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Abstract Vi

Abstract

In this thesis, the boundary element method (BEM) is apgdiedolving inverse
source problems for the heat equation. Through the employofehe Green'’s for-
mula and fundamental solution, the BEM naturally reducesdimensionality of the
problem by one although domain integrals are still presaettd the initial condition
and the heat source. We mainly consider the identificatiaimu$-dependent source
for heat equation with several types of conditions such aslocal, non-classical,
periodic, fixed point, time-average and integral which avesidered as boundary or
overdetermination conditions. Moreover, the more chglileg cases of finding the
space- and time-dependent heat source functions for aelditid multiplicative cases
are also considered.

Under the above additional conditions a unique solutiom@san to exist, however,
the inverse problems are still ill-posed since small ermothe input measurements re-
sultin large errors in the output heat source solution. T8wne type of regularisation
method is required to stabilise the solution. We utiliseutagsation methods such as
the Tikhonov regularisation with order zero, one, two, @& ttuncated singular value
decomposition (TSVD) together with various choices of #agularisation parameter.

The numerical results obtained from several benchmarkexeshples are presented
in order to verify the efficiency of adopted computationatieelology. The retrieved
numerical solutions are compared with their analyticaliBohs, if available, or with
the corresponding direct numerical solution, otherwisecukate and stable numeri-
cal solutions have been obtained throughout for all therse/@eat source problems

considered.
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Roman Symbols

A, Ay, Ap, AV A A AT, AT

BEM coefficient matrices
Agj(x,t), Apj(z,t) BEM coefficient functions
B, B*, By, By, By", B{"", B{"}, B!, B]', "I

BEM coefficient matrices

Byj(x,t), Br(z,t) BEM coefficient integral functions

c,c\V, ¢!, ¢, ¢ BEM coefficient matrices

Ck([0,T]) the space of:-order continuously differentiable functions
on [0, 7]

CH(Dy) the space ok-order and-order continuously differentiable

functions in time and space, respectively
d(z,t), do(x,t), di(x,t), do(x,t)

BEM integral functions for the source term
d o, d’ BEM coefficient vectors
D, Dy, Dy, Dy, D\, DI, DI, DI, pI, D, D, D!, D11

BEM coefficient matrices

Dy :=(0,L) x (0,7)  solution domain

Dy := 1[0, L] x 0,7 closure of the solution domaibr

e discrete components of functidry(t)
E(t) mass or energy

E vector of E'(t)

E noisy vector ofE ()

E = diag(¢;) diagonal matrix with components

f(z,t), F(z,t), f(X,t) source functions
F,Fo, Fy objective functions

G(x,t,&,1) fundamental solution for one-dimensional heat equation
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h(z,t)
hoj, I
h, by, by,
H(t)

given source function
boundary temperatures
boundary temperature vectors

Heaviside step function

HY?(0,T), HY[0, L], H**'97(Dr)

i,k
k(t), ki(t)
k*

No
N
Py Po
P(t)

g9, 9,
qoj, qLj

r(t), r(?)

Holder spaces in Chapter 6

indices

given boundary and overdetermination functions
the largest index of spacesatisfyingz;: < X
vector of functionk(¢)

length of one-dimensional space domain
outward unit normal to the space boundary
number of time steps

number of space cells

truncation number (for TSVD)

percentages of perturbation

perfusion coefficient function

boundary heat flux vectors

boundary heat fluxes

time-dependent source functions

R, Ry, Ry, Ry, RV, R® R

s(x), s1(x)

S

S0, So

T,Ty, 15
u(z,t), u(X,t)
uo(x), ug(X)

Uo, k

regularisation matrices
space-dependent source functions
coefficient matrix

values of the sources at the fixed point
final and fixed times

temperatures

initial temperature

initial temperature at;
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(URAVA
v(x,t)
v1(t), va(t)
Vi, Va

initial temperature vectors
orthogonal vectors for SVD
transformation function
given functions

diagonal matrices ofy (), vy (t)

W3(0,T), W3(0,T), W2(0, L), W4(0, L), Wy*(Dr)

x, Y, X

Yn

.Y,
ye

Greek Symbols

o, a,b

Sobolev space in Chapter 7

unknown vector of-(¢) ands(z)

spaces (variable)

left-hand side coefficient matrices of BEM linear system
fixed location

contaminated left-hand side coefficient matrix
eigenfunction of the spectral problem

right-hand side vector of BEM linear system

noisy right-hand side vector

heat transfer coefficients

Bx), br(x), Ba(x), B(X, 1)

Y1y V2
i (1)
)\1 )\Ll >\di51 AGCV! AOpt

given functions

the Kronecker delta symbol
given function

given functions

noise levels

fixed point source values
given functions

regularisation parameters

pa(t), pa(t), po(t), pr(t)

given boundary temperatures
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Abbreviations

BEM
CBEM
erf, erfc
FDM
FEM
FOTR
GCV
PDE
RMSE
SOTR
SVD
TSVD
ZOTR

domain

boundary of the domaifi

closure of the domaif

space of functions

times (variable)

standard deviations

singular values

diagonal matrix with components of

given function

boundary element method

constant boundary element method
error and complementary error functions
finite difference method

finite element method

first-order Tikhonov regularisation
generalised cross-validation

partial differential equation

root mean square error

second-order Tikhonov regularisation
singular value decomposition

truncated singular value decomposition

zeroth-order Tikhonov regularisation
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Chapter 1

General Introduction

1.1 Introduction

Inverse problems are becoming an essential part in the @@went of several appli-
cations in science and engineering such as in medical d&gaad therapy, ground-
water/air pollution phenomena, or the designing of theratalipment, systems and
instruments. Such problems, particularly for the heat #guahave important appli-
cations in the field of applied sciences such as in meltingfeeeting processes, the
designing and manufacturing areas in which the strengtheat bources is not ex-
actly recognised, especially in the discovery of the quyali energy generation in a
computer chip, in a microwave heating process, or in a chedmgaction process.

In this thesis, the interest is specialised to solve sevwaratse source problems for

the heat equation using the boundary element method (BEM).

1.2 Inverse and ill-posed problems

A direct problem consists of solving a system where an inpuse is given and an
output effect is desired. However, if the situation is reeerthen we have an inverse
problem which is in general ill-posed (improperly-poseatarrectly-posed). For more

definitions and examples of inverse and ill-posed problesedise excellent review by

1
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Kabanikhin [31].
The study of ill-posed problems began in the early 20th agrttuough the defi-
nition of well-posedness given by J. Hadamard in 1902. Irsdrese of Hadamard, a

mathematical problem is well-posed if it satisfies the foiloy properties:

e Existence For all (suitable) data, there exists a solution of the f@b(in an

appropriate sense).
e UniquenessFor all (suitable) data, the solution is unique.

e Stability. The solution depends continuously on its data (i.e. sneatlpbations

in the input data do not result in large perturbations in thatgon).

According to above definition, any mathematical problemlipased if any one of
these three conditions is violated. In the cases investifjatthis thesis, the problems
violate the third condition, i.e. stability.

The main purpose of this thesis focuses on applying BEM terse heat source
problems, which are in generally ill-posed in the senseshwll measurement errors

greatly magnify the sought solutions.

1.3 The boundary element method (BEM)

One of the main advantage of the BEM over domain discretisatiethods such as
the finite-difference method (FDM) or the finite element noeh{FEM) is that the
discretisation is necessary only on the boundary, i.e. tBMBises less number of
nodes and elements when compared to the FDM and the FEM. Tineialea of the
BEM, which is based on using the Green’s identity and the &nmehtal solution, is
to find the solution inside the domain by using the solutiothi partial differential
equation (PDE) on the boundary only.

The mathematical background of the BEM is represented biribe/ledge of the

fundamental solution and the application of the Green’stities. We first introduce
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the Heaviside step function and the Dirac delta distribuéis follows:

The Heaviside step function:

1, if ¢t>0,
H(t) =
0, iIf t<0
The Dirac delta distribution function:
0, if x#¢,

0(z,8) = o(x = &) =

oo, If x=¢.

The fundamental properties of the Dirac delta distributios

5(x) = H'(x), / F(6)8(, ) de = f(z), e Q.

Basically, the one-dimensional transient heat equatiayoigerned by the partial

differential heat operatof := 2, — 2. Let L > 0 and7 > 0 be the length of the

92

space domain and the time duration, respectively, and digfengolution domain
Dy :=(0,L) x (0,7]. (1.1)

Consider the classical heat equation

d%u ou

Lu(z,t) = —(z,t) — E(

52 z,t) =0, (x,t) € Dr. (1.2)

A functionG(x,t,y, ) is called a fundamental solution for the heat equation (1.2)
L*G<JZ‘, t7 Y, T) = —(5(37, ta Y, T) = _5(‘:6 - y‘a ‘t - TD? (13)

whereL* = 83—;2 + 2 is the adjoint ofZ, (z,¢) is a field point, andy, 7) is a source

point. Solving (1.3) using the method of Fourier transforiveg the fundamental
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solution, see [60],

_ H{t-1) (v —y)°
Gz, t,y,7) = mexp <_4(t—7')) ) (1.4)

In order to develop the BEM, let us introduce the Green'siities, as follows:

/ (UV?V = VV?U) dQ :/ (Ua—v - Va—U) ds,
Q oQ

o (1.5)
/ (UV?V + VU -VV) dQ :/ U——dS,
Q o dn

for any functions/, V' € C?(2), wheren is the outward normal to the boundadg

of the bounded domaifl.

1.4 The BEM for solving one-dimensional direct heat

problem

In order to understand how the BEM performs, let us consluedirect classical (one-
dimensional) heat conduction problem which requires figdive temperature(x, t)

satisfying the heat equation
Up = Ugy + F(x,t), (z,t) € Dr, (1.6)
whereF' is a heat source, subject to the initial condition
u(z,0) = ugp(z), = €][0,L] (1.7)
and the Neumann boundary conditions

u:c(ovt) = Nl(t)v um(Lvt) = /~L2<t)7 te <07 T]? (1.8)
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(or the Dirichlet boundary conditions)
u<07 t) = /~L1<t)7 U(Lv t) = /~L2(t>7 te (07 T]' (1.9)

Mixed or Robin boundary conditions can also be considered.uBing the BEM, we

first multiply (1.6) byG and integrate oveb to result in

2

ou o0°u
| ey Gy = [ Gl tyn T ) dyir
+ [ Gt )Py ) dydr
Dt

Using the Green'’s identities (1.5) gives

ou
| GG dye

— /OT {G(:c,t, £, T>6§EL£) (&, 7) — (€, T)a_G(%t’ 3 7)} i

on(§) ¢c{0,L}
0°G
+ U(y,T)W(%t,y,T) dydr + | G(z,t,y,7)F(y,7)dydr,  (1.10)
Dr Y Dr
wheren is the outward unit normal to the space boundgryL}, i.e. 57 = — 3 for

£=0, and%@ = a% for ¢ = L. Then, using that the fundamental solution satisfies

(1.3) and the property of the Dirac delta function resultia integral equation

n(x)u(z,t) :/0 [G(x,t,&T)ai—é)(fvT) - “(g’T)ai—%(x’t’g’T)L {0.L} o

L L T
T / G, t,y,0)u(y, 0) dy + / / G, t,y,7)Fy. ) drdy,
0 0 0

(z,t) € [0, L] x (0,77, (1.11)

wheren(0) = n(L) = £ andn(x) = 1 forz € (0, L).

)
The discretisation of the integral equation (1.11) is penfed by dividing the

boundarie0} x (0, 7] and{L} x (0, 7] into a series ofV small boundary elements
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[tj—1,t;]forj =1,N,t; = %, j =0, N, whilst the space domain, L] x {0} is dis-

cretised into a series df, small cells[z,_1, 2] for k = 1, Ny, z;, = Nio, k=0, N,.

Over each boundary elemeftt_;, ¢;], the temperature and the flux2“ are assumed
tj—l + tj

to be constant and take their values at the midpgint Yy le.
u(0,t) = u(0,%;) =: hoj, w(L,t) =u(L,t;)=:hyj, t€ (tj_1,tj] (1.12)
ou ou, - ou ou, -
5,0 ) = 5-(0,8)) = q0j, 5-(L,t) = (L, t;) = qry, L€ (tj-1,t5]. (1.13)

Note that sincen is the outward unit normal to the (one-dimensional) spaeaadary,

then
ou, -~ ou -
qoj = —%(O,tj% qrj = %(L,tj) (114)
In each cellz;_1, xx], the temperature is assumed to be constant and takes its value
at the midpointi;, = m%w i.e.
u(z,0) = u(@y,0) = uop, € (Tp—1, k). (1.15)

Also, for the source functiof’(x, t), we assume the piecewise constant approximation
intime as

F(l‘,t) = F(IL’,E]'), t e (tj—latj]- (116)

With these approximations, the integral equation (1.1tl)ssretised as

WE

n(@)u(z,t) = > [Aoj(x,t)qo; + Arj(x,1)qr; — Boj(x,t)ho; — Br;(w, t)hy;]
=1
No N
+ Z Ck(![’, t)uO,k + Z DO,j(xv t)) (ZL’, t) < [07 L] X (07 T]v (117)
o =1

where the integral coefficients are given by

Agj(, ) = /t D Gt e, €= {01}, (1.18)

J
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b 0G
Bej(x,t) = ; 8n(§)(x’t’§’7)d7-’ ¢ ={0, L}, (1.19)
Cr(z,t) = /mk G(z,t,y,0)dy, (1.20)

and the double integral source term is given by

Do,j(:c,t):/ / G(x,t,y,7)F(y,t;) dydr. (1.21)
ti—1 0

The integrals in expressions (1.18)—(1.20) can be evaluatalytically as, see [15],

;

0 ; tgtj—la
t—1,1
\/; ;tj71<t§tj7x:§7
‘f;;_f' ‘- ﬁerf0(20)> i <tSt, p# S
s 20
P - (1.22)
\/ J—l_\/ J ct>t, x=¢
) WA )
T s
|z — ¢ e % _ et + /7 (erf(z) — erf(z1))
2\/7_1' 20 21 ’ '
\ c >ty x £,
0 ; tgtj—la
B 0 i <t <t w =g 1.23
g(2,) = erfc(z) -
— 5 ;tj_1<t§tj,l'7é€,
erf(zy) — erf
\ (z0) ; B sy,
1 T — Th—1 L~ Tk
Cp(z,t) = = |lerf| ——— | —erf| ——— | |, 1.24
|x—§‘ - |$—f‘

where§ € {0, L}, 20 = ———, z; =
Cellhz =g == T

tions defined by eff:) = %/ ¢~ do, erfo(z) = 1 — erf(z), respectively. Mean-
m™Jo

and erf, erfc are the error func-
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while the double integral (1.21) becomes
t L . L .
Doj(a.t) = / / G, by, 7V F (. ;) dydr = / Fy, 1) Ay, 1) dy,
ti—1 0 0
and can be evaluated using the midpoint rule for numeri¢agnation.
Hence on considering the BEM, we apply the initial condit{@rv) at the nodes

Ty for k = 1, Ny, as in (1.15), and the integral equation (1.17) at the boyndades
(0,%;) and(L,t;) fori = L, N. This gives the system afV linear equations

Aq—- Bh+Cu,+d=0Q (1.25)
where
A = AOJ (07 NZ) ALJ(Ov NZ)
[Aoj (L, ti) Api(LB)| o
B— BOj(Oa E@) + %513 BLj(Oa tz) C . Ck(oa i:z)
By;(L, fz) By;(L, TZ’) + %5@ N XN Cr(L, Ez') AN xNo

Z;\Tzl DO,j(()? EZ)
Zj‘vzl DO,j(La EZ) 9

qoj ho;
q= ’ ) h= ! ) u() = [Uo’k:| ) d=
L) iy Mo
T1on T1oN

whered;; is the Kronecker delta symbol, defined by = 1 fori = j, andj;; = 0
for ¢« # j. Note that matrix termB also includes the contribution from the left-hand
side of equation (1.17). At this stage, we can find the boyntiamperature_hif the

Neumann boundary conditions (1.8) are prescribed as
h=B"' (Aq+ Cu, + d) :

Whereas if the Dirichlet boundary conditions (1.9) are pribgd, we can then obtain
the heat flux qas
q= A" (Bh—Cu, —d).
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1.5 Condition number

The insight into the degree of conditioning of the systemafagions (1.25) is merely
given by the condition number of a matrix herein defined asr#ti® between the
largest to the smallest singular values. Obviously, thgeiathe condition number is

the more ill-conditioned is our system of equations.

1.6 Regularisations

Inverse problems are well-known to be in general ill-posgdiblating the stability

condition at least. Upon discretisation, this results inleoonditioned systems of
equations to be solved. To deal with these difficulties tiverise problem is usually
solved as an optimisation problem with regularisation ienrto achieve the stability

of the solution. Below we briefly describe two such classieathods of regularisation.

1.6.1 The truncated singular value decomposition (TSVD)

Suppose we wish to solve the systemléflinear equations withv.unknowns
Xr=y-", (1.26)

wherey* is a noisy perturbation of the exact right-hand side vectaey||y —y¢|| ~ e.

We first decompose the matrix in the form,
X =UxV", (1.27)

whereU = [U;,U,,....Uy] andV = [\},\,,...,\ ] are M x N matrices with
columns U and ¥, for j = 1, N, such thal/TU = I = V'V, and

Y = diagoy,09,...,0x) is @an N diagonal matrix containing the singular values of
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the matrixX, o; for j = 1, N, in decreasing order

Then the matrix system (1.26) can be reformed to obtain tiguar value decompo-

sition (SVD) solution as follows:

r= (i 5\@ : u}) Y (1.28)
j=1 "7

In MATLAB, this decomposition is operated using the comm@id:, V] = svd X)

or [U,%,V] = svdg X, N). For ill-posed problems, the truncation of (1.28) is needed

to be considered as a regularisation method, by omittingstsvV — N, small singular

values, whereV, denotes the truncation level. This way, the regularisedtsmi is

given by
Nt 1
Ly, = (Z V- u}) Y-, (1.29)
j=1 "7

which is simply a truncated SVD (TSVD) stable solution of thik SVD unstable so-
lution (1.28). And the MATLAB command for the TSVD becomésy,, Xy,, Vy,] =
svds X, V,) whereXy, = diag(oy, 05, ..., 0n,) @andUy, = [U;,U,, ..., Uy |, Vi, =
VY, .

1.6.2 The Tikhonov regularisation

Alternatively, the Tikhonov regularisation is another wdybtaining a stable solution
of the ill-conditioned system of equations (1.26). Thisnoetis based on minimising

the regularised linear least-squares objective funcf#h,57],

X = ye|I* + A Re® (1.30)
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whereR is a (differential) regularisation matrix of ordérc {0, 1,2, ...} imposing a
C*-smoothing constraint on the solution, akd- 0 is a regularisation parameter to be
prescribed. Note that the norim || is defined as the Euclidean norm of vector. In this
study, we are considering the order of regularisation mdatrto be order zero, one,

two as defined by [15, 57],

1 00
010 —

Ry = , the zeroth-order regularisation, (1.31)
0 0 1
1 -1 0 0
0o 1 -1 0 . _ o

Ry = , the first-order regularisation, (1.32)
0 0 1 -1
1 -2 1 0 O
o 1 -2 1 0 . .

Ry = , the second-order regularisation. (1.33)
0 0 1 -2 1

On solving the minimisation of (1.30) one obtains the regséd solution
r, = (XX + ARTR) "' XTy". (1.34)

1.6.3 Choice of the regularisation parameter

The regularisation parametgiis very important in (1.34) (also the truncation leél

in (1.29)) and it can be chosen according to many criter@, the L-curve method
[16], the generalised cross-validation (GCV) [63], or thecdepancy principle [40].
The L-curve method suggests choosih@gt the corner of thé.-curve which is a plot

of the norm of the residudlXt, —y©|| versus the solution norffr, ||. Alternatively, the
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discrepancy principle choosas> 0 such that the residudlXr, — y¢|| ~ ¢. Whereas
the GCV criterion suggests choosing the paramates the minimum of the GCV
function,

1 Xy —ye?

GCV(A) = 5, A>0. (1.35)
[trace/ — X(XTX + ARTR)~1XT)]

Note that both the.-curve and the GCV criteria are heuristic methods, whichnaite
always convert [58], because they do not require the knayeed the level of noise.

Then these two methods do not guarantee to give the recatiangparameter.

1.7 Purpose of the thesis

In this thesis, we mainly consider inverse heat source problfor the heat equation
(1.6), whereu is the unknown temperature aitis a heat source term to be identified.
We focus on the identification of the source teff(r, t) in (1.6) in various special
cases. This approach is necessary because otherwise ilidre mo unique solution
to the inverse problem unlesgz, t) is specified or measured throughout the whole
solution domainDr, [56].

Moreover, even though uniqueness of solution can be endqyredstricting the
source term to be of certain special forms, e.g. space-depentime-dependent, ad-
ditive or multiplicative, the inverse problem is still fiesed in the sense that the con-
tinuous dependence upon the input data is violated (snrallsein the input data give
rise to large errors in the estimated results). This has toelad¢t with by using some
sort of regularisation, e.g. the TSVD as described in Sulmset.6.1, the Tikhoknov
regularisation as described in Subsection 1.6.2 [1, 15 tB8]iterative algorithm [30],
the variational method [29], the augmented Tikhonov reggdéion derived from a
Bayesian perspective [65], the mollification methods [68], 8he smoothing spline
approximation [59], etc.

The structure of the thesis is as follows. In Chapter 1, tlrekdpapund knowledge
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of inverse and ill-posed problems is provided. The BEM isadetl together with the
application to the classical heat equation.

In Chapter 2, three general boundary conditions of invees¢ $ource problems are
considered to determine the time-dependent heat sotrc@ F'(x,t) = r(t) fo(x, t)+
fi(z,t) and the temperaturgx, t) in the heat equation (1.6), subject to the initial con-
dition (1.7), and the following three general nonlocal bdary and overdetermination

conditions:

Y1 (O)u(0, ) + vi2 () u(L, t) + Y13(H)us (0, ) + Y14 () ug (L, t) = ki (1)
Y1 ()u(0, 1) + Yoo ()u(L, 1) 4+ Yo3(t)uz (0, ) + You(t)un (L, t) = ka(t) ¢ 5 (1.36)

1 (020, £) + Y (DL, £) + YD) (0, ) + aa ()ua (L, 1) = ks(t)

where(k;),_3 are given functions anth;;),_13 ;_11 is @ given matrix of coefficients
having rank 3. The BEM is combined with the Tikhonov regudation in order to
obtain an accurate and stable numerical solution.

In Chapter 3, we investigate an identification of the timpeatelent heat source, i.e.
we seek(t) in F(x,t) = r(t) f(x,t), together with the temperatutéz, ¢) in the heat
equation (1.6), subject to the initial condition (1.7), fhexiodic and Robin boundary

conditions

w(0,t) = u(1,t), telo,T), (1.37)

u.(0,t) + au(0,t) =0, te]0,7], (1.38)
wherea # 0 is a given constant, and the integral additional measuremen
1
/ u(z, t)de = E(t), te]0,T]. (1.39)
0

In this inverse problem, the BEM is developed as a numeriehod and combined
with two case studies of the regularisation method. Firste/apply the BEM together
with the TSVD method in order to obtain a stable solution, tireth the BEM is con-
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sidered again and combined with various orders of Tikhamgularisation method.
In Chapter 4, we determine the time-dependent blood perfiuefficient function

P(t) > 0 and the temperaturg(z, t) in the following bioheat equation

ur(z,t) = uge(z,t) — P(t)u(x, t) + f(z,t), (x,t) € (0,1) x (0,7, (1.40)

where f is a given heat source term. We subject this bioheat equédidhe ini-
tial condition (1.7), the boundary conditions (1.37) anc88), and the integral over-
determination condition (1.39). A simple transformatierused to reduce the bioheat
equation (1.40) to the classical heat equation (1.6). Th®B& the heat equation
is employed, together with either the second-order Tiklaregularisation combined
with finite differences, or with a smoothing spline regwation technique for com-
puting the first-order derivative of a noisy function.

Chapter 5 presents an investigation for the identificatidh@time-dependent heat
sourcer(t) in F(z,t) = r(t) f(x,t) and the temperaturgz, t) in the heat equation in

(1.6), subject to the initial condition (1.7), the non-d&sl boundary condition

g (1,t) + aug(1,t) + bu(1,t) =0, e [0,T], (1.41)

wherea, b, o are given numbers not simultaneously equal to zero, and ¥ke o
determination condition (1.39). We are using the same igdles as before.

More challenging, the purpose in Chapter 6 is the simultase®termination of
an additive space- and time-dependent heat sources grgifidng the unknown com-
ponents-(t) ands(x) in the source ternt’(z, t) = r(t) f(x,t) + s(x)g(x, t) + h(x, t),
together with the temperatutgx, ¢t) in the heat equation (1.6), subject to the initial

condition (1.7), the Dirichlet boundary conditions,

u<07 t) = MO(t>7 U(Lv t) = ,uL(t)v te [07 T]? (1.42)

and additional conditions. These latter ones consist ofeiBpd temperature measure-
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ment at an internal poink, € (0, L), a time-average temperature, and an additional

fixing conditions, as follows:

u(Xo,t) = x(t), tel0,T], (1.43)
Tu(x, t)dt =¢(x), x=€]l0,L], (1.44)

0
s(Xo) = So. (1.45)

The mathematical problem is linear but ill-posed since thatiauous dependence on
the input data is violated. In discretised form the probleduces to solving an ill-
conditioned system of linear equations. We investigatepérdormances of several
regularisation methods, i.e. the TSVD and the Tikhonov l@igation, and examine
their stability with respect to noise in the input data.

A nonlinear heat source problem is finally studied in ChafterThis consists
of the simultaneous determination of multiplicative spaa®d time-dependent source
components (¢) andg(z) in F(x,t) = r(t)s(x), in the heat equation (1.6), subject to

the initial condition (1.7), the homogeneous Neumann baundonditions

uz(0,t) = u,(L,t) =0, tel0,T], (1.46)

the specified interior measurement (1.43), the final timegyemature measurement at

the ‘upper-base’ final timé= 7', and an additional fixing condition, as follows:

w(z,T) = p(x), xe€l0,L], (1.47)
s(Xo) = So. (1.48)

For the numerical discretisation, the BEM combined withg@utarised nonlinear op-
timisation are utilised.
Finally, in Chapter 8, the conclusions which summarise tagrwork of this thesis

and possible future work are highlighted.
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Chapter 2

Determination of a Time-dependent
Heat Source from Nonlocal Boundary

Conditions

2.1 Introduction

Recently, nonlocal boundary and overdetermination camtithave become a centre
of interest in the mathematical formulation and numericdligon of several inverse
and improperly posed problems in transient heat conducteme.g. [23, 24, 33, 51],
to mention only a few. They opened a new area of applied nwaleand mathematical
modelling research. Practical applications of nonlocalruiary value problems are
encountered in chemical diffusion for heat conduction oidmgical processes, see e.g.
[11, 41, 46]. For example, in multiphase flows involving flslidolids and gases, the
heat flux is often taken to be proportional to the different&oundary temperature
between the various phases, and the quantitigs = 1,3, j = 1,4, present in the
nonlocal boundary condition (2.3) below (see also equatioB6)) represent those
proportionality factors.

