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ABSTRACT

To help engineers to design and analyse structures, various tools exist. However, many of them
are complicated and difficult for engineers to master. In industry simple, accurate, and rapid tools
are potentially very useful. The development of such tools has thus been the main focus of this
thesis.

One application is the design of lightweight truss structures. Although techniques have been avail-
able to identify efficient truss designs for more than half a century, these are not widely used in
industry. A major problem is that the structures generated are often complex in form, so that man-
ufacturing becomes problematic. To address this, the current research explores two rationalization
techniques: (i) introducing joint lengths to control the number of joints that exist in the resulting
structure; and (ii) utilising geometry optimization to adjust the locations of joints in a truss. The
former involves a minor modification to the standard process such that it retains the linear nature of
the original problem, while the latter solves a more challenging non-linear optimization problem
that can simultaneously simplify (make less complicated) and improve (make lighter) a given truss
layout. To ensure a rapid and reliable process for the latter, analytical expressions of functions and
their derivatives are supplied to a general purpose non-linear optimizer and various practical issues
are also considered. A number of benchmark problems are solved to show the efficacy of the two
rationalization techniques.

Another application is yield-line analysis of reinforced concrete slabs. Even in the modern com-
puter age, with many engineering analysis procedures successfully computerized, a fully auto-
mated means of undertaking a yield-line analysis has been lacking, forcing engineers in industry
to use hand-calculations in order to benefit from the power of the yield-line method. This thesis
is therefore concerned with the development of techniques that automate this method. By utilis-
ing the novel discontinuity layout optimization (DLO) method, the process of yield-line analysis
has been truly automated at last. In addition, motivated by the outcomes of the rationalization
procedure developed for trusses, research has been conducted to rationalize yield-line patterns
generated via DLO. Similar to the technique used in trusses, analytical expressions of functions
and their derivatives are deduced and then supplied to a non-linear optimizer, leading to a rapid
and reliable computational process. To make DLO and the rationalization ready for use in indus-
try, various slab configurations found in practice are also considered, permitting challenging slab
problems to be tackled using the method. A number of examples from the literature and industry
are analysed to demonstrate the efficacy of DLO and the rationalization technique.
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Chapter 1

Introduction

The activity of designing structures has a long history. In ancient times people relied on trial and
error to realise effective designs. This meant our ancestors 1400 years ago were able to design
and build elegant arch bridges, some of which are still standing today (e.g., Fig. 1.1), all without
systematic design methods or modern computing techniques.

Figure 1.1: An ancient arch bridge (built in 618 A.D.) (Wikipedia 2012)

Generally, structural design involves the use of structural analysis, required to evaluate safety
and serviceability. In this research, efficient structural analysis methods were investigated by
using direct methods, which directly assess load carrying capacity, without considering detailed
structural behaviour prior to collapse. Direct methods can be embedded in the design process to
obtain economical, safe and serviceable structures.

1.1 Motivation and objectives

The advent of computational techniques in the mid-twentieth century opened up a new era for
structural design, freeing engineers from time-consuming hand calculations, and providing them
with greater design freedom.

Methods of structural design have been studied extensively in recent decades. Some methods
have been developed to help engineers accurately model the response of structures, taking into
account the ‘true’ behaviour of materials, and the dynamic characteristics of real-world structures.
Other methods have been developed to improve the efficiency of the design process, for example

1



CHAPTER 1. INTRODUCTION 2

guiding engineers towards efficient structural topologies, based on simplified representations of
material and/or structural behaviour. Precision and speed are often not achieved simultaneously;
engineers often rely on approximate solutions to save time. Taking advantage of modern theory
and computing power, this research has focused on the development of an accurate, and most
importantly, a rapid design tool for use in industry.

Sophisticated software exists that can be readily used in industry; however, some are based on
complicated theories making them only suitable for expert users. In addition, to accurately model
the complex behaviours of structures a large number of parameters typically need to be introduced.
These create a barrier for practitioners and engineers who have just entered the industry. More im-
portantly, incorrect program parameters can cause unexpected behaviour and erroneous solutions,
leading to unsafe design and analysis. For this reason this thesis has focused on simple theories
and produced software that utilises few parameters. Some of the solutions presented can even be
validated through hand analysis.

Many real-world structures include truss elements (i.e., elements that primarily carry either ten-
sion or compression only). Trusses can be used to form large scale engineering structures, such
as canopies and long-span roofs. They can be highly efficient forms with good strength-to-weight
characteristics; for this reason, trusses can also be used in some light-weight mechanical com-
ponents, for example racing cars and aeroplanes. In recent years, new technology in additive
manufacturing permits relatively complex structural components to be made, and a close coopera-
tion has been established at the University of Sheffield between the structural design and additive
manufacturing groups. Given this opportunity, a key focus of this thesis was on the design of
trusses, which involved the process of finding optimal structures that are highly efficient and light-
weight. Although engineering methods and tools are available for designing such structures, one
issue has been noted: while solutions can be optimal in theory, their layouts are very often too
complex to be accurately fabricated even with modern manufacturing technology. Therefore, a
method for generating more rational designs is of particular interest.

On the other hand, it is of interest to note that an analogy exists between an optimum truss layout
and the layout of yield-lines in a reinforced concrete slab at failure. Therefore, methods developed
for truss design problems can potentially also be used in slab analysis. Given the fact that engi-
neers still perform hand calculations to analyse slabs, this research sought to develop engineering
software for automating these analyses.

1.2 Structure of the thesis

This thesis contains nine core chapters and additional sections in the Appendix. This chapter
introduces the background, motivation, and objectives of the current research, and outlines the
structure of this thesis.

• Chapter 2 primarily reviews mathematical optimization methods involved in the research,
including linear programming (LP) and non-linear programming (NLP).

• Chapter 3 provides an overview of theories used in this thesis. A brief review will be given
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of plastic limit analysis, followed by one application - optimal truss design using layout
optimization. Then the limit analysis of reinforced concrete slabs is introduced, noting the
limitation of existing methods and thus the need for a new method.

• Chapter 4 comprises an academic paper which introduces two techniques that can be used
for rationalization, developed to address the complexity found in truss structures generated
using layout optimization. Mathematical formulations, implementation issues and numeri-
cal examples are provided.

• A new method of performing slab yield-line analysis using discontinuity layout optimiza-
tion (DLO) is introduced in Appendix A; Chapter 5 comprises a further academic paper
which describes how rationalization techniques can be transferred to slab analysis. Simi-
larly, mathematical formulae and implementation issues are provided and numerical exam-
ples are solved.

• Chapter 6 comprises a third academic paper which focuses on more practical aspects of slab
yield-line analysis. Modifications to the original DLO formulation are made to enable the
analysis of more complicated slabs (e.g., slabs with orthotropic reinforcement, knife-edge
supports, etc). Case studies containing various numerical examples taken from the literature
and engineering practice are provided to further demonstrate the efficacy of DLO.

• Chapter 7 discusses various issues relevant to the current research.

• Chapter 8 presents the conclusions of the thesis.

• Chapter 9 presents details of proposed future work.



Chapter 2

A brief review of mathematical
optimization

This thesis is primarily concerned with applying numerical approaches to engineering problems.
Mathematical optimization is of significant interest because it provides effective numerical meth-
ods that can facilitate rapid engineering processes. There are a wide variety types of different
optimization problems. Nevertheless, a single objective optimization problem can be written in
general as:

min
x

f(x) (2.1a)

s.t. hi(x) = 0, i = 1, 2, . . . , l (2.1b)

gj(x) ≥ 0, j = 1, 2, . . . ,m, (2.1c)

where x is a vector of unknown variables typically named the optimization variable; f(x) is the
objective function to be minimized (or maximized if given max

x
). Meanwhile, x must satisfy

equality constraint hi(x) in (2.1b) and inequality constraint gj(x) in (2.1c). In general, variable
x can be discrete, e.g., admit only integer values; however, in this thesis variables are continu-
ous (x ∈ Rn), which normally yields relatively efficient mathematical approaches. According
to the mathematical properties of the objective function f(x), constraints hi(x) and gj(x), the
optimization problem (2.1) can be categorized as:

Linear programming problem When the objective function (2.1a), equality constraint (2.1b)
and inequality constraint (2.1c) are linear with respect to the optimization variable x, the optimiza-
tion problem is called a linear programming (LP) problem.

Non-linear programming problem When any of the functions in (2.1a), (2.1b) and (2.1c) are
non-linear with respect to optimization variable x, the optimization problem is a non-linear pro-
gramming (NLP) problem. This category can be further subdivided into two subcategories: con-
strained and unconstrained NLP problems, depending on whether constraints are included.

The current research involves both LP and NLP problems. Many of the theoretical aspects are used

4
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Figure 2.1: Global and local optimums in a minimization problem

to aid the development of solution strategies for engineering problems. It is therefore important to
introduce some key theories in mathematical optimization.

2.1 Concepts used in optimization

Before describing mathematical optimization theories, it is necessary to introduce some commonly
used concepts.

Minimization and maximization The concepts of minimization and maximization are straight-
forward: they directly describe the objectives of the concerned problems. A maximization problem
can normally be converted to an equivalent minimization problem, e.g., a simple conversion can
be made using: max

x
f(x)⇒ min

x
−f(x). In the following content, only a minimization problem

(i.e., (2.1)) is described; a point x∗ at which the objective function f(x) is minimized is often
called a minimizer.

Global and local optimums A global optimum is strictly the minimum value the objective func-
tion (2.1a) can have in the entire variable space, while a local optimum means that the calculated
objective function is the minimum value in a neighbourhood of the minimizer (Fig. 2.1). In many
engineering problems, a global optimum cannot be assured, so a locally optimized solution is
normally acceptable.

Constrained and unconstrained If either or both constraints (2.1b) and (2.1c) are included, the
optimization problem is constrained, otherwise it is unconstrained. The former case is considered
in this work. In this category, a point x satisfying all constraints is called a feasible point, the set
containing all feasible points is called feasible set, denoted as X, and from a geometric point of
view, is also called the feasible region.

Convexity Convexity is significant because it affects many aspects of optimization problems. It
involves the feasible set X as well as the objective function f(x). Now consider any two points
x1 ∈ X, x2 ∈ X and an arbitrary number α ∈ [0, 1]. Set X is convex if the following condition is
met:
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αx1 + (1− α)x2 ∈ X, for allα ∈ [0, 1]. (2.2)

The objective function f(x) is convex if the following condition is satisfied:

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2), for allα ∈ [0, 1]. (2.3)

An important statement regarding convexity is that, when both f(x) and X are convex, any local
optimum of (2.1) is a global optimum.

Smoothness Many mathematical optimization methods examine the derivatives of the objec-
tive function (2.4a) and constraints (2.1b) and (2.1c) with respect to the optimization variable x.
Accordingly, it is required that those functions are first- or second-order differentiable at the min-
imizer. It is worth noting that: (i) a problem with a non-smooth objective function can sometimes
be transformed to a smooth problem by reformulating the objective function and constraints, and
(ii) a non-smooth constraint can normally be rewritten as several separate smooth constraints.

Within the scope of this thesis, the smoothness condition is always satisfied in the objective func-
tion; potential non-smooth constraints are presented and steps taken to ensure this condition is
satisfied.

Duality Duality theory (e.g., Vanderbei 2001, Nocedal et al. 2006) shows how an alternative
problem can be formulated, by using the functions and coefficients from the original optimization
problem (2.1), to be highly relevant to the original problem. The new problem is called the dual of
the primal, i.e., the original problem. While the primal problem (2.1) is stated as a minimization
problem, its dual is a maximization problem. The dual problem gives the lower bound solution
of the primal and vice versa; the gap between them is called the duality gap. In certain cases, the
duality gap is zero, so simultaneously investigating both the primal and dual problems can lead to
very efficient optimization methods.

2.2 Linear programming

2.2.1 Formulation

Assume linear functions in (2.1a), (2.1b) and (2.1c), problem (2.1) can now be written in matrix
notation as:

min
x

cTx (2.4a)

s.t. Ahx = bh (2.4b)

Agx ≥ bg, (2.4c)

where c is a coefficient vector of the objective function; x is the optimization variable; Ah and
Ag are the equality and inequality matrices, respectively, and bh and bg are constant vectors.
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Though problem (2.4) can be considered a special case of (2.1), LP methods have developed in a
different way from the NLP methods. LP and NLP problems were considered completely separate
problems for decades, and the methods used for solving them varied significantly.

An important mathematical aspect of a LP problem is that the objective function (2.4a) and the fea-
sible set (defined by constraints (2.4b) and (2.4c)) satisfy conditions (2.3) and (2.2), respectively;
this implies that LP problems are convex, so any local optimum is also a global optimum.

Instead of investigating the general form (2.4), a so-called standard form is considered by many
(e.g., Vanderbei 2001). The standard form excludes the inequality constraint (2.4c); in addition,
it contains only non-negative optimization variables. It can be transformed from the general form
by eliminating inequality constraint (2.4c) using non-negative slack variables s (s ≥ 0), replacing
(2.4c) with Agx− s = bg. Furthermore, the optimization variable x in (2.4) is replaced by non-
negative variables x+ and x− (also imposing x = x+ − x−). The resulting standard form can be
written:

min
x̃

c̃Tx̃ (2.5a)

s.t. Ãx̃ = b̃ (2.5b)

x̃ ≥ 0, (2.5c)

where x̃ =
[
x+T, x−T, sT

]T contains the new optimization variables, and c̃, Ã and b̃ are con-
structed using the coefficients of (2.4). There exists two major methods for solving LP problems:
the simplex method and the interior point method [i].

2.2.2 Simplex method

Invented in the late 1940s by Dantzig (1949), the simplex method has been continuously improved
since its conception. It currently has many variations such as the primal and the primal-dual meth-
ods, and various software packages (e.g., GUROBI 2014 ) have been made available. Nonetheless,
the main features of the original simplex method remain, and can be explained using mathematical
and geometric interpretations.

In a mathematical interpretation, assume matrix Ã has full row rank. The column space of Ã is
significant. According to theories in linear algebra, a basis of the column space is formed by a set
of columns of Ã; b̃ is a linear combination of columns taken from this set and the corresponding
coefficients (i.e., values in x̃ corresponding to these columns) can be calculated. Conversely,
the coefficients corresponding to other non-basis columns are zero. Given this column set, the
objective function can be calculated. Typically, this set is not unique, so the resulting objective
value varies. The simplex method first identifies one set, and then in each iteration creates a new
set by replacing one column with a non-basis column, aiming to reduce the objective value.

[i]An interchangeable name is the ‘barrier method’. In this thesis, the term ‘interior point method’ refers to the modern
barrier methods developed since the mid 1980s, i.e., the ‘primal-dual interior point methods’. On the other hand, the
early ‘barrier methods’, i.e., ‘primal interior point methods’ developed in 1955 (Frisch 1955), are not considered.



CHAPTER 2. A BRIEF REVIEW OF MATHEMATICAL OPTIMIZATION 8

In a geometric interpretation, the objective function c̃Tx̃ defines a hyperplane; the objective value
increases along its normal direction, and vice versa. The feasible set {x̃ ∈ Rn|Ãx̃ = b̃, x̃ ≥ 0} in
(2.5) defines a polytope. If the optimization problem is feasible (i.e., feasible set X is not empty)
and bounded, a minimizer can always be found at a vertex of the polytope. The simplex method
seeks a minimizer by browsing the vertices of the polytope, starting from one vertex and moving
to an adjacent one. Since a polytope is convex, a non-ascending (i.e., not increasing objective
function) ‘movement’ is guaranteed unless the minimizer is found.

By browsing vertices of the polytope, every point in its search path is always feasible, and a min-
imizer can certainly be found. However, in the worst scenario the simplex method can visit every
vertex, leading to an inefficient process. For large-scale problems, the polytope has a considerable
number of vertices; for this reason, the simplex method is potentially inefficient.

2.2.3 Interior point method for LP problems

Research on solving LP problems using the interior point method dates back to the mid 1980s
(Karmarkar 1984, Gill et al. 1986). Realising the issues in using the simplex method for solv-
ing large-scale problems, researchers began to seek more efficient approaches. In Wright (2004),
an overview of the developments of the primal-dual interior point method was given, showing a
profound influence brought by the method, which soon became a strong competitor to the then
state-of-the-art simplex method, particularly for solving large-scale problems. Software packages
have also been developed, e.g., MOSEK (2011). It is also worth noting that the interior point
method, perhaps for the first time, bridged the methodologies developed for LP and NLP prob-
lems; it is now widely recognized as a general means of tackling both LP and NLP problems.
Nonetheless, highly efficient solution strategies have been developed for LP problems by utilising
their linear nature. Key theoretical aspects of the interior point method will be reviewed with NLP
methodologies in Section 2.4.2.

2.2.4 Dual problem

According to duality theory, the dual problem of (2.5) can be derived as (e.g., see Vanderbei 2001):

max
λ̃

b̃Tλ̃ (2.6a)

s.t. ÃTλ̃ ≤ c̃. (2.6b)

Problem (2.6) is a maximization problem, thus giving the lower bound of primal problem (2.5).
The dual problem (2.6) is of particular interest, due to the so-called strong duality (e.g., Vander-
bei 2001, Nocedal et al. 2006, Boyd & Vandenberghe 2004): ‘If either (2.5) or (2.6) has a finite
optimal solution, so does the other, and the corresponding optimum values of the objective func-
tions are equal. If either problem has an unbounded objective, the other problem has no feasible
solution.’ Therefore, the duality gap between the two problems is zero.
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2.3 Unconstrained non-linear optimization

As mentioned, before the advent of interior point method, there was almost no connection between
LP and NLP methods. Most NLP methods involve investigating the so-called optimality conditions
that are satisfied at the minimizer.

Assume a non-linear objective function (2.1a), conjecture a local optimum point x∗ and approxi-
mate (2.1a) using a Taylor series (to second-order) at this point: f(x∗+d) = f(x∗)+OfT(x∗)d+
1

2
dTO2

xxf(x∗)d, where d ∈ Rn is any increment of x in a neighbourhood of x∗, and O2
xxf(x∗) is

the Hessian matrix of f(x∗). To ensure x∗ is a local minimizer, the following optimality conditions
can be derived:

Of(x∗) = 0 and O2
xxf(x∗) � 0, (2.7)

where the sign ‘�’ means positive definite. The first condition leads to a stationary point, while
the second condition examines the local curvature of (2.1a) to ensure the identified point is a
minimizer rather than a maximizer or a saddle point.

Taking (2.7), various numerical methods were developed. Given any starting point xk, a common
strategy is to iteratively move xk towards a minimizer. This movement normally requires two sub-
problems to be solved: (i) calculate a so-called descent direction dk - moving xk in this direction
potentially reduces the objective value and, (ii) determine a step-length αk so xk will be moved to
xk+1 = xk + αkdk.

Methods have been developed governing how dk and αk are obtained. Perhaps the simplest
method is the steepest descent method, which calculates the descent direction using dk =

−Of(xk), and the step-length αk by performing a line search: min
αk

f(xk+αkdk)
[ii]. This method

does not require the second derivative (i.e., curvature) of the objective function; for this reason, it
has a so-called linearly convergent rate towards a minimizer that is deemed a relatively slow speed.
Some methods take into account second derivatives, leading to a super-linear rate-of-convergence
(e.g., Newton and Quasi-Newton methods).

2.4 Constrained non-linear optimization

NLP problems are typically more challenging when constrained. There are many strategies for
solving NLP problems, and some are introduced here: (i) investigating the optimality conditions,
(ii) transforming a constrained problem to an unconstrained problem via a parametrized objective
function, which incorporates constraints, and (iii) using heuristics so mathematical derivations are
not required.

[ii]Note that the optimization variable in the line search is αk, if the current point xk and search direction dk are
known.
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Figure 2.2: Optimality conditions of a simple example: at P1, no constraint is active, a minimizer requires
Of(x1, x2) = 0; if P2 is a minimizer, then either Of(x1, x2) = 0 or Of(x1, x2) = Og1(x1, x2), while
g2(x1, x2) is inactive; if P3 is a minimizer, Of(x1, x2) must lie in the tangent cone.

2.4.1 Optimality conditions

Due to the presence of constraints, Of(x∗) = 0 is now no longer a necessary condition - to
investigate the optimality conditions, the objective function (2.1a) needs to be considered in con-
junction with constraints (2.1b) and (2.1c). At a local minimizer x∗, the objective function (2.1a)
is approximated using the first-order Taylor series: f(x∗ + d) = f(x∗) + OfT(x∗)d, where d is
now a direction that potentially moves x∗ within the feasible region. Therefore, a local optimum
satisfies:

OfT(x∗)d ≥ 0. (2.8)

It can be observed that when Of(x∗) 6= 0, d must be affected by constraints at point x∗; the
neighbourhood of x∗ is therefore of particular interest. From a geometric point of view, any
‘descent direction’ must move x∗ out of the feasible region (because x∗ is a local minimizer),
implying that the direction of Of(x∗) must lie in a so-called tangent cone (origin at x∗) formed
using constraints. Since x∗ must lie on the surface defined by equality constraints, the cone must
involve (2.1b); however, for inequality constraints (2.1c), there are two scenarios. If g(x∗) = 0

is satisfied, this constraint turns out to be an equality constraint that affects the tangent cone, and
is called an active constraint. Otherwise, there exists a finite step-length that x∗ can be moved in
any direction without violating g(x) > 0, which means the constraint has no contribution to the
cone. This constraint is called an inactive constraint (also refer to P1, P2 in Fig. 2.2). The tangent
cone can be viewed as a set of non-descending directions (also refer to P3 in Fig. 2.2), constructed
using directions taken from gradients of equality constraints: Ohi(x∗), i = 1, 2, ..., l, and those of
active inequality constraints: Ogj(x∗), for all j ∈ {gj(x∗) = 0|j = 1, 2, ...,m}. As mentioned,
this set must include the direction of Of(x∗) at a minimizer x∗, so Of(x∗) can be expressed as
a linear combination of the gradient vectors above. To describe these conditions mathematically,
the so-called Lagrangian function is used:

L(x,λ,µ) = f(x)−
l∑

i=1

λihi(x)−
m∑
j=1

µjgj(x), (2.9)
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where L(x,λ,µ) is the Lagrangian function, and λ and µ are vectors of Lagrange multipliers for
equality (2.1b) and inequality (2.1c) constraints, respectively. To ensure that Of(x∗) lies in the
tangent cone, the following condition needs to be satisfied:

OxL(x∗,λ∗,µ∗) = Of(x∗)−
l∑

i=1

λ∗iOhi(x
∗)−

m∑
j=1

µ∗jOgj(x
∗) = 0. (2.10)

Given the fact that inequality constraints have two ‘sides’, the sign of their gradients matters. For
this reason µ∗j , (j = 1, 2, . . . ,m), must be non-negative.

Furthermore, to determine the inequality constraints that are active, the so-called complementary
condition is required: µ∗jgj(x

∗) = 0, (j = 1, 2, . . . ,m). It can be observed that, given gj(x∗) > 0,
its corresponding Lagrange multiplier µ∗j must be zero, so that its gradient will not be taken in
(2.10).

By collecting the above conditions, the so-called Karush-Kuhn-Tucker (KKT) conditions at a local
minimizer x∗ can be written (e.g., see Nocedal et al. 2006):

OxL(x∗,λ∗,µ∗) = Of(x∗)−
l∑

i=1

λ∗iOhi(x
∗)−

m∑
j=1

µ∗jOgj(x
∗) = 0, (2.11a)

hi(x
∗) = 0, i = 1, 2, . . . , l, (2.11b)

gj(x
∗) ≥ 0, j = 1, 2, . . . ,m, (2.11c)

µ∗j ≥ 0, j = 1, 2, . . . ,m, (2.11d)

µ∗jgj(x
∗) = 0, j = 1, 2, . . . ,m. (2.11e)

The KKT conditions are first-order necessary conditions, and points satisfying KKT conditions are
called KKT points. At a KKT point, any feasible direction d is not a descent direction. However,
when OfT(x)d = 0, the KKT conditions cannot distinguish between a minimizer and a maxi-
mizer. In this scenario the second-order conditions need to be investigated, taking into account the
curvature of the objective function.

It is worth noting that, due to the complementary condition (2.11e), the use of the gradient of
the Lagrange function can be problematic: given a non-optimum point, it is typically difficult to
predict which inequality constraints will be active at the potential minimizer. For this reason it
becomes a major challenge in developing optimization methods.

2.4.2 Interior point method

The barrier method was invented in 1955, and is now viewed as a subclass of the interior point
method: the ‘primal interior point method’. It led to ill conditioned problems, and as a conse-
quence was almost forgotten later (e.g., Frisch 1955, Fiacco & McCormick 1968). The modern
interior point method often refers to the ‘primal-dual interior point method’ that was pioneered in
the mid 1980s by Karmarkar (1984) and Gill et al. (1986), when researchers were seeking efficient
methods for solving LP problems. In the 1990s, this method received extensive research interest
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and was successfully utilised to solve NLP problems. Instead of directly attacking problem (2.1),
it first considers a so-called barrier problem with the following formulation:

min
x,s

f(x)− u
m∑
j=1

ln sj (2.12a)

s.t. hi(x) = 0, i = 1, 2, . . . , l (2.12b)

gj(x)− sj = 0, j = 1, 2, . . . ,m, (2.12c)

where u, (u ≥ 0), is a barrier parameter, and sj(j = 1, 2, . . . ,m) are slack variables. The use
of the logarithmic function ln sj requires the slack variables to be positive. It is worth noting that
(2.12) has no inequality constraints, overcoming the difficulty of determining active and inactive
constraints. However, it is an approximation of (2.1), and the barrier parameter determines the
level of approximation: when u reaches zero, problems (2.12) and (2.1) become equivalent. A
typical solution strategy is to use a sufficiently (but not significantly) large u and solve (2.12), and
then reduce u and repeat the process until u becomes sufficiently small such that (2.12) is deemed
equivalent to (2.1).

Problem (2.12) is tackled by using KKT conditions in (2.11). Define h(x) and g(x) as the vectors
containing equality and inequality constraint functions, respectively; s a vector comprising slack
variables sj(j = 1, 2, . . . ,m). The KKT conditions of (2.12) can be written as:

Of(x)− JT
h (x)λ− JT

g (x)µ = 0, (2.13a)

Sµ− ue = 0, (2.13b)

h(x) = 0, (2.13c)

g(x)− s = 0, (2.13d)

where Jh(x) and Jg(x) are the Jacobian matrices of h(x) and g(x) respectively, S and Z are
diagonal matrices whose diagonal entries are given by s and µ, respectively, and e is an identical
vector. Equations in (2.13) form a non-linear system with respect to variables x, s, λ and µ. It
can be solved using Newton’s method (e.g., Sauer 2011, p.131), which uses the following iterative
format:


O2
xxL(x,λ,µ) 0 −JT

h (x) −JT
g (x)

0 Z 0 S

JT
h (x) 0 0 0

JT
g (x) I 0 0



δx

δs

δλ

δµ

 = −


Of(x)− JT

h (x)λ− JT
g (x)µ

Sµ− ue
h(x)

g(x)− s

 ,
(2.14)

where O2
xxL(x,λ,µ) is the Hessian matrix of the Lagrangian function (2.9) with respect to x,

and δx, δs, δλ, and δµ are the so-called Newton steps for the variables x, s, λ, and µ, respec-
tively. With respect to Newton steps, equation (2.14) is linear and it can readily be solved[iii]; its
solution indicates a search direction leading to a KKT point of (2.12). Similar to the methods for

[iii]Note that (2.14) may not always have a solution, preconditioning is often required.
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unconstrained problems, after obtaining a search direction, a step-length α is calculated, moving
the current point towards a KKT point. There exist various methods calculating this step-length;
for example, a simple approach is to use the maximum step-length satisfying s > 0.

Given the fact that advanced techniques in linear algebra have been available, (2.14) can be solved
efficiently; hence, the interior point method leads to a rapid approach to solving (2.1), particularly
for problems having a large number of variables. Since this method was invented, extensive re-
search interest has resulted in various modifications. For example, there are concerns about how
the barrier parameter u is updated; techniques also have been developed to incorporate infeasi-
ble starting points, of particular interest when solving non-convex problems. Certain heuristic
schemes have also been developed to increase efficiency (e.g., Wächter & Biegler 2006).

In this thesis, NLP problems are solved using the interior point method. From (2.13) it can be seen
that the method requires first derivatives of objective function f(x) and constraints h(x) and g(x)

to be provided. In addition, (2.14) requires their second derivatives to be supplied.

2.4.3 Sequential quadratic programming and other methods

Before the modern interior point method, the most advanced approach to solving general con-
strained NLP problems was to use sequential quadratic programming (SQP), which involved solv-
ing a sequence of quadratic programming (QP) problems.

The QP problem is a sub-class of NLP problems; it has a quadratic objective function: min
x
f(x) =

1

2
xTGx + cTx, where G is a symmetric n × n matrix and c is a coefficient vector in Rn; the

constraints are linear. QP problems can be solved efficiently under these specific conditions. Given
a positive semi-definite or definite coefficient matrix G, the objective function satisfies convexity
condition (2.3), so that the QP problem becomes convex (note that linear constraints satisfy (2.2))
and a global optimum is guaranteed. Under this condition it has been discovered (e.g., Nocedal
et al. 2006) that the difficulty of solving QP problems is similar to that for LP problems - this
permits highly efficient numerical methods to be developed.

In SQP, a typical solution strategy involves an inner loop and an outer loop: the inner loop solves
a QP sub-problem constructed by approximating the objective function (2.1a) at the current point
using the second-order Taylor series, and constraints using the first-order terms; after each suc-
cessful solution in the inner loop, the outer loop moves the current point forward unless a KKT
point of (2.1) is found.

It is widely accepted that SQP and the interior point method are the two most efficient methods for
solving general NLP problems today. Similar to the interior point method, SQP tackles (2.1) using
approximated problems that can be easily solved. Methods other than SQP exist which follow
a similar solution strategy. For example, sequential linear programming (SLP) approximates the
objective function using first-order terms. However, this approximation ignores the curvature of
the objective function, becoming less effective for solving highly non-linear problems. Another
example is the method of moving asymptotes (MMA) invented by Svanberg (1987). In MMA
the sub-problem is approximated using asymptotic functions constructed by supplying the value
of the objective function (2.1), and the first derivatives of the objective and constraint functions
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at the current point. The asymptotic functions are infinitely differentiable such that the curvature
of the original function can be approximated. The level of approximation is determined by some
prescribed parameters that specify the lower and upper bounds of variable x. Unfortunately, the
choice of these parameters can have a significant influence, so global convergence [iv] cannot be
guaranteed in general. For this reason, further developments have been made in Svanberg (1995)
and Svanberg (2002), addressing the issue of global convergence, though with higher computa-
tional cost. The main advantage of MMA is that calculating second derivatives of certain functions
can be computationally expensive for some engineering problems. A means of approximating cur-
vatures of those particular functions often leads to potentially efficient approaches, and numerous
case studies have demonstrated its efficacy (e.g., Bendsøe & Sigmund 2003).

2.4.4 Penalty methods

Instead of investigating KKT conditions, an alternative approach is to eliminate constraints by
constructing a parametrized objective function where constraints can be incorporated. This leads
to an unconstrained problem that can readily be solved. One way to construct this parametrized
objective function is by using penalized terms. Violated constraints add penalty values to the
objective function, enforcing the optimization to reduce these violations. Regarding problem (2.1),
a commonly used quadratic penalty function gives:

fP(x) = f(x) +
uP

2

l∑
i=1

h2
i (x) +

uP

2

m∑
j=1

max{−gj(x), 0}2, (2.15)

where fP(x) is the penalized objective function and uP(uP > 0) is a prescribed penalty parameter.
Given a significantly large penalty parameter uP, an unconstrained optimization process will also
minimize the penalized terms, so constraints in the original problem are nearly satisfied (with
negligible violation). When uP → ∞ problems (2.15) and (2.1) are equivalent. However, the
use of large uP value can lead to an ill-conditioned problem, potentially rendering the numerical
method ineffective.

2.4.5 Heuristic methods

A major drawback of conventional gradient-based mathematical methods is that, given a non-
convex problem, a point cannot normally ‘jump’ from one local minimizer to another; hence the
global optimum is not generally guaranteed. For this reason research has focused on investigating
new methods that can potentially visit every point in the feasible region. Perhaps more impor-
tantly, obtaining analytical expressions of derivatives of the objective function and constraints can
be cumbersome and/or extremely difficult in engineering practice. Given this fact, a method for
finding the optimum solution is to browse every feasible point. Depending on the number of vari-
ables, the feasible region can become enormously large such that browsing every feasible point
becomes impractical. To make this process more efficient, researchers invented ‘intelligent’ algo-
rithms, which were often inspired by observing nature. For example, genetic algorithms (GA) were

[iv]Convergent from any starting point.
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invented by adopting Darwin’s ‘natural selection’ principle, where finding an optimum is deemed
an evolutionary process. Instead of taking descent directions using derivatives of functions, the
mechanism of natural evolution controls how an optimum solution is generated. It only takes ob-
jective values of the optimization problem, permitting complicated problems to be tackled without
investigating the mathematical properties of the supplied data and functions. However, simulating
nature also requires the objective function to be evaluated frequently, leading to a potentially inef-
ficient process. Furthermore, certain mechanisms in GA involve generating randomized numbers,
potentially allowing the global optimum to be found; however, it also indicates a lack of reliability,
and a poor solution could be generated.

2.5 Derivative calculation

Using gradient-based optimization methods, first and even second derivatives are normally re-
quired. In engineering practice, derivation of exact expressions of derivatives can be cumbersome
(e.g. deriving the second derivatives has been repeatedly reported as being quite difficult). For this
reason alternative approaches have been proposed by researchers.

2.5.1 Quasi-Newton methods

The so-called Quasi-Newton methods were developed to address the complexity in calculating the
second derivatives (i.e., the Hessian matrix). They approximate the Hessian matrix using a posi-
tive semi-definite or definite matrix constructed using gradient information obtained in the current
and previous iterations. Various methods have been developed to construct this matrix; one of the
most commonly used methods is the Broyden, Fletcher, Goldfarb and Shanno (BFGS) method.
For many non-linear problems, constructing an approximate Hessian matrix is more efficient than
using its exact solution, so calculating a search direction is computationally inexpensive in gen-
eral; however, the approximate direction may not be equally efficient, leading to a relatively slow
convergence speed (i.e. requires more steps to move a point to a minimizer). Today, many soft-
ware packages provide options to use Quasi-Newton approximations as an alternative means of
supplying second derivatives (e.g., IPOPT by Vigerske & Wachter 2013).

2.5.2 Automatic Differentiation

Sometimes even the first derivatives can be quite complicated to derive by an analytical approach.
In this case the well-known finite-difference method can be adopted. However, the use of the
finite-difference method causes many problems: first, the calculated first derivatives and hence the
second-order terms can be inaccurate; second, it is likely to be computationally expensive.

Alternatively, derivatives can be evaluated using the so-called automatic differentiation (AD)
method (e.g., Griewank & Walther 2008), which obtains highly accurate derivatives of functions
without deducing their analytical expressions. The AD algorithm is based on the well-known
‘chain rule’; it involves a sequence of simple elementary operations that can be performed auto-
matically under the ‘object oriented programming’ framework (e.g., discussed in Neidinger 2010).
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For example, to calculate
d

dx
sin(x2) at x0,

d

dx
sin(x2) = cos(x2

0)
dx2

dx
is calculated and then

dx2

dx
= 2x0. By overwriting operators (e.g., let sin(∗) = cos(∗) and ∗2 = 2 × ∗, where ∗ is

any mathematical expression), the above sequence of calculation can be automated. Unlike the
finite-difference method, AD accurately evaluates derivatives. Furthermore, some research has
shown that AD can be as efficient as using analytical expressions (e.g., Forth et al. 2004). For
these reasons AD has been adopted in many engineering problems (Corliss et al. 2002). Software
packages have been made available such as MAD, a package in TOMLAB, which permits AD
to be used in MATLAB. Though analytical expressions are deduced in this thesis, AD provides a
means of verifying these expressions.

2.6 Conclusion

Mathematical optimization provides a means of solving engineering problems in this thesis.

• Linear programming (LP) problems involve solely linear functions for which highly efficient
methods have been developed. In addition, LP problems are convex, permitting the global
optimum to be obtained.

• Non-linear programming (NLP) problems are typically more difficult to solve, particularly
constrained NLP problems. The Karush-Kuhn-Tucker (KKT) conditions provide a method
for locating a local minimizer using information provided by first derivatives of the func-
tions involved. Using KKT conditions, the interior point method seeks a local optimum
by iteratively solving a system of linear equations that can be tackled very efficiently using
modern linear solvers, allowing relatively large-scale problems to be solved efficiently.



Chapter 3

Literature review

This thesis covers two major areas: the design of light-weight truss structures and yield-line anal-
ysis of reinforced concrete slabs. However, the approaches applied to these two areas have pur-
posely not been separated, since both problems can be tackled using mathematical optimization
methods introduced in Chapter 2. They also involve the use of plastic methods.

3.1 Plasticity theory and limit analysis

It is recognized that ductility exists in many concrete structures (i.e., strength is dominated pri-
marily by reinforcement). Stress and strain behaviours due to material ductility are addressed in
plasticity theory, which is built on certain experimental observations and then idealized using an
appropriate mathematical formulation (Chakrabarty 2006). A comprehensive review of plastic
theory for concrete structures is given by Nielsen & Hoang (2011), which discusses the history of
plastic theory and its applications for concrete structures (e.g., beams, slabs, etc.). In this thesis,
plastic behaviour of material is assumed; the reason for this assumption will now be explained.

3.1.1 Plastic vs. elastic

Structural analysis based on plasticity and elasticity principles are quite different. When using
elastic methods it is usual to assume that a structure will fail when a critical stress is reached at any
point in the structure. However, structural design theories based on plastic methods account for the
fact that the structure will continue to carry load when stresses reach a plastic limit, until a failure
mechanism is formed. Consequently, elastic design methods result in conservative, potentially
uneconomic and wasteful, solutions. Furthermore, certain plastic models permit relatively simple
mathematical formulations to be derived for structural analysis and design, leading to efficient
approaches that can be readily used with confidence in industry. Therefore, plasticity is adopted
here, with two idealized plastic models are explored.

17
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(a) (b)

Figure 3.1: Stress-strain relations for idealized (a) elastic-plastic, and (b) rigid-plastic materials

3.1.2 Idealizations of plasticity

The real stress-strain behaviour of ductile materials (e.g., mild steel) may include strain hardening
or softening. However, two idealized models are often used in engineering practice to describe the
stress-strain relations in the plastic phase: elastic-plastic and rigid-plastic, as shown in Fig. 3.1(a)
and (b) respectively (Rees 2006).

For the elastic-plastic material model, stress and strain are linearly coupled initially; however this
coupling effect is eliminated in the plastic phase. For the rigid-plastic model, elastic strain is
completely ignored; no deformation exists unless stress is sufficiently large, leading to a so-called
perfectly plastic deformation, where deformation is increased steadily without changing the stress.
Though no real rigid-plastic material exists, this model is applicable when plastic strains are much
larger than elastic strains (Nielsen & Hoang 2011).

