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Abstract 
 

 The work presented in this thesis has focused on the development of novel and 

concise syntheses of Alangium and Mitragyna alkaloids, and especial approaches towards 

(±)-protoemetinol (a), which is a key precursor of a range of Alangium alkaloids such as 

psychotrine (b) and deoxytubulosine (c). The approaches include the use of a key radical 

cyclisation to form the tri-cyclic core. 
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 Chapter 1 gives a general overview of radical chemistry and it focuses on the 

application of radical intermolecular and intramolecular reactions in synthesis. 

Consideration is given to the mediator of radical reactions from the classic organotin 

reagents, to more recently developed alternative hydrides. An overview of previous 

synthetic approaches to a range of Alangium and Mitragyna alkaloids is then explored. 

 

 Chapter 2 follows on from previous work within our group, involving the use of 

phosphorus hydride radical addition reactions, to alkenes or dienes, followed by a 

subsequent Horner-Wadsworth-Emmons reaction. It was expected that the tri-cyclic core 

of the Alangium alkaloids could be prepared by cyclisation of a 1,7-diene, using a 

phosphorus hydride to afford the phosphonate or phosphonothioate, however this approach 

was unsuccessful and it highlighted some limitations of the methodology. 

  

 Chapter 3 explores the radical and ionic chemistry of a range of silanes. Initial 

studies explored the radical addition of a range of silicon hydrides to alkenes to afford the 

corresponding hydrosilylation products. The chemistry of the hydrosilylation products was 

then explored – it was hoped that a subsequent Peterson olefination or Fleming-Tamao 

oxidation would afford the corresponding alkene or alcohol. Subsequent investigations 

looked into the possibility of combining the radical and ionic reactions, to afford alkenes or 

alcohols, in a one-pot transformation. 
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 Chapter 4 explores the radical cyclisation of various compounds, including 

unsaturated alpha-haloamides (d and e), xanthates (f), vinyl bromides (g and h). For this, a 

robust and efficient synthesis of an allyl tetrahydroisoquinoline core (i and j) was 

developed, following conversion into the desired radical precursors these compounds were 

treated with tributyltin hydride and a radical initiator. Finally, Chapter 4 investigates the 

radical cyclisation of some unsaturated phenylselenides (k and l), which resulted in the 

isolation of the desired target alkaloid (±)-protoemetinol (a) in 4 steps and in 2% overall 

yield. 
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 Chapter 5, which builds on previous work within Chapter 4, discusses the 

cyclisation of vinyl bromides bearing an α,β-unsaturated ester (n and o). This resulted in 

short 4-step syntheses of both (±)-des-methyl-protoemetinol (m) and (±)-protoemetinol (a) 

(along with some epimers). Subsequent studies then expanded the synthetic strategy to 

include the synthesis of a structurally simpler analogue of mitragynine (p). 
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Chapter 1 Introduction 
 

1.1 Radical chemistry 

1.1.1 - Overview of radical chemistry 

The story of radical chemistry begins over a hundred years ago, with the preparation and 

isolation of the triphenylmethyl radical by Gomberg in 1900.1 However his claims that the 

product was a free radical was greeted with skepticism, and it was not until after the 

theoretical approaches to covalent bonding that free radicals as odd electron species 

became believable.2-4 However it was not till the work by Paneth in 1929 that simple alkyl 

(methyl and ethyl) free radicals were prepared and studied.5-7 Paneth showed that heating a 

stream of tetramethyllead (in a quartz tube) deposited a lead mirror and an “active gas” 

which is capable of completely volatising a second deposit of lead, and reforming the 

tetramethyllead. Since these early days radical reactions have developed to become an 

important tool for the synthetic organic chemist and within the last twenty to thirty years 

the use of radicals in synthesis has grown enormously. For example, radical processes 

account for the production of about 75% of the polymers manufactured every year.8 

 

We are now at the point where radicals are routinely considered for the preparation of 

complex target molecules.9-11 This reflects the fact that radical reactions offer a number of 

advantages over ionic transformations. Reactions involving cations or anions generally 

proceed under conditions of high acidity or high basicity respectively, but radical reactions 

typically proceed under mild or neutral conditions. This allows acid sensitive and chiral 

substrates to be transformed without decomposition or racemisation. Whereas the solvent 

usually influences reactions involving ions, radicals are generally less solvated and hence 

can react similarly in a range of different solvents. As radicals are not solvated they are 

generally highly reactive, and so can be used to assemble sterically hindered centres within 

complex target molecules.  

 

1.1.2 - General considerations of radical reactions 

Most synthetically important radical reactions involve chain processes, such as the 

photolysis of chlorine and alkanes to form alkyl chlorides. Following initiation, the first-

formed radical reacts through a series of propagation steps to produce a new radical(s), 

which ultimately leds to regeneration of the initial radical. Propagation reactions usually 

involve the formation of strong bonds at the expense of weaker bonds (e.g. the C–Cl bond 

in an alkyl chloride is stronger than the Cl–Cl bond in chlorine, Scheme 1).  
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The bond dissociation energies of the bonds that are broken and formed can provide a 

guide as to whether the process will proceed. Bond dissociation energies can also tell us 

which radicals are most likely to be generated in initiation steps; the weaker the bond, the 

more easily the radicals are formed.  

 

Steric factors can play an important part in radical reactions and bulky substituents will 

reduce the rate at which the radical reacts due to steric hindrance.12 For example, 

dimerisation of the methyl radical typically has a rate constant of 3 × 1010 dm3 mol-1 s-1 (at 

rt), whereas the considerably more hindered trityl radical 1 dimerises (head-to-tail, 2, 

Scheme 2) with a rate constant of only 3 × 102 dm3 mol-1 s-1 (at rt) at the same 

concentration.13 Steric hindrance therefore increases the lifetime of radicals, which is 

exemplified by the stable crystalline TEMPO radical 3.  

 

N
O

TEMPO
1 2 3

×2

 
Scheme 2 

 

There are numerous methods for initiating radical reactions. Common methods involve the 

homolytic cleavage of weak bonds by photolysis or thermolysis. Typical examples of 

radical initiators are peroxides or azo compounds. Although in theory only one molecule of 

initiator could be used to effectively initiate a chain reaction, due to solvent cage effects, 

and unwanted termination steps, typically 0.1 equivalents of the initiator is added. A slow 

addition of the initiator helps the chain reaction to continue as this generates a steady, low 

concentration of the radical intermediates which reduces the rate of radical-radical 

termination processes. The choice of initiator is usually decided by its half-life at the 

temperature of the reaction.14 AIBN is perhaps the most commonly used initiator with a 
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half-life of just over 1 h at 80 ˚C, under 5 minutes at 100 ˚C and over 50 h at 60 ˚C. AIBN 

is commonly used to initiate reactions involving tin hydrides; the nitrile–stabilised radical 

(Me2C(CN)•) is able to selectively abstract the hydrogen atom in the weak Sn–H bond. 

Peroxides generate reactive oxygen-centered radicals (RO•)15, 16 that can abstract hydrogen 

atoms from various organic molecules and, in some cases, this can led to undesired side 

reactions and a lack of selectivity. More recently, trialkylboranes (especially 

triethylborane) in the presence of oxygen/air has been shown to be efficient radical 

initiators at temperatures down to -78 °C.17-19  

 

1.1.3 - Overview of intermolecular additions 

Intermolecular radical additions, to form a range of carbon–carbon bonds, commonly 

involve the addition of carbon-centred radicals to alkenes to form σ-bonds at the expense 

of weaker π-bonds.20 Intermolecular radical additions mediated by Bu3SnH can be difficult 

to conduct as rather than adding to the C=C bond, the intermediate carbon-centred radical 

can abstract a hydrogen-atom from Bu3SnH in a process called simple reduction. 

Assuming the carbon radical adds to the C=C bond, if the rate of hydrogen-atom 

abstraction from Bu3SnH is slow, then alkene polymerisation can occur.  

 

For rapid and high yielding radical additions the polarity of the radical and alkene should 

be matched. Nucleophilic radicals add faster to electron–poor double bonds due to a 

dominating SOMO–LUMO interaction. Similarly, electrophilic radicals add faster to 

electron-rich alkenes due to a dominating SOMO–HOMO interaction (Figure 1).  

 

Nucleophilic radical and
electron poor double bond

Electrophilic radical and
electron rich double bond

LUMO

HOMO
SOMO

SOMO
LUMO

HOMO

 
Figure 1 

 

This explains why the nucleophilic tert-butyl radical adds to the C=C bond of acrolein over 

3000 times faster than to the C=C bond in propene at room temperature. Similarly the rate 

of addition of a radical to an electron poor double bond depends on the electronic 

properties of the radical.21, 22 The more electron-withdrawing the substituent bonded to the 
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radical, the slower the rate of addition to an electron-poor double bond. This explains the 

formation of nitrile 7 in 95% yield from reaction of cyclohexyl iodide 4 and acrylonitrile 

with Bu3SnCl (0.2 equiv.) and NaBH4 (Scheme 3).23, 24 Addition of the nucleophilic 

cyclohexyl radical 5 to the electron poor double bond is followed by hydrogen-atom 

abstraction by radical 6 to afford the nitrile 7. The polarity of the resulting “electrophilic” 

radical 6 is incompatible with addition to a second molecule of acrylonitrile that would led 

to 9.25 Steric effects of alkene substituents are also important and, in general, the bulkier 

the substituents attached to a C=C bond, the slower the rate of radical addition. 

 

4 5 6

I CN

CN

CNCN

CN

k ~ 103 dm3mol-1s-1k ~ 106 dm3mol-1s-1

k ~ 105

dm3mol-1s-1

Bu3SnHBu3SnH
k ~ 105

dm3mol-1s-1

Bu3SnH

7

8 9CN
 

Scheme 3 

 

Finally, intermolecular radical addition to alkynes is slower than for alkenes, as vinyl 

radicals are less stable than alkyl radicals. For example, the tert-butyl radical adds to the 

double bond of methyl acrylate around 5.5 times faster than to the triple bond of methyl 

propiolate at the same temperature.26 

 

1.1.4 - Overview of radical cyclisations 

The development of cyclisations that are mild and versatile has been a recurring theme in 

organic synthesis. Although only recognized relatively recently, intramolecular addition 

reactions of radicals are among the most powerful methods for forming rings.9, 27 

 

Efficient radical cyclisations require selective radical generation and rapid propagation 

steps. Cyclisations are often easier to conduct than bimolecular reactions, as many 

cyclisations are so rapid, compared to the rate of simple reduction, that it is hard to trap 

initial radicals with standard reagents (such as tin hydrides) before ring closure. Often, the 

products from competing bimolecular reactions are not observed because these reactions 

proceed at a much slower rate than cyclisation.  
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A common and reliably useful radical reaction is the cyclisation of unsaturated halides and 

similar compounds to form mainly 5- and 6-membered rings. An example is the cyclisation 

of the hex-5-en-1-yl radical 10, which forms the primary radical 11 in a 5-exo cyclisation 

rather than the more stable secondary radical 12, Scheme 4.28 In both cases, the reaction 

leds to the formation of a C–C σ-bond at the expense of the weaker π-bond. 

 

10

11

12

X AIBN
Bu3SnH

k = 2.3x105 s-1

k = 4.1x103 s-1

 
Scheme 4 

 

The preference for 5-exo cyclisation can be rationalised by the stereoelectronically 

controlled chair-like transition state, where the 5-exo transition state favours overlap 

between the SOMO of the radical and the LUMO of the alkene, Figure 2. This places the 

angle of attack at 106o, which is close to the angle observed in a comparable intermolecular 

reaction (109o), however the orbital overlap of the SOMO and LUMO for the 6-endo 

cyclisation is less efficient.29-31  

 

5-exo 6-endo
Beckwith-Houk chair transition state  

Figure 2 

 

Following cyclisation, radicals 11 and 12 abstract a hydrogen atom from Bu3SnH at 

approximately the same rate to form the cycloalkane, with the tributyltin radical continuing 

the chain. The major process in competition with cyclisation is the direct reduction to form 

hex-1-ene, which depends on the concentration of Bu3SnH. Formation of the hex-1-ene 

would be a problem if Bu3SnH was added in a single portion, however the yield of hex-1-

ene can be minimised via slow addition of tributyltin hydride which increases the lifetime 

of the first-formed carbon-centred radical allowing more time for cyclisation which is 

independent of the Bu3SnH concentration. Other competitive processes include the 
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addition of Bu3Sn• to the double bond, however unlike halogen atom abstraction, this is 

reversible and fragmentation regenerates the tributyltin radical and alkene. Radical 

coupling reactions can also be minimised by using a low concentration of reactants. 

 

Radical cyclisation mediated by Bu3SnH has proven to be an effective method for forming 

5-membered rings. The rate of 5-exo radical cyclisation can be increased by:  

1. using vinyl/aryl radical precursors; 

2. introducing alkyl groups, particularly geminal dialkyl groups, within the carbon 

chain; 

3. introducing an oxygen or nitrogen atom within the carbon chain; 

4. attaching an electron-withdrawing group to the acceptor bond.  

 

O

CN

k = 1.2 × 108 s-1 (60 °C) k = 1.65 × 108 s-1 (50 °C) k = 4.3 × 108 s-1 (60 °C)

X

X = CH2, k = 2.3 × 105 s-1 (25 °C)
X = C(CH3)2, k = 5.2 × 106 s-1 (25 °C)
X = O, k = 8.5 × 106 s-1 (25 °C)
X = N(CH3)2, k = 1.7 × 107 s-1 (25 °C)

 
Scheme 532-34 

 

The increased reactivity of sp2 vinyl and aryl radicals leds to rapid bond formation.32-34 The 

introduction of alkyl groups or a heteroatom changes the bond angles and/or lengths of the 

chain; these differences led to better orbital overlap in the 5-exo chair transition state and 

faster cyclisation.35 The effect of the nitrile group can be explained by polarity:36 The high-

energy SOMO of the nucleophilic alkyl radical can interact more effectively with the 

relatively low energy LUMO orbital of the electron-poor double bond,10 and the cyclic 

secondary radical is mesomerically stabilised by the nitrile triple bond.  

 

Similarly, the radical cyclisations of 1-halohept-6-enes can form the 6-membered ring 14, 

Scheme 6, however the rate of 6-exo cyclisation is around 40 times slower than that of 5-

exo cyclisation.37, 38 In addition, the hept-6-en-1-yl radical 13 can undergo competitive 1,5-

hydrogen-atom abstraction to form a resonance-stabilised allylic radical 15. 
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1314 15

H 1,5-H transfer6-exo

 
Scheme 6 

 

Cyclisation using alternative precursors to alkenes (including alkynes, nitriles, imines, 

oximes and hydrazones) are also possible. Radical cyclisation onto alkynes and nitriles are 

slightly slower than for alkenes,39 however imines and related compounds usually undergo 

faster cyclisation.40 This trend largely reflects the order of stability of the cyclic radicals 

produced.  

 

1.1.5 – Organotin radicals in synthesis 

Tin hydrides (especially Bu3SnH) are the most common reagents used to mediate radical 

reactions, including intermolecular radical additions using alkyl halides and unsaturated 

compounds like alkenes and alkynes, which is partly due to the large amount of kinetic 

data on radicals derived from tin hydrides. This has also led to the development of a wide 

range of novel radical initiators, to generate tin-centred radicals under mild conditions.  

 

1.1.5.1 - Additions to carbon-carbon multiple bonds 

To illustrate the application of radical reactions in synthetic chemistry an example from the 

Pattenden group is presented in Scheme 7.41 Following previous work, the furan-based 

iodoynone 16 was anticipated to undergo a radical Diels-Alder like cyclisation reaction to 

give the steroidal analogue 18. However, the tetracyclic ketone 21 was isolated. The 

tetracycle was probably produced via initial 13–endo–dig macrocyclisation to form vinyl 

radical 17, followed by a 6–exo–trig transannular addition of the vinyl radical onto the 

furan, subsequent fragmentation, 5–exo cyclisation and H-atom abstraction. The driving 

force for the formation of 19 from 17 lies in the stabilisation of radical 19 by the adjacent 

oxygen atom, while the formation of 20 can be explained by the stability of the resonance-

stabilised allylic radical. 

 



 

 8

212019

181716
O

O
I O

O

OH

O

O

O

O

Bu3SnH
AIBN X

O

O

6-exo
trig

5-exo
trig

O

 

Scheme 7 

 

1.1.5.2 - Addition to a carbon–heteroatom double bond 

As well as halogen atom abstractions, tin centred radicals can also add to a range of 

carbon-carbon and carbon-heteroatom double bonds.42-45 Perhaps the best known example 

of the ability of tin-centred radicals to add to C=S double bonds is in the Barton-

McCombie deoxygenation of alcohols.46 This is a mild method of reducing primary and 

secondary alcohols via xanthates (X = SMe), thiobenzoates (X = Ph) or thiocarbonyl 

imidazoles (X = imidazolyl). The reaction proceeds via reversible addition of the tin 

radical to the thiocarbonyl sulfur atom, which undergoes β-scission to give the 

corresponding carbonyl compound and an alkyl radical, which subsequently abstracts a 

hydrogen atom from the tin hydride (Scheme 8). 
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Tin-centred radicals can also add reversibly to carbonyl double bonds as illustrated in the 

synthesis of chromanol 26 via the cyclization of 2-(cinnamyloxy)benzaldehyde 22 

(Scheme 9).47 The tributyltin radical adds to the oxygen atom of the carbonyl to afford 

benzylic radical 23, which is then able to undergo a 6-exo cyclisation to afford 24. The 

intermediate benzylic radical 24 can fragment to regenerate the initial carbon-centred 
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radical 23. Although the rate of fragmentation is faster than the 6-exo cyclisation, the 

benzylic radical 24 reacts with Bu3SnH faster than the corresponding benzylic radical 24. 

Hydrolysis of the organotin adduct 25 results in the formation of chromanol 26. 

 

Bu3SnH

Bu3Sn.

trans:cis 5.5 : 1

Bu3SnH, AIBN

benzene, heat
78%O

O Ph

O

OH Ph

O

O PhBu3Sn

O

O PhBu3Sn

O

O PhBu3Sn

SnBu3

22 26

23 24 25  
Scheme 9  

 

In more recent work, on developing approaches to tetrahydrofurans and tetrahydropyrans, 

Sammis and coworkers have reported cyclisation of an oxygen-centred radical onto silyl 

enol ethers.48 The inclusion of an oxygen substituent on the alkene provides both a 

synthetic handle for further functionalisation, whilst increasing the rate of cyclisation, by 

increasing the electron density of the alkene (an alkoxyl-radical is electrophilic).49 The 

generation of the oxygen-centered radical was achieved by cleavage of the N-OR bond in 

an N-alkoxyphthalimide 27 by the addition of a tributyltin radical, to the carbonyl oxygen. 

The high degree of chemoselectivity of the electrophilic alkoxyl-radical 28, is 

demonstrated by the cyclisation of silyl enol ether 28, where both a simple alkene and the 

more electron rich silyl enol ether are present, which leds to the selective formation of only 

tetrahydrofuran 29, Scheme 10. 
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Tin-centred radicals also add to alkenes and alkynes, with addition to electron-poor bonds 

being favoured because tin-centred radicals are typically nucleophilic. These addition 

reactions are generally reversible due to the formation of weak Sn-C bonds (e.g. Sn-Me has 

a bond enthalpy of only 278 kJ mol-1).26 Bachi and co-workers used a hydrostannylation 

reaction to prepare fused bicyclic β-lactam 31 from alkyne 30 (Scheme 11).50 

Hydrostannylation chemistry is growing in importance due to the use of organotin 

compounds in many transition-metal catalysed reactions such as in the Stille coupling. 

 

N
O

PhO
CO2Me

O

PhO
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CO2Me

SnBu3Bu3SnH, AIBN

70% (d.r. = 85:15)

Toluene, 80 ºC
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Scheme 11 

 

However, competitive addition of tin-centred radicals to alkenes and alkynes is not usually 

seen in radical cyclisations of most unsaturated organohalides, as addition of Bu3Sn• to 

unsaturated CC bonds is reversible unlike the irreversible abstraction of a halogen atom. 

 

1.1.5.3 - Problems associated with tributyltin hydrides 

Currently, organotin reagents dominate the area of synthetic radical chemistry and are the 

automatic choice for many radical reactions. However, there are several major drawbacks 

associated with tin-based reagents. Organostannanes compounds are known to be very 

neurotoxic, and so require careful handling and disposal. For use in the pharmaceutical 

industry commercial drugs should contain tin levels below the ppb level. This level of 

purity is difficult to achieve because the tin halide by-products decompose to form tin 

oxides, which streak on silica. This has resulted in minimal use of tin hydrides in the 

pharmaceutical industry. 

 

Several methods have been developed to overcome the problems associated with tin 

hydrides. One solution has been to retain the use of tributyltin hydride but to lower the 

amount of the hydride and hence lower the amount of tin byproducts. This has been 

achieved by using catalytic quantities of tributyltin hydride followed by reduction of the 

tributyltin halide by-product with a stoichiometric reducing agent, usually NaCN(BH3).51-54 
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Alternatively, methods have been developed to aid the separation of tin residues from 

reaction mixtures.55, 56 For example, the use of solid supported reagents, where the tin 

hydride is attached to a polymer support and after the radical reaction has been performed, 

the tin by-product can be efficiently removed from the product by simple filtration,57-62 and 

if required, the tin hydride can be regenerated by reduction. An alternative method is to 

attach the organic substrate to a solid support – after the radical reaction, the tin residues 

are removed by thorough washing, before cleaving the product from the support.63 Another 

alternative is the use of fluorous tin hydrides. Once the radical chemistry has been 

performed, a fluorous phase extraction is used to remove most of the tin by-products from 

the product.64, 65 Alternatively, it has been shown that filtering the crude reaction mixture 

though a KF-Silica plug removes most of the tin-containing byproducts.66 Although useful 

on a small scale, these solutions are not practical on larger scales.  

 

The problems, and limited range of solutions related to the use of tin hydrides has triggered 

a search for alternative approaches of generating free radicals that circumvent the use of tin 

hydrides. In recent years a wide range of potential hydride replacements for tributyltin 

hydride (as radical chain mediators) have been explored, which include the use of thiols, 

silanes, cyclohexadienes67 and phosphorus hydrides. Another area that has attracted 

interest is the generation of radicals via single electron transfer reactions (SET). 

 

1.1.6 - Single electron transfer reactions 

Single electron transfer reactions have become an increasingly common method of radical 

generation. There are two variations of a SET reaction, either reductive or oxidative, 

depending on whether, for example, a metal-containing reactant loses or gains an electron. 

A few examples of the use of SET reactions towards the synthesis of natural products are 

discussed. 

 

1.1.6.1 - Nickel mediated reactions 

Zard and co-workers have shown that nickel powder with acetic acid in refluxing 2-

propanol can be used to generate radicals derived from trichloroacetamides, which can 

undergo cyclisations.68 This has been applied to the synthesis of the erythrina alkaloid 3-

demethoxyerythratidinone (Scheme 12 and Scheme 13). Treatment of trichloroacetamide 

33, obtained in 3 steps from cyclohexanone 32, with nickel and acetic acid resulted in 

reduction to form intermediate radical 34,69-71 which then cyclises to give the 5-endo 

product 35. Subsequent oxidation generates a cation, which undergoes elimination, and 
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after further C-Cl bond reduction yields lactam 36, in 49% yield, together with a 25% yield 

of the direct reduction material 37. 
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Scheme 12 

 

The synthesis was completed by treatment of the lactam 36 with p-toluenesulfonic acid to 

trigger a Pictet-Spengler reaction to afford the pentacycle 37 (Scheme 13). Reduction of 

the amide moiety using alane and subsequent removal of the dithioketal with migration of 

the C=C bond gave 3-demethoxyerythratidinone (38), in 7 steps starting from the 

cyclohexadione 32 (in 10% overall yield). 
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Scheme 13 

 

1.1.6.2 - Manganese(III) acetate mediated reactions 

An alternative SET approach to 3-demethoxyerythratidinone 38 has been reported by 

Ishibashi and co-workers, who focussed on the cyclisation of a methylthio amide (derived 

from cyclohexanone 32) mediated by manganese(III) acetate (Scheme 14). On treatment 

with manganese(III) acetate and copper(II) triflate in refluxing 2,2,2-trifluoroethanol, 

methylthio amide 39, afforded pentacycle 41 in 31% yield, via cation 40.72 Conversion to 
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3-demethoxyerythratidinone (38) was achieved using a previously developed procedure, 

via oxidation of the sulfide to the sulfoxide, and thermal elimination to afford unsaturated 

amide 42. Subsequent reduction of the amide with alane and acetal deprotection afforded 

3-demethoxyerythratidinone 38.73 
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Scheme 14 

 

1.1.6.3 - Samarium(II) mediated reactions 

Samarium(II)-mediated radical reactions have been known for some time and their 

synthetic use is exemplified by the total synthesis of (±)-hypnophilin (49) and the formal 

synthesis of (±)-coriolin (50) (Schemes 15 and 16).74 Samarium(II) iodide (in the presence 

of a co-solvent) donates an electron to the unsaturated aldehyde 43, to afford the 

intermediate radical anion 44, which undergoes a sequential 5-exo-trig, 5-exo-dig 

cyclisation to afford the tricyclic ketals 46 and 47, along with alcohol 45, from direct 

reduction of the aldehyde. 
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Completion of the synthesis was achieved by conversion of the tricyclic alcohol 46 into the 

conjugated dienone 48 (Scheme 16), from which selective epoxidation afforded (±)-

coriolin (50) and (±)-hypnophilin (49). Treatment of alcohol 46 with p-toluenesulfonic acid 

in acetone resulted in cleavage of the ketal protecting group to afford the α,β-unsaturated 

system, subsequent treatment with LDA and TBS-C1, followed by oxidation using 

DDQ/2,6-lutidine afforded the conjugated dienone 48. 
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Scheme 16 

 

1.1.6.4 Tetrathiofulvalenes  

Murphy and co-workers have developed the Radical-Polar Crossover-Reaction,75 which 

combines radical and ionic steps in one-pot (Scheme 17).76-81 For example, an easily 

oxidised sulfide can undergo electron transfer to an appropriate substrate, to generate a 

radical-cation/radical anion pair, which can fragment to afford the radical (R·) which either 

recombines with the radical cation or undergoes further radical reactions before 

recombination to give the sulfonium salt. The sulfonium salt then undergoes a polar 

substitution reaction to expel the sulfide.  
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The most commonly used sulfide is tetrathiafulvalene (TTF), which is able to donate an 

electron to an arenediazonium salt. This route has been used to prepare aspidospermidine 

from the diazonium salt 51 (Scheme 18)82. Electron transfer and subsequent loss of N2 

affords the aryl radical 52, which undergoes 5-exo-trig cyclisation to give secondary 

radical 53, which then combines with tetrathiafulvalene to give the sulfonium salt 54. An 

SN1 substitution reaction of 54 using water as the nucleophile affords alcohol 55, which is 

transformed into aspidospermidine using conventional methods.80 
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Scheme 18 

 

1.1.7 - Alternative hydrides  

The most investigated solution to many of the problems of tin hydrides has been the 

development of alternative hydrides that are non-toxic. The weak Sn-H bond (~310 kJ mol-

1) makes tin hydrides extremely versatile radical reagents, as the bond is weak enough for a 

variety of carbon-centred radicals to be able to rapidly abstract a hydrogen atom from the 

tin, forming a stronger C-H bond, thereby continuing the chain by regenerating the tin-

centred radical. Alternative radical reagents must have a comparably weak hydride bond. 

 

1.1.7.1 - Germanium hydrides  

Investigations have been performed into the use of less toxic trialkylgermanium hydrides. 

Tributylgermanium hydride has a relatively strong Ge–H bond (~370 kJ mol-1),83, 84 often 

resulting in low levels of simple reduction of unsaturated organohalides. So addition of C-

centered radicals to alkenes can proceed with essentially equimolar amounts of the halide 

and alkene, and slow addition is not usually required.85 The lower reactivity of germanium-
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centred radicals limits this methodology to predominantly iodides.86 Further problems are 

the relatively high expense of tributylgermanium hydride and the relatively fast rate of 

addition of Bu3Ge• to alkenes.87, 88 A more reactive germanium hydride is 

tris(trimethylsilyl)germane [(Me3Si)3GeH],89-91 which is able to reduce a wider variety of 

functional groups but, the rate of hydrogen abstraction from (Me3Si)3GeH is faster than 

from tributyltin hydride, and so this can led to increased levels of simple reduction, which 

limits its usefulness.  

 

1.1.7.2 - Thiols 

A range of alkyl and aryl thiols can act as hydrogen-atom donors on reaction with carbon-

centred radicals – a relatively weak S-H bond is broken (~370 kJ mol–1) and a stronger C-

H bond is formed (~400 kJ mol–1).92 The use of thiol-mediated radical reactions has been 

explored in a recent review by Majumdar and Debnath,93, 94 and especially their use in the 

synthesis of carbocycles and heterocycles. Sulfur-centred radicals are unable to abstract a 

halogen atom from an alkyl halide at a rate to maintain a chain reaction. Consequently, 

most synthetic applications of thiols rely on their ability to add rapidly and reversibly to 

multiple bonds,95-99 such as in Naito’s synthesis of (-)-cispentacin (60) (Scheme 19).100 

The initially formed PhS• radical undergoes (reversible) addition to the alkene 56, giving a 

secondary radical 57, that undergoes 5-exo cyclisation to afford a nitrogen centred radical 

58, which abstracts a hydrogen atom from thiophenol to afford 59. The synthesis of (-)-

cispentacin (60) is then completed in 5 subsequent steps. 
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1.1.7.3 - Silanes 

Silanes are the most widely studied alternatives to tin hydrides, principally because they 

are easily prepared, non-toxic and silicon-centred radicals react rapidly with a range of 

functional groups, including alkyl halides and double bonds.84, 101 However, in a 

hydrosilylation reaction using a trialkylsilane, the intermediate β-silylalkyl radical usually 

reacts relatively slowly with R3SiH and so the yields of hydrosilylated products can be 

low. This is because simple triorganosilanes like triethylsilane possess a relatively strong 

Si–H bond (398 kJ mol-1 for Et3SiH) and so they are poor hydrogen atom donors.102  

 

However, Roberts103 showed that, in conjunction with a thiol catalyst, alkyl or aryl-silanes 

can serve as replacements for tin hydrides for the reduction of alkyl halides and related 

compounds, including double and triple bonds. In the absence of a thiol catalyst, the 

abstraction of the electron-rich hydrogen atom bonded to silicon, by a nucleophilic alkyl 

radical (step 1), is slow because of polar effects, and is usually too slow to maintain the 

chain. In the presence of a thiol, the slow direct hydrogen-transfer step is replaced by two 

faster steps (2 and 3) that benefit from favourable polar effects (Scheme 20). 

  

R• + R’3SiH  →  RH + R’3Si• (1) 

R• + R’’SH  →  RH + R’’S•  (2) 

R’’S• + R’3SiH  →  R’’SH + R’3Si•  (3) 
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Scheme 20 

 

This method has also been applied to the hydrosilylation of various simple alkenes with a 

range of silanes.104 For Et3SiH, it was found that the highest yields were obtained when 

using Et3SiH as the solvent and the reaction initiated by di-tert-butyl peroxide (DTBP) 

(Scheme 21). 
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Scheme 21 

 

1.1.7.4 - Silylated cyclohexadienes 

It is known that cyclohexadienes can act as hydrogen atom donors in alkyl radical 

reductions.105, 106 However, the intermediate cyclohexadienyl radical cannot abstract a 

halogen atom, and so 1,4-cyclohexadienes cannot reduce alkyl halides. However, Studer 

has introduced silylated cyclohexadienes107-109 that can mediate radical dehalogenations, 

deselenations, deoxygenations, and intermolecular additions.110 Abstraction of a hydrogen 

atom from the silylated cyclohexadiene 61 affords a cyclohexadienyl radical 62, which 

aromatises to afford the dimethoxytoluene 63 with expulsion of the silyl radical 64, that 

propagates the chain by reaction with the starting organohalide (Scheme 22).  
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Scheme 22 

 

Alternatively, if the silyl radical (formed in the aromatisation step) is allowed to react with 

an alkene the corresponding hydrosilylation product is formed. This hydrosilylation could 

be regarded as a transfer-hydrosilylation. This work has been applied to the cyclisation of 
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1,6-dienes 65, affording cyclised products 68 in up to 80% yield as a mixture of 

diastereoisomers, Scheme 23.111 The initially formed silyl radical adds to a C=C bond of 

the diene to form a β-silylalkyl radical 66 which undergoes a 5-exo-cyclization to give 

primary radical 67 that is reduced by the silylated cyclohexadiene. The formation of the 

cis-isomer as the major isomer is in accordance with the Beckwith-Houk model for 5-exo-

cyclisations.28, 112, 113 
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It has been shown that silylated cyclohexadiene 61 reduces primary carbon-centred 

radicals about 55 times slower than Bu3SnH does.107 This allows the study of slower 

radical chain reactions. For instance, on hydrosilylation/cyclisation of 1,7-diene 69, the 

product 70 was isolated in 61% yield as a 1:1 mixture of diastereoisomers, Scheme 24. 

The silyl radical addition occurs highly regioselectively at the less-hindered terminal 

double bond and this is followed by a 6-exo-cyclisation. The product of mono-

hydrosilylation, without cyclisation, was not observed. 
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1.1.7.5 - Tris(trimethylsilyl)silane  

The most successful and widely used replacement for tributyltin hydride is 

tris(trimethylsilyl)silane (TTMSS).102, 114-116 TTMSS is non-toxic and the silicon 

byproducts from organohalide reductions are generally easier to separate from organic 

products. An added benefit is the slightly stronger Si–H bond (about 20 kJ mol-1 stronger 
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than the Sn–H bond in tributyltin hydride) produces fewer by-products of direct reduction, 

allowing radical additions to be accomplished with a stoichiometric amount of the silane in 

the reaction mixture, removing the need for syringe pumping and high-dilution techniques 

usually required for tin hydrides.  

 

Recently, Chatgilialoglu and coworkers have shown that (Me3Si)3SiH can mediate the 

reduction of iodides and bromides, hydrosilylate alkenes and carbonyls, in aqueous media 

using ACCN as the initiator at 100 °C. An amphiphilic thiol (HOCH2CH2SH) was needed 

for the reaction of water-soluble compounds117 and the reaction could be applied to the 

radical cyclisation of 1-allyloxy-2-iodobenzene (71) to furnish furan 72 (Scheme 25). 

O
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85%

71 72  
Scheme 25  

 

Like other silicon-centred radicals, the (Me3Si)3Si• radical can add rapidly to multiple 

bonds and it has been used successfully in hydrosilylation reactions, with both electron rich 

and poor alkenes (Scheme 26 and Table 1).118, 119 Reaction of a range of alkenes has been 

carried out by using a slight excess of tris(trimethylsilyl)silane in toluene at 80-90 °C in the 

presence of AIBN to give the corresponding hydrosilylation products in good to excellent 

yield. A slight excess of tris(trimethylsilyl)silane (1.2 equiv) was sufficient to avoid 

polymerisation of the alkenes.  
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Scheme 26 and Table 1 

 

Cyclisation of dienes, including diallyl ether 73, has also been accomplished (Scheme 27). 

The alkyl radical formed after the addition of the silyl radical to a C=C bond, cyclises to 

give the tetrahydrofuran derivative 74 in 63% yield (as a mixture of cis:trans isomers in 

the ratio 3:1). 
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Scheme 27 

 

However, there are several disadvantages with using TTMSS, including the cost (it is 

approximately 5 times more expensive than Bu3SnH) and it is prone to aerial oxidation. 

Also, before the hydrosilylation method can become of general synthetic use, methods need 

to be developed for the transformation of the (Me3Si)3Si group into useful functionality 

(see Chapter 3). 

 

1.1.7.6 - Organophosphorus hydrides  

Relatively weak P–H bonds are found in a variety of organophosphorus compounds106 

including dialkylphosphines and phosphites [(RO)2P(O)H], which are easily handled, non-

toxic, commercially available, and cheaper than many of the group 14 hydrides. 

Phosphorus centred radicals are formed from hydrides under mild conditions with 

commercially available initiators, many commercially available organophosphorus 

compounds are easy to derivatise,120 and a number of chiral and fluorous examples have 

been reported in the literature.121 

 

Phosphorus-centred radicals are known to add to alkenes. For example, Piettre122 has 

shown that addition of dimethyl phosphite to fluoro-alkenes is an excellent route to 2,2-

disubstituted-1,1-difluorophosphonates (Scheme 28). 
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Scheme 28 

 

Phosphites, thiophosphites and phosphine oxides have all been shown to add 

regioselectively to a range of alkenes, including 1,6-dienes resulting in 5-exo cyclisations 

to yield 5-membered rings (Scheme 29).123,124 
 



 

 22

Ph2(O)PH

(EtO)2(S)PH
X = CH2,CR2 O, NBz.

ca. 66%
88 - 93%

90 - 95%
AIBN

(tBuO)2(O)PH

X X

R2(O)P
R2(O)PH

THF, ref lux

 
Scheme 29 

 

The resulting phosphonates or phosphonothioates can undergo Horner-Wadsworth-

Emmons-type (HWE) reactions to form alkenes.  It is even possible to combine the radical 

addition and HWE reactions in a one-pot reaction (Scheme 30). For example, heating oct-

1-ene (75) with diethyl thiophosphite and AIBN forms phosphonothioate 76, which is 

immediately reacted with sBuLi and benzophenone to give 1,1-diphenylnon-1-ene (77) in 

an 88% yield.121, 125, 126  
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Scheme 30 

 

Combined stereoselective radical cyclisations and intermolecular HWE reactions are also 

possible as are consecutive radical addition/alkylation/HWE reactions.121, 125, 126 Such as 

the addition of diethyl thiophosphite to allyl ether (78) and a subsequent HWE reaction to 

afford the alkene 79 (Scheme 31). 
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Scheme 31 

 

Typically, the addition of a phosphine oxide or a phosphinate to an alkene requires a 

radical initiator such as benzoyl peroxide, AIBN, or more recently, the use of microwaves. 

However, Han has reported that a small amount of air/oxygen can initiate the addition of 

secondary phosphine oxides and H-phosphinates to alkenes.127 Under a pure nitrogen 

atmosphere (less than 1 ppm of oxygen), diphenylphosphine oxide and 1-decene did not 

react at 80 °C after 18 h, but when a trace amount of air was introduced an 85% yield of 

the addition product was isolated. The addition also proceeded in air, although the yield of 
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product was only 28%. This method was found to be applicable to both secondary 

phosphine oxides and phosphinates (but not phosphonates), and to a wide range of alkenes 

(Scheme 32). 
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Scheme 32 

 

Additionally, it is possible to perform a radical cyclisation of 1,6-heptadiene (80), to yield 

the corresponding phosphonate 81, although in moderate yields (Scheme 33). 
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Scheme 33 

 

The groups of Fensterbank, Lacote and Malacria have reported the homolytic cleavage of 

P-S bonds to generate phosphorus-centered radicals, which can add to alkenes, thereby 

allowing the synthesis of phosphonates (Scheme 34). The key step is a homolytic 

substitution on a sulfur atom and the dihydrobenzothiophene by-product could be easily 

separated from the desired products.128-134 
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Scheme 34 

 

Reaction of a thiol with an alkyne, in the absence of tributyltin hydride, resulted in an 

efficient radical substitution following initial addition of the thiyl radical to the triple bond 

(Scheme 35).128 This new cascade sequence delivered good yields of phosphorus-

containing products. 
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Finally, phosphinoyl radicals have been shown to add to triple bonds as illustrated by the 

formal cycloisomerisation of the thiophosphine oxide 82 to afford the thiophene 83 shown 

in Scheme 36. 
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1.2 Alkaloids 

Alkaloid is the general name of all natural products containing a free, basic nitrogen atom. 

Alkaloids are produced as secondary metabolites by a large number of organisms, 

including bacteria, fungi, animals and plants. Alkaloids are typically divided into three 

subgroups; true alkaloids, proto alkaloids and pseudo alkaloids. True alkaloids are derived 

biosynthetically from amino acids and the nitrogen is part of a heterocyclic ring (e.g. 

nicotine). Proto alkaloids are derived biosynthetically from amino acids, however the 

nitrogen is outside of a ring system (e.g. amphetamines). Pseudo alkaloids are not directly 

derived biosynthetically from amino acids, but instead purines, (e.g. caffeine).135 Alkaloids 

can be further classified based on two different systems; 

 

• either based on their chemical structure, i.e. their core framework, such as 

pyrrolidines, pyridines, tropanes, pyrrolizidines, isoquinolines, indoles, quinolines, 

terpenoids and steroids; or 

• By the biological origin, such as the opium alkaloids from the opium poppy 

(Papaver somniferum) or the ergot alkaloids from the ergot fungus (Claviceps). 

 

Many alkaloids have pharmacological effects, ledding to their uses as medications and 

recreational drugs, such as those shown below (Figure 3). 
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1.2.1 –Overview of Alangium and Mitragyna alkaloids  

The Alangium family of alkaloids have attracted interest due to their use as folk remedies 

for numerous ailments (including dystentery) and a number of benzo[a]quinolizidine 

alkaloids, exhibit potent biological activities.136 For example, psychotrine (84) (Figure 4), 
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isolated from the root of the Ipecacuanha plant, is a potent inhibitor of HIV-1 reverse 

transcriptase,137, 138 and deoxytubulosine (85) has cytotoxic properties. Mitragynine (86) is 

isolated from the plant Mitragyna speciosa, which is traditionally used in tropical areas as 

a stimulant like coca or as a substitute for opium. The unique properties of this medicinal 

plant have attracted considerable interest. Recently, mitragynine (86) has been found to 

exhibit potent analgesic activity principally against µ-opioid receptors.139-141  
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Figure 4 (original in colour) 

 

1.2.2 - Alangium alkaloids 

1.2.2.1 - Synthesis of Alangium alkaloids and related compounds 

Battersby,142-146 Fujii147,148 and Brossi149 from the 1960s to 70s published around 50 papers 

based on synthetic methods to the Alangium family of alkaloids including psychotrine (84), 

deoxytubulosine (85), emetine (87) and other related compounds (Figures 4 and 5). These 

racemic routes are long-winded, in excess of 10 steps. There are a few recent papers on the 

synthesis of Alangium alkaloids including psychotrine (84), deoxytubulosine (85) and 

emetine (87). The following are some recent examples that show methods for the synthesis 

of the tricyclic core of these types of alkaloids, often proceeding via protoemetinol (88) 

(Figure 5).144 
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1.2.2.2 - Iron catalysed cyclisation 

Takacs and coworkers have developed novel cyclisation methods using catalytic metal-

mediated reactions, including iron catalysts, which are attractive due to their low toxicity 

and availability. An example of a catalytic iron-mediated reaction is the cyclisation of 

enediene 89 to afford the substituted quinolizidine 90 in 70% yield, as a 6:1 mixture of 

diastereomers (Scheme 37).150 
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Scheme 37 

 

It was envisioned that this methodology could be applied to the synthesis of the tricyclic 

core of the Alangium alkaloids (Schemes 38 and 39). The synthesis began following 

previous work by Meyers who devised an efficient route for the diastereoselective 

alkylation of chiral tetrahydroisoquinolines bearing a formamidine auxiliary.151,152 

Deprotonation of tetrahydroisoquinoline 91 and subsequent alkylation with (Z)-1-chloro-4-

benzyloxy-2-butene affords the desired substituted tetrahydroisoquinoline 92. Without 

purification, the chiral auxiliary was then removed to yield the free tetrahydroisoquinoline 

93. To complete the enediene synthesis, the free tetrahydroisoquinoline 93 was N-alkylated 

with (E)-pentadienyl chloride to afford enediene 94 in 59% yield over 3 steps. 
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Treatment of enediene 94 with a bisoxazoline-modified iron catalyst afforded the desired 

tricycle 95, although purification was problematic due to the labile enol ether (Scheme 39). 

Analysis of the vicinal coupling constants from the 1H NMR spectrum established the 

stereochemistry as depicted. All that remained was reduction of the two double bonds 

followed by reductive cleavage of the benzyl ether moiety. The one-pot palladium-

catalysed reduction and debenzylation of crude tricycle 95 was efficient and afforded the 

corresponding alcohol 96 in 61% yield over the two steps. 
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1.2.2.3 A domino hetero-Diels-Alder reaction 

In 2004 Tietze reported the synthesis of Alangium alkaloids employing an enantioselective 

catalytic transfer hydrogenation of an imine, followed by a domino Knoevenagel/hetero-

Diels-Alder reaction in the key cyclisation step.153 This resulted in the synthesis of a 

common intermediate 98, which could be elaborated to either emetine (87) or 

deoxytubulosine (85) (Scheme 40). 
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The enantiopure NCbz protected tetrahydroisoquinoline 97 was prepared by initial 

synthesis of the racemic OTIPS tetrahydroisoquinoline 102 (Scheme 41). This was 

accomplished by reaction of 2-(3,4-dimethoxyphenyl)ethanamine (99) with ethyl 2-

(chlorocarbonyl)acetate to afford ethyl 2-(3,4-dimethoxyphenethylcarbamoyl)acetate (100) 

and subsequent Bischler-Napieralski cyclisation affords tetrahydroisoquinoline 101. 

Reduction of the α,β-unsaturated system and TIPS protection gave silyl ether 102 which 

was oxidised with KMnO4 to give the imine 103 in 55% yield over 6 steps from 2-(3,4-

dimethoxyphenyl)ethanamine (99). Transfer hydrogenation with triethylammonium 

formate in the presence of a chiral ruthenium catalyst 106 afforded the 

tetrahydroisoquinoline 104 in 93% yield with 95% ee. Cbz protection of the nitrogen 

followed by TIPS deprotection and oxidation of the alcohol gave the desired 

tetrahydroisoquinoline-aldehyde 97. 
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Scheme 41  

 

The reaction of tetrahydroisoquinoline-aldehyde 97, Meldrum’s acid (107) and enol ether 

109 in benzene and a catalytic amount of ethylene diammonium diacetate in a sonic bath 

resulted in the formation of tetrahydroisoquinoline 111 (Scheme 42). Formation of the 

tetrahydroisoquinoline 111 proceeds via the 1-oxa-1,3-butadiene 108, which undergoes a 
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hetero-Diels-Alder reaction with enol ether 109 (with inverse electron demand) to afford 

110 with undergoes a subsequent loss of CO2 and acetone. Tetrahydroisoquinoline 111 is 

not isolated, but treated with K2CO3/MeOH and a catalytic amount of Pd/C under a 

hydrogen atmosphere to yield the benzoquinolizidine 98, along with two other 

diastereomers. 
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Scheme 42 

 

The benzoquinolizidine 98 can be converted into either emetine (87) or deoxytubulosine 

(85), in 3 or 4 steps, respectively, by subsequent functionalisation of the methyl ester with 

the appropriate substituent followed by Pictet-Spengler reactions to obtain the cyclised 

material and then reductions to obtain the correct oxidation levels (Scheme 43). 
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Scheme 43 

 

 

1.2.2.4 Catalytic asymmetric allylation 

Recently, Itoh and workers reported the formal synthesis of (-)-emetine (87) (Schemes 44-

46).154 Their strategy built on recent work by Shibasaki and coworkers who used 

allyltrimethoxysilane and a catalytic amount of a Cu(I) salt for the allylation of ketones and 

aldehydes.155 Itoh applied this protocol to the stereoselective allylation of 6,7-dimethoxy-

3,4-dihydroisoquinoline (112) (Scheme 44). Various phosphine derivatives were 

investigated as chiral ligands, with tol-BINAP in THF at room temperature giving the best 

result. It should be noted that although the stereoselectivity is moderate, this was the first 

example of a catalytic allylation reaction using a cyclic imine, and recrystallisation of the 

(-)-dibenzoyl-L-tartaric acid salt gave an improved enantiomeric excess.  
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Scheme 44 

 

In order to functionalise the allyl group in 113 it was necessary to protect the 

tetrahydroisoquinoline nitrogen with a Boc group to give 114, after which a cross-

metathesis reaction (using the second-generation Grubbs’ catalyst) was carried out to give 

a high yield of the desired alkene 115 (Scheme 45). 
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Deprotection of alkene 115 afforded the free amine 116, subsequent slow addition of 

acrolein and treatment with pyrrolidine afforded the tricyclic formyl derivate 117 in good 

yield (Scheme 46). The formyl derivative 117 was subjected to a Wittig reaction with the 

ylide derived from methyltriphenylphosphonium bromide followed by treatment with 

methanol to give alkene 118. Finally, a Pd/C catalysed hydrogenation gave ester 119, 

which is an intermediate for the synthesis of (-)-emetine (87).  
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Scheme 46 

 

1.2.2.5 - [3+3] Annulation followed by acid-catalysed cyclisation 

Recently the group of Chang has reported the total synthesis of (±)-protoemetinol (88) 

using an acid-catalysed intramolecular cyclisation of enlactam 126 to form the tricyclic 

core 127 (Schemes 47 and 48).156 Their synthesis started with the [3+3] annulation of 

sulfonyl acetamide 120 using α,β-unsaturated ester 121 (Scheme 47), followed by the 

regioselective reduction of the carbonyl α to the sulfonyl group in 122 with sodium 

borohydride to afford hydroxylactam 123. Subsequent mesylation and elimination 

furnished enlactam 124, which on treatment with sodium amalgam resulted in 
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desulfonation to afford the corresponding enlactam 125. Alkylation using LHMDS and 

iodoethane afforded 126 as a single diastereomer. 
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Scheme 47 

 

The tricyclic core of protoemetinol (88) was formed by the Lewis acid catalysed 

cyclisation of 126 using boron trifluoride diethyl etherate, which produced a 1:6 mixture of 

127 and 128 in an excellent 83% yield. To complete the synthesis of (±)-protoemetinol 

(88) debenzylation was achieved by treatment of 128 with palladium on carbon and 

hydrogen to afford alcohol 129 and finally, reduction with lithium aluminum hydride 

afforded (±)-protoemetinol (88) (Scheme 48), in 8-steps in a total yield of 36% from 

sulfonyl acetamide 120. 
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1.2.2.6 - Pictet-Spengler and subsequent Strecker reaction 

More recently, Delpech and coworkers have developed a route to trifluoroacetyl protected 

tetrahydroisoquinolines via aminopentadienals, formed from the condensation of 

homoveratrylamine (or tryptamine) with glutaconaldehydes when treated with 

trifluoroacetic anhydride,157 proceeding via a Pictet-Spengler reaction. Subsequently, this 

methodology has been applied to the synthesis of protoemetinol (88) (and related 

tetrahydroisoquinolines). Their synthesis started with the formation of trifluoroacetyl 

protected tetrahydroisoquinoline 133 in two steps (Scheme 49). First, treatment of 

homoveratrylamine (130) and glutaconaldehyde sodium salt (131) in the presence of 

trifluoroacetic acid afforded aminopentadienal 132, which on treatment with 2 equivalents 

of trifluoroacetic anhydridea and a subsequent basic hydrolysis led to the isolation of 

tetrahydroisoquinoline 133. 
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Scheme 49 

 

To complete the synthesis of protoemetinol (88), reduction of the trifluoroacetyl and 

aldehyde groups afforded the secondary amine 134 (Scheme 50). A protected form of the 

enamine was introduced by the formation of an aminonitrile 135 via a Strecker reaction 

and oxidation of the allylic alcohol to the enal 136 was achieved by the use of Dess-Martin 

periodinane and NaHCO3. Treatment of the enal 136 with 0.5 equiv of Zn(OTf)2,b in the 

presence of NaHCO3, led to cyclisation followed by trapping of the resulting iminium salt 

                                                 
a Treatment with one equivalent resulted in half the yield of product 133 
b Use of Zn(OTf)2 as a Lewis acid increases the electrophilicity of the enal by coordination to oxygen 
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by the cyanide ion. Finally, both the aldehyde and the masked iminium groups were 

reduced by NaBH4 to afford protoemetinol (88) and its C-3 epimer in a moderate 28% 

yield.  
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1.2.3 The Mitragyna alkaloid mitragynine (86) 

Mitragynine (86) was first isolated in 1907 by Hooper,158 and then given its name 

following a subsequent isolation by Field.159 However, it was not until 1965 that the 

structure of mitragynine (86) was identified by X-ray crystallography of the hydroiodide 

salt.160 In small doses it has been shown to act as a stimulant, while in higher doses it has 

more opiate-like activity. Recent studies have shown that the methoxy group is essential 

for the analgesic activity.141, 161 Mitragynine (86) was found to be an opioid agonist, which 

acts on both µ- and δ-opioid receptors, (µ-receptors are responsible for the enjoyable 

effects of opiates, analgesia and physical dependence). De-methyl mitragynine (137, also 

known as 9-hydroxy-corynantheidine) exhibits high affinity for µ-opioid receptors but is 

only a partial agonist. De-methoxy mitragynine (138, also know as corynantheidine) does 

not exhibit any opioid agonistic activity, but it reverses the morphine-inhibited twitch 

contraction,141 and so is classified as an opioid receptor antagonist. 
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1.2.3.1 - Synthesis of mitragynine (86) and related compounds 

To-date there are two reported total syntheses of mitragynine (86) and a few syntheses of 

related de-methoxy compounds. This is a result of the lack of availability of 4-

methoxytryptophan required for the synthesis of the indole core. Currently, 4-

methoxytryptophan can only be obtained in high optical purity by the use of immobilized 

penicillin G acylase, in a kinetic resolution.162, 163  

 

1.2.3.2 - First total synthesis of mitragynine (86) 

Takayama reported the first total synthesis of mitragynine (86) in 1995164 using 4-

methoxytryptophyl bromide (140) and a chiral pyridine alcohol 141 as key starting 

materials (Schemes 51 - 54). The optically pure pyridine alcohol 141 was isolated using an 

enzymatic process, while the 4-methoxytryptophyl bromide (140) fragment was prepared 

from 4-hydroxyindole 139 via a five-step operation. This involved O-methylation followed 

by reaction with oxalyl chloride, ethanolysis, reduction with LiAIH4 and finally, 

bromination (Scheme 51). 
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The 4-methoxytryptophyl bromide (140) and the pyridine alcohol 141 were condensed in 

refluxing benzene in the presence of a catalytic amount of sodium iodide to give 

pyridinium salt 142, which was reduced with sodium borohydride to yield the two 

alcohols, 143 and 144, in 33% and 27% yield, respectively (Scheme 52). 
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Although two isomers were formed in the reduction, it was anticipated that the chiral 

centre from the starting pyridine alcohol 141 would control the stereochemistry in a 

subsequent Claisen rearrangement (expected to proceed via chair-like transition states 145 

and 146) (Scheme 53). To this end, the allylic alcohols 143 and 144 were subjected to a 

Claisen rearrangement, by heating with trimethyl orthoacetate in the presence of a catalytic 

amount of benzoic acid in o-xylene. Isomer 148, with the wrong configuration at position 

C-2, could be transformed into the desired isomer 147 by an oxidation/reduction sequence 

via the 3,4-dehydroiminium salt. 
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Introduction of the formyl group was then achieved using LDA and HCOOMe to afford 

149 (Scheme 54). Subsequent attempts at O-methylation of the enol system in 149 using 

diazomethane were inefficient. So, the formyl group was converted into a dimethyl acetal 

150, which was treated with KOtBu to give the desired methyl enol ether 151. Finally, the 

C=C bond of the alkene was reduced using PtO2 under a hydrogen atmosphere to afford 

mitragynine (86). 
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1.2.3.3 - Second total synthesis of mitragynine (86) 

More recently, Cook has reported the enantiospecific synthesis of 4-methoxytryptophan 

using the Larock heteroannulation,165, 166 which has been employed in the total synthesis of 

mitragynine (86) and related alkaloids,167 based on an approach used in previous work for 

the synthesis of de-methoxy mitragynine (138, corynantheidine).168 The Larock 

heteroannulation is a method for the synthesis of substituted indole derivatives. The 

advantage of the Larock process stems from the high regioselectivity achieved when a 

bulky silyl-substituted internal alkyne is employed as a substrate - the regioselectivity is 

explained by steric interactions between the ortho aromatic hydrogen atom (or, in the 

Larock heteroannulation, the methoxyl group) and the substituent on the alkyne. The 

desired 4-methoxy-indole 154 was obtained in 82% yield by reaction of Boc-protected 2-

iodo-3-methoxyaniline (152) with TMS alkyne 153 to give the N-Boc-protected indole 

derivative after 6 h, although if the reaction mixture was stirred for 3 days, this led to 

deprotection of the N-Boc group (Scheme 55). Hydrolysis of 154 using 2 N HCl in THF 

cleanly afforded 4-methoxy-D-tryptophan ethyl ester (155) in 91% yield. The ethyl ester 

was then hydrolysed and converted into the benzyl ester 156. 
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Monoalkylation of indole 156 with allylic bromide 157 and Cs2CO3 in DMF/THF afforded 

the secondary amine 158 in 85% yield (Scheme 56). An asymmetric Pictet-Spengler 

reaction169 between the secondary amine 158 and aldehyde 159 furnished tricyclic diester 

160. Diester 160 was then converted into the desired α,β-unsaturated ester 161 in 64% 

overall yield via removal of one of the thiophenol groups, followed by oxidation with m-

CPBA and elimination of the resulting sulfoxide. 
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The α,β-unsaturated ester 161 was then subjected to a Ni(COD)2-mediated cyclisation to 

provide the tetracyclic skeleton 162 in 75% yield (Scheme 57). The benzyl group of the 

ester 162 was removed by treatment with PdCl2 in the presence of triethylsilane and the 

corresponding carboxylic acid was converted into the tetracyclic ester 163 via the Barton-

Crich decarboxylation process. Reduction of the alkene in 163 was achieved using 

Crabtree’s catalyst and the resulting tetracycle 164 was treated with (Boc)2O and a 

catalytic amount of DMAP to afford the N-Boc tetracycle 165. Subsequent formylation and 

N-Boc deprotection followed by acetal formation and elimination of MeOH provided 

mitragynine (86).  
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1.2.3.4 - Synthesis of related alkaloids  

1.2.3.4.1 - Synthesis of (-)-9-methoxymitralactonine (167) 

Recently, mitralactonine (166) and (-)-9-methoxymitralactonine (167) (Figure 7) have 

been isolated (from the young leaves of Malaysian, Mitragyna speciosa Korth) and 

synthesised by Takayama and coworkers.170  
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The synthesis of (-)-9-methoxymitralactonine (167) started with the preparation of the 

chiral epoxyketone 1.75 (Scheme 58). Initially, a Corey asymmetric reduction of α,β-

unsaturated ketone 168 (using an oxazaborolidine catalyst 1.69) afforded allylic alcohol 

170 and a subsequent Sharpless asymmetric epoxidation gave epoxy-alcohol 171, which on 

Swern oxidation yielded chiral epoxy-ketone 172. 
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The main core, 5-methoxy-3,4-dihydro-β-carboline (174), was prepared from 4-

methoxytryptamine (173) by N-formylation and a subsequent Bischler-Napieralski reaction 

(Scheme 59). The tetracyclic core was prepared by reaction of the imine 174 with chiral 

epoxy-ketone 172, to afford two diastereomeric tetracyclic compounds (175 and 176) in 

33% and 17% yield. The major isomer 175 was subjected to a Knoevenagel condensation 

with dimethyl malonate in refluxing toluene in the presence of AcONH4 and AcOH to give 

pentacycle 177 in 51% yield. It is worth pointing out that the same pentacycle (177) was 

obtained from the minor isomer 176. Finally, the conjugated system was introduced using 

a two-step process, to furnish (-)-9-methoxymitralactonine (167) in 81% yield. 
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1.2.3.4.2 - Synthesis of the enantiomer of corynantheidol (183) 

While working on new methods for the enantioselective allylation of cyclic imines Chong 

has reported the asymmetric synthesis of the enantiomer of corynantheidol (183) using an 

asymmetric allylboration of a cyclic imine in the key synthetic step.171 Treatment of cyclic 

imine 178 with the allylboronate 180 in toluene afforded the corresponding homoallylic 

amine 179 in good yield (71-92% for a range of imines), in excellent enantioselectivity, 

Scheme 60.  

 

N N

Ts
N NH

Ts

180, PhMe
-78 °C to r.t.

O
B

O

C6H3(CF3)2

C6H3(CF3)2

180

84%, 94% ee

H
179178

 
Scheme 60 

 

Treatment of the homoallylic amine 179 with bromobutyric acid and DCC afforded the 

corresponding amide (Scheme 61), which was converted into the α,β-unsaturated ester 

181, by a two step procedure involving an osmium tetroxide catalysed oxidation of the 

alkene and a Wittig reaction on the intermediate aldehyde. An nBuLi induced 

intramolecular Michael addition resulted in formation of the cis trisubstituted δ-lactam 
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182, as the major diastereomer. Treatment with lithium aluminium hydride resulted in 

reduction of both the amide and ester to afford the enantiomer of corynantheidol (183).172 
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1.3 Project aims 

This project aimed to apply radical cyclisation methodology to the concise syntheses of the 

Alangium and Mitragyna alkaloids, which all contain an octahydroquinolizine ring system. 

It was planned that using a radical promoted cyclisation in the key step would allow a more 

efficient approach to these structurally complex compounds than existing methods allow. It 

is known that a range of Alangium alkaloids including psychotrine (84) and 

deoxytubulosine (85) can be prepared from a common intermediate, protoemetinol (88). It 

was proposed that a radical cyclisation could be used to form protoemetinol (88), which 

could be set-up in one of two ways, either the cyclisation of an alkyl radical onto an N-allyl 

system 185, or the cyclisation of a radical that is β to nitrogen onto an alkene 184. 
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The synthesis of protoemetinol (88) and related compounds will be explored using a 

variety of routes to form radical precursors leading to radicals 184 and 185 (Scheme 62). 

To this end this project will explore the cyclisations using a range of radical mediators, 

from the cyclisation of vinyl bromides, phenylselenides and acyl halides with tributyltin 

hydride to the cyclisation of 1,7-dienes using a phosphorus hydride, or a silane. The key 

aim being to develop an efficient, mild, stereoselective and general synthetic approach to 

Alangium and Mitragyna alkaloids. 
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Chapter 2 – Results and Discussion 

Reactions of phosphorus-centred radicals 
 

2.1 Introduction 

Previous work within the group had shown that phosphites, thiophosphites and phosphine 

oxides all add regioselectively to a range of dienes to afford the corresponding cyclic 

adducts. Subsequent Horner-Wadsworth-Emmons-type (HWE) reactions to form alkenes, 

in a one-pot reaction, is also possible as exemplified by addition of diethyl thiophosphite to 

diallyl ether (186) and a subsequent reaction with base and benzophenone to afford the 

substituted alkene 187 (Scheme 63).121, 125, 126 Subsequent work within our group has 

applied this methodology to the synthesis of the cyclic core of cannabinoids.173 
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It was postulated that the core of the Alangium alkaloids could be prepared by cyclisation 

of a 1,7-diene, such as 188, with a phosphorus hydride (Scheme 64), followed by a 

Horner-Wadsworth-Emmons-type reaction of the intermediate phosphonate or 

phosphonothioate 189 to give tricyclic alkene 193.  
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It was proposed that the synthesis would begin by allylation of tetrahydroisoquinoline 190 

to afford dihydroisoquinoline 191, using one of a number of known approaches (Scheme 

65). Subsequent N-allylation of the secondary amine would afford the 1,7-diene 188. 

Reaction of 188 with a phosphorus hydride was expected to result in an 6-exo-trig 

cyclisation (via a chair-like transition state, 192), and treatment with a base and methanal 

should afford terminal alkene 193. Finally, a subsequent oxidative hydroboration174 is 

expected to afford protoemetinol (88). 
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With protoemetinol (88) in hand a range of Alangium alkaloids could be accessed (Scheme 

66), for example, psychotrine (84) can be accessed by an initial Jones oxidation175 of 

protoemetinol (88), to afford the carboxylic acid 196, and then coupling with 5-(2-

aminoethyl)-2-methoxyphenol (197) (prepared in 3 steps from isovanillin)176 under 

Bischler-Napieralski177 conditions. Alternatively, deoxytubulosine (85) could be obtained 

from protoemetinol (88) via oxidation under Swern conditions to afford protoemetine 

(194), which on reaction with tryptamine (195) under Pictet-Spengler conditions affords 

deoxytubulosine (85). However, it should be noted that the formation of both 

deoxytubulosine (85) and epideoxytubulosine (the C-1’ epimer) is expected.178 
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To investigate the synthetic approach in Scheme 65, first, the synthesis of 1,7-diene 188 

was developed. This is followed by studies of the phosphorus hydride-mediated radical 

cyclisation. Although there is literature precedent for the radical cyclisation of 1,7-dienes 

containing nitrogen, a search of the literature revealed that there are very few examples of 

phosphorus- or silicon-centred radicals cyclising unsaturated amines.  

 

 

2.2 Synthesis of the 1,7-diene 

 2.2.1 Synthesis of imines by oxidation 

For the initial route to the substituted-tetrahydroisoquinoline 188, it was proposed that 

oxidation of commercially available 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (190), 

using mercury(II) oxide and iodine according to the literature method,179 would form 

dihydroisoquinoline 188 (Scheme 67).180 The desired product was formed although we 

could not achieve the reported yield of 85%. In addition to 188, another product, possibly 

amide 198 (derived from over-oxidation), was observed, along with a black tarry residue, 

which is likely derived from oxidation of the catechol fragment. Similar oxidation 

reactions were carried out on 1,2,3,4-tetrahydroisoquinoline (199) to yield the 

corresponding dihydroisoquinoline 200 in higher yields than for the dimethoxy-

dihydroisoquinoline 188 (Scheme 67). 
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Scheme 67 

 

The low yield of imines 188 and 200 led us to try a different oxidation method, involving 

the use of N-bromosuccinimide (NBS) followed by aqueous sodium hydroxide, Scheme 

68.181 This method gave a much higher yield of the corresponding imines and so this was 

adopted as the oxidation method of choice. It is, however, worth noting that for both 

methods, the yield of the dimethoxy-imine 188 was considerably lower, possibly due to the 

increased electron density of the dimethoxy-substituted aromatic ring. 
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 2.2.2 Addition of organometallic reagents to imines 

Previous work by Nakamura has shown that organozinc reagents can add efficiently to 

imines such as 188 and 200.182, 183 The addition of allylzinc bromide to imines (prepared in 

typically 80-90%, based on a Gilman titration)184-186 can be made enantioselective by using 

a chiral auxiliary, such as bis-oxazolidine 202, which can be prepared by reduction of L-

valine (201) followed by condensation with diethyl malonate (Scheme 69). 
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For the initial studies of the radical cyclisation, a racemic synthesis would be sufficient and 

so addition of allylzinc bromide to imine 200 resulted in the isolation of the desired amine 

203 in 55-70% yield after column chromatography, Scheme 70. As 1,2,3,4-

tetrahydroisoquinoline 199 is significantly cheaper than 6,7-dimethoxy-1,2,3,4-

tetrahydroisoquinoline 190, for optimization of the synthetic approach, we concentrated on 

the use of this starting material.  
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Scheme 70 

 

It was hoped that N-allylation of 203 would proceed following a literature procedure using 

crotyl bromide (1 equiv.) and K2CO3 in MeCN.187 Unfortunately, this predominantly gave 

the quaternary ammonium salt 205, and recovered starting material (Scheme 71). It was 

possible to increase the yield of 204 (to 41%) by using high dilution and slow addition of 

the crotyl bromide. 
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 2.2.3 Addition of organometallic reagents to imine salts 

The problems of quaternary ammonium ion formation led us to use a reverse strategy, 

where dihydroisoquinoline 200 is first N-crotylated and then reacted with the organozinc 

reagent. This method gave the desired adduct 204 in much improved yields over the two 

steps (Scheme 72). 
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2.3 Reaction of phosphorus hydrides 

 2.3.1 Reaction of phosphorus hydrides with 1,7-diene 188 

Radical cyclisation of 1,7-diene 205 using diethyl thiophosphite was then investigated. 

Initial attempts, using a dilute solution of 205 and diethyl thiophosphite, under a range of 

conditions resulted in recovered 1,7-diene 205. Even when the diene, (EtO)2P(S)H and 

AIBN were heated at 80 °C in the absence of a solvent, only starting material was 

recovered (Scheme 73). 
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 2.3.2  Reaction of phosphorus hydrides with a model system 

The inability to cyclise 205 led us to investigate the simple addition of phosphorus 

hydrides to the allyl bond of the NMe compound 208 (prepared by methylation of 200 

using MeI followed by addition of allylzinc bromide, Scheme 74).  
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Unfortunately, attempted addition of (EtO)2P(O)H, (EtO)2P(S)H or Ph2P(O)H to the allyl 

bond of 208 using AIBN or Et3B/O2 as initiator in a range of solvents was unsuccessful, 

with only starting alkene recovered (Scheme 75). 
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 2.3.3  Reaction of phosphorus hydrides with test systems 

This result contrasts with similar reactions, such as reaction of 1-octene (75) with diethyl 

thiophosphite and AIBN, which, as expected from the literature121, 125, 126, 173, 188 afforded 

O,O-diethyl octylphosphonothioate (76) and further Horner-Wadsworth-Emmons-type 

reactions yielded alkenes 77, 210, 211 and 212 in moderate to good yields using 

benzophenone, benzaldehyde, cyclohexanone or acetone, respectively (Scheme 76). 
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A consecutive radical addition/cyclisation/Horner-Wadsworth-Emmons type reaction was 

also tested. Allyl ether (78), diethyl thiophosphite and AIBN in dry THF were heated to 

reflux, after which sBuLi was added, followed by benzophenone (Scheme 77). This 

resulted in the desired alkene 79 being isolated in 86% yield. 
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To test the radical addition and cyclisation of unsaturated amines, the reaction of 

diallylamine or diallylmethylamine, with a range of phosphorus hydrides, was explored. 

