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ABSTRACT 

Abundant water chemistry analyses from nine different locations (predominantly petroleum 
reservoirs) on five continents were evaluated. This information, together with local mineralogy, 
depth and temperature relations provided a sound basis from which to investigate the most 
important controls on formation water composition. In particular, the detailed study of two very 
different hydrocarbon reservoir case studies (the Central US coalbed methane reservoir, the San 
Juan Basin and the North Sea oilfield Miller) provided an insight not only into the fundamental 
controls on formation water composition, but also into the effects of active oilfield development 
on systems that are very sensitive to change on rapid timescales. 

The geochemistry of San Juan waters is controlled by the introduction of bicarbonate through 
carbonate dissolution and methane/coal oxidation leading to leaching of Na-bearing clay 
minerals, and by ion exchange on clay minerals and dilution by meteoric waters in certain 
locations. The time series of produced waters from Miller enabled detailed study of fluid 
mixing in the field and the physical, chemical and thermodynamic response of the system to the 
injection of seawater. Changes occur in the concentrations of many water components through 
time that cannot be explained by linear mixing between formation water and injected water and 
require dissolution or precipitation reactions to have occurred between injection and production 
sites. For example Ba, and SO4 concentrations are affected by equilibrium with barite and what 
is likely to be sulphate reduction. Also, excess Si present in the fluid is due to dissolution of the 
silicate phases in the reservoir, and demonstrates reactions between silicate minerals occur on a 
fast enough timescale to buffer the pH of the water. 

Integration of all available data shows consistent patterns of behaviour, which implicate 
mineral-fluid interactions in the subsurface as a major control on formation water chemistry. 
For example, globally, Ca concentrations are shown to behave in one of three ways, all of which 
depend on water interaction with the host rock, be it silicate or carbonate, clastic or evaporite. 
Distinct trends arise for bicarbonate waters, brines derived by halite dissolution and formation 
brines that have evolved extensively with silicates. In addition, K concentrations are closely 
related to feldspar-clay equilibria and Mg concentrations are influenced predominantly by 
carbonate minerals with significant contribution from clays. It is likely that initial Ba 
concentration is related to interaction with K-feldspars and SO4 is controlled by equilibrium 
with sulphate mineral phases as well as by redox. 

A greater understanding of formation water chemistry leads to an improved perception of the 
importance of these systems in terms of both furthering scientific progress and the technological 
development of the oil and gas industry. In particular, produced water chemistry analyses from 
Miller were used to appraise and improve the most important aspects of both generic and 
specific reservoir models. A set of simple models emphasised the point that small variations in 
reservoir property parameters can have significant effects on model outputs, and thus the 
highlighted the importance of thorough reservoir characterisation, particularly permeability 
heterogeneity, capillary pressure and relative fluid permeabilities. 

Geochemical models of three different systems from the integrated database (the Alberta Basin, 
a Colombian onshore oilfield and an oilfield from offshore Gulf of Mexico) illustrate that 
reservoir rocks containing a wide variety of minerals are the most effective at limiting pH 
decrease following the injection of CO2 into the system. The geochemistry, in particular the 
salinity, of the formation water present also has a significant bearing on the processes that are 
likely to occur during CO2 sequestration. 
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Chapter 1 

1.0 INTRODUCTION 

"Formation water" is a term for water, saline or otherwise, present within the pore spaces of a 

sedimentary rock, and can include locally recharged waters of meteoric origin as well as that 

originally present when the sediment was deposited. Pore waters are ubiquitous in sediments and 
sedimentary rocks and exhibit significant variation in composition. They can vary in terms of 
salinity as well as in the relative concentrations of the dissolved species, but the reasons for this 

extreme variability are not fully understood. Many authors have speculated on what might control 
formation water composition, and certain theories have now become generally accepted. These 

theories include: the increase in cation concentration with chloride constrained by charge balance, 

the conservative nature of halides and their use in determining fluid origins and the effect of some 
diagenetic processes and water-rock interactions on formation water chemistry. However, some 

noteworthy questions regarding the nature of formation waters still remain unanswered. 

A great deal of emphasis is now being placed on improving the understanding of the controls on 

waters in systems such as groundwater aquifers and oil and gas reservoirs. In the petroleum 
industry in particular, formation water composition can affect the likelihood of mineral scale 
precipitating, give an indication as to the extent of fluid mixing in producing reservoirs and provide 
information about the homogeneity of the reservoir and the nature of any mineralogically controlled 
reactions. In addition, the co-existence of water with hydrocarbons results in both chemical and 
physical interactions during production (e. g. wettability, dissolution of organic acids, gas souring 
through H2S production etc) the understanding of which are critical to the industry. 

The objectives of this thesis are to identify the main variations in formation water chemistry on 

global, regional and local scales, to identify the controls on particular fluid characteristics and to 

apply knowledge of formation water chemistry to practical, industrial problems. This thesis will: 

summarise the current understanding of the nature of, and controls on, formation waters, 
highlighting those aspects of the subject that remain uncertain; use detailed data from specific 
locations (case studies) to understand better the subsurface processes that may be extrapolated to 

similar locations worldwide; use a portion of the global formation water data available to evaluate 
further the degree to which formation water compositions reflect water-rock interaction processes; 
and apply new understanding to practical problems experienced by petroleum companies present 
day. Furthermore, the extent to which formation waters are predictable and affected by changing 

mineralogy and temperature will be evaluated, together with the extent to which they remain 

unpredictable due to the importance of basin history and kinetic factors. 
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Chapter 1 

In this study I have attempted to bring together information from a number of different sources from 

the last -50 years. Detailed knowledge of the processes occurring in one specific location can 

provide information about the likelihood of such processes taking place elsewhere. The core of the 

thesis is comprised of two case studies of hydrocarbon reservoirs in two very different geological 

settings, with different exploitative potential and which are at different stages in their production 
life cycle. The case studies are: the oil-producing Miller field in the North Sea and the coal-bed 

methane-bearing northern San Juan Basin in Colorado/New Mexico. In both cases the data used is 

primarily the analyses of the inorganic elemental composition of the formation waters, but 

additional information on geology and mineralogy has been utilised extensively, as well as isotopic 

data where available. Similar methods of data analysis used on different datasets highlight 

differences and similarities in the systems and provide a detailed understanding of specific, 

important processes occurring in each. 

The next stage is to draw on the detailed local information and apply it to a larger global scale. In 

doing so, it is possible to make use of the abundant formation water chemistry data available in the 
literature, together with that provided by BP for this project. From this analysis, a series of 

predictive guildines can be identified and applied successfully to regions on a basin scale. The 

"rules" are constructed through explaining ion concentrations in terms of their relation to water- 

rock interactions. It will be argued that the overall formation water composition of a particular 
location acts as a "fingerprint" and reflects the mineralogy of the relevant lithologies, the burial 

conditions and the chlorinity of the formation waters. 

Once a reasonable level of understanding has been reached, this knowledge benefits possible 

applications that are of direct use in the petroleum industry and contributes to the current push 
towards producing abundant, sustainable and renewable energy sources. CO2 sequestration has 

been mooted as a possible short term solution to emissions-induced climate change. The safe 
introduction of any gas to a system containing rocks, hydrocarbons and chemically complex 
formation waters requires detailed understanding of the likely chemical consequences of such a 

process. 

Similarly, water (saline or fresh) is often introduced into reservoirs as part of the production 

process. Water present in the reservoir is produced along with hydrocarbons from oil and gas 

reservoirs. Monitoring the change (or lack thereof) in the chemical composition of the produced 

water will be shown to provide information as to the chemical and physical processes occurring 

within the formation. 
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2. CONTROLS ON FORMATION WATER COMPOSITIONS 

2.1 Introduction 

A great deal of literature has been published on the subject of formation waters, dating back 

over 50 years. This chapter summarises the main findings of past studies, highlights remaining 

controversies and uncertainties and sets the scene for the new work that forms the bulk of the 

thesis. The chapter begins by outlining the basic characteristics of formation waters and how 

they vary. It then discusses what are accepted to be the dominant controls on formation water 

composition, detailing the most important of these controls. 

2.2 Formation water basics 
2.2.1 Definitions 

Formation water is water that occurs naturally within the pores of sedimentary rock and is free 

to move under appropriate hydrodynamic conditions (Worden et al., 1990). If a formation 

water is the same water that was included in the pore spaces at the time of deposition, it is 

known as connate water (Hanor, 1994). All formation waters contain soluble salts to some 
degree, but the variation in the concentration and nature of these dissolved salts is considerable: 

waters range in salinity from almost fresh to dense, saline brines. In order to distinguish easily 

the different types of formation waters and consistently describe them, it is necessary to define 

the relevant terms commonly used in the literature. The word "brine" is commonly used to 
describe any water containing dissolved salts, however Carpenter (1978) set out a classification 

scheme which maybe easily applied to formation waters. It requires that a brine must contain 

over 100,000 mg/L total dissolved salts, water containing between 10,000 and 100,000 mg/L 
dissolved salts is termed saline, and any water containing less than 10,000 mg/L is either fresh 

or brackish. By these definitions seawater (at -35,000 mg/L dissolved salts) is saline, but not a 
brine. Salinity is a measure of the total dissolved salts (usually of Na, K, Ca and Mg) in 

solution, but is often used interchangeably with total dissolved solids (TDS), which is the sum 

of all inorganic and organic non-particulate material. In addition to these terms, chlorinity is the 

concentration of all dissolved chloride in solution, but because chloride is the dominant anion in 

most saline waters, chlorinity is often used as a proxy for salinity. 

2.2.2 The dynamic subsurface 
The water included in sediment pore spaces is only very rarely true connate water, because of 
both chemical alteration and physical migration (Hanor, 1994). Formation water may have 

originated very close to where it currently resides and have evolved chemically in situ, or may 
have been introduced to the rock through large scale physical migration linked to compaction, 

tectonic deformation, meteoric recharge or magmatic activity. There are various processes by 
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which aqueous components are concentrated to produce fluids with high ionic strength, 

including, at the surface: evaporation of H2O from saline water (e. g. seawater), and at depth: 

dissolution of evaporite minerals; incongruent alteration of hydrous evaporite minerals; and 

incorporation of water into hydrous minerals (Carpenter, 1978). Sources of dissolved salts in 

formation fluids of sedimentary basins are central to interpreting fluid origin, evolution and 

migration in the crust (Walter et al., 1990). 

Formation waters are further subject to a number of different physical, chemical and 

thermodynamic processes in the subsurface that permanently alter their character, and often 

cause them to change so much that the original nature of the fluid can no longer be recognised. 
Physical transport of the fluids can cause changes in composition through dispersion and 
diffusion, as well as through inducing thermodynamic disequilibrium. 

In addition to the natural process of fluid evolution, sampling or hydrocarbon production 

practices can cause significant inaccuracies in estimating and measuring the ion concentration of 
formation waters and some uncertainty about whether a fluid analysed at surface is 

representative of fluid at depth. Boiling and degassing caused by pressure reduction seriously 

affects bicarbonate and carbon dioxide content, which in turn affects pH (Carpenter and Miller, 

1969). Mixing of incompatible waters can result in the precipitation of mineral scales and the 

consequent reduction in concentration of species such as sulphate and carbonate. 

2.2.3 Typical formation water compositions 
Although there is significant variation in the nature of formation waters globally, there are a 

number of features common to all such fluids, for example, formation waters are commonly 

enriched in Ca and Cl and depleted in Na, SO4 and K relative to seawater ratios (Davisson and 
Criss, 1996). The overall concentration of the major ions, Na, Ca, Cl etc in a basinal brine tends 

to increase with depth (Pearson, 1994). Hanor (1994) states that there is a "profound and 

progressive change in the cationic makeup of sedimentary formation waters with increasing 

salinity". The following sections describe the features typical of all formation waters. 

2.2.3.1 Anionic composition 
Chloride is the predominant anion in oilfield brines (Collins, 1969), making up 95% by mass of 
the anions in most sedimentary formation waters that have salinities greater than 10,000mg/L 

(Hanor, 1994). The concentration of Cl affects the concentrations of all the cations, but not 
their relative abundance (Stefänsson and Andrsson, 2000). 

Waters with salinities of less than 10,000 mg/L may have bicarbonate, sulphate or acetate as the 

dominant anion (Hanor, 1994). Carbonate waters are generally associated with the dissolution 
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of limestones, silicate hydrolysis, or volcanic gases (Jones and Bodine, 1987; Land, 1987). 

Alkalinity tends to decrease with increasing salinity but sulphate in formation waters generally 

shows little or no systematic variation with TDS (Hanor, 1994). Although in most brines 

sulphate is rarely dominant, it is often the most abundant anion in solution after chloride and can 

contribute significantly to the overall charge balance of the system. 

Table 2.1. Representative water analyses from sedimentary basins around the world, together 
with the composition of seawater for comparison. (na designates not analysed, GOM is Gulf of 
Mexico). Data from: Warren and Smalley, 1994; Bazin et al., 1997; Carpenter et al. 1974 and 
Land et al. 1988 

Fluid 

component 

mg/L 

(except pH) 

Seawater Miller, 

North 

Sea 

Statfjord, 

North 

Sea 

Thames, 

North 

Sea 

Mahakam 

Basin, 

Indonesia 

Central 

Mississippi 

Offshore 

Louisiana, 

GOM 

Li 0.170 na na na na 63 2.3 
Na 10760 28800 8165 70360 2328.9 66700 29600 

K 399 1820 121 9020 43.1 7860 144 
Mg 1290 115 68 3560 86 2840 620 
Ca 411 1060 1050 10860 131.5 47200 2080 
Sr 8.1 110 na 390 na 2190 49 
Ba 0.021 1030 41 na na 80 33 
Fe 0.034 10 na 160 na 414 8.6 
Zn 0.005 na na na na 19 0.06 
SiO2 3 32 na na 0.058 45 51 
Cl 19350 47680 14286 145630 2816.8 207400 48250 
SO4 2700 7 29 1500 190.3 36 21 
HCO3 142 2070 360 70 2934.7 na 226 

pH 7.5 6.7 6.18 5.73 6.44 na na 

2.2.3.2 Cations - Alkali metals 
Most oilfield waters contain more sodium by weight than any other cation (Collins, 1969). 

During evaporation, the overall Na content of brines increases with salinity until halite starts to 

precipitate at approximately 300,000mg/L. Lower salinity waters tend to be Na-dominated 

because the silicate minerals that buffer its concentration are relatively soluble (Hanor, 1994). 

Potassium forms another major component of many reservoir fluids and though present only in 

very small quantities, lithium is also a common constituent of formation water. Figure 2.1 

illustrates the variation in cation concentration with changing TDS. 
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2.2.3.3 Cations - Alkali earth metals 
In waters whose salinities exceed 300,000 mg/L, following removal of Na through halite 

precipitation and through mineralogical buffering of the Ca/Na2 ratio, calcium can become the 

dominant cation by mass (for example in the saline brines of the Gulf of Mexico). In particular, 
Ca concentrations are often enhanced through albitisation of Ca-rich plagioclase or 
dolomitisation of calcite, which will be discussed further below. However, waters in which 

chloride is the predominant anion and Ca is the most abundant cation are relatively uncommon. 
Modern seawater itself does not have a significant CaCl2 component. 

The highest relative concentrations of magnesium are in seawater but, in unusually oxidising 

conditions, Mg can be important in waters interacting with mafic rocks containing 
ferromagnesian minerals as well as marine muds (Jones and Bodine, 1987). Strontium and 
barium are also commonly found in formation waters, though generally subordinate to Ca and 
Mg. There are however, some examples of reservoir fluids being extremely rich in Sr and Ba 

(e. g. Miller Field, North Sea), and this has significant implications for predicting the likelihood 

of the formation of mineral scales through mixing of incompatible waters. 

2.2.3.4 Silica 

Although only a trace component in seawater (Table 2.1), silica can reach levels of 10s to 100s 

ppm in oil field reservoir waters. Although quartz is ubiquitous in sedimentary basins, Hanor 
(1994) asserts that most basinal waters are not in thermodynamic equilibrium with quartz 
However, levels of silica in some fluids are remarkably constant, varying only with pressure, 
temperature and dissolved gas concentration (Jamtveit and Yardley, 1997). 

2.2.3.5 Transition metals 
Formation waters typically also contain detectable amounts of transition metals, in particular 
lead, zinc iron and copper. The behaviour of these ions in formation waters is complex, 
however there is a clear trend of preferential association with highly saline brines and higher 

temperatures (Hanor, 1994; Yardley et al., 2003; Yardley, 2005). 
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Figure 2.1 Scatter plots showing the covariance of log Na, K, Mg and Ca with log TDS for typical saline 
fluids. Note the 1: 1 slopes for Na and K and the 2: 1 slopes for the divalent cations. From Hanor, 1994, 

using data from Connolly et al., (1990); Kharaka et a!., (1987); Stueber and Walter (1991); Wilson and 
Long (1991); Case (1945); Moldovanyi and Walter (1992); Land et al., (1988); Land and Macpherson 
(1989); Michard and Bastide (1988); Lundegard and Trevena (1990); Fisher and Boles (1990); White 

(1965), Egeberg and Aagaard (1989) and Hanor, (1994). 

2.2.3.6 Organic components of brine 

Although they are the most abundant species, inorganic ions are not always the only 

components of pore waters; formation waters are often in prolonged contact with hydrocarbons 

and contain dissolved organic species. The concentration of organic acids in oilfield waters is 

often very low, but concentrations of up to -10,000 ppm acetate have been reported with up to 

-4400 ppm of other organic acids (Helgeson et al, 1993). The most significant organic 

components of formation waters include minor amounts of neutral organic molecules of 

hydrocarbons and charged anionic species (Hanor, 1994) in addition to dissolved gases such as 

methane. 
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2.3 Introduction to the controls on formation water composition 

Subsurface systems containing formation waters are extremely complex and the factors that 

influence the composition of those formation waters are numerous. On a basic level, the 

ultimate controls on pore water composition are believed to be: 1) the composition of the water 

physically included in the pore spaces of the sediment at the time of deposition; 2) the net 

effects of diagenetic (and at higher temperatures, metamorphic) exchange of components 

between the water and a) the ambient solids or b) any other fluid; 3) the net physical transport of 

material into and out of the sediment by bulk flow and the mixing of waters (Hanor, 1993); and 
4) the proportion of fluid to the reactive mineral surface area and 5) depth of burial and in 

particular, temperature. The rest of section 2.3 is given over to introducing the most important 

controls on formation water composition from the first moment of sedimentation, through 

complex subsurface processes, to the effects of human intervention. 

2.3.1 Initial fluid composition 
The dissolved load of formation waters, and hence the attainment of chemical equilibrium 
between such fluids and their host rocks is affected by the concentration of ligands 

(predominantly chloride) in the fluid initially (Jamtveit and Yardley, 1997). This is inherited 

and is a function of the origin of the sedimentary pore fluid. Changing chloride concentration 
can have a significant effect on driving diagenetic exchange of major solutes. Any change in 

the total anionic charge of formation water will cause it to attempt to re-equilibrate with its 

surroundings and as a result various solids may be dissolved or precipitated (Hanor, 1994). 

2.3.1.1 Evaporation and dissolution of evaporites 
Hanor, (1993) states that salinity is primarily the result of physical processes of mixing of 
meteoric, marine and subaerially evaporated fluids with those derived by subsurface 
dehydration reactions and the dissolution of evaporites. Evaporation and dissolution are the 

most widely invoked mechanisms to explain the source of saline waters. However, it has also 
been suggested in the past that increase in the ion content of brines is due to the process of 

membrane filtration (or reverse chemical osmosis) as fluids migrate through clay-rich sediments 
(e. g. Graf, 1982; Hanor, 1994). 

2.3.1.2 Depositional environment 
Climate, sedimentation rate, location of sedimentation and sediment source are among factors 

relating to depositional environment that have an effect on the nature of the initial pore fluid and 

sediment, and the subsequent reactions that alter their nature (Burley, 1984). Early shallow 

diagenetic processes generally occur in the presence of a great deal of water, but the nature of 

the fluid present varies considerably. In humid areas with a higher degree of rainfall unstable 
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minerals dissolve easily because water flushing prevents solutes building up in solution and the 

system coming to equilibrium (Bjorlykke, 1998). On the continents, a great deal of evaporation 

occurs which promotes the formation of calcretes and dolocretes, however in marine 

environments, minerals are able to react with seawater to varying degrees. For example, fluvial 

and shallow marine sediments may be flushed by meteoric water after deposition while more 

distal shelf facies and turbidites normally will be subjected to much less meteoric flushing. In 

the North Sea Basin it has been shown that the distribution of kaolinite in sandstones can be 

related to facies and climate; the Permian and Triassic sandstones in the North Sea region which 

were deposited in a dry climate generally contain little kaolinite compared to the Jurassic fluvial 

and shallow marine sandstones deposited in a more humid environment (Bjerlykke, 1998). 

Eogenetic (early diagenetic) cement growth can be a function of climate, vegetation cover, 

rainfall and fluvial activity, evaporation rate and degree, regional gradient and river-, and 

groundwater flow rate as well as of mineralogy in the active weathering zone in the upland 

portions of valleys and in the aquifer (Figure 2.2, Schmid et al., 2006). Silcretes are silica- 

cemented duncrusts formed by geochemical sedimentation processes operating at or near the 

Earth's surface and are an example of the direct effect of climate on sedimentation. Pedogenic 

silcretes may be laterally extensive and typically indicate episodes of landscape stability. They 

appear to be restricted to tropical or sub-tropical environments with alternating dry and wet 

seasons or periods. Groundwater silcretes form in a range of environments and their formation 

is less climate-specific; they have been reported from temperate, monsoonal and and 

palaeoenvironments (Ullyott and Nash, 2006). 

s 

Figure 2.2. Illustrating different potential depositional environments (braided rivers, Kyrgystan 
[http: //www. uoregon. edu/-millerm/braided. html]; shallow marine/beach, Queensland) and the 
various processes that might affect the composition of formation waters. For example, these 
fluvial sediments may be flushed by meteoric water after deposition and are likely to be of 
lower salinity. 
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Figure 2.3 Diagram showing vertical variation in isodensity hydraulic head in a typical section 
of the South Louisiana Gulf Coast. a) Hydraulic head is used as a proxy for hydraulic force, if 

membrane filtration were an important brine-forming process here, residual brines should be 

accumulating within the massive shales of the overpressured zone at the base of the section 
shown (b). Instead, observed salinities decrease downward (c). Hanor, (1994). 

2.3.1.3 Membrane filtration 

The membrane filtration hypothesis proposes the formation of brines by hydraulically driven 

flow of fluid across semi-permeable shale or clay beds. Since shale has pore walls with a net 

negative charge, Cl- ions would suffer electrical repulsion and be unable to pass through narrow 

pore throats and Na' ions would correspondingly build up a chemical gradient along the pore 

that stops further cation flow (Graf, 1982). In theory, pore fluids on the influent side of a shale 

membrane will thus become progressively more saline as cross-formational flow and the 

selective filtration of cations and anions continues (Figure 2.3). However, although this 

mechanism works in the lab, in recent years its viability in nature has been called into question. 

If membrane filtration accounts for brine formation, salinities should decrease upward through 

an overpressured sequence, whereas they usually decrease with depth. Land (1995) reports that 

in the Gulf of Mexico the reverse osmosis model fails to explain a great many chemical 

observations, including: lack of increased Sr and Ba ions; the control of univalent ion 

concentrations by partitioning reactions rather than filtration, and lack of correlation of boron 

species with salinity (also Land and Macpherson, 1992). Hanor (1994) argues that there is not a 

single well documented field example of the production of brines by membrane filtration. 
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2.3.2 Gas partial pressure 

Following burial, formation water will become subject to a number of different influences to 

those at the surface. These include interaction with rocks, other saline waters and gas. 

The most common gas to affect formation waters is carbon dioxide. Carbonate concentrations 

are limited by its partial pressure, and even in low salinity waters, bicarbonate will not be the 

dominant anion unless the pCO2 is favourable. The CO2 partial pressure in the subsurface 

generally increases with depth and temperature. Several studies suggest that the partial pressure 

CO2 in a gas reservoir is coupled to the thermodynamic activity of CO2 in the formation water in 

contact with the gas (e. g. Land, 1987; Smith and Ehrenberg, 1989; Hutcheon and Abercrombie, 

1990). The variation in CO2 content with temperature is explained as a result of inorganic 

chemical equilibria between feldspars, clays and carbonates. This is because the stability of 

calcite may be affected by the presence of organic acids, changes in pCO2, or by the progression 

of silicate reactions (Hutcheon et al., 1993). Silicate (feldspar and clay) reactions cause major 

increases in acidity with increasing temperature during diagenesis in clastic reservoir systems 

and the H+ generated should be continuously consumed by carbonate (which has more rapid 

reaction rates) to produce CO2 (Hutcheon and Abercrombie, 1990), explaining why CO2 partial 

pressure will generally increase as the temperature increases. However, it has been noted by 

Baines and Worden (2004) that although the CO2 partial pressure increases with depth and 

temperature, it is not so much the quantity of CO2 but the fluid pressure that increases. Thus, 

the studies that concluded CO2 has been produced, resulting in increasing CO2 partial pressure 

(e. g. Smith and Ehrenberg, 1989; Hutcheon and Abercrombie, 1990, etc) may be wrong. 

The influence of gas presence on formation water composition is strongly dependent on the 

pressure of the system. For example, as gas-bearing water travels to the surface, the carbon 

dioxide begins to outgas a result of the drop in pressure and the accompanying increase in pH 

can cause supersaturation with respect to calcium carbonate, resulting in its precipitation 

(Carpenter and Miller, 1969; Hutcheon et al., 1993). 

2.3.3 Pressure and Temperature effects 
Most reactions are dependent on pressure and temperature which vary with depth, e. g. the 

present-day geothermal gradients in the North Sea are between 30-40°C/km (Bjerlykke, 1998). 

The direct effect of these variations is on mineral solubility (Von Damm et al., 1991) or 

equilibrium element ratios. Indeed, the concentration of dissolved silica in solution has been 

used in a number of different systems as a geothermometer (Fournier, 1983; 1985), as have the 

K/Na and Li/Na ratios (Fournier, 1979; Fouillac and Michard, 1981 and Verma and Santoyo, 

1997). 
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Temperature has a significant effect on thermodynamic mineral stability. For example, feldspar 

composition is extremely sensitive to temperature effects. Some waters can be in equilibrium 

with both K-feldspar and albite, however, at higher temperatures any removal of K can cause 
fluid compositions to move into the albite stability field, causing albitisation (Aagaard et al., 
1990; Bjerlykke et al., 1995). 

Milliken et al., (1989) noted that temperature is a major control on the degree of grain 

alteration. Sandstones buried to less than 2.7 km typically have negligible quartz cement 
(Fisher et al., 2000), but the extent of silica cementation increases with depth and temperature 

(Oelkers et al., 1996). The rate of these reactions also increases with temperature. 

Temperature also affects organic processes that often occur in the subsurface. These processes 

may include bacterially mediated reduction reactions. 

2.3.4 redox and pH 
Most solid phases and waters deposited in continental and open marine sedimentary 

environments contain elemental components in relatively high oxidation states because they 
have been transported in water (Coleman, 1985; Hanor, 1994). Authigenic minerals and the 

activities of dissolved species in redox equilibrium can provide information as to the oxidation 

state of a sediment and its formation water (Hanor, 1994). For example: detrital sedimentary 

organic matter is oxidised initially by aerobic bacteria and subsequently by successive microbial 

reactions involving the oxidising agents: manganese, nitrate, ferric iron and sulphate, each being 

used to exhaustion before the next one is used (Coleman, 1985). The eventual product of 

oxidation of carbon may be authigenic carbonate minerals that vary in zones according to depth 

and the mechanism of oxidation. Diagenetic products with increasing depth include calcite 
(non-ferroan), rhodochrosite, siderite, calcite (non-ferroan + pyrite) and ferroan dolomite 

(Coleman, 1985). 

In most formation waters, sulphate is the species that is most likely to be directly affected by the 

redox state of the system. Although it is rarely the dominant anion in reservoir formation 

waters, sulphate levels between 5 and >3000 mg/L commonly occur. Sulphate is an important 

component of seawater but sulphate dominated formation waters may have formed due to the 

oxidation of reduced sulphur; conversely, sulphate may be lost from a brine by the process of 

reduction to form dissolved sulphide as well as by sulphate precipitation. However, the 

concentration of dissolved sulpide in brines is generally very low, and the loss of H2S from the 
brine may be attributed to precipitation as iron sulphide (Carpenter, 1978). Sulphate reduction 

could be bacterially mediated (BSR) in the upper parts of a reservoir, where lower temperatures 

would be more conducive to bacterial activity, or be thermochemical (TSR) in the hotter parts of 
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the reservoir (McCartney et al., 2005). Estimates of the initiation temperature for TSR range 

widely between 80 and >160°C (Cross et al., 2004) however, Worden et al. (2003) argue that 

thermodynamic and kinetic factors are favourable for TSR in petroleum systems with sulphate- 

rich waters at temperature >120°C. Experiments indicate that the rate of TSR is rapid on a 

geological timescale and imply that many more sulphate-bearing gas reservoirs should be 

soured by high concentrations of H2S than actually are. Extrapolated sulphate half lives for gas 

and oil reservoirs are 23-1650 and 1650-372,000 years respectively (Cross et al., 2004). 

Mineral-fluid equilibria may also play an important role in buffering f029 if stable or metastable 

equilibria exist between reduced and oxidised forms of C, Fe or S (Hanor, 1994). 

pH and redox conditions can be used to characterise the predominant aqueous speciation, 

mineral reactions and stabilities in a wide range of natural environments (Glynn and Plummer, 

2005). The pH of formation waters decreases with increasing salinity from typical values of 7-9 

in moderately saline waters to 3-4 in saline brines (Hanor, 1994). In sedimentary basins it is 

likely that chloride acts as a master variable, its changing concentration driving water-rock 

reactions to preserve charge balance, and pH is fixed by a combination of mineralogy and 

charge balance with Cl (Helgeson, 1970; Hanor, 1994). Common pH controlling equilibria 
include the relations between K-feldspar, kaolinite and illite (see sections 2.4.3 and 4.5). The 

ability of mineral-fluid equilibria to control pH depends on the rate of reaction of the buffer 

system which must be fast enough to respond to internally or externally imposed changes in H+ 

concentration (Hutcheon et al., 1993). 

2.3.5 Equilibrium with hydrocarbons 

Formation waters in oilfield reservoirs co-exist with a great variety of hydrocarbons and organic 

species may form a significant proportion of the dissolved components of a water. Organic 

acids have been proposed as pH buffers that control the dissolution of carbonate and contribute 
CO2 during diagenesis (Hutcheon and Abercrombie, 1990) although silicate equilibria generally 
have higher pH buffering capacities than carbonates or organic acids. 

Within the temperature range 80 - 100°C, aliphatic acids may contribute close to 100% of the 

alkalinity of the water. Helgeson et al. (1993) suggest that there is metastable equilibrium 
between dissolved carboxylate and carbonate species in oilfield formation waters. There is a 
marked decrease in aqueous solubility with increasing carbon number for each class of 
hydrocarbons present in petroleum and the solubility of dissolved hydrocarbons mostly 
increases with increasing temperature but decreases with increasing salinity (Hanor, 1994). 
Organic acid anions, of which acetate (CH3000") is the most abundant, have an apparent 
preferential association with low salinity waters (Collins, 1975; Hanor, 1994; Lundegard and 
Land, 1989). 
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Hydrocarbon species in formation waters can be generated at the oil-water interface in deeper 

reservoirs by the hydrolytic disproportionation of hydrocarbons in petroleum to produce 

oxidised carbon-bearing aqueous species and hydrocarbons in crude oil with lower molecular 

weights, which generally favours dissolution of carbonates and detrital silicates by lowering the 

pH of the aqueous phase (Helgeson et al., 1993). 

2.3.6 Fluid-rock interactions 

There is a large body of evidence which indicates that the concentration of many aqueous 

components in shallow crustal waters is controlled at least in part by mineral-buffering, even at 

relatively low temperatures (Hanor, 2002). Changes in chlorinity and salinity, that is, in the total 

concentration of anionic charge in aqueous solution, cause the broad systematic increase in 

dissolved Na, K, Mg and Ca and decrease in pH and carbonate alkalinity, suggesting that 

thermodynamic buffering by silicate-carbonate (± halide) mineral assemblages is a first order 

control on subsurface fluid compositions. The case has been made above that in sedimentary 

basins chloride is the dominant master variable and pH is more likely to be buffered or limited 

by mineral assemblages (Helgeson, 1969; 1970; Hanor, 1993; 1994). 

After deposition, sediment is buried, and undergoes various textural and compositional changes 

in the process of diagenesis and lithification. The net effects of diagenesis are the result of 

eogenetic processes, defining the initial textural, mineralogical and geochemical composition; 

temperature and pressure changes with mechanical and chemical compaction; "import" or 

"export" of components through fluid flow or diffusion (sometimes due to the re-introduction of 

surface waters - telogenetic processes) and precipitation of cements (Burley, 1984; Bjerlykke et 

al, 1995; Bjorkum et al., 1998). Local factors influencing diagenesis are important, particularly 

the composition, temperature and flux of the formation water (Milliken et al., 1989). 

Consequently, the diagenetic processes also exert a profound control over the nature of the fluid 

present in the rock. 

Though diagenetic processes vary according to different geological situations, they include 

reactions and interactions that are almost ubiquitous and are well constrained. Some reactions 

and processes include: 1) formation of secondary porosity from feldspar dissolution and 

precipitation of diagenetic kaolinite; 2) quartz cementation; 3) precipitation of illite and its 

dependence on precursor minerals (as mentioned above) and 4) effects of hydrocarbon 

saturation on diagenesis (Bjerlykke et al, 1995). Specific examples of diagenetic processes are 
discussed further below. 
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Diagenetic reactions in lower temperature environments are driven towards greater 

thermodynamic stability at a rate which is controlled by the kinetics of the mineral reactions 

(Bjerlykke, 1989; Dove and Rimstidt, 1994). It is principally the solution and precipitation 

rates that are important in diagenesis, rather then solid diffusion which is too slow. 

2.3.7 Physical transport and mixing: diffusion and dispersion 

Pore water compositions are dictated by both chemical and physical factors, including: the net 

physical transport of material into and out of the sediments by bulk flow and the mixing of 

waters (Hanor, 1994). Geochemical reactions along ground-water flow paths can lead to 

regional variations in water composition that evolve in the direction of flow (Glynn and 

Plummer, 2005) and pore fluid flow rates can affect fluid equilibrium with minerals (Bjerlykke, 

1997). 

Bjerlykke and Grant (1994), suggest that one of the most critical factors controlling diagenetic 

processes may be the amount of mass transfer by pore water flow over long distances (>100 m) 

in sedimentary basins. Large fluxes of pore water would be required to move significant 

volumes of solids, given the low solubilities of quartz and calcite. At low temperatures and 

high flow rates the pore water may be undersaturated or supersaturated with respect to the 

mineral phases, in particular the silicate minerals which have slow reaction rates (Bjerlykke and 

Grant, 1994). However, significant quantities of silicate and carbonate mineral phases can be 

redistributed under isothermal and isobaric conditions, without large volumes of fluids being 

involved, as the relative proportions of minerals in various metastable phase assemblages adjust 

to changes in fluid composition required by changes in chloride or total anionic charge (Hanor, 

2002). Egeberg and Aagaard (1989) observe that waters from clastic and chalk reservoirs 

define the same trends, indicating that they may have evolved through parallel paths and serve 

to constrain the number of possible alteration mechanisms. 

Mass transport in porous rocks is controlled by 4 processes: advection, dispersion and diffusion, 

sorption onto mineral surfaces and reactions (Jamtveit and Yardley, 1997, Chapter 1). Each 

transport mechanism involves different volumes of water (Aplin and Warren, 1994) and has 

different transport efficiencies coupled to the water volume. For example, 104-106 pore volumes 

of water are required to precipitate 5 vol% quartz cement by updip migration and associated 

cooling of a quartz-saturated fluid, depending on precipitation temperature. In contrast, only 

one pore volume of fluid is required if transport is effected by convection or diffusion (Aplin 

and Warren, 1994). The 80I8 values of formation waters reflects the relative importance of 

these processes. Enrichment of formation waters in '80 is generally ascribed to seawater 

evaporation and/or diagenetic reaction with clay minerals and carbonates. In both cases, the 

absolute volume of water is limited. Because evaporites compose <10% of basin fill and 
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because they are normally found in the basal sections of basins, the total volume of evaporated 

seawater is less then one pore volume of the sands in the basin. Hence, any enrichment in 5180 

over the initial value normally implies low water-rock ratios (Aplin and Warren, 1994). 

Although Cl can be said to be a master variable in most formation waters, and though it drives 

fluid-rock exchange and controls bulk fluid compositions, chloride itself is controlled by the 

physical processes of fluid advection and dispersion (Hanor, 1994). Fluid compositional 

differences that are purely chemical in nature will mix through diffusion (Smalley et al., 2004). 

Pore water flow will also normally cause the water to be heated or cooled and this will itself 

cause the dissolution or precipitation of minerals. 

2.3.8 Fluid mixing 

Sedimentary systems are dynamic. Fluid can move through basins in response to thermal 

variation, sediment compaction, displacement of less dense pore waters and tectonic 

deformation (Carpenter, 1978). Formation waters can potentially move great distances over 

time in permeable sedimentary units (Worden et al., 1999). Mixing occurs where a permeable 

pathway (permanent or transient) can draw down fluids from more than one reservoir. In 

produced systems, it is common practice in industry to inject fluids into producing hydrocarbon 

reservoirs as a form of pressure support or secondary oil recovery technique, inducing mixing 

between the formation water and the injected fluid. In addition, mixing can arise in a porous 

medium through density differences generated by temperature or composition. Thus, the 

potential for two or more fluids to interact and mix in the subsurface is very high. 

If there were no mixing of formation waters in sedimentary basins, then most subsurface waters 

today would either be fresh, have normal marine salinities, or be saturated with respect to halite. 

In fact, most waters in most sedimentary basins have salinities or Br-Cl systematics which can 

only be accounted for by mixing of these end-member water types (Hanor, 1994). Although 

waters can mix by both advective and diffusive processes, mixing due to compositionally-driven 
diffusion is very inefficient and will rarely produce a homogeneous mass of fluid (Smalley et 

al., 2004; Hanor, 1994). 

There are many effects of fluid mixing on formation water composition (e. g. Fontes and Matray, 

1993; McCartney et al., 2005) and the simplest of these is dilution. Dilution reduces the 

concentration of dissolved species and may cause the water become undersaturated with respect 
to the minerals with which it is in contact, thus causing dissolution and associated reactions. 

The dilution of fluids may also cause formation waters to become undersaturated in certain 

species, forcing the fluid-rock system out of thermodynamic equilibrium and causing the 
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dissolution of reservoir silicates and carbonates. Some natural waters that appear to be at or 

near equilibrium with a given mineral phase may in fact be undergoing significant 

dissolution/precipitation of the mineral as a result of other irreversible reactions (Glynn and 

Plummer, 2005). In addition, mixing thermodynamically incompatible fluids may cause certain 

minerals to precipitate, thus reducing the concentration of the relevant species in solution, e. g. 

barium-rich formation water and sulphate-rich seawater combining to form barite scale in oil 

reservoirs (Todd et al., 1994). 

2.3.9 Density stratification 

It is generally accepted that fluids in sedimentary basins may either be dominated by continuous 

or episodic throughput flow, or may be a sandstone-pore water system near the closed-system 

end of the diagenetic spectrum and experience little throughflow (Macaulay et al, 1992). Fluid 

flow in sedimentary basins may be caused by meteoric influx driven by hydrostatic head, 

episodic dewatering, upward compactional fluid drive, sediment subsidence etc in an open 

sediment-pore water system. It is also possible that meteoric water can recharge a sedimentary 

basin at depth, if there is a continuous permeable horizon that outcrops at the surface (Snyder et 

al., 2003). 

Fluid salinity in many sedimentary basins increases with depth (Egeberg and Aaagaard, 1989; 

Hanor, 1993; 1994), and this could be because fluid flow is sufficiently uninhibited over 

geological time that sedimentary basins simply become density stratified (Land, 1987). Many 

old, quiescent sedimentary basins are filled with dense, ponded brines and formation waters in 

those basins now co-exist with relatively stable assemblages of minerals (Land, 1995). 

2.3.10 Influence of production operations 
The composition of produced water is affected by many factors, including: a) the different types 

of water present in the reservoir (e. g. formation water from the oil leg or aquifer, injection 

water, residual drilling mud filtrate fluid etc), the composition of these waters, and their 

proportions in the produced flow, b) reactions occurring between injection water and formation 

water or reservoir minerals, c) fluid flow conditions in the reservoir (McCartney et al., 2005). 

Engineering-induced temperature and pressure drops and fluid injection are chiefly responsible 
for carbonate scale precipitation and chemical incompatibility - the most common cause of 

sulphate scaling - and cause significant concentrations of dissolved species to be removed from 

solution (Todd et al., 1994). 

The principal scaling risks have often been identified as being caused by mixing of aquifer-type 

water with injected seawater in the production wells. An alternative concept needs to be 
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considered whereby any future scaling risk is associated with mixing between oil leg formation 

waters of variable compositions, aquifer waters and injected water. An understanding of any 

variations in oil leg formation water salinity is important for the reliable estimation of initial 

hydrocarbon volumes (McCartney et al., 2005). 

Most of the information available in the literature and from primary sources referring to 

formation waters from oilfield reservoirs actually refers to produced waters sampled at the well- 
head before the onset of production. There is a distinction between formation water 

compositions based on samples taken prior to the onset of production and produced water 

composition. It is important to note that although processes 2.3.1 - 2.3.9 ultimately control the 

composition of formation water, produced waters will necessarily be affected by the process of 

removal of oil from the reservoir. 
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2.4 Current understanding: implications for novel formation water studies 

2.4.1 Variation in palaeoseawater versus chemical reaction 
The majority of the discussion on controls on formation water composition hinges on the 

premise that fluid-rock interactions are the key process. However, Lowenstein et al. (2003) 

argue that some typical formation water characteristics are the result not of alteration of water 

post-burial, but of variations in composition of surface waters through time. They suggest that 

the high Ca/Na ratio in most oilfield brines arises because past seawater had a very different 

composition to that found today. These authors propose that many Ca-rich fluids are evaporated 

palaeoseawater from when the oceans were Ca rich and S04 2- poor (Figure 2.4) and reject the 

argument that CaC12 brines are highly altered fluids (e. g. Carpenter, 1978; Hanor, 1994 etc). 

