introduced. If the sequence was correct, the plasmid 

was then transformed into E. coli MG1655 ΔpanD ΔpanZ (DE3) cells ready for 

overexpression of the protein (see section 8.4). 

Gel electrophoresis of the initial PCRs showed high molecular weight species for the 

PanD E23C, H17C and C78A experiments (Fig. 5.3). Although the PCR reactions to 

generate the PanD D19C and C26S mutants were unsuccessful in the first trial, they 

were successfully upon repetition of the reaction. The PanD A62C mutant was obtained 

by addition of 1% v/v DMSO to the PCR mixture, indicating that the primer may be 

prone to secondary structure formation in solution (Fig. 5.4, lane 8). 

 

Fig. 5.3 Agarose electrophoresis gel of ADC site-directed mutagenesis PCR experiments starting from the pRSETA-

ADC-WT vector plasmid. Lane 1 and lane 8: 100 base pairs (bp) and 1 kilobase pairs (kb) molecular weight markers. 

Lanes 2-7: PanD E23C, PanD H17C, PanD D19C, PanD C26S, PanD C78A, PanD A62C.  

PanD H17C/E23C, D19C/E23C, E23C/A62C and C26S/C78A double mutants were 

generated from the initial PanD E23C, C78A, C26S and D19C mutant plasmids using 

the same protocol as for the single mutations. As the E23C point mutation is very close 

to the H17C and D19C mutations, the primers overlap both codons and thus had to 

carry both mutations. Once again, mutations for the introduction of the A62C were 

more successful in the presence of 1% v/v DMSO, as visible from the comparison of 

lanes 9 and 4 in Fig. 5.4 (with and without DMSO respectively). 
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Fig. 5.4 Agarose electrophoresis gel of ADC site-directed mutagenesis PCR experiments. Lane 1 and lane 10: 100 bp 

and 1 kbp molecular weight markers; lanes 2-4: PanD E23C plasmid with D19C/E23C, H17C/E23C and A62C 

primers; lane 5: PanD C78A plasmid with C26S primers; lane 6: PanD C26S plasmid with C78A primers; lane 7: 

PanD D19C plasmid with E23C/D19C primers; lane 8: pRSETA-ADC-WT vector plasmid with A62C primers; lane 

9: PanD E23C plasmid with A62C primer in the presence of 1% v/v DMSO. 

The mutagenesis reactions were chosen to target all possible combinations of plasmids 

and primers. In certain cases, DNA sequencing showed errors and new colonies from 

the E. coli XL10 cell transformations had to be picked, minicultured, miniprepped and 

sequenced before the next round of mutagenesis. Therefore, the choice of parent 

plasmids for further mutations to the triple and quadruple mutants was dependent solely 

on how quickly the plasmid with the correct sequence was isolated. The triple and 

quadruple mutants were obtained using the same site-directed mutagenesis approach as 

for the double mutants and the exact sequence of mutagenesis steps is shown in Fig. 5.5.  

Although gel electrophoresis is an important step to determine whether the DNA 

product of the PCR is of the correct size, it is not very sensitive to very low quantities of 

DNA. In order to streamline this multiple mutagenesis process, all the PCR products 

were subjected to digestion with Dpn1 and transformed into E. coli XL10 cells. In a few 

cases, colonies were obtained even when no clear plasmid DNA band was visible by 

electrophoresis. 
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Fig. 5.5 Strategy for site-directed mutagenesis of the pRSETA-ADC-WT plasmid to generate the ADC tetramutants, 

showing the parent plasmids and the mutations generated at each PCR step. 

5.2.2 Protein overexpression and purification 

Initial overexpression of the three quadruple mutants PanD H17C/E23C/C26S/C78A, 

PanD D19C/E23C/C26S/C78A and PanD E23C/C26S/A62C/C78A was attempted 

using similar conditions to WT PanD described in section 9.1. E. coli MG1655 ΔpanD 

ΔpanZ (DE3) cells harbouring one of the plasmids coding for the mutants were 

minicultured overnight in LB media containing ampicillin. 1 mL of the miniculture was 

used to inoculate 1 L of auto-induction media and the cells grown for 20 h at 37 °C. The 

cells were collected by centrifugation and either frozen at -80 °C for storage or 

incubated for 24 h at 37 °C prior to freezing for activation of PanD to ADC. 

The ADC tetramutants from pellets harvested from 1 L of thermally activated 

overexpression cell culture were purified first and expression levels and protein 

molecular weight were checked by SDS-PAGE (Fig. 5.6). All three mutant proteins 

were obtained predominantly as a single polypeptide chain of ~15 kDa, corresponding 

to the molecular weight of the intact zymogen protein chain, rather than the two smaller 

molecular weight chains (~11 kDa and 4 kDa) expected for the fully activated protein. 

This suggested that the mutations introduced to the protein may have prevented post-

translational processing of the PanD zymogen to its active form, ADC. 
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Fig. 5.6 Overexpression of ADC tetramutants and purification by Ni-NTA. Tris-tricine SDS-PAGE gels, showing a 

band at ~16 kDa in the elution fractions. ADC H17C/E23C/C26S/C78A: Lane 1: protein ladder; lanes 2-4: flow-

through; lane 5: 50 mL wash fraction; lanes 6-10: 5×5 mL elution fractions. ADC D19C/E23C/C26S/C78A: Lane 1: 

protein ladder; lanes 2-3: flow-through; lane 4: 50 mL wash fraction; lanes 5-9: 5×5 mL elution fractions. ADC 

E23C/C26S/A62C/C78A: Lane 1: protein ladder; lanes 2-4: flow-through; lane 5: 50 mL wash fraction; lanes 6-10: 

5×5 mL elution fractions. 

The proteins were subjected to further purification by size-exclusion chromatography. 

Interestingly, the spectroscopy traces for absorption at λ=280 nm showed a different 

profile to that usually seen for the PanD(T57V) and WT ADC proteins (see Fig. 9.2 and 

Fig. 9.10). Both PanD(T57V) and WT ADC show a single peak with a minor shoulder 

which is thought to be an oligomer of the tetramer. For these mutants, the shoulder peak 

to the main protein peak carried a much higher percentage of the purified protein. This 

could indicate either a concentration dependent oligomerisation of the protein or an 

artefact that occurs due to the site-directed mutagenesis.  
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Fig. 5.7 ADC H17C/E23C/C26S/C78A SEC purification 280 nm absorbance trace, showing three protein peaks, and 

SDS-PAGE analysis of the elution fractions. Lane1: protein ladder; lanes 2-3: early peak (29-38 mL retention 

volume), unknown impurity; lanes 4-5: fractions from 39-48 mL retention volume, typically the PanD “shoulder 

peak” from a potential oligomer; lanes 6-7: fractions from 49-58 mL retention volume, typically the PanD “Main 

peak” from the PanD tetramer.  

 

 

Fig. 5.8 ADC D19C/E23C/C26S/C78A SEC purification 280 nm absorbance trace, showing three protein peaks, and 

SDS-PAGE analysis of the elution fractions. Lane1: protein ladder; lanes 2-3: fractions from 39-49 mL retention 

volume, typically the PanD “shoulder peak” from a potential oligomer; lanes 4-6: fractions from 49-60 mL retention 

volume, typically the PanD “Main peak” from the PanD tetramer. 
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Fig. 5.9 ADC E23C/C26S/A62C/C78A SEC purification 280 nm absorbance trace, showing two protein peaks, and 

SDS-PAGE analysis of the elution fractions. Lane1: protein ladder; lanes 2-4: fractions from 39-45 mL retention 

volume; lanes 4-7: fractions from 45-50 mL retention volume. Both peaks correspond to the typical PanD “shoulder 

peak”, with no protein visibly eluting at 50-60 mL retention volume, typically the PanD “main peak”. 

The identities of the purified mutants were confirmed by high-resolution mass-

spectrometry (HRMS). As the Tris-tricine SDS-PAGE gels of the SEC fractions showed 

the same species across both the “main” and “shoulder” peaks for all the proteins, the 

fractions were combined and characterised by LC-HRMS system in 50 mM Tris pH 7.4, 

100 mM NaCl and 0.5 mM TCEP. The LC column separates all the buffer components, 

allowing for clean HRMS spectra to be collected without prior manual buffer exchange. 

One further advantage of the LC system is that it also allows different protein species to 

be separated prior to MS, making it possible to obtain clear mass spectra for each of the 

possible ADC chains: the π-chain (~15 kDa, prior to post-translational cleavage) and the 

α and β-chains (~4 kDa and ~11 kDa, after post-translational cleavage).  

Although Tris-tricine SDS-PAGE analysis shows very low levels of protein cleavage, 

the instrument is sufficiently sensitive to detect the different chains. All three chains for 

the ADC H17C/E23C/C26S/C78A mutant were identifiable. The π-chain and the β-

chains each showed one single mass (Fig. 5.10, A and B). The resolution of the spectra 

was sufficiently high to show that both chains were in an oxidised form, suggesting the 

presence of a disulphide bond between the Cys17 and Cys23. The spectra for the α-

chain was composed of two distinct species (Fig. 5.10, C), one corresponding to the 

post-translationally introduced pyruvoyl group and the other to the serine by-product 

that occurs from the hydrolysis of the ester intermediate during post-translational 

processing. Assuming similar ionisation strengths of the Ser25 and Pyr25-containing α-

chains, the two species appear to be in a 1:1 ratio. This observation, along with the low 
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levels of cleavage seen on the tris-tricine SDS-PAGE of the purified protein indicates 

inefficient processing of the mutant, possibly associated with a change in conformation 

of the activation loop. 

Similar results were obtained for the ADC D19C/E23C/C26S/C78A mutant. The 

spectra for the π and β-chains (Fig. 5.11 A and B) chains shows a 1:1 mix between the 

oxidised and reduced forms of the protein, indicating the possible formation of a 

disulphide bond between D19C and E23C in roughly 50% of the protein. The β-chain 

also shows approximately 50% contamination of the cleaved fraction with the Ser25 by-

product, indicating inefficient post-translational processing of this mutant (Fig. 

5.11, C). 

The HRMS spectra for the ADC E23C/C26S/A62C/C78A mutant showed only the π 

and α-chains (Fig. 5.12, A and B). The β-chain was not visible from the LC-HRMS run, 

possibly due to very low protein concentration. Nevertheless, the two traces obtained 

confirmed that the correct mutant was generated and also that the protein was 

overexpressed in its reduced form, with no apparent disulphide between Cys23 and 

Cys62. From the expected positioning of the two newly introduced cysteine residues, 

this mutant should have the longest distance between the two cysteine anchors (Fig. 

5.2), which explains why the disulphide is not formed. Contrary to the two previous 

tetramutants, the α-chain shows a single species corresponding to the hydrolysis at 

Ser25, with no indication of pyruvoyl formation from cleavage of the protein.  

Although mass spectra for the α and β-chains for the mutants were obtained, according 

to the SDS-PAGE analysis the level of post-translational cleavage of the proteins was 

minimal. The large percentage of contamination by serine cleavage by-products also 

indicates that the mutants did not activate efficiently, especially the A62C mutant, 

which does not show any evidence of pyruvoyl formation. Although probably 

unsuitable for activity studies, the mutants were carried forward for further 

overexpression trials as the inactive constructs could still be used to test for crosslinking 

and photocleavage using the third generation crosslinkers described in section 4.5. 
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Fig. 5.10 HRMS of ADC H17C/E23C/C26S/C78A. The raw spectra for each protein chain are shown in A1, B1 and 

C1 and the corresponding deconvoluted reconstructions in A2, B2 and C2 along with simulated deconvoluted spectra 

underneath for comparison. (A) π-Chain mainly in its oxidised form (15.644 kDa). (B) β-Chain, mainly in its 

oxidised form (4.692 kDa). (C) α-Chain, showing both Pyr25 and Ser25 (10.953 and 10.969 kDa respectively). 

 

  



 122 

 

 

 

Fig. 5.11 HRMS of ADC D19C/E23C/C26S/C78A. The raw spectra for each chain are shown in A1, B1 and C1 and 

the corresponding deconvoluted reconstructions in A2, B2 and C2 with the simulated deconvoluted spectra 

underneath for comparison. (A) π-Chain mainly in its oxidised form (15.666 kDa). (B) β-Chain, 50% oxidised and 

50% reduced forms (4.714 and 4.716 kDa respectively). (C) α-Chain, showing both Pyr25 and Ser25 (10.953 and 

10.969 kDa respectively). 
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Fig. 5.12 HRMS of ADC A62C/E23C/C26S/C78A. The raw spectra for each chain are shown in A1 and B1 and the 

corresponding deconvoluted reconstructions in A2 and B2 with the simulated deconvoluted spectra underneath for 

comparison. (A) π-Chain mainly in its reduced form (15.711 kDa). (B) α-Chain, showing only Ser25 (11.001 kDa). 
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The yields for the ADC H17C/E23C/C26S/C78A and ADC E23C/C26S/A62C/C78A 

proteins were very poor under the initial overexpression conditions attempted 

(<0.5 mg L-1), whereas the ADC D19C/E23C/C26S/C78A mutant expressed moderately 

better (0.9 mg L-1). To investigate if the low protein yield for the two mutants was a 

consequence of poor overexpression or of protein degradation or unfolding during the 

activation of the pellet at 37 °C, both proteins were purified from non-heated E. coli cell 

pellets. The yield for the PanD H17C/E23C/C26S/C78A protein increased marginally 

(Fig. 5.13, left), indicating that heating the E. coli cell pellet may have caused 

aggregation or proteolysis of the overexpressed protein. Unfortunately, no such 

improvement was visible for the PanD E23C/C26S/A62C/C78A mutant, which still 

expressed very poorly (Fig. 5.13, right).  

 

Fig. 5.13 Overexpression of ADC tetramutants and purification by Ni-NTA. Tris-tricine SDS-PAGE gels, showing a 

band at ~16 kDa in the elution fractions. ADC H17C/E23C/C26S/C78A: Lane 1: protein ladder; lanes 2-3: flow-

through; lane 4: 50 mL wash fraction; lanes 5-9: 5×5 mL elution fractions. ADC E23C/C26S/A62C/C78A: Lane 1: 

protein ladder; lanes 2-3: flow-through; lane 4: 50 mL wash fraction; lanes 5-9: 5×5 mL elution fractions.  

Due to time constraints, only one more overexpression trial was attempted to try to 

increase protein yields. All three tetramutants were overexpressed in auto-induction 

media at 20 °C for 24 hours. The cells were incubated at a lower temperature than 

before to attempt to improve folded protein yields by avoiding possible aggregation and 

proteolysis of the misfolded proteins in the cells. The PanD H17C/E23C/C26S/C78A 

mutant expressed very well (10 mg L-1) under these conditions and a small 

improvement in yield for the PanD E23C/C26S/A62C/C78A (2 mg L-1) mutant was also 

visible. Interestingly, the yield for the PanD D19C/E23C/C26S/C78A protein was 

poorer than before.  
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Fig. 5.14 Overexpression of ADC tetramutants and purification by Ni-NTA. Tris-glycine SDS-PAGE gels, showing a 

band at ~16 kDa in the elution fractions. ADC H17C/E23C/C26S/C78A: Lane 1: protein ladder; lanes 2: 

overexpression cell pellet; lane 3: overexpression cell pellet (1:100 dilution); lanes 4-6: flow-through; lane 7: 50 mL 

wash fraction; lanes 8-11: 4×5 mL elution fractions. ADC D19C/E23C/C26S/C78A: Lane 1: protein ladder; lanes 2: 

overexpression cell pellet; lane 3: overexpression cell pellet (1:100 dilution); lanes 4-6: flow-through; lane 7: 50 mL 

wash fraction; lanes 8-11: 4×5 mL elution fractions. ADC E23C/C26S/A62C/C78A: Lane 1: protein ladder; lanes 2: 

overexpression cell pellet; lane 3: overexpression cell pellet (1:100 dilution); lanes 4-6: flow-through; lane 7: 50 mL 

wash fraction; lanes 8-11: 4×5 mL elution fractions. 

The conditions for the overexpression of all three tetramutant proteins differ. In two of 

the cases, lower temperatures (20 °C) seemed to result in higher yields, possibly due to 

better protein folding within the cells. In the case of ADC D19C/E23C/C26S/C78A the 

protein overexpressed in much higher yields at higher temperatures (37 °C) and, 

therefore, overexpression conditions have to be evaluated on a case-by-case basis. Even 

though none of the tetramutants express as well as WT ADC or any of the single ADC 

mutants described previously in this thesis, overexpression under these conditions 

yields sufficient protein for the testing of the crosslinking compounds. 

Mutations to the mobile loop also have detrimental effects on the protein 

post-translational modification. Contrary to WT PanD, heating of the overexpression 

pellets led to very low levels of cleavage and high amounts of contamination of the 

cleavage products with the serine hydrolysis by-product instead of the desired catalytic 

pyruvoyl.  
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5.2.3 In vitro activation of ADC H17C/E23C/C26S/C78A with PanZ 

Although enzyme activation did not occur cleanly by heating the overexpression E. coli 

cell pellets, the activation of ADC H17C/E23C/C26S/C78A was attempted in vitro in 

the presence of PanZ after protein purification. The protein was incubated at 37 °C for 

72 h and the extent of cleavage monitored at 16 h, 48 h and 72 h (Fig. 5.15). ADC 

H17C/E23C/C26S/C78A was incubated in the presence of PanZ and CoA as well as 

TCEP, to check if disulphide formation between Cys17 and Cys23 had any effect in 

protein activation. Protein cleavage was only visible in samples containing both the 

ADC mutant protein and 1.1 eqv. of PanZ but, even at prolonged incubation times, only 

a fraction of the protein underwent cleavage. Higher amounts of cleavage were 

observed in samples containing TCEP, indicating that the constraining of the loop by 

the disulphide bond hinders activation. Addition of AcCoA had no effect, probably due 

to the partial loading of PanZ with CoA from overexpression. The low amount of 

protein cleavage obtained from these studies indicates that this PanD mutant cannot be 

efficiently matured post-translationally. This is not optimal for the activity studies 

required to evaluate the extent of inhibition caused by crosslinking of the protein. The 

protein could potentially be fully activated by incubation with more equivalents of 

PanZ.AcCoA, but this could cause problems during purification as the proteins may not 

dissociate fully and contamination may occur. One other option would be to attempt the 

activation by incubation of the purified protein at 60 °C overnight (Ramjee et al., 1997), 

but as thermal activation of the purified WT protein leads to contamination with 

hydrolysis by-products and the HRMS of the β-chain of the H17C/E23C/C26S/C78A 

tetramutant already shows close to ~50% contamination (Fig. 5.10), this method may 

yield low levels of catalytically competent enzyme. Both strategies would require both 

optimisation and accurate quantification of enzyme activation. Unfortunately, due to 

time constraints, this activation study has not yet been carried out. Nevertheless, the 

PanD(H17C/E23C/C26S/C78A) mutant could still be used to investigate the protein 

modification ability of the crosslinkers described in section 4.5 and was used to show 

that the crosslinkers could efficiently staple and release proteins as described in the 

following sections.   
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Fig. 5.15 The cleavage of ADC H17C/E23C/C26S/C78A by PanZ.AcCoA. 12.5 µM ADC in 50 mM potassium 

phosphate buffer (pH 7.4, 100 mM NaCl, 0.5 mM TCEP) was incubated at 37 °C for 72 in the presence of PanZ, 

AcCoA and TCEP (as described for each lane) and samples were analysed at 16 h, 48 h and 72 h incubation periods. 

Partial cleavage is visible in the presence of PanZ, with increasing levels up to 48 h.  
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5.3 Protein modification studies 

5.3.1 Protein crosslinking studies 

Initial protein modification experiments were performed on ADC 

H17C/E23C/C26S/C78A using (S)-1-phenylprop-2-enyl bromoacetate ((S)-92) to test 

for the ease of protein modification using allyl bromoacetates. The protein was first 

concentrated to ~1.1 mg/mL in phosphate buffer (50 mM pH 8.0, 100 mM NaCl, 

0.5 mM TCEP). As the HRMS of the sample showed that the protein was 2 Da lighter 

than expected (Fig. 5.10), indicating a possible disulphide between the two surface 

cysteines (Cys17-Cys23), TCEP was added to a final concentration of 5.5 mM and the 

protein incubated at 37 °C for 30 min to fully reduce the disulphide. A solution of the 

bromoacetate (S)-92 in DMF was added to the protein sample to give a final 

concentration of 1 mM bromoacetate (~20 eqv.) in 10% v/v DMF in buffer. The mixture 

was incubated at 37 °C for 1 h. The HRMS spectrum (Fig. 5.16, A) showed one single 

protein species present in solution, with increased molecular weight corresponding to 

the labelling of the protein with two allyl benzyl ester groups (15.994 kDa compared to 

15.646 kDa for the reduced protein). This indicated complete and clean labelling of both 

cysteines with the allyl bromoacetate, proving that allyl bromoacetate groups are 

efficient labelling agents under these conditions. 

Following the successful labelling of ADC H17C/E23C/C26S/C78A with allyl 

bromoacetate (S)-92, protein crosslinking using the non-cleavable crosslinker (94) was 

attempted next following the same experimental procedure. The protein was first 

incubated with 5 mM TCEP for 30 min to reduce the disulphide bond and the 

crosslinker was added as a solution in DMF to give a final concentration of 0.5 mM 

crosslinker (~10 eqv.) in 10% v/v DMF in buffer. Once again, analysis by HRMS (Fig. 

5.16, B) showed a single protein species in solution, with a molecular weight 

corresponding to that of the crosslinked protein (15.966 kDa). The spectrum showed 

neither evidence of labelled but not crosslinked protein nor of double protein labelling, 

proving that the bioconjugation reaction with the di-bromoacetate crosslinker (50) was 

clean and comparable to that with the single benzyl-bromoacetate species ((S)-47). 

Finally, the cleavable oNB crosslinker (95) was tested for its crosslinking ability under 

the same conditions as before. Reaction of the reduced protein with 0.5 mM oNB 

crosslinker (~10 eqv.) for 1 h at 37 °C also led to clean and complete protein 

crosslinking, as shown by the single protein species visible by HRMS in Fig. 5.16 (C) 

(molecular weight of 16.176 kDa).  
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Fig. 5.16 ADC H17C/E23C/C26S/C78A protein modification results. The raw LC-HRMS spectra for each modified 

protein species are shown in A1, B1 and C1 and the corresponding deconvoluted reconstructions in A2, B2 and C2 

along with the simulated deconvoluted reconstructions underneath for comparison. A pictorial representation of the 

different protein modifications is also provided under each reconstruction. (A) modification with 20 eqv. of the allyl 

benzyl bromoacetate compound ((S)-92). (B) modification with 10 eqv. of the benzyl non-cleavable crosslinker (94). 

(C) modification with 10 eqv. of the oNB cleavable crosslinker (95). The reactions were carried out by incubation of 

the protein in potassium phosphate buffer (50 mM pH 7.4, 100 mM NaCl, 5 mM TCEP) at 37 °C for 1 h. 
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5.3.2 Cleavable oNB-crosslinker studies 

Freshly oNB-crosslinked ADC H17C/E23C/C26S/C78A was first buffer exchanged 

from the 10% DMF/buffer mixture into phosphate buffer (50 mM pH 7.4, 100 mM 

NaCl, 0.5 mM TCEP) to remove the excess crosslinker and DMF. The sample was 

placed in a short path quartz cuvette (5 mm) and exposed to UV light using a mercury 

lamp (UVP PenRay® 11SC-1, 1 mW, λ=254 nm). Cleavage of the crosslinker was 

monitored by HRMS at time intervals corresponding to 1, 6, 16, 31 and 46 min total 

irradiation time. The HRMS spectra showed the intact protein (1 min irradiation) 

cleaving cleanly to the expected methyl carboxylate doubly labelled protein. Assuming 

similar ionisation strengths of the different protein species, the relative intensities of the 

deconvoluted MS peaks were used to estimate the ratio of crosslinked to cleaved protein 

at each time point. 50% cleavage occurred in roughly 10 min irradiation time. The rate 

of cleavage appears to slow down over time, only reaching completion after 46 min of 

irradiation, probably due to the formation of strongly absorbing oNB ketone by-

products which can act as UV filters (Klán et al., 2013).  

If the two photocleavable groups were independent of each other, the slow rate of 

photolysis should allow for the observation of an intermediate species corresponding to 

the cleavage of only one side of the staple, with formation of the corresponding nitroso 

species, and, therefore, without full release of the reagent from the protein. Since no 

cleavage intermediates were visible, once the first oNB group is cleaved off the protein, 

the crosslinker may fragment, releasing the second methyl carboxylate group in a 

“dark” reaction without requiring the second oNB group to undergo photolysis to 

release the protein. Of course, this photocleavage-fragmentation coupled mechanism 

may be promoted by the low intensity of the UV lamp used and a different mechanism 

may occur at higher light intensities, where a double photocleavage event may dominate 

instead, promoted by the higher number of photons available to be absorbed by the oNB 

moieties.   
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5.4 Conclusion 

Although the ADC H17C/E23C/C26S/C78A mutant could not be post-translationally 

processed to the active enzyme and, therefore, assays to establish whether crosslinking 

can inhibit protein activity could not be carried out, these studies have shown that that 

the third generation crosslinkers performed as expected from the design stage. These 

reagents bearing two phenyl or oNB moieties linked through an alkene chain were able 

to crosslink the protein rapidly and cleanly, without any visible side-products (such as 

doubly-labelled species). The crosslinking ability of the compounds did not seem to 

change with increased size of the oNB group compared to the non-cleavable phenyl 

derivative and α-bromoacetates were shown to be good protein labelling reagents. The 

cleavable oNB crosslinker was shown to be cleanly photocleaved by UV irradiation of 

the sample, even using a low intensity lamp. Although cleavage by UV irradiation of 

the crosslinked protein leaves a methyl carboxylate group attached to the engineered 

surface cysteines, it is hypothesised that the dynamics of the protein will dominate 

post-photolysis and that the small size of this appended group should not influence the 

behaviour of the free protein. Nevertheless, this assumption will only be verified once 

the compounds are tested on a fully functioning enzyme construct. 
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6 Discussion 

The last few decades have seen great technological advancements in structural biology 

techniques, such as X-ray diffraction and scattering, electron microscopy, spectroscopy 

and NMR. These techniques have allowed for the study of proteins and 

biomacromolecules with unprecedented structural detail. But even when atomic-

resolution is possible, the information obtained is severely incomplete as data on the 

properties of the system are very scarce. Some efforts have been made to obtain this 

dynamic information, but the majority of the studies have only provided information on 

the dynamics of the systems under equilibrium conditions and, although this 

information can be indirectly correlated with function, the actual states adopted by the 

protein along the reaction coordinate are unknown. 

Very recently, especially since the commission of ultra-bright X-ray sources (free 

electron lasers as well as synchrotrons), structural biologists have taken a renewed 

interest in time-resolved structural studies. Such experiments allow for the direct 

coupling of structural information with function, by observing the states adopted by 

proteins, in real-time, during function. This approach bridges the gap between 

functional and structural studies and is capable of finally delivering a much more 

comprehensive and accurate picture of the involvement of protein motions in function, 

clarifying the role of protein dynamics. Nevertheless, these techniques are still in their 

infancy, suffering from challenges mainly related to the synchronisation of protein 

activity across the ensemble of molecules that make up the sample. 

In order to perform a time-resolved measurement, the molecules constituting the sample 

(as a crystal or solution) have to be triggered, initiating function. Triggering has to be 

homogeneous and synchronised across the ensemble and is done by changing the 

sample environment, either by rapid mixing or using light pulses (Fig. 1.8). The main 

disadvantage of rapid mixing is the time-resolutions that can be achieved, which are 

defined by the diffusion limit. The fastest mixing currently achievable is in the region of 

100s of microseconds. On the other hand, light triggering is only limited by the length 

of the pulse necessary to deliver sufficient photons to trigger the reaction. It can, 

therefore, span a much wider time-resolution, down to femtoseconds. However, in order 

to use a laser-based activation of a protein, a photochemical moiety directly involved in 

protein function has to be accessible. Due to this limitation, it is unsurprising that the 

fastest and highest impact time-resolved structural studies have focused on naturally 

photoactivatable systems, where a naturally occurring chromophore can be activated 
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using light (section 1.2.1). Nevertheless, the vast majority of proteins are not naturally 

photoactivatable, requiring the introduction of an artificial chromophore. 

Photocaging can be used to provide a method for light-induced protein function of 

non-naturally photoactivatable systems. This approach focuses on the introduction of a 

photolabile chemical protecting group at a strategic site on the protein, ligand or 

substrate, which prevents function until removed. Photolysis of the protecting group is 

promoted by the absorption of a photon of light of a specific wavelength. Current 

approaches for the introduction of such chemistry rely either on the full chemical 

synthesis of a substrate or ligand derivative, carrying the desired photocage, or the 

direct photocaging of protein residues (section 1.2.2). For photocaged ligands and 

substrates, the compound has to be carefully designed so that the location of the 

photocaging protecting group hinders function without completely abolishing binding 

of the ligand to the protein. Once designed, the compound also has to be synthesised, 

which can be a non-trivial process, in addition to which the spectroscopic and cleavage 

properties of the new ligand cannot be absolutely predicted beforehand. Alternatively, 

protein photocaging can be performed by the introduction of an unnatural amino acid 

during protein expression, but the current library of photocaged amino acids available 

for genetic incorporation is very limited, mainly focusing on oNB based photocages 

(Fig. 1.14). Although this technology is developing rapidly, the time required to 

diversify this library of genetically incorporable photocaged amino acids is completely 

unpredictable. 