In this chapter, we consider obtaining the numerical sofutf several inverse

17
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time-dependent heat source problems for the heat equattbrman-local boundary
and overdetermination conditions whose unique solvaslitave previously been in-
vestigated/established by Ivanchov [28]. The mathematiwarse formulations are
described in Section 2.2. Since the inverse problems umgesiigations are linear,
but ill-posed (in the sense that the continuous dependepae the input data is vio-
lated), the numerical method is based on the boundary elkegirest solver combined
with the Tikhonov regularisation, as described in Sectich Zhe choice of the regu-
larisation parameter in the latter procedure is based odiffiteepancy principle, [40].
The above combination yields accurate and stable numesatations, as it will be

presented and discussed in Section 2.4. Finally, Sect®highlights the conclusions

of this chapter.

2.2 Mathematical formulation

Consider the problem of finding the time-dependent heatcsot) € C([0,7]) and
the temperaturex(z,t) € C%Y(Dy) N CY°(Dy) which satisfy the heat conduction
equation

Up = Uge +7r(t) f(x,t) + h(z,t), (z,t) € Dr, (2.1)

subject to the initial condition (1.7), namely

u(z,0) = up(x), =z €]|0,L], (2.2)

and the following general boundary and overdeterminat@mrdions:

Y (D)u(0,8) + Y2 (B)u(L, 1) + 15()a (0, 1) + a(t)ua (L, 1) = ki (2)
o1 ()u(0, 1) + Yoo (F)u( L, t) + Yo3()us (0, ) + Yo (H)un (L, ) = ko(t) (2.3)

71 ()u(0, ) + 52 (D)l L, 1) + v33(t)ua(0,8) + Yaa(t)ua (L 1) = ks(t)
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where
f,he CY¥(Dyr), wuyeCH[0,L]), ki eCY0,T]), i=1,3 (2.4)

and the matrixy = (v;);_13,-14 € C'([0, T]) has rank 3 for alt € [0, T'.

Actually, this inverse problem was studied theoreticaiyi\mnchov [28] who es-
tablished its unique solvability. Moreover, by assuminghaut any loss of generality,
that the same third-order minor of the matsixs non-zero we can express three of the
four boundary data(0, ), u(L,t), u,(0,t), andu,(L, t) in terms of the fourth one and

distinguish the following six cases:

Case 1l uy(0,8) = pi(t), uu(L,t) = pa(t), (2.5)
v1(H)u(0,t) + va(t)u(L, t) = k(t); (2.6)
Case 2 w(0,t) = (t), wus(L,t) = pa(t), 2.7)
01 (D) (0, 1) + va(H)u(L, t) = k(t); (2.8)
Case 3 u(0,t) = (t), ul(L,t)= ps(t), (2.9)
01 (£)uz (0, 1) + vo(t)ug (L, t) = k(t); (2.10)
Case 4 u(0,t) = (t), us(L,t)+vi(u(L,t) = pa(t), (2.11)
g (0,) + va(t)ug (L, t) = k(t); (2.12)
Case 5 u,(0,t) = pui(t), wux(L,t)+vi(t)u(L,t) = pa(t), (2.13)
w(0, 1) + va()u(L, t) = k(t): (2.14)

Case 6 u,(0,t) — vy (t)u(0,t) = pi(t), we(L,t) +vo(t)u(L,t) = pua(t), (2.15)

v3(H)u(0,t) + va(t)u(L, t) = k(t), (2.16)

fort € [0, T], wherek € C*([0,T]) is a given function resulted from manipulating the
system (2.3). The other mixed boundary conditions caseggmonding to Cases 2,
4—6 can be reduced to these ones by the change of vagiablé — .

The following Theorems 2.2.1-2.2.5 from [28] give the ur@olvability, i.e. ex-
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istence and uniqueness of the solutions of the inverse gmolf2.1)—(2.3) in all the

above six cases.

Theorem 2.2.1 Assume that the regularity conditio(a4) are satisfied and that:
(i) vi,v0 € CH[0,T)), vi(t) +v3(t) >0, te]l0,T];

(i) v1(8)f(0,8) +va(t)f(L,t) #£0, te€][0,T7;

(i) 121(0) = ug(0), p2(0) = up(L), v1(0)uo(0) + v2(0)ue(L) = k(0).

Then the inverse proble(@.1), (2.2), (2.5), (2.6)representing Case 1 is uniquely solv-

able.

Theorem 2.2.2 Assume that, in addition to conditio(®.4)and (i) of Theorem 2.2.1,

the following conditions are satisfied:
(I) U1<t)f<07 t) 7£ 07 te [OvT];
(i) 11(0) = uo(0), p2(0) = ugp(L), v1(0)ug(0) + v2(0)uo(L) = k(0).

Then the inverse proble(@.1), (2.2), (2.7), (2.8)representing Case 2 is uniquely solv-

able.

Theorem 2.2.3 Assume that, in addition to conditiof®.4), (i) and (iz) of Theorem

2.2.1, the following conditions are satisfied:

11(0) = uo(0), p2(0) = uo(L), v1(0)up(0) + v2(0)up(L) = k(0).

Then the inverse probleif2.1), (2.2), (2.9), (2.10) representing Case 3 is uniquely

solvable.

Theorem 2.2.4 Assume that the regularity conditio(d4) are satisfied and that:

(i) v € C[O,T], Vg, l; € Cl[O,T], 221,—2, Ul(t) >0, te [O,T],
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(i) in Case 4,

f(()?t) - UQ(t)f(Lat) 7£ 07 le [O,T],

11(0) = uo(0), p2(0) = up(L) + v1(0)ue(L), k(0) = ug(0) + v2(0)up(L);
(i) in Case 5,

f(ovt)+v2(t>f(L7t> #07 te [07T]7

11(0) = ug(0), p2(0) = ug(L) + v1(0)uo(L), k(0) = uo(0) + v2(0)uo(L).

Then the inverse proble2.1), (2.2), (2.11) (2.12)representing Case 4, an@.1),
(2.2), (2.13) (2.14)representing Case 5 are uniquely solvable.

Theorem 2.2.5 Assume that the regularity conditio(a4) are satisfied and that:
(i) v; € C[0,T], v3,v4, pus € CY0, T, v3(t) >0, i =1,2, t € [0, T};

(iii) 101(0) = up(0) — v1(0)uo(0), p2(0) = ug(L) + v2(0)uo(L),
k(0) = v3(0)uo(0) + va(0)uo(L).

Then the inverse proble2.1), (2.2), (2.15) (2.16)representing Case 6 is uniquely

solvable.

Although the problems of Cases 1-6 are uniquely solvabéy, &ne still ill-posed
since small errors in the input daté& ) lead to large errors in the output source solution
r(t). In the next subsection we describe how the BEM discretisimgerically the heat
equation (2.1) can be used in conjunction with the Tikhoregutarisation in order to

obtain a stable solution.
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2.3 The boundary element method (BEM)

In the numerical process, we employ the BEM as introducederti® 1.3. For the

heat equation (2.1) we then obtain the integral equation

pontet) = [ |6let.6m) s ) — e

L
+/O G(x,t,y,O)u(y,O)dy+/O /0G(a:,t,y,T)r(T)f(y,T)drdy
+/O /0 G(z,t,y, 7)h(y, 7)drdy, (x,t) €0,L] x (0,T). (2.17)

(x,t, €, )} dr
¢e{o,L}

We use the constant BEM (CBEM) with the midpoint approximiasi (1.12), (1.13)
and (1.15). Nevertheless, higher-order, e.g. linear bagnelement approximations
will be more accurate than constant boundary elements.ifipiovement in accuracy
will be significant in higher-dimension, see e.g. [49], bubur one-dimensional time-
dependent setting the use of the CBEM approximation wasfsufficiently accurate.

With this, the integral equation (2.17) can be approximated

N
AO] xZ, t QQJ + ALJ(Jf t)qL] B(]j(l’,t)hoj — BLj(SC,t)th]

7j=1

No

+ ) Cula, gk + d(x, t) + do(x, 1), (2.18)

k=1

where the coefficientd,;, Be;, £ € {0, 1}, andC}, are given by (1.18)—(1.20) and can
be evaluated analytically as in (1.22)—(1.24), respelgtihereas the double integral

source termg andd, are given by

L gt
d(:zc,t):/O /0G(:E,t,y,T)T(T)f(y,T)dey, (2.19)
L pt
do(z, ) — /0 /0 Gla.t,y, 7)h(y, 7) drdy, (2.20)
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and can be evaluated by assuming the piecewise constaokapptions for the source

functionsf(x,t), h(x,t), andr(t), i.e.

f(z,t) = f(x,fj), h(z,t) = h(z,t;), r(t)= T(fj) =7, (2.21)

fort € (t;_1,t;] andj = 1, N. By these approximations, the integrals (2.19) and
(2.20) become

d(z,t) :/0 T(T)/O G(z,t,y,7)f(y,T) dydT:ZDj(x,t)rj, (2.22)

J=1

t pL N
ife.t) = [ [ Gty iy ) dydr = 3 Do), (2.23)
j=1

where

t;  rL ~ L tj
Dj(:c,t)z/ /O Gz, t,y,7)f(y. ;) dyde/O f(y,tj)/ G(z,t,y,7)drdy
ti—1 ti—1

_ /0 fy, 1) Ay (2, t) dy,

t; oL ~ L . Ly
Dy ;(z,t) :/t /0 G(:L’,t,y,T)h(y,tj)dydT:/o h(y,tj)/t G(z,t,y,7)drdy
-1 1

j—

L
- / h(yvtj)ij(xat) dyv
0

are evaluated numerically using the midpoint integral epipnation. Here, the integral

equation (2.18) can be rewritten as
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Applying (2.24) at the boundary nodés ¢;) and (L, ;) for i = 1, N, we obtain the

following system o2 NV equations
Aq— Bh+ Cuy+ Dr+d=0Q (2.25)
where matricest, B, C, D and vectors gh, u,, r, d are defined as same as in Section

Dj(07 EZ)
Dj(Lji) 2NN

In this section, we consider the heat equation (2.1) withgémeeral conditions

1.4, andD =

(2.3) which can be separated into the 6 cases presented)r(@216). Applying the

boundary and the overdetermination conditions of thesesésceesults as follows.

231 Casel

The Neumann heat flux boundary conditions (2.5) give
—u, (0,1, — (£
g | OB m (2.26)
ue(Loty) | | () ],
Also, from (2.25) we obtain

h— B! (Ag+ Cu, + Dr+ d) . (2.27)

The overdetermination condition (2.6) can be rewritten@s#ix equation as follows:

[Vl Vz} h=k, (2.28)
whereV;,V, are N x N diagonal matrices of components(t;), ..., v (ty) and
va(t1), ..., va(ty), respectively, and_ks an N-column vector of the piecewise con-

stant approximation of(t), namely

k(t) = ]{Z(tNZ) =: k;, for t € (tjfl,tj], 7=1N.
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Substituting (2.27) into (2.28) yields
[\/1 VQ} B! (Aq+ Cu, + Dr+ d) =k

Rearranging this expression the inverse source problenage @ reduces to solving

the N x N linear system of equations
Xir=y., (2.29)

where X = [Vl VQ} B7'D,andy, = k- [Vl VQ} B! (Ag+ Cu, + d).

2.3.2 Case?

We rearrange the matrix equation (2.25) as follows:

—u (0, ;) u(0, ;)
40 Al =180 Bl Y you+Drrd=0  (2.30)
ug (L, ;) u(L,t;)
whereA. — Ag;(0,2) | Az (0,7)) | Boj(0,;) + 303
0 — - L — _ ’ 0 — ~ ’
Ao;(L, 15) Ari(L, 1) Bo; (L. t;)
(0,1 :
andB;, = 1(0,1;) are2N x N matrices. Next, we apply the boundary

Br(L,t;) + 30
conditions (2.7) such that this system becomes

Aogo—i-AL/iQ - Boll_il - BLh-L_'_CU() —i—Dl’_—l— d= Q

wherep, = [M(Ej)]N, L, = [Mg(fj)}N, q, = [QOJ}N’ andh = [thLv' From this
system we obtain

[hﬂ _ [AO BL} - (ALHQ — Bou, + Cly + DL+ d) . (2.31)
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The overdetermination condition (2.8) can be written innwaquation as follows:

v vl

90] —k (2.32)
h,

Substituting the expression (2.31) into (2.32) we obtain
-1
Vi ][40 B]  (Aww,— Bow, +Cuy+ Dr+d) =k

Rearranging this expression the inverse source probleatesdo solving théV x N
linear system of equations
Xor=y,, (2.33)

where X, = [Vl \/2] [Ao BL] _1D
and y =k— [vl VQ} [Ao BL} - (ALEQ — Bop, + Cuy + d).

2.3.3 Case 3

The Dirichlet boundary temperature conditions (2.9) give
0,1 t;
. [u( ~»] ) [m@] | 030
u(Lity)] o ()],
Also, from (2.25) we obtain
q=A"'(Bh—Cu, — Dr—d). (2.35)
The overdetermination condition (2.10) can be written as

Vi wa=k (2.36)
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Substituting (2.35) into (2.36) gives thé x N linear system of equations
XsL=y,, (2.37)

where X3 = [—Vl VQ} A™'D and y3 = —k + [—Vl VQ} A~ (Bh— Cu, —d).

2.34 Case4

Consider the boundary condition (2.11) which can be regmitts
Uz (Lyt) = po(t) — v1(t)u(L, t).
Apply this to the matrix equation (2.30), derived from (2,26en the system becomes
Aod+ Ar(w, — Vi) — Bow, — Brhy, + Cug+ Dr+d=0Q

We rearrange the matrix equation above as follows:

[Ao AV + BL]

= App, — Bop, + Cug+ Dr+d
h,
From this system we obtain

{Sipo&%+&}wh%—&%+awlmm) (2.38)

The overdetermined condition (2.12) become®), t)+uvy (t) o (t) —va (t)vy (H)u(L, t) =

k(t) and can be rewritten in the matrix form as,

=

| Vous,, (2.39)
h,



Chapter 2. 28

wherel is the N x N identity matrix. We then substitute (2.38) into (2.39) tdab

the N x N linear system of equations
Xy = X4, (240)

where X, = [[ _1/21/1] [Ao ALV, "‘BL} _1D
and y =k—Vau, — [I —VQVJ [AO ALV + BL] - (AL,QQ — Bop, + Cuy + d).

2.3.5 Caseb

Consider the boundary condition (2.13) which can be reamits
Uz (L, t) = pao(t) — vi(t)u(L, t). (2.41)
Apply this to the matrix equation (2.30), derived from (2,26en the system becomes
— Ao, + Ar(w, — Viby) — Boby — Brhy, + Cug + Dr+d =0
We rearrange the matrix equation above as follows:
[Bo AV + BL] h=—Aou, + App, + Cuy+ Dr+d

From this system we obtain

h= [Bo ALVi+ BL} B (—Ao/il + A, + Cly + Dr+ d) : (2.42)
The overdetermination condition (2.14) gives

[1 VQ] h=k (2.43)



Chapter 2. 29

Substitute (2.42) into (2.43) to obtain thé x N linear system of equations
Xsr=y,, (2.44)

where X; = [I VQ} {Bo AWy +BL]_1D
and y =k-— [I 1/2] [BO ALy + BL} B <—A0/~i1 + App, + Cly + d).

2.3.6 Caseb

Consider the boundary condition (2.15) which can be regedras

q= _uﬂc(oafj) | T Vlu(ov 7?j)

u, (L, t5) . [, — Vou(L, 1;) .
Substituting this into the matrix equation (2.30) we obtain
and this can be rearranged as
[Aon + By A Vi+ BL] h=—Aou, + Arp, +Cuy+ Dr+d
Then we have
—1
h= [Aon +By AV, + BL] (—Aogl + Arp, + Cly + DL+ d) . (2.45)

The overspecified condition (2.16) gives

[vg,, 1/4} h=k (2.46)
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Substitute (2.45) into (2.46) to obtain thé x N linear system of equations
XeL=Y,, (2.47)

where [V, V| [aVi+ By Ao+ 5] D
and k- [V, Vi [40Vi+ Bo Auvat By|  (~Aa, + As, +Cuy +d).

From the above assembly one can see that the solution ofweesenheat source
problem (2.1)—(2.3) separated into the 6 cases, has beecewtb solving theV x N

linear system of equations, generally written as
Xr=y, (2.48)

where X and yare the coefficient matrix and the right-hand side vect@peetively,
corresponding to the case we are dealing with; that is, tieati systems of equations,
(2.29), (2.33), (2.37), (2.40), (2.44), and (2.47) for Ga%e6, respectively. We note
that the system of equations (2.48) is ill-conditioned sitize inverse problems un-
der investigation are ill-posed. Therefore, a straighttod inversion of (2.48) such
as the Gaussian elimination or the singular value decortiposwill result into an
unstable numerical solution, especially when the rightehside vector ys contami-
nated by random noise aS ¥ y + ¢ wheree represents the noise to contaminate into
the problem. In order to ensure a stable solution we empleyTtkhonov regulari-
sation method for (2.48) which gives solution (1.34) togetwith the regularisation
parameter chosen by the discrepancy principle. Let us ddnpok,;, the regularisa-
tion parameter which is determined by the discrepancy mmieci.e. the largesk for

which the residual Xr — y¢|| becomes less than the noise lexel
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2.4 Numerical examples and discussion

In order to test the accuracy of the approximations, let t®dluce the root mean

square error (RMSE) defined as

RMSE(r(t) J

2.4.1 Examplel

ZIH

al 2
Z Temact Tnumerical(ti» . (249)

We consider a smooth benchmark test with the input data

uw(x,0) = ug(z) =1+ — 2%, (2.50)

fla,t) =1 —2%e ™, h(z,t)=(2+x)e

Assuming that all quantities involved have been non-dinweradised we can také =

L = 1. In addition, the boundary and overdetermination condgiare as follows:

Case 1l u,(0,t) =¢€', wu,(l,t)=—¢, (2.51)
w(0,t) +u(1,t) = 2¢". (2.52)
Case 2 u(0,t) =e', wu,(1,t) = —¢, (2.53)
ua(0,1) + u(1, t) = 2¢". (2.54)
Case 3 u(0,t) =¢', wu(l,t)=¢, (2.55)
eug(0,1) + tuy(1,t) = (e — t)e’, (2.56)

where v, (t) = e', vy(t) = t.
Case 4 u(0,t) =e', wu,(1,t)+ (1+t)u(l,t) = te, (2.57)
uy(0,1) + e uy(1,8) = e — 1, (2.58)

where vy (t) = 1 +t, vy(t) = e ".
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Case5 u,(0,t) =¢€", wu,(1,t)+e "u(l,t)=1-¢, (2.59)
w(0,t) + (1 + t)u(1,t) = (2 + t)e', (2.60)
where v, (t) = e, vy(t) =1 +t.

Case 6 u,(0,t) —cu(0,t) = e —e*,  u,(1,t) + (14 t)u(l,t) = te', (2.61)
tu(0,t) + (1 — t)u(1,t) = €, (2.62)

where vy (t) = €', vo(t) =1+, v3(t) =t, vu(t) =1 —t.
In this example the analytical solution is given by
u(z,t) = (1 +z —2%)e', r(t) =e*, (2.63)

for0 < x < 1and0 <t < 1. Note that the input data in expressions (2.50)—(2.62)
satisfy the conditions of Theorems 2.2.1-2.2.5 for theterise and uniqueness of the
solution of the inverse problems of Cases 1-6 under invesbig.

Figure 2.1 and Table 2.1 show the condition numbers of mafrix (2.48) cor-
responding taV, = N € {20,40,80} for all Cases 1-6. From these it can be seen
that the condition numbers of the mattk for Cases 1, 5, and, 6 are high and this
ill-conditioning will need to be dealt with using the Tikhowregularisation described
in Section 1.6.2. On the other hand, the matrices for Caséd@not have a very large
condition number and, in principle, the system of equati@8) can be solved di-
rectly using, for example, the Gauss elimination methoder3VD. In what follows,

we illustrate the numerical results obtained with = N = 40.

Case 1l

Figures 2.2(a)-2.2(c) show the analytical and numeridatkiems forr(t), «(0,t) and
u(1,t), respectively, for exact input data and no regularisatien, A = 0. From
this figure it can be seen that although the solution for thendary values of the

temperatures(0,¢) andu(1,t) is stable and accurate, the retrieved source tgm
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Figure 2.1: The normalised singular values of maf¥ixor (a) Case 1 — (f) Case 6 for
No=N={20(—-—-),40 (---),80 (— — —)}, for Example 1.
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Table 2.1: The condition numbers of the matixin equation (2.48) folN = N, €
{20, 40, 80} for Example 1 Cases 1-6.

Case Condition Number
N=Nyg=20| N=Ny=40| N =Ny =80
1 6.19E+3 1.26E+5 7.49E+6
2 87 248 705
3 22 54 125
4 38 107 298
5 1.52E+4 7.36E+5 1.76E+8
6 1.61E+4 2.52E+6 5.89E+9

seems unstable. This is to be expected since the inverséeprab Case 1 is ill-
posed, see also the condition number in Table 2.1. Regatemmsneeds to be employed
and more stable results are illustrated in Figure 2.3. Is figure, numerical results
obtained with the zeroth-order Tikhonov regularisationitidlly, we have tried the
L-curve criterion, but we have found that arcorner could not be clearly identified.
We then have tried with the trial and error and found that gggifarisation parameters
A € {1077,1075} are most suitable as presented in Figure 2.3. Moreoveuath
not illustrated, it is reported that the slight inaccuraaeart = 1 observed in Figure
2.3(a) can be further eliminated by employing higher-orégularisations such as the
first- or second-order.

Table 2.2: The RMSE for the zeroth- and first-order Tikhonegularisation fop €
{0,1,3}% noise, for Example 1 Case 1.

L parameter RMSE
Regularisation p(%) \ "0 w00 | (LD
- 0 0 0.983 | 3.67E-4| 3.67E-4
- 1 0 4.90E+2| 1.90E-1| 1.81E-1
0 | A=1.0E-5 0.499 | 1.27E-3| 7.92E-5
zeroth-order 1 Aiis=6.6E-4| 1.264 | 2.01E-2| 7.31E-3
3 | \ys=4.0E-3| 1.982 | 6.25E-2| 2.91E-2
0 | A=1.0E-7 9.49E-3| 3.06E-5| 3.07E-5
first-order 1 Miis=4.3E-2| 0.364 | 7.19E-3| 3.03E-3
3 | A\us=9.7E-1| 1.007 | 3.59E-2| 1.78E-2

In order to investigate the stability of the numerical smntwe add noise to the
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Figure 2.2: The analytical (—) and numerical {—) results of (a)(¢), (b) «(0,t),
and (c)u(1,t) for exact data and = 0, for Example 1 Case 1.

right-hand side of the overspecified condition (2.6) as
k = k+ random('Normal, 0, 0,1, N), (2.64)

where therandom(’Normal, 0,0, 1, N) is a command in MATLAB which generates
the random variables by normal distribution with zero meaah standard deviation,

computed as
og=pX max} |k(t)], (2.65)

te[0,1
wherep represents the percentage of noise. In Cageid given by (2.52) and there-

fore,o = 2ep in (2.65). The ill-posedness of the inverse problem andrib&bility of
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Figure 2.3: The analytical (—) and numerical ( —) results ofr(¢) obtained by

using the zeroth-order Tikhonov regularisation with thgularisation parameters (a)
A = 1077 gives RMSE=0.319, and (b) = 10~° gives RMSE=0.499, for exact data
for Example 1 Case 1.

the numerical solution in Case 1 are further enhanced byrgepce of noise in the
measured data, as illustrated in Figure 2.4 (compare wghbrEi2.2). In order to re-
move the highly unwanted oscillations recorded in Figude ®e employ the Tikhonov
regularisation with the choice of the regularisation pagtem\, as described in (1.34),
given by the discrepancy principle as introduced in Secti@n3. Figures 2.5(a) and
2.6(a) present the discrepancy principle curves obtaiiyeithd Tikhonov regularisa-
tion of order zero and one, respectively, jor= 1% and3% noisy data. Generated
as in (2.64), this results in the amounts of naise 0.32 and 1.01 forp = 1% and
3%, respectively. The intersections between these horiztims and the discrepancy
(residual) curves yield the regularisation parameter tkghby )\, and tabulated in
Table 2.2. With these values of;,, Figures 2.5(b)-2.5(d) and 2.6(b)-2.6(d) present
the numerical results for(¢), «(0,t), andu(1, t) obtained using the zeroth- and first-

order Tikhonov regularisation, respectively. By comparivigures 2.5(b) and 2.6(b)
it can be seen that the first-order regularisation producae mccurate and stable re-

sults than the zeroth-order regularisation since it impa@saigher-order smoothness
constraint onto the solution.

36
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Figure 2.4: The analytical (—) and numerical (—) results of (a)(¢), (b) «(0,t),
and (c)u(1,t) for p = 1% noisy data and = 0, for Example 1 Case 1.

Cases 24

In Cases 2—4, Table 2.1 shows that the condition numbersohttricesX,, X3, and

X, are much smaller than the condition numbers of the matriceshke rest of the
cases. Therefore, for exact data, iye.= 0, we expect accurate and stable results
of the inversion even if no regularisation is employed, iJe.= 0. This is clearly
illustrated in Figure 2.7 for Case 2 where it can be seen tltmagreement between
the analytical and numerical solutions fat), «(1,t) andu,(0,t) is excellent. The
same overlapping agreement has also been obtained for Gases4 and therefore

these results are omitted. Next we gdd noise in the input data, as described in
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Figure 2.5: (a) The discrepancy principle curve, and théyéinal (—) and numerical
results of (b)-(¢), (c) «(0,¢), and (d)u(1, ¢) obtained using the zeroth-order Tikhonov
regularisation fop = 1% (— - —) andp = 3% (— — —) noise with the regularisation
parameters;, given in Table 2.2, for Example 1 Case 1.

(2.64). According to expression (2.65), and equations4(2.&.56), and (2.58), we
have the standard deviations= 2¢p, 0 = (e? — e)p, ando = (e — 1)p for Cases
2—4, respectively. As expected, and previously reportelignire 2.4 for Case 1, if
no regularisation is imposed, i.e. = 0, whenp = 1% noise contaminates the input
datak(t), then an unstable solution feKt) is obtained, see Figures 2.8, 2.11, and
2.14 for Cases 2-4, respectively. However, the high osiaitia in these figures have
smaller magnitudes than these reported in Figure 2.4 foe @asThis is consistent

with the fact that the inverse problems of Cases 2—4 arellgzssed than the inverse
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Figure 2.6: (a) The discrepancy principle curve, and théyéinal (—) and numerical
results of (b)r(t), (c) u(0,t), and (d)u(1,t¢) obtained using the first-order Tikhonov
regularisation fop = 1% (— - —) andp = 3% (— — —) noise with the regularisation
parameters.;, given in Table 2.2, for Example 1 Case 1.

problem of Case 1 (and Cases 5 and 6), see the condition nsméperted in Table

2.1. It is also interesting to remark that the retrieval of thoundary temperature
is more accurate and stable than of the heat flux, e.g. coniguees 2.8(b) and

2.14(b) with Figures 2.8(c) and 2.14(c), see also Figurg$(B) and 2.11(c). This is

to be expected since retrieving higher-order derivatigdess accurate than retrieving
lower-order derivatives, see Lesnic et al. [38]. In ordeohtain a stable solution,

regularisation needs to be employed. The numerical reghttsned forp € {1,3}%

noise using the zeroth-order Tikhonov regularisation whthregularisation parameter
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chosen according to the discrepancy principle are showngarés 2.9, 2.12, and
2.15 for Cases 2—4, respectively. The corresponding sesbliained using the first-
order regularisationillustrated in Figures 2.10, 2.18| 2r1 6 show much improvement
in terms of both stability and accuracy compared to the tesabtained using the
zeroth-order regularisation. The regularisation paranseind the RMSE errors of the
output solutions are given in Tables 2.3-2.5 for Cases Zsherctively. From these
tables it can be observed that, as expectgd and RMSE increase with increasing the

percentage of noise

(@) (b)

. . . . .
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t
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Figure 2.7: The analytical (—) and numerical ( —) results of (a)(¢), (b) u(1,?),
and (c)u,(0, t) for exact data and = 0, for Example 1 Case 2.
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Figure 2.8: The analytical (—) and numerical {—) results of (a)(¢), (b) u(1, ),
and (c)u,(0,t) for p = 1% noisy data and = 0, for Example 1 Case 2.