3.1.3 Yield criteria and the associated flow rule

It is clear from Fig. 3.1 that the yield stress σy determines the load carrying capacity of a material.
This yield stress can be described in terms of either normal or shear stress, or a combination of both
depending on the material involved. Various failure criteria exist to address this, where hypotheses
are made according to characteristics observed from the failure mode. A general failure criterion
can be written as:

g(σ1, σ2, σ3) ≤ 0, (3.1)

where g is the function describing a failure criterion with respect to the principal stresses σ1, σ2,
and σ3. Specifically, the point set where equality is satisfied in (3.1), i.e., g(σ1, σ2, σ3) = 0, is
often called the yield surface. Perfect plasticity allows unlimited deformation to occur when the
equality condition is satisfied. Deformation can have more than one dimension and the relationship
between individual deformed directions is governed by rules of plastic flow, which can also be
affected by the yield surface (Calladine 1969).

The use of yield criteria and the associated flow rule allows the load carrying capacity of a ductile
structure to be estimated, for example, using limit analysis.
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3.1.4 Limit analysis

Limit analysis is an engineering approach used to estimate the load capacity of a ductile structure.
In the case of a brittle material, stresses can no longer be sustained once the failure stress has been
reached; in contrast stresses can continue to be transmitted in the case of a ductile material. In
a structure formed using a ductile material, yielding will spread to adjoining sections such that
the external load can be increased until the yielding can spread no further. Prior to the collapse
of a ductile structure, a statically admissible stress field can be found that is in equilibrium with
applied loads without exceeding the yield criterion anywhere in the structure. In contrast, when
the structure is collapsing, a kinematically admissible velocity field is formed, permitting plastic
deformation to occur. Approaches can be developed to estimate the collapse load by assuming
these two states.

3.1.5 Lower and upper bound theorems

The so-called lower bound and upper bound theorems are two of the most important theorems
in limit analysis. In a lower-bound analysis a statically admissible stress field is obtained using
equilibrium relations and checking that the yield condition is not violated at any location. This
leads to a safe estimate of the load capacity of a structure - a collapse load calculated from any
possible statically admissible stress field cannot be higher than the true collapse load. In contrast,
in an upper bound analysis collapse is assumed to have occurred. Given a failure mechanism, the
work method can be used to evaluate the external work, and hence the collapse load. However,
the true failure mechanism must have a collapse load which is the lowest of all failure modes;
this implies that an upper bound analysis may lead to an overestimate of the load capacity of a
structure.

Designs using the lower bound method are often conservative and hence lead to uneconomic de-
sign solutions; in addition, the failure mechanism is not immediately apparent by interpreting the
stress field. The velocity field in upper bound analysis provides a direct visual interpretation of the
associated failure mechanism. However, given the fact that the upper bound method is potentially
non-conservative, and that an erroneous solution may lead to severe consequences, its usefulness
has been questioned (e.g., Johnson 2006).

3.2 Limit analysis of truss structures

Limit analysis can be applied to many ductile structures. One of its application is to estimate the
load carrying capacity of truss structures. Since truss bars take only axial forces, the yield criterion
(3.1) is written as: −σ−y ≤ σ1 ≤ σ+

y , where σ−y and σ+
y are compressive and tensile yield stresses,

respectively. Given a truss structure under prescribed load and support conditions, the axial force
in every truss bar can be calculated using equilibrium, by resolving forces at every node (also
assuming material stiffness is known in an elastic analysis). Its load carrying capacity can then be
estimated using the above yield criterion.

Figure 3.2 shows a three-bar truss as an example. In an elastic analysis, the load carrying capacity
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is defined as the maximum load without causing yielding at any part of the structure. So this
capacity is P = 0.914Aσy when bar 1 is yielding with a stress equal to 0.5Aσy

0.5A = σy. Nonetheless,
the external load P can still be increased without collapsing the whole structure, despite bar 1
experiencing plastic deformation. In plastic limit analysis, the loading capacity is defined as the
maximum load the whole structure can sustain. When further increasing load P , the axial forces
continue increasing in bars 2 and 3, until bar 3 yields and the whole structure collapses. Thus,
P = 1.061Aσy is the maximum load capacity of the structure obtained via a plastic limit analysis.

Figure 3.2: Limit analysis for a truss structure

An interesting topic is the reverse problem of limit analysis. It raises the question of how to
determine the best (e.g., lightest) structure under prescribed loading and support conditions. The
topic turns out to be rather challenging, and is introduced in the following section.

3.3 Structural optimization

One of the most challenging engineering topics is the allocation of materials for structures such
that every part of the structures functions at its maximum capacity. A structure is often designed to
meet some given criteria (e.g., to sustain a certain applied load) while one or more measured struc-
tural costs (e.g., structural weight) are minimized. In computational design approaches, structures
should be ‘optimized’ for this purpose (hence the term structural optimization).

Depending on the structural parameters to be optimized, structural optimization can be catego-
rized as one, or even a combination, of the following three categories: size, geometry/shape and
layout/topology optimizations; The terms ‘geometry’ and ‘layout’ are often used when trusses are
concerned, while ‘shape’ and ‘topology’ are used for continuum structures. The three categories
are illustrated in Fig. 3.3.

Of these three categories, layout/topology optimizations are usually considered the most chal-
lenging (e.g., Cheng 1995). Two branches of research have developed to tackle layout/topology
optimization problems: (i) heuristic approaches (e.g., Xie & Steven 1993, Querin 1997, Kane &
Schoenauer 1996, Wang & Tai 2005, Tai & Akhtar 2005), and (ii) gradient-based approaches (e.g.,
Bendsøe & Sigmund 2003, Rozvany & Lewiński 2014). There has been significant activity in both
branches (Sigmund 2011). The former branch is normally described as inefficient because of its
lack of mathematical framework; however, it can be ‘versatile’ as a wide range of problems can
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Figure 3.3: Types of structural optimization problem

be tackled and because many optimization methods used in this branch (e.g., GA in Section 2.4.5)
do not involve mathematical derivations of the particular problems being investigated. In contrast,
the latter branch often requires some mathematically derived information (e.g., first derivatives) to
be supplied, and generally results in a relatively rapid optimization process. For a particular type
of optimization problem, its mathematical properties need to be investigated. Since efficiency and
reliability are important in industry, this thesis focuses on the latter branch. The nature of trusses
and continuum structures are quite different; consequently the approaches used in the fields of
layout and topology optimization are also different.

3.3.1 Methodologies in layout optimization

For a truss structure under prescribed loading and support conditions, layout optimization seeks to
find the optimum arrangement of bars by minimizing the cost function (e.g., volume). Approaches
to solving this problem fall into two main categories: numerical and analytical approaches.

Numerical approaches

Numerical approaches take advantage of well-developed mathematical optimization methods, with
a view to finding the optimal connectivity of nodes in a design domain that contains nodes inter-
connected by potential members (leading to a ‘ground structure’, as shown in Fig. 3.4). In these
problems, the loads, support conditions and material strengths are prescribed. Considering a rigid-
plastic material response (as shown in Fig. 3.1b), equilibrium equations are established on nodes
using the axial forces of truss bars; the optimization formulation is as follows (Dorn et al. 1964):

min
q

V = cTq (3.2a)

s.t. Bq = f (3.2b)

q > 0, (3.2c)

where:

V is the total volume of the truss structure, and c contains coefficients constructed using lengths,
tensile and compressive yielding stresses of bars. B is an equilibrium matrix, while q and f
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represent internal and external forces, respectively. Problem (3.2) takes the form of the standard
LP problem (2.5) and can be readily solved using the methods introduced in Section 2.2.

(a) (b) (c) (d)

Figure 3.4: Steps in layout optimization: (a) problem specification; (b) nodal discretization; (c) forming the
‘ground structure’; (d) identifying the most efficient arrangement of bars

Although it was developed half a century ago, this approach has not been widely used in engi-
neering practice. First, computational implementations of LP were not well-developed to cope
with the large-scale problems associated with truss layout optimization. Second, computer-aided
design was not popular until recently. Finally, traditional fabrication techniques were unable to
produce truss structures of complex geometries. These obstacles were recently overcome using
modern technology (e.g., MOSEK 2011, LimitState 2008, Excell & Nathan 2010), so that layout
optimization could become a productive area of research that can directly benefit industry.

One of the most serious drawbacks in layout optimization using a ground structure approach (e.g.,
Fig. 3.4) is that problem size grows extremely quickly as the number of nodes employed increases
(e.g., a total of m(m−1)

2 bars when every pair of nodes are connected, where m is the number
of nodes). Typically, more efficient structures can be obtained by using more nodes. However,
even modern computer software and optimization tools cannot solve the resulting LP problems
which become enormously large. Thus, significant effort has been put into addressing this issue.
In Gilbert & Tyas (2003), a so-called member adding scheme was proposed so ground structures
with more than 100, 000, 000 bars could be tackled effectively. Later work involving the use of the
member adding scheme can be seen in Pritchard (2004), Pritchard et al. (2005), Tyas et al. (2006)
and Sokół (2011).

While structurally efficient trusses can now be generated by using a dense nodal grid in the ground
structure, the resulting layouts often become very complex and cannot be fabricated, even with
modern additive manufacturing techniques (Smith et al. 2015). This highlights the need for more
rational layouts that can be used in engineering practice. Another concern about layout optimiza-
tion is the fact that a uniformly distributed nodal grid, as shown in Fig. 3.4, has difficulty repre-
senting curved structures. To address this, researchers have employed the so-called unstructured
nodes (e.g., Zegard & Paulino 2014). However, results are not always satisfactory and a poten-
tially superior means of generating rationalized structures is to perform a geometry optimization
step, allowing the positions of nodes to be adjusted.
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Analytical approaches

Analytical approaches have been developed in parallel with numerical approaches. Instead of
deriving numerical solutions that typically have errors, analytical approaches consider theoretical
aspects, aiming to obtain necessary and sufficient conditions for the optimum structures in order
to deduce exact layouts that have the least structural volume. Research in this field was pioneered
by Michell (1904); his optimality criteria was later made more general by Hemp (1973):

A pin-jointed framework has the least volume of material, if it can carry its given forces, with
stresses in its tension members equal to σT and stresses in its compression members equal to
−σC and if a virtual deformation of a region of space, in which the competing frameworks must
lie, satisfies the kinematic conditions imposed on the framework and gives strains of σε/σT in its
tension members, strains of −σε/σC in its compression members and has no direct strain lying
outside these limits.

Under this criterion, optimum truss structures contain an infinite number of bars with infinitesimal
areas, which are also called Michell structures or Michell continua. Research on Michell’s theorem
has been the subject of intense interest. Early work can be found in Chan (1962) and Hemp (1974),
where Michell structures were sketched for a class of cantilever trusses and that of pin-supported
trusses under uniformly distributed load (UDL), respectively. In Hemp (1973) and Cox (1965),
comprehensive theoretical studies of Michell structures were given; in Prager (1978b,a), concerns
were expressed regarding derivation of optimum layouts having a finite number of nodes. More
recently, limitations in Michell’s theory were explained in Rozvany (1996). Some researchers
have devoted themselves to deriving analytical solutions for various problems (e.g., Lewiński et al.
1994a,b, Sokół & Rozvany 2012, Rozvany 1998, Lewiński & Rozvany (2007, 2008b,a), Lewiński
et al. (2013), Graczykowski & Lewiński 2005, 2006a,b, 2007a,b).

Interaction between numerical and analytical approaches

Numerical layout optimization approaches provide a means of checking the validity of analytical
solutions and vice visa. Due to limitations in computing power and a lack of highly efficient op-
timization methods, approximations were made, leading to less accurate solutions. For instance,
numerical results in Darwich et al. (2010) suggested that, to carry a uniform load between pinned
supports, the then widely-accepted parabolic funicular was non-optimum. Later, Tyas et al. (2010)
used analytical methods to confirm the correctness of the proposed new layout and the associated
volume. This is not the only case, to design the optimal structure to carry a uniformly distributed
load between two pinned supports, Hemp (1974) derived its analytical solution with certain limita-
tions. After conducting both theoretical and numerical studies, Pichugin et al. (2012) investigated
its limitation and extended the scope of Hemp’s original work.

Today, it is quite common in the field of structural optimization for researchers to present theoreti-
cal outcomes in conjunction with numerical validations (e.g., Sokół 2011, Sokół & Rozvany 2012,
Pichugin et al. 2015), and vice versa (e.g., Martı́nez et al. 2007, Mazurek et al. 2011, Mazurek
2012).
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3.3.2 Methodologies for topology optimization

The boom in topology optimization for continuum structures started in 1988, after the advent of
the so-called homogenization method by Bendsøe & Kikuchi (1988). This approach was inten-
sively studied by several researchers and the simplified isotropic material with penalization (SIMP)
method (i.e., Bendsøe 1989, Zhou & Rozvany 1991, Mlejnek 1992 ) was developed. Those con-
tributions, along with the subsequent comprehensive studies of Bendsøe & Sigmund (1999) and
Bendsøe & Sigmund (2003), inspired many researchers in the field, increasing research inter-
est in topology optimization. According to recent review papers (e.g., Rozvany 2009, Sigmund
& Maute 2013), there are numerous means of attacking topology optimization problems. For
example, methods developed other than SIMP include the level set (Allaire et al. 2002, 2004),
topology derivative (Sokolowski & Zochowski 1999), phase field (Bourdin & Chambolle 2003)
and evolutionary (Huang & Xie 2010b,a) approaches. Another factor that extends the community
of topology optimization is the common sharing of software source code (e.g., Sigmund 2001,
Andreassen et al. 2011), attracting new researchers into the field.

SIMP remains the most popular among all methods available today. It is based on a ‘density
approach’: to determine the material distribution of the structures, the material ‘density’ of every
structural element (i.e., a finite element mesh) is viewed as optimization variables that are assumed
to be varying from ‘0’ to ‘1’ [i]. In addition, certain mechanical properties (e.g., Young’s modulus)
have been considered as functions with respect to material density, attempting to establishing
relationships between the distribution of material and the resulting structural behaviour. Therefore,
the objective function (e.g., compliance of a structure) can be expressed using material densities.
An optimization is thus performed to calculate the value of optimization variables (i.e., densities
in every structural element) that directly indicate the distribution of materials. However, since it
assumes density can vary continuously, it has been reported that the solutions may contain ‘ersatz
material’ (i.e., density between 0 and 1) that do not exist. To address this issue, methods using
filter functions have been adopted to eliminate the ersatz materials (e.g., Sigmund 2007).

Among mathematical optimization tools, the most commonly used method in this field is MMA
(Section 2.4.3), which was initially designed for solving topology optimization problems. For a
typical topology optimization problem, calculating derivatives can be computationally expensive;
thus, using MMA normally leads to very efficient processes. In contrast, the use of conventional
mathematical optimization methods (e.g., the interior point method considered in Section 2.4.2)
has not been widely explored in this field.

3.3.3 Geometry/shape optimization

From a computational perspective, geometry/shape optimization often involves seeking the op-
timum locations of nodes that have been employed. With topology optimization, the need for
subsequent shape optimization of continuum structures is not always required, since shape opti-
mization is often already incorporated (e.g., in the level set and topology derivative approaches).
Given a dense nodal grid and a proper filter method, the shapes of the resulting structures can

[i]Conventionally, a density of ‘0’ (or near ‘0’) means no material, and ‘1’ for solid material.
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readily be identified without moving nodal positions in the mesh.

In contrast, for discrete structures (i.e., trusses), geometry optimization is not truly embedded in
the layout optimization process. Given a dense nodal grid, the resulting layouts and geometries
often become very complex. Therefore, geometry optimization is of particular interest. Although
layout optimization is viewed as the most challenging category, the use of a ground structure
transforms the problem into a less challenging sizing optimization, which is relatively easy to solve
from a mathematical perspective (e.g., an LP problem in (3.2)). However, a geometry optimization
problem often comes with the sizing problem - moving nodes inevitably changes the load path and
sizes of bars are changing accordingly. The resulting optimization problem can be written, for
example, as:

min
x,y,q

V = c(x,y)Tq (3.3a)

s.t. B(x,y)q = f (3.3b)

q > 0, (3.3c)

where x and y denote x- and y- coordinates of nodes. With respect to optimization variables (i.e.,
x, y, and q), (3.3) is no longer an LP, but is instead a constrained NLP problem. In this sense,
geometry optimization is more challenging than layout optimization so satisfactory approaches
have not been developed. McConnell (1974) was one of the early researchers who used geom-
etry optimization to improve truss designs. In Gil & Andreu (2001), the sizing and geometry
problems are separated and tackled using different strategies. However, decoupling sizing and
geometry variables potentially affects the solutions produced; in Czarnecki (2003) and Martı́nez
et al. (2007), trusses are restricted to be statically determinate, taking the equilibrium condition
(3.2b) in the objective function; thus, statically indeterminate structures and those in unstable equi-
libriums cannot be tackled. Instead of using gradient-based approaches, some researchers employ
heuristic methods to solve the problem (e.g., Azid et al. 2002, Rahami et al. 2008).

One issue in geometry optimization is that the resulting layout depends highly on the initial layout
employed; for this reason, it cannot normally ensure a global optimum is found. To address
this problem, some researchers suggest a so-called combined layout and geometry optimization,
seeking the optimum nodal distribution in the design domain and leading to the least volume. It
can be written as a two-level (min-min) hierarchical formulation:

min
x,y

min
q
V = cTq (3.4a)

s.t. Bq = f (3.4b)

q > 0. (3.4c)

Optimization of this type is typically non-smooth (e.g., Bendsøe & Sigmund 2003) and solving
this problem can be computationally expensive. For example Achtziger (2007) and Descamps &
Filomeno Coelho (2013) only tackle relatively small-scale problems, even without employing a
fully connected ground structure.
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3.4 Plane plasticity problems and discontinuity layout optimization

The theoretical study of optimum truss layouts in the last century was also influenced by research
in plane plasticity problems. It was found that the Michell continua (Michell 1904) were remark-
ably similar to the so-called slip-line fields in plane plasticity problems - both involve a special
geometric form known as ‘Hencky-Prandtl nets’. Theories developed in plane plasticity problems
were transferred to truss design problems (e.g., Hemp 1958, Prager 1958, Johnson 1961, Strang
& Kohn 1983). However, the numerical solution methodologies developed in truss design prob-
lems (e.g., layout optimization) were not transferred to plane plasticity problems until this century,
when ‘discontinuity layout optimization’ (DLO) was developed (Smith & Gilbert 2007).

Instead of seeking the best arrangement of bars in a truss structure, DLO identifies a velocity
field (i.e., failure mechanism) consisting of truss-like discontinuities, in which plastic deformation
occurs. By performing a standard layout optimization (e.g., solving problem (2.5)), the critical
failure mode can be found. The use of DLO permits highly efficient methods developed in the
field of truss optimization to be effectively employed in identifying plastic failure patterns in limit
analysis. Some extensions of DLO can be seen in Gilbert et al. (2010) and Hawksbee et al. (2013).
Similarly, Gilbert and the author of this thesis, et al., have recently developed a DLO approach
that can be applied to the limit analysis of reinforced concrete slabs (Gilbert et al. 2014); while
full details of this contribution are given in Appendix A, the historical developments involved in
slab analysis are introduced here.

3.5 Limit analysis methods of reinforced concrete slabs - historical
methods using hand analysis

A specific application of interest in this thesis is the analysis of reinforced concrete slabs (hence-
forth called slabs), considered assuming the following: (a) a rigid-plastic material behaviour is
assumed; (b) the thickness of the slab is small compared to its other dimensions; (c) loads are
applied normally to the slab surface; (d) the slab is in a state of bending, and membrane stresses
are negligible. Yielding is considered as a result of moments. The bending and torsional mo-
ments are often described as generalized stress (e.g., Nielsen & Hoang 2011, Park & Gamble
2000, Chakrabarty 2010); therefore, the stress state at any point in the slab is expressed in Fig. 3.5,
where mx, my are the bending moments written in Cartesian coordinates, and mxy and myx are
the torsional moments.

Figure 3.5: Moments at a point in a slab as generalized stresses
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(a) (b)

Figure 3.6: Square yield criterion using: (a) principal moments; (b) moments in a Cartesian coordinate
system

The principal moments m1 and m2 can be derived as:

m1,2 =
mx +my

2
±

√(
mx −my

2

)2

+m2
xy. (3.5)

Various yield criteria can be formulated, by using the principal moments m1 and m2. One of the
most commonly used criteria is the square yield criterion (Johansen 1943); for slabs which are
isotropically reinforced in the x and y directions, and in the top and bottom layers, this is given as:

−mp ≤ m1 ≤ mp, (3.6a)

−mp ≤ m2 ≤ mp, (3.6b)

where mp is the plastic moment of resistance. A graphical interpretation of this criterion is de-
picted in Fig. 3.6(a) using principal moments. It has a square form, hence the name square yield
criterion. Alternatively, using moments in a Cartesian coordinate system (Fig. 3.5), a graphical
interpretation of the criterion which consists of two cones is given in Fig. 3.6(b).

In the case of orthotropic reinforcement, Johansen (1943) proposed a stepped yielding criterion:

m+
p = m+

px cos2 φ+m+
py sin2 φ, (3.7a)

m−p = m−px cos2 φ+m−py sin2 φ, (3.7b)

where, m+
p and m−p denote the positive and negative plastic moments of resistance per unit length

along a yield-line that has an angle of φ to the x- axis of the Cartesian coordinate system. m+
px

and m+
py are the positive plastic moments of resistance per unit length in the ~X and ~Y directions,

respectively; m−px and m−py are the negative moments. Note that sometimes the yield-line angle φ
is unknown, implying that criteria (3.7) cannot readily be used in these cases (Nielsen & Hoang
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2011). Alternatively, by eliminating φ, (3.7) can be reformulated in the Cartesian coordinate as:

mx ≤ m+
px, (3.8a)

my ≤ m+
py, (3.8b)

mx ≥ −m−px, (3.8c)

my ≥ −m−py, (3.8d)

(m+
px −mx)(m+

py −my) ≥ m2
xy, (3.8e)

(m−px +mx)(m−py +my) ≥ m2
xy. (3.8f)

Various analysis methods have been developed which use these failure criteria. Methods using
hand analysis will be introduced in this section, while computer-based approaches will be de-
scribed in Section 3.6.

3.5.1 Hillerborg’s strip method

When concerned with conservative designs (i.e., lower bound analysis), the strip method (Hiller-
borg 1956) is often used. A slab is divided into horizontal and vertical strips, and external load
is assumed to be carried by slab strips individually in the X (horizontal) and Y (vertical) direc-
tions. Let q denote the external load and assume q = qx + qy, where qx is carried by X strips,
and qy by Y strips. Considering the equilibrium condition, each strip is determined to be a beam
element whose load carrying capacity can be calculated using beam theory. Then, the strength
of the slab is determined by assessing the load effects on all beam elements. It is worth noting
that, the distribution of qx and qy is normally chosen subjectively by a designer’s experience; for a
simply supported rectangular slab under a uniformly distributed load q, a distribution of qx and qy
has been assumed in Fig. 3.7, where two strips are analysed: 1-1 in the X direction and 2-2 in Y .
Similarly, other strips in the X and Y directions need to be examined to find the collapse load.

Since calculating the load capacity of each strip is simple, the strip method is easy to use in prac-
tice. To incorporate column supports, the advanced strip method was proposed by Hillerborg
(1959) and further discussed in Hillerborg (1982). However, a major drawback of using Hiller-
borg’s strip method is the fact that it often leads to very conservative designs.

3.5.2 Yield-line theory

The development of yield-line was pioneered by Ingerslev (1923), who made the assumption that
‘the bending moment is distributed across the main lines along which rupture takes place’. This
approach was further investigated by Johansen (1943), who proposed the remarkable yield-line
theory. The theory assumes that yielding occurs along certain lines (i.e., yield-lines) across the
slab, while the other parts remain rigid. To perform an analysis, a system of yield-lines is required,
forming a collapse mechanism and known as a yield-line pattern (e.g., Fig. 3.8), to be prescribed
for any given slab problem. Since it assumes a collapse state, it is an upper bound analysis; the
associated collapse load can be calculated via two approaches: (i) the virtual work method and (ii)
the equilibrium method.
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Figure 3.7: Strip method: load to be carried on X and Y strips

Figure 3.8: Yield-line pattern for a simply supported rectangular slab under distributed load (blue lines
represent sagging; red lines represent hogging)
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Figure 3.9: Kinematically admissible failure pattern required for yield-lines

(i) The virtual work method. The yield-lines become plastic hinges when the slab is collapsing;
the work done by external load must equal the dissipation of internal energy among all yield-lines.
It is worth noting that yielding must form a kinematically admissible failure pattern (as shown in
Fig. 3.9), where the slab can potentially deform along yield-lines without using additional plastic
hinges that have not been prescribed.

The prescribed yield-line pattern is vitally important; to find the most critical case in a given
pattern, the geometric parameters (e.g., position and angle of lines) are typically adjustable. A
differentiation process (e.g., in Johansen 1943, Park & Gamble 2000) may then be performed.
Nevertheless, a prescribed pattern has only limited geometric variations; for this reason, engineers
often postulate a few potential yield-line patterns in practice, and then calculate the associated
collapse load for all of them to discover the most critical scenario. However, these repetitive
calculations can become tedious (Kennedy & Goodchild 2004). To avoid the use of differentiation,
and thus to make hand analysis easier to perform, the equilibrium method was proposed.

(ii) The equilibrium method (also named ‘nodal force’, or ‘formulae’ method). For a slab that
has been ‘divided’ into rigid segments using yield-lines, equilibrium conditions need to be sat-
isfied in each of the segments, taking into account the moments and forces distributed along its
transverse sections (i.e., prescribed yield-lines) and the external load. Given any transverse sec-
tion, besides the bending moment, torque and shear forces may exist. Johansen (1943) suggested
that the distribution of torque and shear force was not of significant interest, so the load effect
could effectively be taken into account using equivalent out-of-plane forces acting on the two end
nodes of the section (the yield-line). This can be calculated by resolving the distributed forces
on end nodes. The equivalent forces acting on nodes are therefore named ‘nodal forces’, which
can be written as functions with respect to bending moments and geometrical parameters of the
yield-lines. Taking nodal forces, problems can be formulated using equilibrium conditions; for-
mulae can be deduced, giving an explicit expression of the collapse load with respect to known
parameters (e.g., geometry, material strength) of the slab problem. A differentiation process is no
longer required, leading to very efficient approaches.

It is worth noting that, the ‘equilibrium’ method is not a lower bound analysis, despite its name.
It requires that the yield-line bending moment, nodal force and external load are in equilibrium,
but does not ensure moments within the slab segments satisfy the yield criteria. Some researchers
(e.g., Wood & Jones 1967, Nielsen & Hoang 2011) have pointed out that the ‘equilibrium’ method
is in fact another form of the work method. Under Johansen’s square failure criterion, yielding
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occurs when principal moments (i.e., m1, m2) equal the yielding moment; this implies moments
taken at any point of a yield-line must lie on the yielding surface (i.e., equality is satisfied in (3.6)).
Therefore, if a transverse section is truly a yield-line, torque along this line must be zero; otherwise
there must exist another direction in which the principal moment is larger, leading to constraint
(3.6) being violated. Similarly, since the bending moment is at its maximum along a yield-line,
the shear force must be zero. Nielsen & Hoang (2011) note that, when torque and shear forces are
zero along every internal yield-line, the equilibrium and the virtual work methods lead to the same
predicted collapse load.

Since the yield-line method is an upper bound analysis, errors incurred in the calculation will
lead to unsafe designs. Though extensively studied (e.g., Johansen 1968, Wood & Jones 1967,
Park & Gamble 2000, Nielsen & Hoang 2011, etc.) and adopted in engineering practice (e.g.,
Kennedy & Goodchild 2004), the method cannot normally be used by engineers who have insuf-
ficient experience. To analyse real slab problems that are potentially complex (e.g., in shape), it
is difficult to postulate (near-)correct yield-line patterns; even an expert engineer may not have
strong confidence in their solution (e.g., Johnson 2006).

Computational methods have been developed to generate reasonable yield-line patterns without
depending on the experience of the designer. This also frees engineers from tedious calculations.
These approaches often require mathematical optimization methods to identify the critical failure
mechanism.

3.6 Computer-aided methods in limit analysis of slabs

The limit analysis methods introduced in Section 3.1.4 are based on hand calculations; various
numerical methods have been developed that take advantage of mathematical optimization meth-
ods. Some early research was undertaken by Hodge & Belytschko (1968) and Chan (1972), who
attempted to obtain lower and upper bound solutions, bracketing the exact solution. In their
approaches, a slab was discretized using computational elements (e.g., triangular finite element
meshes), and the state variables (e.g., moments) were calculated in each element. A slab is often
statically indeterminate, in which case the most critical distribution of moments (or failure mode in
an upper bound analysis) needs to be identified using mathematical methods such as optimization.
The load carrying capacity of the slab can normally be estimated at the same time. The efficacy of
some early numerical experiments was affected by the limited computing power available at the
time, and by the fact that highly efficient optimization methods (e.g., the interior point method)
had not yet been developed. Today, computing power has grown significantly, and mathemati-
cal optimization methods have also improved similarly. Researchers have therefore attempted to
produce more accurate numerical results via different approaches, such as introducing new com-
putational element types (e.g., Krenk et al. 1994), adopting meshless finite element methods (e.g.,
Le et al. 2009), directly employing more efficient optimization methods (e.g., Thavalingam et al.
1999, Krabbenhøft et al. 2007), etc.
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3.6.1 Lower bound analysis using numerical methods

In lower bound analysis, the external load needs to be maximized to reduce the gap between the
numerical and exact solutions. It is common to adopt the well-known finite element (FE) method:
first, moments at any point of an element can be calculated, permitting the yield criterion to be
strictly satisfied at any point throughout a slab; second, for a given geometry, the FE meshes can
be generated automatically, leading to a fully automated numerical process; third, employing finer
meshes will produce more accurate analysis results in general, similar to when using standard FE
methods; lastly, yielding points identified in an analysis can be used as a basis to automatically
refine the FE mesh, potentially leading to efficiency gains. Research in this area can be seen in
Krabbenhoft & Damkilde (2003), Le, Nguyen-Xuan & Nguyen-Dang (2010), Jackson (2010), and
Maunder & Ramsay (2012). Relatively accurate results have been reported when using modern
computing power and efficient optimization methods (e.g., less than 1% error in Jackson 2010).
However, the statically admissible moment field in lower bound analysis provides no direct indi-
cation of the failure mechanism.

3.6.2 Upper bound analysis using numerical methods

Various attempts have been made to automate the hand calculations used in yield-line analysis,
to obtain more accurate (and less non-conservative) design solutions. Surprisingly, ever since
the 1960s, when yield-line theory was widely known in western countries, a method capable of
systematically automating the yield-line method has been lacking. The major issue, which was
pointed out by Hodge & Belytschko (1968) at a very early stage, is the sensitivity of the solution
to the mesh pattern being used in the calculation.

Methods using FE meshes

Chan (1972) and Munro & Da Fonseca (1978) were among the first researchers to propose an
FE-based approach to yield-line analysis. In later contributions, an ‘automatic yield-line analysis’
method was developed. This method employs rigid triangular FE-like elements to discretize a
slab; plastic deformations, and thus yield-line rotations, were permitted along the boundaries of
the elements. An LP problem was then established and solved to identify the most critical yield-
line pattern.

However, the method is affected by an issue known as mesh-pattern dependency. Using the slab
problem shown in Fig. 3.8 as an example: given a FE mesh pattern shown in Fig. 3.10, the true
failure mechanism cannot be accurately formed. It is now well-understood that, when FE meshes
are utilised, refining the mesh does not necessarily ensure that the numerical solution will con-
verge to the exact value. Researchers tried to address this issue for decades. Some studies involve
migrating nodes using a geometry optimization process, attempting to reduce the influence of the
mesh pattern. Contributions can be seen in Johnson (1994) and Johnson (1995), where sequen-
tial linear programming was utilized; in Thavalingam et al. (1999), where the conjugate gradient
method was employed; and in Ramsay & Johnson (1997), Ramsay & Johnson (1998), where a di-
rect search method was adopted. Despite these various attempts, the mesh-pattern dependency has
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Figure 3.10: FE mesh for a simply supported rectangular slab under distributed load (blue and red dashed
lines indicate the correct yield-line pattern): yield-lines from the top left to bottom right cannot be accurately
represented using the given FE mesh.

not been truly solved because the geometry optimization step requires that the starting yield-line
pattern is close to the true pattern; this cannot be guaranteed when starting with a solution derived
from a rigid FE analysis. For example, Ramsay et al. (2015) reports that an L-shaped slab problem
analysed in Ramsay & Johnson (1997) has a margin of error of 40%. Furthermore, the yield-line
patterns generated by ‘automatic yield-line analysis’ can be very complex and potentially obscure;
consequently the process of identifying clear yield-line patterns has been repeatedly stated to be
‘difficult’ (Johnson 1994, Jackson 2010). Thavalingam et al. (1999) even claims it is ‘up to the
user to check whether alternative topologies or starting geometries need to be investigated’. The
reliability of the geometry optimization processes described in the literature is therefore question-
able.

Dip and strike angles method

The dip and strike angles method is an alternative means of defining the key geometric param-
eters of a yield-line pattern. The method was proposed by Kwan (2004) and further improved
in Kwan (2013). Instead of discretizing the slab using a regular FE mesh, the method involves
directly investigating the requisite kinematically admissible failure patterns (e.g., Fig. 3.9) formed
at collapse, and thus describing the failure mode using dip and strike angles of the deflected rigid
blocks. For this reason, the resulting failure mechanism is guaranteed to be kinematically admis-
sible. However, it involves the use of a heuristic approach to generate yield-line patterns, and thus
cannot identify certain patterns (e.g., fan-type mechanisms). Furthermore, the employed heuristic
is potentially ineffective given slabs with non-convex shape, leading to incorrect solutions.

Library method

Another means of automating yield-line analysis is to examine every known yield-line pattern
using computer software, without the need for potentially tedious hand calculation. It requires
the use of a ‘library’ of potential yield-line patterns for given types of slab problems. The soft-
ware package COncrete BRidge ASsessment (COBRAS), developed by the group led by Middleton
(1997), is a case where the library method has been successfully adopted; its built-in library con-
tinuously grows to include new slab problems, leading to increasingly accurate analysis over time.
The resulting patterns are relatively simple and reasonable, and can be understood by engineers.
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However, given the fact that its collection of potential yield-line patterns is still very limited, par-
ticularly for slabs with irregular shapes, the method can lead to non-conservative results when the
true failure mode has not been included in the library.

Jackson’s user-interacted method

In Jackson (2010) and Jackson & Middleton (2013), a semi-automated yield-line analysis method
using geometry optimization was proposed. Instead of generating the initial pattern using ‘auto-
matic yield-line analysis’, the method involves performing a lower bound analysis and then using
this as a basis to produce a yield-line pattern via user-interaction, allowing it to be semi-automated.
To solve the geometry optimization problem, a Tabu search algorithm is used, a heuristic method
within the category described in Section 2.4.5; consequently it is not very computationally effi-
cient. Since it involves user-interaction and a heuristic optimization method, it may not always
generate accurate upper bound solutions, and can become tedious when tackling large numbers of
slab problems.

Slab analysis using DLO

As mentioned in Section 3.4, a means of automating yield-line analysis of slabs has recently been
developed by a research group which includes the present author (Gilbert et al. 2014). While full
details of this method are provided in Appendix A, some general remarks are now made here.

Firstly, the layout optimization technique developed for trusses (see Section 3.3.1) has been trans-
ferred to the problem of yield-line analysis, leading to a fully automated process. However, issues
reported in the former have also been noticed in the later. For example, the resulting yield-line
pattern is relatively complex and can be difficult to understand by engineers. Similar to the former,
a means of rationalizing the resulting pattern is of particular interest.

Secondly, many slab problems in engineering practice involve complicated configurations, for
example orthotropic reinforcement, knife-edge supports, point, line and patch loads; these have
not been incorporated in Gilbert et al. (2014). It is therefore of significant interest to further
develop the DLO method, to enable analysis of real-world slabs.

Note that, though automated, the use of the yield-line method does not provide a full solution
to slab analysis problems. It considers only flexural failure; additional checks (e.g. for punching
shear failure and/or serviceability limit state deflections) will however still be required. In addition,
the assumption of rigid-plastic material (Fig. 3.1(b)) requires that the concrete is lightly reinforced,
so that its ductility enables ‘moments in indeterminate structures to redistribute themselves’(Beeby
1997).

3.7 Conclusions

This thesis involves application of plastic methods to structural design and analysis problems. Al-
though engineering methods and tools are widely used in industry, areas for improvement remain.
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• Layout optimization provides a method for designing light-weight truss structures. How-
ever, the resulting structural layouts can be complex, highlighting the need for rationaliza-
tion methods.

• Taking techniques originally developed for truss layout optimization, the discontinuity lay-
out optimization (DLO) method was conceived. With DLO the process of traditional limit
analysis techniques can be automated efficiently. Considering yield-line analysis of rein-
forced concrete slabs, it has been shown that previously developed automated approaches
are not satisfactory. DLO addresses this, permitting truly systematic automation of the
yield-line method.

• However, the yield-line patterns derived from DLO can be complex in form, and therefore
it is of interest to develop a means of generating rationalized yield-line patterns, which are
easier to interpret. Also, it is of interest to explore the full range of applicability of the DLO
method, particularly with reference to practical slab analysis and design problems.



Chapter 4

Rationalization of trusses generated via
layout optimization[i]

Preface

With the goal of developing rapid and reliable tools for the use in industry, in this thesis potential
applications of numerical layout optimization methods are explored. One application involves the
design of lightweight truss structures. A numerical layout optimization approach for trusses was
established half a century ago by Dorn et al. (1964), and a highly efficient solution strategy was
designed by Gilbert & Tyas (2003); however, it has not seen widespread adoption in industry. One
reason for this is that the trusses produced using this approach are often complex in form, and
hence are challenging to fabricate. Therefore, an effective means of generating more rational truss
forms is of potential interest.

[i]The content of this chapter was originally prepared for a journal paper: He, L., Gilbert, M. (2015), ‘Rationalization
of trusses generated via layout optimization’, Structural and Multidisciplinary Optimization 52, 677-694
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Abstract Numerical layout optimization provides a computationally efficient and generally ap-
plicable means of identifying the optimal arrangement of bars in a truss. When the plastic layout
optimization formulation is used, a wide variety of problem types can be solved using linear pro-
gramming. However, the solutions obtained are frequently quite complex, particularly when fine
numerical discretizations are employed. To address this, the efficacy of two rationalization tech-
niques are explored in this paper: (i) introduction of ‘joint lengths’, and (ii) application of geom-
etry optimization. In the former case this involves the use of a modified layout optimization for-
mulation, which remains linear, whilst in the latter case a non-linear optimization post-processing
step, involving adjusting the locations of nodes in the layout optimized solution, is undertaken.
The two rationalization techniques are applied to example problems involving both point and dis-
tributed loads, self-weight and multiple load cases. It is demonstrated that the introduction of joint
lengths reduces structural complexity at negligible computational cost, though generally leads to
increased volumes. Conversely, the use of geometry optimization carries a computational cost but
is effective in reducing both structural complexity and the computed volume.