With the limitations of the photocaging technology currently available, there is scope 

for the development of new photocaging strategies that are more widely applicable and 

less system-dependent. Such advancements would liberate the current bottleneck for 

time-resolved structural studies of single turnover, non-naturally photoactivatable 

proteins.  

During the course of this project, a new class of photocaging reagents was developed. 

The reagents were designed to work as protein crosslinkers that could staple across two 

surface cysteines which can be introduced using standard site-directed mutagenesis. In 

order to efficiently photocage the protein, the cysteine mutations have to be carefully 

chosen to make use of the intrinsic dynamic properties of the protein. By surface 

“stapling”, the protein is confined to a smaller conformational space and is unable to 

access states known to be essential for function. Upon photolysis of the “staple”, the 
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protein is liberated and allowed to resume its normal dynamic behaviour, triggering 

function. 

Three main crosslinking scaffolds were investigated, synthesised and tested for protein 

bioconjugating activity and stability and, when a suitable compound was found, for 

cleavage under UV irradiation. The first synthesised crosslinker (section 4.3) contained 

two oNB photolabile moieties connected by an extendable alkyl chain and two 

secondary bromides at the benzylic position for protein bioconjugation (Omran and 

Specht, 2009a, Omran and Specht, 2009b). Despite some synthetic difficulties, one 

compound of this class was synthesised (53) but found not to be sufficiently reactive 

towards thiols to be useful for cysteine bioconjugation. Therefore, α-bromoacetates 

were proposed as an alternative to the secondary bromide moieties, as these are much 

more electrophilic and known to react with cysteines (Hermanson, 2008a) and a second 

scaffold was designed to contain two cleavable α-bromoacetate groups (section 4.4). An 

initial non-cleavable surrogate was synthesised (74) in a one-pot reaction and tested for 

reactivity and stability. The crosslinker was found to react quickly and cleanly with 

thiols, supporting the use of α-bromoacetates as bioconjugation moieties but the 

proximity of the two acetyl groups rendered the compound susceptible to hydrolysis, 

especially at higher pH. Although the rate of hydrolysis of the gem-α-thioacetate (79) 

was slower than that of the gem-α-bromoacetate (74), all attempts at synthesising the 

corresponding oNB (81) and coumarinyl (80) derivatives were unsuccessful and to date, 

no alternate routes have been found in the literature. A combination of the synthetic 

difficulties with the hydrolytic propensity of the gem-α-diacetate scaffold led to the 

decision that this class of compound was not suitable for further development. 

A third generation crosslinker was then designed, bearing two chromophores, each 

linked to a single α-bromoacetate group, to improve stability of the compounds in 

buffer. Once again, a benzyl non-photocleavable surrogate (94) was synthesised first to 

test the synthetic route and the stability of the compounds. As the crosslinker contained 

two chiral centres at the benzylic positions, a chiral resolution step was introduced to 

attempt to synthesise an enantiomerically pure crosslinker. Once the first racemic 

intermediate (allyl alcohol 87) was synthesised, the two enantiomers were separated 

using an enzymatic chiral resolution. Although the S-alcohol (S)-87 product from the 

kinetic resolution was not as enantiomerically enriched as expected, it was taken 

forward and the crosslinker was obtained as a single diastereomer, as seen from the 

presence of a single species by 1H NMR. As the compound was purified by flash 
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chromatography, it is possible that the minor diastereomer was separated during 

purification.  

The same kinetic resolution approach was applied to the oNB allyl alcohol (97), but 

with no success. Testing of other enzymes for selectivity towards oNB allyl alcohols 

could potentially yield a suitable enzyme, but since the lipase employed (lipase PS from 

B. cepacia) is one of the most promiscuous lipases and has been shown to be active 

towards bulky, aromatic secondary alcohols (Chen and Xiang, 2011), the probability of 

finding a more active enzyme was low. There are numerous non-enzymatic methods for 

the synthesis of enantiomerically enriched allylic alcohols. Some examples of kinetic 

resolution approaches include the Sharpless epoxidation using titanium catalysts 

(Johnson et al., 1993), selective acylation using Fu’s catalyst with chiral iron-DMAP 

complexes (Ruble et al., 1997, Bellemin-Laponnaz et al., 2000) and selective oxidation 

using ruthenium catalysts (Hashiguchi et al., 1997, Nishibayashi et al., 1999). For this 

project, the methodology developed by the Carreira group was attempted, using iridium 

catalysts for the kinetic resolution of secondary alcohols, where one enantiomer reacts 

preferentially with a primary alcohol to give an enantiomerically pure ether (Roggen 

and Carreira, 2011). Although the method had been shown to be applicable to bulky 

aromatic secondary alcohols, the catalyst could not distinguish between the oNB 

alcohol enantiomers.  

One alternative approach would be the direct stereoselective synthesis of the allyl 

alcohol, by either the stereoselective addition of vinyl groups to the allyl ketone using 

rhodium or iridium catalysts (Skucas et al., 2007) or the stereoselective reduction of 

ketones (Hashiguchi et al., 1995, Corey and Helal, 1998). Another possible solution 

would be to purchase a library of different commercially available enzymes and metal 

catalysts and develop a high-throughput screening method for efficient kinetic 

resolution conditions. This would require the design of a suitably broad set of reaction 

conditions that could be run in parallel (possibly using a 96-well plate set-up) coupled 

with a chiral HPLC protocol that could quantify the efficiency of each resolution 

reaction easily. Such screens are not currently commercially available and, therefore, 

this was not a suitable method within the timescale of this project.  

Albeit inadvertently, some separation of the oNB crosslinker diastereomers was 

achieved during purification by flash chromatography in the last step of the synthesis of 

the oNB crosslinker (95). The 1H NMR spectrum of the purified product showed a 

mixture of diastereomers, in a 9:1 ratio. The identity of the major and minor species 
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could not be obtained from spectroscopic analysis alone, and so chiral HPLC methods 

for the separation of the three possible stereoisomers of the diol precursor 98 (RR, SS 

and the meso compound) are currently being screened. If a successful method is found, 

then the purified di-α-bromoacetate crosslinker (95) will be hydrolysed back to the 

corresponding mixture of alcohols (98) and analysed by chiral HPLC. Once the identity 

of the major and minor species are know, the 1H NMR shifts can be assigned to each 

specific diastereomer. Under such conditions, the meso compound should be separable. 

Although obtaining an enantiomerically pure crosslinker would be preferable, it has 

been hypothesised that the differences in conformation of the stapled protein caused by 

the different enantiomers will be minor and that upon photolysis and release of strain, 

the recovery of dynamic flexibility will dominate the conformations adopted by the 

protein. This hypothesis could be tested using molecular dynamics simulations.  

Aspartate α-decarboxylase was chosen as the model system to test the new crosslinkers 

as the C-terminal loop of the β-chain (residues 17His-Glu24) is highly mobile and can 

adopt two distinct conformations (Albert et al., 1998), only one of which is thought to 

be active (Yorke & Monteiro, unpublished results). Locking the loop in a conformation 

resembling the inactive form should abolish (or at least greatly reduce) its catalytic 

activity. The mutations were designed from inspection of the crystal structure (PDB 

1AW8), which contains the two different conformations. Three cysteine pairs were 

chosen to target different crosslinking lengths and each ADC cysteine double mutant 

also carried two further point mutations to remove two naturally occurring cysteines 

(Cys26 and Cys78 mutated to serine and alanine respectively).  

The first hurdle encountered was that the ADC mutants did not express well under 

standard ADC overexpression conditions. After different expression trials, the yield for 

the H17C/E23C mutant was increased considerably and that for the D19C/E23C mutant 

moderately. In both cases, the protein did not activate efficiently thermally, showing 

very low levels of cleavage of the zymogen and also high levels of contamination of 

Ser25 by-products from hydrolysis of the ester intermediate (Fig. 3.42). The yield for 

the E23C/A62C variant was very poor under all overexpression conditions attempted 

and the very small percentage of protein observed to cleave thermally post-

translationally showed only the hydrolysed by-product with no pyruvoyl cofactor 

formed, indicating that the A62C mutation was possibly detrimental for both 

overexpression and maturation of the protein.  
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It would be important to investigate whether the lower protein overexpression yield and 

maturation inefficiency observed were caused by the additive effects from the 

combination of mutations from any specific point mutations. Each of the single, double 

and triple ADC mutants should be expressed individually using the standard protocol 

described for WT ADC (including maturation of the protein by thermal activation in the 

cell pellet) and the levels of expression and efficiency of maturation (percentage 

cleaved and ratio between pyruvoyl cofactor formation and hydrolysis to the serine 

by-product) evaluated. Whereas Cys78 is on the protein surface (close to the central 

pore) and thus its mutation is not expected to have any major structural impact on the 

protein, Cys26 is buried and located next to the active site. Its mutation to serine could 

be a major cause of the low overexpression yields and inefficient protein maturation, as 

from the sequence conservation of ADC this residue tends to be larger and non-polar 

(cysteine, valine or isoleucine, see section 9.7.1).  

As Glu23 is directly involved in the interaction between PanZ.CoA and PanD, and the 

mobile region is in close proximity to the site of cleavage, targeting the loop by 

site-directed mutagenesis might always have a detrimental effect on protein maturation. 

From inspection of the available crystal structures for the enzyme, no other highly 

dynamic regions can be identified and, therefore, ADC may be a better candidate for 

standard substrate photocaging approaches. Photocaged L-aspartate derivatives have 

been previously synthesised by Dr B. A. Yorke and shown to bind to the ADC active 

site (unpublished results). This work is still on-going, in collaboration with Dr M. V. 

Sans (Hamburg Centre for Ultrafast Imaging). 

Nevertheless, these crosslinking compounds should be suitable for a wide range of 

enzymes and other proteins that show dynamic properties that could be harnessed for 

protein inactivation. Dihydrofolate reductase (DHFR, section 1.1.2) is an obvious 

candidate, as the dynamics of the Met20 loop have been extensively studied and the 

involvement of its three distinct conformations (open, closed and occluded) during the 

different steps involved in catalysis have been thoroughly characterised. Targeting the 

Met20 loop for conformational locking should have the desired effect of decreasing the 

catalytic ability of DHFR. The design of the cysteine anchors could be initially done by 

inspection of the available crystal structures but complementing the study with MD 

simulations would allow for a more informed and careful design of the crosslinking 

sites. Although the dynamic properties of this enzyme have been thoroughly 

investigated there is still scope to further study the system as two main questions remain 
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unanswered: what is the transition state conformation and how does DHFR exchange 

between the closed and occluded conformations. The main conformations have been 

obtained from structural studies of DHFR constructs in complex with substrate or 

cofactor analogues, leaving the exact mechanisms of conformer interchange and the 

corresponding transient structures still unresolved (Venkitakrishnan et al., 2004).  

Although activity studies could not be carried out due to the problems discussed above, 

the crosslinkers were still shown to perform as expected from the design stage. The 

reagents were successfully used to crosslink an ADC mutant and the bioconjugation 

reaction proceeded cleanly and quickly, with no double labelling or hydrolysis visible 

by high-resolution mass spectrometry. Once the protein was crosslinked, low-power 

irradiation with UV light (λmax=254 nm), using a 1 mW mercury lamp, showed that the 

crosslinker cleaved cleanly, leaving the expected small methyl carboxylate groups on 

the cysteine anchors. The rate of cleavage decreased over time, possibly due to the 

absorption from the nitrobenzyl ketone by-products. 

The quantum yield could not be estimated from this experiment as quantifying the 

amount of photons absorbed by the sample is non-trivial. The most efficient way to 

obtain a value for the quantum yield of these compounds will be performing cleavage 

reactions of both a previously characterised compound, such as oNB-ATP (Fig. 1.10), 

and the novel crosslinkers in parallel and under the same conditions (lamp power, 

irradiation time and optical density) and extrapolating the value for the quantum yield 

by comparison of the two experiments.  

The rate of cleavage of the nitrobenzyl upon absorption will be best estimated using 

pump-probe spectroscopy, where the formation of the nitroso product could be 

monitored in real time using either by UV-Vis or IR (Klán et al., 2013). These 

experiments can also help elucidate the mechanism of cleavage of the crosslinker, as 

they could allow for the detection of cleavage intermediates. These measurements are 

also non-trivial, reflected in the lack of information regarding the kinetics of cleavage of 

photocaged compounds (sections 1.2.2 and 9.6).  

The crosslinker synthesised and characterised in this thesis is expected to follow similar 

cleavage rates to previously characterised oNB photocaged compounds (Corrie et al., 

2005), on the order of milliseconds, although the exact rate of cleavage may be faster 

(or slower) due to the influence of the allylic group. To obtain higher time resolutions, a 

different photocaging moiety will have to be used. The synthesis of a coumarinyl 

version of this crosslinker was also attempted, but unfortunately due to the highly 
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insoluble nature of the di-coumarin diol scaffold (108), the final bromoacetylation step 

could not be performed. Grubbs metathesis of the allyl α-bromoacetate intermediate 

(109) also failed, with no observable consumption of the starting material. To date, no 

synthetic solution to these issues has been found and thus the development of a 

coumarin-based crosslinker would depend on the design of a new di-coumarinyl 

scaffold (110), such as the one shown in Fig. 6.1. Once again, solubility problems are 

expected as the scaffold is highly conjugated and the nature of the vinyl coumarin may 

have a detrimental effect on the metathesis step. Nevertheless, the synthesis to the first 

intermediate (111) from the condensation of 2-hydroxy acetophenone (112) with 

3-methylacryloyl chloride (113) has been previously described in literature (Königs et 

al., 2008) and, therefore, the metathesis reaction could be quickly investigated. The high 

conjugation of this scaffold may confer very interesting, although completely unknown, 

spectroscopic properties worth investigating. 

  

Fig. 6.1 A 4th generation photocleavable crosslinker scaffold (110). The design is based on the knowledge gained 

throughout this thesis and attempts to circumvent the problems encountered during the synthesis of the coumarinyl 

crosslinker. The first step to the 3-alkenylcoumarin (111) from the condensation of 2-hydroxy acetophenone (112) 

with 3-methylacryloyl chloride (113) has been reported previously (Königs et al., 2008). The alkenylcoumarin could 

be used to test the metathesis step before any further investment of time in the synthesis of the final crosslinker. 

This thesis describes initial steps towards the design and development of new 

photocleavable crosslinkers. There is still great scope for the development of novel 

photocaging reagents and, also very importantly, for a comprehensive characterisation 

of such compounds. Furthermore, there is also great interest from structural biologists in 

obtaining functional and well-characterised compounds for time-resolved experiments. 

Such work is best carried out in a highly interdisciplinary environment, as a 

collaborative effort between chemists, structural biologists and spectroscopists will 

allow for a targeted approach, from the compound design stage to the characterisation 

and testing of the compounds under relevant experimental conditions.  
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7 Conclusions 

During this project, a new class of photocleavable crosslinking reagents, that allow for 

the stapling across two protein surface cysteine residues, was designed, synthesised and 

tested. These reagents aimed to decouple the triggering step in time-resolved 

experiments from the chemistry and function being observed. Three different scaffolds 

were investigated, each providing information about the stability, synthetic availability 

and reactivity of functional groups and photocaging moieties. An ortho-nitrobenzyl 

crosslinker carrying bromoacetate groups as protein bioconjugation moieties was 

synthesised and found to be stable and able to staple across engineered surface cysteine 

mutations on aspartate α-decarboxylase. The crosslinked protein was subjected to low 

power UV irradiation, which showed that the crosslinker could be cleaved to release the 

protein. Experiments to obtain both the quantum yield and rates of decaging under 

pump-probe conditions using brighter UV sources are currently being designed and will 

be carried out in collaboration with the Hamburg Centre for Ultrafast Imaging.  

The ADC mutants generated for testing the crosslinking and photocleavage of these 

novel reagents could not be fully and cleanly activated, which prevented the 

investigation of crosslinking on enzymatic activity. Nevertheless, the mutants will be 

tested for activation by thermal activation at high temperatures and in cellulo in WT E. 

coli cell lines and the extent of cleavage and pyruvoyl formation quantified by mass 

spectrometry. Once this information is obtained, activity assays will be carried out if the 

protein is found to be sufficiently activated. Current efforts are also focusing on 

targeting a different enzyme, DHFR, for de-activation studies by crosslinking. 

Alongside the development of these new photocleavable crosslinkers, the molecular 

basis of activation of ADC was investigated, as obtaining fully active, homogeneous 

protein is an important step in time-resolved experiments as it greatly decreases the 

levels of heterogeneity during data reduction. The function of PanZ as the activating 

factor for ADC was investigated using several biophysical techniques, such as ITC, 

NMR, MS and SAXS and the ADC.PanZ.AcCoA crystal structure was solved at high 

resolution (1.5 Å) along with two complexes of PanZ with PanD mutants. The 

activation step was found to be promoted by the formation of a strained and 

activation-competent conformation of PanD upon binding to PanZ. This mechanism, 

coined “mechano-chemistry” is supported by the observation of an unprecedented 

backbone cleavage event caused by X-ray radiolysis. The CoA dependence of the 

interaction also allowed for a novel mode of regulation of CoA production in bacteria to 
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be proposed, imposing a negative feedback loop mechanism where the formation of the 

enzyme which produces an intermediate (β-alanine) is regulated by a final metabolite. 

This mechanism was confirmed by both in vitro catalytic assays as well as in cellulo 

studies. 

Although the activity studies have not been carried out yet, the designed photocleavable 

crosslinkers were shown to react as expected. It will be important to fully characterise 

the cleavage kinetics of these compounds to establish the timescales the crosslinkers 

could provide for time-resolved studies. Nevertheless, there is still scope for the further 

development of new scaffolds, as well as a more thorough characterisation of the 

kinetics of the currently available photocaging approaches.  
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8 Experimental 

8.1 General information and instrumentation 

The following procedures were used for all the experimental work, unless otherwise 

stated. All reagents and consumables were purchased from known general suppliers, 

including Sigma Aldrich, Alfa Aesar, Merck, Iris Biochem, Fisher Scientific, Acros 

Organics, IDT, GE Healthcare, Hampton Research, Molecular Dimensions, Mitegen 

and Millipore. All water used was filtered to 15 MΩ, except for water used for PCR 

work and crystallisation experiments, which was filtered to 18.2 MΩ. Sterile work was 

performed adjacent to a blue flame or in a flow hood. All glassware, plastic-ware and 

media contaminated with genetically modified bacteria were disposed of by bleaching 

using Virkon or Presept for 24 h or autoclaved (120 °C for 20 min) prior to disposal as 

aqueous waste or by incineration. NMR data were collected using a Bruker Avance 500, 

Bruker DRX500 or Bruker DPX300 spectrometer and analysed using MestReNova 

(Mestrelab Research). Chemical shifts are reported in parts per million (ppm) downfield 

from tetramethyl silane (TMS) and coupling constants (J) are given in Hertz (Hz). 

Infra-red (IR) spectra were recorded using a Bruker alpha with platinum ATR 

spectrometer. High-resolution mass spectrometry was carried out on a Bruker maXis 

Impact spectrometer using electrospray ionisation. Small molecules were analysed as 

solutions in ultrapure solvents. Protein MS was carried out in the original buffers, as the 

samples were purified and denatured by liquid chromatography (LC, 0-95% MeCN in 

H2O over 7 min). The raw mass spectrum was deconvoluted using a maximum entropy 

algorithm, part of the Data Analysis software (Bruker). Routine low-resolution liquid 

chromatography mass spectrometry (LC-MS and LC-MSMS) was performed on a 

Phenomenex Luna C18 50×2 mm column using a gradient of 5-90% MeCN in H2O 

over 1.8 min using electrospray ionisation. Results are quoted as mass-charge ratios 

(m/z). Analytical thin layer chromatography (TLC) was performed using silica gel 

pre-coated plates (Merck) and visualised using UV irradiation or standard staining 

agents (potassium permanganate, dinitrophenylhydrazine, bromocresol green, p-

anisaldehyde and phosphomolybdic acid). Flash column chromatography was carried 

out on silica gel 60 (230-400 mesh, Merck) or on Florisil® (<200 mesh, Sigma). 

Solvents were removed under reduced pressure using a Buchi rotary evaporator at 

diaphragm pump pressure (typically 40-450 mbar). Traces of solvents were removed 

under high vacuum. High performance liquid chromatography (HPLC) analysis was 

carried out on an Agilent HPLC system, using a Thermo Electron Corporation 
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Hyperprep HS C18 column (18 µm, 250×4.6 mm) and diode array as a detector. A 

gradient of water and MeCN (5-95%) was used as solvent at a flow rate of 1 mL min-1.  

8.2 Stock solution recipes 

The recipe components were dissolved in 15 MΩ H2O to the final volume stated. All 

stock solutions, with the exception of 1000×metals, 25×salts and 20×NPS, were 

sterilised by filtration through a 0.22 µm membrane. 

25×salts (1L): 88.7 g Na2HPO4, 85 g KH2PO4, 67 g NH4Cl and 17.8 g Na2SO4. 

1000×metals (100 mL): 1.35 g FeCl3.6H2O, 438 mg CaCl2.6H2O, 198 mg MnCl2.4H2O, 

288 mg ZnSO4.7H2O, 47.6 mg CoCl2.6H2O, 34.1 mg CuCl2.2H2O, 48.4 mg 

Na2MoO4.2H2O, 34.6 mg Na2SeO3, 12.4 mg H3BO3, 52.6 mg NiSO4.6H2O and 500 µL 

HCl (37% in H2O). 

20×NPS (200 mL): 13.2 g (NH4)2SO4, 27.2 g KH2PO4, 29.2 g Na2HPO4 

20×NPS (15N) (200 mL): 13.2 g (15NH4)2SO4, 27.2 g KH2PO4, 29.2 g Na2HPO4 

50×amino acids (50 mL): 500 mg of each: sodium L-glutamate, L-lysine hydrochloride, 

L-arginine hydrochloride, L-histidine hydrochloride, L-aspartic acid, L-alanine, 

L-proline, L-glycine, L-threonine, L-serine, L-glutamine, L-asparagine, L-valine, 

L-leucine, L-isoleucine, L-phenylalanine and L-tryptophan. 

1000×vitamins (no B12) (20 mL): 400 µL 10 mM nicotinic acid, 400 µL pyridoxine 

hydrochloride, 400 µL 10 mM thiamine hydrochloride, 400 µL 10 mM 

para-aminobenzoic acid, 400 µL 10 mM pantothenate, 100 µL 1 mM folic acid and 100 

µL 1 mM riboflavin.  

1000×vitamins (with B12) (20 mL): same as for 1000×vitamins (no B12) with 800 µL 

5 mM vitamin B12.  

50×5052 (50 mL): 12.5 g glycerol, 36.5 mL H2O, 1.25 g glucose and 5 g lactose. 

M9 salt solution (1 L): 6 g Na2HPO4, 3 g KH2PO4, 0.5 g NaCl, 1 g, NH4Cl. 

10% Ampicillin: 1 g ampicillin sodium salt in 10 mL of H2O. Split into 1 mL aliquots 

and stored at -20 °C. 

5% Kanamycin: 5 g kanamycin sulphate in 10 mL of H2O. Split into 1 mL aliquots and 

stored at -20 °C. 

10×PCR buffer: 100 mM Tris (pH 8.3), 500 mM KCl, 15 mM MgCl2. Stored in 1 mL 

aliquots at -20 °C. 



 

 145 

Pwo polymerase storage buffer: 50 mM Tris (pH 7.9), 50 mM KCI, 0.1 mM EDTA, 1 

mM DTT, 50% glycerol.  

TAE buffer (1L): 4.84 g Tris, 5.71 mL glacial acetic acid and 292 mg EDTA. 

6×DNA loading buffer: 5 mM Tris (pH 8.0), 0.15 % w/v Orange Gelb, 2.5% w/v Ficoll 

400, 10 mM EDTA. 

8.3 Preparation of media for cell growth and cloning 

8.3.1 LB media 

LB media was obtained as a freeze-dried powder. A 25 g L-1 suspension of LB in H2O 

was autoclaved at 120 °C for 20 min. 

8.3.2 LB-agar media 

A suspension of 25 g L-1 LB powder and 15 g L-1 of Agar powder in H2O was 

autoclaved at 120 °C for 20 min. 

8.3.3 Auto-induction media 

10 g of Tryptone, 5g of yeast extract, 40 mL of 25×salts solution, 10 mL of 50% v/v 

aqueous glycerol, 1 mL of 2 M MgCl2 aqueous solution and 200 µL of 1000×metals 

solution were mixed in a 2 L conical flask. H2O was added up to 1L and the suspension 

autoclaved at 120 °C for 20 min. To the cooled sterilised solution was added 1 mL of 

50% w/v aqueous glucose (filtered through a 0.22 µm filter) and 10 mL of 20% w/v 

aqueous lactose (filtered through a 0.22 µm filter). 

8.3.4 SeMet minimal media A  

For 100 mL final volume. 92 mL of H2O, 10 µL of 1000×metals and 1 mL 1 M aqueous 

MgSO4 were mixed thoroughly, 5 mL of 20×NPS were added and the solution 

autoclaved at 120 °C for 20 min. To the sterilised solution were added 1.25 mL of 

40% w/v aqueous glucose, 1 mL of 50×amino acids, 400 µL of 25 mg mL-1 methionine, 

100 µL of 1000×vitamins (with B12) and 100 µL of 10% w/v aqueous ampicillin.  

8.3.5  SeMet minimal media B 

For 500 mL final volume. 450 mL of H2O, 500 µL of 1 M MgSO4 and 50 µL of 

1000×metals were mixed thoroughly, 25 mL of 20×NPS were added and the solution 

autoclaved at 120 °C for 20 min. 10 mL of 50×5052, 10 mL of 50×amino acids, 200 µL 
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of 25 mg mL-1 methionine, 2.5 mL 25 mg mL-1 selenomethionine, 500 µL 10% w/v 

aqueous ampicillin and 500 µL 1000×vitamins (no B12) were added. 

8.3.6 SeMet wash buffer 

For 100 mL final volume. 0.10 g of NaH2PO4, 0.58 g Na2HPO4, 2.92 g NaCl and 20 g 

ethylene glycol were mixed and water added up to 100 mL.  

8.3.7 15N minimal media 

For 500 mL final volume. 450 mL of H2O, 500 µL of 1 M MgSO4 and 50 µL of 

1000×metals were mixed thoroughly, 25 mL of 20×NPS (15N) were added and the 

solution autoclaved at 120 °C for 20 min. To the sterilised solution were added 10 mL 

of 50×5052, 10 mL of 50×amino acids, 100 µL of 1000×vitamins (with B12),  100 µL 

of 10% w/v aqueous ampicillin. 

8.4 Site-directed mutagenesis, cloning and sequencing 

The following protocols were used to generate site-directed mutants of PanD (H17C, 

D19C, E23C, C26S, A62C, C78A, H17C/E23C, D19C/E23C, E23C/A62C, 

C26S/C78A, D19C/E23C/C78A, D19C/E23C/C26S, E23C/C26S/C78A, 

H17C/E23C/C26S/C78A, D19C/E23C/C26S/C78A, E23C/C26S/A62C/C78A, 

T57V/K119STOP). All ADC mutants were generated from the pRSETA-ADC-WT 

vector plasmid (Saldanha et al., 2001), with the exception of the T57V/K119STOP 

mutant which was generated from the pRSETA-ADC(T57V) plasmid (Webb et al., 

2014).  

8.4.1 Primer design 

The overlapping site-directed mutagenesis primers for QuikChange (Papworth et al., 

1996) were designed manually. They were 25-45 bases long (the average number of 

bases was 26). The codon carrying the desired mutation was placed roughly in the 

middle of the primer, with 10-15 bases corresponding to the plasmid sequence on each 

side. The exact sequence was designed in order to obtain a melting temperature (Tm) 

≥78 °C, calculated using 

Tm =81.5+0.41(%GC)−(675/N)−%mismatch 

Where %GC is the percentage of G or C bases, N is the total number of bases in the 

primer and %mismatch the number of mismatched bases compared to the initial 
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sequence. The sequence was also optimised to have a GC content of approximately 40% 

and terminate on one or more C or G bases. 

8.4.2 Primers used for genetic manipulation 

Mutant Sequence 

H17C 5'-CGTGAAAGTGACTTGTGCGGACCTGC-3' 
 3'-CGCAAGAACCTTCATAGTGCAGGTCC-5' 

D19C 5'-GTGACTCATGCGTGCCTGCACTATGAA-3' 
 3'-CAATGGCGCAAGAACCTTCATAGTGC-5' 

E23C 5'-CTCSTGCGGACCTGCACTCTTGTGGTT-3' 
 3'-CAATGGCGCAAGAACCACAATAGTGC-5' 

C26S 5'-CACTATGAAGGTTCTTCCGCCATTGAC-3' 
 3'-CCTGGTCAATGGCGGAAGAACCTTCA-5' 

A62C 5'-CCACTTATGCCATCGCGTGTGAACGC-3' 
 3'-CTCGAACCGCGTTCACACGCGATGGC-5' 

C78A 5'-CGGCGGCCCACGCAGCCAGTGTCGGC-3' 
 3'-GCCGACACTGGCTGCGTGGGCCGCCG-5' 

H17C (E23C) 5'-CGTGAAAGTGACTTGTGCGGACCTGC-3' 
 3'-CGGAAGAACCACAATAGTGCAGGTCC-5' 

D19C (E23C) 5'-GTGACTCATGCGTGCCTGCACTATTGT-3' 
 3'-CAATGGCGCAAGAACCACAATAGTGC-5' 

E23C (C26S) 5'-CTCATGCGGACCTGCACTATTTGTGTT-3' 
 3'-CAATGGCGGAAGAACCACAATAGTGC-5' 

H17C (E23C/C26S) 5'-CGTGAAAGTGACTTGTGCGGACCTGC-3' 
 3'-CGGAAGAACCACAATAGTGCAGGTCC-5' 

D19C (E23C/C26S) 5'-GTGACTCATGCGTGCCTGCACTATTGT-3' 
 3'-CAATGGCGGAAGAACCACAATAGTGC-5' 

K119STOP 5'-GAAACGTACCGCGTAAGCGAT-3' 
 3'-GTACCGGAATCGCTTACGCGG-5' 

8.4.3 Mutagenesis protocol 

Site-directed mutants of ADC were obtained using the standard QuikChange 

mutagenesis protocol published by Agilent Technologies (Papworth et al., 1996). All 

primers were dissolved in 18 MΩ water to a final concentration of 200 µM. Initial 

mutations were performed starting from the expression pRSETA plasmid encoding a N-

terminally hexaHis-tagged WT PanD (Saldanha et al., 2001) or a N-terminally hexaHis-

tagged PanD(T57V) (Webb et al., 2014).  