Cases5and 6

In Cases 5 and 6 we expect even higher ill-conditioning taioctthe systems of equa-
tions (2.44) and (2.47), compare the condition numbers bieTa.1. This is reflected
indeed in the numerical results presented in Figures 2 i@ 2.18 for Case 5, and
even more prominently in Figure 2.21 for Case 6 where unstaloinerical results can
be clearly seen i\ = 0 even when exact data are inverted. Whéhnoise is added
to the measured data (2.60) and (2.62), the standard dewan (2.65) are given by
o = 3ep ando = ep for Cases 5 and 6, respectively. Numerical results obtauset)

the zeroth- and first-order regularisation are presenté&igares 2.19, 2.20 and Table
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Figure 2.9: (a) The discrepancy principle curve, and théyéinal (—) and numerical
results of (b)(¢), (c)u(1,t), and (d)u, (0, ¢t) obtained using the zeroth-order Tikhonov
regularisation fop = 1% (— - —) andp = 3% (— — —) noise with the regularisation
parameters.;, given in Table 2.3, for Example 1 Case 2.

Table 2.3: The RMSE for the zeroth- and first-order Tikhonegularisation fop €
{0,1,3}% noise, for Example 1 Case 2.

L parameter RMSE
Regularisation p(%) i 0 W0 w00
- 0 0 7.15E-3| 4.33E-5| 4.33E-5
- 1 0 3.29 | 5.94E-3| 5.31E-2
seroth-order 1 2.8E-3 0.785 | 7.63E-3| 5.83E-2
3 8.8E-3 1.331 | 1.66E-2| 1.24E-1
first-order 1 3.0E-1 | 3.23E-1| 3.29E-3| 2.95E-2
3 9.4E-1 | 5.53E-1| 8.58E-3| 5.81E-2
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Figure 2.10: (a) The discrepancy principle curve, and thedygical (—) and nu-
merical results of (b)(¢), (c) u(1,t), and (d)u.(0,t) obtained using the first-order
Tikhonov regularisation fop = 1% (— - —) andp = 3% (— — —) noise with the
regularisation parametess;, given in Table 2.3, for Example 1 Case 2.
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Figure 2.11: The analytical (—) and numerical-(—) results of (a)(¢), (b) u. (0, t),
and (c)u,(1,t) for p = 1% noisy data and = 0, for Example 1 Case 3.

2.6 for Case 5, whilst for Case 6 the corresponding resuétpegsented in Figures
2.22, 2.23 and Table 2.7. Furthermore, for Case 6, whichesrhbst ill-conditioned
case, we have increased the percentage of noise=td% in order to show that the
Tikhonov regularisation method combined with the BEM catis§zctorily deal in a
stable and accurate manner with higher measurement eNédinally report that,
although not illustrated, we have also implemented the rekcoder Tikhonov reg-
ularisation and similar results, in terms of accuracy armdbilty, to those given by

first-order regularisation have been obtained.
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Figure 2.12: (a) The discrepancy principle curve, and ttadydical (—) and numer-
ical results of (b)(¢), (c) u.(0,t), and (d)u,(1,¢) obtained using the zeroth-order
Tikhonov regularisation fop = 1% (— - —) andp = 3% (— — —) noise with the
regularisation parametehs;, given in Table 2.4, for Example 1 Case 3.

2.4.2 Example 2

We finally investigate specially in the most ill-posed Caséh@ retrieval of a non-

smooth heat source given by

r(t):)t——‘+1, 0<t<1=T, (2.66)
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Figure 2.13: (a) The discrepancy principle curve, and thedydical (—) and nu-
merical results of (b)(t), (c) u.(0,t), and (d)u,(1,¢) obtained using the first-order
Tikhonov regularisation fop = 1% (— - —) andp = 3% (— — —) noise with the
regularisation parametehs;, given in Table 2.4, for Example 1 Case 3.

and, for brevity, the boundary and overdetermination ciooas as given by (2.61),
(2.62) and the input data as follows:

u(e,0) = uo(w) = L+z -2, fa,t) = (1—a)e ™,

h(z,t) = (3+xz —22)el — (1 — z?) <'t - %' N 1) ot (2.67)

which are generated from the analytical temperature soluti

u(z,t) = (1 + 2 — 2?)e’. (2.68)
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Table 2.4: The RMSE for the zeroth- and first-order Tikhoneyularisation fop €
{0, 1,3}% noise, for Example 1 Case 3.

L parameter RMSE
Regularisation p(%) N T Tw00 T w D

- 0 3.29E-3| 4.04E-5| 1.49E-4

- 0 1.776 | 3.58E-2| 2.41E-2

3.2E-3 | 4.42E-1| 3.65E-2| 1.74E-2
8.7E-3 | 7.80E-1| 6.81E-2| 3.09E-2
3.0E-1 | 1.78E-1| 1.72E-2| 7.58E-3
5.8E-1 | 2.47E-1| 2.41E-2| 1.07E-2

zeroth-order

WRWwRRko

first-order

(@) (b)

ug(1,1)

. . . . .
0.2 0.4 0.6 0.8 1
t

(d)

Figure 2.14: The analytical (—) and numerical {—) results of (a)(¢), (b) u(1,?),
(€) u,(0,t), andu,(1,t) for p = 1% noisy data and = 0, for Example 1 Case 4.

Numerical results are presented fér= N, = 80. Also, results are illustrated for the

first-order Tikhonov regularisation only, as for the zerotlder regularisation the re-
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Table 2.5: The RMSE for the zeroth- and first-order Tikhonegularisation fop €
{0, 1,3}% noise, for Example 1 Case 4.

S parameter RMSE
Regularisation p(%) s ) IEEECUREE)
- 0 0 4.13E-3| 3.63E-5| 3.19E-5| 5.77E-5
- 1 0 498E-1| 9.11E-4| 1.71E-2| 1.33E-3
seroth-order 1 6.2E-4 4 35E-1| 1.52E-3| 1.89E-2| 2.70E-3
3 2.0E-3 7.31E-1| 4.55E-3| 4.95E-2| 8.24E-3
. 1 4 .8E-2 1.23E-1| 9.29E-4| 9.61E-3| 1.38E-3

first-order

3 1.3E-1 1.77E-1| 2.16E-3| 1.72E-2| 3.15E-3

Table 2.6: The RMSE for the zeroth- and first-order Tikhonegularisation fop €
{0, 1,3}% noise, for Example 1 Case 5.

L parameter RMSE
Regularisation p(%) s ) W00 | o@D [
- 0 0 5.598 | 3.35E-3| 1.72E-3| 6.76E-4
- 1 0 29E+3| 1.776 | 9.09E-1| 3.56E-1
seroth-order 1 2.2E-3 1.584 | 3.92E-2| 1.60E-2| 7.79E-3
3 9.5E-3 2.033 | 9.38E-2| 4.73E-2| 2.53E-2
first-order 1 1.7E-1 0.673 | 2.29E-2| 1.02E-2| 4.93E-3
3 3.4 1.334 | 7.52E-2| 3.92E-2| 2.00E-2

Table 2.7: The RMSE for the zeroth- and first-order Tikhonegularisation fop €
{0,1,3,5}% noise, for Example 1 Case 6.

L parameter RMSE
Regularisation p(%) | ™) T T w00 T ) | w0 [ wd
- 0 0 1.49E+2| 2.58E-2| 6.08E-2| 4.66E-2| 1.09E-1
- 1 0 6.78E+4| 1.17E+1| 2.77E+1| 2.13E+1| 4.98E+1
1 1.8E-4 1.380 | 1.96E-2| 9.67E-3| 4.59E-2| 1.68E-2
zeroth-order 3 6.3E-4 1.559 | 4.03E-2| 2.61E-2| 8.14E-2 | 4.28E-2
5 8.8E-4 1.737 | 4.07E-2| 2.23E-2| 8.51E-2| 3.78E-2
1 | 2.4E2 | 5.90E-1| 1.19E-2| 6.82E-3| 2.50E-2| 1.10E-2
first-order 3 8.4E-2 5.36E-1| 1.71E-2| 1.12E-2| 2.81E-2| 1.52E-2
5 | 9582 | 5.04E-1| 1.80E-2| 1.36E-2| 3.49E-2| 2.31E-2
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Figure 2.15: (a) The discrepancy principle curve, and thedydical (—) and nu-
merical results of (b)(t), (c) u(1,t), (d) u,(0,t), and (e)u,(1,t) obtained using the
zeroth-order Tikhonov regularisation fpr= 1% (— - —) andp = 3% (— — —) noise

with the regularisation parametexg, given in Table 2.5, for Example 1 Case 4.
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Figure 2.16: (a) The discrepancy principle curve, and thedydical (—) and nu-
merical results of (b)(t), (c) u(1,t), (d) u.(0,¢), and (e)u,(1,t) obtained using the
first-order Tikhonov regularisation for = 1% (— - —) andp = 3% (— — —) noise

with the regularisation parametexg, given in Table 2.5, for Example 1 Case 4.
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(c) u(1,t) and (d)u,(1,t) for exact data and = 0, for Example 1 Case 5.
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Figure 2.18: The analytical (—) and numerical {—) results of (a)y(¢), (b) «(0, t),
(c) u(1,t) and (d)u,(1,t) for p = 1% noisy data and = 0, for Example 1 Case 5.
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Figure 2.19: (a) The discrepancy principle curve, and thedydical (—) and nu-
merical results of (b)(¢), (c) «(0,t), (d) u(1,t), and (e)u,(1,¢) obtained using the
zeroth-order Tikhonov regularisation fpr= 1% (— - —) andp = 3% (— — —) noise

with the regularisation parametexg, given in Table 2.6, for Example 1 Case 5.
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Figure 2.20: (a) The discrepancy principle curve, and thedydical (—) and nu-
merical results of (b)(¢), (c) «(0,t), (d) u(1,t), and (e)u,(1,¢) obtained using the
first-order Tikhonov regularisation for = 1% (— - —) andp = 3% (— — —) noise

with the regularisation parametexs;, given in Table 2.6, for Example 1 Case 5.
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Figure 2.21: The analytical (—) and numerical {—) results of (a)y(¢), (b) «(0, t),
(c) u(1,t), (d) u,(0,t), and (e)u.(1,t) for exact data and = 0, for Example 1 Case
6.
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Figure 2.22: (a) The discrepancy principle curve, and tlaydical (—) and numeri-
cal results of (b)(¢), (¢) u(0,t), (d) u(1,t), (€)u.(0,t), and (f)u,(1,¢) obtained using
the zeroth-order Tikhonov regularisation foe {1(—-—), 3(---), 5(———)}% noise
with the regularisation parametexs;, given in Table 2.7, for Example 1 Case 6.
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Figure 2.23: (a) The discrepancy principle curve, and tlaydical (—) and numeri-
cal results of (b)(¢), (¢) u(0,t), (d) u(1,t), (€)u.(0,t), and (f)u,(1,¢) obtained using

the first-order Tikhonov regularisation fpre {1(— - —), 3(---

), 5(— — —)}% noise

with the regularisation parametexg, given in Table 2.7, for Example 1 Case 6.
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sults obtained were oscillatory as in Figure 2.22(b). Feg2i24 shows the numerical
results obtained for various amounts of nojsee {0,0.1,0.5,1}% for the regular-
isation parametera ;s given in Table 2.8. From this figure it can be seen that the
regularised BEM can invert accurately up to abouats noisy data. For higher levels

of noise the reconstruction of the non-smooth heat souré@)3tarts to deteriorate.

Table 2.8: The RMSE for the first-order Tikhonov regulaiisatfor p €
{0,0.1,0.5,1}% noise, for Example 2.
o parameter RMSE
p(%) \ T T 00 | w0 [ wd
0 A=1.0E-5 | 1.63E-3| 1.40E-5| 9.88E-6| 1.77E-5| 1.54E-5
0.1 | \ys=2.7E-2| 2.60E-2| 1.11E-3| 7.93E-4| 1.48E-3| 1.02E-3
0.5 | \yis=3.1E-1| 1.02E-1| 4.51E-3| 3.11E-3| 6.84E-3| 4.21E-3
1 Aais=1.1 | 1.28E-1| 8.10E-3| 5.84E-3| 1.09E-2| 7.61E-3
""""" )\fl.l §=024
7 e
o
--------- e

(b)

@)

Figure 2.24: (a) The discrepancy principle curve, and thedydical (—) and nu-
merical results of (b)(¢) obtained using the first-order Tikhonov regularisation for
p € {0(coo0), 0.1(—-—), 0.5(---), 1(— — —)}% noise with the regularisation pa-
rameters\,;, given in Table 2.8, for Example 2.

2.5 Conclusions

In this chapter, inverse problems with nonlocal boundarydaions have been inves-

tigated in order to find the time-dependent heat source andetihperature entering
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equation (2.1). Three general boundary and overdetermmabnditions (2.3) have
been expanded into 6 separate Cases 1-6 generating sigaru@blems to solve in
the context of inverse time-dependent source identifinatib was found, see Table
2.1, that most ill-posed problems are given by Cases 6 antidsvied by Case 1. It
turns out that Cases 2—4 are less ill-posed compared to évweops ones. This is con-
sistently reflected in the accuracy and stability of the nucaéresults obtained with
no regularisation for both exact and noisy data. Regulinisavas found essential
in all cases investigated, with the first-order regularsaperforming better than the
zeroth-order one.

As we have studied in this chapter, the nonlocal boundaryocaeddetermination
conditions are considered in general boundary conditiomfdn the next chapter, the
nonlocal boundary condition will be considered togethdhwan integral overdetermi-

nation to find the time-dependent heat source.
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Chapter 3

Determination of a Time-dependent
Heat Source from Nonlocal Boundary

and Integral Conditions

3.1 Introduction

In many of studies of solving inverse source problems forttbat equation, see e.g.
[15, 17, 29, 61, 63, 66-68], the overdetermination condgiwaere selected among
classical boundary conditions and similar conditions gieg interior points located
inside the body under investigation. More general, norland integral overdetermi-
nation conditions have also been considered, see the maplug25] and [43].

In the previous chapter, we have investigated the retriezéthe time-dependent
heat source(¢) and the temperature(z, t) in the heat equation (2.1) with the three
general boundary and overdetermination conditions (218}his chapter, the inves-
tigation of finding the time-dependent heat source and timpéeature for the heat
equation is still of our interest, but an integral conditisrtonsidered as overdetermi-
nation condition.

This chapter is organised as follows. In Section 3.2, thénarattical inverse for-

61
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mulation is described and the numerical discretisatiomefdroblem using the BEM
is presented in Section 3.3. The TSVD and the Tikhonov regpatgon are described
in Section 3.4, as procedures for overcoming the instglolitthe solution. Finally,

Sections 3.5 and 3.6 discuss the numerical results anddigkihe conclusions of this

chapter.

3.2 Mathematical formulation

Consider the problem of finding the time-dependent heatcsoyt) € C([0,7]) and
the temperatures(z,t) € C%'(Dy) N CY°(Dy) which satisfy the heat conduction
equation

Ut = Ugy + T(t)f([[’,t), (l’,t) € Dr, (31)

where L = 1 in the definition of Dy in (1.1), subject to the initial condition (1.7),
namely

u(z,0) = ug(x), =z €/0,1], (3.2)

the boundary conditions
U(O, t) = U(l, t)a UI(O, t) + au(O, t) = 07 te [07 T]a (33)
and the energy/mass specification
1
/ u(z, t)de = E(t), te][0,T], (3.4)
0

wherea # 0 is a given constant anfi, u,, F are given functions. The first periodic-
ity condition in (3.3) is nonlocal, whilst (3.4) specifies imtegral specification of the
energy of the thermal system. The nature of the boundaryitonsl (3.3) in mathe-
matical biology is demonstrated in [41], whilst the pregtian of the energy, or mass,
(3.4), is encountered in heat transfer applications, [2(), 2

The unique solvability of the inverse problem (3.1)—(3.4¥ been established in
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[18], as given by the following theorem.

Theorem 3.2.1 Let the following conditions be satisfied:
(A1) uo(z) € C?[0,1]; up(0) = up(1), uy(0) + aug(0) = 0;
(As) E(t) € CY0,T]; E(0) = [ up(x)da;

(A3) f(l‘,t) € C(ET)v f('vt) € 02[07 1]7 vt € [OvT]; f(ovt) = f(lvt)’
£2(0,8) + af(0,t) = 0; and [ f(x,t)dx # 0, ¥t € [0,T].

Then the inverse proble(8.1)3.4) has a unique solutiotv(t), u(z, t)) € C[0,T] x
(C*Y(Dr) N CYO(Dy)).

Although the inverse problem (3.1)—(3.4) is uniquely sbleait is still ill-posed. In
the next section we will demonstrate how the BEM discregisinmerically, the heat
equation (3.1) can be used together with the regularisatiope described in Section

3.4 either the TSVD or the Tikhonov regularisation, in ortteobtain stable solutions.

3.3 The boundary element method (BEM)

In this section, we use the BEM to discretise the heat equé&8id). As introduced in

Section 1.3, the use of BEM results in the boundary integyah&on

s = [ [6tot6m) 50 en) — e &) ar

on(§) on(§) €ef{0,1}
+/01G(x,t,y,0)U(y,0) dy+/Ol/OtG(x,t,y,T)T(T)f(y,T) drdy,

(z,1) € [0,1] % (0,T7. (3.5)
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Using the same discretisation as described in Section 23biain

N
Z AO] xZ, t qOJ —FAL](J? t)qL] Boj(l’,t)hoj — BLj(SC,t)th]

7j=1
No
+ Z Ck(xa t)uo,k + d(l’, t)) (36)

k=1

where source functiongt) and f(z, t) are assumed to be piecewise constant approx-

imations as defined in (2.21). Then, the double integral israpproximated as

d(z,t) = /Otr(f) </01 Gz, t,y, 7)f(y,7) dy) dr = ile(x,t)rj,

where

t; ol 3 1 3
Dj(x7t) = /t /0 G(xatvva)f(yvtj)dydT - /0 f(yatj)ij(xvt) dy,

is calculated using the midpoint integration rule. Here, ititegral equation (3.6) can

be written as
N
Z AO] xZ, t QQJ + ALJ(Jf t)qL] B(]j(l’,t)hoj — BLj(SC,t)th]
7j=1

No N
+ Z Cr(z, t)uo + Z Dj(x,t)r;. (3.7)
k=1 j=1

By applying (3.7) at the boundary nod@st;) and(1,;) for i = 1, N, we obtain the
system o2 N equations
Aq— Bh+ Cu, + Dr=0Q, (3.8)
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where all matrices and vectors are defined the same as in (£&&4m the boundary

conditions (3.3), we can express the boundary temperatase h

h— ho; _ u(0,t;) _ _Eux(ov i) _ —~ug(0,1;) _ l doj
hLJ u(lv ~j) u(07 fj) __ux(ov ~j) @ doj
Then, the system of equations (3.8) can be rewritten as
1
(A— a(BJFB*)) g+ Cu, + Dr=Q, (3.9)
B O,i —By,; O,ZZ
where B* = LJE )1 LJE )1 . Then, we can express
BLJ(lvtl) + 5527 BLJ(Lti) 2% ] o xan
the flux gas
1 -1
g=— <A—E(B+B*)) (Cu, + Dr) . (3.10)

We now discretise the integral expression in (3.4), via th@paint numerical in-

tegral approximation, as

1
Ni Zu(fk,fi) = / u(z,t;)dr = E(t;) =:¢; fori=1,N. (3.11)
0

Using the integral equation (3.5), as before, equationl{3dsults in the system of

equations

1 1 *
= KAL” — (B + B >) a+ iy, + D,i”r} -E (3.12)
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where

1 - = 7 ! T, 1, Tk, t
Al(c) - [Aoj(xkati) ALJ("L‘k’ti)} Nx2N '~ Bl(c) - [Boj(xk’ti) BLj(xk’iEi)]NxQN7

1)* =7 7. 1, : T, 1,
B/g) - [BLj(xk,tz) _BLj(xkati)]NXQN’ C’(ﬂ) - [Cl(xk’ti)]NxNo’

and D! = [Dj(g}k,fi)]NxN, E= MN, for k,1=1,Ny, i,j=1,N.

Substituting the expression (3.10) into (3.12), we obtagstem of NV x N linear

equations as follows:

Xr=y, (3.13)

1 Q[ o lo_a L 1 A) (1)
where X:m; —(Ak - (B, + By )) (A—E(B+B)) D+ Dy
IR AN IRt 1 A) o)

and y:E+ﬁ0; (Ak - (B + By )) (A—E(B+B)) C - .

Since the problem is ill-posed, then the system of equa{®Ads8) is ill-conditioned.
In the next section, we will deal with this ill-conditioningsing regularisation in order

to obtain a stable solution.

3.4 Regularisation

As we have mentioned before, the inverse time-dependenshaece problem (3.1)—
(3.4) has a unique solution. However this inverse problestilisll-posed since small
errors into the energy measurement (3.4) result in largarein the solution.r In

order to model this, we investigate the stability of the ntioa solution with respect

to noise in the energy data (3.4), defined as

E° = E+ random('Normal,0,0,1, N), (3.14)
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with the standard deviation computed by

- E()|. 3.15
o =px max |E(1)] (3.15)

When the noise is present the right-hand side of equatidr3)3s contaminated by

some noise,

Iy =yl ~ e, (3.16)

therefore we have to solve the following system of linearagiquns instead of (3.13):
Xr=y-", (3.17)

then the inverse solutian+ X 'y of (3.13) will be a poor unstable approximation to
the exact solution. This instability can be overcome by @yiplg the regularisation
method, and this study, we utilise either the TSVD or the ®iikbv regularisation
methods to solve the linear and ill-conditioned system oiagigns (3.17).

When the noise is present, we employ the TSVD procedure, ssibded in Sec-
tion 1.6.1 by using thgJ, >:,V]=svds(XV;) command in MATLAB where théV, is the
truncated level indicated by thie-curve method or the discrepancy principle. Alterna-
tively, the regularisation namely the Tikhonov reguldi®ais another way to obtain
a stable solution, as described in Subsection 1.6.2, yiglthe regularised solution
(1.34).

3.5 Numerical examples and discussion

In this section, we present a couple of benchmark test exasnglillustrate the accu-
racy and stability of the BEM combined with the Tikhonov r&gisation technique
presented in Section 3.4. In order to illustrate the acqucdche numerical results,
the RMSE defined in (2.49) is also used here.
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3.5.1 Example 1

In the first example, we consider the inverse problem (33LH-(vithT = 1, the input

data

u(@,0) = uo(z) = 1+2— 2, f(5,6) = B+ 2 — a2,

1 7€t (318)
/ u(z,t)de = E(t) = e
0

and subject to the boundary condition (3.3) witk= —1. Then the analytical solution
of the inverse problem (3.1)—(3.4) is given by

u(z,t) = (1+z — 2%, 7r(t) =e*. (3.19)

The normalised singular values of matk in equation (3.13) fotV, = N €
{20,40, 80} are shown in Figure 3.1. The corresponding condition nusbEmatrix
X are 248, 780, and 2393 fa¥, = N € {20,40, 80}, respectively. These values
indicate that the system of equations (3.13) is mildly dhditioned [42].

Normalised Singular Values
= =
o o
-~
’?
1
1

=

S
&

’

10"

. . . . . . . .
0 10 20 30 40 50 60 70 80
N

Figure 3.1: The normalised singular values of matkixfor Ny = N € {20 (— -
—),40 (---),80 (— — —)}, for Example 1.

In what follows, we present numerical results obtained WWth= N = 40. We
consider first the case of exact data, i.e. there is no noigkerinput data (3.4).

Figure 3.2(a) shows the analytical and numerical resulig©ffrom which it can be
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seen that the numerical solution is very accurate. FigutébBshows the numerical
solution of u(0,¢) in comparison with the analytical valug0,¢) = ¢'. The same
very good agreement between the numerical and analytit#tisos is recorded. We
do not present the results for the fluxzat= 1 since these were found to be equal to
the negative of the boundary temperature at 0. This is to be expected since from
(3.18) we haveuy(x) = up(1l — ), f(z,t) = f(1 — x,t) and it can easily be verified
that from (3.8), using (3.3) with = —1, it follows thatgL = —h,. Furthermore, note
that\ = 0, i.e. no regularisation, was found necessaryfgr= N = 40 and exact

input data (3.4).

=

L L L L , L L L L ,
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
t t

(@) (b)

Figure 3.2: The analytical (—) and numerical-(—) results of (a)(¢) and (b)u(0, t)
for exact data and = 0, for Example 1.

Next, we investigate the stability of the numerical solatigith respect to noise
in the energy data (3.4), we add noise to the right-hand dideeocoversdetermina-
tion condition (3.4),E¢, as generated in (3.14) with the standard deviation given by
= 7%). The contaminated data input with= 1% is firstly inverted by using the

Gaussian elimination procedure as shown in Figure 3.3.08ifgh from Figure 3.3(b)

the numerical solution fox (0, ) seems to remain stable and accurate, whereas Figure
3.3(a) shows that the numerical solution fdt), with no regularisation, is unstable,
i.e. highly oscillatory and unbounded. This phenomenomw ise expected since the

inverse problem under investigation is ill-posed with thea#lest normalised singular
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value for N = 40 being ofO(10%). Moreover, similar unstable results are obtained by

using the untruncated SVD or with= 0 in regularised solution (1.34), instead of the
Gaussian elimination method.

L L L L L L L L
0.2 04 0.6 0.8 0 0.2 0.4 0.6 0.8
t t

(@) (b)

Figure 3.3: The analytical (—) and numerical-(—) results of (a)(¢) and (b)u(0, t)
for p = 1% noisy data and = 0, for Example 1.

