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Abstract

In this thesis, we investigate questions about the properties of delay systems
and diffusive systems as well as Hankel and weighted Hankel operators. After
detailing the necessary background in Chapter 1, in Chapter 2 the focus is
on the development of methods to study the stability of delay and fractional
systems. This analysis is carried forward using some BIBO and H> stabil-
ity tests. Generalisation of the Walton-Marshall method [38] enable us to
move from the single and multi-delay cases to fractional delay systems. This

method gives procedures for finding stability windows as the delay varies.

Chapter 3 is concerned with diffusive systems. Via convenient adaptations
of some tests due to Howland [19], it becomes possible to give necessary and
sufficient conditions for the Hankel operator and the weighted Hankel opera-
tor to be nuclear. Also, in this Chapter we introduce more general weighted
Hankel operators and discuss their boundedness. Here the reproducing ker-
nel test plays an essential role in testing boundedness. Some fundamental

examples are given to support our work.

In Chapter 4 here we investigate questions regarding approximating infinite-
dimensional linear system by finite-dimensional ones. Moreover, we develop
more research on the rate of decay of singular values of the associated Hankel

operator.

In Chapter 5 we mainly focus on diffusive systems defined by holomorphic
distributions and measures on a half plane. In particular we look at the nucle-
arity (trace class) and Hilbert-Schmidt properties of such systems. Moreover,
we begin further study of explicit examples of weighted Hankel operators for
which we did not know whether they were bounded, those examples already
introduced in Chapter 3.

In Chapter 6 the boundedness of weighted Hankel corresponding to diffusive



systems is analysed using the theory of Carleson measures.

Chapter 7 gives some suggestions for further work.
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Chapter 1

Background

1.1 Introduction

We begin by recalling some necessary background. There are two main
themes with which familiarity will be assumed in later chapters: operator
theory and systems theory. This chapter will by no means provide an ex-
haustive summary of any of these but rather it will serve to equip the reader
with basic concepts and results used later. It will rather serve to provide
the reader with much of the terminology and conventions that are adopted
throughout. There will be no new results in this chapter and so all theorems
are stated without proof. Suitable references are [4], [6], [18], [28], [30], [31],
[34] and [35].

1.1.1 Notation

R, denotes the set of all the real numbers that are greater than zero, C,
denotes the set of complex numbers with real part strictly greater than
zero, and L*° denotes the complex-valued measurable functions on the non-
negative real axis such that esssup,cg, |f(f)] < oco. Also LP(R,) denotes
the complex-valued measurable functions on the non-negative real axis with

S @) dt < oo



1.2 Results from Functional Analysis

1.2 Results from Functional Analysis

1.2.1 Banach Spaces

A normed space is a vector space B (assumed to be over the complex number

field C) provided with a norm ||.|| satisfying
e [F=0,
e || f|l =0 implies f =0,

o llafll = lalllfl
o [lf+gll <lfl+llgll, for all @ € C and f,g € B

||.]| is a seminorm if it satisfies all the axioms except the second.

A Banach space is defined to be a normed space B which is complete in
sense that every Cauchy sequence in B converges to a limit in B. Every
normed space B has a completion B, which is a Banach space in which B
is embedded isometrically and densely. (An isometric embedding is a linear,
norm-preserving (and hence one-one) map of one normed space into another
in which every element of the first space is identified with its image in the
second).

We now move on to the Hardy spaces, which are in the unit disc D or the
right half-plane C, and extended, respectively, to the unit circle T or the

imaginary axis i[R.

Definition 1.2.1. (Inner product). An inner product space is a vector space

V over the field F' together with an inner product, i.e., with a map
(,): VXV —=SF

that satisfies the following axioms for all vectors z,y,z € V and all scalars

a € F:

o (z,y) = (z,y).
o (az,y) = a(z,y) and (v +y,2) = (z, 2) + (v, 2).

e (r,y) >0and (z,y) =0= 2 =0.

5



1.2 Results from Functional Analysis

An inner product (.,.) on a vector space induces a norm by means of
the formula ||z|| = (z,2)2 , and a complete inner-product space is called a
Hilbert space.

A linear operator T from a normed space X to a normed space Y is just a

linear mapping, that is, it satisfies
T(a1x1 + asxs) = a1Txy + agTwy forall x,20 € X and ay,ay9 € C.
The operator T is said to be bounded, if there is a constant k& > 0 such that
|Tz|| < k||z|| for all vectors z € X.

The least k& that holds for all = is the norm of T, written

T3
I = sup Ll = sup .
w0 [zl =

1.2.2 Hardy space on the half-plane

For 1 < p < oo the Hardy space HP(C,) of the right half-plane C; may be
defined as the set of all analytic functions f : C, — C such that

oo

1£1, = (sup / o+ i) dy) P < oo
x>0

—00

Likewise, the space H*(C,) consists of all analytic and bounded functions

in C,, and the norm is given by

1flle = sup [f(2)].
zeCy
Those functions have boundary values f(iy) = lim, .o+ f(z + iy) almost

everywhere, and the boundary function f lies in LP(iR) and satisfies

1., = 171

We may identify f and f, and thus H P(C,) can naturally be regarded as a
closed subspace of L (iR) and hence a Banach space.

The Laplace transform £ : L*(0,00) — H?(C,) plays an important role. Let
f(t) be a function of ¢ specified for ¢ > 0. Then the Laplace transform of
f(t), denoted by (Lf)(s), is defined by

F(s) = (LF)(s) = / Tt

0
6



1.2 Results from Functional Analysis

The parameter s is a complex number: s = o + iw, with real numbers ¢ and
w, and up to a constant factor gives an isometric isomorphism between the
two spaces, since it is bijective and satisfies ||Lgl|,. = V27 |g|l .2, see [13,
p, 1-2] and [31, p 1-7]. Also, one can define the Laplace transform of a finite

Borel measure p by the integral
s = [ e au)
[0,00)
see [35].

Theorem 1.2.2. (Cauchy integral formula). Let f(z) be analytic on and in

the interior of a simple closed contour C . Let a be a point in the interior of

C. Then
1 f(e)dz
@) = 5 L2

Moreover,

(see [12], p. 182,184).

1.2.3 Elementary properties of measures

Definition 1.2.3. (a) A collection R of subsets of a set X is said to be a

o —algebra in X if R has the following properties:

(i) X € R.

(i) If A € R, then A° € R, where A€ is the complement of A relative
to X.

(i) fA=U,2, A, and if A, € R for n =1,2,3,..., then A € R.

(b) If R is a 0 — algebra in X, then X is called a measurable space, and

the members of R are called the measurable sets in X.

(c) If X is a measurable space, Y is a toplogical space, and [ is a mapping
of X into Y, then f is said to be measurable provided that f~!(V) is

a measurable set in X for every open set V in Y.

7



1.2 Results from Functional Analysis

Definition 1.2.4. (a) A positive measure is a function u, defined on a
o — algebra, whose range is in [0, co] and which is countably additive.
This means that if A; is a disjoint countable collection of members of

R, then
H (U Ai) = ZM(Ai)-
i=1 i=1

(b) A measure space is a measurable space which has a positive measure

defined on a o — algebra of its measurable sets.

(¢) A complex measure is a complex-valued countably additive function
defined on a o — algebra .

See [34, p. 8-30].

Theorem 1.2.5. Theorem (Fatou’s lemma). Let (f,) be a sequence of mea-

surable functions X — [0,00), and define

liminf, f,(x if liminf, f,(z) < oo
flz) = v ) (1.2.1)

0 otherwise

Then f is measurable, and

/fdu < liminf/fndu.
X " X

1.2.4 Linear Operators

Definition 1.2.6. (Spectral radius). Let X be a complex Banach space. For
an operator T : X — X, the spectrum of 7T is the set

o(T)={X € C:T — Al is not invertible}.

and o(T) is a non-empty compact subset of C, and thus we can define the
spectral radius
p(T) = sup{]A| : X € o(T)}.
and then
p(T) = lim ||T"|V" = int{||T"||"" :n = 1.
In particular p(T") < ||T]|, (see [31, p. 2]).
8



1.2 Results from Functional Analysis

Lemma 1.2.7. Let the convolution operator on L*(0,00) be defined by

(Fr9)@) = [ fa =gt
0
Then, for f,g € L1(0,00), one has f g € L1(0,00) and

1f > glly < IA1 Mgl -

Moreover, the Laplace transforms are related by

(L(f *9))(s) = (LF)(s)(Lg)(s).
Definition 1.2.8. Let ¢ € L>(T). Then the Laurent (or multiplication
operator) My : L*(T) — L?*(T) is given by
(Myf)(e") = o(e”) f(e).
Theorem 1.2.9. Let ¢ € L>(T). Then My is bounded operator and its
norm is given by ||My|| = ||¢| .. Moreover
sup {[Mofll = f € L2 |1 flls =1} = 6]l -

If ¢ is a measurable function on T which is not in Lo (T), then My is not a

bounded operator on Ls.

Definition 1.2.10. (Definition of Hankel operator). If h(x) € L'(0,00) (N L*(0, c0),
then the Hankel operator
[y, : L?(0,00) — L*(0,00) given by

Cre) = [ b+ p)uly)dy
0
is well-defined and bounded, with ||| < [|A||;, (see [28, p. 42]).

Theorem 1.2.11. (Schmidt expansion of a compact operator) An operator
T is compact if and only if there exist orthonormal sequences (v;), (w;), i > 1,

and scalars (o;) decreasing to 0, such that
Tx = X%0;(x, v;)w;.

The numbers are called singular values, (see [28, p. 6]).

9



1.3 Systems

Definition 1.2.12. We say that a compact operator 7" is in class C), (1 <
p < 00) if and only if ¥3°0;(T)P < oco.

Important values of p are:

C1: The nuclear or trace-class operators, and C5: The Hilbert-Schmidt op-
erators, (see [28, p. 9]).

Corollary 1.2.13. If h € L', then T}, is a compact operator, (see [28, p.
67]).