Their basis for secular variation in the major ion chemistry of Phanerozoic seawater comes from 

fluid inclusions in marine halites (Lowenstein et al., 2001), fossil echinoderms. (Dickson, 2002) 

and strontium in biological calcites (Steuber and Vezier, 2002). During times when seafloor 

spreading rates were high (Cambrian to Devonian and Jurassic to Cretaceous), Lowenstein et al. 

(2003) claim that a combination of circumstances favoured the accumulation of CaCl2 in marine 

evaporites and brines in marginal and interior basins of continents. Evaporative concentration 

in a marine basin with restricted circulation and an and climate would have produced CaCI2 

brines with elevated concentrations of Na, Ca, Mg, K and Cl (Lowenstein et al., 2003). 

If this hypothesis were proved to be correct, it would call in to question a great deal of the 

understanding on which most formation water studies are based. The model however, is 

restricted geographically to some very specific conditions and despite its simplicity, 

nevertheless relies on a certain degree of water-rock interaction. The example provided is the 

Illinois Basin, where the rocks have been dolomitized, which Lowenstein et al. (2003) use to 

explain the depletion in Mg relative to the predicted concentration for evaporated CaC12 

seawater. 

The general premise behind this theory is an attractive one that it would be interesting to 

consider in more situations. However, it is unlikely that dolomitization is the only water-rock 
interaction occurring in these places. In addition, Lowenstein et al. (2003) only consider water 

samples from less than 2000m depth and temperatures less than 100°C; at greater depths and 
higher temperatures more diagenetic reactions are likely to be taking place. 
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Figure 2.4 Chemical compositions of typical Illinois basin brine (sample 257 in Stueber and Walter, 
1991), Silurian seawater (Brennan and Lowenstein, 2002), and modern seawater (in molal percent). 
Silurian and modern seawater are shown evaporated 3.6 and 3.9 times, respectively, to same Cl molality 
(2183 mmol) as Illinois basin brine 257. 

2.4.2 Origin and variation in formation water salinity 

The salinity of pore waters in sedimentary basins worldwide varies by over four orders of 

magnitude from <10 mg/L to >300,000 mg/L. The evolution of fresh surface waters to saline 

brines is a critical stage in the creation of subsurface formation waters. It has already been 

highlighted that Cl is a master variable that may influence the chemical reactions that occur 

between water and rock. The origin of salinity is thus the starting point in the discussion on the 

controls on formation water composition. 

This discussion of the origin of formation brines hinges on conservative solutes, i. e. those 

components whose initial concentrations in groundwater may normally only be modified by 

fluid mixing (Fontes and Matray, 1993), including addition or removal of water by hydration or 

dehydration reactions, because they are not normally present in solids. Dissolved chloride is an 

extremely valuable conservative solute because its concentration is controlled by the physical 

processes of advection, dispersion and molecular diffusion, rather than by chemical reaction 

(Hanor, 2002) since it does not normally enter solid phases apart from halite. It is thus an 

excellent indicator of mixing and dilution (Böhlke and Irwin, 1992), but cannot alone identify 

the source of salinity in brines (Frape and Fritz, 1987). Generally, halogen ratios and 

halogen: cation ratios (e. g. Cl/Br, Na/Br) are used to distinguish how a brine may have 

originated (Carpenter, 1978; Walter et al., 1990). In recent years, Cl stable isotopes (837C1) 

have provided a valuable additional tracer of chloride source and evolution (Kaufmann et al., 

1984; Eggenkamp et al., 1995; Eastoe et al., 1999). It follows from the character of 

21 

Modern 
seawater 



Chapter 2 

conservative tracers that they may retain a memory of a source that is much more remote in 

space and time than that indicated by less conservative tracers such as 5180 or 87Sr/86Sr. 

2.4.2.1 Evaporation versus dissolution 

Very often, the water that is buried in the pore spaces of a sediment as it is deposited already 

contains a significant proportion of dissolved salts. Both seawater evaporation and evaporite 
dissolution will serve to increase the concentration of salts in solution, but the two processes 

will form waters that are distinguishable from one another in a number of different ways. 

Carpenter (1978) defined three specific ways in which subsurface waters may be genetically 

related to evaporites: 1) by dissolution of evaporite minerals, 2) by mixing with interstitial 

waters expelled from evaporites during compaction and 3) by incongruent alteration of hydrous 

evaporite minerals. Subsurface dissolution of mixed evaporite assemblages may produce brines 

which have compositions reflecting preferential or incongruent dissolution of the bulk evaporite 

sediment (Hanor, 1994). Subaerial evaporation of seawater produces two basic types of waters 

in terms of dominant components: from a salinity of 35 - 333g/L, the waters are dominated by 

Na-Cl and at higher salinities (see Table 1) the waters become progressively dominated by Mg- 

Cl-SO4 (Hanor, 1994). 

Studying bromine (usually as Br) is a common method of distinguishing evaporite-related 
fluids of different origin as it generally increases with total dissolved solids (TDS). Cl is 

preferentially partitioned over Br into Na, K and Mg halogen salts during their precipitation and 
Br preferentially remains behind in solution until the final stages of evaporation (Rittenhouse, 

1967; Hanor, 1994). During seawater evaporation, Br, Cl and TDS increase in the residual 
brines and the ClBr ratio does not vary from the original seawater ratio of - 650 until halite 

begins to precipitate (Rittenhouse, 1967; Böhlke and Irwin, 1992; Banks et a!., 2000). Brines 

formed by subaerial evaporation of seawater should thus have ClBr ratios lower than -650, 
whereas brines formed by the dissolution of halite should have low Br/TDS (Rittenhouse, 1967) 

and a ClBr ratio of more than -650 (Hanor, 1994; Böhlke and Irwin, 1992; Cann and Banks, 

2001). The Br content of halite is approximately 70 ppm, thus congruent dissolution of halite 

can produce fluids with ClBr ratios up to thirty times those of seawater (Walter et al., 1990). 

Some authors have suggested however, that there are some alternative influences on Br/Cl 

ratios. In particular, Wilson and Long (1984) showed experimentally that fluids with Cl/Br 

ratios close to those of seawater can in principle be produced by incongruent halite dissolution 

(halite recrystallization) (Walter et al., 1990; Stueber and Walter, 1991; Land, 1995). 
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Figure 2.5. Schematic diagram illustrating potential controls on surface waters. Fluid 

compositions are affected by precipitation, evaporation and halite dissolution at the surface, but 

are altered by water-rock interaction following burial. 

2.4.3 Fluid-rock interactions and dia enesis 

As discussed in Section 2.3, there are a number of factors/processes controlling the composition 

of fluids in the subsurface, often after an initial increase in salinity due to subaerial evaporation 

or halite dissolution, and the most complex of these processes are fluid-rock interactions. Pore 

waters are often a more sensitive indicator of mineral reactions than the mineral assemblage 

itself, although there will often be evidence of reactions preserved in the rock. Each particular 

fluid component or ion pair is influenced by a number of specific, and often mutually dependent 

water-rock interaction processes. The following discussion outlines what are thought to be the 

main controls on the concentration of the most important species in formation waters. 

2.4.3.1 Potassium, feldspar equilibrium and associated reactions 

Potassium is a major component of many feldspars, micas and clays. It participates in solid 

solutions and is easily removed from both rocks and solution (Collins, 1975). Any depletion in 

K in subsurface brines relative to other fluid components may be due to its uptake by clays in 

processes such as thermal diagenesis. Diagenetic reactions that may affect the concentration of 

K include: 1) kaolinization of K-feldspar and mica (reactions 2 and 3), 2) illitization of kaolinite 

(reaction 5), and 3) albitisation of detrital K-feldspar (Egeberg and Aagaard, 1989) as is shown 

below (reaction 6). A major limitation on K variability is buffering of K'/H' and Na'/H' ratios 

by mineral equilibria. Na/K ratios often approach feldspar equilibrium and these ratios are used 

as a geothermometer (Fournier, 1979). 
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2KA1Si3O8 (K_fel r) + 2H+ + 9H20 = A12Si2O5(OH)4 (Koljnju) + 4H4SiO4 +2K+ (metastable)(2) 

KA13Si3O1o(OH)2 (Muscovite) +1.5 H2O + H+ = A12Si2O5(OH)4 + K+ (3) 

KA1Si3O8 + A12Si2OS(OH)4 = KA13Si3Olp(OH)2(Muscovite 
as Illite proxy) 

+ 2SiO2 + H2O (4) 

0.6KA1Si3O8 + 0.85A12Si2O5(OH)4 + 0.25Mg2+ = 

0.6M8o. 2sA12.3Si3.50, o(OH)x(nuu) + 4.5H20 + 0.5H+ (5) 

Na+ + KA1Si3O8 = NaAlSi3O8 (Albite) + K+ (6) 

Reactions involving detrital feldspars often have a significant effect on K concentrations and 

these minerals are normally unstable in diagenetic temperature, pressure and pore fluid 

chemistry conditions (Worden and Morad, 2003). The rate of feldspar dissolution in aqueous 

solutions is a function of effective surface area and pH at constant pressure and temperature. 

The rate is limited by reactions at the solution/mineral interface (Helgeson et al., 1984) and by 

the presence of dissolved species such as the alkali cations (Na', K', Li) and Al, which may 

adsorb onto mineral surfaces, compete with H+ for reactive sites, or affect the formation and 

stability of rate-controlling activated surface complexes (Blake and Walter, 1999). The 

presence of organic acids increases rates of feldspar dissolution (Oelkers and Schott, 1998). K- 

feldspar is particularly susceptible to dissolution (Milliken et al., 1989) or albitisation and loss 

of K-feldspars creates porosity and liberates K as well as Ba ions. 

In sufficiently alkaline conditions, K-feldspar can be stable under diagenetic conditions at 

temperatures ranging from 50-80°C (Aagaard et al., 1990). However, it can also be transformed 

to illite or kaolinite which releases silica to the pore fluid (Ehrenberg and Nadeau, 1989; 

Worden and Morad, 2000; Chuhan et al., 2000). Dissolution of feldspar and precipitation of 
kaolinite require large fluxes of water so that K+ and silica are removed and the pore-water can 

remain sufficiently acid (Bjerlykke, 1998). This is a metastable transformation and so the two 

can subsequently react together, forming the clay mineral illite (reactions 3 and 5, Chuhan et al., 
2000; 2001). In addition, the disappearance of smectite and formation of illite with depth in 

sedimentary basins is a common and important diagenetic reaction (Abercrombie et al., 1994). 

As the rate of illite precipitation increases, dissolution of kaolinite and smectite and 
precipitation of illite will remove K from solution and the K concentration may fall below that 

which represents equilibrium with K-feldspar. Aagard et al. (1990) and Bjerlykke et al. (1995) 

suggest that this may serve as a driving force for albitisation, and albitisation can occur at 
temperatures from -65°C, close to the estimated onset temperatures for illitization (70-80°C). 
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Sometimes the formation of quartz and kaolinite/illite is accompanied by the co-precipitation of 

carbonate cements (Worden and Morad, 2000). 

2.4.3.2 Lithium 

Micas and pyroxenes are a major reservoir for crustal lithium, which tends to be associated with 
the silicate phase in rocks. An enrichment of Li in pore water can indicate some interaction 

with the basement (Banks et al., 2002), and because Li concentration in magmatic waters is 

related to volcanic emanations, the increase in the Li content of deeper waters might be related 
to the same cause (Collins, 1975). Li has been used with Na in an empirical geothermometer 
(Fouillac and Michard, 1981), where temperature is given using the Na/Li ratio, but this 

geothermometer lacks the rigorous foundation of the Na/K geothermometer and is often clearly 
inapplicable (as in the study of Banks et al., 2002). 

2.4.3.3 Sodium and relations with calcium 

There are many potential controls on the concentration of such a reactive element as sodium in 

pore waters, however these controls are limited in that as the dominant cation, charge balance 

considerations are paramount. High values of Na/Cl are extremely rare and significant absolute 
Na contributions can only be gained from halite dissolution (Fontes and Matray, 1993). An 

external/extra source of Na, such as albite dissolution, cannot be invoked to account for high 

values of Na/Cl (relative to seawater) without an equal removal of K and/or Mg to maintain 

charge balance (for example, in diagenesis). 

In addition to K-feldspar dissolution, plagioclase is altered during diagenesis to albite, 
consuming Na and releasing Ca ions, because albite is stable at diagenetic temperatures and 

pressures while Ca bearing feldspars are not. Davisson and Criss (1996) found that many 
basinal fluids exhibited simple seawater dilution or concentration behaviour accompanied by Ca 

enrichment and a Na deficit, which they believed to be caused by Ca and Na abundances being 

modified by these authigenic albite-forming reactions with detrital plagioclase or clay minerals 
(reaction 7): 

CaAlZSi2OB (a�ort,; k)+ 4SiO2 (Q, a�Z) + 2Na+ = 2NaAlSi3O8 (albite) + Ca2+ (7) 

It should be noted however, that this is a trend common to most sedimentary formation waters 
and not all sedimentary basins contain abundant Ca-plagioclase. A very similar trend can also 

arise from exchange of Ca for Mg, as would occur in dolomitisation (see reaction 8, Figures 2.6 

and 2.7. ) 
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Figure 2.6 Excess-deficit plot showing model predictions for different processes. Halite dissolution into 

seawater or freshwater produces negative values along a slope of 1: 4. Reactions involving 2 Na for 1 Ca 

exchange produce slope of 2: 1. Mixing on the excess-deficit plot forms a straight line between any two 
endmembers A and B. From Davisson and Criss, 1996. 
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Figure 2.7 An alternative plot showing the Davisson and Criss I Ca for 2 Na trend together with a similar 
trend arising from the 1: 1 exchange of Ca for Mg as would occur during dolomitisation. 

2.4.3.4 Calcium and relations with magnesium 

It is the relatively high concentration of calcium in many brines that is a good indication that 

they are not derived simply by halite dissolution (Land, 1995). Ca tends to be dominant in 

waters from carbonate and plagioclase-rich rocks (Jones and Bodine, 1987) but Ca-rich waters 

are also present where no plagioclase or carbonate remains. High Ca/Mg and Ca/Na ratios in 

some oilfield brines are often attributed to the conversion of calcite to dolomite by Mg-rich 

water (Collins, 1975; Carpenter, 1978; Lowenstein et al., 2003) although if molar Ca/Na in 

formation water exceeds molar Mg/Na in seawater, an additional source of Ca is required. The 

highest relative concentrations of magnesium are in seawater. Relative depletion of Mg is 

believed to be a result of the replacement reaction to form dolomite e. g. (Collins, 1975): 

_ 
afm075 Mg 

dýenpý 
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2CaCO3 (Cak; u) + MgCI2 = CaMg(C03)2 (mbmite)+ CaC12 (8) 

Jones and Bodine, (1987) state that the presence of CaCl2 indicates an extremely highly altered 
fluid, a view challenged by Lowenstein et al., (2003). Egeberg and Aagaard (1989) noted also 

that at temperatures exceeding -90°C kaolinite may react spontaneously with dissolved Mg to 

form high-Mg chlorites. 

2.4.3.5 Anions and their controls 
Carbonate-rich waters can be associated with the dissolution of limestones, silicate hydrolysis 

(through pH buffering - see section 2.3.2), or volcanic gases. Bicarbonate concentrations in 

solution may be limited by externally imposed CO2 partial pressures (above) or by the 

availability of alkali earth cations through the solubility of carbonates (Jones and Bodine, 1987; 

Land, 1987). Sulphate-dominated waters generally reflect the dissolution of gypsum or 

anhydrite or oxidation of sulphides. Sulphate may be depleted by precipitation of gypsum 

(reaction 1) following release of Ca by dolomitisation processes (see below) (Egeberg and 

Aagaard, 1989). Sulphate-dominated waters are rare in the subsurface, however, some brines 

nevertheless have very high sulphate concentrations (Jones and Bodine, 1987; Land, 1987). 

SO42" + Ca 21 + 2H20 = CaSO4. H20 (Gypsum) (9) 

2.4.3.6 Controls on minor cations 

Strontium resembles Ca chemically and often Sr and Ba are present as trace elements in a high 

Ca mineral such as calcite (Carpenter and Miller, 1969). Carpenter (1978) suggests that Sr in 

oilfield brines may be released by the recrystallization of aragonite to calcite. Feldspars also 

contain abundant Sr and Ba, with some alkali feldspars containing a significant BaAl2Si2O8 

(celsian) component. Plagioclase is one important reservoir for Sr in Gulf Coast sandstones, 

which typically contain approximately 1000ppm Sr (Land and Macpherson, 1992). The origin 

of Sr and Ba in saline brines is almost certainly related in part to extensive clay-feldspar-water 

reaction (Land, 1987; Worden et al., 1999). Egeberg and Aagaard (1989) suggest that high 

levels of Sr are a secondary result of the process of dolomitisation, caused by celestite 
dissolution in response to lowering of the SO4 concentration by precipitation of gypsum as Ca is 

released. However, celestite is a rare component of reservoir rocks. The 87Sr/86Sr ratio is an 
important natural tracer of water-rock interaction processes (Smalley et al, 1995; Worden et al., 
1999). The 8'Sr/86Sr ratio of fluids reflects the integration of the different sources of Sr that 

have contributed to the fluids e. g. seawater is non-radiogenic, but radiogenic values are derived 

from older basement rocks or detritus (Hanor, 1994; Cann and Banks, 2001). It had long been 

thought that the only significant trend between barium and salinity was a decrease in Ba due to 
fluid mixing causing barite saturation and that Ba was not typically buffered by silicate- 
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carbonate equilibrium reactions (Hanor, 1994); however, it has been shown that in modem 

oceanic basins seawater is at or near barite saturation (Monnin et al., 1999,2001; Monnin, 

1999). 

As well as the significant variation of transition metal concentration with temperature (Yardley 

et al., 2003), there is a clear trend of preferential association of transition metals with highly 

saline brines; due to the solubilization of metals by chloride complexing and the lower pH of 

more saline fluids arising from equilibria such as 3-6. 

2.4.3.7 Quartz and formation waters 

Quartz cement is responsible for much of the porosity and permeability reduction in well-sorted, 

quartz-rich sandstones that have been buried deeper than around 3km. Fluid inclusion data from 

North Sea reservoirs indicate that most of the quartz cement forms at temperatures exceeding 
90-100°C (Bjerlykke and Egeberg, 1993; Oelkers et al., 1996). 

There are many possible local sources of quartz cements in sandstones including: clay mineral 

transformations e. g. the illitization and chloritization of smectite; biogenic sources such as 

siliceous bioclasts; feldspar-related reactions (Barclay and Worden, 2000); dissolution of more 

soluble silica phases e. g. amorphous silica; dissolution of quartz, and mineral reactions 
involving the release of silica from silicate minerals (Bjorlykke and Egeberg, 1993). All of 

these processes are likely to affect the composition of associated pore water and some may be 

considered as external sources if linked with large advective fluxes. 

In most sandstones, the observed abundance of secondary quartz exceeds the amount that can be 
drawn from illitization of silicates. Thus, grain contact quartz dissolution "pressure solution" 
has long been invoked by some as the major source of silica (e. g. Bjerlykke and Egeberg, 1993; 
Brosse et al., 2000), who note that under certain conditions substantial quartz dissolution can 
occur at quartz-clay interfaces. 

Quartz cementation in sandstones has long been the subject of much controversy. The main 

controversy surrounding pressure dissolution is whether it is initiated by increasing lithostatic 

pressure, increasing temperature, or the presence of clay minerals along grain interfaces 

(Worden and Morad, 2000). Oelkers et al. (1996) suggest that temperature controlled quartz 
dissolution/precipitation rates and aqueous diffusion coefficients are of far more importance 

than the negligible role of pressure in this process (despite the term pressure solution). That is, 

quartz cement is most likely derived from quartz dissolution at clay or mica surfaces of 

stylolites by a process also known as illite-mica induced dissolution (I-MID, Figure 2.8) 
(Oelkers et al., 1996; Bjerkum et al., 1998; Oelkers et al., 2000). 
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In the past, some authors have suggested that some quartz is derived from sources external to 

the sandstone; the diagenesis of shales and sandstones may be closely related and, during 

diagenesis, the shales would act as the sources of Si02 for diagenetic quartz in the sandstones 

(Lynch et al., 1997). Land and Milliken (2000) have also presented data showing that silica 

released from clay reactions appears to have, in some places, been lost from the mudrocks, 

which supports the contention that this commonly occurs as burial progresses (Land and 

Milliken, 2000). However, silica is only sparingly soluble in water (Worden and Morad, 2000). 

Thus, it is believed that insufficient volumes of water would be available to transport the 

quantity of quartz found in sedimentary basins advectively, even with the help of extensive 

fracture networks (Bjerkum et al, 1998; Fisher et al., 2000). 
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Figure 2.8. Schematic illustration of the theoretical mechanism of silica dissolution/transport 
and precipitation in quartz-rich sandstones, involving quartz dissolution occurs at stylolite 
interfaces catalyzed by the interaction of quartz grains and mica/illitic clay surfaces. After 
Oelkers et al., 1996. 

2.4.4 Stable Isotopes 

A plot of global water 6'"O and 6D values and standard mean ocean water defines the Global 

Meteoric Water Line (Craig, 1961; Figure 2.9). Formation waters commonly plot to the right of 

the meteoric water line due to exchange of S'"O with minerals (Lawrence and Taylor, 1971; 

Dreyer, 1997; Worden et al., 1999). The reason that 6'80 is affected but not 6D is that overall 

rocks contains large amounts of oxygen but very little hydrogen (Taylor, 1997; Dreyer, 1997). 

In a water-saturated sediment, most oxygen is in the rock and in isotopic exchange the total 

mass of each isotope remains constant. In some basins there is a covariance in 6D and 00 

which may reflect mixing of light waters having a meteoric component with heavier ones 

(Hanor, 1994). In coal-bed methane reservoirs, well waters that fall below the global meteoric 
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water line for SD and 6180 line may contain hydrogen expelled from the peats during coal 

formation, resulting in net deuterium depletion (Riese et al., 2005). 
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Figure 2.9. A) SD and S'$O variation in global meteoric waters lying along a global trend and 
B) the same isotopic variation in formation waters, relatively enriched in 180 (from Hanor, 
1994, using data as in Figure 2.1. 

Stable H and 0 isotope data document increasing water-rock interaction with depth (Eastoe et 

al., 2001), and are often used to distinguish a fluid in equilibrium in a closed system from one 

that has been involved in large-scale infiltration. For example, high S'80 and SD values are 

consistent with isotopic exchange with minerals and would indicate a more closed system. 
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Figure 2.10 (A) D/H ratios of some geologically important reservoirs (SD) relative to SMOW), 

(B) 8"0 values of important geological reservoirs. After Hoefs, 2004. 

The oxygen isotope composition of a rock depends on the "O contents of the constituent 

minerals and the mineral proportions. Minerals can be arranged according to their tendency to 

concentrate 180, with quartz having a high tendency and hematite a low tendency. This order 

has been explained in terms of the bond type and strength in the crystal structure (Hoefs, 2004). 

The average 8180 of quartz in igneous rocks is - +9960, in metamorphic rocks - +13 to +14%0, 

and in sandstones, - +1 l%o (Figure 2.10). Meteoric fluids have VO Z -796o, becoming more 
'x0 enriched with increasing temperature, and basinal type fluids typically have S'8O Z +2 to 

+5%o (Marchand et al., 2002). Sediment pore waters depend on the reactivity of different 

minerals and will be in equilibrium with diagenetic minerals, not detrital ones. Hence quartz 

cements are much heavier than sand grains. 

2.5 Summary 

Global variation in formation water composition reflects variation in depositional setting, burial 

history, fluid-rock interaction, fluid flow regime, and after production has begun, engineering 

practice. The processes following the onset of burial enhance formation water variability 

through reactions specific to each system. The systems in question are easily differentiated 

through variations in mineralogy. Thus, depending on the degree of mineralogical influence, 

the formation waters from different systems should also be easily distinguished. 

Producing an accurate picture of the most important controls on one particular formation water 

is challenging, but it should be possible. There are a number of rules, trends and reactions that 

are common to most sedimentary basins. 

These processes are controlled by several factors which can generally not be considered 

independently. Prior to burial, surface processes of evaporation of marine and lacustrine water 
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Figure 2.11. A schematic diagram illustrating the main processes that can affect the 

composition of formation water. 

2.6 Note on data quality 

The data used in this study of formation water geochemistry is from a number of different 

sources. In particular, reports in the literature and produced water analyses from working oil 

fields. Data obtained from literature is likely to be of high quality and reliable, while more 

recent oil field data will not be as good. In addition, samples from working oil fields may be 

obtained through a number of different processes. These include: drill-stem tests (pressurised 

and uncontaminated), other down-hole tools (pressurised but likely to be contaminated) and 

well-head and separator samples (depressurised). Depressurisation of samples will cause CO2 

to degas and thus pH and bicarbonate concentrations will be affected. Another potential source 

of uncertainty associated with oil field water samples is the timing of sampling. Analyses made 

of samples from exploration or appraisal wells, very early in the production cycle are likely to 

be better representations of formation waters than those made later which may have been 

subject to some contamination through production processes. Thus there is significant 

uncertainty related to the use of this data. 

However, every effort has been made to reduce uncertainty and to use only the most reliable 

analyses. Each analysis was charge balanced and those that showed more than 1% discrepancy 

were rejected. The exception to this being very low salinity waters from San Juan and 

Colombia which failed to charge balance because in these cases only a very small inaccuracy in 

analysis can lead to a big charge balance discrepancy. It is important to note that this study 

focuses on very broad trends which are unaffected by minor inaccuracies and scatter. The 

scatter will not have a significant effect when water variability is so great and the salinity range 

is so large. 
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3. CASE STUDY 1: SAN JUAN BASIN, COLORADO AND NEW MEXICO 

3.1 Introduction 

The San Juan Basin occupies the east-central part of the Colorado Plateau in northwestern New 

Mexico and southwestern Colorado (Figure 3.1; Laubach and Tremain, 1994). It is roughly circular 

and covers an area of about 17,353 km2. Rocks in the basin range in age from Precambrian to 

Cenozoic and coal is present throughout the Cretaceous system (Laubach and Tremain, 1994). The 

Upper Cretaceous Fruitland Formation is the largest coal and coal-bed methane resource in the 

Basin and methane production began in the area in 1951 at the Ignacio Blanco-Fruitland gas field at 

Ignacio, Colorado (Marroquin and Hart, 2004). The San Juan Basin is presently the second largest 

gas-producing basin in the United States with approximately 0.28 x 1012 m3 derived annually from 

the coalbed methane reservoirs of the Fruitland Formation (Snyder et al., 2003). 
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Figure 3.1. Location of the San Juan Basin in west-central US, and the area from which the 
samples were collected. From Snyder et al., 2003. 

3TN 

36'N 

35 

1 08'W 10"W 



Chapter 3 

3.2 Aims 

Although a great deal of work has been undertaken concerning the isotope geochemistry of the San 

Juan Basin formation waters, understanding of other aspects of the fluid chemistry remains limited. 

Isotopes have provided a great deal of information regarding the "plumbing" of the reservoir and 

the extent of heterogeneities affecting fluid flow, and this study aims to continue this work making 

use of the anionic and cationic components of the formation waters. Because groundwater evolves 

chemically along its flow path, hydrochemistry can be used to help define recharge and discharge 

areas. Detailed study of the composition of formation waters of San Juan will also provide a better 

understanding of the water-rock reactions occurring. The chapter will initially summarise the 

nature of this coalbed system, outline the results of previous studies into the area and then go on to 

investigate additional insights into the formation water chemistry and host rock mineralogy. 

Of wider significance, the San Juan formation waters are extremely low salinity and provide 

valuable information about the nature of fluids at the dilute end of the global spectrum. In 

comparing the controls on this type of water with those on more concentrated brines in other parts 

of the world, it is possible to build up a picture of global trends and create a predictive model for 

fluids in reservoirs all over the world (see Chapter 5). 

3.3 An introduction to coal, coal-bed methane and associated waters 

Coal is the most abundant fossil fuel resource in the world (Warwick, 2005). Coal is formed from 

accumulations of organic matter as peat. Peat is found where accumulation of organic matter 

exceeds the oxidation or biodegradation of the organic matter and this occurs in many 

environments, ranging from subarctic marshes to tropical rainforests. Through time, the weight of 

the overlying sediments and inherent temperature in the Earth's crust transforms the organic matter 

into coal (Warwick, 2005). 

Whereas the gas contained in most conventional reservoirs is sourced elsewhere and has migrated 

from its original location, most of the gas in a coalbed methane reservoir evolved in situ (Riese et 

al., 2005). Naturally occurring bacteria in peat or coal can generate significant amounts of 

methane. The methane produced from organic matter associated with coal beds is a mixture of 

biogenic and thermogenic gas. The formation of this methane involves a combination of acetate 

fermentation and CO2 reduction as well as thermocatalytic degradation of organic matter (Scott et 
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al., 1994; Riese et al., 2005). Methanogenesis occurs throughout all the coal rank stages, and if 

significant amounts of the gas are trapped in the coal or an adjacent reservoir, such as porous 

sandstone beds, it may eventually become an economic gas resource i. e. coalbed methane (CBM) 

(Warwick, 2005). 

Methane and other gases such as CO2 and ethane in CBM reservoirs are largely adsorbed within the 

coal matrix and are prevented from desorbing by high formation pressures. The micropores that 

form during coal diagenesis are generally an order of magnitude smaller than conventional pores 

(95% of micropores are less than 0.5 nm in diameter), severely limiting permeability (Snyder et al., 

2003) however, permeable pathways are provided by diagenetic fracture networks known as cleats 

(Riese et al., 2005). 

The migration of gas from coalbed systems, through desorbtion or diffusion, requires either an 

increase in temperature or a decrease in pressure to transfer free gas to the cleats within the coals. 
The production of coalbed methane therefore requires the release of confining pressure on the 

adsorbed gases (Snyder et al., 2003). Each gas component in a coalbed reservoir has unique 

sorption characteristics and some gases, such as CO2 and ethane are more strongly sorbed to coal 

surfaces, than others (nitrogen and methane). Therefore, the percentage of CO2 in the produced gas 

will increase as reservoir pressures decrease during production (Scott et al., 1994). Coalbeds below 

the regional water table are usually water saturated. 

The produced water from coal beds with associated methane tends to have a very characteristic 

chemical composition. In his 2003 study, Van Voast identified six different coal- and methane- 
bearing basins (including San Juan), all with very similar water compositions. The waters are 

typically very low in Ca and Mg with SO4 almost totally absent, and Na, HCO3 and Cl are 

predominant. Concentrations nearer the recharge areas are generally lower for Na and Cl and 

somewhat higher for Ca and Mg. These water compositions are attributed to microbial SO4 

reduction and accompanying reactions of this process. 
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3.4 Tectonics and evolution of the San Juan Basin 

The San Juan Basin is a Laramide tectonic feature whose predominant structures formed beginning 

ca. 73-30 Ma (Riese et al., 2005). Basin subsidence began during the Late Cretaceous and 

continued into the early Eocene. Significant accommodation space allowed accumulation of beach 

sands and back-barrier, marginal marine lagoonal sediments during the Cretaceous (Riese et al., 

2005). 
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Figure 3.2. A: Cross section through the major stratigraphic features of the San Juan Basin, with 
exaggerated vertical scale in feet, B: schematic representation of the basin at scale. From Fassest, 
1971 

The Fruitland coals were deposited in a coastal swamp environment (Fassett, 1975) during 

regressive cycles of sedimentation. The underlying Pictured Cliffs Sandstone is a coastal facies that 

was formed as the Late Cretaceous coastline prograded northeastward into the Western Interior 

seaway (Scott et al., 1994; Ayers et a!., 1994) and a vertical succession of shelf through to coal- 

bearing sediments was deposited. The more massive sandstone units of the upper part of the 

Pictured Cliffs Formation are medium- to fine-grained and are composed of quartz, K-feldspar, 

plagioclase feldspar and coal (-- 4% average). In places, the Pictured Cliffs Sandstone is capped by 

a red-brown iron-cemented sandstone layer (Fassett, 1971). 
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Intermittent transgressive-regressive shifts of the shoreline resulted in the deposition of the 

Fruitland Formation coals. The formation is composed of interbedded sandstone, siltstone, shale, 

carbonaceous shale, carbonaceous sandstone and siltstone, coal, and some limestone but the coal 
beds are the most continuous rock units in the Fruitland (Fassett, 1971). These reach individual bed 

thickness of >18m and interfinger and interbed freely with the upper tongues of the Pictured Cliffs 

Sandstone back-barrier, marginal marine facies, and the continental facies of the Fruitland 

Formation (Marroquin and Hart, 2004; Riese et al., 2005; Ayers et al., 1994). The average 

composition of the Fruitland sandstone beds in the north of the basin is: quartz, 85%; K-feldspar, 

6.5%; plagioclase, 5.5% and coal, 2.7%. Calcite is the most common cement and clay is somewhat 
less abundant (Fassett, 1971). Overlying the Fruitland Formation is the Kirtland Shale, though the 
boundary between the two is erratic (Ayers et al., 1994). 

Fruitland coal rank is subbituminous B to high volatile A bituminous around much of the southern 

and western margins of the basin and rank increases into the basin (Ayers et al., 1994). The 

Fruitland coal seams occur in two depositional settings. The thickest coal seams are in the lower 

Fruitland and are dip-elongate seams flanked by distributary channel-fill sandstones. It appears that 

the Fruitland back-barrier coals seams are thinner and contain abundant carbonaceous shale (Ayers 

et al., 1994). The Fruitland coals are heterogeneous, reflecting spatial and temporal diversity in 

vegetation associated with the Late Cretaceous swamps (Riese el al., 2005). 
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3.5 Hydrogeology 

The Fruitland coals are generally layered and discontinuous, punctuated by clastic interbeds of 

fluvial and marine origin and by bentonites. This heterogeneity is reflected in the cases of adjacent 

wells showing significant variations in production history of both natural gas and the co-produced 

waters (Riese et al., 2005). 
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Figure 3.3. The main hydrogeological features of the San Juan Basin, including the northern area of 
artesian overpressure and the northwest-southeast trending structural hingeline. After Zhou and 
Ballantine, 2006. 

The nature of the hydrogeology of the basin remains contentious, but is important because 

groundwater interaction with hydrocarbons may play an important role in their migration and 

quality. It is generally agreed that recharge does occur at the elevated northern margin of the basin 

where numerous thick coal seams outcrop in the wettest part of the basin outcrop (Figure 3.3), but 

not anywhere else (Kaiser et al., 1994; Snyder et al., 2003; Riese et al., 2005). The Fruitland 

Formation is abnormally pressured relative to the freshwater hydrostatic gradient and the San Juan 

Basin can be divided into north-central overpressured and west-central underpressured areas (Scott 

et al., 1994; (Kaiser et al., 1994). Overpressuring is thought to be artesian in origin, the result of 
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recharge at an elevated outcrop and aquifer confinement (Scott et al., 1994). The transition between 

the pressure regimes is marked by a pronounced steeping of the potentiometric surface and 

coincides with pinch-out of thick coal seams and possible faulting along the basin's structural 
hingeline (Figure 3.3). 

The Fruitland Formation coals have historically been considered to constitute a regionally 
interconnected hydrologic unit. Scott et al. (1994) suggested that highly permeable, laterally 

continuous coal beds override abandoned shoreline Pictured Cliffs sandstones and extend to the 

elevated recharge area in the northern basin to form a dynamic, regionally interconnected aquifer 

system. However, Riese et al. (2005) maintain that this interpretation of a through-flowing system 
is in conflict with much of the data. Overpressure in the centre of the basin indicates the presence 

of a permeability barrier and precludes throughflow. In effect, the hingeline forms a barrier for 

water flow to the low permeability underpressured area (Zhou and Ballantine, 2006). It is thought 

that effective recharge of the Fruitland Formation coals is not taking place at outcrop although there 

is evidence for authigenic waters in some parts of the reservoir (see later) (Snyder et al., 2003). 

3.6 Water geochemistry 

3.6.1 Isotope systematics and their interpretation 

Waters from the San Juan Fruitland formation have been subject to many years of scrutiny as a 

result of exploitation of the area for methane gas. Gas is produced through the reduction of pressure 
initiated by the pumping of water from the formation. In some places, during the production of 

coalbed gas, a large amount of water is produced in order to recover the gas (Warwick, 2005). The 

water must then be safely disposed of, hence the concern about the impact of removing the 

produced water. 

Isotope studies of the waters have been carried out in an effort to define better the origin, history 

and nature of the formation water as well as the hydrogeology of the reservoir. In a study by 

Snyder et al. (2003) long-lived cosmogenic and stable isotopes, including 129111 (129I/total iodide), 
36CI/Cl (36C1/total CI), SD, 6"O and 87Sr/86Sr, were used to establish the age of the formation waters 

over a large geographical area and trace the evolution of the chemistry of the waters. 
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Figure 3.4. From Snyder et al. (2003), the distribution of SD and 129 1/1 ratios in the northern part of 
the basin. Dots represent where SD and 1291 were analysed. 
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Figure 3.5. From Snyder et al, 2003, values of SD and 5180 for the Fruitland waters. Filled triangles 
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The isotopic studies of Snyder et al. (2003) suggest that there are a number of different sets of 

waters present in the reservoir; however, values of SD and S 8O generally plot along the GMWL 

(global meteoric water line), indicating a predominantly meteoric source for the waters (Figure 3.5). 

The variation along the line is believed to be due to different sources for the water with the heaviest 
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values reflecting brackish formation waters associated with backshore peat bogs and the lightest 

values representing meteoric waters (Snyder et al., 2003). 

The very high total I concentration (I = 102 pmol/kg) suggests that it is almost certainly derived 

from diagenetic reactions of the peats. Relative UCl concentrations indicate that all of the samples 

are distinct from seawater and it is likely that higher I concentrations are the result of diagenetic 

alteration that also had the effect of increasing vitrinite reflectance (Snyder et al., 2003). The 1291/I 

ratios determined indicate minimum ages close to 60 Ma. This is compatible with the depositional 

age of the Fruitland Formation and indicates that the 1291 present in the brines is predominantly 
derived from iodine that was sorbed onto organic matter associated with coal-forming peats prior to 

burial (Snyder et al., 2003; Riese et al., 2005). The isotope systematics suggest that the 

composition of Fruitland brines was modified both during ongoing coal diagenesis, and through the 

subsequent involvement of water of a meteoric origin. Some 129I results indicate the presence of 

anthropogenic waters in some of the samples; however, Snyder et al. (2003) maintain that the 

evidence for recent meteoric water influence is limited to areas near the western outcrop of the field 

and the formation waters in large portions of the field remain unaltered. Thus, they suggest that 

meteoric modification of the original brines is limited to the uplifted margins of the basin (Snyder et 

al., 2003). A large portion of the samples have 129I/I and 36CIIC1 ratios below pre-anthropogenic 

values, demonstrating that a major part of the Fruitland Formation has preserved its original 
isotopic signature and high iodine concentrations and low 1291/1 ratios of waters elsewhere in the 
basin, together with a moderate depletion of deuterium relative to 00, suggests that these waters 
have not been significantly altered since the time when digenetic reactions occurred in the deepest 

part of the basin. It appears that ratios of 36C1/Cl also indicate the absence of recent surface waters 
involved in the dilution of formation waters (Riese et al., 2005). 

A group of old groundwaters associated with SD excess is also the group of groundwaters with 

somewhat elevated 129I/I ratios (Figure 3.4). This group may represent upward migration of fluids 

into the Fruitland Formation along basement fractures, perhaps from deeper formation waters 
(Snyder et al., 2003). In addition, it is suggested that a group of deuterium enriched, low chloride 
formation waters are likely to be the product of near-outcrop methanogenesis through CO2 

reduction during a period of groundwater incursion (Riese et al., 2005). Finally, a group of waters 

with a moderate enrichment of I may contain waters which infiltrated the coals at the time of the 

Laramide uplift, between 25 and 30 Ma (Snyder et al., 2003). With regard to strontium isotopic 

composition, production wells show mixing between a seawater-carbonate end-member with an 
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additional strontium-rich end-member with 8'Sr/8 Sr = 0.713 (Riese et al., 2005). The observation 

that deuterium excesses in portions of the basins are also accompanied by 87Sr/86Sr ratios that are 

much higher than seawater values has been used to suggest that the original connate waters have at 

some point received an influx of waters from another source that was in contact with basement 

rocks (Riese et al., 2005). 

A recent study by Zhou and Ballantine (2006) using 4He dating of waters from the same area, has 

provided formation water ages of between 2.33 x 10° and 1.06 x 105 years in the underpressured 

area of the basin and between 1.65 x 104 and 4.48 x 105 years in the overpressured area. These 

ages are 2-3 orders of magnitude smaller than those obtained using 12291/I and 31C1/C1 ratios and are 

consistent with ages of major recharge events previously reported (Phillips et al., 1986), '4C dates 

and hydrological modelling dates (Mayor et al., 1991). However, these events were established for 

different stratigraphic horizons (in particular the Cretaceous-Tertiary Ojo Alamo Sandstone) and 

while the discrepancies may have implications for the interpretation of the hydrogeology of the 

area, the transient nature of helium gas in the reservoir would probably be expected to produced 

younger ages than the more static halides. 

3.6.2 Water geochemistry 
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Figure 3.6. The distribution of Cl within the Fruitland coals, dots represent where Cl was analysed. 
Note the northwest-southeast trending area of low Cl. From Snyder et al., 2003. 
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The chemical and isotopic makeup of the waters associated with coalbed methane is influenced by a 

variety of factors including contributions from connate waters that were originally deposited with 

the peats, the expulsion of certain elements during the formation of the coal, water-rock interactions 

both locally and along the path of flowing groundwater, and microbially mediated reactions 

involving both methanogenesis and anaerobic oxidation of methane (Riese et al., 2005). 

Formation waters associated with coalbed methane are generally sodium chloride-bicarbonate 

dominated and depleted in calcium, magnesium and sulphate (Van Voast, 2003; Riese et al., 2005). 