In order to avoid the over amplification of noise and maintaim stability of the
results when the noise is presented, we employ the regati@ansof either the TSVD
or the Tikhonov regularisation of orders zero, one and tweotHermore, thd.-curve
method and the discrepancy principle are investigateddizcate the truncation level
N, for using TSVD, and choose the regularisation paramefer using the Tikhonov
regularisation. Firstly, we consider the BEM together whk TSVD in the case of
p € {1,3,5}%. Initially, we have tried the_-curve criterion which should select the
truncated numbeN; at the corner of_-curve graph. Figure 3.4 displays thecurves

for various percentages of noiges {1, 3, 5}%. From this figure, especially on the nor-
mal scale one can see thatshaped curves appear and their corners indicate the level
of truncation/, in the following intervals{9, . . ., 32}, {12, ..., 24} and{10,...,17}

for p € {1,3,5}%, respectively. Alternatively, one can choose the trunceliével by

the more rigorous discrepancy principle which uses the kexge of the level of noise
asin (3.16), i.ec = ||y —y|| = ||E° — EJ|. Figure 3.5(a) represents the discrepancy
principle to selectV, for p € {1,3,5}%. These truncated numbeh§ are obtained
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within the intervals which have been recommended by/tfwairve criterion of Figure
3.4. Besides, the numerical results f@t) andw« (0, t) are illustrated in Figures 3.5(b)
and 3.5(c), respectively, and the RMSE for these resultgiaesn in Table 3.1. From
Table 3.1 it can be remarked that the accuracy of the nunieesalts foru (0, ¢) im-
proves as the percentage of noise decreases; howeverntreggence of the numerical
solution forr(t) towards the analytical solution is non-monotonicpadecreases (to
zero), see also Figure 3.5(b). Further, from Figure 3.5{©an be seen that the nu-
merical results for:(0, t) are stable, although by comparing with Figure 3.3(b) it can
be seen that fop = 1% noise the results with untruncation, i.e. no regularisatare
slightly more accurate than the results with= 15. This is somewhat to be expected
since the pair of solution@.(z, t), r(t)) of the inverse problem is stable in the temper-
atureu(x,t) component, but unstable in the heat sour@@ component. This latter
instability in r(¢) which has already been illustrated in Figure 3.3(b), isvaked in
Figure 3.5(b) which shows the numerical results with regsdaion.

Alternatively for comparison, the zeroth-order Tikhonegularisation (ZOTR) is
also utilised here. Initially, we have tried tHecurve plot of the residud| Xr, —
y¢|| versus the norm of the solutidix, ||, but we have found that ah-corner could
not be clearly identified. This is to be somewhat expectedirse thel-curve is a
heuristic method which is not always convergent [58]. Armotbptional method, the
more rigorous discrepancy principle which uses the knoggeaf the level of noise
is recommended.

Figure 3.6(a) shows the discrepancy principle curves, &ious percentages of
noisep € {1, 3,5}% where the intersection of the residual curve with the hariab
level noisy linee yields the value of\;s. The RMSE for the output solutions oft)
andu(0, t) obtained with these values &f;, are given in Table 3.1 and the numerical
results are illustrated in Figures 3.6(b) and 3.6(c). Frioisitable it can be seen that the
ZOTR slightly outperforms the TSVD. As it can be seen fromufes 3.6(b) and 3.6(c)
the numerical results obtained by the ZOTR are stable andad ggreement with the

analytical solution. Although Figure 3.6(b) representgaificant improvement over
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Figure 3.4: TheL-curve on (a), (c), (e) log-log scale and (b), (d), (f) norreadle,
obtained using TSVD fop € {1(top), 3(middle), 5(bottom) }% noise, for Example
1.
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Figure 3.5: (a) The discrepancy principle curve, and thdyénal (—) and nu-
merical results of (b)(¢), and (c)u(0,¢) obtained using the TSVD fgy € {1(— -
—=), 3(---), 5(— — —)}% noise at the truncation levéV; given in Table 3.1, for Ex-
ample 1.

Figure 3.3(a) the numerical results are still oscillatdnyorder to further improve on
the accuracy and stability of the numerical results of Fegli6(b), next we employ the
regularisation with the higher-order Tikhonov regulatisa of orders one and two.
Figures 3.7 and 3.8 show the analogous numerical resultggtod=3.6, but for
the first- and second-order Tikhonov regularisation, deth&(OTR and SOTR, respec-
tively. The corresponding values of the regularisatiorapeeters\,;;; chosen accord-
ing to the discrepancy principle are given in Table 3.1. Bynparing Figures 3.6-3.8

and Table 3.1, it can be seen that the use of higher-ordelamggation improves the
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Figure 3.6: (a) The discrepancy principle curve, and thdyénal (—) and nu-
merical results of (b)(¢), and (c)u(0,¢) obtained using the ZOTR fgr € {1(— -
-), 3(--+), 5(—= — —)}% noise with the regularisation parametas, given in Table
3.1, for Example 1.

accuracy and stability of the numerical results. This isd@kpected since the analyt-
ical solution (3.19) to be retrieved is infinitely differéaitle. However, if less smooth
sources are attempted to be retrieved, the use of higher-oedularisation does not
necessarily improve the accuracy of the numerical resastsan be seen from the next

example.
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Table 3.1: The RMSE for the TSVD, ZOTR, FOTR, SOTR foe {0, 1, 3,5} % noise,
for Example 1.

Regularisation p(%) | parameter r(t)RMSuE(O’ )
0 0 8.1E-3| 6.6E-4

) 1% 0 11.66 | 0.023
1% N;=15 1.080 | 2.47E-2
TSVD 3% N=9 1.443 | 6.03E-2

5% N=10 1.521 | 7.25E-2
1% | A\ais=8E-4| 0.878 | 2.40E-2
ZOTR 3% | A\uis=4E-3| 1.324 | 6.22E-2
5% | Aais=DE-3| 1.280 | 9.90E-2
1% | A\ais=0.05| 0.246 | 1.17E-2
FOTR 3% | Aais=0.45| 0.435 | 3.14E-2
5% | Aais=0.64 | 0.595 | 5.81E-2
1% Aais=9.2 | 0.113 | 6.86E-3
SOTR 3% Aais=81 | 0.198 | 2.67E-2
5% | Aais=324 | 0.473 | 5.48E-2

3.5.2 Example 2

The previous Example 1 involved retrieving a smooth souwoetion given by-(t) =
e?t. In this example, we are considering the BEM combined onlythe Tikhonov
regularisation as we found in the previous example that @€RZ slightly outperforms

the TSVD. Consider a more severe discontinuous test fumgiien by [63],

;

—1, t€]0,0.25),

1, te[0.25,0.5),
r(t) = (3.20)

—1, tel0.5,0.75),

1

\

. te[0.75,1].

We alsotakd” = 1,a = —1,uy = 0, andf = 1. Since the inverse problem (3.1)—(3.4)
does not have an analytical solution available for the teatpeeu(x, t), the input en-

ergy data (3.4) is numerically simulated by solving first direct problem (3.1)—(3.2)
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Figure 3.7: (a) The discrepancy principle curve, and thdyénal (—) and nu-
merical results of (b)(¢), and (c)u(0,t) obtained using the FOTR fgr € {1(— -
-), 3(--+), 5(—= — —)}% noise with the regularisation parametas, given in Table
3.1, for Example 1.

with r given by (3.20). The numerical results féi(¢) and« (0, ¢) are shown in Fig-
ures 3.9(a) and 3.9(b), respectively, for various numbétsoandary elements/cells
N = N, € {20,40,80}. From Figure 3.9 it can be seen that the numerical solution is
convergent as the number of boundary elements increasss, thkre is little differ-
ence between the numerical results obtained with the vanmesh sizes showing that
the independence of the mesh has been achieved. We carotededfe the numerical
results forE(t), simulated from the direct problem withi = N, = 40 and shown in

Figure 3.9(a), as our input (3.4) in the inverse problem)@&3.4). Furthermore, in
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Figure 3.8: (a) The discrepancy principle curve, and thdyénal (—) and nu-
merical results of (b)(¢), and (c)«(0,¢) obtained using the SOTR for € {1(— -
-), 3(--+), 5(— — —)}% noise with the regularisation parametas, given in Table
3.1, for Example 1.

order to avoid committing an inverse crime [32], in the iseeproblem the number of
cells is takenV, = 30 (different than 40) while the number of boundary elements is
kept the sameV = 40.

First, Figures 3.10(a) and 3.10(b) show the numerical tedat r(¢) andu(0, t),
respectively, for no noise in the input data (3.4) obtainéith wo regularisation, i.e.
A = 0. The exact solution (3.20) for(¢) is also included, and the numerical solution
for u(0,t) from Figure 3.9(b) withNV' = N, = 40 is also referred to as ‘analytical’.

From Figure 3.10 it can be seen that the agreement betweemnutherical and the
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Figure 3.9: The numerical results of (&)¢) and (b)«(0, ¢) obtained by solving the
direct problem withVy = N € {20 (— - —),40 (---),80 (— — —)}, for Example 2.
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Figure 3.10: The analytical (—) and numeri¢al - —) results of (a)y-(¢) and (b)
u(0, t) for exact data and = 0, for Example 2.

analytical solutions is excellent. Next we add noise to thpait data (3.4) numerically
simulated in Figure 3.9(a). This is generated as in (3.14) tie standard deviation
given byo = 0.19p. If A = 0, the numerically retrieved results foft) were found

highly unbounded and oscillatory and therefore, they at@resented. The numerical
results for the discrepancy principl€f) andu(0, ) for various amounts of noise and
regularisation of various orders zero, one, and two are showigures 3.11-3.13, re-

spectively, and Table 3.2. The use of higher-order reggdion imposes higher-order
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Table 3.2: The RMSE for the ZOTR, FOTR, SOTR fore {1,3,5}% noise and
N = 40, Ny = 30, for Example 2.

parameter RMSE
Adis r(t) | u(0,?)
1% 8.7E-5 | 0.195| 1.90E-3
ZOTR 3% 3.3E-4 | 0.284| 4.66E-3
5% 4.3E-4 | 0.287| 5.80E-3
1% 9.9E-5 | 0.211| 1.98E-3
FOTR 3% 8.1E-4 | 0.289| 4.38E-3
5% 7.8E-4 | 0.280| 4.69E-3
1% 7.7E-5 | 0.223| 2.06E-3
SOTR 3% 9.2E-4 | 0.292| 4.48E-3
5% 7.3E-4 | 0.279| 4.48E-3

Regularisation p(%)

smoothness of the desired output hence, since the solBi@n)(is discontinuous,
more accurate results are obtained with the ZOTR, whilsH@&R and the SOTR,
although they achieve stability, they slightly oversmatbita retrieved solution.

3.6 Conclusions

In this chapter, the inverse problem of finding the time-aej@at heat source together
with the temperature of heat equation under non-local bayynahd integral overdeter-
mination conditions has been investigated. The genenabsled problem, a numerical
method based on the BEM combined with either the TSVD or tkednov regularisa-
tion has been proposed. The TSVD has been truncated at tineabptuncation level
given by theL-curve criterion and the discrepancy principle. Whereasdiscrep-
ancy principle for choosing the regularisation parameién three orders of Tikhonov
regularisation have also been employed. The numericaltsesare found to be ac-
curate and stable. These features of the numerical solutarease with decreasing
the amount of noise included in the input data and with irgirgathe order of reg-
ularisation for smooth sources. However, as expected,snoweth sources are more

accurately reconstructed by lower-order regularisation.
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Figure 3.11: (a) The discrepancy principle curve, and thedydical (—) and nu-
merical results of (b)(¢), and (c)u(0,¢) obtained using the ZOTR fgr € {1(— -
-), 3(--+), 5(—= — —)}% noise with the regularisation parametas, given in Table
3.2, for Example 2.

We have studied the nonlocal boundary and integral ovardéatation condition
for the inverse source problem for the heat equation. Inéxéchapter, we will subject

these conditions to a coefficient identification problemtfer bioheat equation.
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Figure 3.12: (a) The discrepancy principle curve, and thedydical (—) and nu-
merical results of (b)(¢), and (c)u(0,t) obtained using the FOTR fgr € {1(— -
-), 3(--+), 5(— — —)}% noise with the regularisation parametays given in Table
3.2, for Example 2.
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Figure 3.13: (a) The discrepancy principle curve, and thedydical (—) and nu-
merical results of (b)(¢), and (c)u(0,t) obtained using the SOTR for € {1(— -
=), 3(--+), 5(—= — —)}% noise with the regularisation parametas given in Table
3.2, for Example 2.



Chapter 4

Determination of a Time-dependent

Coefficient in the Bioheat Equation

4.1 Introduction

The bioheat equation establishes a mathematical connda¢itveen the tissue tem-
perature and the arterial blood perfusion which are the danticomponents in human
physiology, see [55]. It involves a blood perfusion coeéfitiwhose determination is
of much interest, [53].

In the previous chapter, we have considered the identificati the time-dependent
heat source(t) and the temperature(zx, t) in the heat equation (3.1) with nonlocal
boundary and integral conditions. In this chapter, we airfind the time-dependent
blood perfusion coefficient functioR(¢) and the temperature of the tissuer, t) en-
tering the bioheat equation (4.1) below. The initial (3r®nlocal boundary (3.3) and
integral (3.4) conditions are the same as in the previougtena/Ve mention that time-
dependent coefficient identification problems with nonldmaundary and/or integral
overdetermination conditions have recently attractedaksing interest, e.g. the re-
construction of a time-dependent diffusivity [27], a blqoetfusion coefficient [23], or

a heat source [18, 24].
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The inverse problem investigated in this chapter has ajrémeén proved to be
uniquely solvable in [33], but no numerical reconstructi@s been attempted. There-
fore, the purpose of this chapter is to devise a numerichlestaethod for obtaining

the solution of the inverse problem.

4.2 Mathematical formulation

Let us consider the inverse problem consisting of findindithe-dependent blood per-
fusion coefficient functiorP(t) € C|0, 7] and the temperature of the tissuer, t) €
C%*Y(Dy)NCHY(Dy) satisfying the one-dimensional time-dependent biohazgon,
[33, 54],

ug(z,t) = uge(x,t) — P(t)u(x, t) + f(x,t), (x,t) € Dr, (4.1)

wheref is a known heat source term anhd= 1 in the definition ofD+ in (1.1), subject

to the following initial, boundary and overdeterminatiamditions:

u(z,0) =ug(x), =z €]|0,1], (4.2)

uw(0,t) = u(l,t), u.(0,t) +au(0,t)=0, te]l0,T1], (4.3)

/1 u(z, t)de = E(t), te€][0,T], (4.4)
0

where the functionu, is given and it denotes the initial temperaturejs a given
constant heat transfer coefficient, alidepresents the mass or energy of the system.
Note that the nonlocal periodic boundary condition (4.3nsountered in biological
applications, [41], whilst the mass/energy specificatdbd) models processes related
to particle diffusion in turbulent plasma, [22], or heat dantion, [10]. The physical
constraint that the blood perfusidt(¢) is positive can also be imposed, [37].

Note that the case = 0 has been dealt with in [24]. Herein, we consider the case

a # 0 whose unique solvability and local continuous dependehtgecsolution upon
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the data of the inverse problem (4.1)—(4.4) have been eésall in [33]. Moreover,
the continuous dependence of the solution upon the datavalsestablished, [21].

Consider now the following transformation, [11],

vz, t) = ru(z,t), r(t) = exp ( /O t P(r) dT) . (4.5)

Then the inverse problem (4.1)—(4.3) becomes

U = Uge +7(8) f(2, 1), (2,t) € Dp, (4.6)
v(x,0) =up(z), x€l0,t], (4.7)
v(0,t) =v(1,t), v.(0,¢) +av(0,t) =0, ¢e]l0,T], (4.8)

with the transformed integral condition

/1 v(x,t)de = E(t)r(t), tel0,T]. (4.9)

We also have that € C'[0, 7], r(0) = 1, r(t) > 0, fort € [0, T]. Solving the inverse
problem (4.6)—(4.9) for the solution pair(t), v(x,t)) yields afterwards the solution
pair (P(t), u(z,t)) for the inverse problem (4.1)—(4.4) as given by

v(zx,t)

P = "W and w(zt) = i(t) |

(z,t) € Dr. (4.10)

From equation (4.10) one can observe that the ill-posedofes®e inverse problem
consists of the numerical differentiation of the noisy ftioie (¢) which would need

regularisation.

4.3 The boundary element method (BEM)

In this section, we apply the BEM to the one-dimensionalisggroblem (4.6)—(4.9),

in order to approximate the solutign(t), v(z, t)) which in turn, via (4.10), leads to
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the original solution P(t), u(x,t)) of the inverse problem (4.1)—(4.4). Utilising the
BEM is classical with the use of the fundamental solutiontfer heat equation and

Green’s identities. As introduced in Section 1.3, we thetaiolthe boundary integral

equation

o) = [ |06 06 g e gnEen]
+/0 G(x,t,y,O)v(y,O)dy+/0/0 Gz, t,y, 7)r(7)f(y, 7) drdy,
(z,t) € [0,1] x (0, 7). (4.11)

Using the same discretisation as in Chapters 1-3, then tbgral equation above can

be approximate as
N
) =Y [Aoj(, t)go; + Ar;(, t)qr; — Boj(x, t)ho; — Brj(w, 1)hy]
7j=1
No N
+ Z Cr(x, t)ugr + Z Dj(x, t)r;. (4.12)
k=1 =1

By applying the boundary condition (4.3), we obtain thesgsbf2 NV linear equations,

the same as in (3.9),
(A— é(B+B*)) q+Cuy+ Dr=0Q (4.13)

The transformed integral condition (4.9) can also be exga@svia the midpoint nu-

merical integral approximation, as




Chapter 4. 87

By using the integral equation (4.12), via (4.13), and (}d<tthe same in Chapter 3
yields
No

1 1 *
- {Cﬁkjj@U+Q909$Cﬁ%+D?%:EL (4.15)
0 k=1

whereE = diag(eq, ey). Eliminating gfrom (4.13) and (4.15) yields a linear system

of N equations
Xr=y, (4.16)

with N unknowns, where

No —1
1 1 1 1 1)* 1 1
X==> |- (4" -=-BY+B")) (A-=B+B)) D+D|-E
NOk:1 (k Oé( k + k ) Oé( + ) + k )
1 O o 1, o0, 0 1 - 0
= =S|y - =B BYY) (A= Z(B+B* c—cYy,.
y Nok:1 <k a(k+ i ))( a( + )) k| Yo

As we have mention before, this inverse problem is ill-podbdn we need to
employ the regularisation in order to retrieve the stapditthe solution which will be

present in the next section.

4.4 Regularisation

In practical measurements, the data (4.4) is usually cantted with noise. In order
to model this, we perturb (4.4) with random noise as define(Bih4), i.e. E =
E + e. Then, from the contamination, it means that the left-hadd snatrix X is

contaminated with noise, denoted &y, where
e~ || X = X|. (4.17)

The norm of the matrix above is defined as the square root cfuthreof squares of all

its elements. Hence, instead of (4.16) we have to solve tleviog linear system of
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equations:
Xr=y. (4.18)

When the noise is presented, we employ the Tikhonov regalton, as described

in Subsection 1.6.2, yielding the regularised solution

1

L= ((X)"X“+AR"R) " (X9)'y. (4.19)

where)\ > 0 is a regularisation parameter to be prescribed And a second-order

derivative regularisation matrix given by, [57],

1 -2 1 0 0
B 1 01 -2 1 0 (4.20)
(T/N?* 1o 0o 1 -2 1 '

Note that we have kept the multiple % to the regularisation matrix which
is different from the regularisation matrix introduced iofSection 1.6.2, this is in
order to keep the scaling technique of the computation. Ih9) the regularisation
parameter can be selected according to the GCV criterionolwdtiooses > 0 as the
minimum of the GCV function, see e.g. [63] and (1.35),

[ X0, —yl?
trace] — X<((X)TX¢+ ARTR)~1(X)T)*’

GOV(\) = (4.21)
The solution of the original inverse problem (4.1)—(4.4) b& obtained by substi-

tuting all approximate solutions r, andr’ into (4.10). In order to obtain the solution

P(t), we also need to find the derivative functiefit) which can be approximated

using finite differences as

iy o) =1 () = (i)
T(tl)—ma r(t;) = T/N ;

i=2,N. (4.22)




Chapter 4. 89

In the next section, we will test numerical examples in otdelustrate the accu-

racy and stability of the BEM combined with the regularisattechnique.

4.5 Numerical examples and discussion

This section presents two benchmark test examples in oodesst the accuracy and
stability of the BEM numerical procedure introduced earlithe RMSE defined in

(2.49) is also used here to evaluate the accuracy of the mcathersults.

45.1 Examplel

We consider a benchmark test example with the ifput 1, « = —1 and

w(x,0) =up(z) =14+x—2% f(z,t)=B+z—2%)e

! (4.23)
/0 w(w, t) dz = B(t) = Te~ /6,
Then the analytical solution of the problem (4.1)—(4.4)iieg by
u(z,t) = (1+z—a2%e™", Pt) =2, (4.24)
whilst the analytical solution for the transformed probleh6)—(4.9) is
v(x,t) = (1+x—2°)e, r(t)=e*, (4.25)

In this example, we present the numerical results obtainddaBEM mesh ofNV =
Ny = 40.

We start first with the case of exact data, pe= 0. The numerical results for the
unknownsr(t), u(0,t), r'(t), and P(t) obtained using the straightforward inversion
r= X'y, i.e. without regularisationn = 0 in (4.19), are compared with their cor-

responding analytic valuest, e, 2¢%, and 2, in Figures 4.1(a)-4.1(d), respectively.
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Figure 4.1: The analytical (—) and numeri¢al - —) results of (a)(¢), (b) «(0, t),

(c)r'(t), and (d)P(t) obtained using no regularisation, i.&.= 0, for exact data, for
Example 1.

From Figure 4.1 it can be seen that all the quantities of &stesire accurate.

Next we investigate the stability of the numerical solutisith respect to some
p = 1% noise included in the input energy dafa as mentioned in Section 4.4. The
corresponding numerical results to Figure 4.1 (for exata)dare presented in Fig-
ure 4.2 (for noisy data). In Figures 4.2(a) and 4.2(b) the eniral results obtained
for r(t) andu(0,t), respectively, are relatively accurate. However, the misakre-
sults obtained for'(t) and P(t) = »'(t)/r(t) shown in Figures 4.2(c) and 4.2(d),
respectively, are highly unstable. This is because therdifitiation of the noisy func-

tion r(¢), shown in Figure 4.2(a) with dashed line, using the finitéedénces (4.22)
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Figure 4.2: The analytical (—) and numeri¢al - —) results of (a)(¢), (b) «(0, t),
(c)r'(t), and (d)P(t) obtained using no regularisation, i.e.= 0, for p = 1% noise,
for Example 1.

is an unstable procedure. In order to deal with this ingtgbine can employ the
smoothing spline regularisation of [59], but this requittes knowledge of the discrep-
ancy between the analytical and numerical values(of in Figure 4.2(a), which is
not available if the analytical solution is not available.e \&8hall elaborate in apply-
ing this technique later on for Example 2. Alternatively, maploy the second-order
Tikhonov regularised solution (4.19) with the choice of tegularisation parameter
given by the minimum point of the GCV function (4.21). Thigistted in Figure 4.3

for p = 1% noise and the minimum yields the valdgcy = 1.25 x 107°. With the

value of \gcy = 1.25 x 1072, the solution (4.19) for(¢) is plotted in Figure 4.4(a).
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By comparing with the previous unregularised solution smawFigure 4.2(a), one
can now see that the obtained solution f¢t) is indeed smooth. Then the process
of numerical differentiation (4.22) is permitted and a &adpproximation can be ob-
tained, as shown in Figures 4.4(c) and 4.4(d). There are smaneuracies manifested
at the end points = 0 and 1, but this is commonly observed elsewhere when using
other stabilising techniques such as the mollification metbr, the Tikhonov regular-
isation for the Fredholm integral equation of the first kimdgented in detail in [56].

In Figure 4.4 we have also included for comparative purptisesiumerical results
obtained with the optimal value, in circle lirie o o) of the regularisation parameter
Aopt = 1.05 x 1079 selected by the trail and error. The RMSE fojcy = 1.25 x 1077
and\,,; = 1.05 x 107¢ for the numerical results presented in Figure 4.4(d) in com-
parison with the analytical solution, are 0.324 and 0.2&9pectively. Overall from
Figure 4.4 it can be seen that there are not much differene®geln the numerical
results obtained with the two values of the regularisat@m@meter. This confirms that
the GCV criterion performs well in choosing a suitable regigiation parameter for

obtaining a stable and accurate numerical solution.

x10°

A=1.25x10"°

. )
107 10° 10° 107"
A

Figure 4.3: The GCV function (4.21), obtained using the sdeorder Tikhonov reg-
ularisation forp = 1% noise, for Example 1.
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Figure 4.4: The analytical (—) and numerical results of(a), (b) «(0, t), (c) r'(t),
and (d) P(t) obtained using the second-order Tikhonov regularisatidh Wscy =
1.25 x 107° (= - =) and ), = 1.05 x 107¢ (0 0 0), for p = 1% noise, for Example 1.

4.5.2 Example 2

In the previous example, the BEM together with the secom#oregularisation and
finite differences has been used to solve the inverse profdethe bioheat equation
(4.1)—(4.4). In this example we present the BEM togethehwitsmoothing spline
regularisation, to be utilised as another regularisatemhnique, for computing the

first-order derivative of a noisy function, see [59]. We ddes the inverse problem
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(4.1)-(4.4) with the inpuL =7 =1, = —1 and

uo(x) = a*(1 —x)®,  E(t) = gge /2, (4.26)

flx,t) = 622(x — 1)(72% — 8z 4 2)e~ t+°/2),

Then the solution of the transformed inverse problem (446%) is given by
v(z,t) =2* (1 —z)3,  r(t) =€t/ (4.27)
whereas the solution of the original inverse bioheat cotida@roblem (4.1)—(4.4) is
w(z,t) = z*(1 — 2)%e A P@) =1+t

From Figure 4.2(a) of the previous example, we have notihatthe numerical
results for the perfusion coefficie®t(t) are highly oscillatory and unbounded because
the numerical differentiation of a noisy function is an wisé procedure. For Example
1, we have used the second-order Tikhonov regularisatiosdlving the system of
equations (4.19) and this resulted in a smooth approximdto the functionr(¢),
as shown in Figure 4.4(a). Alternatively, for Example 2 weestigate smoothing
a posteriorithe discrete noisy dataabtained (without regularisation) like in Figure
4.2(a). This is applied as the smoothing spline techniqub®f We are seeking
therefore a smooth functiane C*'(R) with v € L*(R) which minimises the second-

order Tikhonov regularisation functional

2|ﬂ

N
Z (&) — 7)% + Al 32w, (4.28)
whereA > 0 is a regularisation parameter to be prescribed and

E= (), = (X) 'y, (4.29)
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Figure 4.5: The analytical (—) and numerical results ofr{@), (b) «(0,t)(t), (c)
’(t), and (d)P(t) obtained using no regularisation in (4.31), i’e= 0, for exact data
(o 0 0) and forp = 1% noisy data(— - —), for Example 2.

obtained from Figure 4.2(a). We further approximate thefiom ¢ using cubic splines

as
N

v(t) =di +dot + Y cjlt — ], (4.30)

j=1
where the coefficienté;),_i and(d;),_15 satisfy the conditions (4.31) and (4.32)
below. Inserting (4.30) into (4.28) and minimising the Hésg expression with re-

spect to the coefficientg;) ,_t and(d;),;_13 yields the following system afN + 2)
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equations witH NV + 2) unknowns, [59],

ta(t;) + 12ANc; =+#;, j=1,N, (4.31)
N N

=) ety =0. (4.32)
j=1 j=1

By solving the system of equations (4.31) and (4.32) we aftte coefficientséc;), 1
and(d;) -1z, and therefore the expression for the smooth funatjaiven by (4.30).