Unfortunately, under a range of conditions, no cyclisation or addition of the phosphorus 

hydrides to the allyl amines was observed (Scheme 78 and Table 2). This contrasts with 

similar reactions of N-protected diallylamines with diethyl thiophosphite and AIBN in 

THF.121, 173, 188 
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N
R

N
R

R2(X)P
Solvent or neat, ref lux

R2P(X)H (2 - 15 eq)
AIBN or Et3B

 
R R2P(X)H Eq Initiator Yield (%) cis : trans

H (EtO)2P(S)H 2-6 AIBN or Et3B No Reaction 

H (EtO)2P(O)H 10-15 AIBN or Et3B No Reaction 

Me (EtO)2P(S)H 2-6 AIBN or Et3B No Reaction 

Me (EtO)2P(O)H 10-15 AIBN or Et3B No Reaction 

Ts (EtO)2P(O)H 10 Et3B 20188 3 : 1 

Boc (EtO)2P(O)H 10 Et3B 80188 2.3 : 1 

Cbz (EtO)2P(O)H 10 Et3B 84188 2.1 : 1 

Bz (EtO)2P(S)H 5 AIBN 78 2.2 : 1 

Scheme 78 and Table 2 

 

The problematic reactions of diene 205, alkene 208 and other amines with phosphorus 

hydrides may be attributed to an electron-transfer process; the intermediate phosphorus-

centred radical may accept an electron from the lone pair on nitrogen.188 Related radical 

reactions of amines are scarce in the literature, although this contrasts with successful 

cyclisations of unsaturated precursors containing amide or sulfonamide groups, where the 

lone pair is resonance-stabilised and less prone to single electron transfer processes. This 

led us to explore the preparation of related precursors containing enamide and amide 

groups. 

 

 
2.4 Reaction of enamines with phosphorus hydrides 

 2.4.1 Preparation of enamines 

Following a literature procedure, N-methylation of 213 proceeded quantitatively (from 1H 

NMR spectroscopy) but subsequent addition of allylmagnesium bromide did not proceed 

smoothly, giving 214 in trace amounts together with unidentified by-products (Scheme 

79).c  

 

                                                 
c It is believed that Grignard formation is occurring, as the reaction mixture starts to reflux, changes colour 
and the magnesium metal is consumed. However, attempted addition of the Grignard reagent to 
benzaldehyde, cyclohexanone or 1-tetralone was unsuccessful. In comparison, in-situ formation of PhMgBr 
and addition to cyclohexanone gave the expected alcohol in 85% yield. 
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N N N
MeI BrMg

quant213 214
THF, 24 h THF, 24 h

I
 

Scheme 79 

 

In comparison, under the same conditions, phenylmagnesium bromide undergoes addition 

to N-methylisoquinoline to give 1,2-dihydro-2-methyl-1-phenylisoquinoline (215) in an 

excellent 90% yield over the two steps (Scheme 80). 

 

I
N N

MeI

Quant by NMR213
THF, 24 h THF, 24 h N

215

PhMgBr

90 %
 

Scheme 80 

It was pleasingly found that changing the organometallic reagent from allylmagnesium 

bromide to allylzinc bromide, resulted in a greatly improved yield of the desired 1-allyl-

1,2-dihydro-2-methylisoquinoline (214) to 50-60% (Scheme 81). 

 

I
THF, 24 h N

ZnBr

50-60 %

N N
MeI

Quant by NMR213 214
THF, 24 h

 
Scheme 81 

 

 2.4.2  Reactions of enamines with phosphorus hydrides 

When the enamine 214 was heated with diethyl phosphite and AIBN in benzene, only 

addition to the electron rich C=C bond in the ring was indicated from the 1H NMR 

spectrum, to afford 216 in 30% yield (as a single regioisomer, however the exact structure 

could not be determined by NMR spectroscopy) along with recovered starting material 

(40%). None of the expected product 215, derived from addition to the less substituted 

C=C bond, was isolated (Scheme 82). 

N

P(O)(OEt)2

N
(EtO)2P(O)H

AIBN N

P(O)(OEt)2

Benezene
ref lux

30%
214 215 216

 
Scheme 82 
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The chemoselective addition to the enamine C=C bond in 214 could be explained by 

polarity, as the electrophilic phosphorus-centred radical may be expected to add selectively 

to the most electron-rich C=C bond. With this result in hand, the addition of phosphorus 

hydrides to a range of enamides was explored. However, disappointingly, under similar 

conditions only traces of products could be obtained (1-2%, Figure 8). 

  

N O

O

N
O

N O

N

N

NN N tBu

O

 
Figure 8 

 

However it was found that the addition of diethyl phosphite to 1,3,3-trimethyl-2-

methyleneindoline proceeded well to afford 218 in a reasonable 41% yield, structural 

assignment was confirmed by comparison with previously reported data.189 

 

N P(O)(OEt)2

(EtO)2P(O)H, AIBN
benzene, ref luxN

218, 41%217  
Scheme 83 

 

However it was discovered that the group of Tolmachev and Stawinski190, 191 have 

previously reported the addition of diethyl phosphite to 1,3,3-trimethyl-2-

methyleneindoline (217) in the absence of AIBN, or any other radical initiator. It is 

proposed that the addition of diethyl phosphite to 1,3,3-trimethyl-2-methyleneindoline (or 

other enamines) occurs via an ionic mechanism as shown in Scheme 84. 

 

N N N P(O)(OEt)2

H P
O

OEt
OEt P

O

OEt
OEt

217 218  
Scheme 84 
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2.5 Preparation and reactions of amide based 1,7-dienes  

Following the disappointing results with the addition of phosphorus-centred radicals to 

enamines, it was of interest to see if a 1,7-diene, bearing an amide protecting-group, such 

as 219 or 220, Figure 9, would undergo radical cyclisation in the presence of a phosphorus 

hydride. 

 

N O

219

N

220

O

 
Figure 9 

 

However, the synthesis of 220 would be more complicated, so attention turned to the 

synthesis of 219, which could be obtained from 203. Due to the inefficient routes towards 

the substituted-tetrahydroisoquinolines 203, 204 and 208 via the addition of allylmetal 

reagents to an imine (such as 200) another synthetic method was explored. Meyers and co-

workers have previously shown that tetrahydroisoquinoline can be substituted at the 1-

position using the route shown in Scheme 85.151, 192 

 

E = Me, Et, Allyl, CH2Ph (70-95%)

NH N H

N R

N H

N R
N H

N R

E

NH

E

Reflux Tol -78 oC, tBuLi

-78 oC, EX

 
Scheme 85 

 

For asymmetric alkylation, Meyers used an L-valinol derived formamide,152 to give high 

yields of 1-alkyl tetrahydroisoquinolines in 90-99% enantiomeric excess. To test this route, 

the racemic derivative N,N-dimethyl-N’-tert-butylformamide (DMBF) 221 was first 

synthesised (Scheme 86).192 

 

N H

O

N H

N
N H

O

H2N
(CH3O)2SO2

Heat 80-90 °C DCM ref lux
80-85%
Lit 90%

221  
Scheme 86 
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Reaction of N,N-dimethyl-N’-tert-butylformamide 221 with 1,2,3,4-tetrahydroisoquinoline 

199 subsequently gave the desired 1,2,3,4-tetrahydroisoquinoline formamide 222 in 75-

85% yield (Scheme 87).  

 

NH N H

NN H

N

Toluene
Ref lux, 36 h

75-85%
199

221
222

 
Scheme 87 

 

Metallation-alkylation of formamide 222 was achieved using tBuLi, although there is some 

precedent for using sBuLi. In our hands, reaction of formamide 222 with sBuLi proceeded 

to give a cleaner reaction with fewer by-products to afford the allyl substituted 

butylformamide 223 (Scheme 88). However the same reaction with nBuLi resulted in only 

recovered starting material. 

 

N H

N

N H

N

THF, -78 oC
Allyl bromideN H

NLi

THF, -78 oC

222 223

for tBuLi 63-75%
for sBuLi 69-80%

tBuLi or sBuLi

 
Scheme 88 

 

With substituted-tetrahydroisoquinoline 223 in hand, removal of the formamide fragment 

was required. There are several possible methods192 including hydrolysis (KOH, MeOH, 

water, 60 °C), hydrazinolysis (NH2NH2, EtCO2H, EtOH) and reductive cleavage (LiAlH4). 

It was found that the hydrolysis and hydrazinolysis both worked well, however the 

hydrolysis resulted in the higher product yields, Scheme 89, and slightly cleaner crude 

reaction mixtures.  

 

223 203

method a, 85-90%
method b, 52-82%

N H

N R

NH
a) KOH, MeOH, water, 60 °C

or
b) NH2NH2, EtCO2H, EtOH

 
Scheme 89 
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Following isolation of the secondary amine 203, attention then turned to N-acylation using 

crotonyl chloride or crotonyl anhydride, to afford amide 224 although this did not proceed 

smoothly, possibly due to a competing 1,4-type addition (Scheme 90). 

 

203 224

NH N OX

O

Et3N, DCM, 0 °C

for X = Cl, 35-40%
for X = OCOCH=CHCH3, 38-45% 

Scheme 90 

 

However, with some of the amine 224 in hand, attempts at the radical mediated 

addition/cyclisation of a range of phosphorus hydrides ((EtO)2P(O)H, (EtO)2P(S)H or 

Ph2P(O)H) were explored (Scheme 91). Three possible products were envisaged; the direct 

addition product 225, the desired 6-exo cyclisation product 226 and the product of 7-endo 

cyclisation 227. 

 

224

N O

225

N O

R2(X)P

N O

R2(X)P

N O

R2(X)P

227226Solvent or neat

R2P(X)H = (EtO)2P(O)H, (EtO)2P(S)H or Ph2P(O)H
AIBN 5 x 0.1 eq or Et3B 2 x 1.0 eq
Solvent = cyclohexane, benzene or THF

R2P(X)H (2 - 15 eq)
AIBN or Et3B

 

Scheme 91 

 

Disappointingly only a complex mixture of products was obtained based on TLC analysis 

and the NMR spectra of the unpurified reaction product. Unfortunately, no isolated 

products could be assigned and there was no evidence of the direct addition product 225, 6-

exo cyclisation product 226, or 7-endo product 227. It is proposed that some of these 

problems could be due to restricted bond rotation in the intermediate phosphorus-centred 

radical, which is discussed further in Chapter 4. 
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2.6 Conclusions  

 

Following previous work within the group it had been hoped that an efficient route towards 

protoemetinol (88), a key intermediate of Alangium alkaloids such as psychotrine (84) 

deoxytubulosine (85) could be achieved using the phosphorus hydride mediated cyclisation 

of a 1,7-diene. Unfortunately this was not the case: although the radical addition-

cyclisation reaction of simple alkenes and dienes (including 1-octene, 1,6-heptadiene allyl 

ether, diethyl malonate and a range of amides including N,N-diallylbenzamide) with 

diethyl phosphite proceeds to give adducts in excellent yields, similar reactions of 

unprotected amines (such as diallylamine and diallylmethylamine) give none of the desired 

cyclic adducts. This has been attributed to a competing electron-transfer process between 

the intermediate phosphorus-centred radical and the lone pair of electrons on the amine 

nitrogen. 

 

Further exploration of the addition of phosphorus hydrides to unsaturated systems was 

investigated, including addition to an enamine. Reaction of the initial test substrate was 

promising, with the isolation of the adduct in a 30% yield. However, an investigation of a 

range of different enamines was disappointing and only the addition of diethyl phosphite to 

1,3,3-trimethyl-2-methyleneindoline (217) proceeded well. However, it was noted that the 

group of Tolmachev and Stawinski190, 191 have reported the same addition occurring under 

ionic conditions. 

 

Two approaches towards the core allyl-tetrahydroisoquinoline ring system have been 

explored. The first approach involved the oxidation of an amine (190 or 199) to the 

corresponding imine (180 or 200) followed by the addition of an organometallic reagent. 

This route proved to be very successful when the imine was “activated” by N-allylation 

before addition of the organometallic reagent. However, the addition proved to be more 

problematic if the addition was attempted on the “unactivated” imine. A second approach 

towards the allyl-tetrahydroisoquinoline core was achieved using a route previously 

reported by Meyers and co-workers, involving the deprotonation of an formamide with 
tBuLi, followed by quenching with allyl bromide. 
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Chapter 3 – Results and Discussion 

Addition reactions of silicon-centred radicals 
 

3.1 Introduction 

Following the disappointing results on the use of phosphorus-centred radical additions to 

construct the Alangium alkaloids ring system (Chapter 2), alternative radical cyclisation 

methods were explored. As outlined in Chapter 2, it was envisaged that addition of a 

phosphorus-centred radical (generated from a phosphorus hydride) to a diene would form 

an organophosphorus adduct, which could then undergo a Horner-Wadsworth-Emmons 

reaction to install the required C=C bond. With this in mind alternative radion methods, 

combining radical cyclisation with subsequent formation of a C=C bond, were 

investigated. 

 

Various heteroatom radicals are known to add to a range of alkenes and a number of 

heteroatom based olefination reactions have been reported. Heteroatom-based olefination 

reactions are a group of alkene-forming reactions that typically involve the addition of a 

heteroatom-stabilised carbanion to a C=O bond. For example, silanes can be converted into 

alkenes by the Peterson reaction,193, 194 (Scheme 92) phenyl sulfones can be converted into 

alkenes by the Julia olefination,146, 195, 196 the Wittig reaction typically uses a 

triphenylphosphonium ylide, while the Horner-Wadsworth-Emmons reaction uses a 

phosphonate, to form alkenes.197  
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Scheme 92 

 

A variety of work has been reported on the radical addition of silicon hydrides to 

alkenes,103, 116, 118 to afford the hydrosilylation products, and so novel radion reactions of 

silanes was explored. Organosilicon compounds have been exploited in the Peterson 
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olefination reaction to afford alkenes, and in the Fleming-Tamao oxidation to afford 

alcohols. However, there are few examples where the radical hydrosilylation of an alkene 

is combined with subsequent functionalisation of the organosilicon adduct to form, for 

example, an alkene or an alcohol. Initial studies concentrated on the development of a mild 

and efficient method of hydrosilylation. 

 

3.2 Reactions of tris(trimethylsilyl)silane 

The most widely used silicon hydride, for radical transformations, is 

tris(trimethylsilyl)silane (Chatgilialoglu’s reagent). Previous studies by Chatgilialoglu116 

reported that tris(trimethylsilyl)silane can add to a range of alkenes and dienes, under mild 

conditions (using AIBN as the initiator) to afford the corresponding organosilicon adducts 

in high yields. In our hands, addition of tris(trimethylsilyl)silane [(TMS)3SiH] to 1-octene, 

allylbenzene and diallyl ether, at first glance, appeared to afford the desired adducts in 

good yields. However on closer inspection of the 1H NMR, 13C NMR and mass spectra of 

the unpurified products, it appeared that fragmentation of the silyl radical, (Me3Si)3Si•, had 

occurred during the reaction, resulting in a mixture of products. Examination of the NMR 

spectra of the crude reaction mixtures indicated the absence of any starting alkene, 

although NMR could not determine the product ratio. After searching the literature, it was 

found that after the initial work by Chatgilialoglu, the group of Oshima and Utimoto198, 199 

reported that the (Me3Si)3Si• radical fragments to form (Me3Si)2Si• and Me3Si• radicals, 

resulting in a mixture of products, thus supporting our findings. 

 

Si(Si(CH3)3)3
((CH3)3Si)3SiHR

R Si(CH3)3R

THF, Initiator
SiR

(H3C)3Si Si(CH3)3
R

Initiator = AIBN, ref lux
Initiator = Et3B, 0 ºC
R = C5H9, Ph, OCH2CHCH2

+

+

 
Scheme 93 

 

Another problem with using (TMS)3SiH in a radion transformation is that there no known 

methods to convert the (TMS)3Si group into another functional group. Indeed, in our 

hands, an attempted Peterson reaction (using NaH, sBuLi or nBuLi, and Ph2CO or PhCHO) 

or Fleming-Tamao oxidation (using KF, H2O2 and KHCO3 in MeOH) failed on the mixture 

of organosilane adducts from the radical addition reactions, usually resulting in the 

recovery of the starting material. This led us to study the use of alkyl-, aryl- and chloro-

silanes in radical additions. 
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3.3 Reactions of alkyl- and aryl-silanes 

 3.3.1 Addition of alkyl- and aryl-silanes at elevated temperature 

Previous work by Roberts had shown that, in conjunction with a thiol catalyst, alkyl- or 

aryl-silanes efficiently add to C=C bonds,103 although it was necessary to use di-tert-butyl 

hyponitrite (TBHN), as initiator, to obtain good yields in some examples. Our 

investigations found that treatment of 1-octene (75) with a silane and AIBN afforded the 

desired organosilicon adducts (Scheme 94 and Table 3). The best yields were obtained 

using triisopropylsilanethiol as the polarity-reversal catalysis and carrying out the reaction 

neat, in the absence of a solvent. 

 

SiR3
R3SiH, RSH
AIBN, 80 ºC75

SiR3 = SiEt3 (228)
SiR3 = SiPh3 (220)
SiR3 = SiPhMe2 (230)  

R3SiH (eq) Thiol Solvent Yield (%) Product
Et3SiH (2) None Hexane 2 228
Et3SiH (2) PhSH Hexane 44 228
Et3SiH (2) Dodecanethiol Hexane 35 228
Et3SiH (2) iPr3SiSH Hexane 54 228
Et3SiH (4) iPr3SiSH No solvent 65 228

Ph3SiH (1.2) None Hexane 2 229
Ph3SiH (1.2) PhSH Hexane 54 229
Ph3SiH (1.2) Dodecanethiol Hexane 63 229
Ph3SiH (1.2) iPr3SiSH Hexane 86 229
Ph3SiH (1.2) iPr3SiSH No solvent 95 229

PhMe2SiH (1.2) iPr3SiSH Hexane 80 230
PhMe2SiH (1.2) iPr3SiSH No solvent 92 230  

Scheme 94 and Table 3 

 

Unfortunately, attempts at the radical cyclisation of dienes using AIBN or TBHN as 

initiators were unsuccessful. However, following work by Studer using silylated 

cyclohexadiene as a source of the phenyldimethylsilane radical, it was noted that an 

efficient transformation was achieved when using di-tert-butyl peroxide in hexane in a 

sealed tube at 140 °C.108 This led to an investigation of radical addition-cyclisation 

reactions of various dienes using similar conditions (Scheme 95 and Table 4). 
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X X

SiR2Ph
tBuOOtBu (0.3 eq), Solvent

sealed tube, 140 °C, 12 h

PhMe2SiH,
iPr3SiSH (0.05 mol %)

 

X Solvent Yield Product
R equiv (%)

O Ph 1.1 hexane 32 1 : 2.9 231
O Ph 1.1 benzene 69 1 : 3.0 231
O Me 1.1 hexane 30 1 : 2.0 232
O Me 1.1 benzene 52 1 : 1.9 232
O Me 2.2 benzene 77 1 : 1.9 232

CH2 Me 2.2 benzene 70 1 : 2.0 233
C(CO2Et)2 Me 2.2 benzene 88 1 : 3.8 234

CF3C(O)N Me 2.2 benzene 52 c 235
MeC(O)N Me 2.2 benzene 70 236
tBuC(O)N Me 2.2 benzene 74 237

a - d.r. determined from the 1H NMR spectrum

d - an accurate dr ratio could not be determined, due to the amide rotamers

b - assignment based on comparison with literature compounds and NOESY NMRs

PhR2SiH d.r.a

Note d
Note d
Note d

trans :cis b

c - 1H NMR spectrum shows clean product; product is unstable to silica
 

Scheme 95 and Table 4 
 

Although in the above case the desired cyclisation proceeded well, extending the method to 

alternative substrates proved problematic. It was found that under similar conditions, 1,6-

heptadien-4-ol (238) gave a mixture of products 239 and 240 (Scheme 96), derived from 

addition of the silicon radical, but not cyclisation of the resulting carbon radical. Attempted 

cyclisation of diallylmethylamine, diallylamine or diallylsulfane were also unsuccessful. 
 

PhMe2Si

OH

PhMe2Si SiMe2Ph

OH
tBuOOtBu (0.3 eq), Solvent

sealed tube, 140 °C, 6 h

PhMe2SiH,
iPr3SiSH (0.05 mol %)

OH
73% 15%

238 239 240
 

Scheme 96 
 

In a similar approach, it was hoped that cyclisation of 1,7-dienes would afford the 

corresponding 6-exo products, however it is well known that 6-exo cyclisation is much 

more difficult than 5-exo cyclisation, due to a slower rate of cyclisation (approx 40 times 

slower) and competing 1,5-hydrogen atom transfer reactions. So it was not unsurprising to 

discover that under similar conditions, 1,7-octadiene (241) only afforded products of 

monoaddition 242 and diaddition 243 (Scheme 97). 
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SiMe2Ph SiMe2Ph
SiMe2Ph

tBuOOtBu (0.3 eq), Solvent
sealed tube, 140 °C, 6 h

PhMe2SiH,
iPr3SiSH (0.05 mol %)

26-40% 5-34%
241 242 243

 
Scheme 97 

 

Although, in some cases, these conditions resulted in the formation of the desired 

cyclisation products in good yields, the conditions are relatively harsh and are 

incompatible with the use of polyfunctional precursors. So, it was desirable to find a milder 

method for the radical addition chemistry. 

 

 3.3.2 Addition of alkyl- and aryl-silanes at room temperature 

Our investigations moved on to the use of triethylborane, at room temperature, as the 

radical initiator. It was pleasing to find that addition of phenyldimethylsilane to a C=C 

bond proceeded very well in the presence of triethylborane and triisopropylsilanethiol as a 

thiol catalyst (Scheme 98, Table 5). It was observed that for efficient high yielding 

additions, a total of 1 equivalent of triethylborane is required, with addition of two portions 

of 0.5 equivalents being the most efficient. It was also noted that the thiol catalyst was still 

required, despite using 1 equivalent of the initiator. 

 

O O

Si Ph

PhMe2SiH (1.2 eq),
iPr3SiSH (0.05 eq), Et3B

Et3B, THF, rt244 245  

Isolated yield
portions equivalents 244 : 245 (%)

1 2 1 1 : 0.4 27
2 1 0.5 1 : 1.1 52
3 2 0.25 1 : 1.4 58
4 4 0.1 1 : 2.5 71
5 1 1 1 : 7 87
6 2 0.5 1 : 35 97

7 b 2 0.5 1 : 0 N/A

b - the reaction was attempted in the absence of iPr3SiSH

 Et3B Ratioa

a - the ratio was determined by 1H NMR spectroscopy 

 
Scheme 98 and Table 5 
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These conditions were then applied to a range of alkenes, where it was found that 

phenyldimethylsilane efficiently adds to a range of alkenes in the presence of 

triethylborane and 5 mol% of triisopropylsilanethiol (Scheme 99 and Table 6). 

 

R R Si Ph

PhMe2SiH (1.2 eq),
iPr3SiSH (0.05 eq), Et3B

Et3B, THF, rt  
 

Si O Si Ph

O Si Ph

Si Ph Si Ph
Si Ph

Ph

Si Ph
OH
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90%
247
95%

251
71%

252
88%

250
85%

256
81%

O Si Ph

O
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88%

O

O O

O

Si Ph254
95%

O

Si Ph

253
94%

O

Si Ph

O

248
88%

O Si PhHO
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Scheme 99 and Table 6 

 

After the successful addition of dimethylphenylsilane to various terminal alkenes, attempts 

were made at the cyclisation of a 1,6-diene, however it was found that polymerization 

occurred under the standard conditions. It was subsequently found that by increasing the 

dilution, and increasing the amounts of triisopropylsilanethiol and dimethylphenylsilane, 

clean 5-exo cyclisation occurred (Scheme 100, Table 7). 
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X X

SiMe2Ph

PhMe2SiH (2.0 eq),
iPr3SiSH (0.1 eq)

Et3B, THF, rt  

X Yield Product
(%)

O 61 1 : 2.4 232
CH2 70 1 : 2.2 233

C(CO2Et)2 88 1 : 4 234
CHOH 73 239

c - d.r. could not be determined

d.r. a

trans :cis b

a - d.r. determined from the 1H NMR spectrum

N/A c

compounds and NOESY NMRs
b - assignment based on comparison with literature

 
Scheme 100 and Table 7  

 

 3.3.3 – Ionic reactions of alkyl- and aryl-silanes  

With a range of organosilicon adducts to hand, attention turned to the subsequent ionic 

tranformations. Initial attempts concentrated on the formation of alkenes using the Peterson 

reactions. However, treatment of the organosilicon adducts with one of a wide variety of 

bases (sBuLi, nBuLi, tBuLi or NaH) and an aldehyde or ketone (PhCHO, Ph2CO, acetone 

or cyclohexanone) (Scheme 101) all failed. Subsequent attempts were made to quench the 

initial anion, formed by deprotonation, by D2O but again this only resulted in isolation of 

starting material. It is likely that, with no anion stabilising group alpha to the silicon atom, 

the organosilicon adducts are not deprotonated.194 

 

R
SiPhMe2

R R3

R2R2

O
R3

R SiPhMe2

Base then
R2R3CO

Base then D2O

R = C6H13, MeOC6H4CH2 or C6H5OCH2
Base = NaH, sBuLi, nBuLi or tBuLi
R2R3CO = PhCHO, Ph2CO, Me2CO or cyclohexanoneR SiPhMe2

D  
Scheme 101 

 

Attempts were then made at oxidative removal of the silyl group following the method 

developed by Fleming,200, 201 where the phenyldimethylsilyl group is used as a masked 

hydroxyl group. Cleavage of the Si–Ph bond can be accomplished using boron trifluoride 

acetic acid complex to form the corresponding fluoro-silane 258, 259 and 260 in 75-88% 

crude yields (Scheme 102). Subsequent oxidation using meta-chloroperoxybenzoic acid 



 

 67

and potassium fluoride gave the desired alcohols 261, 262, and 263 however in a low yield 

of 25-31%. The use of various oxidative conditions has been reported in the literature, to 

give alcohol products in yields of up to 90-95%. Unfortunately, in our hands, when treating 

the phenyldimethylsilane with mCPBA/KF in different solvents or with AcOOH/Et3N 

there was no improvement in the yield of the alcohols. Also, a one-pot conversion of the 

phenyldimethylsilane into the desired alcohol was explored using the conditions developed 

by Fleming,200 however these also gave the alcohols in low yield (typically less than 10%).  

 

R SiMe2 R SiMe2

Ph F

R OHmCPBA, KHBF3.(AcOH)2

DMF
257, 75%
258, 78%
259, 88%

Hg(OAc)2, AcO2H, AcOH,
or KBr, AcO2H, NaOAc, AcOH,
or Br2, AcO2H, NaOAc, AcOH

R = C6H13, (230)
R = MeO(C6H4)CH2, (245)

R = C6H5OCH2, (252)

260, 25%
261, 31%
262, 26%

DCM

 
Scheme 102 

 

3.4 – Reactions of alkoxysilanes 

An alternative approach was then explored involving the radical addition of ethoxysilanes 

and methoxysilanes (including (EtO)3SiH, (EtO)2MeSiH, (MeO)3SiH and (MeO)2MeSiH) 

to C=C bonds, to give alkoxysilane adducts, that are precursors of the Tamao oxidation.202-

204 However, it was found that initiation using Et3B and a thiol catalyst resulted in mainly 

recovered starting material. Even when using tBuOOtBu as initiator, and heating in a sealed 

tube, only starting alkene was recovered. 

 

3.5 – Reactions of chlorosilanes 

 3.5.1 – Addition of chlorophenylsilane 

An alternative precursor for the Tamao oxidation are chlorosilanes, particularly 

trichlorosilanes,202, 205 and so an investigation of the radical additions of a range of 

chlorosilanes was explored. Initial attempts concentrated on the radical additions of 

chlorodimethylsilane or dichloromethylsilane to a range of alkenes (1-octene, 4-

allylanisole and 4-allyl-1,2-dimethoxybenzene). Unfortunately no reaction occurred in the 

presence of 1 equivalent of triethylborane, with no thiol catalyst, despite an exotherm 

being generated (attempts at cooling the reaction mixture in an ice bath, also proved to be 

unsuccessful). In the presence of a thiol catalyst the NMR spectra of the unpurified 
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reaction mixtures were complex, most likely due to formation of products derived from 

nucleophilic attack of the thiol onto the chlorosilane. 

 

Pleasingly, based on 1H NMR spectra of the crude reaction mixtures, the radical additions 

of chlorodiphenylsilane or dichlorophenylsilane to 1-octene or 4-allylanisole with 2 

portions of 0.5 equivalent of triethylborane, in a ice bath (0-5 °C), with no thiol catalyst, 

proceeded efficiently. However, isolation of the adducts using column chromatography 

was not possible, due to the high reactivity of the adduct chlorosilane. It should also be 

noted that neither chlorodiphenylsilane or dichlorophenylsilane are available pure (from 

commercial sources), and this, coupled with their relatively high expense, resulted in 

exploration of alternative chlorosilanes. 

 

 3.5.2 – Addition of trichlorosilane 

It was then decided to investigate the radical addition of trichlorosilane to C=C bonds 

using triethylborane as the initiator. Trichlorosilane is commercially available and is 

relatively inexpensive. Pleasingly it was found that treatment of a terminal alkene with 3 

portions of 0.4 equivalent of triethylborane, in an ice bath, with no thiol catalyst, resulted 

in the reaction proceeding to completion (Scheme 103). The 1H and 13C NMR spectra of 

the reaction mixtures indicated the clean formation of the desired adducts. It is worth 

noting that although the initial reactions were successful, it was found that, after a while, 

the reactions stopped working. This was attributed to decomposition of the trichlorosilane, 

which was overcome by the use of bottles from Aldrich, with a SureSeal™ cap on. Due to 

the high reactivity of the intermediate organosilicon adduct, isolation and purification was 

not possible. This resulted in the crude reaction mixtures being taken forward to the 

subsequent oxidation chemistry. Treatment of the chlorosilane under Tamao oxidation 

conditions, using potassium fluoride and sodium hydrogen carbonate in THF/MeOH, 

followed by the addition of hydrogen peroxide proceeded to afford the desired alcohols in 

good yields (Scheme 103).  

 

then H2O2, 48 h, rt

Cl3SiH (2 eq),
Et3B, (3 × 0.4 eq)

R R OHR SiCl3THF, 0 ºC to r.t.,
overnight

R = C5H11, 260, 39%
R = MeOC6H4, 261, 51%

KF, NaHCO3,
MeOH/THF, 0 C, 1 h

 
Scheme 103 
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Following the successful one-pot transformation of the two test alkenes into the 

corresponding alcohols, the reaction of other alkenes was examined, where for alkenes 

possessing an alkyl, aryl or ether functionality the reactions proceed well (Table 8). 

 

OH

OH
OH

OH

O

O

OH

O

OH

O

OH
264 265263

266

260 261 262

 
Table 8 

 

However, for alkenes containing a carbonyl group, either an ester or ketone, (Table 9) the 

reaction afforded a complex mixture, possibly due to one of two competing side reactions: 

a) the initial silicon radical is able to add to the carbonyl oxygen 

b) following the oxidation of the trichlorosilyl group, the resulting alcohol is set up for a 6-

exo cyclisation on to the carbonyl in all cases, to afford a cyclic ester or lactol (this is 

supported by the presence of multiple carbonyl peaks in the 13C NMR spectrum, for the 

product derived from diethyl allylmalonate).  

 

R

O

R1 R

O

R1

SiCl3Cl3SiH,
Et3B

Cl3Si
a)

b)

R = alkyl or Oalkyl,
R1 = alkyl or Oalkyl
X = O or CH2

XR

O

HO
O X
R O  

Scheme 104 

 

Attempted addition of trichlorosilane to alkenes bearing an alcohol or amide group was 

also unsuccessful, (Table 9) resulting in complex NMR spectra for the unpurified products 

(with no evidence of the starting alkenes). This is not unsurprising, due to the potential for 

ionic reactions between the nucleophilic nitrogen and oxygen atoms and the electrophilic 

trichlorosilane. 
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O

OO

O O

O O

OHO
H
N N  

Table 9 

 

Following the successful addition of trichlorosilane to “simple” alkenes, the synthetically 

more useful cyclisation of dienes, followed by oxidation, was attempted. It was found that 

under the standard conditions used above, the addition of the trichlorosilane to the dienes 

resulted in polymerization (based on the broad peaks in the NMR spectrum of the crude 

reaction mixture). However, efficient cyclisation was found to occur under increased 

dilution to afford the corresponding cyclic trichlorosilyl products in reasonable yields. 

Subsequent oxidation of the cyclic trichlorosilyl products, using the above method, 

resulted in the isolation of the expected cyclic alcohols (Scheme 105).  

 

X X

OH

1) Cl3SiH (2 eq), Et3B (3 × 0.4 eq)
THF, 0 ºC to r.t., 12h

2) KF, NaHCO3, MeOH/THF, 0 ºC, 1h
3) H2O2, 48 h, rt

X = O, 267
29%, d.r. = 1:4.0

X = CH2, 268
27%, d.r. = 1:2.8  

Scheme 105 

 

The addition-cyclisation/oxidation chemistry was also tried using diethyl diallylmalonate, 

and although the addition-cyclisation step proceeded well, based on the 1H and 13C NMR 

spectra of the reaction mixture, the oxidation stage resulted in complex NMRs and TLCs 

of the unpurified reaction mixtures. 

 

3.6 Conclusion 

Following the unsuccessful results of the phosphorus hydride mediated cyclisation of 

dienes (bearing an unprotected nitrogen atom), alternative radical addition methods were 

explored. Our investigation focused on the radical mediated addition of silanes to alkenes. 

Several methods for functionalisation of the organosilane adducts are available, including 

Peterson olefination193, 194 or the Fleming-Tamao oxidation.200-204 However, there are few 

examples where radical hydrosilylation of an alkene is combined with the functionalisation 

of the adduct.  
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Our starting point was tris(trimethylsilyl)silane, which was found to add to alkenes. 

However, fragmentation of the initially formed silicon-centred radical occurred and this 

gave a mixture of products. This led us to study the use of alkylsilanes and arylsilanes.  

 

Following previous work by Roberts, we have shown that, in conjunction with a thiol 

catalyst, alkylsilanes and arylsilanes add to simple terminal alkenes using AIBN as the 

initiator. Unfortunately, attempted addition/cyclisation of 1,5-dienes was unsuccessful. 

However, it was found that efficient cyclisation of dienes could be achieved using di-tert-

butyl peroxide as the initiator in hexane in a sealed tube at 140 °C. Due to the harsh 

reaction conditions it was desirable to find an alternative, milder method for the radical 

addition chemistry. 

 

Pleasingly, the addition of phenyldimethylsilane to a range of alkenes was achieved by 

using triethylborane as the radical initiator in the presence of triisopropylsilanethiol. It was 

also possible to carry out the cyclisation of 1,6-dienes to afford the corresponding 

pentacycles. However, attempted Peterson reaction of the organosilicon adducts proved 

unsuccessful. Attempts at the oxidative removal of the phenyldimethylsilyl group were 

examined, using conditions developed by Fleming, where it was found that efficient 

conversion to the corresponding fluoro-silanes was possible, however, the subsequent 

oxidation gave the desired alcohols in disappointing yields. 

 

Alternative approaches examined radical additions of various ethoxysilanes and 

methoxysilanes, however it was found that these were unsuccessful resulting in only 

starting alkene. Pleasingly, it was found that addition of trichlorosilane to C=C bonds 

could be achieved in the presence of triethylborane as a radical initiator in the absence of a 

thiol catalyst. However, isolation of the intermediate adducts was not possible due to the 

high reactivity of the chlorosilane. The unpurified product was taken forward to the 

subsequent Tamao oxidation, which gave the desired alcohols in good yields. However this 

chemistry is limited due to the reactivity of the chlorosilane, for example, reactions with 

compounds containing an amine or alcohol group fails.  
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Chapter 4 – Results and Discussion 

Tributyltin hydride mediated cyclisation  

approaches toward protoemetinol (88) 
 

Following the disappointing progress towards Alangium alkaloids using a phosphorus 

hydride mediated radical cyclisation of a 1,7-diene (Chapter 2), and the limitations of the 

silane radical additions and the subsequent conversion of the silane adducts into useful 

precursors (Chapter 3), this resulted in a change to our synthetic strategy. Alternative 

approaches to protoemetinol (88), using more classical tributyltin hydride-mediated radical 

cyclisations, starting from xanthates or organohalides were explored.  

 

4.1 - Synthesis of the allyl-tetrahydroisoquinoline core 

Several proposed routes, including the cyclisation of an α-halocarbonyl 269, a xanthate 

270 or vinyl bromide 271, were predicted to form the alkaloid core ring systems 272, 273 

or 274, respectively (Scheme 106). It was envisaged that each of the resulting cyclic 

products could subsequently be elaborated into protoemetinol (88). 
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Scheme 106 

 

 4.1.1 – Myer’s approach to an allyl-tetrahydroisoquinoline core 

In all cases, a precursor allyl-tetrahydroisoquinoline is required, which could be prepared 

following previous work by Myers and co-workers. It has been shown that 

tetrahydroisoquinolines can be substituted at the 1-position by installing an auxiliary on 

nitrogen, followed by deprotonation of the formamide and quenching with an electrophile 
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(Scheme 107).151 Asymmetric alkylations are possible when using an L-valinol derived 

formamide,152 to give good yields of 1-alkyl tetrahydroisoquinolines in high enantiomeric 

excess. 

 

NH N H

N R

N H

N R
N H

N R

E

NH

E

Reflux,
Toluene -78 oC, tBuLi

-78 oC, EX

EX = MeI, EtI, allylBr, PhCH2Br, 70-95%  
Scheme 107 

 

This route allowed for an efficient synthesis of the non-methoxy isoquinoline 203 (Scheme 

89), suitable for model studies, however, the corresponding 6,7-dimethoxyisoquinoline is 

required for the synthesis of the Alangium alkaloids. This led to attempts at repeating the 

synthetic sequence starting from 1,2,3,4-tetrahydro-6,7-dimethoxyisoquinoline (190) 

(Scheme 108). To efficiently prepare the formamide 275 it was found that carrying out the 

reaction in a sealed reaction tube in a microwave oven at 150 °C, allowed for complete 

conversion in 2 h as indicated by LCMS and 1H NMR spectroscopy analysis of the 

reaction mixture. However, purification by silica column chromatography resulted in low 

yields of isolated formamide 275, together with unknown by-products that were not 

present in the reaction mixture. Subsequent attempts to elaborate the unpurified formamide 

(by deprotonation with sBuLi or tBuLi, and quenching with allyl bromide, methyl iodide or 

benzyl bromide), resulted in complex reaction mixtures, with no clean isolated products 

after column chromatography on silica. This led to a search for other possible N-

protecting/activating groups. 

 

N

NtBuE

-78 oC, tBuLi
-78 oC, EX

EX = MeI, allylBr, BnBr
190

NH toluene
ref lux, 72h;

or microwave

N

NtBu

O

O

O

O

Me2N NtBu

275

O

O

 
Scheme 108 

 

 4.1.2 – Methylsulfonyl approach to an allyl-tetrahydroisoquinoline core 

Initially, 2-(methylsulfonyl)-1,2,3,4-tetrahydroisoquinoline (276) was prepared from the 

quinoline 199 in 83% yield (Scheme 109). The sulfonamide 276 was then treated with 
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sBuLi, followed by iodoethane, which resulted in the efficient synthesis of the alkylated 

isoquinoline 277 in 73% yield. 

 

199 276

NH N S O
O

MeSO2Cl, Et3N

DCM, r.t., 6 h N S O
O

sBuLi, then EtI

0 °C, THF
83% 73% 277  

Scheme 109 

 

However, when the same procedure was repeated using the dimethoxyisoquinoline 199, 

the deprotonation step of the sulfonamide 278 was less successful, with initial attempts 

resulting in decomposition products, but this could be minimised by maintaining the 

temperature at –78 °C (Scheme 110). However, on reaction with ethyl iodide, the expected 

product (279) was not observed, instead, the ethyl group added to the methylsulfonyl group 

to yield the propylsulfonyl (280), due to deprotonation of the methylsulfonyl group, to 

afford intermediate 281. 

 

81%

O

O

NH O

O

N S O
Or.t., 6 h O

O

N S O
O

O

O

N S O
O

sBuLi, then EtI
-78 °C, THF

O

O

N S O
O

via

sBuLi, then EtI
-78 °C, THF

×

45%

190 278 279

280 281

MeSO2Cl
Et3N, DCM

 
Scheme 110 

 

 4.1.3 – Phenylsulfonyl approach to an allyl-tetrahydroisoquinoline core 

Protection using a phenylsulfonyl group was then explored and the 2-phenylsulfonyl 

derivative 282 was prepared from isoquinoline 190 in 81% yield (Scheme 111). The 

sulfonamide 282 was then deprotonated at –78 °C followed by the addition of 

iodomethane. This, however, resulted in ortho-lithiation of the phenylsulfonyl group, to 

afford 6,7-dimethoxy-2-(o-tolylsulfonyl)-1,2,3,4-tetrahydroisoquinoline (283). 
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190 282 283
O

O

NH O

O

N S O

PhO

PhSO2Cl, Et3N
DCM, r.t., 24 h O

O

N S O
O81% 78%

THF, -78 °C

sBuLi, then MeI

 

Scheme 111 

 

 4.1.4 – N-Pivaloyl approach to an allyl-tetrahydroisoquinoline core 

Work by Simpkins,206 involving the enantioselective protonation of lithiated 

tetrahydroisoquinolines (building on previous work by Seebach),207, 208 established that an 

N-pivaloyl tetrahydroisoquinoline (284) could be substituted at the 1-position to give a 

racemic product (285) (Scheme 112). However, further metallation followed by reaction 

with a chiral proton quench (286) gave enantiomerically enriched product. 

 

BuLi, TMEDA
THF, -40 °C
EX, -40 °C

N O N

E

O

EX = MeI, AllylBr, BnBr
66-95 %

N

E

O

N
H

PhPh

BuLi, TMEDA
THF, -40 °C

83-99 %
53-86 % ee

284 285

286
Scheme 112 

 

Following this route, the N-pivaloyl isoquinoline 287 was prepared (Scheme 113). 

Subsequent deprotonation of a solution of 287 in THF at low temperature, using tert-

butyllithium, resulted in the solution changing to a deep red colour, which faded to orange 

on quenching with MeI. On work up, the expected methylated pivaloyl 288 was obtained 

in 62% yield. However, there were concerns about how easy it would be to cleave the 

amide group and so an alternative N-protecting group was examined. 

 

190 28793%
O

O

NH
tBuCOCl, Et3N

DCM, r.t., 6 h O

O

N O O

O

N O
tBuLi, then MeI
-40 °C, THF

28862%

Scheme 113 

 



 

 76

 4.1.5 – N-Boc approch to allyl-tetrahydroisoquinoline core 

The Boc protected isoquinoline 289 was prepared in 80-85% yield and subsequently 

methylated to give carbamate 290 in 65% yield, along with some decomposition products 

(Scheme 114). 

 

THF, -42 °C

sBuLi then MeI

190 289 29080-85%
O

O

NH O

O

N Boc

Boc2O, Et3N
DCM, r.t., 6 h O

O

N Boc
65%

 
Scheme 114 

 

With the success of the metallation, the process was repeated and the desired allyl 

fragment was introduced (Scheme 115). Initially, it was found that low product yields 

were obtained, but these were improved by carrying out the reactions at –78 °C, although 

recovered starting material was also obtained. Deprotection of the Boc group, using HCl 

(10 equiv.) in dioxane, was slow (it required overnight treatment) to give the desired 

hydrochloride salt, which after aqueous basic work up, afforded the free amine 292 in 75-

89% yield. Alternatively, removal of the Boc group could be accomplished by the use of 

TFA in DCM at rt; after 6 h, following an aqueous basic work up afforded the amine 292 

in 80-88% yield. 

 

289 45-68%

O

O

N Boc O

O

N Boc O

O

NH

HCl, Dioxane,
aq. NaOH work up

75-89%

291 292

then
Allyl-Br, -78 °C

sBuLi, THF
-78 °C

or TFA, DCM,
aq. NaOH work

up
80-88%  

Scheme 115 

 

4.2 - Synthesis and reaction of a xanthate or alpha-halo amides 

With a robust route to allyl-tetrahydroisoquinoline 292 developed, attention turned to the 

formation and cyclisation of xanthate 294 (Scheme 116). An atom transfer radical 

cyclisation of xanthate 294 was expected to afford the cyclic xanthate 293, which could 

then be elaborated to protoemetinol (88) (Scheme 116). 
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Scheme 116 

 

 4.2.1 - Synthesis of alpha-halo amides and xanthate 

The xanthate 294 was prepared by reaction of the secondary amine 292 with chloroacetyl 

chloride or bromoacetyl bromide, to form the corresponding halo-amides 295 and 296, 

respectively (Scheme 117), followed by displacement of the chloride ion using potassium 

ethyl xanthate. It should be noted, that unsurprisingly 295, 296 and 294 all occur as slowly 

interconverting rotamers at room temperature, (with one rotamer prefered over the other). 

Variable temperature NMR studies were carried out and showed incomplete coalescence of 

the peaks at 100 ºC in DMSO. 
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Scheme 117 

 

 4.2.2 – Radical reactions of xanthate (294) 

Treatment of xanthate 294 with a radical initiator was expected to form a resonance-

stabilised carbamoyl radical 297, which after 6-exo cyclisation would give a less stable 

primary radical 298. Primary radical 298 could then react with a molecule of starting 

material in a xanthate transfer reaction, to afford the cyclic xanthate 293 (Scheme 118). 
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Scheme 118 

 

It was with some disappointment that, on treatment of xanthate 294 with dilauroyl peroxide 

in dichloroethane at reflux,209-214 no evidence of cyclisation was observed. The major 

product was recovered starting material, together with a small amount of the direct 

reduction material 299 (Scheme 119) (presumably formed by hydrogen atom abstraction 

from dichloroethane). Changing the solvent, choice of initiator or equivalents of reagents 

had little effect, although on increasing the temperature, the NMR spectra of the crude 

products become more complex. 
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OEt
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Initiator = DLP (0.2 - 1 eq), AIBN (0.5 - 1 eq) or Et3B (4 eq)
Solvent = benzene, DCE, THF, toluene or chlorobenzene
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O
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upto 5%
294 299

 
Scheme 119 

 

Failure of the xanthate transfer reaction led to treatment of xanthate 294 with tributyltin 

hydride so as to form the product from reductive cyclisation.210, 211 However, the NMR 

spectra of the crude reaction mixture was still complex, and following column 

chromatography, only the direct reduction product (299) was isolated in 15% yield. 
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Scheme 120
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 4.2.3 – Radical reactions of alpha-halo amides (295) and (296) 

Similarly, attempts to cyclise alpha-chloro or alpha-bromo amides 295 and 296, using 

tributyltin hydride under a range of different conditions, were unsuccessful (Scheme 121). 

Only isolation of the direct reduction product (299) was observed (in 32-49% yield), with 

no evidence of the 6-exo cyclisation products. 

 

295, X = Cl
296, X = Br

299

N

X

O

O

O

Initiator = AIBN or (BuO)2
Solvent = benzene, THF

or chlorobenzene

Solvent, ref lux
N O

O

O

Bu3SnH (1.2 eq)
Initiator (0.5 eq)

32-49%
 

Scheme 121 

 

Previous work has shown that carbamoyl radicals cyclise efficiently onto α,β-unsaturated 

esters,215-218 and this led to examining the cyclisation of an α,β-unsaturated ester. Synthesis 

of the E-α,β-unsaturated ester 302 was achieved by an osmium tetroxide catalysed 

cleavage of the C=C bond in carbamate 291 to give an intermediate aldehyde, which was 

trapped in-situ by a stabilised phosphorane in a Wittig reaction (Scheme 122). The N-Boc 

group was then cleaved using trifluoroacetic acid and formation of the amide was achieved 

by treatment of the resulting secondary amine with bromoacetyl bromide. 
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Scheme 122 

 

Subsequent treatment of α,β-unsaturated ester 302 with tributyltin hydride (1.2 equiv) and 

AIBN (0.5 equiv) in refluxing THF, however, resulted in a complex mixture, with only the 
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product of direct reduction identified, with no other products isolated. Subsequently it was 

found that Yamazaki had reported similar attempts to cyclise α,β-unsaturated ester 302, 

and in refluxing toluene, they obtained the desired tricyclic ester in only 11% yield.219 

(Yamazaki subsequently showed that the tricyclic core could be accessed by cyclisation of 

the trichloro-amide 303 using CuCl in acetonitrile at 140 ºC in a sealed tube. Chong has 

also reported the similar failure of a related α,β-unsaturated ester.171) It is proposed that the 

reason for the poor results of the carbamoyl radicals is due to the slow interconversion of 

the amide rotamers, where the major conformer has the radical pointing away from the 

alkene. This is supported by NOESY NMR studies of 299, 295 and 302, 25 ºC), which 

showed no NOESY correlation between the CH2 or CH3 of the amide group and the alkene 

fragment. In addition, the 1H NMR spectra of 294 and 295 in benzene at 70 ºC, showed 

little change to the NMR spectra run at 25 ºC. 
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4.3 - Cyclisation of vinyl bromides onto an N-allyl fragment 

Following the failure of the amide based approach, it was proposed that the tricyclic core 

of protoemetinol (88) could be obtained by cyclisation of vinyl bromide 305 to afford 

terminal alkene 304 (Scheme 123). The C=C bond in 304 could then be functionalised in a 

cross metathesis reaction (e.g. with methyl acrylate) to afford an α,β-unsaturated ester 

which on reduction would afford protoemetinol (88). 
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 4.3.1 – Synthesis of vinyl bromide 307 

Vinyl bromide 306 was prepared using a similar 4-step procedure to that developed for 

allyl-isoquinoline 292 (Scheme 124). After N-protection of 6,7-dimethoxy-isoquinoline 

(190) with a Boc group, deprotonation using sec-butyllithium in the presence of N,N,N′,N′-

tetramethylethylenediamine, then addition of 2,3-dibromopropene, followed by N-

deprotection, gave secondary amine 306. Unfortunately, the allylation step proved to be 

low-yielding (typical 32-39%), perhaps due to the more acidic methylene protons of 2,3-

dibromopropene compared to allyl bromide. 

 

306
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O

O NH
c) TFA, DCM, r.t.

a) Boc2O, Et3N, DCM, r.t.
b) sBuLi, TMEDA, THF, -78 °C

then BrCH2C(Br)=CH2

O

O NH

Br

28-33%  over 3 steps  
Scheme 124 

 

The secondary amine (306) was then N-crotylated using conditions previously used by 

Williams,220 to afford diene 307 in a pleasing yield (Scheme 125). 
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Scheme 125 

 

4.3.2 – Radical reaction of vinyl bromide 307 

The slow addition of tributyltin hydride and AIBN to a refluxing solution of vinyl bromide 

307 in THF afforded a complex mixture of compounds as indicated by TLC and 1H NMR 

spectroscopy. Following column chromatography, four compounds were isolated: the 

desired 6,6,6-tricycle 308; a secondary amine 192; and two 6,5-fused bicyclic compounds 

309 and 310. 
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The desired 6,6,6-tricycle is produced via the expected 6-exo cyclisation of the initially 

formed vinyl radical 311. Secondary amine 192 could be formed by an initial 1,5-hydrogen 

atom transfer of vinyl radical 311 to afford resonance-stabilised radical 312a. Reduction of 

radical 312b would form an enamine, which on hydrolysis (on silica column 

chromatography) gives secondary amine 192. The 6,5-fused bicyclic compounds 309 and 

310 could be formed via an alternative 1,5-hydrogen atom transfer of the initial vinyl 

radical 311, followed by 5-exo cyclisation to afford the 6,5-bicyclic system 315. The 

resulting primary radical could undergo direct reduction to yield 309 or alternatively, 

another 1,5-hydrogen atom transfer to afford the resonance stabilised radical 316, which on 

reduction and hydrolysis (on silica column chromatography) of the resulting enamine gives 

the bicyclic secondary amine 310. 
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The formation of the single diastereoisomers of 309 and 310, with opposite 

stereochemistry for the CHCH3 chiral carbon, can be explained by the stereochemistry of 

the two diastereoisomers of bicyclic radical 315. In one diastereoisomer (315-a) the 

primary radical is appropriately positioned to undergo a 1,5-hydrogen atom transfer 

reaction, however in the alternative diastereoisomer (315-b) the radical is unable to 

undergo a 1,5-hydrogen atom transfer reaction. 
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315-a 315-b  
Figure 9 

 

 4.3.3 – Synthesis of vinyl bromide 317 

It was envisaged that introducing an ester group onto the acceptor double bond would 

facilitate the radical cyclisation.221 This would allow for matching of the polarity of the 

radical to the acceptor double bond, and should facilitate the cyclisation, and minimise 

formation of by-products. Hence, α,β-unsaturated ester 317 was prepared from amine 306 

in a satisfactory yield (Scheme 128). 
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 4.3.4 – Radical reaction of vinyl bromide 307 

Pleasingly, under identical conditions to the reaction of 307 with tributyltin hydride, it was 

found that α,β-unsaturated ester 317 cleanly afforded the desired tricyclic ester in an 

excellent 89% yield as a 2.8:1 mixture of partially separable diastereoisomers after column 

chromatography, with no by-products observed (Scheme 129). This crucial, very 

successful reaction to afford the key tricyclic ester 318, could be performed on a relatively 

large scale (3.0 g, 7.5 mmol) with no change in yield or diastereoselectivity. 
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Scheme 129 

 

The stereochemistry of the two diastereoisomers of 318 was determined from NOESY 

experiments. The major diastereoisomer is tentatively assigned as having the CH2CO2CH3 

group in an equatorial arrangement 318-a (Figure 10), which has the desired configuration 

for proemetinol (88). This assignment was based on the presence of a NOESY correlation 

between the alkene CH=CH2 and the CH2CO2CH3. The minor diastereoisomer was 

assigned as having the CH2CO2CH3 group in an axial arrangement (318-b), since the 

methylene CH=CH2 enhances the CHCH2CO2CH3 signal. 
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 4.3.5 – Approaches to protoemetinol (88) from ester (318-a) 

Following the extremely successful cyclisation of vinyl bromide 317 to afford the tricyclic 

ester 318, attention then turned to the reduction of the ester side-chain and conversion of 

the alkene into an alcohol (Scheme 130). It was proposed that this could be achieved by an 

initial lithium aluminium hydride reduction to afford alcohol 319. There are several 

strategies to reduce the OH group in 319 including a Barton-McCombie deoxygenation,46, 

222, 223 or conversion of the OH group into a leaving group and a subsequent lithium 

aluminium hydride reduction. Finally, a Grubbs cross metathesis reaction of the C=C bond 

in 320 would be expected to afford α,β-unsaturated ester 321, which could then be reduced 

to protoemetinol (88). 
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Gratifyingly, treatment of tricyclic ester 318-a with lithium aluminium hydride resulted in 

clean conversion and isolation of the desired alcohol 319. Unfortunately, subsequent 

conversion to the Barton ester proved problematic and resulted in decomposition. It was 

subsequently found that, on standing, alcohol 319 decomposed to give unidentified 

products. 

 

O

O N

O

S

OPh

PhOC(S)Cl,
Pyr, DCM

O

O N

O O

O

O N

OH

LiAlH4
THF, 0 °C

76%
318-a 319 322

Scheme 131 

 

Tricyclic ester 318-a was then treated with lithium aluminium hydride and the unpurified 

alcohol 319 (1H and 13C NMR spectroscopy confirmed formation of the alcohol) was 

treated with methanesulfonyl chloride in the hope of forming methanesulfonate (323), 

which could then be treated with a further portion of lithium aluminium hydride.224 

Unfortunately, 1H NMR spectroscopy indicated decomposition of the methanesulfonate 

323.  
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Scheme 132 

 

The decomposition that is observed on converting ester 318-a into either the Barton ester 

322 or methanesulfonate 323, and the slow decomposition of alcohol 319, could be 

explained by nucleophilic attack by the tertiary amine present in the tricyclic core. There 

are several examples of the relatively facile reactions of related tertiary amines with 

alkylating agents to afford the quaternary ammonium salts, which are then able to undergo 

rearrangement or elimination reactions.225-227 
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4.4 Formation and reaction of phenylselenides 

As an alternative route, it was proposed that protoemetinol (88) could be accessed from 

cyclic ester 324, which in turn, could be prepared by 6-exo radical cyclisation of 

phenylselenide 325 (Scheme 133).228-232 This strategy effectively reverses the order of 

introduction of the two allylic residues. 
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 4.4.1 Synthesis of phenylselenides (331) and (332) 

The synthesis of phenylselenides 331 and 332 started with the formation of dienes 329 and 

330 (Scheme 134). The dienes were prepared by treatment of 6,7-dimethoxyisoquinoline 

188 with allyl bromide or crotyl bromide to afford the corresponding quaternary salts 327 

and 328, respectively, followed by addition of zinc and methyl (E)-4-bromobut-2-enoate to 

generate an organo-zinc reagent in-situ, which underwent nucleophilic addition to the C=N 

bonds. 
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Treatment of α,β-unsaturated ester 329 and 330 with the sodium salt of phenylselenol 

(formed by reduction of diphenyl diselenide) yielded only recovered starting material,233 

but it was found that first quenching the sodium salt with acetic acid (to form 

phenylselenol) resulted in good conversion to the desired selenides 331 and 332 (Scheme 

135).234-236 
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 4.4.2 Radical cyclisation of phenylselenides (331) and (332) 

Attention turned to the radical cyclisation of selenides 331 and 332 using tributyltin 

hydride or tris(trimethylsilyl)silane (TTMSS), which both gave a complex mixture of 

products, from which two compounds were cleanly isolated (Scheme 136). The cyclic 

amide 335 was isolated as the major compound, while the desired tricyclic ester 333 or 334 

was obtained in a disappointingly low yield. From the NMR spectrum of the crude reaction 

mixture the presence of compounds containing a C=C bond was indicated (such as 336 or 

337), however, these compounds were never isolated. 
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The formation of the cyclic amide 335 can be explained by a 1,5-hydrogen atom transfer 

reaction of the initially formed radical 338 (Scheme 137), to afford radical 339, which on 

reduction of resonance form 340 would afford an enamine – this could explain the 

presence of compounds containing C=C bonds (336 and 337) in the NMR spectra of the 

crude reaction mixture. Hydrolysis of the enamine would afford the secondary amine 341 

that cyclises to form the cyclic amide 335 
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Interestingly the tricyclic ester 333 was isolated as a single diastereoisomer, whereas the 

tricyclic ester 334 was obtained as a mixture of diastereoisomers, 334-a and 334-b as a 2:1 

ratio of diastereoisomers. The stereochemistry of 333, 334-a and 334-b is tentatively 

assigned as shown in Figure 11, as determined from NOESY experiments.  
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Treatment of the tricyclic ester 333 or 334-a with lithium aluminium hydride afforded the 

corresponding alcohols, (±)-des-methyl-protoemetinol (342) and (±)-protoemetinol (88-a). 

Comparison of the 1H and 13C NMR data with published data confirmed the formation of 
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(±)-protoemetinol (88-a), with the correct stereochemistry. Although (±)-protoemetinol 

(88) was formed using a concise 4-step synthesis, the overall yield (2%) was disappointing.  
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 4.4.3 Synthesis and cyclisation of a vinyl chloride bearing a phenylselenide 

(343) 

To improve the efficiency of the synthesis of protoemetinol (88), in particular the radical 

cyclisation step, the formation and cyclisation of vinyl chloride 343 and α,β-unsaturated 

ester 344 was explored (Figure 12). It was expected that the introduction of an electron-

withdrawing Cl or CO2Me onto the acceptor double bond would increase the rate of 6-exo 

cyclisation, thereby minimizing formation of by-products. For vinyl chloride 343, it was 

expected that abstraction of the PhSe group, by a tin-centred radical, would be faster than 

abstraction of the Cl atom from the C=C bond. 
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The vinyl chloride 343 was prepared from imine 188 using a familiar two-step sequence, 

as a separable mixture of E/Z isomers, and then converted into phenylselenide 343 

(Scheme 139). 
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Unfortunately, the attempted radical cyclisation of vinyl chloride 343 using 2.2 equiv. of 

tributyltin hydride (added slowly to 343) proved to be disappointing, resulting in a 

complex mixture of products (Scheme 140). The complex mixture contained cyclic 

products, but reduction of the C–Cl bond was problematic, resulting in a mixture of 

inseparable chlorinated 345 and non-chlorinated 344 cyclic compounds, with their 

corresponding diastereoisomers (the yields and diastereoisomer ratios of 344 and 345 

could not be calculated, assignment of the structures are tentative based on 1H and 13C 

NMR and mass spec data, along with comparison with previously made compounds). 

Unfortunately, the main product isolated was the cyclic amide 335. This inefficient radical 

cyclisation route was abandoned due to its limited synthetic use. 
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 4.4.4 Synthesis of an α,β-unsaturated ester containing a phenylselenide (349) 

Attention then moved to the preparation and cyclisation of compounds similar to α,β-

unsaturated ester 344 (Figure 12). It was expected that the α,β-unsaturated ester fragment 

could be installed by modifying an N-allyl group. The synthesis started by lithium 

aluminium hydride reduction of the previously synthesised phenylselenide 331 (Scheme 

141). Although this resulted in the reduction of the ester, it was found that the major 

identifiable product was alcohol 347, which also had cleavage of the phenylselenide 

fragment, together with unidentified by-products. However, it was found that treatment of 

the ester with alane (formed by reduction of aluminum trichloride with lithium aluminium 

hydride237) afforded the desired alcohol 346 cleanly.238 Attempted purification by column 

chromatography resulted in decomposition, so the crude alcohol was immediately 

protected by treatment with tert-butyldiphenylsilyl chloride239-241 to give silyl ether 348 in 

78% yield over two steps. 
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Attempted incorporation of the α,β-unsaturated ester fragment into 348, by a Grubbs 

metathesis using methyl acrylate,242-245 resulted in recovery of starting material (perhaps 

due to coordination of the tertiary amine to the ruthenium catalyst246, 247) so attempts to 

carry out the Grubbs metathesis on the protonated amine were attempted, but again this led 

to predominant recovery of starting material. An alternative approach, involving either an 

ozonolysis or osmium tetroxide oxidation of the C=C bond to form an aldehyde followed 
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by a Wittig reaction using methyl (triphenylphosphoranylidene)acetate was also 

unsuccessful. 
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4.5 Conclusion 

 

A robust and efficient synthesis of allyl tetrahydroisoquinoline 292 has been developed, 

which involves N-Boc protection of tetrahydroisoquinoline 190, allylation and finally, 

cleavage of the Boc group. Allyl tetrahydroisoquinoline 292 can be converted into alpha-

haloamides (295) and (296) or xanthate 294, but the attempted radical cyclisation of these 

precursors proved to be problematic, with only the product of direct reduction or recovered 

starting material isolated. The inefficient cyclisation was attributed to slow interconversion 

of the amide rotamers.  

 

This resulted in the exploration of the tributyltin hydride mediated cyclisation of a 

precursor containing both a vinyl bromide and an N-allyl fragment. Vinyl bromides 307 

and 317 were synthesised in a similar 4-step procedure to allyl isoquinoline 292. It was 

found that attempted cyclisation of the N-crotyl compound 307 gave a complex mixture of 

compounds, including products derived from a range of 1,5-hydrogen atom transfer 

reactions, such as the secondary amine 192 and the 6,5-fused bicyclic compounds 309 and 

310 along with the desired 6-exo cyclisation product. However, pleasingly, it was found 

that the corresponding α,β-unsaturated ester 317 cleanly cyclised to afford the desired 

tricyclic ester 318 in an excellent 89% yield (as a 1:2.8 mixture of diastereoisomers). 

Unfortunately, subsequent conversion of 318 into protoemetinol (88) proved to be 

problematic.  

 

Finally, the radical cyclisation of phenylselenides 331 and 332 were investigated. The 

synthesis of the phenylselenides was achieved efficiently by Michael-type addition of 

phenylselenol to α,β-unsaturated esters 329 and 330. Subsequent tributyltin hydride-
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mediated radical cyclisation afforded a mixture of products, including the desired tricyclic 

esters 333 or 334-a. The tricyclic esters could be reduced to the corresponding alcohols, 

including (±)-protoemetinol (88), which was isolated in 2% yield over the 4 steps. 

Attempts to improve the efficiency of the radical cyclisation by incorporating an electron-

withdrawing group onto the acceptor alkene proved to be unsuccessful. 
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Chapter 5 – Results and Discussion 

Vinyl bromide approaches to Alangium and Mitragynine alkaloids 
 

5.1 - Approaches to (±)-protoemetinol (88a) 

Following the generally disappointing progress towards the cyclic core of Alangium and 

Mitragynine alkaloids, a revision of the synthetic strategy was made. It was noted that the 

issues with the amide rotamers would be difficult to overcome, and although the chemistry 

of the phenylselenides resulted in the synthesis of (±)-protoemetinol (88a), the low yields 

resulted in this route being abandoned. It was however, noted that the radical cyclisations 

of the vinyl radical derived from the corresponding vinyl bromide onto an α,β-unsaturated 

ester proceeded extremely well. With this in mind an alternative route for the cyclisation of 

a vinyl bromide onto an α,β-unsaturated ester were explored. 

 

An alternative approach to the synthesis of the tricyclic core of protoemetinol (88-a) 

involves the cyclisation of a vinyl radical β to nitrogen, such as the vinyl bromide of type 

351. It is proposed that the 6-exo cyclisation would afford the tricyclic core 350, which on 

further functionalisation should furnish protoemetinol (88-a) (Scheme 143). 
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 5.1.1 – Synthesis and cyclisation of a model vinyl bromide (352) 

To test the proposed cyclisation, a model vinyl bromide system was explored. The 

synthesis of vinyl bromide 352 was achieved by N-allylation of the previously prepared 

secondary amine 192, with 2,3-dibromopropene using the conditions previously used, to 

afford in a pleasing yield the desired vinyl bromide 352. 
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With the model system in hand, the tributyltin hydride mediated radical cyclisation was 

investigated. Treatment of vinyl bromide 352 in refluxing THF, with the slow addition of 

1.2 equivalents of tributyltin hydride afforded in un-optimized conditions the desired 6,6,6-

tricycle 353 in 44% yield, as the major compound, as an inseparable mixture of 

diastereoisomers (Scheme 145). Also isolated following column chromatography was the 

1,7-diene 354, derived from simple reduction. Another compound was isolated, possibly 

the 6,6,7-tricycle 355, which could be formed by a competing 7-endo-trig cyclisation (or 

from a tandem 6-exo/3-exo cyclisation followed by fragmentation of the cyclopropane 

ring), however this compound could not be cleanly isolated, or characterised. 
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The relative stereochemistry of the major diastereoisomer of tricycle 353 was determined 

by a 1H-NOESY experiment and is consistent with that predicted from a 6-exo-trig radical 

cyclisation that proceeds via a chair-like transition state Figure 13. The 1H-NOESY 

spectrum showed correlation between Ha, Hb and Hc. The methyl group showed a 

correlation to Hf, but no correlation to Ha, indicating that the cyclisation afforded the 

correct stereochemistry for protoemetinol (88-a). 
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Figure 13 (original in colour) 

 

For the synthesis of protoemetinol (88-a), it was envisaged that introducing an ester group 

at the end of the acceptor alkene (Figure 14) would increase the rate of 6-exo cyclisation 
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(by lowering the LUMO) and also reduce the rate of any 7-endo cyclisation (for steric 

reasons). The ester group would also provide a useful synthetic handle for further 

modification, such as reduction to the required alcohol.  
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 5.1.2 - Synthesis (±)-des-methyl protoemetinol (342-a) 

To test the cyclisation of an ester of type 356 (Figure 14), the use of a 2-bromoprop-1-ene 

fragment was explored, due the commercial availability of 2,3-dibromoprop-1-ene, (i.e. R 

= H in 356). (It is noted that 1,2-dibromobut-2-ene (ie R = Me in 356) is required for 

subsequent conversion into the ethyl group found on the C ring in the target alkaloids). 

Vinyl bromide 358 was efficiently synthesised from commercially available methyl (E)-4-

bromobut-2-enoate and 6,7-dimethoxy-3,4-dihydroisoquinoline (188) (Scheme 146). 

Formation of the quaternary salt (357) with 2,3-dibromoprop-1-ene proceeded 

quantitatively. This was followed by addition of an organo-zinc reagent generated in-situ 

(from zinc and methyl (E)-4-bromobut-2-enoate), which underwent nucleophilic addition 

to the C=N bond to give vinyl bromide 358 in an excellent 79% yield. 
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Pleasingly, reaction of vinyl bromide 358 in refluxing THF, with the slow addition of 

tributyltin hydride and AIBN resulted in a clean conversion to the desired tricycle 359, 

which was isolated in an excellent 78% yield after column chromatography (as a partially 

separable 2.8:1 mixture of diastereoisomers) (Scheme 147). No evidence of the direct 

reduction product 360 or other by-products were observed. This very successful reaction to 

afford the key tricyclic ester 359, can be preformed on a large scale (up to 7.5 g, 18.3 
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mmol) with no change in yield or diastereoselectivity. Interestingly, the use of TTMSS (in 

place of Bu3SnH) gave a lower yield of the desired 6-exo tricycle 359 (42%), although the 

diastereoselectivity of the cyclisation was improved to 6:1. 
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Once again the relative stereochemistry of the major diastereoisomer of tricycle 359-a was 

determined by a 1H-NOESY experiment and is consistent with a cyclisation that proceeds 

via chair-like transition state, 361 (Figure 15). The 1H-NOESY spectrum suggested a cis- 

arrangement between Ha and Hb. 
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Figure 15 (original in colour) 

 

Subsequent reduction of the major diastereoisomer, 359-a, with lithium aluminium hydride 

resulted in an excellent yield of the corresponding alcohol 362 (Scheme 148). Finally, it 

was proposed that a palladium on carbon hydrogenation would occur from the top, least 

hindered face of the C=C bond, to afford des-methyl protoemetinol (342-a). However, 

hydrogenation of 362 using 5% palladium on carbon afforded the reduced compound, as a 

10:1 ratio of diastereoisomers, with the major isomer being (±)-des-methyl-epi-

protoemetinol (342-b). 
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The predominant formation of (±)-des-methyl-epi-protoemetinol (342-b), over 

diastereoisomer 342-a, was confirmed by examination of the 1H NOESY correlations of 

the major diastereoisomer from the hydrogenation reaction (Figure 16). 
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(±)-des-methyl-epi-protoemetinol

342-b
(±)-des-methyl-protoemetinol

minor diastereoisomermajor diastereoisomer  
Figure 16 

 

Alternative conditions for the hydrogenation of 362 were then explored. Pleasingly it was 

found that by changing the catalyst from Pd/C to Crabtree’s catalyst,248-250 a moderate 

excess of (±)-des-methyl-protoemetinol (342-a) was formed (Scheme 149 and Table 10). 