Kaiser et al. (1994) report that in the north-central part of the San Juan basin waters are fresh to 

brackish Ca-Mg-HCO3 and Na-HCO3 types and rarely exceed TDS contents of 30,000 mg/L. In the 

south, waters are more saline Na-HCO3, NaSO4 and NaCl types exceeding 35,000 mg/L in some 

cases. Waters in the north-central part of the basin are unique in their very high HCO3 contents, 

high Na, low Ca, Mg and Cl contents, negligible SO4 and Ba enrichment (Appendix I). Kaiser et al, 

(1994) suggest that very high HCO3 contents, neutral to slightly alkaline pHs and lack of SO4 

indicate an open chemical system and addition of organically sourced CO2. Van Voast (2003) 

maintains that relatively high SO4 levels can be obtained through dissolution of sulphide minerals 

along the paths of flow. The subsequent reduction of this sulphate is said to be a prerequisite 

reaction for the biogenesis of methane, is an attendant condition in its thermogenesis and is 

responsible for the distinct chemical characteristics of these waters. In particular it enhances the 

enrichment of dissolved bicarbonate through the following reactions: 

2CH4 + SO42- = 2HC03 + H2S (1) 

2CH4 + SO42- = HC03' + HS' + H2O + CO2 (2) 

Increased alkalinity causes reduced solubility of calcite and dolomite, encouraging the inorganic 

precipitation of these minerals and reducing the concentration of Ca and Mg in solution (Van Voast, 

2003; Riese et al., 2005). Commonly, coal waters have high Mg/Ca ratios, likely due to preferential 

Ca removal in calcite and gypsum along coal cleats (Kaiser et al., 1994). San Juan is no exception 

to this, but there is significant variation in the ratio, suggesting there is variability in how much of 

which dissolved species is removed from solution, where. In addition, exchange of Na from clays 

for Ca and Mg may contribute to the loss of these ions from solution and account for the high levels 

of Na observed. In recharge areas, infiltrating waters readily dissolve soluble salts, building 

commonly high concentrations of Ca, Mg and Na. Progressively along the flow paths and the 

water's contact with reactive clay minerals, the Ca and Mg ions adsorb to the clay and are replaced 
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in the water solution by equivalent molar concentrations of Na previously adsorbed onto the clay 

(Van Voast, 2003). 

A set of waters with unusually low chloride concentrations have caused Synder et al. (2003) to 

suggest that post-Eocene basin uplift increased the hydraulic gradient within the reservoir and 

initially gave rise to incursion of meteoric water. Chlorinity data show a fresh-water plume of 

possibly meteoric origin extending basinward from the northern and northwestern margins (Kaiser 

et al., 1994). Because high HCO3 waters coincide with overpressure and high Cl waters coincide 

with underpressure, Kaiser et al. (1994) suggest that formation water chemistry cannot be used to 

infer completion lithology. 

3.7 Investigating the San Juan Basin 

3.7.1 Aims 

The following sections of this chapter are dedicated to evaluating the conclusions drawn in previous 

studies; in particular, that the majority of the waters are brackish in origin, that there is very little 

meteoric input to the basin and subsequent through-flow, that major cation concentrations (Ca, Mg, 

Na) are controlled by cation exchange processes and the high bicarbonate concentration of the 

waters is due to sulphate reduction. The study also aims to illustrate that, on a basin scale, 
formation waters will reflect the nature of the host lithology, contrary to previous assertions. 

3.7.2 San Juan Mineralogy 

In order to establish the possible main mineralogical controls on the formation water composition in 

the San Juan Basin, it was essential to have a good understanding of mineralogical make-up of the 

reservoir rocks. Core samples taken from the Fruitland and Pictured Cliffs Formations in the 
Northern part of the basin were generously provided by BP. 

Five samples of the sandstones between coal layers were studied using scanning electron 

microscopy (SEM) and analysed using X-ray diffraction (XRD). The samples were taken from 3 

different drill cores, at varying depths and in variable lithologies and provide a useful overall 

picture of the most important aspects of the mineralogy. The rocks reflect their original shoreline 
depositional setting. Samples are predominantly sandstones with some shales and coal material. 
The sandstones are all quartz rich (up to -80%) and also contain substantial amounts of detrital 

albite, K-feldspar, mica and lithic fragments as well as authigenic siderite, dolomite, detrital and 
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authigenic clays and quartz overgrowths. Where the samples also contain coal, this occurs in layers 

between highly compacted sands and shales. 

Significant compaction and chemical diagenesis has substantially reduced porosity, although there 

are a number of large secondary pores formed from the dissolution of an unknown phase (Figures 

3.7A and B). Most pore spaces are filled with kaolin or illite (Figure 3.7B). Proximity to coal 

layers appears to have an effect on the nature of authigenic clay present. In areas with a high 

organic content, the dominant clay type appears to be kaolin with illite more important elsewhere. 

Calcite is rare in these rocks though there are substantial amounts of dolomite present. Much of the 

dolomite is altered to siderite (Figures 3.7B, C and D). There is evidence of the earlier presence of 

significant amounts of smectite (Figures 3.7B and 3.8F), now largely transformed to illite, possibly 

derived from bentonites thought to be present which are the devitrification products of ash falls. 
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Figure 3.7. 
A. SN (707.2m) Quartz (Q) rich sand containing large secondary pores (Sp) and abundant siderite 
(Si) 
B. SN (707.2m) Angular quartz clasts with pore-filling illite (1) and smectite (Sm). In places 
dolomite is altered to siderite (Si) 
C. SN (707.2m) Late stage siderite (Si) surrounded by quartz 
D. MF (816.3m) Early authigenic dolomite altered to later siderite 
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Figure 3.8. 
A. MS (891.2m) Coal (C) occurs in the San Juan reservoir rocks as elongate bands 
B. MS (891.2m) Some locations contain large amounts of pore-filling illitised kaolin (K) together 
with metamorphic and igneous lithic rock fragments (Li) 
C. MS (891.2m) Fibrous mica (M) with associated lithic fragments and early pyrite (Py) 
D. MS (891.2m) San Juan reservoir rocks can be very mineralogically complex. Here the pore 
spaces between quartz, siderite and lithic fragments (Li) are filled by illitised kaolin (I+K) 
E. MF (773.5m) Finer siltstone consisting of angular clasts, containing abundant siderite cement 
(Si) and small amounts of pyrite (Py) authigenic kaolin (K). 
F. MF (816.3m) Some locations contain more abundant quartz overgrowths than others (Q) and 
many of the pore spaces contain authigenic illite. 
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In some places lithic fragments comprise up to 40% of the rock, though more commonly they 

amount to around 15%. These consist of igneous and metamorphic clasts, mostly heavily illitised 

(Figures 3.8B, D and E). The presence of significant quartz overgrowths (5-10% in places) (Figure 

3.8F) and illitised kaolin (Figure 3.8B) suggests that the rocks have undergone diagenesis at 

temperatures exceeding -90°C. The facts that the rocks have clearly reached thermal maturity and 

methane generation has occurred also indicate that the rocks must have experienced higher 

temperatures and been subsequently uplifted. 

XRD analysis of the samples studied in the SEM indicates that the dominant mineralogy of the 

reservoir rocks includes quartz, albite, dolomite, muscovite, chlorite, pyrite, siderite, kaolinite and 

mixed layer illite-smectite (Appendix II contains the XRD traces for all the samples analysed). 

Km 

Compaction 

Dolomite precipitation 

Pyrite precipitation 

Siderite precipitation 

Authigenic kaolinite 

Dissolution of phase X 

Quartz overgrowths 

Illitisation 

01234 
Mechanical Chemical 

Non-Fe Fe 

Figure 3.9. Paragenetic sequence for minerals in the San Juan reservoir rocks 
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3.7.3 The water analysis dataset 

A dataset consisting of samples from 129 wells and surface waters in the northern part of the San 

Juan Basin has been generously provided by BP. All the samples were collected during one 

summer season and each was analysed for major cations, anions and radiogenic and stable isotopes. 

The results of the detailed isotope study of the waters are outlined above, but little work has been 

carried out in the past to analyse the nature of the other dissolved inorganic species. The following 

section outlines the basic character of the San Juan formation waters, and provides a basis for 

further, more detailed study into fully understanding water chemistry in this kind of system. 

3.7.3.1 Data quality analysis 

All the data were subject to charge balance testing, however, due to the very low salinities involved, 

the analyses often did not balance at all well. In addition, the waters were not analysed for pH. 

Bicarbonate analyses in formation waters are subject to significant errors as a result of the difficulty 

involved in accounting for gas lost due to pressure reduction. Much of the interpretation of this data 

depends on the accuracy of the HCO3 values and it was thus important to perform some calculations 

to assess the data. Information about the amount of CO2 in the produced gas was kindly provided 
by BP and Geochemists' Workbench was employed to use this data to model the HCO3 

concentration and redox state of some specific wells. Unfortunately, the locations for which CO2 

data were available did not match those locations for which there was water chemistry data. 

However, three wells with water data are in areas for which there was CO2 information and these 

were included in the GWB model. In addition, eight wells of varying salinity with reliable (charge 

balanced) water analyses were modelled (Appendix III). 

For each well, the precise water chemistry was specified, CO2 was swapped into the basis replacing 
HCO3, CH4 was swapped into the basis replacing O2($» (thus controlling redox state) and pH was set 
to be controlled by equilibrium with dolomite. Charge balance was controlled by Cl in the most 

saline waters, or by Ca or Mg in the more dilute waters. The fluid for each well was then allowed 
to come to equilibrium and the results noted. 

Table I presents some of the model basis inputs and results. Calculated HC03 values do not match 

the input values but are always of the same order of magnitude and differ only by up to 7000 mg/kg 

(average = 300 mg/kg). This confirms that, while the measured HCO3 values may not be 

completely accurate, they can be relied on to help identify general trends. Oxygen fugacity is very 
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low, and where sulphur species are present, they tend to exist as H2S, indicating a reducing 

environment. 

Table 1. Showing the major basis input species and results from the GWB model identifying H('03 

concentrations and redox state, highlighted analyses exhibited some charge balance discrepancy 
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24-5; 32-9 Cl 2.2 97.0 9020.0 1969.0 6.0 -66.462 0.272 8.1E-06 
32-4; 33-8 Cl 2.2 84.4 5120.0 2408.0 6.1 -66.425 0.209 6.2E-06 

Allison 102 Cl 4.2 95.5 2644.0 2810.0 5.9 -65.870 Cl 
Allison 127 (Ca) 4.2 95.5 2929.0 1685.0 6274 5.5 -72.335 
Dusenberry Cl 

Com (Ca) 2.2 84.4 1226.0 2804.0 2139 6.2 -66.426 

Animas 35-2 Ca 1122.0 2126.0 5.8 -66.282 
Arado 1-13 Ca 2.2 84.4 441.0 902.3 5.7 -66.424 
Federal 4-1 Ca 2.2 84.4 1369.0 2587.0 6.2 -66.424 
Royce State 

36-2 Ca 2.2 84.4 1389.0 2386.0 6.1 -66.424 

Huber 2-34 Mg 2.2 84.4 877.0 1761.0 6.0 -66.424 0.339 1.0E-05 

3.7.3.2 Basic data features 

The data were plotted on a series of simple diagrams to illustrate their most obvious chemical 

characteristics. In most cases, though not all, these diagrams support the observations noted in the 

literature. The waters are extremely low salinity, with variable chloride compositions, high levels 

of bicarbonate and sodium and low concentrations of calcium and magnesium (Figure 3.10) as 

would be expected from coal-bed waters. Cation concentrations increase with increasing salinity, 
but correlation is poor, suggesting an alternative control on the cation composition of the waters. 
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Figure 3.10. Varying concentrations of cations and anions with Cl in Fruitland formation water, 
including Na, K, Ca, Mg and 11003. Note the log scale. 

Fluid origins 

The traditional method of tracking the evolution of water of marine origin, CI/Br and Na/Br ratios 

(see Chapter 2), shows that the San Juan formation waters are severely enriched in Br relative to Ca 

and Na (Figure 3.11). A plot of Br systematics will not establish the original nature of the water, 

but assuming a marine-brackish origin, simple dilution and thus the preservation of the ratios, it is 

clear that water-rock interaction has had a great influence on the composition of the waters. The 

very high Br/Cl implies a distinct supply of Br and the organic matter in the coal would have been 

the most likely source (Spears, 2005; Biester et al., 2006). This is in accordance with the assertion 

of Snyder et al. (2003) that high I concentrations are derived from diagenctic reactions with the 

peats. 

Dominant anions 

Significant deviation from charge balance (charge imbalance reaches an average of 86%, when Cl is 

considered alone, compared with 34% when all anions are considered) indicates an additional anion 

is needed to maintain charge balance (Appendix I). A plot of Cl and HC03 concentration vs. TDS 

tells much about the major controls on the formation water composition (Figure 3.12). Both species 

show a positive correlation, however, the rapid initial increase in bicarbonate with TDS suggests 

that this is the dominant anion at lower salinities. 
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Figure 3.11. San Juan data do not lie on the trend predicted either by seawater evaporation or halite 
dissolution, due to high levels of Br derived from organic natter. There is very little correlation 
based on ages of samples analysed 
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3.7.4 Spatial variations 
The feasibility of theories such as limited recharge of the basin, restricted to the north-west and 

depletion and enrichment of Ca, Mg and Na respectively through ion exchange can be assessed by 

studying major element variation in space and in comparison with well-understood systems. In 

particular, geographical trends in water chemistry can confirm the most likely mechanisms of 

dilution and concentration and help locate the position of potential zones of meteoric recharge. 

When individual water analyses are plotted on a map grid according to differences in major element 

concentrations and ratios, it is possible to highlight the geographical variation in water chemistry. 

To summarise the most important and obvious spatial trends observed in the data: the northernmost 

waters in the basin tend to have higher levels of Ca, Si and HC03, and lower Cl, Na and Mg than 

waters further south (Figures 3.13 to 3.17). 

Absolute Cl concentration generally decreases towards the north of the basin, as do CUHCO3 ratios. 
In particular there is an area of particularly high HCO3/low Cl in the northwest (Figure 3.13), which 

was also highlighted in the study by Snyder et a/. (2003) who also used Cl concentrations as well as 

SD and 1291 (Figures 3.4 and 3.6). This area is interpreted as the main site of meteoric recharge into 

the basin. 
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The average temperature of the formation waters is 55°C, however there is some local variation due 

to differing distances to recharge points and to depth changes. Si concentration is used in many 

higher temperature systems as a geothermometer and while cannot be accurate due to lack of 

equilibrium, may give an indication of temperature variation. A plot of Si vs XCa highlights the 

differences between the northern, southern and western parts of the study area; the northernmost 

areas producing waters with generally higher concentrations of both Si and Ca (Figure 3.14). 

These results are counter-intuitive as it would be expected that both temperature and the 

concentration of dissolved solutes would decrease in the direction of meteoric inflow. Areas with 

higher Ca concentrations correlate well with those of very low Cl (Figures 3.13 and 3.15) - 

attributed to high levels of meteoric recharge. It is possible that the lower temperatures and flowing 

fresh waters in this area promote greater degrees of calcite dissolution, thus enhancing the amount 

of Ca in solution. In support of this hypothesis, there is little evidence of suggested calcite 

precipitation resulting from reduced solubility of high-HCO3 waters. The rocks of the Fruitland and 

Pictured Cliffs Formations contain abundant carbonate minerals including dolomite and siderite, 

however calcite is generally absent. Most samples analysed contained large secondary pores that 

could be attributed to calcite dissolution. HCO3 levels in these locations are also relatively high 

(Figure 3.13). 

While Cl and Na concentrations appear to both decrease towards the north, the Na/Cl ratio actually 
increases in that direction (Figures 3.16 and 3.17). The ubiquitous presence of molar Na/Cl ratios 

greater than one indicates that NaHCO3 must be present. It follows that Na is being introduced 

through water-rock interaction and increases in concentration with production of HCO, '. 

3.7.5. Evidence for water-rock interaction 
Based on evidence from isotopes, authors have proposed a brackish-meteoric source for the 

formation waters, perhaps supplemented by deeper waters upwelling through regional fractures (see 

section 3.6.1). The current explanations for the evolution of this water once it has been buried are 
limited in the literature to dilution by meteoric water, sulphate reduction coupled to production of 
bicarbonate and ion exchange of Ca and Mg for Na. 
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In order to interrogate established ideas of the principal water-rock interaction influences and the 

nature of the waters, measured values of major elements are here compared with values predicted 

for a simple dilution model. The initial "brackish" water of the models of Kaiser et al. (1994) and 

Snyder et al. (2003) was here taken to be 50% seawater. Some of the following set of figures plot 

simple dilution curves of original brackish water (by a pure water endmember) with the 

concentration of various San Juan water components. Any deviation from the dilution curve is an 

indication that an addition water-rock interaction process is occurring in the system. 

Ca concentrations in this system exhibit a number of interesting, unusual characteristics and do not 

increase with Cl as a result of charge balance. A constant value of log mol Ca/Na2 is a means of 

identifying buffering of Ca-Na exchange by solid phases (e. g. plagioclase, see chapter 5); this type 

of buffering is not a dominant control in this system because there is not a constant value of log mol 

Ca/Na2, even for waters of the same salinity (Figure 3.18). The ratio Ca/(Ca+Na) (XCa) shows Ca 

as a proportion of the dominant cations and again there is a poor correlation between this and Cl 

concentration, with the highest values in very low salinity surface waters (Figure 3.19). 

Furthermore, there is significant variation in the Mg/Ca ratio (Figure 3.20), and lower values 

suggest either that more Mg than Ca has been lost from solution, or that there is an additional 

source of Ca. The waters with low Mg/Ca are the Ca-poor waters, low in Cl and dominated by 

HC03" anions. 

In addition, it can be clearly seen that Na is significantly enriched relative to brackish water (Figure 

3.21) and that Mg is depleted (Figure 3.22). It is suggested (Van Voast, 2005) that these trends may 

be explained by ion exchange on clay surfaces of Ca and Mg for Na. Mg depletion may be due to 

dolomite precipitation, which commonly occurs in the reservoir rocks. Also, high Mg/Ca values 

commonly found in coalbed waters are generally attributed to the preferential formation of calcite 

over dolomite where there is often evidence for precipitation of calcite along the fracture surfaces of 

the coal. However, there is no clear trend defined by the Ca values relative to saline water dilution 

(Figure 3.23), indeed, contrary to expectations, Ca is actually enriched in some samples, suggesting 

that calcite formation or exchange for Na cannot be dominant processes affecting concentrations of 

this cation. The relative enrichment of Ca may be due to the exchange of Mg for Ca (though this 

would result in low Mg/Ca ratios), or as mentioned above, localised calcite dissolution at sites of 

meteoric water recharge. 

61 



Chapter 3 

0.03 

0.025 

0.02 
J 

E 0.015 

0.01 

0.005 

0 0.05 0.1 0.15 0.2 0.25 0.3 

CI (Mol) 

Figure 3.22. Mg data from the San Juan formation waters. Mg is strongly depleted in the 
formation waters relative to predicted values from a brackish water dilution model 
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Figure 3.23. Ca data from the San Juan formation waters. Ca varies independently of Cl and hence 
sometimes appears depleted and sometimes enriched in the formation waters relative, to predicted 
values from brackish water dilution. 

Figure 3.24 shows the predicted trend line for diluted brackish water if equal molar amounts of Ca 

and Mg were removed from solution and Na added through cation exchange. The data from San 

Juan all show that far more Na has been gained than Ca and Mg lost, despite the fact that the figure 

does not account for Ca and Mg lost through precipitation of carbonates. 
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Figure 3.24. Relative loss of Ca and Mg and gain of Na in waters from the San Juan Basin. The 
solid line is the 2: 1 molar exchange valid if ion exchange were responsible for the Na enrichment in 
these waters 

This suggests that there is another source of Na in the San Juan Basin, possibly in addition to its 

removal from clay mineral surfaces. Furthermore, the increase of Na without corresponding 
increase in Cl requires generation of additional anions (bicarbonate) and thus the enrichment is due 

to mineral leaching, not cation exchange. The alternative supply of Na is most likely to he 

alteration of Na-rich smectite to illite. Bentonite clays (of which smectite is one) are known to be 

abundant in the San Juan Basin. Indeed the laterally continuous Huerfanito Bentonite Bed lies 

beneath the Lewis Shale (which is know to contain several bentonite beds) and the Pictured Cliffs 

sandstones (Ayers et al., 1994). 

3.7.6 Bicarbonate-rich formation waters 

The low Cl waters are also extremely high in HCO3. Figure 3.12 showed that at the very lowest 

salinities bicarbonate is more abundant in solution than chloride. Figures 3.25 and 3.26 show the 

results of calculating the speciation of 19 representative San Juan water samples at calcite saturation 

using the geochemical modelling programme, the Geochemists' Workbench. Figure 3.25 indicates 

that sodium concentration is exclusively related to the amount of bicarbonate present. However, 

calcium is more associated with bicarbonate at the lowest salinities and with chloride at higher 

salinities (Figure 3.26). This may be a result of geographical influence, because the lower salinity 
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waters exist in places where bicarbonate levels are high and Ca concentration is being enriched due 

to the inferred dissolution of Ca-bearing carbonate minerals. 

The high levels of bicarbonate in these originally brackish waters are themselves interesting 

because they are necessarily the result of chemical reactions along the flow path. High HCO3 

concentrations are generally deemed to be the product of sulphate reduction/methane oxidation 

reactions (reactions I and 2, section 3.6.2) in high sulphate seawater or following enrichment of 

sulphate through oxidation of sulphides. 

Simple mass balance suggests that there is far too much HCO3 present relative to chloride (average 

San Juan formation water HCO3/Cl = 1.9) for all the necessary original sulphate to have had a 

seawater origin (approximate seawater HCO3/C1= 0.277). It is possible that high SO4 waters were 

transported to deeper parts of the basin following sulphide oxidation in the near-surface however, 

deep reduction of iron oxides by dissolved methane would create the same effect of HCO3 

enrichment: 

4Fe2O3 + CH4 = 8FeO + HC03 + H+ + H2O (3) 

4Fe2O3 + CH4 = 8FeO + CO2 + 2H20 (4) 

When sulphate reduction occurs, significant amounts of pyrite might be expected in the reservoir 

sandstones as a result of the sulphate reduction. In fact, there are only very limited amounts of 

pyrite present. Oxidation of methane by iron oxide does not produce sulphide so this process is 

consistent with the lack of pyrite present. 

Alternatively, there may be an additional source for the HCO3. Furthermore, sulphate reduction 

producing bicarbonate ions does not affect the charge balance of the water. Thus, the increase in 

Na should be accompanied by a decrease in Ca and Mg, because there is no increase in negative 

charge. However, this behaviour is not seen. The dissolution of calcite at meteoric recharge points 
is a potential source of bicarbonate, evidenced by the increase in Ca concentration towards the 

north-west of the Basin. 

64 



Chapter 3 

10000 

9000 

8000 
rn 
E 7000 
c 

6000 

äi 5000 

8 4000 
N 
'ý 3000 

ä 
U) 2000 

1000 

0 

Figure 3.25. Sodium speciation in waters from 19 representative wells in the San Juan Basin, 

selected for variation in location and Cl content. Excluding Na' note the consistent dominance of 
NaHCO3 rather than NaCl. 
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Figure 3.26. Calcium speciation in waters from the same 19 representative wells in the San Juan 
Basin. Excluding Cat' note the bimodal importance of CaHCO, ' and CaCl* 

3.7.7 Principal components analysis 

In order to further assess the controls on the San Juan formation water compositions, principal 

components analysis - PCA - (see chapter 5 for a full discussion of the technique) was carried out 

on the water data. The cause for the majority of variance in the dataset is likely to be the most 

important aspect of the water chemistry and can be determined by PCA. In this case the data were 

analysed based on the concentrations of K, Na, Mg, Ca, Sr, Ba, Fe, Mn, Cl, HCO3 and ratios of 

XCa, Ca/Mg and Na/K. 
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The waters are colour coded according to their locations within the basin and Figure 3.27 shows the 

results. The results show a clear geographical control on the water compositions that supplements 

the evidence from earlier in the chapter. 
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Figure 3.27. The results of principal components analysis of the San Juan formation waters. The 

most northerly waters exhibit most of their variation in Cl, Na and K concentrations, while further 

south, HCO3 and Ca become more important. 

Table 3.2. Results (component loadings) of the principal components analysis performed on the 
San Juan formation water data. Note that about 30% of the variance is explained by the Na 
concentration. 

Component Loadings 

(correlations between initial variables and principal compon 
Variable PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 

Na 0.928 -0.107 -0.039 -0.078 0.023 -0.091 
K 0.410 -0.543 0.085 0.396 0.231 0.037 
Mg 0.837 -0.003 -0.356 0.063 -0.108 0.137 
Ca 0.174 0.692 -0.132 0.411 0.189 0.061 
Sr 0.549 0.617 0.171 -0.033 0.070 0.136 
Ba 0.801 0.241 -0.283 -0.061 -0.018 -0.136 
Fe 0.341 -0.262 0.413 0.060 -0.677 -0.111 
Mn 0.168 -0.022 0.857 0.060 0.071 0.240 
Cl 0.660 -0.460 0.199 0.235 0.355 0.125 
HC03- 0.384 0.708 0.336 -0.246 -0.093 0.057 
XCa -0.506 0.161 -0.147 0.479 -0.211 0.549 
Ca/Mg -0.462 0.313 0.337 0.284 0.255 -0.446 
Na/K -0.186 -0.124 0.051 -0.727 0.276 0.301 

66 



Chapter 3 

In addition, the component loadings (Table 3.2) suggest that most of the variance is related to Na 

and then the alkali earth metals (Ca+Mg) and bicarbonate. Thus, the importance of the excess Na in 

solution and the dissolution/precipitation/ion exchange reactions controlling Ca and Mg is 

emphasised. 

3.8 Conclusions 

Previous studies into the nature of the water-rock system in the northern San Juan Basin, conducted 

using halogen, deuterium and strontium isotopes in formation waters conclude that the Basin is not 

throughflowing, but that limited recharge may be occurring in the north-western regions. Isotopes 

suggest that, while there are a number of different types of water present, most are derived from a 

predominantly meteoric source with variation being due to changing influence from backshore peat 

bogs. Additional recharge may be occurring through input from deep basinal brines, although 

similar SD and 87Sr/86Sr signatures may be obtained through reaction with clays. 

Isotopes have only limited use when considered independently from other aspects of water 

chemistry. Typically, formation waters associated with coalbed methane are always thought to be 

similar, being sodium chloride-bicarbonate dominated and depleted in calcium, magnesium and 

sulphate. However, there is some chemical variation within the formation waters of the San Juan 

Basin itself and they have been shown to behave differently from what was expected. 
The conservative components of the water, including Cl, can track the dilution of waters and 
influence of fluid mixing. Study of the dissolved halides alone cannot support or contradict the 

theory that the waters are of brackish origin, altered by waters flowing in at the northern basin 

margin and through deep fractures. However, the geographical pattern of lower Cl concentrations 

towards the north-west of the basin corresponds well with previous hypotheses that this area is 

experiencing significant meteoric recharge. 

The origin of the formation waters in the San Juan Basin is difficult to determine by studying the 

behaviour of the water components. This is because even at the low temperatures in this system, 

the chemistry of the waters is dominated by the results of ongoing water-rock reactions which mask 

any older chemical signature. In particular, the coal present in the reservoir contributes 

significantly to halogen concentrations, particularly bromide. This means they are not conservative 

enough to have remained constant through time and therefore cannot be used to identify fluid 

origins. However, variation in the concentrations of the cations Na, Ca and Mg can provide a useful 
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picture of the processes occurring. Low values of Ca and Mg and high values of Na have 

previously been attributed to cation exchange, however a simple mass balance calculation suggests 
that there is far more Na in the system than can be accounted for by this process. Instead, while ion 

exchange is probably occurring, the most likely source for the elevated Na concentrations in the San 

Juan Basin is leaching of the abundant bentonite clay, present in the area as the devitrification 

product of ash falls. The high Na/Cl ratio is also evidence that Na is being introduced into the 

system through diagenetic leaching processes, possibly driven by the generation of carbonic acid 
from coal. 

The Ca concentration is not as consistently low as has been previously suggested, in fact it is highly 

variable. The variability is due to a combination of cation exchange processes and the dissolution 

of Ca-bearing minerals. The latter process is especially prevalent in the colder meteoric waters in 

the north-west, as indicated by higher Ca values in this area. 

Geochemical modelling and the presence of coal and pyrite in the rocks indicates that the system is 

reducing. Extremely high bicarbonate concentrations are therefore likely the result of iron oxide 

and sulphate reduction, however, the lack of pyrite present suggests that the former process is more 
important. In addition, it is possible that carbonate dissolution at the basin margins contributes to 
the bicarbonate content of the waters. The introduction of large amounts of bicarbonate to the 

system affects the behaviour of the cations present and the fluids contain a significant proportion of 
NaHCO3 and CaHCO3+ 

The importance of low salinity-high bicarbonate waters as part of a continuous global trend in water 
compositions cannot be overestimated and will be examined in more detail in Chapter 5. 
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4. CASE STUDY 2: THE MILLER OIL FIELD, NORTH SEA 

4.1 Introduction 

Formation waters in petroleum reservoirs could potentially have residence times that are 

significant on geological timescales of tens to hundreds of millions of years, or are relatively 
brief at tens of thousands of years. Although fluid migration in the subsurface can and does 

occur, flow is believed to happen slowly enough to allow for the equilibration of waters with 
their host rocks (Hanor, 1994). When hydrocarbon resources are exploited, changes are induced 

in the system on a timescale that can be as short as a few days. The impact of human activity on 

such systems has huge implications for the efficiency of the industrial processes, for the 

environment and for our understanding of the nature of fluid-rock interaction on geological and 
human timescales. 

The following chapter is a case study of a particular oil field in the North Sea, Miller, which can 

provide an insight into processes occurring on a human timescale. Using an extensive dataset of 

produced water chemical analyses, integrated with a detailed mineralogical study of the 

reservoir sandstones, I illustrate the types of fluid-rock and fluid-fluid interaction that occur in a 
typical North Sea oil field in response to the production and injection over a period of 14 years. 

4.2 Background to the Miller field 

The Miller Oil Field covers an area of 45km2 in the South Viking Graben in the North Sea, and 
is situated in blocks 16/7b and 16/8b (Figure 4.1). First oil was produced in 1992, with 

estimated recoverable reserves at the time of 240MMbbl (Warren and Smalley, 1994; 

Marchand, 2001). The temperature is relatively high (120°C) and a wide range of elements 

occur in the formation water at significant concentrations (Warren and Smalley, 1994). 
Hydrocarbon production is supported by water/gas injection wells. Waterflooding was initiated 

shortly after first oil and has continued to date. This production strategy has created some 

problems in relation to the formation of barite scale. The oilfield is one of several whose main 
producing reservoir is contained within the Upper Jurassic Brae Formation sandstones at the 

margin of the Viking Graben; the others include South Brae, Central Brae, North Brae, East 
Brae and Kingfisher. 

In the past, several different aspects of the diagenesis of the Miller field have been studied (e. g. 
Gluyas et al., 2000; Marchand, 2001). The origin of quartz cements has been of particular 

scientific interest (e. g. Gluyas et al., 2000). The problem of barite scaling has also been subject 
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to a great deal of scrutiny. In this study a number of different data analysis and mineralogical 

investigation methods are brought together in order to understand fully the Miller field in its 

complexity. 
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Figure 4.1. Location of the Miller field in the North Sea 

4.2.1 Stratigraphy 

The Miller reservoir rocks are part of the Upper Jurassic Brae Formation at the western margin 

of the South Viking Graben at a depth of c. 4km (Prosser, et al., 1995; Marchand, 2001). The 

Viking Graben is a North-South trending half-graben that is fault bounded to the west against 

the Devonian Fladen Ground Spur basement. Of the more than 31an of Late Jurassic and 

Cretaceous sediments that are estimated to be at the graben margin, approximately half form the 

Brae Formation. 

There are three chronostratigraphic members of the Brae Formation, that also broadly relate to 

three lithostratigraphic reservoir units. The three units range in age from Oxfordian to Volgian 

(157-143Ma), with Unit 3 comprising the lowermost unit of the Formation. On a regional scale 

the Formation is both overlain and underlain by and interdigitates with the Kimmeridge Clay 

Formation which is both source and seal for the oil accumulation (Garland, 1993; Prosser et al., 
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1995; Gluyas et al., 2000). In the south, north and northwest, stratigraphic pinchout of the 

submarine fan sequence into the Kimmeridge Clay provides the trapping mechanism (Prosser et 

al., 1995). 

In Miller the Brae Formation Unit 2 sandstones form the reservoir rocks (Garland, 1993). The 

sands in this area are medium grained, finer than in the Brae Fields to the west. There are five 

major lithological facies in the Brae area, three of which are represented in the Miller Field. In 

general the reservoir is dominated by clean, fine- to medium-grained, well sorted quartzose 

sandstones (Garland, 1993). The first of the three facies is a medium-thick bedded sandstone, 

with beds 10 to>30cm thick of clean, fine- to very coarse-grained sandstone, in places 

containing granules and small pebbles. The second lithofacies consists of thin alternating beds 

of sandstone and mudstone which are up to 20cm and 0.1-5cm thick respectively. Sands are 
fine- to medium-grained and are tabular or lenticular and bed boundaries are generally sharp. 
The final facies comprises isolated dark grey-black, micaceous, carbonaceous mudstone layers 

of between 20 and 50cm in thickness. The three lithofacies described correspond to Facies 3 to 

5 of the five major facies in the Brae area (Lithofacies A-C as described by Prosser et al., 1995). 

The best quality reservoir sandstones in the Miller Field are the massive sandstones, which have 

a paucity of clearly defined sedimentary structures. Poorer quality interbedded sands and muds 
typically separate out the more massive units and are potential barriers to vertical fluid flow 

(Prosser et al., 1995). 

4.2.2 Depositional Setting 

Miller represents the distal part of an extensive system of tectonically controlled sub-marine 
fans. The Fladen Ground Spur in the west was the source of the sediment and at the time was a 
shallow marine to sub-aerial shelf area (Garland, 1993). The main reservoir interval in Miller, 

situated further away from the foot of the fault scarp, accumulated as a lobe-shaped fan and 

received finer grained sediments than the proximal areas of the fan (e. g. East, North, South and 
Central Brae Fields). The thickly bedded sands of the facies described above correspond to 
high density turbidite currents; the interbedded sands and muds represent hemipelagic settling 
between turbidity flows in relatively quiescent areas of the mid- to outer-fan or inter-channel 

areas (Prosser et al., 1995; Gluyas et al., 2000); and the laminated muds also correspond to 
hemipelagic settling with rare sand laminae and graded silts deposited from very dilute turbidity 
flows. 

4.2.3 Porosity and permeability 

In the North Sea hydrocarbon provinces, porosity in most sandstone reservoirs appears to follow 

a linear porosity versus depth trend. Overall, a regional North Sea porosity loss gradient of 
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about 8% provides a good estimate. Miller exhibits exceptionally high porosities of up to 22% 

which deviate significantly from the expected values of between 12 and 13% porosity. The oil 
leg in the Miller Field has a higher average porosity value (19±1.4%) than the water leg 

(14±0.5%) which some authors suggest is indicative of the oil filling inhibiting quartz 

cementation (Emery et al., 1993; Marchand et al., 2000). 

Pressure surveys have identified permeability baffles, expressed as "steps" in the pressure 

gradient (Garland, 1993). The highest permeabilities occur within clean, medium grained 

massive sandstones and the lowest within the shaly, heterolithic lithofacies (A or 2). It is 

important to note that most of the Miller lithofacies contain spatial variability at the cm-scale 
(i. e. caused by laminations) that will cause permeability variation that cannot be accounted for 

in a reservoir simulation model: even the massive sandstones are not homogeneous with respect 

to permeability. It may also be that lateral correlation of permeability may be poor and hence 

high permeability conduits are unlikely to be laterally continuous over large distances (Prosser 

et al., 1995). 

4.2.4 Mineralogy and Reservoir Sandstone Composition 
The Brae reservoir within Miller is classified in the literature as a quartz arenite to subarkose 

and sublith-arenite (Marchand, 2001; Garland, 1993). Quartz and polycrystalline quartz 
(including chert) typically form about 90% of the detrital framework in the Unit 2 reservoir. 
Detrital clay is present in the rock, though its abundance varies significantly according to the 

lithofacies. Where it is present, detrital clay forms around 3% of the rock volume, however, it 

can be completely absent in some of the thickly bedded sands. Rock fragments are also present 
in significant quantities, (up to 6%) and are most commonly comprised of siltstone, and 

mudstone clasts. Potassium feldspar forms 1-2 % of the rock (Gluyas et al., 2000; Marchand, 

2001). 

Analysis of several samples from varying depths demonstrate that the Brae Formation is 

composed predominantly of quartz, both detrital and authigenic. Figure 4.2 presents two views 
of samples from different depths in the same well and it is immediately evident that the deeper 

sample (B, P sand) has less porosity than the shallower sample (A, Unit 1). 

In accordance with the literature, an SEM study of the rocks revealed that the mineralogy of the 
Brae Formation in Miller is very simple and the main other mineral phases present are K- 

feldspar, calcite, kaolinite, illite and pyrite. There was no evidence of any plagioclase feldspar 

at all. Porosity varies between - 11 % in areas with a high proportion of overgrowths to > 17 % 
in areas with very few quartz overgrowths. In a number of samples large secondary pore spaces 
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are present, formed from the dissolution of individual mineral grains (Figure 4.3. A). Pyrite 

occurs as authigenic framboids (Figure 4.3. A) as well as in relatively large masses in pore 

spaces and replacing other minerals (Figure 4.3. G). 
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K-feldspar makes up between 1 and 5% of the rock and is formed from both detrital and 

authigenic grains (Figure 4.3. A and B). Early circulation of meteoric water in sandstones will 

often result in feldspar dissolution during shallow burial (20-55°C), though complete dissolution 

is not thought to occur below 130°C (Glassman, 1992). Hence, much of the K-feldspar is 

partially (or fully) dissolved but some grains remain completely intact (Figures 4.3. B and 

4.5. D). A portion of the large secondary pore spaces may have been formed through dissolution 

of K-feldspar or calcite. Kaolinite occurs as detrital grains and authigenic pore-filling material, 

and in both cases has a fibrous morphology and is consistently partially illitised (Figures 4.3. C, 

D and 4.5. E and F). Kaolinite is often, but not always, associated with K-feldspar, because at 

moderate temperatures (<90-100°C) K-feldspar is frequently transformed to kaolinite thereby 

producing silica (Worden and Morad, 2000). Authigenic kaolinite is also occasionally found 

overgrown by authigenic quartz on the surface of detrital grains (Figure 4.3. E), indicating the 

two phases were precipitating at the same time. 

Illite is either precipitated in an open system through leaching of K-feldspar, or within a closed 

system through reaction between K-feldspar and kaolinite as shown in chapter 2 (Chuhan el al., 

2001) and the rate of precipitation increases with depth on approaching temperatures of 120- 

140°C (Bjorlykke, 1996). As the rate of illite precipitation increases, dissolution of kaolinite 

and smectite and precipitation of illite will remove K from solution and the K concentration 

may fall below that which represents equilibrium with K-feldspar. Sometimes the formation of 

quartz and kaolinite/illite is accompanied by the co-precipitation of carbonate cements (Worden 

and Morad, 2000). 
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Figure 4.2. SEM image of general mineralogy in well 16/813-3 at: (A) 4011 in and (U) 4133 m. 
Note smaller pore spaces in deeper sample. P= pore space, Q= quartz 
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Figure 4.3. Backscaucr clckmun ýl: M (USE) images uI thin sections tioni Miller. A) (A03) 
Quartz (Q) dominates the mineralogy, note large pore spaces (P) resulting from dissolution of 
K-feldspar (Kfs) or calcite, B) (16/8B-3) preferential dissolution of some K-feldspar grains 
(Kfs) over others, note association of dissolving K-feldspar and kaolinite (K), C) (A02) and D) 
(16/8B-3) (detrital and authigenic illitised kaolinite (K), E) (A03) kaolinite trapped by quartz 
overgrowth (OG) indicating coincidental precipitation, F) (A03), G) (A02) and H) (16/8B-3) 
varying growth morphologies of calcite (C) with pyrite (Py) in places and sometimes partially 
dissolved. 
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Figure 4.4. Quartz overgrowths in well 16/813-3 
A) Backscattered electron image of the deeper sample (4133 m) with large amounts of quartz 
overgrowths and, B) cathodoluminescence (CL) image of the same area highlighting the darker 
quartz of the overgrowths (OG) 
C) BSE image of the shallower sample (4011 m) with fewer overgrowths and, B) a CL image of 
the same area 
E) Deeper sample with significant overgrowths and little evidence of microcrystalline quartz 
F) Shallower sample exhibiting the characteristic "furry" texture of microcrystalline quartz 
coated quartz grains (M). 
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A) (16/8B-3) Isolated euhedral quartz overgrowth (OG) surrounded by microcrystalline quartz 
(M) 
B) (16/8B-3) Initially well formed quartz crystal whose continued growth is inhibited by the 
presence of microcrystalline quartz. 
C) (16/8B-3) More abundant quartz overgrowth in the deeper sample 
D) (A03) Partially dissolved K-feldspar grain (Kfs), note microcrystalline quartz on mineral 
surfaces 
E) (16/8B-3) Platey kaolinite (K) in a pore space 
F) (16/8B-3) Fibrous illite (I), altered from kaolinite 
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Authigenic calcite forms about 0.5 -2% of the rock and was the first to form at relatively 

shallow burial depths. Calcite cement exhibits a number of different growth morphologies, 
including concretionary masses (Gluyas, 2000; Marchand, 2001) (4.3. F and H) and generally 

acts as a pore filling cement. It overgrows both original detrital quartz grains and those with 

quartz overgrowths indicating two stages of calcite precipitation. Calcite in many places 

exhibits evidence of dissolution (Figure 4.3. G) and its removal may have contributed to the 

large secondary pore spaces. 