For each site-directed mutagenesis reaction, the PCR mix was prepared by mixing 20 ng 

of the template plasmid (as a solution in 10 mM Tris-Cl, pH 8.5, from miniprep using 

the Qiagen QIAprep Spin Miniprep Kit), 0.4 µL of 25 nM dNTPs (an equimolar 
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solution of dGTP, dCTP, dTTP, dATP), 5 µL of 10×PCR buffer, 0.2 µL forward primer 

(200 µM solution), 0.2 µL reverse primer (200 µM solution) and 18 MΩ H2O to 49 µL 

followed by 1 µL of 3 U µL-1 Pwo polymerase. PCR was performed using the following 

protocol: 30 s at 95 °C, 16×(30 s at 95 °C, 60 s at 55 °C, 300 s at 68 °C) and 300 s at 

68 °C. 

8.4.4 Agarose gel electrophoresis 

The following protocol is for a standard 1% agarose gel. 0.4 g of agarose was suspended 

in 40 mL of TAE buffer. The suspension was heated (microwave) to obtain a solution. 

TAE buffer was added to compensate for any evaporation followed by 1.5 µL of 

ethidium bromide. The solution was inverted twice, poured into a casting mould and the 

desired comb inserted. Once the gel was set, it was transferred to the electrophoresis 

running tank, submerged in TAE buffer and the DNA samples (5-10 µL of 5:1 v/v 

mixtures of the desired DNA solution and 6×DNA loading buffer) were loaded and the 

gel run at 100 V for 20 min. 

8.4.5 Transformation of chemically competent E. coli cells 

This protocol was used for the transformation of all E. coli strains used, XL10, BL21 

Gold, BL21 Star, C41 (DE3), MG1655 ΔpanZ ΔpanD (DE3) and B834 (DE3). 

1-5 µL of plasmid was mixed with 50 µL (or 10 µL when transforming XL10 cells) of 

chemically competent cells in a sterile 1.5 mL tube on ice. The cells were incubated for 

10 min to allow diffusion of the plasmid, then at 42 °C for 45 s before re-incubation on 

ice for a further 10 min for plasmid uptake. 1 mL of LB media was added and the cells 

incubated at 37 °C for 45 min. 100 µL of culture were used to inoculate sterilised agar 

plates, containing the desired antibiotic for selection (100 µg mL-1 of ampicillin or 

50 µg mL-1 of Kanamycin). The remaining 900 µL of cell culture were centrifuged at 

13,000g for 30 seconds, 800 µL of supernatant removed, the pelleted cells resuspended 

and used to inoculate a second agar plate. The plates were incubated at 37 °C for 16 

hours. 

8.4.6 Miniculture of E. coli cells 

A single colony from transformation of E. coli cells strains harbouring the desired 

plasmid for overexpression purposes was picked and incubated in 5 mL of LB media 

containing the desired antibiotic for selection (100 µg mL-1 of ampicillin or 50 µg mL-1 

of Kanamycin) for 16 hours at 37 °C with shaking. The miniculture was used to 
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inoculate 1L overexpression media as well as to make glycerol cell stocks (1:1 mixture 

with 80% v/v sterilised glycerol (in H2O), flash frozen and stored at -80 °C for later 

use). 

8.4.7 Sequencing of plasmids 

A single colony of E. coli XL10 cells transformed with the desired plasmid was 

minicultured as described above. The cells were harvested by centrifugation at 4,500 

rpm for 10 min and the plasmid harvested with a QIAprep miniprep kit (QIAGEN®), 

using the manufacturer’s protocol and buffers (Sambrook and Russell, 2001). 150 ng of 

T7 sequencing primer was added to 10 ng of plasmid in 50 µL of 18 MΩ H2O. 

Sequencing was performed by GATC® and analysed using Bioedit. 

8.5 Protein overexpression 

N-Terminally hexaHis-tagged WT ADC, PanD(T57V) and PanD(S25A) from vectors 

pRSETA-ADC-WT (Saldanha et al., 2001), pRSETA-ADC(T57V) (Webb et al., 2014) 

and pRSETA-ADC(S25A) (Schmitzberger et al., 2003) respectively. C-Terminally 

hexaHis-tagged PanZ was overexpressed from vector pBAD24-PanZ (Nozaki et al., 

2012) or pET28a-PanZ (Monteiro et al., 2015). All other PanD mutants were expressed 

from pRSETA vectors encoding the desired proteins generated as described in 8.4. 

8.5.1 Overexpression in auto-induction media 

All N-terminal hexaHis-tagged WT PanD was overexpressed in E. coli C41 (DE3) cells 

harbouring a pRSETA-ADC-WT plasmid (Saldanha et al., 2001). N-Terminally 

hexaHis-tagged PanD mutants were overexpressed in E. coli MG1655 ΔpanZ ΔpanD 

(DE3) cells harbouring pRSETA plasmids coding for the desired proteins. C-Terminally 

hexaHis-tagged PanZ was overexpressed in ΔpanZ ΔpanD E. coli C41 cells harbouring 

a pET28a plasmid. Overexpression was done by auto-induction of T7 RNA polymerase 

(Studier, 2005). 1 L of sterilised auto-induction media with antibiotic (100 µg mL-1 

ampicillin for PanD or 50 µg mL-1 kanamycin for PanZ) in a 2 L conical flask was 

inoculated with 1 mL of overnight miniculture. The culture was incubated for 20 h at 

37 °C with shaking (200 rpm). The cells were collected by centrifugation (10,000g for 

10 min) and were stored at –80 °C prior to lysis for protein purification. For activated 

ADC, the cell pellets were incubated at 37 °C overnight prior to storage at -80 °C. 



 150 

8.5.2 Overexpression in LB media by arabinose induction 

 C-Terminally hexaHis-tagged PanZ was overexpressed by induction of the arabinose 

promoter of the pBAD24 plasmid coding for the protein in E. coli BL21 Gold cells. 1 L 

of sterilised LB media with 100 µg mL-1 ampicillin and 250 mM calcium pantothenate 

in a 2 L conical flask was inoculated with 1 mL of overnight miniculture. The culture 

was incubated at 37 °C with shaking (200 rpm) and overexpression induced by addition 

of 5 g of arabinose (0.5% w/v) at OD600=0.6. The cells were incubated for a further 16 

hours. The cells were collected by centrifugation (10,000g for 10 min) and were stored 

at -80 °C prior to lysis for protein purification. 

8.5.3 Overexpression of SeMet PanZ 

C-Terminally hexaHis-tagged PanZ was overexpressed in E. coli B834 (DE3) cells 

harbouring a pBAD24 plasmid coding for the desired protein following a previously 

described protocol (Sreenath et al., 2005). In summary, 3 mL of overnight miniculture 

in SeMet minimal media A was used to inoculate 100 mL of SeMet minimal media A. 

The cell culture was incubated at 37 °C, 200 rpm for 18 h. Following incubation, 20 mL 

of the cell culture were used to inoculate 480 mL of SeMet minimal media B and the 

cultures incubated at 37 °C, 200 rpm for 24 h. The cells were collected by 

centrifugation (10,000g for 10 min), resuspended in SeMet wash buffer to wash any 

remaining SeMet away, collected by centrifugation once again (10,000g for 10 min) and 

then stored at -80 °C prior to lysis for protein purification. 

8.6 Protein purification 

8.6.1 Buffer recipes and preparation 

Buffers used for Ni-NTA chromatography were used directly without sterilisation or 

filtration. Size exclusion chromatography buffers were filtered through a 0.22 µm 

membrane under reduced pressure.  

Ni-NTA stock buffer: 500 mM K2HPO4, 3000 mM NaCl, pH 7.4 (15.0 g KH2PO4, 67.8 g 

K2HPO4, 175.3 g NaCl). 

Ni-NTA lysis buffer: 50 mM K2HPO4, 300 mM NaCl, 10 mM imidazole, pH 7.4 

(100 mL Ni-NTA stock buffer, 681 mg imidazole). 

Ni-NTA wash buffer: 50 mM K2HPO4, 300 mM NaCl, 50 mM imidazole, pH 7.4 

(100 mL Ni-NTA stock buffer, 3.40 g imidazole). 
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Ni-NTA elution buffer: 50 mM K2HPO4, 300 mM NaCl, 250 mM imidazole, pH 7.4 

(100 mL Ni-NTA stock buffer, 17.02 g imidazole). 

SEC buffer A: 50 mM Tris, 100 mM NaCl, 0.1 mM DTT, pH 7.5 (4.93 g Tris, 2.92 g 

Tris-HCl, 11.70 g NaCl, 30.9 mg DTT). 

SEC buffer B: 50 mM KH2PO4, 100 mM NaCl, 0.5 mM TCEP, pH 7.5 (1.24 g 

KH2PO4, 7.11 g K2HPO4, 5.84 g NaCl, 143 mg TCEP). 

8.6.2 Purification of hexaHis-tagged proteins by Ni-NTA chromatography 

E. coli cells collected from 1 L of overexpression cultures were resuspended in Ni-NTA 

lysis buffer (50 mM K2HPO4, 300 mM NaCl, 10 mM imidazole, pH 7.4) with protease 

inhibitor cocktail (cOmplete EDTA-free, Roche) according to the manufacturer’s 

protocol at 4 °C. The cell slurry was lysed mechanically using a Constant Systems cell 

disrupter (20 kpsi). DNase (a few crystals) was added to the cell lysate, which was 

cleared of cell debris by centrifugation (30,000 g, 45 min). The Ni-NTA agarose resin 

(Qiagen, 10 mL) was resuspended in 20 mL of H2O, washed under gravity with 30 mL 

of H2O and equilibrated with 50 mL of Ni-NTA lysis buffer (50 mM K2HPO4, 300 mM 

NaCl, 10 mM imidazole, pH 7.4). The clear lysate was loaded onto the Ni-NTA agarose 

column and low affinity binders removed by washing the resin with 50 mL of Ni-NTA 

wash buffer (50 mM K2HPO4, 300 mM NaCl, 50 mM imidazole, pH 7.4). The protein 

was eluted in 5×5 mL fractions of Ni-NTA elution buffer (50 mM K2HPO4, 300 mM 

NaCl, 250 mM imidazole, pH 7.4). The protein size, overexpression level and purity 

were assessed by SDS-PAGE. 

8.6.3 Ni-NTA column regeneration 

Following protein elution, the Ni-NTA loaded agarose resin was regenerated to remove 

any contaminants. The resin was washed with 30 mL of 0.1% w/v sodium dodecyl 

sulphate (SDS) followed by 30 mL of 0.1 M NaOH. Ni2+ was removed by chelation 

with 30 mL of 10 mM ethylenediaminetetraacetic acid (EDTA), the agarose resin 

washed with 100 mL of H2O and regenerated with 20 mL of 500 mM Ni2SO4. Excess, 

unbound Ni2+ was removed by washing with 100 mL of H2O and the column stored in 

20% v/v EtOH. 

8.6.4 Size-exclusion chromatography 

Elution fractions from Ni-affinity purification containing protein were combined and 

concentrated to 1 mL (Amicon centrifugal concentrator 10 kDa MWCO, 4,000 g). The 
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concentrated protein was loaded onto a Superdex® 75 column (HiLoad® 16/60 or 

26/60, GE Healthcare) and eluted isocratically with SEC buffer A or B (ÄKTA purifier, 

GE Healthcare) in 5 mL (26/60 column) or 3 mL (16/60 column) fractions and stored at 

4 °C. Protein elution was monitored by absorption at 280 nm and the chromatogram 

used to assess purity. 

8.6.5 Determination of protein concentration 

Protein concentration was determined using UV absorbance. 1.5 µL of sample were 

loaded onto the Nanodrop instrument and the absorbance measured at 280 nm. Protein 

concentration was calculated using PanD ε280 15470 M-1 cm-1 or PanZ ε280 

26470 M-1 cm-1, obtained empirically from the protein sequences using the ProtParam 

online platform (Gasteiger et al., 2005). 

8.7 SDS-PAGE analysis  

8.7.1 Buffer recipes 

5×SDS-PAGE Tris-glycine running buffer: 15.1 g Tris base, 94 g glycine, 5 g SDS. 

SDS-PAGE Tris-tricine gel buffer: 3 M Tris, 0.3% SDS, pH 8.45 (the pH was adjusted 

by addition of 4 M NaOH). 

SDS-PAGE Tris-tricine cathode buffer: 0.1 M Tris, 0.1 M tricine, 0.1% SDS, pH 8.23 

(the pH was adjusted by addition of 4 M NaOH). 

SDS-PAGE Tris-tricine anode buffer: 0.2 M Tris, pH 8.90 (the pH was adjusted by 

addition of 4 M NaOH). 

2×SDS-PAGE loading buffer: 50 mM Tris hydrochloride, pH 6.8 (the pH was adjusted 

by addition of 4 M NaOH), 100 mM dithiothreitol, 2% w/v SDS, 0.1% w/v 

bromophenol blue, 10% w/v glycerol. 

Coomassie blue stain: 1.0 g Coomassie blue R-250, 400 mL MeOH, 500 mL H2O, 

100 mL glacial acetic acid. 

Coomassie destain: 400 mL MeOH, 500 mL H2O, 100 mL glacial acetic acid. 

8.7.2 Sample preparation 

Purified protein solutions 

30 µL of protein in buffer was mixed with 2×SDS-PAGE loading buffer. The solutions 

were heated at 100 °C for 10 min (to ensure full denaturation of the protein).  
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E. coli cells 

1 mL of cell culture was centrifuged at 13,000 rpm, the supernatant removed, the cell 

pellet resuspended in Ni-NTA lysis buffer. 30 µL of the suspension was mixed with 

2×SDS-PAGE loading buffer and heated at 100 °C for 10 min (to ensure full 

denaturation of the protein). 

8.7.3 Tris-glycine PAGE 

The 12% separating gel was prepared according the table below. All components except 

for the ammonium persulphate (APS) and tetramethylethylenediamine (TEMED) were 

mixed thoroughly by inversion. Prior to casting, APS was added followed by TEMED 

and the solution mixed carefully between the additions. The mixture was poured and a 

layer of H2O-saturated n-butanol was added to ensure a levelled surface. The stacking 

gel mixture was prepared following the same protocol as for the separating gel. Once 

the separating gel was set, the n-butanol was blotted off, the stacking gel solution added 

and the comb inserted. The gel was loaded with the desired protein samples in 1×SDS-

PAGE loading buffer and run in 1×SDS-PAGE Tris glycine running buffer at constant 

voltage (180 V).  

Tris-glycine PAGE Separating gel (12%) Stacking gel 
1.5 M Tris pH 8.8 3.75 mL - 
1.0 M Tris pH 6.8 - 625 µL 

30 % acrylamide (29:1 
acrylamide:bis-acrylamide 6.00 mL 660 µL 

10% SDS 150 µL 50 µL 
Water 5.10 mL 3.66 mL 

15% APS 200 µL 100 µL 
TEMED 10 µL 10 µL 

8.7.4 Tris-tricine PAGE 

The 10% separating and stacking gels were prepared according the table below. All 

components except for the ammonium persulphate (APS) and 

tetramethylethylenediamine (TEMED) were mixed thoroughly by vortexing and the 

solution allowed to set for 20 min prior to casting, APS was added followed by TEMED 

and the solution mixed carefully between the additions. The separating gel was poured 

followed by the stacking gel, the comb inserted and the gels allowed to set 

simultaneously. Gentle addition of the stacking gel solution was essential to minimise 

disturbances to the separating gel. The gel was loaded with the desired protein samples 

in 1×SDS-PAGE loading buffer and the SDS-PAGE Tris-tricine cathode and SDS-
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PAGE Tris-tricine anode buffers were added. The gel was run at constant current of 30 

mA until the samples entered the separating gel and then at 60 mA.  

Tris-tricine PAGE Separating gel (10%) Stacking gel 
Glycerol 2 mL - 

Tris-tricine gel buffer 5.00 mL 3.10 mL 
30 % acrylamide (29:1 

acrylamide:bis-acrylamide 5.08 mL 1.66 mL 

Water 2.92 mL 7.74 mL 
15% APS 100 µL 100 µL 
TEMED 10 µL 10 µL 

8.7.5 Visualisation of SDS-PAGE gels 

Coomassie blue stain (50 mL) was added to the gel, the solution warmed in a 

microwave (15 s, full 750 W) and the gel incubated at RT for 1.5 h with rocking. The 

stain was removed, Coomassie destain was added, the gel incubated for 3 h with 

rocking, washed with H2O and photographed (Gel Doc XR system, Bio-Rad). 

8.8 Binding assays 

All binding assays were performed using isothermal titration calorimetry (ITC). 

Experiments were performed using a Microcal iTC200 (GE) or Microcal VP-ITC (GE) 

thermostated at 25 °C. For the microcal iTC200, the ligand sample was loaded into the 

sample cell (200 µL) and the titration sample into the sample syringe (40 µL). Each 

titration series consisted of a sacrificial 0.4 µL injection followed by 19 injections of 

2 µL. For the VP-ITC, the ligand sample was loaded into the sample cell (1.5 mL) and 

the titration sample into the sample syringe (300 µL). Each titration series consisted of a 

sacrificial 2 µL injection followed by 29 injections of 10 µL each. The titration sample 

concentration was ~8× that of the ligand sample. The proteins were expressed and 

purified as described in 8.5 and 8.6, and used in SEC buffer A. The titration data were 

analysed using Origin 6.5. After baseline subtraction, data were fitted to a single site-

binding model. For global fitting, data were integrated using NITPIC (Keller et al., 

2012) before global fitting to a one-site binding model in SEDPHAT (Houtman et al., 

2007). For titrations of purified PanZ (a mixture of apo-PanZ and PanZ.CoA) against 

CoA and against PanD(T57V) without excess CoA or AcCoA, binding constants were 

re-calculated accounting for the binding incompetent fractions of PanZ in each case. A 

summary of all the titrations and binding constants obtained can be found in appendix 

9.4. 
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8.9 Protein crystallisation 

8.9.1 Initial crystallisation screens 

The PanD(T57V)-PanZ.CoA protein complex was prepared from solutions of the 

proteins (overexpressed from the pRSETA-ADC(T57V) (Webb et al., 2014) and the 

pBAD24-PanZ (Nozaki et al., 2012) vectors and purified as described in section 8.6) in 

SEC buffer A (50 mM Tris, 100 mM NaCl, 0.1 mM DTT, pH 7.5). The proteins were 

mixed in a 1:1 ratio (protomer to monomer), concentrated to 3.5 mg mL-1 (Amicon 

centrifugal concentrator 10 kDa MWCO, 4,500 g) and 1 PanZ equivalent of CoA was 

added. Sparse matrix screens using Crystal Screen HT 1 and Crystal Screen HT 2 (96 

conditions, Hampton Research) were set up manually in a MRC 96-well plate 

(Molecular Dimensions) by the sitting drop diffusion method with 1.0 µL protein:1.0 µL 

mother liquor sitting drops at 18 °C. Small bipyramidal crystals were obtained in 

100 mM Tris (pH 7.8-8.0), 180-220 mM Li2SO4 and 20% v/v PEG 4000. A second 

crystallisation screen was set up similarly but using the PanD(T57V-PanZ.AcCoA 

complex instead. Small square plates were obtained in 100 mM sodium cacodylate, pH 

6.5, 1.4 M sodium acetate and small bipyramidal crystals were obtained in 100 mM Tris 

(pH 7.8), 200 mM Li2SO4 and 20% v/v PEG 4000. 

8.9.2 Further crystallisation screens 

The PanD(T57V)-PanZ.AcCoA protein complex was prepared from solutions of the 

proteins overexpressed from the pRSETA-ADC(T57V) (Webb et al., 2014) and the 

pET28a-PanZ (Nozaki et al., 2012) vectors and purified as described in section 8.6 in 

SEC buffer A (50 mM Tris, 100 mM NaCl, 0.1 mM DTT, pH 7.5). The proteins were 

mixed in a 10:11 PanD(T57V):PanZ ratio (protomer to monomer), concentrated to ~9 

mg mL-1 (Amicon centrifugal concentrator 10 kDa MWCO, 4,500 g) and 2 equivalent 

of AcCoA were added. Sparse matrix screens using Crystal Screen HT 1 and 2, Index, 

Salt RX (Hampton Research), Morpheus (Molecular Dimensions) and Wizard I and II 

(Emerald Biosciences) were set-up using the Oryx 6 Douglas crystallisation robot 

(Douglas instruments) in MRC 96-well plates (Molecular Dimensions) using 1.0 µL 

protein:1.0 µL mother liquor at 18 °C. More than 120 crystallisation hits were obtained, 

with various salts and buffers. The largest crystals were observed generally in 

conditions containing high molecular weight PEG precipitants, simple salts of mono- or 

divalent cations and Tris or Bis-Tris buffers. 
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8.9.3 Optimisation of initial crystallisation conditions 

Optimisation of crystallisation conditions was carried out by varying salt, buffer and 

precipitant concentrations and buffer pH. Crystals were grown by the hanging drop 

diffusion method, in 2 µL protein:2 µL mother liquor drops in 24-well plates.  

The PanD(T57V)-PanZ.CoA complex was prepared as described in section 8.9.1 and 

crystallised in 200 mM Li2SO4, 100 mM Tris pH 8.5 and 30% v/v PEG 4000. The 

PanD(T57V)-PanZ.AcCoA complex was prepared as described in section 8.9.2 and 

crystallised in 100 mM sodium cacodylate, pH 6.5, 1.4 M sodium acetate and in 

200 mM KSCN, 100 mM Bis-Tris propane pH 6.5, 20% v/v PEG 3350. The 

PanD(S25A)-PanZ.AcCoA was prepared similarly to the PanD(T57V)-PanZ.AcCoA 

complex and crystallised in 200 mM KSCN, 100 mM Bis-Tris propane pH 6.5, 20% v/v 

PEG 3350.  

8.9.4 Heavy-metal derivatisation 

PanD(T57V).PanZ.CoA crystals obtained as described in section 8.9.3 were derivatised 

with heavy-metals. The crystals were harvested from the crystallisation drops using 

CryoLoops (Hampton Research) or MicroMeshes™ (Mitegen) and transferred to a 2 µL 

drop of mother liquor on a glass cover slip containing 10 µM of a heavy-metal salt. 

Hg(OAc)2, (NH4)10H2(W2O7)6, K2OsCl6, (H2NCH2CH2NH2)PtCl2, Pb(CH3CO2)4 and 

K2Pt(CN)4 were screened. The drops were sealed in a 24-well crystallisation plate to 

avoid dehydration. The crystals were allowed to soak for a few minutes and transferred 

to new mother liquor drops without the heavy-metal additives to attempt to remove any 

non-specifically bound metal derivatives.  

8.9.5 X-ray Diffraction experiments 

Evaluation of crystal quality 

Crystal size and quality were evaluated by light microscopy and confirmed by X-ray 

diffraction. Diffraction patterns were collected using either the in-house source 

(MicroMax-007 HF microfocus rotating anode generator, 30 mA, Raxis4++), at both 

RT and 100 K, or at Diamond Light Source (beamlines I24, I03, I04-1 and I02) at 

100 K.  

Synchrotron cryo-temperature data collection 

Small bipyramidal crystals for the PanD(T57V).PanZ.CoA complex were obtained in 

200 mM Li2SO4, 100 mM Tris pH 8.5 and 30% v/v PEG 4000. Some crystals were 
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derivatised as described in 8.9.4. Bipyramidal crystals for the 

PanD(T57V).PanZ.AcCoA, WT ADC.PanZ.AcCoA and WT PanD.PanZ.AcCoA 

complexes were obtained in 200 mM KSCN, 100 mM Bis-Tris propane pH 6.5, 

20% v/v PEG 3350. Square plates for the PanD(T57V).PanZ.AcCoA complex were 

obtained from 100 mM sodium cacodylate, pH 6.5, 1.4 M sodium acetate. The crystals 

were harvested and mounted on CryoLoops (Hampton Research) or MicroMeshes™ 

(Mitegen) on goniometer bases. The crystals were cryo-protected stepwise in mother 

liquor containing 5%, 10% and 20% v/v glycerol by soaking for a few seconds in each 

condition and flash-cooled in liquid nitrogen. Diffraction data were collected at 100 K 

under a cryo-stream of dry nitrogen at beamlines I03, I24 and I04-1 at DLS. For each 

crystal, 3 diffraction patterns were first obtained with an attenuated X-ray beam and 

used to evaluate crystal quality, index the crystal lattice and devise a data collection 

strategy using EDNA (Incardona et al., 2009). A summary of the data collection 

strategy details for the PanD(T57V).PanZ.CoA and PanD(T57V).PanZ.AcCoA 

complex described in section 3.2 can be found in section 9.2.  

Data for the WT PanD.PanZ.AcCoA complex were collected at beamline I03 at DLS at 

λ= 0.9763 Å. 900 frames of 0.2° oscillation, 0.1 s exposure and 30% transmission were 

collected to a maximum resolution of 1.16 Å. The data were integrated in space group 

I4 (a=b=85.9 Å, c=80.1 Å, α=β=γ=90°) using XDS (Kabsch, 2010).  

Data for the WT ADC.PanZ.AcCoA complex were collected at beamline I04-1 at DLS 

at λ= 0.9174 Å. 1000 frames of 0.2° oscillation, 0.2 s exposure and 43% transmission 

were collected to a maximum resolution of 1.25 Å. The data were integrated in space 

group I4 (a=b=85.9 Å, c=80.1 Å, α=β=γ=90°) using XDS (Kabsch, 2010).  

Synchrotron RT data collection 

Bipyramidal crystals for PanD(T57V).PanZ.AcCoA complex were obtained in 200 mM 

KSCN, 100 mM Bis-Tris propane pH 6.5, 20% v/v PEG 3350. The crystals were 

mounted on CryoLoops (Hampton Research) or MicroMeshes™ (Mitegen) on 

goniometer bases. Data for the PanD(T57V)-PanZ.AcCoA were collected at RT at 

beamline ID29 at ESRF. The crystals were placed under a humidifying air stream (HC1 

instrument (Sanchez-Weatherby et al., 2009)) and kept at 95% relative humidity 

throughout the experiment. 3 diffraction patterns were first obtained and used to 

evaluate crystal quality, index the crystal lattice and devise a data collection strategy 

using EDNA Mxv1. 2320 frames of 0.05° oscillation, 0.04 s exposure and 0.12% 

transmission were collected to a maximum resolution of 1.64 Å. The data were 
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integrated in space group I4 (a=b=86.4 Å, c=81.0 Å, α=β=γ=90°) using Xia2 (Winter, 

2010).  

RT in-house data collection 

Bipyramidal crystals for the PanD(T57V).PanZ.AcCoA, WT ADC.PanZ.AcCoA and  

PanD(S25A).PanZ.AcCoA complexes were obtained in 200 mM KSCN, 100 mM 

Bis-Tris propane pH 6.5, 20% v/v PEG 3350. The crystals were harvested and mounted 

on CryoLoops (Hampton Research) or MicroMeshes™ (Mitegen) on goniometer bases. 

The mounted crystals were inserted into plastic sleeves containing a 2 µL plug of 

mother liquor and data collected at RT using the in-house source (Micro-Max-007 HF 

microfocus rotating anode generator, 30 mA and a R-axis 4++ detector) at λ=1.5418 Å. 

2 initial diffraction patterns were collected and used to evaluate crystal quality, index 

the crystal lattice and devise a data collection strategy using HKL3000 (Otwinowski 

and Minor, 1997). 60 frames of 1° oscillation, 30 s exposure and full transmission were 

collected to a maximum resolution of 1.70 Å and 2.10 Å resolution respectively. The 

PanD(T57V)-PanZ.AcCoA data were integrated in space group I4 (a=b=86.4 Å, 

c=81.0 Å, α=β=γ=90°) and PanD(S25A)-PanZ.AcCoA in space group I4 (a=b=86.3 Å, 

c=80.8 Å, α=β=γ=90°) using HKL3000 (Otwinowski and Minor, 1997). The WT 

ADC.PanZ.AcCoA data were integrated in space group I4 (a=b=85.6 Å, c=79.9 Å, 

α=β=γ=90°) using XDS (Kabsch, 2010).  

Structure solution and refinement 

All datasets were scaled and merged in Aimless (Evans and Murshudov, 2013). The 

synchrotron dataset for PanD(T57V).PanZ.AcCoA collected at the ESRF on beamline 

ID29 (PDB 4CRY) was solved by molecular replacement of the PanD(T57V) protomer 

(PDB 4AZD, (Webb et al., 2014) first, followed by the lowest energy conformation of 

the NMR structure of PanZ (PDB 2K5T) using Molrep (Vagin and Teplyakov, 1997). 