The two diastereoisomers 342-a and 342-b can be easily identified using 1H NMR 

spectroscopy, by examing the signal for the CHCH3 group; 342-a has the CH3 peak at 0.91 

ppm as a doublet with J = 6.5 Hz whereas 342-b has the CH3 peak at 0.97 ppm as a doublet 

with J = 6.9 Hz. 
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Hydrogenation Conditions Yield 

(%) 

342-a 342-b 

(epi) 

Pd/C, MeOH, H2, r.t. 85 1 6 

Pd/C, EtOAc, H2, r.t. 91 1 3 

Pd/C, DCM, H2, r.t. 36 1 2 

Crabtree’s catalyst, CHCl3, H2, reflux 60 1 1.2 

Crabtree’s catalyst, DCM, H2, r.t. 96 1.4 1 

Scheme 149 and Table 10 
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On storage (with trace amounts of dichloromethane), alcohol 362 slowly crystallised and a 

subsequent X-ray diffraction of a crystal resulted in an unexpected discovery. Instead of 

the expected compound 362, the crystal was in fact the dichloromethane adduct, 363 

(Figure 17). However it did allow us to confirm the stereochemistry of 362, which agrees 

with that assigned from NOESY correlations. 

 
O

O N

OH

Cl

Cl 2 × H2O

 

 
Figure 17 (original in colour) 

 

 5.1.3 - Synthesis of protoemetinol 88-a 

With the preparation of des-methyl-protoemetinol 342-a in hand, attention turned to the 

synthesis of protoemetinol 88-a. To achieve this, 1,2-dibromobut-2-ene (367) is required, 

which could be prepared in 3 steps from crotonaldehyde (364) (Scheme 150).251, 252 

Bromination of the double bond in 364 is followed by elimination of HBr using 

triethylamine to give (Z)-2-bromobut-2-enal (365) (typically in 80-85% yield).253 A 

subsequent Leuche254, 255 reduction using cerium(III) chloride and sodium borohydride 

yielded 2-bromobut-2-en-1-ol (366). In our hands though, the reduction of the alcohol led 

to isomerisation of the C=C bond, giving 366 as an inseparable mixture of cis- and trans- 

isomers. However, it was found that the extent of isomerisation could be limited by storing 

2-bromobut-2-en-1-ol (366) at low temperature and by using the crude alcohol in 

subsequent reactions. Finally, conversion of alcohol 366 into 1,2-dibromobut-2-ene (367) 

was accomplished using carbon tetrabromide and triphenylphosphine. 
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MeCN, 0 ºC

367366365364  
Scheme 150 

 

Vinyl bromide 368 was then synthesised using 1,2-dibromobut-2-ene (367), methyl (E)-4-

bromobut-2-enoate and 6,7-dimethoxy-3,4-dihydroisoquinoline (188) (Scheme 151). 

Following the previously developed route, involving formation of the quaternary 

ammonium salt and then addition of an organo-zinc reagent, gave the desired compound 

368, although in a slightly disappointing yield. 
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r.t., 36h

Scheme 151 

 

Attention then turned to the key radical cyclisation step. Treatment of vinyl bromide 368 in 

refluxing THF, with the slow addition of tributyltin hydride and AIBN resulted in a crude 

product with a complex 1H NMR spectrum, which indicated a mixture of alkenes. After 

column chromatography the desired tricycle 369 was isolated in a disappointing yield of 

44% (as a partially separable 2:1 mixture of diastereoisomers) (Scheme 152). No evidence 

of the direct reduction product was observed, however a cyclopentane containing tricycle 

370 was also obtained in very low yield. 
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Scheme 152 
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The cyclopentane containing tricycle 370 is likely formed via a 1,5-hydrogen atom transfer 

of the initial vinyl radical 371, to form allyl radical 372, followed by 5-exo-trig cyclisation 

(affording cyclopentane tricyclic radical 373) and reaction with tributyltin hydride 

(Scheme 153). It is also proposed that a competing 1,4-hydrogen atom transfer of allyl 

radical 372 (or a 1,6-hydrogen atom transfer from the alternative resonance form of 372) to 

form another allyl radical 374a, could explain the low yield of this reaction. The alternative 

resonance form of the allyl radical 374a is enamine 374b, which would be unstable to 

column chromatography, and this could explain some of the alkene signals in the 1H NMR 

spectrum of the crude product. 
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Scheme 153 

 

The formation of additional byproducts could also be explained by a 1,5-hydrogen atom 

transfer reaction of the initially formed 6-exo cyclisation product 375, which would result 

in the formation of resonance-stabilised allyl radical 376a (Scheme 154). The presence of 

signals at 5.01, 5.10 and 5.85 ppm in the 1H NMR spectrum of the crude product provide 

tentative evidence for the formation of a terminal alkene derived from radical 376b. 
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Scheme 154 
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Subsequent reduction of ester 369 with lithium aluminium hydride resulted in a good yield 

of the corresponding alcohol 377 (Scheme 155). Reduction of the C=C bond by 

hydrogenation using a palladium on carbon catalyst resulted in isolation of epi-

protoemetinol 88-b, as the major diastereoisomer, with the undesired stereochemistry at C-

3. However, once again it was found that the use of Crabtree’s catalyst afforded,248-250 in a 

moderate excess, (±)-protoemetinol 88-a. 

 

Hydrogenation Conditions Yield 
(%)

d.r.
88-a:88-b

Pd/C, MeOH, H2, r.t. 63 1:10
Crabtree's Catalyst,

DCM, H2, r.t. 54 1.1:1

O

O N

O

O N

OH

LiAlH4, THF
0 °C to rt, 6 h

O

O N

OH

70-87%

O

O

Cat, H2
Solvent

O

O N

OH

88-a 88-b

369 377

 
Scheme 155 and Table 11 

 

 

 5.1.4 - Conversion of (±)-des-methyl protoemetinol (343-a) into (±)-

protoemetinol (88-a) 

Due to the low yield of (±)-protoemetinol (88-a), arising from side reactions during the 

radical cyclisation of vinyl bromide 368, methods to convert (±)-des-methyl protoemetinol 

(343-a) into (±)-protoemetinol (88-a) were explored.  

 

Initially, an osmium tetroxide catalysed cleavage or ozonolysis of the C=C bond in alcohol 

362, or the related ester 359, was examined (Scheme 156). Examinations of the NMR 

spectra of the crude products showed no evidence of the expected ketone 378, or lactol 

379. However, a Wittig reaction was attempted on each of the crude products with methyl 

(triphenylphosphoranylidene)acetate, which were unsuccessful. 

 



 

 104

1) OsO4 (cat), NaIO4
Dioxane:Water, 0 °C

or Ozone, DCM, -78 °C

2) Ph3P=CHCO2Me
DCM, 0 °C

O

O N
H

O

O N
H

R
362, R = CH2OH
359, R = CO2CH3

O

O

R

O

O N

O
H

R
378

O

O N
H

379
O
OH

for R = CH2OH
380

 
Scheme 156 

 

An alternative approach to functionalise the C=C bond in 359 and 362 involves use of the 

Grubbs cross metathesis reaction. Unfortunately, treatment of ester 359 or alcohol 362 with 

Grubbs I or II catalyst along and methyl acrylate (Scheme 156)242-245 resulted in recovery 

of starting material, with no evidence of cross metathesis products. Attempts to carry out 

the Grubbs metathesis on the protonated amine of 359 or 362 were attempted, but again, 

only starting material was recovered.  
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Scheme 157 

 

 

 5.1.5 - Alternative conditions for the cyclisation of the vinyl bromides 

Although vinyl bromides of type 358 and 359 are classically used in tin hydride-mediated 

reactions they also served as precursors for various alternative cyclisation conditions. With 

the disappointing results of the cyclisation of vinyl bromide 359, and the unsuccessful 

attempts at the conversion of (±)-des-methylprotoemetinol 342-a derivatives into (±)-

protoemetinol 88-a, alternative cyclisation conditions were explored. 
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Attempts at the cyclisation of vinyl bromide 358 were made using samarium(II) iodide 

(Scheme 158). It was hoped that samarium(II) iodide would allow for selective reduction 

of the vinyl bromide group in 358, 256, 257 in preference to the α,β-unsaturated ester. This, 

however was not the case, and the reaction resulted in clean reduction of the α,β-

unsaturated system to give the ester 381, in excellent yield. 
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Scheme 158 

 

An alternative cyclisation approach involving halogen-metal exchange was considered. 

Initial attempts were made using a lithium-bromine exchange,258-260 but unfortunately this 

resulted in decomposition of the reaction mixture. 
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Scheme 159 

 

Subsequent attempts were made using a magnesium-bromine exchange,261-263 which would 

afford the corresponding vinyl Grignard reagent, which would hopefully undergo a 1,4- 

addition to the unsaturated ester, in preference to the 1,2- addition. However the reaction 

resulted in clean recovery of the starting material, without any addition of any Grignard 

reagent to the α,β-unsaturated ester. This is perhaps due to the relatively acidic CH2 group 

next to the α,β-unsaturated ester, resulting in quenching of the initial Grignard reagent. An 

alternative approach involved treatment of the vinyl bromide with magnesium metal, in the 

hope of forming a vinyl Grignard reagent, which could undergo 6-exo cyclisation. 

However, even treatment with a large excess of magnesium in refluxing THF resulted in 

recovery of clean starting vinyl bromide. 
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Scheme 160 

 

An alternative and synthetically very useful reaction of a vinyl bromide with an alkene is 

the Heck reaction.264-266 With this in mind the vinyl bromide 358 was treated with 

palladium(II) acetate, triphenylphosphine, and an amine base (Scheme 161). This resulted 

in very quick consumption of the starting vinyl bromide which after column 

chromatography afforded the two conjugated dienes 382 and 383. The conjugated diene 

382, had the expected NMR spectrum, and H-C connectivity was confirmed by HQSC and 

HMBC experiments. However the conjugated diene 383 had an unexpected HMBC 

correlations between δC 172.0 (CO2CH3) and δH 3.29 + 3.14 (CH2CO2CH3), and no 

correlation to alkene H signals. The full connectivity was confirmed by COSY, HQSC and 

HMBC experiments. 

 

358

O

O N

O

O

Br
Pd(OAc)2, Ph3P

iPr2NEt

O

O N

O

O

MeCN, reflux, 3 h

O

O N

O

O

383
34%

382
36%

 
Scheme 161 
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5.2 - Approaches to mitragynine (86) starting from a vinyl bromide 

Following the successful synthesis of protoemetinol (88-a, Section 5.1), a similar approach 

should be applicable to the synthesis of mitragynine (86), and related compounds (Figure 

6, Chapter 1). Previous work has shown164, 167, 267 that installation of the vinyl ether can be 

accomplished from ester 385, which could be prepared by radical cyclisation of a vinyl 

bromide 386 derived from an imine 387 (Scheme 162).  
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Scheme 162 

 

 5.2.1 - Synthesis of vinyl bromide 395 

For our model studies, the synthesis of de-methoxy mitragynine (138, corynantheidine), 

was explored due to the lack of commercial availability of 4-methoxytryptophan required 

for the synthesis of the indole core. Imine (390) can be prepared by oxidation of the 

corresponding amine, 2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole under a range of 

conditions,180, 181 however this indole is expensive and its availability can be problematic.d 

An alternate and more attractive route to imine 390 is from inexpensive and commercially 

available tryptamine (388),e where reaction with ethyl formate is expected to form the 

intermediate formamide (389) (Scheme 163), and subsequent cyclisation using phosphoryl 

trichloride under Bischler-Napieralski conditions should furnish the desired imine 390.268 
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Scheme 163 

                                                 
d The cost of 2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole is typically in the region of £35 per gram 
e Tryptamine typically costs £35 per 50 g, and is available from decarboxylation of the amino acid tryptophan 
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However, this approach was not successful; analysis of the crude reaction mixture by 1H 

NMR spectroscopy and LCMS indicated the formation of a range of products and pure 4,9-

dihydro-3H-pyrido[3,4-b]indole (390) was never isolated. However, installing a protecting 

group on the indole nitrogen solved this problem. 2-(1-(4-Methoxybenzyl)-1H-(indol-3-

yl)ethanamine (391) was synthesised by reaction of tryptamine (388) with 1.1 equivalents 

of sodium hydride followed by the slow addition of 1 equivalent of para-methoxybenzyl 

chloride (Scheme 164). 
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73 - 82%
391  

Scheme 164 

 

The para-methoxybenyl group was chosen due to the mild methods of removal, 269-275 and 

it is not expected to significantly affect the electronics of the indole ring as, for example, a 

Boc group would. It is worth noting that benzylic hydrogen atoms are reactive to radical 

abstraction, however in this system this would require an intramolecular 1,7-H atom 

abstraction, on a rigid structure, which was thought to be unlikely (Figure 18). 
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Figure 18 

 

With PMB-tryptamine (391) in hand, reaction with ethyl formate formed the intermediate 

formamide 392 and a subsequent reaction under Bischler-Napieralski268 conditions (using 

phosphoryl trichloride) afforded the desired imine 393 in good to excellent yields (Scheme 

165). 
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In a similar procedure to that used in the synthesis of protoemetinol (88), the imine 393 

was stirred with 2,3-dibromoprop-1-ene to form the quaternary salt 394. Subsequent 

addition of zinc and methyl (E)-4-bromobut-2-enoate generated the organo-zinc reagent in-

situ, which reacted with quaternary salt 394 to give but-2-enoate 395 in a low 19% yield 

(Scheme 166). 
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Scheme 166 

 

 5.2.2 – Radical reactions of vinyl bromide 395 

Treatment of the vinyl bromide 395 with the slow addition of tributyltin hydride and AIBN 

in refluxing THF resulted in the product of direct reduction, diene 396, the desired cyclised 

product octahydroquinolizine 397 and a pentacyclic bridged system 398 (Scheme 167). 

Compound 397 was obtained as a mixture of partial separable diastereoisomers on column 

chromatography. 
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The pentacyclic-bridged system 398 was isolated as a 1:1 mixture of partially separable 

diastereoisomers. The assignment was made initially on the basis of the NMR spectra. For 

example, a CH2 peak at 104.1 ppm in the 13C NMR spectrum and signals at 4.89 and 4.43 

ppm in the 1H NMR spectrum indicated the presence of a terminal alkene. It is proposed 

that the ring system is formed by a 5-exo cyclisation of the initial vinyl radical onto the 

indole ring, followed by a second 5-exo cyclisation on to the α,β-unsaturated ester 

(Scheme 168). 

 

5-exo 5-exo

NN
PMB

H
O

O

NN
PMB

O

O

NN
PMB

O

O

 
Scheme 168 

 

A similar side reaction has been reported by the group of Takayama,276, 277 during their 

attempts at the synthesis of related indole alkaloids using a diester. Interestingly, the group 

of Cook167, 267 did not mention the formation of any by-products during their cyclisation of 

a related α,β-unsaturated ester possessing a vinyl iodide when subjected to a Ni(COD)2-

mediated cyclisation (Scheme 57, Chapter 1). 

 

 

 5.2.3 –Functionalisation of ester 397 

With the desired 6-ring compound 397 in hand, it was envisaged that a palladium-catalysed 

hydrogenation, or alternatively a palladium hydroxide on carbon-catalysed hydrogenation, 

would led to hydrogenation of the alkene and also cleave the PMB group272, 278 to afford 

ester 399273, 279-282 (Scheme 169).  
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Scheme 169 

 

However, hydrogenation of the major diastereoisomer of 397 using either palladium on 

carbon, or palladium hydroxide on carbon (at standard pressures), resulted in the isolation 
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of two products, both containing an N-PMB group (Scheme 170). The direct product of 

hydrogenation of the alkene, ester (400), was obtained as a 1:1 mixture of separable 

diastereoisomers. The other product was assigned as the cyclic amide 401. 
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Scheme 170 

 

It is tentatively proposed that lactam 401 is formed by initial attack of the nitrogen atom on 

to the ester, to form amide 402. The C=C bond in amide 402 can then co-ordinate to 

palladium and form an η-3 complex 403, after fragmentation of the positively charged 

nitrogen. Finally, hydrogenation of the palladium complex results in isolation of the cyclic 

amide 401 (Scheme 148). 
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Scheme 171 

 

The proposed mechanism is supported by the fact that the palladium-catalysed 

hydrogenation of the minor cyclic diastereoisomer from the cyclisation (395) does not 

appear to form the cyclic amide 401 (because the ester and amine groups cannot interact). 

It should be noted, in hindsight, that attempts at the hydrogenation of ester 359-a, (used in 

the studies of protoemetinol 88) did not proceed well, resulting in unidentified side 

products, whereas the hydrogenation of the corresponding alcohol 362 proceeded well. 
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(Scheme 172) This suggest the presence of the ester is required for the formation of amide 

401. 
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Scheme 172 

 

It was envisaged that treatment of ester 400 with TFA274, 275, 283 would allow for cleavage 

of the PMB group. However, under a range of acidic, oxidative and Lewis acidic 

conditions, (Scheme 173), despite the disappearance of the benzylic signals in the 1H 

NMR spectra of the crude products, no clean product 399 was obtained, and only apparent 

decomposition occurred, possibly due to some competing reactions involving the ester 

group. 
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Scheme 173 

 

5.3 - Conclusion 

Model vinyl bromide 352 was successfully cyclised to afford the desired 6,6,6-tricycle 353 

in 44% yield as a 5:1 mixture of diastereoisomers. Attention then turned to the synthesis of 

des-methyl-protoemetinol (342). For this, vinyl bromide 358 was required, which was 

obtained in an excellent 79% yield from 6,7-dimethoxy-3,4-dihydroisoquinoline (188). The 

radical cyclisation of vinyl bromide 358 was successful with the desired tricycle 359 

isolated in an excellent 78% yield (as a 2.8:1 mixture of diastereoisomers). Subsequent 
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reduction of the ester group with lithium aluminium hydride afforded the corresponding 

alcohol 362. The hydrogenation was however less successful, as a palladium on carbon 

hydrogenation was found to afford (±)-des-methyl-epi-protoemetinol (342-b) in good 

yield. However, use of Crabtree’s catalyst resulted in a moderate excess of the desired (±)-

des-methyl-protoemetinol (342-a). 

 

Following the synthesis of des-methyl-protoemetinol (342-a), attention turned to the 

synthesis of protoemetinol (88-a). To achieve this, 1,2-dibromobut-2-ene (367) was 

required, which was prepared in 3 steps from crotonaldehyde. Following the previously 

developed route, vinyl bromide 368 was synthesised, although in a slightly disappointing 

yield. Treatment of vinyl bromide 368 under similar cyclisation conditions to 358, afforded 

a complex mixture of alkenes, with the desired tricycle 368 and cyclopentane 369 isolated. 

A subsequent lithium aluminium hydride-mediated reduction of ester 368, followed by 

hydrogenation with Crabtree’s catalyst, afforded in a moderate excess (±)-protoemetinol 

(88-a). 

 

Due to the low yield of (±)-protoemetinol (88-a), methods for converting advanced 

intermediates of des-methyl protoemetinol (343-a) into protoemetinol (88-a) were 

explored, although these were unsuccessful. Also, alternative conditions for the cyclisation 

of the vinyl bromides were explored, but these met with limited success. 

 

Subsequent work explored a similar approach towards the synthesis of mitragynine (86). 

This started from PMB-protected tryptamine 391, which was converted into the desired 

imine 393 via a Bischler-Napieralski reaction. Formation of the vinyl bromide 395 was 

achieved via the previously developed one-pot procedure although in a low yield. It was 

found that treatment of the vinyl bromide 395 with tributyltin hydride resulted in a mixture 

of products, including the desired product 397, derived from 6-exo cyclisation as a 1.6:1 

ratio of diastereoisomers, along with a pentacyclic bridged system 398, formed via radical 

cyclisation onto the indole. A subsequent palladium-catalysed hydrogenation of the cyclic 

ester 397 resulted in hydrogenation of the alkene, and formation of a cyclic amide 

byproduct, namely 401, however no cleavage of the PMB group was observed. To date it 

has not been possible to cleanly remove the PMB protecting group from 398 or 400. 
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Chapter 6 

Summary, conclusions and future work 
 

6.1 Chapter 2 - Summary, conclusions and future work 

Our initial aims were to build on previous work explored within our group which had 

shown that phosphites, thiophosphites and phosphine oxides all add regioselectively to a 

range of dienes to afford the corresponding cyclic adducts, and that subsequent Horner-

Wadsworth-Emmons-type (HWE) reactions affords the corresponding alkenes, in a one-

pot reaction. Our initial approach towards the core of the Alangium alkaloids explored the 

cyclisation of 1,7-dienes, with phosphorus hydrides, and it was hoped that following a 

Horner-Wadsworth-Emmons-type reaction, a tricyclic alkene would be isolated.  

 

Several approaches towards the 1,7-diene were explored. With the required 1,7-diene in 

hand the addition-cyclisation reaction was explored, however this proved to be problematic 

and there was no evidence of addition products being formed. This led us to explore the 

addition of a range of phosphorus hydrides, to a range of alkenes containing either a 

protected or unprotected nitrogen. It was found that the radical addition of phosphorus 

hydrides did not proceed in the presence of unsaturated amines, however this contrasts 

with similar reactions of N-protected amines, which proceeds well. This was attributed to 

an electron-transfer process; the intermediate phosphorus-centred radical may accept an 

electron from the lone pair on nitrogen. Alternately, an acid/base reaction between the 

amine and P-H groups is possible. Further work could explore the reaction of various 

phosphorus hydrides with different amines to determine the reaction mechanism. Also, 

although the reaction of various phosphorus hydrides was explored, investigations could 

explore the use of alternative phosphorus hydrides, such as diphenylphosphane (Ph2PH). 

 

 

6.2 Chapter 3 - Summary, conclusions and future work 

We have shown that phenyldimethylsilane is able to add to a wide range of alkenes in the 

presence of triethylborane and triisopropylsilanethiol, to give adducts in good to excellent 

yields (54-95%). Similarly it has been shown that dimethylphenylsilane is able to mediate 

addition/cyclisation reactions of various 1,6-dienes to afford the corresponding 5-exo 

products. Unfortunately, in our hands, subsequent reactions of the dimethylphenylsilane 

adducts did not proceed smoothly. The Peterson reactions failed although the oxidative 

removal of the silyl group, following the method developed by Fleming,200, 201 proved to be 
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more promising. The two step procedure, involving cleavage of the Si–Ph bond to afford 

the corresponding fluoro-silane and subsequent oxidation yielded the desired alcohols, 

although in low yields (25-31%). A one-pot conversion of the phenyldimethylsilane into 

the desired alcohol was also explored, however this also gave the alcohols in very low 

yield (less than 10%).  

 

Our studies then investigated the radical addition of trichlorosilane to alkenes, using 

triethylborane as the initiator. Pleasingly, as evidenced by NMR spectroscopy, it was found 

that the addition proceeded to completion, but isolation of the trichlorosilane adducts were 

not possible, due to their high reactivity. Treatment of the unpurified trichlorosilanes under 

Tamao oxidation conditions, afforded the desired alcohols in good yields (39-70%). 

However reaction of trichlorosilane with alkenes bearing an alcohol, amide or carbonyl 

group failed. 

 

The “radion” chemistry of silanes is an area that has not been fully investigated, and is an 

area that could be developed further. This includes the investigation of other silicon 

hydrides, possibly hydrides with a fluorine substituent, to form adducts that are more stable 

than chlorosilanes and are precursors to Fleming type oxidations. Exploration of alternative 

oxidation methods could also be explored, with a view to increasing the yields of alcohols. 

In a similar manner, the combined radical addition and subsequent ionic reactions of a 

range of sulfur hydrides could be investigated. For example, it is known that thiols undergo 

efficient radical addition to a range of unsaturated systems.93, 94 The resulting adducts 

could then be oxidised to sulfones, which could then undergo a Julia type olefination 

reaction. 

 

 

6.3 Chapter 4 – Summary, conclusions and future work 

Initial work in Chapter 4 explored the synthesis of a range of unsaturated precursors that, 

on reaction with tributyltin hydride, would form a radical α to a carbonyl. However, the 

radical reactions of these precursors proved to give complex reaction mixtures with only 

the product of direct reduction being isolated. These results led us to explore the radical 

cyclisation of a vinyl bromide bearing an N-allyl system, such as 307 and 317 (Scheme 

174). Vinyl bromides 307 and 317 were made using a concise 4-step procedure from 6,7-

dimethoxy-isoquinoline (190). Treatment of vinyl bromide 307 or 317 with tributyltin 

hydride gave mixed results. Reaction of 307 gave a complex mixture of compounds, 
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including the desired tricycle 308, but in a disappointing 22% yield. Whereas under 

identical conditions compound 317 afforded the desired tricyclic ester in an excellent 89% 

yield. Unfortunately, subsequent conversion of the tricycle into protoemetinol (88) proved 

to be problematic.  

 

190

O

O NH b) sBuLi, TMEDA, THF, -78 °C
then BrCH2C(Br)=CH2

c) TFA, DCM, r.t.

a) Boc2O, Et3N, DCM, r.t. O

O NH

Br306, 28-33%
over 3 steps

N

O

O

R

Bu3SnH, AIBN
THF, ref lux

R = Me, 308
22%, d.r. = 4:1

R = CO2Me, 318,
89%, d.r. = 2.8:1

O

O N

R = Me, 307, 69%
E/Z = 5:1

R = CO2Me, 317, 71%

R

Br

BrCH2CH=CHR, K2CO3,
Et3N, DMF, r.t.

 
Scheme 174 

 

Chapter 4 then explored the chemistry of phenylselenides 331 and 332, which were derived 

from α,β-unsaturated esters 329 and 330, which in-turn were prepared using an efficient 

one-pot, two-step procedure (Scheme 175). Subsequent reaction of the α,β-unsaturated 

esters with phenylselenol afforded the desired phenylselenides 331 and 332 in good yields. 

Treatment of the selenides with tributyltin hydride afforded a complex mixture of products, 

the desired tricyclic esters 333 or 334 being obtained in a disappointingly low yield. The 

major product was the cyclic amide 335. A lithium aluminium hydride reduction of the 

tricyclic esters 333 and 334-a afforded the corresponding alcohols, (±)-des-methyl-

protoemetinol (342) and (±)-protoemetinol (88-a).  
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Scheme 175 

 

Attempts were made at improving the efficiency of the radical cyclisation step, by the use 

of a vinyl chloride, but the radical reaction gave a complex mixture of products, containing 

an inseparable mixture of chlorinated and non-chlorinated cyclic compounds, along with 

large amounts of cyclic amide 335. In an attempt to improve the efficiency of the 

cyclisation, attempts to change the acceptor C=C bond to an α,β-unsaturated ester were 

explored, however subsequent functionalisation of the N-allyl fragment proved to be 

unsuccessful. Future work could explore other routes towards phenylselenides containing 

an α,β-unsaturated ester. 

 

 

6.4 Chapter 5 - Summary, conclusions and future work 

Chapter 5 explored the radical cyclisation of a vinyl bromide bearing an α,β-unsaturated 

ester. The approach started with the development of an efficient one-pot, two-step route to 

the α,β-unsaturated esters, 358 and 368, from imine 118 (Scheme 176). Subsequent 

treatment of the vinyl bromides 358 and 368 with tributyltin hydride afforded the desired 

tricycles 359 and 369, respectively, in 44-78% yield as a mixture of diastereoisomers. 

Unfortunately, for the natural product synthesis (when R = Me) the yield of the desired 6-
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exo cyclisation product was disappointing, with several side reactions taking place. 

Subsequent reduction of the major diastereoisomers, with lithium aluminium hydride, 

afforded the expected alcohols in good yields. The final catalytic hydrogenation step 

proved to be tricky, with a palladium on carbon hydrogenation affording both des-methyl-

epi-protoemetinol (342-b) and epi-protoemetinol (88-b) as the major diastereoisomers. 

However, the selective synthesis of the desired diastereoisomers could be achieved by 

using Crabtree’s catalyst, to afford in a moderate excess, both (±)-des-methyl-

protoemetinol (342-a) and protoemetinol (88-a).  

 
O
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O

O
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R = H, 358, 79%
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d.r. = 2.8:1
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O

O
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O N
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O N
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O

O N
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OH
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Scheme 176 

 

It was expected that a similar approach should be applicable to the synthesis of 

mitragynine (86) and related compounds. The synthesis of de-methoxy mitragynine (138, 

or corynantheidine) was explored. Our synthesis started by the PMB protection of 

tryptamine (388) (Scheme 177) which in hindsight, turned out to be a poor choice of 

protecting group. Reaction of 391 with ethyl formate formed the intermediate formamide 

and a subsequent Bischler-Napieralski reaction268 afforded imine 393. The synthesis of 

vinyl bromide 395 from 393 was achieved using a similar procedure to that used earlier, 

although 395 was isolated in a disappointing yield.  
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Scheme 177 

 

Treatment of the vinyl bromide 395 with tributyltin hydride and AIBN afforded the desired 

cyclised product octahydroquinolizine 397 (as a mixture of partially separable 

diastereoisomers) along with by-products. This included an unexpected pentacyclic 

bridged system 398, derived from a 5-exo cyclisation of the initial vinyl radical onto the 

indole ring, followed by a second 5-exo cyclisation onto the α,β-unsaturated ester. The 

major diastereoisomer of octahydroquinolizine 397 was then subjected to a palladium-

catalysed hydrogenation, to afford ester 400 (as a 1:1 mixture of diastereoisomers) with 

retention of the PMB group, along with lactam 401. Unfortunately, subsequent cleavage of 

the PMB group proved to be difficult, with apparent decomposition occurring.  
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Scheme 178 
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Future work could develop a route to enantiomerically pure protoemetinol (88). During 

time at AstraZeneca, the racemic vinyl bromide 358 was resolved by preparative chiral 

HPLC, resulting in clean separation of the enantiomers of the vinyl bromide.f Each of the 

enantiomers were elaborated, using the synthetic sequence shown in Scheme 176, to give 

enantiomerically pure (+)-des-methyl protoemetinol (342) and (-)-des-methyl 

protoemetinol (342). A similar route could be used to access enantiomerically pure 

protoemetinol (88), or members of the Mitragyna alkaloids. 

 

O

O N

O

O

Br O

O N

O

O

Br
O

O N

O

O

Br Chiral
HPLC

Chiral
HPLC

358358-ea 358-eb

N

O

O

OH
(+)-des-methyl-protoemetinol

N

O

O

OH
(-)-des-methyl-protoemetinol

[a]D
18 = -1.9 [a]D

18 = +1.9

[a]D
18 = -2.5 [a]D

18 = +2.5

342-a-ea
33% over 3 steps

342-a-eb
31% over 3 steps

 
Scheme 179 

 

On this theme, future work could explore the asymmetric synthesis of vinyl bromides 358, 

for example, by the asymmetric addition,182, 183 of an organozinc reagent to imine 188. 

Alternatively, an enantioselective synthesis could be achieved using a Myers-type 

approach,151, 192 involving an asymmetric allylation of an formamide (see Chapter 2), or a 

carbamate (see Chapter 4). 

 

6.5 Summary of routes to (±)-des-methyl-protoemetinol (342-a) and (±)-

protoemetinol (88-a) 

In summary we have explored a range of radical mediated approaches towards the tricyclic 

core of protoemetinol (88-a), and in the process have developed two synthetic routes to 

both (±)-des-methyl-protoemetinol (342-a) and (±)-protoemetinol (88-a). Both routes 

involve 4 steps, and include the use of a powerful one-pot reaction to form the radical 
                                                 
f HPLC was carried out at Astrazeneca, Alderly Park, by Michael Hatton on a Rainin prep (200 ml heads) 
instrument with a Merck 100 mm 20 µm Chiralpak AS column, using IsoHex/IPA/TEA 80/20/0.1 as the 
mobile phase 
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precursor. (±)-Des-methyl-protoemetinol (342-a) and (±)-protoemetinol (88-a) have been 

isolated in 2-32% overall yield (Table 12). 

 

Product Radical Precursor Number of 
Steps Overall Yield 
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O N

OH
(±)-des-methyl-epi-protoemetinol
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O
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N
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O
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O

O N
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O
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O

O
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O
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O
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O

O

Br

368 4 4% 

Table 12 
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Chapter 7 - Experimental 
 

7.1 General procedures 
Solvents and commercially available reagents were either bought from Aldrich or Acros as 

extra dry solvents, or dried and purified in house before use where appropriate; 

dichloromethane, toluene, tetrahydrofunan and diethyl ether were dried by passing them 

through a column of activated alumina according to the procedure outlined by Grubbs.284 

Pyridine was distilled from, and stored over potassium hydroxide. Benzene, toluene and 

triethylamine were distilled from CaH2 and stored over 4 Å molecular sieves or KOH as 

appropriate, for extra dry tetrahydrofunan was distilled from sodium and benzophenone, 

while dimethylformamide was distilled under reduced pressure from CaH2.285 ‘Petrol’ 

refers to that fraction of light petroleum ether boiling in the range 40-60 ºC. All non-

aqueous experiments were carried out in oven-dried glassware under an argon or nitrogen 

atmosphere unless otherwise specified. nBuLi, sBuLi and tBuLi were purchased from 

Aldrich or Acros and stored at 4 ºC and titrated against N-benzylbenzamide before use.286 

LiAlH4 was bought as a 2.4 M solution in THF from Acros. Et3B was bought as a 1 M 

solution THF from Aldrich or Acros. 

 

Thin layer chromatography was performed using Merck aluminum backed 0.2 mm 

Kieselgel 60 F254 precoated plates. Spots were visualised by the quenching of UV 

fluorescence (254 nm or 355 nm) and then stained using an aq. alkaline solution of 

KMnO4, followed by heating. Retention factors (Rf) are reported with the solvent system 

used in parentheses. Flash column chromatography was performed either on Merck 60 

silica gel, with a particle size of 40-63 µm, the solvent system being quoted in parentheses; 

the column was loaded as a slurry, prepared by pre-mixing silica gel with the eluent,287 or 

use of a combiflash companion using pre-sealed cartages ranging from 4 g to 750 g of 

silica, under a concentration gradient quoted in parentheses. 

 

NMR spectra were recorded on a Jeol EX 270 (1H, 270 MHz; 13C, 67.9 MHz), Jeol 

ECX400 (1H, 400 MHz; 13C, 100 MHz), Jeol ESX400 (1H, 400 MHz; 13C, 100 MHz), 

Bruker DPX400 (1H, 400 MHz; 13C, 100 MHz), Bruker DPX500 (1H, 500 MHz; 13C, 125 

MHz) or a Bruker AV700 (1H, 700 MHz; 13C, 176 MHz) spectrometer. Chemical shifts 

(∂H) are quoted in parts per million (ppm) downfield of tetramethylsilane using residual 

protonated solvent as an internal standard. Assignments were made on the basis of 

chemical shift and coupling constants using COSY, TOSCY or NOESY experiments 
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where appropriate. Abbreviations used in the descriptions of multiplicities are s (singlet), d 

(doublet), t (triplet), q (quartet), quin. (quintuplet), sept. (septuplet), m (multiplet), br 

(broad) and app (apparent). Coupling constants (J) are quoted to the nearest 0.1 Hz (400, 

500 and 700 MHz). Carbon-13 (13C) chemical shifts (∂C) are quoted in parts per million 

(ppm) downfield of tetramethylsilane using solvent as an internal standard. Assignments 

were made on the basis of chemical shift using DEPT, HMQC, HSQC and HMBC where 

appropriate and by comparison with the data obtained from similar structures. Fluorine-19 

(19F) NMR spectra were recorded on a Bruker DPX400 (19F, 376 MHz) or a Jeol ECX400 

(19F, 376 MHz) instrument. Chemical shifts (∂F) are quoted in parts per million (ppm) 

downfield of trifluoroacetic acid using solvent as an internal standard. 

 

Infrared spectra were recorded as either thin films or as solutions in CDCl3 or CH2Cl2 using 

an ATI Matteson Genesis FT-IR or on a Perkin Elmer Paragon 1000 FT-IR spectrometer. 

Absorption maxima (νmax) were recorded in wavenumbers (cm-1) and are classified as 

strong (s), medium (m), weak (w) and broad (br). Melting points (mp) were measured on a 

Gallenkamp melting point apparatus and are uncorrected. 

 

Mass spectra were recorded on a Brucker Daltronic microOTOF. m/z values are reported in 

Daltons and are followed by their percentage abundances; only peaks with a signal of 10% 

or greater are included. High resolution mass spectra were recorded using a Bruker 

Daltronic microOTOF (CI or EI) instrument. Values are calculated from the molecular 

formula corresponding to the observed signal using the most abundant isotopes of each 

element, to 4 decimal places. 
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7.2 - Experimental for chapter 2 
 

General procedures for oxidation of tetrahydroisoquinolines 

General procedure 1 - Oxidation by mercury(II) oxide and iodine.180  

To a solution of the 1,2,3,4-tetrahydroisoquinoline (0.5-5 g, 2.2-22 mmol, 1 equiv) in 

anhydrous DCM (10-150 mL) was added red mercury(II) oxide (0.7-7 g, 3.3-33 mmol, 1.5 

equiv) and iodine (0.85-8.5 g, 3.3-33 mmol, 1.5 equiv) the resulting solution was stirred 

under nitrogen at r.t. for 2 h. The resulting precipitate (HgI2) was removed by filtration, 

and the salt washed with a further portion of DCM, the combined DCM fractions were 

washed with aq. 5% Na2S2O3 solution, then water, dried over Na2SO4, and evaporated in 

vacuo to afford the crude product. The crude product was purified by either distillation or 

flash-chromatography to give the dihydroisoquinoline (0.27-2.2 g, 53-66%). 

 

General procedure 2 - Oxidation by N-bromosuccinimide181 

To a stirred solution of the 1,2,3,4-tetrahydroisoquinoline (0.5-20 g, 2.2-150 mmol, 1 

equiv) in DCM (10-400 mL) was added N-bromosuccinimide (0.72-29.3 g, 4.1-165 mmol, 

1.1 equiv) portionwise over 20 min. After the addition was complete, the mixture was 

stirred until TLC (CH3Cl:MeOH = 9:l) indicated that the starting material was consumed 

(approx 1 h). An excess of sodium hydroxide (30% aqueous solution) was added, and 

stirring at 25 °C for 1 h. The organic layer was separated and washed with water (100 mL), 

and the product was extracted with 10% HCl (2 × 100 mL). The combined acidic extracts 

were washed with DCM (100 mL) and made basic with concentrated ammonia (pH 9). The 

liberated oil was extracted with DCM (3 × 100 mL), dried over Na2SO4, and evaporated in 

vacuo to afford a light yellow oil which was purified by either distillation or flash 

chromatography to give the dihydroisoquinoline (0.27-16 g, 51-92%). 

 

3,4-Dihydro-6,7-dimethoxyisoquinoline (188)180, 181 

NMeO

MeO

 
1,2,3,4-Tetrahydro-6,7dimethoxyisoquinoline was oxidised using either General 

procedure 1 or General procedure 2, the crude product was purified by flash 

chromatography on silica gel (ethyl acetate:petrol, 1:1), to yield 3,4-dihydro-6,7-

dimethoxyisoquinoline 188 as a pale yellow oil which slowly crystallised to give a yellow 

soft solid; mp 134-138 ºC; νmax (thin film)/cm–1 3643 (m), 3373 (s), 2938 (s), 1695 (w), 

1611 (s), 1573 (s), 1516 (s); δH (400 MHz, CDCl3) 8.14 (1H, s, NCH), 6.72 (1H, s, ArCH), 
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6.58 (1H, s, ArCH), 3.82 (6H, s, OCH3), 3.65 (2H, t, J = 8.0, NCH2CH2Ar), 2.59 (2H, t, J = 

8.0, NCH2CH2Ar); δC (100 MHz, CDCl3) 159.4 (NCH), 150.9 (ArCOCH3), 147.6 

(ArCOCH3), 129.6 (ArC), 121.3 (ArC), 110.1 (2 × ArCH), 55.9 (OCH3), 55.8 (OCH3), 47.0 

(NCH2CH2Ar), 24.5 (NCH2CH2Ar); m/z (CI) 193 (10%), 192 (MH+, 100). 

The spectroscopic data is in agreement with reported data.180, 181 

 

3,4-Dihydroisoquinoline (200)180, 181 

N  
1,2,3,4-Tetrahydroisoquinoline was oxidised using either general procedure 1 or general 

procedure 2, the crude product was purified by vacuum distillation (80-85 °C at 5 Torr, lit 

60-65 °C at 1 Torr) to yield 3,4-dihydroisoquinoline 200 (62-92 %) as a colourless oil 

which slowly crystallised to give an off white soft solid; mp 40-42 ºC; νmax (thin film) 3402 

(s), 2089 (w), 1642 (s) /cm–1; δH (400 MHz, CDCl3) 8.28 (1H, s, NCH), 7.32-7.18 (3H, m, 
ArCH), 7.10 (1H, d, J = 7.3, ArCH), 3.72 (2H, app t, J = 7.6, NCH2CH2Ar), 2.69 (2H, t, J = 

7.69, NCH2CH2Ar); δC (100 MHz, CDCl3) 160.1 (NCH), 136.0 (ArC), 130.8 (ArCH), 128.2 

(ArC), 127.2 (ArCH), 126.9 (ArCH), 126.8 (ArCH), 47.1 (NCH2CH2Ar), 24.8 (NCH2CH2Ar); 

m/z (CI) 133 (15%), 132 (MH+, 100). 

The spectroscopic data is in agreement with reported data.180, 181 

 

1-Allyl-1,2,3,4-tetrahydroisoquinoline (203) 

NH

 
 An excess of zinc (5 eq, 3.2-11.2 g, 50-175 mmol) is activated by washing 

successively with 5% HCl, water, methanol, and diethyl ether and then dried under high 

vacuum. To a stirred suspension of the activated zinc in dry THF in a two neck round 

bottom flask fitted with a water condenser under nitrogen was slowly added allyl bromide 

(2 eq, 20-70 mmol 1.7-6.1 mL), during which time the solution starts to reflux, and turn a 

pale green-grey colour, following complete addition the solution is stirred for a further 3 h. 

The greenish supernatuant was then transferred via a cannula, to a stirred solution of the 

dihydroisoquinoline 200 (1 eq, 1.31-4.59 g, 10-35 mmol) in THF under nitrogen, the 

resulting solution was left stirring for 12 h. The reaction mixture was quenched by pouring 

into a saturated solution of aq. NaHCO3 (50-150 mL) and allowed to stir for 30 minutes, 

the resulting precipitate was removed by filtration, and washed with EtOAc (50-150 mL), 
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the organic layer was separated and the aqueous layer extracted with EtOAc (2 × 50-150 

mL). The combined organic layers were dried over anhydrous K2CO3, filtered and 

evaporated to afford a yellow oil. The crude product was purified by flash chromatography 

on silica gel (triethylamine:hexane, 8:1), to yield 1-allyl-1,2,3,4-tetrahydroisoquinoline 203 

as a pale yellow oil (0.96-4.2 g, 55-70%). Rf 0.26 (hexane:triethylamine, 8:1); νmax (thin 

film) 3318 (m), 3071 (s), 3017 (s), 2921 (s), 2833 (s), 1833 (w), 1668 (s), 1638 (s), 1579 

(w) /cm–1; δH (400 MHz, CDCl3) 7.20-7.05 (4H, m, ArCH), 5.90-5.78 (1H, m, 

CH2CH=CH2), 5.21-5.12 (2H, m, CH2CH=CH2), 4.04 (1H, app dd, J = 9.0 and 3.4 NCH), 

3.28 (1H, dt, J = 12.2 and 5.1, NCH2CH2Ar), 3.01-2.93 (1H, m, NCH2CH2Ar), 2.88-2.62 

(3H, m, NCH2CH2Ar and CH2CH=CH2), 2.56-2.48 (1H, m, CH2CH=CH2); δC (100 MHz, 

CDCl3) 138.3 (ArC), 135.3 (CH2CH=CH2), 135.1 (ArC), 129.1 (ArCH), 125.8 (2 × ArCH), 

125.6 (ArCH), 117.8 (CH2CH=CH2), 54.8 (NCH), 40.7 (NCH2CH2Ar), 40.4 (CH2CH=CH2) 

and 29.7 (NCH2CH2Ar); m/z (CI) 175 (15%), 174 (MH+, 100).  

The spectroscopic data is in agreement with reported data.180, 181 

 

1-Allyl-2-((E)-but-2-enyl)-1,2,3,4-tetrahydroisoquinoline (204) 

N

 
To a stirred solution of 3,4-dihydroisoquinoline (200) (2 g, 15.2 mmol) in Et2O (100 mL) 

at r.t. under nitrogen was added crotyl bromide (2.0 mL, 85%, 16.3 mmol). The resulting 

solution was stirred in the dark overnight, during which time a yellow precipitate formed. 

The crude mixture was evaporated to dryness to afford the bromide salt as an unstable, 

moisture sensitive yellow power; Major trans isomer; δH (400 MHz, CDCl3) 10.33 (1H, s, 

NCH), 8.11 (1H, d, J = 7.6, ArCH), 7.69 (1H, dt, J = 7.6 and 1.2, ArCH), 7.44 (1H, t, J = 

7.6, ArCH), 7.34 (1H, d, J = 7.6, ArCH), 6.22-6.14 (1H, m, NCH2CH=CHCH3), 5.74-5.64 

(1H, m, NCH2CH=CHCH3), 4.93 (2H, d, J = 7.0, NCH2CH=CHCH3), 4.08 (2H, t, J = 8.0, 

NCH2CH2Ar), 3.31 (2H, t, J = 8.0, NCH2CH2Ar), 1.78 (3H, app d, J = 6.4, 

NCH2CH=CHCH3); δC (100 MHz, CDCl3) 166.5 (NCH), 137.9 (CH=CH), 137.8 

(CH=CH), 135.9 (ArCH), 134.7 (ArC), 128.5 (ArCH), 128.0 (ArCH), 125.0 (ArC), 120.7 

(ArCH), 62.5 (NCH2CH=CHCH3), 48.0 (NCH2CH2Ar), 25.4 (NCH2CH2Ar), 18.0 

(NCH2CH=CHCH3); Minor cis isomer δH (400 MHz, CDCl3) 4.93 (2H, d, J = 7.3, 

NCH2CH=CHCH3), 1.87 (3H, app dd, J = 7.0 and 1.8, NCH2CH=CHCH3). 

To a stirred suspension of the bromide salt in THF (75 mL) under nitrogen at 0 ºC, was 

added a solution of allyl zinc bromide (30 mmol, prepared as above), following the 
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complete addition the suspension was warmed to r.t. and stirred for 12 h. The reaction 

mixture was quenched by pouring into a saturated solution of aq. NaHCO3 (100 mL) and 

allowed to stir for 30 minutes, the resulting precipitate was removed by filtration, and 

washed with EtOAc (75 mL), the organic layer was separated and the aqueous layer 

extracted with EtOAc (2 × 75 mL). The combined organic layers were dried over MgSO4, 

filtered and evaporated to afford a yellow oil. The crude product was purified by flash 

silica chromatography, elution gradient 2:1 to 1:1 petrol:EtOAc. Pure fractions were 

evaporated to dryness to afford the title compound as a pale yellow oil, (1.9 g, 59%); Rf 

0.25 (ethyl acetate:petrol, 1:1); νmax (thin film) 3071 (m), 3017 (m), 2915 (s), 1675 (m), 

1638 (m), 1490 (s), 1451 (s) /cm–1; δH (400 MHz, CDCl3) 7.14-7.03 (4H, m, ArCH), 5.92-

5.80 (1H, m, CH2CH=CH2), 5.60-5.52 (2H, m, CH2CH=CHCH3), 5.15-4.95 (2H, m, 

CH2CH=CH2), 3.75 (1H app t, J = 6.2, ArCHN), 3.16-3.20 (3H, m, NCH2CH=CHCH3 and 

NCH2CH2Ar), 2.92-2.80 (2H, m, NCH2CH2Ar and NCH2CH2Ar), 2.66-2.52 (2H, m, 

CH2CH=CH2), 2.48-2.40 (1H, m, NCH2CH2Ar), 1.70 (3H, d, J = 4.5, NCH2CH=CHCH3); 

δC (100 MHz, CDCl3) 138.0 (ArC), 136.6 (CH=CH), 134.5 (ArC), 128.7 (ArCH), 128.6 

(CH=CH), 128.2 (ArCH), 127.8 (ArCH), 125.8 (ArCH), 125.4 (ArCH), 115.7 (CH=CH2), 

60.1 (ArCHN), 55.8 (NCH2CH=CH), 43.7 (NCH2CH2Ar), 39.8 (CH2CH=CH2), 25.1 

(NCH2CH2Ar), 17.8 (CH3); m/z 228 (17%), 229 (MH+, 100); HRMS C16H22N (MH+) 

requires 228.1752, found 228.1750. 

 

1-Allyl-1,2,3,4-tetrahydro-2-methylisoquinoline (208) 

N

 
To a stirred solution of 3,4-dihydroisoquinoline (200) (1 g, 7.6 mmol), in diethyl ether (75 

mL) at r.t. under nitrogen was added methyl iodide (0.54 mL, 8.3 mmol). The resulting 

solution was stirred in the dark overnight, during which time a yellow precipitate formed. 

The crude mixture was evaporated to dryness to afford the iodide salt as an unstable, 

moisture sensitive yellow power; δH (400 MHz, CDCl3) 9.96 (1H, s, NCH), 8.02 (1H, d, J 

= 7.0, ArCH), 7.69 (1H, app t, J = 7.2, ArCH), 7.45 (1H, app t, J = 7.0, ArCH), 7.37 (1H, d, J 

= 7.2, ArCH), 4.15 (2H, t, J = 8.1, NCH2CH2Ar), 4.01 (3H, s, NCH3), 3.41 (2H, t, J = 8.1, 

NCH2CH2Ar); δC (100 MHz, CDCl3) 166.4 (NCH), 137.9 (ArCH), 135.7 (ArC), 134.2 

(ArCH), 128.5 (ArCH), 128.3 (ArCH), 124.4 (ArC), 51.0 (NCH2CH2Ar), 48.7 (NCH3), 25.3 

(NCH2CH2Ar). 
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To a stirred suspension of the iodide salt in THF (50 mL) under nitrogen at 0 ºC, was 

added a solution of allyl zinc bromide (16 mmol, prepared as above), following the 

complete addition the suspension was warmed to r.t. and stirred for 12 h. The reaction 

mixture was quenched by pouring into a saturated solution of aq. NaHCO3 (50 mL) and 

allowed to stir for 30 minutes, the resulting precipitate was removed by filtration, and 

washed with EtOAc (50 mL), the organic layer was separated and the aqueous layer 

extracted with EtOAc (2 × 50 mL). The combined organic layers were dried over MgSO4, 

filtered and evaporated to afford a yellow oil. The crude product was purified by flash 

silica chromatography, elution gradient 2:1 to 1:1 petrol:EtOAc. Pure fractions were 

evaporated to dryness to afford the title compound as a pale yellow oil (0.65 g, 45%); Rf 

0.20 (ethyl acetate:petrol, 1:1); νmax (thin film) 3068 (w), 3024 (m), 2930 (s), 2850 (w), 

1661 (m), 1636 (m), 1497 (s) /cm–1; δH (400 MHz, CDCl3) 7.15-7.05 (4H, m, ArCH), 5.82-

5.72 (1H, m, CH=CH2), 5.07-4.98 (2H, m, CH=CH2), 3.56 (1H, t, J = 5.5, NCH), 3.12 (1H, 

app dt, J = 12.2 and 6.1, NCH2CH2Ar), 2.81 (2H, t, J = 6.1, NCH2CH2Ar), 2.72-2.54 (3H, 

m, NCH2CH2Ar and CH2CH=CH2 ), 2.47 (3H, s, NCH3); δC (100 MHz, CDCl3) 137.5 

(ArC), 135.7 (CH=CH2), 134.6 (ArC), 128.6 (ArCH), 127.1 (ArCH), 125.8 (ArCH), 125.6 

(ArCH), 116.1 (CH=CH2), 63.5 (NCH), 48.5 (NCH2CH2Ar), 42.7 (NCH3), 38.8 

(CH2CH=CH2), 26.5 (NCH2CH2Ar); m/z 189 (14%), 188 (MH+, 100).  

The spectroscopic data is in agreement with reported data.288 

 

Diethyl octylphosphonate 121, 125, 188 

P

O
EtO
EtO  

To a stirred solution of 1-octene (1.0 g, 8.18 mmol.) in cyclohexane (20 mL) under 

nitrogen was added diethyl phosphite (11.3 g, 81.8 mmol) and AIBN (0.24 g, 2.46 mmol). 

The reaction mixture was heated to 80 ºC, and further portions of AIBN (0.24 g, 2.46 

mmol) were added every 1 h, until a total of 5 additions had been made. The solution was 

stirred at 80 ºC for a further 12 h, after which the reaction mixture was cooled and the 

solvent removed in vacuo. The crude mixture was distilled to remove excess diethyl 

phosphite, and the resulting residue was purified by column chromatography (silica, 

petrol/EtOAc, 1:1) to afforded the title compound (1.9 g, 95%) as a colourless oil. Rf 0.3 

(EtOAc); νmax (thin film) 2929 (s), 2857 (s), 1466 (m), 1392 (m), 1249 (s), 1164 (s), 1023 

(s) cm-1; δH (400 MHz; CDCl3) 4.16-4.02 (4H, m, 2 × OCH2CH3), 1.78-1.72 (2H, m, 

PCH2), 1.65-1.59 (2H, m, PCH2CH2), 1.41-1.21 (10H, m, 5 × CH2), 1.32 (6H, t, J = 7.0, 2 

× OCH2CH3), 0.88 (3H, t, J = 7.0, CH2CH2CH3); δC (100 MHz; CDCl3) 61.3 (d, J = 7.0, 2 
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× OCH2CH3), 31.7 and 29.0 (2 × CH2), 30.6 (d, J = 17.0, PCH2CH2), 22.6 (CH2CH2CH3), 

22.3 (d, J = 6.0, PCH2CH2CH2), 25.6 (d, J = 140.5, PCH2), 16.4 (d, J = 6.0, 2 × 

OCH2CH3), 14.0 (CH2CH2CH3); m/z (CI, NH3) 251 (MH+, 100%); (Found: MH+, 

251.1779. C12H27O3P requires: MH+, 251.1776).  

The spectroscopic data is in agreement with reported data.121, 125, 188 

 

O,O-Diethyl octylphosphonothioate (76) 121, 125, 188 

P

S
EtO
EtO  

To a stirred solution of 1-octene (1.0 g, 8.18 mmol.) in cyclohexane (20 mL) under 

nitrogen was added diethyl thiophosphite (3.793 g, 24.5 mmol) and AIBN (0.24 g, 2.46 

mmol). The reaction mixture was heated to 80 ºC, and further portions of AIBN (0.24 g, 

2.46 mmol) were added every 1 h, until a total of 5 additions had been made. The solution 

was stirred at 80 ºC for a further 12 h, after which the reaction mixture was cooled and the 

solvent removed in vacuo. The resulting crude oil was purified by column chromatography 

(silica, petrol:EtOAc, 19:1) to afforded the title compound (2.15 g, 98%) as a colourless 

oil. Rf 0.45 (petrol/EtOAc, 9:1); νmax (thin film) 2928 (s), 2954 (s), 2856 (s), 2364 (w), 

1465 (m), 1388 (m), 1160 (m), 1097 (s), 1028 (s) cm-1; δH (400 MHz; CDCl3) 4.19-3.97 

(4H, m, 2 × OCH2CH3), 1.92-1.84 (2H, m, PCH2), 1.63-1.51 (2H, m, PCH2CH2), 1.42-1.14 

(10H, m, 5 × CH2), 1.30 (6H, t, J = 7.0, 2 × OCH2CH3), 0.84 (3H, t, J = 7.0, CH2CH2CH3); 

δC (100 MHz; CDCl3) 62.2 (d, J = 7.0, 2 × OCH2CH3), 34.6 (d, J = 111.0, PCH2), 31.8 and 

29.1 (2 × CH2), 30.3 (d, J = 18.5, PCH2CH2), 22.7 (d, J = 6.0, PCH2CH2CH2), 22.6 

(CH2CH2CH3), 16.2 (d, J = 7.0, 2 × OCH2CH3), 14.1 (CH2CH2CH3); m/z (CI, NH3) 267 

(MH+, 100%); (Found: MH+, 267.1546. C12H27O2PS requires: MH+, 267.1548).  

The spectroscopic data is in agreement with reported data.121, 125, 188 

 

General procedure 3: HWE reaction of phosphonothioates 

A stirred solution of the phosphonothioate (1 equiv, 0.94-2.23 mmol) in dry THF (20 – 40 

mL) under nitrogen is cooled to -78 °C, and allowed to achieve thermal equilibrium. sBuLi 

(2 equiv, 1.88-4.46 mmol) is added dropwise, following complete addition, the solution is 

allowed to warm to 0 °C, and stirred for 30 minutes. The resulting solution is then cooled 

to -78 °C before the addition of the ketone/aldehyde (2 equiv, 1.88-4.46 mmol). The 

solution is then allowed to warm to rt, and stirred overnight. The crude reaction mixture is 

then passed through a plug of silica (washed through with EtOAc) and concentrated in 
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vacuo to yield crude product. Purification by column chromatography afforded the desired 

alkenes (39-85%) as colourless oils. 

 

1-(1-Phenyl-1-nonenyl)benzene (77)121, 125, 188 

 
O,O-Diethyl octylphosphonothioate (0.50 g, 1.82 mmol, 1 eq.), sBuLi (4.46 mmol) and 

benzophenone (0.812 g, 4.46 mmol, 2 eq.) were reacted according to General procedure 

3. Purification by column chromatography (silica, petrol) afforded the title compound 77 

(0.57 g, 90%) as a colourless oil. Rf 0.35 (petrol); νmax (thin film) 3081 (m), 3059 (m), 

3023 (m), 2957 (s), 2929 (s), 2855 (s), 1598 (m), 1494 (s), 1470 (m), 1443 (s), 1365 (w), 

1030 (w) cm-1; δH (400 MHz; CDCl3) 7.39-7.15 (10H, m, ArCH), 6.08 (1H, t, J = 7.5, 

C=CH), 2.10 (2H, app. q, J = 7.5, C=CHCH2), 1.43 (2H, m, C=CHCH2CH2), 1.32-1.20 

(8H, m, 4 × CH2), 0.87 (3H, t, J = 7.0, CH3); δC (100 MHz; CDCl3) 142.9, 141.3 and 140.3 

(2 × ArC, C=CH), 130.4 (C=CH), 129.9, 128.1, 128.0, 127.2, 126.8 and 126.7 (10 × ArCH), 

31.8, 30.0, 29.7, 29.2 and 29.2 (5 × CH2), 22.6 (CH2CH3), 14.1 (CH3); m/z (EI) 278 (M+, 

26%), 193 (Ph2C=CHCH2
+, 100), 91 (C7H7

+, 57), 41 (C3H5
+, 52); (Found: M+, 180.1028. 

C20H24 requires: M+, 180.1025).  

The spectroscopic data is in agreement with reported data.121, 125, 188 

 

1-[(E)-1-Nonenyl]benzene (210)121, 125, 188 

 
 O,O-Diethyl octylphosphonothioate (0.250 g, 0.94 mmol, 1 eq.), sBuLi (1.88 

mmol) and benzaldehyde (0.199 g, 1.88 mmol, 2 eq.) were reacted according to General 

procedure 3. Purification by column chromatography (silica, petrol) afforded the title 

compound 210 (0.07 g, 39%) as a colourless oil. Only the E-isomer was observed in the 1H 

NMR spectrum. Rf 0.45 (petrol); νmax (thin film) 2927 (s), 2854 (s), 2361 (w), 1667 (w), 

1465 (m), 1377 (m) cm-1; δH (400 MHz; CDCl3) 7.39 (2H, d, J = 7.0, ArCH), 7.34 (2H, t, J 

= 7.0, ArCH), 7.23 (1H, t, J = 7.0, ArCH), 6.42 (1H, d, J = 16.0, ArCH=CHCH2), 6.28 (1H, 

dq, J = 16.0 and 7.0, CH=CHCH2), 2.25 (2H, app. q, J = 7.0, CH=CHCH2), 1.52 (2H, m, 

CH=CHCH2CH2), 1.44-1.26 (8H, m, CH2), 0.88 (3H, t, J = 7.0, CH2CH3); δC (100 MHz; 

CDCl3) 137.9 (ArC), 131.3 (CH=CHCH2), 129.6 (CH=CHCH2), 128.4 (2 × ArCH), 126.7 (2 
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× ArCH), 125.9 (ArCH), 33.1 (CH2), 31.8 (CH2), 29.7 (CH2), 29.4 (CH2), 29.2 (CH2), 22.7 

(CH2), 14.1 (CH3); m/z (EI) 202 (M+, 21%), 117 (PhCHCHCH2
+, 100); (Found: M+, 

202.1730. C15H22 requires: M+, 202.1722). The spectroscopic data is in agreement with 

reported data.121, 125, 188 

 

2-Methyl-2-decene (211) 121, 125, 188 

H3C

CH3  
O,O-Diethyl octylphosphonothioate (0.250 g, 0.94 mmol, 1 eq.), sBuLi (1.88 mmol) and 

acetone (0.109 g, 1.88 mmol, 2 eq.) were reacted according to General procedure 3. 

Purification by column chromatography (silica, petrol) afforded 2-methyl-2-decene 211 

(0.065 g, 47%) as a colourless oil. Rf 0.65 (petrol); νmax (thin film) 2957 (s), 2923 (s), 2856 

(s), 2729 (w), 2673 (w), 1667 (w), 1465 (s), 1378 (m) cm-1; δH (400 MHz; CDCl3) 5.15-

5.09 (1H, m, C=CH), 2.00-1.92 (2H, m, C=CHCH2), 1.69 (3H, d, J = 1.0, CH3C=CH), 1.60 

(3H, s, CH3C=CH), 1.45-1.20 (10H, m, 5 × CH2), 0.88 (3H, t, J = 7.0, CH2CH3); δC (100 

MHz; CDCl3) 131.1 (C=CH), 125.0 (C=CH), 31.9, 29.9, 29.7, 29.3, 29.3 and 28.1 (5 × 

CH2), 25.7 (CH3), 22.7 (CH2CH3), 22.7 (CH3), 14.1 (CH3); m/z (EI) 154 (M+, 39%), 84 

(C6H12
+, 40), 69 (C5H9

+, 86), 55 (C4H7
+, 60), 41 (C3H5

+, 100); (Found: M+, 154.1720. 

C19H38 requires: M+, 154.1722).  

The spectroscopic data is in agreement with reported data.121, 125, 188 

 

1-Octylidenecyclohexane (212) 121, 125, 188 

 
O,O-Diethyl octylphosphonothioate (0.250 g, 0.94 mmol, 1 eq.), sBuLi (1.88 mmol) and 

cyclohexanone (0.092 g, 1.88 mmol, 2 eq.) were reacted according to General procedure 

3. Purification by column chromatography (silica, petrol) afforded 1-

octylidenecyclohexane 212 (0.15 g, 80%) as a colourless oil. Rf 0.6 (petrol); νmax (thin 

film) 2930 (s), 2850 (s), 2661 (w), 1447 (m), 1376 (m), 1342 (m), 1306 (m) cm-1; δH (400 

MHz; CDCl3) 5.06 (1H, t, J = 7.0, C=CH), 2.14 (2H, t, J = 7.0, CCH2), 2.06 (2H, t, J = 7.0, 

CCH2), 1.96 (2H, app. q, J = 7.0, C=CHCH2), 1.58-1.42 (6H, m, 3 × CH2), 1.38-1.20 (10H, 

m, 5 × CH2), 0.88 (3H, t, J = 7.0, CH3); δC (100 MHz; CDCl3) 139.7 (C=CH), 121.7 

(C=CH), 37.2 (CCH2), 31.7, 30.0 and 29.0 (4 × CH2), 28.5 (CCH2), 28.4, 27.6, 26.7, 26.8 

and 22.4 (5 × CH2), 13.8 (CH3); m/z (EI) 194 (M+, 58%), 109 (C8H13
+, 66), 96 (C7H12

+, 
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68), 81 (C6H9
+, 63), 67 (C5H9

+, 100), 55 (C4H7
+, 37), 41 (C3H5

+, 50); (Found: M+, 

194.2034. C14H26 requires: M+, 194.2035).  

The spectroscopic data is in agreement with reported data.121, 125, 188 

 

3-(2,2-Diphenylvinyl)-4-methyltetrahydrofuran (79) 121, 125, 188 

Ph

Ph
O  

To a stirred solution of allyl ether (1.0 g, 10.2 mmol, 1 eq.) in dry THF (40 mL) under 

nitrogen was added diethyl thiophosphite (1.9 g, 12.0 mmol, 1.2 eq.) and AIBN (0.405 g, 

2.4 mmol, 0.25 eq.). The solution was then heated to reflux for 6 h, after which a further 

portion of AIBN (0.405 g, 2.4 mmol, 0.25 eq.) was added and reflux maintained overnight. 

The resulting reaction mixture was then cooled to -78 °C, and allowed to achieve thermal 

equilibrium. sBuLi (30.6 mmol, 3 eq.) is added dropwise, following complete addition, the 

solution is allowed to warm to 0 °C, and stirred for 30 minutes. The resulting solution is 

then cooled to -78 °C before the addition of benzophenone (3.4 g, 20.1 mmol, 2 eq.). The 

solution is then allowed to warm to rt, and stirred overnight. The crude reaction mixture is 

then passed through a plug of silica (washed through with EtOAc) and concentrated in 

vacuo to yield crude product. Purification by column chromatography (silica, 

petrol/EtOAc, 19:1) affords the title compound 79 (2.3 g, 86%) as an inseparable mixture 

of cis- and trans-isomers, (3:1, cis:trans) as a colourless oil. Rf 0.35 (petrol/EtOAc, 4:1); 

νmax (thin film) 3081 (m), 3028 (m), 2959 (s), 2933 (s), 2852 (s), 1886 (w), 1809 (w), 1658 

(w), 1596 (m), 1575 (w), 1494 (m), 1440 (s) cm-1; δH (400 MHz; CDCl3) (cis-isomer) 

7.40-7.14 (10H, m, ArCH), 6.04 (1H, d, J = 10.5, C=CH), 3.95-3.87 (2H, m, CH2OCH2), 

3.69 (1H, dd, J = 8.0 and 7.0 CHCHCH2O), 3.53 (1H, dd, J = 8.0 and 6.0, OCH2CHCH3), 

2.99-2.95 (1H, m, CHCHCH2O), 2.35-2.29 (1H, m, OCH2CHCH3), 1.08 (3H, d, J = 7.0, 

CH3); δC (100 MHz; CDCl3) (cis-isomer) 143.7 (ArC), 142.3 (C=CH), 140.0 (ArC), 129.8 (4 

× ArCH), 128.2 (4 × ArCH), 127.2 (2 × ArCH), 127.0 (C=CH), 75.1 and 72.9 (CH2OCH2), 

43.0 (CH), 38.2 (CH3CH), 13.9 (CH3); m/z (CI, NH3) 282 (M+NH4
+, 39%), 265 (M+H+, 

100), 207 (46), 180 (56); (Found: MH+, 265.1589. C19H20O requires: MH+, 265.1592). 

The presence of the trans-isomer was indicated by: δH (400 MHz; CDCl3) 5.92 (1H, d, J = 

10.0, C=CH), 4.05-4.01 (1H, m, OCH2), 3.95-3.87 (1H, m, OCH2), 3.63-3.57 (1H, m, 

OCH2), 3.30-3.25 (1H, m, OCH2), 2.59-2.43 (1H, m, CH), 2.20-2.10 (1H, m, CHCH3), 

0.94 (3H, d, J = 7.0, CH3). 

The spectroscopic data is in agreement with reported data.121, 125, 188 
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N,N-Diallylbenzamide  

N

O Ph

 
To a stirred biphasic mixture of diallylamine (10.0 g, 0.103 mmol) in DCM (150 mL) and 

NaOH (6.7 g, 0.169 mmol) in water (150 mL) at 0˚C was added dropwise a solution of 

benzoyl chloride (13.1 mL, 0.113 mmol) in DCM (50 mL) (HCl fumes were observed 

during the addition). Following the complete addition of the benzoyl chloride solution the 

reaction mixture was stirred at 0 ˚C for a further 30 minutes, then allowed to warm up to 

r.t. and left stirring for 6 h. The layers were separated and the aqueous layer was extracted 

with DCM (2 × 150 mL). The combined organic extracts were washed with sat. aq. 