Keywords Truss, layout optimization, geometry optimization, multiple load cases

4.1 Introduction

Numerical layout optimization provides an efficient means of identifying (near-)optimal truss lay-
outs. The ‘ground structure’ layout optimization procedure was first proposed by Dorn et al.
(1964) and more recently was made more efficient for single and multiple load case problems
respectively by Gilbert & Tyas (2003) and Pritchard et al. (2005). In the latter contributions an
adaptive ‘member adding’ algorithm was proposed which meant that much larger scale layout
optimization problems could be solved; this and similar techniques are helping to provide new
insights on a wide range of problems (e.g. Darwich et al. 2010, Sokół & Rozvany 2012, Pichugin
et al. 2012). However, whilst fine numerical discretizations are needed in order to obtain highly
accurate numerical solutions, the associated truss bar layouts can become very complex. There-
fore identifying means of rationalizing such layouts is potentially of significant interest. Various
rationalization approaches are possible, for example: (i) the problem formulation can be modi-
fied to ensure solution complexity is addressed directly from the outset; or (ii) a standard layout
optimization solution can be subsequently modified in a post-processing step.

In the case of (i), directly addressing complexity within the formulation, a range of optimization
methods can be applied (e.g. mixed integer linear programming, MILP, or non-classical opti-
mization methods such as genetic algorithms); the downside of such procedures is that they are
generally comparatively computationally expensive, so that only relatively small problems can
be tackled. However, simple formulations are also available, and here the efficacy of the simple
‘joint length’ method proposed by Parkes (1975) will be explored. A key benefit of this method
is that the linear character of the standard linear programming (LP) based layout optimization
formulation is retained.

In the case (ii), addressing complexity via a post-processing step, it can be observed that the
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solutions obtained from the layout optimization procedure will generally comprise far fewer bars
than are present in the initial ‘ground structure’. This is significant as it means that any post-
processing step need only deal with a comparatively small number of bars.

One option is to use the truss layout derived from the layout optimization process as the start-
ing point for a geometry optimization post-processing step. Integrating layout optimization with
geometry optimization has been examined before (e.g. Bendsøe et al. 1994, Bendsøe & Sig-
mund 2003, who pose the problem as one of non-smooth optimization). Gil & Andreu (2001)
combined size and geometry optimization, obtaining solutions to small-scale problems by using
optimality criteria and conjugate gradient methods in succession. Martı́nez et al. (2007) proposed
a ‘growth’ method, in which geometry optimization was carried out in conjunction with a heuristic
‘node adding’ algorithm, allowing an increasingly complex truss structure to evolve from a rela-
tively simple initial layout. Although not of specific interest in the present study, their ‘growth’
method allowed a limit to be placed on the number of joints in the resulting optimized truss to
be controlled, thereby ensuring that the resulting optimized trusses could be rationalized as de-
sired. (Limiting the number of joints was also of specific interest to Prager (1978a) and, more
recently, Mazurek et al. (2011), Mazurek (2012).) However, the focus of most work in this field
has been on single load case problems, and most of the aforementioned methods cannot easily
be extended to treat multiple load cases. An exception is the combined topology/layout and ge-
ometry optimization procedure put forward by Achtziger (2007), which was recently extended by
Descamps & Filomeno Coelho (2013) to allow small-scale multiple load case problems to be con-
sidered. However, in general, geometry optimization requires the starting layout to quite closely
resemble the true optimal solution in order for it to work effectively. Furthermore, the geometry
optimization process can be computationally expensive. Here the efficacy of a geometry opti-
mization post-processing step will be explored, which involves starting with a layout optimization
solution comprising a reduced number of nodes and bars, and then using a highly efficient interior
point method to solve the resulting non-linear optimization problem. This approach is general,
and can be applied to a wide variety of problems, including those involving multiple load cases
and self-weight.

The format of the paper is as follows: firstly the general layout optimization problem is consid-
ered and then revised to incorporate ‘joint lengths’; secondly, the geometry optimization problem
is mathematically defined and extensions and implementation issues discussed; finally a number
of numerical examples are solved to demonstrate the efficacy of the rationalization methods con-
sidered, and conclusions are drawn.

4.2 Rationalization of layout optimization solutions using joint
lengths

The first rationalization technique considered is one proposed by Parkes (1975). According to
his formulation, a notional joint length, s, is added to the length of each bar. Thus, the com-
puted volume of the truss structure under consideration becomes: V = l̃Ta, where V is the total
computed volume of the truss structure; l̃ is a vector containing modified truss bar lengths (i.e.
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{l1 + s, l2 + s, ..., lm + s}, for a problem involving m bars), and a is a vector containing the bar
cross-sectional areas.

Note that though this can simplify the truss layout, the calculated structural volume will clearly al-
ways increase because of the inclusion of additional joint lengths. However, after the optimization
has been completed, the ‘standard’ volume can be calculated by summing up the volumes of all
bars, excluding the joint lengths from this calculation (all volumes reported herein were calculated
in this way).

The updated layout optimization problem, now including joint lengths, can therefore be stated as:

min
a,q

V = l̃Ta (4.1a)

s.t.
Bqα + Wa = fα

−σ−a ≤ qα ≤ σ+a

}
for all α ∈ F (4.1b)

a ≥ 0, (4.1c)

where W contains self-weight coefficients, here assuming self-weight to be lumped at the nodes;
B is an equilibrium matrix comprising direction cosines; q is a vector containing the internal bar
forces and f is a vector containing the external forces. Also σ+ and σ− are limiting tensile and
compressive stresses respectively, F = {1, 2, ..., p} is a load case set, where α is the load case
identifier and p represents the total number of load cases.

The optimization variables are the cross-sectional areas in a and the internal forces in q. It can
be observed that the coefficient matrices are determined by the positions of the nodes and the
connectivity of the truss bars; therefore the optimization formulation (4.1) is an LP problem.

4.3 Post-processing rationalization using geometry optimization

The second technique considered involves the use of geometry optimization as a post-processing
step to rationalize solutions obtained using layout optimization. Initially the geometry optimiza-
tion process will be considered in isolation; subsequently practical issues related to combining
geometry optimization with layout optimization will be considered.

4.3.1 Basic geometry optimization formulation

Initially consider an unbounded 2D design domain, where the x, y positions of the nodes in a truss
are considered as optimization variables. (For sake of simplicity, formulae for 3D trusses are not
explicitly provided in the paper; however, the relevant formulae can be derived similarly.)

Considering first a problem involving a single load case, without self-weight, gives:
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min
x,y,a,q

V = l(x,y)Ta (4.2a)

s.t. B(x,y)q = f (4.2b)

−σ−a ≤ q ≤ σ+a (4.2c)

a ≥ 0, (4.2d)

where l is a vector containing the lengths of the truss bars. The optimization variables in this case
are x, y, a and q; it is evident that the objective function (4.2a) and equality constraint (4.2b) are
both now non-linear. Without loss of generality, problem (4.2) can be categorized as a non-linear,
non-convex optimization problem.

Also, although problem (4.2) can be considered as a combined layout and geometry problem,
similar to the approach put forward by Achtziger (2007), and developed further by Descamps &
Filomeno Coelho (2013), in this paper geometry optimization is considered as a separate process,
which is carried out only after an initial layout optimization solution has been performed, and
active bars in the optimum truss have been identified. Advantages of this approach stem from the
fact that the layout optimization formulation: (i) allows a globally optimal solution to be obtained
for a given ground structure, typically very close to the true optimal solution; (ii) can be be solved
extremely rapidly. Thus the layout optimization solution provides an excellent starting point for
a subsequent geometry optimization, which, although capable of rationalizing the structure, is
fundamentally non-convex and may be computationally expensive.

Figure 4.1 illustrates the non-convex nature of a simple four-bar truss problem. Suppose that the
truss shown in Fig. 4.1 has only one free (movable) node C, whose position can be optimized in the
x-y plane. In this case there exists two zones Ω1 and Ω2 in which node C can potentially become
trapped, leading to different optimum solutions. In fact node C must be positioned in zone Ω2, at
(1.00, 0.25), in order to obtain the globally optimal solution.

Assuming that a truss layout is available, various methods of improving the solution via geometry
optimization techniques are possible, though some methods appear to have inherent limitations.
For example, the geometry optimization step in the ‘growth’ method proposed by Martı́nez et al.
(2007) requires that the truss under consideration is statically determinate. With this stipulation,
the state variable q can be eliminated by taking q = B−1f , simplifying the underlying optimiza-
tion problem. However, for problems with multiple load cases, this stipulation cannot be imposed.
As both single and multiple load case problems are considered here, a more general approach is
required, with statically indeterminate truss structures allowed. To solve the resulting non-linear
problem efficiently, first and second derivatives of the objective function and constraints in (4.2)
with respect to optimization variables are obtained analytically.

Note that the entire geometry optimization formulation for a truss structure can be assembled using
locally derived formulae for each truss bar. Also, the derivatives can be assembled similarly. In
the following section local formulae for a single bar are introduced, permitting the problem for the
whole structure to be constructed.
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Figure 4.1: Four-bar truss illustrating non-convex nature of geometry optimization. The optimum position
of node C is sought; contours show the variation of the structural volume for differing positions of node C.

Figure 4.2: Notation used for a truss bar

Mathematical expressions for a single truss bar

For the truss bar connecting nodes A(xA, yA) and B(xB, yB) shown in Fig. 4.2, let X = xB − xA

and Y = yB − yA. The length of this bar is l =
√
X2 + Y 2 and volume V AB = la.

The contribution to the equilibrium matrix of this single bar can be stated as:

BAB =
[
− cos θ − sin θ cos θ sin θ

]T
. (4.3)

Assuming the optimization variables are defined as [xA, yA, xB, yB, a, q], the gradient of the ob-
jective function is written as:

OV AB =

[
−Xa

l
−Y a

l

Xa

l

Y a

l
l 0

]T

. (4.4)

The Jacobian matrix of the equality constraint (4.2b) can be derived as:

JAB
Bq =



q Y 2

l3
− q XY

l3
− q Y 2

l3
q XY
l3

0 −X
l

− q XY
l3

q X2

l3
q XY
l3

− q X2

l3
0 −Y

l

− q Y 2

l3
q XY
l3

q Y 2

l3
− q XY

l3
0 X

l

q XY
l3

− q X2

l3
− q XY

l3
q X2

l3
0 Y

l


. (4.5)

The stress inequality constraint (4.2c) is linear; therefore the coefficients directly form the Jacobian
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matrix.

For a single truss bar, first derivatives of the objective function and associated constraints can also
be obtained. To ensure rapid convergence of the non-linear optimization process, second-order
terms are also derived analytically; the Hessian matrix of the objective function, V AB = la can be
derived as:

O2V AB =



aY 2

l3
−aXY

l3
−aY 2

l3
aXY
l3

−X
l 0

−aXY
l3

aX2

l3
aXY
l3

−aX2

l3
−Y

l 0

−aY 2

l3
aXY
l3

aY 2

l3
−aXY

l3
X
l 0

aXY
l3

−aX2

l3
−aXY

l3
aX2

l3
Y
l 0

−X
l −Y

l
X
l

Y
l 0 0

0 0 0 0 0 0



. (4.6)

For equality constraint BABq − fAB = 0, note that this comprises four constraints: −q cos θ −
fxA = 0, −q sin θ − fyA = 0, q cos θ − fxB = 0 and q sin θ − fyB = 0, where fxA , fyA , fxB and
fyB are external loads applied at nodes A and B. Also note that the magnitude of external loads
are assumed not to change during the optimization process, so that O2fxA = O2fyA = O2fxB =

O2fyB = 0. The Hessian matrix of each of the constraints can readily be derived. For instance,
O2(q cos θ) is shown in (4.7), and the mathematical expression for O2(q sin θ) can be obtained in a
similar manner. Also, as the inequality constraint (4.2c) is linear, its second-order derivative term
is zero.

O2(q cos θ) =

−3qXY 2

l5
− qY (−2X2+Y 2)

l5
3qXY 2

l5
qY (−2X2+Y 2)

l5
0 −Y 2

l3

− qY (−2X2+Y 2)
l5

qX(−X2+2Y 2)
l5

qY (−2X2+Y 2)
l5

− qX(−X2+2Y 2)
l5

0 XY
l3

3qXY 2

l5
qY (−2X2+Y 2)

l5
−3qXY 2

l5
− qY (−2X2+Y 2)

l5
0 Y 2

l3

qY (−2X2+Y 2)
l5

− qX(−X2+2Y 2)
l5

− qY (−2X2+Y 2)
l5

qX(−X2+2Y 2)
l5

0 −XY
l3

0 0 0 0 0 0

−Y
l3

XY
l3

Y 2

l3
−XY

l3
0 0



. (4.7)
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4.3.2 Geometry optimization formulation with self-weight

The basic formulation can be extended to account for self-weight. For a single truss bar AB, the
corresponding self-weight coefficient matrix WAB is given as:

WAB =
ρgl

2

[
0 1 0 1

]T
. (4.8)

In which ρ and g are respectively the material density and acceleration due to gravity. The Jacobian
matrix JAB

Wa can be derived as:

JAB
Wa =

ρg

2



0 0 0 0 0 0

−aX
l −aY

l
aX
l

aY
l l 0

0 0 0 0 0 0

−aX
l −aY

l
aX
l

aY
l l 0


. (4.9)

Also, the Hessian matrix can be obtained by considering only the second and fourth (i.e. non-zero)
terms of WAB. Note that the relevant terms in both cases are:

O2(
ρg

2
ql) =

ρg

2



qY 2

l3
− qXY

l3
− qY 2

l3
qXY
l3

0 −X
l

− qXY
l3

qX2

l3
qXY
l3

− qX2

l3
0 −Y

l

− qY 2

l3
qXY
l3

qY 2

l3
− qXY

l3
0 X

l

qXY
l3

− qX2

l3
− qXY

l3
qX2

l3
0 Y

l

0 0 0 0 0 0

−X
l −Y

l
X
l

Y
l 0 0



. (4.10)

With respect to the geometry optimization problem (4.2), analytical expressions for the first and
second derivatives have been derived. Thus simple problems (e.g. the problem in Fig. 4.1) can now
be optimized without difficulty (though without any certainty of obtaining the global optimum).
However, when dealing with structures involving large numbers of nodes, various practical issues
might prevent the process obtaining a satisfactory solution; these issues are considered in the next
section.
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4.3.3 Practical issues

A number of practical issues which must be considered in order to develop a robust and flexible
geometry optimization procedure are now considered.

Node move limits

It has been shown that geometry optimization will in general lead to a non-convex mathematical
optimization problem, which can cause issues when applying convex optimization methods. To
try to avoid such issues it is convenient to impose upper and lower limits on nodal positions x and
y. However, it is worth pointing out that imposing such limits will mean that only locally optimal
solutions will be found. Considering the evolving nature of the geometry of the structure during the
optimization process, rules can be applied which ensure that the structure always remains similar
in form to the initial structure. Hence the starting point, or initial condition, for the problem
is crucial as it directly determines which local optimum zone the solution lies in. For instance,
considering the structure shown in Fig. 4.1, as node C lies on the edge of zone Ω2, it is likely that
imposed move limits will eliminate the possibility of this node being moved to zone Ω1. However,
whether node C is restricted to lie within zone Ω1 or Ω2 depends upon the initial position of C,
and upon the imposed move limits.

To describe node move limits concisely, coordinates of a given node in a 2D truss are written in
column vector form: ν = [x, y, 1]T in R3. (Note that although nodal positions lie in R2, the
redundant ‘1’ in ν is used solely to condense the mathematical expression.)

Now consider the node move limits. Suppose that each node is allowed to move within a circular
zone, determined according to the distance from a given node to adjacent nodes. Figure 4.3 shows
adjacent nodes A and B, which are originally located at ν0

A and ν0
B respectively. Two circular

zones ΩA and ΩB, with radius rAB = 1
2

∥∥ν0
B − ν0

A

∥∥
2
, are defined to restrict nodal movements.

Let νA and νB represent the positions of node A and B respectively. When νA = νB, a zero length
bar may be implied. To prevent this occurring, a gap of length ε is created between zones, such
that the restriction for node A becomes:

∥∥νA − ν0
A

∥∥2

2
≤ (rAB − ε)2. This is an extra constraint

compared with those in the standard formulation (4.2). Its Jacobian matrix JA and Hessian matrix
HA can be obtained as:

JA = 2
[
xA − x0

A, yA − y0
A

]
, (4.11)

HA =

[
2 0

0 2

]
. (4.12)

Although the restriction shown in Fig. 4.3 is normally sufficient to assure the non-linear, non-
convex, optimization process is stable, in some cases additional restrictions need to be imposed.
Thus, a program parameter rs is introduced which defines the maximum node move limit for all
nodes; in this case the above restriction is modified to:∥∥νA − ν0

A

∥∥2

2
≤ (r∗)2, (4.13)
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Figure 4.3: Node move limit zone: shaded circular zones indicate node move limits

where r∗ = min{rs, rAB} − ε is the modified node move limit. In this paper rs is taken as the
x- or y-distance between the nodes used in the original layout optimization process. When the
non-linear optimization fails to converge rapidly, this parameter can be reduced with a view to
stabilizing the non-linear problem. Also, from a computational point of view it is useful to impose
relatively tight bounds on the variables xA and yA representing movements of a given node A, for
simplicity applying these limits in the Cartesian directions:

x0
A − r∗ ≤ xA ≤ x0

A + r∗,

y0
A − r∗ ≤ yA ≤ y0

A + r∗.
(4.14)

However, restricting nodal movements means that the final solution will normally not be obtained
in a single step, and an iterative solution scheme is therefore required. In this scheme all nodes are
moved to optimum positions within the prescribed move limit zones; these zones are then updated
based on the new nodal positions. The optimization process proceeds iteratively, until all nodes
are stationary (to within a specified tolerance).

Note that the aforementioned constraints are defined using the nodal distances between adjacent
nodes. Therefore when a node is quite close to another, each node is restricted from moving a
significant distance. This might affect convergence speed, especially when particular nodes lie in
an extremely small region, with a radius r not significantly larger than ε. As a consequence these
nodes can become effectively locked, and cannot be moved further.

Additionally, various design limitations may need to be taken into account. The first is the line
constraint, which restricts certain nodes (e.g. nodes on supported boundaries) to move only along
given line paths. The second of these is the design domain constraint, which restricts all nodes
to lie within the specified design domain. It is only necessary to apply this constraint to nodes
which have the potential to move outside the domain (this can conveniently be determined by
taking account of the move limit for each node). For sake of simplicity, polygonal design domains
and straight line supports are considered in this paper, so that only linear constraints need to be
formulated for these two types of design constraint.

A line in R2 can be written as: T xx+ T yy + T c = 0, where T x, T y and T c are coefficients of
the line; its vector form is then written as: Tν = 0, in which, T = [T x, T y, T c]. Thus the line
constraint for a given node A can be written as:
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TL
AνA = 0, (4.15)

where TL
A is the coefficient vector for the line node A is prescribed to lie on. Also, the domain

constraint can be written as:

TD
AνA ≥ 0, (4.16)

where TD
A contains coefficients of all domain boundary lines close to node A (each row in TD

A

comprises coefficients of a single boundary line):

TD
A =


T1

T2

...

 =


T x1 T y1 T c1
T x2 T y2 T c2
...

...
...

 . (4.17)

Note that for a domain boundary line, its normal direction (i.e. the sign of T) matters as it deter-
mines which side of the line is ‘inward’ facing.

Modified formulation

Consider a truss comprising N = {1, 2, ..., n} nodes, with subsets of nodes NL and ND denoting
nodes lying on lines or close to domain boundaries respectively. The full optimization problem,
taking account of node move limits and self-weight, can now be written as:

min
x,y,a,qα

V = lTa (4.18a)

s.t.
Bqα + Wa = fα

σ−a ≤ qα ≤ σ+a

}
for all α ∈ F (4.18b)∥∥νj − ν0

j

∥∥2

2
≤ (r∗)2 for all j ∈ N (4.18c)

TL
jL
νjL = 0 for all jL ∈ NL (4.18d)

TD
jD
νjD ≥ 0 for all jD ∈ ND (4.18e)

a ≥ 0 (4.18f)

xlb ≤ x ≤ xub (4.18g)

ylb ≤ y ≤ yub. (4.18h)

The new constraints (4.18d) and (4.18e) are linear, so coefficient matrices TD and TL directly
form the Jacobian matrices. (The Hessian matrices are zero matrices in this case.)
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(a) (b)

Figure 4.4: Merging a group of nodes: (a) a large merge radius results in a group containing the three
nodes, A, B and C, which can then be merged into a single node; (b) a small merge radius results in a group
consisting of nodes A and B, which can then be merged, whilst node C remains as-is.

Merging nodes

During the geometry optimization process some nodes may migrate towards one another (this
phenomenon was also observed by Achtziger (2007), who addressed this by adding the possibility
for nodes to ‘melt’ (i.e. merge together) in his proposed procedure). In this paper, it can be
observed that the gap ε included in constraint (4.13) will prevent nodes from taking up the same
position, and hence merging. Therefore an approach is needed to merge nodes into a concentrated
node; here this involves two major steps.

In the first step, nodes to be merged are identified and grouped, based on a program parameter, the
node merge radius rM. A node merge group contains candidate nodes to be merged. For a given
node, adjacent nodes lying within radius rM are added to the same group; an example is shown in
Fig. 4.4. When rM is greater than the distance between nodes A and C (Fig. 4.4a), a single group
containing all three nodes is created, and then merged to a single node. When rM is greater than
the distance between nodes A and B, but is less than the distance between A and C (Fig. 4.4b),
one group is created, and the two nodes in this group are then merged.

In the second step, all nodes in a given node merge group are merged to the centroid of the nodes in
the group. Due to its heuristic nature, the validity of this process needs to be numerically validated;
the merging process is deemed to be successful if the resulting structure has the same computed
volume as before (within a prescribed error tolerance).

All steps in process to merge nodes are listed below:
Node merge algorithm

1. Select an initial prescribed node merge radius, rM.
2. Create node merge groups.
3. For every group, check whether a valid merge can be undertaken.
4. If a valid merge can be carried out for all groups go to 6, else 5.
5. If invalid group can be split, reduce rM and go to 2, else 6.
6. End of node merge process.

Considering crossovers

In a truss layout derived from layout optimization, bars will very often intersect / crossover one
another. However, crossover points do not normally coincide with nodes. A crossover creation
process can be carried out to create nodes at these points, thereby splitting the intersecting bars.
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With these newly created nodes, there is scope to further reduce structural volume. However, cre-
ating new nodes also leads to a growth in problem size, which becomes significant in the first few
iterations, when a large number of crossover points are typically observed. To avoid significantly
increasing problem size, the crossover creation process is therefore not carried out initially. This
is achieved by using inner and outer loops in the main procedure as follows: (i) inner loop: the op-
timization is progressed without creating crossover nodes; this loop terminates when a prescribed
termination criterion has been met; (ii) outer loop: this carries out the process of creating crossover
nodes when the inner loop ends. The outer loop terminates when no more crossover nodes need
to be created, also terminating the entire optimization procedure.

This approach is based on the assumption that, whenever an inner loop terminates, the form of an
optimized layout has been identified, and the number of crossover points has been significantly
reduced. Note that when considering 3D structures, bars are less likely to intersect one another,
since for this to occur both bars must lie on the same plane. However, often a bar in a 3D structure
can pass very close to one or more other bars. This indicates that crossovers should be identified
approximately, using a tolerance which is progressively increased from zero to a prescribed value.

Extracting nodes and bars from the layout optimization solution

A viable structural layout, obtained using layout optimization, is the starting point of the geometry
optimization-based rationalization process described here. However, ensuring a viable layout is
obtained requires various steps to be taken, as described in this section.

Conventionally, when using an interior point-based linear programming solver, an optimum truss
layout is ‘extracted’ by identifying bars which have an area above a given filter threshold. Though
this typically provides a qualitatively reasonable layout, it can mean that one or more small but
structurally important bars are filtered out. To ensure this does not happen, the ‘extracted’ structure
can be used as the basis of a new layout optimization, and the volume compared with that obtained
originally; if these are not within a prescribed tolerance then the filter threshold should be reduced
and the process repeated until a viable layout is obtained.

Finally, chains of in-line bars should be merged into single bars to avoid intermediate nodes from
moving freely along their axis without improving the solution (though this is not required in cases
when intermediate nodes are either loaded or supported, or when self-weight is being considered).

Dealing with structures which are in unstable equilibrium with the applied loads

Layout optimization may identify structures which are in unstable equilibrium with the applied
loads. When dealing with such structures in the geometry optimization rationalization technique,
it will normally be observed that the calculated structural volume is very sensitive to the position of
certain nodes. This can cause numerical issues in the non-linear optimization solution process. To
address this, virtual supports are added and connected with all unsupported nodes by connections
which incorporate large joint length penalties to ensure they are not present in the final optimized
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Figure 4.5: Flow chart of the ‘two phase’ geometry optimization procedure

structure. (In the case of 2D trusses two virtual pinned supports[ii] are required to ensure that every
node is adequately constrained, whilst in the case of 3D trusses three virtual supports are required.)

4.3.4 Overall procedure

The overall procedure is shown in Fig. 4.5. As indicated in the figure, initially the geometry
optimization steps are performed within an inner loop, starting with the layout derived from layout
optimization. Within this loop the form of the structure will gradually change, due to moving
and merging of nodes; crossover points, if present, are completely ignored in this loop. The
maximum movement of any node is used as the termination criterion (taken as 1 × 10−4 in this
paper). Thereafter, crossover points are considered in the outer loop. The process then continues
as indicated until no crossover points are identified, with the entire optimization process then
terminating.

It is worth pointing out that, when merging nodes, the coordinates of the new merged nodes will
be obtained approximately. As a consequence the calculated volume may in some cases be very
slightly higher than in the previous step.

[ii]Before starting an optimization, each virtual support will be connected to every unsupported node using temporary
bars. Due to large joint length penalties, these extra bars are forced to have negligible area. After optimization, they
will be removed.
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4.4 Numerical examples

The efficacy of the two rationalization techniques considered in this paper, i.e. (i) introduction of
‘joint lengths’ and, (ii) application of geometry optimization, are now demonstrated through ap-
plication to a range of example problems. Unless stated otherwise, a reference length L is used to
define the size of a given problem, a load P is applied, and the limiting material stresses are taken
as: σ+ = σ− = σ. Also, in cases where advantage is taken of symmetry (or anti-symmetry), the
volume quoted is that of the full structure. With respect to the optimization solvers employed, all
LP layout optimization problems were solved using MOSEK (2011) and the non-linear geometry
optimization problems solved using IPOPT 3.11.0 (Vigerske & Wachter 2013), with default set-
tings except for the maximum iteration number which was set to 500. All calculations were carried
out using MATLAB2013a running on an Intel i5-2310 powered desktop PC with 6G RAM, and
running Windows 7 (64bit).

For many of the problems considered a known analytical solution is available. In these cases the
errors in the numerical solutions can be quantified, and are denoted ξL, ξJ and ξG for the percentage
errors of the layout optimization, joint length and geometry optimization rationalized solutions
respectively. Also, ξM denotes the percentage error in the solution obtained using the software
described by Martı́nez et al. (2007). Also, as the geometry optimization procedure will generally
improve on the layout optimization solution, it is also useful to quantify this improvement, here
denoted η = (ξL−ξG)

ξL
× 100%.

4.4.1 Hemp cantilever

The first example is a cantilever truss considered by Hemp (1974). The problem involves appli-
cation of a point load at mid-height between two pinned supports, as illustrated in Fig. 4.6(a).
(Note that only half of the domain needs to be considered if anti-symmetry is taken into account.)
Hemp (1974) quoted the analytical volume to be 4.34PL/σ, but Lewiński (2005) repeated the
calculations using greater precision to obtain a more accurate solution, 4.32168PL/σ.

A sample layout optimization solution and corresponding rationalized solutions are also shown
in Fig. 4.6. It is evident that both rationalization techniques allow simplified solutions to be ob-
tained. However, whereas the volume associated with the solution obtained using joint length
rationalization is 1.49% above the exact value, the solution obtained using geometry optimization
rationalization is only 0.23% above the exact value, a significant improvement on the original
layout optimization error of 0.75% (η = 69% in this case).

Factors affecting the joint length rationalization technique

With the joint length rationalization technique, adding an additional length s to the real length of
each bar has the effect of modifying the solution by effectively penalizing short bars. For the Hemp
cantilever shown in Fig. 4.6(a), the influence of the value of s on the layout and corresponding
volume is illustrated in Fig. 4.7. It is evident that the volume tends to increase as the joint length
is increased, and also that the form of the solution is generally simpler when an increased joint
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(a)

(b) (c)

Figure 4.6: Hemp cantilever: (a) problem definition and layout optimization solution obtained using 30×15
nodal divisions, V = 4.3541PL/σ (ξL = 0.75%); (b) rationalized solution obtained using joint length s =
0.006L, V = 4.3863PL/σ (ξJ = 1.49%); (c) rationalized solution obtained using geometry optimization,
V = 4.3318PL/σ (ξG = 0.23%).

length is used. Note that the CPU times were similar for all joint length cases considered.

Figure 4.7: Hemp cantilever: influence of joint length on numerical solution and layout (using 30 × 15
nodal divisions)

Factors affecting the geometry optimization rationalization technique

The geometry optimization rationalization technique is affected by several factors, two of which
are now considered: (i) influence of starting structural layout; (ii) influence of node merge radius.

(i) Influence of starting structural layout. Geometry optimization is here viewed as a post-
processing technique and a better starting layout, obtained using a finer numerical discretization,
will naturally be likely to result in an improved solution, at least in terms of volume. Fig. 4.8
shows the starting layout (obtained using a layout optimization involving 150×75 nodal divisions)
and the corresponding rationalized solution obtained using geometry optimization, demonstrating
that this rationalization technique can be applied to relatively large-scale problems. However,
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(a)

(b)

Figure 4.8: Hemp cantilever: (a) layout optimization solution obtained using 150 × 75 nodal divisions,
V = 4.3258PL/σ (ξL = 0.09%) ; (b) rationalized solution obtained using geometry optimization, V =
4.3228PL/σ (ξG = 0.03%)

Table 4.1: Hemp cantilever: solution and non-linear optimization CPU cost for varying layout optimization
nodal densities

Layout optimization Geometry optimization rationalization

Nodal divs No. of bars Volume
(PL/σ)

Error ξL
(%)

No. of nodes No. of bars Volume
(PL/σ)

Error
ξG (%)

CPU
time†

(sec.)

30× 15 74655 4.3541 1.26 92 163 4.3318 0.23 5
60× 30 892702 4.3350 0.31 324 605 4.3258 0.09 58
90× 45 3149297 4.3296 0.18 774 1480 4.3235 0.04 358
120× 60 7004968 4.3274 0.13 1302 2519 4.3232 0.03 1279
150× 75 12456601 4.3258 0.09 2192 4244 4.3228 0.03 4875

†Total CPU time expended on non-linear optimization, as reported by the solver.

as indicated on Table 4.1, the computational cost associated with the non-linear optimizations
employed in the geometry optimization process does increase markedly with problem size (number
of nodes). Also, it is evident that the structure shown in Fig. 4.8(b) is still quite complex compared
with that shown in Fig. 4.6(c), suggesting that more practically useful solutions will often be
obtained when using coarse nodal discretizations.

(ii) Influence of node merge radius. Using a smaller node merge radius rM can be expected
to allow more detail from the original layout optimization solution to be retained, implying also
that a better quality solution can be expected to be obtained in this case. However, disabling the
merging of nodes altogether can lead to problems (for example some nodes can become effectively
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Table 4.2: Hemp cantilever: solution and non-linear optimization CPU cost for varying nodal merging radii
(30× 15 nodal divisions)

Merge
radius∗

No. of nodes in
resulting structure

No. of bars in
resulting structure

Volume
(PL/σ)

Error
ξG (%)

CPU time†

(sec.)

0.50 37 64 4.3318 0.23 5
0.25 57 102 4.3304 0.20 15
0.10 108 199 4.3283 0.15 76

0 274 489 4.3295 0.18 203
∗Expressed as a multiplier of the layout optimization nodal spacing.

†Total CPU time expended on non-linear optimization, as reported by the solver.

locked in position when the node move limits are applied). Table 4.2 shows the influence of the
choice of node merge radius for the Hemp cantilever problem shown in Fig. 4.6(a). It is clear
that the choice of node merge radius has a significant influence on the CPU time, and also does
affect the solution slightly (and, for the reason outlined previously, the use of a zero node radius
does not lead to the best solution). Thus in this paper a merge radius rM which equals half the x-
or y-distance between the nodes used in the original layout optimization process is pragmatically
utilized unless specified otherwise.

Finally, in Fig. 4.9 the progress of the entire iterative solution procedure is shown for the Hemp
cantilever example shown in Fig. 4.6(a). The optimization process stays in the inner loop (see
Fig. 4.5) until the end of the 7th iteration. Crossover nodes are then created and the inner loop
is entered for a second time. The layout of the structure evolves further, until the termination
criterion is met.
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Figure 4.9: Hemp cantilever: geometry optimization solutions obtained during the iterative solution proce-
dure

4.4.2 Centrally loaded Michell beam

The problem shown in Fig. 4.10 is similar to the problem originally considered by Michell (1904),
though here the inclination of the midspan point load is allowed to vary. For comparative purposes
numerical solutions obtained using the ‘growth’ method described by Martı́nez et al. (2007) are
also provided (using software downloaded using the link given in the paper).

Numerical solutions are shown in Table 4.3. Note that in order to ensure that the geometry op-
timization rationalization technique produced forms which were anti-symmetric about the line of
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Figure 4.10: Centrally loaded Michell beam: problem definition

load application, similar to those obtained when using layout optimization, it was necessary to
prescribe that the horizontal reaction forces at the two pinned supports were equal in magnitude;
this was achieved by replacing one of the supported degrees of freedom with an equivalent reac-
tion force, of magnitude P cos(φ)

2 . (However, this approach did not allow sensible solutions to be
obtained using the method proposed by Martı́nez et al. (2007), because Martı́nez’s method appears
to ‘grow’ either the top or the bottom part of the structure, but not both simultaneously.) Also, to
avoid nodes being merged in the geometry optimization phase in the vicinity of the singularities at
the supports and load position, the node merge radius rM used was taken as half the standard value
(being a quarter of the x- or y-distance between the nodes used in the original layout optimization
process).

It is apparent from Table 4.3 that for this problem the geometry optimization rationalization tech-
nique provides the best all-round solutions, successfully simplifying the standard layout optimiza-
tion layouts. Also, although the ‘growth’ method proposed by Martı́nez et al. (2007) produces the
most accurate solution for the φ = 90° case, in most other cases it fails to capture important detail
present in the (near-)optimal layouts, leading to less accurate solutions and to higher computed
volumes.

4.4.3 Hemp arch with distributed load

Details of the arch problem investigated by Hemp (1974) are provided in Fig. 4.11(a). Hemp
proposed an analytical solution but found that this was in fact non-optimal. However, what is likely
to be a very close estimate of the volume of the exact layout (V = 3.15163wL

2

σ ) was recently put
forward by Pichugin et al. (2012). This was obtained using the ‘Type III’ uniformly distributed
loading pattern proposed by Darwich et al. (2010), which is also used here. Additionally, due
to the sensitivity of the computed volume to the position of particular nodes, virtual supports are
utilized in the geometry optimization rationalization technique. Also, to avoid nodes being merged
in the geometry optimization phase in the vicinity of the singularity at the support, the node merge
radius rM used was half the standard value (being a quarter of the x- or y-distance between the
nodes used in the original layout optimization process).

Considering the layouts shown in Fig. 4.11, it is clear that only the geometry optimization ratio-
nalization technique is capable of simplifying the layout whilst maintaining key features of the
original form. The geometry optimization rationalization step also reduces the error from 0.51%
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Table 4.3: Centrally loaded Michell beam: volumes (×PL/σ) and layouts obtained using various methods
vs. inclined load angle φ. Minimum volume shown in boldface.

Rationalized layout optimization solutions
Load

angle φ
Layout optimization with
60× 60 nodal divisions

‘Growth’ method by
Martı́nez et al. (2007)

Using joint length:
s = 0.01L

Using geometry
optimization

0°
V = 1.0 V = 1.0 V = 1.0 V = 1.0

10°

V = 1.3395 V = 1.3448 V = 1.3478 V = 1.3333

22.5°

V = 1.7450 V = 1.7667 V = 1.7640 V = 1.7373

45°

V = 2.2765 V = 2.3101 V = 2.3001 V = 2.2691

67.5°

V = 2.5263 V = 2.5443 V = 2.5439 V = 2.5202

80°

V = 2.5703 V = 2.5662 V = 2.5860 V = 2.5657

90°

V = 2.5771 V = 2.5711 V = 2.5856 V = 2.5740
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in the original layout optimization solution to 0.10% (η = 81%).

4.4.4 Hemp cantilever with self-weight

The Hemp cantilever shown in Fig. 4.6(a) is revisited, though now taking account of self-weight,
with ρ× g = 1.5σ/L. The solutions are shown in Fig. 4.12.

Although a relatively large joint length has been used in an attempt to derive a suitably simplified
structure, it is evident that the resulting layout is significantly more complex than the equivalent
layout obtained using the geometry optimization technique.

4.4.5 Chan cantilever with two load cases

The problem shown in Fig. 4.13(a) is a variation on the cantilever truss considered by Chan (1962),
though now involving two load cases (and two forces, P and Q, which are each active in only
one of the load cases). For the case when P = Q, the exact solution can be calculated using
superposition principles (e.g. see Nagtegaal & Prager 1973, Spillers & Lev 1971): in this case
the ‘sum’ problem clearly gives a volume of 0.5PL/σ; and the ‘difference’ problem takes the
form of a ‘Michell’ truss (Lewiński et al. 1994a), whose volume is given by Graczykowski &
Lewiński (2010) as 4.729085649PL/σ. Therefore the exact solution can be calculated to be
(4.729085649 + 0.5)PL/σ.

It can be observed from Fig. 4.13 that both rationalization techniques described here successfully
simplify the layout, with the geometry optimization rationalization technique also reducing the
error in the computed volume, from 0.30% to 0.10% (error reduction η = 66.7%).

4.4.6 Flower truss with two load cases

To further demonstrate the capability of the rationalization techniques, another problem involving
two load cases will be considered; details of the problem are shown in Fig. 4.14(a). The analytical
solution for this problem can again be derived using superposition principles. Thus with given
dimension R = 0.5L, the optimal volume can be calculated to be: V = (46.052 + 10.000)PL/σ

(refer to Fig. 4.15 for further details).