Theorem 1.2.14. Ifh € L' determines the bounded Hankel operator I, then
' is Hilbert-Schmidt if and only if t'/?h(t) € L*(0,00), and if so ||| ;74 =
|£1/2R]| . (see [28, p. 67)).

Definition 1.2.15. If I is compact, then

on(I') = inf{||T" — S| : rank(S) < n},
(see [28]).
Remark 1.2.16. If the Hankel operator is nuclear then, h € L' and
1Al < 2Ty
where |||y = £2,0,(T), (see [18, p. 68]).

Remark 1.2.17. (Relationship between classes). We give the inclusions
between different classes of operators on H where H = L*(X,du) with X a
locally compact Hausdorff space and dyu is Borel measure, and sometimes H
is a general Hilbert space.

Finite rank = trace class = Hilbert-Schmidt = compact = bounded, (see
[13], p. 151).

1.3 Systems

Definition 1.3.1. Transfer function is a compact description of the input-
output relation for a linear system, it is a function of complex variables. In

10



1.3 Systems

other word the transfer function of a linear dynamic system is the ratio of

the Laplace transform of its output to the Laplace transform of its input.
We consider two types of systems:-

e Discrete time linear system. These can be regarded as linear operators
T on P(Zy),1 < p < oo with the variable indexed by 0, 1,2, ....

e Continuous time linear system. These can be regarded as linear oper-
ators T on LP(0,00),1 < p < oc.
Conventionally we write y = Tu , where u,y € L”(0, 00) and u is called
the input and y the output of the system.

Convolution operators in discrete time on ¢7 are defined by

y(t) = (Thu)(t) = (h*u)( th—s
and in continuous time on LP by

y(t) = (Thu)(t) = (h * u)( /ht—T

See the book of Partington [30] .

1.3.1 BIBO Stability

BIBO stands for Bounded-Input Bounded-Output, and if a system is BIBO
stable, then the output will be bounded for every input to the system that
is bounded.

The condition for BIBO stability for continuous time linear systems is

/0 Ih()|dt = [IB]], < oo.

For discrete time linear systems the condition is

> Ih(n)] = |lh]l, < oc.
n=0

More generally, we have convolution operators defined in continuous time by

measures,
t
y(t) = / a(t — 7)du(r),
0
11



1.3 Systems

and these are BIBO stable if and only if

= / T dul () < oo.

1.3.2 H> Stability

H® stability is, the property that Lh or Ly (the transfer function) is bounded
and analytic in C,.

The notion of BIBO stability is stronger than H> Stability, and the following
diagram shows the relationship between them,

BIBO stability =  H® stability = no poles in the right half plane.

Theorem 1.3.2. For p =1 and oo, the (continuous-time) operator
Ty : LP(0,00) — LP(0, 00)
or
u— hxu

is bounded if and only if h € L1(0,00): if so, then ||T}|| = ||hl|,. Forp = 2,
the operator Ty, is bounded if and only if H(s) € Hoo(Cy): if so, then ||Th|| =

1.3.3 The poles of the systems

We look at a time-delay systems with transfer functions of form

6(s) = Tl
> i1 auls)ee

where T}, > 0 and u; > 0, and pg(s), ¢;(s) are real polynomials. As in Bellman

and Cooke [4] and Partington [32] we can divide the poles of the systems into
three types of chains:

e Chains of retarded type, where the poles (s,,) satisfy Re s,, — —o0, and

thus there are only finitely many poles in any right half-plane.

e Chains of neutral type, where the poles lie in a band centred on the

imaginary axis.
e Chains of advanced type, where the poles (s,) satisfy Res,, — oo.

12



1.3 Systems

1.3.4 Generalizing the Walton-Marshall method

Bonnet and Partington in [6] extended the Walton-Marshall technique with
very few modifications to the case of fractional delay systems and we also

use it as well. This method is shown in the following proposition.

Proposition 1.3.3. Let A(s) and B(s) be real polynomials. If Py(s) =
A(s) + B(s)e™*" has a zero at a point s € iR, and A(s) and B(s) are not

zero there, then such an s satisfies the equation

Moreover, at such a point s we have

ds 1.B'(s) Als)
sgn Re% = sgn Reg[B(s) A0s) ].

13



Chapter 2

Delay and Fractional Systems

2.1 Introduction

In this chapter we deal with various stability notions of linear time invari-
ant systems, specified in the frequency domain by their transfer functions.
The class of systems that we shall consider contains delay systems of neutral
type, as well as fractional delay systems of neutral and retarded type: that is,
systems whose transfer function may contain polynomials in fractional pow-
ers of s combined with delay terms. The three versions of stability that we
shall consider (decreasing strength) are BIBO (i.e., bounded-input bounded-
output) stability, H> stability (i. e., finite L? — L? gain), and asymptotic
stability (no poles in the closed right-hand half-plane C,).

In Section 2, we give a new test for BIBO stability of delay systems of neutral
type, and use it to give answers to some delicate questions raised in [5] and
[32].

In Section 3 we shall consider fractional systems, those whose transfer func-
tions involve fractional powers of s.

Moreover, we develop a generalization of the Walton-Marshall test (see [38]),
which finds stability intervals for delay systems with variable delay. The

theory is motivated by an example before being stated in detail.

14



2.2 Delay systems

2.2 Delay systems

In this section we shall analyse linear systems with transfer functions of the

form
B f(s)
O = e+ gl

where h > 0 and p,q and f are polynomials. (In fact we need to consider

8€C+,

just the case h = 1, since the general case reduces to this by a trivial change
of variable.)

More generally, p,q and f may be quasi-polynomials, that is, of the form
apS™ + ... + a,s®, where 0 < ap < ... < a,. Throughout this chapter, we
regard s* as being a single-valued holomorphic function defined on the cut
plane {s = re? :r > 0: —7 < 0 < 7} as s* = r*’ | with the obvious
convention that 0% = 0.

If deg p > deg q, the system said to be of retarded type: if degp = degq it is
said to be neutral type, and if degp < degq it is of advanced type. (See for
instance [4], [31].)

Stability questions are well understood for delay systems of retarded and
advanced type: in this section we shall concentrate on systems of neutral
type, which are more difficult to analyse. Also we necessarily assume that
the system is proper, i. e., deg f < deg p; see [31].

We begin with a motivating example, which has been considered in several

papers such as [5] and [32]; we consider

1
_ 1=0.1,2, ..
G = T a1 asey TOL2

This transfer function is asymptotically stable (i. e., no poles in the closed
right-hand half-plane); it is known that it does not lie in H* for [ = 0, but it
is H> stable for [ > 1, (see [32]). The question of BIBO stability is far more
difficult: G is clearly not BIBO stable for [ = 0, but following the results of
[5] and [32] it is known to be BIBO stable for [ = 4. The remaining cases
were open, but new methods enable us to resolve the cases [ = 2 and [ = 3.
Now before stating a more general result, we shall analyse G, for [ > 2, as
the method is easiest to explain with this example.

— Sk
= {ts)Ft3-

Lemma 2.2.1. For k >0 let hy, € L*(0,00) satisfy Lh(s) Then

]|, = O(kT) as k — oo

15



2.2 Delay systems

Proof. Take g, = e'/*hy(t). Note that Lgi(s) = (Sfik)iy Then, by the

Cauchy-Schwarz inequality we have

il < [le™ | 2 Mnll e -

Now llgell> = 5 1€kl 2, and

iy
ILgellz = 2/ ﬁdy

= o[ )

We may estimate the first integral as at most v/k times the maximum value

of the integrand on [0, v/k], or O(k'/2k~3), since the integrand is an increas-

o0

ing function of y. The second integral is at most / y~%dy, which is also
vk
O(k=/2). This gives the result. O

Theorem 2.2.2. Let G(s) = be the transfer function of a

1
(s+1)(s+1+se=5)
delay system; then it is BIBO stable for [ > 2.

Proof. Tt is sufficient to consider the case [ = 2, as higher-order G; are simply

cascades of G5 with BIBO-stable finite-dimensional systems. Now, we have

0 k
G, = -1 k —sk S
2= 2 (W

converging point-wise in C, and it is easy to notice that the inverse Laplace
transforms converge point-wise on (0, 00), since the kth term vanishes on

[0,k). Then if Lh = G5, we have

o0

-

BIBO —

k
k: —sk S

(s +1)F+3

k

S
Il < GO

Y

BIBO

by Fatou’s lemma 1.2.5 (in the form that asserts that if f,, — f point-wise
then || f|], < liminf || f,]|,). Using Lemma 2.2.1, we can conclude that h € L',
and the system G5 is BIBO stable. O

16



2.2 Delay systems

A more general result can be proved by the same method. Also, note

that one necessary condition on p and ¢ for the neutral system W to
be asymptotically stable is that
lim ‘® <1, (2.2.1)
[s|—o0 p(S)

(see [32], Proposition 2.1), as otherwise the poles are asymptotic to a vertical
line strictly in C,..

The following theorem gives conditions for stability of neutral systems
(see [32]).

Theorem 2.2.3. See [32]. Let G(s) = % be a neutral delay system

satisfying
e h >0 andp,q and f are real polynomials.
e degp = degyg (neutral type) and deg f < degp,

and suppose that

1
@:a+é+%+0(—3) as |s| — oo,
s s s

q(s)
where a, B and v are constants, with o« = +1. For sufficiently large integers
n let A\, = 2nim if « = —1 and let A\, = (2n + 1)iw if « = 1. Then the poles
sn of G satisfy

.

n2

(

3
B} )+ of

>
S
>/
| =
Q=

The system has infinitely many unstable poles if v/a > (3%/2, and infinitely
many stable poles if v/ < [(32/2. In the latter case there can be at most
finitely many unstable poles, and if there are none, then the transfer function
G lies in H*® if and only if degp > deg f + 2. If v/a = 3?/2, then the
condition degp > deg f + 2 is still necessary for stability.

Theorem 2.2.4. Let G(s) = be the transfer function of a neutral

p(8)+q(s e

delay system. Suppose that

e degp=degqg=N > 3;
17



2.2 Delay systems

e all roots of p in C_;

e |Re(zeros of G(s —c))| < |Re(zeros of p(s—c))|, where ¢ > 0, and

_ 1
G(s) = soprae
|(@(iy—c))¥|
[r(iy—o)l[ (Bliy—c))*+1]

and o > %

Then G(s) is BIBO stable, and hence H* stable.