NaHCO3 (150 mL) and dried over MgSO4 and concentrated in vacuo. The crude product 

was purified by vacuum distillation (165 °C at 9 Torr) to yield the title compound as a pale 

yellow oil (18.5 g, 90%); νmax (thin film)/cm–1 3489 (w), 3080 (m), 3011 (m), 2982 (m), 

2921 (m), 1629 (s), 1577 (m), 1494 (m), 1453 (s) 1410 (s); δH (400 MHz, CDCl3) 7.42-

7.36 (5H, m, 5 × ArCH), 5.80 (1H, s, CH=CH2), 5.65 (1H, s, CH=CH2), 5.25-5.18 (4H, m, 

2 × CH=CH2), 4.06 (2H, s, NCH2) and 3.75 (2H, s, NCH2); δC (100 MHz, CDCl3) 171.5 

(C=O), 136.1 (ArC), 132.9 and 132.5 (CH=CH2), 129.6 (ArCH), 128.1 (2 x ArCH), 126.3 (2 

x ArCH), 117.6 (2 × CH=CH2), 50.5 (NCH2), 46.9 (NCH2); m/z (CI, NH3) 202 (MNH4
+, 

100%), 105 (PhC(=O)+, 14). 

The spectroscopic data is in agreement with reported data.289 

 

O,O-Diethyl (1-benzoyl-4-methyl-3-pyrrolidinyl)methylphosphonothioate 

N

(EtO)2(S)P

O Ph

 
To a stirred solution of N,N-diallylbenzamide (0.50 g, 2.5 mmol) and O,O-diethyl 

phosphonothioate (1.92 g, 12.5 mmol) in degassed cyclohexane (30 mL) was added AIBN 

(0.12 g, 0.70 mmol) under an atmosphere of nitrogen. The solution was heated at 80 oC for 

6 h, then the solution was cooled to r.t. and solvent removed under reduced pressure. 

Kugelrühr distillation (60 oC, 1 mmHg) removed excess O,O-diethyl phosphonothioate 

from the mixture affording crude product. The crude product was purified by flash silica 

chromatography, elution gradient 2:1 to 1:1 petrol:EtOAc. Pure fractions were evaporated 
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to dryness to afford the title compound (0.72 g, 80%) as a colourless oil, isolated as a 2.2:1 

cis-:trans- mixture of inseparable diastereoisomers. Rf 0.3 (petrol:EtOAc 1:1); νmax (thin 

film) / cm-1 2979 (s), 1625 (s), 1426 (s), 1047 (s), 1026 (s), 958 (s); major cis- 

diastereoisomer, δH (400 MHz, CDCl3) 7.57-7.46 (2H, m, ArCH), 7.45-7.32 (3H, m, ArCH), 

4.30-3.90 (4H, m, POCH2CH3), 3.90-3.05 (4H, m, NCH2), 2.83-1.80 (4H, m, CH and 

PCH2), 1.40-1.06 (6H, m, POCH2CH3), 1.02 and 0.89 (3H, 2 x d, J 7.0 and 7.0, CHCH3); 

δC (100 MHz, CDCl3) 168.7 and 168.6 (C=O), 136.4, 136.3 (ArC), 129.6 (ArCH), 128.0, 

127.9 (2 x ArCH), 126.8 (2 x ArCH), 62.0 (d, 2JCP = 7.0, 2 x POCH2CH3), 56.0 and 53.3 

(NCH2CHCH3), 52.4 and 49.3 (2 x d, 3JCP = 7.0 and 10.0, CH2CHCH2N), 37.0 and 35.3 (2 

x d, 2JCP = 3 and 4, PCH2CH), 35.9 and 34.3 (2 x d, 3JCP = 14.0 and 14.0, CHCH3), 33.4 

and 32.6 (2 x d, 1JCP = 113.0 and 113.0, PCH2), 15.9 and 15.8 (2 x d, 3JCP = 7.0 and 7.0, 2 x 

POCH2CH3), 13.4, 12.7 (CHCH3); m/z (CI, NH3) 356 (M+H+, 100%); (Found: M+H+, 

356.1450. C17H27NO3PS requires 356.1449).  

The presence of the minor trans- diastereoisomer was indicated by 1H and 13C NMR 

spectroscopy; δH (270 MHz, CDCl3) (mixture of conformers) 1.11 and 1.00 (3H, 2 x d, J 

6.5 and 6.5, CHCH3); δC (67.9 MHz, CDCl3) (mixture of conformers) 169.2 (C=O), 61.9 

(d, 2JCP 7, 2 x POCH2CH3), 55.7, 55.0, 52.5, 51.9 (2 x NCH2), 40.9, 39.3 (2 x d, 2JCP 4 and 

4, PCH2CH), 40.1, 38.4 (2 x d, 3JCP 18 and 19, CHCH3), 15.1, 14.6 (CHCH3). 

 

1-Allyl-1,2-dihydro-2-methylisoquinoline (214) 

 

N

 
To a stirred solution of isoquinoline (2 g, 15.2 mmol) in diethyl ether (75 mL) at r.t. under 

nitrogen was added methyl iodide (1.9 mL, 30 mmol). The resulting solution was stirred in 

the dark at r.t. for 12 h during which time a yellow precipitate formed. The solvent was 

removed to dryness to afford the iodide salt as an unstable, moisture sensitive yellow 

power; δH (400 MHz, CDCl3) 10.03 (1H, s, CNH), 8.71 (1H, dd, J = 6.7 and 1.2 ArCH), 

8.57 (1H, d, J = 7.1, ArCH), 8.47 (1H, d, J = 8.2, NCHCH), 8.34 (1H, d, J = 8.2, NCHCH), 

8.26-8.21 (1H, m, ArCH), 8.08-8.03 (1H, m, ArCH), 4.49 (3H, s, NCH3); δC (100 MHz, 

CDCl3) 152.2 (ArC), 150.5 (ArCH), 142.7 (ArC), 136.6 (ArCH), 135.8 (ArCH), 130.9 (ArCH), 

129.9 (ArCH), 127.0 (ArCH), 125.2 (ArCH), 47.8 (NCH3). 

To a stirred suspension of the iodide salt in THF (50 mL) under nitrogen at 0 ºC, was 

added a solution of allyl zinc bromide (60 mmol, prepared as above), following the 

complete addition the suspension was warmed to r.t. and stirred for 12 h. The reaction 
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mixture was quenched by pouring into a saturated solution of aq. NaHCO3 (100 mL) and 

allowed to stir for 30 minutes, the resulting precipitate was removed by filtration, and 

washed with EtOAc (100 mL), the organic layer was separated and the aqueous layer 

extracted with EtOAc (2 × 75 mL). The combined organic layers were dried over MgSO4, 

filtered and evaporated to afford a yellow oil. The crude product was purified by flash 

chromatography on basic alumina, elution gradient 2:1 to 1:1 petrol:EtOAc. Pure fractions 

were evaporated to dryness to afford the title compound as a pale yellow oil (1.8 g, 63%); 

Rf 0.8 (ethyl acetate:petrol, 1:1); νmax (thin film) 3020 (m), 2905 (s), 1634 (m), 1499 (s) 

/cm–1; δH (400 MHz, CDCl3) 7.08 (1H, dt, J = 7.3 and 1.2, ArCH), 6.96 (1H, dt, J = 7.3 and 

1.2, ArCH), 6.89-6.84 (2H, m, ArCH), 6.06 (1H, dd, J = 7.3 and 1.5, NCH=CH), 5.80-5.70 

(1H, m, CH=CH2), 5.22 (1H, d, J = 7.3, NCH=CH), 5.00-4.93 (2H, m, CH=CH2), 4.32 

(1H, app t, J = 5.5, NCH), 2.95 (3H, s, NCH3), 2.49-2.32 (2H, m, CH2CH=CH2); δC (100 

MHz, CDCl3) 136.6 (NCH=CH), 135.0 (CH=CH2), 132.8 (ArC), 128.4 (ArC), 127.1 (ArCH), 

126.1 (ArCH), 123.9 (ArCH), 122.3 (ArCH), 117.2 (CH=CH2), 96.1 (NCH=CH), 62.2 

(NCH), 40.7 (NCH3), 36.6 (CH2CH=CH2); m/z (CI) 187 (15%), 186 (MH+, 100).  

The spectroscopic data is in agreement with reported data.290 

 

1,2,3,3-Tetramethylindolin-2-yl diethyl phosphonate (218) 190, 191 

N P O

O O  
A stirred solution of 1,3,3-trimethyl-2-methyleneindoline (513 mg, 3.0 mmol), and diethyl 

phosphite (3.9 mL, 30.0 mmol) in THF (20 mL) under an atmosphere of N2 was heated at 

reflux for 20 minutes, after which AIBN (74 mg, 0.45 mmol) was added and refluxing 

maintained, after 1 h, further portions of AIBN (74 mg, 0.45 mmol) were added every 1 h 

for 2 further portions. The resulting solution was stirred at reflux over night. The excess 

diethyl phosphite was removed by vacuum distillation (72 °C at 8 mmHg). The resulting 

crude reaction mixture was purified by flash silica chromatography, elution gradient 10:1 

to 2:1 petrol:EtOAc. Pure fractions were evaporated to dryness to afford the title 

compound as a pale orange oil (0.38 g, 41%), which on standing changes colour to form a 

red oil; νmax (thin film) / cm–1 ) 3019 (m), 2908 (s), 1422 (s), 1049 (s), 1022 (s); δH (400 

MHz, CDCl3) 7.03 (1H, td, J = 7.6 and 1.2, ArCH), 6.91 (1H, dd, J = 7.6 and 0.8, ArCH), 

6.65 (1H, td, J = 7.6 and 0.8, ArCH), 6.34 (1H, d, J = 7.6, ArCH), 4.10-3.95 (4H, m, 

OCH2CH3), 2.87 (3H, d, 4JPH = 1.4, NCH3), 1.39 (3H, s, C(CH3)2), 1.32 (3H, d, 3JPH = 15.3, 

PCCH3), 1.25 (3H, s, C(CH3)2), 1.23 (3H, t, J = 7.0, OCH2CH3), 1.16 (3H, t, J = 7.0, 
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OCH2CH3); δC (100 MHz, CDCl3) 149.3 (3JPC = 7.2, ArC), 137.9 (3JPC = 7.7, ArC), 127.4 

(ArCH), 120.7 (ArCH), 117.8 (ArCH), 106.2 (ArCH), 72.9 (1JPC = 152.7, NCP), 62.2 (2JPC = 

7.2, POCH2CH3), 61.2 (2JPC = 8.1, POCH2CH3), 30.9 (NCH3), 25.4 (3JPC =5.0, C(CH3)2), 

24.0 (3JPC = 6.9, C(CH3)2), 16.5 (3JPC = 3.2, POCH2CH3), 16.4 (3JPC = 3.4, POCH2CH3), 

13.7 (3JPC = 13.7, PCCH3); m/z (CI) 334 (10%), 334 (MNa+, 95), 313 (10), 312 (MH+, 

100), 310 (70), 174 (40); HRMS C16H27NO3P, (MH+) requires 312.1723, found 312.1720 

and C16H26NNaO3P (MNa+) requires 334.1543, found 334.1534. 

The spectroscopic data is in agreement with reported data 190, 191 

 

N,N-Dimethyl-N'-tert-butylformamidine (221)151, 152, 192 

N H

N
 

To a stirred solution of N,N-dimethylformamide (155 mL, 2.0 mol) and dimethyl sulfate 

(190 mL, 2.0 mol) was heated at 80-90 °C for 3 h under nitrogen, then cooled to 0 °C. 

Then a solution of tert-butylamine (231 mL, 2.2 mol) in 400 mL of DCM was slowly 

added over 45 minutes and the resulting solution was then heated at reflux for 24 h. The 

reaction mixture was cooled and poured into 2 L of a 20% aq. potassium hydroxide 

solution. The organic layer was removed and the aqueous layer extracted three times with 

DCM (200 mL). The combined extracts were washed with brine (300 mL), dried over 

sodium sulfate, and concentrated by slow distillation at atmospheric pressure. The resulting 

liquid was fractionally distilled to provide N,N-dimethyl-N'-tert-butylformamidine as a 

colourless liquid, bp 130-134 °C (Lit 132-134 °C); νmax (thin film) 3361 (m), 2963 (s), 

1647 (s), 1436 (m), 1369 (s) /cm–1; δH (400 MHz, CDCl3) 7.15 (1H, s, NCH=NtBu), 2.65 

(6H, s, N(CH3)2), 1.00 (9H, s, NC(CH3)3); δC (100 MHz, CDCl3) 150.7 (NCH=NtBu), 52.6 

(C(CH3)3), 36.7 (N(CH3)2), 31.2 ((CH3)3); m/z (CI), 130 (10%), 129 (MH+, 100), 113 (10). 

The spectroscopic data is in agreement with reported data 151, 152, 192 

 

N-((3,4-Dihydroisoquinolin-2(1H)-yl)methylene)-2-methylpropan-2-amine (222) 151, 

152, 192  

N H

N
 

To a stirred solution of the 1,2,3,4-tetrahydroisoquinoline (1 equiv) under an atmosphere of 

N2, was added N,N -dimethyl-N'-tert-butylformamidine 221 (1.05 equiv), and a catalytic 
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amount of ammonium sulfate in toluene and heated at reflux for 48-72 h. After 

consumption of the starting material, the solvent was removed under reduced pressure. The 

resulting crude oil was purified by flash silica chromatography, elution gradient 12:1 

petrol:Et3N. Pure fractions were evaporated to dryness to afford the title compound as a 

colourless oil, (75-85%), Rf 0.60  (hexane:triethylamine, 10:1); νmax (thin film) 3276 (w), 

3022 (m), 2950 (s), 2820 (s), 1660 (s), 1583 (w) /cm–1; δH (400 MHz, CDCl3) 7.39 (1H, s, 

NC(N)H), 7.10-6.98 (4H, m, ArCH), 4.41 (2H, s, NCH2Ar), 3.41 (2H, t, J = 5.8 

NCH2CH2Ar), 2.72 (2H, t, J = 5.8 NCH2CH2Ar), 1.11 (9H, s, C(CH3)3); δC (100 MHz, 

CDCl3) 150.0 (NC(N)H), 134.6 (ArC), 133.7 (ArC), 128.7 (ArCH), 126.4 (ArCH), 125.9 (2 × 
ArCH), 53.1 (C(CH3)3), 46.4 (NCH2CH2Ar), 44.3 (NCH2Ar), 31.2 (3 × C(CH3)3), 29.2 

(NCH2CH2Ar); m/z (CI) 217 (MH+, 25%), 161 (100); HRMS found 217.1700; C14H21N2 

(MH+) requires 217.1699.  

The spectroscopic data is in agreement with reported data 151, 152, 192 

 

N-((1-Allyl-3,4-dihydroisoquinolin-2(1H)-yl)methylene)-2-methylpropan-2-amine 

(223) 151, 152, 192 

N H

N
 

To a stirred solution of N-((3,4-dihydroisoquinolin-2(1H)-yl)methylene)-2-methylpropan-

2-amine (1.0 equiv) in THF under nitrogen at -78 °C (dry ice/acetone), was  added sBuLi 

(1.1 equiv). The mixture become a yellow colour and was kept at -78 °C for 2 h, before the 

slow addition of allyl bromide (1.1 equiv), and the mixture slowly warmed to 0 °C over 3 

h. The mixture was then partitioned between sat. aq. NaHCO3 and DCM. After an 

additional extraction with dichloromethane (30 mL), the combined organic layers were 

washed with brine (30 mL), and dried over K2CO3. Concentration in vacuo yielded the 

crude alkylated formamidine. The resulting crude oil was purified by flash silica 

chromatography, elution gradient 12:1 petrol:Et3N. Pure fractions were evaporated to 

dryness to afford the title compound 223 as a pale yellow oil (69-80%), Rf 0.52 

(hexane:triethylamine, 10:1); νmax (thin film)/cm–1 3286 (w), 3031 (m), 2934 (s), 2819 (s), 

1675 (s), 1642 (m); δH (400 MHz, CDCl3) 7.34 (1H, s, NC(H)=N), 7.08-7.0 (4H, m, ArCH), 

5.80-5.70 (1H, m, CH=CH2), 5.00-4.92 (2H, m, CH=CH2), 4.69-4.60 (1H, m, NCH), 3.91-

3.80 (1H, m, NCH2CH2Ar), 3.32-3.20 (1H, m, NCH2CH2Ar), 2.92-2.81 (1H, m, 

NCH2CH2Ar), 2.68-2.60 (1H, m, NCH2CH2Ar), 2.52-2.40 (2H, m, CH2CH=CH2), 1.07 

(9H, s, C(CH3)3); δC (100 MHz, CDCl3) 149.9 (NC(H)=N), 137.5 (ArC), 135.5 (CH=CH2), 
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134.8 (ArC), 128.9 (ArCH), 126.9 (ArCH), 126.4 (ArCH), 125.7 (ArCH), 117.2 (CH=CH2), 

57.8 (NCH), 52.9 (C(CH3)3), 41.2 (NCH2CH2Ar), 31.5 (C(CH3)3), 28.2 (NCH2CH2Ar); m/z 

(CI) 272 (MNH4
+, 20%) 258 (10), 257 (MH+, 100), 200 (75). 

The spectroscopic data is in agreement with reported data 151, 152, 192 

 

1-Allyl-1,2,3,4-tetrahydroisoquinoline (203) 

NH

 
Procedure for Hydrolysis of Formamidine 223; A solution containing the formamidine 

223 (1 equiv) and KOH (7 equiv) in methanol/water (5/3), was heated at 60 °C under 

nitrogen for 12 h. The amine was extracted with DCM and the combined extracts dried 

over sodium sulfate and then concentrated in vacuo. The crude amine was purified by flash 

chromatography on silica gel to afford 1-allyl-1,2,3,4-tetrahydroisoquinoline 203 (85-

90%). The spectroscopic data is in agreement with reported data. 

 

Procedure for Hydrazinolysis of Formamidine 223; A solution of 1 equiv of the 

formamidine 223, 4 equiv of hydrazine, and 1 equiv of glacial acetic acid in ethanol was 

heated at 50 °C under nitrogen for 12 h. Upon cooling, the amine was extracted with DCM 

(3 × 50 mL), the combined organic layer was washed with a saturated aq. sodium 

bicarbonate solution and dried over anhydrous Na2SO4 and concentrated in vacuo. The 

crude amine was purified by flash chromatography on silica gel to afford 1-allyl-1,2,3,4-

tetrahydroisoquinoline 203 (52-82%). The spectroscopic data is in agreement with reported 

data. 
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7.3 - Experimental for Chapter 3 
 

General procedure 4 - Addition of silanes at elevated temperature 

A stirred solution of 1-octene (1.0 g, 9.0 mmol, 1.0 equiv), lauroyl peroxide (99 mg, 0.25 

mmol, 0.027 equiv) and the silane (9.8-35.7 mmol, 1.1-4.0 equiv), fitted with a short reflux 

condenser, was immersed in a preheated oil bath at 80 °C and, after allowing a few minutes 

for the solution to achieve thermal equilibrium, triisopropylsilane thiol (96 µL, 0.45 mmol, 

5 mol%) was added in a single portion. The mixture was heated for 1 h when a further 

portion of lauroyl peroxide (99 mg, 0.027 equiv, 0.25 mmol) was added and heated for a 

further 2 h. The crude product was purified by flash silica chromatography (elution 

gradient petrol). Pure fractions were evaporated to dryness to afford the title compounds 

(64-95%). 

 

Octyltriethylsilane (228)103, 104  

Si  
1-Octene (1.0 g, 9.0 mmol), lauroyl peroxide (99 mg, 0.25 mmol), triethylsilane (4.15 g, 

35.7 mmol), and triisopropylsilane thiol (96 µL, 0.45 mmol, 5 mol%) were reacted 

according to general procedure 4. Purification by column chromatography (silica, petrol) 

afforded the title compound 228 (1.25 g, 64%) as a colourless oil. Rf 0.85 (petrol); νmax 

(thin film)/cm–1 2920 (s), 2873 (s), 2853 (s), 1463 (m), 1415 (m), 1237 (w), 1014 (s); δH 

(400 MHz, CDCl3) 1.36-1.24 (12H, m, SiCH2CH2CH2CH2CH2CH2CH2CH3), 0.94 (9H, t, J 

= 7.9, SiCH2CH3), 0.89 (3H, t, J = 7.0, CH3), 0.54-0.49 (2H, m, SiCH2), 0.51 (6H, q, J = 

7.9, SiCH2CH3); δC (100 MHz, CDCl3) 34.0 (CH2), 32.0 (CH2), 29.4 (CH2), 29.3 (CH2), 

23.9 (CH2), 22.7 (CH2), 14.1 (CH3), 11.3 (CH2), 7.4 (3 × SiCH2CH3), 3.3 (3 × SiCH2CH3); 

m/z (ESI) 229 (20%), 228 (100, MH+), 199 (45). 

The spectroscopic data is in agreement with reported data.103, 104 

 

Octyltriphenylsilane (229) 103, 104  

SiPh

PhPh
 

1-Octene (1.00 g, 9.0 mmol), lauroyl peroxide (99 mg, 0.25 mmol), triphenylsilane (3.51 g, 

13.7 mmol) and hexane (15 mL) were reacted according to general procedure 4. 

Purification by column chromatography (silica, petrol) afforded the title compound 229 

(2.8 g, 86%) as a colourless oil, which forms a soft white wax solid on standing. Rf 0.75 
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(petrol); νmax (thin film)/cm–1 3066 (w), 3009 (w), 2923 (s), 2854 (s), 1485 (m), 1465 (m), 

1427 (s), 1110 (s); δH (400 MHz, CDCl3) 7.58-7.54 (2H, m, ArCH), 7.45-7.35 (3H, m, 
ArCH), 1.55-1.46 (2H, m, SiCH2), 1.44-1.36 (4H, m, 2 × CH2), 1.33-1.24 (8H, m, 4 × CH2), 

0.89 (3H, t, J = 6.8, CH3); δC (100 MHz, CDCl3) 135.6 (2 × ArCH), 135.4 (ArC), 129.3 

(ArCH), 127.8 (2 × ArCH), 33.8 (CH2), 31.9 (CH2), 29.2 (CH2), 29.1 (CH2), 23.9 (CH2), 

22.7 (CH2), 14.1 (CH3) and 13.2 (CH2); m/z (ESI) 373 (20%), 372 (100, MH+), 295 (20). 

The spectroscopic data is in agreement with reported data.103, 104 

 

Octyl(dimethyl))(phenyl)silane (230) 103, 104  

Si Ph  
1-Octene (1.00 g, 9.0 mmol), lauroyl peroxide (99 mg, 0.25 mmol), dimethylphenylsilane 

(1.33 g, 9.8 mmol) and hexane (5 mL) were reacted according to general procedure 4. 

Purification by column chromatography (silica, petrol) afforded the title compound (1.70 g, 

80%) as a colourless oil. Rf 0.80 (petrol); νmax (thin film)/cm–1 3058 (w), 2918 (s), 2857 

(s), 2120 (w), 1470 (m), 1431 (m); δH (400 MHz, CDCl3) 7.55-7.45 (2H, m, ArCH), 7.38-

7.30 (3H, m, ArCH), 1.33-1.20 (12H, m, CH2), 0.91 (3H, t, J = 7.0, CH3), 0.77 (2H, t, J = 

8.1, SiCH2), 0.29 (6H, s, Si(CH3)2); δC (100 MHz, CDCl3) 139.7 (ArC), 133.5 (2 × ArCH), 

128.7 (ArCH), 127.7 (2 × ArCH), 33.6 (CH2), 31.9 (CH2), 29.3 (2 × CH2), 23.8 (CH2), 22.6 

(CH2), 18.2 (CH2), 15.7 (CH2), 14.1 (CH3) and -3.0 (Si(CH3)2); m/z (ESI) 250 (20%), 249 

(100, MH+), 233 (30), 171 (20). 

The spectroscopic data is in agreement with reported data.103, 104 

 

General procedure 5 - Cyclisation of 1,6-dienes using phenylsilanes 

A solution of the 1,6-diene (3.8-10.0 mmol, 1.0 equiv), dimethylphenylsilane (7.6-22.0 

mmol, 2.2 equiv), or triphenylsilane (2.8 g, 11.0 mmol, 1.1 equiv), triisopropylsilane thiol 

(42-105 µL, 0.2-0.5 mmol, 5 mol%, care required due to noxious smell) and tert-butyl 

peroxide (0.11-0.30 g, 0.95-2.5 mmol, 0.25 equiv) in benzene (20 mL) were sealed in an 

Ace pressure tube,291 and immersed in a preheated oil bath at 140 °C and stirred for 6 h. 

The reaction mixture was evaporated under reduced pressure, and the resulting crude 

product was purified by flash silica chromatography, elution gradient petrol to 10:1 

petrol:EtOAc. Pure fractions were evaporated to dryness to afford the title compounds (52-

88%) as a mixture of diastereoisomers. 
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((4-Methyltetrahydrofuran-3-yl)methyl)triphenylsilane (231) 

O

Ph3Si

 
Diallyl ether (1.0 g, 10.0 mmol) was reacted with triphenylsilane (2.8 g, 11.0 mmol) 

according to general procedure 5. After removal of the solvent, the crude product was 

purified by flash silica chromatography (elution gradient petrol to petrol:ethyl acetate, 

10:1) pure fractions were evaporated to dryness to afford the title product 231 (2.55 g, 

69%) as a colourless oil which solidifies to form a white, waxy low melting point solid, 

MP = 25-30 ºC, Rf 0.51 (petrol:ethyl acetate, 14:1) as an inseparable mixture of 

diastereoisomers (ratio of cis:trans = 3:1); νmax (thin film)/cm–1 3070 (m), 3005 (m), 2950 

(s), 1429 (s), 1252 (s), 1110 (s); Major (cis) diastereoisomer δH (400 MHz, CDCl3) 7.70-

7.62 (6H, m, ArCH), 7.50-7.42 (9H, m, ArCH), 3.92 (1H, dd, J = 7.9 and 6.1, CH2O), 3.70-

3.64 (1H, m, CH2O), 3.38-3.30 (1H, m, CH2O), 2.64-2.54 (1H, m, CH), 2.24-2.06 (1H, m, 

CH), 1.68 (1H, dd, J = 14.9 and 4.2, SiCH2), 1.46 (1H, dd, J = 14.9 and 10.0, SiCH2), 1.03 

(3H, d, J = 7.0, CH3); δC (100 MHz, CDCl3) 135.5 (6 × ArCH), 134.7 (3 × ArC), 129.4 (3 × 
ArCH), 127.8 (6 × ArCH), 74.5 (OCH2), 73.0 (OCH2), 37.9 (OCH2CH), 37.3 (OCH2CH), 

13.0 (CH3), 10.5 (SiCH2); m/z (CI) 382 (25%), 381 (100, MNa+), 377 (10), 376 (MNH4
+, 

30). HRMS C24H26NaOSi (MNa+) requires 381.1645, found 381.1651. 

The minor (trans) diastereoisomer was identified by the following key peaks; δH (400 

MHz, CDCl3) 4.04 (1H, t, J = 7.6, CH2O), 3.70-3.64 (1H, m, CH2O), 3.38-3.30 (1H, m, 

CH2O), 3.23 (1H, t, J = 8.4, CH2O), 1.07 (3H, d, J = 6.7, CH3); δC (100 MHz, CDCl3) 75.0 

(OCH2), 74.2 (OCH2), 43.4 (OCH2CH), 42.8 (OCH2CH), 15.7 (SiCH2), 15.4 (CH3). 

 

((Tetrahydro-4-methylfuran-3-yl)methyl)dimethyl(phenyl)silane (232) 

O

PhMe2Si

 
Diallyl ether (1.0 g, 10.0 mmol) was reacted with dimethylphenylsilane (2.6 g, 22.0 mmol), 

according to general procedure 5. After removal of the solvent, the crude product was 

purified by flash silica chromatography (elution gradient petrol to petrol:ethyl acetate, 

10:1), pure fractions were evaporated to dryness to afford the title product 232 (1.86 g, 

52%) as a colourless oil, Rf 0.43 (petrol:ethyl acetate, 10:1), as an inseparable mixture of 

diastereoisomers (ratio of cis:trans  = 1.9:1); νmax (thin film)/cm–1 3068 (m), 2955 (s), 1426 

(s), 1249 (s), 1113 (s); major (cis) isomer δH (400 MHz, CDCl3) 7.57-7.52 (2H, m, ArCH), 

7.41-7.36 (3H, m, ArCH), 3.89 (1H, dd, J = 8.0 and 6.0, CH2O), 3.83 (1H, app t, J = 7.5, 
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CH2O), 3.49 (1H, dd, J = 8.0 and 3.5, CH2O), 3.30 (1H, app t, J = 8.4, CH2O), 2.38-2.26 

(1H, m, CH2CH2O), 2.22-2.12 (1H, m, ), 0.97 (1H, app dd, J = 14.6 and 5.5, SiCH2), 0.93 

(3H, d, J = 7.0, CH3), 0.76 (1H, app dd, J = 14.6 and 9.7, SiCH2), 0.20 (6H, s, Si(CH3)2); 

δC (100 MHz, CDCl3) 138.8 (ArC), 133.8 (2 × ArCH), 128.9 (ArCH), 127.7 (2 × ArCH), 74.8 

(OCH2), 73.0 (OCH2), 38.2 (OCH2CH), 37.2 (OCH2CH), 13.2 (SiCH2), 13.0 (CH3), -2.5 (2 

× Si(CH3)2); m/z (CI) 257 (40%, MNa+), 253 (10), 252 (70, MNH4
+), 174 (15), 157 (100); 

HRMS C14H22NaOSi (MNa+) requires 257.1332, found 257.1330. 

The spectroscopic data is in agreement with reported data 292 

 

Dimethyl((2-methylcyclopentyl)methyl)(phenyl)silane (233) 

PhMe2Si

 
1,6-Heptadiene (1.0 g, 10.0 mmol) was reacted with dimethylphenylsilane (2.6 g, 22.0 

mmol), according to general procedure 5. After removal of the solvent, the crude product 

was purified by flash silica chromatography (petrol), pure fractions were evaporated to 

dryness to afford the title product 233 (1.7 g, 68%) as a colourless oil, Rf 0.85 (petrol), as 

an inseparable mixture of diastereoisomers (cis:trans  = 2:1); νmax (thin film)/cm–1 3062 

(w), 2923 (s), 2849 (s), 2131 (w), 1476 (m), 1435 (m); Both diastereoisomers, δH (400 

MHz, CDCl3) 7.68-7.60 (2H, m, ArCH), 7.47-7.41 (3H, m, ArCH), 2.02-1.83 (2H, m CH2), 

1.81-1.69 (2H, m, CH2), 1.67 (1H, m, CH), 1.44-1.16 (4H, m, CH, CH2 and SiCH2), 1.08-

0.74 (4H, m, SiCH2 and CH3), 0.23 (6H, s, Si(CH3)2); Major (cis) diastereoisomer, δC (100 

MHz, CDCl3) 140.1 (ArC), 133.5 (2 × ArCH), 128.6 (ArCH), 127.6 (2 × ArCH), 39.1 (CH), 

38.2 (CH), 32.9 (CH2), 32.1 (CH2), 22.5 (CH2), 16.6 (CH2), 14.8 (CH3), -2.26 and -2.33 (2 

× Si(CH3)2); Minor (trans) diastereoisomer, δC (100 MHz, CDCl3) 44.3 (CH), 43.9 (CH), 

34.7 (CH2), 33.9 (CH2), 23.1 (CH2), 20.6 (CH2), 18.4 (CH3), -1.9 and -2.0 (2 × Si(CH3)2); 

m/z (Cl, NH3) 251 (12%), 250 (MNH4
+, 60), 233 (MH+, 30), 151 (100), 136 (40). 

The spectroscopic data is in agreement with reported data 292, 293 

 

Diethyl 3-((dimethyl(phenyl)silyl)methyl)-4-methylcyclopentane-1,1-dicarboxylate 

(234) 

PhMe2Si

OO
OO
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Diethyl diallyl malonate (2.4 g, 10.0 mmol), was reacted with dimethylphenylsilane (2.6 g, 

22.0 mmol), according to general procedure 5. After removal of the solvent, the crude 

product was purified by flash silica chromatography (elution gradient petrol to petrol:ethyl 

acetate, 10:1), pure fractions were evaporated to dryness to afford the title product 234 

(3.24 g, 88%) as a colourless oil, Rf 0.40 (petrol:ethyl acetate, 10:1), as an inseparable 

mixture of diastereoisomers (cis:trans = 3.8:1); νmax (thin film)/cm–1 3068 (m), 2955 (s), 

2110 (w), 1728 (s), 1462 (m), 1427 (m), 1365 (m), 1250 (s); Major (cis) diastereoisomer, 

δH (400 MHz, CDCl3) 7.43-7.36 (2H, m, ArCH), 7.26-7.20 (3H, m, ArCH), 4.08-3.98 (4H, 

m, OCH2CH3), 2.42-2.26 (2H, m, CH2C(CO2Et2)2CH2), 2.05-1.88 (2H, m, 

CH2C(CO2Et2)2CH2), 1.82-1.74 (1H, m, CH), 1.11 (6H app t, J = 7.0, OCH2CH3), 1.01 

(1H, app d, J = 6.1, CH2Si), 0.84 (1H, app d, J = 6.1, CH2Si), 0.80-0.74 (1H, m, CH), 0.70 

(3H, app d, J = 5.8, .CH3), 0.20 (6H, s, Si(CH3)2); δC (100 MHz, CDCl3) 172.9 (2 × C=O), 

139.3 (ArC), 133.4 (2 × ArCH), 128.7 (ArCH), 127.8 (2 × ArCH), 61.1 (2 × OCH2CH3), 58.8 

(C(CO2Et2)2), 40.9 (CH2), 40.3 (CH2), 38.7 (CH), 37.6 (CH), 15.8 (SiCH2), 14.8 (CH3), 

13.9 (2 × OCH2CH3), -2.2 and -2.5 (2 × Si(CH3)2); m/z (Cl) 400 (30%), 399 (MNa+, 100), 

331 (15), 299 (15), 225 (25), 181 (30); HRMS (CI) C21H32O4SiNa+ (MNa+) requires 

399.1962, found 399.1963. 

The spectroscopic data is in agreement with reported data. 292 

 

2,2,2-Trifluoro-1-(3-methyl-4-((dimethyl(phenyl)silyl)methyl)pyrrolidin-1-

yl)ethanone (235) 

N

SiMe2Ph

O CF3

 
N,N-Diallyltrifluoroacetamide (0.75 g, 3.8 mmol), dimethylphenylsilane (0.6 g, 4.4 mmol), 

triisopropylsilane thiol (0.034 g, 0.3 mmol) and tert-butyl peroxide (0.14 g, 1.2 mmol), was 

reacted, according to general procedure 5. After removal of the solvent, the crude product 

was purified by flash silica chromatography (elution gradient petrol to petrol:ethyl acetate, 

10:1), pure fractions were evaporated to dryness to afford the title product 235 (0.65 g, 

52%); Rf 0.55 (petrol:ethyl acetate, 10:1), as an inseparable mixture of diastereoisomers 

and rotamers; νmax (thin film)/cm–1 3150 (w), 3025 (w), 2976 (w), 1642 (s); both 

diastereoisomers, δH (400 MHz, CDCl3) 7.53-7.48 (2H, m, ArCH), 7.41-7.37 (3H, m, 
ArCH), 3.88-3.50 (2H, m, CH2NCH2), 3.42-2.90 (2H, m, CH2NCH2), 2.34-2.15 (1H, m, 

CH), 1.88-1.60 (1H, m, CH), 1.19-1.12 (2H, app d, J = 7.3, CH2Si), 0.91 (3H, app d, J = 

4.0, CHCH3), 0.36 (3H, s, Si(CH3)2), 0.32 (3H, s, Si(CH3)2); both diastereoisomers, δC 
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(100 MHz, CDCl3) 155.5 (q, 2JCP = 36.8, NC(O)CF3), 138.1 (ArC), 133.3 (2 × ArCH), 129.2 

(ArCH), 127.9 (2 × ArCH), 116.2 (q, 1JCP = 293, CF3), 116.1 (q, 1JCP = 293, CF3), 54.2 

(NCH2), 54.0 (NCH2), 53.5 (NCH2), 52.1 (NCH2), 38.4 (CH), 37.2 (CH), 35.8 (CH), 34.4 

(CH), 15.0 (CH2Si), 14.7 (CH2Si), 12.9 (CHCH3), 12.7 (CHCH3), -2.2 (Si(CH3)2), -2.4 

(Si(CH3)2), -2.5 (Si(CH3)2), -2.8 (Si(CH3)2); m/z (CI) 352 (MNa+, 12%), 331 (10), 330 

(MH+, 55), 293 (12), 252 (95), 203 (12), 202 (100); HRMS C16H23F3NOSi (MH+) requires 

330.1496, found 330.1508. 

 

1-(3-((Dimethyl(phenyl)silyl)methyl)-4-methylpyrrolidin-1-yl)ethanone (236) 

N

SiMe2Ph

O

 
Diethyl N,N-diallylacetamide (0.52 g, 3.8 mmol), dimethylphenylsilane (0.6 g, 4.4 mmol), 

triisopropylsilane thiol (0.034 g, 0.3 mmol) and tert-butyl peroxide (0.14 g, 1.2 mmol), was 

reacted, according to general procedure 5. After removal of the solvent, the crude product 

was purified by flash silica chromatography (elution gradient petrol to petrol:ethyl acetate, 

10:1) pure fractions were evaporated to dryness to afford the title product 236 (0.68 g, 

70%) as a colourless oil, Rf 0.60 (petrol:ethyl acetate, 10:1), as an inseparable mixture of 

diastereoisomers and rotamers; νmax (thin film)/cm–1 3040 (w), 2986 (w), 1652 (s); δH (400 

MHz, CDCl3) 7.57-7.45 (2H, m, ArCH), 7.41-7.30 (3H, m, ArCH), 3.82-2.70 (4H, m, 

NCH2), 2.17-1.50 (5H, NC(O)CH3 and CHCH), 1.20-0.54 (5H, CHCH3 and CHCH2Si), 

0.30-0.35 (6H, m, Si(CH3)2); m/z (CI) 277 (20%), 276 (MH+, 100), 232 (40), 140 (10); 

HRMS C16H26NOSi (MH+) requires 276.1778, found 275.1780. 

The spectroscopic data is in agreement with reported data. 292 

 

3-((Dimethyl(phenyl)silyl)methyl)-4-methylcyclopentanol (239) and 1,7-

bis(dimethyl(phenyl)silyl)heptan-4-ol (240) 

PhMe2Si

OH

PhMe2Si SiMe2Ph

OH  
1,6-Heptadien-4-ol (1.0 g, 9.0 mmol) was reacted with dimethylphenylsilane (2.4 g, 20.0 

mmol), according to general procedure 5. After removal of the solvent, the crude product 

was purified by flash silica chromatography (elution gradient petrol to petrol:ethyl acetate, 

10:1), pure fractions were evaporated to dryness to afford the title products. 
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 3-((Dimethyl(phenyl)silyl)methyl)-4-methylcyclopentanol (239), the 5-exo product 

was obtained as a pale yellow oil, (1.63 g, 73%), Rf 0.40 (petrol:ethyl acetate, 10:1), as an 

inseparable mixture of 4 diastereoisomers; νmax (thin film)/cm-1 3338 (bs), 3068 (w), 2952 

(s), 2868 (m), 1426 (w), 1248 (s), 1112 (s); all diastereoisomers, δH (400 MHz, CDCl3) 

7.47-7.43 (2H, m, ArCH), 7.30-7.25 (3H, m, ArCH), 4.23-4.08 (1H, m, CHOH), 2.21-1.80 

(3H, m, CH2), 1.70-1.40 (2H, m, CH and CH2), 1.30-0.99 (2H, m CH2Si), 0.90-0.50 (4H, 

m, CH and CHCH3), 0.22 (6H, s, Si(CH3)2); all diastereoisomers, δC (100 MHz, CDCl3) 

139.6 (ArC), 133.4 (ArCH), 133.3 (ArCH), 128.6 (ArCH), 127.6 (ArCH), 72.6 (CH(OH)), 72.1 

(CH(OH)), 71.8 (CH(OH)) and 71.7 (CH(OH)), 44.9 (CH2), 44.2 (CH2), 44.1 (CH2), 43.7 

(CH2), 43.2 (CH), 43.1 (CH2), 42.7 (CH), 42.6 (CH2), 41.5 (CH), 41.3 (CH), 37.5 (CH), 

36.6 (CH), 36.5 (2 x CH), 20.6 (CH2Si), 20.3 (CH2Si), 18.8 (CH3), 17.8 (CH3), 16.8 

(CH2Si), 16.6 (CH2Si), 16.0 (CH3) and 15.4 (CH3), -2.3 (Si(CH3)2), -2.4 (Si(CH3)2), -2.5 

(Si(CH3)2), -2.6 (Si(CH3)2); m/z (Cl) 266 (MNH4
+, 15%), 249 (MH+, 17), 234 (75), 217 

(25), 172 (70), 152 (100). 

 Bis(dimethyl(phenyl)silyl)heptan-4-ol (240), the di-addition product was isolated as 

a pale yellow oil (0.52 g, 15%); Rf = 0.8 (10:1, petrol:ethyl acetate); νmax (thin film)/cm–1 

3339 (bs), 3068 (m), 2952 (s), 1422 (s), 1248 (s), 1112 (s); δH (400 MHz, CDCl3) 7.44-

7.40 (4H, m, ArCH), 7.28-7.24 (6H, m, ArCH), 3.50-3.44 (1H, m, CHOH), 1.42-1.18 (8H, 

m, 4 × CH2), 0.89 (1H, bs, OH), 0.76-0.56 (4H, m, 2 × SiCH2), 0.18 (12H, s, 2 × 

Si(CH3)2); δC (100 MHz, CDCl3) 139.4 (2 × ArC), 133.5 (4 × ArCH), 128.8 (2 × ArCH), 

127.7 (4 × ArCH), 71.2 (CHOH), 41.4 (2 × CH2CHOH), 19.9 (2 × CH2), 15.7 (2 × CH2), -

3.0 (4 × Si(CH3)2); m/z (CI) 387 (10%), 386 (30), 385 (100, MH+), 250 (20).  

 

Dimethyl(oct-7-enyl)(phenyl)silane (242) and 1,8-bis(dimethyl(phenyl)silyl)octane 

(243) 

SiMe2Ph SiMe2Ph
SiMe2Ph

 
 

1,7-Octadiene (1.0 g, 9.7 mmol) was reacted with dimethylphenylsilane (2.6 g, 22.0 

mmol), according to general procedure 5. After removal of the solvent, the crude product 

was purified by flash silica chromatography (elution gradient petrol), pure fractions were 

evaporated to dryness to afford the title products, dimethyl(oct-7-enyl)(phenyl)silane 

(242), the product of mono-addition (0.6 g, 26%) and 1,8-bis(dimethyl(phenyl)silyl)octane 

(243), the product of di-addition (1.2 g, 34 %). 
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A solution of 1,7-octadiene (1.0 g, 9.7 mmol), dimethylphenylsilane (1.3 g, 9.7 mmol), 

triisopropylsilane thiol (86 µL, 0.45 mmol) and tert-butyl peroxide (0.30 g, 0.2.5 mmol) in 

benzene (60 mL) were sealed in a tube and immersed in a preheated oil bath at 140 °C and 

stirred for 6 h. Removal of the solvent under reduced pressure afforded the crude product. 

The crude product was purified by flash silica chromatography (elution gradient petrol), 

pure fractions were evaporated to dryness to afford the title products, dimethyl(oct-7-

enyl)(phenyl)silane (242) (0.9 g, 40%) and 1,8-bis(dimethyl(phenyl)silyl)octane (243) 

(0.11 g, 5%). 

 Dimethyl(oct-7-enyl)(phenyl)silane (242) was isolated as a colourless oil; Rf = 0.5 

(petrol); νmax (thin film)/cm–1 3068 (m), 3050 (w), 2999 (w), 2922 (s), 2853 (s), 1640 (w), 

1426 (m), 1247 (s), 1112 (s); δH (400 MHz, CDCl3) 7.62-7.58 (2H, m, ArCH), 7.45-7.41 

(3H, m, ArCH), 5.94-5.84 (1H, m, CH2=CH), 5.11-5.00 (2H, m, CH2=CH), 2.14-2.08 (2H, 

m, CH2CH2=CH), 1.48-1.38 (8H, 4 × m, CH2), 0.87-0.81 (2H, m, SiCH2), 0.35 (6H, s, 

Si(CH3)2); δC (100 MHz, CDCl3) 139.6 (ArC), 139.1 (CH=CH2), 133.5 (2 × ArCH), 128.7 

(ArCH), 127.7 (2 × ArCH), 114.1 (CH=CH2), 33.8 (CH2), 33.4 (CH2), 28.9 (CH2), 28.8 

(CH2), 23.8 (CH2), 15.7 (CH2), 2.75 (2 × Si(CH3)2); m/z (ESI) 247 (15%), 246 (100, M+), 

231 (20), 169 (30). 

The spectroscopic data is in agreement with reported data.293 

 1,8-Bis(dimethyl(phenyl)silyl)octane (243) was isolated as a colourless oil; Rf 0.58 

(petrol); νmax (thin film)/cm–1 3067 (m), 3048 (m), 3020 (w), 2916 (s), 2851 (s), 1461 (w), 

1426 (s), 1247 (s), 1181 (w), 1112 (m); δH (400 MHz, CDCl3) 7.66-7.61 (4H, m, ArCH), 

7.47-7.43 (6H, m, ArCH), 1.48-1.30 (12H, m, CH2), 0.89-0.81 (4H, m, SiCH2), 0.38 (12H, 

s, Si(CH3)2); δC (100 MHz, CDCl3) 139.7 (2 × ArC), 133.5 (4 × ArCH), 128.7 (2 × ArCH), 

127.6 (4 × ArCH), 33.5 (2 × CH2), 29.2 (2 × CH2), 23.8 (2 × CH2), 15.7 (2 × CH2), -2.9 (4 × 

Si(CH3)2); m/z (ESI) 383 (30%), 282 (100, M+), 367 (25), 305 (40). 

The spectroscopic data is in agreement with reported data.293 

 

General procedure 6 - Addition of dimethylphenylsilane to alkenes at room 

temperature 

To a stirred solution of the alkene (10 mmol, 1 equiv.), dimethylphenylsilane (2.0 g, 15 

mmol, 1.5 equiv.) in THF (3 mL) was added triethylborane in THF (0.5 mL, 1 M solution, 

5 mmol, 0.5 equiv.) and shortly after triisopropylsilane thiol (105 µL, 0.5 mmol, 5 mol%, 

care required due to noxious smell). After stirring at room temperature for 1 h, a further 

portion of triethylborane in THF (0.5 mL, 1 M solution 5 mmol, 0.5 equiv.) was added and 

left stirring overnight. Removal of the solvent under reduced pressure afforded the crude 
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product. The crude product was purified by flash silica chromatography (elution gradient 

petrol to petrol:ethyl acetate, 5:1), pure fractions were evaporated to dryness to afford the 

silane addition products (56-95%)  

 

Octyl(dimethyl)(phenyl)silane (230) 

Si  
1-Octene (1.12 g, 10 mmol) was reacted, according to general procedure 6. After removal 

of the solvent, the crude product was purified by flash silica chromatography (petrol), pure 

fractions were evaporated to dryness to afford the title compound (2.2 g, 88%) as a 

colourless oil; Rf 0.80 (petrol). 

The spectroscopic data matches the sample prepared according to general procedure 4. 

 

(3-(4-Methoxyphenyl)propyl)dimethyl(phenyl)silane (245) 

O

Si

 
1-Allyl-4-methoxybenzene (1.48 g, 10 mmol) was reacted according to general procedure 

6. After removal of the solvent, the crude product was purified by flash silica 

chromatography (elution gradient petrol to petrol:EtOAc, 10:1), pure fractions were 

evaporated to dryness to afford the title compound 245 (2.61 g, 92%) as a colourless oil, Rf 

= 0.45 (Petrol:EtOAc 10:1); νmax (thin film)/cm–1 3010 (w), 2988 (w), 2959 (w), 2837 (w), 

1743 (m), 1503 (w), 1512 (s), 1466 (m); δH (400 MHz, CDCl3) 7.57-7.53 (2H, m, ArCH), 

7.42-7.38 (3H, m, ArCH), 7.11 (2H, app dd, J = 8.6 and 2.1, ArCH), 6.87 (2H, app dd, J = 

8.6 and 2.1, ArCH), 3.81 (3H, s, OCH3), 2.61 (2H, t, J = 7.7, ArCH2), 1.71-1.63 (2H, m, 

CH2), 0.86-0.79 (2H, m, SiCH2), 0.29 (6H, s, Si(CH3)2); δC (100 MHz, CDCl3) 157.9 

(ArCO), 139.6 (ArC), 134.4 (ArC), 133.7 (2 × ArCH), 129.5 (2 × ArCH), 128.9 (ArCH), 127.9 

(2 × ArCH), 113.7 (2 × ArCH), 55.0 (OCH3), 38.5 (ArCH2), 25.8 (CH2), 15.0 (SiCH2), -3.5 

(2 × Si(CH3)2); m/z (ESI) 285 (20%), 284 (100, M+), 207 (10). 

The spectroscopic data is in agreement with reported data.294 

 

Dimethyl(hexyl)(phenyl)silane (246) 

Si  
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1-Hexene (0.84 g, 10 mmol) was reacted, according to general procedure 6. After 

removal of the solvent, the crude product was purified by flash silica chromatography 

(petrol), pure fractions were evaporated to dryness to afford the title compound 246 (1.97 

g, 90%) as a colourless oil; Rf 0.80 (petrol); νmax (thin film)/cm–1 3036 (w), 2940 (s), 2884 

(s), 1435 (m), 1269 (s); δH (400 MHz, CDCl3) 7.63-7.58 (2H, m, ArH), 7.44-7.41 (3H, m, 

ArH), 1.43-1.31 (8H, m, 4 × CH2), 0.96 (3H, t, J = 6.9, CH3), 0.87-0.81 (2H, m, SiCH2), 

0.34 (6H, s, Si(CH3)2); δC (100 MHz, CDCl3) 139.7 (ArC), 133.5 (2 × ArCH), 128.7 (ArCH), 

127.6 (2 × ArCH), 33.3 (CH2), 31.5 (CH2), 23.8 (CH2), 22.6 (CH2), 15.7 (CH2), 14.1 (CH3), 

-3.0 (2 × SiCH3); m/z (ESI) 221 (20%), 220 (100, M+), 142 (15). 

The spectroscopic data is in agreement with reported data..103 

 

Dimethyl(4-methylpentyl)(phenyl)silane (247) 

Si
 

4-Methylpent-1-ene (0.84 g, 10 mmol) was reacted, according to general procedure 6. 

After removal of the solvent, the crude product was purified by flash silica 

chromatography (petrol), pure fractions were evaporated to dryness to afford the title 

compound 247 (1.8 g, 95%) as a colourless oil; Rf 0.80 (petrol); νmax (thin film)/cm–1 2953 

(s), 2919 (m), 2869 (w), 1467 (w), 1426 (m); δH (400 MHz, CDCl3) 7.57-7.54 (2H, m, 
ArCH), 7.40-7.37 (3H, m, ArCH), 1.57 (1H, sept, J = 6.6 Hz, CH(CH3)2), 1.41-1.32 (2H, m, 

CH2), 1.26-1.20 (2H, m, CH2), 0.88 (6H, d, J = 6.6 Hz, CH(CH3)2), 0.79-0.74 (2H, m, 

SiCH2), 0.30 (6H, s, Si(CH3)2); δC (100 MHz, CDCl3) 139.7 (ArC), 133.5 (2 × ArCH), 128.7 

(ArCH), 127.6 (2 × ArCH), 43.0 (CH2), 27.6 (CH(CH3)2), 22.6 (2 × CH(CH3)2), 21.5 (CH2), 

15.7 (SiCH2), -2.9 (2 × SiCH3); m/z (ESI) 222 (8%), 221 (20), 220 (100, M+), 142 (15). 

The spectroscopic data is in agreement with reported data.294 

 

6-(Dimethyl(phenyl)silyl)hexan-2-one (248) 

Si

O

 
Hex-5-en-2-one (0.98 g, 10 mmol) was reacted, according to general procedure 6. After 

removal of the solvent, the crude product was purified by flash silica chromatography 

(elution gradient petrol to petrol:Et2O, 10:1), pure fractions were evaporated to dryness to 

afford the title compound 248 (2.06 g, 88%) as a colourless oil; Rf 0.70 (petrol:Et2O 10:1); 

νmax (thin film)/cm–1 2952 (m), 2948 (m), 1739 (m), 1715 (s), 1427 (m), 1370 (m), 1246 
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(s); δH (400 MHz, CDCl3) 7.54-7.50 (2H, m, ArCH), 7.38-7.35 (3H, m, ArCH), 2.40 (2H, t, J 

= 7.4, C(O)CH2), 2.11 (3H, s, CH3C(O)), 1.60 (2H, app quint, J = 7.4, CH2), 1.39-1.30 

(2H, m, CH2), 0.81-0.74 (2H, m, SiCH2), 0.28 (6H, s, Si(CH3)2); δC (100 MHz, CDCl3) 

209.1 (C=O), 139.1 (ArC), 133.4 (2 × ArCH), 128.7 (ArCH), 127.6 (2 × ArCH), 43.3 (CH2), 

29.6 (C(O)CH3), 27.4 (CH2), 23.4 (CH2), 15.5 (SiCH2), -2.9 (2 × SiCH3); m/z (CI) 258 

(15%), 257 (MNa+, 100); HRMS C14H22NaOSi (MH+) requires 257.1332, found 257.1327. 

 

3-(Dimethyl(phenyl)silyl)propyl acetate (249) 

O Si

O  
Allyl acetate (1.0 g, 10 mmol) was reacted, according to general procedure 6. After 

removal of the solvent, the crude product was purified by flash silica chromatography 

(elution gradient petrol to petrol:EtOAc, 10:1), pure fractions were evaporated to dryness 

to afford the title compound 249 (2.07 g, 88%) as a colourless oil; Rf 0.78 (petrol:EtOAc, 

10:1); νmax (thin film)/cm–1 3070 (w), 3004 (w), 2953 (m), 1735 (s), 1465 (w), 1427 (m); 

δH (400 MHz, CDCl3) 7.56-7.51 (2H, m, ArCH), 7.40-7.31 (3H, m, ArCH), 4.03 (2H, t, J = 

6.9, OCH2), 2.05 (3H, s, CH3CO), 1.70-1.63 (2H, m, OCH2CH2), 0.81-0.75 (2H, m, 

CH2Si), 0.31 (6H, s, Si(CH3)2); δC (100 MHz, CDCl3) 171.0 (C=O), 138.6 (ArC), 133.4 (2 

× ArCH), 128.9 (ArCH), 127.7 (2 × ArCH), 66.8 (OCH2), 23.1 (CH2), 20.9 (CH3C(O)), 11.5 

(SiCH2), -3.2 (2 × SiCH3); m/z (CI) 255 (10%), 254 (MNH4
+, 60), 238 (15), 237 (MH+, 

100), 159 (45); HRMS C13H21O2Si (MH+) requires 237.1305, found 237.1302. 

 

(3-Cyclopropoxypropyl)dimethyl(phenyl)silane (250) 

O Si

 
(Allyloxy)cyclopropane (0.98 g, 10 mmol) was reacted, according to general procedure 6. 

After removal of the solvent, the crude product was purified by flash silica 

chromatography (elution gradient petrol to petrol:EtOAc, 10:1), pure fractions were 

evaporated to dryness to afford the title compound 250 (1.95 g, 85%) as a colourless oil, Rf 

= 0.65 (Petrol:Et2O 10:1); νmax (thin film)/cm–1 3004 (w), 2953 (w), 2868 (w), 1427 (m), 

1336 (w); δH (400 MHz, CDCl3) 7.58-7.54 (2H, m, ArCH), 7.41-7.37 (3H, m, ArCH), 3.70 

(1H, dd, J=11.5 and 3.0, CH2), 3.52-3.43 (2H, m, CH2O), 3.37 (1H, dd, J = 11.5 and 5.8, 

CH2), 3.17-3.13 (1H, m, OCH), 2.79 (1H, dd, J = 4.9 and 4.1, CH2), 2.61 (1H, dd, J = 4.9 

and 2.7, CH2), 1.71-1.62 (2H, m, CH2), 0.83-0.77 (2H, m, SiCH2), 0.32 (6H, s, Si(CH3)2); 
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δC (100 MHz, CDCl3) 139.0 (ArC), 133.5 (2 × ArCH), 128.8 (ArCH), 127.7 (2 × ArCH), 74.2 

(CH2), 71.3 (CH2), 50.8 (OCH), 44.2 (OCH2), 24.0 (CH2), 11.6 (SiCH2), -3.15 (2 × 

Si(CH3)2); m/z (CI, NH3) 275 (MMeCN+, 30%), 273 (100).  

 

Dimethyl(phenyl)(3-phenylpropyl)silane (251) 

Si

 
1-Allylbenzene (1.18 g, 10 mmol) was reacted, according to general procedure 6. After 

removal of the solvent, the crude product was purified by flash silica chromatography 

(elution gradient petrol to petrol:EtOAc, 10:1), pure fractions were evaporated to dryness 

to afford the title compound 251 (1.79 g, 71%) as a colourless oil, Rf = 0.26 (Petrol); νmax 

(thin film)/cm–1 3005 (w), 2989 (w), 1559 (w), 1458 (w), 1275 (s), 1260 (s); δH (400 MHz, 

CDCl3) 7.60-7.56 (2H, m, ArCH), 7.45-7.41 (3H, m, ArCH), 7.35 (2H, app tt, J = 7.3 and 

1.5, ArCH), 7.27 (1H, app dt, J = 7.3 and 1.5, ArCH), 7.23 (2H, app dd, J = 7.3 and 1.5, 
ArCH), 2.70 (2H, t, J = 7.6, ArCH2), 1.78-1.69 (2H, m, CH2), 0.92-0.84 (2H, m, SiCH2), 

0.34 (6H, s, Si(CH3)2); δC (100 MHz, CDCl3) 142.8 (ArC), 139.6 (ArC), 133.8 (2 × ArCH), 

129.0 (ArCH), 128.7 (2 × ArCH), 128.4 (2 × ArCH), 127.9 (2 × ArCH), 125.8 (ArCH), 39.5 

(ArCH2), 25.7 (CH2), 15.2 (SiCH2), -3.4 (2 × Si(CH3)2); m/z (ESI) 255 (20%), 254 (100, 

M+). 

The spectroscopic data is in agreement with reported data.294 

 

Dimethyl(3-phenoxypropyl)(phenyl)silane (252) 

O Si

 
1-(Allyloxy)benzene (1.34 g, 10 mmol) was reacted, according to general procedure 6. 

After removal of the solvent, the crude product was purified by flash silica 

chromatography (elution gradient petrol to petrol:EtOAc, 10:1), pure fractions were 

evaporated to dryness to afford the title compound 252 (2.37 g, 88%) as a colourless oil, Rf 

= 0.64 (Petrol:EtOAc 10:1); νmax (thin film)/cm–1 3054 (w), 2996 (w), 2972 (w), 2886 (w), 

1591 (m), 1479 (m); δH (400 MHz, CDCl3) 7.58-7.54 (2H, m, ArCH), 7.42-7.36 (3H, m, 
ArCH), 7.32 (2H, t, J = 7.3 ArCH), 6.95 (1H, app tt, J = 7.3 and 1.0, ArCH), 6.90 (2H, app 

dd, J = 7.3 and 1.0, ArCH), 3.92 (2H, t, J = 7.6, OCH2), 1.87-1.79 (2H, m, CH2), 0.93-0.85 

(2H, m, SiCH2), 0.32 (6H, s, Si(CH3)2); δC (100 MHz, CDCl3) 159.4 (ArCO), 139.2 (ArC), 

133.5 (2 × ArCH), 129.6 (2 × ArCH), 129.1 (ArCH), 128.0 (2 × ArCH), 120.6 (ArCH), 114.6 
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(2 × ArCH), 70.2 (OCH2), 23.5 (CH2), 11.3 (SiCH2), -3.5 (2 × Si(CH3)2); m/z (ESI) 271 

(20%), 270 (100, M+), 193 (30). 

The spectroscopic data is in agreement with reported data.294 

 

(3-(3,4-Dimethoxyphenyl)propyl)dimethyl(phenyl)silane (253) 

O

SiO

 
1-Allyl-3,4-dimethoxybenzene (1.78 g, 10 mmol) was reacted, according to general 

procedure 6. After removal of the solvent, the crude product was purified by flash silica 

chromatography (elution gradient petrol to Petrol:EtOAc, 10:1), pure fractions were 

evaporated to dryness to afford the title compound 253 (2.9 g, 94%) as a colourless oil, Rf 

= 0.30 (Petrol:EtOAc 10:1); νmax (thin film)/cm–1 3004 (w), 2990 (w), 2952 (w), 2929 (w), 

2833 (w), 1739 (m), 1509 (w), 1514 (s), 1464 (m); δH (400 MHz, CDCl3) 7.53-7.44 (2H, 

m, ArCH), 7.37-7.34 (3H, m, ArCH), 6.79 (1H, d, J = 8.0, ArCH), 6.69 (1H, dd, J = 8.0 and 

1.9, ArCH), 6.66 (1H, d, J = 1.9, ArCH), 3.86 (6H, s, OCH3), 2.57 (2H, t, J = 7.6, ArCH2), 

1.68-1.56 (2H, m, CH2), 0.83-0.77 (2H, m, SiCH2), 0.26 (6H, s, Si(CH3)2); δC (100 MHz, 

CDCl3) 148.7 (ArCO), 147.1 (ArCO), 139.3 (ArC), 135.3 (ArC), 133.7 (2 × ArCH), 128.9 

(ArCH), 127.8 (2 × ArCH), 120.4 (ArCH), 111.7 (ArCH), 111.1 (ArCH), 56.0 (OCH3), 55.9 

(OCH3), 39.3 (ArCH2), 26.1 (CH2), 15.4 (SiCH2), -3.0 (2 × Si(CH3)2); m/z (ESI) 315 (20%), 

314 (100, M+), 283 (30), 237 (15). 

The spectroscopic data is in agreement with reported data.294 

 

Diethyl 2-(3-(dimethyl(phenyl)silyl)propyl)malonate (254) 

O

O O

O

Si
 

Diethyl 2-allylmalonate (2.0 g, 10 mmol) was reacted, according to general procedure 6. 

After removal of the solvent, the crude product was purified by flash silica 

chromatography (elution gradient petrol to petrol:EtOAc, 10:1), pure fractions were 

evaporated to dryness to afford the title compound 254 (3.2 g, 95%) as a colourless oil; Rf 

= 0.49 (Petrol:EtOAc 10:1); νmax (thin film)/cm–1 2981 (w), 2954 (w), 1748 (m), 1730 (s), 

1458 (w), 1427 (w); δH (400 MHz, CDCl3) 7.51-7.47 (2H, m, ArCH), 7.36-7.33 (3H, m, 
ArCH), 4.17 (4H, qd, J = 7.3 and 0.9, 2 x OCH2), 3.33 (1H, t, J = 7.6, CH), 1.92 (2H, d, J = 
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7.6, CH2), 1.40-1.32 (2H, m, CH2), 1.24 (6H, t, J = 7.3, 2 x OCH2CH3), 0.78 (2H, app t, J 

= 8.3, SiCH2), 0.26 (6H, s, Si(CH3)2); δC (100 MHz, CDCl3) 169.5 (2 × C=O), 139.0 (ArC), 

133.4 (2 × ArCH), 128.8 (ArCH), 127.7 (2 × ArCH), 61.1 (2 × OCH2), 51.6 (C(O)CHC(O)), 

32.3 (CH2), 21.7 (CH2), 15.3 (SiCH2), 14.0 (CH3), -3.1 (2 × Si(CH3)2); m/z (CI, NH3) 360 

(35%), 359 (MNa+, 100); Found: 359.1650 (MNa+), C18H28NaO4Si requires: 359.1649. 

 

2-(3-(Dimethyl(phenyl)silyl)propoxy)ethanol (255) 

O SiHO
 

2-(Allyloxy)ethanol (1.02 g, 10 mmol) was reacted, according to general procedure 6. 

After removal of the solvent, the crude product was purified by flash silica 

chromatography (elution gradient petrol to petrol:EtOAc, 10:1), pure fractions were 

evaporated to dryness to afford the title compound 255 (1.33 g, 56%) as a colourless oil. 

νmax (thin film)/cm–1 3370 (b, m), 3068 (w), 2929 (m), 2867 (m), 1458 (w), 1426 (m), 1356 

(m); δH (400 MHz, CDCl3) 7.55-7.51 (2H, m, ArCH), 7.33-7.29 (3H, m, ArCH), 3.71 (2H, t, 

J = 4.6, OCH2), 3.51 (2H, t, J = 4.6, OCH2), 3.43 (2H, t, J = 7.0, OCH2), 2.40 (1H, bs, 

OH), 1.68-1.57 (2H, m, CH2), 0.80-0.73 (2H, m, SiCH2), 0.30 (6H, s, Si(CH3)2); δC (100 

MHz, CDCl3) 138.9 (ArC), 133.5 (2 × ArCH), 128.8 (ArCH), 127.7 (2 × ArCH), 73.9 (OCH2), 

71.6 (OCH2), 61.7 (OCH2), 23.9 (CH2), 11.6 (SiCH2), -3.2 (2 × Si(CH3)2); m/z (CI) 262 

(20%), 261 (MNa+, 100); Found 261.1281, C13H22NaO2Si requires 261.1286. 

 

2-(3-(Dimethyl(phenyl)silyl)propyl)phenol (256) 

Si

OH  
2-Allylphenol (1.34 g, 10 mmol) was reacted, according to general procedure 6. After 

removal of the solvent, the crude product was purified by flash silica chromatography 

(elution gradient petrol to petrol:EtOAc, 10:1), pure fractions were evaporated to dryness 

to afford the title compound 256 (2.1 g, 81%) as a colourless oil; νmax (thin film)/cm–1 3340 

(b, w), 3058 (w), 2996 (w), 1495 (w); δH (400 MHz, CDCl3) 7.76-7.72 (2H, m, ArCH), 

7.58-7.54 (3H, m, ArCH), 7.31 (1H, dd, J = 7.4 and 1.6, ArCH), 7.26 (1H, td, J = 7.4 and 

1.6, ArCH), 7.08 (1H, td, J = 7.4 and 1.0, ArCH), 6.90 (1H, dd, J = 7.4 and 1.0, ArCH), 5.87 

(1H, bs, OH), 2.86 (2H, t, J = 7.6, ArCH2), 1.94-1.86 (2H, m, CH2), 1.09-1.03 (2H, m, 

SiCH2), 0.49 (6H, s, Si(CH3)2); δC (100 MHz, CDCl3) 153.3 (ArCO), 139.3 (ArC), 133.5 (2 
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× ArCH), 130.2 (ArCH), 128.7 (ArCH), 128.4 (ArC), 127.6 (2 × ArCH), 126.9 (ArCH), 120.5 

(ArCH), 115.2 (ArCH), 33.6 (CH2), 24.1 (CH2), 15.6 (CH2), -3.1 (2 × Si(CH3)2). 

 

General procedure 7 - Cyclisation of 1,6-dienes using dimethylphenylsilane at room 

temperature 

To a stirred solution of the 1,6-diene (3.8-10.0 mmol, 1.0 equiv), dimethylphenylsilane 

(7.6-22.0 mmol, 2.2 equiv.) in THF (40-100 mL) was added triethylborane in THF (0.5 

mL, 1 M solution, 5 mmol, 0.5 equiv.) and shortly after triisopropylsilanethiol (0.4-1.0 

mmol, 10 mol%, care required due to noxious smell). After stirring at room temperature 

for 1 h, a further portion of triethylborane in THF (0.5 mL, 1 M solution 5 mmol, 0.5 

equiv.) was added and left stirring overnight. Removal of the solvent under reduced 

pressure and purification of the resulting reaction mixture by flash chromatography (silica, 

petrol to petrol:ethyl acetate, 10:1) afforded the title compounds as a mixture of 

diastereoisomers (61-88 %) as colourless oils. 

 

((Tetrahydro-4-methylfuran-3-yl)methyl)dimethyl(phenyl)silane (232) 

O

PhMe2Si

 
Diallyl ether (1.0 g, 10.0 mmol) was reacted according to general procedure 7. After 

removal of the solvent, the crude product was purified by flash silica chromatography 

(elution gradient petrol to petrol:ethyl acetate, 10:1), pure fractions were evaporated to 

dryness to afford the title product 232 (1.4 g, 61%) as a colourless oil, Rf 0.43 (petrol:ethyl 

acetate, 10:1), as an inseparable mixture of diastereoisomers (trans:cis = 1:2.4). The 

spectroscopic data matches the sample prepared according to general procedure 5. 

 

Dimethyl((2-methylcyclopentyl)methyl)(phenyl)silane (233) 

PhMe2Si

 
1,6-Heptadiene (1.0 g, 10.0 mmol) was reacted according to general procedure 7. After 

removal of the solvent, the crude product was purified by flash silica chromatography 

(elution gradient petrol), pure fractions were evaporated to dryness to afford the title 

product 233 (1.6 g, 70%) as a colourless oil, Rf 0.85 (petrol), as an inseparable mixture of 

diastereoisomers (trans:cis = 1:2.2). The spectroscopic data matches the previously made 

sample according to general procedure 5. 
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Diethyl 3-((dimethyl(phenyl)silyl)methyl)-4-methylcyclopentane-1,1-dicarboxylate 

(234) 

PhMe2Si

OO
OO

 
Diethyl diallyl malonate (2.4 g, 10.0 mmol), was reacted according to general procedure 

7. After removal of the solvent, the crude product was purified by flash silica 

chromatography (elution gradient petrol to petrol:ethyl acetate, 10:1), pure fractions were 

evaporated to dryness to afford the title product 234 (3.3 g, 88%) as a colourless oil, Rf 

0.40 (petrol:ethyl acetate, 10:1), as an inseparable mixture of diastereoisomers (trans:cis = 

1:4.0). The spectroscopic data matches the sample prepared according to general 

procedure 5. 