Due to the relatively coarse nodal discretization employed in this case, comparatively little ratio-
nalization of the initial layout optimization solution is required. However, the geometry optimiza-
tion rationalization clearly simplifies the layout and also reduces the error (η = 80%) in this case.
(Also note that for this problem ξL and ξG are both relatively high, partly because the circular
support is modelled with only 18 nodes and, in this paper, these are non-movable in the geometry
optimization phase. i.e. a curved nodal movement path is beyond the scope of the present paper).
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(a)

(b)

(c)

(d)

Figure 4.11: Hemp arch with distributed load: (a) problem definition and layout optimization solution
obtained using 40 × 40 nodal divisions, V = 3.1679wL2/σ (ξL = 0.51%); (b) method by Martı́nez
et al. (2007), using 20 nodal divs as software failed to yield reasonable results when 40 nodal divs were
employed, V = 3.2736wL2/σ (ξM = 3.86%); (c) rationalized solution obtained using joint length s =
0.01L, V = 3.2044wL2/σ (ξJ = 1.66%); (d) rationalized solution obtained using geometry optimization,
V = 3.1550wL2/σ (ξG = 0.10%)
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(a)

(b) (c)

Figure 4.12: Hemp cantilever with self-weight: (a) problem definition and layout optimization solution
using 30 × 30 nodal divisions, V = 35.894PL/σ; (b) rationalized solution obtained using joint length
s = 0.06L, V = 38.150PL/σ; (c) rationalized solution obtained using geometry optimization, V =
34.608PL/σ

(a)

(b) (c)

Figure 4.13: Chan cantilever with two load cases: (a) problem definition (Q = P ) and layout optimization
solution obtained using 30×20 nodal divisions, V = 5.2450PL/σ (ξL = 0.30%); (b) rationalized solution
obtained using joint length s = 0.015L, V = 5.2712PL/σ (ξJ = 0.80%); (c) rationalized solution
obtained using geometry optimization, V = 5.2344PL/σ (ξG = 0.10%)
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(a) (b)

(c) (d)

Figure 4.14: Flower truss with two load cases: (a) problem definition (P = Q), circular support mod-
elled using 18 nodes; (b) layout optimization solution obtained using 50 × 50 nodal divisions, V =
57.387PL/σ (ξL = 2.38%); (c) rationalized solution obtained using using joint length s = 0.05L,
V = 57.801PL/σ (ξJ = 3.12%); (d) rationalized solution obtained using geometry optimization,
V = 56.324PL/σ (ξG = 0.49%)

(a) (b)

Figure 4.15: Flower truss with two load cases: equivalent single load case problems using superposition
principle (a) ‘sum’ problem V = 1

2 × 5 log
(

5
0.5

)
× 2 × 4PL/σ = 46.052PL/σ (Michell 1904); (b)

‘difference’ problem V = 1
2 sin2

(
π
4

)
× 5× 4PL/σ = 10.000PL/σ
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4.4.7 Michell sphere

The Michell sphere is the minimum volume 3D structure to support a pair of axial torques (Michell
1904). Though the exact solution to this problem has been derived theoretically (e.g. Michell
1904, Hemp 1973, Lewiński 2004), existing numerical solutions are not satisfactory. For example
in Czarnecki (2003) the difference between the quoted computed and exact volumes was found
to be 40.6% (Lewiński 2004). Here, using anti-symmetric boundary conditions, the problem can
be modelled using a reduced domain; in this case one eighth of a cube was used, as shown in
Fig. 4.16(a). The torque on one side is modelled by applying point loads to 20 circumferentially
positioned nodes in the full problem (i.e. to 20/4 + 1 = 6 nodes in the reduced problem). The ana-
lytical solution is V = 4T

σ log cot φ2 (after Hemp 1973, Lewiński 2004). For the given dimensions
(R = 50L, φ = 18° and T = 100PL), the exact volume is therefore 737.09PL/σ.

The results of the geometry optimization rationalization technique are shown in Fig. 4.16(c), (d).
It is clear that the rationalization technique does an excellent job of simplifying the complex initial
layout optimization solution shown in Fig. 4.16(b), also reducing the error in the volume in this
case from 4.24% to 0.43% (error reduction η = 90%).

4.5 Conclusions

Numerical layout optimization provides an efficient means of identifying (near-)optimal truss
topologies for a variety of problem types. However, the solutions obtained are often complex
in form, and effective means of rationalizing the output are often needed. In this paper two ratio-
nalization techniques are explored:

• Rationalization by including joint lengths in the layout optimization problem is computa-
tionally efficient since it simply requires minor modification of the underlying linear pro-
gramming (LP) problem. The solutions obtained are often simplified effectively, according
to the joint length utilized. However, the solutions are normally less efficient (i.e. have
a higher structural volume) than solutions obtained using the standard layout optimization
procedure. Also, in some cases this method fails to simplify the truss topology effectively.

• Rationalization by performing geometry optimization is a post-processing step which in-
volves the solution of a non-linear optimization problem. This approach has been found to
be effective in simplifying the solution obtained via layout optimization for a wide variety of
problem types, including those involving distributed loads, self-weight, multiple load-cases
and 3D geometries. Starting with a layout optimization solution, which typically comprises
relatively few bars, means that the subsequent geometry optimization phase is relatively
computationally inexpensive (cf. the integrated layout and geometry optimization strate-
gies proposed by others). Also, the solutions are normally more efficient (i.e. have a lower
structural volume) than the original layout optimization solutions. However, the non-linear,
non-convex, nature of the geometry optimization formulation means that there can be no
guarantee as to the proximity of the solution obtained to the global optimum; thus its use
primarily as a rationalization technique, as proposed in this paper, appears appropriate.
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(a)

(b)

(c)

(d)

Figure 4.16: Michell sphere: (a) problem definition (R = 50L, T = 100PL, φ = 18°), torsional load
modelled using 20 nodes in the full problem; (b) layout optimization solution obtained using 10× 10× 10
nodal divisions, V = 768.34PL/σ (ξL = 4.24%) (showing half of the full structure); (c) rationalized
solution obtained using geometry optimization, V = 740.26PL/σ (ξG = 0.43%) (showing half of the full
structure); (d) alternative view of solution shown in (c) (showing full structure)



Chapter 5

Automatic rationalization of yield-line
patterns identified using discontinuity
layout optimization[i]

Preface

Another application of layout optimization of interest in this thesis is yield-line analysis of re-
inforced concrete slabs, undertaken using discontinuity layout optimization (DLO). The method
takes into account the analogy between truss layouts and yield-line patterns, leading to a truly sys-
tematic automated yield-line analysis procedure, something which had been lacking for more than
half a century since the method was invented. While details of this novel method were published
in a journal paper co-authored by the author of this thesis (Gilbert et al. 2014, also available in
Appendix A), this chapter focuses on enhancing the basic method. Motivated by the outcomes of
the rationalization process applied in truss layout optimization, this chapter explores the potential
of utilising a similar technique to rationalize the yield-line patterns identified using DLO.

[i]The content of this chapter was originally prepared for a journal paper: He, L., Gilbert, M. (2015), ‘Automatic
rationalization of yield-line patterns identified using discontinuity layout optimization’, International Journal of Solids
and Structures (submitted for publication).
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Abstract The well-known yield-line analysis procedure for slabs has recently been systemati-
cally automated, enabling the critical yield-line pattern to be identified quickly and easily, what-
ever the slab geometry. This has been achieved by using the discontinuity layout optimization
(DLO) procedure, which involves using optimization to identify the critical layout of yield-line
discontinuities interconnecting regularly spaced nodes distributed across a slab. However, whilst
highly accurate solutions can be obtained, the corresponding yield-line patterns are often quite
complex in form, especially when relatively dense nodal grids are employed. Here a method of ra-
tionalizing the DLO-derived yield-line patterns via a geometry optimization post-processing step
is described. Geometry optimization involves adjusting the positions of the nodes, thereby simul-
taneously simplifying and improving the accuracy of the solution. The mathematical expressions
involved are derived analytically, and various practical issues are highlighted and addressed. Fi-
nally, an interior point optimizer is used to obtain rationalized solutions for a variety of sample slab
analysis problems, clearly demonstrating the efficacy of the proposed rationalization technique.

Keywords Discontinuity layout optimization, yield-line analysis, geometry optimization

5.1 Introduction

The yield-line method of analysis proposed by Johansen (1943) provides a powerful means of
computing the collapse load factor of a reinforced concrete slab. The method requires a kinemati-
cally admissible failure mechanism to be prescribed, defined by means of a yield-line pattern. The
early focus was on slabs with relatively simple geometries (e.g., Johansen 1943, 1968) because,
at the time, systematic means of identifying the critical failure mechanism for irregularly shaped
slabs were not available. Subsequently Chan (1972) and Munro & Da Fonseca (1978) proposed
a means of automatically identifying the critical yield-line pattern. This involved discretizing a
slab using rigid finite-elements, with the critical yield-line pattern then obtained automatically via
linear optimization. However, because yield-lines were restricted to forming only at the edges
of the finite-elements, the resulting yield-line patterns were significantly influenced by the initial
mesh topology. Attempting to address this issue, various workers proposed the use of ‘geometry
optimization’ to subsequently adjust the positions of selected nodes in a post-processing phase.
For example, Johnson (1994, 1995) proposed that this be achieved via the use of sequential linear
programming. Other workers to propose a similar approach included Thavalingam et al. (1999),
who employed a conjugate gradient optimizer, and Ramsay & Johnson (1997, 1998), who used a
direct search solver. However, as indicated by Ramsay et al. (2015), the outcomes will be affected
by the initial mesh topology, and a poor initial solution will render any subsequent geometry opti-
mization phase largely ineffective. Another issue is the need to manually identify yield-lines from
the finite-element meshes; any misinterpretation can reduce the efficacy of the geometry optimiza-
tion phase. This has been described as being ‘difficult’ (e.g., Johnson 1994, Thavalingam et al.
1999).

More recently, Jackson (2010) and Jackson & Middleton (2013) used a lower-bound finite element
solution to derive ‘yield-line indicators’, which could be used to infer the likely general form of
the critical yield line pattern. This then enabled a more refined yield-line pattern to be identified
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via a geometry optimization step. The resulting procedure allowed reasonable yield-line analysis
solutions to be obtained for complex slab problems. However, as the procedure involved a manual
interpretation step, a truly systematic means of automatically identifying the critical yield-line
pattern remained to be found.

Recently, this goal was achieved by Gilbert et al. (2014), who used discontinuity layout optimiza-
tion (DLO) to automate the process of identifying the most critical yield-line pattern. Instead of
discretizing the problem using elements arranged in a finite element mesh, the slab area is popu-
lated by nodes, and these are then interconnected with a large set of potential yield-lines, which
are free to cross-over one another. A highly efficient optimization process is then used to find the
critical subset of yield-lines involved in the critical failure mechanism. An overview of the steps
involved in the DLO procedure is shown in Fig. 5.1. However, whilst highly accurate solutions
can be obtained using the DLO procedure, the corresponding yield-line patterns are often quite
complex in form, especially when relatively dense nodal grids are employed. In an attempt to
address this, a modified formulation was also proposed by Gilbert et al. (2014). The modified
formulation involved penalizing short yield-lines, leading to solutions that were generally simpler
in form than the original. However, these solutions were also less accurate (i.e. the gap between
the exact and DLO solution was increased). In the present paper a geometry optimization step will
instead be used to rationalize the yield-line patterns, with a view to simultaneously simplifying the
yield-line patterns and improving the solutions (i.e. so that the gap between the exact and DLO
solution reduces).

The proposed procedure clearly has similarities with the procedure put forward by Johnson (1994,
1995), which also involved the use of a geometry optimization step. However, in the proposed
procedure the rationalization process starts from a yield-line pattern obtained using DLO, which
is a much better starting point than a yield-line pattern derived from a rigid finite element analysis.
Also, here the relevant geometry optimization formulae will be derived analytically, thus permit-
ting a wider variety of optimization methods to be applied. These distinguishing features can be
expected to ensure that performance is much improved. Note also that the proposed procedure
is similar to the procedure recently proposed for rationalizing trusses identified using layout op-
timization (He & Gilbert 2015a); also the use of a geometry optimization step to improve very
coarse resolution DLO solutions has recently been proposed for in-plane analysis problems by
Bauer & Lackner (2015).

The paper is organized as follows: (i) the new DLO-based automated yield-line analysis procedure
is first introduced; (ii) the geometry optimization problem is defined and relevant mathematical
expressions are given; (iii) implementation issues are considered and addressed; (iv) various nu-
merical examples are used to demonstrate the efficacy of the procedure; (v) conclusions from the
study are presented.
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(a) (b) (c) (d)

Figure 5.1: Steps in the DLO procedure: (a) define slab geometry and properties; (b) discretize slab using
nodes; (c) interconnect nodes with potential yield-lines; (d) use optimization to identify optimal subset of
yield-lines, and resulting yield-line pattern

5.2 Automated yield-line analysis using DLO

5.2.1 Overall problem formulation

The kinematic DLO limit analysis formulation for a weightless slab can be written as an optimiza-
tion problem as follows (after Gilbert et al. 2014):

min
d,p

λfT
L d = gTp (5.1a)

s.t. Bd = 0 (5.1b)

Np− d = 0 (5.1c)

fT
L d = 1 (5.1d)

p ≥ 0, (5.1e)

where the objective is to minimise the internal work done along yield-lines (5.1a), subject to
compatibility at nodes (5.1b), plastic flow requirements (5.1c), a unit displacement constraint,
defined according to the principle of virtual work, (5.1d), and a constraint that ensures that the
internal work done must be positive (5.1e). And where λ is a dimensionless load factor, and p and
g are vectors containing plastic multipliers and their corresponding work equation coefficients.
Also B is a suitable compatibility matrix containing direction cosines for the yield-lines, and d

contains relative displacements along yield-lines, as shown in Fig. 5.2 (where θn, θt, and δ are
respectively the normal rotation, twisting rotation, and out-of-plane displacement, along a yield-
line or at the edge of a slab). Also, N is a suitable plastic flow matrix and fL is a vector that
prescribes the effect of live loads ‘above’ each yield-line.

The optimization variables are the yield-line displacements in d and plastic multipliers in p. Since
all terms are linear, the optimization formulation (5.1) can be solved using linear programming
(LP). The entire optimization problem can be assembled using locally derived formulae for each
yield-line, which are introduced in the following section.
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(a) (b) (c)

Figure 5.2: Relative displacements at yield-line AB (assuming slab area ABCD moves to A′B′C′D′): (a)
normal rotation along yield-line; (b) twisting rotation; (c) out-of-plane translation

5.2.2 Terms for a single yield-line

For a yield-line i that connects two nodes A(xA, yA) and B(xB, yB), as shown in Fig. 5.3, let
xl = xB−xA and yl = yB−yA. (Note that in the interests of conciseness, the subscript i has been
omitted, i.e. xl is used rather than xli; this is repeated for all coefficients defined in this section).

Clearly, the length of this yield-line l =
√
x2
l + y2

l . Now assume that the displacement variables

in d for this yield-line are of the form [θn, θt, δ]
T. The contribution to the nodal compatibility

constraint (5.1b) for this yield line is given by:

Bidi =



cosφ − sinφ 0

sinφ cosφ 0

0 l
2 1

− cosφ sinφ 0

− sinφ − cosφ 0

0 l
2 −1


θn

θt

δ

 . (5.2)

However, in yield-line analysis θt and δ will be zero except at free edges and along symmetry
planes; also internal work will only be associated with normal rotation θn. Hence the plastic flow
rule constraint for the yield-line will simply be:

Nipi − di =
[
1 −1

] [p+

p−

]
−
[
θn

]
= 0, (5.3)

where p+, p− are plastic multiplier variables, constrained to take only positive values. Assuming
that the slab is isotropically reinforced, and m+

p and m−p denote the sagging and hogging moment
capacity per unit length respectively, the contribution to the objective function (5.1a) for this yield-
line can be written as:

gT
i pi =

[
m+

p l m−p l
] [p+

p−

]
= l(m+

p p
+ +m−p p

−). (5.4)

The external work done by live loads is calculated by considering the effect of loads on a strip
lying ‘above’ the yield-line under consideration (Fig. 5.4a). The geometric parameters of the strip
are defined by this yield-line and the shape of the top edge of the slab. In the present paper it is
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Figure 5.3: Notation used for a yield-line i connecting points A and B

necessary to define mathematical expressions for fLi. First, as shown in Fig. 5.4, global ( ~X, ~Y , ~Z)

and local (~ξ, ~η, ~Z) Cartesian coordinate systems are defined for yield-line AB. The effects of
loads acting on the strip can be prescribed via the local coordinate system: rotational moment
along yield-line AB in the ~ξ direction, torsional moment in the ~η direction, and shear force in the
out-of-plane direction (~Z direction).

(a) (b)

Figure 5.4: Computing the effect of loads ‘above’ yield-line AB

Consider a uniformly distributed pressure load of intensity q. Now consider an infinitely narrow
vertical strip of thickness dx located at horizontal distance x. The area of this strip can be written
as dA = (Φt(x)−Φl(x))dx, where the shape of the top and bottom edges of the strip are defined
by y = Φt(x) and y = Φl(x) respectively. The magnitude of the pressure load on the whole strip
can now be written as:

fi =

[
0, 0, −

∫ xB

xA

qdA

]T

. (5.5)

To determine the moment caused by the external load it is necessary to calculate the dis-
tance vector ~r from the mid-point of line AB to the centroid of the load, where ~r : r =[
xs − xc, ys − yc, 0

]T
., and where the centroid of the infinitely thin strip is located at (xs, ys),

and the mid-point of AB is located at (xc, yc). Thus the moment caused by load on the whole strip
above AB will be:

mi =

[∫
AB

q (yc − ys) dA,

∫
AB

q (xs − xc) dA, 0

]T

. (5.6)
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By combining (5.5) and (5.6), the effects of the live load can thus be written as:

fG
Li = q



∫
AB

(yc − ys) dA∫
AB

(xs − xc) dA

−
∫

AB
dA


= q



∫ xB

xA

Λx(x)dx∫ xB

xA

Λy(x)dx

−
∫ xB

xA

Λz(x)dx


, (5.7)

where,

Λx(x) = (Φt(x)− Φl(x))yc −
Φ2

t (x)− Φ2
l (x)

2
, (5.8a)

Λy(x) = (x− xc) (Φt(x)− Φl(x)), (5.8b)

Λz(x) = Φt(x)− Φl(x). (5.8c)

Λx, Λy, and Λz are unit-length moment and unit-length area functions with respect to x in the
global coordinate system, that respectively describe the first moment of area on ~X , the first mo-
ment of the area on ~Y , and the area per unit length in direction ~X for the strip ‘above’ the yield-

line. In addition, let Γx =

∫ xB

xA

Λxdx, Γy =

∫ xB

xA

Λydx, and Γz = −
∫ xB

xA

Λzdx represent

the unit live load effect. Note that the yield-line displacements are defined in a local coordinate
system, and it is thus necessary to apply a coordinate transformation to obtain the requisite values:

fLi = q

 cosφ sinφ 0

− sinφ cosφ 0

0 0 1


Γx

Γy

Γz

 . (5.9)

5.3 Geometry optimization: basic formulation

In geometry optimization, in addition to the original variables (the displacements d in d and plastic
multipliers p in p), nodal positions x, y are also considered as optimization variables. Also, with
respect to the original optimization formulation, the objective function (5.1a), nodal compatibility
constraint (5.1b), and unit displacement constraint (5.1d) now become non-linear, thus leading to
a non-linear programming (NLP) problem. To solve this problem efficiently, the first and second
derivatives of the objective function and constraints can be derived analytically, and efficient non-
linear optimization packages such as IPOPT (Vigerske & Wachter 2013) can be utilized. In the
following section, mathematical expressions for the geometry optimization problem are given,
including the first derivatives with respect to the optimization variables (i.e., x, y, d and p); second
derivatives are provided in Appendix C.
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5.3.1 First derivative terms

The gradient of the objective function and Jacobian matrices of the constraints are the first deriva-
tives required to solve the NLP problem. Assuming that the optimization variables are in the form
[xA, yA, xB, yB, θn, θt, δ, p

+, p−] then the gradient of the objective function (5.4) can be obtained
as:

Oλ =

[
−λxl
l2
, −λyl

l2
,
λxl
l2
,
λyl
l2
, 0, 0, 0, m+

p l, m
−
p l

]T

. (5.10)

.

Now consider the nodal compatibility constraint. As twisting rotation and out-of-plane displace-
ment will be zero for yield-lines which do not lie on free (or symmetry) boundaries, it is efficient
to treat these differently; thus compatibility matrix Bi can conveniently be divided into two parts,
Bi = BI

i + BII
i , where:

BI
i =



cosφ 0 0

sinφ 0 0

0 0 0

− cosφ 0 0

− sinφ 0 0

0 0 0


, BII

i =



0 − sinφ 0

0 cosφ 0

0 l
2 1

0 sinφ 0

0 − cosφ 0

0 l
2 −1


. (5.11)

The Jacobian matrices for these two parts, BI
idi and BII

i di, can be calculated separately:

JBI
idi

=



− θn y2

l3
θn x y
l3

θn y2

l3
− θn x y

l3
x
l 0 0 0 0

θn x y
l3

− θn x2

l3
− θn x y

l3
θn x2

l3
y
l 0 0 0 0

0 0 0 0 0 0 0 0 0
θn y2

l3
− θn x y

l3
− θn y2

l3
θn x y
l3

−x
l 0 0 0 0

− θn x y
l3

θn x2

l3
θn x y
l3

− θn x2

l3
−y
l 0 0 0 0

0 0 0 0 0 0 0 0 0


, (5.12a)

JBII
i di

=



− θt x y
l3

θt x2

l3
θt x y
l3

− θt x2

l3
0 −y

l 0 0 0

− θt y2

l3
θt x y
l3

θt y2

l3
− θt x y

l3
0 x

l 0 0 0

− θt x
2 l − θt y

2 l
θt x
2 l

θt y
2 l 0 l

2 1 0 0
θt x y
l3

− θt x2

l3
− θt x y

l3
θt x2

l3
0 y

l 0 0 0
θt y2

l3
− θt x y

l3
− θt y2

l3
θt x y
l3

0 −x
l 0 0 0

− θt x
2 l − θt y

2 l
θt x
2 l

θt y
2 l 0 l

2 −1 0 0


. (5.12b)

Note that except for yield-lines lying on a free (or symmetry) edge, only BI
i is required. The

Jacobian matrix of the flow rule constraint (5.3) can be derived as:

JNidi−pi =
[
0, 0, 0, 0,−1, 0, 0, 1,−1

]
. (5.13)
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For the live load effect constraint (5.1d), the Jacobian matrix can be written as:

JfTLidi−1 =

[
∂fT

Li

∂xA
di,

∂fT
Li

∂yA
di,

∂fT
Li

∂xB
di,

∂fT
Li

∂yB
di, f

T
Li

∂di
∂θn

, fT
Li

∂di
∂θt

, fT
Li

∂di
∂δ

, 0, 0

]
. (5.14)

Now consider partial derivatives of the unit live load effects (i.e., Γx, Γy, and Γz) in the global
coordinate system. Partial derivatives of Γα (α = x, y, z) can now be written as:

∂Γα
∂xA

=
∂

∂xA

∫ xB

xA

Λαdx = −Λα +

∫ xB

xA

∂Λα
∂xA

dx, (5.15a)

∂Γα
∂yA

=
∂

∂yA

∫ xB

xA

Λαdx =

∫ xB

xA

∂Λα
∂yA

dx, (5.15b)

∂Γα
∂xB

=
∂

∂xB

∫ xB

xA

Λαdx = Λα +

∫ xB

xA

∂Λα
∂xB

dx, (5.15c)

∂Γα
∂yB

=
∂

∂yB

∫ xB

xA

Λαdx =

∫ xB

xA

∂Λα
∂yB

dx. (5.15d)

Next consider the local coordinate system. Note that in (5.14), the partial derivatives with respect
to the nodal coordinates (i.e., the first four terms) have very similar expressions, and those with
respect to yield-line displacements (i.e., the fifth to seventh terms) are similar. In the interests of
conciseness, only the first and fifth terms (i.e., ∂f

T
Li

∂xA
di and fT

Li
∂di
∂θn

) are shown:

∂fT
Li

∂xA
di = qδ

∂

∂xA
Γz − qθt

(
Γy
l
−
xl

∂
∂xA

Γy

l
+
yl

∂
∂xA

Γx

l
−
x2
l Γy
l3

+
yl xl Γx
l3

)

−qθn

(
Γx
l
−
xl

∂
∂xA

Γx

l
−
yl

∂
∂xA

Γy

l
−
x2
l Γx
l3
− yl xl Γy

l3

)
, (5.16a)

fT
Li

∂di
∂θn

= q
xl Γx
l

+ q
yl Γy
l
. (5.16b)

5.3.2 Second derivative terms

Second derivatives (i.e., the Hessian matrices) can sometimes be approximated using Quasi-
Newton methods (e.g., the BFGS method described in Nocedal et al. 2006). However, to ensure
the NLP process is efficient as possible, they are derived analytically in this paper. Details of the
mathematical expressions for the second derivative terms are given in Appendix C.

5.3.3 Assembling the entire problem

For a single yield-line, the analytical expressions for the first and second derivatives have been
derived, and thus the entire problem can be readily assembled. In the case of constraint (5.1d),
which handles live load effects, the corresponding mathematical expressions are quite complex,
but can be obtained using symbolic calculation packages.
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Figure 5.5: Node move limit constraints introduced by a non-smooth top edge: node A moves within zone
ΩEF, B within ΩGH, C on line CF

5.4 Geometry optimization: practical issues

5.4.1 Modelling complex slab geometries

In this paper the boundaries of the slabs considered are assumed to be formed from piecewise
linear segments, permitting complex slab geometries to be modelled (e.g., a slab with a non-
convex polygonal external boundary and internal holes). Complex slab geometries may require
special treatment, as will be considered in this section.

Non-smooth top edges

It was indicated that the vector fL used in constraint (5.1d) is calculated by considering the effects
of load ‘above’ a given yield-line. Quite often, the top edge of a slab will contain several line
segments; in this case, y = Φt(x) is a piecewise function that is non-smooth or discontinuous.

Figure 5.5 shows a slab with non-smooth top edge EFGH, and three nodes within the slab domain,
A, B, and C. Let ΦEF, ΦFG, and ΦGH denote the line segments of the top edge, dividing the slab
into three zones, ΩEF, ΩFG, and ΩGH. The piecewise function Φt(x) for the top edge can be
written as:

Φt(x) =


ΦEF(x), xE ≤ x ≤ xF

ΦFG(x), xF ≤ x ≤ xG

ΦFH(x), xG ≤ x ≤ xH

. (5.17)

The unit-length moment and area functions Λα(α = x, y, z) are now expressed as:

Λα(x) =


ΛEF
α (x), xE ≤ x ≤ xF

ΛFG
α (x), xF ≤ x ≤ xG

ΛGH
α (x), xG ≤ x ≤ xH

, (5.18)

where ΛEF
α , ΛFG

α , and ΛGH
α are unit-length moment and area functions in zones ΩEF, ΩFG, and

ΩGH, respectively. The first derivatives of the unit live load effect Γx, Γy, and Γz can be derived
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using (5.15). For example, for node A of yield-line AB:

∂Γα
∂xA

= −ΛEF
α +

∫ xF

xA

∂ΛEF
α

∂xA
dx+

∫ xG

xF

∂ΛFG
α

∂xA
dx+

∫ xB

xG

∂ΛGH
α

∂xA
dx, (5.19)

∂Γα
∂yA

=

∫ xF

xA

∂ΛEF
α

∂yA
dx+

∫ xG

xF

∂ΛFG
α

∂yA
dx+

∫ xB

xG

∂ΛGH
α

∂yA
dx. (5.20)

These formulae are valid only when node A lies within zone ΩEF, so that node A must be restricted
to lie within this zone. Also, node C must be restricted to lie on line CF lying between ΩEF and
ΩFG. Thus, when a slab has a non-smooth top edge, each node must be restricted to lie within the
zone in which it currently lies and, with only vertical movement permitted in the case of nodes
lying directly below a non-smooth point. This can be considered to be a limitation of the method,
as currently implemented.

Slab with holes

When a hole is present, calculating the effects of live loads is complicated by the need to exclude
areas occupied by the hole in the vertical strip lying above a given yield-line. This has not been
considered in the formulae introduced above. A means of incorporating holes using the presented
formulae is to use domain decomposition. When using decomposition a slab domain can be di-
vided into several sub-domains in which the holes are excluded; details are provided in Appendix
D.

Non-convex polygonal slab

When moving nodes in a non-convex polygonal slab, a yield-line can potentially be moved so as
to cross a slab boundary. This can either be addressed via domain decomposition (which involves
dividing non-convex domains into several convex sub-domains) or by introducing additional con-
straints (not considered here). In the examples considered in this paper no yield-lines exhibiting
the described behaviour were found to be present, and thus no action was necessary.

5.4.2 Inherited issues

In the truss rationalization formulation presented by He & Gilbert (2015a), steps were taken to
address a number of practical issues, for example, restrictions on the movement of nodes, merging
of nodes in close proximity, etc; these issues are addressed here using the same basic techniques.

Node move limits

Because of the non-convex nature of the optimization problem, the NLP solver (i.e., IPOPT) may
report an unstable status. Furthermore, clearly nodes must be restricted from only lying within
the geometry of the slab. To address these issues, in the truss rationalization formulation (He &
Gilbert 2015a) node move limits were active for every node. In this paper, the same basic approach
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is used; firstly, the nodes can only move within regions defined to be a function of nodal spacing;
secondly, line and domain constraints are imposed according to the geometry of the slab.

In the first step, assume that the nodal coordinates of a node are written in R3 as ν = [x, y, 1]T

(as per the truss rationalization formulation (He & Gilbert 2015a), the redundant ‘1’ is used to
condense the mathematical expression). Consider two adjacent nodes A and B, and let rAB =
1
2

∥∥ν0
B − ν0

A

∥∥
2

be half the distance between them, ε be a gap used to avoid generating a zero
length yield-line, and rs be a program parameter that defines the maximum node move limit for
all nodes. The node move limit is then obtained as r∗ = min{rAB, rs} − ε.

In the second step, nodes on slab boundaries must be restricted to lie on boundary lines in order
to retain the slab geometry; therefore, line constraints are imposed on these nodes. As in the truss
rationalization formulation (He & Gilbert 2015a), let T be the coefficient vector of a line so that
the line constraint is written as Tν = 0; for domain constraints, an inequality constraint is instead
used (also note that T can now be a matrix to describe several lines).

Merging nodes

During the rationalization process, certain nodes may migrate towards each other. A node merge
process was introduced in the truss rationalization formulation (He & Gilbert 2015a), and this ap-
proach is also adopted here: first, the nodes are grouped based on distances; then, merging every
individual group is attempted, provided that the resulting yield-line pattern is validated numeri-
cally.

Extracting yield-line patterns from DLO

The rationalization process requires an initial yield-line pattern to be extracted from a DLO anal-
ysis. Typically, such a pattern is obtained by removing yield-lines having rotations (θn) that are
smaller than a prescribed threshold value (except for boundary yield-lines, which are not removed).
To ensure a reasonable threshold number is chosen, the extracted yield-line pattern will be used as
the basis of a new analysis, and the load factor compared with that obtained originally. If these are
not within a prescribed tolerance then the threshold value should be progressively reduced until
the load factor obtained is within the prescribed tolerance, and a usable initial yield-line pattern is
obtained.

Crossovers

Typically, yield-line patterns obtained using DLO will include crossover points where two or more
yield-lines intersect that do not coincide with nodes. As with the truss rationalization formulation
(He & Gilbert 2015a), nodes can be added at these locations using a nested-loop strategy: an
inner loop performs geometry optimization and, whenever the inner loop finishes, crossover nodes
are created in the outer loop, and then a further cycle of the inner loop is performed. The whole
process is repeated until no crossover points are found.
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5.5 Geometry optimization: full formulation

Consider a slab that comprises N = {1, 2, ..., n} nodes, with node subsets NL and ND denoting
those nodes that lie on the boundary lines and those close to domain boundaries, respectively. The
full optimization problem, now considering nodal move limits, can be written as:

min
x,y,d,p

λfT
L d = gTp (5.21a)

s.t. Bd = 0 (5.21b)

Np− d = 0 (5.21c)

fT
L d = 1 (5.21d)

p ≥ 0 (5.21e)∥∥νj − ν0
j

∥∥2

2
≤ (r∗)2 for all j ∈ N (5.21f)

TL
j νj = 0 for all j ∈ NL (5.21g)

Tνj ≥ 0 for all j ∈ ND (5.21h)

xlb ≤ x ≤ xub (5.21i)

ylb ≤ y ≤ yub, (5.21j)

where xlb, xub, ylb, and yub are the lower and upper bounds of the nodal positions, which are cal-
culated by taking account of the practical issues that affect node movements (e.g. limits imposed
to address non-smooth top edges).

5.6 Numerical examples

In this section, the efficacy of the proposed rationalization technique is demonstrated by applying
it to various numerical example problems. Unless stated otherwise, the slabs considered have unit
moment resistance per unit length, and are subjected to a uniform pressure load of unit intensity.
Also, a default node merge radius of 0.25× the x or y-nodal spacing in the original DLO analysis
was assumed. To solve both the LP and NLP problems, the IPOPT 3.11.0 (Vigerske & Wachter
2013) interior point optimization solver was used, with a maximum of 500 iterations allowed.
All calculations were performed using MATLAB2013a running under the Microsoft Windows
7 operating system on an Intel i5-2310 powered desktop with 6G RAM. Finally, unless stated
otherwise, the line thickness of the plotted yield-lines are proportional to the yield-line rotation.

5.6.1 Gilbert et al. (2014) examples

In Gilbert et al. (2014), the proposed DLO-based automatic yield-line analysis method was applied
to several slab problems. These examples will now be revisited, with the DLO derived yield-line
patterns now rationalized using the new procedure. Thus in Table 5.1, both standard DLO and
rationalized solutions are presented.

It is evident that the rationalization process successfully simplifies the yield-line patterns, and also
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improves the solutions (i.e. reduces the load factors). The linear nature of the DLO formulation
means that large-scale problems, e.g. involving millions of potential yield-line discontinuities,
can be solved without difficulty. In comparison the NLP problem associated with the geometry
optimization formulation is considerably more difficult to solve. However, fortunately the size
of the problem which needs to be solved in the proposed procedure is much reduced, containing
several orders of magnitude fewer yield-line discontinuities. Table 5.2 shows how the CPU time
increases with increasing number of nodes and yield-lines, for the fixed square slab problem. Also
Figure 5.6 shows solutions for this problem for the 60 and 120 nodal division cases (nodes are
shown but, for sake of clarity, a constant yield-line line thicknesses has been used). It can be
observed that the rationalized patterns contain far fewer nodes and yield-lines than present in the
final DLO solutions.

Alternatively, fewer nodes can be employed in the initial DLO problem to ensure that even simpler
solutions are obtained; such solutions are potentially attractive to practitioners, who may require
yield-line patterns which are easy to visualise and to hand-check. Thus, Fig. 5.7 shows solutions
for the slab with alcoves problem with various nodal divisions. The coarsest solution corresponds
to an extremely simple yield-line pattern but is still within 5% of the extrapolated solution (of
35.230) given in Gilbert et al. (2014), which can be considered for all practical purposes to be
exact. Also, because a very coarse initial grid has been used, the solution could be obtained in a
fraction of a second.

Finally, since the geometry optimization rationalization step will generally improve the numerical
solution (i.e. will reduce the load factor), it is of interest to ascertain whether it can be used to
reduce the total CPU time required to achieve a solution of a given accuracy. Figure 5.8 presents
results for the fixed square slab problem, showing that use of the rationalization step can indeed
reduce the CPU time required to give a solution of a given accuracy.

5.6.2 Irregular slabs with corner fans

It is well-understood that fan-type mechanisms develop at clamped corners. However, fan-type
mechanisms have proved difficult to identify using traditional automated yield-line analysis meth-
ods (e.g. Munro & Da Fonseca 1978, Johnson 1994). It is therefore of interest to consider two
representative examples here.

The first example comprises a rectangular slab with fixed supports and a corner cutout, originally
considered by Islam & Park (1971), and, more recently, by Jackson (2010). The slab geometry
and solutions are shown in Fig. 5.9. To obtain the DLO solution (of 25.135) a total of 20 nodal
divisions per unit length were used. The solution was then improved upon using the proposed
geometry optimization rationalization technique, giving a solution of 25.103, which is just 0.8%

higher than the lower bound solution of 24.9 quoted by Jackson (2010).

The second example is a five-sided slab, originally investigated by Kwan (2004). The slab has
fixed supports on two sides, with column supports coinciding with the remaining two vertices
(Fig. 5.10). Kwan obtained a load factor of 0.1967 for this problem, with no fan-type mechanism
included in his assumed yield-line pattern. In contrast the DLO solution shown in Fig. 5.10(a)
clearly shows the presence of a fan-type mechanism, the form of which becomes even clearer
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Table 5.1: Gilbert et al. (2014) examples: DLO and rationalized yield-line patterns

Problem DLO solution Rationalized solution

Fixed square slab
(Fox 1974): 40
nodal divisions

along each leg of
the right-angled
triangle domain

λ = 42.934 λ = 42.892
CPU time: 66 s CPU time†: 72 s

Alcove slab
(Regan & Yu

1973): 40 nodal
divisions per unit

length

λ = 35.411 λ = 35.353
CPU time: 9 s CPU time†: 37 s

Indented slab
(Regan & Yu

1973): 40 nodal
divisions per unit

length

λ = 29.062 λ = 29.026
CPU time: 19 s CPU time†: 6 s

Slab with hole
(Olsen 1998):

five nodal
divisions per unit

length

λ = 0.13557 λ = 0.13554
CPU time: 48 s CPU time†: 70 s

†: Time for geometry optimization rationalization step only
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Table 5.2: Fixed square slab: influence of number of DLO nodal divisions

DLO Geometry optimization rationalization

Nodal
divisions

No. of
nodes

No. of
yield-lines

Load factor
(error)

CPU
time

No. of
nodes

No. of
yield-lines

Load factor
(error)

CPU
time†

20 291 28037 43.055 (0.48%) 2 9 13 42.969 (0.28%) 2
40 981 285204 42.934 (0.19%) 66 30 52 42.892 (0.10%) 72
60 2071 1041621 42.908 (0.13%) 278 53 88 42.890 (0.10%) 174
80 3561 2430190 42.887 (0.09%) 1105 201 418 42.873 (0.05%) 655
100 5451 4496066 42.879 (0.06%) 1704 487 1118 42.867 (0.04%) 1416
120 7741 7258302 42.874 (0.05%) 4845 774 2069 42.863 (0.03%) 2304

†: Time for geometry optimization rationalization step only

(a) (b)

Figure 5.6: Fixed square slab: comparison of DLO and rationalized yield-line patterns for: (a) 60 nodal
divisions; (b) 120 nodal divisions

(a) 20 nodal divisions
λ = 35.529

(b) 10 nodal divisions
λ = 35.808

(c) 5 nodal divisions
λ = 36.921

Figure 5.7: Slab with alcoves: coarse resolution DLO solutions suitable for hand checking (left: initial
DLO nodal grid; right: rationalized solution)
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Figure 5.8: Fixed square slab: CPU time vs. percentage error when using DLO alone (dashed line) and
DLO with geometry optimization rationalization (solid line). (Note that in the latter case the CPU time
includes both DLO and geometry optimization stages.)