According to Marchand (2001) quartz overgrowths have been observed in early calcite 

cemented concretions suggesting early silica precipitation at shallow depths <1.5 km. However, 

fluid inclusion data from North Sea reservoirs indicate that most quartz cement forms at 

temperatures exceeding 90-100°C (Bjerlykke and Egeberg, 1993; Oelkers et al., 1996), and the 

main phase of quartz cementation is interpreted to have occurred at relatively deep burial (>2.5 

km). Sandstones buried to less than 2.7 km typically have negligible quartz cement (Fisher et 

al., 2000), indicating that the extent of silica cementation increases with depth and temperature 

(Oelkers et al., 1996). Angular quartz overgrowths are present in all samples studied (e. g. 
Figures 4.5. A - C), however they are more abundant in some places than in others. The 

proportion of authigenic quartz overgrowths varies between samples according to which horizon 

in the reservoir they represent. Quartz cement typically occurs as syntaxial overgrowths 

according to one study (Marchand, 2001) abundances vary from 2 to 16 % of the rock volume. 
Figure 4.4 shows BSE and CL images of samples from different depths in well 16/8b-3, while 
Figure 4.5 shows secondary electron images of the broken sample surfaces. The sample with 

abundant quartz overgrowths (Figures 4.4. A, B and 4.5. C) contains only very little 

microcrystalline quartz (Figure 4.4. E), whereas the sample with few quartz overgrowths 
(Figures 4.4. C, D and 4.5. A and B) contains abundant microcrystalline quartz (Figure 4.4. F). 

Several authors in the past have suggested that the migration of hydrocarbons into a porous rock 
impedes the formation of quartz overgrowths (e. g. Worden et al., 1998; Marchand et al., 2000, 
2001,2002). Marchand (2000) suggested that areas with high porosity preservation in Miller 

are due to impedance of quartz cementation by early emplacement of hydrocarbons. This 

theory has been questioned by several Norwegian authors, including Aase and Walderhaug 
(2005). They suggest instead that variable quartz cementation and porosity distribution in the 

reservoir is mainly controlled by the amount of coatings, including microcrystalline quartz, on 
the quartz grains. Evidence from this brief study presented here could support this hypothesis, 

although the evidence is not conclusive and the microcrystalline quartz may be a result of the 

presence of oil i. e. an effect rather than a cause. Microcrystalline quartz is thought to be derived 
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from sponge spicules. The random orientations of the small crystallites interfere with the 

formation of normal quartz overgrowths (Bloch et al., 2002). 

Table 4.1. Suggested paragenetic sequence of diagenetic events in the Brae Formation 
sandstones using data obtained from direct observation of rock samples and from the literature. 

Km 01234 

Compaction 

K-feldspar dissolution 

Authigenic kaolinite - 

Microcrystalline Quartz -- --- 

Quartz cementation ---- 

Calcite precipitation ------------- 

Calcite dissolution -- 

Illitisation 

Pyrite 
-------------------------- 

4.3 Introduction to dataset and methods 

The produced water from each well in Miller was sampled and analysed on an almost daily 

basis for approximately 10 years, for major cations, anions and transition metals, and this data 

was made available for this project by BP. The main aim of this intensive sampling strategy 

was to track the progress of injected seawater through the reservoir and mitigate the effects of 
barite scaling due to water mixing. The results of a separate study into the physical nature of 

water mixing in the Miller reservoir are included in Chapter 7; however the method used for 

identifying seawater in the produced water is also applicable to identifying water-rock and water 

mixing reactions. 

The reservoir is at a relatively high temperature (--120°C) with formation water of high salinity 

(an NaCI-CaC12 brine), with low sulphate and high barium. In contrast, injected seawater is 

initially at surface temperatures with lower salinity, high sulphate and low barium. Because Cl 

is a conservative ion, unlikely to be involved in any water-rock interactions in this reservoir, 

changes in the concentration of the Cl ion in the produced water can be used to estimate the 
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proportion of injected seawater to original formation water in any produced water mixture. 
Lower chloride in the produced water is assumed to indicate a higher seawater component, i. e. 

the percentage seawater in each produced water sample is: 

%Seawater = ([Cl, ',, -Clm. �J/[ ClFw -Clsw]) x 100 (1) 

where the subscripts FW, SW and meas denote the chloride concentrations in the original 

formation water (a value chosen as 41500 mg/l from an analysis in Warren and Smalley, 1994, 

assuming constant formation water composition), seawater (19350 mg/1) and produced water 

respectively. A typical formation water composition is shown in Table 4.2. 

Table 4.2 Typical formation water composition in the Miller reservoir. 

ION (mg/l) Miller 
SODIUM 28100 

POTASSIUM 1630 
MAGNESIUM 113 
CALCIUM 615 

BAM 770 
STRONTIUM 65 

IRON 3 
CHLORIDE 46050 
SULPHATE 4 
BICARBONATE 1655 
CARBON DIOXIDE 20 (mol%) 

PH 7.5 

If produced waters were simply binary mixtures of formation water and injected water, all ions, 

when plotted against Cl, should show linear mixing relations. To monitor any potential 
reactions, the deviation between the analysed concentration of each component in the produced 
water and the value predicted from linear mixing of seawater and formation water to produce 
the observed chloride was calculated (equation 2) and graphs were plotted to illustrate the 

results of these calculations. 

N(p) (mg/1) = N(Fw)(mg/1) - ((N(Fw) (mg/1) - N(sw)(mg/l))/100 *% Seawater) 

Where N(p) is the predicted concentration of species N, and N(Fw) and N(sw) are the 

concentrations of species N in pure formation water and pure seawater respectively. 

79 



Chapter 4 

4.4 Results 

Figures 4.6-4.12 show field-representative results from well A14 (see Appendix IV for well 

locations). Many ions do not show linear mixing relations with varying Cl; this indicates that 

dissolution or precipitation, occurred in the reservoir (water-rock interaction) and/or in the well 

bore (e. g. precipitation of barite scale through water-water interaction). Figures 4.6-4.12 plot 

measured and predicted values for each of the major water components and what follows is a 

description of their behaviour, particularly those that show some evidence for reaction in the 

reservoir. 

Potassium 

The water mixing trend for Potassium (K) is complicated (Figure 4.6); some data follows a 

linear mixing trend, but the plots also exhibit large amounts of scatter in the data. 

Concentrations of K recorded are so high and the scatter is so random in time that it is most 

likely that many of the K-analyses are spurious due to the presence of additives containing 

potassium in the injected water (Collins, pers. comm. 2005). 
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Figure 4.6 Variation in K concentration with proportion of seawater in the produced water, 
relative to a linear mixing line between seawater and formation water, from representative well 
A14. Note, despite elevated levels and scatter in the data, some data points follow the linear 
mixing line 
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Sodium 

Sodium (Na) appears to follow a simple mixing trend, increasing in concentration only as 

chloride does (Figure 4.7). However, sodium is not known as a conservative ion, and the simple 

mixing trend exhibited by Na ions may merely be a reflection of the fact that its concentration is 

particularly high in these fluids. That is, the higher the concentration of ions present, the more 

extensive any reaction will need to be in order for its effects to become detectable above the 

effects of fluid mixing. 
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Figure 4.7 Variation in Na concentration with proportion of seawater in the produced water, 
relative to a linear mixing line between seawater and formation water, from representative well 
A14. Note the appearance of conservative behaviour despite slight elevation in Na levels 

Calcium and Magnesium 

Calcium (Ca) tends to show a general increase with increasing seawater, though the increase is 

greater than would be expected for simple mixing and appears often to be split into two 

components (Figure 4.8). This suggests that while there is an element of fluid mixing 
occurring, there is also a source of calcium in the system. The increase in Ca above the mixing 

line is particularly apparent when % seawater is >20%, suggesting it may arise through 

seawater-rock interactions. 

Magnesium (Mg), in contrast, shows at a trend (possibly two) defining arcs which correspond to 

the mixing line close to the 2 end members, but show strong depletion for intermediate 

compositions (Figure 4.9). 
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Figure 4.8 Variation in Ca concentration with proportion of seawater in the produced water, 
relative to a linear mixing line between seawater and formation water, from representative well 
A 14. Note the two separate trends and the relatively high levels of Ca present 
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Figure 4.9 Variation in Mg concentration with proportion of seawater in the produced water, 
relative to a linear mixing line between seawater and formation water, from representative well 
A14. Note the two separate trends and the significant depletion in Mg relative to the linear 
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Barium 

There is a large overall decrease in the amount of barium (Ba) in produced water with 

increasing seawater, but the position of the measured data below the mixing line (Figure 4.10) 

indicates that there has been significant removal of Ba from the mixed fluid (up to about 

450mg/I from predicted levels). 
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Figure 4.10 Variation in Ba concentration with proportion of seawater in the produced water, 
relative to a linear mixing line between seawater and formation water, from representative well 
A14. Note the significant depletion in Ba relative to the linear mixing line 

4.5 Interpretation of fluid processes between the injection and production well heads 

Where measured ion concentrations deviate significantly from the calculated linear mixing 
lines, the discrepancies are most likely due to the precipitation or dissolution of minerals. 

Potassium and sodium 

Potassium is a major component of the drilling mud used in the completion of oil field wells. 

The scatter in the data may therefore be ascribed to contamination. However, a substantial 

proportion of the measured values lie on the linear mixing line, indicating either that K does not 

participate in water-rock reactions, or that, as with Na, it is too concentrated. Although 

reactions involving Na may be difficult to observe, it may also be that the conservative trend 

suggests there is neither a source nor a sink for Na in this system. This is supported by the fact 

that there is very little plagioclase in the system so processes such as the albitisation of 

plagioclase cannot be important here. 
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Calcium and magnesium 

Calcite is present in the reservoir rocks as authigenic cement and concretions and hence elevated 

Ca levels in the formation water may be derived from the dissolution of calcite. Seawater is 

slightly undersaturated with respect to calcite and, although formation water will be in 

equilibrium with calcite (and potentially other Ca-bearing minerals) present, a mixture of 

injected seawater and formation water would dissolve calcite, increasing the concentration of Ca 

in solution. Dissolving calcite would also increase the pH of the fluid mixture. As the pH 

increases, the solubility of calcite decreases so the reaction should be self-limiting. 

Temperature is also a factor that can be taken into account. Calcite shows retrograde solubility, 

suggesting that most dissolution is likely to occur in shallower parts of the reservoir, where 

temperatures are lower. Ultimately though, the system is dynamic and dissolution of calcite is 

limited by the degree to which it comes into contact with undersaturated fluid for the requisite 

period of time. 

Conversely, Mg is depleted relative to the linear mixing curve (Figure 4.9), a feature common to 

the North Sea (Bazin et al., 1997). It is probable that the observed increase in Ca and decrease 

in Mg concentrations are at least partially the result of a coupled reaction. Rapid dolomitisation 

of the authigenic calcite would account for the pattern observed, however, when relative molar 

losses and gains in Mg and Ca respectively are compared (Figure 4.11) it becomes evident that 

removal of Mg is far greater that the gain of Ca. This implies that though dolomitisation is 

likely to be occurring, there is an additional sink for Mg in the system. 
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Mg is known to be removed from solution in smectites or chlorite or may also be removed 

through ion exchange reactions. However, the presence of chlorite in these rocks has not been 

recognised and the only corresponding increase in ion concentration necessary to account for 

ion exchange processes (Ca) is more likely due to mineral dissolution or alteration reactions. 

It is not possible to unequivocally identify which process is most important in controlling Mg 

concentrations and Ca/Mg ratios. However, mass balance and kinetics suggest that 

dolomitisation cannot be a dominant process and a combination of clay formation and calcite 

dissolution is likely. 

Barium 

The loss of Ba is most likely accounted for by its reaction with sulphate to form barite, known 

to be an important scaling process in this field because sulphate and barium decrease together 

relative to the linear mixing line. 

Nnw (mg/1) = N(p) (mg/l) - N(meas) (mg/1) (3) 

Where N(J) is the amount of species N (in this case, Ba) lost from the system, N(p) is the 

predicted concentration of N (see equation 2) and N(,, is the measured concentration of N. 

The calculation can be performed for any dissolved species and if molar concentrations are used 

as an alternative to mg/l then the results can be used to establish the stoichiometric relations as 
in Figures 4.11 and 4.14B. 
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that has been lost from solution relative to linear mixing between seawater and formation water. 
Well A14. 

Sulphate 

Due to the large difference in sulphate concentration between seawater and formation water, this 

ion has potential to be another useful indicator of seawater incursion. However, sulphate is not 

a conservative component and the predicted sulphate is consistently very different (usually 

much higher) from the amount of sulphate actually measured in the system, indicating that 

sulphate has been removed from the mixed fluid (Figure 4.12). One possibility for sulphate 

removal is barite precipitation. 

When the difference between the predicted and measured sulphate is plotted against time 

(Figure 4.14B), the biggest differences correspond to changes either in the production rate of 

water, or the proportion of seawater in the produced water. The deficit in the amount of 

sulphate in the system relative to what would be expected after barite precipitation, is calculated 

by: 

S04(D) (mg/1) =0- ((SOarp) (mg/1) - (0.70073Ba(, )(mg/1)) - SO4(meas)(mg/1)) (4) 

Where SO4(D) is the sulphate deficit in mg/l, S04(p) is the sulphate concentration predicted from 

seawater percentage, Ba(i) is the amount of Ba lost from the system as barite and SO4(�x, S) is the 

measured sulphate concentration. Most commonly, there is an increase in the sulphate deficit 

(i. e. more sulphate is removed from the system) when the amount of seawater in the system 
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increases. This pattern of sulphate deficit appears to be separate from that observed in the lower 

salinity waters. 
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Although the main sink for sulphate is its reaction with Ba to form barite, the SO4 deficit is not 

always matched by a corresponding Ba deficit, and thus not all of the SO4 deficit can be 

explained by barite precipitation. Table 4.3 provides selected results of calculations 
determining the size of the remaining sulphate deficit once barite precipitation has been 

accounted for. These data, along with Figures 4.16A and B and illustrate that the removal of 

sulphate by precipitation of barite makes little difference to the difference between real and 

predicted sulphate. 

Table 4.3 . Some examples of predicted levels of both barium and sulphate in the produced 
water at varying seawater concentrations and their deviation from linear mixing. Note that for 
higher seawater concentrations there is a greater difference from linear mixing when sulphate has not been corrected for barite precipitation, but that there is a consistent sulphate deficit. 

Seawater Measured Predicted Difference from linear mixing 
concentration Ba SO4 Ba SO4 S04 corrected Ba SO4 SO4 
% for barite corrected 

for barite 
mg/L 

2 705.0 25 648.11 60.43 60.43 56.9 -35.43 -35.43 21 560 15 581 520.2 581.1 39.7 -566.8 -566.8 53 11.6 795 310.7 1434 1225.1 -299 -639.7 -430.1 76 14 1726 154 2070 1971 -140 -344.1 -245.5 

Sulphate has also been shown to be removed in sedimentary basins through reduction to 

sulphide (Bottrell et al., 2000; Machel, 2001; Worden et al., 2003; Cross et al., 2004). Possible 

mechanisms include bacterially mediated reactions (BSR) at lower temperatures (<60°C) and 
thermochemical sulphate reduction (TSR) at higher temperatures (120-140°C). If sulphate 
reduction were occurring, it might be expected that certain chalcophile elements, such as iron 

and zinc, would be removed from solution upon formation of sulphides following interaction 

with the products of the reduction reaction. There is no evidence for this type of behaviour, in 
fact, iron concentrations are observed to increase with seawater percentage and zinc 
concentrations appear to be unaffected. 

Thus, some sulphate is probably removed as barite while the remaining deficit may be 

attributable to sulphate reduction. While there is lack of evidence in the low concentration 
transition metals, there is evidence of HZS gas in the field. 

Silicon 

Figure 4.15 shows that the silicon concentration remains almost constant in the produced water 
irrespective of the proportion of seawater present, and is always close to quartz saturation at 
120°C (-60 mg/l Si02(aq)). Based on the produced water from one well (proportionally <1% of 
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the field), this requires dissolution of -80 tonnes of silica from the formation over the 

production cycle, equivalent to removal of -30 m3 of quartz. 

Silica solubility is extremely temperature dependent: the hotter the temperature, the more silica 
is expected in solution. So, increasing depth tends to cause an increase in silica solubility and 

this facilitates quartz cementation. The addition of low-silicon seawater to such a system would 
therefore be expected to dilute the silicon concentration, whereas in fact the concentration of 
this species varies very little throughout the life of a well. 
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Figure 4.15 Variation in Si concentration with proportion of seawater in the produced water, 
relative to a linear mixing line between seawater and formation water, from representative well 
A14. Note the consistently high Si levels and the slight increase in Si with seawater percentage 

The mechanisms controlling silica saturation in the reservoir are not fully understood, but it is 

clear that silica dissolution must occur rapidly at relatively low temperatures (120°C), possibly 
on the order of days to weeks in order to maintain high concentrations in produced fluids with a 
high seawater percentage. In detail, there is actually a slight increase in silica with the 
increasing proportion of seawater in the later produced waters. A possible cause of this is the 
lower salinity of these waters, because silica solubility is subject to a salting-out effect (Von 

Damm et al,. 1991; Schmulovich et al, 2006), that is silica is more soluble in less saline waters 

with a lower water activity. This can be tested as follows: if quartz dissolution can be written 

as: 

SiO2 + 4H20 = SiO2.4H20 (s) 
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Hence calculations based on a solvation number of 4 (reaction 5, Schmulovich et al, 2006) 

indicate that the lowered water activity (0.966 in formation water as opposed to 0.982 in 

seawater) can account for only 4-5 mg/l of the increase in silicon observed in the more dilute 

waters. Alternatively, metastable enhancement of the degree of silica saturation may provide 

alternative explanation of elevated silicon concentrations. There is evidence for the presence of 

reactive metastable sponge spicules in trace amounts in Miller (Bjerlykke and Egeberg, 1993) 

and cases of rapid silica dissolution have elsewhere been ascribed to their presence in the rocks 

(Ichenhower and Dove, 2000; Aase and Walderhaug, 2005; Bjerlykke and Egeberg, 1993). 

However, their dissolution cannot account for the fact that Si concentrations in the produced 

water actually exceed that in the original formation water which was itself buffered by 

coexistence with the same spicules. 

An alternative and preferred mechanism for enhanced silica in solution is the breakdown of 

silicates in response to the ingress of cold seawater which is heated as it passes through the 

formation. For example, K-feldspar dissolution and illitization are known to have occurred in 

Miller as a diagenetic process (Marchand, 2001; Gluyas, 2000). K-feldspar dissolution occurs 

more rapidly than quartz dissolution at temperatures as low as 65°C, partly as a result of the 

high surface area caused by abundant microtextures on feldspar overgrowths (Aagaard et al,. 
1989; Worden and Rushton, 1992) and porous alteration of detrital grains. Feldspar alteration to 
illite can be written to a first approximation as: 

3KAISi3O8 + 2! I = KAI3S13O10(OH)2 + SiO2() + 21C (6) 

Provided this reaction is overstepped by the infiltration of low pH fluid, it can drive the 

concentration of silica in solution above the equilibrium level for quartz saturation and account 
for the increase in silica level during production. 

4.5.1 Variations in formation water 

All previous calculations have been based on the assumption that the composition of the 
formation water is constant throughout the field. There is evidence however, that this is not 

always strictly the case. 

When the concentrations of species in solution are plotted against percentage seawater (Figure 

4.16) some trends are evident that appear not to be related to fluid mixing. At low seawater 

percentages, magnesium and sulphate in particular show characteristic downward trends that 

appear to behave independently of the influence of mixing. When low seawater % points with 

anomalously low Mg concentrations are picked out, they correspond to those points also 
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exhibiting particularly low sulphate. This suggests that there is a separate, high chloride 

(therefore suggesting low % seawater), low Mg and low SO4 water that is being produced in 

places as well as the analysed high chloride formation water. 

It may also be that produced water with a lower Cl concentration doesn't represent invariably 

mixed water, but may be a different formation water with a lower salinity. Though most ions do 

show behaviour that is most easily interpreted as mixing between seawater and formation water 

with some fluid-rock interaction, some show a slightly different pattern that could represent 

mixing between two different formation waters. it is likely that the apparent increase in 

chloride through time in well A 16 (Figure 6.21, Chapter 6) may be due to formation water being 

produced from different parts of the reservoir unit through time. 
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Figure 4.16. A, the simplified variation in fluid components with increasing seawater for three 
wells in Miller. 

Strontium isotope data indicates that there is vertical variation in the nature of the formation 

water in particular places in the field (Smalley, 2005; personal communication). The waters 
have "'Sr/x`'Sr values ranging from 0.710074 to 0.723693, increasing with depth. Unfortunately 

the strontium data does not correspond directly with the water composition data for the ten 

producing wells. It is therefore not possible to conclude that slight variation in aqueous species 

concentration in the produced water is due to separate formation waters, but it is likely that the 

91 



Chapter 4 

different layers in the reservoir rocks that have distinctive 87Sr/86Sr values also have distinctive 

formation water compositions. 

4.6 Geochemical modelling of water mixing in Miller 

Section 4.5 outlined in detail evidence provided by real data for the most likely reactions 

occurring in the Brae Formation reservoir rocks of the Miller Field, North Sea. These reactions: 

barite precipitation, sulphate reduction, dolomitisation, clay dissolution, clay formation and 

silicate dissolution, are all processes that could potentially occur in any similar system with a 

typical sandstone reservoir, saline formation water and injection of seawater for pressure 

support and EOR. Geochemical modelling is an additional tool to improve understanding of 

processes affecting water compositions in such a system. Real data is used to produce models 

of theoretical systems and the accuracy and relevance of the results is tested through comparison 

with observed trends in the real data. The aims of the modelling study are to: 

" confirm that the processes thought to be occurring in Miller are thermodynamically 

reasonable 

" identify any discrepancies between observed and predicted results and establish the reasons 
for these discrepancies 

note any smaller effects or processes affecting water components for which there is limited 

data 

" model the effect of the injection process on seawater composition specifically 

" establish the possibility of producing a predictive model that can be applied to other fields 

for which there is enough data available. 

4.6.1 Methods 

The modelling package used was Geochemist's Workbench (GWB), created by Craig Bethke 

(1994), which can be used to show how a system should evolve geochemically in terms of 

mineral, water and gas chemistry (Bethke, 1994; Barclay and Worden, 2000). An initial basis 

must be specified, including fluid components, the amounts of any minerals in the equilibrium 

system, the activity of a species such as H+ (pH), etc. Other parameters may also be set, or may 

be allowed to vary to a specified degree, for example temperature or the fugacity of any gases 

present. The system is then allowed to proceed to equilibrium and/or along a precise reaction 

path. Although differential reaction rates can be input, the modelling was done assuming that 

the system came to equilibrium at each step in the model. 

All plots in the following sections were created using Gtplot as part of the Geochemist's 

Workbench. 
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4.6.1.1. Water-mixing: no water-rock interaction 
In any situation, mixing two waters of differing composition will cause a number of 

precipitation and/or dissolution reactions to occur in order to restore equilibrium in the system. 
The simplest type of model that can be applied to the Miller reservoir system is to assume 

simple mixing of two different waters with no influence exerted by the minerals present in the 

system. An analogy for this type of model would be to mix the two waters in a beaker in a lab. 

In order to create this model, the composition of typical seawater (Table 4.4) was specified in 

the basis at 25°C and was added gradually to water with a composition typical of the Miller field 

(Table 4.5). The model was set to continue until the formation water was completely replaced 

by seawater using the "flash option"; that is the original fluid (formation water) was removed 

from the equilibrium system and the reactant fluid (seawater) was added, assuming 100% 

mixing. The initial formation water analysis lacked measurements for silica and aluminium 

therefore values of Si02 (aq) = 27 and A13+ =1 mg/kg were taken from subsequent water analyses 

taken prior to seawater incursion (data provided by BP). From this model, mixing curves were 

produced that demonstrate how each fluid component is expected to behave throughout the 

process of seawater addition in this case (assuming no water-rock interaction). The results can 
be seen in Figure 4.17. 

4.6.1.2. Water-mixing including water-rock interaction 

The next stage in the modelling process is to assume that any mixture of waters in a reservoir 

will come into contact, and react, with the surfaces of host minerals. In the basis, as part of a 

typical seawater composition, quartz(s) and calcite(s) were swapped with Si02(sq) and Ca 

respectively, to simulate equilibration of seawater with these ubiquitous minerals. This 

seawater composition, with redox fixed by equilibrium with hematite, was then heated from 25 

to 120°C. That is, from ambient temperature to the temperature reported for the pore water at 
depth in the Miller field in the North Sea Formation Waters Atlas (Warren and Smalley, 1994). 

The second column in Table 4.4 shows the concentration of the principal components after 

equilibration and Figure 4.18 shows the minerals that precipitated as seawater was heated. 

Following equilibration, the resulting fluid was then taken (using the "pickup" option) and 
added to a fluid of a composition presumed to be similar to that of the formation water at 120°C. 
The waters were mixed in varying proportions using the "flash" option, introduced above. 

Assumptions. The purpose of a model is not to be an exact replica of a natural system, but 

rather a reflection and interpretation of how that system might behave under specific defined 
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conditions. This means that when a model is constructed certain assumptions must be made and 

compromises accepted. This study was no exception and a number of unknown parameters 
have been defined with reference to known facts about the system. The mineralogy of the 

Miller field includes detrital quartz and minor k-feldspar with major authigenic quartz and 

calcite and some authigenic illite, ferroan dolomite, kaolinite and pyrite. Thus, the formation 

water was set to be saturated with quartz, calcite, k-feldspar and illite. It was also assumed that 

the seawater had time to equilibrate as it was gradually heated with depth and that the 

temperature and composition of the formation water were measured accurately. 

Table 4.4. The composition of seawater used in the geochemical modelling compared with the 

endmember seawater calculated from real data. 

Parameter Seawater Model heated seawater 
(Section 4.6.2.2) 

Miller seawater 

end-member 

(section 4.6.2.3) 

(mg/kg) 

Na+ 10760 10410 13530 

g+ 399 385.8 524 

Mg 1290 658.7 900 

Ca' 411 827.2 (after swapping with 50 free 

gram Calcite) 620 

Fe + 0.0034 0.003308 9 

Si02 (aq) 1 62.07 (after swapping with 100 free 

gram Quartz) 37.5 

C1" 19350 18770 21740 

Br 30 29.01 

S042- 2700 1161 2443 

HCO3" 142 1141 

pH 7.5 5.67 

Temperature 25°C 120°C 120°C 

Suppression of precipitating phases. Although small amounts of ferroan dolomite were 

reported to be present in the rocks of Miller and there is evidence that dolomitisation of calcite 
is occurring in the reservoir, the precipitation of any kind of dolomite was suppressed to prevent 

it forming in unrealistic amounts. The precipitation of talc (M$3Si4O1o(OH)2)9 witherite 
(BaCO3), magnesite (Mg(C03)) and strontianite (SrCO3) were also suppressed. 
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Problems and Limitations. Though both the formation water and the seawater were set to be 

saturated with various minerals, the two mineral assemblages were not precisely the same 
because it was assumed that it was seawater was more likely to have been in contact only with 

quartz and calcite for longer than with the other minerals. The consequence of this is that the 

model would behave as though the fluid was moving from one rock type into another of slightly 
differing mineralogy. In order to assess the problems this might cause, another model was run 

with both fluids in contact with the same amount of the same minerals. The results of this 

model showed negligible differences to the original. 

Another problem with using a model in this way is that the quality of the data input cannot be 

guaranteed. In particular, the amount of bicarbonate a fluid contains at the well head will not be 

the same as at depth due to pressure affecting solubility. This may mean that predicted levels of 
bicarbonate in the fluid or of carbonate bearing minerals may be slightly skewed. 

4.6.1.3. Changes in injected seawater composition 

In order to assess the effect of injection on seawater composition specifically, a number of 

analyses interpreted as >80% seawater incursion from the time-series data for various wells 

were studied. From this data, a typical, representative "reacted seawater" composition was 

constructed, which is compared with typical injected seawater data in Table 4.4 (third column). 

4.6.2 Results 

4.6.2.1 Water-mixing no water-rock interaction 

Figure 4.17 shows the varying concentrations of the major fluid components as formation water 
is replaced by, and mixes with seawater. When these curves are compared to the real data 

(Figure 4.14), a number of interesting features can be noted. Measured Cl, Na, K, Mg, Ba and 
SO4 ions all show the same general trends predicted by the mixing curves, although the absolute 

values differ somewhat. As would be expected, conservative Cl decreases with increasing 

seawater, as does the concentration of Na. Mg shows a significant increase, and Ba and SO4 

show a decrease and an increase respectively, though the values are relatively level until about 
25% seawater. 

Though there are some important similarities between the model and the data from the real field, 
it is the differences that provide the most interesting information about processes occurring in 

the system. 

95 



Chapter 4 

4.6.2.2 Water-mixing including water-rock interaction 

Figure 4.18 and Table 4.4 show that, while most of the seawater components remain at constant 

concentration during heating from 25-120°C, the overall composition undergoes some 

significant changes. Large stage precipitation of Mg-rich antigorite and huntite with sulphate- 

rich anhydrite correlates with changes in Mgt+, SO42" and HC03 and the dissolution of calcite. 

GWB produces results in two formats, a text (numerical) output and a graphical output using the 

Gtplot programme. Figures 4.19,4.20 and 4.21 show changes in the fluid components and 

minerals precipitated with increasing seawater and decreasing formation water proportion. It is 

useful to study the three graphs (and the text output) together. 

Table 4.5 Original basis of the model fluids for the Miller, Central Brae and Ekofisk Fields, 

North Sea 

Parameter Value (Miller) Value (Central Brae) Value (Ekotisk) 

Na+ 23950 mg/kg 36700 mg/kg 23989 mg/kg 
1{+ Swap for 100 free gram 

k-feldspar 

Swap for 50 free gram K- 

feldspar 

Swap for 50 free gram 

K-feldspar 

Mg 2+ 100 mg/kg 48 mg/kg 469 mg/kg 

Ca Swap for 50 free gram 
Calcite 

Swap for 25 free gram 
Calcite 

Swap for 25 free gram 
Calcite 

Ba + 700 mg/kg 1030 mg/kg 14 mg/kg 

S+ 55mg/kg 50 mg/kg 762 mg/kg 

Fe 2+ 2 mg/kg 39 mg/kg 1x 10 mg/kg 
Al + Swap for 50 free gram 

Mite 

20 mg/kg 10 mg/kg 

Si02(aq) Swap for 2 free gram 
Quartz 

Swap for 12 free gram 
Quartz 

Swap for 15 free gram 
Quartz 

Cl' 40100 mg/kg 57660 mg/kg 47751 mg/kg 
SO4 - 30 mg/kg 6 mg/kg 38 mg/kg 
HC03 2200mg/kg 3310 mg/kg 525 mg/kg 

pH 7.5 6.39 6.46 

Temperature 120°C 123°C 162°C 
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Figure 4.17 Curves to show the compositions of model fluids produced by mixing of pure 

formation (left) water and pure seawater (right) 
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Figure 4.18 Minerals that precipitate on heating typical seawater in equilibrium with quartz, 

calcite and hematite. 
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It can be seen from Figure 4.19 that there is much variation in the composition of the fluid as 

the proportions of formation water and seawater change. Na', HCO3-, K', Mg2 ' and Al" vary 

very little and reflect mainly the differences between the two types of water. Ba 2 and S042vary 

dramatically, decreasing and increasing respectively, with an initial slow change, a sharp 

fall and rise and then levelling off again. Caz' shows a significant steady increase and Sr2' 

decreases steadily until almost 100% seawater, when it drops dramatically. Fee' follows a 

similar pattern, though the decrease on reaching 100% seawater is not as dramatic. 

Figure 4.21 illustrates the changes in saturation states of the minerals in the system. Quartz and 

calcite remain saturated as specified in the basis, however K-feldspar and illite are not 

completely stable in the original configuration. Thus, K-feldspar is partially albitised, removing 

some Na' from the fluid, and illite is transformed to muscovite. Very small amounts of pyrite 

are precipitated and, following these initial changes, barite and various clays become 

supersaturated and precipitate out to differing degrees. 
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Figure 4.19. Variation in components in the fluid as modelled Miller formation water is 
gradually replaced by seawater. 
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4.6.2.3 Changes in injected seawater composition 

The reacted seawater composition in the third column of Table 4.4 shows some significant 

variation from both real seawater, and the modelled seawater. There is far more Fe 2+ in the 

reacted seawater than either the typical- or the equilibrated-seawater. In addition, the amount of 

sulphate present is similar to a typical seawater composition, but far more than predicted by the 

heating model. The reacted water also contains more SiO2(, q) than the typical seawater. 

4.6.3 Discussion 

4.6.3.1 Water-mixing no water-rock interaction 

The modelled change in concentration of each component in the fluid can be explained by the 

precipitation and dissolution of minerals and the interaction of the two different types of water. 

For example, seawater contains less Na+, K and HC03 
, and more Mg2+ than formation water, as 

is reflected in the changes in these components of the fluid as the relative proportion of seawater 

increases (Figure 4.17). 

It is well established that Miller is subject to a serious barite scale problem and the model 

confirms that the most significant reaction that occurs on mixing of formation water and 

seawater is the precipitation of barite sulphate. The model implies that barite should start to 

precipitate at about 25% seawater (Figure 4.17), which is slightly earlier than appears to occur 
in reality. 

The modelled increase in the Mg2+ ion (Figure 4.17) can be partially attributed to the fact that 

there is more magnesium in seawater than formation water. However, this increase does level 

out, due to the predicted precipitation of dolomite, which has not been documented in this study 

but for which there is evidence, as discussed previously. 

4.6.3.2 Water mixing including water-rock interaction 

The inclusion of minerals into the model has caused some subtle variations in the behaviour of 

the major fluid components that reflect the buffering capacity of the reservoir rock. 

On heating of seawater, a number of minerals are predicted to precipitate, including anhydrite 

(CaSO4), huntite (CaMg3(C03)4) and antigorite ((Mg, Fe)3Si2O5(OH)4) (Figure 4.18). These 

minerals precipitate due to the fact that although seawater is supersaturated with dolomite its 

precipitation has been suppressed in the basis. The Mg2+ ion deviates only very slightly from the 

mixing line between formation water and seawater (Figures 4.17 and 4.19) because of the 

suppression of dolomite and magnesite, which would have caused a significant loss in that ion, 
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had they been allowed to precipitate. Anhydrite precipitates because seawater is relatively rich 

in Ca and SO4 and the solubility of the mineral decreases as the temperature increases. 

As in the "no-mineral" model, barite precipitates due to the interaction of Bat ions from the 

formation water and S042 ions in from the seawater as the two mix. The amount of barite that 

precipitates reaches a maximum at around 40% seawater and then decreases again as the supply 

of Ba'' ions from the formation water is reduced. Ba`'' decreases slowly with the deceasing 

amount of Bat -rich formation water present until about 35% seawater when the decrease 

becomes more rapid as barite precipitation reaches a maximum. The decrease then levels off 

again as the supply of Bat ions becomes further reduced. SO4Z- follows an opposite pattern 

(Figure 4.19). The general increase is due to the greater amount of sulphate in seawater than 

formation water and the sudden release of S042 ions into solution at -40% seawater is probably 

due to the dissolution of a sulphate bearing mineral. 

Though the modelled amount of Ca" in the water mixture increases with increasing seawater 

(Figure 4.19), this cannot be attributed to differing levels in the two types of fluid as both 

seawater and formation water have been set to be saturated with calcite. However, calcite is the 

only possible source of Cat ions so this increase must be due to the progressive dissolution of 

calcite. 
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Figure 4.20 The general trend of the Bat' and S042 ions in solution with increasing seawater. 
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Minerals that precipitate as Miller formation water is gradually replaced by 

Figure 4.21 shows that at the onset of water mixing, part of the alkali feldspar (microcline) is 

transformed to albite in order to produce the most stable mineral assemblage at this temperature. 

The effect of this on the fluid is to further decrease the amount of Na' in solution and slightly 

increase the amount of K' present. This rise in the level of K+ ions does not reflect observations 

in the real data, however the modelled increase is augmented by the progressive decrease in 

precipitation of microcline with increasing seawater. The slight increase in muscovite may also 

be a result of this increase in Ki ions and may provide an insight into what limits the increase of 

K+ ions in the real system, i. e. mica and clay precipitation. 

The precipitation of quartz increases with the addition of seawater and this is because seawater 

had been set at a greater degree of supersaturation than the formation water. However, results 

from the real data (Figures 4.19 and 4.21) show an almost constant Si concentration in the water 

and a minor increase with seawater. This suggests that the fluids involved in the real system, 

including the seawater are dissolving silicate minerals, rather than precipitating quartz. 

The clays saponite and nontronite are predicted to precipitate, the variation in principal cation 

(Na, Ca, Mg) being reflected in the changing composition of the fluid with which they are in 

equilibrium (Figures 4.19 and 4.21). Sr`' decreases gradually until about 90% seawater when 

its levels drop dramatically. This distinct pattern is due to the extremely low levels of strontium 

in seawater. Fe" exhibits a very similar, pattern whereby it decreases slowly and then more 
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quickly at -90% seawater. These changes are due to the lower levels of iron in seawater than 

formation water and the precipitation of the Fe bearing clay nontronite. Although Ba2+ and Al" 

are also negligible in seawater they do not follow this distinctive trend. This is because these 

ions are in equilibrium with minerals in the system. 

The general pattern of changes that the fluid components undergo as the amount of seawater 

increase is very similar to the changes noted in the real data from the Miller Field. In fact, Fe 2+ 

is the only ion that shows a different change to the one predicted (see Figure 4.19 and Figure 

4.14). This implies that the assumption of seawater influence is reasonable and that fluids and 

minerals in the real system are, for the most part, reaching equilibrium in the way predicted by 

the GWB model. 

There is more variation in the Ca 2+ concentration in the model, over a wider range of values, 

than shown by the real data. This suggests that Ca 2+ is more successfully buffered by calcite (or 

other Ca-bearing minerals) in the real system. Ba 2+ persists in solution for longer in the real 

data, indicating that the precipitation of barite is delayed or slower than that predicted. K+ does 

not show a smooth variation in the real data, but rather fluctuates, but this is most likely due to 

contamination by K-rich drilling mud. 

4.6.3.3 Changes in injected seawater composition 

The dramatically elevated Fe and Si concentrations in seawater in the real data (Figure 4.16) are 

indications of rapid water-rock reactions that affect these fluid components but not others. The 

fact that sulphate is so high suggests that anhydrite has not precipitated as seawater heated in the 

reservoir, even though it should be supersaturated (e. g. Figure 4.18. ). The increased levels of 

Fe 2+ and Si02 indicate that the water has come to equilibrium with Fe-bearing (silicate) phases 

or Fe-sulphide phases; this is also not predicted by the model. It is likely that these changes are 

affected by kinetic limitations. Thus, the GWB model is not sufficient to describe in detail all 

the reactions occurring in the real system. 

4.6.4 Modelling other fields 

The GWB model of water mixing in the Miller Field has been shown to adequately describe the 

most important processes occurring in the reservoir as a result of seawater injection. Miller is in 

close geological association with the Central and South Brae oil fields and consists of the Brae 

Formation sandstone. It is therefore reasonable to assume that these fields will have undergone 

a similar set of diagenetic processes to Miller and that the same model applied to their 

respective formation water compositions would yield similar results. Conversely, the Ekofisk 

Field (also in the North Sea) has a reservoir consisting of Cretaceous and Danian age chalks of 
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the Ekofisk and Tor Formations (Warren and Smalley, 1994), and would therefore be expected 

to yield substantially different results. 

The same "water-mixing including water-rock interaction" model was applied to each 

alternative reservoir, with only very few alterations made to accommodate the differences in 

reservoir mineralogy. 

1) Central Brae. Figures 4.22 and 4.23 show the results of such a model applied to the Central 

Brae Field. Alterations made to the basis of this version of the model include: illite remaining 

undersaturated (Table 4.4) to prevent the water becoming too supersaturated. The figures show 

some striking similarities to the Miller model, with some notable exceptions. 

The constant level of Fe 2+ ions is partly a reflection of the fact that seawater contains a similar 

amount of these ions to the formation water. The more significant presence of iron in this case 

however, has caused siderite to precipitate on the reaction of Fe 2+ ions with HC03 . It is also 

reflected in the precipitation of the clays annite and nontronite, which both contain iron, and 

pyrite. mg" ions can be seen to increase. This is because seawater contains significantly more 

magnesium than the formation water, although the precipitation of Mg-bearing nontronite is 

probably causing the increase of Mg2+ ions to be slowed. 

As in the Miller example, the precipitation of alkali feldspar appears to be intimately linked 

with the precipitation of muscovite, and both of these are linked with the amount of K+ in 

solution. The K+ component of the fluid remains almost steady as the reaction progresses and 

seems to be buffered by the changing amounts of potassium-bearing minerals present. The 

variation in the proportions of K-feldspar and muscovite are probably due to the availability of 

Al'+ ions in solution. 

Despite any differences, the fundamental reactions appear to have remained the same and most 

of the other ions in the fluid, particularly Ba2+ and SO4Z+, follow precisely the same patterns as 

in the Miller example. 

The implication of these observations is that, if the original model was realistic, the reactions 

occurring in Miller and Central Brae must be very similar, with only a few exceptions. This 

would be a reasonable conclusion to draw, as the two fields are contained within the one Upper 

Jurassic Brae Formation. 
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2) Ekofisk. Figures 4.24 and 4.25 show the results of applying the mixing model to the Ekofisk 

Field. As for Central Brae, very little was changed from the original model, but again illite was 

not set to be saturated and the temperature was significantly higher at 162°C (Table 4.4). 

The results are clearly different to those from the previous examples, though some similarities 

persist. The Na+, K+, Sr2+, Mg2+ and Cap' components of the fluid all behave in a similar way to 

the Miller model, however, the trend for the Fez' ions is the reverse of that exhibited by the 

Miller and Central Brae examples, reflecting the very low levels in formation water relative to 

seawater. Other big differences are in the HC03, Bat' and S04'" concentrations. 