Proof. We have

Take Lhy(s) = a(s)

r(s)pFti(s)”

7 with r(s) is the greatest common divisor of p and q;

is an increasing function on [0, 0], where 0 =< k*

Let hy(t) = e “gx(t), where ¢ > 0. Then by the Cauchy-Schwarz inequality

Rz, < [le™ [, Ngellr, -
. Gk (s—c
Since gy (t) = e“hy(t), then Lgi(s) = Lhi(s —¢) = %

r(s —c)’
We have || Lggl g2 = V27 ||gkll, -

Now let s = 1y, then

q"(s — )

o 1o [
o, = (52 [ |

T 52
_ 1 / iy — ¢ dy
T Jo iy — c)p*F2(iy — ¢

(iy
) ~2

_ 1/‘”“ *ly—c +1/°° iy —c

T 7y Pliy— oy —o) Y T T s, Py — o2 iy —c) 0

o

5 ¢ (iy — c)

1
< _k(max value on [0, 6;]) + /

™

— 0(5];2N+1) + 0(6];2N+1)
).

—2N+1
2

— Ok

18
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2.2 Delay systems

Then [|gil,, = O(k~5).
Since

SIS

k=0
by Fatou’s lemma,

1Gllgrp0 < k+1 <
k=
Then G(s) is BIBO stable and so it is H* stable. O
The following is a more general result.

Theorem 2.2.5. Let G(s) = ﬁ be the transfer function of a neutral

delay system. Suppose that
o degp =degqg= N >3+ deg f, where deg f = N’;
e all roots of p in C_;

o |Re( zeros of (s —c))| < |Re( zeros of p(s—c))|, where ¢ >0, and

G(s) = %, with r(s) is the greatest common divisor of p and g;
1 Gy—o)l|@Cy—))|
iy (-]

and o > %

is an increasing function on (0,0, where & < k*

Then G(s) is BIBO stable, and hence H™ stable.

Proof. Take Lhy(s) = %
Let hyi(t) = e “gx(t). Then by the Cauchy-Schwarz inequality

Il < fle™, lgxllz, -

) s—ec)gk (s—c
Since gi(t) = e“hy(t),then Lgi(s) = Lhi(s —c) = %'
We have ||Lgg|l 2 = V27 ||ngL2 .

19



2.2 Delay systems

Now let s = 1y, then

1 o

2 fs =)q"(s —¢)
HngLQ = (\/—2—7T .

r(s —c)pFtl(s —¢)

_ 1 UGy =)ty — o)
T Jo 121y — )PP A(iy —c)
1 R (fliy =)@y —c) 1 [ (fliy —0)*d*(iy — o)
o7 /0 r2(iy — c)p* 2 (iy — ¢) W /ak r2(iy — o)p* 21y — ¢
O 1% (f(iy — 0)*q*(i

< —(max value on [0, d0x]) + T -
m ™ Js, 2y —o)p

_ O(k(2Nl_2N+1)a).

~—

Therefore

(2N’ —2N+1)a

lgnllL, = Ok =),

By Fatou’s lemma,

|| f(9)d"(s)
< -~ 7= 7
1Gllgreo < g:o ()5 (5) < 00
Then G(s) is BIBO stable and hence H> stable. O

be the transfer function of

Example 2.2.6. Let G(s) = (s+3)(s+2)2-1+(s—§)32e—s

a neutral delay system. Then G(s) is BIBO stable and hence H> stable.

Proof. From 2.2.5 we can deduce that

lgellz, = O(kT)

and
% (5 — Lykg2k
G < 2 < 00.
G larn0 < 2 || gyees(e s gyes | <
Then G(s) is BIBO stable and so it is H* stable. O

Remark 2.2.7. In Example 2.2.6, the transfer function does not have poles

in the right half plane (see [32]). Take,

p(s)  (s+3)(s+2)? 1., 15 79 (R+12)
q(S) - (S_%)SQ _32[8 + 23“— 4 + 8—% ]7

20




2.2 Delay systems

then

p(s) 15 79 1

PO 142402 Lo .

) to tiat (33) as |s|] — o0
So

a=1, ﬁ:%, 7:7749, h =1, and then, A, = (2n + 1)in.

Thus, the poles s,, of G satisfy

A B h B 1
=T o Tty ) o)
Also,
15 1 225 79
W= (20 + 1)ir — _ 20
s = i = S e s 15216 1)

Because 1 < %2 the system has infinitely many stable poles (in Res < 0).

Moreover, there are no small poles in the right-half plane, since for
2 1 2 _—s
(s+3)(s+2) +(s—§)s e’
if Res > 0, then

1
(s — 5)826_5

Y

}(s+3)(s+2)2} >

and then
1
(5+3)(s+2)°+ (s — 5)826_8 # 0.

Another more elementary result is also useful.

Theorem 2.2.8. Let G(s) = m be transfer function. Suppose that é
is BIBO stable and p(%) < 1 (p denotes the spectral radius) . Then G(s) is
BIBO stable.

Proof. We have

g+nh

g(1+1%)

(o

21



2.3 Fractional Systems

So i
1 || /n
1Gll5rp0 < H_ (‘) < 0.
BIBO 3,— I \9/ lIBI1BO
Then G(s) is BIBO stable, since p(%) < 1. O

Example 2.2.9. Let

1
(s+1)*+s(s+1)%e= + h(s)e Ts’

G(s) =

is BIBO stable.

be a transfer function. We know that é = (5+1)4+515+1)36,S

Also we have

then

1 2

(s+ 1)+ s(s+1)%

1
(s+1)

1
(s+1)2+s(s+1)e

<2

—_ )

[ee] ‘ (e} [ee])

h(s)e T
4 3e—s
(s+1)4+s(s+1)3e oo

Theorem 2.2.8.

< 1if ||n]|, < 3. Then G is BIBO stable as in

2.3 Fractional Systems

Definition 2.3.1. Fractional systems are those which in the frequency do-
main have transfer functions involving fractional powers of s, such as /s and
s3. For a > 0 we choose a single-valued analytic branch of s® on C\ (—o0,0]

with 1% =1, i. e; s* = (re??)® = r?e'®? where —m < 0 < 7 and r > 0.

Example 2.3.2. There are many examples of fractional systems. Several

examples are linked to the heat equation.
(i) Heat equation with Neumann boundary control: G(s) = cosh \/sxzq/+/s sinh y/s;
(ii) Heat equation with Dirichlet boundary control: G(s) = sinh y/sx/ sinh /s;
(iii) Arising in the theory of transmission lines: G(s) = e~%V*/s, with a > 0;

in each case with 0 < g < 1 a fixed number. These examples are given in
[5] and [9].
Some more examples can be found in [10]:
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2.3 Fractional Systems

(iv) G(s) = (tanh(y/s/2))/(sv/5);

(v) G(s) = (cosh(szg)/(ssinhs), 0 <z < 1;

(vi) G(s) = (cosh(v/520)/(v/5sinh+/5), 0 < xy < 1, linked to the heat
equation;

(vii) G(s) = (2e7%%)/(b(1 — e~22V")), linked to the heat equation, see [11].

We begin with an example.
Proposition 2.3.3. Let G(s) = ﬁ be a transfer function. We fix 0 <
h < 5 and vary . Then the system is asymptotically stable for 0 < a <

2(1— 1.

Proof. G(s) = o—c=; it is known to be stable at o = 1 see [31].
As « varies, the poles move continuously, and cross the axis when s®+e=" =
0 on ¢R. It is enough to consider y > 0 so

- .
i, Q zyh:()’

e2"y" +e

and the conjugate equation is

i )
e oy e = .
, . , . ,
Then, y = 1 (since |e7"2%| = |e™"| = 1), so we have e 2% + ¢ = 0, so
e . . L
e 2% = —¢ thus, e7"2% = e~ and then

—iza = —ir + ih + 2ikn.
Hence, the first crossing is at v = 2(1 — 2). O

Remark 2.3.4. For G(s) = with o = 2(1—2) and 0 < h < Z, then

1
sa_;’_efsh )

Re g—i > 0, so the system become unstable as « increases.

Here is a more general result.
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2.3 Fractional Systems
Proposition 2.3.5. Let A and B be real polynomials. If P,(s*) = A(s*) +

B(s*)e™*" has a zero at a point s € iR, and A(s®) and B(s“) are not zero

there, then such an s satisfies the equation

and,

A/ Sa ! Sa
ds . —slogs( A((Sa)) - %((Sa)))
Ao (A(s®)  B/(s%) h
do O‘(A(sa) ~ B(sY) )+

Proof. From the equation A(s®) + B(s®)e™*" = 0 with s € iR, we obtain
A((=s)®) + B((—s)*)e** = 0 by conjugation, and by eliminating the expo-
nential term from two equations we get A(s*)A((—s)*) = B(s*)B((—s)*).
We have

A(s™) + B(s*)e " = 0. (2.3.1)

By differentiating with respect to «,
Al(s*)s™log s + A'(s")as® 182 + e s B'(s%) log s + as® e " B'(s*) £ +
B(s*)e™*"(=h)4 =0,

and, after simplification

ds - —S logs(i((;:)) - f;((jj)))
EP Al(s®)  B/(s%) h
dar o A(s%)  B(s%) ) + st

If 3—2 > 0, then zeroes of P, cross from left to right; however if S—Z < 0, then

zeroes cross from right to left. O

Remark 2.3.6. This condition is not sufficient for P,(s*) to have roots on
R (egif Py(s®) =s*—14e7).

In the following work we will find necessary and sufficient conditions. We use
a different method where « is fixed and h varies. This is used for different

values of a until we find the o for which the critical value of h is T

Example 2.3.7. Let G(s) = % be the transfer function.
s¥—5+e 4

Take o = 1, and use the Walton-Marshall-Bonnet-Partington method to find
24



2.3 Fractional Systems

h > 0, making ﬁ unstable (where G(s) is stable when h = 0).
2

So,now, s — 1 4+e " =0, A(s)=s—3, B(s)=1, then

27

thus s> = —3 and then, s = i@.