 

3-((Dimethyl(phenyl)silyl)methyl)-4-methylcyclopentanol (239) 

PhMe2Si

OH  
 

1,6-Heptadien-4-ol (1.0 g, 9.0 mmol) was reacted according to general procedure 7. After 

removal of the solvent, the crude product was purified by flash silica chromatography 

(elution gradient petrol to petrol:ethyl acetate, 10:1), pure fractions were evaporated to 

dryness to afford the title compound 239 as a pale yellow oil (1.8 g, 73%), Rf 0.40 

(petrol:ethyl acetate, 10:1), as an inseparable mixture of diastereoisomers. The 

spectroscopic data matches the sample prepared according to general procedure 5. 

 

General procedure 8 – Oxidation of dimethylphenylsilanes 

then H2O2

Cl3SiH, Et3B
R R OHR SiCl3

KF, NaHCO3,
MeOH/THF

THF  
 

General procedure 8.1 – Conversion of dimethylphenylsilanes into 

dimethylfluorosilanes 

To a stirred solution of the dimethylphenylsilane (5.0 mmol, 1 equiv) in dry 

dichloromethane (15 mL) at room temperature was added boron trifluoride-acetic acid 

complex (1.4 mL, 10.0 mmol, 2 equiv), the resulting solution was stirred for 6 h, during 
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which time the solution turned orange. The reaction mixture was quenched by slowly being 

poured into a stirred solution of 1 M sodium hydrogen carbonate (100 mL), the aqueous 

layer was extracted with dichloromethane (2 × 75 mL). The combined organic extracts 

were dried over MgSO4 and evaporated under reduced pressure to afford the title 

compound as a pale yellow oil (0.71-0.93 g, 75-88%). No further purification was carried 

out, and the resulting oil was subjected to the oxidation conditions. 

 

General procedure 8.2 - Oxidation of dimethylfluorosilanes 

To a stirred solution of the unpurified dimethylfluorosilane (3.4-4.0 mmol, 1 equiv) and 

anhydrous potassium fluoride (0.39-0.46 g, 6.8-8.0 mmol, 2 equiv) in dry DMF (5 mL) at 

room temperature was added dropwise a solution of meta-chloroperoxybenzoic acid (1.38-

1.62 g, 85%, 6.8-8.0 mmol, 2 equiv) in dry DMF (10 mL). The resulting solution was 

stirred for 4 h at room temperature. The reaction mixture was diluted with dichloromethane 

(75 mL) and washed successively with aqueous sodium thiosulfate (2 × 50 mL), aqueous 

sodium carbonate (2 × 50 mL), brine (50 mL), and then dried over MgSO4 and purification 

by flash chromatography (petrol:diethyl ether, 10:1) to afford the title products as 

colourless oils (0.11-0.18 g, 25-31%). 

 

1-Octanol (260) 

OH 
Octyldimethylphenylsilane (1.24, 5.0 mmol) was reacted, according to general procedure 

8.1. Following the aqueous workup, the solvent was removed under reduced pressure to 

afford the unpurified octyldimethylfluorosilane as a pale yellow oil (0.71 g, 75%). (No 

further purification was carried out, and the resulting oil was subjected to the oxidation 

conditions). δH (270 MHz, CDCl3) 1.58-1.42 (2H, m, CH2), 1.38-1.14 (10H, m, 5 × CH2), 

0.90 (3H, t, J = 7.0, CH3), 0.76-0.66 (2H, m, CH2Si), 0.17 (6H, d, J = 7.5, Si(CH3)2). 

The crude octyldimethylfluorosilane (0.65 g, 3.4 mmol) was reacted, according to general 

procedure 8.2. Following the work up procedure the crude product was purified by flash 

silica chromatography (petrol:diethyl ether, 10:1) to afford the title product 260 as a 

colourless oil (0.11 g, 25%); Rf = 0.32 (petrol:diethyl ether, 10:1); νmax (thin film)/cm–1 

3332 (m), 2926 (s), 2855 (s), 1465 (w), 1378 (w), 1055 (m); δH (400 MHz, CDCl3) 3.60-

3.54 (2H, m, CH2OH), 2.60-2.18 (1 H, bs, OH), 1.56-1.46 (2H, m, CH2CH2OH), 1.34-1.16 

(10H, m, CH2), 0.84 (3H, t, J = 6.7, CH3); δC (100 MHz, CDCl3) 62.8 (CH2OH), 32.6 

(CH2), 31.7 (CH2), 29.3 (CH2), 29.2 (CH2), 25.7 (CH2), 22.6 (CH2), 13.9 (CH3); m/z (Cl) 

149 (10%), 148 (MNH4
+, 100), 131 (MH+, 30). 
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The spectroscopic data is in agreement with reported data. (Sigma Aldrich) 

 

3-(4-Methoxyphenyl)propan-1-ol (261) 

OH

O  
3-(4-Methoxyphenyl)propyl(dimethy)(phenyl)silane (1.42, 5.0 mmol) was reacted, 

according to general procedure 8.1. Following the aqueous workup, the solvent was 

removed under reduced pressure afford the crude 3-(4-

methoxyphenyl)propyl(dimethyl)fluorosilane as a pale yellow oil (0.88 g, 78%). (No 

further purification was carried out, and the resulting oil was subjected to the oxidation 

conditions). δH (270 MHz, CDCl3) 7.08 (2H, d, J = 9.0, ArCH), 6.82 (2H, d, J = 9.0, ArCH), 

3.78 (3H, s, ArOCH3), 2.58 (2H, t, J = 7.0, ArCH2), 1.72-1.60 (2H, m, CH2CH2CH2), 0.77-

0.69 (2H, m, CH2Si), 0.19 (6H, d, J = 7.5, Si(CH3)2). 

The crude 3-(4-methoxyphenyl)propyldimethylfluorosilane (0.80 g, 3.5 mmol) was 

reacted, according to general procedure 8.2. Following the work-up procedure the crude 

product was purified by flash silica chromatography (petrol:diethyl ether, 10:1) to afford 

the title product 261 as a colourless oil (0.18 g, 31%); νmax (thin film)/cm–1 3305 (bs), 3000 

(m), 2900 (s), 1610 (s), 1450 (m); δH (400 MHz, CDCl3) 7.11 (2H, app dt, J = 8.4 and 2.1, 
ArCH), 6.82 (2H, app dt, J = 8.4 and 2.1, ArCH), 3.77 (3H, s, OCH3), 3.64 (2H, t, J = 6.4, 

OCH2), 2.64 (2H, t, J = 7.5, ArCH2), 1.85 (2H, app tt, J = 7.5 and 6.4, CH2CH2CH2OH), 

1.75 (1H, bs, OH); δC (100 MHz, CDCl3) 157.6 (ArCO), 133.8 (ArC), 129.2 (2 × ArCH), 

113.8 (2 × ArCH), 62.1 (OCH2), 55.2 (OCH3), 34.3 (ArCH2), 31.0 (CH2CH2CH2OH); m/z 

(CI, NH3) 167 (10%), 166 (MH+, 100). 

The spectroscopic data is in agreement with reported data. (Sigma Aldrich) 

 

3-Phenoxypropan-1-ol (262) 

O OH

 
3-Phenoxypropyl(dimethyl)phenylsilane (1.35, 5.0 mmol) was reacted, according to 

general procedure 8.1. Following the aqueous workup, the solvent was removed under 

reduced pressure afford the crude 3-phenoxypropyldimethylflourosilane as a pale yellow 

oil (0.88 g, 78%). No further purification was carried out, and the resulting oil was 

subjected to the oxidation conditions; δH (270 MHz, CDCl3) 7.23-7.10 (2H, m, ArCH), 

6.88-6.75 (3H, m, ArCH), 3.78 (3H, t, J = 7.0, OCH2), 1.85-1.70 (2H, m, CH2CH2CH2), 

0.78-0.71 (2H, m, CH2Si), 0.17 (6H, d, J = 7.5, Si(CH3)2). 



 

 157

The crude 3-phenoxypropyldimethylfluorosilane (0.85 g, 4.0 mmol) was reacted, 

according to general procedure 8.2. Following the work up procedure the crude product 

was purified by flash silica chromatography (petrol:diethyl ether, 10:1) to afford the title 

product 262 as a colourless oil (0.15 g, 26%); νmax (thin film)/cm–1 3390 (bs), 3020 (w), 

1610 (m), 1505 (m): δH (400 MHz, CDCl3) 7.28 (2H, app t, J = 7.3, ArCH), 6.98-6.89 (3H, 

m, ArCH), 4.11 (2H, t, J = 5.9, OCH2), 3.86 (2H, t, J = 5.9, OCH2), 2.04 (2H, quin, J = 5.9, 

OCH2CH2CH2OH), 1.96 (1H, bs, OH); δC (100 MHz, CDCl3) 158.6 (ArCO), 129.4 (2 × 
ArCH), 120.8 (ArCH), 114.4 (2 × ArCH), 65.6 (CH2), 60.5 (CH2), 31.9 (OCH2CH2OCH2); 

m/z (CI, NH3) 153 (10%), 152 (100), 94 (80). 

The spectroscopic data is in agreement with reported data.295 

 

General procedure 9 – Addition of trichlorosilanes to alkenes followed by oxidation 

then H2O2

Cl3SiH, Et3B
R R OHR SiCl3

KF, NaHCO3,
MeOH/THF

THF  
 

General procedure 9.1 – Addition of trichlorosilane to alkenes 

To a stirred solution of the alkene (5.0 mmol, 1 equiv) in THF (5 mL) at 0 ºC, under air, 

was added trichlorosilane (1.0 mL, 10.0 mmol, 2 equiv) followed by the slow dropwise 

addition of triethylborane (2.0 mL, 1 M solution in THF, 2.0 mmol, 0.4 equiv). The 

resulting solution was stirred at 0 ºC for 1 h, after which a further portion of triethylborane 

(2.0 mL, 1 M solution in THF, 2.0 mmol, 0.4 equiv) was added and the mixture stirred for 

a further 1 h at 0 ºC followed by addition of a further portion of triethylborane (2.0 mL, 1 

M solution in THF, 2.0 mmol, 0.4 equiv). The resulting solution was stirred at 0 ºC for 1 h 

then warmed to room temperature and stirred for a further 4 h. Removal of the solvent 

under reduced pressure afforded the crude trichlorosilane addition product, as an oil. 

 

General procedure 9.2 – Oxidation of trichlorosilanes 

The crude trichlorosilane addition product was taken up in THF (75 mL) and the solution 

was stirred at room temperature (under air) while MeOH (75 mL) was slowly added, after 

which KF (2.6 g, 45.0 mmol, 9 equiv) and KHCO3 (9.00 g, 90.0 mmol 18 equiv) was 

added and the suspension was stirred for 1 h. To the resulting white suspension was added 

H2O2 (5.1 mL, 30% solution, 45.0 mmol, 9 equiv) and the reaction mixture was vigorously 

stirred for 24 h. After which sodium thiosulfate pentahydrate (7.4 g, 30.0 mmol, 6 equiv) 

was added and the mixture stirred for 1 h. The mixture was filtered through a Celite plug, 

and the filter cake was rinsed with 50 mL of diethyl ether. The filtrate was concentrated 
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under vacuum and the resulting residue was dissolved in 50 mL of DCM, and dried over 

MgSO4, the volatiles were removed in vacuo to afford the crude product. The crude 

product was purified by flash silica chromatography (elution gradient petrol to petrol:ethyl 

acetate, 2:1), and pure fractions were evaporated to dryness to afford the alcohol (39-51%). 

 

1-Octanol (260) 

OH 
1-Octene (0.56 g, 5.0 mmol) was reacted, according to general procedure 9.1. Removal of 

the solvent under reduced pressure afforded the crude trichlorosilane addition product, as a 

moisture sensitive oil; δH (400 MHz, CDCl3) 1.62-1.54 (2H, m, CH2), 1.43-1.36 (4H, m, 

CH2 and SiCH2), 1.33-1.22 (8H, m, 4 × CH2), 0.88 (3H, t, J = 6.8, CH3); δC (100 MHz, 

CDCl3) 31.8 (CH2), 31.7 (CH2), 29.0 (CH2), 28.9 (CH2), 24.3 (CH2), 22.6 (CH2), 22.2 

(CH2), 14.1 (CH3). 

The crude trichlorosilane addition product was reacted, according to general procedure 

9.2. Following the work-up procedure the crude product was purified by flash silica 

chromatography (elution gradient petrol:ethyl acetate, 10:1 – 2:1), and pure fractions were 

evaporated to dryness to afford the title compound 260 as a colourless oil (0.25 g, 39%); Rf 

= 0.32 (petrol:diethyl ether, 10:1); νmax (thin film)/cm–1 3332 (m), 2926 (s), 2855 (s), 1465 

(w), 1378 (w), 1055 (m); δH (400 MHz, CDCl3) 3.60-3.54 (2H, m, CH2OH), 2.60-2.18 

(1H, bs, OH), 1.56-1.46 (2H, m, CH2 CH2OH), 1.34-1.16 (10H, m, 5 × CH2), 0.84 (3H, t, J 

= 6.7, CH3); δC (100 MHz, CDCl3) 62.8 (CH2OH), 32.6 (CH2), 31.7 (CH2), 29.3 (CH2), 

29.2 (CH2), 25.7 (CH2), 22.6 (CH2), 13.9 (CH3); m/z (Cl) 149 (10%), 148 (MNH4
+, 100), 

131 (MH+, 30). 

The spectroscopic data is in agreement with reported data.296 

 

3-(4-Methoxyphenyl)propan-1-ol (261) 

OH

O  
4-Allylanisole (0.74 g, 5.0 mmol) was reacted, according to general procedure 9.1. 

Removal of the solvent under reduced pressure afforded the crude trichlorosilane addition 

product as a moisture sensitive oil; δH (400 MHz, CDCl3) 7.09 (2H, d, J = 8.7, ArCH), 6.84 

(2H, d, J = 8.7, ArCH), 3.78 (3H, s, OCH3), 2.66 (2H, t, J = 7.4, ArCH2), 1.41-1.35 (2H, m, 

SiCH2), 1.27-1.23 (2H, m, CH2CH2CH2Si); δC (100 MHz, CDCl3) 158.1 (ArCO), 132.9 

(ArC), 129.4 (2 × ArCH), 113.9 (2 × ArCH), 55.3 (OCH3), 36.8 (CH2), 24.3 (CH2), 23.7 

(CH2). 
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The crude trichlorosilane addition product was reacted, according to general procedure 

9.2. Following the work-up procedure the crude product was purified by flash silica 

chromatography (elution gradient petrol:ethyl acetate, 10:1 – 2:1), and pure fractions were 

evaporated to dryness to afford the title compound 261 as a colourless oil (0.42 g, 51%); 

νmax (thin film)/cm–1 3305 (bs), 3000 (m), 2900 (s), 1610 (s), 1450 (m); δH (400 MHz, 

CDCl3) 7.11 (2H, app dt, J = 8.4 and 2.1, ArCH), 6.82 (2H, app dt, J = 8.4 and 2.1, ArCH), 

3.77  (3H, s, OCH3), 3.64 (2H, t, J = 6.4, OCH2), 2.64 (2H, t, J = 7.5, ArCH2), 1.85 (2H, 

app tt, J = 7.5 and 6.4, CH2CH2CH2OH), 1.75 (1H, bs, OH); δC (100 MHz, CDCl3) 157.6 

(ArCO), 133.8 (ArC), 129.2 (2 × ArCH), 113.8 (2 × ArCH), 62.1 (OCH2), 55.2 (OCH3), 34.3 

(ArCH2), 31.0 (CH2CH2CH2OH); m/z (CI, NH3) 167 (10%), 166 (MH+, 100). 

The spectroscopic data is in agreement with reported data.296 

 

3-Phenoxypropan-1-ol (262) 

O OH

 
Allyl phenyl ether (0.68 mL, 5.0 mmol, 1 equiv) was reacted, according to general 

procedure 9.1. Removal of the solvent under reduced pressure afforded the crude 

trichlorosilane addition product as a moisture sensitive oil; δH (400 MHz, CDCl3) 7.26 

(2H, dd, J = 8.8 and 7.7, ArCH), 6.93 (1H, td, J = 7.7 and 1.1, ArCH), 6.87 (2H, dd, J = 8.8 

and 1.1, ArCH), 3.98 (2H, t, J = 6.1 OCH2), 2.09-2.01 (2H, m, CH2), 1.62-1.56 (2H, m, 

SiCH2); δC (100 MHz, CDCl3) 157.9 (ArCOCH2), 128.5 (2 × ArCH), 120.3 (ArCH), 114.1 (2 

× ArCH), 60.9 (OCH2), 34.5 (CH2), 22.4 (CH2).  

The crude trichlorosilane addition product was reacted, according to general procedure 

9.2. Following the work-up procedure the crude product was purified by flash silica 

chromatography (elution gradient petrol:ethyl acetate, 10:1 – 2:1), and pure fractions were 

evaporated to dryness to afford the title compound 262 as a colourless oil (0.36 g, 49%); 

νmax (thin film)/cm–1 3390 (bs), 3020 (w), 1610 (m), 1505 (m); δH (400 MHz, CDCl3) 7.28 

(2H, app t, J = 7.3, ArCH), 6.98-6.89 (3H, m, ArCH), 4.11 (2H, t, J = 5.9, OCH2), 3.86 (2H, 

t, J = 5.9, OCH2), 2.04 (2H, quin, J = 5.9, OCH2CH2CH2OH), 1.96 (1H, bs, OH); δC (100 

MHz, CDCl3) 158.6 (ArCOCH2), 129.4 (2 × ArCH), 120.8 (ArCH), 114.4 (2 × ArCH), 65.6 

(CH2), 60.5 (CH2), 31.9 (OCH2CH2OCH2); m/z (CI, NH3) 153 (10%), 152 (100), 94 (80). 

The spectroscopic data is in agreement with reported data.295 

 

1-Decanol (263) 

OH 
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1-Decene (0.70 g, 5.0 mmol) was reacted, according to general procedure 9.1. Removal 

of the solvent under reduced pressure afforded the crude trichlorosilane addition product, 

as a moisture sensitive oil; δH (400 MHz, CDCl3) 1.62-1.54 (2H, m, CH2), 1.43-1.36 (4H, 

m, CH2 and SiCH2), 1.33-1.22 (8H, m, 4 × CH2), 0.88 (3H, t, J = 6.8, CH3); δC (100 MHz, 

CDCl3) 31.8 (CH2), 31.7 (CH2), 29.0 (CH2), 28.9 (CH2), 24.3 (CH2), 22.6 (CH2), 22.2 

(CH2), 14.1 (CH3). 

The crude trichlorosilane addition product was reacted, according to general procedure 

9.2. Following the work-up procedure the crude product was purified by flash silica 

chromatography (elution gradient petrol:ethyl acetate, 10:1 – 2:1), and pure fractions were 

evaporated to dryness to afford the title compound 263 as a colourless oil (0.34 g, 43%); 

νmax (thin film)/cm–1 3232 (m), 2900 (s), 2850 (s), 1470 (w), 1320 (w); δH (400 MHz, 

CDCl3) 3.60 (2H, t, J = 7.3, CH2OH), 2.10 (1H, bs, OH), 1.60-1.46 (2H, m, CH2), 1.35-

1.20 (14H, m, 7 × CH2), 0.90 (3H, t, J = 6.9, CH3); δC (100 MHz, CDCl3) 63.2 (CH2OH), 

32.5 (CH2), 31.8 (CH2), 29.3 (2 × CH2), 29.2 (2 × CH2), 25.9 (CH2), 21.9 (CH2), 14.0 

(CH3); m/z (Cl) 160 (10%), 159 (MH+, 100). 

The spectroscopic data is in agreement with reported data.296 

 

3-Phenylpropan-1-ol (264) 

OH
 

1-Allylbenzene (0.59 g, 5.0 mmol) was reacted, according to general procedure 9.1. 

Removal of the solvent under reduced pressure afforded the crude trichlorosilane addition 

product, as a moisture sensitive oil; δH (400 MHz, CDCl3) 7.25-7.20 (2H, m, ArCH), 7.15-

7.10 (3H, m, ArCH), 2.60 (2H, t, J = 7.5 ArCH2), 1.88-1.78 (2H, m, CH2), 1.38-1.33 (2H, 

m, SiCH2); δC (100 MHz, CDCl3) 140.0 (ArC), 128.4 (ArCH), 128.3 (2 × ArCH), 126.0 (2 × 
ArCH), 37.7 (CH2), 23.9 (CH2), 23.7 (CH2).  

The crude trichlorosilane addition product was reacted, according to general procedure 

9.2. Following the work up procedure the crude product was purified by flash silica 

chromatography (elution gradient petrol:ethyl acetate, 10:1 – 2:1), and pure fractions were 

evaporated to dryness to afford the title compound 264 as a colourless oil (0.32 g 47%); 

νmax (thin film)/cm–1 3300 (m), 3053 (w), 2920 (m), 1602 (m); δH (400 MHz, CDCl3) 7.33-

7.27 (3H, m, ArCH), 7.25-7.17 (2H, m, ArCH), 3.68 (2H, t, J = 6.4, CH2OH), 2.71 (2H, t, J 

= 7.7, ArCH2), 1.85-1.95 (2H, m, ArCH2CH2CH2OH); δC (100 MHz, CDCl3) 141.8 (ArC), 

128.4 (2 × ArCH), 128.4 (ArCH), 125.8 (2 × ArCH), 62.3 (CH2OH), 34.3 (CH2), 32.1 (CH2); 

m/z (CI) 138 (10%), 137 (MH+, 100).  
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The spectroscopic data is in agreement with reported data. (Sigma Aldrich) 

 

4-Phenyl-1-butanol (265) 

OH

 
4-Phenyl-1-butene (0.66 g, 5.0 mmol) was reacted, according to general procedure 9.1. 

Removal of the solvent under reduced pressure afforded the crude trichlorosilane addition 

product, as a moisture sensitive oil; δH (400 MHz, CDCl3) 7.24-7.18 (2H, m, ArCH), 7.14-

7.08 (3H, m, ArCH), 2.57 (2H, t, J = 7.4 ArCH2), 1.71-1.63 (2H, m, CH2), 1.60-1.54 (2H, 

m, CH2), 1.38-1.33 (2H, m, SiCH2); δC (100 MHz, CDCl3) 141.7 (ArC), 128.5 (ArCH), 

128.3 (2 × ArCH), 125.8 (2 × ArCH), 35.3 (CH2), 33.5 (CH2), 24.1 (CH2), 21.9 (CH2). 

The crude trichlorosilane addition product was reacted, according to general procedure 

9.2. Following the work up procedure the crude product was purified by flash silica 

chromatography (elution gradient petrol:ethyl acetate, 10:1 – 2:1), and pure fractions were 

evaporated to dryness to afford the title compound 265 as a colourless oil (0.34 g, 47%); 

νmax (thin film)/cm–1 3350 (m), 3020 (w), 2953 (s), 2888 (m), 1499 (m), 1452 (m); δH (400 

MHz, CDCl3) 7.25-7.19 (2H, m, ArCH), 7.15-7.10 (3H, m, ArCH), 3.59 (2H, t, J = 7.7, 

CH2OH), 2.60 (2H, t, J = 7.4 ArCH2), 1.75-1.52 (5H, m, CH2CH2CH2OH); δC (100 MHz, 

CDCl3) 142.1 (ArC), 128.3 (ArCH), 128.2 (2 × ArCH), 125.7 (2 × ArCH), 62.8 (CH2OH), 

35.5 (CH2), 32.1 (CH2), 27.4 (CH2); m/z (CI, NH3) 168 (MNH4
+, 45%), 152 (10), 151 

(MH+, 100). 

The spectroscopic data is in agreement with reported data.296 

 

3-(3,4-Dimethoxyphenyl)-1-propanol (266) 

OH

O

O

 
4-Allyl-1,2-dimethoxybenzene (0.86 mL, 5.0 mmol) was reacted, according to general 

procedure 9.1. Removal of the solvent under reduced pressure afforded the crude 

trichlorosilane addition product as a moisture sensitive oil; δH (400 MHz, CDCl3) 6.79 

(1H, d, J = 8.0, ArCH), 6.70 (1H, dd, J = 8.0 and 1.9, ArCH), 6.68 (1H, d, J = 1.9, ArCH), 

3.87 (3H, s, OCH3), 3.85 (3H, s, OCH3), 2.66 (1H, t, J = 7.4, ArCH2), 1.43-1.37 (2H, m, 

SiCH2), 1.26-1.24 (2H, m, CH2). 

The crude trichlorosilane addition product was reacted, according to general procedure 

9.2. Following the work-up procedure the crude product was purified by flash silica 

chromatography (elution gradient petrol:ethyl acetate, 10:1 – 2:1), and pure fractions were 
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evaporated to dryness to afford the title compound 266 as a colourless oil (0.48 g, 49%); 

νmax (thin film)/cm–1 3315 (bs), 3010 (w), 2910 (m), 1601 (s), 1450 (m); δH (400 MHz, 

CDCl3) 6.78 (1H, d, J = 8.7, ArCH), 6.72 (1H, dd,  J = 8.7 and 1.6, ArCH), 6.71 (1H, app d, 

J = 1.6, ArCH), 3.85 (3H, s, OCH3), 3.84 (3H, s, OCH3), 3.66 (2H, t,  J = 6.4, OCH2), 2.64 

(1H, t,  J = 7.4, ArCH2), 1.86 (2H, app tt, J = 7.4 and 6.4, CH2CH2CH2OH); δC (100 MHz, 

CDCl3) 148.7 (ArCO), 147.0 (ArCO), 134.3 (ArC), 120.1 (ArCH), 111.6 (ArCH), 111.1 

(ArCH), 62.1 (OCH3), 55.8 (OCH3), 55.7 (OCH3), 34.3 (CH2CH2CH2OH), 31.6 (ArCH2); 

m/z (CI, NH3) 197 (10%), 196 (100, MH+), 181 (30). 

The spectroscopic data is in agreement with reported data.296 
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7.4 - Experimental for Chapter 4 
 

N-((6,7-Dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)methylene)-2-methylpropan-2-

amine (275) 151, 152, 192  

N H

N
O

O

 
Using conventional heating: To a stirred solution of the 6,7-dimethoxy-1,2,3,4-

tetrahydroisoquinoline 190 (5 g, 25.87 mmol) under nitrogen was added N,N-dimethyl-N'-

tert-butylformamidine (4.48 ml, 28.46 mmol), and a catalytic amount of ammonium sulfate 

(34 mg, 0.26 mmol) in toluene and the mixture was heated at reflux for 4-5 days. After 

consumption of the starting material, the solvent was removed under reduced pressure. 

Purification was not possible and the crude material is used in subsequent reactions.  

Using microwave heating: A solution of 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline 

190 (0.25 g, 1.29 mmol), N,N-dimethyl-N'-tert-butylformamidine (0.224 ml, 1.42 mmol) 

and ammonium sulfate (2 mg, 0.01 mmol) were dissolved in toluene (0.65 ml) and sealed 

into a microwave tube. The reaction was heated to 150 ºC for 2 h in a microwave reactor 

and cooled to r.t. Further purification was not possible and the crude material was used in 

subsequent reactions. νmax (thin film) 3279 (w), 3018 (m), 2954 (s) 2816 (s), 1658 (s) /cm–

1; δH (400 MHz, CDCl3) 7.39 (1H, s, NC(N)H), 6.55 (1H, s, ArCH), 6.51 (1H, s, ArCH), 

4.33 (2H, s, NCH2Ar), 3.76 (3H, s, ArCOCH3), 3.74 (3H, s, ArCOCH3), 3.41 (2H, t, J = 6.0, 

NCH2CH2Ar), 2.70 (2H, t, J = 6.0, NCH2CH2Ar), 1.10 (9H, s, C(CH3)3); δC (100 MHz, 

CDCl3) 149.9 (NC(N)H), 147.3 (ArCOCH3), 147.1 (ArCOCH3), 126.2 (ArC), 125.4 (ArC), 

111.2 (ArCH), 109.0 (ArCH), 55.7 (ArOCH3), 55.6 (ArOCH3), 53.0 (C(CH3)3), 45.9 

(NCH2Ar), 43.7 (NCH2CH2Ar), 31.0 ( 3 × C(CH3)3), 28.5 (NCH2CH2Ar); m/z (CI) 278 

(15%), 277 (100, MH+); HRMS C16H25N2O2 (MH+) requires 277.1911, found 277.1920.  

The spectroscopic data is in agreement with reported data. 151, 152, 192 

 

 

2-(Methylsulfonyl)-1,2,3,4-tetrahydroisoquinoline (276)297 

N S O

O  
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To a stirred solution of 1,2,3,4-tetrahydroisoquinoline 188 (1.3 g, 9.76 mmol) and 

triethylamine (2.72 mL, 19.52 mmol) in DCM (50 mL) at 0 ºC was added methanesulfonyl 

chloride (0.831 mL, 10.74 mmol) dropwise, and the resulting solution was warmed to r.t. 

and stirred for 6 h. The reaction mixture was quenched with water (25 mL), and the layers 

separated, the aqueous layer was extracted with DCM (25 mL), the combined organic layer 

were dried over Na2SO4, filtered and evaporated to afford the crude product. The crude 

product was purified by flash silica chromatography, elution gradient 0 to 50% EtOAc in 

isohexane. Pure fractions were evaporated to dryness to afford 2-(methylsulfonyl)-1,2,3,4-

tetrahydroisoquinoline 276 (1.680 g, 83%) as a white crystalline solid, mp 102-106 ºC; 

νmax (thin film) /cm–1 3015 (w), 2935 (w), 2161 (w), 1317 (s), 1272 (m), 1150 (m), 1136 

(s); δH (400 MHz, CDCl3) 7.22-7.14 (3H, m, ArCH), 7.11-7.07 (1H, m, ArCH), 4.46 (2H, s, 

NCH2Ar), 3.57 (2H, t, J= 6.0, NCH2CH2Ar), 2.98 (2H, t, J= 6.0, NCH2CH2Ar), 2.83 (3H, 

s, SO2CH3); δC (100 MHz, CDCl3) 133.2 (ArC), 131.8 (ArC), 129.0 (ArCH), 127.0 (ArCH), 

126.5 (ArCH), 126.3 (ArCH), 47.2 (NCH2Ar), 43.4 (NCH2CH2Ar), 36.0 (SO2CH3), 28.7 

(NCH2CH2Ar); m/z (CI, NH3) 274 (30%), 252 (100, MMeCN+), 207 (50).  

The spectroscopic data is in agreement with reported data.297 

 

 

6,7-Dimethoxy-2-(methylsulfonyl)-1,2,3,4-tetrahydroisoquinoline (278)297, 298 

N

O

O S O

O  
To a stirred solution of 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline hydrochloride (2.5 g, 

10.88 mmol) and triethylamine (4.55 mL, 32.65 mmol) in DCM (50 mL) at 0 ºC was added 

methanesulfonyl chloride (0.831 mL, 10.74 mmol) dropwise, and the resulting solution 

was warmed to r.t. and stirred for 6 h. The reaction mixture was quenched with water (25 

mL), and the layers separated, the aqueous layer was extracted with DCM (2 × 25 mL), the 

combined organic layer were dried over Na2SO4, filtered and evaporated to afford the 

crude product. The crude product was purified by flash silica chromatography, elution 

gradient 0 to 50% EtOAc in isohexane. Pure fractions were evaporated to dryness to afford 

6,7-dimethoxy-2-(methylsulfonyl)-1,2,3,4-tetrahydroisoquinoline 278 (2.47 g, 84%) as a 

white crystalline solid, mp 142–144°C; νmax (thin film) /cm–1 2935 (w), 2841 (w), 2160 

(w), 2028 (w), 1611 (m), 1518 (s), 1468 (w), 1448 (w); δH (400 MHz, CDCl3) 6.63 (1H, s, 
ArCH), 6.57 (1H, s, ArCH), 4.39 (2H, s, NCH2Ar), 3.87 (3H, s, OCH3), 3.85 (3H, s, OCH3), 

3.56 (2H, t, J= 6.0, NCH2CH2Ar), 2.90 (2H, t, J= 6.0, NCH2CH2Ar), 2.84 (3H, s, 

SO2CH3); δC (100 MHz, CDCl3) 148.2 (ArCOCH3), 148.0 (ArCOCH3), 125.1 (ArC), 123.5 
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(ArC), 111.7 (ArCH), 109.1 (ArCH), 56.0 (ArCOCH3), 55.9 (ArCOCH3), 47.0 (NCH2Ar), 43.5 

(NCH2CH2Ar), 36.1 (SO2CH3), 28.1 (NCH2CH2Ar); m/z (CI, NH3) 313 (MMeCNH+, 

60%), 272 (MH+, 100), 193 (29).  

The spectroscopic data is in agreement with reported data.297, 298 

 

6,7-Dimethoxy-2-(propylsulfonyl)-1,2,3,4-tetrahydroisoquinoline (280) 

N

O

O S O

O  
To a stirred solution of 6,7-dimethoxy-2-(methylsulfonyl)-1,2,3,4-tetrahydroisoquinoline 

278 (0.5 g, 1.84 mmol), in THF (17 mL) under nitrogen at -78 ºC was added a solution of 
sBuLi (1.47 mL, 2.21 mmol) dropwise. The resulting solution was stirred for 2 h at -78 ºC. 

To the resulting dark red solution was added iodoethane (0.3 mL, 2.21 mmol) dropwise, 

after 5 minutes the dark red colour faded to pale orange, and the reaction mixture was 

warmed to r.t. and quenched with water (50 mL) and extracted with DCM (3 x 50 mL), the 

organic layer was dried over Na2SO4, filtered and evaporated to afford a colourless oil. The 

crude product was purified by flash silica chromatography, elution gradient 10 to 50% 

EtOAc in isohexane. Pure fractions were evaporated to dryness to afford 6,7-dimethoxy-2-

propylsulfonyl)-1,2,3,4-tetrahydroisoquinoline 280 (0.49 g, 89%) as a colourless oil; νmax 

(thin film) /cm–1; 2930 (w), 2842 (w), 1614 (m), 1513 (s), 1465 (w); δH (400 MHz, CDCl3) 

6.61 (1H, s, ArCH), 6.55 (1H, s, ArCH), 4.41 (2H, s, NCH2Ar), 3.85 (3H, s, OCH3), 3.84 

(3H, s, OCH3), 3.57 (2H, t, J= 5.9, NCH2CH2Ar), 2.96-2.91 (2H, m, SO2CH2), 2.86 (2H, t, 

J = 5.9, NCH2CH2Ar), 1.85 (2H, app sext, J = 7.5, SO2CH2CH2), 1.04 (3H, t, J = 7.5, 

SO2CH2CH2CH3); δC (100 MHz, CDCl3) 148.3 (ArCOCH3), 148.2 (ArCOCH3), 125.3 (ArC), 

123.3 (ArC), 111.5 (ArCH), 109.4 (ArCH), 55.9 (ArCOCH3), 55.8 (ArCOCH3), 47.9 

(NCH2Ar), 43.8 (NCH2CH2Ar), 37.6 (SO2CH2), 28.5 (NCH2CH2Ar), 13.5 (SO2CH2CH2), 

12.6 (SO2CH2CH2CH3); m/z (CI, NH3) 363 (MMeCNNa+, 60%), 300 (MH+, 100), 193 

(40).  

The spectroscopic data is in agreement with reported data.299, 300 

 

6,7-Dimethoxy-2-(phenylsulfonyl)-1,2,3,4-tetrahydroisoquinoline (282)299 

N

O

O S O

O
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To a stirred solution of 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline hydrochloride (2.5 g, 

10.88 mmol) and triethylamine (4.55 mL, 32.65 mmol) in DCM (49 mL) at 0 ºC was added 

benzenesulfonyl chloride (1.528 mL, 11.97 mmol) dropwise. The resulting solution was 

stirred at 25 °C for 24 h. The reaction mixture was quenched with water (25 mL), and the 

layers separated, the aqueous layer was extracted with DCM (2 × 25 mL), the combined 

organic layer were dried over Na2SO4, filtered and evaporated to afford the crude product. 

The crude product was purified by flash silica chromatography, elution gradient 0 to 20% 

MeOH in DCM. Pure fractions were evaporated to dryness to afford 6,7-dimethoxy-2-

(phenylsulfonyl)-1,2,3,4-tetrahydroisoquinoline 282 (2.95 g, 81 %) as a white solid; mp 

156-160 ºC; νmax (thin film) /cm–1 2980 (m), 2970 (m), 1607 (w), 1517 (s), 1463 (w), 1447 

(m); δH (400 MHz, CDCl3) 7.88-7.84 (2H, m, PhSO2CH), 7.61-7.53 (3H, m, PhSO2CH), 

6.57 (1H, s, ArCH), 6.53 (1H, s, ArCH), 4.22 (2H, s, NCH2Ar), 3.84 (3H, s, OCH3), 3.83 

(3H, s, OCH3), 3.38 (2H, t, J = 5.9, NCH2CH2Ar), 2.85 (2H, t, J = 5.9, NCH2CH2Ar); δC 

(100 MHz, CDCl3) 148.0 (ArCOCH3), 147.8 (ArCOCH3), 136.7 (PhSO2C), 132.8 

(PhSO2CH), 129.1 (2 × PhSO2CH), 127.7 (2 × PhSO2CH), 125.0 (ArC), 123.4 (ArC), 111.5 

(ArCH), 109.1 (ArCH), 56.0 (ArCOCH3), 55.9 (ArCOCH3), 47.2 (NCH2Ar), 43.8 

(NCH2CH2Ar), 28.4 (NCH2CH2Ar); m/z (CI, NH3) 397 (MMeCNNa+, 15%), 334 (MH+, 

35), 193 (20), 192 (100).  

The spectroscopic data is in agreement with reported data.299, 300 

 

6,7-Dimethoxy-2-(o-tolylsulfonyl)-1,2,3,4-tetrahydroisoquinoline (283) 

N

O

O S O

O
 

To a stirred solution of 6,7-dimethoxy-2-(phenylsulfonyl)-1,2,3,4-tetrahydroisoquinoline 

282 (0.613 g, 1.84 mmol), in THF (16.79 mL) at -78 ºC was added of sBuLi (1.47 mL, 2.21 

mmol) dropwise. The resulting solution was stirred for 1 h at -78 ºC. To the resulting dark 

red solution was added iodomethane (0.138 mL, 2.21 mmol) dropwise, after 5 minutes the 

dark red colour faded to pale orange. The reaction was warmed to rt and quenched with 

water (50 mL) then extracted with DCM (3 x 50 mL), the organic layer was dried over 

Na2SO4, filtered and evaporated to afford a colourless oil. The crude product was purified 

by flash silica chromatography, elution gradient 0 to 20% MeOH in DCM. Pure fractions 

were evaporated to dryness to afford 6,7-dimethoxy-2-(o-tolylsulfonyl)-1,2,3,4-

tetrahydroisoquinoline 283 (0.58 g, 91%) as a colourless gum; νmax (thin film) /cm–1 2980 

(m), 2971 (m), 1612 (w), 1517 (s), 1462 (m); δH (400 MHz, CDCl3) 7.91 (1H, dd, J = 7.9 
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and 1.3, TolSO2CH), 7.38 (1H, td, J = 7.5 and 1.3, TolSO2CH), 7.27-7.21 (2H, m, 

TolSO2CH), 6.50 (1H, s, ArCH), 6.44 (1H, s, ArCH), 4.24 (2H, s, NCH2Ar), 3.76 (3H, s, 

OCH3), 3.74 (3H, s, OCH3), 3.43 (2H, t, J = 5.8, NCH2CH2Ar), 2.73 (2H, t, J = 5.8, 

NCH2CH2Ar), 2.55 (3H, s, TolSO2CH3); δC (100 MHz, CDCl3) 147.0 (ArCOCH3), 146.8 

(ArCOCH3), 137.1 (ArC), 135.5 (ArC), 131.8 (TolSO2CH), 131.7 (TolSO2CH), 129.1 

(TolSO2CH), 125.0 (TolSO2CH), 124.2 (TolSO2C), 122.7 (TolSO2C), 110.6 (ArCH), 108.0 

(ArCH), 55.0 (ArCOCH3), 54.9 (ArCOCH3), 45.2 (NCH2Ar), 41.8 (NCH2CH2Ar), 27.4 

(NCH2CH2Ar), 19.5 (TolSO2CH3); m/z (CI, NH3) 370 (MNa+, 20%), 348 (MH+, 40), 193 

(20), 192 (100). 

 

1-(6,7-Dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)-2,2-dimethylpropan-1-one (287)206 

N

O

O O

 
To a stirred solution of 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline hydrochloride (2.5 g, 

10.88 mmol) and triethylamine (4.55 mL, 32.65 mmol) in DCM (50 mL) at 0 ºC was added 

pivaloyl chloride (1.640 g, 13.60 mmol) dropwise over a period of 5 minutes under 

nitrogen. The resulting solution was stirred at room temperature for 2 h. The reaction 

mixture was poured into water (50 mL), extracted with DCM (3 × 50 mL), the organic 

layer was dried over Na2SO4, filtered and evaporated to afford the crude product. The 

crude product was purified by flash silica chromatography, elution gradient 0 to 20% 

MeOH in DCM. Pure fractions were evaporated to dryness to afford 1-(6,7-dimethoxy-3,4-

dihydroisoquinolin-2(1H)-yl)-2,2-dimethylpropan-1-one 230 (2.82 g, 93%) as a colourless 

gum; νmax (thin film) /cm–1 3014 (m), 2972 (m), 2954 (m), 2838 (w), 2161 (w), 1615 (s), 

1517 (s), 1463 (m), 1449 (w); δH (400 MHz, CDCl3) 6.63 (1H, s, ArCH), 6.61 (1H, s, 
ArCH), 4.68 (2H, s, NCH2Ar), 3.87 (3H, s, OCH3), 3.86 (3H, s, OCH3), 3.84 (2H, t, J = 5.9, 

NCH2CH2Ar), 2.81 (2H, t, J = 5.9, NCH2CH2Ar), 1.33 (9H, s, C(CH3)3); δC (100 MHz, 

CDCl3) 176.7 (NC(O)C(CH3)3), 147.8 (ArCOCH3), 147.7 (ArCOCH3), 126.2 (ArC), 125.4 

(ArC), 111.5 (ArCH), 109.2 (ArCH), 56.0 (ArCOCH3), 55.9 (ArCOCH3), 47.1 (NCH2Ar), 43.5 

(NCH2CH2Ar), 38.6 (C(CH3)3), 28.5 (NCH2CH2Ar), 28.4 (3 × C(CH3)3); m/z (CI, NH3) 

279 (10%), 278 (MH+, 100), 191 (10). 

The spectroscopic data is in agreement with reported data.206 
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1-(6,7-Dimethoxy-1-methyl-3,4-dihydroisoquinolin-2(1H)-yl)-2,2-dimethylpropan-1-

one (288)206 

N

O

O O

 
To a stirred solution of 1-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)-2,2-

dimethylpropan-1-one 287 (0.510 g, 1.84 mmol), in THF (16.79 mL) at -78 ºC was added a 

solution of tBuLi (1.47 mL, 2.21 mmol, 1.5 M) in THF dropwise. The resulting solution 

was stirred for 30 minutes at -78 ºC. Iodomethane (0.138 mL, 2.21 mmol) was added and 

the resulting solution warmed to room temperature and stirred for 1 h. The reaction 

mixture was quenched with water (50 mL), extracted with DCM (3 x 50 mL), the organic 

layer was dried over Na2SO4, filtered and evaporated to afford a colourless oil. The crude 

product was purified by flash silica chromatography, elution gradient 0 to 20% MeOH in 

DCM. Pure fractions were evaporated to dryness to afford 1-(6,7-dimethoxy-1-methyl-3,4-

dihydroisoquinolin-2(1H)-yl)-2,2-dimethylpropan-1-one 288 (0.32 g, 62%) as a colourless 

oil, as a mixture of rotamers; δH (400 MHz, CDCl3) 6.58 (1H, s, ArCH), 6.57 (1H, s, ArCH), 

5.48 (1H, bs, NCHAr), 4.35 (1H, bs, NCH2), 3.85 (3H, s, OCH3), 3.84 (3H, s, OCH3), 3.33 

(1H, bs, NCH2), 2.92 (1H, ddd, J = 16.0, 12.3 and 5.5, ArCH2CH2N), 2.63 (1H, app d, J = 

16.0, ArCH2CH2N), 1.45 (3H, d, J = 6.6, CHCH3), 1.31 (9H, s, C(CH3)3); δC (100 MHz, 

CDCl3) 175.6 (NC(O)C(CH3)3), 147.3 (ArCOCH3), 147.2 (ArCOCH3), 126.9 (ArC), 124.9 

(ArC), 110.9 (ArCH), 109.5 (ArCH), 55.9 (ArCOCH3), 55.7 (ArCOCH3), 49.4 (NCHAr), 41.0 

(NCH2CH2Ar), 38.4 (C(CH3)3), 28.4 (NCH2CH2Ar), 27.2 (3 × C(CH3)3), 21.0 (CHCH3); 

m/z (CI, NH3) 333 (MMeCNH+, 20%), 293 (20), 292 (MH+, 100), 205 (10).  

The spectroscopic data is in agreement with reported data.206 

 

tert-Butyl 6,7-dimethoxy-3,4-dihydroisoquinoline-2(1H)-carboxylate (289)301 

N

O

O O

O
 

To a stirred solution of 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline hydrochloride (2.5 g, 

10.88 mmol) and triethylamine (4.55 mL, 32.65 mmol) in DCM (50 mL) at 0 ºC was added 

di-tert-butyl dicarbonate (3.56 g, 16.33 mmol) portion-wise. The resulting solution was 

stirred at room temperature for 6 h. The reaction mixture was poured into water (50 mL), 

extracted with DCM (3 × 50 mL), the combined organic layers were washed with 1 M aq. 
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NaOH (2 × 50 mL), water (50 mL) and dried over Na2SO4, filtered and evaporated to 

afford the crude product. The crude product was purified by flash silica chromatography, 

elution gradient 0 to 20% EtOAc in isohexane. Pure fractions were evaporated to dryness 

to afford tert-butyl 6,7-dimethoxy-3,4-dihydroisoquinoline-2(1H)-carboxylate 289 (2.55 g, 

80%) as a colourless oil, which on standing crystallised to afford a white solid; mp 36-38 

ºC; νmax (thin film) /cm–1 3003 (w), 2971 (w), 2929 (w), 2838 (w), 2159 (w), 1701 (s), 

1608 (w), 1519 (m); δH (400 MHz, CDCl3) 6.63 (1H, s, ArCH), 6.60 (1H, s, ArCH), 4.51 

(2H, s, NCH2Ar), 3.88 (3H, s, OCH3), 3.87 (3H, s, OCH3), 3.64 (2H, t, J = 5.8, 

NCH2CH2Ar), 2.77 (2H, t, J = 5.8, NCH2CH2Ar), 1.51 (9H, s, OC(CH3)3); δC (100 MHz, 

CDCl3) 154.8 (NC(O)OC(CH3)3), 147.7 (ArCOCH3), 147.5 (ArCOCH3), 127.5 (ArC), 125.5 

(ArC), 111.4 (ArCH), 109.4 (ArCH), 79.8 (OC(CH3)3), 59.9 (ArOCH3), 59.8 (ArOCH3), 47.6 

(NCH2Ar), 40.9 (NCH2CH2Ar), 28.4 (3 × C(CH3)3), 28.3 (NCH2CH2Ar); m/z (CI) 316 

(MNa+, 45%), 294 (MH+, 10), 238 (M-OC(CH3)3+NH4, 100), 192 (15). HRMS 

C16H23NNaO4 (MNa+) requires 316.1519, found 316.1529. 

The spectroscopic data is in agreement with reported data.301 

 

tert-Butyl 1-allyl-6,7-dimethoxy-3,4-dihydroisoquinoline-2(1H)-carboxylate (291)154 

O

O

N O

O
 

To a stirred solution of tert-butyl 6,7-dimethoxy-3,4-dihydroisoquinoline-2(1H)-

carboxylate 289 (12.5 g, 42.61 mmol), in tetrahydrofuran (300 mL) and diethyl ether (100 

mL) at -78 ºC, under nitrogen was slowly added a solution of tBuLi (31.2 mL, 46.87 mmol, 

1.5 M) in hexane. The resulting solution was stirred at -78 ºC, for 1 h during which time 

the solution turned a dark red. Allyl bromide (4.42 mL, 51.13 mmol) was added dropwise 

at -78 ºC, and the resulting solution was stirred at -78 ºC for 1 h during which time the 

solution turned to a light orange colour, after which the solution was allowed to warm to 

room temperature. The reaction mixture was poured into water (200 mL), and extracted 

with EtOAc (3 × 250 mL), the combined organic layer was dried over MgSO4, filtered and 

evaporated to afford a yellow oil, which was used without further purification. Room 

temperature NMR in CDCl3 show duplication of signals cased by the presence of rotomers, 

variable temperature NMR showed these peaks to coalesce. δH (400 MHz, DMSO, 100 ºC) 

6.78 (1H, s, ArCH), 6.71 (1H, s, ArCH), 5.90-5.79 (1H, m, CH=CH2), 5.10-5.00 (2H, m, 

CH=CH2), 4.00-3.90 (1H, m, NCH), 3.75 (6H, s, 2 × OCH3), 3.25-3.00 (3H, m, 

NCH2CH2Ar and NCH2CH2Ar), 2.75-2.65 (1H, m, NCH2CH2Ar), 2.60-2.40 (2H, m 
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CH2CH=CH2), 1.40 (9H, s, OC(CH3)3); δC (100 MHz, DMSO, 100 ºC) 156.0 

(NC(O)OC(CH3)), 150.0 (ArCOCH3), 149.7 (ArCOCH3), 137.5 (CH2CH=CH2), 131.4 (ArC), 

128.4 (ArC), 118.5 (CH2CH=CH2), 115.1 (ArCH), 113.8 (ArCH), 80.8 (OC(CH3)3), 58.2 

(ArOCH3), 58.0 (ArOCH3), 55.4 (NCH), 41.9 (NCH2CH2Ar), 38.5 (CH2CH=CH2), 30.1 

(OC(CH3)3), 29.5 (NCH2CH2Ar); m/z (CI, NH3) 277 (MH+-tBu, 20%), 236 (100), 233 (M-

Boc+, 40). 

The spectroscopic data is in agreement with reported data.154 

 

1-Allyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (292) 154 

NH

O

O

 
Method A: To a solution of tert-butyl 1-allyl-6,7-dimethoxy-3,4-dihydroisoquinoline-

2(1H)-carboxylate 291 (17 g, 50.99 mmol) in THF (20 mL) at room temperature was 

added a solution of hydrochloric acid (102 mL, 407.89 mmol, 4 M in dioxane) the resulting 

solution was stirred at room temperature for 24 h. The resulting solution was concentrated 

in vacuo to yield the hydrochloride salt as a brown solid, (7.9 g, 80%); δH (400 MHz, 

CDCl3) 6.63 (1H, s, ArCH), 6.60 (1H, s, ArCH), 6.00-5.90 (1H, m, CH=CH2), 5.34 (1H, dd, 

J = 17.0 and 1.3, CH=CH2), 5.28 (1H, d, J = 10.1, CH=CH2), 4.52 (1H, app t, J = 5.0, 

NCH), 3.86 (3H, s, OCH3), 3.83 (3H, s, OCH3), 3.69-3.59 (1H, m, NCH2CH2Ar), 3.40-

3.32 (1H, m, NCH2CH2Ar), 3.20-3.05 (2H, m, NCH2CH2Ar), 3.00-2.90 (2H, m, 

CH2CH=CH2), 1.60 (2H, br s, NH2); δC (100 MHz, CDCl3) 148.9 (ArCOCH3), 148.2 

(ArCOCH3), 132.0 (CH=CH2), 124.1 (ArC), 123.0 (ArC), 120.9 (CH=CH2), 111.5 (ArCH), 

109.4 (ArCH), 67.1 (NCH), 56.1 (OCH3), 55.9 (OCH3), 54.2 (NCH2CH2Ar), 38.8 

(CH2CH=CH2), 25.2 (NCH2CH2Ar); The hydrochloride salt was deprotonated using 2 M 

aq. NaOH solution (200 mL), followed by extraction with DCM (2 x 200 mL). The organic 

layer was washed with water (200 mL) and dried over MgSO4, and concentrated in vacuo 

to yield 1-allyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline 292 as a pale yellow oil. 

 

Method B: To a solution of tert-butyl 1-allyl-6,7-dimethoxy-3,4-dihydroisoquinoline-

2(1H)-carboxylate 291 (4.7 g, 14 mmol) in DCM (20 mL) at room temperature was added 

trifluoroacetic acid (7.3 mL, 98 mmol) and the resulting solution was stirred at room 

temperature for 12 h. The resulting solution was concentrated in vacuo and the resulting 

brown oil was taken up in a fresh portion of DCM (100 mL) and stirred with 2 M aq NaOH 

solution (100 mL) for 15 minutes. The organic layer was separated and the aqueous layer 
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was extracted with DCM (2 × 50 mL), and the combined organic layers were washed with 

water (100 mL), dried over MgSO4 and concentrated in vacuo to yield 1-allyl-6,7-

dimethoxy-1,2,3,4-tetrahydroisoquinoline 292 as a pale yellow oil; νmax (thin film) /cm–1 

3332 (bs), 3072 (w), 1637 (m) 1612 (m); δH (400 MHz, CDCl3) 6.66 (1H, s, ArCH), 6.57 

(1H, s, ArCH), 5.90-5.80 (1H, m, CH=CH2), 5.20-5.13 (2H, m, CH=CH2), 3.99 (1H, app 

dd, J = 8.8 and 3.5, NCH), 3.84 (3H, s, OCH3), 3.83 (3H, s, OCH3), 3.21 (1H, dt, J = 12.3 

and 5.3, NCH2CH2Ar), 2.95 (1H, ddd, J=12.3, 7.7 and 5.0, NCH2CH2Ar), 2.75-2.60 (2H, 

m, NCH2CH2Ar and CH2=CHCH2), 2.52-2.46 (2H, m, NCH2CH2Ar and CH2=CHCH2), 

2.25 (1H, br s, NH); δC (100 MHz, CDCl3) 147.4 (ArCOCH3), 147.2 (ArCOCH3), 135.5 

(CH=CH2), 129.5 (ArC), 127.4 (ArC), 117.9 (CH=CH2), 112.0 (ArCH), 109.0 (ArCH), 55.9 

(OCH3), 55.5 (OCH3), 54.7 (NCH), 42.5 (NCH2CH2Ar), 41.0 (CH2CH=CH2), 29.4 

(NCH2CH2Ar); m/z (CI, NH3) 256 (MNa+, 10%), 234 (MH+, 100), 205 (35), 189 (10).  

The spectroscopic data is in agreement with reported data.154 

 

1-(1-Allyl-6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)-2-chloroethanone (295) 

N

Cl

O

O

O

 
To a stirred solution of 1-allyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline 292 (4.8 g, 

21.0 mmol) and triethylamine (7.8 mL, 62.0 mmol) in DCM (100 mL) at 0 ºC was added 

chloroacetyl chloride (2.0 mL, 25.2 mmol) dropwise. The resulting solution was stirred at 

room temperature for 3 h. The reaction mixture was poured into water (100 mL), extracted 

with DCM (2 × 100 mL), the combined organic layer was washed with 1 M aq. NaOH 

(100 mL), water (100 mL) and dried over Na2SO4, filtered and evaporated to afford the 

crude product. The crude product was purified by flash silica chromatography, elution 

gradient 4:1 to 1:1 petrol:EtOAc. Pure fractions were evaporated to dryness to afford the 

title compound 295 as a colourless gum, (4.0 g, 62%); Rf = 0.35 (2:1 petrol:EtOAc); νmax 

(thin film) /cm–1 2955 (w), 1640 (s), 1453 (m), 1340 (m); Room temperature NMR in 

CDCl3 show duplication and overlapping of signals cased by the presence of rotomers, 

variable temperature NMR showed incompleate coalescence of the peaks at 100 ºC in 

DMSO. δH (400 MHz, CDCl3, mixture of rotamers) 6.63 (1H, bs, ArCH), 6.59 (1H, bs, 
ArCH), 5.92-5.80 (1H, m, CH=CH2), 5.00-4.86 (2H, m, CH=CH2), 4.79-4.60 (1H, m, 

NCH), 4.20-4.10 (2H, m, C(O)CH2Cl), 3.92-3.82 (1H, m, NCH2CH2Ar), 3.85 (3H, bs, 

OCH3), 3.83 (3H, bs, OCH3), 3.62-3.56 (1H, m, NCH2CH2Ar), 3.00-2.50 (4H, m, 

NCH2CH2Ar, NCH2CH2Ar, CHCH2CH=CH2); δC (100 MHz, CDCl3, mixture of rotamers) 
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165.3 (NC(O)CH2), 165.2 (NC(O)CH2Cl), 147.9 (ArCOCH3), 147.8 (ArCOCH3), 147.5 

(ArCOCH3), 147.4 (ArCOCH3), 134.3 (CH=CH2), 133.5 (CH=CH2), 128.1 (ArC), 127.5 

(ArC), 125.8 (ArC), 124.8 (ArC), 119.3 (CH=CH2), 117.5 (CH=CH2), 111.7 (ArCH), 111.0 

(ArCH), 109.9 (ArCH), 109.4 (ArCH), 56.7 (NCH), 55.9 (2 × OCH3), 55.8 (OCH3), 55.7 

(OCH3), 51.9 (NCH), 41.5 (NC(O)CH2Br), 41.4 (CH2), 41.3 (CH2), 40.9 (CH2), 40.4 

(NC(O)CH2Cl), 36.9 (CH2), 28.6 (NCH2CH2Ar), 27.3 (NCH2CH2Ar); m/z (CI, NH3) 312 

(MCl37H+, 35%), 311 (20), 310 (MCl35H+, 100). 

 

1-(1-Allyl-6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)-2-bromoethanone (296) 

N

Br

O

O

O

 
To a stirred solution of 1-allyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline 292 (1.6 g, 

7.0 mmol) and triethylamine (2.70 mL, 21.0 mmol) in DCM (50 mL) at 0 ºC was added 

bromoacetyl bromide (0.92 mL, 10.5 mmol) dropwise. The resulting solution was stirred at 

room temperature for 3 h. The reaction mixture was poured into water (50 mL), extracted 

with DCM (2 × 50 mL), the combined organic layer was washed with 1 M aq. NaOH (50 

mL), water (50 mL) and dried over Na2SO4, filtered and evaporated to afford the crude 

product. The crude product was purified by flash silica chromatography, elution gradient 

4:1 to 1:1 petrol:EtOAc. Pure fractions were evaporated to dryness to afford the title 

compound 296 as a colourless gum (1.34 g, 55%); Rf = 0.40 (2:1 petrol:EtOAc); νmax (thin 

film) /cm–1 2944 (w), 1644 (s), 1513 (m), 1360 (m); Room temperature NMR in CDCl3 

show duplication and overlapping of signals cased by the presence of rotomers, variable 

temperature NMR showed incompleate coalescence of the peaks at 100 ºC in DMSO. δH 

(400 MHz, CDCl3, mixture of rotamers) 6.55 (1H, bs, ArCH), 6.52 (1H, bs, ArCH), 5.80-

5.70 (1H, m, CH=CH2), 5.05-4.90 (2H, m, CH=CH2), 4.75-4.55 (1H, m, NCH), 3.90-3.70 

(3H, m, NCH2CH2Ar, C(O)CH2Br), 3.78 (3H, bs, OCH3), 3.76 (3H, bs, OCH3), 3.58-3.50 

(1H, m, NCH2CH2Ar), 3.01-2.48 (4H, m, NCH2CH2Ar, NCH2CH2Ar, CHCH2CH=CH2); 

δC (100 MHz, CDCl3, mixture of rotamers) 165.5 (NC(O)CH2), 165.4 (NC(O)CH3), 147.8 

(ArCOCH3), 147.7 (ArCOCH3), 147.6 (ArCOCH3), 147.5 (ArCOCH3), 134.3 (CH=CH2), 

133.9 (CH=CH2), 128.1 (ArC), 127.6 (ArC), 125.9 (ArC), 124.9 (ArC), 119.1 (CH=CH2), 

117.6 (CH=CH2), 111.5 (ArCH), 111.0 (ArCH), 109.9 (ArCH), 109.4 (ArCH), 57.5 (NCH), 

56.0 (OCH3), 55.9 (OCH3), 55.8 (OCH3), 55.7 (OCH3), 51.8 (NCH), 41.0 (CH2), 40.9 

(CH2), 40.6 (CH2), 34.9 (CH2), 28.6 (NCH2CH2Ar), 28.5 (NCH2CH2Ar), 26.6 

(NC(O)CH2Br), 26.3 (NC(O)CH2Br); m/z (CI, NH3) 378 (MBr81Na+, 50%), 376 
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(MBr79Na+, 50), 357 (18), 356 (MBr81H+, 98), 355 (18), 354 (MBr79H+, 100); HRMS 

C16H21BrNO3 (MBr79H+) requires 354.0699, found  354.0705. 

 

1-[6,7-Dimethoxy-1-(prop-2-en-1-yl)-1,2,3,4-tetrahydroisoquinolin-2-yl]-2-

[(ethoxymethanethioyl)sulfanyl]ethan-1-one (294) 

N

S

O

O

O

O

S

 
To a stirred solution of 1-(1-allyl-6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)-2-

chloroethanone 295 (2.3 g, 7.5 mmol) in MeCN (20 mL) at room temperature was added 

potassium O-ethyl xanthate (1.3 g, 8.25 mmol). The resulting solution was stirred at room 

temperature for 3 h, during which time a precipitate formed. The reaction mixture was 

poured into water (50 mL), and extracted with EtOAc (2 × 50 mL), the combined organic 

layer was washed with 1 M aq. NaOH (50 mL), water (2 × 50 mL), brine (50 mL), and 

dried over MgSO4, filtered and evaporated to afford the crude product. The crude product 

was purified by flash silica chromatography, elution gradient 9:1 to 1:1 petrol:EtOAc. Pure 

fractions were evaporated to dryness to afford the title compound 294 as a colourless gum, 

(2.6 g, 84%); Rf = 0.55 (1:1 petrol:EtOAc); νmax (thin film) /cm–1 2935 (s), 2834 (w), 1643 

(s), 1517 (s), 1443 (s), 1360 (m), 1244 (s), 1224 (s); Room temperature NMR in CDCl3 

show duplication and overlapping of signals caused by the presence of rotamers, variable 

temperature NMR showed incomplete coalescence of the peaks at 90 ºC in DMSO. δH (400 

MHz, CDCl3, mixture of rotamers) 6.52 (1H, bs, ArCH), 6.51 (1H, bs, ArCH), 5.85-5.64 

(1H, m, CH=CH2), 5.44 and 4.84 (1H, t, J = 6.5, NCH), 5.10-4.88 (2H, m, CH=CH2), 4.52 

(2H, q, J = 6.5, OCH2CH3), 4.06 and 4.04 (2H, s, C(O)CH2S), 3.84-3.76 (1H, m, 

NCH2CH2Ar), 3.72 (3H, bs, 2 × OCH3), 3.54-3.46 (1H, m, NCH2CH2Ar), 3.06-2.38 (4H, 

m, NCH2CH2Ar, NCH2CH2Ar and CHCH2CH=CH2); δC (100 MHz, CDCl3, major 

rotamer) 213.6 (SC(S)OEt), 165.1 (NC(O)CH2), 147.8 (ArCOCH3), 147.6 (ArCOCH3), 

134.7 (CH=CH2), 128.5 (ArC), 125.2 (ArC), 117.4  (CH=CH2), 111.3 (ArCH), 110.2 (ArCH), 

70.4 (OCH2CH3), 56.0 (OCH3), 55.9 (OCH3), 52.4 (NCH), 41.4 (CH2), 40.6 

(NC(O)CH2S), 39.8 (CH2), 28.7 (NCH2CH2Ar), 13.7 (OCH2CH3); δC (100 MHz, CDCl3, 

minor rotamer) 213.9 (SC(S)OEt), 165.3 (NC(O)CH2), 148.1 (ArCOCH3), 147.5 

(ArCOCH3), 133.8 (CH=CH2), 127.8 (ArC), 126.1 (ArC), 119.2  (CH=CH2), 111.6 (ArCH), 

109.8 (ArCH), 70.3 (OCH2CH3), 56.7 (OCH3), 56.1 (OCH3), 52.4 (NCH), 41.0 (CH2), 40.1 

(NC(O)CH2S), 39.9 (CH2), 27.6 (NCH2CH2Ar), 14.2 (OCH2CH3); m/z (ESI) 459 
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(M32S2NaMeCN+, 22%), 459 (M32S2Na+, 25), 398 (10), 397 (20), 396 (M32S2H+, 100%); 

HRMS C19H26
32S2NO3 (M32S2H+) requires 396.1298, found  396.1299. 

 

1-(1-Allyl-6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)ethanone (299) 

N O

O

O

 
A solution of 294, 295 or 296 (1.0-2.5 mmol, 1 equiv.) in THF (50-150 mL) was stirred at 

reflux for 30 minutes under nitrogen. Then AIBN (0.05-0.12 mmol, 0.05 equiv.) was 

added, followed by the slow addition of a solution of tributyltin hydride (1.2-3.0 mmol, 1.2 

equiv.) and AIBN (0.5-1.25 mmol) in THF (20 mL) by a syringe pump over a period of 1-4 

h. Following the completion of the addition of the tributyltin hydride, the solution was 

maintained at reflux for a further 2 h, after which the solution was cooled to r.t. The 

reaction mixture was contracted in vacuo, until approx 10 ml of solvent was left and this 

was then stirred with KF/silica for 10 min. The resulting slurry was loaded on to a short 

KF/silica column, and flushed with petrol then EtOAc, the EtOAc fraction was 

concentrated in vacuo to afford a yellow gum. The gum was purified by flash silica 

chromatography, elution gradient 5:1 petrol:EtOAc to EtOAc, the pure fractions were 

concentrated in vacuo to afford the title compound as a colourless oil (25-49%); Rf = 0.35 

(2:1 petrol:EtOAc); νmax (thin film) /cm–1 2953 (w), 1639 (s), 1516 (m), 1435 (m), 1359 

(m); Room temperature NMR in CDCl3 show duplication and overlapping of signals cased 

by the presence of rotomers, variable temperature NMR showed incompleate coalescence 

of the peaks at 100 ºC in DMSO. δH (400 MHz, CDCl3, mixture of rotamers) 6.59 (1H, bs, 
ArCH), 6.55 (1H, bs, ArCH), 5.90-5.78 (1H, m, CH=CH2), 5.09-4.95 (2H, m, CH=CH2), 

4.75-4.65 (1H, m, NCH), 3.81 (3H, bs, OCH3), 3.78 (3H, bs, OCH3), 3.77-3.70 (1H, m, 

NCH2CH2Ar), 3.53-3.48 (1H, m, NCH2CH2Ar), 3.01-2.48 (4H, m, NCH2CH2Ar, 

NCH2CH2Ar, CHCH2CH=CH2), 2.16 (3H, bs, NC(O)CH3); δC (100 MHz, CDCl3, mixture 

of rotamers) 169.2 (NC(O)CH3), 169.1 (NC(O)CH3), 147.6 (ArCOCH3), 147.5 (ArCOCH3), 

147.4 (ArCOCH3), 147.3 (ArCOCH3), 134.9 (CH=CH2), 133.8 (CH=CH2), 128.9 (ArC), 

128.1 (ArC), 126.4 (ArC), 125.1 (ArC), 118.6 (CH=CH2), 117.0 (CH=CH2), 111.5 (ArCH), 

111.0 (ArCH), 110.0 (ArCH), 109.5 (ArCH), 57.5 (NCH), 55.9 (OCH3), 55.7 (OCH3), 51.2 

(NCH), 41.3 (CH2), 40.9 (CH2), 40.5 (CH2), 34.8 (CH2), 28.5 (NCH2CH2Ar), 27.6 

(NCH2CH2Ar), 21.9 (NC(O)CH3), 21.7 (NC(O)CH3); m/z (CI) 277 (15%), 276 (MH+, 

100), 232 (30). 

The spectroscopic data is in agreement with reported data.302
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tert-Butyl 6,7-dimethoxy-1-[(E)-4-methoxy-4-oxobut-2-en-1-yl]-1,2,3,4-

tetrahydroisoquinoline-2-carboxylate (300) 

N

O

O

O

O Boc

 
To a stirred solution of tert-butyl 1-allyl-6,7-dimethoxy-3,4-dihydroisoquinoline-2(1H)-

carboxylate 291 (1.1 g, 3.34 mmol) in dioxane:water (8 mL:4 mL) was added a crystal of 

osmium tetaoxide, followed by the slow portionwise addition of sodium metaperiodate (1.6 

g, 7.3 mmol) over 20 minutes. The resulting reaction mixture was stirred for 2 h, after 

which brine (30 mL) was added and the mixture was extracted with ethyl acetate (3 × 25 

mL). The organic layer was dried over NaSO4 and concentrated to afford a light brown oil. 