Though the overall trend of an increase in SOS and a decrease in Ba24 can still be observed, 

these two fluid components show none of the distinctive variation pattern of the Miller and 

Central Brae experiments. Instead, Ba24 ions behave in the same way as Sr2', reflecting the low 

levels of barium in seawater, and S042ions increase at a steady rate. In addition, very little 

barite forms, and only at the beginning of the mixing process, while sufficient Ba24 ions are still 

available. For the first time, celestite (SrSO4) is observed, and its mode of precipitation mirrors 

that of barite. This is because at Ekofisk there is much more Sr2f than Ba2', whereas at Miller 

and Central Brae there is only slightly more Bat' than Sr". The excess Sr at Ekofisk is 

probably due to the substitution of Sr into the abundant calcite of the chalk. 
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Figure 4.22. Variation in components in the fluid as formation water in the Central Brae Field 
is gradually replaced by seawater. 
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Figure 4.23. Minerals that precipitate as Central Brae formation water is gradually replaced by 

seawater 
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Figure 4.24. Variation in components in the fluid as formation water in the Ekofisk Field is 
gradually replaced by seawater. 
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Figure 4.25. Minerals that precipitate as Ekofisk formation water is gradually replaced by 

seawater 

4.7 Conclusions 

One of the most important results highlighted by this study is that ion concentrations of 

produced waters are changed perceptibly by water-rock interaction on extremely short time 

scales on the order of weeks, months and years. This is shown by the deviation of the 

concentration of certain elements from the simple trend of mixing between seawater and 

formation water. 

Produced water data can provide an extra method by which fluid mixing can be tracked within a 

reservoir. Conservative chloride is an extremely sensitive tracer of water injected into a 

reservoir, provided the chloride contents of the injected water and the formation water are 

sufficiently different. While strontium isotopes and some magnesium and sulphate outliers 

indicate that the formation water composition is not constant throughout the Miller field, there is 

sufficient data to establish a reliable composition for the dominant type of water present. 

Deviation of measured produced water analyses from linear mixing lines constructed between 

the two fluids of differing chloride concentration (formation water and injected water) indicates 

specific fluid-mineral interactions are occurring in the reservoir and/or well bore. 
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The fact that the dataset was gathered over a period of time means that changes in ion 

concentrations can be tracked through the life of the field. Variations in fluid components such 

as Ba, Ca, Mg and particularly Si occur on short timescales of days to months and are a result of 

both the effect of water mixing and rapid water-rock interactions. 

The main reactions that occur during injection of seawater into the Miller reservoir are: calcite 

dissolution and replacement by dolomite; the formation of Mg-containing clays, barite 

precipitation and possible sulphate reduction. These processes result in Ca enrichment and Mg, 

Ba and SO4 depletion relative to a mixture of seawater and formation water. Furthermore, fluid 

injected into the reservoir is saturated with quartz after less than 14 months, indicating rapid 

silicate reactions such as the dissolution of K-feldspar and illitisation. 

The use of a geochemical model as a tool for improving understanding of reservoir processes 

has been shown to be very effective in the case of Miller. The model predicted that processes 

such as barite precipitation, dolomitisation, the precipitation of clays and K-feldspar dissolution 

should occur at Miller reservoir conditions in response to injection of seawater, supporting the 

hypotheses established from the measured data. In addition, the model has highlighted potential 

reactions for which there is no evidence in the real dataset, including albitisation of K-feldspar 

and reactions involving iron-bearing minerals. 

Discrepancies between the model-predicted and real behaviour of certain ions (including Ca, Ba 

and K) are due to reactions in the real system that the model cannot account for. For example, 

extensive buffering by Ca-bearing phases, slowed precipitation of barite and contamination by 

K-rich drilling mud. Though GWB modelling supports evidence of water-mixing and water- 

rock interactions provided by the real data, the success of any model is limited by kinetic 

constraints. For example, when heated, seawater, in equilibrium with quartz, calcite and 

hematite, is predicted to precipitate anhydrite; however, data from a real field suggest that this 

has not occurred, likely due to kinetic limitations. 

The model can be easily applied to other water-rock systems with only very few changes, 

providing a potential method for predicting the reaction of a system to a certain set of 

circumstances. The model output for these systems reflects the differing mineralogy of the 

reservoir rock. The model for Central Brae predicted that important reactions would be: the 

formation of ferro-magnesian clays, reaction between K-feldspar and muscovite and barite 

equilibrium. At higher temperatures and with a predominantly carbonate mineralogy, the 

Ekofisk field was predicted to behave somewhat differently. Significant carbonate dissolution 
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increases the bicarbonate concentration of the water and celestite instead of barite is 

precipitated. 

Though processes such as clay formation and calcite dissolution are described fairly commonly 

as a feature of diagenesis, it is the speed with which these reactions are documented in Miller 

that make them particularly interesting. Fast formation of mineral precipitates has been long 

documented (for example, the formation of barite scale in oilfield production pipes). The field 

rate of silica release documented here is relevant to the field rate of feldspar-fluid reactions, 
irrespective of whether silica in the produced Miller fluids is derived from feldspar or quartz 
dissolution, because it shows the rate at which water can interact with silicate minerals at the 

field scale. 

The detailed mineralogical, chemical and modelling case study of the Miller field provides an 
insight into the chemical reactions occurring in a typical petroleum reservoir. This information 

will supplement the global dataset and contribute to the overall understanding of the controls on 

formation water composition in petroleum reservoirs. 
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5. FORMATION WATERS: A GLOBAL SYNTHESIS 

5.1 Introduction 

Chapter 2 outlined ten closely associated factors which might affect the composition of 

formation waters (section 2.3). Interaction of formation waters with host rocks (dependent on 

temperature, pressure, gas partial pressure etc) has been shown to be particularly important in 

controlling their chemical compositions. It is this that causes the global variation in formation 

waters from sedimentary basins. The question remains however, whether water-rock 

interactions as described by authors such as Hanor, Land etc are widely applicable in different 

geological settings. 

The formation water reflects the current mineralogical make-up of the rock; while the 

geological history of the area may have affected the initial composition of the water and 

therefore subsequent water-rock reactions. Thus, it is expected that the formation water of a 

specific rock formation, reservoir or sedimentary basin can be distinguished from waters from 

other locations. Detailed studies of the San Juan Basin in West Central US and the Miller field 

in the North Sea (Chapters 3 and 4) have provided new examples of how both natural processes 

as well as those occurring during the extraction of petroleum can affect specific formation water 

chemistry. Elevated absolute concentrations of Na in San Juan formation waters have been 

shown to be the result of interaction with Na-rich smectites. The observation of constant 

concentrations of Si in waters produced from wells in Miller indicated rapid reaction of water 

with feldspars and clays. It is important to understand whether these sorts of processes are 

occurring elsewhere and can be used to interpret water chemistry. In particular, whether having 

knowledge about the mineralogy of a source rock will enable predictions to be made about the 

nature of the formation water chemistry. 

5.1.1 Aims and objectives 
The principal objective of this study is to evaluate further the degree to which formation water 

compositions reflect water-rock interaction processes. That is, to determine the extent to which 

buffering by certain specific mineral assemblages will account for the observed chemical 

variation in subsurface pore waters. The study aims to identify and isolate specific mineral- 

fluid equilibria and assess the relative importance of each in controlling the water compositions 
from a range of global locations. It is based on water analyses from nine different locations on 

five continents. Detailed mineralogical information is available for some, but not all of the host 

formations; identifying links between water chemistry and mineralogy in data-rich areas will 

assist as a predictive tool in mineralogically data-poor areas. To realise the full information- 

providing potential of such an extensive dataset it is necessary to identify the relative roles of a 
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series of different controlling factors. Each individual aspect of water chemistry is best 

described separately in terms of its possible mineralogical associations, applications and 

implications. A further objective is to evaluate the influence of mineral-water interaction 

controls on the practical applications of mineral scaling and CO2 sequestration. This study adds 

an extra dimension to the current understanding of formation waters by analysing data from a 

wide range of contrasting sedimentary basins from around the world. 

As a framework for the following discussion, the most important processes affecting the 

dominant fluid characteristics will be explained in terms of the evolution of a typical formation 

water. Initially, water buried with sediment already has some inherited characteristics and in 

time these are modified by detrital mineral-fluid interactions, secondary mineral precipitation 

and fluid mixing. Although water released through the compaction of shales during diagenesis 

may have an impact on formation water chemistry, this aspect of the subject is beyond the scope 

of this study because suitable data is not generally available. An introduction to the dataset will 

instead be followed by a description of. the origins and importance of inherited salinity; the 

effects of mineral buffers on the major element composition of formation waters, in particular 

potassium, sodium, calcium and magnesium; the influence of mixing, including through- 

flowing and injected waters and the imposition of CO2 pressure by a coexisting gas. 

5.2 Data and data quality 

To identify global empirical trends, the dataset must span a wide range of water and rock 

compositions and be as representative of as many different geological situations as possible. 

Fortunately, there is a large amount of formation water data in the literature. For this study an 

extensive propriety database of pore water chemistry was provided by BP and combined with 

the secondary databases of Bennett (2001) and Yardley (2005), who compiled and published 

formation water compositions from several geological settings. This has produced an extensive 

global database of petroleum reservoir formation water chemistry presented in Appendix VI. In 

addition, the geological setting, history and mineralogical composition of each location for 

which there is formation water information has also been collated (Appendix VII). 

A list of locations included in the database is presented Table 1. The data from each reservoir 

comprises analysis of various cations and anions. Information relating to TDS, temperature, 

depth, pressure, pH and isotopic composition is also available in some cases. Elements 

analysed for in all reservoirs include: Na, K, Mg, Ca, Ba, Cl, and SO4, commonly with Sr, Si, 

Br, HCO3, transition metals and pH. In general however no redox pairs have been analysed. 
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5.2.1 Data quality 
The quality of the data is variable. In many cases, the samples were collected from the water- 
leg of a separator, but some were collected from the well-head directly, some from repeat 
formation testers and still other samples are from drill-stem tests. A key problem in quality 

control is the stability of the sample. Down-hole (and sometimes well-head) samples may 

precipitate minerals when cooled and degassed for analysis (Collins, I. 2006, pers. comm. ) In 

some cases analyses were carried out over 30 years ago and it is likely that analytical techniques 

will have improved since then, influencing detection limits at least. In addition, samples from 

many producing oil and gas fields will have been analysed under operational conditions in 

production facilities, where emphasis may have been on getting certain valuable information 

quickly rather than general high quality analysis. It should be noted that some high values can 

be attributed to contamination of water samples by drilling muds containing a KCI additive, as 

is common in the North Sea and elsewhere (I. Collins, pers. comm. ). 

Significant data outliers were rejected from the dataset and all the analyses were subject to 

charge balance testing. In this way, only the best data were selected to be included in the global 

synthesis, minimising the possibility of sampling or analytical artefacts. Analytical techniques 

range from simple titration tests, atomic absorption spectroscopy (AA), inductively coupled 

plasma - atomic emission spectroscopy (ICP-AES) to ion chromatography. This leads to some 
discrepancy between the accuracy of different fluid analyses and introduces an element of 

uncertainty into the data analysis results. Details of analytical techniques are available for 

some, but not all, of the published water analyses in the original papers cited in Appendix VII. 

Some components of reservoir systems play an extremely important role in subsurface 

reactions, but are very difficult to analyse accurately. Notably, the concentration of bicarbonate 

ions is directly related to carbonate equilibria and the partial pressure of C02, but is affected 
during sampling as CO2 can outgas from solution as pressure is reduced during transportation of 

the fluid to the surface (Carpenter and Miller, 1969; Hutcheon et al., 1993). Uncertainty in 

bicarbonate values also impacts on pH estimates (Hutcheon et al., 1993), while in addition 

redox couples are not generally analysed. Instead total sulphur is analysed as sulphate, although 
there is potential for HZS degassing alongside CO2 loss. 

It is nonetheless possible to identify general trends among formation waters from different 

studies by analysing the fluid compositions using simple spreadsheet-produced plots. 
Anomalies can be identified and interpreted in the context of fluid-rock interactions as discussed 

in the previous chapters. Cross plots of one ion with another can highlight specific reactions 

occurring in the reservoir because the constituents of formation waters are subject to fluid-fluid 

or fluid-rock interactions, (Huseby et al., 2005). The effectiveness of this method has been 
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illustrated to some extent in the San Juan and Miller case studies (Chapters 3 and 4), but this 

Chapter provides an insight into whether it can be applied on a global scale. 

5.2.2.1 Geochemical computer modelling of formation waters 
Representative analyses from each location in the global database were subject to 

thermodynamic analysis using the computer model REACT, as part of the Geochemists' 

Workbench (GWB) (Bethke, 1996). REACT is a reaction path model that allows the user to 

specify a particular fluid composition. When no reaction path is required, the programme 

simply determines the speciation of all the fluid components originally specified, using one of 

several thermodynamic databases to calculate the activity of each species. The fluid can then be 

allowed to come to equilibrium at a specified temperature by the precipitation of minerals until 

the fluid is at equilibrium. For waters of low ionic strength, the Debye-Huckel activity model is 

usually sufficient to provide accurate determinations of water speciations. However, more 

concentrated solutions are usually better served by using the Pitzer equations. Unfortunately, 

the Pitzer database at elevated temperatures is extremely limited and could not account for some 

important components present in most of the waters e. g. bicarbonate and aqueous silica species. 

The speciations of the pore waters were calculated because this is important when calculating 

the extent of supersaturation of individual minerals. For example, measured Ca in solution 

could be a mixture of Cat+, CaCl+, CaHCO3 
, 

CaOH+, CaCO3, CaSO4 etc, so it would be 

unreliable to calculate the equilibrium state with respect to calcite by assuming that the Ca 

analysed was all Cat-1. Unfortunately, some uncertainties remain. For example, the high 

salinity waters had to be speciated using the Debye-Huckel activity equations due to the 

limitations of the Pitzer database. In addition, there are considerable doubts surrounding the 

accuracy of pH measurements from formation waters due to the potential effects of degassing of 

CO2 on release of pressure. Mineral saturation states depend on the relevant cation/hydrogen 

ratio and inaccurate pH values can lead to significant mistakes in speciation and cause the 

model to predict incorrectly that certain minerals are saturated. Carbonate species and 

associated minerals are particularly at risk of misinterpretation due to inaccurate pH values. In 

some cases pH measurements do not exist at all and in these cases it was necessary to use to the 

model to calculate pH itself by equilibrium with mineral assemblages thought to be present in 

the reservoir rock. Despite the limitations, use of the speciated compositions have allowed the 

saturation states of waters of very different TDS and chemistry to be compared in a quantitative 

manner. 

Following page: Table 5.1 Representative water analysis from each major location studied 
together with the calculated speciated concentrations based on the original analysis without any 
precipitation of saturated solids. Values are in Moles and only species with concentrations 
greater than 1x 10"S are shown. Several water analyses were speciated for each field, and the 
results for these are shown in raw form in Appendix VIII. 
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Table 5.2. Summary of locations for formation waters included in the global database 
Location Age of host rocks Reservoir Major rock Reference 

type 
Alberta Basin, Devonian to Cretaceous Southesk-Cairn Carbonate Connolly et 
Canada carbonate with some a1.1990 

complex; sandstone 
Angola, offshore, Late Cretaceous Bucomazi Lacustrine BP 
North of Luanda to Oligocene petroleum system and turbiditic (currently 

sediments producing) 
Azerbaijan -Field 1 Late Mesozoic Productive Series Immature BP 

to Cenozoic (Pereiva Suite) sandstone (currently 
producing) 

Azerbaijan - Field 2 Late Mesozoic Productive Series Immature BP 
to Cenozoic (Pereiva Suite) sandstone (currently 

producing) 
Central Mississippi Jurassic and Cretaceous Norphlet, Sandstones of Carpenter et 

Smackover and varying a/. 1974 
Hosston compositions 
formations 

Colombia, Llanos Late Cretaceous Guadalupe, Relatively BP 
Basin to Eocene Mirador and Barco clean (currently 

formations sandstone producing) 
Mahakam Basin, Miocene/Pliocene / Channel sands Bazin et al., 
Indonesia 1997 
North Sea Devonian to Eocene Various Sandstone and Warren & 

carbonate Smalley. 
1994; 
Egeberg and 
Aagaard, 
1989 

Offshore Gulf of Pliocene and Miocene / Sandstone + BP 
Mexico salt, turbidite (currently 

sands producing) 
Offshore Gulf of Jurassic to Miocene Louann Salt, Sands + salt Land et al., 
Mexico - Offshore Norphlet and 1988 
Louisiana Smackover 

Formations, 
Haynesville 
Formation and 
Cotton Valley 
Group. 

Onshore Gulf of Oligocene/Micocene Frio Formation Muddy Hyeong and 
Mexico - Texas sandstone Capuano, 
Gulf Coast 2001; 

Kharaka et 
al, 1977 

San Juan Basin, Upper Cretaceous Fruitland Coal beds and BP 
Colorado/New Formation muddy (currently 
Mexico sandstone producing) 
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Table 5.3. Summary of main mineralogy in each location in the global database, note that for 
some locations information was not always readily available. 

Field Availability of Mineralogy 
Information 

Alberta Basin Older Readily available " Carbonates 
" Bladed calcite cement 
" Matrix dolomite and anhydrite 
" Pyrite and chalcopyrite 

Alberta Basin Readily available " Carbonates, shales and evaporites 
Younger " Quartz 

" Zeolites 
" Various clay minerals including 

kaolinite 
Angola, offshore Very limited " Carbonates and siliciclasics 
Azerbaijan, Caspian Limited " Clastic sediments 
Sea " Lithic and igneous clasts 

" Carbonate cemented mudstones 
Central Mississippi Readily available " Quartz, feldspar, dolomite, 

(various formations) anhydrite, muscovite, kaolin, 
chlorite and calcite 

" Pyrite, celestite, fluorite 

" Ankerite, dikite and barite 
Colombia Limited " Quartz 

" Feldspar, shale and carbonate 
clasts 

" Kaolin 
Gulf of Mexico Field Limited " Sands, silts and clays 
1 " Allocthonous salt 

" Kaolin and illite 
Gulf of Mexico Field Limited " Sands, silts and shales 
2 " salt 
offshore Louisiana Readily available " Carbonate mudstones and sands 

(Various formations) " Albitising plagioclase and K- 
feldspar 

" Authigenic calcite, quartz, 
chlorite, kaolinite, pyrite, siderite 
and barite 

Onshore Gulf of Available " Illite-smectite 
Mexico " Authigenic quartz, kaolinite, 

chlorite, and carbonates 
" Albitisin plagioclase 

Mahakam Basin Available " Quartz, plagioclase and minor 
muscovite, K-feldspar and detrital 
calcite 

" Authigenic kaolinite, illite, quartz 
and dolomite 

San Juan Basin Available and " Quartz 
personally verified " Detrital albite, K-feldspar, mica 

and lithic fragments 
" Authigenic siderite, dolomite 
" Detrital and authigenic clays and 

quartz overgrowths 
0 Coal 

116 



Chapter 5 

5.2.2. Anions as the basis for water comparisons 
Chloride is the most important anion in oil-field formation waters (Collins, 1969), and chlorinity 

provides a good approximation for salinity. Chloride is conservative in all but the most saline 

solutions (Hanor, 1994) and therefore presents a useful baseline with which to compare other 

fluid components. Inevitably, the total concentration of cations increases with increasing 

chloride due to charge balance constraints, emphasising its role as a master variable (Helgeson, 

1969; 1970; Hanor, 1993; 1994). However, because water compositions are buffered by fluid- 

rock interactions, the concentration of individual cations would not be expected to increase 

linearly with salinity. Plots were constructed to show the variation in major cation 

concentration with chloride for all the locations in the global database. Although chloride is 

usually the main anion, in some waters bicarbonate, sulphate and even organic acids are 

important or even dominant anions in solution (Hanor, 1994). It was therefore useful to 

compare cation concentrations with TDS, bicarbonate or sulphate to identify the possible 

controls on these particular species. Temperature relations are important in establishing the 

nature of fluid-rock interaction and graphs have been constructed using temperature information 

wherever available. 

5.3 Data Analysis: evidence for controls on formation water compositions 

Formation waters from locations included in the database show an extremely wide range of 
dissolved loads, from as little as 230 mg/l TDS in the San Juan Basin to around 580,000 mg/l 
TDS in the Gulf of Mexico. 

Any reference to a "representative water analysis" indicates one or two real analyses taken from 

the relevant dataset that are as close to the mean and modal average as possible. In some cases, 

a particular analysis may have been chosen because of its "typical" composition and because it 

provided information useful to improve the accuracy of computer modelling e. g. pH. All 

analyses selected as representative charge balanced to better than ± 10%, assuming that Si and 
Al dissolve as neutral species. 

5.3.1 Inherited characteristics 

5.3.1.1 Origin of fluid salinities 

Chapter 2 presented a brief summary of the processes resulting in high salinity formation waters 
(section 2.4.1), the most important factors being: the nature of the depositional environment, 

subaerial evaporation of meteoric and marine waters and dissolution of evaporites. 
Conventionally, there are two ways to distinguish the origin of high salinity waters: bromide 

systematics and stable isotopes. Section 2.3.1 provides a detailed description of the background 
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to the use of bromine to distinguish high salinity fluids of different origin. Briefly, Cl is 

preferentially partitioned over Br into halogen salts during their precipitation and Br 

preferentially remains in solution until the final stages of evaporation (Rittenhouse, 1967; 

Hanor, 1994). Brines formed by the dissolution of halite should have a high Cl/Br ratio 

(Hanor, 1994; Böhlke and Irwin, 1992; Cann and Banks, 2001) whereas residual bittern brines 

are rich in Br. Thus, the Cl/Br ratio of formation waters indicates whether an evaporite-related 

fluid derived its salinity through seawater evaporation or halite dissolution (high ratios = halite 

dissolution; low ratios = seawater evaporation). This method of analysis is not always 

appropriate. For example, it may not be useful when applied to waters whose salinity is 

dependent on meteoric or magmatic inputs. 

f Alberta Basin - younger (Connolly et al. 1990) 

0 Alberta Basin - older (Connolly et al. 1990) 

F Angola (BP) 

t\ Azerbaijan - Field 1 (BP) 

" Azerbaijan - Field 2 (BP) 

)Central Mississippi (Carpenter et al 1974) 

Colombia (BP) 

O Mahakam basin, Indonesia (Bazin et al 1997) 

+ North Sea - general (Warren & Smalley. 1994) 

North Sea - Norway (Egeberg and Aagaard, 1989) 

Offshore Gulf of Mexico - Field 1 (BP) 

1 Offshore Gulf of Mexico - Field 2 (BP) 

Offshore Gulf of Mexico - Field 3 (BP) 

Offshore Gulf of Mexico - Offshore Louisiana (Land et al 1988) 

Onshore Gulf of Mexico - Texas Gulf Coast (Hyeong and Capuano. 2001. Kharaka et al, 1977) 

San Juan Basin. Colorado/New Mexico (BP. Snyder et al., 2003) 

Figure 5.1. List of locations in global database, together with symbols used in figures. A pull- 
out version of this Key is included at the end of the thesis for ease of reference. 
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Figure 5.2. Formation waters with high Cl/Br and Na/Br ratios are interpreted to have derived 

salinity through dissolution of halite. Lower ratios than seawater values indicate a seawater 
evaporation source. Note anomalous array of San Juan with unusually low CI/Br ratios due to 
influence of organics and significant sodium bicarbonate component in these dilute waters. 

A plot of Cl/Br against Na/Br (Figure 5.2) thus provides a first approximation of the origin of 

the salinity of formation waters, seawater evaporation or halite dissolution. All the waters apart 

from the very low salinity ones from San Juan lie along the seawater evaporation/dissolution 

trend. This indicates that salinity is a primary feature of formation waters and the Cl/Br ratio is 

unaffected by mineral-water interactions. There is however, some susceptibility to alteration of 

the ratio by fluid mixing or by the addition of Br or Na from another source. For example, 

Figure 5.2 highlights evidence presented in Chapter 3 that waters from the San Juan Basin have 

unusual Br systematics with anomalously low Cl/Br ratios, likely due to high levels of Br from 

organics present in coal. The additional Br from this source causes some very low salinity 

waters to exhibit the same ('1/Br ratios as some extremely concentrated bittern brines. This is 

because only very small amounts of Br are required to change the ratio in a fluid that has a very 

low Cl content. 

3.3.1.2 CI/Br ratios in specific locations 

The data provides a number of examples of how halide systematics may indicate the origin of a 

particular formation water. In particular, this method is useful because conclusions reached in 

data-rich areas can provide guidance on data interpretation in data-poor areas. For example, 

host formations from Central Mississippi (Carpenter et u!., 1974, Mancini, 1987) and Offshore 

Louisiana (Land et al., 1988) are mineralogically complex, relatively old, hot and deeply buried 

13 
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and have thus experienced a significant degree of diagenesis and alteration. In both areas 
formation waters have very high salinities. In general terms however, the Louisiana waters have 

higher Na/Cl and Cl/Br ratios than those from Central Mississippi. This reflects the association 

of Louisiana waters with halite and confirms salt as an additional source of Na into solution, 

whereas Central Mississippi waters are more likely to have derived their enhanced salinity 

through evaporation. 

In contrast, literature is limited in its description of the Bucomazi reservoir system in Angola. 

Studies by Burwood and Mycke (2004) and Rasmussen (1996) do not indicate whether 
formation waters could have been affected by the presence of the evaporite deposits in the area. 
However, relatively high Cl/Br ratios suggest that they have been. 

5.3.2. Mineral buffers: Na: K relations 

Potassium is an extremely common cation in formation waters; the controls on its concentration 

are relatively well understood. K tends to increase with increasing Cl, however there is some 

significant scatter in the data (Figure 5.3). Seawater contains only relatively small amounts of 
K which is concentrated during evaporation until it is removed through precipitation of sylvite 
(KCI, Fontes and Matray, 1993). Figure 5.3 shows that at low salinities the K/Cl ratio is higher 

(and therefore the Na/K, lower) than at higher salinities. The higher K levels may be due to the 

effect of the presence of other anions e. g. sulphate. 

The relationship of K with another dominant monovalent cation, Na, is also important. Chapter 

2 (section 2.4.3.1) summarises the mineral equilibria that buffer K+/H+ and Na+/H+ ratios. In 

particular, it is important to note that the Na/K ratio is used as a geothermometer at higher 

temperatures (Fournier, 1979) and therefore valuable as an indicator of whether or not 

equilibrium is approached. 

K and Na are important cations in the mineral framework of many siliciclastic petroleum 

reservoir. It has been suggested that the Na+/K' activity ratios of geothermal waters are 

controlled by simultaneous equilibrium with albite and microcline (the stable K-feldspar at low 

temperatures) (Stefänsson and Andrsson, 2000). K-feldspar is commonly present in sedimentary 

systems along with small amounts of detrital and authigenic albite. In addition, clays provide an 
important repository for K and Na (Egeberg and Aagaard, 1989; Milliken et al., 1989; 

Ehrenberg and Nadeau, 1989; Worden and Morad, 2000; Chuhan et al., 2000). Chapter 2 

(section 2.4.3.1) illustrates other mineral reactions that could affect the Na/K ratio, including 

kaolinitisation of K-feldspar and mica in the temperature range 110-140°C and illitisation of 
kaolin and K-feldspar at still higher temperatures (Smith and Eherenberg, 1989) (reactions 3,5 
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and 6, chapter 2) (Aagard et al., 1990; Bjerlykke et al., 1995; Chuhan et al., 2000; 2001). The 

overall increase in K concentration with Cl could therefore be due to equilibrium with K- 

bearing silicate minerals responding to charge balance requirements. 

5.3.2.1 Na/K ratios, the temperature effect and alteration 

K-feldspar solubility is affected by temperature and formation waters are thought to be in 

equilibrium with the mineral at temperatures up to 120°C (Milliken et al., 1989; Chuhan, et al., 

2001). However, the fact that the Na/K ratio can be used as a geothermometer indicates the 

equilibrium also holds at higher temperatures. Stefänsson and Anörsson (2000) suggest it has 

not yet been convincingly demonstrated that lower temperature waters are in equilibrium with 

either low-albite or microcline. However, authigenic K-feldspar can form at lower 

temperatures, so it possible that equilibrium is approached (Aagaard et al., 1990; Worden and 

Rushton, 1992). 

Thus, authigenic K-feldspar precipitation may occur at low temperatures, decreasing the 

absolute K concentration in the formation water and increasing the Na/K ratio. However, this 

process is limited to low temperature environments and more common diagenetic dissolution- 

precipitation reactions related to increasing temperatures tend to release K into solution, thus 

reducing the Na/K ratio. The concurrent consumption of Na from solution occurring from about 

65°C during albitisation in particular affects the Na/K ratio still further. The higher temperature 

process of illitisation then removes K from the formation water and again increases the Na/K 

ratio. Therefore, in formation water terms, evidence for these reactions lies in the ratios of the 

cations involved. Simple Alkali-feldspar equilibration should give a good correlation between 

Na/K and temperature, but this cannot be seen in the bulk data (Figure 5.4) in which there are 

over two orders of magnitude of scatter. This may be due to the additional processes occurring 

in the reservoir. Figure 5.5 illustrates that Na/K ratios are affected by temperature, as albite 

starts to become the stable feldspar phase for many waters in the database. 
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5.3.2.2 K -bearing mineral buffers in global petroletuºi reservoirs 

When GWB speciated water compositions from each location (e. g. Table 1) are plotted on 

K'/H': Na"/H' stability diagrams (Figure 5.6), it is apparent that K/Na relationships appear to fit 

with a range of mineral buffers. Data points in several cases define arrays parallel to mineral 

phase boundaries, possibly reflecting the effect of natural mineral compositions. The instability 

of K-feldspar at moderate temperatures (<70'('; Worden and Morad, 2000) suggests that much 

of this mineral should have been altered to kaolinite. However, these minerals show a 

ubiquitous association in sandstones below 11 0-140"(' (Smith and F. herenberg, 1989) suggestive 

of metastability. Muscovite does not precipitate until higher temperatures, however it is present 

as a detrital component of some reservoirs. Where some waters are predicted to be in 

equilibrium with muscovite, it is possible that it could be a proxy for illite, though this also 

tends to precipitate at higher temperatures (Aagard Cl u/., 1990). In general, there is significant 

variation in where the waters plot. The acid pH at many of the locations indicates potential 

metastable equilibrium between kaolin, K-feldspar and albite (Figure 5.6). It must also he 

remembered however, that the presence of a point on a plot in Figure 5.6 is not a guarantee of 

the presence of the mineral in the reservoir (see'I'able 5.3 for reservoir mineralogies). 

The waters from Alberta (Figures 5. bA and 13) show different relationships with Na- and K- 

bearing minerals according the age o1 the reservoir in which they reside. The waters in rocks of 

Upper Devonian age (Figure 5.6A) have high K/Na ratios, consistent with equilibrium with K- 
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feldspar and muscovite or kaolin in the absence of albite. While these rocks are predominantly' 

carbonates, it is possible that there are K-bearing minerals present and K-feldspar plus kaolin is 

known at these temperatures. Conversely, the Jurassic and Cretaceous sands and silts contain 

waters which have lower K/Na ratios, defining a trend parallel to the albite-microcline 
boundary. This is strongly suggestive of two feldspar equilibrium with the consistent deviation 

likely a reflection of deviation between the real and model systems. The most acid waters sit 

close to albite-K-feldspar-kaolinite equilibrium (Figure 5.6B). It is known that while kaolinite 

is a common cement throughout all the rocks in the Alberta Basin (Carrigy and Mellon, 1964, 

Buschkuehle and Machel, 2002), the younger sands also contain a number of other clay 

minerals and zeolites which may act as a limit to Na in solution rather than albite. 

No pH data was available for the waters from Central Mississippi so pH values were calculated 
in GWB, assuming equilibrium with K-feldspar and kaolin. However, accurate Na and K 

measurements provide some insight into the mineral buffering processes in this reservoir 
(Figure 5.6C). One result is consistent with equilibrium of albite and K-feldspar, but the other 
fluid is depleted in Na suggesting that no Na-phase was present in the host. Despite this, both 

feldspars are present in the Smackover Formation (Carpenter et al., 1974; Mancini, 1987) which 
hosts the fluids analysed in this study. The model suggests that muscovite or illite may be is 

precipitating under these conditions, and cores have revealed a large proportion of damaged K- 
feldspars (Mancini, 1987) indicating that alteration reactions are occurring. 

The reservoir rocks hosting the Colombian formation waters are pure quartz sandstones with 

very little additional material (Cazier et al., 1995). These pore waters are unusual in that they 
have an extremely high K/Cl ratio. In addition, modelling results (Figure 5.6D) suggest 

equilibrium between K-feldspar and kaolin in the absence of albite. 

The Mahakam Basin (Bazin et al., 1997) (Figure 5.6E) is of particular note because it lies at the 

very lowest salinity end of the formation waters spectrum. The reservoir channel sands contain 

quartz, plagioclase and minor amounts of muscovite, K-feldspar and detrital calcite. Kaolinite, 
illite, quartz and dolomite are the main diagenetic mineral phases in the sandstones. Figure 

5.6E indicates that the waters are indeed close to being buffered by alkali feldspars with 

muscovite or in metastable equilibrium with kaolinite. 

The two fields studied by Hyeong and Capuano (2001) at the Texas Gulf Coast onshore Gulf of 
Mexico are known to be experiencing albitisation of K-feldspar at the temperatures and depths 

from which the analysed fluids were sampled. In support of this, waters from this reservoir all 

sit within the albite stability field (Figure 5.6F). In addition, it is possible that these waters 
exhibit low K/Na ratios due to evaporite dissolution. 
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The San Juan Basin also has anomalously high elemental Na concentrations (see Chapter 3), but 

this does not result in anomalous K/Na activity ratios. No pH data was available from this 

Basin so equilibrium with K-feldspar and kaolin was assumed to estimate pH. Figure 5.6G 

indicates that the waters are buffered by equilibrium with K-feldspar and kaolin, both of which 

are present in the host lithology. Albite is also known to occur in the San Juan rocks, however, 

this is not evident from the K/Na ratios. 

In addition to evaluating whether equilibrium has been attained at locations whose reservoir 

mineralogy is relatively well constrained, plots such as those in Figure 5.6 can provide limited 

information about those with a greater degree of uncertainty if equilibrium can be assumed. 

Although the three fields in the Gulf of Mexico are in the same general area, their reservoirs 

clearly differ significantly in terms of reactions controlling formation water chemistry. Field 1 

(Figure 5.6H) consistently indicates that kaolin is an important constituent of its reservoir rock, 

in accordance with evidence from field operators. However, the KINa ratios sit on the 

metastable extension of the albite-K-feldspar boundary and the very high salinity means that 

this fluid analyis is prone to errors in speciations. It could therefore be that the fluids are nearer 

the metastable albite-K-feldspar-kaolin point than they appear. The pore waters from Field 2 

(Figure 5.61) exhibit a large degree of scatter, though all points lie within the muscovite stability 

field, at metastable equilibrium between K-feldspar and kaolin. However, these waters are also 

close to the metastable extension of albite-k-feldspar stability. The scatter in this case may be 

attributable to the large numbers of separate turbidite reservoirs that make up the single field. 

Field 3 shows a much closer association with albite, suggesting that this mineral is of greater 

importance here or that there is an additional source of Na into solution (Figure 5.6J). However, 

since all three fields give points along the albite-K-feldspar boundary, it could be that much of 

the difference arises in the effect of errors in the activity model for calculating pH at high 

salinities, i. e. Field 3 is the least saline its data plot closest to the albite-K-feldspar-kaolin 

boundary. 

There is only a little relevant information in the literature relating to the mineralogy of the 

offshore Angola oil fields (e. g. Burwood and Mycke, 1996; Gay et al., 2004; Rasmussen, 1996). 

However, the formation water K-Na systematics (Figure 5.6K) indicate that waters from Angola 

are relatively tightly clustered in the muscovite stability field, around the point of metastable 

equilibrium between albite, K-feldspar and kaolin. This assemblage would be reasonably 

expected to exist in the turbiditic rocks of the region which have a terriginous source, while the 

low T (80°C) is consistent with its persistence relative to muscovite. 
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The limited data available for Azerbaijan Field 1 indicates the waters again lie directly on the 

line of equilibrium between K-feldspar and albite (Figure 5.6L) but with little evidence for 

clays. The suggested presence of albite is consistent with literature reports of significant 

amounts of lithic and igneous clasts in the immature sandstones in this area (Guiliyev et al., 

1998 and Nummedal, 2002), though this is speculative and other aspects of fluid chemistry 

should be used to further constrain the subsurface processes. 

5.3.3 Potential mineral buffers: Na: Ca relations 

5.3.3.1 Sodium and calcium systematics 
Sodium is commonly the most important cation in formation waters (Collins, 1969), with 

calcium the next abundant. The concentrations of these cations individually and the 

relationships between them are also widely believed to be dictated by mineral-fluid equilibria 

(e. g. Fontes and Matray, 1993; Davisson and Criss, 1996, etc. ). 

Figure 5.7 illustrates the apparently simple relationship between Cl and Na, the data following 

an almost 1: 1 slope over much of the range. At higher salinities (at between 3.5 and 5M Cl) 

there are a number of data points from Central Mississippi and the Gulf of Mexico exhibiting 

lower NaJCI ratios, representing brines with a significant CaC12 component. In addition, at very 

low Cl concentrations, some of the San Juan waters exhibit anomalously high Na/Cl ratios due 

to the presence of carbonate species. The relationship between Na and Cl therefore appears 

simple at moderate salinities, but is influenced by other factors at very high and very low Cl 

concentrations. The relationship is further illustrated in a plot of Na/Cl against Cl (Figure 5.8). 

Calcium concentration also increases with increasing salinity, but the pattern is more complex 

than for Na (Figure 5.9). The Ca data appear to show at least two trends, a steeper curve 
indicating a greater increase in Ca with Cl (Trend I on Figure 5.9, predominantly Central 

Mississippi and North Sea data) and a shallower trend in which Ca concentrations do not 

increase as much with salinity (Trend 2 on Figure 5.9, predominantly Gulf of Mexico data). 

The two separate trends of increasing Ca with Cl are complemented by data from the same 

locations that exhibited "normal" (greater increase) and "low" (lesser increase) Na: Cl ratios 

respectively. Figure 5.10 is a simple cation cross plot that clearly illustrates a range of 

associations between Na and Ca. In very dilute waters (e. g. San Juan), there is a distinct lack of 

correlation between these cations, however as formation water concentration (and consequently 

cation concentration) increases, a clear positive correlation emerges. At higher formation water 

concentrations, there is again evidence for high Ca/low Na waters (Central Mississippi) and low 

Ca/high Na waters (Gulf of Mexico), although there are several exceptions to this behaviour. 
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5.3.3.2 The importance of mineral buffers ulhite plagioclase equilibrium 
Figures 5.11 and 5.12 show the results of further study into Ca and Na systematics of formation 

waters. The activity ratio aCa2'/a2Na' has been used in the past an indicator of the importance 
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of mineral buffers, generally considered to be exchange reactions between Ca and Na Al- 

silicates, in controlling the relative proportions of Ca and Na (e. g. Davisson and Criss, 1996). 

For example for anorthite and albite: 

2Na+ + CaAI2Si2O8 + 4SiO2 = 2NaAlSi3O8 + Cat' (1) 

Any reaction involving Ca 2+ "-º Na' exchange with any Ca and Na minerals will produce the 

same result. Hence, if this type of mineral buffer is important, the ratio aCa2+/aNa' should 

remain constant irrespective of salinity. A plot of log mol Ca/Na2 against Cl (Figure 5.11) 

shows that the ratio remains between -1 and 0.5, except in the low Cl-concentration waters of 

the San Juan Basin, Colombia and the Mahakam Basin, where the ratios increase to values as 
high as 2, and at high salinities, where some values are lower. Values for very high salinity 

waters should be treated with some caution because the raw cation concentrations can no longer 

be used as proxies for ion activities, since monovalent and divalent cations have very different 

activity coefficients. In dilute fluids artefacts may be introduced by the presence of other 

species. 

5.3.3.3 Other Ca-mineral buffers: carbonates, sulphates and halite 

Land and Macpherson (1992) maintain that Ca-rich waters can be formed from the dissolution 

of detrital anorthite because Ca-rich plagioclase is more soluble under diagenetic conditions 

than albite. However, it is important to note that other minerals can also release Ca into solution 

or affect Na/Ca ratios. Potential sources and sinks for Ca might include: dolomitisation and 

CaSO4 precipitation following the burial of Na poor seawater-derived brines or; halite 

dissolution followed by silicate reactions including anorthite dissolution (Land and Macpherson, 

1992). Combined silicate, carbonate reactions may also be important: 

2NaAlSi3O8 + H2O + H+ + Cat + HC03- = A12Si2O5(OH)4 + 4SiO2 + CaCO3 + 2Na+ (2) 

However, this is in fact two separate equilibria, involving kaolinitisation of albite and 

dissolution of calcite: 

2NaAISi3Og + H2O + 2H' = A12Si2O5(OH)4 + 4SiO2 + 2Na+ (3) 

Ca" + HC03 = CaCO3 + H+ (4) 

These reactions are as likely to be occurring in sedimentary reservoir rocks as reaction (1). If 

mineral buffers control the concentration of Ca and Na in formation waters, it is possible that a 

combination of silicate- and non-silicate equilibria is responsible for any deviations from Trends 

1 and 2 in Figure 5.9. The role of non-silicate equilibria is discussed in more detail in section 
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5.3.5. Figure 5.12 plots Ca as a proportion of the total major cations (Na+Ca) i. e. XCa, which 

will increase with Cl if mineral buffers control the Na: Ca relations. The XCa value does 

increase with salinity, however there are three separate trends reflecting three different types of 

Ca behaviour in solution. Trends 1 and 2 in Figure 5.12 correspond exactly with the same 

trends in Figure 5.9. 

At higher salinities, high Ca waters such as those from Central Mississippi reflect the 

continuation of the mineral-buffered trend and the increasing importance of Ca as a cation 

(Trend 1). At low salinities some waters exhibit anomalously high XCa values (Trend 3) which 

represent waters in which bicarbonate, not Cl, is the dominant anion. These waters will be 

discussed in more detail in section 5.3.5.1. 