The model was subjected to cycles of refinement using Refmac5 (Murshudov et al., 

2011) and manual rebuilding using Coot (Emsley et al., 2010). All subsequent complex 

structures of PanD(T57V).PanZ.AcCoA and PanD(S25A).PanZ.AcCoA from in-house 

datasets and WT ADC.PanZ.AcCoA and WT PanD.PanZ.AcCoA from in-house and 

synchrotron datasets were solved by molecular replacement of the PDB 4CRY model 

using Molrep and were manually rebuilt and refined using Coot and Refmac5 

respectively. Isotropic refinement parameters were used for the 

PanD(T57V).PanZ.AcCoA, PanD(S25A).PanZ.AcCoA and RT WT ADC.PanZ.AcCoA 
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structures. Mixed isotropic/anisotropic refinement parameters were used for the cryo 

WT ADC.PanZ.AcCoA and WT PanD.PanZ.AcCoA structures, where all protein atoms 

were refined anisotropically, with the exception of the PanZ 26Tyr-Val33 loop which is 

mobile. Waters were inspected manually and refined isotropically if considered mobile. 

All ligands were also refined isotropically with the exception of AcCoA.  

8.10 Complementation assays 

The in cellulo assays were performed by Shingo Nozaki and Hironori Niki. The full 

protocol has been described previously (Monteiro et al., 2015). 

8.11 SAXS 

The SAXS data were collected by Dr Thomas Grant, Dr Edward Snell and Prof. Arwen 

Pearson and processed by Dr Thomas Grant according to the previously published 

protocol (Monteiro et al., 2015). 

8.12 1H NMR ADC activity assay 

Activated WT ADC and PanZ were overexpressed and purified as described in sections 

8.5.1 and 8.6. A mixture of 1:2 WT ADC and PanZ (final concentrations of 15.8 and 

31.7 µM respectively) in SEC buffer A with 50 µM AcCoA was diluted into SEC buffer 

B to a final concentration of 100 nM WT ADC and 200 nM PanZ (and consequently 

320 nM AcCoA). The mixture was split into 6 aliquots, supplemented with AcCoA, 

0.5 mM L-aspartate and PanZ, as described in Table 10, and incubated at 37 °C. 1H 

NMR samples were prepared by mixing 630 µL of the enzymatic reaction with 70 µL of 

D2O (10% v/v D2O in H2O final concentration) and the 1D 1H NMR spectrum recorded 

immediately using a water suppression pulse sequence. The reaction progression was 

monitored at 2 h, 4 h and 24 h after the start of incubation. Substrate turnover was 

monitored by analysis of the ratio of the integrals of the L-aspartate CαH and the β-

alanine CH2 signals. The integrals were calculated using Mestrenova (Mestrelab 

research software). The experiment was repeated with a 250 nM WT ADC and 500 nM 

PanZ solution supplemented with AcCoA (100 µM) and 5 mM L-aspartate. 

Table 10 Sample composition for 1H NMR assay of WT ADC catalysis in the presence of PanZ 

 1 2 3 4 5 6 
[PanZ] (µM) 0.20 0.20 1.00 1.00 10.0 10.0 

[AcCoA] (µM) 0.32 100 0.32 100 0.32 100 
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8.13 Synthesis of photocleavable crosslinkers 

Ethyl 3,4-dimethoxybenzoate (45). (Choshi et al., 1992) 3,4-

Dimethoxybenzoic acid (15.0 g, 82 mmol) was dissolved in EtOH 

(100 mL), conc. H2SO4 (2.60 mL) was added and the solution heated 

under reflux for 20 h. The solution was cooled to RT, diluted with H2O (200 mL), 

extracted with EtOAc (3×120 mL), the organic layer quenched with sat. aq. NaHCO3 

(150 mL), washed with brine (100 mL), dried over Na2SO4 and filtered. The solvent was 

removed under reduced pressure, yielding the product as a clear liquid (16.1 g, 93%), 

which was used without further purification. 1H NMR (CDCl3, 300 MHz): 7.69 (1H, dd, 

J 1.8, 8.1, ArC6H), 7.55 (1H, d, J 1.8, ArC2H), 6.89 (1H, d, J 8.1, ArC5H), 4.36 (2H, q, 

J 7.2, CH2), 3.94 (6H, s, OCH3), 1.39 (3H, t, J 7.2, CH3). 13C NMR (CDCl3, 75 MHz): 

166.4 (C=O), 152.8 (ArC4), 148.5 (ArC3), 123.4 (ArC1), 123.0 (ArC6), 111.9 (ArC2), 

110.1 (ArC5), 60.8 (CH2), 55.9 (OCH3), 14.4 (CH3). HRMS: 233.0775 [M+Na]+ 

([C11H14O4Na]+ requires 233.0784), 211.0967 [M+H]+ ([C11H15O4]+ requires 211.0965). 

IR: 1712 cm-1 (C=O). 

 1,3-Bis(3,4-dimethoxyphenyl)-1,3-propanedione (47). 

Prepared using a modified procedure to previously 

described (Omran and Specht, 2009a). NaH (1.75g, 44 

mmol) was washed in dry hexane (2×35 mL) and dry PhMe (35 mL) and suspended in 

dry PhMe (160 mL) under a N2 atmosphere. 3,4-Dimethoxyacetophenone (7.02 g, 39 

mmol) was added and the mixture stirred for 15 min. Ethyl 3,4-dimethoxybenzoate 

(7.74 mL, 43 mmol) was added slowly, the mixture stirred for a further 30 min and 

heated under reflux for 36 h. The solution was cooled to RT, quenched into H2O (150 

mL), the aqueous layer extracted with EtOAc (3×100 mL), the organic extracts 

combined and washed with brine (100 mL), dried over Na2SO4 and filtered. The solvent 

was removed under reduced pressure to yield an orange solid. The crude was purified 

by flash chromatography (150 g SiO2, with a solvent gradient of 30-65% EtOAc in 

hexane) yielding the product as a bright yellow solid (4.38 g, 33%). 1H NMR (CDCl3, 

300 MHz): 7.59 (2H, dd, J 2.0, 8.5, ArC6H), 7.54 (2H, d, J 2.0, ArC2H), 6.91 (2H, d, J 

8.5 Hz, ArC5H), 6.74 (1H, s, CH2), 3.97 (6H, s, OCH3), 3.94 (6H, s, OCH3). 13C NMR 

(CDCl3, 75 MHz): 184.5 (C=O), 152.7 (ArC4), 149.1 (ArC3), 128.4 (ArC1), 121.0 

(ArC6), 110.6 (ArC2), 109.9 (ArC5), 91.8 (C2), 56.0 (OCH3), 55.9 (OCH3). HRMS: 

367.1157 [M+Na]+ ([C19H20O6Na]+ requires 367.1152), 345.1329 [M+H]+ ([C19H21O6]+ 

requires 345.1333). IR: 1736 cm-1 (C=O), 1599 cm-1 (C=C). 
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1,3-Bis(3,4-dimethoxyphenyl)-1,3-propanediol (48). 

(Omran and Specht, 2009a) 1,3-Bis(3,4-

dimethoxyphenyl)-1,3-propanedione (2.55 g, 7.4 mmol) 

was dissolved in CH2Cl2 (37.5 mL) and MeOH (300 mL) was added followed by 

NaBH4 (855 mg, 22.6 mmol). The mixture was stirred at RT for 40 min and the solvent 

removed under reduced pressure, leaving a yellow solid. The solid was redissolved in 

CH2Cl2 (80 mL), washed with H2O (2×50 mL) and brine (50 mL) and the organic layer 

dried over Na2SO4. The solvent was removed under reduced pressure yielding the 

product as a yellow foam (2.58 g, 99%, mixture of diastereomers, 2:1 meso:anti), which 

was used without further purification. 1H NMR (CDCl3, 500 MHz): 6.92 (0.68H, d, J 

1.7, ArC2H), 6.88 (1.32H, d, J 1.4, ArC2H’), 6.87-6.83 (2H, m, ArC6H and ArC6H’), 

6.81 (0.68H, d, J 6.8, ArC5H), 6.79 (1.32H, d, J 8.1, ArC5H’), 4.91 (0.68H, dd, J 10.2, 

2.4, CH), 4.88 (1.32H, t, J 5.8, CH’), 3.86 (6H, s, OCH3 and OCH3’), 3.85 (6H, s, OCH3 

and OCH3’), 3.92 (0.68H, br s, OH), 3.51 (1.32H, br s, OH’), 2.18 (0.66H, dt, J 14.5, 

10.2, C2H), 2.12 (0.68H, t, J 5.8, CH2), 1.91 (0.66H, dt, J 14.5, 2.7, C2H). 13C NMR 

(CDCl3, 75 MHz): 184.5 (C=O), 152.7 (ArC4), 149.1 (ArC3), 128.4 (ArC1), 121.0 

(ArC6), 110.6 (ArC2), 109.9 (ArC5), 74.8 (CH), 71.5 (CH’), 56.0 (OCH3), 55.9 

(OCH3), 47.7 (CH2) 46.6 (CH2’). HRMS: 347.1487 [M-H]- ([C19H23O6]-
 requires 

347.1500), 371.1474 [M+Na]+ ([C19H24O6Na]+ requires 371.1465). HPLC: 0.32 min. 

IR: 3469 cm-1 (br, OH), 1138 cm-1 (C-OH). 

Ethyl 4,5-dimethoxy-2-nitrobenzoate (50). (Knesl et al., 2006) 

Nitric acid (70%, 6.9 mL) was cooled to 0 °C and a solution of ethyl 

3,4-dimethoxybenzoate (5.17 mL, 28.6 mmol) in AcOH (28.6 mL) 

was added dropwise. The mixture was stirred at 0 °C for 30 min, slowly warmed up to 

RT and stirred for a further 24 h. The solution was poured into an ice/H2O slurry 

(150 mL), extracted with EtOAc (2×50 mL), the organic extracts combined and washed 

with sat. aq. NaHCO3 (3×50 mL) and brine (2×75 mL), dried over Na2SO4, 

decolourised by addition of charcoal, filtered and the solvent removed under reduced 

pressure. The crude product was dried in a desiccator to remove any traces of solvent, 

yielding the product as an off-white amorphous solid (3.95 g, 60%), which was used 

without further purification. 1H NMR (CDCl3, 300 MHz): 7.60 (1H, s, ArC3H), 7.08 

(1H, s, ArC6H), 4.38 (2H, q, J 7.2, CH2), 3.99 (3H, s, OCH3), 3.98 (3H, s, OCH3), 1.36 

(3H, t, J 7.2, CH3). 13C NMR (CDCl3, 75  MHz): 165.8 (C=O), 152.5 (ArC5), 150.3 

(ArC4), 142.0 (ArC2), 122.0 (ArC1), 110.8 (ArC6), 1067.0 (ArC3), 62.4 (CH2), 56.6 

OH
MeO

MeO

OH
OMe

OMe

OEt

O
MeO

MeO NO2



 162 

(OCH3), 56.6 (OCH3), 13.8 (CH3). HRMS: 278.0647 [M+Na]+ ([C11H13NO6Na]+ 

requires 278.0635). IR: 1710 cm-1 (C=O), 1519 cm-1 (NO2). 

4,5-Dimethoxy-2-nitroacetophenone (51). (Dyer and Turnbull, 1999) 

Acetic anhydride (10 mL) was dissolved in nitric acid (70%, 200 mL), 

cooled to 0 °C and a solution of 3,4-dimethoxyacetophenone (11.5 g, 

63.8 mmol) in acetic anhydride (40 mL) was added dropwise. The mixture was allowed 

to warm up to RT and stirred for a further 3 h. The solution was poured into H2O 

(1.5 L), further diluted to 2 L and cooled in an ice bath to yield a heavy yellow 

precipitate. The product was filtered under reduced pressure, washed with water and 

dried in a desiccator (9.89 g, 69%), which was used without further purification. 1H 

NMR (CDCl3, 300 MHz): 7.62 (1H, s, ArC3H), 6.80 (1H, s, ArC6H), 4.02 (3H, s, 

OCH3), 3.99 (3H, s, OCH3), 2.50 (3H, s, CH3). 13C NMR (CDCl3, 75 MHz): 202.4 

(CO), 154.0 (ArC5), 149.6 (ArC4), 138.0 (ArC2), 132.8 (ArC1), 110.8 (ArC6), 107.0 

(ArC3), 56.7 (OCH3), 56.6 (OCH3), 30.4 (CH3). HRMS: 226.0709 [M+H]+ 

([C10H12NO5]+ requires 226.0710), 248.0529 [M+Na]+ ([C10H11NO5Na]+ requires 

248.0529). IR: 1733 cm-1 (C=O), 1494 cm-1 (NO2), 1372 cm-1 (NO2). 

1,5-Bis(3,4-dimethoxyphenyl)-1,5-pentanedione 

(54). (Omran and Specht, 2009a) Aluminium chloride 

(3.20 g, 24.0 mmol) was suspended in CH2Cl2 

(20 mL), the mixture cooled to -10 °C and 1,2-dimethoxybenzene (2.80 mL, 

22.0 mmol) was added dropwise over 10 min. Pentanedioyl dichloride (1.26 mL, 

10.0 mmol) was added at a rate of 20 µL min-1, the solution warmed up to 0 °C and 

stirred at this temperature for 5 h. The mixture was quenched into 2 M aq. HCl 

(100 mL) in ice (200 g) and allowed to warm up to RT. CH2Cl2 (100 mL) was added 

added to give two clear layers. The aqueous layer was further extracted with 200 mL of 

CH2Cl2, the organic extracts combined and washed with H2O (100 mL), 10% w/v aq. 

K2CO3 (3×100 mL) and brine (100 mL), dried over Na2SO4, filtered and the solvent 

removed under reduced pressure. The resulting red oil was purified by flash 

chromatography (100 g SiO2, with a gradient of 0-20% Et2O in CH2Cl2), yielding the 

product as an off-white solid (820 mg, 22%). 1H NMR (CDCl3, 300 MHz): 7.63 (2H, 

dd, J 1.1, 8.2, ArC6H), 7.56 (2H, d, J 1.1, ArC2H), 6.89 (2H, d, J 8.2, ArC5H), 3.95 

(12H, s, OCH3), 3.07 (4H, t, J 6.9, CH2CH2CH2), 2.19 (2H, qn, J 6.9, CH2CH2CH2). 13C 

NMR (CDCl3, 75 MHz): 198.6 (C=O), 153.3 (ArC4), 149.0 (ArC3), 130.1 (ArC1), 

122.7 (ArC6), 110.2 (ArC2), 110.4 (ArC5), 56.1 (OCH3), 56.0 (OCH3), 37.4 
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(CH2CH2CH2), 19.5 (CH2CH2CH2). HRMS: 395.1459 [M+Na]+ ([C21H24O6Na]+ 

requires 395.1471), 373.1659 [M+H]+ ([C21H25O6]+ requires 373.1651). IR: 1661 cm-1 

(C=O). 

1,5-Bis(4,5-dimethoxy-2-nitrophenyl)-1,5-

pentanedione (57). Prepared using a modified 

procedure to previously described (Omran and Specht, 

2009a). HNO3 (70%, 220 µL, 3.48 mmol) was dissolved in CH2Cl2 (2.6 mL) at -15 °C. 

TFA (810 µL, 10.5 mmol) was added dropwise at -15 °C and the mixture stirred for 45 

min at this temperature. 1,5-Bis(3,4-dimethoxyphenyl)-1,5-pentanedione (458 mg, 

1.31 mmol) in CH2Cl2 (1.4 mL) was added dropwise and the mixture warmed up to 

0 °C and stirred for a further 2 h. The reaction was quenched by careful addition of sat. 

aq. NaHCO3 (14 mL), the mixture extracted with CH2Cl2 (14 mL), the organic extract 

washed with brine, dried over Na2SO4, filtered and the solvent removed under reduced 

pressure. The crude was purified by flash chromatography (75 g SiO2, 10% Et2O in 

CH2Cl2), yielding the product as a yellow solid (307 mg, 53%). 1H NMR (CDCl3, 

300 MHz): 7.59 (2H, s, ArC3H), 6.85 (2H, s, ArC6H), 4.00 (6H, s, OCH3), 3.97 (6H, s, 

OCH3), 2.96 (4H, t, J 6.6, CH2CH2CH2), 2.25 (2H, p, J 6.6, CH2CH2CH2). 13C NMR 

(CDCl3, 75 MHz): 202.3 (C=O), 154.3 (ArC5), 149.4 (ArC4), 137.9 (ArC2), 138.0 

(ArC1), 108.7 (ArC6), 106.8 (ArC3), 56.8 (OCH3), 56.6 (OCH3), 41.4 (CH2CH2CH2), 

17.4 (CH2CH2CH2). HRMS: 485.1168 [M+Na]+ ([C21H22N2O10Na]+ requires 485.1172). 

IR: 1694 cm-1 (C=O). 

1,5-Bis(4,5-dimethoxy-2-nitrophenyl)-1,5-

pentanediol (58). (Omran and Specht, 2009a) 1,5-

Bis(4,5-dimethoxy-2-nitrophenyl)-1,5-pentanedione 

(300 mg, 0.68 mmol) was suspended in a mixture of CH2Cl2:MeOH (1:1, 7 mL), and 

NaBH4 (104 mg, 2.74 mmol) was added in one portion. The mixture was stirred for 

45 min, evaporated to dryness and redissolved in CH2Cl2 (12 mL). The solution was 

washed with H2O (2×7 mL) and brine (7 mL), dried over Na2SO4, filtered and the 

solvent removed under reduced pressure to yield the product as a flaky, yellow solid 

(298 mg, 99%)*, which was used without further purification. 1H NMR (CDCl3, 

300 MHz): 7.58 (2H, s, ArC3H), 7.29 (2H, s, ArC6H), 5.45 (2H, m, CH), 4.00 (6H, s, 

OCH3), 3.94 (6H, s, OCH3), 2.46 (1H, d, J 3.9, OH), 2.35 (1H, d, J 3.9, OH), 1.84 (6H, 

                                                
* Only one set of signals was visible by NMR: either the diastereomers have the same NMR spectrum or 
the reduction was stereoselective.  
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m, CH2). 13C NMR (CDCl3, 75 MHz): 153.7 (ArC5), 147.7 (ArC4), 139.6 (ArC2), 

136.1 (ArC1), 109.0 (ArC6), 107.7 (ArC3), 69.4 (CH), 56.4 (OCH3), 56.4 (OCH3), 37.7 

(CH2CH2CH2), 23.0 (CH2CH2CH2). HRMS: 489.1489 [M+Na]+ ([C21H26N2O10Na]+ 

requires 489.1485). IR: 3292 cm-1 (br, OH), 1507 cm-1 (NO2), 1324 cm-1 (NO2). 

1,5-Bis(4,5-dimethoxy-2-nitrophenyl)-1,5-

dibromopentane (53). (Omran and Specht, 2009a) 

1,5-Bis(4,5-dimethoxy-2-nitrophenyl)-1,5-pentanediol 

(45 mg, 0.10 mmol) was dissolved in acetyl bromide (289 µL, 0.29 mmol) at 0 °C and 

HBr (48% aq. solution, 20 µL, 0.02 mmol) was added. The solution was allowed to 

warm up to RT and stirred for 1.5 h. The mixture was quenched by addition of sat. aq. 

NaHCO3 (5 mL), extracted with CH2Cl2 (3×7 mL), the organic extracts combined and 

washed with brine (7 mL), dried over Na2SO4, filtered and concentrated under reduced 

pressure. The crude was filtered through a short bed of Florisil® and the solvent 

removed under reduced pressure, yielding the product as a light yellow foam (55 mg, 

99%, 1:1 mixture of diastereomers). 1H NMR (300 MHz, CDCl3): 7.49 (2H, s, ArC3H), 

7.46 (2H, s, ArC3H’), 7.23 (2H, s, ArC6H), 7.22 (2H, s, ArC6H’), 5.89 (2H, t, J 7.2, 

CH), 5.85 (2H, t, J 5.4, CH’), 4.02 (6H, s, OCH3), 4.01 (6H, s, OCH3’), 3.95 (6H, s, 

OCH3), 3.94 (6H, s, OCH3’), 2.2 (8H, m, CH2CH2CH2/CH2CH2CH2’), 1.80 (4H, m, 

CH2CH2CH2/CH2CH2CH2). 13C NMR (CDCl3, 75 MHz): 153.4 (ArC5), 153.3 (ArC5’), 

148.6 (ArC4/ArC4’), 139.9 (ArC2/ArC2’), 131.4 (ArC1), 131.2 (ArC1’), 111.7 (ArC6), 

111.6 (ArC6’), 107.4 (ArC3/ArC3’), 56.5 (OCH3/OCH3’), 56.4 (OCH3/OCH3’), 48.5 

(CH), 48.2 (CH’), 39.5 (CH2CH2CH2), 39.2 (CH2CH2CH2’), 26.4 (CH2CH2CH2), 26.3 

(CH2CH2CH2’). HRMS: 511.0712 [M-Br]+ ([C21H24
79Br1N2O8]+ requires 511.0716), 

628.9533 [M+K]+ ([C21H24
79Br2N2O8K]+ requires 628.9536). IR: 1495 cm-1 (NO2), 1345 

cm-1 (NO2). 

 α,α-Di(bromoacetyl) toluene (74). Benzaldehyde (195 µL, 1.92 

mmol) and bromoacetic anhydride (750 mg, 2.89 mmol) were 

mixed and stirred at 85 °C for 16 h under inert atmosphere. The 

mixture was quenched into sat. aq. NaHCO3 (50 mL), the aqueous layer extracted with 

CH2Cl2 (3×50 mL), the organic extracts combined, washed with brine (50 mL), filtered 

and the solvent removed under reduced pressure. The light yellow oil was allowed to 

slowly crystallise at RT, cooled to 0 °C and triturated with Hexane, to give a low 

melting, colourless, crystalline solid (525 mg, 75%). 1H NMR (500 MHz, CDCl3): 7.71 

(1H, s, CH), 7.54 (2H, dd, J 6.1, 7.6, PhC3H/PhC5H), 7.45-7.43 (3H, m, 
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PhC2H/PhC4H/PhC6H), 3.90 (4H, s, CH2). 13C NMR (75 MHz, CDCl3): 165.0 (C=O), 

133.8 (PhC1), 130.4 (PhC4), 128.8 (PhC2/PhC6), 126.7 (PhC3), 91.8 (CH), 25.0 (CH2). 

HRMS: 381.9282 [M+NH4]+ ([C11H14
81Br2O4N]+ requires 381.9290), 386.8836 

[M+Na]+ ([C11H10
79Br81BrO4Na]+ requires 386.8843), 402.8574 [M+K]+ 

([C11H10
79Br81Br O4K]+ requires 402.8583). IR: 1763 cm-1 (C=O). 

α,α-Di((ethylthio)acetyl) toluene (79). Benzyl 1,1-

di(bromoacetate) (488 mg, 1.3 mmol) was dissolved in MeCN 

(6.3 mL) and NEt3 (725 µL, 5.2 mmol) was added followed by 

EtSH (1.97 mL, 26.6 mmol). The mixture was stirred at RT for 3 h and the solvent 

removed under reduced pressure. The crude material was redissolved in CH2Cl2 and 

evaporated twice to remove all traces of EtSH before purification by flash 

chromatography (10% EtOAc in hexane) yielding the product as a colourless liquid 

(140 mg, 33%).  1H NMR (500 MHz, CDCl3): 7.75 (1H, s, CH), 7.58-7.55 (2H, m, 

PhC3H/PhC5H), 7.45-7.43 (3H, m, PhC2H/PhC4H/PhC6H), 3.31 (4H, s, COCH2), 2.66 

(4H, q, J 7.4, CH2CH3), 1.37 (6H, t, J 7.4, CH2CH3). 13C NMR (75 MHz, CDCl3): 168.3 

(C=O), 134.8, 130.0, 128.7 (PhC2/PhC4/PhC6), 126.8 (PhC3/PhC5), 90.7 (CH), 33.0 

(COCH2), 26.5 (CH2CH3), 14.1 (CH2CH3). HRMS: 346.1163 [M+NH4]+ 

([C15H24O4S2N]+ requires 346.1147), 679.1588 [2M+Na]+ ([C30H40O8S4Na]+ requires 

679.1504). IR: 1746 cm-1 (C=O).  

Benzyl 1-methyl-1-bromoacetate (83). NaHCO3 (5.2 g, 62 mmol) was 

suspended in MeCN (100 mL) and cooled to 0 °C. 1-Phenyl ethanol 

(2.5 mL, 20.7 mmol) was added followed by bromoacetyl bromide 

(4.5 mL, 52 mmol), the mixture stirred at 0 °C for 30 min, warmed up to RT and stirred 

for a further 2 h. The suspension was filtered, the solvent removed under reduced 

pressure and the residue purified by flash chromatography (12% EtOAc in hexane) 

yielding the product as a colourless liquid (4.11 g, 82%). 1H NMR (500 MHz, CDCl3): 

7.40-7.32 (5H, m, PhCH), 5.96 (1H, q, J 6.6, CH), 3.86 (2H, s, CH2), 1.61 (3H, d, J 6.6, 

CH3); 13C NMR (75 MHz, CDCl3): 166.4 (C=O), 140.7, 128.5, 128.2 

(PhC2/PhC4/PhC6), 126.2 (PhC3/PhC5), 74.4 (CH), 26.2 (CH2), 21.9 (CH3). HRMS: 

264.9834 [M+Na]+ ([C10H11
79BrO2Na]+ requires 264.9840). IR: 1731 cm-1 (C=O).  

Benzyl 1-methyl-1-(ethylthio)acetate (85). (1.0 g, 4.1 mmol) was 

dissolved in MeCN (20 mL) and EtSH (3.1 mL, 41.1 mmol) was added 

followed by NEt3 (1.14 mL, 8.2 mmol) were added. The solution was 

stirred at RT for 3 h and the solvent removed under reduced pressure. The crude 
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material was redissolved in CH2Cl2 and evaporated twice to remove all traces of EtSH. 

The crude material was purified by flash chromatography (10% EtOAc in hexane) to 

yield the product as a colourless liquid (853 mg, 94%). 1H NMR (500 MHz, CDCl3): 

7.32-7.21 (5H, m, PhCH), 5.84 (1H, q, J 6.6, CH), 3.22 (2H, s, COCH2), 2.54 (2H, q, J 

7.4, CH2CH3), 1.50 (3H, d, J 6.6, CHCH3), 1.16 (3H, t, J 7.4, CH2CH3). 13C NMR 

(75 MHz, CDCl3): 168.8 (C=O), 141.3, 128.5, 128.0 (PhC2/PhC4/PhC6), 126.1 

(PhC3/PhC5), 73.3 (CH), 33.5 (COCH2), 26.5 (CH2CH3), 22.1 (CHCH3), 14.1 

(CH2CH3). HRMS: 225.0945 [M+H]+ ([C12H17O2S]+ requires 225.0949), 242.1211 

[M+NH4]+ ([C12H20NO2S]+ requires 242.1215), 247.0766 [M+Na]+ ([C12H16O2SNa]+ 

requires 247.0769), 471.1638 [2M+Na]+ ([C24H32O4S2Na]+ requires 471.1640). IR: 

1724 cm-1 (C=O).  

1-Phenylprop-2-en-1-ol (87). (Štambaský et al., 2008) Benzaldehyde 

(4.86 mL, 47.8 mmol) was dissolved in dry THF (160 mL) and cooled to 0 

°C. Vinylmagnesium bromide (82 mL, 57.4 mmol) was added dropwise and 

the mixture stirred at this temperature for 4 h. The suspension was quenched with sat. 

aq. NH4Cl (250 mL), extracted with EtOAc (2×250 mL), the extracts combined, washed 

with brine (200 mL), dried over Na2SO4, filtered and the solvent removed under 

reduced pressure. The crude material was purified by flash chromatography (10-15% 

EtOAC in hexane) to give the product as a light yellow liquid (5.2 g, 81%). 1H NMR 

(500 MHz, CDCl3): 7.39-7.34 (4H, m, PhCH), 7.30-7.27 (1H, m, PhCH), 6.06 (1H, ddd, 

J 6.1, 10.3, 17.0, HC=CH2), 5.36 (1H, dt, J 1.3, 17.0, HC=CHaCHb), 5.21 (1H, m, CH), 

5.20 (1H, dt, J 1.3, 10.3, HC=CHaHb), 1.93 (1H, d, J 3.7, OH); 13C NMR (75 MHz, 

CDCl3): 140.2 (HC=CH2), 128.6, 128.0, 127.8, 126.2 (Ph), 115.1 (HC=CH2), 75.4 

(CH); HRMS: 291.1347 [M+Na]+ ([C18H20O2Na]+ requires 291.1361). IR: 1642 cm-1 

(C=C), 3357 cm-1 (br, OH).  

Kinetic resolution of 1-phenylprop-2-en-1-ol. (Štambaský et al., 2008) 1-Phenylprop-

2-en-1-ol (5.0 g, 37.3 mmol) was dissolved in dry PhMe (320 mL) and Novozyme 435 

(985 mg) was added followed by 4 Å molecular sieve powder (5.0 g) and isopropenyl 

acetate (17.3 mL, 157 mmol). The suspension was stirred vigorously at 40 °C for 16 h, 

filtered and the solvent removed under reduced pressure. The residue was purified by 

flash chromatography (0-15% EtOAc in hexane) yielding (S)-1-phenylprop-2-en-1-ol 

(1.67 g, 33%, 66% ee) and (R)-1-phenylprop-2-enyl acetate (2.58 g, 39%) as colourless 

liquids.  