(a) (b)

Figure 5.9: Islam and Park’s slab: (a) DLO solution (20 nodal divisions per unit length), λ = 25.135; (b)
rationalized solution, λ = 25.103



CHAPTER 5. AUTOMATIC RATIONALIZATION OF YIELD-LINE PATTERNS IDENTIFIED USING
DISCONTINUITY LAYOUT OPTIMIZATION 79

(a) (b)

Figure 5.10: Kwan’s five sided slab: (a) DLO (five nodal divisions per unit length), λ = 0.18849; (b)
rationalized solution, λ = 0.18775

Figure 5.11: Cruciform slab: problem specification (L = 1)

following rationalization. The rationalized solution of 0.18775 is some 4.5% less than the solution
obtained by Kwan.

5.6.3 Cruciform slab

Johnson (1994) investigated the critical yield-line patterns for a simply supported cruciform slab of
various dimensions; see Fig. 5.11. He identified three yield-line patterns: the ‘crossed rectangular
slab’ mode for low values of x; the ‘modified square slab’ mode for intermediate values of x;
and the ‘corner lever’ mode for high values of x. More recently, Jackson (2010) revisited the
problem, though presented only lower bound solutions and ‘yield-line indicators’ (obtaining yield-
line solutions using his proposed method involved human-intervention, and would likely have been
labour intensive to perform for multiple geometries).

However, here the rationalization procedure has been used to automatically generate clear patterns
for the cruciform slab problem; see Table 5.3. In the first two modes, a fan-type mechanism can
clearly be observed near the concave corners.
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Table 5.3: Cruciform slab: rationalized yield-line patterns for various x/L ratios

Failure mode Rationalized solutions

Crossed
rectangular
slab mode

x/L = 0.2, λ = 71.940 x/L = 0.3, λ = 38.344

Modified
square slab

mode

x/L = 0.4, λ = 24.248 x/L = 0.5, λ = 16.637

Corner lever
mode

x/L = 0.8, λ = 7.1549 x/L = 0.9, λ = 6.2575
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5.7 Conclusions

• For many decades the yield-line method of analysis for reinforced concrete slabs eluded
systematic automation. This has finally now been achieved, via the discontinuity layout
optimization (DLO) procedure, which can rapidly obtain high accuracy solutions for slabs
of arbitrary geometry. However, the use of a fixed nodal grid means that the corresponding
yield-line patterns can be somewhat more complex in form than is necessary.

• To address this, in this paper a post-processing rationalization step which involves the use of
geometry optimization to adjust the positions of nodes has been proposed. As the yield-line
patterns obtained via DLO normally contain only a relatively small number of nodes and
yield-lines, solutions to the inherently non-linear geometry optimization problem can be
obtained relatively rapidly using an interior point solver. The rationalized solutions are gen-
erally both simpler in form and more accurate than the raw DLO solutions, clearly demon-
strating the efficacy of the proposed procedure.
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Chapter 6

Automatic yield-line analysis of
practical slab problems via
discontinuity layout optimization[i]

Preface

As introduced in Chapter 5 (see also Appendix A), the yield-line method of analysis has now
been systematically automated via DLO. It is however of interest to ensure that the slab problems
found in engineering practice can be treated using the new method (see also the paper accepted for
publication in The Structural Engineer in Appendix B). Practical slabs involve more complicated
configurations than the slabs analysed in Chapter 5. For example, they can be orthotropically
reinforced, involve various forms of loading (e.g., point, line and patch loads may be applied), and
more complex support types may be present. This chapter describes the developments required
to model these features, and the application of the resulting analysis procedure to a wide range of
practical slab problems.

[i]The content of this chapter was originally prepared for a journal paper: He, L., Gilbert, M., Shepherd, M. (2015),
‘Automatic yield-line analysis of practical slab problems via discontinuity layout optimization’, ASCE Journal of Struc-
tural Engineering (submitted for publication).
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Abstract The yield-line method provides a powerful means of rapidly estimating the ultimate
load which can be carried by a reinforced concrete slab. The method can reveal hidden reserves
of strength in existing slabs, and can lead to highly economic slabs when used in design. Orig-
inally conceived before the widespread availability of computers, the yield-line method subse-
quently proved difficult to computerise, limiting its appeal in recent years. However, it was re-
cently demonstrated that the discontinuity layout optimization (DLO) procedure could be used to
systematically automate the method, and various isotropically reinforced, uniformly loaded, slab
examples were used to demonstrate this. The main purpose of this paper is to demonstrate that the
DLO procedure can also be applied to a wide range of more practical slab problems, for example
involving orthotropic reinforcement, internal columns, and point, line and patch loads. The effi-
cacy of the procedure is demonstrated via application to a variety of example problems from the
literature; for all problems considered solutions are presented which improve upon existing nu-
merical solutions. Furthermore, in a number of cases solutions derived using previously proposed
automated yield-line analysis procedures are shown to be highly non-conservative.

Keywords yield-line analysis, plastic analysis, discontinuity layout optimization, slabs, ratio-
nalization.

6.1 Introduction

The yield-line method of analysis (Johansen 1943) is a long-established and extremely powerful
tool for estimating the maximum load sustainable by a reinforced concrete slab. In order to apply
the method successfully it has traditionally been necessary for users to have some knowledge
of the rules governing the construction of viable yield-line patterns, though these rules can be
memorised, and for simple problems a hand analysis is quick and easy to perform. The guidance
document produced by the UK Concrete Centre (Kennedy & Goodchild 2004) discusses the many
benefits of yield-line design, in particular highlighting the highly economic reinforcement layouts
that can result from its application. Furthermore, various other guidance documents are available
to assist new users, some of which also include useful formulae covering standard cases.

However, in many practical cases it can be difficult to identify the critical yield-line pattern by
hand. This is true when the slab under consideration has unusual geometry, reinforcement con-
figuration and/or pattern of applied loading. The presence of fixed (or ‘clamped’) edges can also
cause difficulties since in reality complex yield-line patterns (e.g. involving ‘corner fans’) will
often be critical in such cases, and these can be difficult to deal with in a hand analysis. Most
importantly, it must be borne in mind that the yield-line method is an upper-bound method in
the context of the fundamental theorems of plasticity, which means that an incorrectly chosen
yield-line pattern will result in an unsafe estimate of the strength of the slab under consideration.

To address this, an automated method of identifying critical yield-line patterns was first proposed
in the 1970s by Chan (1972), then working at the University of Oxford, and subsequently by
Munro & Da Fonseca (1978), working at Imperial College, London. Both groups of researchers
discretized the slab under consideration into rigid elements separated by potential yield-lines, and
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then used linear programming (LP) techniques to identify the critical yield-line pattern. Unfor-
tunately, when using rigid elements it can be observed that the solutions obtained depend on the
layout of the mesh discretization employed. This means that in many cases progressively reducing
the size of the mesh does not lead to convergence towards the exact solution (e.g. as demon-
strated in the recent study by Bleyer & Buhan (2013)). Various groups of researchers, for example
Johnson and co-workers (Johnson 1994, Ramsay & Johnson 1998) and Thavalingam et al. (1999),
attempted to address this through the use of a two-stage procedure. This involved supplementing
the original rigid element procedure with a geometry optimization phase, allowing the positions
of nodes to be adjusted to try to improve the solution. The main drawback is that such procedures
rely on the initial solution being of the same form as the true optimal layout. This is not necessar-
ily the case and, in mathematical optimization terms, such procedures will therefore be prone to
identifying solutions which are locally rather than globally optimal (e.g. Johnson (1994) conceded
that his proposed two stage approach “does not directly generate likely critical collapse modes”).

In the absence of general tools, various automated hand calculation yield-line analysis methods
have been developed, such as the COncrete BRidge ASsessment (COBRAS) package developed by
Middleton (1997) specifically for bridge assessment. This proved to be a very useful tool, showing
that many existing reinforced concrete slab bridges possessed significantly greater capacity than
indicated by elastic analysis methods. However, as the tool relies on the use of an in-built library of
predefined yield-line patterns, it is only suitable for analysing a restricted range of slab geometries.

In parallel various methods which seek to identify lower bound solutions have been investigated,
such as the methods presented by Anderheggen, E. and Knöpfel, H. (1972), Krabbenhoft & Damk-
ilde (2003) and more recently by Le, Gilbert & Askes (2010). However it should be noted that
these methods are comparatively complex since they involve the use of a non-linear yield-function,
and also are not capable of identifying discrete yield-lines directly (though these can be manually
inferred from the output, as undertaken as part of the two-step slab analysis procedure recently
described by Jackson & Middleton (2013)).

Given the inherent limitations of existing techniques, the opportunity was recently taken to apply
the Discontinuity Layout Optimization (DLO) procedure (Smith & Gilbert 2007) to the analysis of
reinforced concrete slabs. Although full details are provided by Gilbert et al. (2014), in the present
paper key features of the procedure are briefly outlined. It is then demonstrated that the procedure
may straightforwardly be extended to treat practical slab analysis problems, involving orthotropic
reinforcement, a wider variety of support conditions and also slabs which are subject to point, line
and patch loads. Additionally, it is shown that a recently developed rationalization procedure (He
& Gilbert 2015b) can be used to enhance the solutions obtained. In this paper the DLO-based
procedure is applied to both benchmark problems from the literature and to more practical slab
configurations, with the aim being to clearly demonstrate its accuracy and usefulness.

6.2 Discontinuity Layout Optimization (DLO) formulation

A complete DLO analysis comprises several steps (Fig. 6.1). Firstly, the slab is discretized using
nodes spatially distributed across the problem domain (Fig. 6.1b), which are then interconnected
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(a) Step 1: The ge-
ometry, boundary condi-
tions, loads and yielding
moments are defined.

(b) Step 2: nodal
discretization (using 4
nodal divisions).

(c) Step 3: Nodes are
connected by potential
yield-lines.

(d) Step 4: Identify
the subset of yield-lines
present in the critical
collapse mechanism us-
ing LP.

(e) Step 5 (optional): visualize deformed shape

Figure 6.1: Steps in DLO process: a simple example (after He & Gilbert 2015b)

(a) (b) (c)

Figure 6.2: Displacement variables for a yield-line AB (assuming block ABCD moves to A′B′C′D′): (a)
normal rotation along yield-line; (b) twisting rotation; (c) out-of-plane displacement

with potential yield-lines (Fig. 6.1c). Assuming a kinematic problem formulation, the formulation
involves the variables shown in Fig. 6.2: normal rotation θn along yield-line, twisting rotation θt

and out-of-plane displacement δ. With respect to these displacement variables, a linear program-
ming (LP) problem comprising an objective function and constraints can be formulated (after
Gilbert et al. 2014):

min
d,p

λfT
L d = −fT

Dd + gTp (6.1a)

s.t. Bd = 0 (6.1b)

Np− d = 0 (6.1c)

fT
L d = 1 (6.1d)

p ≥ 0, (6.1e)
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Table 6.1: Evaluating the effects of loads lying in a strip ‘above’ yield-line i

Load type

Pressure Point load Line load Patch load

Rotational
moment fni

qAdn Pdn wdldn Qdn

Torsional
moment fti

qAdt Pdt wdldt Qdt

Shear force
fi

qA P wdl Q

Figure 6.3: Compatibility requirements for yield-lines meeting at a node

where, d and p are vectors containing respectively the aforementioned displacement variables and
corresponding non-negative plastic multiplier variables. In the objective function (6.1a), λ is a di-
mensionless load factor, here applied only to live loads; λfT

L d and fT
Dd describe the external work

done respectively by live and dead loads (calculated in DLO by considering the effects of loads
lying in strips ‘above’ each yield-line; the coefficients in fL and fD for the load types considered
in this paper are provided in Table 6.1). Also gTp describes the internal energy dissipation along
yield-lines. In constraint (6.1b), B is a compatibility matrix used to ensure yield-line displace-
ments are kinematically admissible; see also Fig. 6.3. In constraint (6.1c), N is a plastic flow rule
matrix describing the relation between the yield-line displacements in d and their associated plas-
tic multipliers p. Also, in constraint (6.1d), the external work done by live load is normalized to
ensure that λ directly defines the load factor. By solving the linear optimization problem (6.1), the
load factor at collapse and the associated yield-line pattern can be obtained. The deformed shape
can also be plotted (Fig. 6.1e), to clearly indicate the form of the predicted failure mechanism.

Whereas the example shown in Fig. 6.1 contains very few nodes, in practice much denser nodal
grids can be employed to obtain more accurate solutions. However, a side effect of this is that
the resulting yield-line patterns can become quite complex in form. To simplify these a post-
processing rationalization step, which involves adjusting the positions of the nodes via geometry
optimization, can optionally be performed (He & Gilbert 2015b). Unlike previously proposed
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Figure 6.4: Yield moments m+
px, m+

py , m−px and m−py in an orthotropically reinforced concrete slab

methods which require a manual interpretation step (e.g. Johnson 1995, Jackson & Middleton
2013), here the rationalization is performed automatically following completion of a standard
DLO analysis, generating yield-line patterns that are both simplified (i.e. contain fewer nodes and
yield-lines) and also more critical (i.e. the solutions are better). The extensions to the mathematical
derivations described in He & Gilbert (2015b) required to enable treatment of the practical slabs
considered in the present paper are provided in Appendix E.

6.3 Modelling features of practical slabs

Orthotropic slab reinforcement

In engineering practice many slabs contain orthotropic reinforcement; such slabs were not con-
sidered in Gilbert et al. (2014). However it will be shown here that orthotropic reinforcement
can be handled using the DLO method. Referring to Fig. 6.4, suppose m+

px, m+
py and m−px, m−py

are respectively the x and y direction positive and negative plastic moments of resistance per unit
length. Also m+

p and m−p are the plastic moments of resistance per unit length along a yield-line
that is inclined at an angle of φ to x-axis. Using the stepped yield-criterion approach proposed by
Johansen (1943), the latter can be calculated from:

m+
p = m+

px cos2 φ+m+
py sin2 φ, (6.2)

m−p = m−px cos2 φ+m−py sin2 φ. (6.3)

In the DLO formulation (Gilbert et al. 2014), the above formulae can be used when calculating
the internal energy dissipation terms for a given yield-line (i.e. the coefficients in g, used in the
objective function (6.1a)). Note that, since the orientation of a given yield-line connecting two
nodes is known in advance, computing the energy dissipation terms is straightforward; hence
orthotropically reinforced slabs can be treated without difficulty in DLO.



CHAPTER 6. AUTOMATIC YIELD-LINE ANALYSIS OF PRACTICAL SLAB PROBLEMS VIA
DISCONTINUITY LAYOUT OPTIMIZATION 88

Table 6.2: Summary of line support types

Support type Free Symmetry Fixed[a] Simple
(anchored)

Simple (non-
anchored)

Knife-edge
(anchored)

Knife-edge
(non-

anchored)

Symbol

Displacement
constraints
(θt and δ)

None None θt = δ = 0 θt = δ = 0
θtl

2
± δ ≥ 0 θt = δ = 0

θtl

2
± δ ≥ 0

Type of
normal

rotation θn

Relative to
support

Relative to
support

Relative to
support

Relative to
support

Relative to
support

Relative to
interior of

slab

Relative to
interior of

slab

Internal
energy

dissipation
0 mp|θn|l imp|θn|l 0 0 mp|θn|l mp|θn|l

a: Variable support strength = imp

Boundary conditions

In Gilbert et al. (2014) and He & Gilbert (2015b), only four boundary conditions were considered
(free, symmetry, fixed and simple (anchored) boundaries - see the first four columns of Table 6.2).
However, in engineering practice further boundary conditions are frequently encountered; the re-
maining columns of Table 6.2 and Table 6.3 provide details of the additional boundary conditions
considered here. Additionally, here an optional support strength factor i is applied in the case of
fixed supports (i is then a multiplier in internal energy dissipation terms in the objective function,
(6.1a)). Further explanation of the remaining boundary conditions follows.

(i) Non-anchored simple supports An external simple support can be anchored or non-
anchored; in the latter case uplift may occur, which means that twisting and out-of-plane dis-
placements can now be non-zero, with θtl

2 ± δ ≥ 0 ensuring uplift (only) can occur.

(ii) Knife-edge supports These type of supports may be located internally beneath the slab, with
the slab above the support being continuous. This means that the slab can rotate along the support.
If there exists no relative normal rotation at the support (i.e. θn = 0), then no yield-line forms at
the support. If θn 6= 0, then a yield-line develops along the support and internal energy dissipation
needs to be accounted for. Regarding twisting rotation θt and out-of-plane displacement δ, both (a)
anchored and (b) non-anchored knife-edge supports are considered here. In the latter case twisting
and out-of-plane displacements can now be non-zero, and uplift can be allowed to occur (as with
the non-anchored simple supports).

(iii) Column supports Columns are frequently used in engineering practice; these can effec-
tively be modelled using a combination of the aforementioned line support types. An external
column is normally modelled using a simple support, whilst internal columns can now be mod-
elled using either enclosed knife-edge supports or, if an internal column passes through the slab, by
fixed supports (since the slab region is now discontinuous). In the latter case an optional support
strength factor i can be applied. A summary of all column support types is shown in Table 6.3.
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Table 6.3: Summary of column support types

Column type External Internal

Type I (supporting and
anchoring slab)

Type II (supporting but
not anchoring slab)

Type III (passing
through slab)

Symbol

Description
Formed by a

short-length simple
support

Formed by enclosed
anchored knife-edge

supports; slab is
continuous

Formed by enclosed
non-anchored

knife-edge supports;
slab is continuous

Formed by enclosed
fixed supports[a]; slab
is discontinuous at the

column

Displacement
constraints
along edges

θt = δ = 0 θt = δ = 0
θtl

2
± δ ≥ 0 θt = δ = 0

Internal
energy

dissipation
along edges

0 mp|θn|l mp|θn|l imp|θn|l

a: Variable support strength = imp

6.4 Application of the automated method

Dense nodal grids can be employed using a modern desktop computer, so that highly accurate
numerical solutions can if necessary be obtained. To solve the standard DLO problems, including
the largest problems, involving approx. 10,000 nodes, the LimitState:SLAB software was used
(LimitState Ltd 2015); this software is freely available for academic use. To obtain rationalized
solutions, the post-processing step described by He & Gilbert (2015b) was used, programmed in
a MATLAB script. All results were obtained using an Intel i5-2310 based desktop PC with 6GB
RAM and running Microsoft Windows 7.

Numerical results are summarized in Table 6.5, which contains both DLO solutions obtained using
dense nodal grids involving 10,000 nodes, to provide highly accurate solutions, and rationialized
DLO solutions, which are more easy to interpret visually. For problems with known analytical
solutions, the margin of error was always found to be well within 1%. For other problems the
results obtained in the present paper were found to be more accurate (i.e. safer) than those obtained
using the numerical methods described in the current literature. Further details of each problem
considered are provided in the following sections.

Singly reinforced slabs

Slabs which are singly reinforced (i.e. which have no hogging resistance) will be considered first;
these are of particular interest as the critical failure mechanism is likely to involve ‘corner levers’
or ‘corner fans’ (which are often ignored by practicing engineers, who may instead pragmatically
apply a margin of safety, e.g. 10%, to account for this and other simplifications).
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(a) (b)

(c) (d)

Figure 6.5: Six-sided plate (configuration 1): (a) problem specification; (b) yielding zone and yield-line
pattern obtained by Wüst & Wagner (2008), q = 17.75kN/m2; (c) 2000 node DLO yield-line pattern,
q = 15.992kN/m2 (when 10,000 nodes were used q = 15.953kN/m2); (d) DLO yield-line pattern (ratio-
nalized, based on the 2000 node solution), q = 15.970kN/m2

Isotropic six-sided slabs

The six-sided slabs shown in Fig. 6.5 and Fig. 6.6 were previously analysed by Wüst & Wagner
(2008). In both cases m+

px = m+
py and m−px = m−py = 0 (i.e. there is no resistance to hogging

moments). It is evident that the yield-line patterns identified by Wüst & Wagner (2008), shown in
Fig. 6.5(b) and Fig. 6.6(b), involve yield-lines which intersect each of the corners, and hence do
not include corner levers and/or corner fans. In contrast corner fans are evident in both the standard
DLO solutions (shown in Fig. 6.5(c) and Fig. 6.6(c)), and the rationalized DLO solutions (shown
in Fig. 6.5(d) and Fig. 6.6(d)). Comparing the solutions obtained by Wüst & Wagner (2008) and
those obtained using DLO, it is evident that the former are more than 10% higher than the latter
(using 10,000 node DLO solutions provided here as benchmarks, differences for the two problems
are: (17.75/15.953 - 1) × 100% = 11.3% & (54.4/47.424 - 1) × 100% = 14.7%), indicating that
using the yield-line patterns identified by Wüst & Wagner (2008) would be non-conservative even
if the usual 10% margin of safety was applied.

Orthotropic trapezoidal slab

The trapezoidal slab shown in Fig. 6.7 was previously analysed by Balasubramanyam & Kalya-
naraman (1988). The slab is orthotropically reinforced, and simply supported on three sides.
The relatively simple yield-line pattern identified by Balasubramanyam & Kalyanaraman (1988),
shown in Fig. 6.7(b), does not include corner levers and/or corner fans, and corresponds to a re-
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(a) (b)

(c) (d)

Figure 6.6: Six-sided plate (configuration 2): (a) problem specification; (b) yielding zone and yield-line
pattern obtained by Wüst & Wagner (2008), q = 54.4kN/m2; (c) 2000 node DLO yield-line pattern,
q = 47.745kN/m2 (when 10,000 nodes were used q = 47.424kN/m2) ; (d) DLO yield-line pattern
(rationalized, based on the 2000 node solution), q = 47.501kN/m2

quired moment capacity of m+
px = 11.84q. In contrast the DLO solution shown in Fig. 6.7(c) is

more complex, and corresponds to a required moment capacity that is 18% higher (using the most
accurate DLO solution available here, (13.97/11.84 - 1)× 100% = 18%). This again indicates that
application of the usual 10% margin of safety would be insufficient to ensure a safe design.

Slabs with internal supports

Roof slab

The slab shown in Fig. 6.8 has two external column supports and two knife-edge supports. The
problem was originally analysed by Bäcklund (1973), then by Munro & Da Fonseca (1978) and
subsequently by Balasubramanyam & Kalyanaraman (1988). The rationalized DLO solution is
shown in Fig. 6.8(c). A local failure can be observed near one external column; additionally, a
fan-type mechanism is developed near the knife-edge supports. Though the slab is not anchored
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(a)

(b) (c)

Figure 6.7: Trapezoidal orthotropic slab: (a) problem specification; (b) yield-line pattern obtained by
Balasubramanyam & Kalyanaraman (1988), m+

px = 11.84q; (c) DLO yield-line pattern (rationalized),
m+

px = 13.90q (10,000 node DLO solution, m+
px = 13.97q)

to the knife-edge supports, the failure mechanism shows no uplift of the slab.

Johansen’s slab with point supports

Johansen (1943) investigated a slab having two point supports (Fig. 6.9(a)). Ideally a point support
acts as a fulcrum, providing no rotational restriction and permitting uplift without necessitating
plastic deformation of the slab. However, in DLO a point support is most conveniently modelled
as a column of finite, though small, size (see Fig. 6.9(b)). This means that care must be exercised
since if a column restricts translational displacement of the slab along all its edges (e.g. a Type I
or III column in Table 6.3), plastic deformation must occur near the column when uplift behaviour
occurs. In contrast, a Type II column behaves similarly to a point support, except that the fulcrum
has been offset from the initial position (cf. Fig. 6.9(a)). The influence of the support type and
column size µ on the critical yield-line pattern is shown in Table 6.4. It can be observed that:

• Firstly, when a relatively small column size is used (µ = 0.001), the resulting global yield-
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(a)

(b) (c)

Figure 6.8: Roof slab: (a) problem specification; (b) yield-line pattern obtained by Munro & Da Fonseca
(1978), λ = 0.4; (c) DLO yield-line pattern (rationalized), λ = 0.36028 (10,000 node, DLO solution,
λ = 0.35863)

(a) (b)

Figure 6.9: Johansen’s slab with columns: (a) original point supports in Johansen (1943); (b) square column
supports from Table 6.3
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Table 6.4: Johansen’s slab with column supports: rationalized DLO yield-line patterns obtained by varying
support type and size

Type of internal
column µ = 0.001 µ = 0.2 µ = 0.5

Type I

mp = 0.9583 mp = 0.8048 mp = 0.7019

Type II

mp = 0.9597 mp = 0.8144 mp = 0.7019

Type III (support
strength i=0)

mp = 0.9587 mp = 0.8354 mp = 0.7668

line pattern is largely insensitive to column type. However, local mechanisms are found
close to Type I and III columns, and non-anchored (Type II) columns provide the best ap-
proximation of a point support.

• Secondly, when larger columns are used (µ = 0.2), it is clear that the size of the column
affect the failure mode significantly: a fan-type mechanism is developed near the Type I
and III columns, and the uplift disappears. In contrast, uplift remains when Type II columns
are involved, though the failure mechanism is different to that observed when a very small
column size is present.

• Thirdly, when relatively large columns are used (µ = 0.5), yield-lines develop along the
column edges and no uplift is observed whichever of the three support types are used. In this
case the same failure mechanism is observed irrespective of whether Type I or II columns
are present.
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(a) (b)

(c) (d)

Figure 6.10: Point loaded slabs - DLO yield-line patterns for: (a) point load near boundary (configuration
1), P = 11.443; (b) point load near boundary (configuration 2), P = 6.3034; (c) slab with two point loads
(configuration 1), P = 11.458; (d) slab with two point loads (configuration 2), P = 10.515 (see Table 6.5
for more accurate, 10,000 node, DLO solutions)

Slabs with point and line loads

Several slab problems involving point loads considered by Johansen (1943) are now revisited using
DLO. The resulting yield-line patterns shown in Fig. 6.10 resemble closely the analytical solutions
given by Johansen, with the margin of error being less than 1% (see also Table 6.5).

When line loads are present fan-type mechanisms will often develop in the vicinity of the load.
Examples originally considered by Johansen (1943, 1968) are here analysed using DLO; the re-
sulting yield-line patterns shown in Fig. 6.11 match Johansen’s results closely, though the DLO
solutions are more accurate.

Slabs with patch loads

The slab problem shown in Fig. 6.12 is taken from Ramsay & Johnson (1998); this involves self-
weight and a patch load Q. Using geometry optimization, Ramsay & Johnson (1998) obtained a
relatively accurate solution ofQ = 49.5kN (which is only 3.5% higher than 10,000 node DLO so-
lution Q = 47.85kN). However the process used by Ramsay & Johnson (1998) was cumbersome
in that it involved identifying a suitable yield-line pattern for use in the geometry optimization
stage. In contrast the yield-line pattern shown in Fig. 6.12(c) was identified using DLO in a matter
of seconds, without human-interaction.

Real-world slab

To further demonstrate the efficacy of DLO, the floor slab employed in a building (see Fig. 6.13) is
now considered. The floor slab in question was also considered by Kennedy & Goodchild (2004),
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(a) (b)

(c) (d)

Figure 6.11: Slabs loaded with line loads - DLO yield-line patterns for: (a) slab loaded along a line (con-
figuration 1), w = 18.867; (b) slab loaded along a line (configuration 2), w = 11.693; (c) cantilever slab
loaded along a line (configuration 1), w = 9.816; (d) cantilever slab loaded along a line (configuration 2),
w = 5.8393 (see Table 6.5 for more accurate, 10,000 node, DLO solutions)

(a)

(b) (c)

Figure 6.12: Slab with central patch load: (a) problem specification; (b) yield-line pattern obtained by Ram-
say & Johnson (1998) using geometry optimization,Q = 49.5kN; (c) DLO yield-line pattern (rationalized),
Q = 48.05kN (10,000 node DLO Q = 47.85kN)
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Figure 6.13: Real-world slab: a seven-storey block of flats in London

though for the purposes of this study full dimensions of the slab have been obtained from the
original designers, Powell Tolner & Associates Ltd. This has allowed an accurate slab model to be
created; full details are provided in Appendix F. A piecewise linear representation of the curved
balconies is used and the walls and ‘blade’ columns are modelled using Type III internal columns.
Following the lead of Kennedy & Goodchild (2004), here a support strength of i = 1 is used to
represent the walls around the core, and i = 0 for the wall around the stairs. To model the 215mm

wide blade columns, two scenarios are considered: (i) i = 1, and (ii) i = 0 for a more conservative
design.

The rationalized yield-line patterns obtained using DLO are shown in Fig. 6.14. The first pat-
tern matches very closely with the ‘folding plate’ mechanism assumed to be critical in Kennedy
& Goodchild (2004). However, in the DLO solution fan-type mechanisms also develop around
certain columns, leading to 2.8% increase in the required moment capacity (comparing mp =

48.6kNm/m from Kennedy & Goodchild (2004) to the 10,000 node DLO solution: (49.9492/48.6
- 1) × 100% = 2.8%, assuming a uniform applied pressure load of 21.7kN/m2). Although the
hand calculation result described in Kennedy & Goodchild (2004) appears remarkably accurate, it
is worth noting that the process involved manually analysing 11 potential yield-line patterns, each
postulated by an experienced engineer. In contrast when using DLO the yield-line patterns are
identified automatically. Regarding the second, more conservative scenario, taking i = 0 around
the blade columns, the resulting yield-line pattern is similar, though there is now a 7.9% increase
in the required moment capacity (comparing the Kennedy & Goodchild (2004) solution to the
10,000 node DLO solution: (52.4439/48.6 - 1)× 100% = 7.9%).

Discussion

Characteristic features of yield-line patterns

Currently, an engineer analysing a slab using the yield-line method can draw upon well-established
rules when postulating the critical yield-line pattern. As presented by Jones & Wood (1967), the
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(a)

(b)

Figure 6.14: Real-world slab: rationalized yield-line patterns using DLO, (a) i = 1 for 215mm blade
columns: mp = 49.3923kNm/m (10,000 node DLO mp = 49.9492kNm/m); (b) i = 0 for 215mm blade
columns: mp = 51.6699kNm/m (10,000 node DLO mp = 52.4439kNm/m)
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(a) (b)

Figure 6.15: Determining characteristic features of a yield-line pattern in an orthotropic slab using an
affine transformation: (a) original orthotropic slab; (b) equivalent isotropic slab derived using an affine
transformation. The critical yield-line pattern in (b) will involve yield-lines of opposite sign intersecting at
90°; the geometry of the yield-line pattern in (a) can be derived from (b) via geometrical transformation.

basic rules are:

• Yield-lines are straight except where a region may become completely plastic at any point.

• The yield-line between two or more bordering rigid regions must pass through the intersec-
tion of the axes of rotation of these regions.

• Axes of rotation usually lie along supported edges or column lines

• Yield-lines may only change direction when intersecting another yield-line.

Gilbert et al. (2014), used observed features in DLO solutions, and then Mohr’s circle analysis, to
point out additional characteristic features of yield-line patterns for isotropically reinforced slabs:

• Yield-lines of opposite signs should intersect at 90°, whether in the interior of a slab or at a
fixed support.

• Yield-lines of opposite signs should intersect simple supports and free edges at between 45°
and 135°.

• Yield-lines of the same sign can intersect at any angle.

However, in the context of the present paper it is of interest to point out that the above relations
can be generalized for orthotropically reinforced slabs by using the affine transformation method
(Johansen 1943, 1968, Kennedy & Goodchild 2004, Nielsen & Hoang 2011); an example is shown
in Fig. 6.15.

Problems identifying critical yield-line patterns by other means

It is now clear that the DLO method provides a very efficient means of identifying critical yield-
line patterns in the case of slabs with complex geometries, boundary conditions and/or load con-
ditions. On the other hand it might be presumed that either hand-analysis or one of the previously
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(a)

(b) (c) (d)

Figure 6.16: Rectangular slab simply supported on two adjacent edges: (a) problem specification; (b)
simple yield-line pattern,mp = 256.5 kNm/m; (c) alternative yield-line pattern, obtained by ‘optimization’,
mp = 168.0 kNm/m; (d) DLO yield-line pattern (rationalized), mp = 256.9 kNm/m.

proposed numerical procedures can be expected to provide reasonable solutions for simple slab
analysis problems. However, two simple example problems encountered during the course of the
present study will be used to show that this is not necessarily the case.

Rectangular slab simply supported on two adjacent edges

When carrying out a yield-line analysis by hand, usually a yield-line pattern is postulated by hand
(e.g. with the aid of the rules by Jones & Wood (1967)), and then the work method is used to obtain
a solution. When using the work method various geometric parameters of a yield-line pattern can
be adjusted to seek the minimum collapse load. For this reason, it might appear that the prescribed
yield-line pattern need only be only ‘near’ correct. Whilst in many cases use of a simple postulated
yield-line pattern can lead to a reasonably accurate solution, an issue is that it can be very difficult
to judge whether a prescribed yield-line pattern is truly ‘near’ correct.

For example, consider a seemingly simple example problem provided in Kennedy & Good-
child (2004), a rectangular slab which is simply supported on two adjacent edges (Fig. 6.16(a)).
Yield-line patterns provided in Johansen (1968) and Kennedy & Goodchild (2004) are shown
in Fig. 6.16(b) and (c) respectively, whilst the yield-line pattern identified using DLO is shown
in Fig. 6.16(d). Note that in the case of the pattern shown in Fig. 6.16(c), geometric parame-
ters of the pattern have been adjusted to find the minimum collapse load. The pattern shown in
Fig. 6.16(b) leads to a relatively accurate solution, very similar to that derived using DLO, shown
in Fig. 6.16(d). However, the solution shown in Fig. 6.16(c) is clearly very inaccurate; the reason
for this will therefore now be investigated further.

The geometry of the yield-line pattern given in Kennedy & Goodchild (2004) and shown in
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(a) (b)

Figure 6.17: Rectangular slab simply supported on two edges: parametric study for the yield-line pattern
proposed by Kennedy & Goodchild (2004): (a) relevant geometric parameters ξ, η; (b) calculated required
value of mp by varying ξ and η.

Fig. 6.16(c) is controlled by two geometric parameters ξ and η, as shown in Fig. 6.17(a). The re-
quired moment capacitymp can be obtained by varying these parameters, as shown in Fig. 6.17(b).
It can be noticed that for 0 < ξ ≤ 9, the maximum value of mp is 168.0kNm/m, which actu-
ally needs to be at least 52.9% higher for a safe design (calculated using (256.9/168.0 - 1) ×
100%). However, it is evident in Fig. 6.17 that from ξ > 0 to ξ = 0, the mp values rise suddenly,
showing the presence of a singularity. This implies that pattern in Fig. 6.16(c) does not trans-
form smoothly to that shown in Fig. 6.16(b) simply by optimizing its geometric parameters (e.g.
using the optimization tool in Microsoft Excel). This means that the yield-line pattern shown in
Fig. 6.16(c) cannot really be considered to be ‘near correct’. This clearly demonstrates that large
errors can easily be encountered when using the yield-line method, even if the problem appears
very simple. (Note that although the pattern shown in Fig. 6.16(c) was depicted in Kennedy &
Goodchild (2004), the formula provided that document actually corresponds to the pattern shown
in Fig. 6.16(b).)

L-shaped slab

The L-shaped slab in Fig. 6.18(a) was investigated in Ramsay & Johnson (1998), using a rigid
finite element based numerical analysis procedure. A relatively coarse mesh was used, leading
to the yield-line pattern shown in Fig. 6.18(b) being identified. Although this pattern may ap-
pear qualitatively reasonable, the problem was recently revisited by Ramsay et al. (2015), who
showed that the yield-line pattern is actually far from critical. The corresponding DLO yield-
line pattern for this problem is shown in Fig. 6.18(c), which corresponds to a required mp value of
2.3743kNm/m. This is some 40% higher than the solution given in the 1998 paper (1.70kNm/m),
showing that the latter solution was highly non-conservative. This indicates that, even for simple
slab problems, the use of previously proposed numerical methods may lead to highly inaccurate
solutions being obtained. It would also appear to show that it is difficult to qualitatively judge
whether a given yield-line pattern is correct or otherwise (the highly inaccurate solution appears to
have gone unnoticed in the literature for some 17 years, despite sustained interest in the field over
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(a)

(b) (c)

Figure 6.18: Ramsay’s L-shaped slab simply-supported on three sides: (a) problem specification; (b) yield-
line pattern obtained by Ramsay & Johnson (1998), mp = 1.70kNm/m; (c) DLO yield-line pattern (ratio-
nalized), mp = 2.3743kNm/m

that period). Fortunately the new DLO based automated yield-line analysis procedure overcomes
accuracy issues associated with previously proposed numerical procedures (e.g. those utilizing
rigid finite elements).