By differentiating this expression with respecttitave obtain the first-order derivative
v/(t) given by
N
V() =dy+3) ¢t —1;)’sign(t — ;). (4.33)

j=1

where sigit-) is the signum function. This derivativé(t) is presented as'(¢) in
(4.27). From (4.31), one can observe thatif= 0 thent,(t;) = #(;) for i = 1, N.
In the case of exact data actually one can take 0, but for noisy data taking = 0
produces a highly unbounded and oscillatory solution-far) and P(¢), as shown in

Figures 4.5(c) and 4.5(d). For noisy data, reference [5§yests the priori choice

N

A= % > (Fevactj — 74)% (4.34)
j=1
wherer qctj = remct(fj) represents an analytical solutiongiven by (4.27), at time
t;for j = 1, N. Forp = 1% noise, we havé\ ~ 8 x 10~. The numerical results for
’(t) and P(t) obtained using the smoothing spline regularisation tephaivith this
choice of A oversmoothes the exact solution, as shown in Figure 4.6sh-dat line
(— - —). However, the Morozov's discrepancy principle [40] basadtea posteriori

choice ofA such that

Zlﬂ

N
Zt/\f

2|ﬂ

N
Z(Texact,j - fj)Qa (435)
j=1

produces\,;, = 7 x 10~ which yields more accurate approximations, as also shown



Chapter 4. 97

L L L L , 05 L L L L ,
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
t t

(a) (b)

Figure 4.6: The analytical (—) and numerical results of(&) and (b)P(¢) obtained
using the smoothing spline regularisation with, = 7x 107> (ooo) andA = 8x 1073
(— - —), as defined in (4.34), fgr = 1% noise, for Example 2.

in Figure 4.6 in circle lingo o o).
Finally, although not illustrated, it is reported that fogher amounts of noise the

numerical reconstructions are less stable.

4.6 Conclusions

The inverse problem of finding a time-dependent blood pa&fusoefficient for the
bioheat equation with nonlocal boundary conditions andsfeaergy specification has
been investigated. The inverse problem has been transfidiovan inverse heat source
problem with an unknown term present in the integral oveesheination condition.
The numerical discretisation was based on the BEM togetitarthe Tikhonov reg-
ularisation and the GCV for the choice of the regularisaparameter. We have also
applied the smoothing spline technique for differentigqi@nnoisy function witha pri-
ori anda posteriorichoices of the regularisation parameters. For a couplepitay

benchmark test examples, accurate and stable numerioéibss have been obtained.
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Chapter 5

Determination of a Time-dependent
Heat Source with a Dynamic

Boundary Condition

5.1 Introduction

In the Chapters 3 and 4, we have considered inverse timaidepesource problems
for the heat equation with various types of conditions siemgegral, local or nonlo-
cal. In the present chapter, we consider yet another recmtisin of a time-dependent
heat source with the integral over-determination measentmof the thermal energy
of the system and a new dynamic-type boundary conditions fodel can be used
in heat transfer and diffusion processes with a time-degeingsburce parameter to be
determined. Also, in acoustic scattering or damage camoie new dynamic-type
boundary condition (5.4) below is also known as a geneglisgpedance boundary
condition, [4-7].

The well-posedness of the inverse problem studied in thapten was established
in [19], and we aim to obtain the numerical solution by usimg BEM together with a

regularisation method.

99
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This chapter is organised as follows. In Section 5.2, theherattical formula-
tion of the inverse problem is described. The numericalrdissation of the problem
based on the BEM is described in Section 5.3. Section 5.4is&s numerical results
obtained for three of benchmark test examples and emplkabisénportance of em-
ploying the Tikhonov regularisation with the choice of riggisation parameter based
on either the GCV criterion or the discrepancy principleprder to achieve a stable

numerical solution. Finally, Section 5.5 presents the tumions of the chapter.

5.2 Mathematical formulation

Consider the following initial-boundary value problem afding the time-depending
heat source(t) € C([0,7]) and the temperature(z,t) € C*'(Dy) N C*°(Dy)

which satisfy the heat equation:
Ut = Ugy + T<t)f('r7 t)7 (SC, t) S ﬁT7 (51)

where L = 1 in the definition of D1 in (1.1), subject to the initial condition (1.7),
namely

u(@,0) = uo(z), € [0,1], (5.2)
and the boundary conditions

w(0,4) =0, te(0,T], (5.3)

aug,(1,t) + auy(1,t) + bu(l,t) =0, t e (0,77, (5.4)

where f andu, are given functions and, b, « are given numbers not simultaneously
equal to zero. The well-posedness of this direct problemestablished in [34].

Taking into account the equation (5.1) at= 1, the boundary condition (5.4)



Chapter 5. 101

becomes
aug(1,t) + aug (1, t) + bu(1,t) = ar(t) f(1,t), t € (0,T]. (5.5)

In order to add further physics to the problem, we mentiohttir@boundary condition
(5.5) is observed in the process of cooling of a thin soliddres end of which is placed
in contact with a fluid [36]. Another possible applicationsafch type of boundary
condition is announced in [9, p.79], as this boundary camdlitepresents a boundary
reaction in diffusion of a chemical. We finally mention that Wwave also previously
encountered the dynamic boundary condition (5.5) when thnde transient flow
pump experiment in a porous medium [39].

When the function-(¢) for ¢t € [0, 7] is unknown, the inverse problem formulates
as a problem of finding a pair of functioris(¢), u(x, t)) which satisfy the equation
(5.1), initial condition (5.2), the boundary conditions3pand (5.4) (or (5.5)), and the

energy/mass overdetermination measurement

/1 (o, t)dz = B(t), t€[0,T]. (5.6)

This overdetermination condition is encountered in maaiglapplications related to
particle diffusion in turbulent plasma, as well as in heatdiaction problems in which
the law of variation(¢) of the total energy of heat in a rod is given, [22].

If we let u(z, t) represent the temperature distribution, then the abovaiored
inverse problem can be regarded as a source control problgme. source control
parameter-(¢) needs to be determined from the measurement of the therraedyen
E(t).

Denote ! [0,1] := {d(x) € C'[0,1];$(0) = ¢"(0) = 0, 6(1) = ¢/(1) =
¢"(1)=¢"(1) =0, fo &(2)Yn, (v)dx = 0}, where(y,, ),>o denote the eigenfunctions
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of the spectral problem

y(0) =0, (5.7)

(ap = b)y(1) = ay'(1),

\

where its eigenvalug,, and eigenfunctiong,(x), forn = 0,1,2,..., have the fol-

lowing asymptotic behavior:

Vi =0+ 0 G) » Ynl@) =sin(mnz) + O (E) ’

n

for sufficiently largen. The following theorem proved in [19] established the estise

of a unique solution of the inverse problem (5.1)—(5.3%)and (5.6).
Theorem 5.2.1 Letaa > 0 and assume that the following conditions are satisfied:

(A1) uo(x) € @y, [0, 1];

1

(Ay) E(t) € C0,T); E(0) = [} uo(x)da;

(A3) f(z,t) € C(Dr); f(-,t) € @7 10,1], vt € [0,T7; andfolf(x,t)dx #£0, Vt €
[0, T7;

Then the inverse proble(d.1)+5.3), (5.5)and(5.6) has a unique solutiofr (), u(z,t)) €
C[0,T] x (C*'(Dy) N C*°(D7)). Moreoveru(x,t) € C*'(Dy).

Although the inverse problem is uniquely solvable, it il 8lposed since small errors
in the input data (5.6) cause large errors in the input soufge
In the next section we will describes the discretisatiorhefinverse problem using

the BEM, whilst Section 5.4 will discuss the regularisatidrihe numerical solution.
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5.3 Boundary element method (BEM)

In this section, we explain the numerical procedure formissing the inverse problem
(5.1)—(5.3), (5.5) and (5.6) by using the BEM. As introduacedbection 1.3, the use
of BEM recasts the heat equation (5.1) in the boundary iatégrm (3.5). Using the
same discretisation as described in Chapters 2—4, andiagpiye boundary condition

(5.3), the boundary integral equation (3.5) becomes
N
Z [Agj(x,t)q0; + Arj(x, t)qj — Brj(x,t)hy]
) N
+ Z Cr(x, thuor + > _ D, t)ry, (x,t) €0,1] x (0,T]. (5.8)

On applying the BEM and the boundary condition (5.3), we iobtiae system o2 N
linear equations,

A090+AL9L —BLhL+CU0+DL: Q (59)

In order to apply the boundary condition (5.5) we need to exiprate the time-
derivativeu,(1,t) by using finite differences. For this, we use théh?) finite differ-

ence formulae

( = u(1,8)/3+ u(l,f) — 4ue(1)/3
w(1,t1) = ) |
u(1,5) = Su(l,t2)/3 — 3u2 t) + 4u0(1)/3’
w7y = /2= 2l le) s u i) 5y

where the step size = T/N and#; = “=5* as defined in Chapter 1. Applying

the expressions above into the boundary condition (5.%lyithe linear system oV
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equations as follows:

(

a ~ a ~ ~ ~ ~ 4da -
ﬁu(l,tl) + 3_hu<1’ ta) +bu(l,t1) = ar(t1) f(1,41) + 3—huo(1) — aug (1, t),
3a ~ 5a ~ ~ ~ - 4q -
—%U(L t) + ﬁu<17 ta) + bu(l,t2) = ar(tz) f(1,12) — ﬁuo(l) — aug(1, 1),
a ~ 2a ~ 3a ~ - - - -
(1l t ) — 2wt ull.t 1.4) = NF(1.4) — 1.7
L 2hu< 7tz 2) h u( 7tz 1) + 2hu< 7tz> + bu( 7tz) CLT(tl)f( 7tz> au:v( 7tz>7
fori = 3, N. This system can be rewritten as
Sh;, = Fr+ o, — od, (5.10)
whereF = diagaf(1,%,),...,af(1,ty)), and
a/h+b  a/3h 0 : daug(1)/3h
—3a/h  5a/3h+b 0 : —4aug(1)/3h
S=1 a/2h —2a/h  3a/2h+b . , Uy = 0
|0 a/2h —2a/h  3a/2h + b] N I 0 1y

Assuminga # 0, eliminating g can be done by applying the derived matrix form of
(5.10), i.e.
1

(Fr+ G, — Shy), (5.11)

«v

9

into (5.9), this gives (5.9) and (5.10) results as

h, 1 /1 1
! L} - K—ALS + BL) ‘ —AO} (—ALFJ’_+ S Aply + Cuy + Dr_) , (5.12)
9@ (0% (0% (0%

where the invertible matri{(iALS + Bp) ‘ —AO] isa2N x 2N matrix formed

with the 2N x N block matrices(: A, S + B;) and —A, separated by the vertical
line.

Next, we collocate the over-determination condition (38)using the midpoint
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numerical integration approximation as same as in (3.14¢nTthe expression (5.8) at

(Zx, t;), can be rewritten as

No

1
. 3 [Agf;go +ANg, — BOhy + CMu, + D,S’@ —E (5.13)
k=1

where

1 -z 1 L~ 1 o~
Aé,ll = |:A0j(xk7 ti>}NxN’ Ag)k = |:ALj(5Cka ti>}NxN’ B(L;s = [BLj<xkati)]N><N>

1 - ~ 1 - ~ . .
C]i) = [Cl(xk,ti)]NXNO, D]g) = [Dj(xk’ti>:|N><N’ k,l=1,No,1,j =1, N.

When the boundary condition (5.3) is applied, the expres@&dl3) can be, via (5.11),

rewritten as

1 o

1 ~
N S {Ag{;go + EA(le)’f (FL+ 0y — Shy) — By by + Oy + D,(gl)r} —E (5.14)
k=1

Finally, eliminating g and j, between (5.12) and (5.14), the unknown discretised

source_rcan be found by solving th& x N linear system of equations

Xr=y, (5.15)
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As we have mentioned previously the inverse problem undessiigation is ill-
posed, and consequently, the system of equation (5.13)dentitioned. In the next
section, we will discuss the regularisation of the numérsmdution together with
choices of regularisation parameter based on either the &@fion or the discrep-

ancy principle.

5.4 Numerical examples and discussion

This section presents three benchmark test examples wabtsrand non-smooth con-
tinuous source functions in order to test the accuracy oB#& numerical procedure
introduced earlier in Section 5.3. In order to illustrate #tcuracy of the numerical

results, the RMSE defined in (2.49) is also used here.

5.4.1 Examplel

In the first example, we consider the case of smooth contsmiuaknown source func-

tion, given by the analytical solution
u(z,t) = z%e’, r(t) = ¢, (5.16)

for the inverse problem (5.1)—(5.3), (5.5) and (5.6) with itput datdl’ = 1,a = a =
1,b = —4,
U(.T, 0) = ’U,O(SC> = .TQ, f(SC,t) = xQ - 27 (517)

The direct problem (5.1)—(5.3) and (5.5), whelin) = ¢’ is known, is considered first
with N = N, € {20,40,80} obtained by (5.11), (5.12) and (5.13), and the RMSE
results are shown in Table 5.1. From this table it can be coled that the BEM

numerical solution is convergent to the corresponding texalces

u(l,t) =", u,(0,t) =0, wu,(1,t)=2¢", E(t) =c¢e/3, (5.18)
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fort € [0, 1], as the number of boundary elements increases.

Table 5.1: The RMSE fou(1,1t), u.(0,t), u.(1,t) and E(t) obtained using the BEM

for the direct problem withV = N, € {20, 40, 80}, for Example 1.

RMSE

N=MNo = a0 Two.n | wi)] EQ
50 | 6.43E-3| 2.79E-3| 8.85E-3| 2.65E-3
40 | 2.20E-3| 9.68E-4| 2.98E-3| 9.07E-4
80 | 7.46E-4| 3.32E-4| 1.00E-3| 3.08E-4

Next, we consider the inverse problem (5.1)—(5.3), (5.%) @16) and we use the
BEM with N = N, = 40 for solving the resulting system of equations (5.15). Fegur
5.1 displays the analytical and numerical results (@, «(1,t), u.(0,t), andu,(1,?)
and very good agreement can be observed.

In practice, the contamination of measured data by unptherer is unavoidable.
Thus we add noise to the input energy daia) in (5.6) in order to test the stability of
the solution. Here, the perturbed input datastiefined as same as described in (3.14),
with the standard deviation = % andp € {1, 3,5}%. This perturbation means that
the known right-hand side vectorof the linear system (5.15) is contaminated with
noise, denoted as'y Then, when noise is present, we have to solve the following
system of linear equations instead of (5.15):

Xr=y". (5.19)
Initially, we have tried to solve the above disturbed sys{éri9) withp = 1% noise
in the input data (5.6) by using the straightforward invensif (5.19), i.e_r= X 1y,
illustrated in Figure 5.2. From this figure it can be seenti@numerical solutions for
r(t), uz(0,t) andu,(1,t) shown by the dash-dot line-(- —) are unstable. However,
the result foru(1,¢) seems to remain stable.

To overcome this instability, we employ the Tikhonov regigation method as
described in (1.34) with a second-order differential regshtion matrix in (4.20). As

happened previously with some of our investigations in @&rg® and 3, we report that
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u(l,t)

(b)

ug(0,t)
|
N

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
t t

(c) (d)

Figure 5.1: The analytical (—) and numerical resits- —) of (a) r(¢), (b) u(1,1),
(c) u,(0,t), and (d)u,(1,t) for exact data, for Example 1.

the second-order Tikhonov regularisation has producea mccurate results than the
zeroth- or first-order regularisation and therefore, ohly mumerical results obtained
using the former regularisation are illustrated in thigieec

A popular method for choosing the regularisation paramistdre GCV criterion
which is based on the minimisation technique, as we havdel@ia Section 1.6. For
p = 1% noise, this minimisation yields the minimum point of the G@wction (1.35)
occurring at\qcy=4.3E-6. Then the numerical results obtained using theorikk
regularisation with this value of;cv, illustrated by circlego o o) in Figure 5.2, show
that accurate and stable numerical solutions are achieved.

Next, we increase tp = 3% and5% the percentage of noise. Figure 5.3 presents
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(0, 1)

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
t t

(c) (d)

Figure 5.2: The analytical (—) and numerical results of (&), (b) u(1,t), (c)
u.(0,t), and (d)u,(1,t) obtained using the straightforward inversipn - —) with
no regularisation, and the second-order Tikhonov reggdéion(o o o) with the regu-

larisation parametek=4.3E-6 suggested by the GCV method, for= 1% noise, for
Example 1.

the analytical and numerical results obtained using therseorder Tikhonov reg-
ularisation with the regularisation parameter suggestethé GCV method, namely
Aaov=7.4E-6 forp = 3%, and\qcy=2.7E-5 forp = 5%. From this figure one can ob-
serve that stable and accurate results-toy, u(1, ), u,(0,¢) andu,(1,t) with p = 3%

noise are attained, whereas the numerical results fo15% noisy input are rather in-

accurate, but they remain stable. For completeness, theERM®Srs are displayed in
Table 5.2.
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Figure 5.3: The analytical (—) and numerical results of (&), (b) u(1,t), (c)
u,(0,t), and (d)u,(1,t) obtained using the second-order Tikhonov regularisatidim w
the regularisation parameter suggested by the GCV metoog, £ 3% (- - -) and
p=5% (— — —), for Example 1.

5.4.2 Example 2

The previous example possessed an analytical solutiog kegplicitly available; how-
ever the source functiofix, t) chosen did not satisfy the condition i) of Theorem
5.2.1thatf € @2 [0, 1]. Therefore, in this subsection we aim to construct an exampl
for which the conditions of existence and uniqueness oftewlwf Theorem 5.2.1 are
satisfied. We choosE = 1,a = a = 1, b = 0 anduy(z) = 0.

In the caser = a = 1, b = 0 the problem (5.7) has the eigenvalyes = 12,

wherev,, are the positive roots of the transcendental equatign(r) = cos(v). The
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Table 5.2: The regularisation parametesnd the RMSE for(¢), u(1,t), u.(0,t) and
u(1,t), obtained using the BEM withh = N, = 40 combined with the second-order

Tikhonov regularisation fop € {0, 1, 3, 5}% noise, for Example 1.

parameter RMSE
p A ) | w(l,b) | us(0,8) | up(l, )
0 0 4.16E-3| 2.47E-4| 1.20E-3| 8.85E-4
1% 0 2.70 | 1.72E-2| 1.12E-1] 2.64E-1
1% | Agcv=4.3E-6| 1.73E-2| 2.57E-3| 8.92E-3| 5.47E-3
3% 0 5.21 | 4.13E-2| 3.51E-1] 5.02E-1
3% | A\gov=7.4E-6| 3.32E-2| 9.73E-3| 1.97E-2| 2.25E-2
5% 0 474 | 5.51E-2| 4.64E-1| 4.54E-1
5% | A\gcv=2.7E-5| 1.95E-1| 4.63E-2| 1.29E-1| 9.79E-2

corresponding eigenfunctions ayg(x) = sin(v,,x). The first eigenvalue is given by

vy = /o = 0.860333. Then choosing

flw,t) = 2°(1 = 2)*(Prz + B), (5.20)

we can determine the constamisand 3, such thatf € ®3(0, 1] (choosing, = 0 for
simplicity), as required by the conditior ) of Theorem 5.2.1,i.ef (z, t) € @, [0,1],
Vt € [0,t]. This imposes

0= /01 f(z,t) sin(vpz) de = /01 2*(1 — 2)* (B + Ba) sin(vy) da.

After some calculus, choosing = —1 it follows that5; ~ 2.011. With these values
of 5; andg; we also satisfy thafo1 f(z,t) dz = —0.00037 is non-zero, as required by

condition (43). We aim to retrieve a non-smooth source function given by

1', t €[0,t].

5 (5.21)

r(t) = ’t —
In this case, the analytical solution of the direct problenthe temperature(z, t)

is not available. Thus the enerdy(¢) is not available either. In such a situation, we

simulate the data (5.6) numerically by solving first the dirgroblem (5.1)—(5.3) and
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(5.5) withr known and given by (5.21). The numerical solutions6t, ¢), u.(0,t),
u,(1,t) and E(t) obtained using the BEM witivn = N, € {20,40,80} are shown
in Figure 5.4. From this figure it can be seen that convergemtarical solutions are

obtained.

(a) (b)

L]
-0.2}t =
1
-0.4
_-06
=1
-0.8
_1,
-1.2
_4 L L L L I} _14 L L L L Il
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

t t

(c) (d)

Figure 5.4: The numerical results of @)1, ¢), (b) u.(0,t), () u.(1,t), and (d)E(t)
obtained by solving the direct problem with = N, € {20(o00), 40(---), 80(———)},
for Example 2.

To investigate the inverse problem (5.1)—(5.3), (5.5) &@)( we use the numerical
results forE(t) in Figure 5.4(d) obtained using the BEM wiffi = N, = 40, as the
input data (5.6). In order to avoid committing an inversenaiwe keepV = 40, but
we use a differentV,, say N, = 30, than 40 which was used in the direct problem

simulation. Figure 5.5 shows the numerical results obthinghout regularisation,
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i.e. A =0, for p = 0 (exact) and = 1% (noisy) data. Remark that from Figure 5.4(d),
the standard deviation for generating noise is givena by 1.2 x 10~°p. From Figure
5.5 it can be seen that, for exact data, the straightforwasetsion of (5.15) produces
very accurate results. However, when noise is introducedthe measured datd ,E
here we are solving the linear system of equatidns= y° instead ofXr = vy, the
numerical retrievals of especiallyt) andu,(1,t) become highly oscillatory unstable.
In order to retrieve the stability, as in Example 1, the seeorder Tikhonov reg-
ularisation with the GCV criterion are employed and the nucadly obtained results
are shown in Figure 5.6. The numerical results from the tipeacblem presented in
Figures 5.7(a)-5.7(c) are used to compare in Figures 55@(d) the numerical re-
sults foru(1,t), u,(0,t), andu,(1,t), respectively, of the inverse problem. Whereas
the numerical solution for(¢) of the inverse problem is compared with the analytical
solution (5.21) in Figure 5.6(a). From Figure 5.6 it can benshat stable and accurate
numerical solutions are obtained. For completeness, th&RErrors and the GCV
values for\ are displayed in Table 5.3.
Table 5.3: The regularisation parametarand the RMSE for-(t), u(1,t), u,(0,t)

andu,(1,t), obtained using the BEM wittv' = 40 and N, = 30 combined with the
second-order Tikhonov regularisation foe {0, 1, 3, 5}% noise, for Example 2.

% parameter RMSE

p(%) \ T T D) w00 [ wd D
0 0 2.90E-4| 2.12E-10| 2.94E-8| 1.07E-8
1% 0 9.98E-2| 2.71E-8 | 9.55E-6| 3.55E-6
1% | Acov=3.2E-16| 5.47E-3| 1.62E-8 | 1.28E-6| 4.12E-7
3% 0 3.63E-1| 1.05E-7 | 3.39E-5| 1.27E-5
3% | Acoy=1.1E-15| 1.37E-2| 5.96E-8 | 3.56E-6| 9.37E-7
5% 0 5.03E-1| 1.70E-7 | 4.85E-5| 1.80E-5
5% | Acoy=9.0E-16| 2.17E-2| 9.88E-8 | 5.68E-6| 1.21E-6

If one would like to make a fair comparison between the aaguodthe numerical
results obtained for Examples 1 and 2, the RMSE values piex$ém Tables 5.2 and
5.3 should be divided by the maximum absolute values of thesponding quantities

involved. For example, if we divide the columns of RMSE valdier (¢) in Tables
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Figure 5.5: The analytical solution (5.21) and the directym numerical solution
from Figures 5.7(a)-5.7(c) (—) and numerical results ofr{@), (b) u(1,¢), (c)
u,(0,t), and (d)u,(1,t), with no regularisation, for exact data o o) and noisy data
p=1% (- - —), for Example 2.

5.2 and 5.3 by (maximum value of-(¢) in (5.16)) and).5 (maximum value of-(¢) in
(5.21)), respectively, then the relative errors #¢t) in Example 1 are actually lower
than those in Example 2, as expected from the regularityesfdtsolution.

Finally, although not illustrated, it is reported that fastb Examples 1 and 2 we
have experienced with other values otlose to the optimal ones but there was not
much difference obtained in comparison with the numeriesiitts of Figures 5.2, 5.3
and 5.6. This confirms that the GCV criterion performs welthoosing a suitable

regularisation parameter for obtaining a stable and atemamerical solution.
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Figure 5.6: The analytical solution (5.21) and the direaibpem numerical solu-
tions from Figures 5.7(a)-5.7(c) (—), and the numericalults of (a)r(¢), (b)
u(1,t), (c) u,(0,t), and (d)u,(1,t) obtained using the second-order Tikhonov reg-
ularisation with the regularisation parameters suggebie@®CV method, forp €
{I(c00), 3(--+), 5(— — —)}% noise, for Example 2.

5.4.3 Example 3

In previous examples, we have use the BEM together with tbengktorder Tikhonov
regularisation with the value of the regularisation parensuggested by the GCV
method, on both cases for identification of the smooth andsmoooth source func-

tions in Example 1 and 2, respectively. In this example, wesaer yet another case
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example of non-smooth source function given by

with the inputdatd’ = 1,a =a =1,b =0,

up(z) =0, f(z,t)=1. (5.22)

We remark that the condition if43) of Theorem 5.2.1 does not hold.

In this case, as with Example 2 that the analytical solutibthe direct problem
for the temperature(z, t) is not available, thus the enerdy(t) is not available either.
Therefore as we have done in previous example, the direblgnrohas been solved
first with the BEM andN = N, € {20,40,80}, as illustrated in Figure 5.7. From
this figure it can be seen that rapidly convergent numeraati®ns are obtained. The
numerical results obtained using the BEM with= NV, = 40 are kept as an input data
for E(t) and the reference (analytical) solution fgf, t), u, (0, t) andu,(1,t).

In what follows, we present numerical results obtained with- 40 and Ny = 30
instead of 40, in order to avoid committing an inverse criri@e energy datd(t)
obtained from the numerical result in Figure 5.7(d) is pexdal, as described in (3.14)
with the standard deviatiomn = 0.15p. Figure 5.8 shows that the numerical results
obtained by the straightforward inversion of (5.15), i.es X 'y, without regularisa-
tion, for p = 0 (exact) anth = 1% (noisy) data. For exact data, the same very good
agreement between the analytical and numerical solut®nscorded. Whereas for
the noisy data, the numerical solutions fd@t) andw,(1,¢) becomes highly oscilla-
tory and unbounded. This is somewhat to be expected sinceviiese problem under
investigation is ill-posed.

We retrieve the stability, as previous, by the second-ofddronov regularisation
with the proper choice of the regularisation paramatefirstly, we have used the rig-
orous discrepancy principle, as introduced in Sectior81fér p € {1, 3,5}% which

yields\;s € {5.7E-8, 2.0E-6, 7.0EJ6 respectively. The results are obtained as shown
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Figure 5.7: The numerical results of @)1, ¢), (b) u.(0,t), (¢) u.(1,t), and (d)E(t)
obtained by solving the direct problem with = N, € {20 (—-—),40(---), 80 (— —

—)}, for Example 3.

in Figure 5.9 and Table 5.4. From Figure 5.9 it can be seenstiabte and accurate

numerical solutions are obtained. Table 5.4 also showghieatalues of the regular-

isation parametek,;; and A\gcy given by the discrepancy principle and the GCV are

similar and not very different from the optimal valdg,, given by the minimum of the

RMSE forr(t). It can also be seen that the GCV produces slightly bettetigtiens

than the discrepancy principle.