HO
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 (R)-1-Phenylprop-2-enyl acetate ((R)-90). 1H NMR (500 MHz, CDCl3): 

7.40-7.27 (4H, m, PhCH), 7.26-7.21 (1H, m, PhCH), 6.26 (1H, dt, J 5.9, 

1.3, CH), 6.01 (1H, ddd, J 5.9, 10.5, 17.1, HC=CH2), 5.29 (1H, dt, J 17.1, 

1.3, HC=CHaHb), 5.25 (1H, dt, J 10.5, 1.3, HC=CHaHb), 2.21 (3H, s, CH3). 13C NMR 

(75 MHz, CDCl3): 169.4 (C=O), 138.9, 128.6, 128.2, 127.1 (Ph), 136.3 (HC=CH2), 

117.0 (HC=CH2), 76.2 (CH), 21.2 (CH3). IR: 1494 cm-1 (C=O) 

 (S)-1-Phenylprop-2-en-1-ol ((S)-87). 1H NMR (500 MHz, CDCl3): 7.39-

7.34 (4H, m, PhCH), 7.30-7.27 (1H, m, PhCH), 6.06 (1H, ddd, J 6.1, 10.3, 

17.0, HC=CH2), 5.36 (1H, dt, J 17.0, 1.3, HC=CHaHb), 5.21 (1H, m, CH), 

5.20 (1H, dt, J 10.3, 1.3, HC=CHaHb), 1.93 (1H, d, J 3.7, OH); 13C NMR (75 MHz, 

CDCl3): 140.2 (HC=CH2), 128.6, 128.0, 127.8, 126.2 (Ph), 115.1 (HC=CH2), 75.4 

(CH). HRMS: 133.0652 [M-H]- ([C9H9O]- requires 133.0653). IR: 1642 cm-1 (C=C), 

3352 cm-1 (br, OH).  

 (R)-1-Phenylprop-2-en-1-ol ((R)-87). (Štambaský et al., 2008) 

(R)-1-Phenylprop-2-enyl acetate (2.58 g, 14.6 mmol) was cooled to 0 °C and 

a solution of KOH (858 mg, 15.3 mmol) in MeOH (12 mL) was added 

dropwise. The mixture was heated to 50 °C and stirred for 2 h. The solution was diluted 

with brine (25 mL) and extracted with EtOAc (3×40 mL), the organic extracts 

combined, dried over Na2SO4, filtered and the solvent removed to give the product as a 

yellow liquid (1.76 g, 90%). 1H NMR (500 MHz, CDCl3): 7.39-7.34 (4H, m, PhCH), 

7.30-7.27 (1H, m, PhCH), 6.06 (1H, ddd, J 6.1, 10.3, 17.0, HC=CH2), 5.36 (1H, dt, J 

17.0, 1.3, HC=CHaHb), 5.21 (1H, m, CH), 5.20 (1H, dt, J 10.3, 1.3, HC=CHaHb), 1.93 

(1H, d, J 3.7, OH). 13C NMR (75 MHz, CDCl3): 140.2 (HC=CH2), 128.6, 128.0, 127.8, 

126.2 (Ph), 115.1 (HC=CH2), 75.4 (CH). IR: 1642 cm-1 (C=C), 3350 cm-1 (br, OH).  

General procedure for the synthesis of Mosher’s esters 

 (S)-1-Phenylprop-2-en-1-ol S-MTPA ester (89). (Mallavadhani 

and Rao, 1994) (S)-1-Phenylprop-2-en-1-ol (5.97 µL, 44.5 µmol) 

was dissolved in dry CH2Cl2 (1.5 mL) and cooled to 0 °C. DMAP 

(10.9 mg, 89 µmol) and Et3N (8.68 µL, 62.3 µmol) were added followed by 

(S)-MTPACl (10 µL, 53.4 µmol). The mixture was stirred for 10 min, quenched with 

sat. aq. NH4Cl (1.5 mL) and diluted with Et2O (2 mL). The organic layer was washed 

with water (1.5 mL) and brine (1.5 mL), dried over Na2SO4, filtered and the solvent 

removed under reduced pressure. The crude was purified by flash chromatography (0-

5% EtOAc in hexane), yielding the product as a colourless oil. 1H NMR (500 MHz, 
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CDCl3): 7.43-7.31 (10H, m, PhCH), 6.49 (1H, dt, J 5.9, 1.3, CH), 5.96 (1H, ddd, J 5.9, 

10.5, 17.0, HC=CH2), 5.29 (1H, dt, J 17.0, 1.3, HC=CHaHb), 5.26 (1H, dt, J 10.5, 1.3, 

HC=CHaHb), 3.47 (3H, s, OCH3). 13C NMR (75 MHz, CDCl3): 165.6 (C=O), 137.6 

(CF3), 134.9 (HC=CH2), 132.3, 129.5, 128.7, 128.3, 127.5, 127.4, 125.3 (Ph), 117.8 

(HC=CH2), 78.3 (CH), 77.2 (CCF3), 55.4 (CH3). HRMS: 368.1473 [M+NH4]+ 

([C19H21NF3O3]+ requires 368.1473), 373.1028 [M+Na]+ ([C19H17F3O3Na]+ requires 

373.1028), 723.2158 [2M+Na]+ ([C38H34F6O6Na]+ requires 723.2157). IR: 1746 cm-1 

(C=O), 1411 cm-1 (C=C).  

 (S)-1-Phenylprop-2-en-1-ol R-MTPA ester (88). 1H NMR 

(500 MHz, CDCl3): 7.42-7.24 (10H, m, PhCH), 6.45 (1H, dt, J 6.3, 

1.2, CH), 6.04 (1H, ddd, J 6.3, 10.4, 17.1, HC=CH2), 5.39 (1H, dt, J 

17.1, 1.2, HC=CHaHb), 5.31 (1H, dt, J 10.4, 1.2, HC=CHaHb), 3.54 (3H, s, OCH3). 13C 

NMR (75 MHz, CDCl3): 165.5 (C=O), 137.6 (CF3), 135.2 (HC=CH2), 132.2, 129.5, 

128.5, 128.5, 128.3, 127.4, 127.1 (Ph), 118.4 (HC=CH2), 78.6 (CH), 77.2 (CCF3), 55.5 

(CH3). HRMS: 368.1455 [M+NH4]+ ([C19H21NF3O3]+ requires 368.1473), 373.1009 

[M+Na]+ ([C19H17F3O3Na]+ requires 373.1028), 723.2148 [2M+Na]+ ([C38H34F6O6Na]+ 

requires 723.2157). IR: 1746 cm-1 (C=O), 1411 cm-1 (C=C).  

 (R)-1-Phenylprop-2-enyl bromoacetate ((R)-92). (R)-1-Phenylprop-

2-en-1-ol (600 mg, 4.47 mmol) was dissolved in dry CH2Cl2 (45 mL) 

and the solution cooled to 0 °C. Pyridine (720 µL, 8.94 mmol) was 

added followed by bromoacteyl bromide (779 µL, 8.94 mmol), forming a white 

suspension. The mixture was stirred at 0 °C for 2 h and quenched with sat. aq. NH4Cl 

(100 mL). The aqueous layer was extracted with CH2Cl2 (3×100 mL), the organic 

extracts combined, washed with sat. aq. CuSO4 (100 mL), dried over Na2SO4, filtered 

and the solvent removed under reduced pressure. The crude material was purified by 

flash chromatography (0-8% EtOAc in hexane), yielding the product as a colourless 

liquid (936 mg, 82%). 1H NMR (500 MHz, CDCl3): 7.38-7.36 (4H, m, PhCH), 7.35-

7.31 (1H, m, PhCH), 6.30 (1H, dt, J 6.0, 1.2, CH), 6.02 (1H, ddd, J 6.0, 10.5, 17.1, 

HC=CH2), 5.36 (1H, dt, J 17.1, 1.2, HC=CHaHb), 5.30 (1H, dt, J 10.5, 1.2, HC=CHaHb), 

3.89 (1H, d, J 12.4, CHaHbBr), 3.86 (1H, d, J 12.4, CHaHbBr). 13C NMR (75 MHz, 

CDCl3): 166.2 (C=O), 138.2 (HC=CH2), 135.1 (PhC1), 128.7, 128.5, 127.2 

(PhC2/PhC3/PhC4), 117.8 (HC=CH2), 78.1 (CH), 26.2 (CH2); HRMS: 276.9834 

[M+Na]+ ([C11H11
79BrO2Na]+ requires 276.9834), 278.9812 [M+Na]+ 

([C11H11
81BrO2Na]+ requires 278.9814). IR: 1734 cm-1 (C=O), 1644 cm-1 (C=C).  
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 (S)-1-Phenylprop-2-enyl bromoacetate ((S)-92). (S)-1-Phenylprop-

2-en-1-ol (3.93 g, 29.3 mmol) was dissolved in dry CH2Cl2 (30 mL) 

and the solution cooled to 0 °C. Pyridine (4.72 mL, 58.6 mmol) was 

added followed by bromoacetyl bromide (5.10 mL, 58.6 mmol), forming a yellow 

suspension. The mixture was stirred at 0 °C for 2 h and quenched in sat. aq. NH4Cl 

(100 mL). The aqueous layer was extracted with CH2Cl2 (3×100 mL), the organic 

extracts combined, washed with sat. aq. CuSO4 (100 mL) and brine (100 mL), dried 

over Na2SO4, filtered and the solvent removed under reduced pressure. The crude was 

purified by flash chromatography (0-8% EtOAc in hexane), yielding the product as a 

yellow liquid (6.18 g, 83%). 1H NMR (500 MHz, CDCl3): 7.38-7.36 (4H, m, PhCH), 

7.35-7.32 (1H, m, PhCH), 6.29 (1H, dt, J 6.0, 1.2, CH), 6.02 (1H, ddd, J 6.0, 10.5, 17.1, 

HC=CH2), 5.36 (1H, dt, J 17.1, 1.2, HC=CHaHb), 5.30 (1H, dt, J 10.5, 1.2, HC=CHaHb), 

3.89 (1H, d, J 12.4, CHaHbBr), 3.86 (1H, d, J 12.4, CHaHbBr). 13C NMR (75 MHz, 

CDCl3): 166.2 (C=O), 138.0 (HC=CH2), 135.4 (PhC1), 128.7, 128.5, 127.2 

(PhC2/C3/C4), 117.8 (HC=CH2), 78.1 (CH), 26.0 (CH2). HRMS: 276.9831 [M+Na]+ 

([C11H11
79BrO2Na]+ requires 276.9834). IR: 1733 (C=O). 

N-acetyl-S-[(R)-1-phenylprop-2-enylacetate]-L-cysteine 

(93). (R)-1-Phenylprop-2-enyl bromoacetate (200 mg, 0.78 

mmol) was dissolved in MeCN (4 mL) and N-acetyl-L-

cysteine (140 mg, 0.86 mmol) was added followed by NEt3 (240 µL, 1.72 mmol). The 

mixture was stirred for 1h, quenched into aq. 1M HCl (25 mL), extracted with EtOAc 

(3×30 mL), the organic extracts combined, dried over Na2SO4, filtered and the solvent 

removed under reduced pressure. The crude was purified by flash chromatography (1% 

AcOH and 5% MeOH in CH2Cl2) yielding the product as a colourless oil (225 mg, 

86%). 1H NMR (500 MHz, CDCl3): 7.38-7.36 (4H, m, PhCH), 7.34-7.32 (1H, m, 

PhCH), 6.91 (1H, d, J 6.7, NH), 6.27 (1H, d, J 6.1, CH), 6.02 (1H, ddd, J 6.1, 10.4, 

17.0, CH=CH2), 5.33 (1H, dt, J 17.0, 1.2, HC=CHaHb) 5.29 (1H, dt, J 10.4, 1.2, 

HC=CHaHb), 4.74 (1H, ddd, J 4.7, 6.0, 6.7, HNCH), 3.40 (1H, d, J 15.7, CHaHb), 3.35 

(1H, d, J 15.7, CHaHb), 3.14 (1H, dd, J 6.0, 14.2, Cys-CHaHb), 3.05 (1H, dd, J 4.7, 14.2, 

Cys-CHaHb), 2.04 (3H, s, CH3). 13C NMR (75 MHz, CDCl3): 176.5 (CO2H), 173.4 

(CONH), 170.1 (CO2CH), 138.1, 128.7, 128.5, 127.2 (Ph), 135.5 (HC=CH2), 117.8 

(HC=CH2), 77.9 (CH), 52.4 (cys-CH), 34.9 (COCH2), 34.5 (cys-CH2), 22.8 (CH3). 

HRMS: 338.10568 [M+H]+ ([C16H20NO5S]+ requires 338.1062), 360.08761 [M+N]+ 

([C16H19NO5SNa]+ requires 360.088), 382.06967 [M-H+2Na]+ ([C16H18NO5SNa2]+ 
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requires 382.0701), 697.18562 [2M+Na]+ ([C32H38NO10S2Na]+ requires 683.1834). IR: 

1713 cm-1 (C=O), 1627 cm-1 (C=O), 3306-2929 cm-1 (br, OH, NH, CH).  

2-Butene-1,4-diol di(bromoacetate) (94). 

(S)-1-Phenylprop-2-enyl bromoacetate (301 µL, 1.60 

mmol) was dissolved in dry CH2Cl2 (7 mL) and the 

solution flushed with N2. Hoveyda-Grubbs II catalyst (50 

mg, 0.08 mmol, 5 mol%) was added, the mixture heated to 45 °C and stirred at this 

temperature for 16 h. The solution was cooled to RT, a second aliquot of Hoyveda-

Grubbs II catalyst was added (50 mg, 0.08 mmol, 5 mol%), the solution re-heated to 45 

°C and stirred for a further 24 h. The mixture was cooled to RT, a solution of potassium 

2-isocyanoacetate (45 mg, 22 mol%) in MeOH (1 mL) was added and the mixture 

stirred for 1 h. The solvent was removed under reduced pressure and the crude purified 

by flash chromatography (5-10% EtOAc in hexane), yielding the product as an off-

white solid (172 mg, 45%). (500 MHz, CDCl3): 7.33-7.21 (10H, m, PhCH), 6.26 (2H, 

dd, J 1.4, 3.1, CH), 5.93 (2H, dd, J 1.4, 3.1, HC=CH), 3.71 (4H, s, CH2). 13C NMR (75 

MHz, CDCl3): 166.1 (C=O), 137.6 (PhC1), 130.6 (HC=CH), 128.8, 128.7, 128.3 

(PhC2/PhC3/PhC4), 76.8 (CH), 25.9 (CH2). HRMS: 504.9481 [M+Na]+ 

([C20H18O4
79Br81BrNa]+ requires 504.9444). IR: 1741 cm-1 (C=O), 1675 cm-1 (C=C), 

1601 cm-1, 1584 cm-1, 1492 cm-1 (ArC=C), 3029 cm-1, 2982-2908 cm-1 (C-H).  

4,5-Dimethoxy-2-nitrobenzaldehyde (83). Conc. HNO3 (70%, 80 

mL, 903 mmol) was cooled to 0 °C and 3,4-dimethoxybenzaldehyde 

(10.0 g, 60.2 mmol) was added portionwise. The solution was allowed 

to slowly warm up to RT over 3 h, poured into a water/ice slurry (600 mL), the 

precipitate collected by filtration and washed with ice cold EtOH, to give the product as 

a yellow solid (10.9 g, 85%). 1H NMR (500 MHz, CDCl3): 10.46 (s, 1H, COH), 7.62 (s, 

1H, PhC3H), 7.43 (s, 1H, PhC6H), 4.04 (s, 3H, OCH3), 4.03 (s, 3H, OCH3). 13C NMR 

(75 MHz, CDCl3): 187.7 (C=O), 153.3 (PhC5), 152.5 (PhC4), 143.9 (PhC2), 125.6 

(PhC1), 109.8 (PhC6), 107.2 (PhC3), 56.8 (OCH3), 56.8 (OCH3). HRMS: 212.0554 

[M+Na]+ ([C9H10NO5]+ requires 212.0554). IR: 1756 cm-1 (C=O), 2905 cm-1, 2839 cm-1, 

3095-3064 cm-1 (C-H), 1509 cm-1, 1333 cm-1 (NO2).  

1-(4,5-Dimethoxy-2-nitrobenzyl)-prop-2-en-1-ol (97). 

4,5-Dimethoxy-2-nitrobenzaldehyde (2.0 g, 9.47 mmol) was 

dissolved in dry THF (50 mL) and cooled to -78 °C. Vinylmagnesium 

bromide (1M solution in THF, 14.2 mL, 14.2 mmol) was added slowly and the solution 
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stirred and allowed to warm up to RT slowly over 16 h. The solution was poured slowly 

into sat. aq. NH4Cl/ice slurry (100 mL), extracted with EtOAc (3×100 mL), the extracts 

combined and washed with brine (100 mL), dried over Na2SO4, filtered and the solvent 

removed under reduced pressure. The crude mixture was purified by flash 

chromatography (20% EtOAc in hexane) yielding the product as a yellow fluffy solid 

(1.58 g, 70%). 1H NMR (500 MHz, CDCl3): 7.58 (1H, s, PhC3H), 7.21 (1H, s, PhC6H), 

6.08 (1H, ddd, J 17.2, 10.5, 4.7, CH=CH2), 5.93 (1H, d, J 4.7, CH), 5.43 (1H, dt, J 17.2, 

1.3, HC=CHaHb), 5.25 (1H, dt, J 10.5, 1.3, HC=CHaHb), 3.99 (3H, s, OCH3), 3.95 (3H, 

s, OCH3). 13C NMR (75 MHz, CDCl3): 153.6 (PhC5), 148.0 (PhC4), 140.1 (PhC2), 

138.1 (HC=CH2), 133.1 (PhC1), 115.8 (HC=CH2), 109.8 (PhC6), 107.9 (PhC3), 69.8 

(CH), 56.4 (OCH3), 56.4 (OCH3). HRMS: 262.0864 [M+H]+ ([C11H14NO5]
+ requires 

240.0867), 262.0689 [M+Na]+ ([C11H13NO5Na]+ requires 262.0686), 501.1486 

[2M+Na]+ ([C22H26N2NaO10]+ requires 501.1480). IR: 3533 cm-1 (OH), 3110-2840 cm-1 

(C-H), 1613 cm-1, 1502 cm-1 (C=C). 

1,4-Di(4,5-dimethoxy-2-nitrobenzyl)-but-2-en-1,4-

diol (98). 1-(4,5-Dimethoxy-2-nitrobenzyl)-prop-2-en-1-

ol (500 mg, 2.1 mmol) was dissolved in dry CH2Cl2 

(7 mL), the solution flushed with N2 and Hoveyda-Grubbs II catalyst (65.5 mg, 

0.10 mmol, 5 mol%) was added. The mixture was heated at 45 °C for 16 h. The solution 

was cooled to RT, a solution of potassium isocyanoacetate (65 mg, 25 mol%) in MeOH 

(2.3 mL) was added and the mixture stirred for 1 h, forming a heavy precipitate. The 

precipitate was collected by filtration and washed with methanol, yielding the product 

as an off-white solid (440 mg, 93%, 45:55 mixture of diastereomers). 1H NMR 

(500 MHz, d6-DMSO): 7.54 (1.8H, s, PhC3H), 7,53 (2.2H, s, PhC3H’), 7.22 (1.8H, s, 

PhC6H), 7.21 (2.2H, s, PhC6H’), 5.86-5.83 (8H, m, C2H, C2H’, C1H, OH), 5.72 (4H, 

br s, C1H’, OH’), 3.86 (5.4H, s, OMe), 3.86 (5.4H, s, OMe), 3.85 (13.2H, s, OMe’, 

OMe’). 13C NMR (75 MHz, d6-DMSO): 152.9 (PhC5), 152.9 (PhC5’), 147.2 

(PhC4/PhC4’), 139.5 (PhC2/PhC2’), 134.3 (C2), 134.2 (C2’), 131.3 (PhC1), 131.3 

(PhC1’), 109.6 (PhC6), 109.4 (PhC6’), 107.4 (PhC3), 107.4 (PhC3’), 67.1 (C1), 67.0 

(C1’), 56.0 (CH3/CH3’), 55.9 (CH3/CH3’). HRMS: 473.1182 [M+Na]+ 

([C20H22N2NaO10]+ requires 473.1167), 923.2450 [2M+Na]+ ([C40H44N4NaO20]+ requires 

923.2442). IR: 3512 cm-1, 3470 cm-1 (OH), 1514 cm-1, 1327 cm-1 (NO2). 
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1,4-Di-O-bromoacetyl-1,4-di(4,5-dimethoxy-2-

nitrobenzyl)-but-2-en-1,4-diol (95). 1,4-Di(4,5-

dimethoxy-2-nitrobenzyl)-but-2-en-1,4-diol (100 mg, 

0.22 mmol) was suspended in CH2Cl2, the suspension 

cooled to 0 °C and bromoacetyl bromide (38 µL, 0.44 mmol) was added followed by 

pyridine (36 µL, 0.44 mmol). The solution was stirred at 0 °C for 1 h, quenched into 

H2O (5 mL), extracted with CH2Cl2 (3×5 mL), the extracts combined and washed with 

sat. aq. CuSO4 (2×5 mL) and the solvent removed under reduced pressure. The crude 

product was purified by flash chromatography (20%-33% EtOAc in hexane), yielding 

the product as a light brown powder (57 mg, 37%, 9:1 ratio of diastereomers). 1H NMR 

(500 MHz, CDCl3): 7.63 (2H, s, PhC3H’), 7.58 (2H, s, PhC3H), 7.05 (4H, dd, J 2.7, 

1.0, C1H/C1H’), 7.04 (4H, s, PhC6H/PhC6H’), 6.09 (2H, dd, J 1.0, 2.7, C2H’), 6.06 

(2H, dd, J 1.0, 2.7, C2H), 4.01 (s, 6H, OCH3’), 4.00 (s, 6H, OCH3), 3.96 (s, 6H, 

OCH3’), 3.94 (s, 6H, OCH3), 3.92 (d, 2H, J 11.9 CHaHbBr), 3.88 (d, 2H, J 11.9 

CHaHbBr’), 3.84 (d, 2H, J 11.9 CHaHbBr), 3.80 (d, 2H, J 11.9 CHaHbBr’). 13C NMR (75 

MHz, CDCl3): 165.5 (C=O), 153.5 (PhC5), 148.6 (PhC4), 140.3 (PhC2), 130.0 (C2), 

127.7 (PhC1), 109.7 (PhC6), 107.8 (PhC3), 71.8 (C1), 56.7 (CH3), 56.4 (CH3), 25.5 

(CH2). HRMS: 710.0043 [M+NH4]+ ([C24H28
79Br81BrN3O12]+ 710.0014), 708.0060 

[M+NH4]+ ([C24H28
79Br79BrN3O12]+ requires 708.0035), 730.9324 [M+K]+ 

([C24H24
79Br81BrN2O12K]+ requires 730.9308), 728.9345 [M+K]+ 

([C24H24
79Br79BrN2O12K]+ requires 728.9328). IR: 2844 (C-H), 1743 cm-1 (C=O), 1515 

cm-1, 1330 cm-1 (NO2). 

7-Methoxy-4-methylcoumarin (100). (Fournier et al., 2013) Conc. 

H2SO4 (120 mL) was cooled to 0 °C and 3-methoxyphenol (17.5 mL, 

161 mmol) was added dropwise with vigorous stirring. The solution 

was stirred for 10 min and ethyl acetoacetate (22.4 mL, 177 mmol) was added dropwise, 

keeping the temperature below 6 °C. The mixture was stirred at 0 °C for 3 h, diluted 

into a H2O/ice slurry (600 mL), filtered under suction, dried on the filter and on high 

vacuum overnight, leaving the product as a white solid (37.8 g, quantitative). 1H NMR 

(500 MHz, CDCl3): 7.50 (1H, d, J 8.7, CmC5H), 6.87 (1H, dd, J 2.5, 8.7, CmC6H), 

6.83 (1H, d, J 2.5, CmC8H), 6.14 (1H, br s, CmC3H), 3.88 (3H, s, OCH3), 2.40 (3H, d, 

J 1.2, CH3). 13C NMR (75 MHz, CDCl3): 162.7 (CmC7), 161.4 (CmC2), 155.3 (Cm8a), 

152.7 (CmC4), 125.6 (CmC5), 113.6, 112.3, 111.9 (CmC3/CmC6/CmC4a), 100.8 

(CmC8), 55.8 (OCH3). HRMS: 213.0517 [M+Na]+ ([C11H10O3Na]+ requires 213.0522), 
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381.1332 [2M+H]+ ([C22H21O6]+ requires 381.1333), 403.1151 [2M+Na]+ 

([C22H20O6Na]+ requires 403.1152). IR: 1727 cm-1 (C=O), 1606 cm-1 (C=C).  

4-Chloromethyl-7-methoxycoumarin (103). (Fournier et al., 2013) 

Conc. H2SO4 (130 mL) was cooled to 0 °C and 3-methoxyphenol 

(17.5 mL, 161 mmol) was added dropwise with vigorous stirring. 

The solution was stirred for 10 min and ethyl 4-chloro acetoacetate (23.9 mL, 

177 mmol) was added dropwise, keeping the temperature below 6 °C. The mixture was 

stirred at 0 °C for 3 hours. The mixture was diluted into a H2O/ice slurry (600 mL), 

filtered under suction, dried on the filter and on high vacuum overnight, leaving the 

product as a white flaky solid (21.1 g, 60%). 1H NMR (500 MHz, CDCl3): 7.57 (1H, d, 

J 8.9, CmC5H), 6.90 (1H, dd, J 2.5, 8.9, CmC6H), 6.85 (1H, d, J 2.5, CmC8H), 6.40 

(1H, br s, CmC3H), 4.63 (2H, d, J 2.5, CH2), 3.89 (3H, s, OCH3). 13C NMR (75 MHz, 

CDCl3): 163.0 (CmC7), 160.8 (CmC2), 155.8 (Cm8a), 149.6 (CmC4), 125.2 (CmC5), 

112.7, 112.6 (CmC3/CmC6), 110.8 (CmC4a), 101.0 (CmC8), 55.8 (CH2), 41.3 (OCH3). 

HRMS: 225.0314 [M+H]+ ([C11H10
35ClO3]+ requires 225.0313), 242.0573 [M+NH4]+ 

([C11H13
35ClNO3]+ requires 242.0578), 247.0130 [M+Na]+ ([C11H9

35ClNaO3]+ requires 

247.0132). IR: 1720 cm-1 (C=O), 1608 cm-1 (C=C).  

4-Formyl-7-methoxycoumarin  

From SeO2 oxidation (82). (Huynh et al., 2012) 7-Methoxy-4-

methylcoumarin (4.5 g, 23.6 mmol) was suspended in xylenes 

(60 mL) and the mixture heated under reflux. Once the starting material was in solution, 

SeO2 (3.94 g, 35.5 mmol) was added portionwise and the dark solution heated under 

reflux for 16 h. The solution was filtered hot to remove the black selenium and the 

solvent removed under reduced pressure. The dark yellow crude product was purified 

by flash chromatography (20-100% EtOAc in hexane) yielding the product as dark 

yellow fluffy solid (2.48 g, 51%). 1H NMR (500 MHz, CDCl3): 10.07 (1H, s, COH), 

8.50 (1H, d, J 9.0, CmC5H), 6.92 (1H, dd, J 2.5, 9.0, CmC6H), 6.87 (1H, d, J 2.5, 

CmC8H), 6.71 (1H, s, CmC3H), 3.90 (3H, s, OCH3). 13C NMR (75 MHz, CDCl3): 

191.7 (COH), 163.4 (CmC7), 160.7 (CmC2), 156.5 (Cm8a), 143.8 (CmC4), 127.3 

(CmC5), 122.1 (CmC3), 113.3 (CmC6), 108.2 (CmC4a), 101.1 (CmC8), 55.8 (OCH3). 

HRMS: 205.0488 [M+H]+ ([C11H9O4]+ requires 205.0495), 227.0311 [M+Na]+ 

([C11H8NaO4]+ requires 227.0315), 409.0921 [2M+H]+ ([C22H17O8]+ requires 

409.0918). IR: 1722 cm-1 (C=O), 1702 cm-1 (C=O), 1607 cm-1 (C=C), 1592 cm-1 (C=C).  
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From PCC oxidation. Prepared from a modified protocol to that previously described 

(Pisani et al., 2013). 4-Dydroxymethyl-7-methoxycoumarin (2.2 g, 10.7 mmol) was 

suspended in dry CH2Cl2 (200 mL) and stirred for 15 min. MgSO4 (4.6 g) was added 

followed by PCC (4.6 g, 10.7 mmol) and the mixture stirred at RT for 16 h. The dark 

solution was filtered through celite and the solvent removed under reduced pressure. 

The dark brown residue was purified by flash chromatography (25-60% EtOAc in 

hexane) yielding the product as a yellow flaky solid (1.06 g, 49%). 1H NMR (500 MHz, 

CDCl3): 10.07 (1H, s, COH), 8.50 (1H, d, J 9.0, CmC5H), 6.92 (1H, dd, J 2.5, 9.0, 

CmC6H), 6.87 (1H, d, J 2.5, CmC8H), 6.71 (1H, s, CmC3H), 3.90 (3H, s, OCH3). 

HRMS: 205.0489 [M+H]+ ([C11H9O4]+ requires 205.0495), 409.0916 [2M+H]+ 

([C22H17O8]+ requires 409.0918). IR: 1722 cm-1 (C=O), 1703 cm-1 (C=O), 1608 cm-1 

(C=C), 1594 cm-1 (C=C).  