To a stirred solution of the crude aldehyde in DCM (10 mL) was added 

methoxycarbonylmethylene triphenylphosphorane (1.7 g, 5.0 mmol) and the reaction 

mixture was stirred for 4 h. The reaction mixture was then concentrated in vacuo, then 

diluted with Et2O (75 mL), the resulting white precipitate is filtered, and the organic 

solution washed with water (50 mL), brine (50 mL) and then dried over MgSO4 and 

concentrated in vacuo to afford an brown oil. The resulting oil was purified by flash silica 

chromatography, elution gradient 5:1 petrol:EtOAc to neat EtOAc. Pure fractions were 

evaporated to dryness to afford the title compound 300 as a pale yellow oil (0.82 g, 62%), 

Rf = 0.55 (EtOAc); νmax (thin film) /cm–1 3066 (w), 2905 (w), 1715 (s), 1690 (s), 1630 (m); 

δH (400 MHz, CDCl3) 7.02-6.88 (1H, m, CH=CHCO2CH3), 6.53 (1H, s, ArCH), 6.50 (1H, 

s, ArCH), 5.82-5.70 (1H, m, CH=CHCO2CH3), 5.26-5.00 (1H, m, NCH), 4.20-3.92 (1H, m, 

NCH2CH2Ar), 3.78 (3H, s, ArOCH3), 3.75 (3H, s, ArOCH3), 3.64 (3H, s, CO2CH3), 3.23-

3.01 (1H, m, NCH2CH2Ar), 2.84-2.55 (4H, m, NCH2CH2Ar and CHCH2CH); δC (100 

MHz, CDCl3, major rotamer only) 166.4 (CO2CH3), 154.2 (NC(O)O), 147.4 (ArCOCH3), 

147.3 (ArCOCH3), 145.5 (CH=CHCO2CH3), 127.9 (ArC), 126.5 (ArC), 122.9 

(CH=CHCO2CH3), 111.4 (ArCH), 109.5 (ArCH), 79.8 (OC(CH3)3), 55.9 (ArOCH3), 55.8 

(ArOCH3), 53.6 (NCH), 51.3 (CO2CH3), 39.7 (NCH2CH2Ar), 36.6 (CH2CH=CH), 28.3 (3 × 

OC(CH3)3), 28.2 (NCH2CH2Ar); m/z (CI) 393 (10%), 392 (MH+, 50), 291 (15), 290 (100); 

HRMS C21H30NO6 (MH+) requires 392.2067, found 392.2071. 
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Methyl (E)-4-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-1-yl)but-2-enoate (301) 

NH

O

O

O

O

 
To a stirred solution of tert-Butyl 6,7-dimethoxy-1-[(E)-4-methoxy-4-oxobut-2-en-1-yl]-

1,2,3,4-tetrahydroisoquinoline-2-carboxylate 300 (783 mg, 2 mmol) in DCM (10 mL) at 

room temperature was added dropwise trifluoroacetic acid (1.9 mL, 25 mmol). Following 

complete addition the solution was stirred for 12 h at room temperature. The resulting 

solution was concentrated in vacuo and the resulting brown solid was taken up in a fresh 

portion of DCM (50 mL) and stirred with 2 M aq. NaOH solution (50 mL) for 15 minutes. 

The organic layer was separated and the aqueous layer was extracted with DCM (2 × 50 

mL), and the combined organic layers were washed with water (100 mL), dried over 

MgSO4 and concentrated in vacuo to afford a brown oil. The resulting oil was purified by 

flash silica chromatography, elution gradient DCM to 10:1 DCM:MeOH. Pure fractions 

were evaporated to dryness to afford the title compound 301 as a pale yellow oil (0.217 g, 

37%), Rf = 0.26 (15:1 DCM:MeOH); νmax (thin film) /cm–1 3340 (bs), 3075 (w), 1712 (s), 

1633 (m), 1612 (m); δH (400 MHz, CDCl3) 6.92 (1H, dt, J = 15.7 and 7.7 

CH=CHCO2CH3), 6.52 (1H, s, ArCH), 6.51 (1H, s, ArCH), 5.85 (1H, dt, J = 15.7 and 1.2, 

CH=CHCO2CH3), 4.10-4.00 (1H, m, NCH), 3.79 (3H, s, ArOCH3), 3.78 (3H, s, ArOCH3), 

3.66 (3H, s, CO2CH3), 3.18-3.04 (1H, m, NCH2CH2Ar), 2.95-2.85 (1H, m, NCH2CH2Ar), 

2.75-2.50 (4H, m, NCH2CH2Ar and CH2CH=CHCO2CH3), 1.74 (1H, bs, NH); δC (100 

MHz, CDCl3) 166.2 (CO2CH3), 148.0 (ArCOCH3), 147.7 (ArCOCH3), 146.3 

(CH=CHCO2CH3), 129.5 (ArC), 127.5 (ArC), 123.5 (CH=CHCO2CH3), 111.8 (ArCH), 108.8 

(ArCH), 55.9 (ArOCH3), 55.8 (ArOCH3), 54.5 (NCH), 51.5 (CO2CH3), 40.8 (NCH2CH2Ar), 

39.3 (CH2CH=CH), 29.3 (NCH2CH2Ar); m/z (CI) 315 (10%), 314 (60, MNa+), 310 (12), 

309 (75, MNH4
+), 293 (18), 292 (100, MH+); HRMS C16H22NO4 (MH+) requires 292.1548, 

found 292.1545. 
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Methyl (E)-4-(2-(2-bromoacetyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-1-

yl)but-2-enoate (302) 

N

Br

O

O

O

O

O

 
To a stirred solution of methyl (E)-4-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-1-

yl)but-2-enoate 301 (204 mg, 0.7 mmol) and triethylamine (270 µL, 2.1 mmol) in DCM (5 

mL) at 0 ºC was added bromoacetyl bromide (92 µL, 1.05 mmol) dropwise. The resulting 

solution was stirred at room temperature for 3 h. The reaction mixture was poured into 

water (10 mL), extracted with DCM (2 × 20 mL), the combined organic layers were 

washed with 1 M aq. NaOH (20 mL), water (20 mL) and dried over Na2SO4, filtered and 

evaporated to afford the crude product. The crude product was purified by a SCX column 

elution gradient 4:1 DCM:MeOH to 4:1 MeOH/NH3:DCM to afford the title compound 

302 as a yellow gum (273 mg, 95%), as a mixture of rotamers; νmax (thin film) /cm–1 3069 

(w), 2912 (w), 1712 (s), 16940 (s); Room temperature NMR in CDCl3 show duplication 

and overlapping of signals cased by the presence of rotomers, variable temperature NMR 

showed incompleate coalescence of the peaks at 100 ºC in DMSO. major rotamer, δH (400 

MHz, CDCl3) 6.90 (1H, dt, J = 15.6 and 7.7 CH=CHCO2CH3), 6.59 (1H, s, ArCH), 6.58 

(1H, s, ArCH), 5.80 (1H, dt, J = 15.6 and 1.2, CH=CHCO2CH3), 5.59 (1H, t, J = 5.5, NCH), 

3.92 (2H, s, NC(O)CH2Br), 3.87-3.82 (1H, m, NCH2CH2Ar), 3.85 (3H, s, ArOCH3), 3.83 

(3H, s, ArOCH3), 3.69 (3H, s, CO2CH3), 3.55 (1H, app ddd, J = 15.0, 10.6 and 4.2, 

NCH2CH2Ar), 2.98 (1H, app ddd, J = 16.1, 10.6 and 5.4 NCH2CH2Ar), 2.82-2.68 (3H, m, 

CH2CH=CHCO2CH3 and NCH2CH2Ar); δC (100 MHz, CDCl3) 166.5 (CO2CH3), 165.9 

(NC(O)CH2Br), 148.1 (ArCOCH3), 147.8 (ArCOCH3), 144.3 (CH=CHCO2CH3), 127.1 

(ArC), 125.2 (ArC), 123.8 (CH=CHCO2CH3), 111.2 (ArCH), 109.8 (ArCH), 56.1 (ArOCH3), 

56.0 (ArOCH3), 51.8 (NCH), 51.6 (CO2CH3), 41.6 (NCH2CH2Ar), 39.1 (CH2CH=CH), 28.6 

(NCH2CH2Ar), 26.1 (NC(O)CH2Br); m/z (CI) 436 (MBr81Na+, 30%), 434 MBr79Na+, 30), 

431 (MBr81NH4
+, 45), 429 (MBr79 NH4

+, 45), 415 (16), 414 (MBr81H+,  98), 413 (18), 412 

(MBr79H+, 100); HRMS C18H23BrNO5 (MH+) requires 412.0754, found 412.0766. 

The minor rotamer is identified by the following key peaks; δH (400 MHz, CDCl3) 6.95 

(1H, dt, J = 15.6 and 7.7, CH=CHCO2CH3), 6.60 (1H, s, ArCH), 5.55 (1H, s, ArCH), 5.90 

(1H, dt, J = 15.6 and 1.2, CH=CHCO2CH3). 
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1-(2-Bromoallyl)-1,2,3,4-tetrahydro-6,7-dimethoxyisoquinoline (306) 

NH

O

O
Br

 
To a stirred solution of tert-butyl 6,7-dimethoxy-3,4-dihydroisoquinoline-2(1H)-

carboxylate 289 (11.7 g, 40.0 mmol), in tetrahydrofuran (300 mL) and diethyl ether (300 

mL) at -78 ºC, under nitrogen was slowly added a solution of sBuLi (40.0 mL, 40 mmol, 

1.0 M) in hexane. The resulting solution was stirred at -78 ºC, for 45 minutes, during 

which time the solution turned a dark red. To the resulting solution was added TMEDA 

(7.3 mL, 48 mmol), after 15 minutes, 2,3-dibromopropene (4.4 mL, 44 mmol) was added 

dropwise, and the resulting solution was maintained at -78 ºC for 1 h during which time the 

solution turned to a light orange colour, after which the solution was allowed to warm to 

room temperature. The reaction mixture was poured into water (200 mL), and extracted 

with EtOAc (3 × 250 mL), the combined organic layer was dried over MgSO4, filtered and 

evaporated to afford yellow oil, which was used without further purification.  

To a stirred solution of the crude oil in DCM (50 mL) at room temperature was slowly 

added trifluoroacetic acid (80 mL, 320 mmol) and the resulting solution was stirred at 

room temperature for 12 h. After which time the solution was concentrated in vacuo and 

the resulting brown oil was taken up in a fresh portion of DCM (100 mL) and stirred with a 

2 M aq. NaOH solution (100 mL) for 15 minutes. The organic layer was separated and the 

aqueous layer was extracted with DCM (2 × 100 mL), and the combined organic layers 

were washed with water (2 × 100 mL), dried over MgSO4 and concentrated in vacuo. The 

oil was purified by flash silica chromatography, elution gradient 0 to 10% MeOH/NH3 in 

DCM. Pure fractions were evaporated to dryness to afford the title compound 306 as a pale 

yellow oil (3.49 g, 28%); Rf = 0.75 (15:1 DCM:MeOH/NH3); νmax (thin film) /cm–1 3335 

(sb), 3077 (w), 1633 (m), 1610 (m); δH (400 MHz, CDCl3) 6.58 (1H, s, ArCH), 6.57 (1H, s, 
ArCH), 5.71 (1H, appt, J = 1.1, C(Br)=CH2), 5.57 (1H appd, J = 1.3, C(Br)=CH2), 4.24 

(1H, dd, J = 9.6 and 3.8, NCH), 3.84 (3H, s, OCH3), 3.83 (3H,s, OCH3), 3.16 (1H, app dt, J 

= 12.2 and 5.8, NCH2), 3.00 (1H, app dt, J = 12.2 and 5.8, NCH2), 2.86 (1H app ddd, J = 

14.3, 3.8 and 1.1, CH2CBr), 2.80-2.72 (3H, m, CH2CBr and ArCH2 ), 2.29 (1H, bs, NH); δC 

(100 MHz, CDCl3) 147.5 (ArCOCH3), 147.1 (ArCOCH3), 131.4 (C), 129.1 (C), 127.1 (C), 

119.7 (=CH2), 111.7 (ArCH), 109.1 (ArCH), 55.9 (OCH3), 55.7 (OCH3), 52.8 (NCH), 48.2 

(C(Br)=CH2), 40.0 (NCH2), 29.0 (ArCH2); m/z (CI, NH3) 315 (10%), 314 (MBr81H+, 100), 

313 (11), 312 (M Br79H+, 100); HRMS C14H19BrNO2 (MBr79H+) requires 312.0594, found 

312.0592. 



 

 179

1-(2-Bromoallyl)-2-((E)-but-2-enyl)-1,2,3,4-tetrahydro-6,7-dimethoxyisoquinoline 

(307) 

N

O

O
Br

 
To a stirred solution of 1-(2-bromoallyl)-1,2,3,4-tetrahydro-6,7-dimethoxyisoquinoline 306 

(0.75 g, 2.4 mmol) and K2CO3 (0.39 g, 2.8 mmol) in DMF (15 mL) under nitrogen at room 

temperature was added Et3N (0.39 mL, 2.8 mmol), and crotyl bromide (0.24 mL, 2.8 

mmol). After stirring for 24 h, the reaction mixture was poured into a saturated solution of 

NaHCO3 (50 mL) and the mixture was extracted with EtOAc (3 × 30 mL). The combined 

organic layers were washed with saturated aq. Na2S2O3 solution (2 × 30 mL), brine (2 × 30 

mL), dried over Na2SO4, and concentrated under reduced pressure. The resulting oil was 

purified by flash silica chromatography, elution gradient 3:1 to 1:1 Petrol:EtOAc. Pure 

fractions were evaporated to dryness to afford the title compound 307 as a yellow gum 

(0.61 g, 69%) as a 4.8:1 mixture of inseparable E:Z alkenes; Rf = 0.34 (1:1 Petrol:EtOAc); 

νmax (thin film) /cm–1 3079 (w), 3033 (w), 1635 (m), 1613 (m); major E isomer δH (400 

MHz, CDCl3) 6.55 (1H, s, ArCH), 6.54 (1H, s, ArCH), 5.57-5.54 (2H, m, CH=CH), 5.49 

(1H, app d, J = 1.4, =CH2), 5.44 (1H, app d, J = 1.4, =CH2), 3.99 (1H, t, J = 6.7, NCH), 

3.82 (3H, s, OCH3), 3.87 (3H, s, OCH3), 3.24-3.01 (3H, m, NCH2CH=CH and 

NCH2CH2Ar), 2.95-2.81 (3H, m, NCH2CH2Ar, CH2CBr and NCH2CH2Ar), 2.58 (1H, app 

dd, J = 13.9 and 6.8, CH2CBr), 2.48-2.38 (1H, m, NCH2CH2Ar), 1.68 (3H, d, J = 3.7, 

CH3); δC (100 MHz, CDCl3) 147.3 (ArCOCH3), 146.7 (ArCOCH3), 132.4 (C(Br)=CH2), 

128.8 (ArC), 128.7 (CH=CH), 128.2 (CH=CH), 125.9 (ArC), 118.6 (C(Br)=CH2), 111.2 

(ArCH), 110.7 (ArCH), 57.3 (NCH), 55.7 (OCH3), 55.6 (OCH3), 55.5 (NCH2CH=), 47.4 

(NCH2CH2Ar), 43.1 (CHCH2CBr), 23.7 (NCH2CH2Ar), 17.7 (CH3); m/z (CI) 369 (10%), 

368 (MBr81H+, 98), 367 (10), 366 (M Br79H+, 100) 268 (30); HRMS C18H25BrNO2 

(MBr79H+) requires 366.1063, found 366.1059. 

The minor Z isomer was identified by the following key peaks; δH (400 MHz, CDCl3) 1.54 

(3H, d, J = 5.5 CH3); δC (100 MHz, CDCl3) 132.3 (C(Br)=CH2), 128.6 (CH=CH), 128.0 

(CH=CH), 126.7 (ArC), 125.8 (ArC), 57.7 (NCH), 49.4 (NCH2CH), 47.7 (NCH2CH2Ar), 

43.1 (CHCH2CBr), 23.6 (NCH2CH2Ar), 13.0 (CH3). 
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3-Ethyl-9,10-dimethoxy-2-methylene-2,3,4,6,7,11b-hexahydro-1H-pyrido[2,1-

a]isoquinoline (308), (1S*,9S*)-12-[but-2-en-1-yl]-4,5-dimethoxy-10-methyl-12-

azatricyclo[7.2.1.02,7]dodeca-2,4,6- triene (309), (1S*,9S*)-4,5-dimethoxy-10-methyl-

12- azatricyclo[7.2.1.02,7]dodeca-2,4,6-triene (310) and 1-Allyl-6,7-dimethoxy-1,2,3,4-

tetrahydroisoquinoline (192) 

N

O

O NH

O

ONH

O

O

H

H
N

O

O

H

H
H H

308 192310309
 

 

A solution of 1-(2-bromoallyl)-2-((E)-but-2-enyl)-1,2,3,4-tetrahydro-6,7-

dimethoxyisoquinoline 307 (0.58 g, 1.60 mmol) in THF (50 mL) was stirred at reflux for 

30 minutes under nitrogen. Then AIBN (0.013 g, 0.08 mmol) was added, followed by the 

slow addition of a solution of tributyltin hydride (0.6 mL, 2.24 mmol) and AIBN (0.12 g, 

0.72 mmol) in THF (20 mL) by a syringe pump over a period of 4 h. Following the 

completion of the addition of the tributyltin hydride, the solution was maintained at reflux 

for a futher 2 h, after which the solution was cooled to r.t. The crude product was passed 

thought an SCX column, elution gradient 4:1 DCM:MeOH to 4:1 DCM:MeOH/NH3, and 

evaporated to afford a yellow oil. The oil was then purified by flash silica chromatography, 

elution gradient 6:1 Petrol:EtOAc to 10:10:1 Petrol:EtOAc:MeOH/NH3, the pure fractions 

were collected and concentrated in vacuo to afford the title compounds. 

 The 6-exo cyclisation product, 308 was obtained as a yellow oil (103 mg, 22%) as a 

4:1 mixture of partially separable diastereomers; Rf = 0.55 (10:10:1 

Petrol:EtOAc:MeOH/NH3); νmax (thin film) /cm–1 3205 (w), 3060 (w), 3029 (w), 1632 (m), 

1599 (m); major diastereomer, δH (400 MHz, CDCl3) 6.68 (1H, s, ArCH), 6.58 (1H, s, 
ArCH), 4.90 (1H, d, J = 1.2, CH=CH2), 4.73 (1H, d, J = 1.0, CH=CH2), 3.87 (3H, s, OCH3), 

3.84 (3H, s, OCH3), 3.12 (1H, td, J = 10.9 and 3.1, NCH2CH), 3.12-3.00 (3H, m, NCH, 

NCH2CH2Ar and NCH2CH2Ar), 2.81 (1H, dd, J = 12.5 and 2.8, CHCH2C=CH2), 2.68-2.63 

(1H, m, NCH2CH2Ar), 2.50 (1H, td, J = 10.9 and 3.6, NCH2CH2Ar), 2.29-2.20 (1H, m, 

CHCH2CH3), 2.21 (1H, dd, J = 12.5, CHCH2C=CH2), 1.97 (1H, t, J = 11.0, NCH2CH), 

1.80-1.68 (1H, m, CH2CH3), 1.32-1.25 (1H, m, CH2CH3), 0.99 (3H, t, J = 7.4, CH2CH3); 

δC (100 MHz, CDCl3) 149.8 (C=CH2), 147.4 (ArCOCH3), 147.1 (ArCOCH3), 129.7 (ArC), 

126.6 (ArC), 111.4 (ArCH), 108.1 (ArCH), 106.0 (C=CH2), 64.0 (NCH), 62.3 (NCH2CH), 

56.0 (OCH3), 55.8 (OCH3), 51.7 (NCH2CHAr), 42.7 (CHCH2CH3), 41.8 (CHCH2C=CH2), 

29.2 (NCH2CH2Ar), 22.2 (CH2CH3), 11.7 (CHCH3); m/z (CI, NH3)  289 (15%), 288 (MH+, 

100); HRMS C18H26NO2 (MH+) requires 288.1958, found 288.1966. 
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 The 6,5-fused bicyclic compound 309 was obtained as a yellow oil (61 mg, 13%) as 

a single diastereomer; Rf = 0.15 (10:10:1 Petrol:EtOAc:MeOH/NH3); νmax (thin film) /cm–1 

3290 (w), 3055 (w), 3015 (w), 1628 (m); δH (400 MHz, CDCl3) 6.55 (1H, s, ArCH), 6.42 

(1H, s, ArCH), 5.65-5.45 (2H, m, CHCH=CHCH3), 3.83 (3H, s, OCH3), 3.82 (3H, s, 

OCH3), 3.75 (1H, d, J = 6.1, NCHAr), 3.40 (1H, t, J = 5.4, NCHCH2Ar), 3.12-3.07 (2H, m, 

NCH2CH=CHCH3), 2.91 (1H, dd, J = 17.4 and 5.4, NCHCH2Ar), 2.60-2.47 (3H, m, 

CH2CHCH3, CHCH3 and NCHCH2Ar), 1.66 (3H, d, J = 6.1 and 1.1, CH=CHCH3), 1.26-

1.20 (1H, m, CH2CHCH3), 0.94 (3H, d, J = 6.8, CHCH3); δC (100 MHz, CDCl3) 147.2 

(ArCOCH3), 147.0 (ArCOCH3), 133.6 (ArC), 128.6 (CH=CH), 127.8 (CH=CH), 124.5 (ArC), 

111.5 (ArCH), 109.2 (ArCH), 61.2 (NCHAr), 59.4 (NCHCH2Ar), 55.8 (2 × OCH3), 50.7 

(NCH2CH=CHCH3), 42.5 (CH2CHCH3), 34.3 (CHCH3), 25.0 (NCHCH2Ar), 17.8 

(CHCHCH3), 17.6 (CHCH3); m/z (CI, NH3)  289 (15%), 288 (100, MH+); HRMS 

C18H26NO2 (MH+) requires 288.1958, found 288.1961. 

 The 6,5-fused bicyclic compound 310 was obtained as a yellow oil (46 mg, 12%) as 

a single diastereomer; Rf = 0.10 (10:10:1 Petrol:EtOAc:MeOH/NH3); νmax (thin film) /cm–1 

3335 (bs), 3190 (w), 3040 (w), 2995 (w), 1400 (m); δH (400 MHz, CDCl3) 6.93 (1H, s, 
ArCH), 6.48 (1H, s, ArCH), 4.12 (1H, d, J = 5.9, NCHAr), 3.82 (3H, s, OCH3), 3.81 (3H, s, 

OCH3), 3.33 (1H, d, J = 5.0, NCHCH2Ar), 3.04 (1H, dd, J = 16.5 and 5.0, NCHCH2Ar), 

2.52 (1H, d, J = 16.5, NCHCH2Ar), 2.21 (1H, bs, NH), 2.15-2.00 (2H, m, CHCH2CH and 

CHCH3), 1.57 (1H, dt, J = 11.4 and 5.9,  CHCH2CH), 1.12 (3H, d, J = 6.7, CH3); δC (100 

MHz, CDCl3) 147.6 (ArCOCH3), 146.8 (ArCOCH3), 135.8 (ArC), 123.8 (ArC), 112.5 (ArCH), 

108.4 (ArCH), 61.0 (NCHCH2Ar), 59.3 (NCHAr), 55.9 (OCH3), 55.8 (OCH3), 46.1 

(CHCH2CH), 37.2 (CHCH3), 37.2 (NCHCH2Ar), 22.2 (CHCH3); m/z (CI, NH3)  235 

(15%), 234 (100, MH+); HRMS C14H20NO2 (MH+) requires 234.1489, found 234.1491. 

 1-Allyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (192) (31 mg, 8%) was 

isolated as a pale yellow oil, the spectroscopic data is in agreement with material prepared 

previously. 

 

Methyl (E)-4-(1-(2-bromoallyl)-3,4-dihydro-6,7-dimethoxyisoquinolin-2(1H)-yl)but-2-

enoate (317) 

N

O

O
Br

O

O

 
To a stirred solution of 1-(2-bromoallyl)-1,2,3,4-tetrahydro-6,7-dimethoxyisoquinoline 306 

(1.9 g, 6.0 mmol) and K2CO3 (0.99 g, 7.2 mmol) in DMF (50 mL) under nitrogen at room 
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temperature was added Et3N (0.92 mL, 7.2 mmol), and methyl (E)-4-bromobut-2-enoate 

(0.70 mL, 7.2 mmol). After stirring for 24 h, the reaction mixture was poured into a 

saturated solution of NaHCO3 (100 mL) the mixture was extracted with EtOAc (3 × 60 

mL). The combined organic layers were washed with saturated Na2S2O3 aqueous solution 

(2 × 50 mL), brine (2 × 50 mL), dried over Na2SO4, and concentrated under reduced 

pressure. The resulting oil was purified by flash silica chromatography, elution gradient 4:1 

to 1:1 Petrol:EtOAc. Pure fractions were evaporated to dryness to afford the title 

compound as a yellow gum (1.73 g, 70%); Rf  = 0.4 (1:1 Petrol:EtOAc); νmax (thin film) 

/cm–1 3100 (w), 3048 (w), 2985 (w), 1712 (s), 1614 (m); δH (400 MHz, CDCl3) 7.00 (1H, 

dt, J = 15.7 and 5.8, NCH2CH), 6.55 (1H, s, ArCH), 6.53 (1H, s, ArCH), 6.01 (1H, dt, J = 

15.7 and 1.6, CHCO2Me), 5.52 (1H, d, J = 1.1, C(Br)=CH2), 5.46 (1H, d, J = 1.5 

C(Br)=CH2), 3.91 (1H, dd, J = 7.2 and 6.2, NCH), 3.82 (3H, s, ArOCH3), 3.81 (3H, s, 
ArOCH3), 3.72 (3H, s, CO2CH3), 3.38 (2H, ddd, J = 15.7, 5.8 and 1.6, NCH2CH) 3.15-3.06 

(1H, m, NCH2), 2.90-2.80 (3H, m, NCH2, CH2CBr and ArCH2), 2.61 (1H, dd, J = 14.3 and 

5.6, CH2CBr), 2.50-2.42 (1H, m, ArCH2); δC (100 MHz, CDCl3) 166.7 (C=O), 147.5 

(COCH3), 147.0 (COCH3), 146.7 (CH2CH), 132.1 (C(Br)=CH2), 128.3 (ArC), 125.7 (ArC), 

122.2 (CHCO2CH3), 118.9 (C(Br)=CH2), 111.3 (ArCH), 110.5 (ArCH), 58.7 (NCH), 55.8 

(OCH3), 55.7 (OCH3), 54.4 (CH2CBr), 51.4 (CO2CH3), 48.1 (NCH2), 43.2 (NCH2), 23.5 

(ArCH2);  m/z (CI, NH3) 413 (19%), 412 (MBr81H+, 98), 411 (20), 410 (MBr79H+, 100); 

HRMS C19H25BrNO4 (MBr79H+) requires 410.0961, found 410.0961. 

 

Methyl 2-(2,3,4,6,7,11b-hexahydro-9,10-dimethoxy-2-methylene-1H-pyrido[2,1-

a]isoquinolin-3-yl)acetate (318) 

N

O

O

OO  
A solution of methyl (E)-4-(1-(2-bromoallyl)-3,4-dihydro-6,7-dimethoxyisoquinolin-

2(1H)-yl)but-2-enoate 317 (1.50 g, 3.75 mmol) in THF (100 mL) was stirred at reflux for 

30 minutes under nitrogen. Then AIBN (31 mg, 0.19 mmol) was added, followed by the 

slow addition of a solution of tributyltin hydride (1.5 mL, 5.6 mmol) and AIBN (277 mg, 

1.69 mmol) in THF (25 mL) by a syringe pump over a period of 5 h. Following the 

complete addition of the tributyltin hydride solution, the reaction mixture was maintained 

at reflux for a further 2 h, after which the solution was cooled to r.t. The crude reaction 

mixture was passed thought a SCX column, elution gradient 4:1 DCM:MeOH to 4:1 
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DCM:MeOH/NH3, the DCM:MeOH/NH3 fractions were evaporated to afford a yellow oil. 

The oil was purified by flash silica chromatography, elution gradient 16:4:1 

petrol:Et2O:MeOH/NH3 to 10:10:1 petrol:Et2O:MeOH/NH3. Pure fractions were 

concentrated in vacuo to afford the title compound as a yellow oil (1.10 g, 89%) as a 2.6:1 

mixture of partially separable diastereomers. 

 Major diastereoisomer (318-a); Rf = 0.20 (16:4:1 petrol:Et2O:MeOH/NH3); νmax 

(thin film) /cm–1 3043 (w), 2987 (w), 1720 (s), 1610 (m); δH (400 MHz, CDCl3) 6.62 (1H, 

s, ArCH), 6.54 (1H, s, ArCH), 4.88 (1H, s, C=CH2), 4.61 (1H, s, C=CH2), 3.82 (3H, s, 
ArOCH3), 3.79 (3H, s, ArOCH3), 3.65 (3H, s, CO2CH3), 3.14-3.08 (1H, m, NCH), 3.05 (1H, 

dd, J = 10.9 and 4.6, NCH2CH), 3.02-2.94 (2H, m, NCH2CH2Ar and NCH2CH2Ar), 2.90-

2.82 (1H, m, NCH2CHCH2CO2CH3), 2.77 (1H, dd, J = 12.0 and 3.0, NCHCH2CH=CH2), 

2.63 (1H, dd, J = 15.4 and 6.0, CHCH2CO2CH3), 2.62-2.57 (1H, m, NCH2CH2Ar), 2.50-

2.43 (1H, m, NCH2CH2Ar), 2.24 (1H, dd, J = 15.4 and 8.1, CHCH2CO2CH3), 2.21 (1H, t, J 

= 12.0, NCHCH2C=CH2), 2.07 (1H, t, J = 10.9, NCH2CH); δC (100 MHz, CDCl3) 172.9 

(CO2CH3), 148.4 (C=CH2), 147.5 (ArCOCH3), 147.2 (ArCOCH3), 129.5 (ArC), 126.7 (ArC), 

111.5 (ArCH), 108.2 (ArCH), 106.5 (C=CH2), 63.6 (NCH), 62.2 (NCH2CH), 56.1 (ArOCH3), 

55.8 (ArOCH3), 51.7 (CO2CH3), 51.3 (NCH2CH2Ar), 41.5 (NCHCH2C=CH2), 38.0 

(NCH2CHCH2CO2CH3), 34.9 (CHCH2CO2CH3), 29.3 (NCH2CH2Ar); m/z (CI) 333 (20%), 

332 (100, MH+); HRMS C19H26NO4 (MH+) requires 332.1856, found 332.1864. 

 Minor diastereoisomer (318-b); Rf = 0.24, (16:4:1 petrol:Et2O:MeOH/NH3); δH 

(400 MHz, CDCl3) 6.66 (1H, s, ArCH), 6.57 (1H, s, ArCH), 4.84 (2H, s, C=CH2), 3.85 (3H, 

s, ArOCH3), 3.83 (3H, s, ArOCH3), 3.63 (3H, s, CO2CH3), 3.12-3.02 (2H, m, NCH and 

NCH2CH2Ar), 2.90-2.74 (4H, m, NCH2CHCH2, NCH2CH2Ar, NCH2CHCH2 and 

CHCH2CO2CH3), 2.67 (1H, dd, J = 12.0 and 3.0, CHCH2CH=CH2), 2.61 (1H, dd, J = 15.3 

and 7.3, NCH2CH2Ar), 2.55 (1H, app dd, J = 16.0 and 3.0, CHCH2CO2CH3), 2.52-2.42 

(2H, m, NCH2CH2Ar and NCH2CHCH2), 2.26 (1H, app t, J = 11.6, CHCH2C=CH2); δC 

(100 MHz, CDCl3) 173.5 (CO2CH3), 147.6 (C=CH2), 147.5 (ArCOCH3), 147.3 (ArCOCH3), 

129.9 (ArC), 127.1 (ArC), 111.5 (ArCH), 110.3 (C=CH2), 108.1 (ArCH), 63.7 (NCH), 60.8 

(NCH2CHCH2), 56.1 (ArOCH3), 55.9 (ArOCH3), 52.4 (NCH2CH2Ar), 51.4 (CO2CH3), 40.4 

(NCH2CHCH2CO2CH3), 37.6 (CHCH2C=CH2), 37.5 (CHCH2CO2CH3), 29.4 

(NCH2CH2Ar).  
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2-(2,3,4,6,7,11b-Hexahydro-9,10-dimethoxy-2-methylene-1H-pyrido[2,1-

a]isoquinolin-3-yl)ethanol (319) 

N

O

O

OH  
To a stirred solution of methyl 2-(2,3,4,6,7,11b-hexahydro-9,10-dimethoxy-2-methylene-

1H-pyrido[2,1-a]isoquinolin-3-yl)acetate 318-a (166 mg, 0.5 mmol) in THF (20 mL) at 0 

ºC under nitrogen, was slowly added a solution of lithium aluminium hydride in THF (2.3 

mL, 2.4 M, 5.5 mmol), the solution was stirred for 15 minutes at 0 ºC, then warmed to r.t. 

and stirred for 6 h. The stirred reaction mixture was then quenched by the sequential 

dropwise addition of H2O (0.21 mL), 15% aqueous NaOH (0.21 mL) and H2O (0.63 mL), 

then EtOAc (20 mL) and celite (1.0 g) were added and the mixture was stirred for 1 h. The 

reaction mixture was filtered through a celite plug, the plug was flushed with EtOAc (2 × 

15 mL), evaporation of the solvent afforded the crude product as a yellow oil. The oil was 

purified by flash silica chromatography, elution gradient 16:4:1 petrol:EtOAc:MeOH/NH3 

to 0:20:1 petrol:EtOAc:MeOH/NH3. Pure fractions were concentrated in vacuo to afford 

the title compound 319 as a yellow oil (116 mg, 77%); Rf = 0.30 (10:2:1 

petrol:EtOAc:MeOH/NH3); νmax (thin film) /cm–1 3440 (sb), 3040 (w), 2990 (w), 1610 (m); 

δH (400 MHz, CDCl3) 6.66 (1H, s, ArCH), 6.56 (1H, s, ArCH), 4.89 (1H, s, C=CH2), 4.71 

(1H, s, C=CH2), 3.85 (3H, s, OCH3), 3.82 (3H, s, OCH3), 3.68 (2H, app t, J = 6.7, 

CH2OH), 3.19 (1H, d, J = 9.5, NCH), 3.10-3.06 (1H, m, NCH2CH2Ar), 3.06 (1H, dd, J = 

10.8 and 4.5, NCH2CH), 2.98 (1H, ddd, J = 11.0, 5.9 and 1.8, NCH2CH2Ar), 2.81 (1H, dd, 

J = 12.5 and 2.8, CHCH2C=CH2), 2.66-2.59 (1H, m, NCH2CH2Ar), 2.49 (1H, td, J = 11.0 

and 3.9, NCH2CH2Ar), 2.47-2.42 (1H, m, CHCH2CH2OH), 2.18 (1H, t, J = 12.5, 

CHCH2C=CH2), 2.05-1.90 (2H, m, NCH2CH and CH2CH2OH), 1.53-1.43 (1H, m, 

CH2CH2OH); δC (100 MHz, CDCl3) 149.0 (C=CH2), 147.4 (ArCOCH3), 147.0 (ArCOCH3), 

129.3 (ArC), 126.3 (ArC), 111.2 (ArCH), 107.9 (ArCH), 106.4 (C=CH2), 63.7 (NCH), 62.3 

(NCH2CH), 60.2 (CH2OH), 55.9 (OCH3), 55.7 (OCH3), 51.5 (NCH2CH2Ar), 41.4 

(CHCH2C=CH2), 37.6 (CHCH2CH2OH), 32.3 (CH2CH2OH), 28.9 (NCH2CH2Ar); m/z (CI, 

NH3) 305 (15%), 304 (100, MH+); HRMS C18H26NO3 (MH+) requires 304.1907, found 

304.1910. 
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Methyl (E)-4-(2-allyl-1,2,3,4-tetrahydro-6,7-dimethoxyisoquinolin-1-yl)but-2-enoate 

(329) 

O

O N

O

O  
To a stirred solution of 6,7-dimethoxy-3,4-dihydroisoquinoline 188 (2.8 g, 14.6 mmol), in 

diethyl ether (100 mL) at r.t. under nitrogen was added allyl bromide (1.42 mL, 16.1 

mmol). The resulting solution was stirred in the dark overnight, during which time a 

yellow precipitate formed. The crude mixture was evaporated to dryness to afford the 

bromide salt as a moisture sensitive yellow power; δH (400 MHz, CDCl3) 10.05 (1H, s, 

NCH), 7.63 (1H, s, ArCH), 6.79 (1H, s, ArCH), 6.04-5.92 (1H, m, CH=CH2), 5.57 (1H, dd, J 

= 17.0 and 0.9, CH=CH2), 5.46 (1H, dd, J = 10.0 and 0.9, CH=CH2), 4.82 (2H, d, J = 6.5, 

NCH2CH=CH2), 3.94 (3H, s, OCH3), 3.92 (2H, t, J = 8.2, NCH2CH2Ar), 3.85 (3H, s, 

OCH3), 3.20 (2H, t, J = 8.2, NCH2CH2Ar); δC (100 MHz, CDCl3) 165.8 (NCH), 158.0 

(ArCOCH3), 149.3 (ArCOCH3), 132.4 (ArC), 127.4 (ArC), 124.6 (CH=CH2), 117.7 

(CH=CH2), 116.4 (ArCH), 111.0 (ArCH), 62.5 (NCH2CH=CH2), 57.2 (ArCOCH3), 57.1 

(ArCOCH3), 47.9 (NCH2CH2Ar), 26.0 (NCH2CH2Ar). 

To a stirred suspension of the bromide salt in acetonitrile (100 mL) was added methyl (E)-

4-bromobut-2-enoate (2.9 mL, 21.9 mmol) and zinc (2.10 g, 32.2 mmol) and the resulting 

suspension was stirred at R.T. under nitrogen for 2 days. The reaction mixture was 

quenched by pouring into a saturated solution of aq. NaHCO3 (150 mL) and allowed to stir 

for 30 minutes. The resulting precipitate was removed by filtration, and washed with 

EtOAc (75 mL), the organic layer was separated and the aqueous layer extracted with 

EtOAc (2 x 75 mL). The combined organic layers were dried over MgSO4, filtered and 

evaporated to afford a yellow oil. The crude product was purified by flash silica 

chromatography, elution gradient 4:1 to 1:1 isohexane:EtOAc. Pure fractions were 

evaporated to dryness to afford the title compound (4.10 g, 84%) as a yellow oil which 

solidified on standing. Rf 0.45 (ethyl acetate:petrol, 1:1); mp 60-64 ºC; νmax (thin film) 

/cm–1 3007 (w), 2958 (w), 2781 (w), 1706 (s), 1652 (m), 1609 (w), 1514 (m); δH (400 

MHz, CDCl3) 7.04 (1H, dt, J = 15.6 and 7.0, CH2CH=CHCO2CH3), 6.57 (1H, s, ArCH), 

6.48 (1H, s, ArCH), 5.95-5.85 (1H, m, CH2CH=CH2), 5.81 (1H, app dt, J = 15.6 and 1.3, 

CH2CH=CHCO2CH3), 5.21-5.11 (2H, m, CH2CH=CH2), 3.84 (3H, s, ArOCH3), 3.81 (3H, s, 
ArOCH3), 3.76 (1H, t, J = 6.3, NCH), 3.71 (3H, s, CO2CH3), 3.23 (2H, d, J = 6.3, 
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NCH2CH=CH2), 3.16-3.08 (1H, m, NCH2CH2Ar), 2.88-2.77 (2H, m, NCH2CH2Ar and 

NCH2CH2Ar), 2.66 (1H, app quint d, J = 7.5 and 1.4, CH=CHCH2), 2.59-2.47 (2H, m, 

NCH2CH2Ar and CH=CHCH2); δC (100 MHz, CDCl3) 166.9 (CO2CH3), 147.7 

(CH=CHCO2CH3), 147.6 (ArCOCH3), 147.2 (ArCOCH3), 136.2 (CH=CH2), 128.9 (ArC), 

126.2 (ArC), 122.0 (CH=CHCO2CH3), 117.2 (CH=CH2), 111.7 (ArCH), 110.6 (ArCH), 59.6 

(NCH), 62.0 (NCH2CH=CH2), 55.9 (ArCOCH3), 55.8 (ArCOCH3), 51.3 (CO2CH3), 43.8 

(NCH2CH2Ar), 38.4 (CHCH2CH=CH), 24.6 (NCH2CH2Ar); m/z (CI, NH3) 333 (20%), 332 

(100, MH+), 232 (15); HRMS C19H26NO4 (MH+) requires 332.1856 found 332.1852. 

 

Methyl (E)-4-(2-((E)-but-2-enyl)-1,2,3,4-tetrahydro-6,7-dimethoxyisoquinolin-1-

yl)but-2-enoate (330)  

O

O N

O

O  
To a stirred solution of 3,4-dihydro-6,7-dimethoxyisoquinoline 188 (2.0 g, 10.5 mmol) in 

diethyl ether (100 mL) at room temperature under nitrogen was added crotyl bromide (2.5 

mL, 21.0 mmol). The resulting solution was stirred in the dark overnight, during which 

time a yellow precipitate formed. The crude mixture was evaporated to dryness to afford 

the bromide salt as a moisture sensitive yellow power; δH (400 MHz, CDCl3) 9.98 (1H, s, 

NCH), 7.63 (1H, s, ArCH), 6.81 (1H, s, ArCH), 6.12-5.90 (1H, m, CH=CH), 5.66-5.52 (1H, 

m, CH=CH), 4.73 (2H, d, J = 6.9, NCH2CH=CHCH3), 3.94 (3H, s, OCH3), 3.90 (2H, app t, 

J = 8.2, NCH2CH2Ar), 3.86 (3H, s, OCH3), 3.20 (2H, app t, J = 8.2, NCH2CH2Ar), 1.71 

(3H, dd, J = 6.9 and 1.1 CHCH3); δC (100 MHz, CDCl3) 164.5 (NCH), 157.2 (ArCOCH3), 

148.6 (ArCOCH3), 137.1 (CH=CH), 131.8 (ArC), 121.1 (ArC), 117.1 (CH=CH), 115.7 

(ArCH), 110.5 (ArCH), 61.5 (NCH2CH=CH), 56.6 (OCH3), 56.5 (OCH3), 47.1 

(NCH2CH2Ar), 25.4 (NCH2CH2Ar), 17.9 (CHCH3); The minor Z isomer was identified by 

the following key peaks; δH (400 MHz, CDCl3) 4.84 (2H, d, J = 7.3, NCH2CH=CHCH3), 

1.80 (3H, dd, J = 7.3 and 1.6, CHCH3). 

To a stirred suspension of the bromide salt in acetonitrile (100 mL) was added methyl (E)-

4-bromobut-2-enoate (2 ml, 16.8 mmol) and zinc dust (1.1 g, 16.8 mmol). The resulting 

suspension was stirred at r.t. under nitrogen for 2 days. The reaction mixture was quenched 

by pouring into a saturated solution of aq. NaHCO3 (150 mL) and the mixture was allowed 

to stir for 30 minutes. The resulting precipitate was removed by filtration, and washed with 
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EtOAc (75 mL), the organic layer was separated and the aqueous layer extracted with 

EtOAc (2 x 75 mL). The combined organic layers were dried over MgSO4, filtered and 

evaporated to afford a yellow oil. The crude product was purified by flash silica 

chromatography, elution gradient 8:1 to 1:1 petrol:EtOAc. Pure fractions were evaporated 

to dryness to afford the title compound (2.43 g, 68%) as a yellow oil; Rf 0.55 (ethyl 

acetate:petrol, 1:1); νmax (thin film) /cm–1 3009 (w), 2948 (w), 1710 (s), 1655 (m), 1605 

(w), 1514 (m); δH (400 MHz, CDCl3) 6.93 (1H, dt, J = 15.6 and 7.3, CH2CH=CHCO2CH3), 

6.47 (1H, s, ArCH), 6.39 (1H, s, ArCH), 5.71 (1H, d, J = 15.6, CHCO2CH3), 5.57-5.40 (2H, 

m, NCH2CH=CHCH3), 3.74 (3H, s, ArOCH3), 3.72 (3H, s, ArOCH3), 3.67 (1H, t, J = 6.3, 

NCH2CH=CHCH3), 3.61 (3H, s, CO2CH3), 3.06 (2H, d, J = 6.3, NCH2CH=CHCH3), 3.03-

2.96 (1H, m, NCH2CH2Ar), 2.79-2.60 (2H, m, NCH2CH2Ar and NCH2CH2Ar), 2.62-2.54 

(1H, m, CH2CH=CHCO2CH3), 2.50-2.39 (2H, NCH2CH2Ar and CH2CH=CHCO2CH3), 

1.61 (3H, d, J = 5.9, CH=CHCH3); δC (100 MHz, CDCl3) 166.6 (CO2CH3), 147.5 

(CH=CHCO2CH3), 147.4 (ArCOCH3), 146.9 (ArCOCH3), 128.8 (ArC), 128.5 (CH=CH), 

128.2 (CH=CH), 126.5 (ArC), 121.7 (CH=CHCO2CH3), 111.4 (ArCH), 110.4 (ArCH), 59.3 

(NCH), 55.8 (NCH2CH=CH), 55.7 (ArOCH3), 55.6 (ArOCH3), 51.1 (CO2CH3), 43.5 

(NCH2CH2Ar), 38.0 (CH2CH=CHCO2CH3), 24.5 (NCH2CH2Ar), 17.6  (CHCH3); m/z (CI, 

NH3) 347 (20%), 346 (100, MH+); HRMS C20H28NO4 (MH+) requires 346.2018 found 

346.2015. 

The minor Z isomer was identified by the following key peaks; δH (400 MHz, CDCl3) 1.48 

(3H, d, J = 6.7, CH=CHCH3); δC (100 MHz, CDCl3) 147.5 (CH=CHCO2CH3), 147.4 

(ArCOCH3), 146.9 (ArCOCH3), 128.7 (ArC), 127.8 (CH=CH), 126.8 (CH=CH), 126.4 

(ArC), 59.5 (NCH), 55.7 (NCH2CH=CH), 43.6 (NCH2CH2Ar), 38.2 (CH2CH=CH), 24.4 

(NCH2CH2Ar), 12.9 (CHCH3). 

 

Methyl 4-(2-[(2E)-3-chlorobut-2-en-1-yl]-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin 

-1-yl)-3-(phenylselanyl)butanoate (331) 

O

O N

O

O

SePh

 
To a stirred suspension of diphenyl diselenide (5.2 g, 18.8 mmol) in degassed EtOH (40 

mL) in a 100 mL two-neck round-bottom flask under nitrogen was added sodium 

borohydride (2.1 g, 56 mmol), until the solution became colourless. The resulting reaction 
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mixture was then cooled to 0 °C in an ice bath for 5 min. Glacial acetic acid (6.5 mL, 112 

mmol) was added dropwise via syringe, and allowed to stir for 5 minutes. Next, the diene 

329 (4.6 g, 14.0 mmol) was added in degassed EtOH (10 mL) via cannula, the reaction was 

stirred for 5 min at 0 ºC, and then allowed to warm to room temperature and stirred 

overnight. The reaction mixture was poured into H2O (100 mL) and was extracted with 

Et2O (3 × 100 mL). The combined organic layers were washed with brine (2 × 75 mL), 

dried over MgSO4, and concentrated to give a yellow oil. The crude product was purified 

by flash silica chromatography, elution gradient 8:1 petrol:EtOAc to EtOAc. The pure 

fractions were concentrated in vacuo to afford the title compound 331 as a yellow gum (4.3 

g, 64%) as a 5:1 mixture of inseparable diastereomers; Rf 0.45 (2:1, ethyl acetate:petrol); 

νmax (thin film) /cm–1 3070 (w), 2999 (m), 2948 (s), 2835 (m), 1731 (s), 1609 (w), 1516 (s); 

major diastereomer, δH (400 MHz, CDCl3) 7.68-7.63 (2H, m, PhCH), 7.34-7.27 (3H, m, 
PhCH), 6.51 (1H, s, ArCH), 6.35 (1H, s, ArCH), 5.97-5.84 (1H, m, CH=CH2), 5.16-5.07 (2H, 

m, CH=CH2), 3.94-3.85 (2H, m, NCH and CHSePh), 3.82 (3H, s, ArOCH3), 3.79 (3H, s, 
ArOCH3), 3.63 (3H, s, CO2CH3), 3.25-3.07 (3H, m, NCH2CH=CH2 and NCH2CH2Ar), 2.90 

(1H, m, NCH2CH2Ar), 2.86-2.75 (3H, m, NCH2CH2Ar, CH2CO2CH), 2.30 (1H, d, J =11.9 

and 4.5, NCH2CH2Ar), 2.00-1.92 (1H, m, NCHCH2CH), 1.80-1.73 (1H, m, NCHCH2CH); 

δC (100 MHz, CDCl3) 172.3 (CO2CH3), 147.5 (ArCOCH3), 147.4 (ArCOCH3), 138.1 

(CH=CH2), 135.6 (2 × PhCH), 129.0 (2 × PhCH), 128.5 (PhC), 127.9 (PhCH), 127.7 (ArC), 

126.1 (ArC), 116.8 (CH=CH2), 111.5 (ArCH), 110.4 (ArCH), 58.4 (NCH), 56.4 

(NCH2CH=CH2), 56.0 (ArOCH3), 55.9 (ArOCH3), 51.6 (CO2CH3), 42.2 (NCH2CH2Ar), 

42.0 (CH2CO2CH3), 41.4 (NCHCH2CH), 37.9 (CHSePh), 21.7 (NCH2CH2Ar); m/z (CI, 

NH3) 492 (20%), 491 (23), 490 (M80SeH+, 100), 489 (10), 488 (M78SeH+, 50), 487 (18), 

486 (M76SeH+, 18); HRMS C25H32NO4Se (M80SeH+) requires 490.1491, found 490.1485. 

 The minor diastereoisomer was identified by the following key peaks; δH (400 

MHz, CDCl3) 7.59-7.55 (2H, m, PhCH), 7.27-7.24 (3H, m, PhCH), 6.51 (1H, s, ArCH), 6.41 

(1H, s, ArCH). 
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Methyl 4-(2-[(2E)-but-2-en-1-yl]-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-1-yl)-3- 

(phenylselanyl)butanoate (332) 

O

O N

O

O

SePh

 
To a stirred suspension of diphenyl diselenide (3.7 g, 12.0 mmol) in degassed EtOH (40 

mL) in a 100 mL two-neck round-bottom flask under nitrogen was added sodium 

borohydride (1.5 g, 40 mmol), until the solution became colourless. The resulting reaction 

mixture was then cooled to 0 °C in an ice bath for 5 min. Glacial acetic acid (4.6 mL, 80 

mmoL) was added dropwise via syringe, and allowed to stir for 5 minutes. Next the diene 

330 (3.5 g, 10 mmol) was added in degassed EtOH (10 mL) via cannula, the reaction was 

stirred for 5 min at 0 °C, and then allowed to warm to room temperature and stirred over 

night. The reaction mixture was poured into H2O (50 mL) and was extracted with Et2O (3 

× 75 mL). The combined organic layers were washed with brine (2 × 75 mL), dried over 

MgSO4, and concentrated to give a yellow oil. The crude product was purified by flash 

silica chromatography, elution gradient 8:1 petrol:EtOAc to EtOAc. The pure fractions 

were concentrated in vacuo to afford the title compound 332 as a yellow gum (3.42 g, 

68%); as a mixture of inseparable diastereomers; Rf 0.50 (2:1, ethyl acetate:petrol); νmax 

(thin film) /cm–1 3053 (w), 2936 (s), 2856 (m), 1736 (s), 1608 (w), 1515 (s); δH (400 MHz, 

CDCl3) 7.62-7.58 (2H, m, PhCH), 7.26-7.22 (3H, m, PhCH), 6.46 (1H, s, ArCH), 6.30 (1H, s, 
ArCH), 5.55-5.45 (2H, m, CH=CH), 3.88-3.82 (2H, m, NCH and CHSePh), 3.76 (3H, s, 
ArOCH3), 3.74 (3H, s, ArOCH3), 3.57 (3H, s, CO2CH3), 3.12-2.96 (3H, m, NCH2CH and 

NCH2CH2Ar), 2.88 (1H, dd, J = 13.7 and 5.5, NCH2CHAr), 2.82-2.70 (3H, m, 

NCH2CH2Ar and CH2CO2CH3), 2.24 (1H, td, J = 16.7 and 4.3, NCH2CH2Ar), 1.98 (1H, 

dd, J = 14.7, 10.9 and 3.5, NCHCH2CH), 1.68-1.62 (1H, m, NCHCH2CH), 1.64 (3H, d, J = 

4.9, CHCH3); δC (100 MHz, CDCl3) 172.0 (CO2CH3), 147.2 (ArCOCH3), 147.1 (ArCOCH3), 

135.4 (PhCH), 135.3 (2 x PhCH), 129.7 (CH=CCH), 128.7 (2 x PhCH), 128.4 (ArC), 127.6 

(CH=CH), 127.5 (PhC), 126.0 (ArC), 114.4 (ArCH), 110.3 (ArCH), 57.8 (NCH), 55.8 

(OCH3), 55.6 (OCH3), 55.2 (NCH2CH=CH), 51.3 (CO2CH3), 41.9 (CH2CO2CH3), 41.7 

(NCHCH2CH), 41.4 (NCH2CH2Ar), 37.7 (CHSePh), 21.6 (NCH2CH2Ar), 17.7 (CHCH3); 

m/z (CI), 506 (28%), 505 (30), 504 (M80SeH+, 100), 503 (10), 502 (M78SeH+, 50), 501 

(17), 500 (M76SeH+, 20); HRMS C26H34NO4Se (M80SeH+) requires 504.1648, found 

504.1649. 
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Methyl 2-((2R*,3R*,11bS*)-9,10-dimethoxy-3-methyl-2,3,4,6,7,11b-hexahydro-1H-

pyrido[2,1-a]isoquinolin-2-yl)acetate (333), 9,10-dimethoxy-2,3,6,7-tetrahydro-1H-

pyrido[2,1-a]isoquinolin-4(11bH)-one (337) 

N

O

O

O

O
N

O

O O

333 337
 

A solution of methyl 4-(2-allyl-1,2,3,4-tetrahydro-6,7-dimethoxyisoquinolin-1-yl)-3-

(phenylselanyl)butanoate (331) (2.4 g, 5.0 mmol) in THF (250 mL) was stirred at reflux 

for 30 minutes under nitrogen. Then AIBN (0.041 g, 0.25 mmol) was added, followed by 

the slow addition of a solution of tributyltin hydride (2.0 mL, 7.5 mmol) and AIBN (0.41 

g, 2.5 mmol) in THF (40 mL) by a syringe pump over a period of 8 h. Following the 

completion of the addition of the tributyltin hydride, the solution was maintained at reflux 

for a further 4 h, after which the solution was cooled to r.t. The crude product was passed 

thought an SCX column, elution gradient 4:1 DCM:MeOH to 4:1 DCM:MeOH/NH3, and 

evaporated to afford a yellow oil. The oil was then purified by flash silica chromatography, 

elution gradient 6:1 petrol:EtOAc to 10:10:1 petrol:EtOAc:MeOH/NH3. Pure fractions 

were concentrated in vacuo to afford the title compounds 333 and 337. 

 The 6-exo cyclisation product, 333, was obtained as a yellow oil (148 mg, 9%) as a 

single diastereomer; Rf = 0.85 (10:10:1 petrol:EtOAc:MeOH/NH3); νmax (thin film) /cm–1 

3215 (w), 3053 (w), 1670 (s), 1432 (m), 1299 (m); δH (400 MHz, CDCl3) 6.64 (1H, s, 
ArCH), 6.55 (1H, s, ArCH), 3.83 (3H, s, ArOCH3), 3.82 (3H, s, ArOCH3), 3.69 (3H, s, 

CO2CH3), 3.11 (1H, d, J = 11.6, NCH), 3.04 (1H, dd, J = 11.0 and 6.0 NCH2CH2Ar), 2.94 

(1H, ddd, J =11.5, 6.0 and 1.7, NCH2CH2Ar), 2.90 (1H, dd J = 11.5 and 3.9, 

NCH2CHCH3), 2.65-2.60 (1H, m, NCH2CH2Ar), 2.60 (1H, dd, J = 15.4 and 4.1, 

CHCH2CO2CH3), 2.46 (1H, td, J = 11.5 and 4.0, NCH2CH2Ar), 2.31 (1H, dt, J = 12.7 and 

3.0, CHCH2CH), 2.15 (1H, dd, J = 15.4 and 8.6, CHCH2CO2CH3), 2.08 (1 H, t, J = 11.5, 

NCH2CHCH3), 1.77-1.67 (1H, m, CHCH2CO2CH3), 1.65-1.56 (1H, m, CHCH3), 1.24 (1H, 

dd, J = 12.7 and 11.6, CHCH2CH), 0.92 (3H, d, J = 6.4, CHCH3); δC (100 MHz, CDCl3) 

173.7 (CO2CH3), 147.5 (ArCOCH3), 147.2 (ArCOCH3), 129.7 (ArC), 126.7 (ArC), 111.5 

(ArCH), 108.4 (ArCH), 64.1 (NCH2CHCH3), 62.5 (NCHCH3), 56.2 (ArOCH3), 55.8 

(ArOCH3), 52.1 (NCH2CH2Ar), 51.6 (CO2CH3), 40.2 (CHCH2CO2CH3), 38.5 

(CHCH2CO2CH3), 37.6 (CHCH2CH), 35.3 (CHCH3), 29.2 (NCH2CH2Ar), 16.8 (CHCH3). 
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 The cyclic amide 337 was obtained as a pale yellow oil (401 mg, 31%); Rf = 0.10 

(10:10:1 petrol:EtOAc:MeOH/NH3); νmax (thin film) /cm–1 3203 (w), 3349 (w), 1658 (s); 

δH (400 MHz, CDCl3) 6.66 (1H, s, ArCH), 6.60 (1H, s, ArCH), 4.86 (1H, ddd, J = 12.0, 4.5 

and 3.0, NCH2CH2Ar), 4.59 (1H, dd, J = 10.6 and 4.5, NCH), 3.89 (3H, s, ArOCH3), 3.88 

(3H, s, ArOCH3), 2.88 (1H, td, J = 15.2 and 4.5, NCH2CH2Ar), 2.75 (1H, td, J = 12.0 and 

3.0, NCH2CH2Ar), 2.58-2.46 (2H, m, NCHCH2 and NC(O)CH2), 2.35 (1H, dd, J  = 17.9 

and 6.5, NC(O)CH2), 1.98-1.76 (2H, m, NCHCH2CH2), 1.68 (1H, m, NCHCH2); δC (100 

MHz, CDCl3) 169.4 (NC(O)CH2), 147.8 (ArCOCH3), 147.7 (ArCOCH3), 129.2 (ArC), 127.3 

(ArC), 111.6 (ArCH), 108.2 (ArCH), 56.8 (NCH), 56.1 (ArOCH3), 55.9 (ArOCH3), 39.7 

(NCH2CH2Ar), 32.3 (NC(O)CH2), 31.0 (NCHCH2), 28.5 (NCH2CH2Ar), 19.7 

(NCHCH2CH2); m/z (CI, NH3) 284 (20%, MNa+), 263 (15), 262 (109, MH+); HRMS 

C15H20NO3 (MH+), requires 262.1438, found 262.1438. 

 

Methyl 2-((2R*,3R*,11bS*)-3-ethyl-9,10-dimethoxy-2,3,4,6,7,11b-hexahydro-1H-

pyrido[2,1-a]isoquinolin-2-yl)acetate (334-a) methyl 2-((2R*,3S*,11bS*)-3-ethyl-9,10-

dimethoxy-2,3,4,6,7,11b-hexahydro-1H-pyrido[2,1-a]isoquinolin-2-yl)acetate (334-b) 

and 9,10-dimethoxy-2,3,6,7-tetrahydro-1H-pyrido[2,1-a]isoquinolin-4(11bH)-one 

N

O

O O

O

O N

O

O334-a
major d.s.

O

O N

O

O334-b
minor d.s.

335

 
A solution of methyl 4-(2-(but-2-enyl)-1,2,3,4-tetrahydro-6,7-dimethoxyisoquinolin-1-yl)-

3-(phenylselanyl)butanoate (332) (1.0 g, 2.0 mmol) in THF (125 mL) was stirred at reflux 

for 30 minutes under nitrogen. Then AIBN (0.016 g, 0.1 mmol) was added, followed by 

the slow addition of a solution of tributyltin hydride (0.81 mL, 3.0 mmol) and AIBN (0.15 

g, 0.9 mmol) in THF (20 mL) by a syringe pump over a period of 8 h. Following the 

completion of the addition of the tributyltin hydride, the solution was maintained at reflux 

for a further 4 h, after which the solution was cooled to r.t. The crude product was passed 

thought an SCX column, elution gradient 4:1 DCM:MeOH to 4:1 DCM:MeOH/NH3, and 

evaporated to afford a yellow oil. The oil was then purified by flash silica chromatography, 

elution gradient 6:1 petrol:EtOAc to 10:10:1 petrol:EtOAc:MeOH/NH3. Pure fractions 

were concentrated in vacuo, to afford the title compounds 334a, 334b and 335. 

 The 6-exo cyclisation products were obtained as a 2:1 ratio of diastereomers. The 

major diastereomer, 334-a was obtained as a yellow oil, (37 mg, 5.5%); Rf = 0.80 (10:10:1 
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petrol:EtOAc:MeOH/NH3); νmax (thin film) /cm–1 3048 (w), 1668 (s), 1433 (m), 1301 (m); 

δH (400 MHz, CDCl3) 6.64 (1H, s, ArCH), 6.55 (1H, s, ArCH), 3.83 (3H, s, ArOCH3), 3.82 

(3H, s, ArOCH3), 3.69 (3H, s, CO2CH3), 3.13-3.03 (3H, m, NCH, NCH2CH and 

NCH2CH2Ar), 2.95 (1H, dd, J = 11.3 and 4.7, NCH2CH2Ar), 2.67-2.59 (2H, m, 

CHCH2CO2CH3 and NCH2CH2Ar), 2.55-2.42 (1H, m, NCH2CH2Ar), 2.36-2.29 (1H, m, 

CHCH2CH), 2.14 (1H, dd, J = 15.4 and 8.7, CHCH2CO2CH3), 2.04 (1H, t, J = 11.2, 

NCH2CH), 1.91-1.10 (5H, m, CHCH2CO2CH3, CH2CH3, CHCH2CH3 and CHCH2CH), 

0.91 (3H, t, J = 7.4, CH2CH3); δC (100 MHz, CDCl3) 173.7 (CO2CH3), 147.4 (ArCOCH3), 

147.0 (ArCOCH3), 129.7 (ArC), 126.6 (ArC), 111.3 (ArCH), 108.2 (ArCH), 62.4 (NCH), 61.0 

(NCH2CH), 56.0 (OCH3), 55.7 (OCH3), 52.3 (NCH2CH2Ar), 51.5 (CO2CH3), 41.3 

(CHCH2CH3), 38.3 (CHCH2CO2CH3), 37.9 (CHCH2CO2CH3), 37.7 (CHCH2CH), 29.1 

(NCH2CH2Ar), 23.5 (CH2CH3), 11.0 (CH2CH3); m/z (CI, NH3) 349 (20%), 348 (MH+, 

100); HRMS C20H30NO4 (MH+) requires 348.2169, found 348.2171. 

 The minor diastereomer, 334-b, was obtained as a yellow oil (18 mg, 2.5%); Rf = 

0.85 (10:10:1 petrol:EtOAc:MeOH/NH3); δH (400 MHz, CDCl3) 6.65 (1H, s, ArCH), 6.56 

(1H, s, ArCH), 3.83 (3H, s, ArOCH3), 3.82 (3H, s, ArOCH3), 3.70 (3H, s, CO2CH3), 3.12-

3.02 (2H, m, NCH and NCH2CH2Ar), 2.96 (1H, dd, J = 11.5 and 2.1, NCH2CH), 2.83 (1H, 

dd, J = 11.5 and 5.5, NCH2CH2Ar), 2.56 (1H, dd, J = 15.5 and 3.1, NCH2CH2Ar), 2.44 

(1H, td, J = 11.7 and 3.8, NCH2CH2Ar), 2.38-2.25 (4H, m, CHCH2CO2CH3, NCH2CH and 

CHCH2CO2CH3), 2.04 (1H, dt, J = 12.6 and 2.5, CHCH2CH), 1.72-1.57 (1H, m, CH2CH3), 

1.54-1.46 (1H, m, CHCH2CH3), 1.36-1.20 (2H, m, CHCH2CH and CH2CH3), 0.89 (3H, t, J 

= 7.3, CH2CH3); δC (100 MHz, CDCl3) 173.5 (CO2CH3), 147.2 (ArCOCH3), 147.0 

(ArCOCH3), 130.3 (ArC), 126.9 (ArC), 111.4 (ArCH), 108.0 (ArCH), 63.0 (NCH), 58.7 

(NCH2CH), 56.0 (ArOCH3), 55.7 (ArOCH3), 52.8 (NCH2CH2Ar), 51.5 (CO2CH3), 39.0 

(CHCH2CH3), 38.2 (CHCH2CO2CH3), 37.3 (CHCH2CO2CH3), 33.5 (CHCH2CH), 29.3 

(NCH2CH2Ar), 17.7 (CH2CH3), 12.4 (CH2CH3); m/z (CI, NH3) 349 (20%), 348 (MH+, 

100); HRMS C20H30NO4 (MH+) requires 348.2169, found 348.2160. 

 The cyclic amide 337 was obtained as a pale yellow oil (144 mg, 28%); the 

spectroscopic data is in agreement with material prepared previously. 
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2-((2R*,3R*,11bS*)-9,10-Dimethoxy-3-methyl-2,3,4,6,7,11b-hexahydro-1H-

pyrido[2,1-a]isoquinolin-2-yl)ethanol, (±)-des-methyl-protoemetinol (342-a) 

N

O

O

OH  
To a stirred solution of methyl 2-((2R*,3R*,11bS*)-9,10-dimethoxy-3-methyl-

2,3,4,6,7,11b-hexahydro-1H-pyrido[2,1-a]isoquinolin-2-yl)acetate 333 (60 mg, 0.18 mmol) 

in THF (10 mL) at 0 ºC under nitrogen, was slowly added a solution of lithium aluminium 

hydride in THF (1.1 mL, 2.4 M, 2.7 mmol). The solution was stirred for 15 minutes at 0 

ºC, then warmed to r.t. and stirred for 6 h. The stirred reaction mixture was then quenched 

by the sequential dropwise addition of H2O (0.1 mL), 15% aqueous NaOH (0.1 mL) and 

H2O (0.33 mL), afterwhich evaporation of the solvent afforded the crude product as a 

yellow oil. The crude product was purified by flash silica chromatography, elution gradient 

10 to 20% MeOH/NH3 in DCM. Pure fractions were concentrated in vacuo to afford the 

title compound as a yellow oil (45 mg, 80%); Rf = 0.30 (10:2:1 

petrol:EtOAc:MeOH/NH3); νmax (thin film) /cm–1) 3460 (bs), 3040 (w), 2910 (w), 1422 

(m), 1291 (w); δH (400 MHz, CDCl3) 6.66 (1H, s, ArCH), 6.55 (1H, s, ArCH), 3.83 (3H, s, 

OCH3), 3.82 (3H, s, OCH3), 3.81-3.70 (2H, m, OCH2), 3.14-3.03 (2H, m, NCH and 

NCH2CH2Ar), 2.97-2.92 (1H, m, NCH2CH2Ar), 2.89 (1H, dd, J = 11.5 and 4.0, 

NCH2CHCH3), 2.65-2.56 (1H, m, NCH2CH2Ar), 2.44 (1H, td, J = 11.5 and 4.0, 

NCH2CH2Ar), 2.31 (1H, dt, J = 11.5 and 3.0, CHCH2CH), 2.02 (1H, t, J = 11.2, 

NCH2CHCH3), 1.97-1.89 (1H, m, CHCH2CH2OH), 1.90 (1H, bs, CH2OH), 1.65-1.50 (1H, 

m, CHCH3), 1.45-1.26 (2H, m, CHCH2CH2OH and CHCH2CH2OH), 1.19 (1H, app q, J = 

11.5, CHCH2CH), 0.91 (3H, d, J = 6.5, CHCH3); δC (100 MHz, CDCl3) 147.3 (ArCOCH3), 

147.0 (ArCOCH3), 129.9 (ArC), 126.6 (ArC), 111.4 (ArCH), 108.2 (ArCH), 64.6 

(NCH2CHCH3), 62.6 (NCH), 60.4 (OCH2), 56.0 (ArOCH3), 55.7 (ArOCH3), 52.1 

(NCH2CH2Ar), 39.8 (CHCH2CH2OH), 36.9 (CHCH2CH), 36.0 (CHCH2CH2OH), 35.1 

(CHCH3), 29.0 (NCH2CH2Ar), 16.8 (CHCH3); m/z (CI) 307 (15%), 306 (MH+, 100), 304 

(10); HRMS C18H28NO3 (MH+) requires 306.2064, found 306.2065. 
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2-((2R*,3R*,11bS*)-3-Ethyl-9,10-dimethoxy-2,3,4,6,7,11b-hexahydro-1H-pyrido[2,1-

a]isoquinolin-2-yl)ethanol, protoemetinol (88-a) 

N

OH

O

O

 
To a stirred solution of methyl 2-((2R*,3R*,11bS*)-9,10-dimethoxy-3-methyl-

2,3,4,6,7,11b-hexahydro-1H-pyrido[2,1-a]isoquinolin-2-yl)acetate 334 (31 mg, 0.09 mmol) 

in THF (5 mL) at 0 ºC under nitrogen, was slowly added a solution of lithium aluminium 

hydride in THF (0.55 mL, 2.4 M, 1.35 mmol). The solution was stirred for 15 minutes at 0 

ºC, then warmed to r.t. and stirred for 6 h. The stirred reaction mixture was then quenched 

by the sequential dropwise addition of H2O (0.05 mL), 15% aqueous NaOH (0.05 mL) and 

H2O (0.16 mL), afterwhich evaporation of the solvent afforded the crude product as a 

yellow oil. The crude product was purified by flash silica chromatography, elution gradient 

10 to 20% MeOH/NH3 in DCM. Pure fractions were concentrated in vacuo to afford the 

title compound, protoemetinol (88-a) as a yellow oil (21 mg, 76%); Rf = 0.35 (10:2:1 

petrol:EtOAc:MeOH/NH3); νmax (thin film) /cm–1 3450 (sb), 2932 (w), 1512 (m), 1426 (m), 

1252 (m); δH (400 MHz, CDCl3) 6.69 (1H, s, ArCH), 6.57 (1H, s, ArCH), 3.85 (3H, s, 

OCH3), 3.84 (3H, s, OCH3), 3.81-3.70 (2H, m, OCH2), 3.14-3.03 (3H, m, NCH, 

NCH2CH2Ar and CH2OH), 2.96 (1H, m, NCH2CHCH3), 2.61 (1H, dd, J = 16.0 and 4.0, 

NCH2CH2Ar), 2.64-2.60 (1H, m, NCH2CH2Ar), 2.47 (1H, td, J = 11.5 and 4.0, 

NCH2CH2Ar), 2.37-2.30 (1H, app d, J = 12.0, CHCH2CH), 2.01 (1H, t, J = 11.0, 

NCH2CHCH3), 1.97-1.92 (2H, m, CHCH2CH2OH and CHCH2CH3), 1.70-1.64 (1H, m, 

CHCH2CH3), 1.44-1.41 (2H, m, CHCH2CH2OH and CHCH2CH3), 1.28-1.24 (1H, m, 

CHCH2CH2OH), 1.10-1.00 (1H, m, CHCH2CH), 0.92 (3H, t, J = 7.5, CH2CH3); δC (100 

MHz, CDCl3) 147.4 (ArCOCH3), 147.0 (ArCOCH3), 129.4 (ArC), 126.3 (ArC), 111.4 (ArCH), 

108.1 (ArCH), 62.6 (NCH), 61.1 (OCH2), 60.2 (NCH2CH), 56.2 (ArOCH3), 55.7 (ArOCH3), 

52.2 (NCH2CH2Ar), 40.8 (CH), 37.4 (CH), 36.9 (CHCH2CH), 35.6 (CHCH2CH2OH), 29.5 

(NCH2CH2Ar), 23.3 (CHCH2CH3), 11.0 (CHCH2CH3); m/z (CI) 321 (20%), 320 (MH+, 

100); HRMS C19H30NO3 (MH+) requires 320.2220, found 320.2224. 