—sh _ _ A(s) EEVEY
=~ B then e~ 2 " =

_ VB = — 2m | dnmo
e st =e¢3 80, h= +\/§W1thn20.

3v3

N[

The system is stable for 0 < h < 32—\% because

ds 1.B'(s) Als)
sgnReEZ,sgnReg[B(s) A(s)]’

and then
ds 1, -1 12 — 44/3i
sgnRe£:sgnReE[@_l]: 15 > 0.
2 2 2

So, the poles cross from left to right.

In general we have the equation s* — % +e~5h

= 0 on R, so let s = 1y; then
(iy)* — 5 + e " =0, so we obtain (—iy)* — 3 + €*" = 0 by conjugation, and
it follows easily on eliminating the exponential term from the equations,

20 —mad uges

1
y —i(eT—Fe?)ya—i-Z:l

and then
%0 o To 3
- o 2y,
v —yTeos(5) — 4
Then
o COs(TR) £ \Jcos? () + 3
Yy = 5 )
or

cos(Z2) + \/cos?(Z2) + 3 1
y - ( - 2 - )a‘

By substituting the value of y in ™2 y® — 3 + " = 0, we have

mai ,cos(ZE2)+, /cos?(Z2)+3
| logl} - (TN,
B ,[COS(%):‘: 0052(%)-‘,-3]1 '
2 «@
When a = 1, then
2m dmn



2.3 Fractional Systems

We now use a different method where « is fixed and h varies. This is used
for different values of o until we find the o for which the critical value of h
is 7.
When h = 7 then we have two values of o such that the poles of G(s) lie
on the axis, a; >~ 1.3650 and ay ~ 0.3082. We vary h and use the Walton-
Marshall-Bonnet-Partington method. For each a we plot the minimum h we
find for which % is unstable (see Figure 2.1). Then sgn Re S_Z|f1121~3650 ~
0.7441931 > 0. which means that the poles move from left to right, and
sgn Re g—i‘a2:0_3082 ~ —2.3611552 < 0, which means that the poles move
from right to left.

So, —— is stable for ay < a < oy.

5*—0.5+e 4
The transfer functions G(iy) in Figures 2.2 and 2.3 have singularities and are

unbounded.

We use Matlab to create these figures.
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2.3 Fractional Systems

1.4

1.2

0.8

0.6

0.4

0.2

Figure 2.1: Relationship between o and h. Example (2.3.7)

Now we consider |G(iy)| for @ near to the critical values to show where

the pole crosses the axis (for y > 0).

Example 2.3.8. Consider P,(5%) = s* — s% " + (s — 2)e 2" = 0, (see
Fioravanti [16]) which for h = 0 has zeroes in the right half plane. Suppose

now that h > 0 and that s is a point on the imaginary axis such that

s — 5% 4 (5% = 2)e M =0, (2.3.2)

and hence

(—5)* — (=5)%*" + ((—s)™ — 2)e*" =0, (2.3.3)

by complex conjugation. We wish to eliminate the exponential terms from

these equations. A simple way to do this is to multiply (2.3.2) by e*" and

27
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2.3 Fractional Systems

50

45

40

35

30

25

G (1y)|

20

15

10

Syt

Figure 2.2: |G(iy)| against y for o = 1.3650. Example (2.3.7)

multiply (2.3.3) by e~*" to produce

s%eSM — 5% 4 (5% — 2)e " =0, (2.3.4)

(—s)%e ™" — (=8)* + ((—8)* — 2)e*" = 0. (2.3.5)

From the equation (2.3.4)

6sh s* — (Sa B 2)€_Sh

p— 2. .
e (2:36)
and substituting in (2.3.5) we produce
Y4 (2= (=5)" — s%)e " =0, (2.3.7)
and hence
(—8)* + (2 — 8% — (—5)*)e" =0, (2.3.8)


AoloGraph2.eps

)

G

2.3 Fractional Systems

90

80

70

[e2]
o
T

w
o
T

N
o
T

Nagilé)

Figure 2.3: |G(iy)| against y for o = 0.3082. Example (2.3.7)

and by conjugation, finally the polynomial equation

Taking s =iy and (—s)* = s

SO

and

4 —48% — 4(—5)" 4 5%(—5)* + (—=s)** + 5> = 0. (2.3.9)

e~ we have

§2reTIOT _ fgY _ fgeTiOM | g2agTOm 4 G2 4 g — (), (2.3.10)

Y21+ e 4 ™) 4y (—4e™3 — 4e02) 44 =0, (2.3.11)

1/a

4cos(T2) F 24 /4 cos?(Fa) — 2cos(ma) — 1
1 + 2 cos(ma)

y = (2.3.12)

29
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2.3 Fractional Systems

By substituting in (2.3.7), we get,

_ by —(iy)
"=y el (—iy)™ — (iy)~

When o =1, then y = +2 and h = 7 + nm.

). (2.3.13)

2sh — (: then the poles cross

Also, s = 2i is a solution to s — se™*" 4 (s — 2)e~
from left to right at this point and for 0 < h < 7 and a = 1 the system is
unstable. If & = 0.5, then h > 1, so this G is asymptotically stable. We still

do not know if it is H,, stable.

andro’example
0.8 ! !

0.7~

0.5~

0.4

0.3

0.2~

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
alpha

Figure 2.4: Relationship between o and h. Example (2.3.8)
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2.3 Fractional Systems

2.3.1 Systematic method (1 step) for fractional sys-
tems

We now consider the general case of fractional systems with n delays, n > 2,

the characteristic equation of which will be.
F(s* h) = ZAk(so‘)e_kSh = Z Ap(s)2" = 0.
k=0 k=0

Firstly there is the usual preliminary step of examining the stability at h = 0.
The next step is the determination of any potential crossing point, i.e. we

seek solutions with s = 1w. We therefore seek solutions of
F(s* h) = ZAk(sa)zk =0,
k=0
and, replacing s by —s,
F((=s)* h) = ZAk((—s)o‘)z_k =0.
k=0

This method gives a procedure for the systematic reduction in degree by
elimination of the highest power of z. This iterative scheme eventually yields

an equation independent of z.
Define

FO(s* h) = Ag(=s*)F(s* h) — Ay (s¥)2"F((—s)*, h)

n

= Agl(=9)) D] A2 = ()2 D] Aul(—s))

— Ao((=9)) a5 + Aol(—5)°) ZA() — A()2" Ao((=5))2°
—gAmsa)Ak((—s)“)z

- :X:éAo((—s)a)Amsa)zk—: A7) Al (—5)°) 2

- :2:;[140((—3) JA4(5) = An(s™) Anil(—5))]2",

and
FO (=), h) = 307 Ag(s%) Ap((—5)*) — An((—5)*) Ap_i(s*)27*. We now

define F® similarly as in the next example.
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2.3 Fractional Systems

Example 2.3.9. Consider F(s% h) = s — s% " 4 (s — 2)e 2" = 0, by

using the systematic method. We have
FO(s% h) = (=5)%(s)" = (s = 2)((=5)" = 2) + [(=5)*(=(5)") = (s* = 2)(—(=9)")]z
= (25%(1+e ™) —4) + (—2e )z

= _9 +8a(1 +6—m’o¢) - 6—7rio¢So¢Z

p— 0’
then
FO((=5)",h) = ((s)*(1 4 ™) = 2) — 5271,
Let
FO (5%, h) = A (—s) PO (5%, h) — AP (5)2  FD ((—s)2, h).
Then

FO(s*h) = (s*(14e7™) = 2)(s*(1 4 e7™) = 2) = (=(s)*)(—(~5)")
= 214 e ™2 45 (14 e ™) £ 4 — 2

(
(

_ S2a(1 + 2€—ma =+ e—2m‘a) o 4Sa(1 + e—m’a) + 4 — S2ae—m'a
(1+

_ S2a —wza 6—27rz'a> - 48a(1 4 6—7rz'a) 14
= 0.
And we get
o 201+ e ™) £ 2\ /(14 e )2 — (1 + e T 4 g~ 2mia)
S =

(1 + 6—7rz'a + 6—27rz'a)

2(1 + 6—7”'06) + 2\/(1 + e—m’a)2 _ (1 + e—mia | 6—27m'a)

] =

§= [ (1 + e—wia + 6—27rz'a)
SO
) (1 —iTQ _
z = %, where z = e7*", and
1
h=—-1logz.
s

Whenazl,s:i%andhzg,

and when a = 0.5, s = +0.6867 and h = 3.433.
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2.3 Fractional Systems

Example 2.3.10. Let G(s) = be a transfer function.

1
s—(s—1)e=5+(s—0.5)e—2s

By using the systematic method, we have

FO(s, ) = 3 [Ao(—8)Ai(s) — Au(s) Aui(—5)]2*
= Ap(—s)Ao(s) — As(s)Az(—s) + [Ag(—5)A1(s) — As(s)A1(—s)]z

I
—~

—5)(s) = (s =0.5)(=s = 0.5) + [(=s)(=(s = 1)) = (s = 0.5)
(—(=s—1))]z

= —s*—(s—0.5)(=s—05)+[s(s— 1)+ (s = 0.5)(—s — 1)]z

= 52— [-s>—0.55+0.55+0.25] + [s* — s — s> — 5+ 0.55 + 0.5]z

= —0.25 4 [~1.55 + 0.5]z.

Then
<= 0.5?'—21?53'
n—1
FO(—s h) = [Ao(5)Ap(—s) — Ap(—8)Ap_i(s)]z7F
k=0
= Ao(s)Ao(—s) — Az(—5)Aa(s) + [Ao(s)Ar(—5) — Aa(—5)Ai(s)]7
= 5(—5) = (=5 —0.5)(s = 0.5) + [s(—(—5 — 1)) = (=s — 0.5)(—(s — 1))]z"*
= —5*—[-5*+0.55—0.55 + 0.25] + [s* + 5 — s* + 5 — 0.55 + 0.5]z*
= —0.25+[1.5s +0.5]z7,
thus
n—r—1
FO(>s,n) = Y AT (s)
k=0
= Ay (=) Ay (s) — AP (5) A} (=)
= (—0.25)(—0.25) — (=1.5s + 0.5)(1.5s + 0.5)
= 0.0625 4 (—(1.5)%s* — 0.5(1.5)s + 0.5(1.5)s + 0.25)
= 0.0625 + (1.5)%*s* — 0.25.
Then
52 = 0BU02) ~ () 83333 then s = +0.289.