4-Acetoxymethyl-7-methoxycoumarin (107). 4-Chloromethyl-7-

methoxycoumarin (5.5 g, 22.3 mmol) was dissolved in AcOH 

(60 mL) and sodium acetate (5.5 g, 67.0 mmol) was added. The 

solution was heated under reflux 20 h. The solution was diluted into a H2O/ice slurry 

(600 mL), the precipitate collected under suction, dried on the filter and then under high 

vacuum overnight. The product was obtained as a white solid (3.30 g, 64%, 93% purity) 

and used without further purification. 1H NMR (500 MHz, CDCl3): 7.41 (1H, d, J 9.6, 

CmC5H), 6.87 (1H, dd, J 3.5, 9.6, CmC6H), 6.86 (1H, d, J 3.5, CmC8H), 6.34 (1H, s, 

CmC3H), 5.26 (2H, s, CH2), 3.88 (3H, s, OCH3), 2.21 (3H, s, COCH3). 13C NMR 

(75 MHz, CDCl3): 170.1 (COCH3), 162.9 (CmC7), 160.9 (CmC2), 155.6 (CmC8a), 

149.1 (CmC4), 124.4 (CmC5), 112.7 (CmC6), 110.6 (CmC4a), 110.0 (CmC3), 101.2 

(CmC8), 61.2 (CH2), 55.8 (COCH3), 20.7 (OCH3). HRMS: 249.0759 [M+H]+ 

([C13H13O5]+ requires 249.0758), 266.1019 [M+NH4]+ ([C13H16NO5]+ requires 

266.1023), 271.0576 [M+Na]+ ([C13H12NaO5]+ requires 271.0577). IR: 1711 cm-1 

(C=O), 1605 cm-1 (C=C).  

4-Hydroxymethyl-7-methoxycoumarin (106). 4-Acetoxymethyl-7-

methoxycoumarin (2.80 g, 12.0 mmol) was dissolved in 3:1 

EtOH:conc. HCl (43 mL) and the solution heated under reflux for 

45 min. The mixture was allowed to cool to RT and diluted into a H2O/ice slurry 

(400 mL). The white precipitate formed was collected under suction, dried on the filter 

and in high vacuum overnight, yielding the product as a white flaky solid (2.4 g, 98%, 

93% purity). 1H NMR (500 MHz, CDCl3): 7.43 (1H, d, J 9.5, CmC5H), 6.90-6.80 (2H, 
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m, CmC6H/CmC8H), 6.47 (1H, t, J 1.5, CmC3H), 4.88 (2H, d, J 1.5, CH2), 3.88 (3H, s, 

OCH3). HRMS: 207.0650 [M+H]+ ([C11H11O4]+ requires 207.0652). IR: 3380 cm-1 

(OH), 1682 cm-1 (C=O), 1605 cm-1 (C=C), 1085 (C-O).  

4-(1-Hydroxy-2-propenyl)-7-methoxycoumarin (108). 4-Formyl-

7-methoxycoumarin (1.5 g, 7.3 mmol) was suspended in dry THF 

(24 mL) and cooled to 0 °C. Vinylmagnesium bromide (0.7 M in 

THF, 12.5 mL, 8.8 mmol) was added dropwise and the mixture stirred at 0 °C for 3 

hours. The solution was quenched with sat. aq. NH4Cl (100 mL), the aqueous solution 

extracted with EtOAc (3×100 mL), the extracts combined and washed with brine 

(100 mL), dried over Na2SO4, filtered and the solvent removed under reduced pressure. 

The crude was purified by flash chromatography (33-50% EtOAc in hexane) yielding 

the product as a yellow gum (569 mg, 34%). 1H NMR (500 MHz, CDCl3): 7.61 (1H, d, 

J 9.6, CmC5H), 6.83 (2H, m, CmC6H/CmC8H), 6.48 (1H, s, CmC3H), 6.07 (1H, ddd, J 

6.1, 10.3, 17.1, CH=CH2), 5.52 (1H, d, J 17.1, HC=CHaHb), 5.47 (1H, t, J 6.1, CH), 

5.38 (1H, d, J 10.3, HC=CHaHb), 3.81 (3H, s, OCH3), 2.05 (1H, s, OH). 13C NMR 

(75 MHz, CDCl3): 162.5 (CmC7), 161.8 (CmC2), 155.8, 155.6 (CmC8a/CmC4), 137.0 

(CH=CH2), 125.9 (CmC5), 118.6 (CH=CH2), 112.4 (CmC6), 110.9 (CmC4a), 109.4 

(CmC3), 101.0 (CmC8), 71.0 (CH), 55.7 (OCH3). HRMS: 233.0813 [M+H]+ 

([C13H13O4]+ requires 233.0809), 255.0620 [M+Na]+ ([C13H12O4Na]+ requires 255.0628), 

465.1566 [2M+H]+ ([C26H25O8]+ requires 465.1544). IR: 3459 cm-1 (OH), 1704 cm-1 

(C=O), 1607 cm-1 (C=C).  

1,4-Di(7-methoxy-4-methylcoumarinyl)-but-2-en-1,4-

diol (109). 4-(1-Hydroxy-2-propenyl)-7-

methoxycoumarin (1.0 g, 4.3 mmol) was suspended in 

dry CH2Cl2 (30 mL), the solution flushed with N2 and 

Hoveyda-Grubbs II catalyst (135 mg, 0.22 mmol, 

5 mol%) was added. The suspension was heated at 45 °C for 36 h and cooled to RT. A 

solution of potassium isocyanoacetate (135 mg, 20 mol%) in MeOH (3.5 mL) was 

added and the mixture stirred for 1 h, forming a heavy precipitate. The precipitate was 

collected by filtration and washed with methanol, yielding the product as an off-white 

solid (650 mg, 80%, 95% purity, 3:2 mixture of diastereomers). 1H NMR (500 MHz, d6-

DMSO): 7.75 (1H, d, J 8.9, CmC5H), 7.69 (1H, d, J 8.9, CmC5H’), 6.98 (1H, d, J 2.1, 

CmC8H), 6.95 (1H, d, J 2.1, CmC8H’), 6.76 (1H, dd, J 2.1, 8.9, CmC6H), 6.70 (1H, dd, 

J 2.1, 8.9, CmC6H’), 6.33 (1H, s, CmC3H’), 6.31 (1H, s, CmC3H), 6.06 (1H, br s, 
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CH=CH), 6.04 (1H, br s, CH=CH’), 6.01 (2H, m, OH), 5.48 (2H, br s, CH/CH’), 3.85 

(3H, s, OCH3), 3.84 (3H, s, OCH3’). 13C NMR (75 MHz, d6-DMSO): 162.0, 162.0 

(CmC7), 160.6 (CmC2), 157.5 (CmC8a), 155.2, 155.2 (CmC4), 132.4, 132.2 (HC=CH), 

126.9, 126.8 (CmC5), 111.6, 111.5 (CmC6), 110.5, 110.4 (CmC4a), 108.3, 108.1 

(CmC3), 100.8, 100.7 (CmC8), 68.6, 68.5 (CH), 55.8 (OCH3). HRMS: 437.1253 

[M+H]+ ([C24H21O8]+ requires 437.1231), 873.2361 [2M+H]+ ([C48H41O16]+ requires 

873.2390). IR: 1694 cm-1 (C=O), 1611 cm-1 (C=C).   



 

 177 

9 Appendix 

9.1 PanD and PanZ protein overexpression optimisation and purification 

9.1.1 PanD(T57V) 

HexaHis-tagged PanD(T57V) was overexpressed in auto-induction media (0.01% w/v 

ampicillin) from previously transformed E. coli MG1655 ΔpanZ ΔpanD (DE3) glycerol 

stocks containing the desired plasmid. The cells were disrupted mechanically in the 

presence of EDTA-free protease inhibitor cocktail to prevent proteolysis of the C-

terminus and centrifuged to remove cell debris. The protein was first purified by nickel 

affinity chromatography (Ni-NTA) under gravity as described in section 8.6.3. Protein 

expression levels and purity were assessed by SDS-PAGE (Fig. 9.1), which showed one 

main overexpressed protein band with the expected molecular weight (~15 kDa). 

 

Fig. 9.1 SDS-PAGE gel of PanD(T57V) after Ni-NTA purification. Lane 1: protein ladder, lanes 2-5: flow-through; 

lane 6: 50 mL wash fraction; lanes 7-11: 5×5 mL elution fractions. The protein was overexpressed as single band of 

the expected approximate size (~15 kDa). 

The protein was further purified by size-exclusion chromatography (SEC) and eluted 

into 50 mM Tris buffer, pH 7.4, containing 100 mM NaCl and 0.1 mM DTT (SEC 

buffer A, section 8.6.4). The protein elutes as a single peak with a shoulder, which is 

thought to be an oligomer of the tetramer.  
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Fig. 9.2 SEC trace for the purification of PanD(T57V) on a Superdex® 75 column (HiLoad® 16/60), showing a 

single peak (120-146 mL) with a shoulder (100-120 mL) for the elution of purified PanD(T57V) protein. The 

shoulder is thought to be an oligomer of the tetramer. 

9.1.2 PanZ 

Arabinose-inducible pBAD24 vector encoding C-terminally hexaHis-tagged PanZ 

(Nozaki et al., 2012) was transformed into E. coli BL21 Gold (DE3) cells following a 

standard heat-shock transformation protocol (see section 8.4.5). Initial overexpression 

in LB growth media (20 h, 37 °C, induced using 0.5% w/v arabinose at OD600=0.4) with 

and without pantothenate supplementation was poor. Overexpression trials were set up 

to investigate the effect of both pantothenate supplementation and concentration of 

arabinose on induction, as described in Table 11. In all cases, expression was induced at 

OD600=0.4-0.6. Overexpression levels were quantified over time (1.5 h, 2.5 h and 16 h 

after induction) by SDS-PAGE (Fig. 9.3).  

Higher concentrations of arabinose (0.5%-1%) showed better overexpression with 

contamination of a high molecular weight impurity. Supplementation with up to 

250 mM pantothenate improved expression further at 0.5% arabinose and appeared to 

reduce the amount of high molecular weight contaminants produced. The improvement 

of PanZ expression in the presence of pantothenate was later rationalised as because the 

overexpression of PanZ leads to β-alanine auxotrophy in E. coli cells, which, in turn, 

leads to cell death. Addition of pantothenate to the growth medium decreases the toxic 

effect of PanZ overexpression. It was also noted that PanZ overexpressed in the 

presence of pantothenate ran more slowly on SDS-PAGE than PanZ overexpressed 

without pantothenate supplementation. This could indicate a higher percentage of CoA-

bound PanZ, as CoA.PanZ is 800 Da heavier than apo.PanZ and carries 3 negatively 

charged phosphate groups. 
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Table 11 PanZ expression trial conditions, related to the SDS-PAGE gels in Fig. 9.3. 

 E. coli strain [arabinose] 
(w/v %) 

[pantothenate] 
(µM) Culture size (mL) 

1 BL21 Gold 0.5 1000 1000 

2 BL21 Gold 0.5 0 1000 

3 C41 (DE3) 0.5 0 100 

4 BL21 Star (DE3) 0.5 0 100 

5 BL21 Gold (DE3) 0.05 0 100 

6 BL21 Gold (DE3) 0.1 0 100 

7 BL21 Gold (DE3) 0.5 0 100 

8 BL21 Gold (DE3) 1.0 0 100 

9 BL21 Gold (DE3) 0.5 5 20 

10 BL21 Gold (DE3) 0.5 10 20 

11 BL21 Gold (DE3) 0.5 100 20 

12 BL21 Gold (DE3) 0.5 250 20 
 

 

Fig. 9.3 Quantification of protein expression during PanZ overexpression trials by SDS-PAGE. (Top) lane 1 – 

protein ladder; lanes 2 & 3 – trial 1 at 0 h and 16 h; lanes 4 & 5 – trial 2 at 0 h and 16 h; lanes 6-25: trials 3-7 at 0 h, 

1.5 h, 2.5 h and 16 h. (Bottom) lane 1 – protein ladder; lanes 2-21: trials 8-12 at 0h, 1.5 h, 2.5 h, and 16 h. 
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PanZ was successfully overexpressed from 1L overnight culture of E. coli BL21 Gold 

(DE3) cells in LB growth media (37 °C), supplemented with 250 mM pantothenate and 

induced at OD600=0.4-0.6 with 0.5% w/v arabinose. The cells were collected, 

mechanically disrupted and the protein purified by Ni-NTA chromatography as 

described for PanD(T57V). SDS-PAGE of the fractions showed good overexpression 

and the expected molecular weight for hexaHis-tagged PanZ (Fig. 9.4).  

 

Fig. 9.4 SDS-PAGE gel of PanZ purification by Ni-NTA overexpressed from the pBAD24 plasmid. Lane 1: protein 

ladder; lanes 2-4: flow-through; lane 5: 50 mL wash fraction; lanes 6-10: 5×5 mL elution fractions. 

Later in the project, Chris Bartlett (Wellcome Trust rotation PhD student) subcloned C-

terminally hexaHis-tagged PanZ into the pET28a vector from the pBAD24 plasmid, to 

allow for overexpression by auto-induction of the T7 RNA polymerase in E. coli 

MG1655 ΔpanZ ΔpanD (DE3) cells. The protein overexpressed well using auto-

induction and was purified by Ni-NTA chromatography (Fig. 9.5) and SEC and eluted 

into 50 mM Tris buffer, pH 7.4 containing 100 mM NaCl and 0.1 mM DTT (SEC 

buffer A, Fig. 9.6). 

 

Fig. 9.5 SDS-PAGE gel of PanZ purification by Ni-NTA overexpressed from the pET28a plasmid. Lane 1: protein 

ladder; lanes 2-3: flow-through; lane 4: 50 mL wash fraction; lanes 5-9: 5×5 mL elution fractions.  
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Fig. 9.6 SEC trace for the purification of PanZ on a Superdex® 75 column (HiLoad® 16/60), showing a single peak 

for the elution of PanZ between 170-212 mL. 

9.1.3 SeMet PanZ 

SeMet PanZ was overexpressed from E. coli B384 (DE3) cells harbouring a pBAD24 

plasmid coding for C-terminally hexaHis-tagged PanZ, following a previously 

published autoinduction protocol (see section 8.5.3) (Sreenath et al., 2005). The protein 

was purified by Ni-NTA and SEC (Fig. 9.7) as described for PanD(T57V). 

 

Fig. 9.7 SEC trace for the purification of SeMet PanZ on a Superdex® 75 column (HiLoad® 16/60), showing a 

single peak for the elution of the protein between 180-210 mL. 

9.1.4 PanD(T57V/K119STOP) 

PanD(T57V/K119STOP) was generated using a standard site-directed mutagenesis 

protocol as described in section 8.4 using the template vector pRSETA-ADC(T57V) 

(Webb et al., 2014). The pRSETA-ADC(T57V/K119STOP) plasmid was directly 

transformed into E. coli XL10 cells and a colony minicultured overnight in LB media 
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containing 0.01 % w/v ampicillin. The plasmid was miniprepped and sent for 

sequencing. Upon confirmation of the correct mutation, the plasmid was transformed 

into E. coli MG1655 ΔpanZ ΔpanD (DE3) cells for overexpression. The protein was 

overexpressed by auto-induction of the T7 polymerase and purified by Ni-NTA and 

SEC, similarly to PanD(T57V) (Fig. 9.8). 

 

Fig. 9.8 SEC trace for the purification of PanD(T57V/K119STOP) on a Superdex® 75 column (HiLoad® 16/60), 

showing a single peak (120-146 mL) for the elution of the protein.  

9.1.5 Not-activated WT PanD 

WT PanD (not activated enzyme) was overexpressed from previously transformed E. 

coli C41 (DE3) cells harbouring a pRSETA-ADC-WT plasmid (Saldanha et al., 2001) 

by auto-induction of the T7 RNA polymerase (37 °C, 18 h). The cells were collected 

and stored at -80 °C or used directly. The protein was purified by Ni-NTA and SEC as 

described for PanD(T57V) (Fig. 9.9).  
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Fig. 9.9 SEC trace for the purification of WT PanD on a Superdex® 75 column (HiLoad® 26/60), showing a single 

peak (50-60 mL) with a shoulder peak (40-50 mL) for the elution of the protein. 

9.1.6 Activated WT ADC 

WT PanD (not activated enzyme) was overexpressed from previously transformed E. 

coli C41 (DE3) cells harbouring a pRSETA-ADC-WT plasmid (Saldanha et al., 2001) 

as described in the previous section. The cell pellet was collected by centrifugation and 

heated at 37 °C for 24 h for activation of the PanD zymogen to ADC. After activation, 

the cell pellet was stored at -80 °C or used directly for purification of WT ADC by Ni-

NTA and SEC (Fig. 9.10) as described for PanD(T57V). The protein purity, yield and 

extent of activation were determined by SDS-PAGE (Fig. 9.11).  

 

Fig. 9.10 SEC trace for the purification of WT ADC on a Superdex® 75 column (HiLoad® 26/60), showing a single 

peak (50-60 mL) with a shoulder peak (40-50 mL) for the elution of the protein. 
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Fig. 9.11 Tris-tricine SDS-PAGE gel of WT ADC purification by Ni-NTA and SEC. Lane 1: protein ladder; lanes 2-

4: flow-through; lane 5: 50 mL wash fraction; lanes 6-10: 5×5 mL elution fractions; lanes 11-15: SEC fractions. 

The fractions arising from the main SEC peak and the shoulder peak showed that both 

are cleaved ADC. It had been previously proposed that the early peak corresponded to 

the non-activated PanD protein and the later peak to the activated protein, but the SDS-

PAGE analysis shows similar bands across all the elution fractions. The shoulder is 

instead thought to be an oligomer of tetramers. 

1    2    3    4     5    6   7    8    9  10   11  12  13   14  15 

6 kDa 

35 kDa 

14 kDa 
20 kDa 
27 kDa 

64 kDa 
212 kDa 

43 kDa 



 

 
18

5 

9.
2 

X
-r

ay
 d

iff
ra

ct
io

n 
da

ta
 c

ol
le

ct
io

ns
 

Pa
nD

(T
57

V
).P

an
Z.

C
oA

 c
ry

st
al

s f
ro

m
 2

00
 m

M
 L

i 2S
O

4, 
10

0 
m

M
 T

ris
 p

H
 8

.5
 a

nd
 3

0%
 v

/v
 P

EG
 4

00
0 

B
ea

m
lin

e 
I0

3,
 D

ia
m

on
d 

Li
gh

t s
ou

rc
e,

 2
7/

02
/2

01
2 

da
ta

se
t 

os
ci

lla
tio

n  
im

ag
es

 
os

ci
lla

tio
n 

 
(to

ta
l)  

di
st

an
ce

 
(d

et
ec

to
r)

 
λ 

ex
po

su
re

 
tra

ns
m

is
si

on
 

T 
ap

er
tu

re
 

m
ax

 re
so

lu
tio

n 
(p

ip
el

in
e)

 
co

m
m

en
ts

 

1 
1°

 
18

0 
18

0°
 

72
6.

9 
m

m
 

0.
97

63
 Å

 
1.

00
 s 

10
0%

 
10

0 
K

 
m

ed
iu

m
 

 
na

tiv
e 

2 
1°

 
18

0 
18

0°
 

72
6.

9 
m

m
 

0.
97

63
 Å

 
1.

00
 s 

10
0%

 
10

0 
K

 
m

ed
iu

m
 

9.
51

 Å
 

(X
ia

2 
3d

ii)
 

na
tiv

e 

3 
1°

 
18

0 
18

0°
 

72
6.

9 
m

m
 

0.
97

63
 Å

 
1.

00
 s 

10
0%

 
10

0 
K

 
m

ed
iu

m
 

8.
33

 Å
 

(X
ia

2 
3d

ii)
 

na
tiv

e 

4 
1°

 
18

0 
18

0°
 

72
6.

9 
m

m
 

0.
97

63
 Å

 
1.

00
 s 

10
0%

 
10

0 
K

 
m

ed
iu

m
 

7.
98

 Å
 

(X
ia

2 
3d

ii)
 

na
tiv

e 

5 
1°

 
18

0 
18

0°
 

72
6.

9 
m

m
 

0.
97

63
 Å

 
1.

00
 s 

10
0%

 
10

0 
K

 
m

ed
iu

m
 

5.
47

 Å
 

(X
ia

2 
3d

ii)
 

na
tiv

e 

6 
1°

 
18

0 
18

0°
 

72
6.

9 
m

m
 

0.
97

63
 Å

 
1.

00
 s 

10
0%

 
10

0 
K

 
m

ed
iu

m
 

4.
62

 Å
 

(F
as

t D
P)

 
na

tiv
e 

7 
1°

 
18

0 
18

0°
 

72
6.

9 
m

m
 

0.
97

63
 Å

 
1.

00
 s 

10
0%

 
10

0 
K

 
m

ed
iu

m
 

4.
77

 Å
 

(F
as

t D
P)

 
na

tiv
e 

8 
1°

 
18

0 
18

0°
 

72
6.

9 
m

m
 

0.
97

63
 Å

 
1.

00
 s 

10
0%

 
10

0 
K

 
m

ed
iu

m
 

4.
94

Å
 

(F
as

t D
P)

 
na

tiv
e 

9 
1°

 
18

0 
18

0°
 

72
6.

9 
m

m
 

0.
97

63
 Å

 
1.

00
 s 

10
0%

 
10

0 
K

 
m

ed
iu

m
 

 
na

tiv
e 

10
 

1°
 

36
0 

36
0°

 
47

6.
0 

m
m

 
1.

65
31

 Å
 

1.
00

 s 
10

0%
 

10
0 

K
 

sm
al

l 
9.

68
 Å

 
(X

ia
2 

3d
ii)

 
Fo

r S
 S

A
D

 



 
186 

11 
1° 

360 
360° 

476.0 m
m

 
1.6531 Å

 
1.00 s 

100%
 

100 K
 

sm
all 

12.50 Å
 

(X
ia2 3dii) 

For S SA
D

 

12 
1° 

360 
360° 

476.0 m
m

 
1.6531 Å

 
1.00 s 

100%
 

100 K
 

sm
all 

7.77 Å
 

(X
ia2 3dii) 

For S SA
D

 

 H
eavy-m

etal derivatised PanD
(T57V

).PanZ.C
oA

 crystals from
 200 m

M
 Li2 SO

4 , 100 m
M

 Tris pH
 8.5 and 30%

 v/v PEG
 4000 

B
eam

line I24, D
iam

ond Light source, 05/03/2012 

dataset 
oscillation

 
im

ages 
oscillation 

(total) 
distance 

(detector) 
λ 

exposure 
transm

ission 
T 

aperture 
m

ax resolution 
(pipeline) 

com
m

ents 

1 
0.15° 

1000 
150° 

476.8 m
m

 
1.0740 Å

 
0.50 s 

9.84%
 

100 K
 

10×10 µm
 

4.66 Å
 

(X
ia2 3dii) 

(N
H

4 )10 H
2 (W

2 O
7 )6  

2 
0.15° 

900 
135° 

561.3 m
m

 
0.9997 Å

 
0.10 s 

10.04%
 

100 K
 

10×10 µm
 

3.67 Å
 

(X
ia2 3dii) 

K
2 O

sC
l6  

3 
0.15° 

900 
135° 

561.3 m
m

 
0.9997 Å

 
0.10 s 

10.04%
 

100 K
 

10×10 µm
 

6.79 Å
 

(X
ia2 3dii) 

K
2 O

sC
l6  

4 
0.20° 

500 
100° 

533.4 m
m

 
1.0093 Å

 
0.10 s 

9.49%
 

100 K
 

10×10 µm
 

 
H

g(O
A

c)2 

5 
0.20° 

2000 
400° 

533.4 m
m

 
1.0093 Å

 
0.10 s 

9.49%
 

100 K
 

10×10 µm
 

3.28 Å
 

(X
ia2 3dii) 

H
g(O

A
c)2  

6 
0.20° 

1000 
200° 

533.4 m
m

 
1.0093 Å

 
0.10 s 

9.49%
 

100 K
 

10×10 µm
 

4.26 Å
 

(X
ia2 3dii) 

H
g(O

A
c)2  

7 
0.20° 

1000 
200° 

490.8 m
m

 
1.0081 Å

 
0.10 s 

9.49%
 

100 K
 

10×10 µm
 

4.21 Å
 

(X
ia2 3dii) 

H
g(O

A
c)2  

8 
0.2° 

1000 
200° 

455.9 m
m

 
1.0735 Å

 
0.10 s 

10.43%
 

100 K
 

10×10 µm
 

5.06 Å
 

(X
ia2 3dii) 

(N
H

4 )10 H
2 (W

2 O
7 )6  

 



 

 
18

7 

Pa
nD

(T
57

V
).P

an
Z.

A
cC

oA
 c

ry
st

al
s f

ro
m

 1
00

 m
M

 so
di

um
 c

ac
od

yl
at

e 
pH

 6
.5

, 1
.4

 M
 so

di
um

 a
ce

ta
te

 

B
ea

m
lin

e 
I2

4,
 D

ia
m

on
d 

Li
gh

t S
ou

rc
e 

23
/0

6/
20

13
 

da
ta

se
t 

os
ci

lla
tio

n  
im

ag
es

 
os

ci
lla

tio
n 

(to
ta

l)  
di

st
an

ce
 

(d
et

ec
to

r)
 

λ 
ex

po
su

re
 

tra
ns

m
is

si
on

 
T 

ap
er

tu
re

 
m

ax
 re

so
lu

tio
n 

(p
ip

el
in

e)
 

co
m

m
en

ts
 

1 
0.

20
° 

90
0 

18
0°

 
50

5.
9 

m
m

 
0.

97
78

 Å
 

0.
20

 s 
51

.7
5%

 
10

0 
K

 
10
×1

0 
µm

 
2.

68
 Å

 
(F

as
t D

P)
 

na
tiv

e 

2 
0.

20
° 

90
0 

18
0°

 
50

5.
9 

m
m

 
0.

97
78

 Å
 

0.
30

 s 
78

.2
4%

 
10

0 
K

 
10
×1

0 
µm

 
2.

69
 Å

 
(X

ia
2 

3d
a)

 
na

tiv
e 

3 
0.

15
° 

90
0 

13
5°

 
50

5.
9 

m
m

 
0.

97
78

 Å
 

0.
30

 s 
78

.2
4%

 
10

0 
K

 
10
×1

0 
µm

 
2.

33
 Å

 
(X

ia
2 

3d
ii)

 
na

tiv
e 

4 
0.

15
° 

50
0 

75
° 

50
5.

9 
m

m
 

0.
97

78
 Å

 
0.

30
 s 

78
.2

4%
 

10
0 

K
 

10
×1

0 
µm

 
2.

45
 Å

 
(X

ia
2 

3d
ii)

 
na

tiv
e 

5 
0.

20
° 

75
0 

15
0°

 
50

5.
9 

m
m

 
0.

97
78

 Å
 

0.
30

 s 
78

.2
4%

 
10

0 
K

 
10
×1

0 
µm

 
2.

60
 Å

 
(X

ia
2 

3d
a)

 
na

tiv
e 

6 
0.

20
° 

72
5 

14
5°

 
50

5.
9 

m
m

 
0.

97
78

 Å
 

0.
20

 s 
61

.0
1%

 
10

0 
K

 
10
×1

0 
µm

 
2.

59
 Å

 
(X

ia
2 

3d
a)

 
na

tiv
e 

 Pa
nD

(T
57

V
).P

an
Z.

A
cC

oA
 c

ry
st

al
s f

ro
m

 1
00

 m
M

 B
is

-T
ris

 p
ro

pa
ne

 p
H

 6
.8

, 2
00

 m
M

 K
SC

N
, 2

0%
 v

/v
 P

EG
 3

35
0 

B
ea

m
lin

e 
ID

29
, E

SR
F 

6/
11

/2
01

3 

da
ta

se
t 

os
ci

lla
tio

n  
im

ag
es

 
os

ci
lla

tio
n 

(to
ta

l)  
di

st
an

ce
 

(d
et

ec
to

r)
 

λ 
ex

po
su

re
 

tra
ns

m
is

si
on

 
T 

ap
er

tu
re

 
m

ax
 re

so
lu

tio
n 

(p
ip

el
in

e)
 

co
m

m
en

ts
 

1 
0.

05
° 

23
20

 
11

6°
 

33
9.

6 
m

m
 

0.
97

62
 Å

 
0.

04
 s 

0.
12

%
 

29
4 

K
 

50
×3

0 
µm

 
1.

61
 Å

 
(F

as
t D

P)
 

na
tiv

e 

 



 
188 

In-house source, Leeds 3/12/13 

dataset 
oscillation

 
im

ages 
oscillation 

(total) 
distance 

(detector) 
λ 

exposure 
transm

ission 
T 

aperture 
m

ax resolution 
(pipeline) 

com
m

ents 

1 
1.00° 

60 
60° 

110 m
m

 
1.5418 Å

 
30 s 

100%
 

293 K
 

- 
1.70 Å

 
native 

 PanD
(S25A

).PanZ.A
cC

oA
 crystals from

 100 m
M

 B
is-Tris propane pH

 6.8, 200 m
M

 K
SC

N
, 20%

 v/v PEG
 3350 

In-house source, Leeds 3/12/13 

dataset 
oscillation

 
im

ages 
oscillation 

(total) 
distance 

(detector) 
λ 

exposure 
transm

ission 
T 

aperture 
m

ax resolution 
(pipeline) 

com
m

ents 

1 
1.00° 

60 
60° 

110 m
m

 
1.5418 Å

 
30 s 

100%
 

293 K
 

- 
2.1 Å

 
native 

 W
T A

D
C

.PanZ.A
cC

oA
 crystals from

 100 m
M

 B
is-Tris propane pH

 6.8, 200 m
M

 K
SC

N
, 20%

 v/v PEG
 3350 

B
eam

line I03, D
iam

ond Light Source 06/10/2014 

dataset 
oscillation

 
im

ages 
oscillation 

(total) 
distance 

(detector) 
λ 

exposure 
transm

ission 
T 

aperture 
m

ax resolution 
(pipeline) 

com
m

ents 

1 
0.20° 

900 
180° 

176.4 m
m

 
0.9763 Å

 
0.1 s 

30%
 

100 K
 

50×20 µm
 

1.16 Å
 

(FastD
P) 

native 

  



 

 
18

9 

W
T 

A
D

C
.P

an
Z.