The spectroscopic data is in agreement with reported data.156, 157 
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Methyl (E)-4-(2-((E/Z)-3-chlorobut-2-enyl)-6,7-dimethoxy-1,2,3,4-

tetrahydroisoquinolin-1-yl)but-2-enoate (345) 

O

O N

O

O

Cl

 
To a stirred solution of 6,7-dimethoxy-3,4-dihydroisoquinoline 188 (4.4 g, 23.0 mmol), in 

DCM (100 mL) at r.t. under nitrogen was added 1,3-dichloro-2-butene (3.0 mL, 27.6 

mmol). The resulting solution was stirred in the dark for 3 days. The crude mixture was 

evaporated to dryness to afford the salt as a moisture sensitive yellow oil. To a stirred 

solution of the oil in acetonitrile (100 mL) was added methyl (E)-4-bromobut-2-enoate (4.8 

ml, 34.5 mmol) and zinc dust (2.3 g, 34.5 mmol), the resulting suspension was stirred at 

room temp for 48 h and stirred at r.t. under nitrogen for 2 days. The reaction mixture was 

quenched by pouring into a saturated solution of aq. NaHCO3 (150 mL) and allowed to stir 

for 30 minutes. The resulting precipitate was removed by filtration, and washed with 

EtOAc (100 mL), the organic layer was separated and the aqueous layer extracted with 

EtOAc (2 × 100 mL). The combined organic layers were dried over MgSO4, filtered and 

evaporated to afford a yellow oil. The crude product was purified by flash silica 

chromatography, elution gradient 4:1 to 1:1 petrol:EtOAc. Pure fractions were evaporated 

to dryness to afford the title compounds as a mixture of separable isomers.  

 The major isomer, methyl (E)-4-(2-((E)-3-chlorobut-2-enyl)-6,7-dimethoxy-

1,2,3,4-tetrahydroisoquinolin-1-yl)but-2-enoate was isolated as a yellow oil (2.6 g, 31%), 

Rf = 0.48 (ethyl acetate:petrol, 1:1); νmax (thin film) /cm–1 2995 (w), 2948 (s), 2835 (m), 

1722 (s), 1656 (m), 1516 (s); δH (400 MHz, CDCl3) 6.96 (1H, dt, J = 15.7 and 7.2, 

CH=CHCO2CH3), 6.53 (1H, s, ArCH), 6.45 (1H, s, ArCH), 5.77 (1H, dt, J = 15.7 and 1.3, 

CH=CHCO2CH3), 5.57 (1H, app td, J = 5.5 and 1.0, NCH2CH=C(Cl)CH3), 3.80 (3H, s, 
ArOCH3), 3.77 (3H, s, ArOCH3), 3.68 (1H, t, J = 6.2, NCH), 3.66 (3H, s, CO2CH3), 3.40-

3.25 (2H, m, NCH2CH=C(Cl)CH3), 3.10-3.02 (1H, m, NCH2CH2Ar), 2.84-2.75 (2H, m, 

NCH2CH2Ar and NCH2CH2Ar), 2.66-2.42 (3H, m, CH2CH=CHCO2CH3 and NCH2CH2
Ar), 

2.08 (3H, d, J = 1.0, NCH2CH=C(Cl)CH3); δC (100 MHz, CDCl3) 166.9 (CO2CH3), 147.6 

(CH=CHCO2CH3), 147.5 (ArCOCH3), 147.1 (ArCOCH3), 132.5 (C), 128.7 (C), 126.6 (C), 

123.6 (CH=C(Cl)CH3), 122.1 (CH=CHCO2CH3), 111.5 (ArCH), 110.4 (ArCH), 60.2 

(NCH), 55.9 (ArOCH3), 55.8 (ArOCH3), 52.1 (NCH2CH=C(Cl)CH3), 51.4 (CO2CH3), 44.2 

(NCH2CH2Ar), 38.2 (CH2CH=CHCO2CH3), 26.4 (CH=C(Cl)CH3), 25.0 (NCH2CH2Ar). 
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 The minor isomer, methyl (E)-4-(2-((Z)-3-chlorobut-2-enyl)-6,7-dimethoxy-

1,2,3,4-tetrahydroisoquinolin-1-yl)but-2-enoate was isolated as a yellow oil (0.52 g, 7%); 

δH (400 MHz, CDCl3) 6.97 (1H, dt, J = 15.6 and 7.3, CH=CHCO2CH3), 6.54 (1H, s, ArCH), 

6.45 (1H, s, ArCH), 5.78 (1H, dt, J = 15.6 and 1.4, CH=CHCO2CH3), 5.70 (1H, td, J = 7.1 

and 1.2, CH=C(Cl)CH3), 3.82 (3H, s, ArOCH3), 3.79 (3H, s, ArOCH3), 3.72-3.68 (1H, m, 

NCH), 3.68 (3H, s, CO2CH3), 3.18 (2H, app dd, J = 7.3 and 0.8, NCH2CH=C(Cl)CH3), 

3.14-3.05 (1H, m, NCH2CH2Ar), 2.83-2.72 (2H, m, NCH2CH2Ar and NCH2CH2Ar), 2.65-

2.47 (3H, m, CH2CH=CHCO2CH3 and NCH2CH2Ar), 1.99 (3H, d, J = 0.8, 

NCH2CH=C(Cl)CH3); δC (100 MHz, CDCl3) 166.9 (CO2CH3), 147.7 (ArCOCH3), 147.3  

(CH=CHCO2CH3), 147.2 (ArCOCH3), 132.4 (C), 128.5 (C), 126.3 (C), 125.3 

(CH=C(Cl)CH3), 122.2 (CH=CHCO2CH3), 111.5 (ArCH), 110.4 (ArCH), 59.8 (NCH), 55.9 

(ArOCH3), 55.8 (ArOCH3), 51.4 (CO2CH3), 51.3 (NCH2CH=C(Cl)CH3), 43.7 

(NCH2CH2Ar), 38.6 (CH2CH=CHCO2CH3), 24.4 (NCH2CH2Ar), 21.3 (CH=C(Cl)CH3). 

 

Methyl 4-(2-[(2E)-3-chlorobut-2-en-1-yl]-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin 

-1-yl)-3-(phenylselanyl)butanoate (343) 

O

O N

O

O

Cl
SePh

 
To a stirred suspension of diphenyl diselenide (2.1 g, 6.7 mmol) in degassed EtOH (30 

mL) in a 100 mL two-neck round-bottom flask under nitrogen was added sodium 

borohydride (0.68 g, 18 mmol), until the solution became colourless. The resulting reaction 

mixture was then cooled to 0 °C in an ice bath for 5 min. Glacial acetic acid (2.1 mL, 36 

mmol) was added dropwise via syringe, and the mixture allowed to stir for 5 minutes. Then 

methyl (E)-4-(2-((E)-3-chlorobut-2-enyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-1-

yl)but-2-enoate 345 (1.7 g, 4.5 mmol) was added in degassed EtOH (10 mL) via cannula, 

the reaction was stirred for 5 min at 0 ºC, and then allowed to warm to room temperature 

and stirred overnight. The reaction mixture was poured into H2O (50 mL) and was 

extracted with Et2O (3 × 50 mL). The combined organic layers were washed with brine (2 

× 75 mL), dried over MgSO4, and concentrated to give a yellow oil. The crude product was 

purified by flash silica chromatography, elution gradient 8:1 petrol:EtOAc to EtOAc. The 

pure fractions were concentrated in vacuo to afford the title compound as a yellow gum 

(1.28 g, 36%) as a 5:1 mixture of inseparable diastereomers; νmax (thin film) /cm–1 2998 
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(m), 2948 (s), 2837 (m), 1734 (s), 1610 (w), 1511 (s); major diastereomer, δH (400 MHz, 

CDCl3) 7.72-7.67 (2H, m, PhCH), 7.33-7.27 (3H, m, PhCH), 6.51 (1H, s, ArCH), 6.32 (1H, s, 
ArCH), 5.65 (1H, t, J = 5.6, NCH2CH=C(Cl)CH3), 3.92-3.84 (2H, m, NCH and CHSePh), 

3.82 (3H, s, ArOCH3), 3.78 (3H, s, ArOCH3), 3.63 (3H, s, CO2CH3), 3.38 (1H, dd, J = 13.5 

and 5.6, NCH2CH=C(Cl)), 3.20 (1H, dd, J = 13.5 and 5.6, NCH2CH=C(Cl)), 3.14-3.08 

(1H, m, NCH2CH2Ar), 2.96-2.86 (2H, m, NCH2CH2Ar and NCH2CH2Ar), 2.80 (1H, dd, J 

= 15.9 and 8.7, CH(SePh)CH2CO2CH3), 2.72 (1H, dd, J = 15.9 and 8.0, 

CH(SePh)CH2CO2CH3), 2.38-2.28 (1H, m, NCH2CH2Ar), 2.09 (3H, d, J = 1.2, 

CH=C(Cl)CH3), 2.03-1.94 (1H, m, NCHCH2CHSePh), 1.64 (1H, ddd, J = 14.3, 11.0 and 

3.7, NCHCH2CHSePh); δC (100 MHz, CDCl3) 172.3 (CO2CH3), 147.5 (ArCOCH3), 147.4 

(ArCOCH3), 135.7 (2 × PhCH), 131.6 (CH=C(Cl)CH3), 129.6 (ArC), 129.1 (2 × PhCH), 127.9 

(PhCH), 126.1 (ArC), 124.9 (ArC and NCH2CHC(Cl)CH3), 111.5 (ArCH), 110.4 (ArCH), 58.5 

(NCH), 56.0 (ArCOCH3), 55.8 (ArCOCH3), 51.7 (CO2CH3), 51.6 (NCH2CH=C(Cl)), 42.2 

(CH(SePh)CH2CO2CH3), 42.1 (NCH2CH2Ar), 41.8 (NCHCH2CHSePh), 37.7 (CHSePh), 

26.4 (CH=C(Cl)CH3), 22.0 (NCH2CH2Ar); m/z (CI), 540 (M80Se37ClH+, 30%), 539 (20), 

538 (M80Se35ClH+ and M78Se37ClH+, 100), 537 (10), 536 (M78Se35ClH+ and M76Se37ClH+, 

60), 535 (17), 534 (M76Se Se35H+, 20); HRMS C26H33ClNO4Se (M80Se35ClH+) requires 

538.1258, found 538.1266. 

The minor diastereomer was identified by the following key peaks; δH (400 MHz, CDCl3) 

7.58-7.54 (2H, m, PhSeCH), 7.30-7.27 (3H, m, PhSeCH), 6.53 (1H, s, ArCH), 6.40 (1H, s, 
ArCH). 

 

4-(2-Allyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-1-yl)butan-1-ol (347) 

N

OH

O

O

 
To a stirred solution of methyl 4-(2-[(2E)-3-chlorobut-2-en-1-yl]-6,7-dimethoxy-1,2,3,4-

tetrahydroisoquinolin-1-yl)-3-(phenylselanyl)butanoate (331) (1.6 g, 3.2 mmol) in THF (50 

mL) at 0 ºC under nitrogen, was slowly added a solution of lithium aluminium hydride in 

THF (8.0 mL, 2.4 M, 19.2 mmol). The solution was stirred for 15 minutes at 0 ºC, then 

warmed to r.t. and stirred for 6 h. The stirred reaction mixture was then quenched by the 

sequential dropwise addition of H2O (0.72 mL), 15% aqueous NaOH (0.72 mL) and H2O 

(2.16 mL). The resulting mixture was stirred for 30 minutes and evaporation of the solvent 



 

 198

afforded the crude product as an oil. The crude oil was purified by flash silica 

chromatography, elution gradient 1:9 to 2:8 MeOH/NH3:DCM. Pure fractions were 

concentrated in vacuo to afford the title compound 347, as a yellow oil (0.38 g, 42%); Rf = 

0.35 (1:9 MeOH/NH3:DCM); νmax (thin film) /cm–1 3400 (sb), 3054 (w), 2920 (w), 1526 

(m); δH (400 MHz, CDCl3) 6.52 (1H, s, ArCH), 6.49 (1H, s, ArCH), 5.89 (1H, ddt, J = 

17.0, 10.2 and 6.5, CH=CH2), 5.16-5.07 (2H, m, CH=CH2), 3.84 (1H, bs, OH), 3.81 (6H, s, 

2 × ArOCH3), 3.61 (2H, t, J = 6.0, HOCH2), 3.50 (1H, dd, J = 8.3 and 4.4, NCH2), 3.17 

(2H, d, J = 6.5, NCH2CH=CH2), 3.15 (1H, app q, J = 6.9, NCH2), 2.85-2.74 (2H, m, NCH2 

and ArCH2), 2.45-2.40 (1H, m, ArCH2), 1.69-1.46 (6H, m, CHCH2CH2CH2CH2OH); δC 

(100 MHz, CDCl3) 147.2 (ArCOCH3), 147.1 (ArCOCH3), 136.2 (CH=CH2), 130.1 (ArC), 

126.0 (ArC), 117.3 (CH=CH2), 111.2 (ArCH), 110.6 (ArCH), 62.2 (CH2OH), 60.0 (NCH), 

56.5 (CH2), 55.8 (OCH3), 55.7 (OCH3), 43.3 (NCH2), 35.4 (CH2), 32.2 (CH2), 23.3 

(ArCH2), 22.5 (CH2); m/z (CI) 329 (20%), 328 (MNa+, 100), 306 (45); HRMS 

C18H27NNaO3 (MNa+) requires 328.1883, found 328.1885. 

 

4-(2-Allyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-1-yl)-3-(phenylselanyl)butan-

1-ol (346) 

N

OH

O

O
SePh

 
To a stirred suspension of aluminium chloride (0.56 g, 4.2 mmol) in THF (25 mL) at 0 ºC, 

was slowly added a solution of lithium aluminium hydride in THF (5.2 mL, 2.4 M, 12.6 

mmol) and the resulting solution was stirred for 10 minutes, after which the solution was 

cooled to -78 ºC, and a solution of methyl 4-(2-[(2E)-3-chlorobut-2-en-1-yl]-6,7-

dimethoxy-1,2,3,4-tetrahydroisoquinolin-1-yl)-3-(phenylselanyl)butanoate (331) (1.03 g, 

2.1 mmol) in THF (10 mL) was added dropwise. The mixture was stirred for 6 h at -78 °C, 

and then quenched by the sequential dropwise addition of H2O (0.45 mL), 15% aqueous 

NaOH (0.45 mL) and H2O (1.35 mL) at -78 ºC. After 5 min the resulting solution was 

warmed to r.t., then EtOAc (20 mL) and celite (1.5 g) were added and stirred for 1 h. The 

reaction mixture was filtered through celite (1 g) and flushed through with EtOAc (2 × 15 

mL). Evaporation of the volatile materials in vacuo afforded the title compound 346 as a 

yellow oil (965 mg, 99%), which was used straight away; δH (400 MHz, CDCl3) 7.62-7.56 

(2H, m, PhCH), 7.24-7.18 (3H, m, PhCH), 6.44 (1H, s, ArCH), 6.19 (1H, s, ArCH), 5.92-5.80 
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(1H, m, CH=CH2), 5.12-5.03 (2H, m, CH=CH2), 3.78-3.73 (1H, m, NCH), 3.76 (3H, s, 
ArOCH3), 3.71 (3H, s, ArOCH3), 3.73-3.66 (2H, m, CH2OH), 3.62-3.54 (1H, m, CHSePh), 

3.22-2.99 (5H, m, NCH2CH=CH2, CH2OH and NCH2CH2Ar), 2.92 (1H, dd, J = 13.9 and 

5.7, NCH2CH2Ar), 2.84-2.72 (2H, m, CH(SePh)CH2CH2OH), 2.26 (1H, dd, J = 16.0 and 

4.8, NCH2CH2Ar), 2.11-2.02 (1H, m, NCHCH2CHSePh), 1.80-1.72 (1H, m, 

NCHCH2CHSePh); δC (100 MHz, CDCl3) 147.6 (ArCOCH3), 147.5 (ArCOCH3), 135.7 

(CH=CH2), 135.1 (2 × PhCH), 134.1 (PhCH), 129.3 (PhC), 129.1 (PhCH), 128.9 (ArC), 127.7 

(PhCH), 125.5 (ArC), 118.4 (CH=CH2), 111.2 (ArCH), 110.5 (ArCH), 60.5 (CH2OH), 59.6 

(NCH), 56.3 (NCH2CH=CH2), 56.1 (ArOCH3), 55.9 (ArOCH3), 42.3 (NCH2CH2Ar), 42.2 

(CH2CH(SePh)), 40.1 (CHSePh), 39.2 (CH2CH(SePh)), 21.6 (NCH2CH2Ar); m/z (CI, NH3)  

464 (20%), 463 (23), 462 (M80SeH+, 100), 461 (10), 460 (M78SeH+, 50), 459 (18), 458 

(M76SeH+, 17); HRMS C24H32NOSe (M80SeH+) requires 462.1542, found  462.1541. 

 The minor diastereoisomer was identified by the following key peaks; δH (400 

MHz, CDCl3) 7.47-7.43 (2H, m, PhCH), 7.20-7.17 (3H, m, PhCH), 6.43 (1H, s, ArCH), 6.41 

(1H, s, ArCH). 

 

2-Allyl-1-(4-(tert-butyldiphenylsilyloxy)-2-((phenylselanyl)butyl)-6,7-dimethoxy-

1,2,3,4-tetrahydroisoquinoline (348) 

N

O

O

O
SePh

Si

 
To a stirred solution of the crude 4-(2-allyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-1-

yl)-3-(phenylselanyl)butan-1-ol 346 (0.96 g, 2.10 mmol) and imidazole (0.34 g, 5.0 mmol) 

in dichloromethane (50 mL) under nitrogen at 0 ºC was added dropwise tert-butyl 

diphenylchlorosilane (0.65 mL, 2.5 mmol). After 20 min, the reaction mixture was warmed 

to room temperature and stirred overnight. The reaction mixture was quenched with brine, 

and extracted with further portion of DCM, and dried over Na2SO4, filtered and 

concentrated under reduced pressure to afford the crude product. Purification by flash 

chromatography (silica, ethyl acetate:petrol 5:1-2:1) and concentration of the pure fractions 

afforded the title compound 348 as a yellow oil (1.14 g, 78%); Rf = 0.30 (5:1, 

EtOAc:Petrol); νmax (thin film) /cm–1 3070 (m), 2997 (m), 2931 (s), 2856 (s), 1515 (s), 
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1463 (m); δH (400 MHz, CDCl3) 7.68-7.59 (5H, m, SiPh), 7.42-7.34 (7H, m, SiPh), 7.26-

7.23 (3H, m, SiPh), 6.45 (1H, s, ArCH), 6.30 (1H, s, ArCH), 5.84-5.73 (1H, m, CH=CH2), 

5.06-4.95 (2H, m, CH=CH2), 3.88-3.70 (4H, m, NCH, CHSePh and CH2OSi), 3.76 (3H, s, 

OCH3), 3.71 (3H, s, OCH3), 3.24 (1H, dd, J = 6.9 and 13.4, NCH2CH=CH2), 3.16-3.04 

(2H, m, NCH2CH=CH2 and NCH2CH2Ar), 2.97-2.80 (2H, m, NCH2CH2Ar and 

NCH2CH2Ar), 2.27 (1H, dd, J = 16.3 and 4.4, NCH2CH2Ar), 2.09-1.97 (2H, m, 

CH2CH(SePh)CH2), 1.92 (1H, app q, J = 6.3, CH2CH(SePh)), 1.69 (1H, app ddd, J = 14.5, 

10.7 and 3.2, CH2CH(SePh)), 1.05 (9H, s, SiC(CH3)3); δC (100 MHz, CDCl3) 147.4 

(ArCOCH3), 147.3 (ArCOCH3), 137.4 (CH=CH2), 135.6 (4 × SiPhCH), 134.6 (2 × SePhCH), 

134.0 (SiPhCH), 139.9 (SiPhCH), 130.5 (SePhCH), 130.0 (ArC), 129.7 (2 × SiPhCH), 128.9 (2 × 
SePhCH), 127.7 (4 × SePhCH), 127.1 (SePhCH), 126.1 (ArC), 116.7 (CH=CH2), 111.5 (ArCH), 

110.5 (ArCH), 62.1 (CH2OSi), 58.7 (NCH), 56.5 (NCH2CH=CH2), 56.0 (ArOCH3), 55.9 

(ArOCH3), 43.1 (CH2CHSePh), 41.3 (NCH2CH2Ar), 40.6 (CHSePh), 40.3 

(CH(SePh)CH2CH2OSi), 26.9 (3 × SiC(CH3)3), 21.6 (NCH2CH2Ar), 19.3 (SiC(CH3)3); m/z 

(CI, NH3) 702 (30%), 701 (20), 700 (100, MSe80H+), 699 (15), 698 (50, MSe78H+), 697 

(15), 696 (15, MSe76H+); HRMS C40H50NO3SeSi (MSe80H+) requires 700.2720, found 

700.2721. 
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7.5 Experimental for Chapter 5 
 

1-Allyl-2-(2-bromoallyl)-1,2,3,4-tetrahydro-6,7-dimethoxyisoquinoline (352) 

N

O

O

Br

 
To a stirred solution of 1-allyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline 192 (1.4 g, 

6.0 mmol) and K2CO3 (0.99 g, 27.2 mmol) in DMF (30 mL) under nitrogen was added 

Et3N (0.93 mL, 7.2 mmol), and 2,3-dibromopropene (1.4 g, 7.2 mmol) at r.t. After stirring 

for 24 h in the dark, the reaction mixture was poured into a saturated solution of NaHCO3 

(100 mL) and the mixture was extracted with EtOAc (3 × 50 mL). The combined organic 

layers were washed with saturated aqueous Na2S2O3 solution (2 x 50 mL), brine (2 x 50 

mL), dried over Na2SO4, and concentrated under reduced pressure. The resulting oil was 

purified by flash silica chromatography, elution gradient 3:1 to 1:1 petrol:EtOAc. Pure 

fractions were evaporated to dryness to afford the title compound as a yellow gum (1.38 g, 

66%); Rf = 0.5 (1:1 petrol:EtOAc); νmax (thin film) /cm–1 2932 (w), 2803 (w), 1630 (m), 

1511 (s); δH (400 MHz, CDCl3) 6.56 (1H, s, ArCH), 6.53 (1H, s, ArCH), 6.02-5.92 (1H, m, 

CH=CH2), 5.93 (1H, app d, J = 1.0, C(Br)=CH2), 5.57 (1H, app d, J = 1.0, C(Br)=CH2), 

5.07-5.01 (2H, m, CH=CH2), 3.84 (3H, s, OCH3), 3.83 (3H, s, OCH3), 3.65 (1H, dd, J = 

7.6 and 5.3, NCH), 3.40 (2H, s, NCH2C(Br)), 3.27-3.20 (1H, m, NCH2CH2Ar), 2.87-2.76 

(2H, m, NCH2CH2Ar and NCH2CH2Ar), 2.59-2.50 (2H, m, NCH2CH2Ar and 

CHCH2CH=CH2), 2.46-2.39 (1H, m, CHCH2CH=CH2); δC (100 MHz, CDCl3) 147.3 

(ArCOCH3), 147.0 (ArCOCH3), 136.7 (CH=CH2), 132.1 (C(Br)=CH2), 129.5 (ArC), 126.0 

(ArC), 117.8 (=CH2), 115.9 (=CH2), 111.3 (ArCH), 110.5 (ArCH), 61.9 (NCH2C(Br)=CH2), 

60.5 (NCH), 55.8 (OCH3), 55.7 (OCH3), 43.6 (NCH2CH2Ar), 40.7 (CHCH2CH=CH2), 24.3 

(NCH2CH2Ar); m/z (CI, NH3) (MH+, 100%), 355 (10), 354 (100), 353 (11), 352 (100); 

HRMS (ESI) calcd for C17H23BrNO2 352.0907, found 32.0908. 

 

9,10-Dimethoxy-2-methyl-3-methylene-2,3,4,6,7,11b-hexahydro-1H-pyrido[2,1-

a]isoquinoline (353) and 1,2-Diallyl-1,2,3,4-tetrahydro-6,7-dimethoxyisoquinoline 

(354) 

O

O N

O

O N

353 354
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A solution of 1-allyl-2-(2-bromoallyl)-1,2,3,4-tetrahydro-6,7-dimethoxyisoquinoline 354 

(0.70 g, 2.0 mmol) in THF (25 mL) was stirred at reflux for 30 minutes under nitrogen. 

Then AIBN (16 mg, 0.10 mmol) was added, followed by the slow addition of a solution of 

tributyltin hydride (0.75 mL, 2.80 mmol) and AIBN (150 mg, 0.90 mmol) in THF (20 mL) 

by a syringe pump over a period of 4 h. Following the complete addition of the tributyltin 

hydride solution, the reaction mixture was maintained at reflux for a further 2 h, after 

which the solution was cooled to r.t. The reaction mixture was concentrated in vacuo, until 

approx 10 ml of solvent was left, this was then stirred with KF/silica for 10 min. The 

resulting slurry was loaded on to a short KF/silica column, and flushed with petrol then 

EtOAc, the EtOAc fraction was concentrated in vacuo to afford a yellow gum. The gum 

was purified by flash silica chromatography, elution gradient 3:1 petrol:EtOAc to EtOAc, 

pure fractions were concentrated in vacuo to afford the title compounds. 

 The 6-exo cyclisation product, 9,10-dimethoxy-2-methyl-3-methylene-

2,3,4,6,7,11b-hexahydro-1H-pyrido[2,1-a]isoquinoline (353) was isolated as a yellow gum 

(0.24 g, 44%), as a 5:1 ratio of diastereoisomers; Rf = 0.16 (EtOAc); νmax (thin film) /cm–1 

2995 (s), 2962 (m), 1622 (m), 1518 (m); δH (400 MHz, CDCl3) 6.65 (1H, s, ArCH), 6.53 

(1H, s, ArCH), 4.87 (1H, app d, J = 0.9, C=CH2), 4.76 (1H, s, C=CH2), 3.83 (3H, s, OCH3), 

3.80 (3H, s, OCH3), 3.37 (1H, app d, J = 11.9, NCH2C=CH2), 3.34 (1H, app d, J = 11.6, 

NCH), 3.08-3.00 (1H, m, NCH2CH2Ar), 3.01 (1H, app d, J = 11.9, NCH2C=CH2), 2.98-

2.92 (1H, m, NCH2CH2Ar), 2.63 (1H, app dt, J = 15.5 and 4.0, NCH2CH2Ar), 2.49 (1H, 

app td, J = 15.5 and 4.0, NCH2CH2Ar), 2.34-2.24 (2H, m, CHCH3 and NCHCH2), 1.23 

(1H, app q, J = 11.6, NCHCH2), 1.14 (3H, d, J = 6.3, CHCH3); δC (100 MHz, CDCl3) 

147.8 (C=CH2), 147.2 (ArCOCH3), 146.9 (ArCOCH3), 129.6 (ArC), 126.4 (ArC), 111.2 

(ArCH), 108.1 (ArCH), 107.1 (C=CH2), 63.4 (NCH2C=CH2), 62.3 (NCH), 55.8 (OCH3), 

55.6 (OCH3), 51.0 (NCH2CH2Ar), 40.7 (NCHCH2), 35.8 (CHCH3), 29.0 (NCH2CH2Ar), 

17.5 (CHCH3); m/z (CI, NH3) 275 (20%), 274 (100, MH+); HRMS C17H24NO2 (MH+) 

requires 274.1807, found 274.1805. 

 The minor diastereoisomer was identified by the following key peaks; δH (400 

MHz, CDCl3) 6.60 (1H, s, ArCH), 6.53 (1H, s, ArCH), 4.78 (2H, s, C=CH2), 3.82 (3H, s, 

OCH3), 3.80 (3H, s, OCH3), 1.22 (3H, d, J = 7.2, CHCH3); δC (100 MHz, CDCl3) 147.9 

(C=CH2), 147.2 (ArCOCH3), 146.9 (ArCOCH3), 129.8 (ArC), 126.7 (ArC), 111.2 (ArCH), 

108.0 (ArCH), 108.2 (C=CH2), 57.9 (NCH2C=CH2), 56.4 (NCH), 55.8 (OCH3), 55.6 

(OCH3), 51.2 (NCH2CH2Ar), 38.4 (NCHCH2), 35.4 (CHCH3), 28.6 (NCH2CH2Ar), 19.6 

(CHCH3). 

 The simple reduction product 354 was isolated as a yellow gum (0.14 g, 26%); Rf = 

0.31 (EtOAc); νmax (thin film) /cm –1 3042 (w), 2928 (w), 1632 (m), 1602 (m), 1516 (s); δH 
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(400 MHz, CDCl3) 6.54 (1H, s, ArCH), 6.52 (1H, s, ArCH), 5.94-5.82 (2H, m, 

CHCH2CH=CH2 and NCH2CH=CH2), 5.20-5.00 (4H, m, CHCH2CH=CH2 and 

NCH2CH=CH2), 3.83 (3H, s, OCH3), 3.81 (3H, s, OCH3), 3.65 (1H, dd, J = 6.7 and 6.1, 

NCH), 3.22 (2H, d, J = 6.4, NCH2CHCH2), 3.20-3.13 (1H, m, NCH2CH2Ar), 2.86-2.76 

(2H, m, NCH2CH2Ar and NCH2CH2Ar), 2.57-2.46 (2H, m, NCH2CH2Ar and 

CHCH2CH=CH2), 2.43-2.36 (1H, m, CHCH2CH=CH2); δC (100 MHz, CDCl3) 147.2 

(ArCOCH3), 146.8 (ArCOCH3), 136.8 (CH=CH2), 136.3 (CH=CH2), 129.6 (ArC), 126.2 

(ArC), 117.0 (CH=CH2), 115.8 (CH=CH2), 111.2 (ArCH), 110.6 (ArCH), 59.8 (NCH), 56.6 

(NCH2CH=CH), 55.8 (OCH3), 55.7 (OCH3), 43.7 (NCH2CH2Ar), 40.0 (CHCH2CH=CH2), 

24.3 (NCH2CH2Ar); m/z (CI, NH3) 275 (18%), 274 (100, MH+); HRMS C17H24NO2 (MH+) 

requires 274.1807, found 274.1810. 

 

Methyl (E)-4-(2-(2-bromoallyl)-1,2,3,4-tetrahydro-6,7-dimethoxyisoquinolin-1-yl)but-

2-enoate (358) 

O

O N

O

O

Br

 
To a stirred solution of 3,4-dihydro-6,7-dimethoxyisoquinoline 188 (7.5 g, 39.22 mmol) in 

Et2O (100 mL) at r.t. under nitrogen was added 2,3-dibromoprop-1-ene (8.62 g, 43.14 

mmol). The resulting solution was stirred in the dark overnight, during which time a 

yellow precipitate formed. The crude mixture was evaporated to dryness to afford the 

bromide salt as an unstable, moisture sensitive yellow power; δH (400 MHz, CDCl3) 9.94 

(1H, s, NCH), 7.60 (1H, s, ArCH), 6.89 (1H, s, ArCH), 6.56 (1H, d, J = 2.1, C(Br)=CH2), 

5.90 (1H, d, J = 2.1, C(Br)=CH2), 5.36 (2H, s, NCH2C(Br)), 4.08 (2H, t, J = 8.2, 

NCH2CH2Ar), 4.02 (3H, s, OCH3), 3.94 (3H, s, OCH3), 3.29 (2H, t, J = 8.2, NCH2CH2Ar); 

δC (100 MHz, CDCl3) 166.9 (NCH), 158.5 (ArCOCH3), 149.4 (ArCOCH3), 133.3 

(NCH2C(Br)), 127.4 (ArC), 123.6 (C(Br)=CH2), 117.5 (ArC), 116.4 (ArCH), 111.3 (ArCH), 

67.0 (NCH2C(Br)), 57.2 (ArCOCH3), 57.0 (ArCOCH3), 47.6 (NCH2CH2Ar), 26.0 

((NCH2CH2Ar); m/z (CI, NH3) (MH+, 100%). 

To a stirred suspension of the bromide salt in acetonitrile (100 mL) was added methyl (E)-

4-bromobut-2-enoate (8.3 mL, 58.8 mmol) and zinc dust (3.8 g, 58.8 mmol), the resulting 

suspension was stirred at r.t. under nitrogen for 2 days. The reaction mixture was quenched 

by pouring into a saturated aq. solution of NaHCO3 (250 mL) and allowed to stir for 30 
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minutes, the resulting precipitate was removed by filtration, and washed with Et2O (200 

mL), the organic layer was separated and the aqueous layer extracted with Et2O (2 × 200 

mL). The combined organic layers were dried over MgSO4, filtered and evaporated to 

afford a yellow oil. The crude product was purified by flash silica chromatography, elution 

gradient 10 to 40% EtOAc in isohexane. Pure fractions were evaporated to dryness to 

afford the title compound 358 as a yellow oil (12.66 g, 79%), which forms a solid on 

standing. Rf 0.25 (1:1 EtOAc:petrol); mp 55-60 ºC; νmax (thin film) /cm–1 2929 (w), 2909 

(w), 2835 (w), 2789 (w), 1712 (s), 1653 (m), 1632 (m), 1608 (m), 1513 (s); δH (700 MHz, 

CDCl3) 7.06 (1H, dt, J = 15.6 and 7.4, CH=CHCO2CH3), 6.54 (1H, s, ArCH), 6.46 (1H, s, 
ArCH), 5.85 (1H, s, CH2C(Br)=CH2), 5.80 (1H, app dt, J = 15.6 and 1.3, CH=CHCO2CH3), 

5.55 (1H, s, CH2C(Br)=CH2), 3.82 (3H, s, ArCOCH3), 3.79 (3H, s, ArCOCH3), 3.72 (1H, dd, 

J = 7.6 and 5.5, NCH), 3.68 (3H, s, CO2CH3), 3.40 (1H, d, J = 15.2, NCH2C(Br)), 3.37 

(1H, d, J = 15.2, NCH2C(Br)), 3.19-3.14 (1H, m, NCH2CH2Ar), 2.84-2.75 (2H, m, 

NCH2CH2Ar and NCH2CH2Ar), 2.64 (1H, app quint d, J = 7.0 and 1.3 NCH2CH2Ar) and 

2.57-2.49 (2H, m NCHCH2CH); δC (176 MHz, CDCl3) 166.8 (CO2CH3), 147.7 

(ArCOCH3), 147.3 (ArCOCH3), 147.2 (CH=CHCO2CH3), 131.8 (C(Br)=CH2), 128.6 (ArC), 

126.3 (ArC), 122.2 (CH=CHCO2CH3), 118.0 (C(Br)=CH2), 111.7 (ArCH), 110.4 (ArCH), 

62.0 (NCH2C(Br)), 60.1 (NCH), 55.9 (ArCOCH3), 55.8 (ArCOCH3), 51.3 (CO2CH3), 43.6 

(NCH2CH2Ar), 39.0 (NCH2CH2Ar), 24.4 (CHCH2CH); m/z (CI, NH3) 413 (18%) 412 

(MH+Br81 98), 411 (20), 410 (MH+Br79 100); HRMS C19H25O4
79Br (MH+) requires  

410.0967, found 410.0962. 

 

Methyl 2-((2R*,11bS*)-2,3,4,6,7,11b-hexahydro-9,10-dimethoxy-3-methylene-1H-

pyrido[2,1-a]isoquinolin-2-yl)acetate (359) 

O

O N

O

O

 
A solution of methyl (E)-4-(2-(2-bromoallyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-

1-yl)but-2-enoate 358 (2.5 g, 6.09 mmol) in THF (50 mL) was stirred at reflux for 30 

minutes under nitrogen. Then AIBN (31 mg, 0.19 mmol) was added, followed by the slow 

addition of a solution of tributyltin hydride (2.028 mL, 7.31 mmol) and AIBN (0.500 g, 

3.05 mmol) in THF (25 mL) by a syringe pump over a period of 3 h. Following the 

complete addition of the tributyltin hydride solution, the reaction mixture was maintained 
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at reflux for a further 2 h, after which the solution was cooled to r.t. The crude reaction 

mixture was passed through a SCX column, elution gradient 4:1 DCM:MeOH to 4:1 

DCM:MeOH/NH3, the DCM:MeOH/NH3 fractions were evaporated to afford a yellow oil. 

The oil was purified by flash silica chromatography, elution gradient 16:4 petrol:EtOAc to 

8:8:1 petrol:EtOAc:MeOH/NH3. The pure fractions were concentrated in vacuo to afford 

the title compound 359 as a yellow oil (1.52 g, 75%) as a 2.8:1 mixture of partially 

separable diastereomers; Rf = 0.33 (8:8:1, petrol:EtOAc:MeOH/NH3); νmax (thin film) /cm–

1 2981 (s), 2971 (m), 1733 (s), 1511 (m); major diastereoisomer; δH (700 MHz, CDCl3) 

6.63 (1H, s, ArCH), 6.55 (1H, s, ArCH), 4.92 (1H, s, C=CH2), 4.72 (1H, app d, J = 0.9, 

C=CH2), 3.83 (3H, s, ArOCH3), 3.82 (3H, s, ArOCH3), 3.71 (3H, s, CO2CH3), 3.45 (1H, app 

d, J = 10.8, NCH), 3.38 (1H, d, J = 12.1, NCH2C=CH2), 3.12 (1H, d, J = 12.1, 

NCH2C=CH2), 3.07-3.01 (1H, m, NCH2CH2Ar), 2.99-2.93 (1H, m, NCH2CH2Ar), 2.83-

2.76 (1H, m, CH2CHCH2), 2.73 (1H, dd, J = 15.5 and 6.5, CH2CO2Me), 2.67 (1H, app dt, J 

= 15.6 and 3.3 NCH2CH2Ar), 2.54 (1H, app td, J = 10.6 and 4.3 NCH2CH2Ar), 2.34 (1H, 

dd, J = 15.5 and 7.2, CH2CO2CH3), 2.31 (1H, app ddd, J = 12.6, 4.3 and 2.9, CHCH2CH), 

1.29 (1H, app q, J = 12.6, CHCH2CH); δC (100 MHz, CDCl3) 173.5 (CO2CH3), 147.6 

(ArCOCH3), 147.2 (ArCOCH3), 145.5 (C=CH2), 129.4 (ArC), 126.6 (ArC), 111.5 (ArCH), 

108.7 (ArCH), 107.6 (C=CH2), 63.4 (NCH2C=CH2), 61.9 (NCH), 56.1 (ArCOCH3), 55.8 

(ArCOCH3), 51.6 (CO2CH3), 50.6 (NCH2CH2Ar), 38.4 (CHCH2CH), 37.9 (CH2CHCH2), 

36.9 (CH2CO2CH3), 29.1 (NCH2CH2Ar); m/z (CI, NH3) 333 (20%), 332 (MH+, 100), 330 

(35); Found: MH+ 332.1855, C19H26O4N requires: MH+ 332.1861. 

The presence of the minor diastereoisomer was identified by the following key peaks; δH 

(700 MHz, CDCl3) 6.60 (1H, s, ArCH), 6.55 (1H, s, ArCH), 4.87 (1H, s, C=CH2), 4.86 (1H, 

app d, J = 0.9, C=CH2), 3.83 (3H, s, ArOCH3), 3.81 (3H, s, ArOCH3), 3.68 (3H, s, CO2CH3), 

3.51 (1H, app d, J = 11.0, NCH). 

 

2-((2R*,11bS*)-2,3,4,6,7,11b-Hexahydro-9,10-dimethoxy-3-methylene-1H-pyrido[2,1-

a]isoquinolin-2-yl)ethanol (362) 

O

O N

OH  
To a stirred solution of methyl 2-((2R*,11bS*)-2,3,4,6,7,11b-hexahydro-9,10-dimethoxy-

3-methylene-1H-pyrido[2,1-a]isoquinolin-2-yl)acetate 359 (0.30 g, 0.91 mmol), in THF 
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(10 mL) at 0 ºC under nitrogen, was slowly added a solution of lithium aluminium hydride 

in THF (1.15 mL, 2.4 M, 2.75 mmol), the solution was stirred for 15 minutes at 0 ºC, then 

warmed to r.t. and stirred for 6 h. The stirred reaction mixture was then quenched by the 

sequential dropwise addition of H2O (0.10 mL), 15% aqueous NaOH (0.10 mL) and H2O 

(0.30 mL), then EtOAc (10 mL) and celite (0.5 g) were added and stirred for 1 h. The 

reaction mixture was filtered through a celite plug, the plug was flushed with EtOAc (2 × 

15 mL), evaporation of the solvent afforded the crude product as a yellow oil. The oil was 

purified by flash silica chromatography, elution gradient 10 to 20% MeOH/NH3 in DCM. 

Pure fractions were concentrated in vacuo to afford the title compound 363 as a yellow oil 

(0.24 g, 87%); Rf = 0.52 (10% MeOH/NH3 in DCM); νmax (thin film) /cm–1 3420 (bs), 

3049 (w), 2994 (w), 1608 (m), 1509 (m); δH (400 MHz, CDCl3) 6.62 (1H, s, ArCH), 6.51 

(1H, s, ArCH), 4.87 (1H, s, C=CH2), 4.72 (1H, app d, J = 0.9, C=CH2), 3.79 (3H, s, 
ArOCH3), 3.77 (3H, s, ArOCH3), 3.69 (2H, t, J = 6.6, CH2OH), 3.36 (1H, app d, J = 10.8, 
ArCHN), 3.32 (1H, d, J = 12.0, NCH2C=CH2), 3.02 (1H, d, J = 12.0, NCH2C=CH2), 3.01-

2.89 (2H, m, NCH2CH2
Ar and  CH2CHCH2), 2.69 (1H, bs, CH2OH), 2.64 (1H, app dt, J = 

15.7 and 4.0, NCH2CH2
Ar), 2.47 (1H, app td, J = 10.2 and 4.0 NCH2CH2

Ar), 2.37-2.24 (2H, 

m, CHCH2CH and NCH2CH2
Ar), 1.96 (1H, app td, J = 13.0 and 6.6, CH2CH2OH), 1.51 

(1H, app td, J=13.0 and 6.6, CH2CH2OH), 1.29 (1H, app q, J = 11.7, CHCH2CH); δC (100 

MHz, CDCl3) 147.2 (ArCOCH3), 146.7 (ArCOCH3), 146.1 (C=CH2), 129.3 (ArC), 126.1 

(ArC), 111.2 (ArCH), 108.4 (ArCH), 107.2 (C=CH2), 63.3 (NCH2C=CH2), 61.9 (ArCHN), 

59.6 (CH2OH), 55.7 (ArCOCH3), 55.4 (ArCOCH3), 50.1 (NCH2CH2Ar), 37.7 (CHCH2CH), 

37.1 (CH2CHCH2), 34.3 (CH2CH2OH), 28.6 (NCH2CH2Ar); m/z (CI, NH3) 305 (35%), 304 

(MH+, 100), 302 (25), 274 (10). 

 

(2R*,11bS*)-5-(Chloromethyl)-2-(2-hydroxyethyl)-9,10-dimethoxy-3-methylene-

1,2,3,4,5,6,7,11b-octahydropyrido[2,1-a]isoquinolinium chloride (363) 

O

O N

OH

Cl

Cl

 
2-((2R*,11bS*)-2,3,4,6,7,11b-Hexahydro-9,10-dimethoxy-3-methylene-1H-pyrido[2,1-

a]isoquinolin-2-yl)ethanol (362) was stored with trace amounts of DCM, after 6 months a 

small amount of crystalline material was formed, which turned out to be the DCM salt, 

(363); δH (400 MHz, CDCl3) 6.95 (1H, s, ArCH), 6.83 (1H, s, ArCH), 5.49 (1H, d, J = 
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10.2, NCH2Cl), 5.44 (1H, s, =CH2), 5.27 (1H, d, J = 10.2, NCH2C1), 5.22 (1H, s, =CH2), 

4.89 (1H, dd, J = 11.7 and 3.2, NCHAr), 4.67 (1H, t, J = 5.3, NCH2CH2Ar), 4.40 (1H, d, J 

= 12.5, NCH2C=CH2), 4.27 (1H, d, J = 12.5, NCH2C=CH2), 3.94-3.84 (1H, m, 

NCH2CH2Ar), 3.75 (3H, s, OCH3), 3.74 (3H, s, OCH3), 3.58-3.54, (1H, m NCH2CH2Ar), 

3.52 (1H, app d, J = 6.0, CH2OH), 3.49 (1H, app d, J = 6.0, CH2OH), 3.32 (1H, bs, OH), 

3.12-2.94 (1H, m, CH2CHCH2), 3.05 (1H, app, d, J = 6.1, NCH2CH2Ar), 2.62-2.54 (1H, m, 

CHCH2CH), 1.91-1.81 (1H, m, CH2CH2OH), 1.65 (1H, app, dd, J = 14.2 and 12.3, 

CH2CH2OH), 1.46-1.36 (1H, m, CHCH2CH), δC (100 MHz, CDCl3) 149.3 (ArCOCH3), 

148.5 (ArCOCH3), 138.5 (C), 123.0 (C), 120.9 (C), 117.5 (=CH2), 112.2 (ArCH), 110.8 

(ArCH), 66.6 (ArCHN), 66.5 (CH2), 65.6 (CH2), 58.1 (CH2), 56.2 (OCH3), 56.1 (OCH3), 

47.5 (CH2), 38.5 (CH2), 35.6 (CH), 33.8 (CH2), 22.9 (CH2); m/z (ESI) 354 (MCl37-Cl, 

33%), 353 (20), 352 (MCl35-Cl, 100). 

 

2-((2R*,3S*,11bS*)-2,3,4,6,7,11b-Hexahydro-9,10-dimethoxy-3-methyl-1H-

pyrido[2,1-a]isoquinolin-2-yl) (342-b) or (±)-des-methyl-epi-protoemetinol 

O

O N

OH  
A stirred solution of 2-((2R*,11bS*)-2,3,4,6,7,11b-hexahydro-9,10-dimethoxy-3-

methylene-1H-pyrido[2,1-a]isoquinolin-2-yl)ethanol 362 (303 mg, 1.0 mmol) and 5% 

Pd/C (30 mg) in MeOH (10 mL) was evacuated and back-filled with nitrogen (×3) then 

hydrogen (×2). The solution was then stirred under 1 bar hydrogen at r.t. for 6 h, after 

which time the reaction mixture was filtered through a plug of Celite (EtOAc) and the 

solvent was evaporated in vacuo. The crude product was purified by flash silica 

chromatography, elution gradient 10 to 20% MeOH/NH3 in DCM. Pure fractions were 

evaporated to dryness to afford the title compound 342-b (273 mg, 91%) as a yellow oil, as 

a 3:1 mixture of diastereoisomers. 

 Major diastereoisomer, (±)-des-methyl-epi-protoemetinol (342-b); νmax (thin film) 

/cm–1 3460 (bs), 3040 (w), 2910 (w), 1422 (m) 1291 (w); δH (400 MHz, CDCl3) 6.68 (1H, 

s, ArCH), 6.65 (1H, s, ArCH), 3.84 (3H, s, OCH3), 3.82 (3H, s, OCH3), 3.70 (2H, app td, J = 

6.7 and 3.0, CH2OH), 3.12-3.02 (1H, m, NCH2CH2Ar), 2.97 (1H, d, J = 11.0, NCH), 2.81 

(1H, ddd, J = 11.0, 6.9 and 1.2, NCH2CH2Ar), 2.74 (1H, dd, J = 11.1 and 2.2, NCH2CH), 

2.55 (1H, dd, J = 15.9 and 3.5, NCH2CH2Ar), 2.43 (1H, dd, J = 11.1 and 3.5, NCH2CH), 
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2.38 (1H, td, J = 11.0 and 3.5, NCH2CH2Ar), 2.01 (1H, bs, CH2OH), 1.98 (1H, dt, J = 12.5 

and 3.0, CHCH2CH), 1.90-1.75 (2H, m, CHCH2CH2OH and CHCH3), 1.60-1.50 (2H, m, 

CH2CH2OH), 1.31 (1H, app dd, J = 12.5 and 11.0, CHCH2CH), 0.97 (3H, d, J = 6.9, 

CHCH3); δC (100 MHz, CDCl3) 147.1 (ArCOCH3), 146.9 (ArCOCH3), 130.4 (ArC), 126.9 

(ArC), 111.3 (ArCH), 107.9 (ArCH), 63.6 (NCH2CH), 63.3 (NCH), 60.4 (CH2OH), 56.0 

(OCH3), 55.7 (OCH3), 52.8 (NCH2CH2Ar), 36.5 (CH2CH2OH), 35.7 (CHCH2CH2OH), 

32.9 (CHCH2CH), 31.4 (CHCH3), 29.2 (NCH2CH2Ar), 12.5 (CHCH3); m/z (CI) 307 

(15%), 306 (MH+, 100), 304 (10); HRMS C18H28NO3 (MH+) requires 306.2064, found 

306.2063. 

 The minor diastereoisomer, (±)-des-methyl-protoemetinol (342-a), has 

spectroscopic data that is in agreement with the previously prepared material. 

 

(Z)-2-Bromobut-2-enal (365)251 

O
Br

 
To a stirred solution of crotonaldehyde (12.5 mL, 150 mmol) in anhydrous DCM (400 mL) 

at 0 ºC was slowly added a solution of bromine (7.7 mL, 150 mmol) in DCM (75 mL). The 

resulting dark red solution was stirred at 0 °C for 10 minutes, during this time the red 

colour was replaced with a golden yellow colour. Triethylamine (41.8 mL, 300 mmol) was 

added and the reaction stirred for a further 1 h. The reaction mixture was diluted with 

DCM (200 mL), and washed with 10% aq HCl (2 × 250 mL), and brine (250 mL). The 

organic layer was dried over MgSO4, followed by concentrated in vacuo. The resulting oil 

was purified by Kugelrohr distillation to afford (Z)-2-bromobut-2-enal (365) as a pale 

yellow oil; b.p 68-74 °C at 17 mmHg, (lit b.p 65 °C at 15 mmHg); νmax (thin film) /cm–1 

1690 (s), 1605 (s); δH (400 MHz, CDCl3) 9.12 (1H, s, C(O)H), 7.17 (1H, q, J = 6.8, 

CH3CH), 2.05 (3H, t, J = 6.8, CH3CH); δC (100 MHz, CDCl3) 186.3 (C(O)H), 151.2 

(CH3CHCBr), 130.5 (CH3CHCBr), 18.3 (CH3CH); m/z (CI, NH3) 262 (81BrM2MeCNH-Br+, 

100%), 260 (79BrM2MeCNH-Br+, 99), 192 (81BrMMeCNH+, 10), 190 (79BrMMeCNH+, 10).  

The spectroscopic data is in agreement with reported data.251 

 

(Z)-2-Bromobut-2-en-1-ol (366)251 

OH
Br

    
To a stirred solution of (Z)-2-bromobut-2-enal 365 (14.9 g, 100 mmol) in MeOH (200 

mL), was added cerium(III) chloride heptahydrate (41.0 g, 110 mmol). The reaction was 

cooled to 0 ºC and stirred until all the solid had dissolved. Sodium borohydride (4.2 g, 110 
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mmol) was then added to the reaction portionwise over a period of 10 mim, to control the 

vigorous evolution of gas. Once the evolution of gas had ceased (30 min) the resulting 

solution was concentrated in vacuo. The resulting white suspension was partitioned 

between Et2O (300 mL) and saturated aqueous ammonium chloride solution (300 mL). The 

organic layer was separated and the aqueous layer re-extracted with a further portions of 

Et2O (2 × 250 mL). The combined organic layers were washed with water (300 mL), brine 

(300 mL) and dried over Na2SO4, and the solvent removed in vacuo to yield the crude 

product 366 (14.9 g) (no purification was carried out); νmax (thin film) /cm–1 3330 (bs), 

2850 (m), 1630 (w), 1420 (m); major isomer; δH (400 MHz, CDCl3) 5.98 (1H, qt, J = 6.5 

and 1.2, CH3CH), 4.12 (2H, t, J = 1.2, BrCCH2OH), 2.60 (1H, bs, CH2OH), 1.64 (3H, dt, J 

= 6.5 and 1.2, CH3CH); δC (100 MHz, CDCl3) 128.4 (CHCH3), 124.7 (CBr), 77.1 

(CH2OH), 16.5 (CH3). 

The minor (E)-isomer is indicated by; δH (400 MHz, CDCl3) 6.22 (1H, qd, J = 6.6 and 0.8, 

CH3CH), 4.58 (2H, t, J = 0.8, BrCCH2OH), 1.72 (3H, dd, J = 6.6 and 0.8, CH3CH); δC 

(100 MHz, CDCl3) 128.3 (CHCH3), 124.4 (CBr), 68.4 (CH2OH), 16.4 (CH3).  

The spectroscopic data is in agreement with reported data.251 

 

(Z)-1,2-Dibromobut-2-ene (367)251 

Br
Br

 
To a stirred solution of the crude 2-bromobut-2-en-1-ol (100 mmol) and carbon 

tetrabromide (39.3 g, 120 mmol) in acetonitrile (250 mL) at 0 ºC was added 

triphenylphosphine (31.5 g, 120 mmol) portionwise. The reaction mixture was allowed to 

warm to ambient temperature and stirred for 1 h, the solution was evaporated to dryness. 

The crude product was purified by flash silica chromatography, elution gradient 2:1 

petrol:Et2O. Subsequent vacuum distillation (50-52 °C at 15 mbar) resulted in a 1:1 

mixture of the title compound and bromoform (24.1 g, 73%); νmax (thin film) /cm–1 3019 

(s), 1721 (m), 11211 (m), 1143 (s); δH (400 MHz, CDCl3) 6.17 (1H, qt, J = 6.6 and 0.6, 

CH3CHCBr), 4.23 (2H, t, J =0.6, CBrCH2Br), 1.76 (3H, d, J = 6.6, CH3CH); δC (100 MHz, 

CDCl3) 129.7 (CH3CH), 123.6 (CBr), 39.0 (CBrCH2Br), 17.4 (CH3CH); m/z (CI, NH3)  

(MH+, 100%), 216 (MBr81Br81, 48), 214 (MBr81Br79, 100), 212 (MBr79Br79, 50); HRMS 

(ESI) calcd for C4H6Br2 211.8836, found 211.8843. 

The spectroscopic data is in agreement with reported data.251 
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Methyl (E) 4-(2-((Z)-2-bromobut-2-enyl)-1,2,3,4-tetrahydro-6,7-

dimethoxyisoquinolin-1-yl)but-2-enoate (368) 

O

O N

Ha

Hb
O

O

Br

Hd

 
To a stirred solution of 3,4-dihydro-6,7-dimethoxyisoquinoline (2.8 g, 14.5 mmol) in Et2O 

(100 mL) at r.t. under nitrogen was added the dibromoalkene (a 1:1 mixture of 1,2-

dibromobut-2-ene and CHBr3, 12 g, 29 mmol). The resulting solution was stirred in the 

dark overnight, during which time a yellow precipitate formed. The crude mixture was 

evaporated to dryness to afford the bromide salt as an unstable, moisture sensitive yellow 

power; δH (400 MHz, CDCl3) 9.83 (1H, s, NCH), 7.60 (1H, s, ArCH), 6.88 (1H, s, ArCH), 

6.72 (1H, q, J = 6.3, CHCH3), 5.26 (2H, s, NCH2CBr), 4.09-3.96 (2H, m, NCH2), 3.98 

(3H, s, OCH3), 3.87 (3H, s, OCH3), 3.21 (2H, t, J= 8.0, ArCH2), 1.74 (3H, d, J = 6.5, 

CHCH3); δC (100 MHz, CDCl3) 165.6 (NCH), 155.6 (ArCOCH3), 148.5 (ArCOCH3), 135.3 

(CBr=CH), 132.6 (CBr) 117.7 (ArC), 116.8 (ArC), 115.6 (ArCH), 110.6 (ArCH), 66.9 

(NCH2CBr), 56.7 (ArCOCH3), 56.4 (ArCOCH3), 46.7 (NCH2), 25.3 (ArCH2), 17.0 (CH3). 

To a stirred suspension of the bromide salt in acetonitrile (100 mL) was added methyl (E)-

4-bromobut-2-enoate (3.4 mL, 29.0 mmol) and zinc dust (1.9 g, 29.0 mmol), and the 

resulting suspension was stirred at r.t. under nitrogen for 2 days. The reaction mixture was 

quenched by pouring into a saturated aqueous solution of NaHCO3 (150 mL) and allowed 

to stir for 30 minutes, the resulting precipitate was removed by filtration, and washed with 

Et2O (200 mL), the organic layer was separated and the aqueous layer extracted with Et2O 

(2 × 150 mL). The combined organic layers were dried over MgSO4, filtered and 

evaporated to afford a yellow oil. The crude product was purified by flash silica 

chromatography, elution gradient 8:1 to 1:1 petrol:EtOAc. Pure fractions were evaporated 

to dryness to afford the title compound 368 as a yellow oil (5.77 g, 55%); Rf 0.27 (1:1, 

ethyl acetate:petrol); νmax (thin film) /cm–1 2997 (w), 2947 (m), 2834 (w), 1722 (s), 1657 

(m), 1516 (s); δH (400 MHz, CDCl3) 7.08 (1H, dt, J = 15.7 and 7.3, CH=CHCO2CH3), 6.54 

(1H, s, ArCH), 6.45 (1H, s, ArCH), 5.95 (1H, q, J = 6.5, CHCH3), 5.80 (1H, dt, J = 15.7 and 

1.4, CH=CHCO2CH3), 3.82 (3H, s, ArOCH3), 3.80 (3H, s, ArOCH3), 3.72-3.68 (1H, m, 

NCH), 3.69 (3H, s, CO2CH3), 3.39 (2H, s, NCH2CBr), 3.20-3.10 (1H, m, NCH2CH2Ar), 

2.84-2.72 (2H, m, NCH2CH2Ar and NCH2CH2Ar), 2.65-2.45 (3H, m, NCH2CH2Ar and 

CHCH2CH=), 1.75 (3H, d, J = 6.5, CHCH3); δC (100 MHz, CDCl3) 166.8 (CO2CH3), 147.5 
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(CH=CHCO2CH3), 147.4 (ArCOCH3), 147.1 (ArCOCH3), 128.5 (C(Br)=CH), 126.6 (ArC), 

126.3 (ArC), 125.7 (CHCH3), 121.9 (CH=CHCO2CH3), 111.3 (ArCH), 110.2 (ArCH), 62.3 

(CH2CBr), 59.5 (NCH), 55.8 (ArCOCH3), 55.7 (ArCOCH3), 51.2 (CO2CH3), 43.3 

(NCH2CH2Ar), 38.9 (CH2CHCH), 24.1 (NCH2CH2Ar), 16.5 (CHCH3); m/z (CI, NH3) 427 

(20%), 426 (MBr81H, 100), 425 (20), 424 (MBr79H, 100); HRMS (ESI, MBr79H+) calcd for 

C20H27BrNO4 424.1118, found 424.1114. 

 

Methyl 2-(3-ethylidene-2,3,4,6,7,11b-hexahydro-9,10-dimethoxy-1H-pyrido[2,1-

a]isoquinolin-2-yl)acetate (368) and methyl (E)-3-(2-ethyl-1,2,3,5,6,10b-hexahydro-8,9-

dimethoxypyrrolo[2,1-a]isoquinolin-1-yl)acrylate (369) 

N

O

O

O

O

O

O N

O
O368 369

 
A solution of methyl (E) 4-(2-((Z)-2-bromobut-2-enyl)-1,2,3,4-tetrahydro-6,7-

dimethoxyisoquinolin-1-yl)but-2-enoate (368) (1.8 g, 4.25 mmol) in THF (100 mL) was 

stirred at reflux for 30 minutes under a flow of nitrogen. Then AIBN (0.035 g, 0.21 mmol) 

was added, followed by the slow addition of a solution of tributyltin hydride (1.5 mL, 5.5 

mmol) and AIBN (0.314 g, 1.91 mmol) in THF (20 mL) by a syringe pump over a period 

of 4 h. Following the complete addition of the tributyltin hydride, the solution was 

maintained at reflux for a further 4 h, after which the solution was cooled to r.t The 

reaction mixture was concentrated in vacuo, until approx 20 ml of solvent was left. This 

was stirred with a 1:4 mixture of KF/Silica for 10 min. The resulting slurry was then 

loaded on to a KF/silica column and washed with approximately 400 mL of petrol, 

followed by flushing the column with EtOAc (approximately 300 mL).  The resulting 

oil/gum was purified by flash silica chromatography, elution gradient 6:1 petrol:EtOAc to 

EtOAc. The pure fractions were concentrated in vacuo to afford the title compounds. 

 The 6-exo cyclisation product 368 was isolated as a yellow gum (0.64 g, 44%), as a 

2:1 mixture of partially separable diastereoisomers; νmax (thin film) /cm–1 2948 (m), 1730 

(s), 1613 (w), 1520 (s); δH (400 MHz, CDCl3) (major isomer) 6.62 (1H, s, ArCH), 6.54 (1H, 

s, ArCH), 5.19 (1H, q, J = 6.5, C=CHCH3), 3.82 (3H, s, ArOCH3), 3.81 (3H, s, ArOCH3), 

3.72 (1H, d, J = 13.2, NCH2C=CH), 3.70 (3H, s, CO2CH3), 3.43 (1H, app d, J = 8.9, 

NCH), 3.08-2.98 (2H, m, NCH2CH2Ar and NCH2CH2Ar), 2.80-2.62 (4H, m, NCH2C=CH, 

CH2CHCH2, CH2CO2Me, NCH2CH2Ar), 2.58-2.52 (1H, m, NCH2CH2Ar), 1.68 (3H, d, J = 
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6.5, C=CHCH3), 1.27 (1H, app dd, J = 12.2 and 10.5, CHCH2CH); δC (100 MHz, CDCl3) 

173.4 (CO2CH3), 147.4 (ArCOCH3), 147.0 (ArCOCH3), 136.0 (C=CHCH3), 129.5 (ArC), 

126.4 (ArC), 115.8 (C=CHCH3), 111.3 (ArCH), 108.3 (ArCH), 62.1 (NCH),  56.1 

(NCH2C=CH), 56.0 (ArCOCH3), 55.7 (ArCOCH3), 51.6 (CO2CH3), 51.1 (NCH2CH2Ar), 

38.7 (CHCH2CH), 38.5 (CH2CHCH2), 36.9 (CH2CO2CH3), 29.1 (NCH2CH2Ar), 13.0 

(CHCH3); m/z (CI, NH3)  347 (20%), 346 (MH+, 100); HRMS C20H28NO4 (MH+) requires 

346.2013, found 346.2018. 

 The presence of the minor diastereoisomer was identified by the following key 

peaks; δC (100 MHz, CDCl3) 172.5 (CO2CH3), 147.2 (ArCOCH3), 146.8 (ArCOCH3), 134.8 

(C=CHCH3), 126.6 (ArC), 126.3 (ArC), 115.8 (C=CHCH3), 111.4 (ArCH), 108.4 (ArCH), 

60.2 (NCH2C=CH), 57.1 (NCH), 55.8 (ArCOCH3), 55.6 (ArCOCH3), 51.5 (CO2CH3), 51.3 

(NCH2CH2Ar), 38.6 (CHCH2CH), 38.4 (CH2CHCH2), 31.5 (CH2CO2CH3), 29.8 

(NCH2CH2Ar), 12.4 (CHCH3). 

 

  The 5-exo cyclisation product 369 was isolated as a yellow gum (58 mg, 4%); νmax 

(thin film) /cm–1 3030 (m), 2945 (m), 1721 (s), 1608 (m); δH (400 MHz, CDCl3) 7.13 (1H, 

dd, J = 15.5 and 9.0, CHCH=CHCO2CH3), 6.57 (1H, s, ArCH), 6.56 (1H, s, ArCH), 5.90 

(1H, d, J = 15.5, CHCH=CHCO2CH3), 3.82 (1H, s, ArOCH3), 3.76-3.70 (1H, m, NCH), 

3.74 (3H, s, CO2CH3), 3.71 (1H, s, ArOCH3), 3.10 (1H, app dq, J = 11.8 and 3.3, 

NCH2CH2Ar), 2.97-2.88 (2H, m, NCH2CH and NCH2CH2Ar), 2.79-2.70 (2H, m, NCH2CH 

and NCH2CH2Ar), 2.57 (1H, dt, J = 15.8 and 3.3, NCH2CH2Ar), 2.34 (1H, app q, J = 9.0, 

CHCH=CHCO2CH3), 2.03-1.94 (1H, m, CHCH2CH3), 1.57-1.46 (1H, m, CHCH2CH3), 

1.35-1.21 (1H, m, CHCH2CH3), 0.88 (3H, t, J = 7.0, CH2CH3); δC (100 MHz, CDCl3) 

166.8 (CO2CH3), 152.8 (CHCH=CHCO2CH3), 147.4 (ArCOCH3), 147.1 (ArCOCH3), 129.9 

(ArC), 126.6 (ArC), 121.8 (CHCH=CHCO2CH3), 111.4 (ArCH), 108.8 (ArCH), 66.4 (NCH), 

57.4 (NCH2CH), 56.7 (CHCH=CHCO2CH3), 55.9 (ArOCH3), 55.8 (ArOCH3), 51.7 

(CO2CH3), 48.0 (NCH2CH2Ar), 46.0 (CHCH2CH3), 26.6 (CHCH2CH3), 26.4 

(NCH2CH2Ar), 12.8 (CH2CH3); m/z (CI, NH3) 347 (20%), 346 (MH+, 100), 344 (10); 

HRMS C20H28NO4 (MH+) requires 346.2013, found 346.2025. 
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2-(3-Ethylidene-2,3,4,6,7,11b-hexahydro-9,10-dimethoxy-1H-pyrido[2,1-

a]isoquinolin-2-yl)ethanol (378) 

O

O N

OH  
To a stirred solution of methyl 2-(3-ethylidene-2,3,4,6,7,11b-hexahydro-9,10-dimethoxy-

1H-pyrido[2,1-a]isoquinolin-2-yl)acetate 368 (185 mg, 0.55 mmol), in THF (10 mL) at 0 

ºC under nitrogen, was slowly added a solution of lithium aluminium hydride in THF (2.3 

mL, 2.4 M, 5.5 mmol), the solution was stirred for 15 minutes at 0 ºC, then warmed to r.t. 

and stirred for 6 h. The stirred reaction mixture was then quenched by the sequential 

dropwise addition of H2O (0.20 mL), 15% aqueous NaOH (0.20 mL) and H2O (0.60 mL), 

then EtOAc (10 mL) and celite (0.5 g) were added and stirred for 1 h. The reaction mixture 

was filtered through a celite plug, the plug was flushed with EtOAc (2 × 25 mL), and 

evaporation of the solvent afforded the crude product as a yellow oil. The oil was purified 

by flash silica chromatography, elution gradient 10 to 20% MeOH/NH3 in DCM. Pure 

fractions were concentrated in vacuo to afford the title compound 378 as a yellow oil (146 

mg, 84%); Rf = 0.50 (10% MeOH/NH3 in DCM); νmax (thin film) /cm–1 3400 (sb), 2995 

(w), 1612 (m), 1510 (m); δH (400 MHz, CDCl3) 6.61 (1H, s, ArCH), 6.52 (1H, s, ArCH), 

5.22 (1H, q, J = 6.5, C=CHCH3), 3.79 (3H, s, ArOCH3), 3.78 (3H, s, ArOCH3), 3.73 (2H, t, J 

= 6.5, CH2OH), 3.56-3.48 (1H, m, NCH2C=CH2), 3.39 (1H, app d, J = 10.5, NCH), 3.08-

2.90 (3H, m, NCH2C=CH2, NCH2CH2Ar and NCH2CH2Ar), 2.76-2.52 (4H, m, 

CH2CHCH2, NCH2CH2Ar, NCH2CH2Ar and CH2OH), 2.28-2.20 (1H, m, CHCH2CH), 

1.84-1.78 (1H, m, CH2CH2OH), 1.68 (3H, d, J = 6.5, C=CHCH3),  1.56-1.48 (1H, m, 

CH2CH2OH), 1.27 (1H, app q, J = 11.5, CHCH2CH); δC (100 MHz, CDCl3) 147.2 

(ArCOCH3), 146.8 (ArCOCH3), 136.6 (C=CHCH3), 129.7 (ArC), 126.2 (ArC), 115.6 

(C=CHCH3), 111.1 (ArCH), 108.2 (ArCH), 62.0 (NCH), 60.2 (NCH2C=CH), 56.1 

(CH2OH), 55.8 (ArCOCH3), 55.7 (ArCOCH3), 50.6 (NCH2CH2Ar), 38.3 (CHCH2CH), 37.8 

(CH2CHCH2), 34.4 (CH2CH2OH), 28.8 (NCH2CH2Ar), 12.9 (C=CHCH3); m/z (CI) 319 

(20%), 318 (100, MH+); HRMS C19H28NO3 (MH+) requires 318.2064, found 318.2075. 
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2-((2R*,3S*,11bS*)-3-Ethyl-2,3,4,6,7,11b-hexahydro-9,10-dimethoxy-1H-pyrido[2,1-

a]isoquinolin-2-yl)ethanol or epi-protoemetinol (88-b) 

N

OH

O

O

 
A stirred solution of 2-(3-ethylidene-2,3,4,6,7,11b-hexahydro-9,10-dimethoxy-1H-

pyrido[2,1-a]isoquinolin-2-yl)ethanol 378 (75 mg, 0.26 mmol) and 5% Pd/C (10 mg) in 

MeOH (10 mL) was evacuated and back-filled with nitrogen (×3) then hydrogen (×2). The 

solution was then stirred under 1 bar hydrogen at r.t. for 6 h, after which the reaction 

mixture was filtered through a plug of Celite (EtOAc) and the solvent was evaporated in 

vacuo. The crude product was purified by flash silica chromatography, elution gradient 10 

to 20% MeOH/NH3 in DCM. Pure fractions were evaporated to dryness to afford the title 

compound 88-b (47 mg, 63%) as a yellow oil, as a 10:1 mixture of diastereoisomers. 