6.5 Conclusions

Discontinuity layout optimization (DLO) provides a powerful means of automating the yield-line
method. Also, a given DLO solution, which can be complex in form, can be rationalized to aid
visual interpretation and improve accuracy if required. In the present paper, it has been demon-
strated that DLO can be applied to a wide variety of problems incorporating practical features (e.g.
orthotropic reinforcement and a wide variety of support conditions and loading types). For all the
example problems considered in the paper, DLO solutions have been found which are more accu-
rate than those obtained using previously proposed upper bound numerical analysis techniques; in
some cases this has shown that literature solutions are highly non-conservative.
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Table 6.5: Summary of DLO solutions against those found in literature

Description

Literature DLO

Deviation[a]
Source Load factor ≤ 2,000 nodes

(Rationalized)
5,000
nodes

10,000
nodes

Six-sided slab
(configuration 1)

Wüst & Wagner
(2008) 17.750 15.970 15.956 15.953 11.27%

Six-sided slab
(configuration 2)

Wüst & Wagner
(2008) 54.400 47.501 47.469 47.424 14.71%

Trapezoidal slab Balasubramanyam &
Kalyanaraman (1988) 0.084459[b] 0.071928 0.071633 0.071566 18.02%

Roof slab

Bäcklund (1973) 0.38000

0.36028 0.35989 0.35863

5.96%
Munro & Da Fonseca

(1978) 0.40000 11.54%

Balasubramanyam &
Kalyanaraman (1988) 0.40200 12.09%

Johansen’s slab with column
support Johansen (1943) 1.0411[b] 1.0420[c] 1.0420[c] 1.0420[c] -0.08%

Point load near boundary
(configuration 1) Johansen (1943) 11.425[d] 11.443 11.442 11.435 -0.09%

Point load near boundary
(configuration 2) Johansen (1943) 6.2832[d] 6.3034 6.2990 6.2943 -0.18%

Slab with two point loads
(configuration 1) Johansen (1943) 11.420[d] 11.458 11.452 11.448 -0.24%

Slab with two point loads
(configuration 2) Johansen (1943) 10.480[d] 10.515 10.512 10.503 -0.22%

Slab loaded along a line
(configuration 1) Johansen (1943) 19.200 18.867 18.861 18.847 1.87%

Slab loaded along a line
(configuration 2) Johansen (1943) 12.700 11.693 11.672 11.646 9.05%

Cantilever slab loaded along a
line (configuration 1) Johansen (1968) 10.460 9.816 9.804 9.795 6.79%

Cantilever slab loaded along a
line (configuration 2) Johansen (1968) 6.3600 5.8393 5.8172 5.8086 9.49%

Ramsay’s slab with patch load Ramsay & Johnson
(1998) 49.500 48.054 47.871 47.851 3.45%

Real-world slab
(i = 1 for 215mm blade columns)

Kennedy &
Goodchild (2004) 0.020576[b] 0.020246 0.020083 0.020020 2.78%

Real-world slab
(i = 0 for 215mm blade columns)

Kennedy &
Goodchild (2004) 0.020576[b] 0.019354 0.019138 0.019068 7.91%

Ramsay’s L shape slab simply
supported on three sides

Ramsay & Johnson
(1998) 0.58824[b] 0.42118 0.42125 0.42119 39.66%

a: Difference between literature and DLO 10,000 node solution (using DLO solution as benchmark)
b: Converted to a load factor by multiplying by 1/mp

c: Internal column support size µ = 0.001 (Type II)
d: Exact solution



Chapter 7

Discussion

7.1 Introduction

Layout optimization provides a powerful method for identifying minimum weight truss structures.
The technique has now also been successfully applied to the problem of automating the yield-line
analysis method for slabs, using the analogy between optimum truss layouts and critical yield-line
patterns. The frequently complex nature of the truss layouts and yield-line patterns identified by
numerical layout optimization motivated the development of a rationalization technique involving
the use of geometry optimization. A number of issues relating to the application of both layout
and geometry optimization were encountered during the course of the research, and are discussed
further in this chapter.

7.2 Issues in layout optimization

7.2.1 Use of a user-defined filter when extracting a layout

In the layout optimization process, a layout is typically ‘extracted’ using a user-defined filter.
When geometry optimization rationalization is performed this layout will be used as the starting
point of the process, and hence this needs to correspond as closely as possible to the original LP
solution. Thus any user-defined filter, which will inevitably affect the extracted solution, must
be called into question. In Chapter 4, a numerical validation process was proposed to address
this issue; additional theoretical matters are discussed here. Whilst the discussion which follows
focuses on trusses, since the user-defined filter affects truss and slab problems equally, the same
basic principles can be applied to slab problems.

From a mathematical point of view, considering the truss layout optimization formulation (3.2), the
filtering process involves seeking to identify active constraints in (3.2c), i.e., q = 0. When using
the interior point method, problems are encountered. Now, using (2.12), (3.2) can be reformulated
as:

104
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min
q,s

cTq− u
m∑
j=1

ln sj (7.1a)

s.t. Bq = f (7.1b)

q− s = 0, (7.1c)

where the barrier parameter u in (7.1) typically reaches a sufficiently small, non-zero positive
number, and the slack variable sj cannot equal zero. This means the inequality constraint (3.2c)
is always ‘inactive’. For this reason, a tolerance number, or ‘filter’, is used to numerically deter-
mine the ‘active’ constraints. When the ground structure contains a considerable number of bars,
setting an appropriate filter value is difficult in practice, so some structurally important bars may
be erroneously filtered out due to their near-zero areas.

However, if the simplex method is used to solve (3.2), the active constraints can now be rigorously
identified and the above issue no longer exists. It is significant to note that, for relatively large-
scale LP problems, the simplex method is typically less efficient than the interior point method,
so it is not recommended that computational efficiency is sacrificed to generate a clearer resulting
layout. For small-scale problems, using a predefined filter becomes less problematic - qualified
layouts can be extracted without significant difficulty - so the simplex method has no significant
advantage over the interior point method. For this reason, the filter validation process in this thesis
does not use the simplex method, but instead uses a simple but effective strategy that automatically
adjusts the filter value until a ‘qualified’ layout is obtained.

7.2.2 Implementation issues in DLO

A number of issues surrounding the practical implementation of DLO, which have not been ad-
dressed in published papers (e.g., Gilbert et al. 2014), are of interest and hence are considered
here.

Sign convention

Ensuring that the sign convention is consistent is perhaps the most challenging issue facing a
developer of a DLO-based software program. Otherwise incorrect results, or perhaps unusual post-
solve behaviour (e.g., when displaying deformed shape), are likely to occur, even when the yield-
line pattern may appear correct. Also, when non-anchored boundary support types (Table 6.2) are
involved, the correct uplift direction needs to be ensured. For these reasons, a systematic study of
the sign convention has been undertaken; readers are referred to Appendix G.

Considering point and line loads

When a point load lies directly ‘above’ an end point of a yield-line, as shown in Fig. 7.1, it creates
an ambiguous situation. Point load at C lies in the strip above yield-lines AB and BD. To ensure its
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Figure 7.1: Ambiguous load effect by point load at point C

load effect is not erroneously considered twice, it is important that the point load is assumed to lie
either in the strip above AB, or in the strip above BD, but not in both strips. This can pragmatically
be achieved in a number of ways, for example by displacing the point very slightly left or right, or
simply split the load. A similar situation can happen if there is a vertical line load.

7.2.3 The effectiveness of uniform nodal grids in DLO

As with many other numerical methods, the nodal discretization used in DLO affects the accuracy
of the solutions which will be obtained. Nevertheless, a vast number of yield-line patterns are
considered in a standard DLO analysis, and an evenly distributed nodal grid will normally suffice.
In fact increasingly accurate solutions are generally obtained simply by increasing nodal density,
without the need for arrange nodes in any particular pattern. For example, solutions within 1%
of the exact value can often be obtained within a second or two on a desktop PC, using hundreds
or, in some cases, a few thousand nodes. In theory the exact solution can be obtained when an
infinite number of nodes is used (see also the extrapolation scheme documented in Appendix A).
However, as a numerical method, DLO must use a finite number of nodes. Also, a limitation of
using a uniform distribution of nodes is that a yield-line pattern which is small in relation to the
grid cannot be accurately described.

A singular pattern near point load

In Johansen (1943), analytical studies showed that if a slab was loaded with a point load, a circular
fan type failure pattern would be formed around the loaded point. Furthermore, the radius of the
circle was shown not to affect the collapse load. However, if a uniform nodal grid is used in DLO,
a mechanism involving a large radius will generally be the preferred solution. This is due to the
fact that a larger circle will have more nodes around its perimeter, thus leading to a more accurate
solution, e.g., see Fig. 7.2(a) vs. Fig. 7.2(b).

An interesting situation arises when a pressure load is applied in addition to a point load. If this
acts in the same direction as the point load, the radius of the circle tends to be as large as possible,
so as to maximise the work done by the pressure load. Conversely, if the pressure load acts in the
opposite direction, the radius of the circle will tend to be infinitely small, leading to a singularity.
In this situation using an evenly distributed nodal grid is problematic, for reasons which will be
outlined: firstly, using DLO a relatively small circlular mechanism will be identified, but since
the number of nodes around the perimeter of the circle will be reduced, accuracy will also be
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(a) (b)

Figure 7.2: Grid influence on the size of a radius of fan around a point load: (a) large circle (more accurate);
(b) small circle (less accurate)

Figure 7.3: Slab with point (live) and pressure (dead) loads acting in different directions: parametric study
by varying pressure load (DLO solutions indicated by solid line; rationalized DLO solutions indicated by
dashed line; using 64× 64 division nodal grid)

reduced (for example, the mechanism shown in Fig. 7.2(b) will be favoured relative to that shown
in Fig. 7.2(a)). Secondly, in a nodal grid, there is a finite spacing between nodes which prevents
the radius of the circle from becoming infinitely small. Due to these constraints, DLO may fail to
generate highly accurate solutions even when a relatively dense nodal grid is used. To investigate
this problem, a parametric study was conducted, showing the influence of pressure on the accuracy
of the solutions. Note that if the pressure is defined as a live load, and hence is subject to the load
factor, the failure mode changes when the pressure becomes sufficiently large, and the singular
yield-line pattern is no longer critical. Therefore, to prevent this from occurring the pressure was
defined as a dead load in this study.

It can be observed from Fig. 7.3 that the accuracy of DLO (solid-line) decreases as the magnitude
of the pressure is increased, going through two distinct phases. In the first phase, the radius of
the circle in the yield-line pattern decreases rapidly, reducing the number of nodes lying on its
perimeter (i.e., the first issue), so that numerical accuracy decreases rapidly. In the second phase
the radius of the circle decreases more slowly, so that the impact of the first issue does not change
dramatically; however, the second issue then affects numerical accuracy. Similarly, results ob-
tained using the geometry optimization rationalization technique clearly reflect these two phases.
Since the process requires a starting pattern from a standard DLO analysis, the rationalized solu-
tion is also affected by the first issue. However, radius of the circle can be reduced via geometry
optimization, effectively addressing the second issue. For this reason, the error does not increase
significantly in the second phase.
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Figure 7.4: Circular grid to address infinitely small failure circle

Figure 7.5: Slab with point (live) and pressure (dead) loads acting in different directions: using an extra
circular grid with 65 nodes along the perimeter

The parametric study shows a limitation of using an evenly distributed nodal grid in DLO. A
simple approach to address this limitation is to create a small circular grid around a point load,
in addition to the standard grid, to permit a singular failure circle to be identified with relatively
high accuracy. For example, a circular grid with a radius equal to the nodal spacing in the standard
nodal grid is used in Fig. 7.4. A ‘singular failure circle’ can be readily formed using this circular
grid, which has a number of nodes along its perimeter; this effectively addresses the first issue.
Furthermore, if the radius of the circular grid is sufficiently small, the impact of the second issue
is negligible. Note that the circular grid is created to identify a potential singular failure circle,
so the extra nodes in its perimeter do not need connections to other existing nodes in a standard
grid. Thus, it has negligible impact on the computational cost even if a relatively dense circular
grid is employed. Using this approach, the same parametric study was conducted in Fig. 7.5 for
comparison. Highly accurate solutions were produced. Due to the second issue, the accuracy
of DLO (solid-line) still decreased slowly with increasing pressure; however, the accuracy of the
rationalized solution (dashed-line) was completely unaffected.

7.3 Issues in geometry optimization

One major difference between layout and geometry optimization is that the supplied data (e.g.,
matrices in the truss layout optimization formulation of (3.2)) remain ‘static’ in the former, so
the process to obtain those data does not need explicitly defined formulae. In the latter, functions
are ‘dynamically’ updating with respect to nodal positions, requiring mathematical expressions to
be defined explicitly. This means that some design considerations which appear simple in layout
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Figure 7.6: A truss design problem studied by Smith et al. (2015)

optimization may turn out to be relatively challenging in the geometry optimization formulation.
For this reason, limitations affecting the latter are now considered.

7.3.1 Trusses in engineering practice

Chapter 4 is mainly concerned with the theoretical developments of the rationalization technique;
for this reason some practical issues are not addressed. In engineering practice, truss problems can
be more complicated; for example, consider the design problem shown in Fig. 7.6.

This example raises two questions: how can nodes be restricted to lie within an irregular 3D
design domain, and how can a rigid component be modelled. For the first question, noting that 2D
domain constraints have been introduced in Chapter 4, a similar approach can be employed here:
given mesh layouts of the design domain, plane equations of every mesh can be derived, with the
plane equations replacing the line equations in (4.16). Given a convex 3D domain, this approach is
straightforward; however, for non-convex cases, other issues exist that will be discussed in Section
7.3.2.

Regarding the second question, the precise distribution of internal forces from the truss structure
onto the rigid component, or, more specifically, onto a surface of the rigid component, will be
unknown in advance. To model these forces, one approach is to idealise them as a set of point
loads which are distributed across the rigid surface using the following steps: first, create nodes
on the rigid surface and apply point loads to them, permitting the direction and magnitude of
each point load to be varied (i.e., using optimization variables); second, impose restrictions on
these nodes so that they can only move along the rigid surface; finally, ensure these loads are in
equilibrium with any external loads applied to the rigid component.

7.3.2 Restricting nodes and line connections in non-convex domains

Geometry optimization involving non-convex design domains can be challenging. Chapters 5 and
6 address this by converting a concave region into a combination of a convex regions using do-
main decomposition. However, this approach has a disadvantage; solution accuracy is potentially
decreased. In this section, issues associated with the use of non-convex domains are revisited and
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(a) (b)

Figure 7.7: Domain constraints for (a) convex domain and (b) concave domain (shaded area indicates
permitted regions for node A and B

alternative approaches are proposed.

Design domain constraints for nodes

It has been shown in Chapter 4 that, to restrict a node within a convex design domain, the line
constraints of all boundary lines are imposed using (4.16). For the example shown in Fig. 7.7(a),
assume lines L1 and L2 and node A, the restriction is:

TL
1νA ≥ 0, (7.2a)

TL
2νA ≥ 0. (7.2b)

However, for the example shown in Fig. 7.7(b), imposing similar constraints causes problems:
simultaneously imposing line constraints L3 and L4 means that node B can only lie in region
Ω34; since B is currently in Ω3, these constraints lead to an infeasible state. In this case, the line
constraint L4 must be removed. The domain restriction becomes: a node cannot simultaneously
violate all line constraints - or equivalently, at least one line constraint must be satisfied. This
situation is very similar to active and inactive constraints in optimality conditions (Section 2.4.1),
so a similar approach is potentially useful. Assuming non-negative complementary variables ϕ3

and ϕ4, the domain constraints imposed on node B are written as:

ϕ3T
L
3νB ≥ 0, (7.3a)

ϕ4T
L
4νB ≥ 0, (7.3b)

ϕ3 + ϕ4 > 0, (7.3c)

ϕ3 ≥ 0, (7.3d)

ϕ4 ≥ 0. (7.3e)

A line constraint is ‘activated’ when its associated complementary variable is non-zero. In addi-
tion, constraint (7.3c) states that at least one line constraint must be activated. Note that comple-
mentary variables ϕ3 and ϕ4 are extra optimization variables, so that constraints (7.3a) and (7.3b)
are non-linear.
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Figure 7.8: Line collides with concave domain

(a) (b)

Figure 7.9: Preventing line collision with concave boundary: (a) potential collision if D lies in geometry
enclosed by lines GH and KJ, and curves HIJ and KLG; (b) imposing additional line constraint to node A

Alternatively, a simple approach is to only impose the valid constraint (e.g., apply only constraint
L3 in Fig. 7.7(b)) without using (7.3). In this case, a smaller feasible region is assumed (e.g., in
the case shown in Fig. 7.7(b), Ω4 is now excluded). Nevertheless, there exists a node on a vertex in
a slab problem that imposes move limits (i.e., constraint (4.13)). For this reason, node B cannot be
moved to Ω4. Considering this, this simple approach was employed in Chapters 5 and 6 instead of
using constraint (7.3). On the other hand, given a truss design problem, especially in a 3D domain,
a node may not exist on the vertex, so constraint (7.3) can be imposed.

Moving lines near a concave region

Lines can potentially collide with a concave region without their nodes moving out of the design
domain; e.g., see Fig. 7.8. Domain decomposition was used in Chapters 5 and 6 to tackle this
issue. Though it is perhaps the easiest approach, it can also affect the solution; here, the potential
to address this issue without domain decomposition is discussed.

Since nodes have move limits, it is convenient to check whether a collision can occur. As shown
in Fig. 7.9(a), assume move limits ΩA and ΩB for nodes A and B, respectively. Vertex D of the
concave boundary lies within the geometry formed by lines GH and KJ and curves HIJ and KLG,
so AB could potentially collide with boundaries CD and DE. Movement of one node will impose
an additional move limit on the other to prevent collision. Fig. 7.9(b) illustrates this restriction.
Assume B(x0

B, y
0
B) moves to B(xB, yB); A(xA, yA) must then satisfy TL

DBνA ≥ 0, where TL
DB is

the coefficient vector of line LDB, constructed by letting its normal lie outside cone CDE. TL
DB

contains optimization variables xB and yB, and constraint TL
DBνA ≥ 0 is now non-linear.
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Figure 7.10: Regions divided by non-smooth point of the top edge

Figure 7.11: Approximating a non-smooth edge using a curved line

7.3.3 Non-smooth issues in geometry optimization for slabs

As stated in Chapter 5, the live load effect fL in constraint (5.1d) can be non-smooth or even
discontinuous with respect to nodal positions. This issue is further investigated here.

Non-smooth ‘top’ edge

It has been shown that the smoothness of the ‘top’ edge of a slab problem is important. For this
reason the live load effect may not be differentiable everywhere with respect to nodal coordinates.
For the example shown in Fig. 7.10, the top edge ECF has a non-smooth point C; let fAB

L represent
the live load effect on yield-line AB. To permit node A to move across the entire domain, it requires
that fAB

L be smooth everywhere with respect to xA. It can be observed that at any point of line
CD, for example at A′, this condition is not satisfied. Using the approach shown in Chapter 5, the
domain is divided into two parts (ΩL and ΩR) via a vertical line CD. To ensure fAB

L is smooth
A must be restricted in ΩL, which potentially affects the solution. To permit A to move in both
regions, two alternative approaches are now discussed.

The first approach involves geometric approximation, where the non-smooth regions are approx-
imated using curved lines; an example is illustrated in Fig. 7.11. Since curved lines are used,
the original live load effect terms and their derivatives are modified. The curved lines cannot be
uniquely determined using the top edges; therefore, the optimization program also needs to con-
trol certain characteristics of those lines, for example their curvature, which means that the level
of approximation can be adjusted.

The second approach is to impose complementary conditions to automatically take directional
derivatives at a non-smooth point. Now assume A(xA, yA), C(xC, yC), and a non-negative com-
plementary variable ϕ; in addition, let fABL

L denote the live load effects calculated in region ΩL

and fABR
L in region ΩR. Note that fAB

L can be written as a linear combination of the two:

fAB
L = ϕfABL

L + (1− ϕ)fABR
L . (7.4)
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(a) (b) (c)

Figure 7.12: Situation when point load at C is taken on yield line AB: (a) taken; (b) and (c) not taken.

To determine the complementary variable, the following constraints are added:

ϕ(xA − xC) ≥ 0, (7.5a)

(1− ϕ)(xC − xA) ≥ 0, (7.5b)

ϕ(1− ϕ) = 0, (7.5c)

ϕ must equal ‘1’ when node A lies in region ΩL, and ‘0’ when in ΩR. It provides a way to account
for directional derivatives in the optimization. However, the equality constraint (7.5c) may cause
issues due to the fact that the feasible set of ϕ consists of only two discrete values: ‘0’ and ‘1’. To
address this, a tolerance parameter ε (ε ≥ 0) is now introduced, so (7.5) is modified as:

ϕ(xA − xC) + ε ≥ 0 (7.6a)

(1− ϕ)(xC − xA) + ε ≥ 0 (7.6b)

0 ≤ ϕ ≤ 1 (7.6c)

which is an approximation of (7.5). Given a sufficiently large ε, then ϕ is not enforced to be ‘0’ or
‘1’. Inspired by the solution strategy used in the interior point method, the following approach is
proposed here: at the start of the optimization, ϕ can have a relatively high value to permit nodes
to be moved throughout the entire domain; its value can then be reduced when nodes are near
their optimum locations, so nodes may not move large distances, and the non-smooth issue has a
reduced impact on the solutions obtained.

Incorporating point and line loads

It has been stated in Chapter 6 that point and line loads cause non-smooth issues in geometry
optimization. An example is shown in Fig. 7.12, where a point load is applied on point C. For a
yield-line AB, the point load contributes to the live load effect only if it lies in the strip above the
yield-line (e.g., Fig. 7.12(a)).

In geometry optimization, no mathematical information has currently been provided to ensure that
AB lies below C. By continuously moving nodes A and/or B, the load effect can suddenly disap-
pear, implying that fL is potentially discontinuous. Fortuitously, in examples shown in Chapter 6,
this behaviour did not occur so fL remained smooth for the entire optimization process. However,
additional steps must be taken to tackle this issue in the case of general slab problems. One ap-
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proach is to prevent the load effect from disappearing and appearing suddenly; e.g., if a yield-line
is below a point load, then movements of the end nodes can be restricted so that the point load
always lies above this yield-line.

However, restricting movements can impact the solution. Unfortunately, for the time being there
are no clear alternative approaches for addressing this issue. A similar issue arises when line loads
are involved. Fortunately the examples shown in Chapter 6 were relatively simple, such that this
issue did not arise.

7.4 Computational aspects in layout optimization

Layout optimization involves a fixed grid of nodes, so its solution relies highly upon the chosen
numerical discretization. Typically, employing a denser nodal grid will produce a more efficient
truss structure (or more critical yield-line pattern in the case of a slab problem). However, when
increasing the number of nodes employed, the size of its LP problem grows much more rapidly.
Though efficient, an LP solver can experience difficulties due to enormous problem size. This
highlights the need to develop efficient solution schemes; one has been given by Gilbert & Tyas
(2003): the member adding scheme.

7.4.1 Mathematical aspects of the member adding scheme

Instead of directly attacking the primal truss layout optimization directly (3.2), and hence also
problem (2.5), the member adding scheme involves also referring to the dual problem. Using
problem (2.6), the dual of (3.2) can be written as:

max
u

W = fTu (7.7a)

s.t. BTu ≤ c, (7.7b)

where W is virtual work, and u is a virtual displacement vector of all nodes. It is significant to
investigate problem (7.7) because: (i) LP problems have strong duality (Section 2.2.4) such that
solution to (7.7) is also the solution to (3.2); (ii) using ground structure, the size of u is significantly
smaller than that of q; and (iii) u is obtained automatically, without further computation, after
solving the primal problem (3.2) using a modern LP solver.

The inequality constraint (7.7b) describes the maximum axial deformation permitted in every bar.
Also note that for a bar (i.e., member) to be present in the resulting layout, its corresponding
constraint in (7.7b) must be active (see Section 2.4.1). Similarly, for a bar not present in the re-
sulting layout, its corresponding constraint is likely to be inactive. Given the optimality conditions
(Section 2.4.1) it is clear that eliminating the inactive constraints in (7.7b) does not affect the ob-
jective value (i.e., the maximum virtual work in this case). This also means that the corresponding
variables (and hence bars) in the primal problem (3.2) can be removed, leading to a smaller LP
problem without losing accuracy. An iterative solution strategy could be employed: initially a
very small number of bars are included in the ground structure, resulting in a small, but poten-
tially inaccurate, primal problem (3.2). The error associated with the reduced problem can then be
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detected by examining constraint (7.7b) for all bars: if any violations exist, these constraints can
be imposed by adding the corresponding bars to (3.2); if there are no violations, the constraints
associated with the ‘non-existing’ bars must truly be inactive, and the optimum solution must have
been found.

7.4.2 On potential improvements to the member adding scheme

The member adding scheme (Gilbert & Tyas 2003) permits relatively large LP problems to be
tackled. However, the computational cost can still be high when problems are very large. In
the current research, it has been observed that a primal problem typically contains far more con-
nections than are present in the ‘extracted’ layout. For example, the Hemp cantilever shown in
Fig. 4.6(a) was investigated. Table 7.1 shows a comparison of the numbers of bars present in the
full, the primal (in the last iteration), and the extracted problem for increasing numbers of nodal
divisions. Though only relatively few bars are present in the extracted structures, it is clear that
the difference in the volume of the extracted solution compared with the volume obtained from
the primal problem (at the last iteration) is small. This phenomenon shows that a considerable
proportion of the bars in the primal problem are not structurally important, suggesting that better
strategies could be developed to improve computational efficiency.

Table 7.1: Hemp cantilever in Fig. 4.6(a): comparing no. of bars in full, primal, and extracted problems

Full problem Primal problem (the last iteration) Extracted problem

Nodal divs No. of bars No. of bars Percentage† (%) No. of bars Percentage† (%)
Volume

difference‡ (%)

30×15 74655 2878 3.86 163 0.218 3×10−8

60×30 892702 19033 2.13 605 0.068 2×10−8

90×45 3149297 63995 2.03 1480 0.047 2×10−7

120×60 7004968 156839 2.24 2519 0.036 4×10−7

150×75 12456601 295175 2.37 4244 0.034 5×10−5

† Relative to no. of bars in the full problem.
‡ Relative to volume computed from full and primal problem (which are the same).

7.4.3 Estimating duality gap to bracket solution

In the member adding scheme, an LP problem is solved iteratively. In the last few iterations
the reduction of the objective function is negligible. An example is shown in Table 7.2. At the
ninth iteration, the margin of error has been reduced to 1 × 10−7%; however, the elapsed time
at this point is only 52.8% of the total time. Even though violated constraints exist in the dual
problem (7.7), the duality gap (see Section 2.1) is extremely small, so an early termination is
possible. Therefore, evaluating the duality gap in each iteration can be of particular interest when
developing efficient solution schemes that yields results within given margin of error. However, in
the standard member adding scheme the dual problem (7.7) is not solved, and only its constraints
(7.7b) are examined. This means its objective value is unknown and the duality gap is not readily
obtainable. However, methods can be developed to provide an upper bound estimate of the bound
gap, with a view to making the member adding scheme more efficient.
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Table 7.2: Hemp cantilever in Fig. 4.8(a): iterative solutions via member adding scheme

Iteration Volume
difference† (%) No. of bars CPU

time (s)
Progress‡

(%)

1 15.6 45225 11 0.2
2 4.2 132206 22 4.3
3 1.4 180850 29 8.0
4 0.7 211540 42 13.4
5 0.3 242153 57 20.7
6 0.07 272690 66 29.1
7 0.003 293444 65 37.4
8 6×10−5 295022 60 45.1
9 1×10−7 295146 60 52.8
10 3×10−8 295163 63 60.9
11 2×10−9 295166 64 69.1
12 2×10−9 295170 61 77.0
13 2×10−9 295172 61 84.9
14 2×10−9 295174 60 92.6
15 0 295175 58 100

†: Compare with volume reported in the last iteration
‡: Measured using CPU time

7.4.4 Investigating the heuristics

Though rigorous solutions are ensured in the member adding scheme, heuristics are involved in
identifying the members (and hence variables) to be added to the primal problem. The original
contribution by Gilbert & Tyas (2003) used a set of fixed parameters to control this heuristic
process, while others have proposed modified schemes (e.g., Pritchard 2004 and Sokół 2011).
Perhaps because of its heuristic character, a systematic study of member adding schemes appears
to be lacking. Also, existing strategies appear not to have taken into account many mathematical
characteristics that may be useful. For example, the aforementioned duality gap can be used as
a performance index, and perhaps a better strategy could be developed to identify the most cost-
efficient way of adding variables to minimize the duality gap.

7.4.5 Parallel processing and decomposition

In the past few decades there has been rapid development of single core CPUs, such that merely up-
grading a CPU can automatically eliminate many computational obstacles (Sutter & Larus 2005).
However, this trend has changed in recent years (Kirk & Hwu 2010); now single core CPU speed
is no longer improving rapidly, and more emphasis has been placed on parallel processing. This
implies that, solving a problem in parallel may receive significant benefits. The use of the member
adding scheme is amenable to parallel processing as checking that constraints are satisfied (e.g.,
(7.7b)) can be performed in parallel, potentially using GPU acceleration[i]. However, the primal
problem (e.g., (3.2)) is solved using existing LP software packages. Though improvements have
been made by the developers of LP software, numerical experiments conducted by the author
suggest that better parallel strategies are needed.

One popular topic involving parallel processing is domain decomposition. In the context of the
finite element method, sub-domains can normally be created by grouping meshes into regions;

[i]GPU acceleration is a technique often used in parallel processing. Unlike CPUs, a modern GPU typically has a
large amount of cores, however, each core can only handle relatively simple operations.
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however, difficulties have been found in layout optimization. Dividing the domain will inevitably
split some connections (e.g., bars in a truss), so steps need be taken. One option is to remove
these connections, but this is likely to affect solution accuracy. Another option is to split any
connections that intersect a sub-domain boundary. This involves creating extra nodes on the sub-
domain boundary, which may result in a large number of nodes being created and can cause other
issues. Here, domain decomposition is considered in conjunction with the member adding scheme:
it involves solving sub-problems in parallel to determine the nodes and connections which need to
be added to the master problem. An example is shown in Fig. 7.13; the steps involved are listed
below:

Framework of the domain decomposition technique

Single (a) Initially, a master problem containing a relatively small number of nodes is considered.

Parallel

(b) Create sub-problems by transferring the layout of the master problem and then employing
dense nodal grids in certain regions, depending on locations of the sub-domains.
(c) The sub-problems are then solved in parallel.
(d) Extract nodes and connections from sub-problems

Single

(e) Merge some or all nodes and connections in the sub-problems to the master problem
(f) Perform a layout optimization for the master problem.
(g) Extract nodes and connections from the master problem.
(h) Estimate duality gap: if negligible then the whole process terminates, otherwise go to (b).

Some advantages can be envisioned: first, updating sub-problems normally involves only minor
modifications to the previously analysed problems, so setting up a new sub-problem is inexpensive
except for the first iteration; second, results obtained in a sub-problem can be used as a basis to
provide a ‘warm-start’ for the new sub-problem in the following iteration; finally, the master prob-
lem can be processed without waiting for all sub-problems to be solved as long as it successfully
reads in new nodes and connections from the solved sub-problems.

It is important to ensure that the main problem is kept as simple as possible. For this reason, nodes
and connections in the master problem can be removed. For example, in Fig. 7.13 certain nodes
in (a2) have not been included in any of the solved sub-problems; they are then removed in (c2).

Since this parallel technique has not been implemented, its efficacy is unknown. However, it
may be expected that some issues may exist: firstly, a means of estimating the duality gap is not
currently available; secondly, sub-problems are completely separated - the only ‘communication’
between sub-problems is when the master problem has progressed to the next iteration, in which
case a sub-domain can have some nodes initially belonging to others; thirdly, to progress the master
problem, it is important to ensure that at least one sub-problem identifies nodes (and connections)
that can be added.

7.5 Computational aspects in geometry optimization

As stated in Chapter 4, geometry optimization is comparatively computationally expensive. Some
potential strategies for improving its computational efficiency are now discussed.
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(a)

Figure 7.13: Potential parallel truss layout optimization solution strategy
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7.5.1 Steps ready for parallel processing

The main developments in modern computing technology involve parallel processing techniques.
In the geometry optimization process, there are steps that can readily be processed in parallel. The
matrices of the whole geometry optimization problem introduced in Chapter 4 are assembled using
locally derived matrices for every connection (e.g., a bar in truss problem). Since calculation of
these matrices are completely separate, a parallel process can readily be employed. Furthermore,
given that the operations required to evaluate these matrices are normally simple, GPU acceleration
can be useful. Another process that can be parallelized is the numerical validation procedure (e.g.,
that used in merging nodes introduced in Chapter 4).

7.5.2 Taking information from previous iterations

At present, every iteration in the geometry optimization rationalization process is a new problem,
with no information passed from previous iterations. The whole process can be made more ef-
ficient by taking some information from previous solutions. For example, Lagrange multipliers
can be taken since they indicate the effectiveness of every constraint. In the node move limit con-
straints, if a Lagrange multiplier is non-zero, the corresponding constraint is then active - a node
has moved to its limit, and a larger move limit may be allowed in the next iteration. As for inactive
constraints, these may be temporarily removed to increase computational efficiency.

7.5.3 Alternative non-linear optimization methods

In this thesis, the interior point method (Section 2.4.2) has been utilized via the IPOPT software
package to solve NLP problems. In general the method is numerically stable and efficient, but it
may be useful to explore the potential of other methods, such as SQP and MMA (Section 2.4.3).

Before the advent of the interior point method, SQP was the most efficient method for solving
general NLP problems. It is still viewed as one of the most efficient methods. Some studies
(e.g., Nocedal et al. 2006) show that the interior point method is superior to SQP for solving
large-scale problems, while SQP is better for highly non-linear problems. However, there are no
mathematical proofs of these observations, so various numerical examples can be examined to
explore the potential of using SQP in geometry optimization.

Another method discussed here is MMA. Though it was not initially designed for solving gen-
eral NLP problems, it has been used widely in the field of topology optimization (Section 3.3.2).
Compared with standard mathematical methods, MMA is particularly effective in solving prob-
lems that have a large number of variables. Another advantage is that the method is relatively
simple to implement. Using self-developed software code is less problematic - unlike the use of
the interior point method or SQP, where a self-developed software code is unlikely to be as effi-
cient as existing packages. This is significant because MMA allows potential ‘customization’, so
its algorithm can be tailored for particular geometry optimization problems to increase efficiency.
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Conclusions

The structural analysis and design tools developed in the thesis have been designed to provide a
rapid computational capability for use in industry. Plasticity theory has been used to ensure that
the methods involved are simple, fast and lead to solutions of clear status. The major research
findings can be summarized as follows:

• To design truss structures, numerical layout optimization provides an efficient means of
identifying (near-)optimal layouts. The same basic method is used in the discontinuity
layout optimization (DLO) procedure, where the structural failure mechanism is identified
directly, via a similar optimization process. To estimate the ultimate upper bound load-
carrying capacity of reinforced concrete slabs, the yield-line method has been used in in-
dustry because of its power and simplicity. However, a problem has been noted: the solution
depends on the assumed failure mechanism. Identification of a suitable failure mechanism
is thus important. The DLO method can identify a suitable failure mechanism, overcoming
this issue. However, when using layout optimization, the resulting layouts will often be
found to be quite complex in form, suggesting that a means for generating rationalized truss
layouts / yield-line patterns would be potentially useful.

• Two rationalization techniques have been investigated; the first technique involves a minor
modification to the standard layout optimization formulation by including penalty factors
associated with nodes (e.g., joints in a truss). The objective (cost) function is now affected
by the number of nodes in the resulting layout. For this reason, short-length connections
(e.g., truss bars) become potentially expensive, pushing the optimizer towards simplified
layouts. The use of this technique does not alter the linear nature of the layout optimiza-
tion problem and therefore can readily be implemented and solutions found. However, the
solutions obtained are normally less efficient (e.g., a larger design volume will be found in
the case of a truss structure). In addition, scenarios exist where eliminating short-length
connections will not simplify (and may even complicate) the final layout.

• The second rationalization technique investigated involves performing a geometry optimiza-
tion post-processing step, attempting to simplify a given layout by adjusting the positions
of nodes. The linear nature of layout optimization is no longer retained; instead, a general
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non-linear optimization is required. For truss and slab problems, the analytical expressions
involved have been deduced, leading to an effective optimization process. In addition, many
practical issues have been addressed, such as identifying strategies for merging nodes, cre-
ating crossover nodes, etc., to develop a versatile and reliable rationalization technique. Due
to its non-linear nature, the computational cost (i.e., CPU time) associated with this tech-
nique is relatively high compared to standard layout optimization. Furthermore, the global
optimality of the solution is not ensured. Nevertheless, assuming a good starting layout can
be derived using standard layout optimization, the layouts obtained using this technique are
effectively rationalized, and the corresponding solutions are normally improved (compared
with the starting layout optimization solutions).

• Slabs found in industry are often quite complex (e.g. these may be of irregular shape and/or
have unusual boundary conditions). Traditionally yield-line analysis is performed by hand,
which is a tedious process and may lead to non-conservative designs. The DLO method
thus provides an extremely efficient tool for use in industry, bringing significant benefits. To
ensure various practical slab problems can be modelled, a number of new features have been
added into DLO (and have also been included in the rationalization process) in this thesis:
orthotropic reinforcement can now be modelled; to permit uplift behaviour, new support
types have been introduced, including several column support types so that flat slabs can
be modelled; additional loading types, including point, line and patch loads, have also been
incorporated. A number of example problems taken from literature and from industry have
been used to demonstrate the effectiveness of DLO when tackling slabs incorporating these
new features.
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Recommendations for future work

Areas for further work are indicated below:

• It has been shown that the geometry optimization rationalization technique may be affected
by issues related to non-smoothness of the mathematical functions involved. Though in
this thesis steps have been taken to ensure that only smooth functions are present in the
optimization process, these steps can affect the solutions. There is therefore the potential
to address the non-smoothness issue more rigorously, leading to less, or even no, impact on
the solutions.

• In this thesis, efforts have been made to enhance the computational efficiency of the geom-
etry optimization process. However, as discussed earlier, there is room to improve compu-
tational efficiency further. For example, investigating the dual problem and the Lagrange
multipliers would potentially be useful. Also it is worth exploring the potential for parallel
processing techniques to be applied in both layout and geometry optimization. For industrial
applications, highly accurate solutions (e.g. having less than 0.1% margin of error) may not
be necessary, so that schemes may be designed to obtain approximate solutions, leading to
significant enhancement of computational efficiency.

• The efficacy of the rationalization technique applied to 2D and (simple) 3D trusses has
been demonstrated in this thesis. However, to develop software suitable for use in industry,
real-world 3D structures need to be considered. As discussed earlier, 3D cases bring many
practical issues that have not been addressed here; these can be investigated in the near
future. Also, a real-world structure often contains additional structural components, not
just truss bars; therefore, it is useful to incorporate these components into the layout and
geometry optimization process (e.g. shells, cables, etc) .
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The yield-line method of analysis is a long established
and extremely effective means of estimating the
maximum load sustainable by a slab or plate.
However, although numerous attempts to automate
the process of directly identifying the critical pattern
of yield-lines have been made over the past few
decades, to date none has proved capable of
reliably analysing slabs of arbitrary geometry. Here,
it is demonstrated that the discontinuity layout
optimization (DLO) procedure can successfully be
applied to such problems. The procedure involves
discretization of the problem using nodes inter-
connected by potential yield-line discontinuities, with
the critical layout of these then identified using linear
programming. The procedure is applied to various
benchmark problems, demonstrating that highly
accurate solutions can be obtained, and showing that
DLO provides a truly systematic means of directly and
reliably automatically identifying yield-line patterns.
Finally, since the critical yield-line patterns for many
problems are found to be quite complex in form, a
means of automatically simplifying these is presented.

1. Introduction
The yield-line method is a long established and highly
effective means of estimating the ultimate load-carrying
capacity of slabs and plates. The term ‘yield-line’
was coined by Ingerslev [1], with a comprehensive

2014 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/3.0/, which permits unrestricted use, provided the original author and
source are credited.
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theory developed by Johansen [2], and, in parallel, by Gvozdev [3]. The upper bound status of
the method within the context of the then emerging plastic theories of structural analysis was
later confirmed by others (e.g. [4,5]). The method traditionally involves postulating a collapse
mechanism which is compatible with the boundary conditions and then using the principle of
virtual work to compute the ultimate load, or ‘load factor’.