Conversely, Na-rich, Ca-poor waters such as those from the Gulf of Mexico may be those in 

which mineral buffering is no longer the dominant process due to exceptionally high Na levels 

derived from evaporite dissolution (Trend 2). If the supply of Na' exceeds that required to 

albitise all the available plagioclase in a sediment (reaction 1), the fluid will be low in Ca 

relative to the mineral buffering trend, and so is likely to lie along Trend 2 (Figures 5.9,5.11 

and 5.12), rather than Trend 1. Where halite beds are present in the subsurface, halite 

dissolution is a likely origin for this effect: 

2NaC1 + CaAl2Si2Og + 4SiO2 + H2O = CaC12 + 2NaAlSi3O8 + H2O (5) 

The process is non-equilibrium and irreversible because the alteration of Ca-rich minerals will 

proceed to completion before equilibrium (aCa/a2Na) is attained. A simple model constructed 

to illustrate this process is shown in Figure 5.13. The model is based on a siliceous rock with 

10% porosity by weight. Although plagioclase is rare in many sandstones it is sometimes 

found, for example in sediments of the US Gulf Coast (Land and Macpherson, 1992) and may 

have been more common prior to diagenesis, thus it is useful to use as an easily controllable and 

quantifiable potential source of Ca in the model. For the purposes of the model, the original 

proportion of calcic plagioclase in the rock is systematically altered. The porosity is filled with 

water of variable salinity which reacts with all the Ca in the rock until albitisation is complete 

because either all the Ca or all the Na in the system is within a single phase. For any given 

amount of plagioclase in the rock, the relative importance of Ca in the final fluid decreases as 

the amount of salt in the system (the salinity of the pore water) increases. But overall, the 

proportion of Ca in the pore water increases with the amount of feldspar originally in the rock. 

The theory of this process can be applied to any Ca-bearing mineral in association with halite, 

however, to form this trend there must always be only a limited amount present in the rock, so 

that the final fluid composition is controlled by the original masses available. To summarise, 
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the blue generic buffering line in Figure 5.13 can be thought of as representing Trend 1, while 

the red mass limited line represents Trend 2. 
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with salt. The model is based on a siliceous rock with 10% porosity by weight with proportion 
of ('a-plagioclase systematically altered. Water of variable salinity reacts with all the Ca. 
Relative importance of ('a in the tinal fluid decreases as amount of salt increases. Overall, the 
proportion of Ca in the pore water increases with the amount of feldspar. B) Two models 
describing the behaviour of Ca in formation waters. The red line represents a mass limited trend 
where all the Ca in the reservoir rock is replaced by Na and the relative concentration of Ca 
decreases with salinity. The blue line represents a generic buffering trend with a large supply of 
any Ca-bearing mineral. Of Trend I in Figures 5.9 and 5.12 
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5.3.3.4 Evidence from global reservoirs 

Figure 5.14 illustrates that those waters with high Ca and relatively low Na at high salinities 

also have low Cl/Br ratios i. e. they are likely to have been derived originally from the 

evaporation of seawater with removal of halite. Conversely, those waters with high Na and 

relatively low Ca are likely to have been derived from evaporite dissolution. This suggests that 

generally bittern fluids are more likely to have equilibrated with the host than brines that 

dissolved halite. Interestingly, two fields from the same basin, the Gulf of Mexico, occupy 

completely different ends of the spectrum. This suggests that the waters from GOM Field 2 are 

seriously affected by local salt bodies and waters from GOM Field I are not, and yet they have 

achieved similar high salinities. 

Formation waters in the offshore Angola oil fields have moderate salinities (around 2M Cl). 

While it is true that salt dissolution has influenced the composition of these waters (section 

5.3.1.2), the present XCa values as part of Trend I (Figure 5.12) suggest that fluid buffering by 

some type of Ca-bearing mineral is still an important control on the Ca and Na concentrations in 

the water. The pattern of behaviour of Ca and Na in the Azerbaijan formation waters is 

particularly unusual and is not easily explained by the limited information in the literature 

(Jusufzade, 1995; Reynolds et at., 1998; Nummedal, 2002). The presence of the points below 

Trend 2 on Figure 5.12 does not fit in with any of the trends identified in the previous 

discussion. 
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Figure 5.14. High Cl/Br ratios indicate halite dissolution origin. With the exception of Central 
Mississippi, the GOM Field I and some sites in the North Sea, XCa values tend to increase with 
increasing Cl/Br ratio 
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5.3.4 Mineral buffers: Ca: Mg relations 

Magnesium also displays a positive correlation with Cl, with increasing variation in Mg 

concentration with increasing Cl. However, there is very little correlation between the Ca/Mg 

ratio and either Cl concentration (Figure 5.15) or temperature. Waters from all locations exhibit 

a relative increase in Ca and decrease in Mg when compared with seawater. The following 

plots are based on bulk analyses without allowance for Ca and Mg speciation. Since these 

cations complex quite well, the bulk analyses are not a very accurate proxy for the cation ratios, 

and this may be why the data scatters so much. 

Chlorite formation (Humphris and Thompson, 1978), especially from kaolinite at temperatures 

exceeding -90°C has the effect of removing Mg from solution (Egeberg and Aagaard, 1989). 

However, the most important control on the Mg content of formation waters in limestone- 

bearing sequences is likely to be dolomitisation of calcite or aragonite. Rosenberg and Holland 

(1964) determined the stability relations between calcite, dolomite and magnesite in 

hydrothermal solutions at temperatures between 275 and 420°C. Unfortunately, due to the 

problem of obtaining dolomite precipitates in the laboratory below 100°C, data are lacking for 

the Ca/Mg ratio in equilibrium with calcite and dolomite in lower-temperature sedimentary 

environments (Land, 1998; Hyeong and Capuano, 2001). Extrapolation of Rosenberg and 
Holland's (1964) stability fields is inherently unreliable; however these trends are plotted on 

Figure 5.16 together with the lower temperature waters of this study, which appear to span the 

boundaries between dominant carbonate phases with most points lying in the dolomite or calcite 

stability field, and the majority in the vicinity of the extrapolated calcite-dolomite boundary. 

Figure 5.17 is a T: Ca/Mg diagram created using the thermodynamic database in GWB. This plot 

shows that while the fluids are depleted in Mg relative to seawater, the Mg: Ca ratio is still too 
high for calcite saturation. It cannot confirm that the waters are in equilibrium with dolomite 

because the bicarbonate activity has not been specified. However, it shows that if a carbonate is 

present it should be dolomite, whereas in fact calcite is common. This suggests that at these 
temperatures the kinetic difficulties with dolomitisation remain. The fact that the analyses line 

up in the dolomite field could indicate metastable equilibrium between calcite and Mg-clay 
however. 
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Figure 5.17. Global waters plotted on a stability diagram using Geochemists' Workbench 
indicate that most waters have a Ca/Mg ratio too low to be in equilibrium with calcite. The ratio 
may be controlled by equilibrium between calcite and Mg-clay. 

5.3.5 Carbonate equilibria and the importance of CO 

Calcium-bearing carbonate minerals such as calcite and dolomite have been identified 

previously as potential sources of Ca and Mg in moderate salinity waters and their equilibrium 

with formation waters is a potential control on Ca and Mg concentrations. It has been shown 

that at moderate salinities Ca and Na proportions may be buffered by mineral equilibrium 

reactions (e. g. reaction 1). However, many petroleum reservoirs contain only detrital albite or 

already fully albitised plagioclase with Ca only present in calcite, dolomite, anhydrite or 

gypsum. In these circumstances Ca concentration is coupled to pCO2. The equation for calcite 

dissolution in this type of system is: 

CaCO3 + CO2 + H2O - Ca2 + 211CO, - (6) 

(see also reaction 2, earlier) where the equilibrium constant K: 

K= 10-60 = aCa`* aHCO; ' (7) 
pCO2 
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is controlled by pCO2. Carbonate equilibria reactions such as this control the absolute 

concentration of Ca rather than the Ca/Na ratio. However, it is highlighted in section 5.3.3.3 

that equilibria between minerals such as calcite and albite can control the ratio, e. g: 

log K= log (aCa/aNa2) + log jC0, 

Techniques are described by Kimblin (1995) and Mohamed and Worden (in press) to establish 

how much Ca has been derived from calcite dissolution as opposed to dissolution of sulphate 

minerals or other sources by plotting [(Ca'' + Mg'') - 0.5 HC03-1 against S042. These 

techniques are unfortunately not effective for higher salinity formation waters because there are 

additional potential sources of Ca in warm, deep, saline systems and as a result it is not possible 

to establish how much Ca has been derived from calcite dissolution. For example, the ratios of 

Ca/HCO3 derived from congruent dissolution of calcite or dolomite are -1.2 and -1.4 

respectively (Mohamed and Worden, in press), while the ratios for this dataset vary between 

0.000545 and -7000. 
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Figure 5.18. Bicarbonate shows a distinctive inverse correlation with CI at moderate to high 
salinities, which reverses slightly at low salinities. 

5.3.5.1 Low salinity bicarbonate waters 

Many low-salinity formation waters tend to be Na-HCO3 dominated (Hanor, 1994). An 

additional trend highlighted in studying Na and Ca behaviour in this dataset is the relatively 
high proportion of Ca in the very lowest salinity waters (Trend 3, Figure 5.11). At low 
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temperatures CaCO3 is more soluble than Ca-silicates (e. g. Maher el al., 2006) and low 

temperature, low salinity waters are more likely to be dominated by dissolved calcium 

bicarbonate (Figure 5.18). The inverse correlation between HCO3 and Cl may be due to a 

salting-out effect. The activity of water decreases with increasing Cl concentration (salinity), 

thus reducing the solubility of certain system components e. g. carbonates (see Chapter 4 for a 

discussion about salting-out with respect to silica solubility). High salinity also reduces CO2 

solubility. 

As discussed in Chapter 3, formation water compositions in the San Juan Basin are controlled 

by bicarbonate concentrations and equilibrium with Na-silicates and coal. Similar trends 

evident in low salinity waters from Colombia and the Mahakam Basin indicate that similar 

processes are occurring in these locations despite significant differences in age, temperature and 

mineralogical composition (See Table 5.3). 

5.3.4.3 Carbonate systematics in specific locations 

Colombian formation waters have extremely high XCa and Ca/Mg ratios and are the only 

waters whose speciated Ca and Mg values suggest that the most important carbonate in the 

system is calcite rather than dolomite. These characteristics may arise because quartz and small 

amounts of feldspar, clays and carbonates are the only minerals available to interact with the 

fluid (Cazier et al., 1995). Relatively high Ca values may reflect equilibrium of the waters with 

the small amounts of carbonate that are in the rock and suggests that the relevant carbonate is 

calcite. 

5.3.6 Sulphate and secondary mineral. precipitation 

5.3.6.1 Controls on sulphate concentrations 
Unlike bicarbonate, sulphate varies independently of the chloride concentration in formation 

waters (Hanor, 1994). In the case of the global dataset, SO4: Cl ratios vary over five orders of 

magnitude. Figures 5.19 and 5.20 show that there is very little correlation with either Cl or Ba, 

although there is a slight increase in SO4 with increasing salinity. It is likely that there are 

number of factors affecting SO4 concentration in formation waters including: reduction 

(biogenic and thermogenic) to sulphide (and therefore organic carbon availability and type, and 

temperature) and equilibrium with sulphate minerals (Worden et a!., 2003; McCartney et al., 
2005; Cross et al., 2004). 

A major control on the concentration of SO4 in formation waters is equilibrium with sulphate 

minerals, particularly barite and anhydrite. Barite solubility is a particular issue in the short 

term and is an important factor in the prediction of oilfield scales. High levels of Ba and SO4 
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cannot coexist due to the insoluble nature of barite. Thus, a strong inverse correlation between 

the two species might be expected and is conspicuous by its absence (Figure 5.20). Despite this, 

the vast majority of the data appear to be supersaturated with respect to the barite saturation 

curve for the relevant temperature and salinity (Figure 5.20). Since saturation is exceeded by 

orders of magnitude in many cases, these discrepancies merit further evaluation. 

Part of the problem may lie in the analysis for SO4. Until recently SO4 was derived from AA or 
ICP-AES measurements of total sulphur (Collins, I. 2006, pers. comm. ). These overestimate the 
SO4 content in many cases since there are water-soluble reduced sulphur species that can be 

present. In addition, other aqueous sulphate or bisulphate species may contribute to the overall 

concentration of SO4, causing the fluid to appear supersaturated with barite. When the specific 

activities of the Bat' and S042 ions (speciated using GWB) are plotted for each location, a 

number of fluids remain supersaturated (Figure 5.21). The amount of the excess SO4 present 

relative to a saturated fluid is plotted for each location on Figure 5.22. It is possible that waters 

remain supersaturated with respect to barite because slow kinetics have prevented the mineral 

from precipitating. However, barite scale is known to precipitate extremely rapidly under 

certain circumstances during the production of hydrocarbons. 

An explanation is required for the cause of the apparent poor quality of the remaining 

supersaturated analyses. A slightly reduced water will have a sulphide as a well as a sulphate 

component and the sulphide could contribute to an anomalously high measured sulphate value. 
Unfortunately, no redox pairs were analysed to be able to confirm is this is the case. Figure 

5.22 plots the amount of excess sulphate present in the formation water relative to the amount 

that should be present at barite saturation. It is possible that this excess sulphate actually 

equates to sulphide measured as part of the total sulphur. In general the fields with the highest 

saturation ratios are those which appear to have the highest relative proportion of sulphide. 

5.3.6.2 Specific examples 
It has been shown through extensive study of one field in particular (Miller, North Sea, Chapter 

4) that controls on SO4 concentration in waters from producing oilfields are complex. In this 

case, following mixing of formation water with injected seawater, there was a distinct loss of 
SO4 from the mixture that is greater than can be accounted for by precipitation of Ba and Sr 

sulphate minerals alone. It is likely that this decrease is either due to anhydrite precipitation or 

to SO4 reduction. Anhydrite precipitation from a mixture of waters should cause a 

corresponding drop in Ca concentrations, which is the direct opposite to what was observed. 
Sulphate reduction at depth is also believed to be responsible for higher levels of HCO3, as in 

the San Juan Basin (Chapter 3). However, there is no correlation between HCO3 and SO4, 

probably due to additional limitations imposed by carbonate and sulphate equilibria. 
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Figure 5.24. The concentration of Ba in solution decreases as the relative importance of SO4 as 
an anion increases. 

5.3.6.3 Barium and sulphate 

it is the Ba content of a formation water that will ultimately dictate its propensity to cause barite 

scale. Most barite scaling occurs due to mixing of incompatible waters, but the addition of a 

sulphate-rich water such as seawater to a formation will only cause scale if the formation water 

contains significant Ba. A simple test was carried out using GWB, where either 0.01M or 

0.0001M of SO4 was added to the formation water for each reservoir. The results (Figure 5.23) 

indicate that generally, waters with high Ba concentrations are more susceptible to barite scaling 

on addition of sulphate to the system, even if a low-Ba water is close to barite saturation or 

supersaturated. This figure relates well to the actual occurrence of scale for example, Angola is 

predicted to be extremely susceptible to scaling and the area is known to have employed scale 

mitigation techniques. 

Thus, Ba in solution is closely linked to the presence of SO4, but the behaviour of Ba and the 

controls on its composition in formation waters are poorly understood. Indeed, there is a 

general trend towards lower Ba at higher relative SO4 concentrations (Figure 5.24); however 

while there is also higher Ba at higher Cl concentrations (Figure 5.25), there is no evidence for 

any significant correlation to any other major species. 
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It would be expected that in general Ba concentrations would increase with increasing Cl due to 

charge balance constraints, but the trend is not clear-cut and there is some evidence that there 

are other controls on Ba compositions (Figure 5.25). The relative importance of Ba compared 

to all other cations in solution does not appear to be related to salinity (Figure 5.26). That is, 

high Ba concentrations are not simply related to other features of water composition. 

Ba is a common constituent of igneous K-feldspar (Land, 1987; Worden et a!., 1999) and it is 

believed that some Ba-rich waters may have formed due to the recrystallisation of high- T K- 

feldspar to low-T, low-Ba K-feldspar. The mineralogical and diagenctic history of most of the 

locations in the global database is neither detailed nor specific enough to assess the link between 

mineralogy and Ba concentration. However, due to the extended period of exploration in the 

area, there is a wealth of information relating to individual fields in the North Sea. When Ba is 

plotted as a proportion of the total cations as a function of Cl concentration for specific North 

Sea oil fields, two trends become apparent (Figure 5.27). Some fields maintain low Ba levels 

regardless of salinity (Trend 1), whereas others show increasing Ba with increasing Cl 

concentration (Trend 2). As a general rule, fields whose Ba concentration increases with Cl 

tend to be deeper and have less saline formation waters, although variability in temperature is 

consistent throughout the whole North Sea. Interestingly, the fields containing Ba-rich pore 

waters all tend to have reservoir rocks from high energy environments, such as fluvial deposits 

and most commonly, turbidites. Conversely, the low-Ba fields are generally aeolian, deltaic, 

shallow marine or lacustrine. 
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Figure 5.26. The relative importance of Ba as a cation is not affected by changes in salinity. 
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rocks of Jurassic age containing K-feldspar. 
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Significantly, the reservoir rocks from all the fields with increasing Ba are Jurassic or 

Palaeocene in age, while only four fields with Jurassic age rocks (Clyde, Beatrice, Gyda and 

Highlander) have formation water with low Ba concentrations. In particular, the rocks from the 

Jurassic Brae Formation (e. g. Miller, Central, South and North Brae fields) have very high 

relative Ba concentrations and these reservoir rocks are all of shallow marine origin. 

The trend of increasing Ba importance with salinity is likely due to equilibrium with Ba-bearing 

minerals in the reservoir rocks and correlates with increasing K concentrations. Those fields 

with consistently low Ba concentrations probably contain little or no K-feldspar and charge 

balance required by increasing Cl concentrations must be maintained through equilibrium with 

other minerals. 

While there is little evidence for it in this dataset, the relative Ba concentration of formation 

waters may also be a function of the residence time of the water in the reservoir, if Ba is 

released by recrystallisation of K-feldspar. Those waters which are relatively static and which 

have experienced prolonged contact with a rock containing K-feldspar are likely to contain 

more Ba than a dynamic formation water moving through a similar kind of rock, which may 

have been previously leached of Ba. 

5.3.6.4 Calcium and sulphate 
A further constraint on the behaviour of both Ca and SO4 in formation waters to be considered 

is equilibrium with gypsum or anyhydrite. Calcium sulphate minerals are likely to precipitate 

from seawater during burial-induced heating (Holland and Malinin, 1979): 

CaSO4. H20 4-+ SO42 + Caz+ + 2H20 (8) 

Dissolution of sulphate minerals during flushing or fluid mixing would be observed as high SO4 

concentrations and significant amounts of dissolved cation-SO, species. 

5.4 Statistical data analysis 

Statistical techniques can be extremely useful when studying large amounts of numerical data 

and are used here to further constrain the main controls on formation water chemistry. Principal 

components analysis (PCA) and hierarchical cluster analysis (HCA), designed to condense the 

data and identify general trends, are used to better understand a dataset as detailed as this. 

These methods of analysis were carried out on the bulk of the global data and the results are 

presented below. 
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5.4.1 Principal Components Analysis 

PCA is a commonly used technique for finding patterns in data of high dimension and 

expressing the data in such a way as to highlight their similarities and differences. PCA 

involves transferring the data such that its (multidimensional) variability (variance) can be 

expressed using fewer dimensions. The reduced dimensions are known as Principal 

Components (PCs) and the PC that accounts for most of the variability of the data generally 

describes the most important aspects of this data (Swan and Sandilands, 1995). 

Initial variables included in the analysis were: molar concentrations of Na, K, Mg, Ca, Ba, Cl 

and SO4, together with XCa (Ca/Ca+Na) and Na/K ratios. Excel was used with the statistiXL 

add-on to carry out both PCA and HCA techniques. Following the initial analysis, further tests 

were carried out using fewer initial variables to continue to define the principal data controls 

(Appendix IX). 

5.4.2 PCA Results 

Table 5.5. Initial PCA test (test 1) - all data included, 39% of the variability is accounted for by 
PC1 

Explained Variance (Eigenvalues) 
Value PC 1 PC 2 PC 3 PC 4 PC 5 PC 6_ 
Eigenvalue 3.522 1.162 1.123 1.040 0.810 0.613 

% of Var. 39.132 12.912 12.479 11.560 8.999 6.808 
Cum. % 39.132 52.044 64.523 76.083 85.081 91.890 

Component Loadings 
(correlations between initial variables and principal components 
Variable PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 
Na 0.767 0.328 0.305 -0.271 -0.303 -0.074 
K 0.593 -0.329 -0.030 -0.221 0.396 -0.548 
Mg 0.723 0.179 -0.100 0.160 0.022 0.290 
Ca 0.878 -0.086 -0.101 0.258 0.082 0.021 
Ba 0.079 -0.448 0.738 -0.212 0.297 0.339 
ci 0.902 0.220 0.216 -0.134 -0.204 -0.041 
S04 0.174 0.113 -0.538 -0.719 0.251 0.274 
xca 0.650 -0.319 -0.294 0.441 0.147 0.173 
Na/K -0.117 0.737 0.203 0.226 0.583 -0.028 

The first three principal components account for -65% of the variance in the dataset. The 

relative values of the PCs can give an indication if the most important factors affecting fluid 

composition. For example, PCI accounts for nearly 40% of the variance and is likely to be 

related to salinity, on which Cl, Na, Mg, and Ca have a strong dependence; Ba, SO4 and Na/K 

values appear to be less dependent on salinity. Similarly, PC2 is correlated with MgCI2, PC3 

with BaCI, PC4 with the hardness (alkaline earth metals, Mg + Ca), PC5 with K, Ba and SO4 

and PC6 with Mg, Ba and SO4. Thus, according to the numbers, most of the variance is due to 

salinity and then the rest is related to the divalent cations. However, PCA is most useful in 
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identifying similarities and differences within and between datasets from different locations. 

Figure 5.28 shows how the data cluster on cross plots of the first three PCs. Seawater is 

believed to have been a major contributor to many formation waters worldwide. If the original 

source of formation waters was a dominant control on their compositions, then a "fingerprint" 

common to seawater-derived waters would be expected in PCA. However, it is clear that most 

locations occupy distinct areas of the plot, indicating that alternative controls on formation 

water composition are important. 

Changing the original analysis by removing a certain parameter (e. g. Table 5.6) changes the 

result slightly. However, the relative importance of the different PCs remains unaltered and the 

formation waters still appear separately on a PC cross plot. It is also useful to note that waters 

tend to cluster on these plots according to their geographical locations, emphasising the 

similarities between waters from particular reservoirs. 

Table 5.6. PCA test 2- Na/K ratio removed from analysis, nearly 44% of the variance is 

accounted for by PC 1 

Explained Variance (Eigenvalues 

Value PC 1 PC 2 PC 3 PC 4 PC 5 

Eigenvalue 3.512 1.126 1.056 0.952 0.613 
% of Var. 43.902 14.080 13.198 11.903 7.665 
Cum. % 43.902 57.981 71.179 83.082 90.746 

Component Loadings 
(correlations between initial variables and princi pal components) 
Variable PC 1 PC 2 PC 3 PC 4 PC 5 
Na 0.770 0.167 -0.469 -0.326 -0.084 
K 0.590 0.078 0.006 0.560 -0.536 
Mg 0.726 -0.145 0.082 -0.156 0.303 
Ca 0.878 -0.055 0.296 0.025 0.023 
Ba 0.075 0.841 -0.092 0.399 0.345 
Cl 0.905 0.125 -0.274 -0.238 -0.047 
S04 0.172 -0.567 -0.546 0.513 0.276 
XCa 0.646 -0.154 0.600 0.168 0.170 

5.4.3 Implications of statistical analysis 

The most important information that can be gained from the statistical analyses is that salinity is 

the overriding characteristic of formation waters and determines much of the variability 

observed. It is likely, due to the differences observed, that water-rock interactions account for 

the rest of the variability and are extremely important in determining the present formation 

water compositions. Significantly, while trends can be identified from individual ion 

concentrations and ratios, using both traditional and statistical techniques, all the formation 

water chemistry information available is of no use without further knowledge of the mineralogy 

of the system. 
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Figure 5.28. Scatter plots showing the distribution of data according to the principal 
components controlling the variance. A: PCI and PC2, most of the variance is attributed to PC 1, 
B: PC3 and PC2 account for similar amounts of the variance and the data is scattered at the 
centre of the plot. Note the clustering of like waters with like on both plots, particularly very 
high- and very low-salinity waters. 
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5.5 Discussion and conclusions 

Formation waters are extremely susceptible to alteration, even on relatively rapid timescales. It 

has been shown that in many respects, formation waters reflect the mineralogy of their current 

reservoir rock and present pore waters often bear little resemblance to the original water buried 

with the sediment. The chemistry of most formation waters generally reflect their origins in the 

concentration of conservative constituents such as chloride and bromide. Cl/Br ratios form a 

continuous seawater evaporation/dissolution trend and Cl provides an effective basis for water 

comparisons. Initial salinity dictates the original dissolved load of the fluid, its pH and the 

extent to which it will react with the surrounding rocks, except where more salt is dissolved. 

However, it is the subsequent fluid-rock reactions that are the most important factors in 

dictating the current composition of the waters. 

Most importantly, cation concentrations are modified by fluid-rock interactions, the evidence 

for which is found when comparing formation water compositions with mineralogy across a 

range of geological settings. One of the best illustrations of this is the multifaceted example of 

Ca behaviour in formation waters (Figures 5.12 and 5.13). 

The Ca concentration can be "mass limited". For example, when the system consists entirely of 

siliceous minerals and pore-space filled with salty water, such that all the Ca in the rock is 

replaced by Na, the relative importance of Ca in the pore water decreases with increasing 

salinity. This contradicts what is observed in the real data over mid-range salinity values. But, 

the effect is reduced when the rock contains more feldspar, reflecting the Ca source from the 

feldspar. 

Previous explanations for the increase in Ca concentration with salinity, such as simple albite- 

plagioclase equilibrium, were limited in their scope. At moderate salinities, when there is an 

adequate supply of any Ca-bearing phase, then the Ca concentration will be limited by buffering 

with this phase. That is, equilibrium between albite and any other Ca bearing phase will cause 

XCa to increase with salinity. This is because as long as there is a source of Ca from calcic 

plagioclase, calcite, sulphate or epidote, the ratio will be buffered (generic buffering trend). 

Then, at higher salinities, the pH decreases and more Ca is likely to dissolve into solution and 

more CaCI complexes will form, increasing the total amount of Ca in the formation water. 
Finally, at low salinities, formation waters are dominated by bicarbonate and it is the 

equilibrium between the formation waters and carbonate minerals that controls the Ca 

composition. 
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In addition to Ca, the behaviour of other cations exhibit compelling evidence for the influence 

of water-rock interactions. Potassium in formation waters appears to be strongly influenced by 

equilibrium with the K-bearing phases of K-feldspar, mica and illite. The Na/K systematics 

tend to indicate metastable equilibrium between K-feldspar and albite or K-feldspar and kaolin 

for most waters at lower temperatures. Waters with higher K/Cl ratios (e. g. low salinity waters 

such as Colombia and Mahakam) tend to sit in the kaolin stability field, close to the line of 

metastable equilibrium between K-feldspar and albite. 

The details of the controls on Mg (and Ca) compositions of formation waters, particularly with 

respect to carbonate equilibria, remain uncertain. The foregoing type of data analysis cannot 

distinguish between influence of carbonates or clay minerals - knowledge of the reservoir 

mineralogy is required. However, it can be determined that all the waters have Ca/Mg ratios 

which are too high for calcite saturation. Calcite is a common constituent of many oilfield 

reservoir mineral assemblages. This suggests Mg concentration in formation waters is 

controlled either by equilibrium with dolomite or possibly metastable equilibrium between 

calcite and Mg-clay. 

All the fluid constituents examined form continuous global trends, which suggests that different 

fluid compositions are the result of similar processes occurring under subtly different 

circumstances. For example, there is a continuous spectrum from high Ca levels at low 

salinities being controlled by HCO3 concentrations through moderate-high salinity/high Ca 

silicate buffered waters to high salinity/low Ca waters dominated by evaporite derived salts. 

Bicarbonate is inversely correlated with chloride (Figure 13); waters with very low Cl therefore 

having higher HCO3 and more influence over carbonate equilibrium allowing relatively more 

Ca into solution, and waters with very high Cl and low HCO3 nevertheless also having high Ca 

levels due to silicate buffering of charge balance. In fact, two major controls on Ca 

concentration in global formation waters are: the nature of the dominant anion (i. e. Cl or HCO3) 

and the origin of the salinity (i. e. seawater evaporation or evaporite dissolution). 

However, it should be noted that while trends are evident on a global scale and similar processes 

occur everywhere, local geology remains a critical factor. For example, two oilfields in the 

same Gulf of Mexico region, positioned geographically relatively close together, show evidence 
for two different dominant controls on Ca concentration. 

The recognition of the continuous spectrum introduces a degree of predictability into studies of 

formation waters and suggests that for a given salinity and a given rock type, the cation 

concentration of the water could be calculated. Thus, the presence of halite indicated by seismic 

surveys etc could be used to predict whether water will fall in Ca behaviour Trend I or 2, 
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allowing some limited interpretation of the nature of the formation water before ever a water 

sample is taken. However, due to uncertainties regarding estimates of subsurface pore water 

chemistry, mineralogy and knowledge gaps in our kinetic and thermodynamic database on many 
key reactions, uncertainties still exist regarding the controls on many reactions. 

5.5.1 Implications for mineral scaling in oilfields 
Carbonate mineral scaling occurs due to changes in temperature and pressure as oil and water 

are pumped from the reservoir. CaCO3 becomes more insoluble as the pressure drops and 

calcite is likely to precipitate. Understanding the controls on Ca and CO2 in formation waters is 

therefore important in predicting the likelihood of carbonate scale precipitating. This study has 

provided information about the controls on Ca concentration in particular. Waters high in Ca 

are those which are likely to be more susceptible to form calcite scale and these waters tend to 
include high-salinity waters buffered by Ca-bearing minerals or low-salinity waters with high 

HCO3 levels. Those moderate-high salinity waters which are associated with salt bodies are 
likely to be lower risk. 

Barite scale forms due to the interaction of incompatible Ba and SO4. It has been established 
through this study that the initial calculated saturation ratio is an unreliable measure of the 
likelihood of barite scale precipitating. High Ba waters tend to be higher risk and high SO4 

waters lower risk, regardless of whether the water is saturated or supersaturated with regard to 
barite. Predicting the occurrence of high Ba waters is not trivial, but in the North Sea, those 

waters which have been associated with K-feldspar bearing rocks for long periods of geological 
time are more likely to contain high levels of Ba. 

5.5.2 Conclusions and general guidelines 
In studying the waters in this dataset I have identified a number of guidelines that can be applied 
to most formation waters: 

" General trends applicable only on a global scale - not possible to identify local controls. 

" General rules 

- Mineralogy-related 

o The presence of Ca-bearing minerals will buffer XCa values unless the system 
is mass limited by the presence of large amounts of salt. 

o K-feldspar/albite equilibrium will buffer Na/K values along the equilibrium 
boundary unless the ratios are influenced by the presence of micas and clays 
such as illite and kaolin. 

o The presence of Mg-clays in a reservoir rock can cause Mg/Ca ratios to appear 
to be in equilibrium with dolomite, even if calcite is the only carbonate phase 
present. 
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o Waters which deviate significantly from global trends are likely to have come 

from very clean reservoirs with few reactive minerals, or reservoirs containing 

large amounts of unusual minerals. 

- Fluid-related 

o Salinity higher than TDS = 100000 mg/l and XCa > 0.15 indicates Ca 

concentration buffered by Ca-bearing silicate, carbonate or sulphate mineral 

o Salinity higher than TDS = 100000 mg/l and XCa < 0.15 indicates influence of 

halite dissolution 

o Salinity lower than TDS = 5000 and XCa >-0.06 indicates dominance of' 

bicarbonate (if other indicators are present) 

o Low salinity waters with high HCO3 are likely to have anomalously high 

relative Na concentrations 

o At chlorinities greater than -1.5 any water with Na/Cl =I is likely to have a 

composition dominated by interaction with halite, waters that have interacted 

with other minerals will have Na/Cl < 1. 

o Waters high in Ba are more susceptible to barite scaling than those with high 

SO4, regardless of degree of supersaturation 

o Formation water analyses for sulphate are probably unreliable 
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Figure 5.29. Summary diagram illustrating the dominant controls on formation water 
compositions as determined through past studies and the foregoing data analysis exercise. The 

origin of the fluid and it's adaptation through surface processes form the basis for any 
subsequent water-rock interaction and dictate the Cl/Br ratio. Following burial, the composition 
of any given water is controlled by a number of water-rock interaction processes. However, 
these processes do not act in isolation and each can be said to have a bearing on a number of 
others. 
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Table 5.7. Likely controls on particular fluid components in the formation waters of the 
Alberta Basin Devonian rocks 

Ion pair/ 
Water 
constituent Buffering/Limiting assemblages 

Cl/Br Seawater evaporation 
K/Na K-feldspar dissolution as a K-source (Low Na concentrations) 
Ca/Na Ca-mineral buffering (likely carbonates) 
Ca/Mg Calcite: dolomite equilibrium 
S04 Anhydrite 
Ba ? 

Table 5.8. Likely controls on particular fluid components in the formation waters of the Alberta 

_Tnrassic and Cretaceous rocks 
Ion pair/ 
Water 
constituent Buffering/Limiting assemblages 

Cl/Br Seawater evaporation 
K/Na K-feldspar-kaolin equilibrium (clay mineral reactions) 
Ca/Na Ca-mineral buffering (likely carbonates and clays) 
Ca/Mg Carbonate cements, clay mineral buffering 
S04 (K-feldspar dissolution - through limiting Ba concentrations) 
Ba K-feldspar dissolution 

Table 5.9. Likely controls on particular fluid components in the formation waters offshore 
Angola 

Ion pair/ 
Water 
constituent Buffering/Limiting assemblages 

Cl/Br Close to seawater, slight evaporite dissolution signature 
K/Na K-feldspar-kaolin-albite equilibria 
Ca/Na Ca-mineral buffering, no real halite influence 
Ca/Mg Mg-clays and calcite equilibrium 

Sulphate reduction and higher Be concentration (K-feldspar 
S04 dissolution - through limiting Be concentrations) 
Be K-feldspar dissolution 

Table 5.10. Likely controls on particular fluid components in the formation waters offshore 
Azerbaiian in the Caspian Sea 

Ion pair 
Water 
constituent Buffering/Limiting assemblages 

Cl/Br ? Seawater evaporation - Caspian seawater is unusual 
K/Na K-feldspar/kaolin - Albite/Na-clay equilibrium 
Ca/Na Clay minerals/ lithic fragments 
Ca/Mg Clay minerals/ lithic fragments 
S04 Near barite saturation 
Ba Near barite saturation 
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Table 5.11. Likely controls on particular fluid components in the formation waters of Central 
Mississippi, US 

Ion pair/ 
Water 
constituent Buffering/Limiting assemblages 

Cl/Br Seawater evaporation 
K/Na K-feldspar-clay equilibria - kaolin+illite, no additional Na source 
Ca/Na Ca-mineral buffering, carbonates+anhydrite 
Ca/Mg Calcite-dolomite equilibria 
S04 ? Anhydrite 
Ba K-feldspar dissolution 

Table 5.12. Likely controls on particular fluid components in the formation waters of Colombia 
in the Llanos basin 

Ion pair/ 
Water 
constituent Bufferin /Limitin assemble es 

Cl/Br ? 
K/Na K-feldspar, no additional Na source 
Ca/Na Carbonate clasts, low salinity carbonate trend 
Ca/Mg Carbonate clasts 
HCO3 Limited numbers of carbonate clasts 
S04 Original sulphate 
Be K-feldspar 

Table 5.13. Likely controls on particular fluid components in the formation waters of the 
Mahakam Basin, Kallimantan, Indonesia 

Ion pair/ 
Water 
constituent Buffering/Limiting assemblages 

Cl/Br ? 
K/Na K-feldspar-kaolin 

Carbonate cements and detrital calcite, additional source of Na ? sodic 
Ca/Na plagioclase 
Ca/Mg Calcite-dolomite 
S04 ? Source of S04 to cause high levels 
Ba ? 
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Table 5.14. Likely controls on particular fluid components in the formation waters of Offshore 
Gulf of Mexico, Field 1 in the Green Canyon Area 

Ion pair 1 
Water 
constituent Buffering/Limiting assemblages 

Cl/Br Seawater evaporation 
K/Na Kaolin + possible K-feldspar alteration 
Ca/Na Ca-bearing minerals + salt interaction 
Ca/Mg Mg Clays 
S04 ? Sulphate reduction 
Ba K-feldspar 

Table 5.15. Likely controls on particular fluid components in the formation waters of Offshore 
Gulf of Mexico, Field 2 on the Viosca Knoll 
Ion pair 
Water 
constituent Buffering/Limiting assemble es 

Cl/Br Halite dissolution 
K/Na K-feldspar-kaolin + albite/Na-clay 
Ca/Na Mass limited, salt interaction 
Ca/Mg Mg clays 
S04 ? Sulphate reduction 
Ba K-feldspar 

Table 5.16. Likely controls on particular fluid components in the formation waters of Offshore 
Gulf of Mexico, Field 3 

Ion pair 
Water 
constituent 

Buffering/Limiting 
assemblages 

Cl/Br Close to seawater 
K/Na Albitisation of K-feldspar 
Ca/Na Ca mineral buffering 
Ca/Mg ? 
S04 ? 
Ba ? 

Table 5.17. Likely controls on particular fluid components in the formation waters of the 
Offshore Gulf of Mexico, Offshore Louisiana, Vermillion Block 31 
Ion pair I 
Water 
constituent Buffering/Limiting assemblages 

Cl/Br Halite dissolution 
K/Na No pH data, likely K-feldspar dissolution 
Ca/Na Mass limited, salt influence 
Ca/Mg Carbonate equilibria - calcite 
S04 Barite equilibrium 
Be Barite equilibrium 
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Table 5.18. Likely controls on particular fluid components in the formation waters of the 
Chocolate/Halls Bayou and West Colombia fields in Brazoria County on the Texas Gulf Coast 

Ion pair/ 
Water 
constituent Buffering/Limiting assemblages 

Cl/Br Halite dissolution 
K/Na K-feldspar-kaolin + albite 
Ca/Na Albitisation of plagioclase + some influence from salt 
Ca/Mg Carbonate equilibria and clay minerals 
S04 ? Low sulphate, barite solubility 
Be K-feldspar 

Table 5.19. Likely controls on particular fluid components in the formation waters of the 
northern San Juan Basin, Colorado and New Mexico 
Ion pair 
Water 
constituent Suffering/Limiting assemblages 

Cl/Br Influenced by Br from organics 
K/Na K-feldspar-kaolin + influence from Na-clays 
Ca/Na Low temperature carbonate equilibria + clay dissolution 
Ca/Mg Ion exchange, carbonate equilibria 
S04 Oxidation of sulphides and sulphate reduction 
Be K-feldspar 
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6. THE SIGNIFICANCE OF FORMATION WATER CHEMISTRY FOR CO2 
SEQUESTRATION 

6.1 Introduction 

Carbon dioxide is a greenhouse gas, part of a group of gases including methane whose increasing 

concentrations (Figure 6.1) contribute to global warming trends (Broecker, 2006). Evidence has 

shown that anthropogenic contribution to CO2 in the atmosphere has caused concentrations to rise 

progressively in recent years (White et al., 2003). The permanent sequestration of CO2 from the 

atmosphere is now considered a viable option to mitigate the effects of increased greenhouse gas 

emissions (Dove et al., 1998, UK DTI, 2002). One of the most simple and well-researched 

possibilities is that of subsurface CO2 storage in pre-existing hydrocarbon reservoirs, for which, in 

the UK, much of the necessary infrastructure is already in place (White et al., 2003). 
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Figure 6.1. Atmospheric average annual C02 concentrations (ppmv) derived from in situ air 
samples collected at Mauna Loa Observatory, Hawaii from 1959 to 2003 

It was highlighted in Chapter 4 that the success of injecting CO2 into an oil reservoir for permanent 

storage depends on a number of reactions and interactions between the gas, the pore water and the 
host rock and the rate at which these reactions occur. In particular, the most important steps involve 

the dissolution of the gas into the formation water, the reaction of the dissolved gas with minerals to 

form stable bicarbonate solutions and the subsequent reaction of bicarbonate with divalent cations 

to form carbonate mineral (reactions 1-3). An intermediate step that may be potentially damaging 

to the storage process is the dissolution of carbonate minerals by the water with reduced pH 
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(Kharaka et al., 2006). This could lead to damage of impermeable seals if restorative processes 

such as silicate reactions are too slow (e. g. reaction 3). 

Carbonic acid dissociation: CO2 + H2O = HCO3 + H+ (1) 

Acid neutralisation: it + CaCO3 = HC03 + Ca2+ (2) 

3KAISl3O8 + 2H+ = KAI3S13OlO(OH)2 + SiO2(Qy) + 21 (3) 

Detailed knowledge of the chemical composition of the formation water and the mineralogy of the 

reservoir will enable prediction of the behaviour of a system on injection of C02, although it is also 

necessary to understand the relative rates of the different reaction steps, something that is beyond 

the scope of this study. 

6.2 Aims 
This study aims to model the effect of CO2 injection into each of the reservoirs discussed in Chapter 

5 (see Table 6.1) using real water compositions together with realistic reservoir mineralogical 
information. The study is performed in the knowledge that some of the relevant reactions can occur 

rapidly on the timescales required, but differential rates have not been incorporated in the 

modelling. 