5.5 Conclusions

The inverse problem of finding the time-dependent heat saiegether with the tem-

perature in the heat equation, under a non-classical dynboundary condition and
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Figure 5.8: The analytical solution (5.4.3) and the dirgciytem numerical solution
from Figures 5.7(a)-5.7(c) (—), and numerical resultsa&)fr(t), (b) u(1,t), (c)
u,(0,t), and (d)u,(1,t), with no regularisation, for exact data o o) and noisy data
p=1% (— - —), for Example 3.

an integral over-determination condition has been ingastid. A numerical method
based on the BEM combined with the second-order Tikhonovlaeigation has been
proposed together with the use of either the GCV criteriatherdiscrepancy principle
for the selection of the regularisation parameter. Theews#d numerical results were
found to be accurate and stable on both smooth and non-srooatinuous examples.
As for the experimental validation of the proposed inversgh@matical model in
terms of bias and inverting real noisy data we defer thislehglng task to possible
future work. We only remark that unlike certain applicagpe.g. some significant
mismatch has been reported in [2, 35, 52] between experahdata of electromag-
netic waves propagating in a non-attenuating medium araltaduced by idealised

computational simulations, in inverse heat conductionnia¢hematical models have



Chapter 5. 119

0 0.2 0.4 0.6 0.8 1 [ 0.2 0.4 0.6 0.8 1
t t

(© (d)

Figure 5.9: The analytical solution (5.4.3) and the direciylem numerical solutions
from Figures 5.7(a)-5.7(c) (—), and the numerical resfli®) (), (b) u(1,¢), (c)
u,(0,t), and (d)u,(1,t) obtained using the second-order Tikhonov regularisatim w
the regularisation parameters suggested by the discrgmpaethod, forp € {1(— -
=), 3(--+), 5(— — —)}% noise, for Example 3.

been shown to perform much better in industrial applicaiwith actual real measured
data, [13].

So farin previous chapters, the identification of a singfestidependent heat source
function has been the main aim. In the next two chapters, Wlecansider the more
challenging cases of simultaneous determination of thepoommnts of an additive or

multiplicative space- and time-dependent heat sourcdifumc
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Table 5.4: The regularisation parametergiven by the discrepancy principle and
by the GCV, and the RMSE for(t), u(1,t), u,(0,t) andu,(1,t), obtained using
the BEM with N = 40 and N, = 30 combined with the second-order Tikhonov
regularisation fop € {0, 1, 3,5}% noise. The optimal regularisation parameter given
by the minimum of RMSE of(¢) is also included, for Example 3.

RMSE

p

parameter
A

u(1,t)

uz(0,1)

uz(1,1)

0

0

8.06E-6

1.41E-5

2.27E-5

1%
1%
1%
1%

0
Adis=D.7TE-8
>\GCV=5-7E'9
Aopi=2.2E-8

3.26E-3
9.25E-4
8.26E-4
8.06E-4

1.20E-2
2.89E-3
2.76E-3
2.46E-3

4.19E-2
5.82E-4
5.96E-4
5.65E-4

3%
3%
3%
3%

0
Aais=2.0E-6
)\GCV:3-3E'7
Aopt=9.0E-7

9.86E-3
3.67E-3
2.53E-3
2.77E-3

3.71E-2
9.99E-3
8.08E-3
8.05E-3

1.23E-1
2.85E-3
1.81E-3
2.07E-3

5%
5%
5%
5%

0
Aais=1.0E-6
)\GC\/:?.QE-?
Aopi=9.1E-8

1.31E-2
8.95E-3
6.80E-3
6.68E-3

6.26E-2
2.68E-2
1.72E-2
1.59E-2

1.03E-1
5.25E-3
4.43E-3
4.61E-3




Chapter 6

Determination of an Additive Space-

and Time-dependent Heat Source

6.1 Introduction

Inverse source problems for the heat equation have recaitthcted considerable in-
terest, see [1, 18, 24, 61, 64, 67] to name just a few. Theskestinave sought a
coefficient source function depending on either spacenw-tilependent variables us-
ing various techniques. In Chapters 2-5 we have focusedemterse problem of
finding the time-dependent coefficient source function iedémperature for the heat
equation. In this chapter we extend our study to determinerge heat source func-
tions depending on both space and time, but which are adbjitseparated into two
unknown coefficient source functions, namely, one compoaemendent on space and
another component dependent on time. The measuremerspeedied conditions are
one temperature measurement, as a function of time, at @uo#ispl interior location
and a time-average temperature throughout the spacesotigmain.

Since the governing partial differential equation is theeéir heat equation with
constant coefficients, the preferred method of discredisas the BEM. Even though

the inverse heat source problem is uniquely solvable, itilisilsposed since small

121
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errors which inherently occur in any practical measurencantse largely oscillating
solutions. To overcome this instability, in this chaptegukarisation such as the TSVD
or the Tikhonov regularisation method are employed. Moegahe L-curve method,
the GCV criterion, or the discrepancy principle are emptbia the selection of the
regularisation parameter. Additionally in the case of tvffedent regularisation pa-
rameters are considered, thesurface criterion, [3], is utilised.

This chapter is organised as follows. In Section 6.2 the emattical inverse for-
mulation is described and the numerical discretisatiomefdroblem using the BEM
is presented in Section 6.3. The TSVD and the Tikhonov regpalgon are described
in Section 6.4, as procedures for overcoming the instglolitthe solution. Finally,
Sections 6.5 and 6.6 discuss the numerical results anddigkihe conclusions of this

research.

6.2 Mathematical formulation

Consider the inverse problem of finding the time-dependeat $ource (¢), the space-
dependent heat sourgér) and the temperaturgz, ) satisfying the heat conduction

equation

Ut = Uz +7(t) f(2,t) + s(x)g(x, t) + h(x,t), (x,t) € Dr, (6.1)

subject to the initial condition (1.7), namely

u(z,0) = up(z), = €][0,L], (6.2)

the Dirichlet boundary conditions

u<07 t) = MO(t>7 u(Lv t) = ,uL(t)v te [07 T]? (6.3)
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and the over-determination conditions

w(Xo.t) = x(t), € [0,T), (6.4)
T
/ w(w tydt = (), =€, I, 6.5)
0
S(Xo) = So. (6.6)

whenf, g, h, ug, o, i1, X, ¥ are given functionsy, is a given sensor location within
the interval(0, L), and.S, is a given value of the source functierat the given point
Xo.

One can remark that the time-average temperature measuréts) represents a
non-local condition/measurement. It is convenient to ngaractical situations where

a local measurement of the temperature at a fixed fime (0, 7], namely,

w(z,Th) =: g, (z), z€]0,L]

contains a large amount of noise. This may be due to harshnekteonditions, or

to the fact that many space measurements can, in fact, nevercbrded at a fixed
instant instantaneously. If this is the case, one can haekateon of such large noise
local temperature measurements, but which on average geadless noisy nonlocal
measurement (6.5).

The individual separate cases concerning the identificatia single time-dependent
heat source(t), whens(x) is known, or the identification of a single space-dependent
heat source(z), whenr(t) is known, have been theoretically investigated in Prilepko
and Solov’ev [44] and Prilepko and Tkachenko [45], respetyi

The unique solvability of this inverse source problem waeay established by
Ivanchov [26] and it is the objective of this study to obtaistable numerical solution
of this still ill-posed problem. Note that condition (6.6 omitted in [26], but it
should be included in order to avoid non-uniqueness andbilgy cases which have

been given as counterexamples in [20]. For the inverse gnol§6.1)—(6.6) we have
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the following local unique solvability theorem.
Theorem 6.2.1 Assume that the following conditions are satisfied:

() wo(x),(x) € H* (0, L], po(t), e (t), x(t) € H'*/?[0,T), h(x,t) € H*/*(Dr)
withy € (0, 1),
f independent ofand f(x) € H"|0, L],
g independent af andg(t) € H"/?[0,T];
. ! g(t) .
(i) f(Xo) #0, /0 g(t)dt #0, W >0,Vt €0,7T);
(iii) uog"O) = 110(0), uo(L) = pr(0), qu(XO) = x(0), .
| xde =), 60 = [yt o(t) = [ ity

0 0 0
Then for sufficiently small’ > 0 there exists a unique solutidn(t), s(x), u(x,t)) €

HY/2[0,T| x HY[0, L] x H**'*7/2(Dy) of the inverse probler(6.1)-6.6).

In this theorem the functions are required to lie in Holdeaces, defined as fol-

lows:

o Ht2(Dy), withi,j = 0,1,2 and0 < ~v;,7» < 1, denotes the space of

continuous functions witkth partial derivative with respect toand jth partial

derivative with respect tosuch that there exist; > 0 andm, > 0 satisfying

|u(r, ) =Fgu(@s, t)| < mular—ws|™,  [Ofu(w, t)—0fu(z, ta)| < malti—ts|™

forall xy, x5 € [0, L] andty, t, € [0,T].

e H7(QY), with Q = (0, L) or (0,7), denotes the space of continuous functions

s : 2 — R with exponent) < v < 1 such that there exists > 0 satisfying

Is(x1) — s(z2)| < m|xy —xo|” forall xy,z5 € Q.

In the next Sections 6.3 and 6.4, we will demonstrate how figedbe inverse heat

source problem (6.1)—(6.6) by using a regularised BEM.
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6.3 The boundary element method (BEM)

In the numerical process, we utilise the BEM as introduce8antion 1.3 to the heat

conduction equation (6.1). We then obtain the followingdary integral equation

x,t)
0G
[(xtw o (6 e s

G(z,t,y,0)u(y,0 dy+/ / (z,t,y,7)r(7)f(y, 7) drdy

n()u(

(x,t,¢&, 7)} dr
£e{0,L}

t

B 0
o)
0
A
0

/0 Gl t,y,7)s(y)gly, 7) drdy + / / (.t y, 7)h(y, 7) drdy,
0, L

(x,t) €[0,L] x (0,T7. (6.7)

Using the same discretisation as described in the previoasters, we obtain

N
Z AO] xZ, t QQJ —FAL](J? t)qL] B(]j(l’,t)hoj — BLj(.T,t)th]

No
+ ) Crla, thugy + di(,t) + da(w, t) + do(, 1) (6.8)
k=1
where
dy(z,t) :/0 /o Gz, t,y, 7)r(7)f(y, ) drdy, (6.9)
L T
dy(z,t) :/0 /o Gz, t,y,7)s(y)g(y, 7) drdy, (6.10)

and can be calculated by applying the piecewise constambxippations to the func-

tions f(z,t) andr(t) as the same in (2.21), and the functigtis, ¢) ands(z) as as

g(x,t) = g(¥,t), s(z) = s(x) = s, (6.11)
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for x € (xy_1,2], K = 1, Ny. Then the double integrals (6.9) and (6.10) can be

approximated as

No

x,t, Y, T)g(y, T) dey = Z D2J€(x7 t)skv

k=1

di(. 1) / r(7) / Gla,t,y,7)f (. 7) dydr = 3 Dy j(a, 1),
ol 1) 0 [ G

j=1
L
fr— S( /
0 0
where

L ~
Dy (1) = / £, 5) Ay () dy,

Doz, t) = %/OTg(jk,t)H(t —7) [erf (%) —erf (%)} dr,

These integrals are evaluated using Simpson’s rule for naalentegration. With

these approximations, the integral equation (6.8) becomes

j=1
No N No
+ Y Cila,hug + Y Dij(w, t)rj+ Y Dagla,t)sy
k=1 j=1 k=1
N
+ > Doj(x,1). (6.12)
7j=1

Applying the equation (6.12) at the boundary nodes;) and (L,t;) fori = 1, N

yields the system df/V linear equations
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where matrices!, B, C' and vectors gh, u,, d are defined the same as in (2.25), and

Dy (0, ;) . [S ]
~ ) - k .
DQ’k(L’ti) 2N x Ny o

Here, the boundary temperaturéstknown by the boundary condition (6.3), i.e.

A L R ) (6.14)
u(L.1;) 2N Brlon

Therefore from (6.13), we obtain

0
- ] P D2 -
Dl’j(L’ti) 2NxN

q=A"(Bp—CuUy— Dit— D,s—d). (6.15)

To determine_and_s the conditions (6.4)—(6.6) are imposed. Firstly, we coesi

the interior pointg X,, ;) for i = 1, N which can be written as

Xi = X(fz‘) = u(Xo,fi), 1=1,N. (6.16)

Applying the interior points above to the equation (6.12) gave rise to the following

linear system ofV equations:
Alq— B'u+ C'uy+ Dir+ Dis+d' =y, (6.17)
where

Al = [AOj(Xo,fi) ALj(Xo,fi)] ) B' = |:BOj(XO>£i) BLj(XOafi):|

Nx2N Nx2N

, Di= |:D2,k(XOa£i):| )

NXNO

cl = [Ck(XO,t})]N , D{= [DLJ’(XOJZ)}

X No NxN

d' = [Zévzl DO,j(XO’Ei):|N7 a [Xi]N.

Whereas the time-integral condition (6.5) is approximdigdhe midpoint numerical
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integration, as in the parallel way as (3.11)zat 7, for k = 1, Vg, then we obtain

N T
i=1 0

Using (6.12), equation (6.18) yields

Zlﬁ

N
Z Al'g- B'w+ Cl'uy+ D+ Diis+d| = v (6.19)
where

All = [Ao](fck,t) ALj(fk,fz)] B! = [BOJ(SCk,t) BLj(fkafi)]

Ci' = [Ck(fk, fz)]

Y
NoXx2N

) Dﬁ = [Dzk(@k,ﬁ')}

Y
NoXx2N

DI — [ (5 T }
NoxNo 14 Dl’J(xk’tl)

d’ = [ijzl Do,j(ik,ﬂ)}% 8= [w’“] No

NoxN NoxNo ’

Finally, we consider the condition (6.6). Since we have ubedspace midpoint

discretisation, we then approximaig at the given poiniX, € (0, L) as

So = s(Xp) ~ ( - , (6.20)

where index:* € {1,..., Ny — 1} satisfiest < Xy < Tpri1.
Now the approximate solutionsand_scan be found by eliminating fijom (6.13)
and combining expressions (6.17), (6.19), and (6.20), tainpafter some manipula-

tions, a linear system @¢fV + NV, + 1) equations witH NV + V) unknowns as follows:

Xw =y, (6.21)
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where
A'A'D, — D! ATA'D, — D}
T & T &
— 1T A—1 11 11 p—1 17
X = N;(Az A Dy — Dl,z’) N;(Az A D, _DQ,Z') )
0...0 0...0540...0

L o d (N+No+1)x (N+Nop)

—x+ATA Y (Bp— Cuy —d) — Bl + C'uyy + d
T N

v= |t 3 (APAT B Cuy - d) - Bl Ol )|
i=1

So

L 4 N4No+1

and w=

N+ N,
Since the pro%lem isill-posed, then the system of equafi@24) is ill-conditioned.
In the next section, we will deal with this ill-conditioninging regularisation in order

to obtain a stable solution.

6.4 Regularisation

In practice, the measured data is unavoidably contamirateanplanned error. In
order to model this, we add noise into the input functigg andv (z) representing

the over-determination conditions (6.4) and (6.5) as fedlo
x° = x + random('Normal, 0, 0,, 1, N), (6.22)

and
Y = + random('Normal, 0, oy, 1, Ny), (6.23)

with the standard deviationrsg, ando,, to be taken as

— % t and — 6.24
oy =p tgg§]lx()|, oy pxmrél[%lw(x)l, (6.24)
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respectively. Note that the measurement (6.6) is alreadtacainated by error due to
the approximation made in (6.20).

If we consider the contamination of the right-hand side afagpn (6.21) agly —
y|| = ¢, then the direct least-squares solutiorw X * X)~1 X Tyc will be unstable. To
overcome this instability, regularisation method needsaaitilised. In this study, we
employ either the TSVD or the Tikhonov regularisation melho

We first consider the use of the TSVD method as a regularisg@tiocedure. To
use this method we use tljig, >:,V]=svds(X)NV;) command in MATLAB, as we have
used previously in Chapter 3. In order to indicate the appabtgptruncation levelV,,
the L-curve criterion, the GCV method, and the discrepancy plaare utilised.

Alternatively, the Tikhonov regularisation is another wafyobtaining a stable so-
lution of the ill-conditioned system of equations (6.21)igihbased on minimising the

regularised linear least-squares objective function
1Xw = yeI? + A ROLP? + A RP )2 (6.25)

where R, R are (differential) regularisation matrices correspogdim a regular-
isation parametek,, \, > 0, respectively. Solving (6.25) one obtains the regularised
solution

w, , = (XTX +R™R) " XTy". (6.26)

where the matrixR represents a block matrix of upper-left subblogiR") and lower-
right subblock\,R?. Initially, we take X := A\, = \, and consider thd-curve
criterion, the GCV method, and the discrepancy principlelasices for indicating
the single regularisation parameter Note that both thd.-curve and the GCV are
heuristic methods because they do not require the knowlefitfes level of noise-.

More rigorously, one can use the discrepancy principle, Mfich selects\ such that

X, — Y| ~ e (6.27)
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If we allow for general multiple regularisation paramet&rand )\, in (6.25) then, for
their selection one could employ tliesurface criterion, [3], which plots the residual

| Xw, . — Y| versus|RWr| and | R®s] for various values of, and,.

6.5 Numerical examples and discussion

In this section, we present two benchmark test examplesderdo test the accuracy
of the approximate solutions. We are using the RMSEr{o} as defined in (2.49)
whereas the RMSE foi(z) can be defined as

RMSE(S(ZE)) = \I v Z (Sewact(fk‘) - Snumerical(fk))Q- (628)

6.5.1 Example 1

1

In the first example, we consider a smooth benchmark testivith L = 1, X, = 3

and the input data

ug(r) = u(z,0) = 2%, po(t) =u(0,t) =0, pur(t) =u(l,t) =,
Y(x) = /0 u(z,t) dt = 2%(e — 1),

SO:S(%):L f(:p,t):em, g(l‘,t):t+1,

(6.29)

One can check that the conditions of Theorem 6.2.1 are satibnce the inverse
source problem (6.1)—(6.6) with the data (6.29) has a ursglgion. It can easily be
verified through direct substitution that this solution igeg by

u(z,t) = 2%, r(t) =1, s(x)=sin(rx). (6.30)

As mentioned in Section 6.2, the inverse heat source prolein—(6.6) is ill-
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posed since small errors in the measured data (6.4)—(6uedarge errors in the
solution. In order to quantify the degree of ill-conditiagiwe calculate the condition
number of the matrixX. The condition numbers foN = N, € {20,40,80} and

Xy € {4, 3,2} are shown in Table 6.1. In addition, the normalised singuddwes of

the matrixX are displayed in Figure 6.1, and the rapidly decreasingegdhdicate that
the system of equations (6.21) is ill-conditioned. Lookaighe columns of Table 6.1
it can be seen that the condition number only slightly desgeasX, increase, hence
we do not expect the numerical results to be significantlyerfted by the choice of
X, within some interva(, 3] away from the end points = 0 andz = L = 1. Of

course, aXy gets closer to the boundary point= 0 or x = L then the specification of

the interval temperature measurement (6.4) resembles #llreprescription, namely

. u(Xo,t) —u(0,1) . u(Xo,t) —u(L,t)
u(0,1) dim X , Or uy(L,t) i, X, I

However, this newly generated inverse problem in which Ggutata are specified at

xz = 0orz = L is not addressed herein and it is deferred to a future work.

10°
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Figure 6.1: The normalised singular values of mafiXor N = N, € {20,40,80}
andXo e {3 (—-—),5 (), 3 (———)}, for Example 1.

’2 14

In what follows, the numerical results are illustrated fdixad discretisationV =

NO — 40 andXO — %
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Table 6.1: The condition numbers of the matkixin equation (6.21) for varioud’ =
31, for Example 1.

Ny € {20,40,80} and X, € {1

40204
N =N, 20 40 80
Xo=1/4 | 1.94E+3| 9.07E+3| 5.04E+4
Xo=1/2 | 1.97E+3| 7.51E+3| 4.06E+4
Xo=3/4 | 1.93E+3| 6.50E+3| 3.33E+4

Exact Data

We consider first the case of exact data, iye.= 0 in (6.24). We directly solve
the linear system of equations (6.21) with the untruncatébd $ethod, and display
the numerical solutions for(¢), s(z), u.(0,t), andu,(1,t) in Figures 6.2(a)—6.2(d),
respectively. From these figures, it can be seen that théi@mdufor r(¢) and s(x)
are inaccurate, but the fluxes(0,t) andu,(1,t) are stable and accurate with small
RMSEs of 9.32E-3 and 4.58E-2, respectively, see Table 6his i$ somewhat to be
expected since the inverse problem is ill-posed. Hencejlaggation is required to
overcome this instability.

For this, we utilise the TSVD and the Tikhonov regularisatod orders zero, one,
and two. The selection method of the regularisation pararsas first considered.
The L-curves of the TSVD and the Tikhonov regularisations arsgméed in Figures
6.3(a) and 6.4(a), respectively. It can be seen that there isshape obtained for ei-
ther the TSVD, ZOTR, or FOTR, whereas the SOTR shows morelglaa L.-corner
at \;=1E-1. Alternatively, the GCV method is utilised as anottieoice for the reg-
ularisation parameter, as shown in Figure 6.3(b). The miniof the GCV function
suggestsV; = 56 to be the truncation number for the TSVD, whilst for the Tiklog
regularisation which is displayed in Figure 6.4(b), the imia indicate the parameters
Acov=1.0E-7, 1.2E-7, and 4.5E-8 for ZOTR, FOTR and SOTR, respadygt Note
that for the exact data,~ 0 and the discrepancy principle cannot be employed. With
the GCV selection for the regularisation parameters detestnfrom Figures 6.3(b)
and 6.4(b), the TSVD and the Tikhonov regularisation resale shown in Figure 6.5.

Compared to Figure 6.2, one can see that the instabilityeohtimerical solutions is
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Figure 6.2: The analytical (—) and numerical res@ts —) of (&) r(t), (b) s(z), ()
u.(0,t), and (d)u,(1,t) obtained using the SVD for exact data, for Example 1.

not alleviated. We then employ another choice of the reggdtion parameter based on
the L-curve method. This suggestg=1E-1 for the SOTR displayed in Figure 6.4(b).
Then with this choice foA we obtain the stable and accurate numerical results shown
in Figure 6.6 and Table 6.2.

Noisy Data

Next, the case of noise contamination with percengagel % is considered by adding
random noise into the input functionsgt) andq(z) in (6.29), as in (6.22) and (6.23),
respectively. It is of crucial importance to utilise the utyisation in this case, and se-

lecting the regularisation parameter is the first step ofdlgelarisation process. Here,
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Figure 6.3: (a) Thd.-curve and (b) the GCV function obtained by the TSVD for exact
data, for Example 1.
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Figure 6.4: (a) Thd.-curve, and (b) the GCV function, obtained by the ZOFR —),
FOTR(---), and SOTR — — —) for exact data, withh = A, = A, for Example 1.

the L-curve method and the discrepancy principle are employeditasia for choos-
ing the regularisation parameters. These are displayegurés 6.7 and 6.8 using the
TSVD and the Tikhonov regularisation, respectively. Thggasted parameters are
given in Table 6.2. Figure 6.9 presents all results obtaumdg the TSVD and the
Tikhonov regularisation of orders zero, one, and two with thgularisation parame-
ters suggested by the discrepancy principle, see TableL&@king more closely at

Figure 6.9(a), it can be seen that the approximate solufmms(¢) obtained by the
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first- and the second-order Tikhonov regularisation areaeably stable, whereas the
numerical solution fok(x), as shown in Figure 6.9(b) is rather in accurate.

We consider the second-order Tikhonov regularisation Wiehregularisation pa-
rameter suggested by tiecurve method\;=10 and obtain the results shown in Fig-
ure 6.11. After analyzing this numerical solution, it candbearly observed that we
cannot obtain accurate solutions for betands using A\, = A,. Therefore, the case
A # A IS considered and the-surfaces are shown in Figure 6.10. On the plane of

logarithm of residual normlpg || X'w, — y¢||, versus logarithm of the second deriva-

140 1.2r

-0.8 L L L L ,
0 0.2 0.4 0.6 0.8 1

(b)

0.002 -

-0.002 *

1
= -0.004,

(0,

' —0.006

u.

-0.008 -

-0.01f

~0.012 L L L L ), L L L L )
0 0.2 0.4 0.6 0.8 1 [¢] 0.2 0.4 0.6 08 1
t t

(c) (d)

Figure 6.5: The analytical (—) and numerical results of-(a), (b) s(z), (¢) u.(0, t),
and (d)u,(1,t) obtained using the TSVD— + —), ZOTR (— - —), FOTR (---),
and SOTR— — —) with regularisation parameters suggested by the GCV fonaif
Figure 6.3(b) and 6.4(b) for exact data, for Example 1.
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Figure 6.6: The analytical (—) and numerical res@ts —) of (&) r(t), (b) s(z), (c)
u.(0,t), and (d)u,(1,¢) obtained using the SOTR with the regularisation parameter
A, =1E-1 suggested by thie-curve of Figure 6.4(a) for exact data, for Example 1.

tive of r, log || RMr), ||, forms anL-shaped corner at,=1E+1, while\,=1 is based

around the area of the-corner on the plane dég | Xw, — y¢|| versuslog || R®)r),

However, the numerical solution fei(z) obtained using the parametexs, = 10,

As, 1, = 1 suggested by thé-surface method, is still inaccurate. We finally use the tria

and error process to seek out the appropriated regulamgadirameters, and found that

regularisation parametess ,,,=8 and); ,,,=5.2E-2 can yield an accurate and stable

numerical solution, see Figure 6.11. Nevertheless, maeareh has to be undertaken

in the future for the selection of appropriate multiple regisation parameters, [12].

for completeness, the RMSE of all results which we have maet so far are detailed
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for noisy inputp = 1%, for Example 1.

10' ¢ 10°
10° --"&3\
R ,
10° + « T < ,‘I
? @5 \N 7
i ol 'a"@,)‘,j;f;’lm é‘( A=1.3E-3 ‘ ’ A= 28E-2 \\\\\
'@‘ """ o, = \v/ ,I \\\\\\\\\\\ y R .
VT, ' S
b‘ A=15
10" . ! L L L L .
0.06 0.2 10° 10" 10° 10" 10°
[ Xwy =yl A
(@) (b)
Figure 6.8: (a) Thd.-curve and (b) the discrepancy principle obtained usin@tb&R
(—-—), FOTR(---), and SOTR— — —) for noisy inputp = 1%, with A = \, = A,

for Example 1.

in Table 6.2.

6.5.2 Example 2

In example 1, the case of smooth source functions has beestigated and it can
retrieved the instability with the use of BEM together witletregularisation based on

either the TSVD and the Tikhonov regularisation. In thisrapée, we are considering
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Figure 6.9: The analytical (—) and numerical results of(a), (b) s(x), (c) u. (0, t),

and (d)u,(1,t) obtained using the TSVD— + —) with N, = 14, and the ZOTR
(—-—), FOTR(---), SOTR(— — —) with regularisation parameters suggested by the
discrepancy principle of Figure 6.8(b) for noisy input 1%, for Example 1.
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versuslog || RV, ||, and (c) plane ofog || Xw, — y¢|| versuslog || R®)s,||, obtained
using the SOTR for noisy input= 1%, for Example 1.
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Figure 6.11: The analytical (—) and numerical results 9f(@), (b) s(z), (c)
u(0,t), and (d)u,(1,t) obtained using the SOTR with regularisation parameters sug
gested by thd.-curve criterion\;, = A\, = A\, = 10 (— — —), the L-surface method
(Arns As2)=(10,1)(— + —), and the trial and errar\, ,pt, As opt)=(8,5.2E-2)(— * —),

for noisy inputp = 1%, for Example 1.
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Table 6.2: The RMSE for(t), s(x), u.(0,t), andu,(1,t) obtained using the SVD,
TSVD, ZOTR, FOTR, and SOTR, fgr € {0, 1}%, for Example 1.