 Major diastereoisomer (epi-protoemetinol (88-b)) was isolated as a pale yellow oil; 

νmax (thin film) /cm–1 3448 (b), 2930 (w), 1510 (m), 1428 (m), 1252 (m); δH (400 MHz, 

CDCl3) 6.66 (1H, s, ArCH), 6.54 (1H, s, ArCH), 3.82 (3H, s, OCH3), 3.81 (3H, s, OCH3), 

3.71 (2H, t, J = 6.7, OCH2), 3.14-2.94 (3H, m, NCH, NCH2CH2Ar and NCH2CHCH3), 

2.61 (1H, dd, J = 11.7 and 4.0, NCH2CH2Ar), 2.58-2.50 (1H, m, NCH2CH2Ar), 2.40 (1H, 

td, J = 11.7 and 4.0, NCH2CH2Ar), 2.25 (1H, app d, J = 11.1, CHCH2CH), 2.01 (1H, t, J = 

11.0 Hz, NCH2CHCH3), 1.99–1.80 (2H, m, CHCH2CH2OH and CHCH2CH3), 1.69-1.63 

(1H, m, CHCH2CH3), 1.60-1.38 (3H, m, CHCH2CH2OH, CH2OH and CHCH2CH3), 1.30-

1.24 (1H, m, CHCH2CH2OH), 1.18-1.08 (1H, m, CHCH2CH), 0.89 (3H, t, J = 7.3 

CH2CH3); δC (100 MHz, CDCl3) 147.3 (ArCOCH3), 147.1 (ArCOCH3), 130.6 (ArC), 127.2 

(ArC), 111.6 (ArCH), 108.1 (ArCH), 61.2 (OCH2), 57.5 (NCH), 55.9 (ArOCH3), 55.8 

(ArOCH3), 54.2 (NCH2CH2Ar), 52.4 (NCH2CH), 36.9 (CHCH2CH), 40.7 (CH), 35.7 

(CHCH2CH2OH), 32.5 (CH), 32.4 (NCH2CH2Ar), 25.1 (CHCH2CH3), 12.1 (CHCH2CH3); 

m/z (CI) 321 (20%), 320 (MH+, 100); HRMS C19H30NO3 (MH+) requires 320.2220, found 

320.2223. 
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Methyl 4-(2-(2-bromoallyl)-1,2,3,4-tetrahydro-6,7-dimethoxyisoquinolin-1-

yl)butanoate (381) 

O

O N

O

O

Br

 
To a stirred solution of methyl (E)-4-(2-(2-bromoallyl)-6,7-dimethoxy-1,2,3,4-

tetrahydroisoquinolin-1-yl)but-2-enoate 358 (0.410 g, 1.0 mmol) and methanol (0.93 mL, 

23.10 mmol) in THF (10 mL) at r.t. was added a solution of samarium(II) iodide (23.63 

mL, 1.0 M, 2.36 mmol) in THF. The resulting solution was stirred at r.t. for 1 h, during 

which time the dark blue colour faded to green. The reaction was incomplete as indicated 

by LCMS analysis and a further portion of samarium(II) iodide (23.63 mL, 1.0 M, 2.36 

mmol) in THF was added and the solution was stirred at r.t. for a further 3 h, during which 

time the dark blue colour faded to a pale blue solution. The reaction mixture was quenched 

with saturated aqueous NaHCO3 (75 mL), extracted with EtOAc (2 × 75 mL), the organic 

layer was dried over MgSO4, filtered and evaporated to afford the title compound 381 as a 

yellow oil (0.303 g, 73%); νmax (thin film) /cm–1 2997 (w), 2946 (m), 2834 (w), 1720 (s), 

1656 (w), 1515 (s); δH (400 MHz, CDCl3) 6.47 (1H, s, ArCH), 6.44 (1H, s, ArCH), 5.79 (1H, 

app d, J = 1.2, C(Br)=CH2), 5.49 (1H, s, C(Br)=CH2), 3.77 (3H, s, OCH3), 3.76 (3H, s, 

OCH3), 3.57 (3H, s, CO2CH3), 3.46 (1H, app dd, J = 7.5 and 4.5, NCH), 3.29 (1H, s, 

NCH2C(Br)=CH2), 3.13 (1H, app ddd, J = 14.0, 9.6 and 3.5, NCH2CH2Ar), 2.76-2.65 (2H, 

m, NCH2CH2Ar and NCH2CH2Ar), 2.46-2.39 (1H, m, NCH2CH2Ar), 2.27 (2H, t, J = 7.1, 

CH2CO2CH3), 1.80-1.59 (4H, m, NCHCH2 and NCHCH2CH2); δC (100 MHz, CDCl3) 

173.0 (CO2CH3), 146.5 (ArCOCH3), 146.4 (ArCOCH3), 131.6 (C(Br)=CH2), 129.0 (ArC), 

125.2 (ArC), 117.0 (C(Br)=CH2), 110.6 (ArCH), 109.5 (ArCH), 61.0 (NCH2C(Br)=CH2), 

59.3 (NCH), 55.0 (ArCOCH3), 54.8 (ArCOCH3), 50.3 (CO2CH3), 42.3 (NCH2CH2Ar), 34.7 

(CH2), 32.9 (CH2CO2Me), 22.8 (NCH2CH2Ar), 20.7 (CH2); m/z (CI, NH3) 414 (MH+Br81, 

98%), 412 (MH+Br79, 100), 294 (10). HRMS C19H27
79BrNO4 (MH+) requires 412.1123, 

found 412.1120. 
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Methyl (E)-2-(9,10-dimethoxy-3-methylene-3,4,6,7-tetrahydro-1H-pyrido[2,1-

a]isoquinolin-2(11bH)-ylidene)acetate (382) and methyl 2-(9,10-dimethoxy-3-

methylene-4,6,7,11b-tetrahydro-3H-pyrido[2,1-a]isoquinolin-2-yl)acetate (383) 

O

O N

O

O

O

O N

O

O
382 383

 
A solution of methyl (E)-4-(2-(2-bromoallyl)-1,2,3,4-tetrahydro-6,7-dimethoxyisoquinolin-

1-yl)but-2-enoate (358) (205 mg, 0.5 mmol), palladium(II) acetate (11 mg, 0.05 mmol), 

triphenylphosphine (26 mg, 0.1 mmol), and N,N-diisopropylethylamine (0.20 mL, 1.5 

mmol) in DMF (5 mL) was evacuated and back-filled with nitrogen (× 3). The solution 

was then heated to 80 °C for 2 h, during which time black palladium(0) formed. The 

reaction mixture was cooled to r.t. and diluted with EtOAc (20 mL), then filtered through a 

pad of Celite to remove the inorganic salts. The filtrate was poured into EtOAc (75mL) and 

water (25 mL), and the aqueous layer was extracted with EtOAc (3 × 25 mL). The organic 

layers were combined, washed with water (3 × 25 mL), brine (3 × 25 mL), dried over 

MgSO4, and the solvent was removed under reduced pressure. The residue was purified by 

flash column chromatography (4:1 petrol:EtOAc to EtOAc) to give the title compounds. 

 Compound 382 was isolated as a yellow oil (59 mg, 36%); νmax (thin film) /cm–1 

3050 (m), 2994 (w), 1725 (s), 1420 (m); δH (400 MHz, CDCl3) 6.74 (1H, s, ArCH), 6.57 

(1H, s, ArCH), 6.00 (1H, d, J = 2.2, C=C(H)CO2CH3), 5.25 (1H, s, C=CH2), 4.96 (1H, s,  

C=CH2), 4.29 (1H, dd, J = 15.6 and 3.2, NCHCH2C), 3.87 (3H, s, ArOCH3), 3.83 (3H, s, 
ArOCH3), 3.72 (3H, s, CO2CH3), 3.54 (1H, d, J = 12.9, NCH2C=CH2), 3.44 (1H, dd, J = 

10.5 and 2.9, NCH), 3.22 (1H, d, J = 12.9, NCH2C=CH2), 3.09-2.99 (2H, m, NCH2CH2Ar 

and NCH2CH2Ar), 2.72-2.66 (1H, m, NCH2CH2Ar), 2.56 (1H, dd, J = 12.6 and 6.1, 

NCH2CH2Ar), 2.34 (1H, app, ddd, J = 15.6, 11.4 and 2.5, NCHCH2C); δC (100 MHz, 

CDCl3) 167.0 (CO2CH3), 156.7 (C=CH2), 147.7 (ArCOCH3), 147.4 (ArCOCH3), 144.1 

(C=C(H)CO2CH3), 129.2 (ArC), 126.4 (ArC), 113.7 (C=C(H)CO2CH3), 112.6 (C=CH2), 

111.4 (ArCH), 108.8 (ArCH), 61.5 (NCH2C=CH2), 60.8 (NCH), 56.1 (ArOCH3), 55.9 

(ArOCH3), 51.2 (CO2CH3), 50.5 (NCH2Ar), 35.0 (NCHCH2C), 29.0 (NCH2CH2Ar); m/z 

(CI)  334 (15%), 331 (20), 330 (100, MH+), 316 (15); HRMS C19H24NO4 (MH+) requires 

330.1700, found 330.1705. 

 Alkene 383 was isolated as a yellow oil (56 mg, 34%); νmax (thin film) /cm–1 3062 

(m), 2990 (w), 1738 (s), 1392 (w); δH (400 MHz, CDCl3) 6.66 (1H, s, ArCH), 6.56 (1H, s, 
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ArCH), 5.89 (1H, s, NCHCH=C), 5.02 (1H, s C=CH2), 4.91 (1H, s C=CH2), 4.53 (1H, s 

NCH), 3.84 (3H, s, ArOCH3), 3.81 (3H, s, ArOCH3), 3.72 (1H, dt, J = 14.4 and 1.8, 

NCH2C=CH2), 3.65 (3H, s, CO2CH3), 3.49 (1H, d, J = 14.4, NCH2C=CH2), 3.29 (1H, dt, J 

= 15.8 and 1.2, CH2CO2CH3), 3.14 (1H, d, J = 15.8, CH2CO2CH3), 2.97-2.78 (3H, m, 

CH2CH2Ar and NCH2CH2Ar), 2.64 (1H, dt, J = 10.9 and 5.4, NCH2CH2Ar); δC (100 MHz, 

CDCl3) 172.0 (CO2CH3), 147.7 (ArCOCH3), 147.5 (ArCOCH3), 138.2 (C=CH), 132.1 

(NCHCH=C), 129.1 (CH=CCH2CO2CH3), 128.2 (ArC), 126.7 (ArC), 111.6 (ArCH), 109.7 

(C=CH2), 109.0 (ArCH), 59.6 (NCH), 58.9 (NCH2C=CH2), 56.1 (ArOCH3), 55.9 (ArOCH3), 

52.0 (CO2CH3), 46.7 (NCH2CH2Ar), 38.4 (CH2CO2CH3), 28.9 (NCH2CH2Ar); m/z (CI) 

347 (35%, MNH4
+), 331 (20), 330 (100, MH+); HRMS C19H24NO4 (MH+) requires 

330.1700, found 330.1699. 

 

2-(1-(4-Methoxybenzyl)-1H-indol-3-yl)ethanamine (391)303 

N NH2

O  
To a stirred solution of 2-(1H-indol-3-yl)ethanamine 388 (10 g, 62.42 mmol), in 

dimethylacetamide (150 mL) at r.t. was added sodium hydride (2.62 g, 60% dispersion in 

mineral oil,  65.54 mmol) portionwise, during which time evolution of gas was observed. 

The solution was stirred at r.t. for 1 h. The resulting suspension was cooled to 0 °C, and 1-

(chloromethyl)-4-methoxybenzene (8.6 mL, 62.4 mmol) was added dropwise, following 

complete addition the resulting solution was warmed to r.t., and stirred for 6 h. The 

resulting solution was concentrated in vacuo to yield a viscous oil. The oil was diluted with 

water (100 mL) and EtOAc (200 mL), and allowed to stir, the layers were separated and 

the aqueous layers extracted with EtOAc (2 x 150 mL). The combined organic layer was 

washed with water (3 x 150 mL), brine (150 mL) and dried over Na2SO4, filtered and 

evaporated to afford a brown oil. The crude product was purified by flash silica 

chromatography, elution gradient 10% MeOH/NH3 in DCM to afford 2-2-(1-(4-

methoxybenzyl)-1H-indol-3-yl)ethanamine 391 (12.66 g, 72%) as a yellow oil. Rf 0.45 in 

10% MeOH/NH3:DCM; νmax (thin film) /cm–1 2928 (m), 2835 (m), 1611 (m), 1511 (s), 

1464 (s), 1440 (w); δH (400 MHz, CDCl3) 7.60 (1H, app dt, J = 7.9 and 1.0, ArCH), 7.27 

(1H, d, J = 8.1, ArCH), 7.16 (1H, dd, J = 8.1 and 1.0, ArCH), 7.10 (1H, app dd, J = 7.9 and 

1.0, ArCH), 7.05 (2H, app dt, J = 8.7 and 2.5, PMBCH), 6.92 (1H, s, ArCH), 6.81 (2H, app dt, 

J = 8.7 and 2.5, PMBCH), 5.19 (2H, s, PMBCH2N), 3.75 (3H, s, PMBCOCH3), 3.00 (2H, t, J = 
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6.6, NCH2CH2
Ar), 2.88 (2H, t, J = 6.6, NCH2CH2

Ar), 1.38 (2H, bs, NH2); δC (100 MHz, 

CDCl3) 158.8 (PMBCOCH3), 136.5 (ArC), 129.5 (ArC), 128.1 (2 × PMBCH), 128.0 (ArC), 

126.9 (ArCH), 121.5 (ArCH), 118.9 (ArCH), 118.8 (ArCH), 113.9 (2 × PMBCH), 112.5 (ArC), 

109.9 (ArCH), 55.0 (PMBCOCH3), 49.1 (NCH2
PMB), 42.5 (NCH2CH2

Ar), 29.4 (NCH2CH2
Ar); 

m/z (CI, NH3) 322 (MMeCNH+, 20%), 281 (MH+, 75), 264 (100). 

The spectroscopic data is in agreement with reported data.303 

 

N-(2-(1-(4-Methoxybenzyl)-1H-indol-3-yl)ethyl)formamide (392) 

N HN

O

O

 
A stirred solution of 2-(1-(4-methoxybenzyl)-1H-indol-3-yl)ethanamine 391 (4.02 g, 14.35 

mmol) in ethyl formate (21.03 mL, 258.30 mmol), under nitrogen was heated to reflux for 

2 h. Analysis by LCMS indicated incomplete conversion so a further portion of ethyl 

formate (10.5 mL, 129 mmol) was added and the reaction mixture stirred at reflux 

overnight. Analysis by LCMS indicated complete conversion, and the solution was 

concentrated in vacuo to yield a viscous oil, of unpurified 392 (4.43 g, quant), which was 

taken forward to the next step without further purification; δH (400 MHz, CDCl3) 7.58 (1H, 

d, J = 7.8, ArCH), 7.28 (1H, d, J = 8.1, ArCH), 7.16 (1H, app td, J = 8.1 and 1.0, ArCH), 7.10 

(1H, app dd, J = 8.1 and 1.0, ArCH), 7.05 (2H, d, J = 8.6, PMBCH), 6.92 (1H, s, ArCH), 6.81 

(2H, d, J = 8.6, PMBCH), 5.70 (1H, bs, NH), 5.17 (2H, s, PMBCH2N), 3.75 (3H, s, OCH3), 

3.59 (2H, app q, J = 6.6, NCH2CH2
Ar), 2.95 (2H, t, J = 6.6, NCH2CH2

Ar); m/z (CI, NH3) 

372 (MMeCNNa+, 20%), 331 (MNa+, 45), 309 (MH+, 100), 200 (25). 

 

9-(4-Methoxybenzyl)-4,9-dihydro-3H-pyrido[3,4-b]indole (393) 

N N

O  
A stirred solution of N-(2-(1-(4-methoxybenzyl)-1H-indol-3-yl)ethyl)formamide 392 (4.43 

g, 14.4 mmol) in chloroform (5 mL) under nitrogen was cooled to at 0 ºC and stirred for 10 

minutes to achieve thermal equilibrium, followed by the slow addition of POCl3 (16.05 

mL, 172 mmol). The resulting solution was stirred at 0 ºC for 15 minutes. When the 

vigorous initial reaction subsided, the mixture was warmed to r.t. and allowed to stir for 3 
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h. The excess POCl3 was removed in vacuo. The resulting oil was taken up into DCM (100 

mL) and washed with 2 M aqueous NaOH (100 mL). The aqueous layer was extracted with 

DCM (100 mL), the combined organic layer was washed with a further portion of 2 M 

aqueous NaOH (100 mL), brine (100 mL) and dried over Na2SO4, filtered and evaporated 

to afford the title product 393 (4.00 g, 96%) as a fine yellow powder (no further 

purification was required); νmax (thin film) /cm–1 2974 (m), 2941 (w), 1608 (m), 1406 (m); 

δH (400 MHz, CDCl3) 8.32 (1H, t, J = 2.3, HC=N), 7.52 (1H, app dt, J = 8.0 and 0.9, 
ArCH), 7.23 (1H, dt, J = 8.3 and 0.9, ArCH), 7.18 (1H, td, J = 8.3 and 1.1, ArCH), 7.05 (1H, 

app ddd, J = 8.0, 6.8 and 1.1, ArCH), 6.93 (2H, app dt, J = 8.7 and 2.5, PMBCH), 6.72 (2H, 

app dt, J = 8.7 and 2.5, PMBCH), 5.26 (2H, s, PMBCH2N), 3.82 (2H, td, J = 8.6 and 2.3, 

NCH2CH2
Ar), 3.66 (3H, s, PMBCOCH3), 2.82 (2H, t, J = 8.6, NCH2CH2

Ar); δC (100 MHz, 

CDCl3) 159.1 (ArCOCH3), 150.2 (HC=N), 137.6 (ArC), 129.4 (ArCH), 129.2 (ArC), 127.6 (2 

× PMBCH), 125.0 (ArC), 124.5 (ArCH), 120.2 (ArCH and ArC), 116.1 (ArC), 114.3 (2 × 
PMBCH), 110.4 (ArCH), 55.3 (PMBCOCH3), 48.5 (NCH2CH2

Ar), 46.3 (NCH2
PMB), 29.4 

(NCH2CH2
Ar); m/z (CI, NH3) 292 (35%), 291 (MH+, 100); HRMS C19H19N2O (MH+) 

requires 291.1497, found 291.1493. 

 

Methyl (E)-4-(9-(4-methoxybenzyl)-2-(2-bromoallyl)-2,3,4,9-tetrahydro-1H-

pyrido[3,4-b]indol-1-yl)but-2-enoate (395) 

N N
Br

O

O
O

 
To a stirred solution of 9-(4-methoxybenzyl)-4,9-dihydro-3H-pyrido[3,4-b]indole 393 (4.0 

g, 13.78 mmol) in acetonitrile (48.2 mL) at r.t. under nitrogen was added 2,3-dibromoprop-

1-ene (2.14 mL, 16.53 mmol). The resulting solution was stirred in the dark for 48 h, 

during which time the solution turned a dark brown. The crude mixture was evaporated to 

dryness to afford a dark brown gum. The brown oil was taken up in a further portion of 

acetonitrile (100 mL), to the resulting solution was added methyl (E)-4-bromobut-2-enoate 

(4.77 mL, 34.44 mmol) and zinc dust (1.802 g, 27.55 mmol), the solution was stirred at r.t. 

under nitrogen for 2 days. The reaction mixture was quenched by pouring into a saturated 

aqueous solution of NaHCO3 (150 mL) and allowed to stir for 30 minutes. The resulting 

precipitate was removed by filtration, and washed with EtOAc (200 mL), the organic layer 

was separated and the aqueous layer extracted with EtOAc (2 × 150 mL). The combined 

organic layers were dried over MgSO4, filtered and evaporated to afford a brown oil. The 
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crude product was purified by flash silica chromatography, elution gradient 0 to 10% 

MeOH/NH3 in DCM. Pure fractions were evaporated to dryness to afford the title 

compound 395 (1.20 g, 17%) as a yellow oil; νmax (thin film) /cm–1 3585 (w), 3012 (w), 

2841 (w), 1730 (s), 1515 (s), 1472 (w); δH (400 MHz, CDCl3) 7.53 (1H, app dd, J = 7.0 

and 1.1, ArCH), 7.22 (1H, d, J = 7.7, ArCH), 7.20-7.09 (3H, m, 2 × ArCH and 

CH=CHCO2Me), 6.84 (2H, d, J = 8.8, PMBCH), 6.77 (2H, d, J = 8.8, PMBCH), 5.82 (1H, dt, 

J = 15.7 and 1.3, CH=CHCO2Me), 5.53 (1H, d, J = 1.0, BrC=CH2), 5.42 (1H, s, 

BrC=CH2), 5.25 (1H, d, J = 16.7, NCH2PMB), 5.07 (1H, d, J = 16.7, NCH2PMB), 3.74 

(3H, s, OCH3), 3.72 (3H, s, OCH3), 3.73-3.70 (1H, m, NCHCH2), 3.38 (1H, d, J = 14.7, 

NCH2BrC), 3.32 (1H, ddd, J = 14.3, 11.8 and 5.2, NCH2CH2Ar), 3.21 (1H, d, J = 14.7, 

NCH2BrC), 3.06 (1H, dd, J = 14.3 and 5.7, NCH2CH2Ar), 2.91 (1H, app ddd, J = 16.8, 

11.8 and 6.0, NCH2CH2Ar), 2.68-2.59 (2H, m, NCH2CH2Ar and CHCH2CH=CH), 2.44 

(1H, dddd, J = 15.3, 7.3, 3.6 and 1.3, CHCH2CH=CH); δC (100 MHz, CDCl3) 166.8 

(CO2CH3), 159.0 (ArC), 146.8 (CH=CHCO2CH3), 137.1 (ArC), 134.8 (ArC), 131.8 (ArC), 

129.5 (ArC), 127.1 (2 × PMBCH), 127.0 (CBr), 122.2 (CHCO2CH3), 121.8 (ArCH), 119.4 

(ArCH), 118.7 (C(Br)=CH2), 118.3 (ArCH), 114.3 (2 × PMBCH), 109.5 (ArCH), 107.8 (ArC), 

61.4 (NCH), 55.2 (OCH3), 54.7 (OCH3), 51.4 (NCH2Br), 46.2 (NCH2PMB), 42.8 

(NCH2CH2Ar), 37.4 (CH2CH=CH), 17.2 (NCH2CH2Ar); m/z (CI, NH3) 511 (M81BrH+, 

100%), 509 (M79BrH+, 98), 429 (10); HRMS C27H30
79BrN2O3 (MH+) requires 509.1434, 

found 509.1430. 

 

Methyl (E)-4-(2-allyl-9-(4-methoxybenzyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-

1-yl)but-2-enoate (396), methyl 2-(12-(4-methoxybenzyl)-3-methylene-

1,2,3,4,6,7,12,12b-octahydroindolo[2,3-a]quinolizin-2-yl)acetate (397) and methyl 8-

[(4-methoxyphenyl)methyl]-10-methylidene- 8,12- diazapentacyclo[10.3.2.01,9.02,7.09,13] 

heptadeca- 2(7),3,5-triene-15-carboxylate (398) 

N N

O

O
O

N N

O

O
O

NN

H
O

O

O396 397 398  
A solution of methyl (E)-4-(9-(4-methoxybenzyl)-2-(2-bromoallyl)-2,3,4,9-tetrahydro-1H-

pyrido[3,4-b]indol-1-yl)but-2-enoate 395 (1.1 g, 2.2 mmol) in THF (100 mL) was stirred at 

reflux for 30 minutes, then AIBN (0.035 g, 0.21 mmol) was added. A solution of tributyltin 

hydride (0.9 mL, 3.5 mmol) and AIBN (0.14 g, 0.9 mmol) in THF (20 mL) was added to 
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the refluxing solution of the vinyl bromide, over a period of 4 h under nitrogen. Following 

the complete addition of the tributyltin hydride solution, the reaction mixture was 

maintained at reflux for a further 2 h, after which the solution was cooled to r.t. The crude 

reaction mixture was passed through a SCX column, elution gradient 4:1 DCM:MeOH to 

4:1 DCM:MeOH/NH3, the DCM:MeOH/NH3 fractions were evaporated to afford a yellow 

oil. The oil was purified by flash silica chromatography, elution gradient 20:1:1 

petrol:EtOAc:MeOH/NH3 to 10:10:1 petrol:EtOAc:MeOH/NH3. Pure fractions were 

concentrated in vacuo to afford the title compounds. 

  

 The direct reduction product 396 was isolated as a yellow gum (33 mg, 3.5%); νmax 

(thin film) /cm–1 3583 (w), 3008 (w), 2949 (m), 2838 (w), 1722 (s), 1513 (s), 1463 (s); δH 

(400 MHz, CDCl3) 7.54 (1H, app dd, J = 6.6 and 1.3, ArCH), 7.20 (1H, app dd, J = 5.8 and 

1.1, ArCH), 7.18-7.10 (2H, m, ArCH), 7.05 (1H, app dt, J = 15.7 and 7.0, CH=CHCO2CH3), 

6.85 (2H, app dt, J = 8.8 and 2.5, PMBCH), 6.79 (2H, app dt, J = 8.8 and 2.5, PMBCH), 5.85-

5.75 (1H, m, CH=CH2), 5.81 (1H, app dt, J = 15.7 and 1.5, CH=CHCO2CH3), 5.22 (1H, d, 

J = 16.7, PMBCH2), 5.09 (1H, d, J = 16.7, PMBCH2), 5.00 (1H, app dd, J = 10.1 and 0.9, 

CH=CH2), 4.99 (1H, app dd, J = 15.8 and 1.3, CH=CH2), 3.81 (1H, dd, J = 7.1 and 3.3, 

NCH), 3.75 (3H, s, PMBCOCH3), 3.73 (3H, s, CO2CH3), 3.27-3.21 (2H, m, NCH2CH2Ar 

and NCH2CH=CH2), 3.10-3.02 (2H, m, NCH2CH2Ar and NCH2CH=CH2), 2.96-2.87 (1H, 

m, NCH2CH2
Ar), 2.64-2.55 (2H, m, NCH2CH2Ar and NCHCH2CH=CH), 2.45-2.38 (1H, 

m, NCHCH2CH=CH); δC (100 MHz, CDCl3) 166.8 (C=O), 158.8 (PMBCOCH3), 146.9 

(CH=CHCO2CH3), 137.0 (CH=CH2), 136.3 (ArC), 134.9 (ArC), 129.5 (ArC), 127.1 (2 × 
PMBCH), 127.0 (ArC), 121.9 (CH=CHCO2CH3), 121.6 (ArCH), 119.2 (ArCH), 118.2 (ArCH), 

117.5 (CH=CH2), 114.1 (2 × PMBCH), 109.5 (ArCH), 107.7 (ArC), 56.0 (NCH2CH2
Ar), 55.2 

(PMBCOCH3), 53.7 (NCH), 51.4 (CO2CH3), 46.2 (NCH2
PMB), 42.9 (NCH2CH=CH2), 37.2 

(CH2CH=CH), 16.9 (NCH2CH2
Ar); m/z (CI) 432 (25%), 431 (MH, 100); HRMS (CI, MH+) 

calcd for C27H31N2O3 431.2329, found 431.2323. 

  

 The 6-exo cyclisation product 397 was isolated as a yellow gum (0.435 g, 46%) as 

a 1.6:1 mixture of diastereoisomers; νmax (thin film) /cm–1 2966 (s), 2810 (m), 1733 (s), 

1612 (w), 1512 (s); δH (400 MHz, CDCl3) (major diastereoisomer) 7.52-7.48 (1H, m, 
ArCH), 7.13-7.06 (3H, m, ArCH), 6.89 (2H, d, J = 8.7, PMBCH), 6.78 (2H, d, J = 8.7, 
PMBCH), 5.26 (1H, d, J = 16.9, NCH2PMB), 5.17 (1H, d, J = 16.9, NCH2PMB), 4.88 (1H, 

s, C=CH2), 4.72 (1H, app d, J = 1.6, C=CH2), 4.03 (1H, dd, J = 12.0 and 3.0 NCH), 3.74 

(3H, s, PMBOCH3), 3.60 (1H, d, J = 13.5, NCH2C=CH2), 3.55 (3H, s, CO2CH3), 3.43 (1H, 

d, J = 13.5, NCH2C=CH2), 3.13-3.07 (1H, m, NCH2CH2Ar), 2.93-2.86 (2H, m, 
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NCH2CH2Ar), 2.78-2.70 (2H, m, CHCH2CO2CH3 and NCH2CH2Ar), 2.63 (1H, dd, J = 

15.6 and 6.1, CHCH2CO2CH3), 2.17 (1H, dd, J = 15.6 and 7.9, CHCH2CO2CH3), 1.94 (1H, 

dq, J = 12.0 and 3.0, NCHCH2CH), 1.50 (1H, app q, J = 12.0, NCHCH2CH); δC (100 

MHz, CDCl3 (minor diastereoisomer) 172.9 (CO2CH3), 158.8 (PMBCOCH3), 144.7 

(C=CH2), 137.4 (ArC), 136.5 (ArC), 129.6 (ArC), 127.1 (2 × PMBCH), 127.1 (PMBC), 121.4 

(ArCH), 119.3 (ArCH), 118.3 (ArCH), 114.2 (2 × PMBCH), 109.7 (ArCH), 108.1 (ArC), 107.0 

(C=CH2), 62.7 (NCH2C=CH2), 55.9 (NCH), 55.3 (ArOCH3), 51.6 (CO2CH3), 46.6 

(NCH2PMB), 46.4 (NCH2CH2Ar), 37.8 (CHCH2CO2CH3), 36.9 (CHCH2CO2CH3), 35.7 

(NCHCH2CH), 22.2 (NCH2CH2Ar); m/z (CI, NH3) 432 (25%), 431 (MH+, 100); HRMS 

C27H31N2O3 (MH+) requires 431.2329, found 431.2337. 

 The minor diastereoisomer was identified by the following key peaks; δH (400 

MHz, CDCl3) 5.27 (1H, d, J = 17.0, NCH2PMB), 5.13 (1H, d, J = 17.0, NCH2PMB), 4.89 

(1H, s, C=CH2), 4.85 (1H, s, C=CH2), 3.74 (3H, s, PMBOCH3), 3.58 (3H, s, CO2CH3); δC 

(100 MHz, CDCl3) 172.5 (CO2CH3), 158.8 (PMBCOCH3), 143.5 (C=CH2), 137.6 (ArC), 

136.5 (ArC), 129.8 (ArC), 127.1 (2 × PMBCH), 127.0 (PMBC), 121.4 (ArCH), 119.4 (ArCH), 

118.2 (ArCH), 114.2 (2 × PMBCH), 111.8 (C=CH2), 109.7 (ArCH), 108.4 (ArC), 57.6 

(NCH2C=CH2), 55.3 (NCH), 55.2 (ArOCH3), 51.0 (CO2CH3), 46.8 (NCH2PMB), 46.4 

(NCH2CH2Ar), 38.4 (CHCH2CO2CH3), 36.7 (CHCH2CO2CH3), 33.0 (NCHCH2CH), 22.0 

(NCH2CH2Ar). 

  

 The 5-exo/5-exo cyclisation product 398 was isolated as a yellow gum (113 mg, 

12%) as a 1:1 mixture of partially separable diastereoisomers; νmax (thin film) /cm–1 2949 

(m), 2903 (m), 1734 (s), 1613 (w), 1513 (m); δH (400 MHz, CDCl3) 7.22 (2H, dt, J = 8.5 

and 2.9, PMBCH), 7.06 (1H td, J = 7.7 and 1.3, ArCH), 6.85 (2H, dt, J = 8.5 and 2.9, 
PMBCH), 6.88-6.83 (1H, m, ArCH), 6.66 (1H, td, J = 7.7 and 0.8, ArCH), 6.50 (1H, d, J = 

7.7, ArCH), 4.89 (1H, dd, J = 1.6 and 0.4, C=CH2), 4.43 (1H, dd, J = 1.9 and 0.8, C=CH2), 

4.34 (1H, d, J = 14.5, NCH2PMB), 4.03 (1H, d, J = 14.5, NCH2PMB), 3.79 (3H, s, OCH3), 

3.56 (1H, d, J = 15.5, NCH2C=CH2), 3.48 (3H, s, OCH3), 3.24 (1H, d, J = 15.5, 

NCH2C=CH2), 3.21-3.12 (1H, m, NCH2CH2), 3.10 (1H, d, J = 5.0, NCCHN), 2.74 (1H, dd, 

J = 14.5 and 6.0, NCH2CH2), 2.66-2.57 (1H, m, CHCH2CO2CH3), 2.36 (1H, dd, J = 14.5 

and 9.0, CHCH2CH), 2.14 (1H, dd, J = 12.6 and 6.0, NCH2CH2), 2.07 (1H, dd, J = 16.1 

and 7.6, CHCH2CO2CH3), 1.96 (1H, dd, J = 16.1 and 7.6, CHCH2CO2CH3), 1.88 (1H, dd, 

J = 12.6 and 5.0, NCH2CH2), 1.55 (1H, dt, J = 14.5 and 5.0, CHCH2CH); δC (100 MHz, 

CDCl3) 173.8 (CO2CH3), 158.8 (PMBCOCH3), 151.9 (C=CH2), 145.6 (ArC), 131.0 (ArC), 

130.8 (PMBC), 129.3 (2 × PMBCH), 128.1 (ArCH), 124.3 (ArCH), 117.6 (ArCH), 113.9 (2 × 
PMBCH), 106.1 (ArCH), 104.1 (C=CH2), 90.5 (NCCHN), 70.1 (NCCHN), 60.4 
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(CCHCH2CO2CH3), 58.7 (NCH2C=CH2), 55.2 (PMBOCH3), 51.3 (CO2CH3), 48.7 

(NCH2PMB), 47.4 (NCH2CH2), 44.3 (CHCH2CO2CH3), 39.2 (CHCH2CO2CH3), 34.4 

(CHCH2CH), 32.8 (NCH2CH2); m/z (CI, NH3) 432 (25%), 431 (MH+, 100); HRMS 

C27H31N2O3, (MH+) requires 431.2329, found 431.2324.  

 The other diastereoisomer was identified by the following key peaks; δH (400 MHz, 

CDCl3) 6.61 (1H, td, J = 7.6 and 0.8, ArCH), 6.41 (1H, d, J = 7.7, ArCH), 4.90 (1H, m, 

C=CH2), 4.62 (1H, dd, J = 2.0 and 0.6, C=CH2), 4.39 (1H, d, J = 15.2, NCH2PMB), 4.09 

(1H, d, J = 15.2, NCH2PMB), 3.78 (3H, s, OCH3), 3.60 (3H, s, OCH3); δC (100 MHz, 

CDCl3) 173.2 (CO2CH3), 158.7 (PMBCOCH3), 149.8 (C=CH2), 145.7 (ArC), 133.0 (ArC), 

130.9 (PMBC), 129.3 (2 × PMBCH), 127.8 (ArCH), 121.3 (ArCH), 117.0 (ArCH), 113.8 (2 × 
PMBCH), 106.3 (ArCH), 104.3 (C=CH2), 90.9  (NCCHN), 69.3 (NCCHN), 59.6 

(CCHCH2CO2CH3), 59.3 (NCH2C=CH2), 55.2 (PMBOCH3), 51.5 (CO2CH3), 48.0 

(NCH2PMB), 47.2 (NCH2CH2), 44.9 (CHCH2CO2CH3), 39.2 (CHCH2CO2CH3), 34.2 

(CHCH2CH), 32.2 (NCH2CH2). 

 

Methyl 2-((2R*,12bS*)-12-(4-methoxybenzyl)-1,2,3,4,6,7,12,12b-octahydro-3-

methylindolo[2,3-a]quinolizin-2-yl)acetate (400) and 2-isopropyl-12-(4-

methoxybenzyl)-1,2,3,6,7,12b-hexahydroindolo[2,3-a]quinolizin-4(12H)-one (401) 

N N

O

O
N N

O

O
O 401400  

A stirred solution of methyl 2-(12-(4-methoxybenzyl)-3-methylene-1,2,3,4,6,7,12,12b-

octahydroindolo[2,3-a]quinolizin-2-yl)acetate (397) (86 mg, 0.2 mmol) and Pd(OH)2/C (30 

mg) in MeOH:EtOAc (5:5 mL) was evacuated and back-filled with nitrogen (× 3) then 

hydrogen (× 2). The solution was then stirred under 1 bar hydrogen at r.t. for 4 h, after 

which time the reaction mixture was filtered through a plug of Celite (EtOAc) and the 

solvent was evaporated in vacuo. The crude product was purified by flash silica 

chromatography, elution gradient 10 to 20% MeOH/NH3 in DCM. Pure fractions were 

evaporated to dryness to afford the title compounds.  

 The hydrogenation product 400 was isolated as a yellow gum (41 mg, 48%) as a 

1:1 ratio of separable diastereoisomers; νmax (thin film) /cm–1 2950 (m), 2905 (m), 1733 (s), 

1613 (w), 1513 (s); δH (400 MHz, CDCl3) 7.53-7.47 (1H, m, ArCH), 7.12-7.07 (3H, m, 
ArCH), 6.93 (2H, d, J = 8.7, PMBCH), 6.87 (2H, d, J = 8.7, PMBCH), 5.26 (1H, d, J = 17.1, 

NCH2PMB), 5.17 (1H, d, J = 17.1, NCH2PMB), 3.76 (3H, s, ArOCH3), 3.53 (3H, s, 
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CO2CH3), 3.33 (1H, dd, J = 11.4 and 1.5, NCH), 3.02-2.90 (2H, m, NCH2CH2Ar and 

NCH2CH2Ar), 2.83 (1H, dd, J = 11.6 and 2.0, NCH2CH), 2.76 (1H, dd, J = 11.6 and 3.0, 

NCH2CH), 2.73-2.57 (2H, m, NCH2CH2Ar and NCH2CH2Ar), 2.23-2.15 (2H, m, 

CHCH2CO2CH3 and CHCH2CO2CH3), 2.08-2.02 (1H, m, CHCH2CO2CH3), 1.87-1.78 (2H, 

m, NCHCH2 and CHCH3), 1.38 (1H, dd, J = 12.5 and 11.4, NCHCH2), 1.01 (3H, d, J = 

7.0, CHCH3); δC (100 MHz, CDCl3) 173.3 (CO2CH3), 158.7 (PMBCOCH3), 138.1 (ArC), 

136.7 (ArC), 129.9 (PMBC), 127.2 (2 × PMBCH), 127.1 (ArC), 121.4 (ArCH), 119.3 (ArCH), 

118.1 (ArCH), 114.0 (2 × PMBCH), 109.7 (ArCH), 62.8 (NCH2CH), 60.2 (NCH), 55.3 

(ArOCH3), 52.5 (NCH2CH2Ar), 51.4 (CO2CH3), 47.5 (NCH2PMB), 38.4 (CHCH2CO2CH3), 

36.8 (CHCH2CO2CH3), 32.1 (CHCH3), 31.9 (NCHCH2), 22.7 (NCH2CH2Ar), 13.4 

(CHCH3); m/z (CI, NH3) 434 (25%), 433 (100, MH+); HRMS C27H33N2O3 (MH+) requires 

433.2486, found 433.2487.  

The other diastereoisomer was identified by the following peaks; δH (400 MHz, CDCl3) 

7.52-7.47 (1H, m, ArCH), 7.10-7.06 (3H, m, ArCH), 6.89 (2H, d, J = 8.7, PMBCH), 6.77 (2H, 

d, J = 8.7, PMBCH), 5.26 (1H, d, J = 17.0, NCH2PMB), 5.14 (1H, d, J = 17.0, NCH2PMB), 

3.74 (3H, s, ArOCH3), 3.56 (1H, d, J = 9.8, NCH), 3.46 (3H, s, CO2CH3), 3.13 (1H, dt, J = 

11.2 and 5.5, NCH2CH2Ar), 3.00 (1H dd J = 12.6 and 3.8, NCH2CH), 2.99-2.91 (1H, m, 

NCH2CH2Ar), 2.86-2.76 (1H, m, NCH2CH2Ar), 2.69 (1H, ddd, J = 11.2, 6.8, 4.6, 

NCH2CH2Ar), 2.52 (1H, dd, J = 15.2 and 3.7, CHCH2COCH3), 2.45 (1H, dd, J = 12.6 and 

10.8, NCH2CH), 2.04-1.92 (2H, m, CHCH2CO2CH3 and NCHCH2CH), 1.70-1.58 (2H, m, 

CHCH3 and CHCH2CO2CH3), 1.35 (1H, dd, J = 13.1 and 11.4, NCHCH2CH), 0.86 (3H, d, 

J = 6.1, CHCH3); δC (100 MHz, CDCl3) 173.4 (CO2CH3), 158.7 (PMBCOCH3), 137.8 (ArC), 

136.7 (ArC), 129.7 (PMBC), 127.2 (2 × PMBCH), 121.4 (ArCH), 119.3 (ArCH), 118.2 (ArCH), 

114.1 (2 × PMBCH), 109.7 (ArCH), 108.2 (ArC), 63.1 (NCH2CH), 57.8 (NCH), 55.3 

(ArOCH3), 51.4 (CO2CH3), 49.3 (NCH2CH2Ar), 47.1 (NCH2PMB), 40.2 (CHCH2CO2CH3), 

38.4 (CHCH2CO2CH3), 34.8 (NCHCH2CH), 33.1 (CHCH3), 22.4 (NCH2CH2Ar), 16.7 

(CHCH3). 

 The cyclic amide 401 was isolated as a yellow gum (19 mg, 24%) as a single 

diastereoisomer; νmax (thin film) /cm–1 2953 (m), 2912 (m), 1688 (s), 1610 (w), 1515 (m); 

δH (400 MHz, CDCl3) 7.53 (1H, dd, J = 6.3 and 1.6, ArCH), 7.20-7.12 (3H, m, ArCH), 6.88 

(2H, d, J = 8.5, PMBCH), 6.80 (2H, d, J = 8.5, PMBCH), 5.30 (1H, d, J = 17.2, NCH2PMB), 

5.23 (1H, d, J = 17.2, NCH2PMB), 5.01-4.94 (1H, m, NCH2CH2Ar), 4.69 (1H, dd, J = 8.9 

and 5.3, NCH), 3.75 (3H, s, PMBOCH3), 2.92-2.70 (3H, m, NCH2CH2Ar and NCH2CH2Ar), 

2.45 (1H, dd, J = 16.2 and 5.3, NC(O)CH2CH), 2.26 (1H, dd, J = 16.2 and 9.0, 

NC(O)CH2CH), 2.03 (1H, dt, J = 14.2 and 5.3, NCHCH2), 1.81 (1H, ddd, J = 14.2, 8.9 and 

5.2, NCHCH2), 1.64-1.53 (1H, m, CHCH(CH3)2), 1.46-1.38 (1H, m, CH(CH3)2), 0.81 (3H, 
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d, J = 6.6, CH(CH3)2), 0.76 (1H, d, J = 6.6, CH(CH3)2); δC (100 MHz, CDCl3) 171.5 

(NC(O)CH2), 158.9 (PMBCOCH3), 138.0 (ArC), 134.6 (ArC), 129.1 (PMBC), 126.8 (2 × 
PMBCH), 126.4 (ArC), 122.1 (ArCH), 119.7 (ArCH), 118.3 (ArCH), 114.2 (2 × PMBCH), 110.9 

(ArC), 109.6 (ArCH), 55.2 (PMBOCH3), 51.2 (NCH), 47.1 (NCH2PMB), 40.4 (NCH2CH2Ar), 

36.0 (CHCH(CH3)2), 35.8 (NC(O)CH2CH), 33.2 (NCHCH2), 30.8 (CH(CH3)2), 21.2 

(NCH2CH2Ar), 19.8 (CH(CH3)2), 19.7 (CH(CH3)2); m/z (CI) 404 (25%), 403 (100, MH+), 

399 (30), 289 (45); HRMS C26H31N2O2 (MH+) requires 403.2380, found 403.2376. 
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Appendix 1 – V.T. 1H NMR spectra of chloride 296 
 

Appendix 1.a – 1H NMR spectrum of chloride 296 at room temperature in DMSO 

 
 
Appendix 1.b – 1H NMR spectrum of chloride 296 at 50 °C in DMSO 

 
 
Appendix 1.c – 1H NMR spectrum of chloride 296 at 90 °C in DMSO 

 



 

 228

Appendix 2 – V.T. 1H NMR spectra of xanthate 294 
 
Appendix 2.a – 1H NMR spectrum of xanthate 294 at room temperature in DMSO 

 
 
Appendix 2.b – 1H NMR spectrum of xanthate 294 at 50 °C in DMSO 

 
 
Appendix 2.c – 1H NMR spectrum of xanthate 294 at 90 °C in DMSO 



  
22

9

A
pp

en
di

x 
3.

a 
- 1 H

 N
M

R
 sp

ec
tr

um
 o

f 3
53

 

 
 

O O
N

35
3



  
23

0

A
pp

en
di

x 
3.

b 
- 13

C
 N

M
R

 sp
ec

tr
um

 o
f 3

53
 

 
 

O O
N

35
3



  
23

1

A
pp

en
di

x 
4.

a 
- 1 H

 N
M

R
 sp

ec
tr

um
 o

f 3
59

 

 

O O
N

O

O



  
23

2

A
pp

en
di

x 
4.

b 
- 13

C
 N

M
R

 sp
ec

tr
um

 o
f 3

59
 

 

O O
N

O

O



  
23

3

A
pp

en
di

x 
5.

a 
- 1 H

 N
M

R
 sp

ec
tr

um
 o

f 3
42

-b
 ((

±)
-d

es
-m

et
hy

l-e
pi

-p
ro

to
em

et
in

ol
) 

 

O O
N

O
H



  
23

4

A
pp

en
di

x 
5.

b 
- 13

C
 N

M
R

 sp
ec

tr
um

 o
f 3

42
-b

 ((
±)

-d
es

-m
et

hy
l-e

pi
-p

ro
to

em
et

in
ol

) 

 

O O
N

O
H



  
23

5

A
pp

en
di

x 
6.

a 
- 1 H

 N
M

R
 sp

ec
tr

um
 o

f 3
97

 

 

N
N

O

O
O

39
7



  
23

6

A
pp

en
di

x 
6.

b 
- 13

C
 N

M
R

 sp
ec

tr
um

 o
f 3

97
 

 
 

N
N

O

O
O

39
7



  
23

7

A
pp

en
di

x 
6.

c 
– 

H
SQ

C
 N

M
R

 sp
ec

tr
um

 o
f 3

97
 

 

N
N

O

O
O

39
7



  
23

8

A
pp

en
di

x 
6.

d 
– 

N
O

E
SY

 N
M

R
 sp

ec
tr

um
 o

f 3
97

 

 

N
N

O

O
O

39
7



  
23

9

A
pp

en
di

x 
7.

a 
- 1 H

 N
M

R
 sp

ec
tr

um
 o

f 3
98

 

 

N
N

H
OO

O
39

8



  
24

0

A
pp

en
di

x 
7.

b 
- 13

C
 N

M
R

 sp
ec

tr
um

 o
f 3

98
 

 

N
N

H
OO

O
39

8



  
24

1

A
pp

en
di

x 
7.

c 
– 

H
SQ

C
 N

M
R

 sp
ec

tr
um

 o
f 3

98
 

 

N
N

H
OO

O
39

8



  
24

2

A
pp

en
di

x 
7.

d 
– 

H
M

B
C

 N
M

R
 sp

ec
tr

um
 o

f 3
98

 

 

N
N

H
OO

O
39

8



 

 243

Appendix 6 - X-ray crystal structure of the dichloromethane salt, 363 

 

 
(original in colour) 

 
 Table 1.  Crystal data and structure refinement for afp0901m. 

Identification code  afp0901m 

Empirical formula  C19 H31 Cl2 N O5 

Formula weight  424.35 

Temperature  110(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 8.4632(5) Å α= 88.3650(10)°. 

 b = 8.5839(6) Å β= 89.6750(10)°. 

 c = 15.8706(10) Å γ = 61.7150(10)°. 

Volume 1014.84(11) Å3 

Z 2 

Density (calculated) 1.389 Mg/m3 

Absorption coefficient 0.350 mm-1 

F(000) 452 

Crystal size 0.28 x 0.20 x 0.12 mm3 

Theta range for data collection 2.57 to 30.02°. 

Index ranges -11<=h<=11, -11<=k<=12, -21<=l<=22 

Reflections collected 15393 

Independent reflections 5779 [R(int) = 0.0167] 

Completeness to theta = 30.02° 97.6 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.959 and 0.861 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 5779 / 0 / 266 

Goodness-of-fit on F2 1.030 

Final R indices [I>2sigma(I)] R1 = 0.0348, wR2 = 0.0924 

R indices (all data) R1 = 0.0391, wR2 = 0.0960 
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Largest diff. peak and hole 0.501 and -0.215 e.Å-3 
 
 Table 2.  Atomic coordinates  ( x 104) and equivalent  isotropic displacement parameters (Å2x 103) 

for afp0901m.  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________  

 x y z U(eq) 

________________________________________________________________________________   
C(1) -2676(2) 3482(2) 536(1) 20(1) 

C(2) -662(1) 2793(2) 461(1) 16(1) 

C(3) 83(1) 3725(1) 1017(1) 14(1) 

C(4) 2062(1) 3092(1) 884(1) 14(1) 

C(5) 2881(1) 3860(1) 1469(1) 15(1) 

C(6) 663(1) 4147(1) 2572(1) 13(1) 

C(7) -204(1) 3434(1) 1956(1) 15(1) 

C(8) 3660(1) 1479(1) 2570(1) 16(1) 

C(9) 3528(2) 1022(2) 3492(1) 19(1) 

C(10) 1707(1) 2134(1) 3877(1) 15(1) 

C(11) 416(1) 3646(1) 3466(1) 14(1) 

C(12) -1238(1) 4705(1) 3850(1) 15(1) 

C(13) -1597(1) 4249(1) 4642(1) 15(1) 

C(14) -287(1) 2708(1) 5070(1) 16(1) 

C(15) 1341(1) 1678(1) 4685(1) 16(1) 

C(16) 3075(2) 1973(2) 303(1) 20(1) 

C(17) -4498(2) 6760(2) 4652(1) 19(1) 

C(18) 561(2) 887(2) 6326(1) 24(1) 

C(19) 3283(1) 4468(1) 2938(1) 16(1) 

Cl(1) 5645(1) 3595(1) 2917(1) 23(1) 

N(1) 2659(1) 3455(1) 2391(1) 13(1) 

O(1) -3189(1) 2231(1) 230(1) 24(1) 

O(2) -3160(1) 5190(1) 5068(1) 18(1) 

O(3) -769(1) 2369(1) 5849(1) 21(1) 

Cl(2) 7641(1) 1709(1) 8288(1) 22(1) 

O(4) 8066(2) 9569(2) 1526(1) 30(1) 

O(5) 6538(1) 7466(1) 2235(1) 32(1) 

________________________________________________________________________________ 
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 Table 3.   Bond lengths [Å] and angles [°] for  afp0901m. 

_____________________________________________________  

C(1)-O(1)  1.4324(14) 

C(1)-C(2)  1.5215(15) 

C(1)-H(1A)  0.9900 

C(1)-H(1B)  0.9900 

C(2)-C(3)  1.5294(14) 

C(2)-H(2A)  0.9900 

C(2)-H(2B)  0.9900 

C(3)-C(4)  1.5113(14) 

C(3)-C(7)  1.5406(14) 

C(3)-H(3A)  1.0000 

C(4)-C(16)  1.3305(15) 

C(4)-C(5)  1.5012(14) 

C(5)-N(1)  1.5248(13) 

C(5)-H(5A)  0.9900 

C(5)-H(5B)  0.9900 

C(6)-C(11)  1.5128(14) 

C(6)-C(7)  1.5289(14) 

C(6)-N(1)  1.5306(13) 

C(6)-H(6)  1.0000 

C(7)-H(7A)  0.9900 

C(7)-H(7B)  0.9900 

C(8)-N(1)  1.5136(13) 

C(8)-C(9)  1.5211(15) 

C(8)-H(8A)  0.9900 

C(8)-H(8B)  0.9900 

C(9)-C(10)  1.5128(15) 

C(9)-H(9A)  0.9900 

C(9)-H(9B)  0.9900 

C(10)-C(11)  1.3855(15) 

C(10)-C(15)  1.4059(14) 

C(11)-C(12)  1.4048(14) 

C(12)-C(13)  1.3812(14) 

C(12)-H(12)  0.9500 

C(13)-O(2)  1.3661(12) 

C(13)-C(14)  1.4170(15) 

C(14)-O(3)  1.3653(13) 

C(14)-C(15)  1.3855(15) 

C(15)-H(15)  0.9500 

C(16)-H(16A)  0.9500 
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C(16)-H(16B)  0.9500 

C(17)-O(2)  1.4300(13) 

C(17)-H(17A)  0.9800 

C(17)-H(17B)  0.9800 

C(17)-H(17C)  0.9800 

C(18)-O(3)  1.4335(14) 

C(18)-H(18A)  0.9800 

C(18)-H(18B)  0.9800 

C(18)-H(18C)  0.9800 

C(19)-N(1)  1.5069(13) 

C(19)-Cl(1)  1.7717(11) 

C(19)-H(19A)  0.9900 

C(19)-H(19B)  0.9900 

O(1)-H(1)  0.85(2) 

O(4)-H(4A)  0.80(2) 

O(4)-H(4B)  0.79(2) 

O(5)-H(5C)  0.87(3) 

O(5)-H(5D)  0.82(2) 

 

O(1)-C(1)-C(2) 111.13(9) 

O(1)-C(1)-H(1A) 109.4 

C(2)-C(1)-H(1A) 109.4 

O(1)-C(1)-H(1B) 109.4 

C(2)-C(1)-H(1B) 109.4 

H(1A)-C(1)-H(1B) 108.0 

C(1)-C(2)-C(3) 114.29(9) 

C(1)-C(2)-H(2A) 108.7 

C(3)-C(2)-H(2A) 108.7 

C(1)-C(2)-H(2B) 108.7 

C(3)-C(2)-H(2B) 108.7 

H(2A)-C(2)-H(2B) 107.6 

C(4)-C(3)-C(2) 112.86(9) 

C(4)-C(3)-C(7) 108.21(8) 

C(2)-C(3)-C(7) 110.50(8) 

C(4)-C(3)-H(3A) 108.4 

C(2)-C(3)-H(3A) 108.4 

C(7)-C(3)-H(3A) 108.4 

C(16)-C(4)-C(5) 119.61(10) 

C(16)-C(4)-C(3) 125.86(10) 

C(5)-C(4)-C(3) 114.52(9) 

C(4)-C(5)-N(1) 111.79(8) 
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C(4)-C(5)-H(5A) 109.3 

N(1)-C(5)-H(5A) 109.3 

C(4)-C(5)-H(5B) 109.3 

N(1)-C(5)-H(5B) 109.3 

H(5A)-C(5)-H(5B) 107.9 

C(11)-C(6)-C(7) 109.69(8) 

C(11)-C(6)-N(1) 110.13(8) 

C(7)-C(6)-N(1) 111.70(8) 

C(11)-C(6)-H(6) 108.4 

C(7)-C(6)-H(6) 108.4 

N(1)-C(6)-H(6) 108.4 

C(6)-C(7)-C(3) 114.93(8) 

C(6)-C(7)-H(7A) 108.5 

C(3)-C(7)-H(7A) 108.5 

C(6)-C(7)-H(7B) 108.5 

C(3)-C(7)-H(7B) 108.5 

H(7A)-C(7)-H(7B) 107.5 

N(1)-C(8)-C(9) 111.73(8) 

N(1)-C(8)-H(8A) 109.3 

C(9)-C(8)-H(8A) 109.3 

N(1)-C(8)-H(8B) 109.3 

C(9)-C(8)-H(8B) 109.3 

H(8A)-C(8)-H(8B) 107.9 

C(10)-C(9)-C(8) 114.30(9) 

C(10)-C(9)-H(9A) 108.7 

C(8)-C(9)-H(9A) 108.7 

C(10)-C(9)-H(9B) 108.7 

C(8)-C(9)-H(9B) 108.7 

H(9A)-C(9)-H(9B) 107.6 

C(11)-C(10)-C(15) 119.08(10) 

C(11)-C(10)-C(9) 121.29(9) 

C(15)-C(10)-C(9) 119.55(9) 

C(10)-C(11)-C(12) 120.48(9) 

C(10)-C(11)-C(6) 121.96(9) 

C(12)-C(11)-C(6) 117.40(9) 

C(13)-C(12)-C(11) 120.30(10) 

C(13)-C(12)-H(12) 119.9 

C(11)-C(12)-H(12) 119.9 

O(2)-C(13)-C(12) 124.73(10) 

O(2)-C(13)-C(14) 115.49(9) 

C(12)-C(13)-C(14) 119.79(10) 
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O(3)-C(14)-C(15) 125.31(10) 

O(3)-C(14)-C(13) 115.38(9) 

C(15)-C(14)-C(13) 119.31(9) 

C(14)-C(15)-C(10) 121.04(10) 

C(14)-C(15)-H(15) 119.5 

C(10)-C(15)-H(15) 119.5 

C(4)-C(16)-H(16A) 120.0 

C(4)-C(16)-H(16B) 120.0 

H(16A)-C(16)-H(16B) 120.0 

O(2)-C(17)-H(17A) 109.5 

O(2)-C(17)-H(17B) 109.5 

H(17A)-C(17)-H(17B) 109.5 

O(2)-C(17)-H(17C) 109.5 

H(17A)-C(17)-H(17C) 109.5 

H(17B)-C(17)-H(17C) 109.5 

O(3)-C(18)-H(18A) 109.5 

O(3)-C(18)-H(18B) 109.5 

H(18A)-C(18)-H(18B) 109.5 

O(3)-C(18)-H(18C) 109.5 

H(18A)-C(18)-H(18C) 109.5 

H(18B)-C(18)-H(18C) 109.5 

N(1)-C(19)-Cl(1) 112.04(7) 

N(1)-C(19)-H(19A) 109.2 

Cl(1)-C(19)-H(19A) 109.2 

N(1)-C(19)-H(19B) 109.2 

Cl(1)-C(19)-H(19B) 109.2 

H(19A)-C(19)-H(19B) 107.9 

C(19)-N(1)-C(8) 112.85(8) 

C(19)-N(1)-C(5) 108.65(8) 

C(8)-N(1)-C(5) 110.07(8) 

C(19)-N(1)-C(6) 106.63(8) 

C(8)-N(1)-C(6) 109.42(8) 

C(5)-N(1)-C(6) 109.11(8) 

C(1)-O(1)-H(1) 108.7(13) 

C(13)-O(2)-C(17) 116.59(8) 

C(14)-O(3)-C(18) 117.12(9) 

H(4A)-O(4)-H(4B) 105(2) 

H(5C)-O(5)-H(5D) 111(2) 

_____________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  
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 Table 4.   Anisotropic displacement parameters  (Å2x 103) for afp0901m.  The anisotropic 

displacement factor exponent takes the form:  -2π2[ h2 a*2U11 + ...  + 2 h k a* b* U12 ] 

______________________________________________________________________________  

 U11 U22  U33 U23 U13 U12 

______________________________________________________________________________  

C(1) 16(1)  30(1) 19(1)  -3(1) 0(1)  -14(1) 

C(2) 16(1)  23(1) 13(1)  -2(1) 0(1)  -12(1) 

C(3) 14(1)  17(1) 13(1)  -1(1) 0(1)  -8(1) 

C(4) 15(1)  18(1) 13(1)  0(1) 0(1)  -10(1) 

C(5) 17(1)  20(1) 11(1)  -2(1) 2(1)  -12(1) 

C(6) 12(1)  15(1) 13(1)  -1(1) 1(1)  -6(1) 

C(7) 14(1)  19(1) 13(1)  -1(1) 1(1)  -9(1) 

C(8) 15(1)  14(1) 16(1)  -1(1) 2(1)  -5(1) 

C(9) 16(1)  18(1) 16(1)  1(1) 1(1)  -4(1) 

C(10) 15(1)  17(1) 14(1)  -2(1) 1(1)  -8(1) 

C(11) 14(1)  17(1) 12(1)  -1(1) 1(1)  -8(1) 

C(12) 14(1)  17(1) 13(1)  -1(1) 0(1)  -8(1) 

C(13) 14(1)  17(1) 14(1)  -3(1) 1(1)  -8(1) 

C(14) 18(1)  19(1) 12(1)  -1(1) 1(1)  -10(1) 

C(15) 17(1)  16(1) 15(1)  1(1) -1(1)  -8(1) 

C(16) 16(1)  26(1) 21(1)  -7(1) 3(1)  -12(1) 

C(17) 16(1)  20(1) 19(1)  -1(1) 1(1)  -6(1) 

C(18) 26(1)  26(1) 16(1)  6(1) -1(1)  -10(1) 

C(19) 16(1)  19(1) 16(1)  -4(1) 1(1)  -10(1) 

Cl(1) 18(1)  33(1) 22(1)  -6(1) 1(1)  -15(1) 

N(1) 14(1)  15(1) 12(1)  -2(1) 1(1)  -8(1) 

O(1) 25(1)  38(1) 19(1)  -3(1) 0(1)  -24(1) 

O(2) 15(1)  21(1) 15(1)  0(1) 3(1)  -6(1) 

O(3) 22(1)  23(1) 14(1)  3(1) 3(1)  -8(1) 

Cl(2) 27(1)  21(1) 21(1)  0(1) 0(1)  -14(1) 

O(4) 32(1)  41(1) 25(1)  3(1) -1(1)  -23(1) 

O(5) 26(1)  26(1) 39(1)  8(1) -5(1)  -9(1) 

______________________________________________________________________________ 
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 Table 5.   Hydrogen coordinates ( x 104) and isotropic  displacement parameters (Å2x 10 3) 

for afp0901m. 

________________________________________________________________________________  

 x  y  z  U(eq) 

________________________________________________________________________________  

  
H(1A) -3028 3717 1134 24 

H(1B) -3317 4611 209 24 

H(2A) -381 2929 -134 19 

H(2B) -42 1513 612 19 

H(3A) -581 5023 878 17 

H(5A) 2306 5159 1372 18 

H(5B) 4174 3369 1345 18 

H(6) 44 5467 2511 16 

H(7A) -1510 4006 2063 17 

H(7B) 283 2148 2072 17 

H(8A) 4938 1023 2422 19 

H(8B) 3158 890 2213 19 

H(9A) 3822 -239 3544 22 

H(9B) 4439 1167 3820 22 

H(12) -2114 5740 3563 18 

H(15) 2224 647 4972 20 

H(16A) 4308 1664 260 24 

H(16B) 2564 1482 -70 24 

H(17A) -4031 7600 4560 29 

H(17B) -5570 7297 5004 29 

H(17C) -4808 6459 4109 29 

H(18A) 953 -191 6004 36 

H(18B) 46 758 6861 36 

H(18C) 1591 1081 6438 36 

H(19A) 2902 4427 3525 19 

H(19B) 2706 5722 2741 19 

H(1) -2910(30) 2060(30) -285(13) 43(5) 

H(4A) 7800(30) 10230(30) 1125(14) 49(6) 

H(4B) 9100(30) 9250(30) 1594(14) 49(6) 

H(5C) 5520(30) 7630(30) 2028(15) 65(7) 

H(5D) 6910(30) 8050(30) 1964(13) 49(6) 

________________________________________________________________________________ 
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 Table 6.  Torsion angles [°] for afp0901m. 

________________________________________________________________  

O(1)-C(1)-C(2)-C(3) -161.24(9) 

C(1)-C(2)-C(3)-C(4) -176.19(9) 

C(1)-C(2)-C(3)-C(7) 62.49(12) 

C(2)-C(3)-C(4)-C(16) 5.97(15) 

C(7)-C(3)-C(4)-C(16) 128.57(12) 

C(2)-C(3)-C(4)-C(5) -175.02(9) 

C(7)-C(3)-C(4)-C(5) -52.42(11) 

C(16)-C(4)-C(5)-N(1) -122.61(11) 

C(3)-C(4)-C(5)-N(1) 58.31(12) 

C(11)-C(6)-C(7)-C(3) -175.32(8) 

N(1)-C(6)-C(7)-C(3) -52.92(11) 

C(4)-C(3)-C(7)-C(6) 49.94(12) 

C(2)-C(3)-C(7)-C(6) 173.97(9) 

N(1)-C(8)-C(9)-C(10) 39.36(13) 

C(8)-C(9)-C(10)-C(11) -12.07(15) 

C(8)-C(9)-C(10)-C(15) 171.09(10) 

C(15)-C(10)-C(11)-C(12) -0.26(16) 

C(9)-C(10)-C(11)-C(12) -177.13(10) 

C(15)-C(10)-C(11)-C(6) -175.54(10) 

C(9)-C(10)-C(11)-C(6) 7.60(16) 

C(7)-C(6)-C(11)-C(10) 93.96(12) 

N(1)-C(6)-C(11)-C(10) -29.36(13) 

C(7)-C(6)-C(11)-C(12) -81.45(11) 

N(1)-C(6)-C(11)-C(12) 155.22(9) 

C(10)-C(11)-C(12)-C(13) -0.06(16) 

C(6)-C(11)-C(12)-C(13) 175.43(9) 

C(11)-C(12)-C(13)-O(2) 179.94(10) 

C(11)-C(12)-C(13)-C(14) 0.20(16) 

O(2)-C(13)-C(14)-O(3) 0.28(14) 

C(12)-C(13)-C(14)-O(3) -179.96(9) 

O(2)-C(13)-C(14)-C(15) -179.78(9) 

C(12)-C(13)-C(14)-C(15) -0.01(16) 

O(3)-C(14)-C(15)-C(10) 179.63(10) 

C(13)-C(14)-C(15)-C(10) -0.31(16) 

C(11)-C(10)-C(15)-C(14) 0.45(16) 

C(9)-C(10)-C(15)-C(14) 177.37(10) 

Cl(1)-C(19)-N(1)-C(8) 51.15(10) 

Cl(1)-C(19)-N(1)-C(5) -71.21(9) 

Cl(1)-C(19)-N(1)-C(6) 171.31(7) 
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C(9)-C(8)-N(1)-C(19) 56.37(11) 

C(9)-C(8)-N(1)-C(5) 177.94(8) 

C(9)-C(8)-N(1)-C(6) -62.17(11) 

C(4)-C(5)-N(1)-C(19) -172.42(8) 

C(4)-C(5)-N(1)-C(8) 63.54(11) 

C(4)-C(5)-N(1)-C(6) -56.54(11) 

C(11)-C(6)-N(1)-C(19) -66.85(10) 

C(7)-C(6)-N(1)-C(19) 171.00(8) 

C(11)-C(6)-N(1)-C(8) 55.49(10) 

C(7)-C(6)-N(1)-C(8) -66.65(10) 

C(11)-C(6)-N(1)-C(5) 175.97(8) 

C(7)-C(6)-N(1)-C(5) 53.83(11) 

C(12)-C(13)-O(2)-C(17) -0.30(15) 

C(14)-C(13)-O(2)-C(17) 179.45(9) 

C(15)-C(14)-O(3)-C(18) 3.98(16) 

C(13)-C(14)-O(3)-C(18) -176.08(10) 

________________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  

  

 Table 7.  Hydrogen bonds for afp0901m  [Å and °]. 

____________________________________________________________________________  

D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 

____________________________________________________________________________  

 O(5)-H(5D)...O(4) 0.82(2) 2.07(2) 2.8772(16) 168(2) 

 O(5)-H(5C)...Cl(2)#1 0.87(3) 2.51(3) 3.3647(12) 169(2) 

 O(4)-H(4B)...Cl(2)#2 0.79(2) 2.49(2) 3.2727(12) 176(2) 

 O(4)-H(4A)...O(1)#3 0.80(2) 2.05(2) 2.8346(15) 170(2) 

 O(1)-H(1)...Cl(2)#4 0.85(2) 2.31(2) 3.1539(10) 176.2(18) 

____________________________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  

#1 -x+1,-y+1,-z+1    #2 -x+2,-y+1,-z+1    #3 x+1,y+1,z       

#4 x-1,y,z-1       
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