6.3 Past studies 

Previously, Gunter et al. (1993,1997) conducted a series of similar geochemical modelling 

exercises and modelled water-rock reactions driven by the formation of carbonic acid when waste 
CO2 is injected into deep aquifers (Gunter et al., 1993). The authors concluded that for Na/K- 

bearing silicate minerals, neutralization of the CO2 results in development of bicarbonate waters. 
For Fe/Ca/Mg-bearing minerals, neutralization of CO2 results in precipitation of siderite, calcite or 
dolomite with the ionic strength of the formation water remaining relatively constant. Both paths 

result in substantial trapping and immobilization of C02, minimizing the possibility of the C02 

charged formation water reaching the surface. In addition, they found that experiments carried out 

at 105°C and 90 bars CO2 pressure, to test the validity of this mineral-trapping of CO2 were 

unsuccessful due to sluggish kinetics of reaction. The most significant change recorded by the 

reaction products from these experiments was a large increase in alkalinity, which was attributed to 

very small amounts of water-mineral reaction (Gunter, 1997). 
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Baines and Worden (2004) examined and modelled natural analogues (including the Miller Field, 

see Chapter 4) to illustrate the point that carbonate minerals cannot be precipitated without a viable 

source of available cations. The results were similar to those obtained by Gunter et al. (1993, 

1997). They concluded that CO2 added naturally to carbonate rocks or carbonate cemented pure 

quartz sandstones over geological time causes carbonate minerals to dissolve due to the drop in pH. 
Once formation water is saturated with CO2 it will remain as a gas and increase the fluid pressure. 
On the other hand, they argue that if CO2 is added to a reactive sandstone with silicates providing 

active pH buffers, then CO2 will tend to be sequestered as carbonate minerals, but only on a 

geological timescale. These authors are pessimistic about how effective these systems may be as 

storage sites for CO2. However, they consider "permanent" storage to include only the precipitation 

of the CO2 as carbonate minerals, whereas it is possible that simple irreversible dissolution of the 

gas to bicarbonate ions, with pH buffered by minerals on a rapid timescale may be sufficient, 

provided that the neutralisation of the acidity is not achieved by reactions that compromise the 

seals. In addition, the natural analogue processes studied here occurred slowly over extremely long 

periods of time. In systems experiencing artificial injection, such as those discussed below, 

carbonate dissolution occurs extremely rapidly and the question is therefore whether reactive 

sandstones can buffer pH on these much shorter timescales. 

Emberley et al. (2005) presented the results of studying produced waters from a Canadian carbonate 

reservoir undergoing CO2 injection as a form of EOR. After 6 months of injection of C029 the 

authors note that pH had decreased by 0.5 units to a range of 5.9-6.4 from 6.5-7, and alkalinity had 

increased. The authors indicate that this change is more than likely due to the dissolution of CO2 in 

the water. The pH returned to its pre-injection values on a timescale of months. Ca concentration 
increased and chemical and isotopic data suggest this change in distribution is caused by the 

dissolution of calcite due to water-rock reactions driven by CO2. They conclude that addition of 
CO2 to water-rock mixtures comprising carbonate minerals causes dissolution of carbonates and 

production of alkalinity (Emberley et al., 1997). The late increase of pH and the increase of silica 
in solution suggested silicate minerals were also reactive in great enough amounts to buffer the pH. 

Kaszuba et al. (2003) carried out experiments in a flexible cell hydrothermal apparatus to determine 

the extent of fluid-rock reactions, in addition to carbonate precipitation, that may occur in a brine 

aquifer-aquitard system that simulates a saline aquifer storage scenario. The system was held at 
NOT and 200 bars then injected with CO2 and allowed to react. Results including magnesite 

precipitation, etch pits in microcline, and mineralization of clays indicated significant dissolution 

and precipitation of minerals reacting to the perturbed system. Geological sequestration systems are 
therefore believed to have potential for geochemical reactions that extend beyond simple aqueous 
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dissolution of CO2 and dissolution or precipitation of carbonates. These reactions may produce 

geochemical and geotechnical consequences for sequestration and provide important characteristics 
for monitoring and evaluation of stored CO 2 (Kaszuba et al., 2003). 

To investigate the potential for the geologic storage of CO2 in saline sedimentary aquifers, Kharaka 

et al. (2006) injected CO2 at 1500 m depth into a 24-m-thick sandstone section of the Frio 

Formation on U. S. Gulf Coast. They observed just prior to CO2 breakthrough to the monitoring well 

after about 52 hours, the fluid showed sharp drops in pH (6.5-5.7) and increases in alkalinity (100- 

3000 mg/l as HCO3) and Fe (30-1100 mg/1). The authors concluded that such rapid dissolution of 

carbonates could damage the integrity of seals or well cements and lead to leakage. 

6.4 Method 

Following the method described in Baines and Worden (2004), Geochemist's Workbench (GWB) 

has been used to model the reactions that might take place on anthropogenic forced addition of CO2 

to different geological systems. The models were all constructed for a rock with 20% porosity (P- 

4000cm3 minerals to -I kg H20), with temperature, specific mineralogy (Table 6.1) and mineral 

proportions, water composition and pH based on values reported in the database. 30g of CO2 was 

then progressively added. 30g was chosen rather than 100g used by Baines and Worden (2004) 

because this is close to the limit of CO2 saturation in water (Hangx, 2005). Note that close to the 

injector wells the CO2 added will be much higher than this in effect, resulting in a free CO2 phase 
(Kharaka et al., 2006). 

To answer the questions that may be posed about degradation of reservoir properties, fluid 

displacement, mechanical interaction etc is beyond the scope of this study. However, models for 

the different reservoirs establish the changing fugacity of CO2 and potential for formation of 
bicarbonate ions and carbonate minerals information which is essential for the safe storage of CO2. 

It is important to note that a modelling approach is necessarily limited due to lack of good kinetic 

data (Baines and Worden, 2004). The following study is simply a means of establishing what might 
happen and for the first time makes use of real mineralogical and water composition data. 
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Table 6.1. Mineralogical input for each reservoir. Each mineral was included as the free quantity 
(cm') listed here, relative to lkg H2O, and was swapped into the basis replacing a relevant cation or 
anion. Locations in italics indicate failure to model the system; in these cases the effect of adding 
CO2 was modelled without minerals present 

0 ZF Pr 9- C 9. 0 EL 0 =: 
CDD ° N 

, 

Alberta 50 2000 1500 50 150 250 

Angola 250 250 500 500 2500 

Azerbaijan 250 100 150 500 3000 
Central 

200 200 200 200 200 3000 
Mississippi 

Colombia 150 50 300 3000 

Mahakam 250 750 125 125 125 500 125 2000 
GOM 

500 300 350 350 500 2000 
Field 1 

GOM 
500 125 125 1000 2500 

Field2 

Offshore 
250 500 250 250 250 250 250 50 2000 

Louisiana 

Texas Gulf 
250 500 200 200 100 250 250 250 2000 

Coast 

San Juan 100 2000 200 1700 

6.5 Results 
6.5.1 Reservoir response to CO2 injection 

Different types of mineral assemblage react to the effects of CO2 injection in different ways. The 
following examples outline these differences and highlight the reactions that are most important to 
the success of any CO2 sequestration scheme. 
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Figure 6.2. Important minerals in the Colombian reservoir system as CO2 is added. Example of a 
mineralogically pure sandstone. Plot generated using Gtplot as part of GWB. 
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Figure 6.3. Behaviour of fluid components in the Colombian reservoir fluids as CO2 is added. 
Example of a mineralogically pure sandstone. Plot generated using Gtplot as part of GWB. 
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6.5.1.1 Pure quartzose sandstone - Colombia 

The original minerals specified to be present in the Colombian sandstone were quartz, calcite, K- 

feldspar and kaolinite. The sandstone is in fact extremely clean and any mineral other than quartz is 

likely to be present only in very small amounts. Thermodynamics dictate that under Colombian 

reservoir conditions microcline and muscovite are more stable than normal K-feldspar and 
kaolinite. In addition, GWB predicts that four extra minerals would be supersaturated at the outset: 
dolomite, phengite (white mica), strontianite and witherite (Figure 6.2). The mineralogical system 
is predicted to experience little change as the addition of CO2 progresses. K-feldspar (microcline) is 

gradually replaced by muscovite as the system becomes more acidic, however other minerals are 

predicted to react only very little. Despite the significant decrease in pH, calcite is not predicted to 

dissolve. This is because the K-feldspar/muscovite reaction is neutralising the pH instead of 

calcite. In fact, carbonate minerals are precipitating in order to accommodate the increase in HCO3 

in the system. 

Mineralogical changes are also reflected in the behaviour of the fluid components. pH clearly 
decreases rapidly and then levels off (Figure 6.4), while the concentrations of HCO3 and K increase 

(Figure 6.3). The change in pH results in a shift in the dominant carbonate species (Figure 6.5) The 

decrease in Ba, Sr, Mg and Ca (by between 92 and 99%) and the other variation in fluid 

components reflect the dissolution of CO2 into solution, the alteration of K-bearing minerals, and 

the precipitation of small amounts of the carbonates strontianite and witherite (Figure 6.2). Figure 

6.6 illustrates that the amount of carbonate species in the system increases continuously, slowed 

only by the precipitation of small amounts of carbonate minerals. 

When K-feldspar and kaolinite are removed from the model and the amount of calcite present is 

reduced, then calcite will dissolve because this process acts to neutralise the pH (Figure 6.6). The 

reduction in calcite is necessary because the Colombia waters are too dilute to allow a noticeable 

change on a large amount of the mineral. While there are actually small amounts of K-feldspar and 
kaolinite present in the rock, in reality the proportions are probably too small and the reaction times 

are too slow to prevent the calcite present being dissolved. In this case the pH drops more slowly 
from 5.9 to 4.8. 

If the same original mineralogical assemblage is predicted to be in equilibrium with formation water 

of higher salinity, then calcite dissolution as well as K-feldspar/muscovite reactions are predicted to 

act to neutralise the pH (Figure 6.7). This is because a more concentrated fluid can affect a greater 

amount of calcite than a dilute one. The change in pH is about the same in this case, though overall 
it is generally higher, dropping from 6.2 to 5.1. 
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Figure 6.4 pH change in the Colombian water as CO2 is added. Plot generated using Gtplot as part 
of GWB. 
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Figure 6.5 Change in carbonate species as CO2 is gradually added to Colombian waters. Plot 
generated using Gtplot as part of GWB. 
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Figure 6.6 The change in mineral masses as CO2 is added to Colombian formation water in a 
reservoir that contains no K-feldspar or clays 
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Figure 6.7 The change in mineral masses as CO2 is added to a reservoir of Colombian mineralogy 
in equilibrium with high salinity (Cl = 160,000 mg/kg) water 
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6.5.1.2 Sandstone with a wider variety of minerals - Gulf of Mexico 

GWB predicts that the response to CO2 injection into a reservoir rock with many mineralogical 

components begins rapidly and moves to a steady state after about half the CO2 has reacted. The 

original assemblage of albite, K-feldspar (microcline), pyrite and quartz, are present initially, 

however the K-feldspar + kaolinite assemblage is not stable and so kaolinite is replaced by 

muscovite. In addition, phengite (white mica), strontianite, witherite and calcite are supersaturated 

in solution and so are predicted to precipitate initially. These minerals then dissolve as the system 

becomes more acidic and dawsonite (NaAl(CO3)(OH)2), dolomite, siderite, magnesite and 

rhodocrosite are predicted to replace them (Figure 6.8). It should be noted that there are very few 

recorded incidences of dawsonite occurring in these systems. 

Again, the behaviour of the fluid components reflects the precipitation of carbonate minerals as the 

concentrations of Ba, Sr, and Ca all decrease. Unlike the Colombian example, the stepwise 

decreases are predicted to be rapid, followed by a period of constant concentration. The 

concentration of Na remains constant throughout the duration of the model run. K increases 

slightly, reflecting the reaction of the K-bearing silicates and it is these that also buffer pH which 

pH decreases only very slightly and then levels off (Figure 6.9). Critically, the concentration of 
HCO3 does increase initially, but also does not change beyond the point of 28g CO2 added (Figure 

6.10). 
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Figure 6.8. Important minerals in the reservoir system of the GOM Field 1 as CO2 is added. 
Example of a mineralogically complex sandstone. Plot generated using Gtplot as part of GWB. 
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Figure 6.9. Behaviour of fluid components in the reservoir system of the GOM Field I as CO2 is 

added. Example of a mineralogically complex sandstone. Plot generated using Gtplot as part of 
GWB. 

The lack of change in fluid components after -28g of CO2 was added suggests that this system 

reacted to reach a steady state. The dissolution/precipitation of minerals maintained fluid 

component concentrations at a constant value. Importantly, the constant HCO3 value and the 

increase in dolomite, magnesite and dawsonite suggest that in this type of system CO2 gas that was 

added could be precipitated as carbonate minerals. It is also interesting to note, that while in the 

Colombian example the fugacity of CO2 in the system increased over the course of the model run, 

the Gulf of Mexico systems were predicted to accommodate additional CO2 through dissolution into 

water and subsequent mineral precipitation. In addition, formation water in this field in the Gulf of 

Mexico is extremely saline with a large dissolved load. This means that changes in mineral 

abundances due to dissolution or precipitation may be significant and easily identified compared 

with more dilute fluids. This is because there is a greater reservoir of fluid components available to 

contribute to the precipitation of these minerals. 

172 



Chapter 6 

6.68 

6.67 

666 

6.65 

6.64 

6 63 

6 62 

6.61 

6.6 

6.59 

6.58 

05 10 15 20 25 30 

CO2(g) reacted (grams) 

Figure 6.10 pH changes as CO2 is progressively added to Gulf of Mexico (Field 1) formation 

waters. Plot generated using Gtplot as part ofGWB. 
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Plot generated using Gtplot as part of GWB. 
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6.5.1.3. Carbonate reservoir - Alberta 

In common with other studies based around CO2 in carbonate reservoirs, GWB predicts a 

significant drop in pH (Figure 6.12). The concentrations of HCO3, SO4 and certain cations (e. g. 

Ba, Sr etc) in the initial fluid means that the system is predicted to be supersaturated with respect to 

barite and strontianite (Figure 6.13). It is these minerals that are predicted to be most affected by 

the dissolution occurring (reduction in mass by 57.9% and 45.4% respectively). Again, kaolinite is 

not stable and is partially replaced by muscovite, which also dissolves. The presence of most other 

minerals is unaffected by the introduction of CO2 into the system. This is most likely a result of the 

modelling programme being unable to incorporate kinetics into its calculation. The reaction 

between the silicate K-bearing minerals K-feldspar (microcline) and muscovite is shown occurring 

concurrently with all other processes, whereas it is likely to be relatively slower than any carbonate 

reactions that may occur. However, dawsonite is predicted to precipitate at an early stage. 

The combination of a dilute fluid and simple mineralogy mean that the pH and concentration of 

HCO3 are less affected by the minerals present and so are predicted to decrease and increase 

respectively. However, the concentrations of Sr, Ba, Mg, Ca and K all increase as very small 

amounts of minerals are predicted to dissolve, restricting the pH, only the concentration of Na 

decreases (Figure 6.14). 
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Figure 6.12 Variation in pH as CO2 is added to Alberta brines. Plot generated using Gtplot as part 
of GWB. 
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Figure 6.13. Minerals dissolved and precipitated on the addition of CO2 to the Alberta reservoir 
fluids with minerals present. Plot generated using Gtplot as part of GWB. 
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Figure 6.14 Changes in fluid components as CO2 is added to a the Alberta reservoir fluids in a 
system containing carbonate and silicate minerals. Plot generated using Gtplot as part ofGWB. 
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Figure 6.15 Carbonate species in Alberta Basin formation waters as CO2 is progressively added. 
Plot generated using Gtplot as part of GWB. 

6.6 Conclusions 

CO2 injection into systems containing minerals and water will cause an initial drop in pH in all 

cases. This drop affects different types of reservoirs in different ways. A reservoir comprising of 

clean, quartz-rich sandstone, such as in Colombia, will experience the most significant decrease in 

pH. In the presence of a dilute fluid the carbonate minerals present will be little affected by the 

increase in acidity, because the pH is restricted by the K-feldspar + kaolinite reactions. If the 

amount of calcite present is reduced in the presence of a dilute fluid then a more significant change 

in the mineral will be noted. This is because there is only so much calcite that can be dissolved by a 

fluid with a small dissolved load. A water of greater salinity will have a greater effect. 

The decrease in pH in a carbonate reservoir, such as in the Alberta Basin, will cause dissolution of 

carbonate minerals, limited by the amount of dissolved solids present in the fluid. In a sandstone 

with a wider variety of minerals like the Gulf of Mexico Field 1, silicate reactions maintain the pH 

at higher levels and the progressively higher concentrations of HCO3 in the system are 

accommodated by the precipitation of carbonate minerals. 
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The rapidity of the pH drop is also affected by the type of minerals present. Reservoirs containing 
feldspars and clays are predicted to experience a more rapid drop in pH before the mineral reactions 

start to limit it. The omission of these minerals from a model causes more carbonate minerals to 
dissolve, and causes the pH to decrease more slowly, but it does not alter the change in pH 

significantly. This suggests that the presence of feldspars and clays or carbonates in large enough 

quantities will ultimately have the same effect of restricting pH change, but does not take kinetics 

into consideration. 

The study therefore supports previous hypotheses that the process is likely to be far more effective 
in mineralogically mature sandstone reservoirs such as the Gulf of Mexico. This is because there 

must be minerals present that can either buffer the pH and keep HC03 ions stable or provide 

cations to react with HCO3" ions and form solid carbonates. The buffering capacity of rocks from 

Colombia for example would be exhausted very quickly, causing acidity to increase and carbonate 

minerals to dissolve. In addition, carbonate reservoirs are less useful for CO2 storage because the 

addition of CO2 to these systems would primarily stimulate mineral dissolution. 

Simple geochemical modelling indicates that injection of CO2 into subsurface petroleum reservoirs 
is a viable option for its long-term storage assuming the buffering capacity of the systems are not 

exhausted. Geochemical modelling can only provide an idea of what might occur under a certain 

set of circumstances; however, this study is unique in using real chemical analyses in conjunction 

with mineralogical information and has produced favourable results. 

The equilibrium geochemical modelling used here does not give an indication of the kinetics of 

chemical reactions. A potential argument against the proposed injection of CO2 into reservoir rocks 
is that the reactions required to fix it permanently cannot occur on short enough timescales. In 

addition, the greater speed of carbonate dissolution relative to silicate reactions could lead to 
damage of important formations and seals before limiting reactions start to occur. While this 

remains a possibility, this study has confirmed that feldspar/clay equilibria are important in 
buffering pH and this, together with evidence of relatively fast reactions from Miller (Chapter 4), 

means that slow silicate kinetics are not necessarily a valid argument against CO2 sequestration in 

appropriate reservoirs. 
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7. WATERFLOOD MANAGEMENT: PRODUCTION SIMULATION MODELLING 

7.1 Introduction 

Waterflooding is an FOR technology commonly used to provide pressure support during oil 

production. Introducing a waterflood to a reservoir initiates additional chemical processes in the 

system, which must also be understood. Reservoir geologists and production engineers use a 

number of tools to help them plan waterfloods - one of the most successful and commonly used 
is the reservoir production simulation model. As with any numerical or computer model, the 

production forecasts and reservoir information gained from these simulations are only as 

reliable as the data used to construct them. In other words, to increase the accuracy of a 

simulation model it is important to incorporate an accurate representation of the distribution of 

reservoir properties (i. e. permeability, porosity, relative permeability, compressibility etc) in the 

production simulation. A method of testing whether the reservoir properties are correctly 
incorporated into the production simulation model is to ensure that the results are consistent 

with previous production history; a process known as history matching. A key problem with 
history matches is that they are non-unique because we can never obtain enough measurements 
from the subsurface to uniquely describe the reservoir (Huseby et al., 2005). A way to reduce 
this non-uniqueness is to use as much information from the field as possible during both model 

construction and history matching. 

Pore water chemistry data is routinely collected during the production of many reservoirs but is 

rarely used to aid reservoir characterisation. In the following chapter, the potential use of such 
data for improving reservoir simulations is investigated. The chapter begins by introducing the 

concept of production simulation modelling and describing the types of information 

traditionally used in such a model. The chapter then discusses how studying the chemical 

composition of the produced water can provide detailed information about reservoir fluid 

mixing. A simple production simulation model and a case study of the Miller oil field in the 
North Sea are used to answer some of the questions related to water mixing in the reservoir such 

as: - 

" How does permeability heterogeneity affect the degree of mixing/banking between injected 

water and the formation water? 

" Can specific patterns of injected water breakthrough be predicted? 

" What are the mixing patterns of water within the Brae sandstones of the Miller reservoir, 
and how well are these predicted by a computer simulation? 
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In addition, new approaches will be introduced for using production simulation models to better 

effect and simple models will be used to try and understand real data from the Miller field. 

Computer simulations incorporate measured and assumed representations of the static reservoir 

geology. When calibrated by history-matching to observed dynamic data (e. g. oil and water 

production rates) the models can be used to predict future field behaviour and plan production 

strategies. Models are commonly used to provide information about future rates of production 

of oil, gas, formation water and injected water under different field development scenarios and 
different representations of the uncertain reservoir geology. 

When production simulation models are good approximations of the real system they can be 

used to good effect. The importance of the results of such models is illustrated effectively by 

the case study example of Miller, where understanding the flow and mixing of formation- and 

injected-water in the reservoir, now and in the future, is important for predicting the likelihood 

of barite scale precipitation and producing a strategy for mitigating its effects. 

7.1.2 Production simulation models - an introduction 

Reservoir simulation is a technique in which a computer-based mathematical representation of 

the reservoir is constructed and then used to predict its dynamic behaviour. Production 

simulation models are grid based, the reservoir usually being divided into over 100,000 grid 
blocks/cells. The reservoir properties (porosity, saturation and permeability etc) and fluid 

properties (viscosity, PVT) are specified for each cell (Jahn et al., 1998). The grid is obtained 
from a reservoir model containing many millions of cells and conversion from one to the other 
is known as upscaling. Most models are based on controlled volume finite difference (Fisher, 

pers. com. 2006). The production simulation operates based on the principles of balancing the 

three main forces acting upon the fluid particles (viscous, gravity and capillary forces) and 

calculating fluid flow from one block to another. Simulation is often used for waterflood design 

and management. 

7.1.3 Water mixing and connate/formation water banking 
From a geochemical point of view, fluid mixing, in particular mixing between injected water 

and formation water, is one of the most interesting processes that take place within an oil/gas 

reservoir. Critically, it can also be assessed using a reservoir model. As discussed in previous 

chapters, the degree to which different types of water mix dictates the chemical reactions that 

occur and the likelihood of scaling taking place. The rate at which injected water is produced at 

a producing well, relative to the rate of injection and rate and amount of formation water 

produced, can give a good indication of how much mixing is occurring in the reservoir or the 

production string. A steady transition between the production of formation water and injected 
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water suggests that extensive mixing is taking place throughout the reservoir. Conversely, a 

very sudden change from formation water to injected water being produced implies that very 

little water mixing has occurred and instead the formation water has been "banked" ahead of the 

injected water. This is a process known as Connate Water Banking (CWB; though the correct 

term should be Formation Water Banking) and has significant implications for the prediction of 

scale formation as well as designing injection strategies. The banking model postulates that the 

first oil mobilized by the injected water contacts and mobilizes the oil downstream from it, 

which displaces more oil even further downstream. That is, the first oil produced would be the 

most downstream oil and the last would be that nearest the injection end (Jones, 1985). 

According to Sorbie and MacKay, (2000) Buckley-Leverett theory suggests that CWB occurs 

behind the water/oil "shock-front". In this ideal case there is a sharp front between the injected 

waters and connate (formation) waters, and when water breakthrough occurs, the first water 

produced will be 100% formation water. This will continue until all the formation water is 

produced, at which point the produced water will change immediately to 100% injected water 

(Figure 7.1. Sorbie and MacKay, 2000). 
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Figure 7.1. Snapshot of the water saturation profile, SH, (x, t), at time t showing CWB; the sharp 
front between the injected water (IW) and the connate water at x=xb; the single- and two-phase 
regions which develop. From Sorbie and Mackay, 2000. 
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7.2 Modelling fluid mixing in a production simulation model 

7.2.1 The base case model 

To constrain the model input parameters by integrating water compositional data with the 

computer simulation output, it needed to be possible to systematically alter a number of features 

of the model (e. g. permeability, oil viscosity, capillary pressure etc). The model output was 
then studied to determine what effect these changes had on the most relevant parameters e. g. 
formation water production rate, injected water production rate, breakthrough time etc 

The Eclipse 100TM production simulation model (provided by Rock Deformation Research, 

Leeds), which is a fully-implicit, three phase, three dimensional, general purpose blackoil 

simulator with gas condensate options, was used investigate the controls on water breakthrough 

within petroleum reservoirs. A basic 2D model was constructed consisting of a1 cell deep (200 

ft), 15 cells (1000 ft each) wide and 9 cells/layers (50 ft each) high (e. g. Figure 7.6). The oil- 

water contact (OWC) was situated between layers 6 and 7. The reservoir was initially saturated 

with oil and formation water, according to the capillary pressure curve. The Tracer Tracking 

option is a keyword within Eclipse that can be used to determine the movement of `marked' 

fluid elements during a simulation run. It may be used, for example, to differentiate the 

movement of water injected by different wells and initial aquifer water, or to predict the 

variation in salinity or concentrations of other chemical species. In this study a tracer was 
injected at one end of the reservoir to represent injected water (seawater) and oil and water were 

produced at the other end. The model calculated the rates and amounts of oil, formation water 
and the amount of tracer (that is, the injected water) in the formation water produced at each 
time step. Time step size depended on how quickly all the available oil is produced. 

Models of this type are defined using a number of key words to describe the properties of the 

reservoir and relevant fluids. Table 7.2 is a brief summary of the key parameters in the model 
used in this study (using accepted industrial units, Table 7.1). Here, PVT stands for pressure, 
volume and temperature. 

Table 7.1. Industry Units and their equivalents 
Parameter Industry Units SI equivalents and explanations 
Pressure Psia I pound/square inch [absolute] =6 894.7 pascal 
Viscosity cP 1 centipoise = 0.001 pascal second 
Volume scf 1 standard cubic foot = 0.028 cubic metre 
Density lb/ft 1 pound/cubic foot = 16.018 kilogram/cubic metre 
Length ft 1 feet = 0.304 metre 
Flow rate stb/day 1 stock tank barrel= 0.158 cubic metre 
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Table 7.2 Introducing the key parameters used in the production simulation model 
Parameter Keyword Features of model 
Water PVT functions PVTW " The water formation volume factor at 0 psia is 1.0 

rb/Mscf 

" The water compressibility is 3.03E-06 1/psi 

" The water viscosity at 0 psia is 0.5 cP 

PVT properties of PVDO " The oil phase pressures at increasing depths are 0.0 

dead oil (no dissolved and 8000.0 psia 
gas) " The corresponding oil formation volume factors are 

1.0 and 0.92 rb/Mscf 

" The corresponding oil viscosities are 2.0 and 2.0 cP 
Rock compressibility ROCK " At a reference pressure of 4000 psia, the rock 

compressibility is 0.30E-05 1/psi 

Fluid densities at DENSITY " The density of oil at surface conditions is 52.0 

surface conditions lb/ft3 

" The density of water at surface conditions is 64.0 

lb/ft3 

" The density of gas at surface conditions is 0.0440 

lb/ft3 

Tracer information TRACER " Two separate tracers, one each associated with the 
injected water and the formation water 

Water/oil saturation SWOF " When both oil and water are mobile phases, 
functions versus information is needed about water relative 

water permeability, oil-in-water relative permeability and 

water-oil capillary pressure as functions of the 

water saturation. Table 6.3 shows a typical model 

run with unaltered capillary pressure 
Tracer concentration TNUMFIW 1 " The keyword specifies the concentration of a tracer 

in each grid block (1.0 for each block). 

" The associated stock tank phase of the tracer can 

only exist in the free state (designated by the letter 

F) 
Equilibration data EQUIL " The keyword sets the contacts and pressures for 

specification conventional hydrostatic equilibrium. 

" The datum depth is 4000 ft at a pressure of 4000 

psia 

" The depth of the oil-water contact is 4300 ft 
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Parameter Keyword Features of model 
Initial tracer TVDPFIW1 " The initial tracer concentration values are 0.0 at all 

concentration versus depths 

depth 

General specification " This introduces a new well, defining its name, the 
data for wells position of the wellhead, its bottom hole reference 

depth and other specification data. 

" There are two wells, an injector (water preferring) 

and a producer (oil preferring), with a reference 
depth for bottom hole pressure of 4000 ft. 

Well completion COMPDAT " Specifies the position and properties of one or more 
specification data well completions. 

" In this study, the position of the well completions 
(perforations) is used as a variable and so changed 
in each model run, but the well bore diameter at the 

connection is 1.0 ft. 

Control data for WCONPROD " The wells are open for production controlled by a 
production wells liquid rate target of 3* 3000.0 stb/day 
Control data for WCONINJE " The injection well is a water injector, open for 
injection wells injection, controlled by surface flow rate target 

with a surface flow rate target of 2000.0 stb/day 
Tracer concentrations WTRACER " The value of the tracer concentration in the 
for injection wells injection stream is 1.0. 
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Table 7.3 Reservoir water saturation information for a typical model run 

Reservoir water 
saturation 

Water relative 
permeability 

Oil relative 
permeability 

Water-oil capillary 
pressure (psia) 

0 0 0.71 50.98 
0.05 0 0.69 30.23 
0.1 0 0.52 21.54 

0.15 0 0.44 16.54 
0.2 0 0.36 13.21 
0.25 0 0.3 10.81 
0.3 0.0172 0.24 8.975 

0.35 0.0486 0.19 7.514 
0.4 0.0894 0.15 6.319 

0.45 0.1377 0.11 5.319 
0.5 0.192 0.089 4.467 

0.55 0.252 0.064 3.732 
0.6 0.318 0.045 3.088 
0.65 0.3894 0.03 2.518 
0.7 0.4647 0.019 2.011 
0.75 0.544 0.011 1.555 
0.8 0.627 0.005 1.142 
0.85 0.715 0.002 0.766 
0.9 0.806 0 0.422 

0.95 0.901 0 0.107 

60 

50 + Normal capillary pressure 
curve 

40 " Low capillary pressure curve 

--6-- Flattened capillary pressure CL 30 curve 

A 
20 --- ea U 

10 

0 0.2 0.4 0.6 0.8 
Water saturation 

Figure 7.2. Capillary pressure profiles used in this study 
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7.3 Methods 

The ability of the model to take account of reservoir heterogeneities and to determine the 

dominant controls on the extent of water mixing in reservoirs was assessed. Certain aspects of 

the model were altered systematically for each run and the results analysed. In the following 

section, the various parameters are described individually in terms of their influence on water 
breakthrough. 

7.3.1 Permeability 

Reservoirs in clastic sedimentary basins tend to be layered, with individual layers having 

different average permeabilities. High permeability layers may act as conduits to flow and can 

cause injected water to arrive at the producing wells faster than predicted. Where this occurs, 
injected water will have an additional opportunity to mix with the formation water. This 

enhances the possibility that reactions will occur that will result in changes in produced water 

chemistry. In addition, heterogeneous permeability can have an effect on the sweep efficiency. 

For example, a coarsening-up sequence (i. e. permeability is higher at the top of the reservoir) 

might improve the sweep because gravity forces the shallower injected water to sink lower and 

so flush out any extra oil. 

In the model, the effect of permeability heterogeneity was tested by altering the permeability of 

each individual layer to create scenarios where overall permeability increased towards the top of 

the reservoir or towards the bottom of the reservoir, or where there were only one or two higher 

permeability layers in an otherwise homogeneous reservoir. 

7.3.2 Capillary Pressure 

The difference between the pressure in the oil phase (Po) and the pressure in the water phase 
(PW) is called the capillary pressure (Pc) : 

Pc=Pw-Po (1) 

The pressure needed for the oil to enter a particular pore throat (Pa) is related to the interfacial 

tension (a), the radius of the capillary tube/pore throat (rt) and the contact angle between the 

water and the rock surface (0) by: 

P, = 2vcosO (2) 
rt 

Figure 7.2 shows a capillary pressure curve, illustrating that the greater the capillary pressure, 
the more oil is present in the pore spaces relative to water; thus creating a situation where water- 
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water mixing is less likely to occur. A pressure-depth plot (Figure 7.3) highlights the fact that 

the higher a point is above the free water level, the higher the capillary pressure and the more oil 

that can get into the pore space. Changing the capillary pressure curve to lower values increases 

the amount of formation water above the free water level relative to the standard values (cf. 

Figures 7.5 and 7.10). 

Table 7.4 Parameter variation details for models 1-4 

Model Permeability Vertical Capillary Oil Perforation 

permeability pressure Viscosity position 

curve cP 
1 Either homogeneous = 1/10 normal 2 varying 

permeability at 50 or 100 mD horizontal capillary locations 

in all cells (runs la and b), or permeability pressure 
heterogeneous permeability profile 

varying from 50 - 800 mD 
(runs 1c to If), or higher 

permeability layer of 1000 

mD against a background of 
50 mD (runs lg to 11) 

2 Either homogeneous = 1/10 variable 2 layers 1,2 

permeability at 50 mD for all horizontal capillary and 5 

cells (runs 2a, b and g), or permeability pressure 
heterogeneous permeability profile 

varying from 50 - 800 mD (see 7.2) 

(runs 2c to 2f) 

3 Homogeneous permeability = 1/10 normal 0.1 layers 1,2 

and then either horizontal capillary 0.2 and 5 

heterogeneous permeability permeability pressure 0.5 

varying from 50 - 800 m) profile 1.0 
(runs 3a and b), or higher 2.0 

permeability layer of 1000 10.0 

mD against a background of 20.0 

50 mD (runs 3c and d) 

4 Heterogeneous permeability = horizontal normal 2.0 layers 1,2 

varying from 50 - 800 mD permeability capillary 20.0 and 5 

(all models) pressure 

profile 
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Figure 7.3. Pressure-depth plot illustrating the relationship between oil and water pressure and 
capillary pressure. From Jahn et al., 1998. 

The shape of the capillary pressure curve was varied by reducing the pressures in the standard 

curve by a factor of 10, or by flattening a portion of the standard curve to create a different 

shape. These changes were expected to have an effect on both amount of oil and water in place 

and the reaction of those fluids to the injection of water into the reservoir. 

7.3.3 Relative permeability and mobility ratio 

Relative permeability is the ratio of effective permeability of a particular fluid at a particular 

saturation to absolute permeability of that fluid at total saturation (equation 2). The mobility of 

a fluid is defined as the ratio of its permeability to viscosity. When water is displacing oil in the 

reservoir, the mobility ratio determines which of the fluids moves preferentially through the 

pore space (Jahn et al., 1998). The mobility ratio for water displacing oil is defined as: 

Mobility ratio (M) = (k,,, /µN)/(K, o/µo) (2) 

Where k, is the relative permeability to water, µ,,, and µo are viscosities of water and oil 

respectively and k is the relative permeability to oil. If the mobility ratio is greater than 1 (i. e. 

oil is less mobile) then there will be a tendency for water to move preferentially through the 

reservoir and will give rise to an unfavourable displacement front which is termed viscous 
fingering. If the mobility ratio is less than unity (i. e. the oil is more mobile) then there will be a 

stable displacement front. Altering the viscosity of the oil will change the nature of the 
displacement front and may affect the degree to which mixing occurs in the reservoir (Larue and 
Friedman, 2005). 
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Figure 7.4. Relative permeability curve for oil and water. From Jahn et al., 1998. 

In the model, the viscosity of the oil was varied between 0.1 and 20 cP, while either maintaining 

all other parameters constant, or altering the permeability. 

7.3.4 Vertical permeability 

In most sedimentary basins and in most reservoir models it is assumed that lateral permeability 
is greater than vertical permeability. A truly homogeneous reservoir with respect to 

permeability is likely to allow fluids to travel more freely between layers, which will have an 

effect on how much the injected water can mix with the formation water. 

In the model, the vertical permeability was set to be the same as the horizontal, creating either a 

completely homogeneous reservoir, or a layered reservoir in which each layer had equal 
horizontal and vertical permeability. 

7.3.5 Perforation position 
In addition to the main factors controlling the output of the model, importance of the number 

and location of perforations through which water was injected (i. e. the well completion data) 

was assessed for each model, by altering the locations of the perforations in a number of 

different runs. Completion strategies are often aimed at identifying ways of optimising 

production. Here, the model is used to assess how the position of the perforations could affect 

water production/mixing. 
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7.3.6 Altering management strategies 
It is common practise to halt injection or production at one or several wells in an oilfield for 

reasons of maintenance, scale mitigation or a change in production strategy. The cessation of 

pumping may allow fluids to flow back, mix and interact with one another in new ways. 

A number of runs were carried out on an otherwise unchanging system in order to assess the 

effect of shutting in a well. Injection and production were stopped for either 3 days or a year, 

early, mid-term or late in the life of the wells. 

7.4 Results 

Each model was set to run for the equivalent of 5000 days (over 13 years) or for as long as oil 

could still be produced from the reservoir and while the progress of injected water incursion and 

oil replacement could be tracked through time. Production and injection rates were monitored 

continuously while the total amounts of water and oil produced, as well as the images that show 

the location of the oil and waters apply to the final situation at the end of the run. Appendix IX 

contains tables outlining the precise specification of each model. 

In all cases, comparisons were made between a "base case" model and models in which fluid 

properties had been altered. The base case consisted of a homogeneous reservoir with 

permeability of 100 mD, a normal capillary pressure profile, oil viscosity of 2 cP, vertical 

permeability = 1/10d' horizontal permeability, no shut-in periods and perforations in layers 1,2 

and 5 in both the injector and the producer. Figures 7.4 and 7.5 shows the changing production 

rates through time of injected water, formation water and oil in the base case and Figure 7.6 

shows how the computer programme FloVizTM was used to image the changing reservoir 

system. 

7.4.1 Model 1. Permeability Variation 

Prior to an in-depth study of the effect of permeability variation on the reservoir system, simple 

changes were made to the base case model in order to note the overall changes to be expected 
from permeability heterogeneity. All other reservoir and fluid properties were held constant 
(Figure 7.6). 
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Figure 7.5. Production rates of reservoir fluids as modelled for the "base case" scenario of a 
homogeneous reservoir, with standard values for capillary pressure and oil viscosity, and no 
changes made to the management of the wells. 

The model predicted a homogeneous reservoir will produce far less injected water at a slower 

rate than a similar reservoir with one or two high permeability horizons, but that these reservoirs 

will produce less formation water overall. In all cases, there was predicted to be a rapid 

increase in the rate of formation water production as oil production rate decreased, with a 

subsequent decline as injected water breakthrough occurred. The model predicted that a 

reservoir in which the permeability increases with increasing depth will have the highest total 

water production because the water is able to flow more easily through those layers which had a 

lower initial oil saturation. This also explains why this type of reservoir produced the smallest 

amount of oil at the lowest rate. 
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Figure 7.6. Images from the programme FloViz showing a lateral view of the 2D reservoir, 
illustrating oil, injected water and total water saturation at the beginning and end of runs for the 
"base case" model outlined in section 7.4. Note initial view for oil saturation shows location of 
injecting (1) and producing (P) wells and the layers in which the wells are perforated. 
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The reservoirs with individual high-permeability layers showed the most rapid initial transition 

from very low to very high injected water production rates, suggesting that significantly less 

mixing would occur in these situations than in more homogeneous reservoirs where the 

transition is more gradual. The shallower slope of production rate increase later in the life of 

these wells was due to the predicted increase of mixing when the two different types of water 

met in the production string. 

The location of the perforations in the injecting well was found to have a significant effect on 

the relative rates of production of injected/formation water and oil. A reservoir with 
homogeneous permeability (50 mD) produced different results depending on where the water 

was injected. Oil and formation water were flushed from the lower layers when water was 

injected at the top of the reservoir. This caused water production to undergo a steady transition 

from formation water to injected water. The total amount of injected water produced after 5000 

days (4.0 x 106 STB) reflected this trend and reached levels that were almost as high as the total 

formation water produced (4.9 x 106 STB), suggesting a high degree of mixing in the reservoir 

(run la). Conversely, when water was injected into the lower layers of the reservoir, far more 
formation water (8.0 x 106 STB) than injected water (3.0 x 105 STB) was produced by the end 

of the run. This is because the water was injected below the oil-water contact and displaced 

more aquifer water than if it had been injected into oil (run lb, Figure 7.8). 
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Figure 7.8. Modelled production rate of connate (formation) water, injected water and oil 
through time for a homogeneous reservoir as water is injected into the top layers of the reservoir 
(runs Ia and b) 

Now 
0.00 Injected water saturation I. 0(1 

Figure 7.9. Three horizontal profiles showing the degree to which injected water has penetrated 
into the reservoir for: A, a homogeneous reservoir; B, permeability increasing to the top of the 
reservoir; and C, permeability increasing to the bottom of the reservoir (at the end of the run for 

model 1, a, c and e respectively) 

Model I (runs c and d) confirmed the initial results: permeability increasing towards the top of 

the reservoir caused a far greater amount of oil to be produced, along with large amounts of 

formation water. In addition, the injected water was predicted to invade a far larger part of the 

reservoir (runs lc and d, Figure 7.9). The depth of the water injection made little difference in 

this case, although a greater sweep resulted when water is injected into the upper part of the 

reservoir. 

The preliminary results showed that less oil was produced when the permeability increased 

towards the bottom of the reservoir, but the production of both formation water and injected 

water increased (9.3 x 106 STB). In detail, runs le and f illustrate that there still appeared to be 

some water mixing occurring, only after an initial slug of pure formation water was produced. 

It seemed that the formation water from the top of the reservoir was produced very rapidly and 

was followed by the slower production of formation water and oil and then injected water. 

Again, injecting water into the upper layers of the reservoir improved oil production and 

decreased water production by a small amount compared to injection at greater depths. 
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When there was only one high permeability layer in the reservoir, injected water travelled 

preferentially along this conduit (runs 1g, h, i, and j). If the water was injected into this layer, 

the injected water was produced extremely rapidly at a high rate. The trends of injected water 

production rate relative to formation water production rate appeared to show a gradual transition 

from formation water to injected water as though mixing was taking place throughout the 

reservoir. However this was due to more injected water being produced later after the initial 

flow through the high permeability layer. If water was injected into other layers, the trends 

showed a similar pattern but the total amount of injected water produced was reduced and the 

production rate was slower, with a longer delay before the onset of injected water production. 