RMSE
Method| p Parameter "0 (@) (0.0 T (D)
SVD 0 - 1.47E-1| 2.55E-1| 9.32E-3| 4.58E-2
TSVD | O N;=56 1.17E-1| 2.03E-1| 2.94E-3| 3.57E-2
ZOTR | O Acov=1.0E-7 | 1.20E-1| 2.02E-1| 3.53E-3| 3.65E-2
FOTR | O Aeov=1.2E-7 | 7.62E-2| 1.70E-1| 3.68E-3| 4.35E-2
SOTR | O Agoy=4.5E-8 | 7.96E-2| 1.85E-1| 6.48E-3| 4.70E-2
SOTR | O A=1.0E-1 | 8.70E-3| 2.81E-2| 1.27E-2| 3.09E-3
SVD | 1% - 1.62E+1| 1.01E+2| 2.84 | 2.48E-1
TSVD | 1% N=14 2.04E-1| 1.77E-1| 2.29E-2| 5.83E-2
ZOTR | 1% Aais=1.3E-3 1.87E-1| 1.83E-1| 2.32E-2| 4.87E-2
FOTR | 1% Aais=2.8E-2 1.28E-1| 3.50E-1| 1.05E-1| 7.91E-2
SOTR | 1% Aais=1.5 9.72E-2| 2.65E-1| 8.05E-2| 5.58E-2
SOTR | 1% A=10 1.61E-1| 4.23E-1| 1.20E-1| 9.36E-2
SOTR | 1% | A\=10)\=1 | 7.93E-2| 2.18E-1| 6.81E-2| 4.40E-2
SOTR | 1% | \,=8,\,=5.2E-2| 1.92E-3| 5.34E-2 | 1.00E-2| 6.39E-3

in more severe case with the non-smooth source functiontsT'lze L = 1, X,

and the input data

\

—zlt— 1| —e

’

T — =

ug(x) = po(t) = pr(t) =0, So=s(3) = 1
X(t) =u(3,t) =t*sin(3), ¥(z)= i u(x,t)dt =
f(SC,t)II, g<x7t>:€ta

3

h(z,t) = (2t + t*(1 — 2x)?) sin(x — %) + 2t cos(z — 2?)

sin(z — z?)

)

1

2

(6.31)

Note that the input data (6.31) satisfy the conditions ofdrben 6.2.1 to ensure the

existence and uniqueness of solution of the inverse proktein—(6.5). In fact, the

exact solution is given by

u(z,t) = t*sin(z — 2?),

r(t)
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Figure 6.12: The normalised singular values of malfifor N = Ny = 20 (— - —),
N=Ny,=40(---),andN = N, = 80 (— — —), for Example 2.

This is a more severe test example than Example 1 since theescomponents(t)
ands(z) are not smooth functions.

We have calculated the condition numbers of the matriand obtained the condi-
tion numbers 3.46E+3, 1.54E+4, and 8.69E+4/fbe= N, = 20, 40, and 80, respec-
tively. Moreover, the corresponding normalised singulaugs are shown in Figure
6.12. In Example 2, the condition numbers of the mafixare not much different
from the condition numbers for Example 1. Then we expect keesihis inverse prob-
lem by using wither the TSVD or the Tikhonov regularisati@naeans to reduce the

instability of the solution. Here, we fiy = Ny = 40 and X, = %

Exact Data

First we have tried the TSVD, ZOTR, FOTR and SOTR with the fagsation pa-
rameter given by the GCV function. This yield§ = 65, \gcv=2.9E-8, 3.2E-8, and
8.3E-9, respectively. But we have found that the soluti@ms-ft) and s(z) are not
so accurate. We then considered flieurve method for choosing the regularisation
parameter. Figures 6.13(a) and 6.13(b) displayikmurves for the TSVD and the
Tikhonov regularisation, respectively. The same as/thmirve in Example 1, ai-
shape is obtained only when using the SOTR with suggests@mner around=1E-4

to 1E-3. In particular, fon\;,=1E-4 we obtain the stable solutions presented in Figure
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), and SOTR— — —) with A = \, = )\, for exact data, for Example 2.

also included is not so accurate and stable in retrievinduhetionsr(¢) ands(z).

Table 6.3: The RMSE for(t),

TSVD, ZOTR, FOTR, and SOTR, fgr € {0, 1}%, for Example 2.

s(x), ug(0,t), andu,(1,t) obtained using the SVD,

RMSE
Method| p Parameter "0 (@) (0.0 T (LD
SVD 0 - 1.15E-1| 4.12E-2| 2.05E-3| 6.95E-4
TSVD | O N;=65 1.17E-1| 7.92E-2| 1.15E-1| 4.12E-2
ZOTR | O Aoy =2.9E-8 1.67E-1| 6.63E-2| 5.21E-3| 2.19E-3
FOTR | O Acov=3.2E-8 8.94E-2| 2.99E-2| 2.12E-3| 6.01E-4
SOTR | O Acov=8.3E-9 9.20E-2| 3.13E-2| 2.10E-3| 7.61E-4
SOTR | O A=1.0E-4 5.88E-3| 8.94E-3| 2.39E-3| 1.04E-3
SVD | 1% - 5.31E+1| 8.91E+1| 2.88 | 2.42E-1
TSVD | 1% N=10 2.16E-1| 2.37E-1| 1.15E-1| 9.05E-2
ZOTR | 1% Aais=1.3E-4 1.20E-1| 2.12E-1| 1.15E-1| 4.72E-2
FOTR | 1% Aiis=3.2E-2 1.66E-1| 6.77E-2| 2.21E-2| 2.51E-2
SOTR | 1% Aiis=2.3 5.78E-2| 7.90E-2| 9.98E-3| 4.95E-2
SOTR | 1% Ar=1 9.24E-2| 6.63E-2| 1.55E-2| 4.04E-2
SOTR | 1% | A, =1\, .=10 3.96E-2| 1.13E-1| 4.67E-3| 6.40E-2
SOTR | 1% | A\, opt=2.2 s 0¢=5.9 | 2.37E-2| 1.01E-1| 3.42E-3| 5.98E-2
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Figure 6.14: The analytical (—) and numerical results 9f (@), (b) s(x), (c)
u.(0,t), and (d)u,(1,t) obtained using the SVD— - —) and the SOTR —o0—) with
the regularisation paramet&f=1E-4 suggested by the-curve of Figure 6.13(b) for
exact data, for Example 2.

Noisy Data

When noise is present in the measured dgtg and v (x), the regularisation with
an appropriate parameter has to be carefully considerete Me have tried solving
the perturbed problem with = 1% noisy input by using the TSVD, ZOTR, FOTR,
and SOTR, with the regularisation parameter given by therelmncy principle. This
yields NV, = 10, A\4,=7.3E-4, 3.2E-2, and 2.3, respectively. Although the @ipancy

principle is a rigorous method which uses the knowledge aeyahe RMSE errors

displayed in Table 6.3 are quite large. Alternatively, wasider thelL-curve method
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Figure 6.15: Thel.-curve obtained using (a) the TSVD and (b) the ZOTR- —),
FOTR(---), and SOTR(— — —) with A = A\, = X, for noisy inputp = 1%, for
Example 2.

for the choice of regularisation parameter displayed iufgg.15. This suggests the
appropriate parameters A% between 5 and 30y, =1E-4, 1E-2, and 1 for the TSVD,
ZOTR, FOTR, and SOTR,, respectively. We then solved the sa/problem with these
parameters and found that the numerical results obtainad ttee TSVD, ZOTR and
FOTR, are not so accurate. Whereas the SOTR yields a moreatée@olution, as
shown in Figure 6.17 with dashed line. Hence, as in Exampleelcase of\, # A,
needs to be considered by using thesurface method for choosing the appropriate
regularisation parameters. Figures 6.16 displaydtserface which selects, ;=10
and); ;=1, and the results obtained using the SOTR with these paeasrare shown
in Figure 6.17. Furthermore, the regularisation paramsetetected by the trial and
error have also been considered and these results haveessadrziuded in Figure

6.17. The accurate retrieval oft) is possible, but fog(z) this is less accurate.

6.6 Conclusions

This chapter has presented a numerical approach to thetameous numerical de-

termination of the space- and the time-dependent coeffiseuarce functions of an
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Figure 6.16: Thd.-surface on (a) a three-dimensional plot, (b) planegf| Xw, —y¢||

versuslog | Ry, ||, and (c) plane ofog || Xw, — y¢|| versuslog || R®)s,||, obtained
using the SOTR for noisy input= 1%, for Example 2.

inverse heat conduction problem with Dirichlet boundaryditions together with
specified interior temperature measurement and time+ategndition, as the over-
determination conditions.

The numerical discretisation was based on the BEM togetlibreither the TSVD,
or the Tikhonov regularisation. Additionally, various rnetls for choosing the regu-
larisation parameters have been utilised. The numerisalltsepresented show that
accurate and stable numerical solutions can be achievettptbthat the regularisa-
tion parameters are appropriately selected. The two-petenselection has proved

to be difficult, as some of our numerical results obtainesgisieveral criteria, e.g.
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Figure 6.17: The analytical (—) and numerical results 9f (@), (b) s(x), (c)
u,(0,t), and (d)u,(1,t) obtained using the SOTR with regularisation parameters sug
gested by the -curve criterion\;, = \, = A\; = 1 (— — —), the L-surface method

(Arns As.2)=(1,10) (— + —), and the trial and errof\, o, As opt)=(2.2,5.9)(— * —),
for noisy inputp = 1%, for Example 2.

discrepancy principle, GCV,-curve, L-surface, have shown. Nevertheless, more re-
search has to be undertaken in the future for the selectionuitiple regularisation
parameters, [12].

In the next chapter we will consider reconstructing muidiglive space- and time-
dependent heat sources.



Chapter 7

Determination of Multiplicative Space-

and Time-dependent Heat Sources

7.1 Introduction

In the previous chapter, we have investigated the recartgiruof an additive source
of the formr(¢t) f(x,t) + s(x)g(x, t). In this chapter, we consider the reconstruction of
a multiplicative source of the form(¢)s(z), in which bothr(¢) ands(z) are unknown
functions. In contrast to the previously investigatedadineconstruction of the additive
source, Chapter 6, this new inverse source problem foriounla more difficult to
solve because it now becomes nonlinear. Moreover, itslepiness with respect to
small errors in the input data being blown up in the outpureesolution adds even
further difficulty.

The existence and uniqueness of the sour¢es s(z) and the temperaturgz, t)
of the inverse problem were already established in [47].hls thapter, we consider
obtaining a stable solution by using the BEM together wittoalimear minimisation.

The plan of the chapter is as follows. In Section 7.2, we dieemhathematical for-
mulation of the inverse multiplicative source problem atatesits unique solvability.

In Section 7.3, we describe the numerical discretisatiothefproblem based on the

149
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BEM, whilst in Section 7.4 we introduce the inverse methadblataining the solution
based on a nonlinear least-squares minimisation. Sectoprésents and discusses
numerical results and illustrates the need for employigglagisation in order to sta-

bilise the solution. Finally, Section 7.6 presents the amions of the study.

7.2 Mathematical formulation

Consider the following inverse initial-boundary value Ipiem of finding the temper-
atureu(x, t) and the multiplicatively separable source functibf,t) := r(t)s(z)

satisfying the heat equation

Ut = Uye +7(t)s(x), (x,t) € D, (7.1)

subject to the initial condition (1.7), namely

u(z,0) = up(x), =z €]|0,L], (7.2)

the homogeneous Neumann boundary conditions

ug(0,8) = ug(L,t) =0, tel0,7T), (7.3)

the additional temperature measurement

u(Xo, t) = x(t), te0,T], (7.4)

at a fixed sensor locatiok, € (0, L), and

w(z,T) = p(x), =e€l0,L], (7.5)

at the ‘upper-base’ final time= T'. Conditions (7.3) express that the edds L} of

the finite slab(0, L) are insulated. In order to avoid trivial non-uniquenessesented
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by the identityr(t)s(z) = i(f) - ¢s(x), with ¢ arbitrary non-zero constant, we impose a

fixing condition, say
S(XQ) = So. (76)

In the above setting, the functionsg, x, 5 and the constam, are given. We further
assume that the conditions (7.2)—(7.5) are consistentthieefollowing compatibility

conditions are satisfied:

up(0) = up(L) = B'(0) = B'(L) =0, x(0) = uo(Xo), X(T)=p5(Xo). (7.7)

The unique solvability, i.e. existence and uniqueness®stiution of the inverse
problem (7.1)—(7.6), was established in [47]. With somglglcorrections, this theo-

rem reads as follows.

Theorem 7.2.1 Suppose that(z), 5(z) € W3(0, L), and x(t) € W3(0,T) satisfy
(7.7)and thatS, # 0. Also, assume that:

() M = () = uf(Xo) £ 0, m= XD ;\f”(xo) £0,

(i) w/(0) = (L) = 5"(0) = 5"(L) = 0,

(|||) A< 1, 4)\2>\3 — (1 — )\1)2 <0, M\ < 1,

where
A= ﬁ max {M2 + 74L27|g””2,4[,|]9|]2 + Lm?||luf'||? ¢,
Ag 1= %max{;gj‘l, 1}, A3 = 2”2/2”2 + 4"]\92/!’2 (2%2”2 + ||U6"||2)
YRES ﬁ max { M? + 203z + AL?||X"||?, 4L3z + 4L3||0'||* + 2Lm?||luy'||*},
11—\

O(x)=p"(z) —muy (x), =z= TV
Then the inverse problem given by equatiéhd)«(7.6) has a unique solution(t) €
Wi(0,7), s(z) € W3(0, L) and

u(z,t) € Wy*(Dr) N C(0, T; W5(0, L)) N C(0, Ly W3(0,T)).
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Note that in the above theorer%(Q), with & € {1,2,4} andQ2 = (0,L) or
(0,T), denotes the Sobolev space of functions consisting of athehts ofL.?(Q)

having generalised derivatives up to oréénclusively in L?(). Also, we denote
Wy (Dy) = {u € L*(Dy)|&u € L*(0,L),j = 1,4, anddiu € L*(0,T),i = 1,2}.

Finally, C'(0,7; W3(0, L)) denotes the space of continuous mappings ftoni’) to
W5(0, L) andC(0, L; W2(0, T')) denotes the space of continuous mappings @)
to W3(0, 7). The norms||x”|| and ||uy’|| are understood ii.?(0,7) and L?(0, L),
respectively. Also, the norms éfandé’ are inL?(0, L).

Although the inverse problem (7.1)—(7.6) has a unique gwoiut is still ill-posed
because it violates the continuous dependence upon thedapa(7.4) and (7.5). In
the next section we will demonstrate how the BEM discregisinmerically the heat
equation (7.1) can be used together with the regularisati@nder to obtain a stable

solution.

7.3 The boundary element method (BEM)

In this section, we use the numerical procedure for dissirggithe inverse problem
(7.1)—(7.6) by using the BEM which results in the followingumdary integral equa-

tion:

n(x)u(z,t) = /0 {G(az,t,ﬁﬂ') 837(“2) (& 7) —M&ﬂ%(m@ﬂl o) dr

L L T
4 / Gl t,y,0)u(y,0) dy + / / G, t,y, 7)r(r)s(y) drdy,
0 0 0

(z,1) € [0, L] x (0, 7). (7.8)
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Using the same discretisation as described in Section 2iGhwitas been used so far

as in previous chapters, we obtain

N
IZ AO_] xZ, f} qO] —FAL](ZL’ t)qL] Boj(l’,t)hoj — BLj(SL’,t)th]

7=1
No

+ Z [Cr(, t)uor + Dy(x,t)sk], (7.9)
k=1

where
T t N
Di(z,t) = / / Gz, t,y,T)r(r)drdy = djk(x,t)r;, (7.10)

Thk—1 0

j=1
whered; (x,t) = [* [ G(x,t,y,7)drdyforj = 1,N, k = I, N,. The double
integral source terni; ,.(x,t) can be evaluated analytically to be given by

0 ; t < t] 1,

J(ZE, ta Tp—1, tj—l) - J(l’, t) T, tj—l)

(v —mp1)®  (z—ay)?

p i <t <t;, v < xp_q,

4 4 ’
J(:Eata Tp—1, tj—l) - J(l’, taxkatj—l)
r—x51)% (v —axp)?
dj(w,t) = —( 4k 1) — ( 1 ) y i <t < ty, mp1 < <

J(ZE, ta Tp—1, tj—l) - J(l’, t) T, tj—l)

_(:c Zkl) i (z fk) y i <t < tj, x> xy,

J(ZE, ta Tp—1, tj—l) - J(l’, t) T, tj—l)

—J(x, t, xp1,t5) + J(x, t, 24, 1) Dt >ty
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where

(e -t T — T
J(x,t,xk,tj)—( 1 + 5 erf Nier

+ \/;\}7(56 — @) exp (_%) .

By applying (7.9) at the boundary element nodes;) and(L, ;) fori = 1, N and
the homogeneous Neumann boundary condition (7.3)gie= ¢r; = 0, we obtain

the system o2V equations

—Bh+ Cuy+ D"s=Q, (7.11)

whereD" = !Zjvl dj,k(o,fl)r]:|
2N X Ng

Sy dir( Ly )

For the direct problem, we can find now the boundary tempeaiL(0, #;) and
u(L,t;) from (7.11) as
h= B'(Cu, + D"s). (7.12)

Furthermore, the interior temperaturgsX, ¢;) for i = 1, N from the additional con-

dition condition (7.4) can be approximated similarly as6nlg), i.e. [u(Xo, )]y =

\(7)] - Applying this in (7.9) it gives
—B'h+ C'uy+ D"'s=y. (7.13)

whereD"! = [Zj.vzl d; 1 (Xo, 1i)r; e Whereas the final temperaturéi;, ') for
k = 1, Ny from the overdetermination (7.5) can be approximate¢:&s,, 7|y, =

)] .- Applying this in (7.9) it gives

—Blllh_+ Cllluﬂ +D7“IIIS_: 6_7 (714)
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where

Bl _ [Boj(xk,T) BLj(fk,T)] cHl = [Ck(fk,T)}

Y )
N()XQN N()XN()

D = [Z;V:l dj( Tk, T)’f’]}

N()XN()

7.4 Solution of inverse problem

In this section, we wish to obtain simultaneously the unkm@emponents(¢) and
s(z) of the multiplicative source term in the inverse problemi}#(7.6) by using the
BEM together with a classical minimisation process. Thedittons (7.4)—(7.6) are

imposed by minimising the nonlinear least-squares functio

=3 (X, B) = () + 3 (@ T) = B(@)* + (s(Xo) — So)>
=1 k=1

(7.15)

Here, the approximated temperatutésy, ;) andu(i, T'), as introduced earlier in
(7.13) and (7.14), respectively, are now employed into th@va objective function
with the initial guesses,rand_g for functionsr ands, respectively. Whereas X)) is

approximated the same as in (6.20). Then, applying the appations (7.12)—(7.14)

we obtain

Fo(r,8) =| — B'B~'(Cly + D's) + C'y + D''s— x|
+ || o BIIIB—l(C«u0 +D7"S> +CIIIU0 +D7~IIIS__ QHQ
+ (8(Xo) — So)?, (7.16)

wherer= (r;)y ands= (sx)n,. The minimisation of (7.16) is performed using the
Isgnonlinroutine from the MATLAB Optimisation Toolbox. This routiretempts to
find the minimum of a sum of squares by starting from somerayiinitial guesses,r

and_g. Note that we have compiled this routine with the followirgfallt parameters:
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e Algorithm = Trust-Region-Reflective.

e Maximum number of objective function evaluations, ‘MaxEwals’ = 100 x

(N + Ny +1).

Maximum number of iterations, ‘MaxIter’ z00.

Termination tolerance on the function value, ‘TolFun1&1° to 10~9.

Termination tolerance, ‘TolX’ 20~1° to 1076.

Of course, finding a global minimiser to a nonlinear optirtimaproblem is not an
easy task since the functional (7.15), which is in generékoavex, i.e. the Hessian
of IF is not positive definite. As a consequence it may have localma in which a
descent method tends to get stuck, if the underlying inverskelem is ill-posed, [14,
p.17]. In the next section we shall elaborate more on thecehaii the initial guess for
the iterative routine, as well as on incorporating regsktion in the functional (7.15)

in order to ensure convergence to the desired stable solutio

7.5 Numerical examples and discussion

This section presents three benchmark test examples in tortest the accuracy and
stability of the numerical methods introduced in Sectiorf&ahd 7.4. The RMSEs
for () and s(x), defined in (2.49) and (6.28), respectively, are used touavalthe

accuracy of the numerical results.

7.5.1 Example 1

We consider a benchmark test example With= 1, L = 1/10, X, = 1/20, and the
initial data (7.2) given by

up(z) = u(z,0) =0, x€]0,L]. (7.17)
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For the direct problem (7.1)—(7.3) we also need the inputcsodata

et

r(t) = 0 (4007%t* — 4007°t + ¢* + ¢ — 1), s(z) = 40cos(20mz).  (7.18)

In order to test the BEM accuracy for the direct problem gibgrequation (7.1) with
the source given by the product of the functions in (7.18pjestt to the homogenous
Neumann boundary condition (7.3) and the initial condit{@éri7), the numerical re-

sults are compared with the analytical solution given by
u(z,t) = e'(t — %) cos(20mz). (7.19)
The exact expressions for the inputs (7.4)—(7.6) are giyen b

\(t) = u(1/20,0) = —(t = 2)e!,  B(x) = ulz, 1) =0,

Sy = s(1/20) = —40.

(7.20)

As defined in Theorem 7.2.1, we then haige= —40 £ 0, M = —1 £ 0, m = —e #
0,0(x) = B(z) = ug(r) =0, \; = 0.2962 < 1, \y = 2, A3 = 0,4\ 03 — (1 — \})? =
—0.4953 < 0, z = 0.1759, and Ay, = 0.2613 < 1 which satisfy all the conditions
()—(iii) for existence and uniqueness of the solution.

As the specified boundary conditions (7.3) are of Neumane,tyipe boundary
unknowns in the BEM are represented by the Dirichlet détat) andu(L, t), as given
by (7.12). Once all the boundary data has been obtainedaetyrequations (7.13)
and (7.14) can be employed explicitly and with no need ofrpudkations to obtain
the temperatures( 5, ¢;) andu(zy, 1) for i = 1, N andk = 1, Ny, respectively. The
RMSE of the direct problem results are shown in Table 7.1 trah be concluded that
the BEM numerical solutions are convergent to their comwasing exact values, as the
number of boundary elements increases. Whereas Figurasplhys the analytical
and numerical results of(¢) and5(x) and very good agreement can be observed.

Next we consider the inverse problem given by equationg,(7713), (7.17) and
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Table 7.1: The RMSE fo (0, t), u(0.1,t), x(t) andj3(z), obtained using the BEM for
the direct problem withV = N, € {10, 20,40}, for Example 1.

RMSE
N = N,
" Tu(0,6) Tu(0Lt) [ x() | Blx)
10 5.01E-3| 5.01E-3| 5.64E-3| 8.51E-2
20 1.03E-3| 1.03E-3| 1.75E-3| 4.51E-2
40 8.17E-4| 8.17E-4| 9.69E-4| 2.30E-2
- - 0 ~“Z?/.“.»\7, - - :;ﬁi“:\;\\”
(b)

Figure 7.1: The analytical (—) and numerical results for X&) and (b) 5(x)
obtained using the BEM for the direct problem with = N, € {10 (— -
—),20 (---),40 (— — —)}, for Example 1.

(7.20). The numerical solution can be obtained, as destiib&ection 7.4, by min-

imising the objective function (7.15). Preliminary nunoali investigations showed

that the initial guessesg and_g cannot be so arbitrary in order for the minimisation

process to converge globally. After many trials, we decitediustrate the numerical

results obtained by considering the initial guess as

r, = r + random('Normal, 0, o,, N, 1),

S, = S+ random('Normal, 0, o, Ny, 1),

with the standard deviations ando,, respectively, given by

Op = Po X mMax |T(t)|7

te[0,7

= Py X
oy =po 113[3§1|8($)\a

(7.21)

(7.22)
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wherep, is a percentage of perturbation. Hereafter, unless otBergpecified, we
present results obtained witlh = 100% perturbed initial guess (which is quite far
from the exact solution (7.18)) and = N, = 20, we also have set parameters TolFun
= TolX = 10~° for the MATLAB optimisation toolboxsgnonlinto solve the inverse
problem.

Figure 7.2(a) shows the unregularised objective funcligriwhich converges in
39 iterations and the numerical results f@t), s(z), u(0,t), u(0.1,t) are displayed
in Figures 7.2(b)-7.2(e), respectively. As we can see iseligures, the numerical
results are inaccurate and partially unstable in Figuréy..2

In order to improve the accuracy and stability, we apply &ndikov regularisation

process based on minimising the penalised objective fomcti

FA(L,s) = Fo(L,s) + A (| R + || Rs) , (7.23)

where\ > 0 is a regularisation parameter to be prescribed, And a (differential)
regularising matrix as introduced in Section 1.6. Initialve have applied the first-

and second-order regularisations based on minimisinglijextive function (7.23) as

N—1 No—1
Fa(r, s) =Fo(r,s) + A (Z (rig1 —73) + Z (Skt1 — 5k) ) : (7.24)
i=1
N-1 No—1
Fa(Ls) =Fo(L,s) + A (Z —rip1 +2r — 1)+ Z (—Skt1 + 25 — 3k1)2> ;
=2 k=2
(7.25)

respectively.

By trial and error, among various regularisation paransetee {1077, ...,10?%},
we have found, as illustrative stable results, those obthimith \,,, = 10~> which
are shown in Figure 7.3. As we can see in this figure, applyniigrs one or two
regularisations (7.24) or (7.25) yield stable, but ratmrccurate results, especially

near the endpoints of the intervals of definition of the fuorts involved, see Figure
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Objective Function Fy

0 10 20 30 40
Number of iterations

@)

150 . 150

-100 R

~100 L L L L , -150

(b) (c)

(d)

Figure 7.2: (a) The objective functidfy and the numerical results for (b)¢), (c)
s(z), (d) u(0,t), (e)u(0.1,t) obtained with no regularisatiof+ - —), for exact data
for Example 1. The corresponding analytical solutions @@ by continuous line
(—) in (b)—(e) and they, = 100% perturbed initial guesses are shown by dotted line
(--+)in (b) and (c).
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t

(c) (d)

Figure 7.3: The numerical results for ¢d}), (b) s(x), (¢)u(0, t), (d) (0.1, ¢) obtained
with the first-order regularisatiofi - - ) and the second-order regularisation — —)
with regularisation parametex,,, = 10~°, for exact data for Example 1. The corre-

sponding analytical solutions are shown by continuous(lre).