(15)?

Since s is not purely imaginary the poles do not cross the axis.
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2.3 Fractional Systems

Example 2.3.11. Let G(s) = —= be a transfer func-

1
s*—(s*—1)e—sh4(s*—0.5)e

tion. This example was considered by Nguyen for h = 1. Using Theorem 2
[17], Nguyen [27] found asymptotic expressions for the poles of G.

For a = 0.2 there are neutral chains of poles of G(s) located in the left-hand
half-plane. However, for v = 0.5 there are neutral chains of poles of G(s)
located on both sides.

Now by using the systematic method we have,

—

3

FOUs,h) = Y [Ao((—9)") Ak(s”) = An(s*) Anr((—s5)")]2"
= Z_()O((—S)“)Ao(sa) — As(s%) Aa((—=5)") + [Ao((—s)") Ar(s)
—As(s") Ar((—s)")]=
= (=9)%(s") = (s* = 05)((=s)* = 0.5) + [(—=5)*(=(s" = 1))
—(s* = 0.5)(=((=9)" = 1))]2
= 2™ — (2™ — (.55 — 0.55%™* 4 0.25) +
[—520€™ - 5T - 20T 50— (557%™ 4 0.5]2
= 0.5 +0.55%€™* — 0.25 + [0.5s%™* — 0.55* + 0.5]2
= 0.
Then
0250551 +e™)
0.55%mia — 5 4 (.5
Hence

FW(—s h) = 0.55%™ 4 0.55% — 0.25 + (0.55% — s%™* +0.5)2~! = 0,
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2.3 Fractional Systems

and,

n—r—1

F(Q)(s, h) = Z AI(:H)(Sa)Zk
k=0
= A ((=5))AF (%) = AP (s A (=)
= (0.55%™* 4+ 0.55% — 0.25)(0.55* + 0.55%€™* — 0.25) —
[(0.55%™* — 5% —0.5)(0.55” — s%™* — 0.5)]

— _820167”,01 =+ S2a62ma + 8201 —0.25

= 0.
Then
w025
§7 = — . :
e2mia _ pmia +1
S0
( 0.25 ]%
s =[— , a.
e2mia _ emia +1
In the particular case when o = 1, then s = [%]0'5 ~ (.289 and
h = =log(z).

In this system we notice that:

1. The asymptotes show a change at o = %

2. Analysis of the small poles shows a change at o« = 0.297.
So we have three cases:
e For 0 < o < 0.297 the system has no unstable poles.

e For 0.297 < a < 0.333 the system has finitely many unstable

poles.

e For 0.333 < « the system has infinitely many unstable poles.
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2.4 Fractional systems with particular values of «

2.4 Fractional systems with particular values

of «

2.4.1 Fractional systems with a = 0.5

Example 2.4.1. Let
1

T fste s
where h > 0. Then G}, is stable for 0 < h < ;%63”/ 4. As h increases, the

Gh(S)

poles cross the axis from left to right.

Proof. We consider the variation of the zeros of \/s + e "V* as h increases:
in particular the values of h at which they cross the y-axis. Equivalently,

we consider the values of h > 0 for which Gj(u) = H%hu has a zero on the

+
line {u € C : argu = 7/4}. Accordingly, suppose that e™" = —u, and let

u = ze'™*, where > 0.
We have
; _ i /4
xem/4 +e hxe _ 07
and so
xe—iw/4 + e—hze_i'”/4 -0
Then
thCECOS(ﬂ'/4) _ .T2,
and

6—2ihmsin(7r/4) _ €—i7r/2.
We now eliminate h and solve for z, so that

ilogx? = % + 2int  (n € Z),

whence z = ™47 and
b 5+ 2nm
\/iew/4+n7r '
The smallest positive value of h occurs at n = —1, giving h = 2?%63”/ 4,

Now, it is straightforward to check that for very small positive values of h
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2.4 Fractional systems with particular values of «

the transfer function G}, is asymptotically stable, and so it remains stable

until the first pole-crossing, which is at h = 5 \/—63”/ 4

It is possible to show that the poles cross from left to right as A increases

S

by calculating 52 at a point where /s + e~ = (. Similar calculations are

done for delay systems in [31] and [39].

We have

1 05 e hys R O5, s
2/s Oh [Vse +2\/_8h] =0,

now it is easy to deduce a formula for 2 5

Also, we have another argument to solve this example.
Take /s = u,

then
1

u+euh’

G(u) =
By Lemma 6.1.2 ([31]), we have,

u+e " =0 so0, ue"™ = —1, let 2 = hu then u = Z and thus, ze* = —h.
h

Suppose that z, = z, + y,, then
—log(2nm) +log | — h| + o(1) = —log(2nm) + log(h) + o(1),

and
Yp = E2nmw F g + arg(—h) + o(1).
— Zn — In yYn _ 2
Here u,, = #*, then u,, = %* + 14>, and s,, = u,,, 50
Tn | Yn Tn, Yn 2z, Yn;
wh= (il = (e (g 4 Sy

SO

Then |Res,| ~ n?, and |Ims,| ~ nlogn, with Res,, < 0.

Theorem 2.4.2. Let G(s) = p(\/§)+q(i/§)e—hﬁ be the transfer function of a

neutral fractional exponential system. Then the poles (s,) of G satisfy
A28 0 B2 2y hBP 2y R BTGy o

1
R ah et Tan an o Taila o Tartola)

Sp —

and hence |Re s,| ~ n?, and |Im s,,| ~ n~', with Res, < 0, for large n and
o = £1.
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2.4 Fractional systems with particular values of «

Proof. Let /s = u so, s = u?, then

By Theorem 2.1 [32], we have

P BT ok B
q(u)_a+u+u2+0(u3) as  |u| — oo,

for constants «, § and v with a = +1.

For sufficiently large integers n let A\, = 2nim if « = —1 and let A\, =
(2n + 1)ir if a = —1.

Then the poles u,, of G satisfy

h B v
S e Tl T o)
50,
N B h B A 1
_ 2 _ M npm 2
LR wmL R we s P
R ah a2X2 N\, a), aAd o a2A3 0 M4 a
2
vy 1
?] +0(ﬁ)
Then |Res,| ~ n? and |Ims,| ~ n~!, with Res, < 0. O

Proposition 2.4.3. Let G(s) be the transfer function of

_ 1
— p(Vs)ta(V/s)ehVE
a neutral fractional exponential system. Then
nm 4?2
-

and

Re s,| ~n?, and |Im s,| ~ n, with Res, < 0 and |a| > 1.

Proof. Let \/s = u so, s = u?, then

1
p(u) + g(u)e"
By Proposition 2.1 [32], then « # +1.

Gu) =

At poles of G(u), we have % = —e %" and thus e = —a + O(%)
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2.4 Fractional systems with particular values of «

A standard argument involving Rouche’s Theorem ([4], chapter 12) shows

uh

that the poles of G are asymptotic to the roots of e™" = —a or —uh =

log(—a) + i2nm, n € N, sufficiently large. Taking real parts, we have, for a
2nm

pole of G, u,, = _Tl log(—a) — ==, n € Z, sufficiently large.
Then

2nm 4An2r?

Sp =2 = (%log(—a)y + %log(—a)( )T

therefore,
1 nm 4n’n?
=3 log?(—a) + 2 log(—a) — 2

As a result, |Res,| ~ n? and |Ims,| ~ n, with Res, < 0.

Sn

0

Example 2.4.4. Let G(s) — be the transfer function of a

_ 1
T Vs(VstH1)+se
neutral fractional exponential system.

From Theorem 2.4.2, then p(s) = v/s(v/s+1), ¢(s)=sand h=1.

Let u = /s, Thus,
1

- u(u+ 1) + u2e—v’

G(u)

and then, p(u) = u(u+1),and ¢(u) = u?

thus
%:%:1—1—%,%&:1, g =1and v=0, then A\, = (2n + 1)ir.
therefore
AN B W By 1
= T Tty T o)
and then
(2n + 1)im 1 n 1 +of 1 )
Uy = — , o(—).
1 (2n+1)ir ~ (2(2n+ 1)2x2 n?
But we have
o, @2a+lim 1 1 1.,
S G Dir T iy g oG
thus
1 21 1 1
sn = —(2n+1)*7* 42— + 2 —

On+ 122 220+ )r 20+ 1)Pr% 420 + 1)t
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2.4 Fractional systems with particular values of «

therefore

1 1
Res, = —(2n +1)*7% +2 — + ;0.
es (2n+1) Gnt 122 T AEn + 1) as n — o0

As result Res,, = O(n?), with Res, < 0.

Theorem 2.4.5. Let G(s) = p(\/§)+q(l\/g)e—hﬁ be the transfer function of an

advanced fractional exponential system. Then

Res, <n®> and Ims, <logn with Res, <O.

Proof. As G is of a advanced type degp = dy < degq = d;.
Let /s = u, so s = u?, and then

1
p(u) + q(u)em
By the Theorem 6.1.4 [31] the roots of p(u) + q(u)e ™™ = 0 are asymptotic

G(u) =

to the roots of u® + y¥e~—uh = (.
Then, u®~% = —e7vh or ydo—diguh — 1.

 h 2 h(—1)Y/(do—d1)
Let z = R then ze® = a4

So, by Lemma 6.1.2 [31] with z = x + iy the solutions are

h(_l)l/(do—dl)
x, = —log(2nm) + log(| —————1) + o(1),
do — dy
and
h(—1)1/(do—d1)
Hence z = doh_“dl, so u = %9 (3 +4y), and then Rew, =< logn, with Reu, <
0.