The location of the high permeability layer also had an effect; highly permeable upper layers of 

the reservoir caused more injected water to be produced and showed a very distinctive pattern 

with a slug of formation water being produced initially and then the amount decreasing 

gradually as injected water breakthrough occurred. The presence of injection perforations in 

more than one layer seemed to have little or no effect on injected water breakthrough or 

production rate. 
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Figure 7.10. A: production rate data and (Ai) injected water profile for a reservoir with a high 
permeability layer above the OWC, with water injected into this layer. B: production rate data 
and (Bi) injected water profile for a reservoir with a high permeability layer at the reservoir 
surface, with water injected into this layer (at the end of the run for runs lg and lh). 
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7.4.2 Influence of the shape of the capillary pressure curve 

Lowering the capillary pressure required for non-wetting phases to enter pore-space had the 

effect of altering the oil saturation profile (Figure 7.12). In a homogeneous reservoir containing 

rocks with large pore-throats and a narrow size distribution (i. e. a low capillary pressure) the oil 

was at extremely high saturation immediately adjacent to the oil-water contact (OWC) and up to 

the reservoir surface. At low capillary pressure the total amount of water produced was very 

low, particularly injected water. However, fluid production rates at low capillary pressure were 

extremely sensitive to permeability heterogeneities. Reservoirs with permeability increasing 

upwards were predicted to have very little water breakthrough at all and to produce a large 

proportion of the oil initially in place, while the opposite can be said for reservoirs with 

permeability increasing downwards. At high capillary pressures, permeability had a smaller 

effect on fluid production rates. 

In a homogeneous reservoir, at low capillary pressure, the formation water production rate was 

extremely rapid to begin with and the rate slowed with time (run 2a. Figure 7.11). When 

permeability increased towards the top of the reservoir (run 2c), less formation water was 

produced and the water production rate was very low and closely dependent on the oil 

production rate. Formation water production only started once the rate of oil production 

decreased. Further decreases in oil production rate coincided with a dramatic decrease followed 

by the onset of a period of steady increase in water production. A reservoir with a permeability 

increase with increasing depth (2d) showed a similar trend, though much more formation water 

was produced (8.3 versus 2.7 x 10" STB). There was also a small increase in the amount of 

injected water produced, as exhibited in models lc and ld. Creating a flatter capillary pressure 

curve created a reservoir where oil saturation was high above the OWC and increased towards 

the top of the reservoir. However, the altered saturation profile had only a small effect on the 

amount of water produced and the rate of production, increasing both slightly. 

A 

C 
II Ir 

mm 

Iý Inu II 

1 º' 
B,. 

Am!,! 

ýniiu u 

100 Oil saturation 1 'K' 

°'° Injected water saturation 100 

Figure 7.11. Model 2a. A, Oil saturation in a reservoir with lowered capillary pressure; B, Oil 
saturation in the same reservoir after oil production for 13 years; C, injected water saturation in 
the same reservoir after oil production for 13 years. Note different scale for image C and the 
abrupt contact between injected water and original reservoir waters. 
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Figure 7.12. Production rates of. A) injected water, B) formation water and C) oil for two 
capillary pressure profiles in 3 reservoirs with different permeabilities 
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7.4.3 Influence of mobility ratio on water breakthrough 

The amount of injected water produced was predicted to increase with increasing oil viscosity, 

while the amount of oil was predicted to decrease (Figures 7.13 and 7.14). The total amount of 
formation water produced also increased with increasing oil viscosity, but the rate of production 

varied distinctly. Systems with oil of a low viscosity had a lower rate of formation water 

production that increased with time, and those with oil of a higher viscosity had a higher rate of 

production that decreased with time. This is because the less viscous oil was swept more 

efficiently ahead of the water front; but as the oil production rate drops off, more water can be 

produced. Conversely, the more viscous oil had an unstable displacement front with the water 

and was therefore produced at a slower rate relative to the water, whose rate of production 

gradually decreased. 

Reservoirs with oil of a low viscosity were predicted to experience more mixing between 

different waters in a more contained area behind the stable oil displacement front. Conversely, 

high oil viscosity appeared to reduce the amount of water mixing occurring in the reservoir. 
However, injected water that interacts with the unstable displacement front, or by-passes it 

(Figure 7.13), may mix with formation water in the production well. 

Increasing the oil viscosity in reservoirs with vertical permeability variation caused more 
formation water to be produced (-1.0 x 107 STB), with only very small amounts of injected 

water. When the reservoir had only one high permeability layer the higher oil viscosity served 

to only slightly reduce the rate of formation water production. In this case more injected water 

was produced because it travelled preferentially along this pathway. The unstable front between 

the water and the high viscosity oil suggested that a relatively large degree of mixing could be 

predicted to be occurring in such a system. 

7.4.4 Influence of the vertical uermeability/horizontal permeability ratio on water breakthrough 

In the simulation model, altering the vertical permeability so that it was the same as the 
horizontal permeability had no effect on total water amounts or production rates. If the 

permeability increased towards the bottom of the reservoir, more formation water was produced 
at a higher rate than if permeability increased to the top of the reservoir. 
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Figure 7.13. Images illustrating the oil and injected water (1W) saturation profiles in the 
reservoir at the end of a model run with oil viscosities of A) 0.2, B) 2.0 and C) 20.0 cP 
respectively. 
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7.4.5 Influence of management strategies on water breakthrough 

Shutting-in the well for a short period (3 days) had a small effect on the production rate and 
total amount of injected water, formation water and oil produced (Figure 7.15). The only effect 

on the injected water production rate was noted when a shut-in was carried later in the life of the 
field. In this case, the injected water production rate dropped slightly and then continued to 

increase. The timing of the shut-in had little impact on the formation water production rate. In 

all cases, the rate of formation water production increased rapidly after pumping resumed and 

then decreased suddenly before returning to initial values. The effect was more marked for 

shut-ins lasting a year rather than 3 days. The biggest effect of a shut-in was seen in oil 

production rates, where a long, midterm shut-in resulted in significantly increased oil 

production rates for a period of over 3 years. A similar, but smaller, effect could be seen for 

shut-ins at other times. A shut-in did not affect the curve slope, suggesting that cessation of 

pumping does not significantly affect the reservoir mixing regime. 

7.5 Discussion: controls on water breakthrough/production 

Clearly, a number of factors can have an effect on the results from a production simulation 

model; this study examined only the key factors. According to the modelling results presented 

above, permeability heterogeneity, mobility ratio and shape of the capillary pressure curves 
have significant control over physical water interactions in reservoirs. The reservoirs that 

exhibited a more gradual transition through time from producing formation water to injected 

water were interpreted to be experiencing significant mixing. 

Differences in permeability affect the mixing relationship between the injected water and 
formation water, the length of time before injected water breakthrough and the rate at which 
both types of water are produced. Reservoirs with permeability that is homogeneous or that 

varies systematically are more likely to experience water mixing than completely heterogeneous 

reservoirs. Consequently, injected water reaches the producing well only after a delay. Altering 

the capillary pressure curves affects the length of time it takes any water to reach the producer. 
Modelled reservoirs with large pore-throats and narrow pore-throat size distributions (i. e. low 

capillary pressure curves) all exhibited a delay of between 80 and 800 days before formation 

water is produced. In these cases, the degree of mixing appears to be dictated by the amount of 
injected water able to reach the reservoir, low capillary pressure inhibits injected water flow and 

so prevents significant water mixing occurring. The degree of water mixing is also affected by 

the relative permeability of the oil and water. Mixing occurs to a greater extent in the reservoir 
in systems with low viscosity oil, however a system with higher viscosity oil may be more at 
risk from water mixing occurring in the well bore. The model did not predict that altering 
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reservoir management strategies has any impact on the mixing regime or fluid flow in the 

reservoir at all. However, it will be demonstrated later that shutting in a well may have a 

significant effect on fluid flow and it may be that the model is not equipped to interpret this 
fully. 

Two dominant production rate profiles arise from differences in the nature of injected water 
incursion. As the oil production rate inevitably declines, formation water from the oil leg is 

produced at a higher rate, if there is a steady supply of injected water (having experienced larger 

amounts of mixing in the reservoir) then the formation water production rate will decline 

gradually. Conversely, if only very small amounts of injected water are reaching the production 

well then the formation water production rate declines much more rapidly. 

Most mixing occurs in a homogeneous reservoir. However, with a favourable capillary 

pressure, the next highest potential for mixing occurs when permeability increases to the top of 

the reservoir but water is injected at greater depth, or when permeability increases to the bottom 

of the reservoir and water is injected at shallower levels. A low capillary pressure inhibits 

injected water flow, but a mixing zone is likely to be spread over a wide area of the reservoir. 

Even a very simple model has the capacity to reflect real changes in reservoir properties in a 

realistic way. However, this implies that small heterogeneities could have big effects on 

modelling results and emphasises the need for detailed knowledge of the reservoir properties. 
This problem is traditionally overcome by having a range of models that span the likely range of 

values of the key properties. However, water compositional data should provide an extra 
dimension that reduces the number of iterations required to produce a useable model. In the 

case study that follows, real production data were compared with results predicted by a 

production simulation model in order to establish the accuracy of the model determine which, if 

any, of the above properties (e. g permeability, capillary pressure) appear to influence the 

efficacy of the model. A real case study will also provide evidence of the usefulness of 

produced water chemistry in characterising a reservoir and supporting production simulation 

models. 

202 



Chapter 7 

A 1000 
900 

800 

a 
700 

600 

u 
500 

400 

V 
300 

m c 

200 

/1 
b- Early shut-in - long 

Early shut-in - short 
Midterm shut in - long 

Midterm shut-in - short 

I 

-w- Late shut-in - long 
t Late shut-in - short 

Double shut-in 

100 

B 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 

Days 

2500 

-2000 0 4 Co 
s 

1500 
v 
I 

a 

1000 

500 

or 
0 

C 
1000 

900 

800 

_ 
700 

0 CL OD 600 

` 500 

400 
4 

0 300 

200 

100 

1000 2000 3000 4000 5000 6000 7000 8000 9000 

Days 

Early shut-in - long 

Early shut-in - short 

-, *-Midterm shut-in - long 

-4--Midterm shut-in - short 

-+- Late shut-in - long 

t Late shut-in - short 

-Double shut-in 

U at "--'sir- ... w_. 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 

Days 
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7.6 Case Study: Miller, North Sea 

The Miller Field in the North Sea has yielded a substantial dataset through years of regular, 

almost daily, water sampling (e. g. Chapter 4). The extensive dataset has the potential to provide 
information useful in defining fluid flow regimes and water mixing mechanisms, determining 

the usefulness and applicability of production simulation models, and reservoir characterisation. 
One application that would be particularly useful for designing waterfloods is the use of water 
data simulation to help identify different types of water mixing i. e. by gradual mixing or 
connate water banking. 

Detailed analysis of the Miller production data will provide information about how the 
formation water responds physically to the injected water. Studying observed production rates 
will allow identification of variation in water mixing styles in the reservoir and highlight 
important heterogeneities. In addition, comparison of the Miller production simulation model 

with the output from the simple models in section 7.4 will help define the chemical processes 
that are occurring in the reservoir. 

7.6.1 Methods 

Produced water chemistry data from each of ten producing wells in the Miller field were studied 
to identify water breakthrough patterns. Output from the FrontSim Miller simulation model was 

compared with the real data and with the results from the simple models outlined above, to 

constrain water mixing processes and controls in the Miller reservoir. 

Formation water in Miller is almost twice as saline as the seawater injected for pressure support 

and enhanced oil recovery. The main anion contributing to this salinity, chloride, is 

conservative and can thus act as an effective natural tracer of seawater in the reservoir (Slentz, 

1981; Braden and McLelland, 1993; Carrigan et al., 1997; Huseby et al., 2005). Equation 1 

(Chapter 4) was used to calculate the amount of seawater present within the produced water, 
assuming that lower Cl in the produced water indicated a higher seawater component. Thus, 

was possible to track the changes in rate of production of the injected seawater. 

All the percentage seawater estimates are based on the premise that the formation water had a 
homogeneous composition throughout the reservoir. It should, however, be emphasised that 

there is no evidence to substantiate this assumption and a possible exception will be discussed 

below. It is unlikely that the presence of formation water with a different salinity would have 

more of an effect on the results than a few percent. For example, a produced water with Cl of 
30,000 mg/I could be 50% seawater and 50% original formation water or it could be some 
combination of seawater with two different formation waters, or 100% different formation 
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water. The additional formation water would have to have a salinity close to seawater (-20,000 

mg/1) to invalidate the model completely; if it had only 30,000 mg/l Cl, then any produced water 

with less than 30,000 mg/l would still be exhibiting some seawater influence. In the example 

given above, the maximum uncertainty would be 50%, which is substantial, but not enough to 

render the model obsolete. 

7.6.2 Results 

First oil was produced in 1992, however the majority of the data relating to rates and amounts of 

hydrocarbons and water produced dates only as far back as 1995. Thus, the following results 

apply mostly to changes occurring in the field between 1995 and January 2004. 

7.6.2.1 Water incursion patterns 

Five different patterns of water incursion into the reservoir were identified and the ten wells 

could be divided among these groups accordingly (Figure 7.16). The behaviour of the wells in 

each group is discussed below. Figure 7.17 is a map of the Miller field, including the relative 

positions of all the producing wells. 
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Figure 7.16. Providing an overview of the production information of each of the main ten wells 
studied. Each line (solid, dashed or dotted) begins when production starts and ends if and when 
production ceases. 

Group 1) Four wells (A08, A15, A17 and A18) appear to have produced only a small amount 

of water and experienced little seawater breakthrough. The concentrations of chloride and 
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sulphate in the produced water remained consistently high and low respectively. Well A17 

showed evidence for slight seawater incursion, but this did not exceed 27% of the water 

produced. 

Group 2) Two of the ten wells (A12 and A21) showed a slightly greater seawater component 

overall and appeared to show a gradual increase and decrease in the amounts of sulphate and 

chloride respectively. This indicates progressive mixing of a high-sulphate, low-chloride water 
(seawater) with a low-sulphate, high-chloride water (formation water) over time. These wells 

started producing at the same time as the previous four, yet behave slightly differently. Water 

breakthrough at A12 occurred relatively early (1998) and generally had a seawater component 

of between 25 and 50%. Breakthrough at A21 occurred around two years later and the 

transition to very large seawater components was rather more rapid. 

Group 3) A single well (A14) showed a much more rapid transition to a high seawater 

component. This well is situated some distance (about 2.51an in either case) from the two main 

groups of wells and started to produce water fairly early in its life (Figure 7.18). The apparent 

seawater component was consistently above 40% (where measured). 

Group 4) Another individual well (A16), situated in the structurally separate field "Panhandle" 

showed a unique pattern that includes salinity increase. The salinity of the initial produced 

water was relatively low but gradually increased and reached a plateau at Cl levels exhibited by 

formation water elsewhere in the field (Figure 7.19). Water was produced relatively early and 

consistently until 2002 when gas and oil production stopped. 

Well A16 provides important evidence that it would be incorrect to assume homogeneous 

formation water composition. It is likely that the low salinity water produced in this area was 

not injected seawater, but was in fact a different water from a different part of the reservoir, 
perhaps aquifer water. After being produced initially, this low salinity water was superseded by 

the more typical formation water observed elsewhere in the field. Although the presence of this 
different type of water throws doubt on the major assumptions of this study, it is important to 

note that well A16 is situated in a distal part of the field and is structurally separate. 

Group 5) The final two wells (A23 and A25) started producing late in the life of the field and 

this was reflected in the rapid onset of water production and the consistently high seawater 

component in the produced water. Mixed water was produced from these wells from the start of 

production in 2001 and 2002 respectively 
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Figure 7.18. Production data for Miller, well A14. Seawater breakthrough occurs more than a 
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Figure 7.19. Production data for Miller, well A16. Seawater breakthrough never really occurs 
and formation water breakthrough occurs very late in the life of the well. Note that hydrocarbon 
production rates fall as water breakthrough occurs. Note different scale to Figure 7.14. 
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7.6.3 Explanation for field-wide variations 

Figures 7.16 and 7.17 show the wells divided into 5 groups according to the differences in water 

mixing as indicated by the water analyses: 1) little water breakthrough, no seawater; 2) some 

water breakthrough, seawater component, gradual water mixing; 3) some water breakthrough, 

seawater component, more rapid water mixing; 4) water breakthrough, salinity increases; 5) 

mixing prior to water production. These different groups are closely related to the date that 

each well started producing, water production rates and geographical position within the field. 

The wells that started producing earliest (A08-A18) tend to have experienced water 

breakthrough only after about 1'/2 years and show evidence of significantly less seawater 

incursion than the later wells (41% average as opposed to 67% average). If they do, mixing 

tends (with the notable exception of A14) to occur gradually and only a small seawater 

component is produced. 

Significantly, the younger wells (A23 and A25) both exhibit considerably higher seawater 

concentrations, possibly because the seawater will already have mixed with the formation water 

in the reservoir prior to production. It is also clear that increased seawater incursion relates to 

increased overall water production rates and that at this time gas and oil production rates fall. 

Geography and location in the field appear to be particularly important in determining by what 

mechanism seawater incursion occurs and waters mix. Well A14 is set apart from the two main 

clusters of wells and behaves differently (Figure 7.20). The rapid onset of water production and 

subsequent sudden seawater incursion suggests that there might be a high permeability horizon 

in this part of the field that does not exist elsewhere. Alternatively, it may be that the 

production and injection wells are connected by a high permeability horizon whereas elsewhere 

the wells are not so well connected. Interestingly, following the rapid mixing of seawater and 

formation water, the seawater component decreases somewhat, as though displaced formation 

water is flowing back to mix once again with the seawater in the reservoir. 
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Figure 7.20. Variation in sulphate and chloride concentration in produced water over time for 

well A14, note rapid decrease in chloride followed by gradual increase (refer to Figure 7.15). 
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The salinity increase of well A 16 is also interesting because, situated at some distance from the 

main field, it behaves in an entirely different way from any other well (Figure 7.21). It is 

possible that some mixing with seawater occurred before production started and then the supply 

of seawater declined, or that part of the produced water is from a different aquifer which may 

not be laterally extensive over the whole field. 
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Figure 7.21. Variation in sulphate and chloride concentration in produced water over time for 

well A16, note gradual increase in chloride 

In addition to these localised examples of geographical influence, it is possible to identify a 

larger trend that fits in with the geological structure of the area. The wells that tend not to be 

subject to significant seawater incursion are all situated in topographic lows and are separated 

from each other and the injectors by other topographic features. The wells that show more 

seawater influence sit mostly on a NW-SE trending line through the centre of the field and are 

generally on topographic highs. It is possible that these wells bear the brunt of the seawater 

influence because seawater is less dense than formation water and tends to fill the higher areas 

of the field first. 

7.6.4 Production simulation model 

The FrontSim production simulation model is a streamline model, which differs from a blackoil 

simulation but which uses geological and physical information about the field to predict the 

direction and magnitude of flow of oil, gas, formation water, and injected water in the reservoir 

through time. A comparison of the results from the simple blackoil simulator models and the 

real FrontSim Miller model with the compositional data was undertaken. The results allow 

objective assessment of the validity of conclusions drawn as a result of analysis of water 

chemistry and production data, as well as the usefulness of each model. Each producing well 

was looked at individually and the porosity, permeability (in the direction of length, breadth and 

depth) and relative depth were noted. In addition, the modelled variation in water saturation, oil 

saturation and seawater concentration over time were examined and compared with the data 

gathered from the producing field. 
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The analyses were undertaken on the understanding that the model had been fully history- 

matched. However, part way through the study, some further history-matching tests were 

carried out. It was discovered that, although the oil and water production rates predicted by the 

model matched very well with the observed data, the same could not be said for seawater 
(injected water) concentration and production rates (for example, Figure 7.22 and Figure 7.23). 

In some wells the model predicted that less seawater would be produced than was actually the 

case, for example, well A14 (as well as A08, A12, A15 and A21), while in other wells the 

model predicted the opposite (e. g. well A17, A18 and A25). In nearly all cases, the timing of 
seawater breakthrough in the model also differed from the observed data. There appeared to be 

no simple explanation for, or trend in, the discrepancies, though it is possible that the lack of 
any means to take capillary forces into account in the streamline model had an adverse effect. 
Unfortunately, due to time constraints, it was not possible to make any corrections to the model, 

or to add any correction factors into the analysis. Although this discovery had some 
implications for the results of the model analysis, most of the results enabled exciting 

conclusions to be drawn. Despite the quantitative discrepancies, the general trends produced by 

the model compared favourably with what was observed in the real situation and provided some 

useful information and explanations for patterns of seawater incursion. 

7.6.4.1 Qualitative model results: comparisons with real data 
Injectors. The model, which has been history-matched to accurately reflect the real situation, 
provides additional information about injection wells. There are therefore no comparisons to be 

made. However, the relevant information relating to the injection wells can be summarised as 
follows. The Wells A5, A6 and A7 were the original injectors supporting the early producers, 

and these were gradually superseded by wells A10 and A11, which went on to provide pressure 

support for the greater proportion of the producing wells. The injectors are situated in deeper 

areas to allow the water to flow up-dip to the producers and the data show that the wells that 

experience more influence from seawater sit mostly on a NW-SE trending line through the 

centre of the field and are generally situated on structural highs. 

Producers. The model predicted that the wells situated in the southern part of the field 

experienced little injected water breakthrough (that is until 2002, when the model ends). Water 

compositional data confirm that the wells in this area indeed do not experience large amounts of 
seawater incursion; however, the pattern is not at all homogeneous. Wells A08, A15 and A18 

show no evidence of seawater incursion, rather than the -20% predicted by the model. The real 
exception is A12 in which water breakthrough occurred relatively early (1998) and generally 
had a seawater component of between 25 and 50%. This suggests that there is an extra 
component of complexity/heterogeneity that the model cannot account for. 
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Situated on its own in the centre of the field, A 14 was predicted to have relatively rapid water 
breakthrough following the rapid removal of oil from the reservoir, due to high permeability 
layers and direct influence from the two major injectors AlO and All. The observed data 

shows a similar pattern, but seawater was predicted to breakthrough almost a year later by the 

model than actually occurred. The observed rapid increase of the proportion of injected water in 

the produced water, coupled with the comparative lack of mixing between the two waters 

suggested that this might be one well in the field that showed reasonable evidence for connate 

water banking. The model, however, provides no evidence of this type of behaviour and instead 

predicts that injected water breakthrough is gradual, implying mixing is occurring. 

The northern wells were all predicted to be influenced more by injectors A 10 and Al 1 and to 

experience water breakthrough and injected water incursion sooner in their lives than the 

southern wells. The model appears to include a higher permeability layer towards the north 

west of Al0 causing wells A17 and A21 to have been directly and severely affected by the 

injected water from this well. It is observed that the northern wells do indeed experience water 
breakthrough relatively much earlier and the produced water generally does have a larger 

component of seawater. However, A17 experiences very little seawater incursion and it may be 

that a large proportion of the injected water from A10 is actually produced in A21 before it ever 

reaches A17. 

The two wells that started producing late in the life of the field, A23 and A25, were predicted to 
be affected by injected water incursion almost immediately on commencement of production, 
which supports what is observed. The instantaneous production of seawater suggests that 

extensive mixing must have taken place in the reservoir prior to production, indicating that 

connate water banking is extremely unlikely to have occurred to any great extent in Miller. 
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Figure 7.22. Comparisons between the model predictions and observed data for well A 14: A) 
the seawater concentration in the produced water through time, as observed and predicted; B) 
total water produced, oil production rate and seawater production rate as predicted by the 
FrontSim model and as observed. Note that, for total water production and oil production rate 
the match between the predicted and the real data is very good, but that there is a large 
discrepancy for the seawater production rate. 
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Figure 7.23. Comparisons between the model predictions and observed data for well A17: A) 
the seawater concentration in the produced water through time, as observed and predicted; B) 
total water produced, oil production rate and seawater production rate as predicted by the 
FrontSim model and as observed. Note that, for total water production and oil production rate 
the match between the predicted and the real data is very good, but that there is a large 
discrepancy for the seawater production rate. 
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7.6.4.2 Implications for Miller 
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Figure 7.24. Illustrating how real production data from the Miller oil field relate to trends 
predicted by the Eclipse production simulator, using the example of effect of variable oil 
viscosity on A) injected water production rate, B) formation water production rate and C) oil 
production rate. 
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Water chemistry data suggests that mixing is an important process in the Miller Field. For 

example, there are only two examples of wells that show sudden transition to levels of seawater 

higher than 85% and those came online very late in the life of the field after there was plenty of 

time for mixing to have occurred in the reservoir. The production simulation model proved to 

be useful in providing an insight into the patterns of water movement in the reservoir and 

seemed to suggest that the waterflooding mechanism may start off as a water bank, but that 

permeability heterogeneities allow variations in flow rates which encourages mixing and allows 

waters of different composition to be produced at the same time. There is a possibility that 

CWB does occur to a certain extent in individual layers of differing permeabilities, but that at 

the well, mixing of waters from two separate layers occurs. 

Comparison of water compositional data from Miller (for example, Figure 7.24) illustrates the 

difficulties involved in producing a model that produces a reasonable portrayal of a specific 

reservoir. The Miller production data do not match well with any of the trends produced from 

the simple models described in the first part of the chapter, they do however, form curves whose 

shape can be related to those from the modelling. This allows a picture to be constructed of the 

features of the Miller reservoir that are most important in controlling production rates of 

injected water, formation water and oil. 

Wells belonging to group (1) (as classified in section 7.6.2.1) that have similarities to the simple 

models that have extremely variable permeability and a low capillary pressure profile. Group 

(2) wells do not correlate at all well with any of the simple models described at the start of the 

chapter, suggesting that this is extremely complex in Miller. However, they do consistently 

correlate with curves suggesting a low oil viscosity and low capillary pressure. Well A14 

(Figure 7.24) from group (3) has curves suggesting a reservoir that is similar to the models 

containing more than one high-permeability horizon, with oil 0.2 cP viscosity and a low 

capillary pressure profile. Well A16 (group 4, Figure 7.24) has an extremely poor match with 

the permeability curves, but again indicates a low viscosity oil and low capillary pressure. 

Finally, the shape of the group (5) wells curve matches well with the simple models containing 

more than one high-permeability layer and low capillary pressure. Uniquely, group (5) wells 

appear to show evidence for a higher viscosity oil, though this may be due to changes in the 

reservoir properties due to data collection only late in the life of the field. 

The following paragraphs describe an alternative method of analysing the real Miller data and 

the production simulation results. This will provide a separate means of comparing predictive 

results with real ones to determine the accuracy of the models as well as explaining the trends 

shown in the real data. A number of parameters that characterise the simulation output are 
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compared with input parameters for the Miller data, the Miller FrontSim model and the Eclipse 

models. 

Average permeability/oil viscosity (k/p) is a measure of the ease with which fluids flow through 

the reservoir, a high value indicating relative ease of flow and a low value indicating constricted 
flow. The Dykstra-Parsons coefficient is a measure of the heterogeneity of a series of values, in 

this case, the permeability variation in the reservoir. The value is calculated by 

Vdp = (permeability at 50`h percentile -permeability at 84th percentile) 
permeability at 50'h percentile 

with a value of 0 being completely homogeneous and a value of 1 being completely 
heterogeneous. In order to assess the importance of ease of fluid flow and permeability 
heterogeneity on the waterflood and reservoir management, average permeability (mD)/oil 

viscosity (cP) and the Dykstra-Parsons coefficient were plotted against: time to water 
breakthrough (days or pore volumes injected), time to injected water breakthrough (pore 

volumes injected), time to 50% watercut (pore volumes injected), initial watercut value (%) and 

the rate of increase of injected water proportion (stb/day/day). The amount of time taken for 

changes to occur within a petroleum system is dependent on the size of the reservoir and the rate 

at which water is injected into it. Therefore, the number of pore volumes of water injected is 

used as a measure of time wherever possible to eliminate uncertainty between different datasets. 

However, in some cases change may occur with no injection and in these situations, measuring 
time in days is an adequate alternative. 

Figure 7.25 shows the time to water breakthrough in days and pore volumes with respect to k/p 

and Vdp, and indicates that water takes longer to breakthrough in reservoirs in which oil flows 

easily but that water breakthrough occurs sooner in reservoirs with very heterogeneous 

permeability. 

When injected water is considered separately, some differences become apparent in that 

reservoirs with high k/p tend to allow faster injected water breakthrough (Figure 7.26). It is 

possible that this discrepancy arises because a reservoir with high k/p is extremely permeable to 

oil. This allows the hydrocarbons to reach the producing well rapidly with little influence from 

formation water. However, by the time the water reaches the well, the relatively unrestricted 
flow of injected water will have reached the formation water and mixed. In addition, a reservoir 

with extremely heterogeneous permeability is likely to have a number of high permeability 
horizons, allowing fast transport of water and injected water to the producing well. 
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Figure 7.25. Time, in either days or pore volumes injected, to water breakthrough as a function 
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The amount of time until 50% water cut is reached is a measure of how much influence water 

breakthrough has on the system. For example, if a well experiences rapid water breakthrough 

with a slow progression to 50% watercut, this may be more manageable than a well with slower 

water breakthrough but a very rapid progression to high water production. Figure 7.27 

illustrates that generally the greater the ease of flow through the reservoir, the less time taken to 

50% watercut. 
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Figure 7.27. Time, in pore volumes injected, to 50% watcrcut as a function of k/p 

The size of the initial watercut is also important, a smaller percentage obviously being more 

desirable, and while the k/p value appears to have little influence over this parameter, the more 

heterogeneous the reservoir, the smaller the initial watercut is likely to be. 
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Contrary to previous findings, Figures 7.25 to 7.28 appear to show a reasonable consistency 

between the real data and the model output. While the absolute values differ considerably, the 

points tend to lie on similar trends. The main discrepancy between the Eclipse model output 

and the other points is due to the simplicity of the model and the variation of permeability over 

only 9 horizons 

The first part of this chapter emphasised the need for a good understanding of reservoir 

permeability. This is borne out by the importance of permeability highlighted in Figures 7.25 to 

7.28. Oil viscosity and capillary pressure are also important and the information in the model 

relating to these appears to be reliable. Discrepancies between the streamline model results and 

the real production data for Miller can be ascribed both to the lack of detailed permeability 

information in the model, and the inability of the streamline model to take into account different 

capillary pressures. 

The patterns in the way fluid appears to move in the reservoir model suggest that the 

waterflooding mechanism may start off as a water bank, but that permeability heterogeneities 

allow variations in flow rates which encourages mixing and allows fluids of different 

composition to be produced at the same time. There is a distinct possibility that banking does 

occur to a certain extent in individual layers of differing permeabilities, but that at the well, 

mixing of waters from two separate layers occurs. The effects of hydrodynamic dispersion and 

diffusion must also be taken into account. 
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7.8 Conclusions 

Production simulation models are an effective tool for establishing the amount of mixing 

occurring in a reservoir and can be made more useful by using detailed geological information 

about the reservoir together with formation water chemistry data. It is very important to 

incorporate the best and most detailed information relating to permeability, capillary pressure 

and relative fluid mobility into the model. Small alterations in these parameters in particular 

can cause significant changes to a model output. Reservoirs with permeability that is 

homogeneous or that varies systematically are more likely to experience water mixing than 

reservoirs with heterogeneous permeability. Low capillary pressure inhibits water flow and 

prevents water mixing. More mixing occurs in systems containing low viscosity oil than high, 

but high viscosity oil may increase the risk of water mixing in the well bore - of significance in 

the prediction of scale precipitation. 

The Vdp and Dykstra-Parsons parameters also provide a useful insight into how production 

simulation models reflect real situations and enable comparisons to be made with data from a 

producing field. Again, the model and the real data indicate that permeability heterogeneity 

significantly affects flow of the different fluids through the reservoir. The greater the 

heterogeneity, the faster water breakthrough is likely to be. The results show that a model can 

be consistent with real data, but that careful, ongoing analysis of model accuracy should be 

undertaken. 

An extremely effective way of testing a model output is to compare it with real production data. 

Although it is often neglected, a good match of modelled and real injected water breakthrough 

can significantly improve all aspects of a model. The best way to track injected water 
breakthrough in a real situation is to use changes in the water chemistry, provided the end- 

members of injected and formation waters are well constrained. 

Studying the measured and modelled data from Miller highlighted the risks of using reservoir 

modelling to understand fluid flow and mixing in complex reservoirs. Chloride concentration in 

produced water was used to calculate the proportion of the produced water that had been 

injected. This data was used to identify five different patterns of injected water incursion in the 

Miller reservoir including 1) minor water breakthrough, 2) gradual water breakthrough and 

progressive mixing, 3) rapid injected water breakthrough and minor mixing, 4) dominant 

formation water, or alternative formation water and 5) extremely rapid water breakthrough - 

mixing prior to production. These different patterns are the result of variable production 

strategies, geographical position of the wells and permeability heterogeneity in the reservoir. 
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Comparison of the measured Miller data with the Streamline computer model highlighted some 

significant problems with model reliability. Although it was possible to "tweak" the model 

enough to provide an accurate prediction of oil behaviour over the life of the field, the water 

production data (particularly injected water) remained ambiguous and inaccurate, possibly 

causing misinterpretation of the scaling risk associated with waterflooding. 

Results from the first part of the study indicate that it is theoretically possible to produce 

accurate predictions using a computer model. It should be possible to predict patterns of water 

breakthrough and mixing in a reservoir, given enough information about the rock properties. 

While this kind of detailed information is rarely available when needed, a reasonable 

approximation can be reached provided the modeller has a reasonable understanding of the 

geology in the system. The importance of a well understood and characterised reservoir to work 

with cannot be emphasised enough. 

Discrepancies between the streamline model results and the real production data for Miller can 

be ascribed both to the lack of detailed permeability information in the model and the inability 

of the streamline model to take into account different capillary pressures. These problems are 

partly the result of a lack of understanding of the importance of carefully history matching 

produced water as well as oil data when the model was created originally. 

Production simulation modelling can therefore be an extremely useful tool in managing oil 

production from a specific field. Two of the most valuable uses for produced water data are as 

part of reservoir models in A) the tracking of injected water in the reservoir and B) assessing the 

reliability of production simulation models. If studied in enough detail, Cl as a tracer can 

provide a useful indication of the extent of mixing in the reservoir, the location of any 

potentially high permeability layers and the degree to which vertical permeability differs from 

horizontal. 
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Model 1. Varying permeability 

Model 

ref. 

Permeability (mD) Perforations 

Layer Layer 

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 

la 50 50 50 50 50 50 50 50 50 X 

lb 50 50 50 50 50 50 50 50 50 X 
1c 800 700 600 500 400 300 200 100 50 X 

id 800 700 600 500 400 300 200 100 50 X 

le 50 100 200 300 400 500 600 700 800 X 
if 50 100 200 300 400 500 600 700 800 X 

1g 50 50 50 1000 50 50 50 50 50 X 

1h 1000 50 50 50 50 50 50 50 50 X 
ii 1000 50 50 50 50 50 50 50 50 x 

ij 50 50 50 1000 50 50 50 50 50 X 

1k 50 50 50 1000 50 50 50 50 50 X X X 
ii 1000 50 50 50 50 50 50 50 50 X X X 

Model 2. Varying capillary pressure 
Model Capillary Permeability (mD) Perforations 

ref. Pressure 

Profile 

Layer Layer 

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 

2a Lower 50 50 50 50 50 50 50 50 50 X X X 
2b Hi her 50 50 50 50 50 50 50 50 50 X X X 

2c Lower 800 700 600 500 400 300 200 100 50 X X X 

2d Lower 50 100 200 300 400 500 600 700 800 X X x 
2e Higher 50 100 200 300 400 500 600 700 800 X X X 
2f Higher 800 700 600 500 400 300 200 100 50 X X X 
2g Flat X X X 

curve 50 50 50 50 50 50 50 50 50 
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Model 3. Varying mobility ratio 
Model Oil Permeability (mD) Perforations 

ref. Viscosity 

(cP) 

Layer Layer 

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 

3a 20 50 100 200 300 400 500 600 700 800 X X X 

3b 20 800 700 600 500 400 300 200 100 50 X X X 
3c 20 50 50 50 50 50 1000 50 50 50 X X X 

3d 20 50 50 50 50 1000 50 50 50 50 X X X 

Model 4. Vertical permeability the same as horizontal 

Model Vertical Permeability (mD) Perforations 

ref. permeability 

= horizontal 

permeability? 
Layer Layer 

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 

4a Yes 50 100 200 300 400 500 600 700 800 X X X 

4b Yes 800 700 600 500 400 300 200 100 50 X X X 

4c Yes 800 700 600 500 400 300 200 100 50 X X X 

4d Yes 50 100 200 300 400 500 600 700 800 X X X 
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8.0 CONCLUSIONS 

Water-rock interactions are of great significance in terms of the controls on formation water 

compositions. 

The nature of the dominant control on those fluids that reside in the subsurface has been the subject 

of some controversy over a number of years. In particular, authors have disagreed over the degree 

of influence of water-rock interactions compared with fluid origin, and over which processes in 

particular control such ratios as Na: Ca, Ca: Mg, Ca: HCO3 and Ba: S04. Findings here indicate that 

water-rock interactions are far more important than any other potential control except in the case of 

chlorinity. In addition, a number of reactions are common to all similar reservoirs, so that 

formation water compositions reflect the mineralogy of the relevant host-rocks. This study has 

helped to reduce the controversy by providing evidence from an integrated dataset. 

The San Juan case study provided a snapshot in time of a low-salinity system affected by leaching 

of Na-rich bentonites caused by high bicarbonate concentrations as well as by ion exchange and 

reduction reactions involving coal beds. While previous isotopic studies established that the basin 

is not throughflowing, but recharged through meteoric input and basinal upwelling, detailed 

analysis of formation water chemistry was able to create a useful picture of the additional processes 

occurring in the system. Variation in Cl concentrations supports previous hypotheses that this area 
is experiencing significant meteoric recharge in the northwest. In addition, Ca and Na behaviour 

provide evidence for dissolution of Ca-bearing minerals and the leaching of the abundant bentonite 

clay, present in the area as the devitrification product of ash falls. These processes likely 

predominate over simple ion exchange. 

In the San Juan Basin, the generation of bicarbonate by coalbed or methane oxidation has a great 

effect on the chemistry of the waters. Another likely source for this is the dissolution of Ca 

carbonate minerals at the basin margins. The study of low salinity-high bicarbonate waters has 

contributed significantly to the understanding of formation waters on a global scale as was 

examined in more detail in Chapter 5. 

In contrast, the Miller case study showed a picture of changes on a production timescale of a saline 

system affected by fluid mixing and mineral-water reactions. In particular, Ca, Mg, Ba and SO4 are 

affected by calcite dissolution and replacement by dolomite, clay formation, barite precipitation and 

possible sulphate reduction. Fluid injected into the reservoir is saturated with quartz after less than 
14 months, indicating a rapid equilibration of the fluid with the silicate system. 
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Tracking of produced fluid compositional changes through time provides a useful monitor of fluid 

mixing mechanisms and chemical reactions. This is particularly useful for comparison with 

reservoir simulation models. An in depth understanding of specific reservoir properties is required 
to realise the potential of production simulation models. In particular, variations in permeability 
heterogeneity, fluid properties (including viscosity, density relative permeability) and capillary 

pressure can all affect a model output and should be as accurate as possible. A substantial amount 

of fluid mixing can be seen to be occurring in the Miller field from the water chemistry, however, 

reproduction of real results by the model is extremely difficult to achieve. 

While very different systems, San Juan and Miller actually help define different parts of a single, 

continuous spectrum encompassing all global formation waters. Continuity arises through the 

action of similar mineralogically-dependent reactions on formation waters of differing starting 

compositions. 

Cation concentrations are modified by water-rock interactions, even in low salinity waters at low 

temperatures. Similar reactions occur in a variety of different settings and, post burial, the global 

variation is due to differences in mineralogy in different locations. The evidence for the different 

reactions is found when comparing formation water compositions with mineralogy across a range of 

geological settings. The most important reactions in petroleum reservoirs include: K-feldspar 

dissolution, alteration and recrystallisation; clay mineral formation (e. g. kaolinitisation and 
illitisation of K-feldspar) and interaction of formation waters with dolomite and Mg-containing 

clays and sulphate reduction. For example, widespread equilibrium of pore waters with Ca- 

containing silicate, carbonate and sulphate minerals in all situations means that there is a continuous 

trend of relative Ca concentration with salinity (TDS), from very low to very high salinity waters, 

encompassing most formation waters. 

It has also been demonstrated that some silicate reactions can occur extremely rapidly once a 

system has been disturbed. In particular, silicate reactions that constrain pH and release Si into 

solution have been shown to occur on a timescale of less than 14 months in the Miller field. While 

it remains true that non-equilibrium assemblages do occur (e. g. kaolinite + K-feldspar), fluid 

compositions appear to reflect mineralogy. 

A deeper understanding of water chemistry in petroleum reservoirs will allow reservoir engineers, 

production chemists, geochemists and geologists in the industry to perform their roles more 
effectively. Information provided by formation water analyses from a single location has 

tremendous application. Given the knowledge gained through this study, it should be possible to 
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make an informed set of deductions about the nature of the host-rock mineralogy and the potential 

response of the whole system to the introduction of fluids with compositions varying from fresh 

water to seawater to CO2. 

Rapid reactions between water and clays/feldspars help to constrain pH even when the system is 

perturbed, for example by injection of water or CO2. Modelling results indicate that reservoirs with 

a wide range of different minerals therefore tend to be the most effective at maintaining a stable 

system, while clean sand and carbonate reservoirs are more susceptible to formation or seal damage 

through dissolution of carbonate minerals. Salinity of the formation water is also a factor in 

determining how much pH will respond to injection however. A system containing feldspars and 

clays may react rapidly enough to prevent significant damage to a seal caused by carbonate 
dissolution in some cases. 

This study has also highlighted some remaining uncertainties to be resolved by future work: 
" Formation water analyses may be of variable quality, and the quality may be hard to 

evaluate. 

" It would be extremely useful to develop a rigorous method for determining the controls on 
Mg in formation waters, in particular distinguishing between the influence of carbonate and 

clay minerals. 

" Which other practical applications could benefit from an improved understanding of this 

subject? A potential use for this data is as part of a detailed study into oilfield mineral scale 

prediction. These data analysis techniques used in conjunction with lithological study and 
geochemical modelling could provide a useful predictive model, in an age when making the 

most of current resources is becoming more and more important. An additional direct 

practical application of formation water data would be to include it as a further constraint 

within reservoir simulation models. 
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