7.3(b). In order to improve on these inaccuracies we have ithestigated a hybrid

combination of first- and second- order regularisationsigivy

N-1
(_Tz‘ﬂ + 2r; — Tzfl)Z
2

1=

F)\([,S) :FQ(L5)+)\((T1 —7’2)2+ (—TN,1 +7’N)2+

No—1

+ (51— 2)" + (=snp-1 +530)" + Y (—ske1 + 255 — skl)Q)- (7.26)
k=2
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According to (7.23) and (7.26), the differential regulatisn matrixR is given by

R = | (7.27)

In the regularisation process, we need to choose an apatepegularisation parame-
ter A which balances accuracy and stability. Here, we usd.tbarve method to find
the regularisation parametgr Figure 7.4(a) shows the-curve obtained by plotting
the solution normy/|| Rr]|2 + || Rs||? versus the residual noryFy(r, s) for various

values ofA whenR is given by (7.27). From this figure it can be seen that theerooh

the L-curve occurs nearby; = 10~°, with other appropriate values between the wide
rangel0~° to 10~*. With this value of the regularisation parameter, the ragséd ob-
jective functionF, and the numerical results are shown in Figures 7.4(b)57 B{dm
Figure 7.4(b) it can be seen that convergence for the ragathobjective functiof',
is achieved within 15 iterations. Also, in comparison wtilk previous Figures 7.3(a)—
7.3(d), very good agreement between the exact and the respalaaumerical solutions
is now obtained, as illustrated in Figures 7.4(c)-7.4@gspectively. All results are
summarised in terms of the RMSE in Table 7.2. Various inijiaésses (7.21) with
po € {40, 60,80, 100}% in (7.22) have been investigated in order to test the rolegstn
of the minimisation procedure with respect to the indepandeon the initial guess.
From Table 7.2 it can be seen that whilst the choice of th&lrgtiess seems to matter
for the accuracy of the unregularised solution; e= 0, this restriction disappears
when regularisation with;, = 10~° is imposed. This shows that the numerical reg-
ularisation method employed is robust with respect to thependence on the initial
guess.

To test the stability of the BEM combined with the nonlineagularisation, we

solve the inverse problem when random noises are added toghefunctionsy(¢)
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=
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T

(d)

u(0.1,¢)

. . . . . . . . . .
0 0.2 0.4 0.6 08 1 0 0.2 0.4 0.6 0.8 1
t t

() (f)

Figure 7.4: (a) Théd.-curve criterion, (b) the objective functidf), and the numerical
results(— o —) for (c) 7(t), (d) s(z), (€)u(0,t), (f) (0.1, ¢) obtained with the hybrid-
order regularisation (7.26) with regularisation parameate = 10~° suggested by.-
curve, for exact data Example 1. The corresponding analid@utions are shown by
continuous line (—) in (c)—(f).
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Figure 7.5: (a) The objective functid®, and the numerical results for (b{t), (c) s(x),
(d)u(0,t), (e)u(0.1,t) obtained with the hybrid-order regularisation (7.26) witgu-
larisation parametex; = 10~° suggested by.-curve forp € {1(—-—),3(---),5(——
—)}% noisy data, for Example 1. The corresponding analyticaltgmis are shown by
continuous line (—) in (b)—(e).
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Table 7.2: The RMSE for(t), s(x), u(0,t), u(0.1,¢) for exact data, Example 1.

(%) parameter RMSE
ot A r@) | s@) | w(0,8) | u(0.1,%)
40% 0 6.349| 18.47| 4.72E-2| 3.27E-2
0 Ar=1E-5 | 1.528| 0.819| 1.49E-2| 1.53E-2
6094 0 9.752| 26.70| 1.14E-1| 8.12E-2
0 Ar=1E-5| 1.513| 0.767| 1.48E-2| 1.50E-2
80% 0 25.83| 44.93| 1.99E-1| 2.74E-1
0 Ar=1E-5| 1.526| 0.812| 1.48E-2| 1.47E-2
100% 0 53.70| 54.24| 2.34E-1| 2.54E-1
? Ar=1E-5| 1.529| 0.819| 1.47E-2| 1.48E-2
andg(z) as
X = x + random('Normal, 0, o,, N, 1),
( o 1) (7.28)
B¢ = 8+ random('Normal, 0, o4, Ny, 1),
with the standard deviatiorg, andos given by
oy, =px max |x(t)], oz=px max}|5(x)|, (7.29)

t€[0,T] z€[0,L

respectively. The numerical results obtained with= 1075, are illustrated in Fig-
ure 7.5. From Figure 7.5(a) it can be seen that convergentieediybrid-order reg-
ularised objective functional (7.26) is rapidly achievedhim 15-16 iterations for
p € {1,3,5}%. Furthermore, Figures 7.5(b)-7.5(e) show that stable @cdrate
numerical results are obtained for all amounts of ngisélso, as expected, the nu-

merical solutions become more accurate as the amount & pdiscreases.

7.5.2 Example 2

In Example 1, all conditions for the existence and uniqusmés heorem 7.2.1 were

satisfied. We now consider an example which has the andlgbdation, [48],

u(z,t) = (e — e M cos(x), r(t)=e*, s(x)=4cos(x), (7.30)
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whereT = 0.3, L = 7. One can easily check that the homogeneous Neumann con-
ditions (7.3) are satisfied and that the initial conditior2{4s also homogeneous, as
givenin (7.17). TakingX, = 0.75 we obtain that the input data (7.4)—(7.6) are given
by

X(t) = u(0.75,t) = (€3 — ") cos(0.75),

B(z) = u(x,0.3) = (2 — 703) cos(z), (7.31)

So = 5(0.75) = 4 cos(0.75).

0
From this we haveS, = M = 4co0s(0.75) # 0, ug(xz) = 0, m = €% # 0, 0(z) =
(€29 — e 03)sin(x), A\; = 5.3719, Ay = 0.2518, A3 = 24.928, z = —8.6813, \, =
14.654. One can then observe that the conditions (i) and (ii) of Tlen7.2.1 are
satisfied, but the condition (iii) has been violated. Whastolution obviously exists,
as given by equations (7.30), one cannot guarantee yetikatdlution is unique.

We have solved first the direct problem given by equatioriy (With » ands given
by (7.30)), (7.3) and (7.17) using the BEM with various nunsia# boundary elements
N = N, € {5,10,20} and the numerical results for(¢) and 5(z) presented in Fig-
ure 7.6 show rapid convergence and excellent agreementlhéthnalytical solution
(7.31). Afterwards, we have solved the inverse problemrgbyeequations (7.1), (7.3),
(7.17) and (7.31) in order to retrieve the temperature ¢) and the heat source com-
ponents(t) ands(z) given analytically by (7.30). We have taken boundary eleien
N = N, = 20 and the arbitrary initial guesses+ Qand_g = Q.

We first consider the case of exact data. The convergenceediriregularised
objective functionF, achieved within 56 iterations using tt&gnonlinroutine with
TolFun = TolX =10~'Y is illustrated in Figure 7.7(a). Also, the RMSEs of soluten
ands are shown in Figure 7.7(b) by dash lifte - ) and dot line(— — —), respectively.
The numerical solutions forands obtained after 56 iterations are shown by dash-dot
line (— - —) in Figures 7.7(c) and 7.7(d), respectively. Very good agerat between
the numerical and analytical solutions fercan be observed, whilst the numerical

solution forr is stable but slightly away from the analytical solution. ¥en look
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Figure 7.6: The analytical (—) and numerical results for X&) and (b) 5(x)
obtained using the BEM for the direct problem with = N, € {5(— -
—), 10(---), 20(— — —)}, for Example 2.

more closely at Figure 7.7(b) and observe that the minimuRMSESs is at iteration
31 instead of 56. Therefore, we have tried solving the irv@reblem with the fixed
iteration at 31, and the numerical results become more atxuas illustrated by the
circle markergooo) in Figures 7.7(c) and 7.7(d). Further, we have applied theidy

order regularisation procedure (7.26) with the reguléosaparameten,,,, = 2 x

10~* (chosen by the trial and error) and the results are showngar&i7.8. Figure
7.8(a) displays the convergence of the regularised funati¢7.26) achieved within

28 iterations. Also, results for RMSEs and the solutions/f@and s are shown in

Table 7.3: The RMSE for(¢) ands(z), for the noise levels, € {0,0.01,0.1}, for
Example 2.

Noise level| No. of iterations parameter RMSE
A r(t) s(x)

56 0 | 6.3068E-2] 1.5492E-1
\o noice |31 (ixed) 0 | 2.6668E-2 1.4751E-1
28 Noy=2E-4| 5.6471E-2| 1.1003E-1
23 (fixed) | Ay=2E-4| 1.9713E-2| 6.4412E-2
B 27 Ny =4E-4 | 6.3004E-2| 1.0886E-1
=001 51 (fixed) | A, =4E-4| 2.8829E-2| 6.5281E-2
=01 17 Ny=2 | 5.2212E-2] 3.0714E-2
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Figures 7.8(b)—7.8(d). From Figure 7.8(b) one can seelteatinimum of the RMSEs
occurs after 23 iterations. By comparing Figures 7.7 anaiie8can conclude that the

inclusion of some small regularisation yields slightly maiccurate and stable results.

Next, we consider the stability of the numerical solutiorentthe noise is present
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10° f
=
9] R
E 5 \
— s -~
i 20T
k3] 5] (-
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g i~ Lo
L: 10 g AR
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Number of iterations Number of iterations
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08 . . . . . . .
0 0.05 0.1 0.1! 0.2 0.25 0.3 3.5

(© (d)
Figure 7.7: (a) The objective functidn, (b) the RMSEs for(t) (— — —) ands(x)

(---) obtained with no regularisation for exact data, and the migaleresults for (c)
r(t) and (d)s(z) obtained using the minimisation process after 56 unfixeatitns
(— - —), and 31 fixed iteration& o o), for Example 2. The corresponding analytical
solutions (7.30) are shown by continuous line (—) in (c) éi)d
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Figure 7.8: (a) The objective functidf, (b) the RMSEs for-(t) (— — —) ands(x)

(---) obtained using the hybrid-order regularisation (7.26)wégularisation param-
eter)\,,; = 2 x 10~* for exact data, and the numerical results for/(@) and (d)s(x)
obtained using minimisation process after 28 unfixed ii@nat(— - —), and 23 fixed
iterations(o o o), for Example 2. The corresponding analytical solution8@y are
shown by continuous line (—) in (c) and (d).

in the input data (7.4) and (7.5). As in [48], the noise wasndefiby

X(t:) = x(&) | 1+ N€0 rand(i) |, i=1,N,
e
> i1 X2 () (7.32)
B(7,) = B(Tr) | 1+ €0 rand(k) |, k=1, Ny,
chv:l 52(@)

whererand(-) is a random variable generated by the MATLAB command fromra no
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Figure 7.9: (a) The objective functidf, (b) the RMSEs for-(t) (— — —) ands(x)

(- -) obtained using the hybrid-order regularisation (7.26hwégularisation parame-
ter A, = 4 x 10~ for noise levek, = 0.01, and the numerical results for (c)t) and

(d) s(x) obtained using the minimisation process after 27 unfixedatiens(— - —),
and 21 fixed iterationg o o), for Example 2. The corresponding analytical solutions
(7.30) are shown by continuous line (—) in (c) and (d).

mal distribution with mean zero and unit standard deviatiamd ¢, represents the
noise level. Remark that the noise (7.32) is multiplicativiilst the noise in (7.28),
Example 1, is additive. Fag, = 0.01, Figure 7.9 illustrates the results obtained using
the hybrid-order regularisation (7.26) with regularisatparameten,,, = 4 x 10~*.
The convergence of the regularised objective functioneadd within 27 iterations is
shown in Figure 7.9(a), whilst the minimum RMSEsroénd s occur after 21 itera-

tions, as can be seen in Figure 7.9(b). Numerical solutions &nds obtained after
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Figure 7.10: (a) The objective functidf,, (b) the RMSEs for-(t) (— — —) and
s(z) (---) obtained using the hybrid-order regularisation (7.26hhwegularisation
parameten,,, = 2 for noise levek, = 0.1, and the numerical results- - —) for (c)
r(t) and (d)s(x) obtained using the minimisation process after 17 (unfixeediions,
for Example 2. The corresponding analytical solutions@y&8e shown by continuous
line (—) in (c) and (d).

27 (unfixed) and 21 (fixed) iterations are displayed in Figufé(c) and 7.9(d), re-
spectively. As expected, the conclusions from Figure 71@iabd for a low level of
noisee, = 0.01 are very much the same as the those from Figure 7.8 obtainexfo
noisee, = 0. From both Figures 7.8(c), 7.8(d) and 7.9(c), 7.9(d) oneatzserve that
the numerical results are accurate and stable. Furtheriiam is little difference in
the results obtained whether we stop (fix) the iteration @ssat the minimum of the

RMSEs shown in Figures 7.8(b) and 7.9(b) or, if we let theatien process running
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(unfix) until converge of the regularised objective funotie achieved.

Next, we consider a large amount of noise, sucljas 0.1, included in (7.32)
and the numerical results are shown in Figure 7.10. Firgt,cam observe from Figure
7.10(a) that the convergence of the objective functionq)/irapidly achieved within
17 iterations and the monotonic decreasing curve has a soateliferent shape than
that recorded in Figure 7.8(a) for no noige= 0 or in Figure 7.9(a) for a low amount
noisee, = 0.01. Also, interestingly, unlike in Figures 7.8(b) and 7.9(bheve the
RMSEs show a minimum before the iteration process has fidjshe~igure 7.10(b)
no such minimum occurs. Therefore, in Figures 7.10(c) ah@(d) we present only
numerical results for ands, respectively, obtained after 17 (unfixed) iterations with
Aopt = 2. From these figures it can be seen that the numerical sofdi@nstable, with
an unexpected very high accuracy in predictingdglkemponent in Figure 7.10(d). For
completeness and clarity the RMSEs of Figures 7.7(b)-B)1&¢€ given in numbers
in Table 7.3. From this table, and also from Figure 7.10(byan be seen that for
¢o = 0.1 the component(x) is predicted more accurately than thg) component,
whilst the prediction fok, € {0,0.01} is reversed.

Finally, we report that the numerical results presentedhim éxample are compa-
rable in terms of accuracy and stability with the numeriealults obtained recently
in [48] using a different method of successive approximanéviously developed in
[47].

7.5.3 Example 3

The previous examples possessed an analytical (smootltjospavailable explicitly
and they were tested in order to verify the accuracy and |gtabf the numerical

method employed. In this subsection, we consider a sevstrexample represented
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by the non-smooth source components

£ 0<t<1/2,

r(t) = (7.33)
1—t, 1/2<t<1=T,
x, 0 <z<1/20,

s(x) = (7.34)

01—z, 1/20<x<1/10=1L

whereL = 1/10, T = 1, X, = 1/20. We also take the homogeneous initial tem-
perature (7.17). This example does not have an analytitatico for the temperature
u(x, t) readily available. Therefore, in such a situation the dat4)(and (7.5) is sim-
ulated numerically by solving the direct problem (7.1) wiitte multiplicative source
given by the product of the functions in (7.33) and (7.34hjsat to the homogeneous
boundary and initial conditions (7.3) and (7.17). The BEMnauical solutions for the
datay(t) = u(0.2,t) and(z) = u(z, 1) are shown in Figure 7.11 for various numbers
of boundary elementy = N, € {10, 20,40}. From this figure the convergence of the
numerical solution, as the number of boundary elementgasas, can be observed.

Next we consider the inverse problem given by equationg,({713), (7.6) with

X107 x107°
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Figure 7.11: The numerical results for (a)t) and (b)5(z) obtained using the BEM
for the direct problem withlv = N, € {10(—-—), 20(---), 40(———)}, for Example
3.
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Figure 7.12: (a) The objective functidt, and the numerical results for (bjt) and (c)
s(z) obtained with the hybrid-order regularisation (7.26) witgularisation parameter
A=2x10"*forp € {1(—-—), 5(--+), 10(— — —)}% noisy data for Example 3.
The corresponding analytical solutions (7.33) and (7.8d4 sAown by continuous line
(—) in (b) and (c).

So = s(1/20) = 1/20 specified, (7.17), and the additional measured data (74) an
(7.5) which has been simulated numerically in Figure 7.1&.pi¢k from Figure 7.11
the numerical BEM solutions obtained with = N, = 20 and we further perturb this
data with noise, as in (7.28). We took as initial guesges 5, = 0, and we initiated
the iterative minimisation process of the hybrid-ordemtagsation functional (7.26),
as described in Example 1. The numerical results obtaindgd\yj, = 2x10~* (found

by trial and error) are shown in Figure 7.12 foe {1, 5, 10}% noise generated as in

(7.28). From Figure 7.12(a) it can be seen that the conveggefithe functional (7.26)



Chapter 7. 175

is rapidly achieved within 7-8 iterations using tegnonlinroutine with TolFun = TolX
= 107%. Also, Figures 7.12(b) and 7.12(c) show that stable andratewmumerical
solutions for both-(¢) ands(x) are obtained for all the amounts of nojse

In closure, although not illustrated, we report that the sgmod performance has

been recorded when attempting to reconstruct even distanis source components.

7.6 Conclusions

In this chapter, inverse source problems with homogene@usrdnn boundary con-
ditions together with specified interior and final time temgpere measurements have
been considered to find the space- and the time-dependepbo@mts of a multiplica-
tive source function. The numerical discretisation wastasn the BEM combined
with a nonlinear Tikhonov regularisation procedure vialggnonlinroutine from the
MATLAB. For a wide range of test examples, the obtained itsgadicate that stable
and accurate numerical solutions have been achieved. €héfidation of both multi-
plicativer(t)s(x) and additive-; (¢) + s; (x) components of space- and time-dependent
sources of the form(¢)s(z) + r1(t) 4+ s1(x) can also be considered, [47], but its nu-

merical implementation is deferred to a future work.
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Chapter 8

General Conclusions and Future Work

8.1 Conclusions

The aim of this thesis was to solve various inverse sourcel@nes for the (one-
dimensional) heat equation by using the BEM to find the tirapethdent heat source
function, presented in Chapters 2-5, and space- and tiperdent heat source func-
tions for additive and multiplicative cases, presentedhagilers 6 and 7, respectively.
Several types of conditions such as non-local, non-clakgeriodic, fixed point, time-
average and integral have been considered as boundary metemnination condi-
tions.

The BEM has been used as the main numerical approach foetisog the linear
heat equation with a heat source present. In Chapter 1 wedeseeibed the BEM for
discretising the heat equation. With this method, the hgaagon is first multiplied
by the fundamental solution and then integrated with thsessce of Green’s identity.
This leads to a boundary integral equation which can beelised with resulting inte-
gral coefficients that can be evaluated analytically. Thtealrand boundary conditions
are also imposed.

In an inverse problem, additional conditions are requicedietermine uniquely the
unknown functions. However, this information has to cone&fimeasurements which

are contaminated with noise unavoidably. If the problenfi4qsased then small errors

177
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in the measurement data result in highly and unbounded bsgbutions. Therefore,
regularisation methods need to be employed to deal withribktability.

In this thesis, many regularisation methods have beersediliogether with the
BEM. A popular regularisation method, the Tikhonov regisiation, has been used
with orders zero, one and two. Additionally, for comparistre TSVD method has
also been considered in Chapters 3 and 6. Moreover, in Qhgtee smoothing spline
technique has been considered as a regularisation methe@d&ing a regularised
first-order derivative of a noisy function.

Regularisation methods require a proper choice of the aggaltion parameter.
There are many methods such as fheurve method, the GCV criterion, and the
discrepancy principle which are all popular and successtthods for choosing the
regularisation parameter. Tlecurve method is the simplest method for choosing the
regularisation parameter. This method suggests choosegdrameter at the corner
of the L-curve which is a plot of the solution norm versus tloeresponding resid-
ual for many positive regularisation parameters. Altevedy, we have also used the
GCV criterion in order to indicate a regularisation paraenethis method is based on
the minimising the GCV function of various positive regigation parameters. When
the amount of noise is known, the discrepancy principle wapgsed to be another
method for choosing the regularisation parameter. Thifiateis more rigorous since
it requires the knowledge of the noise level with which thpundata is contami-
nated. Furthermore, in Chapter 6, the selection of two eegdtion parameters has
been based on the-surface method, this method is a natural extension of.tearve
method used for the selection of a single regularisatioarpater. For comparison, the
simple trial and error technique has also been employedjaréus regularisation pa-
rameters were tested with gradually increasing value astillations in the numerical
solutions have been stabilised.

To test the accuracy and stability of the BEM combined witjutarisation meth-
ods, numerical examples consisting of various cases ofamkrfunctions, such as

smooth continuous, non-smooth continuous and discontismtianctions, have been
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illustrated and compared with their analytical solutionbere available. Otherwise,
in the cases where the analytical solution for the tempegasLnot available, we have
used the numerical solution of the corresponding diredblera and set the mesh size
to be different in the corresponding inverse problem preestim Chapters 3 and 5.
This is in order to avoid committing an inverse crime, seq.[32

In summary, all numerical results with/without noise conit@ation have been
found to be accurate and stable. In Chapter 2, the deterioinaitthe time-dependent
heat source function and the temperature subjected to geweral boundary con-
ditions has been considered. These three conditions haare distinguished to be
six separate cases of boundary and overdeterminationtcomsland generating Six
inverse problems. Some cases were found to be ill-conditipthen the Tikhonov
regularisation with orders zero, one and two have been usdmbth exact and noisy
data. Whereas other cases were found to be well-conditianédhe use of BEM has
processed well for the inverse problem with no use of reggdtion for the exact data,
but the regularisation was still needed when noise was ptese

In Chapter 3, the identification of the time-dependent heatce and the temper-
ature subjected to a periodic boundary condition, a Robimbary condition and an
integral overdetermination condition has been considefé@ BEM has been devel-
oped and combined with two regularisation methods; thedrklv regularisation and
the TSVD method. A couple of benchmark test examples have fresented in order
to illustrate the accuracy of the numerical results. No l@gsation was required in the
case of exact data and we found that the least-squares precaad the SVD method
produced the same accurate numerical results. When noseadded, thd.-curve
method and the discrepancy principle were selected for pbeogriate choice of the
regularisation parameter, when using the Tikhonov regation of orders zero, one
and two, and the truncation level, when using the TSVD. Nucaéresults obtained
by using the BEM combined with either the TSVD or the zerottien Tikhonov regu-
larisation have been formed similar. The higher-order laggation for smooth source

recovery gave more accurate results than the lower-ordes, avhile for non-smooth
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sources the conclusion was reversed.

In Chapter 4, we have investigated the reconstruction ofithe-dependent blood
perfusion coefficient and the temperature in the bioheattgusubjected to the same
boundary and overdetermination conditions as in Chapté& dmple transformation
reduced the bioheat equation to be the classical heat equétit now the overdeter-
mination condition contained the unknown source functibmo numerical examples
have been solved using the BEM. One example has been coedideyether with the
Tikhonov regularisation combined with the higher-orddraecuracy) finite difference
and use the GCV method as the choice of regularisation paeanide second exam-
ple has used the BEM together with a smoothing spline tectenior differentiating a
noisy function with goriori and aposteriorichoices of the regularisation parameters.

Chapter 5 presented an identification of the time-depenkeat source and the
temperature for the heat equation subjected to the nosicidHoundary and integral
overdetermination conditions. We have utilised the sambrigue as before based
on the BEM together with the Tikhonov regularisation meth®ddree benchmark test
examples have been considered with smooth and non-smaaihwous source func-
tions to illustrate the accuracy and stability of the numedmesults. Utilising the GCV
method as choice of regularisation parameter has performe#ido obtain stable and
accurate solution in all the investigated examples. We la#se@found that there was
not much significant difference value of the regularisapanameter given by the dis-
crepancy principle or the trial and error technique.

In Chapter 6, we have investigated the more challengindiitation of two un-
known source functions; the time- and space-dependent @oemps of an additive
heat source and the temperature in the one-dimensionaéfaation subjected to in-
terior point and time integral overdetermination condito The BEM was combined
with either the Tikhonov regularisation or the TSVD to sdlle inverse problem with
various selections of the regularisation parameter antttineation level based on the
L-curve method, the discrepancy principle and the GCV aoitewhen a single reg-

ularisation parameter was considered. We have also exdehdeanalysis to the case
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when two regularisation parameters were present and chese parameters by using
the L-surface method.

The final case of inverse heat source problem presented ipt€ha was a non-
linear case study. This consisted of the simultaneousmetation of multiplicative
space- and time-dependent source components and the tgorpdor the heat equa-
tion subject to homogeneous Neumann boundary conditi@tjfsgd interior, and final
time temperature measurements. The numerical discietisats based on the BEM
combined with a Tikhonov regularisation procedure. Theltesy nonlinear optimi-
sation problem was solved using the MATLAB routifsgnonlin. The hybrid-order
combination of the first- and second-order Tikhonov regsiddion has achieved a sta-
ble and accurate numerical solution.

Throughout the thesis, the retrieved numerical resulte@md to be accurate and
stable concluding the reliability of the BEM combined wiltetvarious regularisation

techniques for solving a wide range of inverse source probl®r the heat equation.

8.2 Future work

As we have studied so far, the use of the BEM combined withlaegpation methods
can be developed for solving inverse source problems foh¢la¢ equation under var-
ious types of boundary and overdetermination conditiorigs Supports the idea that
the BEM combined with regularisation methods can also perfwell in other related
possible future work, as follows.

(i) An inverse source problem related to that of Chapter 5givein by the follow-
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ing system of equations:

;

Uy = Uy +7(t)f(z,1), (2,1) € Dr,
u(z,0) = up(x), =z €][0,1],
u(0,t) =0, te(0,7], (8.1)

ur(1,6) +up(1,t) + o(u(l,t)) =0, te (0,77,

|y ule,t)yde = E(t), te[0,T],

wherey is a given nonlinear function, has recently been investigi@t [50] but with
no numerical study. It would be interesting to study the nucaé reconstruction of
the time-depending heat sourngg) and the temperaturg(z, ¢) satisfying this inverse
problem by using the BEM together with the regularisatiorthrods presented in this
thesis.

(if) Another possible future work for the one-dimensiortaldy is the combination
of the identifications in Chapters 6 and 7 for a more generat keurce containing
both additive and multiplicative components, see [47].sMork is an identification
of finding the time-dependent source functiofg, r,(¢), the space-dependent source

functionss(z), s;(z) and the temperaturg z, t) which satisfy the heat equation
ur(2,t) = tza(w, 1) +7(t)s(x) +r1(t) + s1(2),  (2,) € Dr, (8.2)

subject to the initial condition (1.7), the homogeneousmann boundary condition

(7.3), and the additive measurements

U(XOat) = X(t)v U(Xlat) = Xl(t)a S [OaT]a (83)
u(z, Ty) = Bi(x), wul(x,Ty) = Po(z), x€]0,L], (8.4)

at the fixed sensor locatiofs< X, < X; < L and the fixedtime8 < T, < T, < T.
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Fixing conditions are also required as
r(M) =m, ()=, s(Xo)==S, s1(Xo)=>S0, (8.5)

where the functionsg;, 1, 11, pe and the constants;, 1., Sy, Sy are given. This in-
verse problem is very challenging because it is nonlineatysand the Matlab routine
Isqnonlin will be required.

(iii) The multi-dimensional inverse source problem for theat equation is also
very interesting to study further with the BEM. The followimverse source problem
can be further studied, see Cannon [8] and Yamamoto [62]QLe¢ a bounded do-
main inR™, n = 1,2,3. Then, one can consider the inverse problem of finding the
temperature: (X, t) for (x,t) € Q x (0,7") and the space-dependent heat soyicg

for x € (), satisfying the transient heat conduction equation

ou

E(x, t) = V2u(x,t) + r(t)f(x), (x,t) € Qx(0,T), (8.6)

subject to the initial condition

u(X,0) = up(X), Xe€Q, (8.7)

and the overspecified Cauchy boundary data

u(X,t) = B(x,t), (X,t) €9 x (0,T), (8.8a)

g—Z(x, t)y=9(x,t), (x,t)el x(0,7), (8.8b)
or

g—Z(x, t) =9(x,t), (X, t) € x(0,7T), (8.9a)

u(x,t) = B(x,t), (X,t) €T x (0,T), (8.9b)
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wherel" C 052 is a hon-empty open subset of the bounday andr, uq, § andv are

known functions.
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