However, we have s,, = u2, then

dy — dy
h

dy — dy
h

)2(3?721 + anynz - 92)7

Sn = ( )2(3711 + iyn)2 = (

and therefore Re s = (2-%)2(22 — y?).
Then
do—d
Res, = (D2 — )
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2.4 Fractional systems with particular values of «

and then
Res, =<n? and Ims, <logn with Res, <O0.
U
_ 1 .
Theorem 2.4.6. Let G(s) = VO WOIREG be the transfer function of a
retarded fractional exponential system.
Then

Res, < n? and Ims, <xnlogn with Res, <0.

Proof. As G is of a retarded type degp = dy > degq = d;.
Let /s = u so, s = u?, then

1

) = T gt

By the Theorem 6.1.4 [31] the roots of p(u) + g(u)e "™ = 0 are asymptotic
to the roots of u® + udte~uh = (.
Then y®~% = —e7uh or ydo—diguh — 1,

() o7t So, by Lemma 6.1.2 [31] with z =

Let 2 = - then, ze* =
’ do—dy

do—d1

x + 1y the solutions are

h(—1)1/do=d)
x, = —log(2nm) + log(‘— )+ o(1),
do — dy
and
h(—1)1/(do—d1)
Yn = E2nmw F g + arg((do)fdl) +o(1).
Hence z = ﬁ, SO U = ‘%;}fll(xjtiy), and then Reu,, < logn, with Reu,, <
0.
But s = u?, so
do —d doy —d
ow= (O B2, i) = (D2 20— ),
then
do — d
Res = (D22 )



2.4 Fractional systems with particular values of «

Therefore,
Res, =<n? andIms, < nlogn withRes, < 0.

Here we illustrate one method for finding the h where the poles cross the

axis. [l
Example 2.4.7. Let G(S) = m.

Let /s = x + iz,

then,

T+ iz + e M) —

and the conjugate form is
(z — iz) + e M=) — 0,

The real part is

x+ e " cos(hx) =0,
and the imaginary part is

r — e "sin(hx) = 0.

(F +nm)
h

Thus we have tan(hz) = —1, so ha = 2T + nr, thus z =
By substituting the value of z in x + e " cos(hz) = 0, we get an infinite

3
number of solutions for A but the smallest h is h = 4_:(’)’;(6;5 o 34.817.
4

2.4.2 Procedure for finding zero-crossings

Let G(s) =
system.
Let /s = x + iz. Thus we have

1 . . .
el Tae be the transfer function of a fractional delay

p(x +iz) + q(z + iz)e M@ =0
and the conjugate form is
plx —iz) + q(z — iz)e M@ = 0
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2.4 Fractional systems with particular values of «

Now we have to eliminate h, then find = > 0,

SO
o—ha—ihe _ p(x +ix)
q(z +ix)’
and .
o—hatihz _ _p(x —iz)
q(z —ix)’
then
e = A(z), where A(x)= plz+ Zx)p(x — m)
q(x + ix)q(x —ix)’
and

p(x + izx)q(z —ix)

plx —ix)q(x +ix)’

thus log(B) = ilog(A). From this equality we can find the value of x then
substituting in e=2"* = A(x) to find the value of h.

e ?' — B(z), where B(x)=

Example 2.4.8. Let G(s) = m
Let /s =z +ix,

Thus we have

6—hz—z’hm _ _(I + ZI'),
1
and
6—hm+ihm — _(33 - 233)7
1
then
o T+, r—1x 9
= - 2
and
o—i%ha _ r+ir 1+ _;
S rx—ix 1—i
Then
—2hz = log(22?) + 2inm,
and
—2hix = zg + 2im.
Then, i = %, so log(22?) 4 2inm = 5 + 2mm and then, n = 0,

us
Therefore 222 = e2 2™ g0

1
T = —=e

V2
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2.4 Fractional systems with particular values of «

Thus
—2hx = 5 +2mm = h= %, for the value m = —1, then
—2(—2671' )
h _ 37T SI

2.4.3 More general procedure for finding zero-crossings

In this section we are going to give a more general procedure to find zero-

crossing. Let

Let s = ye%i, then

Thus we have,

usze’ i

p(yae 3 )+q(ya€T>€—hyae 2 — 0’

and the conjugate form is

. . —Tio
Tio Tl —hy®e~2  __ 0

p(y®e 2 ) +qly“e =)

[

We have to eliminate h, then find y > 0, then

Conyecon(ze) _ P(y%e’ )p(ye =)

e

Let ;
[ = —2hy® = log[p(yae:i ’p(y%f: )],
cos(5F) T g(yee ™ )g(yre )
and A .
o~ 2ihy® sin(%8) _ p(yaew;f)q(yae%a)
plye 2 )q(yee™™)
Let
IT = —2hy® = — log[p(yo‘eiizq(yo‘e_z:)]
isin(L5) 7 p(yee ™5 )g(ye ")
Thus, I = I1.

This equality gives us the value of y, then we can find the value of A from

the previous equations after substituting the value of .
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2.4 Fractional systems with particular values of «

Comment

For a = 0.5 the previous procedure gives the same answer.

Example 2.4.9. Let G(s) = ———.

81/3+€7h5

Let s = ye?, then s!/3 = y/3¢% | thus we have

y1/36% + e—hy1/3(cos(%)+isin(%) =0

Y

and the conjugate form is

yl/?;e_T” + 6—hy1/3(cos(%)—isin(%) —0.
We have to eliminate h, then find y > 0,

y2/3 _ e—hy1/3 cos(%)+2nm’j
then log(y*3) = —hy'/3 cos(

2/310g(y)  A1qq
cos(g) )

)+ 2nmi = n =0, thus [ = —2hy'/? =

e = e~hy'/Pisin(§)+2mmi,
Let
T 2mm
II'==2hy' = s = —.
3sin(f)  sin(%)
Thus, [ =11.
Then

2n _ 4mm
h SRV S
[_26@(1/3—27%)

we choose m = 1 for the smallest h > 0, so

m(2v/3 — 1)
h=—"——"m"
3e 6
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Chapter 3

Diffusive Systems

3.1 Introduction

In this chapter we mainly focus on diffusive systems, the Hankel operator and
the © operator. We are looking at diffusive systems which are continuous-

time linear systems with impulse response h(t) which can be represented as

W) = / T etdue),

and the transfer function G(s), defined as the Laplace transform of the im-

pulse response h(t), is

Gt - [

s+¢&’

where p is a signed measure defined on R. If p is absolutely continuous we
write du(§) = f(§)d. We give a theorem that gives us the necessary and
sufficient conditions for diffusive systems to be BIBO and H* stable. More-
over, we consider a system with discrete measure p where h is given by a
series and g is a sum of point masses, and we give necessary conditions for
system to be BIBO and H* stable.

In the theory of approximation of unstable systems, the coprime factor tech-
nique is based on coprime factorization of the system as G(s) = 47 where N
and M are functions defined on the right half of the complex plane. This
technique plays an essential role in some interesting examples.

A number of techniques and tools are available for finding conditions that

test properties of the Hankel operator and © operator of a diffusive system
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3.2 Diffusive Systems

and in general for other weighted Hankel operators. Two tests in Howland’s
paper [19] have been adapted to test nuclearity of the © operator. The re-

producing kernel test has been used see [8] to say that I' (Hankel operator)
[Tzl
flw |l

is bounded if and only if sup, < 00, where u,(t) = e * for t > 0.

3.2 Diffusive Systems

Following Montseny [25] we make the following definition.

Definition 3.2.1. A diffusive system is a continuous-time linear system with

impulse response h(t) which can be represented as

)= [ e duto)
0
Note that h is real if p is real. Also, the transfer function G(s), defined as

the Laplace transform of the impulse response h(t), is

Gls) = /0°° du(€)

s+&7

where p is a signed measure defined on R.

If 1 is absolutely continuous we write du(§) = f(£)d€, where f is absolutely

continuous function.

Theorem 3.2.2. (See Montseny [25]). A convolution system y = h x u with

diffusive representation p can be realized as a diffusive equation

y(t) = /0 " Fe(e e, (3.2.2)

with ¥(&,t) a state variable such that ¥(£,0) = 0. Equivalently, as a heat
equation

Py(w,t) = Pyp(w,t) + (2)u(?t) (3.2.3)
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3.2 Diffusive Systems

/ m.ddx, (3.2.4)

with m(x) = 4m2x f(47%2?) and ®(x,0) = 0, and equivalently
U, = 47?0 +u, (€R, ¥(0)=0 (3.2.5)
— / . dC (3.2.6)

Proof. For a diffusive system we have

h(t) = / e tdue)

and
y() = (h+u)( // ~5 (€ )u(t — 2)da.
By Fubini
yt) = / et - oo
- [ e,
and
Glo) = (ens) = [ e nioar
[ e
By Fubini

G(s) = / / Oty (€)

- [ e

To prove those three formulas are equivalent we make the change of variables

€ = 47%¢% and d¢ = 872¢d( and from (3.2.1) and (3.2.2) we would get (3.2.5)

and (3.2.6) respectively and from Fourier transform with respect to the {—

variable: W = F®, it is easly shown that we would change (3.2.3) and (3.2.4)

to (3.2.5) and (3.2.6) respectively. O
48



3.3 Hankel Operator

Theorem 3.2.3. Let G be a transfer function of a diffusive system, where
= [T e ®du(§), and [° M < 00; then the system is BIBO stable
and hence H* stable. Moreover Zf,u 0, the system is BIBO stable and H

stable if and only if foo @) o o,

Proof. Part I holds, since,

/Ooo\h(tﬂdt - //5 tfd\m
:/ d ] (€
0 §

< 0oQ.

Then G is BIBO stable, hence G is H* stable.
Now if ¢ > 0 then, it is BIBO stable from Part I. Moreover, G is H* stable.

Conversely, if 4 > 0, then for s > 0

Let s — 0, then

Hence, if G is BIBO and H> stable and p > 0, then foo ) o 0.
U

Remark 3.2.4. In fact the above condition also implies that the system is

also nuclear (see Howland [19]).