For certain special cases, it has been possible to calculate provably exact failure load factors
(e.g. Fox [6] established the exact solution for the case of a uniformly loaded fixed square slab).
However, in the case of most real-world geometrical configurations exact load factors are not
available. In such cases, unless the critical yield-line pattern has been identified, the computed
load factor will over-estimate the true load factor. While lower bound methods can be used to
bound the load factor from below, the gap between a yield-line solution and a solution obtained
using common hand-based lower bound analysis methods (e.g. the strip method proposed by
Hillerborg [7], which simplifies the problem by allowing analyst/designer to select load paths
while ignoring twisting moments) will typically be found to be quite wide. This situation is clearly
unsatisfactory and has undoubtedly limited the extent to which hand-based yield-line analysis is
used in practice.

Consequently, various computational methods have been applied to the problem over the
past few decades. For example, Anderheggen & Knopfel [8] were among the first to apply
finite-element limit-analysis techniques to slabs, showing that rigorous lower bound solutions
could be obtained providing a suitable element formulation was employed. More recently, it
has been demonstrated that nonlinear optimization [9] and the second-order cone programming
techniques [10–12] can be applied, obviating the need to linearize the yield surface. Meshless
(element-free Galerkin) methods have also been applied to slab problems, and reasonably good
approximations of the collapse load factor can be obtained rapidly [13]. However, despite the
promise of such methods, they have not found their way into routine engineering practice and
at present practising engineers typically have to instead rely on potentially cumbersome iterative
elasto-plastic analysis methods. Furthermore, since finite-element (and meshless) methods are
concerned with treatment of an underlying continuum mechanics problem, these methods do not
directly identify patterns of yield-lines, though in many cases these can subsequently be inferred
from the output.

To address this, computational methods capable of explicitly identifying yield-lines have
also been developed in parallel. For example, Chan [14], and later workers such as Munro &
Da Fonseca [15] and Balasubramanyam & Kalyanaraman [16], proposed (very similar) methods
in which potential yield-lines are placed at the boundaries of rigid elements arranged in a finite-
element mesh. This permits linear programming (LP) to then be used to identify the most critical
layout of yield-lines. While available computing resources of the time meant that only relatively
coarse meshes could be treated, the most significant problem is sensitivity of the results obtained
to the chosen initial mesh layout, with the consequence that refining the mesh alone does not
necessarily lead to an improved estimate of the collapse load factor. This, for example, means that
when using a structured triangular mesh, however fine, it is impossible to accurately simulate
a fan-type mechanism. Numerous attempts to overcome this fundamental problem have been
made, for example, by subsequently changing the topology of the initial rigid finite-element
mesh through the use of geometry optimization or other techniques (e.g. [17–19]), but no fully
satisfactory solution to the problem has been found. (This was also the conclusion of Johnson
[20], who, after many years work in the field, asserted that the upper bound problem was simply
‘too difficult’ to solve computationally.) A possible way round this was recently put forward by
Jackson [21] and Jackson & Middleton [22], who proposed that the lower bound solution could
be used to suggest the form of the yield-line solution. Promising results were presented, but the
procedure involves both a manual interpretation step and a potentially problematic and time-
consuming nonlinear optimization step, suggesting that a truly systematic means of identifying
yield line patterns had yet to be found.

However, the popularity of application-specific yield-line analysis tools, for example the
COBRAS reinforced concrete bridge assessment tool developed at the University of Cambridge,
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and which involves automatically searching through a library of possible yield-line failure
mechanisms [23], indicates that a systematic yield-line method would undoubtedly find
widespread application. Furthermore, a 2004 industry report reiterated the potential economic
benefits of using yield-line design, despite the fact that at present the analysis must by necessity
be performed by hand [24]. In the report, it is recommended that, because a hand analysis may not
lead to identification of the most critical mechanism, a 10% margin of error (safety factor) should
pragmatically be assumed. However, the basis for this particular value is not entirely clear, and
the fact that a factor of this sort is needed at all is clearly not entirely satisfactory.

In this paper, the upper bound problem will be revisited using a ‘discontinuous’ rather
than continuum analysis approach, on the surface similar to the methods proposed by Chan
[14], Munro & Da Fonseca [15] and others. However, the significant difference here is that by
formulating the problem in terms of discontinuities rather than elements, a very much wider range
of failure modes will be able to be identified, thereby overcoming the sensitivity to the initial mesh
layout encountered when using previously proposed methods. Furthermore, rather than initially
considering the yield-line analysis problem directly, as most others have done (with only limited
success), the procedure described in this paper was developed following a conjecture that there
existed a direct analogy between the layout of bars in optimum trusses and the layout of yield-
lines in slabs, since such an analogy had been identified in the case of in-plane plasticity problems
[25]. As the problem formulation is somewhat different in this case, the original sequence of
development is also preserved in this paper, with the nature of the analogy examined initially.

2. Analogy between optimal layouts of truss bars and yield-lines
(a) Background
The analogy between the compatibility requirements of yield-line patterns and the equilibrium
requirements of trusses appears to have been identified comparatively recently [26]. This finding
is of interest since numerical layout optimization techniques have been applied to the problem
of identifying optimal trusses for several decades (e.g. [27,28]). Furthermore, the efficiency of
such methods have dramatically increased recently, with the advent of modern interior point LP
solvers and also the application of adaptive refinement procedures [29]. Thus, layout optimization
problems containing several billion potential connections between nodes (i.e. bars or yield-lines
in this case) can now be solved on current generation personal computers.

However, while Denton [26] showed that a truss corresponding to a compatible yield-line
pattern must have at least one state of self-stress (or ‘degree of redundancy’), it can be shown that
there must always exist a statically determinate optimum solution for the single load case truss
layout optimization problem. This makes the analogy perhaps less immediately obvious than that
identified between discretized optimal truss layouts and the critical arrangement of slip-lines in
plane plasticity problems [25]; in the latter case, many important plane plasticity problems have
patterns of slip-lines defining the failure mechanism which correspond to the layouts of bars in
statically determinate trusses. Furthermore, it is not immediately obvious how issues such as the
presence of distributed out-of-plane live loading can be treated using the type of procedure used
to identify optimal truss layouts (such loading is obviously often present in slab problems, but
is absent from the basic truss layout optimization problem). To investigate this further, various
approximate-discretized LP truss layout optimization formulations will now be considered.

(b) Layout optimization of trusses: linear programming formulations
First, consider a potential planar design domain which is discretized using n nodes and
m potential nodal connections (truss bars). The classical ‘equilibrium’ plastic truss layout
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Figure 1. Simple truss layout optimization problems: (a) design domain with fixed pin and pin/roller supports and an applied
load; (b) a solution to problem (a) with 2 × 2 nodes (volume= 4 when σ− = σ+ = 1); (c) as (b) but with 13 × 13 nodes
(volume= 3.164, less than 1% greater than exact value ofπ ); (d) alternative ‘self-stress’ problem; (e) solution to problem (d)
with 2 × 2 nodes (volume= 16) and (f ) as (e) but with 25 × 25 nodes (volume= 12.656, 4× the volume for problem (c)).
(Online version in colour.)

optimization formulation for a single load case is defined in equation (2.1) as follows (after [27]):

min V = cTq

subject to: Bq = f

q ≥ 0,

(2.1)

where V is the total volume of the structure, qT = {q+
1 , q−

1 , q+
2 , q−

2 . . . q−
m}, and q+

i , q−
i are the tensile

and compressive forces in bar i; cT = {l1/σ+
1 , l1/σ−

1 , l2/σ+
2 , l2/σ−

2 . . . lm/σ−
m }, where li, σ+

i and σ−
i

are, respectively, the length and tensile and compressive yield stress of bar i. B is a suitable
(2n × 2m) equilibrium matrix containing direction cosines and fT = {f x

1 , f y
1 , f x

2 , f y
2 . . . f y

n } where f x
j

and f y
j are the x and y components of the external load applied to node j ( j = 1 . . . n). The presence

of supports at nodes can be accounted for by omitting the relevant terms from f, together with
the corresponding rows from B. This problem is in a form which can be solved using linear
optimization, with the bar forces in q being the LP variables.

Figure 1a shows the definition of a typical truss layout optimization problem, with the
solutions when 2 × 2 nodes and 13 × 13 nodes are used to discretize the problem given in
figure 1b,c, respectively. (In both cases, each node was inter-connected to every other node
to create a ‘fully connected ground structure’, with LP then used to identify the optimum
subset of truss bars). Note that, in the latter case, the solution is within 1% of the analytical
optimum solution.

However, noting the observation of Denton [26] that the truss corresponding to a compatible
yield-line pattern must have at least one state of self-stress (i.e. is ‘pre-stressed’), it is of interest
to instead consider the closely related problem of finding the optimal layout of a truss which has
no external loading (i.e. where f = 0), but which is in a state of self-stress. Though this particular
problem appears not to be explicitly considered in existing structural optimization literature, an
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appropriate mathematical formulation can tentatively be postulated. Thus, since this remains a
‘layout optimization’ problem, it seems appropriate to prescribe the state of self-stress rather
loosely, for example, leaving open the possibility of many different bars being subjected to the
self-stress (i.e. so as not to over-constrain the problem). This means that a single constraint can be
added to give the following modified problem formulation:

min V = cTq

subject to: Bq = 0

hTq = 1

q ≥ 0,

(2.2)

where hT = {h1, −h1, h2, −h2 . . . − hm} and where hi is a factor used to prescribe how the self-stress
is to be distributed between each bar i (i = 1 . . . m) in the frame. Alternatively, specific bars could
be allocated specific prescribed self-stress forces, if required.

A sample self-stress problem is defined in figure 1d, with the solutions when 2 × 2 nodes
and 25 × 25 nodes given in figure 1e,f, respectively. To obtain the particular results shown, the
self-stress coefficients in the constraint hTq = 1 for each truss bar were defined by using the centre-
point of the domain as a focus, achieved by using the following simple, though perhaps not
intuitively obvious, rules: if the centre-point (i.e. [0.5, 0.5] in this case) lies in a vertical strip
drawn directly above a given potential truss-bar i then coefficient hi is taken as the perpendicular
distance from the truss bar to the centre-point of the domain; otherwise, this is taken as zero. This
gives solutions which are by inspection directly comparable to those for the problem defined in
figure 1a, with the optimum structures shown in figure 1b,c clearly representing one-quarter of the
structures shown in figure 1e,f, respectively (which are in fact simple two-dimensional tensegrity
structures, with the former being the main part of the ‘X-shaped module’ referred to by Snelson
[30], hinting at the potential for this type of problem formulation to be adapted to synthesize such
structures).

It is also evident that the topology of the solution given in figure 1f is reminiscent of the ‘fan’-
type mechanism which is critical when a slab is subjected to a point load (e.g. [5]; the numerically
computed volume is also within 1% of the analytical load factor for the slab problem when a
unit load is applied). In fact, it will now be demonstrated that it is this latter formulation which
is directly analogous to the yield-line layout optimization problem, with the equilibrium truss
optimization problem corresponding to the kinematic yield-line layout optimization problem.

(c) Yield-line layout optimization: linear programming formulation
Maintaining precisely the same form of linear optimization problem as given in (2.2), the
kinematic yield-line layout optimization formulation for an out-of-plane, quasi-statically loaded,
perfectly plastic slab with supported edges and discretized using m nodal connections (yield-line
discontinuities), n nodes and a single load case can be defined in equation (2.3) as follows:

min E = gTd

subject to: Bd = 0

fT
Ld = 1

d ≥ 0,

(2.3)

where E is the energy dissipated due to rotation along the yield-lines, dT = {θ+
1 , θ−

1 , θ+
2 , θ−

2 . . . θ−
m },

where θ+
i , θ−

i are the positive and negative relative rotations along the yield-line i;
gT = {m+

p1l1, m−
p1l1, m+

p2l2, m−
p2l2 . . . m−

pmlm}, where li, m+
pi and m−

pi are, respectively, the length and
positive and negative plastic moment of resistance per unit length for potential yield-line i. Note
that when Johansen’s square yield criterion [2] is applied to isotropic slab problems, the plastic
moment of resistance per unit length will be the same for all potential yield-lines, irrespective of
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Figure 2. Strip ‘above’ potential yield-line i (AB), considered when calculating the effects of uniform live loading q (where O is
the centroid of the strip).

their orientation. B is a suitable (2n × 2m) compatibility matrix. The (relative) rotations along the
yield-lines in d are the LP variables. (Note that for convenience the terms ‘energy dissipation’
and ‘rotation’ are here used as shorthand for ‘rate of energy dissipation’ and ‘rotation rate’,
respectively.)

In this problem, fT
Ld = 1 can be interpreted as the unit displacement constraint required in a

standard virtual work formulation, where the coefficients in fL are a function of the external live
load. This ensures that the work done by the external live load is normalized, such that only
the internal work done needs to be explicitly minimized in the formulation. However, it must
be borne in mind that the coefficients in fL must relate to the current problem variables, i.e. the
yield-line rotations in d, which are relative rather than absolute values. Thus, the contribution
to the left-hand side of the global unit displacement constraint, fT

Ld = 1, of a given yield-line i
will be

fT
Lidi = [mLni − mLni]

[
θ+

i

θ−
i

]

, (2.4)

where mLni is the moment caused by the external (unfactored) live loading on the slab. This can
conveniently be calculated by considering only the effects of loads which lie in a strip of slab
lying ‘above’ potential yield-line i (it is only necessary to work parallel to one co-ordinate axis,
in this case the Cartesian y-axis). Thus, if it is assumed that the slab is subjected to a point load,
the moment is calculated as the magnitude of the point load multiplied by the perpendicular
distance to the potential yield-line. If a uniform pressure of intensity q is applied, then it can be
seen that mLni = qaivi, where ai is the area of the strip and where vi is the perpendicular distance
to the centroid O of the strip, as indicated in figure 2. In summary, the use of relative rotations
in the calculations means that the effect of a relative rotation at an individual discontinuity on
the work done by the external live loads can readily be accounted for. Then, through summation
over all discontinuities, the total work done by all external live loads can be determined, and then
conveniently set to unity using the constraint fT

Ld = 1.
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(d) Worked example
Consider a fixed square slab ABCD of unit area, with unit moment of resistance per unit length,
and subject initially to a single central unit point load (assume vertices: A[0,0], B[1,0], C[1,1] and
D[0,1]). If this problem is discretized using n = 4 nodes, then a maximum of six potential yield-
line discontinuities will interconnect the nodes, and the problem matrices and vectors of (2.3) can
be written out in full as follows:

dT = [θ+
AB θ−

AB θ+
AC θ−

AC θ+
AD θ−

AD θ+
BC θ−

BC θ+
DB θ−

DB θ+
DC θ−

DC] (2.5)

gT = [1 1
√

2
√

2 1 1 1 1
√

2
√

2 1 1] (2.6)

B =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1
1

√
2

−1√
2

1√
2

−1√
2

1 −1

−1 1
−1√

2
1√
2

1 −1
1√
2

−1√
2

−1√
2

1√
2

−1 1

−1√
2

1√
2

−1 1

1√
2

−1√
2

1 −1

−1 1
−1√

2
1√
2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.7)

and fT
L =

[
1
2 − 1

2 0 0 0 0 0 0 0 0 0 0
]

. (2.8)

If the slab is instead subjected to a uniform out-of-plane pressure loading of unit intensity, the
only change necessary is to replace equation (2.8) with the following equation:

fT
L =

[
1
2

− 1
2

1
6
√

2
− 1

6
√

2
0 0 0 0

1
6
√

2
− 1

6
√

2
0 0

]
. (2.9)

Once the appropriate LP problems are solved, the resulting load factors at collapse can be found
to be 16 and 48 for the point load and distributed load problems defined by (2.8) and (2.9),
respectively. Other methods can of course be used to identify the same values for this very coarse
numerical discretization, but the novel feature of the formulation described here is that there has
been no need to explicitly add a node at the centre of the slab, something that is clearly not the case with
the rigid finite-element-based methods put forward by workers such as Chan [14] and Munro &
Da Fonseca [15].

In the case of the point-loaded slab, it is also evident that the solution of 16 is identical to
that obtained for the ‘truss with self-stress constraints’ problem given in figure 1e, which is to be
expected as the problems are completely equivalent mathematically. Furthermore, when more
nodes are introduced the solution to the slab problem quickly approaches the exact value of 4π

(e.g. see figure 1f for a solution to the mathematically equivalent truss problem). Similarly, in
§5, it will be demonstrated that closer and closer approximations of the exact load factor for the
uniformly loaded slab problem can be obtained as more nodes are introduced (Fox [6] identified
the exact load factor for this problem to be 42.851).
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Table 1. Features of analogy between truss and yield-line layout optimization problems.

truss problem slab problem
LP problem variables internal bar forces in q yield-line rotations in d
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

governing coefficient matrix equilibrium: B compatibility: B
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

additional constraint prescribes self-stress unit displacement
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

objective function minimize volume V minimize work E
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(e) Commentary
Layouts of bars in optimal ‘Michell’ trusses [31] form Hencky–Prandtl nets, which are orthogonal
curvilinear co-ordinate systems (e.g. [32]). It has also been known for many years that, when
Johansen’s square yield criterion is employed, the layouts of yield-lines in slabs also form
Hencky–Prandtl nets [33]. However, prior to the studies of the present authors, the approximate-
discretized solution method developed for truss layout optimization [27] had apparently not been
adapted to treat slab problems. This is despite the fact that the similarity in the form of the LP
problems involved was noted many years ago by Chan [14], a talented researcher at the time
active in both fields at the University of Oxford. Rectifying this situation has been the main goal
of this paper.

The key features of the analogy are summarized in table 1; however, with the formulation
considered thus far it is for example not yet clear how more general boundary conditions (e.g. the
presence of free edges) or more complex slab geometries can be handled. The applicability of
the general discontinuity layout optimization (DLO) formulation described by Smith & Gilbert [25,
34] will therefore now be investigated.

3. Discontinuity layout optimization
(a) General formulation
The general discretized kinematic DLO problem formulation may be stated as follows (after [25]):

min λfT
Ld = −fT

Dd + gTp (3.1a)

subject to: Bd = 0 (3.1b)

Np − d = 0 (3.1c)

fT
Ld = 1 (3.1d)

p ≥ 0. (3.1e)

Or alternatively as an equivalent ‘equilibrium’ formulation (derived using duality principles—
e.g. [35]) as

max λ (3.2a)

subject to: BTt + λfL − q = −fD (3.2b)

NTq ≤ g (3.2c)

where λ is a dimensionless load factor, fD and fL are vectors, respectively, prescribing specified
dead and live load effects, d contains displacements along the discontinuities, B is a suitable
compatibility matrix and N is a suitable flow matrix. Finally, p and g are vectors of plastic
multipliers and their corresponding work equation coefficients and t and q are vectors of
equivalent nodal forces and forces along discontinuities, respectively.
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In the kinematic formulation, the discontinuity displacements in d and the plastic multipliers
in p are the LP variables, whereas in the corresponding equilibrium formulation the equivalent
nodal forces in t, the forces along discontinuities in q and the load factor λ are the LP variables.

Comparing (2.3) with (3.1), the most obvious difference is that in the latter case plastic
multiplier variables have been introduced, thereby effectively decoupling the compatibility and
flow constraints. A consequence of this is that when duality principles are applied to obtain the
dual ‘equilibrium’ formulation, the equilibrium constraint (3.2b) and yield constraint (3.2c) are
properly separated.

Given that (3.1) and (3.2) only express general relations, it is now necessary to identify
appropriate variables for the slab problem now being studied, starting by considering the
kinematic formulation.

(b) Kinematic formulation for slabs
Considering the kinematic problem formulation for slabs, the contributions of a given yield-line i
to the global compatibility constraint equation (3.1b) can be written as

Bidi =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

αi −βi 0

βi αi 0

0
li
2

1

−αi βi 0

−βi −αi 0

0
li
2

−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎣
θni
θti
δi

⎤

⎥⎦ , (3.3)

where θni, θti and δi are, respectively, the normal rotation along a potential yield-line, the twisting
rotation and the out-of-plane displacement (measured at the yield-line mid-point), and where αi
and βi are x-axis and y-axis direction cosines. Note that, unlike in (2.3), the displacement variables
in di are no longer restricted to be non-negative since additional non-negative plastic multiplier
variables will ensure positive energy dissipation.

Suppose that there exists no coupling between normal and twisting rotations, and between the
shear displacement along a yield-line. In this case, the contributions of a given yield-line i to the
global flow rule constraint (3.1c) can be written as

Nipi − di =

⎡

⎢⎣
1 −1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 −1

⎤

⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1
i

p2
i

p3
i

p4
i

p5
i

p6
i

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡

⎢⎣
θni
θti
δi

⎤

⎥⎦ . (3.4)

However, at a typical yield-line, it can generally be assumed that the torsional (twisting) and
out-of-plane displacements, θti and δi, respectively, will be zero, and hence these variables can
be omitted from the formulation, along with their corresponding plastic multiplier variables,
p3

i , p4
i , p5

i and p6
i . This situation does not apply at free boundaries however, where θti and δi should

be free to take on arbitrary values, i.e. such variables should be added to signal the presence of
such a boundary. This is because at a free boundary there is no limitation that the out-of-plane and
torsional displacements must be zero, as would implicitly be the case if these terms were omitted
from the formulation. (This makes the above formulation intrinsically more flexible than that
considered in §2). Similarly, at a line of symmetry, δi should be free to take on an arbitrary value.

The objective function, (3.1a), and unit displacement constraint, (3.1d), can be formulated in a
similar way to before (in §2), although now taking account of the fact that rotation normal to
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Figure 3. Nodal moments and forces at ends of yield-line i (AB), for problem shown in figure 2.

a yield-line is represented by a single unrestricted LP variable (the plastic multiplier variables in
p are instead now restricted to be non-negative, ensuring the plastic dissipation gTp is always
positive; the coefficients in g are as before for an internal yield-line). It should also be noted
that along a free-edge (if present) fT

Li = {mLni, mLti, fLi}, and hence values for mLti and fLi will
additionally need to be calculated (where fLi will equal the sum of all loads lying in the slab strip
‘above’ yield-line i and where mLti will equal fLi multiplied by the distance between the mid-point
of the yield-line and the centre of the line of action of the load in the slab strip, measured parallel
to the yield-line).

(c) Equilibrium formulation for slabs
Considering the equilibrium problem formulation for slabs, the required equilibrium constraint
can be written for a potential yield-line discontinuity i as follows:

BT
i ti + λfLi − qi = −fDi (3.5)

or, in expanded form as

⎡

⎢⎢⎢⎣

αi βi 0 −αi −βi 0

−βi αi
li
2

βi −αi
li
2

0 0 1 0 0 −1

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

mx
A

my
A

tz
A

mx
B

my
B

tz
B

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ λ

⎡

⎢⎣
mLni
mLti
fLi

⎤

⎥⎦ −

⎡

⎢⎣
Mni
Mti
Si

⎤

⎥⎦ = −

⎡

⎢⎣
mDni
mDti
fDi

⎤

⎥⎦ , (3.6)

where mx
j , my

j and tz
j can be interpreted, respectively, as x and y direction equivalent nodal

moments and out-of-plane nodal force, all acting at a given node j, and where Mni, Mti and
Si represent, respectively, the yield-line normal moment, torque and shear force acting on
discontinuity i (figure 3). Finally, mDni, mDti, fDi and mLni, mLti, fLi represent the dead and live load
effects acting at discontinuity i.
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Now considering the contribution of a given yield-line i to the global yield constraint (3.2c),
initially assuming that Ni is as defined in equation (3.4)

NT
i qi =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
−1 0 0
0 1 0
0 −1 0
0 0 1
0 0 −1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎣
Mni
Mti
Si

⎤

⎥⎦ ≤

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m+
pi

m−
pi

m+
ti

m−
ti

s+
i

s−
i

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.7)

Although at a typical yield-line, inequality equation (3.7) reduces simply to m−
pi ≤ Mni ≤ m+

pi,
by inspection it is clear that more complex yield functions could be introduced if required, for
example involving interaction between the normal and torsional moments (though in doing so
the traditional ‘yield-line’ character of the solution is likely to be lost, e.g. a twisting failure would
lead to loss of contact between the two ends of the parts of a slab adjoining a given yield-line).

4. Extensions to the basic discontinuity layout optimization procedure
(a) Treating non-convex problem domains
Although the benchmark plane strain metal-forming and geotechnical problems considered in
Smith & Gilbert [25] all had simple rectangular problem domains, real-world slab-geometries
will often be considerably more complex, e.g. comprising complex non-convex problem domains.
Although such geometries present no particular difficulties for conventional finite-element-
based formulations, various issues arise when the DLO procedure is applied. These will now
be explored.

(i) Inter-nodal connections in non-convex problem domains
Consider the non-convex slab (ABCDEFGHIJKL) shown in figure 4. If it is assumed that each node
is connected to every other node by potential yield-lines, then it is evident that some potential
yield-lines (e.g. the highlighted yield-line CJ in figure 4a) cross ‘free space’. To address this, it has
been found to be convenient to disallow such potential yield-lines. However, since this means
that a good representation of a previously well represented possible mode of response may then
not be achievable (e.g. figure 4b), a finer nodal discretization can be used along all boundaries to
partially compensate for this, figure 4c; consequently in all example problems considered herein
the nodal spacing along boundaries has been set to be half that used within the interior of a slab.

(ii) Computing load effects in non-convex problem domains
It is also necessary to consider how the load terms in fL and fD should be computed when a non-
convex slab is involved. Thus, referring to figure 4, suppose that the slab has material properties,
support and loading conditions which mean that, at failure, part of the slab (CDEFGHIJKL)
rotates as a rigid element about a single yield-line CL, i.e. as indicated in figure 4d. Assuming
both dead and live loads are involved, it is instructive to consider how the components in fLi
and fDi can be calculated for i = CL. In this case, as only the area shaded (CDEFIJKL) will be
directly influenced by rotation along CL, only loading within this shaded area need be accounted
for in the calculations. The remaining unshaded area lying ‘above’ potential yield-line CL (i.e.
area FGHI) will clearly also move in the mechanism postulated, but the work associated with
this movement will be accounted for through displacement along edge FG (combined translation
and rotation), with the relative displacements at the edge of the slab in effect being absolute
displacements.
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Figure 4. Slab with non-convex ‘C’-shaped geometry: (a) potential yield-lines, with critical yield-line CJ which crosses domain
boundaries highlighted; (b) reduced set of potential yield-lineswith alternatives to CJ highlighted; (c) as (b) butwithfiner nodal
spacing along edges and (d) shaded area to be considered when formulating fL and fD terms for potential yield-line CL.

(b) Simplifying complex yield-line patterns
It was pointed out earlier in the paper that the layouts of yield-lines in slabs will, like bars in
optimal trusses, take the form of Hencky–Prandtl nets, which are orthogonal curvilinear co-
ordinate systems. A side-effect of this is that it will frequently be found that the true critical
failure mechanism will include one or more areas comprising an infinite number of infinitely short
yield-lines. Although strictly speaking correct, such mechanisms do not appear to be in the spirit
of the original yield-line analysis method, and the presence of large numbers of yield-lines can
also make visualization of the collapse mechanism and hand checking of solutions difficult; the
latter is potentially very important in engineering practice. (Furthermore, considering application
to reinforced concrete slabs, cracks tend in reality to be discrete and spaced of the order of
centimetres apart in yielding regions, owing to the finite tensile strength of the concrete.)

A practical means of simplifying the yield-line patterns identified is to use a coarse nodal
refinement (e.g. compare the simple layout of figure 1b with that of figure 1c). However, this
means that there is a danger that important detail will be lost. Thus, the efficacy of a method which
involves penalizing short yield-lines in order to simplify failure mechanisms will be investigated.
Such a method appears to have been first proposed by Parkes [36], though in the context of truss
layout optimization.

In essence, this method only requires that gT = {m+
p1l1, m−

p1l1, . . . m−
pmlm} is replaced with

ĝT = {m+
p1(l1 + k), m−

p1(l1 + k), . . . m−
pm(lm + k)} when formulating the optimization problem, where

k is a value designed to give the desired level of simplification. Then, once the optimization
process is complete, a corrected computed load factor can be obtained by back-substituting the
original values from g into the objective function equation (assuming the kinematic formulation is
being used). The efficacy of this approach will be explored for the example problems considered
in §5.

5. Examples
The procedure will now be applied to a range of isotropic slab problems previously studied in the
literature, including some which have known analytical solutions.

(a) Computational issues
To obtain the solutions, a workstation equipped with an Intel Xeon E5-2670 CPU and running 64-
bit CENTOS Linux was employed. The Mosek commercially available interior point LP optimizer,
which uses the homogeneous and self-dual algorithm, was used [37]. The problem was initially
passed to the optimizer in memory and subsequently only changes to the current problem needed
to be passed to the optimizer, rather than the entire revised problem. The pre-solve feature of the
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optimizer was enabled and default tolerances were used. In all cases, nodes were distributed on
a uniform Cartesian grid with the specified number of nodal divisions being the number used
across a specified length of the interior of a given slab. The number of nodal divisions used along
exterior edges was twice that used within the slab interior, as described in §4a.

(i) Adaptive nodal connection scheme
To significantly increase the size of problem which could be solved, the adaptive nodal connection
procedure, described by Gilbert & Tyas [29] for layout optimization of trusses, and in the context
of DLO by Smith & Gilbert [25], was used when solving all problems. Using this procedure, it is
only necessary to connect adjacent nodes with potential discontinuities initially, with additional
potential discontinuities then added as required (a simple check for yield violation is carried out
following an LP iteration to decide whether further potential discontinuity connections need to
be added, and hence whether a further LP iteration is required). In the examples considered here,
it was specified that not more than 5% of the number of connections present in the initial, adjacent
connectivity, problem could be added at each iteration. Even though changes to the LP problem
at each iteration might be relatively modest, with the interior point optimizer used it was not
possible to use the solution from a previous iteration as a starting point for the next optimization
(i.e. a ‘warm start’ was not used). Additionally, although the adaptive procedure is amenable to
parallelization, and a parallel version of the Mosek optimizer is available, a single processor was
used for all computations. The CPU times quoted include only the time to solve the LP problem(s);
in practice, some additional time is required to identify candidate connections for admission at
the next iteration in the adaptive solution procedure used.

(ii) Treating overlapping discontinuities
The greatest common divisor algorithm referred to in Smith & Gilbert [25] was used to remove
overlapping potential discontinuities, except when the simplification algorithm outlined in §4b
was used (since this requires overlapping potential discontinuities to be present in order to work
effectively).

(b) Square slabs with known exact solutions
Initially consider a square slab of side length L which is subjected to uniform pressure loading q
and which has a plastic moment of resistance per unit length of mp. If the support type around the
perimeter is unchanging, then symmetry conditions mean that only one-eighth of the slab needs
to be modelled. DLO solutions and corresponding CPU times for slabs with fixed and simple
supports are shown in table 2, for various nodal discretizations. Figure 5 shows the solution for
the fixed support case when using the finest nodal discretization, involving 320 nodal divisions.

When simple supports are present the exact solution (λ = 24.0(mp/qL2)) can be obtained when
only three nodes are present (i.e. at the corners of the portion of slab being modelled). Increasing
the total number of nodes therefore does not change the solution in this case.

For the fixed support problem, it is evident from table 2 that the DLO procedure can obtain
a solution which is within 0.5% of the exact analytical solution in only 2 s. This is in contrast
to previously proposed automated yield-line analysis methods, which have struggled to obtain
accurate solutions for this particular problem without recourse to specially tailored meshes. The
best solution obtained for the fixed support problem (42.857(mp/qL2) is just 0.015% higher than the
exact solution (42.851(mp/qL2)), though in this case the CPU time required was long (912 559 s).
The solutions obtained using nodal divisions of between 20 and 320 were used to calculate an
extrapolated solution (refer to appendix A for details of the extrapolation method used). The
extrapolated solution was found to be 42.851(mp/qL2), which matches the exact solution quoted
by Fox [6] to all five significant figures, indicating that the DLO procedure can, if required, be
used to obtain extremely accurate numerical solutions.
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Table 2. Square slabs with known exact solutions: numerical versus analytical solutions.

analytical numerical
support type λ(mp/qL2) nodal divisionsa λ(mp/qL2) error% CPU (s)
simple 24.0 1 24.000 0.000 <1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fixed 42.851 1 48.000 12.016 <1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[6] 20 43.055 0.476 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

40 42.934 0.194 66
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

60 42.908 0.133 278
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

80 42.887 0.085 1105
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

100 42.879 0.064 1704
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

120 42.874 0.054 4835
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

140 42.870 0.045 15 655
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

160 42.868 0.040 54 949
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

180 42.865 0.033 71 420
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

200 42.863 0.028 276 301
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

220 42.862 0.025 594 702
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

240 42.861 0.023 855 442
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

260 42.860 0.021 1 299 532
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

280 42.859 0.018 985 247
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

300 42.858 0.016 1 695 220
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

320 42.857 0.015 912 559
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∞b 42.851 0.000 —
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
aNumber of divisions along each leg of the right-angled triangle domain analysed.
b Extrapolated value (see appendix A for extrapolation procedure).
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Figure 6. Square slab with fixed supports: numerical solution versus iteration when using adaptive nodal connection scheme
(20 nodal divisions). (Online version in colour.)
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Figure 7. Regan and Yu’s irregular slabs: (a) with alcoves and (b) indented, showing geometries and DLO solutions (120 nodal
divisions). Simple and fixed supports are denoted, respectively, by single and cross hatches. (Online version in colour.)

Finally, figure 6 shows how the computed collapse load and associated mechanism changes
as the adaptive nodal connection procedure employed proceeds, here using a coarse nodal
discretization involving 20 nodal divisions for sake of clarity.

(c) Regan and Yu’s irregular slabs
The next two slab problems were originally included in the book by Regan & Yu [38] and are
somewhat more complex, with varying support conditions and non-convex geometries. Both the
‘slab with alcoves’ and ‘indented slab’ problems involve a pressure load of unit intensity and
unit plastic moment of resistance per unit length. The geometries of the slabs and sample DLO
solutions are presented in figure 7.
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Table 3. Regan and Yu’s irregular slabs: literature solutions versus DLO solutions.

reference bound nodal divisionsa slab with alcovesλ indented slabλ

Regan & Yu [38] upper — 41.6c 33.3c
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Johnson [39] upper — 37.0 32.5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Thavalingham et al. [18] upper — 35.8 29.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Jackson [21] upper — 35.8 29.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

lower — 35.1 28.5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DLO upper 20 35.589 29.174
upper 40 35.411 29.062
upper 60 35.330 29.034
upper 80 35.305 29.014
upper 100 35.293 29.010
upper 120 35.279 29.002
upper 140 35.267 28.998
upper 160 35.262 28.995
upper 180 35.257 28.995
upper 200 35.254 28.992
upper 220 35.251 28.991
upper 240 35.250 28.990
upper 260 35.247 28.990
upper 280 35.245 28.989
upper 300 35.244 28.988
upper 320 35.243 28.988
upper 340 35.243 —
upper 360 35.242 —
upper 380 35.241 —
— ∞b 35.230 28.980

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
aNumber of divisions per unit length (i.e. the total length of each of the slabs, neglecting symmetry).
bExtrapolated values, obtained using the 16most refined solutions (see appendix A for extrapolation procedure).
cComputed using the yield-line patterns shown in Regan & Yu [38]; these values are slightly lower than the simplified finite-element mesh
derived solutions quoted by Johnson [39].

In table 3, solutions obtained by previous workers are presented alongside new DLO results.
It is clear that even the coarsest DLO solutions presented (involving 20 nodal divisions) improve
upon (i.e. are lower than) previously obtained upper-bound solutions. This is despite the fact that
some of the previously obtained numerical solutions benefitted from the use of problem-specific
element meshes, tailored to yield the best possible solutions. The DLO solutions are also bracketed
by the upper and lower bound solutions computed by Jackson [21].

(d) Slab with hole
The final example considered comprises the irregular polygonal slab containing a hole previously
analysed by Olsen [40], Krabbenhøft et al. [10] and others. Here, the slab is assumed to be
isotropic with unit plastic moment of resistance per unit length and is subjected to a pressure
load of unit intensity. The slab geometry and DLO solution are shown in figure 8. The computed
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Figure 8. Slab with hole: geometry (dimensions in metre) and DLO solution (120 nodal divisions). (Online version in colour.)

Table 4. Slab with hole: literature versus DLO solutions.

reference bound nodal divisionsa solutionλ

Jackson [21] upper — 0.137
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

lower — 0.132
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Krabbenhøft et al. [10] lower (approx.) — 0.135b
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DLO upper 120 0.13554
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
aNumber of divisions per 10m slab length.
bCalculated by dividing the quoted pressure load (6.75) by the quoted plastic moment of resistance (50).

DLO load factor was found to be 0.13554, which is bracketed by the upper and lower bound
solutions reported by Jackson [21], as indicated in table 4. Also, the solution is 0.4% higher
than the approximate lower bound solution reported by Krabbenhøft et al. [10]. This example
demonstrates that the DLO procedure can be applied to problems with realistic geometries,
something that is essential for industrial application.

(e) Simplified solutions
It is evident from the preceding examples that many of the DLO solutions identified are rather
complex, and distinctly different to the ‘textbook’ yield-line solutions most practicing engineers
are familiar with (for reasons which will be briefly discussed in the next section). However, by
using the procedure described in §4b, simpler, more familiar looking, yield-line patterns can be
generated. Sample simplified solutions for each of the examples considered are shown in figure 9;
values for the simplification factor k were chosen on a case-by-case basis to provide the desired
level of simplification. Figure 10 shows how the value of k influences the yield-line pattern for
Regan and Yu’s indented slab example.

It is evident that simplified yield-line patterns can successfully be generated, and, although the
corresponding load factors are somewhat less accurate than calculated using the standard DLO
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(a) (b)

(c) (d)

Figure9. Simplified failuremechanisms: (a)fixed square slab (40nodal divisions, k = 0.005,λ = 43.080 (diff:0.53%)); Regan
& Yu’s (b) slab with alcoves (40 nodal divisions, k = 0.02, λ = 35.852 (diff: 1.77%)) and (c) indented slab (40 nodal divisions,
k = 0.05, λ = 29.293 (diff: 1.08%)); (d) slab with hole (50 nodal divisions, k = 0.5, λ = 0.13640 (diff: 0.63%)). (Differences
relative to (a) analytical solution given in table 2, (b), (c) extrapolated DLO solutions given in table 3, and (d) numerical DLO
solution given in table 4.) (Online version in colour.)