A
cC

oA
 c

ry
st

al
s f

ro
m

 1
00

 m
M

 B
is

-T
ris

 p
ro

pa
ne

 p
H

 6
.8

, 2
00

 m
M

 K
SC

N
, 2

0%
 v

/v
 P

EG
 3

35
0 

B
ea

m
lin

e 
I0

4-
1,

 D
ia

m
on

d 
Li

gh
t S

ou
rc

e 
22

/0
1/

20
15

 

da
ta

se
t 

os
ci

lla
tio

n  
im

ag
es

 
os

ci
lla

tio
n 

(to
ta

l)  
di

st
an

ce
 

(d
et

ec
to

r)
 

λ 
ex

po
su

re
 

tra
ns

m
is

si
on

 
T 

ap
er

tu
re

 
m

ax
 re

so
lu

tio
n 

(p
ip

el
in

e)
 

co
m

m
en

ts
 

1 
0.

20
° 

10
00

 
20

0°
 

25
5.

1 
m

m
 

0.
91

74
 Å

 
0.

2 
s 

43
.4

8%
 

10
0 

K
 

30
×3

0 
µm

 
1.

20
 Å

 
(D

IA
LS

) 
na

tiv
e 

 In
-h

ou
se

 so
ur

ce
, L

ee
ds

 1
7/

09
/2

01
4 

da
ta

se
t 

os
ci

lla
tio

n  
im

ag
es

 
os

ci
lla

tio
n 

(to
ta

l)  
di

st
an

ce
 

(d
et

ec
to

r)
 

λ 
ex

po
su

re
 

tra
ns

m
is

si
on

 
T 

ap
er

tu
re

 
m

ax
 re

so
lu

tio
n 

(p
ip

el
in

e)
 

co
m

m
en

ts
 

1 
1.

00
° 

18
0 

18
0°

 
10

0.
0 

m
m

 
1.

54
18

 Å
 

20
 s 

10
0.

0%
 

29
3K

 
 

1.
80

 Å
 

(F
as

t D
P)

 
na

tiv
e 

 



 190 

9.3 Calculation of twinning fractions 

Twinning is detected during scaling and merging of the data by using the “L-test” 

(Padilla and Yeates, 2003). This statistical approach analyses the intensity distribution 

of reflections. The intensities of two unrelated reflections that are close in reciprocal 

space (I(h1) and I(h2)) are analysed to give a quantity L, defined as: 

L ≡ ! h! − !(h!)
! h! + !(h!)

 

where the range of L is -1 to 1. Each pair of reflections should have similar expected 

intensity values when crystals are twinned. As dividing the difference of intensities of 

the spots by their sum leads to normalisation of the values of L, no further normalisation 

is required, for example, across resolution shells. The probability distribution of L, 

N(|L|) is then plotted. For untwinned, acentric data: 

! ! = |!| 

which would generate a straight line intersecting the origin. For a perfect twin: 

! ! = |!|(3− !!)
2  

giving a different plot of the cumulative distribution of L. Plotting the calculated values 

for a dataset against the theoretical curves gives an indication of the presence of 

twinning as well as of the twin fraction, α (Fig. 9.12). 

 

Fig. 9.12 Plot of the cumulative distribution of |L| (adapted from (Padilla and Yeates, 2003)). The prediction for 

acentric, non-twinned data is shown as a bold line; for perfect twinned, acentric data as a dashed line and the statistics 

for experimental data from a highly twinned dataset as open circles. 
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The twin fraction, α, is defined as: 

!!,!,! = !!!,!,! crystal1 + (1− !)!!,!,! crystal2  

and can also be calculated using the H-test (Yeates, 1997). In this case, two reflections 

related by a potential twin law, I(h1) and I(h2), are analysed to give the quantity H: 

! = |! h! − ! h! |
! h! + ! h!

 

The probability distribution of H, P(H), is then plotted and compared against predicted 

distributions for different twinning fractions to give α for the experimental dataset (Fig. 

9.13), where: 

! ! = 0!!!for$$$! < 0 

! ! = !
1− 2! !!!for$$$0 ≤ ! ≤ 1− 2! 

! ! = 1!!!for$$$! > 1− 2! 

 

Fig. 9.13 Probabilty distribution of H (adapted from (Lebedev, 2013)). The predicted cumulative probability 

distribution of H for different twin fractions, α=0.0-0.5 (untwinned to perfectly twinned) are shown as blue lines. The 

calculated cumulative distribution of H for PDB 1KU5 (Li et al., 2003) is shown in red, with an α≈0.2. 
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3,4-dim
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9.6 Photocage scaffolds, properties and cleavage mechanism 

9.6.1 ortho-Nitrobenzyl 

Table 12 Overview and general properties of ortho-nitrobenzyl photocleavable groups 

 
   

 

λmax (nm) 254 254 262 345 
εmax (M-1cm-1) ca. 27000 ca. 27000 ca. 5000 ca. 600 

φ 0.1-0.2 0.1-0.64 0.04-0.14 0.01 
k (s-1) 10 - 200 10 - 1000 9×103 - 3×104 N/A 

solubility (H2O) Poor Poor Good Poor 
 

ortho-Nitrobenzyl photocleavable protecting groups are one of the most used and 

investigated photocages to date. oNB groups absorb mainly in the λ=280 nm region and 

the rate of release of product varies between 10 ms-100 µs depending on the exact 

chromophore being used as well as external factors such as pH. The cleavage 

mechanism (Fig. 9.14) has two distinct stages. The first is the light step, which involves 

the absorption of a photon and the excitation of the chromophore, followed by the dark 

step which then causes release of the product. Upon absorption of a photon, the 

nitrobenzyl group is placed in an excited singlet (I) state which can cross to a longer 

lived triplet state (Schmierer et al., 2010). Both excited states can then decay to the aci-

nitro intermediate (II) which cyclises to a benzisoxazoline ring (IV). The ring 

intermediate then opens to an alcohol (V), which, in turn, hydrolyses to release the 

photoprotected moiety, leaving a nitroso photolysis by-product (VI). The rate of oNB 

cleavage is greatly dependent on pH due to the equilibrium established between the 

protonated and deprotonated aci-nitro species formed after excitation of the 

chromophore (II and III respectively) as only the protonated form (II) is able to ring 

close to the benzisoxazoline intermediate (IV). The rate of aci-nitro decay decreases 

decreases rapidly with increasing pH. 
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Fig. 9.14 Mechanism of photo-cleavage of ortho-nitrobenzyl protecting groups.  

The rate determining step for the release of the product depends on the leaving group. 

At neutral conditions, the rate determining step in the release of poor leaving groups, 

such as alcohols (Il'ichev et al., 2004), is the hydrolysis of the ring-opened intermediate 

(V), whereas for good leaving groups, such as phosphates, the rate of release has been 

found to match that of the decay of the aci-intermediate (II) instead (Walker et al., 

1988). The rate of cleavage of these compounds has been found to be greatly dependent 

upon pH, solvent, substitutions of both the ring and the benzylic position and the 

leaving group. Although the exact effect of changing each of these parameters is 

difficult to predict (Holmes, 1997, Corrie et al., 2005), some general characteristics can 

be determined and are summarised below.   

Electron-donating ring substituents 

 

Fig. 9.15 oNB scaffolds with varying electron-donating groups. 115: 4,5-Dimethoxy-2-nitrobenzyl; 116: 4,5-

Methylenedioxy-2-nitrobenzyl; 117: 4-(2-Ethanoic acid)oxy-2-nitrobenzyl. 

Modification of the aromatic ring causes changes to the absorption spectrum of the 

compounds. The introduction of electron-donating groups in the aromatic ring increases 

the absorption at higher wavelengths. Veratryl and methylenedioxy based nitrobenzyl 

photocages (compounds 115 and 116) have been given considerable attention as these 

have large absorption cross-sections at λ>350 nm. But, the introduction of strong 

electron-donating groups (such as amines) para to the nitro group have been reported to 

significantly lower the decaging efficiency of these compounds (Corrie et al., 2005). 
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One other advantage of introducing polar functional groups on the ring, such as 

carboxylic acids (compound 117) (Allan et al., 1998), is the potential to improve 

solubility of the compounds. 

Substitution at the benzylic carbon 

Substitution of the benzylic position mainly affects the quantum yield of photolysis. 

Furthermore, ring opening of the benzisoxazoline intermediate leads to the formation of 

a carbonyl at the benzylic centre. In the simplest of nitrobenzyl cages, the by-product of 

photolysis is an aldehyde (Fig. 9.16), which is unreactive when at low concentrations, 

but reactive at higher concentrations (Engels and Schlaeger, 1977). The aldehyde by-

product is also coloured, and can act as a light filter. Introduction of a methyl 

substituent at the benzylic position leads to the formation of an unreactive ketone 

photolysis by-product instead (Fig. 9.16).  

 

Fig. 9.16 Photolysis of 2-methyl nitrobenzyl and 2-ethyl nitrobenzyl photoprotecting groups and corresponding 

products. 

Substitutions at this position have also been shown to increase the rates of release of 

product. The introduction of a methyl group has been shown to cause a 7-fold decrease 

in the photolysis half-life of compound 119 vs compound 118 (Fig. 9.17) in PBS buffer 

(Holmes, 1997) and a 5-fold increase in quantum yield of compound 121 vs compound 

120 (Fig. 9.17) in solution (Reichmanis et al., 1985). This effect has also been observed 

for the addition of strongly electron-withdrawing groups (such as CF3) (Specht and 

Goeldner, 2004), although further studies on other electron-withdrawing substituents (in 

particular halogens) did not show such radical improvements in efficiency of the 

compounds 

 

Fig. 9.17 Examples of oNB photocaged acetate (Holmes, 1997) and tert-butylacetate (Reichmanis et al., 1985). 
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Leaving groups 

In general, good leaving groups have increased rates of release. The most common way 

of protecting compounds with nitrobenzyl photocages is to directly attach the 

compound to the benzylic carbon. This approach has been used for the release of 

different groups, such as thiols, carboxylic acids, histidines and phosphates (Corrie et 

al., 2005, Mayer and Heckel, 2006, Klán et al., 2013).  

Poorer leaving groups, such as alcohols and amines, are usually attached as the 

corresponding carbonates or carbamates, increasing the efficiency of cleavage. It is 

important to note that the product of photolysis of these compounds is still the carbonate 

or carbamate derivative of the desired product, which has to undergo post-photolytic 

fragmentation to the amine or carboxylate (Fig. 9.18). The fragmentation step is slow, 

with a rate of roughly 10-3 s-1 (Pocker et al., 1978). 

 

Fig. 9.18 Release of alcohols or amines from oNB protected compounds. Alcohols and amines can be directly 

coupled to the benzylic carbon, but the rate of photolysis of the photocage is slow. The compounds can also be 

photocaged through the corresponding carbonates or cabamates, which increases the rate of photolysis but the 

photolytic products have to undergo fragmentation to the desired alcohol or amine. 

9.6.2 Coumarinyl 

Table 13 Overview and general properties of coumarinyl photocleavable groups 

 

    

λmax (nm) 320 345 375 390 
εmax (M-1cm-1) 6000-12000 1000-12000 13000-19000 16000-20000 

φ 0.02-0,15 0.04-0,1 0.02-0,11 0.09-0,3 
k (s-1) 1×108 - 4×108 N/A N/A 1×109 - 2×109 

solubility (H2O) Variable Variable Good Medium 
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The use of (coumarin-4-yl)-methyl cages in a biological context was first described in 

1984 for the release of phosphate esters (Givens and Matuszewski, 1984). The 

phosphate moiety was efficiently released from the 7-methoxycoumarinyl-4-methyl 

derivative by illumination at λ=360 nm, which is higher than the oNB systems 

discussed previously. The good absorption cross-sections at longer wavelengths made 

this photoprotection group centre-stage for later developments. The release rates of 

coumarins are much faster than oNBs, reaching ns timescales for the release of strong 

acid conjugate bases such as methyl sulfonates (Geißler et al., 2005). One last 

advantage of coumarins is the large extinction coefficients reported for this class of 

compounds.  

Upon absorption of a photon, the coumarin relaxes to an excited singlet state (Fig. 9.19, 

II), which can either decay back to the ground state (II→I) or undergo heterolytic bond 

cleavage (II→III). The cleavage event is very fast, reaching a rate of 2×1010 s-1 

(determined for coumarinyl protected phosphate esters) (Schade et al., 1999) and the 

ion pair formed can then either recombine to the starting material (III→I) or dissociate 

(III→IV) and react with a nucleophile in the medium (V) to complete the cleavage 

pathway. In this last step, the recombination reaction is the dominant pathway, making 

the ion-pair dissociation the rate determining step in coumarin photolysis (Schmidt et 

al., 2007). The choice of buffer also affects the rate of separation of the tight ion pair 

(III), altering the ratio of the recombination and separation pathways, and therefore, the 

quantum yield.  

 

 

Fig. 9.19 Mechanism of coumarin photocleavage, Upon absorption of a photon, the coumarin (I) is placed in an 

excited singlet or triplet state (II). This state can decay back to ground state by fluorescence or non-radiatively or 

cleave heterolytically giving a tightly bound ion pair (III). The ion pair can recombine to the initial photocaged 

compound (I) or separate, causing the release of the product (IV). A nucleophilic species (usually water) then 

quenches the carbocation (V).  
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Substitution to the ring 

The introduction of substituents in the coumarin ring mainly alters the absorption 

wavelength of the cage and can help with solubility issues of the compounds. The 

parent coumarin has an absorption maximum at λ~310 nm and introduction of hydroxyl 

or methoxy moieties at C7 increases the maximum absorption wavelength by 15-20 nm. 

C7 substitution with free or alkyl amines causes a significant shift in absorption to 350-

395 nm. Addition of methoxy groups at C7 and C6 further increase the absorption 

wavelength to 345 nm and a combination of C6-Br with C7-OH to 375 nm, whereas 

C6-Br/C7-OMe has its maximum absorption at λ=330 nm. Therefore, the exact effect of 

ring substitutions can’t be easily predicted. Table 13 shows a few examples of 

coumarinyl compounds and their maximum absoptions. The introduction of electron 

donating groups has an effect on the efficiency of cleavage, as it facilitates heterolysis 

and hinders ion pair recombination (Schmidt et al., 2007). 

Leaving group 

Just as described for oNB photocages, the leaving group has a significant effect on the 

efficiency of product release during photolysis of coumarins. Good leaving groups, such 

as phosphates and sulphates, cleave efficiently, whereas poorer leaving groups, such as 

alcohols or thiols, are resistant to heterolysis. Such groups are usually linked through a 

carbonate linker to the coumarin but have to undergo decarboxylation before complete 

release of the desired product (Klán et al., 2013).  

9.6.3 para-Hydroxyphenyl 

Table 14 Overview and general properties of para-hydroxyphenyl photocleavable groups 

 
   

λmax (nm) 285 280 304 
εmax (M-1cm-1) ca. 15000 ca. 9000 ca. 12000 

φ 0.2-0.9 0.03-0.04 0.03 
k (s-1) 1×107 - 2×109 ca. 2×109 ca. 2×107 

Solubility (H2O) Good Good Good 
 

para-Hydroxylphenyl (pHP) photoprotecting groups are much more recent than oNB or 

Cm photocages. These have found applications in neurobiology and enzyme catalysis 
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investigations (Klán et al., 2013). These groups present good solubilities and high 

quantum yields but have maximum absorption wavelengths in the 280 nm region 

(Klíčová et al., 2012), which is much lower than the preferred illumination region of 

biological samples. 

The groups cleave via an interesting mechanism, similar to a Favorskii rearrangement. 

The absorption of a photon leads to the excitation of the pHP moiety to a triplet state 

which then rearranges to a cyclopropanone intermediate (II) with release of the product. 

The cyclopropanone then hydrolyses to para-hydroxybenzoic acid (III, Fig. 9.20). The 

rate of cyclopropanone formation, and consequently of product release, is very fast, 

occurring in the ns timescale (Conrad et al., 2000), and is dependent mainly on the 

leaving group. 

 

Fig. 9.20 Cleavage mechanism of pHP protected molecules. Absorption of a photon leads to the formation of a 

cyclopropanone intermediate (also called the Favorskii intermediate) and decaging of the biomolecule. The 

intermediate then hydrolyses to a carboxylate (Klán et al., 2013).  

The leaving group 

pHPs have been mainly investigated for the release of strong conjugate bases, such as 

sulfonates, phosphates and carboxylates and lower quantum yields and rates of release 

have been reported for poorer leaving groups (Givens et al., 2008). Increasing the pKa 

of the corresponding acid of the leaving group causes a decrease in the quantum yield as 

well as a decrease in the rate of product release (Klán et al., 2013).  

Subsitution on the chromophore 

Alterations to the chromophore have effects on both the maximum absorption 

wavelength and quantum efficiency. The introduction of meta-electron donating groups 

causes an increase of the absorption wavelength, but lowers the quantum efficiencies of 

the compounds whereas electron-accepting groups increase the quantum yield.    

9.6.4 Summary 

There are three main scaffolds for photocages currently used in biological applications, 

each having different spectroscopic properties as well as cleavage rates. oNB 

photocages are the slowest (10-3-10-4 s), followed by coumarins and para-
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hydroxyphenyls (10-6-10-8 s). The cleavage rates depend on both the photocage scaffold 

and the protected substrate, as well as the buffer composition and pH.  

oNB photocages are the slowest and the benzaldehyde photolysis by-products are 

reactive and can act as light filters, however oNB photocaged compounds are easily 

synthesised. The disadvantages can be overcome by the introduction of a substituent at 

the benzylic site, but this leads to the creation of a new chiral centre, making the 

synthesis and purification of the compounds more challenging.  

Solubility is a problem for the use of both coumarins and oNBs. pHPs are much more 

soluble and synthetically available but have very short maximum absorption 

wavelengths, the major disadvantage of using these protecting groups.Therefore, 

choosing a photocage scaffold is not a straightforward process. Faster release rates 

usually come with either solubility problems or bad spectroscopic properties. Although 

the scaffold will have relatively predictable absorption spectra, the cleavage rates and 

quantum yields cannot be predicted and can only be completely defined once the 

compound is synthesised and characterised experimentally. 
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9.7 Protein sequence alignments 

9.7.1 Full PanD protein sequences from different organisms 

Semi-conserved residues are marked as . and conserved residues as *. The conserved C-

terminal region across all PanZ producing bacteria is highlighted in red. The alignment 

was performed using ClustalW2 (McWilliam et al., 2013). 

P. aeruginosa     1  MHAIMLKAKLHRAEVTHAVLDYEGSCAIDGDWLDLSGIREYEQIQIYNVDNGERFTTYA  59 
E. coli           1  MIRTMLQGKLHRVKVTHADLHYEGSCAIDQDFLDAAGILENEAIDIWNVTNGKRFSTYA  59 
E. carotovora     1  MIRTMLQGKLHRVKVTQADLHYEGSCAIDQDFMDAAGILEYEAIDIYNVDNGQRFSTYA  59 
Y. pestis         1  MIRTMLQGKLHRVKVTQADLHYEGSCAIDQDFLEAAGILEYEAIDIYNVDNGQRFSTYA  59 
C. glutamicum     1  MLRTILGSKIHRATVTQADLDYVGSVTIDADLVHAAGLIEGEKVAIVDITNGARLETYV  59 
S. coelicolor     1  MLRTLIKSKIHRATVTQADLHYVGSVTIDADLLDAADLLPGELVHIVDVTNGARLETYV  59 
M. tuberculosis   1  MLRTMLKSKIHRATVTCADLHYVGSVTIDADLMDAADLLEGEQVTIVDIDNGARLVTYA  59 
T. thermophilus   1  MKRVMFHAKIHRATVTQADLHYVGSVTVDQDLLDAAGILPFEQVDIYDITNGARLTTYA  59 
L. pneumophila    1 MAYRKMLKSKIHRACVTQADLDYEGSITISPELLKVANILPYEAVNVWNITAGTRFETYA  60 
C. crescentus     1  MLLTMLKAKLHRATVTQADLDYEGSIAIDRDLLDASGILPNEQVDVLNITNGARFTTYA  59 
B. subtilis       1  MFRTMMRAKLHRATVTEANLNYVGSITIDEDLMDAVNIVENEKVQIVNNNNGARLETYV  59 
S. aureus         1  MIRTMMNAKIHRARVTESNLNYVGSITIDSDILEAVDILPNEKVAIVNNNNGARFETYV  59 
H. pylori         1  MTFEMLYSKIHRATITDANLNYVGSITIDEDLAKLAKLREGMKVEIVDVNNGERFSTYV  59 
                         .   *.**  .* . * * ** ..  .      .     . .     * *  **  
 
P. aeruginosa     60 IRAENGSKMISVNGAAAHKAKVGDRVIICAYAHYSEAELASHKPRMLYMAPGNQLSHTS 118 
E. coli           60 IAAERGSRIISVNGAAAHCASVGDIVIIASFVTMPDEEARTWRPNVAYFEGDNEMKRTA 118 
E. carotovora     60 IAGERGSRIISVNGAAARCACVGDKLIICSYVQMSDEQARSHSPKVAYFSGENELQRQA 118 
Y. pestis         60 IAAERGSRIISVNGAAARCACVGDKLIICSYVQMSYAAARLHHPKVAYFEGENQLQRKA 118 
C. glutamicum     60 IVGDAGTGNICINGAAAHLINPGDLVIIMSYLQATDAEAKAYEPKIVHVDADNRIVALG 118 
S. coelicolor     60 IEGERGSGVIGINGAAAHLVHPGDLVILISYAQVTDAEARSLRPRVVHVDGDNRIVGLG 118 
M. tuberculosis   60 ITGERGSGVIGINGAAAHLVHPGDLVILIAYATMDDARARTYQPRIVFVDAYNKPIDMG 118 
T. thermophilus   60 LPGERGSGVIGINGAAAHLVKPGDLVILVAYGVFDEEEARNLKPTVVLVDERNRILEVR 118 
L. pneumophila    61 ITGEKGSTDICVNGAAAHLVTPGDLVIIASFTQILEEDCAAHEPTVVFVDQFNRLKEIR 119 
C. crescentus     60 IEAPRGSKVIGVNGAAARLVQKNDLVIVVTYCQMPAEEARNYAPTVVLLDEGNLIKKAA 118 
B. subtilis       60 IKGERGSGVVCLNGAAARLVQPGDKVIIICYGLVAEENIHKQEPKIAVLDDDNQIIEML 118 
S. aureus         60 IAGERGSGKICLNGAASRLVEVGDVVIIMTYAQLNEEEIKNHAPKVAVMNEDNVIIEMI 118 
H. pylori         60 ILGKK-KGEICVNGAAARKVAIGDVVIILAYASMNEDEINAHKPSIVLVDEKNEILEK  116  
                     .        . .****..    .* .*. ..            * .      *       
 
P. aeruginosa    119 EAIPIQVA                               126 
E. coli          119 KAIPVQVA                               126 
E. carotovora    119 KAIPVQVA                               126 
Y. pestis        119 KAVPVQVA                               126 
C. glutamicum    119 NDLAEALPGSGLLTS-RSI                    136 
S. coelicolor    119 ADASEPVPGSDQERSPQAVSA                  139 
M. tuberculosis  119 HDPAFVPENAGELLDPRLGVG                  139 
T. thermophilus  119 KG                                     120 
L. pneumophila   120 PERIGVKSRIPYPA                         133 
C. crescentus    119                                        118 
B. subtilis      119 GAEKAGTIL                              127 
S. aureus        119 HEKENTIVL                              127 
H. pylori        116                                        116 
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9.7.2 DNA sequence alignments for the different PanD constructs 

 

WT                     ATGCGGGGTT CTCATCATCA TCATCATCAT GGTCTGGTTC CGCgtGGATC  
H17C                   ATGCGGGGTT CTCATcatCA TCATCAtcaT GGTCTGGTTC CGCgTGGATc  
D19C                   ATGCGGGGTT CTCATCATCA TCATCATCAT GGTCTGGTTC CGCGTGGATC  
E23C                   ATGCGGGGTT CTCATCATCA TCATCATCAT GGTCTGGTTC CGCGTGGATC  
C26S                   ATGCGGGGTT CTCATCATCA TcatcaTCAT GGTCTGGTTC CGCGTGGATC  
A62C                   ATGCGGGGTT CTCATCATCA TCATCATCAT GGTCTGGTTC CGCgtGGATC  
C78A                   ATGCGGGGTT CTCATCATCA TCATCATCAT GGTCTGGTTC CGCgtGGATC  
H17CE23C               ATGCGGGGTT CTCATCATCA TCATCATCAT GGTCTGGTTC CGCgtGGATC  
H17CC26S               ATGCGGGGTT CTCATCATCA TCATCATCAT GGTCTGGTTC CGCGTGGATC  
H17CC78A               ATGCGGGGTT CTCATCATCA TCATCATCAT GGTCTGGTTC CGCgtGGATC  
D19CE23C               ATGCGGGGTT CTCATCATCA TCATCATCAT gGTCTGGTTC CGCgtGGATC  
D19CC26S               ATGCGGGGTT CTCATCATCA TCATCATCAT GGTCTGGTTC CGCGTGGATC  
E23CA62C               ATGCGGGGtT CTCATCATCA TCATCATCAT ggtCTgGtTC CGCgtgGATC  
E23CC78A               ATGCGGGGTT CTCATCATCA TCATCATCAT GGTCTGGTTC CGCGTGGATC  
C26SC78A               ATGCGGGGTT CTCATCATCA TCATCATCAT GGTCTGGTTC CGCGTGGATC  
H17CE23CC78A           ATGCGGGGTT CTCATCATCA TCATCATCAT gGTCTGGTTC CGCgtgGATC  
D19CE23CC78A           ATGCGGGGTT CTCATCATCA TCATCATCAT GGTCTGGTTC CGCGTGGATC  
E23CA62CC78A           ATGCGGGGTT CTCATCATCA TCATCATCAT GGTCTGGTTC CGCGTGGATC  
E23CC26SC78A           ATGCGGGGTT CTCATCATCA TCATCATCAT GGTCTGGTTC CGCGTGGATC  
H17CE23CC26SC78A       ATGCGGGGTT CTCATCATCA TCATCATCAT GGTCTGGTTC CGCGTGGATC  
D19CE23CC26SC78A       ATGCGGGGTT CTCATCATCA TCATCATCAT GGTCTGGTTC CGCgtGGATC  
E23CC26SA62CC78A       ATGCGGGGTT CTCATCATCA TCATCATCAT GGTCTGGTTC CGCGTGGATC  
 
WT                     CATGATTCGC ACGATGCTGC AGGGCAAACT CCACCGCgtG AAAGTGACTC  
H17C                   catgATTCGC ACGATGctGC AGGGCAAACt CCACCGcgtg AAAGTGACTT  
D19C                   CATGATTCGC ACGATGCTGC AGGGCAAACT CCACCGCGTG AAAGTGACTC  
E23C                   CATGATTCGC ACGATGCTGC AGGGCAAACT CCACCGCGTG AAAGTGACTC  
C26S                   CATGATTCGC ACGATGCTGC AGGGCAAACT CCACCGCGTG AAAGTGACTC  
A62C                   CATGATTCGC ACGATGCTGC AGGGCAAACT CCACCGCGTG AAAGTGACTC  
C78A                   CATGATTCGC ACGATGCTGC AGGGCAAACT CCACCGCgtG AAAGTGACTC  
H17CE23C               CATGATTCGC ACGATGCTGC AGGGCAAACT CCACCGCgtG AAAGTGACTT  
H17CC26S               CATGATTCGC ACGATGCTGC AGGGCAAACT CCACCGCGTG AAAGTGACTT  
H17CC78A               CATGATTCGC ACGATGCTGC AGGGCAAACT CCACCGCgtG AAAGTGACTT  
D19CE23C               CATGATTCGC ACGATGCTGC AGGGCAAACT CCACCGCgtg AAAGTGACTC  
D19CC26S               CATGATTCGC ACGATGCTGC AGGGCAAACT CCACCGCGTG AAAGTGACTC  
E23CA62C               CAtgATTCGC ACGATGCTGC AGGGCAAACT CCACCGCgtg AAAGTGACTC  
E23CC78A               CATGATTCGC ACGATGCTGC AGGGCAAACT CCACCGCGTG AAAGTGACTC  
C26SC78A               CATGATTCGC ACGATGCTGC AGGGCAAACT CCACCGCGTG AAAGTGACTC  
H17CE23CC78A           CATGATTCGC ACGATGCTGC AGGGCAAACT CCACCGCgtg AAAGTGACTT  
D19CE23CC78A           CATGATTCGC ACGATGCTGC AGGGCAAACT CCACCGCgtG AAAGTGACTC  
E23CA62CC78A           CATGATTCGC ACGATGCTGC AGGGCAAACT CCACCGCGTG AAAGTGACTC  
E23CC26SC78A           CATGATTCGC ACGATGCTGC AGGGCAAACT CCACCGCGTG AAAGTGACTC  
H17CE23CC26SC78A       CATGATTCGC ACGATGCTGC AGGGCAAACT CCACCGCGTG AAAGTGACTT  
D19CE23CC26SC78A       CATGATTCGC ACGATGCTGC AGGGCAAACT CCACCGCgtG AAAGTGACTC  
E23CC26SA62CC78A       CATGATTCGC ACGATGCTGC AGGGCAAACT CCACCGCGTG AAAGTGACTC  
 