3.3 Hankel Operator

We shall consider the Hankel operator I', on L?(0,00) defined by

[uf(a) = / " hie + ) fy)dy. (33.1)
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3.3 Hankel Operator

Theorem 3.3.1. (Howland Test 1[19, Theorem 2.3]). Ifh(t) = [ e *'du(§)
where p is a positive Borel measure, then 'y, is a nuclear operator if and only
of
1
—du(§) < oo.
o &
Theorem 3.3.2. (Howland test 2[19, Theorem 2.1]). If h(z) = [7° k(t)dt,

where

/ t1/2(/ e(s)[2 ds)/2dt < oo,
0

t
then h(z) is finite for x > 0, and the operator I'y, of (3.53.1) is of nuclear

type.

We require the following notation.

Definition 3.3.3. Ei(z) = [ < dt  (Jargz| < 7).
E.(z)= [<Zdt (n=0,1,2,3,..;Rez > 0).

— )1

Also we can define the step function u(x),

0 x <0
u)=91/2 =0 (3.3:2)
1 x>0

see [1, p. 227, 1020].

Example 3.3.4. We will study some examples of diffusive systems which

are BIBO stable or just H* or neither.

1. Let yp = 0, and h(t) = e=* € L', then G(s) = ==, a > 0, so it is BIBO
stable and nuclear.

efst
t+a

2. Let f(&) = e and h(t) = = ¢ L', then G(s) = [~

oo as § — oo ¢ H*, so it is not H> stable hence it is not BIBO

dt —

stable.
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3.3 Hankel Operator

3. Let f(&§) = £ and h(t) =

0,n=2,3, ),
By using the Howland test Theorem 3.3.1,

t+a) € L', then G(s) = a' e E,(as), (a >

1 o 1
o /0 2798 q¢ = = DT 1)an_lf(n —1) < o0,

where I' is the gamma function. So it is BIBO stable and nuclear.

4. Let f(&) = Sii(g—?f), where, 0 < Rea < 1 and h(t) = '}a(al ¢ L'. By
using the Howland test Theorem 3.3.2, we can not tell whether the I'y,

operator is nuclear.

5. Let f(€) = o= and A(t) = J ¢ L', then G(s) =

system), so it is not BIBO nor H* stable.

B

(fractional

6. Let f(€) = =1 where u is the step function (3.3.2), and h(t) =

m(§-1)
e_\; € L', then G(s) = \/% (fractional system).

By using the Howland test Theorem 3.3.1,

[ w1
_/15 (5—1>d5

Put £ =2 + 1, then

1
]§/0 —dx+/ \/_x3/2dx<oo.

So it is BIBO stable and nuclear.

7. Let f(€) = —=e ¥*/% and h(t) = e *Vi € L' then

Vit

A

1
G(s) = e hVigmstqy
&= 7

By using the Howland test Theorem 3.3.1, to calculate

L_o=k*/4 put 2 = L then

Jo & Ve
/ 2e 2y < 0.
0

Thus it is BIBO stable and nuclear.
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3.3 Hankel Operator

8. Let f(&) = cos(ay/€)/(m/€), a heat kernel with h(t) = e=**/4 /\/7t ¢
L' and G(s) = e"®*/\/s. This is not Hilbert-Schmidt, so it not nu-

0o —a?/2t
e
/ t dt = co.
0 mt

Indeed it is not even H° stable.

clear, since

0
3

Comment 3.3.5. If i is not a positive measure we can have fooo du(€)

but h € L' (i. e. it is BIBO stable and H> stable).

Example 3.3.6. Let f(&) = sin(§) and if sin(£)d€ = du(§), we have

sin() o«
/0 ¢ df— < 0

> [sin(§)]
f e
so h(t) = 55 € L' and G(s) = [r/2 + Si(s)] cos(s) + Ci(s) sin(s), so it is

BIBO stable and H* stable, where
Si(z) = / sm(t)dt’
0

t

and

and

Ci(z) = v+ In(2) + /0 M.

Also it is nuclear, since, using the Howland test Theorem 3.3.2
we have, k(t) = —h/(t), then, h(t) = [*k(x)dz and in this example we have,
k(t) = 2t

(241)%
Then,

[o.¢] 1
12 §)1/? 1/2
/ ! / 82+1 i~ /o ! 155/2dt<oo7

so it is nuclear.

Proposition 3.3.7. If 4 > 0 and h = Ly, then h € L? (i. e. G € H?) if
and only if

Jmeras = [T et [Cetauo
| [ emam©ute) <o



3.4 © Operator

Proposition 3.3.8. If 4 > 0 and h = Lu, then the Hankel operator is

Hilbert-Schmidt if and only if fo OOO% < 00.

Proof. According to Theorem (1.2.14) and using Fubini’s theorem, we have,

[ [ e [ e

— /0 oot( /0 ooe_téd,u(f)‘ /0 ooe‘””du(x)

= [Tl aut) [ e autana

_ / / / e p(E)dpa(x))d

- /0 te—tfﬂdt/ / dp(§)dp(z)
/ / du§+x '

This yields the result. 0

dt

)dt

3.4 O Operator

In this section we shall consider the scaled Hankel operator © on L?(0, 00)

given by

U 14 )7 /4 4.
(Ou) f/ h(t + ) Vhu(r)dr. (3.4.1)

Proposition 3.4.1. (See for instance [28]). © is a Hilbert-Schmidt operator
if and only if h € L*(0,00) moreover, ||O| ;5 = [|h|,-

Theorem 3.4.2. If © has the form (3.4.1) and u > 0, then © is of trace
class (nuclear) if and only if
<1
NG
Proof. We modify the proof of Theorem 2.3 in [19].
Let 9, (t) = t~Y/*e7P and define,

dpu(p) < oo.

Ty — /O ) pdu(p).
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3.4 © Operator

This integral clearly converges in trace norm to a non-negative operator, with

I = t’f’TO
:=ArmWw@

= / / ‘t_1/4e_pt}2dtd,u(p)
o Jo

= / ( / t=12e P dt)dp(p),
o Jo

letting (2pt)"/? = z, so £/2pt~1/2dt = dz,

and then
r- [ /Om\/ge—*d@du(p)
- [ /Ow\/ge—*dzdu@
- [\ )

After a simple computation with Fubini’s theorem, we conclude that T = Tj),
where 7' is that given in 3.4.1.

Moreover,

n:/ﬂﬂmwww (n>0).

1/n

In fact this is increasing sequence of nuclear operator with 7T,, < 7', and thus,

0< \/7tT \/7trT<oo
/n\f

This yields the result by letting n — oc. O

Theorem 3.4.3. Define the operator (Tw)(t) = [ w(t)h(t + T)w(T)u(r)dT,
where w > 0 and h corresponds to a measure p > 0, and ¢, € L* Vp >

0 , where 1, = e P'w(t), then T is of trace class (nuclear) if and only if

fooo H¢p||2dlu(p) <0
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3.4 © Operator

Proof. Let ¢, = e P'w(t) € L* and define,

Ty — / ) pdu(p).

This integral clearly converges in trace norm to a non-negative operator with

T, :/ 10,12 < oo.
0

The proof continues by the same argument as in the proof of Theorem 3.4.3.

0

Theorem 3.4.4. If h(z) = [k(t)dt and k € L*(0, 00) where

/ootl/4(/oo(k(a: +1))22~Y2da)2dt < 0. (3.4.2)

Then h(zx) is finite for x > 0, and the operator © of (3.4.1) is of trace class

(nuclear).

Proof. Since k € L'(0,00), h(x) is finite for z > 0. If f,g € L?(0,00), then

we have

©h9) = [ s@enE

= /0 e / T zfyk(s)f(y)y—”‘*dsdydx
/%ﬁ/ 1/4/ k(z +t)dtf(y)y Y4dyda
L]

/ e VA k(2 + ) f(y)y VA dydtda

SO

eral - |/ (k) g) (f xpogy )
< loll 141, | @)z 4, o (wy ] e

< lalls I1£1l, / V2t k()2 | dE < oo

Moreover
@:/ <'7X[O,t}y_1/4>l’_l/4kt($)dt
0

95



3.4 © Operator

where this integral converges weakly. However, if we estimate this integral

in trace norm, we obtain

L A 1 L

= VB [0 ) at

where the integral converges. Thus, the operator © of (3.4.1) is of trace class
(nuclear).

This proof is similar to Howland’s Theorem 2.1 [19].

We have a more general result, as follows:

Theorem 3.4.5. If h(x) = [ k(t)dt and k € L'(0,00) define the operator

(Tu)(t) = / " wt)h(t + Tw(r)u(r)dr,

where w, ;> 0 and

/0 ol (@) (@) dt < oo,

Then h(zx) is finite for x > 0, and the operator T is of trace class (nuclear).

Proof. Since k € L'(0,00), h(z) is finite for z > 0. If f,g € L*(0,00), then

we have

Tro) = | TN
_ / o) / " w(@ha + () fy)dyda
= [0 [ et [ kormedsids

+y

- /z: 9(z) /y: w(@) /t:/ k(z + t)dif (y)w(y)dyde
- /x: 9(v) /t: /y tzo w(@)k(z + 1) f (y)w(y)dydtdz

o6



3.4 © Operator

wral = |f " (he)ol@). ) (F. X))
< Ylly 151, / k(@)@ [Pxon (0], dt
< gl 171 / el (@) (@), dt < oo.
Moreover

7= [ X))

where this integral converges weakly. However, if we estimate this integral

in trace norm, we obtain

17, < / xiouw (@], ke (@), dt

where the integral converges. Thus, the operator T is of trace class (nuclear).

This proof is similar to Howland’s Theorem 2.1 [19]. O

Theorem 3.4.6. (Mercer’s Theorem), (see [13], Proposition 5.6.9). If the
non-negative, bounded, self-adjoint operator T has the continuous integral

kernel a(.,.) then,
tr[T] = / a(x, z)dx (3.4.3)
X
where the finiteness of either side implies the finiteness of the other.

We now show that © is a positive operator.

Theorem 3.4.7. Let h(t) = [ e ™ du(x) with > 0 then, © is a positive

operator i.e. © > 0.