(a) (b) (c)

(d ) (e) ( f )

Figure 10. Regan and Yu’s indented slab: influence of simplification factor k on DLO solution, using 40 nodal divisions.
(a) k = 0, λ = 29.062 (diff: 0.28%), (b) k = 0.001, λ = 29.067 (diff: 0.30%), (c) k = 0.002, λ = 29.104 (diff: 0.43%),
(d) k = 0.005, λ = 29.205 (diff: 0.78%), (e) k = 0.05, λ = 29.293 (diff: 1.08%) and (f ) k = 0.1, λ = 29.965 (diff: 3.40%).
(Differences relative to extrapolated DLO solution given in table 3.) (Online version in colour.)

procedure, they are mostly very similar, demonstrating that the load factor is often relatively
insensitive to the precise form of the collapse mechanism. Also, the efficacy of the simplification
technique is likely to depend on the type of problem being considered.
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Figure 11. Use of Mohr’s circles in normal moment (Mn)–torque (Mt) space to illustrate characteristic features of critical yield-
line patterns in isotropic slabs: (a) orthogonal intersection of yield-lines of opposite sign, here at a fixed edge; (b) intersection of
yield-lines of the same sign at arbitrary angles; (c) intersection of yield-lines of opposite sign at simple support (whereφ = 45◦

ifmp = m+
p = m−

p ) and (d) yield line intersecting a free edge (at 45
◦ ≤ φ ≤ 135◦ ifmp = m+

p = m−
p ).

6. Discussion
Developing a procedure to automatically identify upper bound limit analysis solutions has
been of interest to researchers for many decades. In the case of slabs, a number of researchers
have proposed procedures designed to improve upon the solution obtained using an initial
rigid finite-element analysis (e.g. obtained using the method described by Munro & Da Fonseca
[15]), by refining this in a subsequent iterative nonlinear optimization phase (e.g. [17,18]). In
fact, when the adaptive nodal connection scheme described in §5a is employed, the initial
solution obtained using the DLO procedure will be precisely the same as that obtained
using rigid finite elements (assuming nodes are identically positioned in both cases, and
assuming nearest neighbour connectivity in the case of DLO). What is new here is that
when DLO is used the form of the yield-line pattern is permitted to change completely
at subsequent iterations (e.g. to a fan mechanism). Additionally, the convex nature of the
underlying mathematical optimization problem is preserved, and, even when the adaptive nodal
connection procedure is used, the solution obtained will be globally optimal for the prescribed
nodal discretization. This demonstrates that the widely held belief that recourse to nonlinear,
non-convex, mathematical optimization procedures is necessary in order to directly identify
critical yield-line patterns is misplaced. The DLO procedure also appears to retain much of the
elegant simplicity of the original yield-line analysis method. Compared with more conventional
finite-element limit analysis methods (e.g. [10]), the underlying formulation is simpler and
involves only linear constraints when Johansen’s square yield criterion is involved. Furthermore,
visual interpretation of the output is straightforward as discrete yield-lines can clearly
be identified.
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High-resolution DLO solutions also allow a number of characteristic features of critical yield-
line patterns in isotropic slabs to be observed, which can readily be confirmed via the use of
Mohr’s Circles. For example:

— yield-lines of opposite signs should intersect at 90◦, whether in the interior of a slab or at
a fixed support, as indicated in figure 11a;

— yield-lines of the same sign can intersect at any angle, as indicated in figure 11b;
— yield-lines of opposite signs should intersect simple supports at 45◦ and 135◦ (when

mp = m+
p = m−

p ), as indicated in figure 11c; and
— yield-lines should intersect free edges at between 45◦ and 135◦ (when mp = m+

p = m−
p ),

figure 11d. (Note that, as pointed out by Nielsen & Hoang [41], Kirchhoff boundary
conditions permit a torsional moment to exist along a free edge. Thus, it is not necessary
for critical yield-lines to intersect free edges at 90◦, as suggested by Quintas [42]).

These characteristic features are generally not enforced when postulating simple yield-line
patterns, either by hand or when using low numbers of nodes with DLO, and strictly would
only be fully enforced when using an infinite number of infinitesimally spaced nodes. Since
solutions generated using high numbers of nodes will often lead to highly complex patterns,
a simplification procedure has also been presented, which provides a pragmatic means of
identifying less complex layouts. A potential practical advantage of such layouts is that they can
be used to generate traditional engineering calculations, which can readily be checked by hand
by a practitioner.

7. Conclusion
(i) In this paper, it has been demonstrated that the problem of identifying critical yield-

line patterns can be formulated as a simple, albeit relatively large-scale, LP problem.
This overturns the widely held belief that recourse to complex nonlinear, non-convex,
mathematical optimization procedures is necessary in order to directly identify critical
yield-line patterns.

(ii) The analogy between approximate-discretized formulations for truss layout optimization
and yield-line layout optimization has been established. The DLO procedure used retains
much of the inherent simplicity of the traditional hand-based yield-line analysis method.
Excellent agreement with known exact solutions has been obtained and improved
solutions to a number of problems described in the literature have been obtained.

(iii) Unlike previously proposed upper bound computational limit analysis methods, the
DLO procedure presented can identify ‘fan-type’ yield-line mechanisms, as well as
mechanisms of any other geometry. The procedure therefore appears to be the first truly
systematic analysis tool capable of directly identifying yield-line patterns to have been
developed to date.

(iv) The yield-line patterns identified by the DLO procedure are often observed to be complex,
containing numerous closely spaced yield-lines. However, it is shown that such complex
failure mechanisms can be simplified if required (e.g. to facilitate hand-checking), albeit
at the expense of some accuracy.
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Figure 12. Square slab with fixed supports: computed load factor versus nodal refinement. (Online version in colour.)

Appendix A. Computing extrapolated load factors
In common with truss layout optimization problems (e.g. [43]), the solutions obtained using the
proposed layout optimization procedure appear to follow a relation of the form:

λn = λ∞ + kn−α , (A 1)

where λn is the numerically computed load factor for n equally spaced nodal divisions, λ∞ is the
load factor when n → ∞, and k and α are positive constants. Using (A 1), a weighted nonlinear
least-squares approach can be used to find best-fit values for λ∞, k and α, with the weighting
coefficient taken as n. For example, the resulting trend line and value for λ∞ for the fixed edge
square slab are shown in figure 12.
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Introduction
Reinforced concrete slabs are a feature 
of many modern buildings and bridges. 
When designing or assessing a reinforced 
concrete slab, elastic analysis methods 
have become popular in recent years, 
largely due to the availability of effi  cient 
computer-based implementations (e.g. 
using grillage analysis or fi nite element 
analysis techniques). Elastic methods are 
therefore now often used both to estimate 
slab defl ections under service loads (to 
establish the serviceability limit state (SLS)) 

and to analyse a slab at failure (to establish 
the ultimate limit state (ULS)).

However, a standard elastic analysis does 
not take account of the redistribution of 
moments that takes place after yielding of 
the reinforcement in a slab. This means that 
an elastic analysis may provide a grossly 
over-conservative estimate of ULS capacity. 
In cases when the ULS is critical, this is 
likely to lead to more material (i.e. more 
concrete and/or steel reinforcement) being 
specifi ed in a design than is necessary. To 
address this, a non-linear analysis (e.g. a 

non-linear fi nite element analysis) could be 
performed; however, this type of analysis 
tends to be demanding in terms of operator 
expertise and computer resources, and is 
generally not considered suitable for routine 
use. Alternatively, a much simpler plastic 
analysis method, such as the yield-line 
method, could be used. However, the lack of 
an effi  cient computer-based implementation 
of the yield-line method has reduced its 
popularity in recent years.

The term ‘yield-line’ was fi rst coined 
by Ingerslev1 in the very fi rst article to 
appear in The Structural Engineer in 1923. 
Subsequently, Johansen2 developed the 
theory underpinning the general yield-line 
method, later shown to be an ‘upper bound’ 
plastic analysis method, within the context 
of the then emerging plastic theorems3. 
Since a reinforced concrete slab generally 
contains a low percentage of reinforcement, 
the section will generally yield in fl exure in 
a ductile manner, thereby justifying the use 
of plastic methods. Benefi ts of the yield-
line method are that it will often identify 
additional reserves of strength when 
applied to the analysis of existing slabs, 
and to highly economic slabs when used in 
design4.

The traditional hand-based method 
involves postulating a yield-line pattern 
(failure mechanism) and then using the 
work method to compute the corresponding 
load-carrying capacity. However, due to 
the upper-bound nature of the yield-line 
method, a range of yield-line patterns will 
often need to be explored, which can be 
time-consuming. Furthermore, there is 
often the concern that the critical pattern 
may have been missed, and consequently 
that an unsafe estimate of load-carrying 
capacity has been computed. This has 
prompted many practitioners to turn to 
computer-based elastic methods, which 
provide demonstrably safe, albeit frequently 
over-conservative, ULS predictions. 

Synopsis

The yield-line method of analysis provides a powerful means of identifying the 
ultimate load-carrying capacity of reinforced concrete slabs. Benefi ts of the 
yield-line method are that it will often identify additional reserves of strength 
when applied to the analysis of existing slabs, and to highly economic slabs 
when used in design. Traditionally a hand-based method, the yield-line method 
is easy to apply to problems involving simple slab geometries and loading 
regimes. However, when these become more complex it can be diffi  cult to 
identify the critical yield-line pattern.

To address this, the method has now been systematically automated. 
The automated method quickly identifi es the critical mechanism (or a close 
approximation of this) and corresponding load-carrying capacity, providing 
engineers with a powerful new computer-based tool for the analysis and design 
of concrete slabs. In this article, the discontinuity layout optimisation (DLO) 
procedure which has been used to automate the yield-line method is briefl y 
described and then applied to various example problems.
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equated to the internal work done along yield-lines:

External work (E) = Internal work (dissipation D)

        
(1)

Where λ is a load factor, to be determined, q is the specifi ed pressure 
loading per unit area, a is the area of a given rigid slab region, δ(θ) 
is the displacement of the centroid of this slab region, which can be 
expressed as a function of yield-line rotations θ. Also mp is the plastic 
moment of resistance per unit length of the slab, and l is the length 
of a given yield-line.

For the example shown in Fig. 1, assuming lengths AB = 9m, BC = 
6m, and isotropic moment of resistance mp, sample calculations are 
given as follows:

External work:

   

Internal work:
 

               
(3)

To determine the minimum load factor λ, the critical value of x 
must be found. For small problems this can be done by calculus or 
by trial and error (e.g. for this example x can be found to be 4.813m 
and, when mp = 20kNm/m and q = 1kN/m2, the computed load factor 
can be calculated to be 1.847). For larger problems, mathematical 
optimisation can be used; in this case it is usual to pose the problem 
in a slightly diff erent way, setting the unfactored external work done 
by the external loads to unity, giving the following mathematical 
optimisation problem:

minimise

  (4)

subject to

Equation 4 is equivalent to Equation 1, but with the additional 
stipulation that the value of λ is to be minimised. Also, to ensure 
positive dissipation along yield-lines, new variables θ +, θ - have been 
introduced, where θ = θ + − θ -, and where θ +, θ - > 0. This modifi ed form 
will be used in the next section.

New automated method
In the simple yield-line analysis problem considered in the 
previous section, a geometrically compatible yield-line pattern was 
predefi ned, and all that was required was to adjust the geometry 
of the mechanism (i.e. the distance x) to determine the critical 
case. However, in general, the critical yield-line pattern will not be 
known in advance, and the challenge is to identify this (or a good 
approximation of this) from a large set of possible geometrically 
compatible patterns.

One possible approach is to discretise the slab using rigid 
fi nite elements, with potential yield-lines lying along element 
boundaries5,6. However, with this approach the set of geometrically 

However, the yield-line analysis method has recently been 
systematically automated, thereby allowing the critical yield-line 
pattern (or a very close approximation of this) to be reliably found. 
This means that practitioners can now apply the yield-line method 
with confi dence, even when slabs with complex geometries and/or 
loading regimes are involved. However, since the yield-line method 
considers only fl exural failure, additional checks (e.g. for punching 
shear failure and/or SLS defl ections) will still be required.

This article briefl y describes the traditional process of yield-
line analysis and then explains how it has been possible to 
systematically automate this. The new automated method is then 
applied to various practical example problems.

Traditional hand-based yield-line analysis
The yield-line method can straightforwardly be applied to problems 
involving simple slab geometries and loading regimes. The fi rst step 
is to postulate a yield-line pattern, following basic rules to ensure 
that this is geometrically compatible (see, for example, Kennedy 
and Goodchild4). Figure 1 shows a sample yield-line pattern for a 
reinforced rectangular slab with two simple supports and two free 
edges, and subject to uniform pressure loading.

The second step involves performing calculations to determine 
the load or load factor required to cause collapse (or, in the case of 
design, the moment capacity required to support the applied load). 
The work method is commonly used to do this; in this case the 
mechanism is perturbed and external work done by applied loads is 

W  Figure 2
Analogy 

between a) truss 
equilibrium and b) 
slab compatibility 
at node

a) truss b) slab

W  Figure 1
Example 

yield-line pattern for 
rectangular slab with 
simple supports and 
free edges

(2)
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a) Step 1: Defi ne geometry, boundary 
conditions, loads and slab properties

b) Step 2: Discretise slab using nodes d) Step 4: Use optimisation to identify 
subset of discontinuities forming yield-
line pattern

c) Step 3: Interconnect the 
nodes with potential yield-line 
discontinuities

S Figure 3
Steps in automated yield-line analysis procedure

implicitly enforced. Also, since the location of each potential yield-
line is known in advance of the optimisation process, it is possible 
to locally ascribe mp values, making it straightforward to model 
slabs with orthotropic or skew reinforcement.

Example 1: Benchmark square slabs
To demonstrate the eff ectiveness of the automated method it has 
fi rst been applied to various benchmark square slab problems, for 
which known solutions are available. In each case, the commercially 
available LimitState:SLAB software9, which implements the DLO 
formulation already outlined, was employed. Although some of 
these problems have been found to be diffi  cult to solve when using 
rigid fi nite elements, here solutions well within 1% of the known 
values were obtained within a few seconds on a modern desktop 
PC.

Considering fi rst the case of a slab with uniform pressure load 
and simple supports, Figure 4a shows that the familiar ‘X’ shaped 
yield-line pattern has been identifi ed as being critical. In this case 
the exact load factor of 24 (× mp / qL2, where L is the side length of 
the slab) is obtained even when very small numbers of nodes are 
employed. (Though note that a more complex pattern, incorporating 
corner fans, is identifi ed when the slab is provided with only bottom 
reinforcement.)

Fig. 4b shows the identifi ed yield-line pattern for the uniform 
pressure load with fi xed supports case (also considered in Fig. 3). 
Here a load factor of 43.052 is obtained, which is quite close to the 
exact load factor10 of 42.851. Alternatively, an even closer value can 

compatible patterns from which the most critical can be chosen 
will be relatively small. Also, specially tailored meshes must be 
used in order to, for example, identify fan type mechanisms, 
which is clearly unsatisfactory.

An alternative approach involves considering the yield-line 
discontinuities directly, and enforcing the geometric compatibility 
requirement at the end points of yield-lines (nodes). Denton7 
demonstrated that compatibility can be enforced for a yield-line 
mechanism in essentially the same way as equilibrium is enforced 
in a truss (Figure 2). Gilbert et al.8 then showed that the long-
established ‘layout optimisation’ technique, used to identify the 
optimum topology of a truss, could also be used to identify the 
critical yield-line pattern, and corresponding collapse load (or 
load factor) of a slab. Steps in the process are shown in Figure 3.

For a problem comprising n nodes and m potential yield-lines, 
the resulting ‘discontinuity layout optimisation’ (DLO) formulation 
can be written as:

minimise (5a)

subject to

(5b)

(5c)

Where Equation 5b enforces for each node the geometric 
compatibility constraint shown in Fig. 2 (assuming there are mi 
yield-line connections at node i). Also, Equation 5c enforces 
the unit external work constraint (see Gilbert et al.8 for further 
details). This is a linear optimisation problem for which highly 
effi  cient solvers exist. This means that problems involving 
thousands of nodes can be solved in a matter of seconds on a 
modern desktop PC.

An interesting feature of the DLO procedure is that, at points 
where potential yield-line discontinuities crossover one another 
(see instances of this in Fig. 3c), compatibility requirements are 

e) Step 5 (optional): 
Post-processing to 

enable visualisation of 
deformed shape
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a) External view b) Identifi ed yield-line pattern (obtained assuming 
simple supports at edges of blade columns)

S  Figure 5
Building with irregular fl oor plate

where Q is the magnitude of the point load) 
is close to the exact load factor2 of 4π.

Example 2: Building with irregular 
fl oor plate
Hand-based yield-line analysis becomes 
particularly problematic when complex 
slab geometries are involved. Kennedy 
and Goodchild4 provide useful advice on 
the types of mechanism that should be 
considered, though to account for the 
increased level of uncertainty involved 
they recommend that the moment capacity 
be increased by 15% for the purposes 
of design, rather than their normal 
recommended value of 10% (which itself 
has recently been challenged11).

An example considered by Kennedy 
and Goodchild4 is the relatively complex 
fl oor plate of a London apartment block 

(Figure 5). The irregular geometry requires 
that many possible yield-line patterns 
are considered by hand, which is a time-
consuming process. Conversely, with the 
new automated method it is possible to 
quickly obtain a close approximation of the 
critical yield-line pattern and associated 
load factor (Fig. 5b).

Example 3: Beam-and-slab bridge 
deck
Some years ago Middleton12 suggested that 
many highway bridges have a low assessed 
load-carrying capacity, not because 
of inherent weakness, but due to the 
conservative nature of the elastic methods 
used to assess them. In a study of 21 local 
authority bridges initially assessed to have 
a capacity of less than 17t, it was found that 
over 80% had the capacity to carry at least 

be obtained simply by using more nodes 
(e.g. a solution of 42.857 was reported by 
Gilbert et al.8). Note that in this case the 
identifi ed yield-line pattern is somewhat 
more complex than the patterns typically 
considered in a hand analysis. This is partly 
because in a critical yield-line pattern 
positive and negative yield-lines will be 
orthogonal to each other, something that, 
for sake of simplicity, is often ignored in a 
hand analysis. In addition, the use of a fi xed 
nodal grid in the DLO method means that a 
single yield-line in the true critical yield-line 
pattern may be approximately represented 
by several yield-lines in close proximity to 
one-another.

Finally, Fig. 4c shows the identifi ed 
yield-line pattern for the central point load 
with fi xed supports case; in this case the 
computed load factor of 12.624 (× mp / Q, 

a) Uniform load and simple supports b) Uniform load and fi xed supports c) Point load and fi xed supports

W  Figure 4
Identifi ed yield-line patterns for 

square slabs
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S  Figure 6
Beam-and-slab bridge deck
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38t vehicles when assessed using plastic 
(yield-line) methods. To facilitate rapid 
assessment of such bridges, a practical 
software tool, COBRAS13, was developed. 
However, although COBRAS considers 
a relatively large number of predefi ned 
yield-line patterns, there is still a concern 
that the critical mechanism may be missed. 
(To address this, Jackson and Middleton14 
recently developed a more general plastic 
analysis procedure; however, obtaining the 
critical yield-line pattern necessitated a 
manual interpretation step.)

Figure 6 shows an example of a four-

wheeled vehicle traversing a beam-and-slab 
bridge deck, in this case assuming that 
the wheels act as point loads, and that 
both beams and slabs behave in a plastic 
manner. Using the new automated method, 
it is evident that a relatively complex yield-
line pattern, of the sort that would be very 
unlikely to be found by hand, is identifi ed as 
being critical.

Conclusions
The yield-line method provides a powerful 
means of analysing the ultimate (collapse) 
limit state. Benefi ts of the yield-line method 

are that it will often identify additional 
reserves of strength when applied to the 
analysis of existing slabs, and to highly 
economic slabs when used in design. 
However, the lack of a general computer-
based implementation has limited its 
popularity in recent years. To address 
this, the yield-line method has now been 
systematically automated, using DLO. This 
provides structural engineers with a viable 
alternative to the elastic analysis methods 
that have become prevalent for collapse 
analysis in recent years, which can yield 
excessively conservative results.

a) Identifi ed yield-line pattern at critical vehicle position b) Corresponding deformed shape
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Appendix C

Second derivative terms in geometry
optimization for slab

When the optimization variables are arranged as [xA, yA, xB, yB, θn, θt, δ, p
+, p−], the Hessian

matrix of the objective function gT
i pi is derived as:

HgTi pi
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, (C.1)

where E0 = l
(
m+

p p
+ +m−p p

−) is the internal energy dissipation associated with the given
yield-line.

Considering the compatibility constraint (5.2), each yield-line contributes to six equality con-
straints, and the Hessian matrix for each can be derived separately. In addition, as Bi was divided
into two parts, BI

i and BII
i , the six Hessian matrices of the first part BI

idi contain only the fol-
lowing two terms: O2 (θn cosφ) and O2 (θn sinφ). The first term O2 (θn cosφ) can be found to
be:
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(C.2)

which is a symmetrical 9× 9 matrix. The second term has a similar form (for sake of conciseness
not shown here).

Now consider the second part, BII
i di; its Hessian matrices contain the following four terms:

O2 (θt sinφ), O2 (θt cosφ), O2
(
l
2θt + δ

)
, and O2

(
l
2θt − δ

)
. Clearly, the first two terms can be

obtained by simply replacing θn with θt in O2 (θn sinφ) and O2 (θn cosφ), and then reordering
the rows and columns accordingly. The third and fourth terms can be found to be:
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(C.3)

For the plastic flow rule constraint (5.3), the second derivative term is zero because of its linear
nature. For the live load effect constraint (5.9), its Hessian matrix can be written as the sum of five
terms:

O2(fT
Lidi − 1) =O2 (Γxθn cosφ) + O2 (Γxθn sinφ) + O2 (−Γyθt sinφ)

+ O2 (Γyθt cosφ) + O2 (Γzδ) .
(C.4)

Note that the expressions have a common format, involving the product of Γα (α = x, y, z) and
the projected displacements, converting from local to global coordinate systems (e.g., θn cosφ).
Therefore, the following formula can be used to derive these expressions:

O2 (ϕΓα) = ΓαO
2ϕ+ OϕOTΓα + OΓαO

Tϕ+ ϕO2Γα, (C.5)

where ϕ is the projected displacement, and its first and second derivatives are already derived, i.e.,
rows in (5.12) and (C.2), respectively. Now consider the second derivatives of Γα (α = x, y, z):
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∂2Γα
∂x2

A

= −2
∂Λα
∂xA

+

∫ xB

xA

∂2Λα
∂x2

A

dx, (C.6a)

∂2Γα
∂yA∂xA

= −∂Λα
∂yA

+

∫ xB

xA

∂2Λα
∂yA∂xA

dx, (C.6b)

∂2Γα
∂y2

A

=

∫ xB

xA

∂2Λα
∂y2

A

dx, (C.6c)

∂2Γα
∂xB∂xA

=
∂Λα
∂xA

− ∂Λα
∂xB

+

∫ xB

xA

∂2Λα
∂xB∂xA

dx, (C.6d)

∂2Γα
∂xB∂yA

=
∂Λα
∂yA

+

∫ xB

xA

∂2Λα
∂xB∂yA

dx, (C.6e)

∂2Γα
∂x2

B

= 2
∂Λα
∂xB

+

∫ xB

xA

∂2Λα
∂x2

B

dx, (C.6f)

∂2Γα
∂yB∂xA

= −∂Λα
∂yB

+

∫ xB

xA

∂2Λα
∂yB∂xA

dx, (C.6g)

∂2Γα
∂yB∂yA

=

∫ xB

xA

∂2Λα
∂yB∂yA

dx, (C.6h)

∂2Γα
∂yB∂xB

=
∂Λα
∂yB

+

∫ xB

xA

∂2Λα
∂yB∂xB

dx, (C.6i)

∂2Γα
∂y2

B

=

∫ xB

xA

∂2Λα
∂y2

B

dx. (C.6j)

(α = x, y, z)

Note that Γz is not a function of the displacement variables. The Hessian matrix of Γα (α =

x, y, z) can now readily be obtained, as can the full expression for (C.4). For instance, considering
(C.5), the fifth term O2 (Γzδ) can be written as:

O2 (Γzδ) = ΓzO
2δ + OδOTΓz + OΓzO

Tδ + δO2Γz

= OδOTΓz + OΓzO
Tδ + δO2Γz

=


δO2

4×4Γz 04×2 O4×1Γz 04×2

02×4

05×5OT
1×4Γz

02×4

 ,
(C.7)

where O2
4×4Γz is a 4 × 4 Hessian matrix of Γz with respect to xA, yA, xB, and yB. In addition,

O4×1Γz is the gradient of Γz calculated using (5.15).



Appendix D

Domain decomposition techniques for
slab

Complex slab geometries are frequently encountered in practice. To treat these it is convenient to
divide a slab domain into several simpler sub-domains. A particular example is shown in Fig. D.1.
Here the slab is divided into three sub-domains, Ω1, Ω2, and Ω3. The approach taken will be to
split any yield-line which intersects a sub-domain boundary into two. Also, each sub-domain can
be deemed to be a separate slab, having the following characteristics:

• Matrices associated with each sub-domain are established locally (e.g., when considering
live load effects, the geometry of the sub-domain is used).

• If a sub-domain boundary coincides with a boundary of the original slab, the original bound-
ary condition is used.

• Internal boundaries are considered as free edges and their internal energy dissipation is thus
not taken into account when setting up sub-problems.

However, clearly the sub-problems must be linked to properly represent the original problem; this
is achieved by linking yield-lines on internal boundaries. Thus at an internal boundary yield-lines
at the edge of each sub-domain are duplicated, coinciding in position, but belonging to different
sub-problems. Although normally the displacements at yield-lines are relative, at the edges of
a domain (or sub-domain) these are relative to the surrounding void domain, and hence can be

Figure D.1: Domain decomposition for a slab with hole, leading to three sub-domains Ω1, Ω2, and Ω3

connected by six coupling boundaries (i.e., e12, e21, etc.)
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considered to be absolute. Thus, assuming the absolute displacements at the edges of sub-domain
Ω1 and Ω2 are denoted θΩ1

n , θΩ1
t , and δΩ1, and at θΩ2

n , θΩ2
t , and δΩ2 respectively, the required

compatibility condition can be written as follows:

θΩ1
n + θΩ2

n − θB
n = 0, (D.1a)

θΩ1
t + θΩ2

t = 0, (D.1b)

δΩ1 + δΩ2 = 0. (D.1c)

Where θB
n is introduced to model the presence of a potential real yield-line at the boundary (sup-

plemented by corresponding plastic multiplier terms). Note that, in order to avoid sign convention
issues, all line directions are assumed to be identical. Thus if S denotes the coefficient matrix
for constraint D.1 then Sd = 0. Hence the compatibility constraints for a problem where domain
decomposition has been used can be written as:

Bαd = 0, for all α ∈ S, (D.2)

Sd = 0, (D.3)

where Bα is the compatibility matrix for sub-problem α, and where S is the set of all sub-domains.



Appendix E

Extra considerations in geometry
optimization

In geometry optimization, nodal positions (x and y) are considered as optimization variables, in
addition to d and p in optimization problem (6.1). Therefore, the coefficient matrices and vectors
in (6.1) contain the optimization variables, which are continuously updated during the optimization
process. For example, whilst g comprises constants coefficient values when slabs are isotropically
reinforced, when orthotropic reinforcement is present the coefficient values are affected by the
yield-line angles φ (see also Fig. 6.4 and yield-criterion (6.3)) that are determined by x and y;
hence g is now a function of the optimization variables.

In addition, functions representing the load effect terms fL and fD can become non-smooth with
respect to nodal positions, which can cause problems. In this paper extra constraints are added
to prevent these functions from becoming non-smooth. Thus in Fig. E.1(a) node A is made non-
movable since it coincides with a point load; in Fig. E.1(b), node B is restrained so as to only
be able to move in the direction of the line load. For patch loads, domain decomposition (which
divides a slab domain into several separate sub-domains; see He & Gilbert (2015b) for details)
can be used, and a sub-domain can be created in the patch load area. Note that the above ap-
proaches restrict nodal movements and will therefore potentially somewhat reduce the accuracy
of the numerical solutions obtainable using geometry optimization.

(a) (b)

Figure E.1: Extra move limits imposed on nodes due to the presence of point and line loads: (a) node A is
non-movable because it coincides with a point load; (b) node B can only move in the direction of the the
line load
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Appendix F

Geometric data of the real-world slab

Figure F.1: Real-world slab: geometry and column ID

Table F.1: Real-world slab: vertices of the polygonal slab domain (units in metres)

ID x y ID x y ID x y ID x y ID x y

1 -0.727 0.000 11 10.250 -2.400 21 14.748 -0.335 31 19.090 14.855 41 5.956 17.661
2 3.794 0.000 12 11.143 -1.650 22 15.456 -1.123 32 18.237 15.723 42 5.085 17.069
3 3.794 -0.238 13 11.143 -1.427 23 16.686 -1.046 33 15.376 15.723 43 5.085 14.826
4 4.466 -0.802 14 11.143 -1.359 24 17.855 -0.655 34 14.348 16.751 44 1.373 14.826
5 5.194 -1.291 15 11.657 -1.296 25 18.883 0.025 35 14.198 16.751 45 1.373 10.941
6 5.971 -1.700 16 12.460 -1.132 26 19.702 0.946 36 14.198 16.686 46 -0.727 10.941
7 6.786 -2.022 17 13.238 -0.874 27 19.702 1.161 37 10.463 16.686 47 -0.727 8.350
8 7.632 -2.256 18 13.980 -0.525 28 22.934 1.161 38 9.029 18.118 48 1.488 8.350
9 8.503 -2.398 19 14.675 -0.090 29 22.934 11.027 39 7.979 18.199 49 1.488 6.000

10 9.384 -2.446 20 14.748 -0.090 30 19.090 11.027 40 6.937 18.044 50 -0.727 6.000
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Table F.2: Real-world slab: locations of holes (units in metres)

Description x1 y1 x2 y2 x3 y3 x4 y4

Stair 1.623 11.250 3.925 11.250 3.925 14.576 1.623 14.576
Core -0.727 6.250 1.238 6.250 1.238000 8.350 -0.727 8.350

Table F.3: Real-world slab: information of column supports (units in metres)

Column ID
(Scenario 1)

Support
strength i

(Scenario 2)
Support

strength i
x1 y1 x2 y2 x3 y3 x4 y4

1 1 0 1.165 0.000 1.380 0.000 1.380 0.592 1.165 0.592
2 1 0 3.794 0.592 3.794 -0.008 4.009 -0.008 4.009 0.592
3 1 0 11.040 -1.157 11.060 -1.367 11.658 -1.316 11.638 -1.099
4 1 0 14.533 -0.090 14.748 -0.090 14.748 0.510 14.533 0.510
5 1 0 18.891 1.161 19.491 1.161 19.491 1.376 18.891 1.376
6 1 0 22.934 1.761 22.719 1.761 22.719 1.161 22.934 1.161
7 1 0 3.410 4.000 4.010 4.000 4.010 4.215 3.410 4.215
8 1 0 9.788 3.613 10.003 3.613 10.003 4.613 9.788 4.613
9 1 0 14.644 4.690 14.859 4.690 14.859 5.290 14.644 5.290

10 1 0 22.719 6.148 22.934 6.148 22.934 6.748 22.719 6.748
11 1 0 18.875 7.586 19.475 7.586 19.475 7.801 18.875 7.801
12 1 0 10.560 9.354 11.560 9.354 11.560 9.569 10.560 9.569
13 1 0 18.875 10.812 19.475 10.812 19.475 11.027 18.875 11.027
14 1 0 22.719 10.427 22.934 10.427 22.934 11.027 22.719 11.027
15 1 0 14.627 12.650 14.842 12.650 14.842 13.250 14.627 13.250
16 1 0 18.875 14.069 19.090 14.069 19.090 14.669 18.875 14.669
17 1 0 5.085 16.469 5.300 16.469 5.300 17.069 5.085 17.069
18 1 0 10.260 16.471 10.860 16.471 10.860 16.686 10.260 16.686
19 1 0 13.598 16.471 14.198 16.471 14.198 16.686 13.598 16.686
20 0 0 4.935 11.000 5.185 11.000 5.185 14.826 4.935 14.826
21 0 0 1.373 14.576 4.025 14.576 4.025 14.826 1.373 14.826
22 0 0 1.623 10.726 1.623 14.576 1.373 14.576 1.373 10.726
23 0 0 1.373 10.941 -0.727 10.941 -0.727 10.726 1.373 10.726
24 1 1 1.238 6.000 1.488 6.000 1.488 8.350 1.238 8.350
25 1 1 1.238 6.250 -0.727 6.250 -0.727 6.000 1.238 6.000



Appendix G

Sign convention used in DLO (for the
yield-line analysis of slabs)

G.1 Relative displacements

In DLO, kinematic variables represent the relative displacements between a pair of rigid blocks
in contact. For example in Fig. G.1, assume two rigid blocks ABCD (block I) and ABEF (block
II) are in contact at line AB. If this line has θn > 0, then it describes sagging behaviour in a slab
yield-line analysis problem, regardless of the predefined numbering order of this line (i.e., AB or
BA).

Figure G.1: Two blocks contacting at yield-line AB

To describe the relative displacements θn, θt and δ, both blocks need to be taken into account. To
describe their displacements separately, now ‘split’ line AB to A′B′ and A′′B′′, belonging to blocks
I and II respectively. As illustrated in Fig. G.2, A′B′ and A′′B′′ need to rotate in opposite directions
to define relative rotations, and so does the shear displacement. The relative displacements (i.e.,
yield-line displacements) can now be written as:

θn = θ′n + θ′′n, (G.1)

θt = θ′t + θ′′t , (G.2)

δ = δ′ + δ′′. (G.3)

172



APPENDIX G. SIGN CONVENTION USED IN DLO (FOR THE YIELD-LINE ANALYSIS OF SLABS) 173

Figure G.2: Relative displacements between two contacting blocks

G.2 Local coordinate system

From a computational perspective, including both lines appears redundant - by assuming one block
is stationary (e.g., let θ′′n = θ′′t = δ′′ = 0), then the displacement of the other correctly reflects the
relative displacements. For this reason, DLO uses one line - it assumes line A′B′ if it reads AB
in Fig. G.1, or A′′B′′ if it reads BA - and establishes a local coordinate system on it to calculate
parameters such as live load effects. If A′B′ is used, it assumes block II is stationary and that block
I moves in its local coordinate system ~θ′n

~θ′t
~δ′, as shown in Fig. G.3(a); if A′′B′′ is used, the local

coordinate system ~θ′′n
~θ′′t
~δ′′ in Fig. G.3(b) is used.

(a) (b)

Figure G.3: Local coordinate systems established on the two contacting blocks

Because displacement variables in these two local coordinate systems describe the same relative
movement behaviour (i.e., if one represents sagging, so does the other), calculations involved in
using the local coordinate system (~θ′n~θ

′
t
~δ′ or ~θ′′n~θ

′′
t
~δ′′) must obtain identical values for both. For

example, when calculating load effects using either of the two local coordinate systems, the cal-
culated load effects (i.e., normal rotational and torsional moments, shear force) must be identical
to those calculated using the other coordinate system. A detailed example is given in Fig. G.4. A
point load P is acting downwards on block A′B′CD.

Figure G.4: Evaluating the load effect of a point load P on a yield-line that reads AB or BA



APPENDIX G. SIGN CONVENTION USED IN DLO (FOR THE YIELD-LINE ANALYSIS OF SLABS) 174

Assuming local coordinate system ~θ′n
~θ′t
~δ′, the load effect can readily be calculated as

[−rtP, rnP, −P ]T. However, if taking ~θ′′n~θ
′′
t
~δ′′, it is incorrect to calculate the load effects di-

rectly in ~θ′′n~θ
′′
t
~δ′′, since P is not directly acting on block A′′B′′EF. In this situation, an equivalent

load −P , instead of P , needs to be used, so that its load effect has an identical value of −rtP ,
rnP , and −P in ~θ′′n, ~θ′′t , and ~δ′′ directions respectively.

In addition, it is important to note that the local coordinate system ~θ′n
~θ′t
~δ′ in Fig. G.3(a) obeys the

right-hand rule, while ~θ′′n~θ
′′
t
~δ′′ in Fig. G.3(b) obeys the left-hand rule. Normally, right- and left-

hand rules cannot coexist in a numerical procedure; for this reason, DLO uses the former but not
the latter: by assuming that direction ~δ′ is consistent, ~θ′n~θ

′
t
~δ′ is established in block II, as shown in

Fig. G.5.

Figure G.5: Alternative local coordinate system for yield line that reads BA

In this case, rotational displacements described in ~θ′n~θ
′
t
~δ′ correctly reflect the relative displace-

ments θn, and θt. However, out-of-plane translational displacement in ~δ′ needs to be reversed to
reflect ~δ′′. For example, the load effect of P is now given as [−rtP, rnP, P ]T. Nevertheless, a
single local coordinate system has been used, and several points are given in the following:

• To represent relative displacements, ~θ′n~θ
′
t
~δ′ is always established on the moving block,

meaning, the other contacting block is assumed to be still.

• ~θ′n~θ
′
t
~δ′ obeys the right-hand rule: directions of ~θ′n are determined by the numbering order of

a yield-line (i.e., AB or BA); while the direction of ~δ′ is consistent, that of ~θ′t is obtained
using the right-hand rule ~θ′t = ~δ′ × ~θ′n.

• Direction ~θ′t always points towards the moving block.

• If a load is applied on the stationary block, it can be transferred to ~θ′n~θ
′
t
~δ′ by reversing its

direction. In addition, the sign of the calculated shear effect in ~θ′n~θ
′
t
~δ′ needs to be reversed.

G.3 Yield-lines on slab boundary

For boundary yield-lines, it is significant to identify the moving block based on the prescribed
numbered order of yield-lines. Clearly, if ~θ′n~θ

′
t
~δ′ is established on the slab but not the external

supports, displacement variables directly reflect boundary movements. Because ~θ′t points towards
the moving block, it then requires that yield-lines on boundaries are given in an anti-clockwise
order (e.g., Fig. G.6(a)). Conversely, if they are given in a clockwise order (e.g., Fig. G.6(b)), the
slab is the still block when considering relative movement, and the displacement variables reflect
movements of the external supports. In this case, boundary displacements can be obtained by
reversing the signs of the yield-line displacement variables.
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(a) (b)

Figure G.6: Numbering order of boundary yield-lines, solid arrows indicate directions of yield-lines: (a)
anti-clockwise; (b) clockwise

G.4 Conclusion

• Displacement variables in DLO reflect the relative displacements between two blocks.

• By assuming one block is moving and the other is stationary, the displacement of the moving
block correctly represents the relative movement.

• A local coordinate system is established on the moving block.

• For a given yield-line, depending on which moving block is selected, two equivalent local
coordinate systems exist: one obeys the right-hand rule, and the other the left-hand rule.

• In DLO, the local coordinate system that obeys the right-hand rule is used.

• If load is not applied on the moving block, it must be converted to the local coordinate
system.

• If yield-lines on slab boundaries are given in anti-clockwise order, their displacement vari-
ables directly reflect boundary movements.