WT                     ATGCGGACCT GCACTATGAA GGTTCTTGCG CCATTGACCA GGATTTTCTT  
H17C                   GTGCGgACCT GCACTATGAA GGTTCTTGCG CCATtgACCA GGATTTTCtT  
D19C                   ATGCGTGCCT GCACTATGAA GGTTCTTGCG CCATTGACCA GGATTTTCTT  
E23C                   ATGCGGACCT GCACTATTGT GGTTCTTGCG CCATTGACCA GGATTTTCTT  
C26S                   ATGCGGACCT GCACTATGAA GGTTCTTCCG CCATTGACCA GGATTTTCTT  
A62C                   ATGCGGACCT GCACTATGAA GGTTCTTGCG CCATTGACCA GGATTTTCTT  
C78A                   ATGCGGACCT GCACTATGAA GGTTCTTGCG CCATTGACCA GGATTTTCTT  
H17CE23C               GTGCGGACCT GCACTATTGT GGTTCTTGCG CCATTGACCA GGATTTTCTT  
H17CC26S               GTGCGGACCT GCACTATGAA GGTTCTTCCG CCATTGACCA GGATTTTCTT  
H17CC78A               GTGCGGACCT GCACTATGAA GGTTCTTGCG CCATTGACCA GGATTTTCTT  
D19CE23C               ATGCGTGCCT GCACTATTGT GGTTCTTGCG CCATTGACCA GGATTTTCTT  
D19CC26S               ATGCGTGCCT GCACTATGAA GGTTCTTCCG CCATTGACCA GGATTTTCTT  
E23CA62C               ATGCGGACct gCACTAttgt GGTTCTTGCG CCATtgACCA GGATTTTCTT  
E23CC78A               ATGCGGACCT GCACTATTGT GGTTCTTGCG CCATTGACCA GGATTTTCTT  
C26SC78A               ATGCGGACCT GCACTATGAA GGTTCTTCCG CCATTGACCA GGATTTTCTT  
H17CE23CC78A           GTGCGGACCT GCActATTGT GGTTCTTGCG CCATTGACCA GGATTTTCTT  
D19CE23CC78A           ATGCGTGCCT GCACTATTGT GGTTCTTGCG CCATTGACCA GGATTTTCTT  
E23CA62CC78A           ATGCGGACCT GCACTATTGT GGTTCTTGCG CCATTGACCA GGATTTTCTT  
E23CC26SC78A           ATGCGGACCT GCACTATTGT GGTTCTTCCG CCATTGACCA GGATTTTCTT  
H17CE23CC26SC78A       GTGCGGACCT GCACTATTGT GGTTCTTCCG CCATTGACCA GGATTTTCTT  
D19CE23CC26SC78A       ATGCGTGCCT GCACTATTGT GGTTCTTCCG CCATTGACCA GGATTTTCTT  
E23CC26SA62CC78A       ATGCGGACCT GCACTATTGT GGTTCTTCCG CCATTGACCA GGATTTTCTT  
 
WT                     GACGCAGCCG GTATTCTCGA AAACGAAGCC ATTGATATCT GGAATGTCAC  
H17C                   GACGCaGCCG gtATTCTCGA AAACGAAGCC ATtgATATCT GGAATGTCac  
D19C                   GACGCAGCCG GTATTCTCGA AAACGAAGCC ATTGATATCT GGAATGTCAC  
E23C                   GACGCAGCCG GTATTCTCGA AAACGAAGCC ATTGATATCT GGAATGTCAC  
C26S                   GACGCAGCCG GTATTCTCGA AAACGAAGCC ATTGATATCT GGAATGTCAC  
A62C                   GACGCAGCCG GTATTCTCGA AAACGAAGCC ATTGATATCT GGAATGTCAC  
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C78A                   GACGCAGCCG GTATTCTCGA AAACGAAGCC ATTGATATCT GGAATGTCAC  
H17CE23C               GACGCAGCCG GTATTCTCGA AAACGAAGCC ATTGATATCT GGAATGTCAC  
H17CC26S               GACGCAGCCG GTATTCTCGA AAACGAAGCC ATTGATATCT GGAATGTCAC  
H17CC78A               GACGCAGCCG GTATTCTCGA AAACGAAGCC ATTGATATCT GGAATGTCAC  
D19CE23C               GACGCAGCCG GTATTCTCGA AAACGAAGCC ATTGATATCT GGAATGTCAC  
D19CC26S               GACGCAGCCG GTATTCTCGA AAACGAAGCC ATTGATATCT GGAATGTCAC  
E23CA62C               GACGCAGCCG GTATTCTCGA AAACGAAGCC ATTGATATCT GGAATGTCAC  
E23CC78A               GACGCAGCCG GTATTCTCGA AAACGAAGCC ATTGATATCT GGAATGTCAC  
C26SC78A               GACGCAGCCG GTATTCTCGA AAACGAAGCC ATTGATATCT GGAATGTCAC  
H17CE23CC78A           GACGCAGCCG GTATTCTCGA AAACGAAGCC ATTGATATCT GGAATGTCAC  
D19CE23CC78A           GACGCAGCCG GTATTCTCGA AAACGAAGCC ATTGATATCT GGAATGTCAC  
E23CA62CC78A           GACGCAGCCG GTATTCTCGA AAACGAAGCC ATTGATATCT GGAATGTCAC  
E23CC26SC78A           GACGCAGCCG GTATTCTCGA AAACGAAGCC ATTGATATCT GGAATGTCAC  
H17CE23CC26SC78A       GACGCAGCCG GTATTCTCGA AAACGAAGCC ATTGATATCT GGAATGTCAC  
D19CE23CC26SC78A       GACGCAGCCG GTATTCTCGA AAACGAAGCC ATTGATATCT GGAATGTCAC  
E23CC26SA62CC78A       GACGCAGCCG GTATTCTCGA AAACGAAGCC ATTGATATCT GGAATGTCAC  
 
WT                     CAACGGCAAG CGTTTCTCCA CTTATGCCAT CGCGGCAGAA CGCGGTTCGA  
H17C                   CAACGGCAAG CGTTTCTCCA CttatgCCAT CGCGGCAGAA CGCGgttCGA  
D19C                   CAACGGCAAG CGTTTCTCCA CTTATGCCAT CGCGGCAGAA CGCGGTTCGA  
E23C                   CAACGGCAAG CGTTTCTCCA CTTATGCCAT CGCGGCAGAA CGCGGTTCGA  
C26S                   CAACGGCAAG CGTTTCTCCA CTTATGCCAT CGCGGCAGAA CGCGGTTCGA  
A62C                   CAACGGCAAG CGTTTCTCCA CTTATGCCAT CGCGTGTGAA CGCGGTTCGA  
C78A                   CAACGGCAAG CGTTTCTCCA CTTATGCCAT CGCGGCAGAA CGCGGTTCGA  
H17CE23C               CAACGGCAAG CGTTTCTCCA CTTATGCCAT CGCGGCAGAA CGCGGTTCGA  
H17CC26S               CAACGGCAAG CGTTTCTCCA CTTATGCCAT CGCGGCAGAA CGCGGTTCGA  
H17CC78A               CAACGGCAAG CGTTTCTCCA CTTATGCCAT CGCGGCAGAA CGCGGTTCGA  
D19CE23C               CAACGGCAAG CGTTTCTCCA CTTATGCCAT CGCGGCAGAA CGCGGTTCGA  
D19CC26S               CAACGGCAAG CGTTTCTCCA CTTATGCCAT CGCGGCAGAA CGCGGTTCGA  
E23CA62C               CAACGGCAAG CGTTTCTCCA CTTATGCCAT CGCGTGTGAA CGCGGTTCGA  
E23CC78A               CAACGGCAAG CGTTTCTCCA CTTATGCCAT CGCGGCAGAA CGCGGTTCGA  
C26SC78A               CAACGGCAAG CGTTTCTCCA CTTATGCCAT CGCGGCAGAA CGCGGTTCGA  
H17CE23CC78A           CAACGGCAAG CGTTTCTCCA CTTATGCCAT CGCGGCAGAA CGCGGTTCGA  
D19CE23CC78A           CAACGGCAAG CGTTTCTCCA CTTATGCCAT CGCGGCAGAA CGCGGTTCGA  
E23CA62CC78A           CAACGGCAAG CGTTTCTCCA CTTATGCCAT CGCGTGTGAA CGCGGTTCGA  
E23CC26SC78A           CAACGGCAAG CGTTTCTCCA CTTATGCCAT CGCGGCAGAA CGCGGTTCGA  
H17CE23CC26SC78A       CAACGGCAAG CGTTTCTCCA CTTATGCCAT CGCGGCAGAA CGCGGTTCGA  
D19CE23CC26SC78A       CAACGGCAAG CGTTTCTCCA CTTATGCCAT CGCGGCAGAA CGCGGTTCGA  
E23CC26SA62CC78A       CAACGGCAAG CGTTTCTCCA CTTATGCCAT CGCGTGTGAA CGCGGTTCGA  
 
WT                     GAATTATTTC TGTTAACGGT GCGGCGGCCC ACTGCGCCAG TGTCGGCGAT  
H17C                   GAATTATTTC TGTTAACGGT GCGGCGGCCC ActGCGCCag tGTCGGCGAT  
D19C                   GAATTATTTC TGTTAACGGT GCGGCGGCCC ACTGCGCCAG TGTCGGCGAT  
E23C                   GAATTATTTC TGTTAACGGT GCGGCGGCCC ACTGCGCCAG TGTCGGCGAT  
C26S                   GAATTATTTC TGTTAACGGT GCGGCGGCCC ACTGCGCCAG TGTCGGCGAT  
A62C                   GAATTATTTC TGTTAACGGT GCGGCGGCCC ACTGCGCCAG TGTCGGCGAT  
C78A                   GAATTATTTC TGTTAACGGT GCGGCGGCCC ACGCAGCCAG TGTCGGCGAT  
H17CE23C               GAATTATTTC TGTTAACGGT GCGGCGGCCC ACTGCGCCAG TGTCGGCGAT  
H17CC26S               GAATTATTTC TGTTAACGGT GCGGCGGCCC ACTGCGCCAG TGTCGGCGAT  
H17CC78A               GAATTATTTC TGTTAACGGT GCGGCGGCCC ACGCAGCCAG TGTCGGCGAT  
D19CE23C               GAATTATTTC TGTTAACGGT GCGGCGGCCC ACTGCGCCAG TGTCGGCGAT  
D19CC26S               GAATTATTTC TGTTAACGGT GCGGCGGCCC ACTGCGCCAG TGTCGGCGAT  
E23CA62C               GAATTATTTC TGTTAACGGT GCGGCGGCCC ACTGCGCCAG TGTCGGCGAT  
E23CC78A               GAATTATTTC TGTTAACGGT GCGGCGGCCC ACGCAGCCAG TGTCGGCGAT  
C26SC78A               GAATTATTTC TGTTAACGGT GCGGCGGCCC ACGCAGCCAG TGTCGGCGAT  
H17CE23CC78A           GAATTATTTC TGTTAACGGT GCGGCGGCCC ACGCAGCCAG TGTCGGCGAT  
D19CE23CC78A           GAATTATTTC TGTTAACGGT GCGGCGGCCC ACGCAGCCAG TGTCGGCGAT  
E23CA62CC78A           GAATTATTTC TGTTAACGGT GCGGCGGCCC ACGCAGCCAG TGTCGGCGAT  
E23CC26SC78A           GAATTATTTC TGTTAACGGT GCGGCGGCCC ACGCAGCCAG TGTCGGCGAT  
H17CE23CC26SC78A       GAATTATTTC TGTTAACGGT GCGGCGGCCC ACGCAGCCAG TGTCGGCGAT  
D19CE23CC26SC78A       GAATTATTTC TGTTAACGGT GCGGCGGCCC ACGCAGCCAG TGTCGGCGAT  
E23CC26SA62CC78A       GAATTATTTC TGTTAACGGT GCGGCGGCCC ACGCAGCCAG TGTCGGCGAT  
 
WT                     ATTGTCATCA TCGCCAGCTT CGTTACCATG CCAGATGAAG AAGCTCGCAC  
H17C                   ATTGTCATCA TCGCCAGCtt cGTTACCATG CCAGATGAAG AAGCTCGCAC  
D19C                   ATTGTCATCA TCGCCAGCTT CGTTACCATG CCAGATGAAG AAGCTCGCAC  
E23C                   ATTGTCATCA TCGCCAGCTT CGTTACCATG CCAGATGAAG AAGCTCGCAC  
C26S                   ATTGTCATCA TCGCCAGCTT CGTTACCATG CCAGATGAAg AAGCTCGCAC  
A62C                   ATTGTCATCA TCGCCAGCTT CGTTACCATG CCAGATGAAG AAGCTCGCAC  
C78A                   ATTGTCATCA TCGCCAGCTT CGTTACCATG CCAGATGAAG AAGCTCGCAC  
H17CE23C               ATTGTCATCA TCGCCAGCTT CGTTACCATG CCAGATGAAG AAGCTCGCAC  
H17CC26S               ATTGTCATCA TCGCCAGCTT CGTTACCATG CCAGATGAAG AAGCTCGCAC  
H17CC78A               ATTGTCATCA TCGCCAGCTT CGTTACCATG CCAGATGAAG AAGCTCGCAC  
D19CE23C               ATTGTCATCA TCGCCAGCTT CGTTACCATG CCAGATGAAG AAGCTCGCAC  
D19CC26S               ATTGTCATCA TCGCCAGCTT CGTTACCATG CCAGATGAAG AAGCTCGCAC  
E23CA62C               ATTGTCATCA TCGCCAGCTT CGTTACCATG CCAGATGAAG AAGCTCGCAC  
E23CC78A               ATTGTCATCA TCGCCAGCTT CGTTACCATG CCAGATGAAG AAGCTCGCAC  
C26SC78A               ATTGTCATCA TCGCCAGCTT CGTTACCATG CCAGATGAAG AAGCTCGCAC  
H17CE23CC78A           ATTGTCATCA TCGCCAGCTT CGTTACCATG CCAGATGAAG AAGCTCGCAC  
D19CE23CC78A           ATTGTCATCA TCGCCAGCTT CGTTACCATG CCAGATGAAG AAGCTCGCAC  
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E23CA62CC78A           ATTGTCATCA TCGCCAGCTT CGTTACCATG CCAGATGAAG AAGCTCGCAC  
E23CC26SC78A           ATTGTCATCA TCGCCAGCTT CGTTACCATG CCAGATGAAG AAGCTCGCAC  
H17CE23CC26SC78A       ATTGTCATCA TCGCCAGCTT CGTTACCATG CCAGATGAAG AAGCTCGCAC  
D19CE23CC26SC78A       ATTGTCATCA TCGCCAGCTT CGTTACCATG CCAGATGAAG AAGCTCGCAC  
E23CC26SA62CC78A       ATTGTCATCA TCGCCAGCTT CGTTACCATG CCAGATGAAG AAGCTCGCAC  
 
WT                     CTGGCGACCC AACGTCGCCT ATTTTGAAGG CGACAATGAA ATGAAACGTA  
H17C                   CTGGCGACCC AACGTCGCCT ATTTTGAAGG CGACAATGAA ATGAagcGTA  
D19C                   CTGGCGACCC AACGTCGCCT ATTTTGAAGG CGACAATGAA ATGAAACGTA  
E23C                   CTGGCGACCC AACGTCGCCT ATTTTGAAGG CGACAATGAA ATGAAACGTA  
C26S                   CTGGCGACCC AACGTCGCCT ATTTTGAAGG CGACAATGAA ATGAAACGTA  
A62C                   CTGGCGACCC AACGTCGCCT ATTTTGAAGG CGACAATGAA ATGAAACGTA  
C78A                   CTGGCGACCC AACGTCGCCT ATTTTGAAGG CGACAATGAA ATGAAACGTA  
H17CE23C               CTGGCGACCC AACGTCGCCT ATTTTGAAGG CGACAATGAA ATGAAACGTA  
H17CC26S               CTGGCGACCC AACGTCGCCT ATTTTGAAGG CGACAATGAA ATGAAACGTA  
H17CC78A               CTGGCGACCC AACGTCGCCT ATTTTGAAGG CGACAATGAA ATGAAACGTA  
D19CE23C               CTGGCGACCC AACGTCGCCT ATTTTGAAGG CGACAATGAA ATGAAACGTA  
D19CC26S               CTGGCGACCC AACGTCGCCT ATTTTGAAGG CGACAATGAA ATGAAACGTA  
E23CA62C               CTGGCGACCC AACGTCGCCT ATTTTGAAGG CGACAATGAA ATGAAACGTA  
E23CC78A               CTGGCGACCC AACGTCGCCT ATTTTGAAGG CGACAATGAA ATGAAACGTA  
C26SC78A               CTGGCGACCC AACGTCGCCT ATTTTGAAGG CGACAATGAA ATGAAACGTA  
H17CE23CC78A           CTGGCGACCC AACGTCGCCT ATTTTGAAGG CGACAATGAA ATGAAACGTA  
D19CE23CC78A           CTGGCGACCC AACGTCGCCT ATTTTGAAGG CGACAATGAA ATGAAACGTA  
E23CA62CC78A           CTGGCGACCC AACGTCGCCT ATTTTGAAGG CGACAATGAA ATGAAACGTA  
E23CC26SC78A           CTGGCGACCC AACGTCGCCT ATTTTGAAGG CGACAATGAA ATGAAACGTA  
H17CE23CC26SC78A       CTGGCGACCC AACGTCGCCT ATTTTGAAGG CGACAATGAA ATGAAACGTA  
D19CE23CC26SC78A       CTGGCGACCC AACGTCGCCT ATTTTGAAGG CGACAATGAA ATGAAACGTA  
E23CC26SA62CC78A       CTGGCGACCC AACGTCGCCT ATTTTGAAGG CGACAATGAA ATGAAACGTA  
 
WT                     CCGCGAAAGC GATTCCGGTA CAGGTTGCTT GA 
H17C                   CCGCGAAAGC GATTCCGGTA CAGGTTGCTT GA 
D19C                   CCGCGAAAGC GATTCCGGTA CAGGTTGCTT GA 
E23C                   CCGCGAAAGC GATTCCGGTA CAGGTTGCTT GA 
C26S                   CCGCGAAAGC GATTCCgGtA CaGGTTGCTT GA 
A62C                   CCGCGAAAGC GATTCCGGTA CAGGTTGCTT GA 
C78A                   CCGCGAAAGC GATTCCGGTA CAGGTTGCTT GA 
H17CE23C               CCGCGAAAGC GATTCCGGTA CAGGTTGCTT GA 
H17CC26S               CCGCGAAAGC GATTCCGGTA CAGGTTGCTT GA 
H17CC78A               CCGCGAAAGC GATTCCGGTA CAGGTTGCTT GA 
D19CE23C               CCGCGAAAGC GATTCCGGTA CAGGTTGCTT GA 
D19CC26S               CCGCGAAAGC GATTCCGGTA CAGGTTGCTT GA 
E23CA62C               CCGCGAAAGC GATTCCGGTA CAGGTTGCTT GA 
E23CC78A               CCGCGAAAGC GATTCCGGTA CAGGTTGCTT GA 
C26SC78A               CCGCGAAAGC GATTCCGGTA CAGGTTGCTT GA 
H17CE23CC78A           CCGCGAAAGC GATTCCGGTA CAGGTTGCTT GA 
D19CE23CC78A           CCGCGAAAGC GATTCCGGTA CAGGTTGCTT GA 
E23CA62CC78A           CCGCGAAAGC GATTCCGGTA CAGGTTGCTT GA 
E23CC26SC78A           CCGCGAAAGC GATTCCGGTA CAGGTTGCTT GA 
H17CE23CC26SC78A       CCGCGAAAGC GATTCCGGTA CAGGTTGCTT GA 
D19CE23CC26SC78A       CCGCGAAAGC GATTCCGGTA CAGGTTGCTT GA 
E23CC26SA62CC78A       CCGCGAAAGC GATTCCGGTA CAGGTTGCTT GA 
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9.7.3 Protein sequence alignment for the different PanD constructs 

WT               -17   MRGSHHHHHH GLVPRGSMIR TMLQGKLHRV KVTHADLHYE GSCAIDQDFL 33 
H17C             -17   MRGSHHHHHH GLVPRGSMIR TMLQGKLHRV KVTCADLHYE GSCAIDQDFL 33 
D19C             -17   MRGSHHHHHH GLVPRGSMIR TMLQGKLHRV KVTHACLHYE GSCAIDQDFL 33 
E23C             -17   MRGSHHHHHH GLVPRGSMIR TMLQGKLHRV KVTHADLHYC GSCAIDQDFL 33 
C26S             -17   MRGSHHHHHH GLVPRGSMIR TMLQGKLHRV KVTHADLHYE GSSAIDQDFL 33 
A62C             -17   MRGSHHHHHH GLVPRGSMIR TMLQGKLHRV KVTHADLHYE GSCAIDQDFL 33 
C78A             -17   MRGSHHHHHH GLVPRGSMIR TMLQGKLHRV KVTHADLHYE GSCAIDQDFL 33 
H17CE23C         -17   MRGSHHHHHH GLVPRGSMIR TMLQGKLHRV KVTCADLHYC GSCAIDQDFL 33 
H17CC26S         -17   MRGSHHHHHH GLVPRGSMIR TMLQGKLHRV KVTCADLHYE GSSAIDQDFL 33 
H17CC78A         -17   MRGSHHHHHH GLVPRGSMIR TMLQGKLHRV KVTCADLHYE GSCAIDQDFL 33 
D19CE23C         -17   MRGSHHHHHH GLVPRGSMIR TMLQGKLHRV KVTHACLHYC GSCAIDQDFL 33 
D19CC26S         -17   MRGSHHHHHH GLVPRGSMIR TMLQGKLHRV KVTHACLHYE GSSAIDQDFL 33 
E23CA62C         -17   MRGSHHHHHH GLVPRGSMIR TMLQGKLHRV KVTHADLHYC GSCAIDQDFL 33 
E23CC78A         -17   MRGSHHHHHH GLVPRGSMIR TMLQGKLHRV KVTHADLHYC GSCAIDQDFL 33 
C26SC78A         -17   MRGSHHHHHH GLVPRGSMIR TMLQGKLHRV KVTHADLHYE GSSAIDQDFL 33 
H17CE23CC78A     -17   MRGSHHHHHH GLVPRGSMIR TMLQGKLHRV KVTCADLHYC GSCAIDQDFL 33 
D19CE23CC78A     -17   MRGSHHHHHH GLVPRGSMIR TMLQGKLHRV KVTHACLHYC GSCAIDQDFL 33 
E23CA62CC78A     -17   MRGSHHHHHH GLVPRGSMIR TMLQGKLHRV KVTHADLHYC GSCAIDQDFL 33 
E23CC26SC78A     -17   MRGSHHHHHH GLVPRGSMIR TMLQGKLHRV KVTHADLHYC GSSAIDQDFL 33 
H17CE23CC26SC78A -17   MRGSHHHHHH GLVPRGSMIR TMLQGKLHRV KVTCADLHYC GSSAIDQDFL 33 
D19CE23CC26SC78A -17   MRGSHHHHHH GLVPRGSMIR TMLQGKLHRV KVTHACLHYC GSSAIDQDFL 33 
E23CC26SA62CC78A -17   MRGSHHHHHH GLVPRGSMIR TMLQGKLHRV KVTHADLHYC GSSAIDQDFL 33 
 
WT                34   DAAGILENEA IDIWNVTNGK RFSTYAIAAE RGSRIISVNG AAAHCASVGD 83 
H17C              34   DAAGILENEA IDIWNVTNGK RFSTYAIAAE RGSRIISVNG AAAHCASVGD 83 
D19C              34   DAAGILENEA IDIWNVTNGK RFSTYAIAAE RGSRIISVNG AAAHCASVGD 83 
E23C              34   DAAGILENEA IDIWNVTNGK RFSTYAIAAE RGSRIISVNG AAAHCASVGD 83 
C26S              34   DAAGILENEA IDIWNVTNGK RFSTYAIAAE RGSRIISVNG AAAHCASVGD 83 
A62C              34   DAAGILENEA IDIWNVTNGK RFSTYAIACE RGSRIISVNG AAAHCASVGD 83 
C78A              34   DAAGILENEA IDIWNVTNGK RFSTYAIAAE RGSRIISVNG AAAHAASVGD 83 
H17CE23C          34   DAAGILENEA IDIWNVTNGK RFSTYAIAAE RGSRIISVNG AAAHCASVGD 83 
H17CC26S          34   DAAGILENEA IDIWNVTNGK RFSTYAIAAE RGSRIISVNG AAAHCASVGD 83 
H17CC78A          34   DAAGILENEA IDIWNVTNGK RFSTYAIAAE RGSRIISVNG AAAHAASVGD 83 
D19CE23C          34   DAAGILENEA IDIWNVTNGK RFSTYAIAAE RGSRIISVNG AAAHCASVGD 83 
D19CC26S          34   DAAGILENEA IDIWNVTNGK RFSTYAIAAE RGSRIISVNG AAAHCASVGD 83 
E23CA62C          34   DAAGILENEA IDIWNVTNGK RFSTYAIACE RGSRIISVNG AAAHCASVGD 83 
E23CC78A          34   DAAGILENEA IDIWNVTNGK RFSTYAIAAE RGSRIISVNG AAAHAASVGD 83 
C26SC78A          34   DAAGILENEA IDIWNVTNGK RFSTYAIAAE RGSRIISVNG AAAHAASVGD 83 
H17CE23CC78A      34   DAAGILENEA IDIWNVTNGK RFSTYAIAAE RGSRIISVNG AAAHAASVGD 83 
D19CE23CC78A      34   DAAGILENEA IDIWNVTNGK RFSTYAIAAE RGSRIISVNG AAAHAASVGD 83 
E23CA62CC78A      34   DAAGILENEA IDIWNVTNGK RFSTYAIACE RGSRIISVNG AAAHAASVGD 83 
E23CC26SC78A      34   DAAGILENEA IDIWNVTNGK RFSTYAIAAE RGSRIISVNG AAAHAASVGD 83 
H17CE23CC26SC78A  34   DAAGILENEA IDIWNVTNGK RFSTYAIAAE RGSRIISVNG AAAHAASVGD 83 
D19CE23CC26SC78A  34   DAAGILENEA IDIWNVTNGK RFSTYAIAAE RGSRIISVNG AAAHAASVGD 83 
E23CC26SA62CC78A  34   DAAGILENEA IDIWNVTNGK RFSTYAIACE RGSRIISVNG AAAHAASVGD 83 
 
WT                84   IVIIASFVTM PDEEARTWRP NVAYFEGDNE MKRTAKAIPV QVA 126 
H17C              84   IVIIASFVTM PDEEARTWRP NVAYFEGDNE MKRTAKAIPV QVA 126 
D19C              84   IVIIASFVTM PDEEARTWRP NVAYFEGDNE MKRTAKAIPV QVA 126 
E23C              84   IVIIASFVTM PDEEARTWRP NVAYFEGDNE MKRTAKAIPV QVA 126 
C26S              84   IVIIASFVTM PDEEARTWRP NVAYFEGDNE MKRTAKAIPV QVA 126 
A62C              84   IVIIASFVTM PDEEARTWRP NVAYFEGDNE MKRTAKAIPV QVA 126 
C78A              84   IVIIASFVTM PDEEARTWRP NVAYFEGDNE MKRTAKAIPV QVA 126 
H17CE23C          84   IVIIASFVTM PDEEARTWRP NVAYFEGDNE MKRTAKAIPV QVA 126 
H17CC26S          84   IVIIASFVTM PDEEARTWRP NVAYFEGDNE MKRTAKAIPV QVA 126 
H17CC78A          84   IVIIASFVTM PDEEARTWRP NVAYFEGDNE MKRTAKAIPV QVA 126 
D19CE23C          84   IVIIASFVTM PDEEARTWRP NVAYFEGDNE MKRTAKAIPV QVA 126 
D19CC26S          84   IVIIASFVTM PDEEARTWRP NVAYFEGDNE MKRTAKAIPV QVA 126 
E23CA62C          84   IVIIASFVTM PDEEARTWRP NVAYFEGDNE MKRTAKAIPV QVA 126 
E23CC78A          84   IVIIASFVTM PDEEARTWRP NVAYFEGDNE MKRTAKAIPV QVA 126 
C26SC78A          84   IVIIASFVTM PDEEARTWRP NVAYFEGDNE MKRTAKAIPV QVA 126 
H17CE23CC78A      84   IVIIASFVTM PDEEARTWRP NVAYFEGDNE MKRTAKAIPV QVA 126 
D19CE23CC78A      84   IVIIASFVTM PDEEARTWRP NVAYFEGDNE MKRTAKAIPV QVA 126 
E23CA62CC78A      84   IVIIASFVTM PDEEARTWRP NVAYFEGDNE MKRTAKAIPV QVA 126 
E23CC26SC78A      84   IVIIASFVTM PDEEARTWRP NVAYFEGDNE MKRTAKAIPV QVA 126 
H17CE23CC26SC78A  84   IVIIASFVTM PDEEARTWRP NVAYFEGDNE MKRTAKAIPV QVA 126 
D19CE23CC26SC78A  84   IVIIASFVTM PDEEARTWRP NVAYFEGDNE MKRTAKAIPV QVA 126 
E23CC26SA62CC78A  84   IVIIASFVTM PDEEARTWRP NVAYFEGDNE MKRTAKAIPV QVA 126 
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