Proof. We have to prove that (Qu,u) > 0, thus

(Ou,u) = / /t_1/4h(t+T)T_1/4u(7')u(t)dtd7'
o Jo
_ / / / (VA5 47) gy ()= Ay (Y u (D dtdr
o Jo Jo
= / [/ t_1/4e_mmdt/ 7'_1/46_”u(7')d7']d,u(x)
o Jo 0

_ / / ety e
o |Jo

2
du(z) = 0.
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3.4 © Operator

According to Mercer’s Theorem we can find the trace of the © operator,
where the kernel of © is t~V/*h(t, 7)771/4,

Theorem 3.4.8. tr© = [*\/Zdu(z).
Proof. We have

¥ 0,(0) = / t= VARt Y Ade
0

::/t”%mw
0

— / t_1/2/ e 2 dpu(x)dt
0 0

— / / t= Y22t At d ()
0 0
* I

= —du(z).
|\

Example 3.4.9. In Examples 3.3.4 and Example 3.3.6 we shall look at the

O

cases where h € L? and use Theorems 3.4.2 and 3.4.4 to examine the ©

operators to decide whether they are nuclear or not.

1. Let p = 6, and h(t) = e %, then G(s) = ——,a > 0 and h € L? (ie.

s+a’
G € H?), where

o o0 1
/\WW&Z/er:—<m.
0 0 2a

By using Theorem 3.4.2

“du() [T O 1
) ﬁ‘/o VE Va ™

So, the operator © is nuclear.

2. Let f(§) = e ¢ and h(t) = -~ € L*, where

/\h(t)\2dt:/ L ¢-lcw
0 o t+a)? a

By using Theorem 3.4.2

/OO e_aédt = 2/00 e’ dz < oo
o V& 0 '

So the operator © is nuclear.
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3.4 © Operator

n

3. Let f(&) = % and h(t) = € L?, where

(t+a)

h(t 2dt: - .
/0|<>\ / o <

In addition by using Theorem 3.4.2

2da(e) [T ele e
o V& 0 51/2(71—1)!

00 ¢(n—1/2—1) ,—a&
_ / e e
0

(n—1)!
_ Tw-1/2)
an—1/2

So, © is nuclear.

In Example 3.3.4, Examples 5-7 the operator © is not Hilbert-Schmidt (h ¢
L?(0,00)), so not nuclear.
In addition, in Example 3.3.6, with h(t) = 7 and k € L', the © operator

is Hilbert-Schmidt but, using Theorem 3.4.4 fails since (using Maple)

/Oootl/4(/too(/€(x + )22z 2dx) At = /Oootl/4(/t°°((x +(;2+f)1)2x1/2)1/2dt

B /°° t1/4(7r[8t8 + 2318 + 23t* 4 83(12 + 1)5/2 4+ 912 + 3(¢* + 1)%/2¢ 4 1] /2y
0 (A(VE2 + 1+ 2t)3/2[t8 + 416 + 6t* + 42 + 1 + (12 + 1)7/%1]

= OQ.

So we can not tell whether © is nuclear.

Boundedness of ©

Theorem 3.4.10. Write O, u(t) = [ w(t)h(t + 7)w(r)u(r)d7 and suppose

that h(t) = [["e ™du(x), with p,w > 0. Then © is bounded if

/ / x+y 2V (2)V (y)dp(z)du(y) < oo,
e

()l

where V (x) =
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3.4 © Operator

Proof. We first show that,

outl < [ [ el u(r) u(o) (o)

by Cauchy-Schwarz,

< / (e e )|, lully dua).

Let V(z) = |[e™* w(7)||5, so V(z) can be worked out (depending on w) in

standard examples like w = 1,w = t~1/4.

Moreover, we have

|Oull; = (Ou,Ou)

| et v @ lulduta) < [ lul, dear
<l [ / | e et @ (datedn)
<l [ foe vV eduene

=l [ [ VEGPV @Y @dutaldnty).

This finishes the proof. O

N

Corollary 3.4.11. (i) For the I" operator, we have w(t) = 1 and

Ve = ([ a1

thus I" is bounded if
< .
/ /‘\f_x+y =

—1/4

(ii) For the © operator, we have w =t and

Via) = ([ (e pany = (o

T

thus © is bounded if

A
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3.5 Reproducing Kernel Test

3.5 Reproducing Kernel Test

Theorem 3.5.1. (i) See([8]). If T is a Hankel operator and (T'u)(t) =
foooh(t + 7)u(r)dr, then T is bounded if and only if sup, T ””2 < 00

where u # 0 and u € L*. Moreover, by using the reproducing kernel test

[Tzl
l[uzl

for the case h > 0, T" is bounded if and only if SUPRe -0 < 00,

where u,(t) = e ", fort > 0.

[Ous )]
llua I

[©ull

(i) If the operator © is bounded, then sup,, < 00 and $0 SUPRe 0

<

00.
We apply this idea on our Examples 3.3.4.

(i) In example 5, h(t) = %

Now let u,(t) = e~ € L? with z =1 thus

)( )(©u)(t)dt

o0

(Ou,Ou) =

VAR + ) YV ()Y A+ 7)Y () drdt

dtd
t+ T\/t+—T !

Oot 1/2 1/2
dth

/ f=1/Ar—=1/4g—Ty=1/4—1/4 T

t+7'

oo 1/2
tdt / —1/26—2:cd7_
t+ 71 0 ’

J, ©
s
-
J
J

let Vt = z, then

=2 [ s e
_ /0 " arctan(z/ /)T e dr

= Z/OOET_?’/ze_QTdT,
0 2

let v/27 = w thus
00 —w?
T e
= — dw
5l
OO?

and HUI||2 fO —thdt 1/2 _ \/% and for r = 1’ then ||qu2 = % .

Hence, Ou ¢ L? and so the © operator is unbounded.
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3.6 Special case of a discrete measure

(ii) Example 6, h(t) = 6—\;

Now, let u(t) = e™** with = 1, thus

(Ou,Ou) = /w(@u)( )(@u)( )dt

00 4= 1/2 —2(t+7) —1/2 —27
- / / ¢ dtdr
t+ 71

o) 1/2 ,—2t
_ / / i / dt —1/26—4Td7_
Ct+T ’
let z = v/, then

0o oo —2z2d
= 2/ [/ ¢ 5 Z]T_1/26_4Td7'
0 0 24+ T

= o0,

and ||ugl|, = fo e 2t dt) /2 = \/_, thus for v =1, |lu,/, = %

Then Ou ¢ L? so, © is unbounded (so not H-S). For the examples 7
and 8 we can not tell whether © is bounded using these methods. We

develop further techniques in Chapter 5.

3.6 Special case of a discrete measure

We shall consider a system where h is given by a series and p is a sum of

point masses.

Example 3.6.1. Consider the following heat equation:
Zy = Zyo + b(x)u(t),
Z,(0,8) = 0 = Z,(1,), Z(2,0) = zo(x),
o) = [ etz

where b(x) and ¢(z) are L' functions for z € (0,1), see [10, p. 142].
Using analytic solution of partial differential equations, it is readily verified
that the transfer function of this heat equation is given by the following

infinite series for s # —n?n?,

G(s) _Oéoﬁo 22 B,

s+ n2x2’
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3.6 Special case of a discrete measure

where,

1
ozn:/ b(z)cos(nmx)dx for n=0,1,2..
0

1
B, :/ c(x) cos(nmx)dr for n=0,1,2.
0

and its impulse response is given by

h(t) = (L7'G)(t) = anfo +2 ) e ™™,

n=1

F(€) = (L7R)(€) = 6(aofo +2)_ anfBud(€ — n’n”).

This example has a pole s = 0 in the closed right half plane, so it is unstable

unless ag = 0 or [y = 0.

Example 3.6.2. (General Example). Consider this example with z,, > 0,

= icné(as —Tp),
n=0

h(t) = Lp = Z cpe” "t
n=0

Cn

S+ x,

G(s) = Lh = i

This system has no poles in the closed right half plane. In addition,

IG() g = sup [G(s)]

Res>0
| ¢
< sup ) —,
Res>0 n—0 S+ Ty
. 0o : o0 c
so, the system is H* if } 7 =] converges.

Now, we test whether the system is BIBO stable,
/ ()] dt = / S et
0 0 n=0
5
n=0 In
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3.6 Special case of a discrete measure

thus, the system will be BIBO stable if )~ ‘r—’;' converges.

The operator I" is nuclear if,

/“M _ / Zno\cnmé(x—xn)

x
<yl
nOxn
<

The operator I' is a Hilbert-Schmidt operator if,

[l a = [Ca S0 et S e
0 0 n=0 m= 0
< ZZ‘C’J |Cm| Ry )

<OO.

lenl

n=0 /x,
Hilbert-Schmidt operator if >~ > lenlleml 6 However, if ¢, > 0 for all

m Tn+Tm

Similarly, the © operator is nuclear if > 7 < 00, moreover, it is a

n, the conditions are also necessary (we get equality).
Example 3.6.3. Consider the following equation:
Zy = Z,
Z(0,t) =wu(t), Z(1,t) =0, Z(x,0) = zo(z),

y(t) = /0 " Ze b

Using analytic solution of partial differential equations, it is readily verified
that the transfer function of this heat equation is given by the following in-

finite series for s # —(2n + 1)?72,

(e}

1 S
G =34 G DG+ G I

and its impulse response is given by

iy = 20 4;[7( 2n5f>1)ﬂ — (2n + 1)me Cntet),
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3.7 Coprime Factorization

The system is not diffusive, however it could be considered as a diffusive

system + feed-through.

3.7 Coprime Factorization

In this section we extend the approximation techniques to unstable system
using a coprime factorization G(s) = & where N, M are H> functions de-

fined on the right half of the complex plane, as in [37].

3.7.1 The gap metric

Let ‘H and K be Hilbert spaces and let A : D(A) — K and B : D(B) — K
be linear operators with domains D(A), D(B) C 'H respectively, (see [31], p.
30).

Definition 3.7.1. Let A : X — ) be mapping between sets. Then its graph
is the set of all pairs (z, A(x)) with x € D(A), namely,

G(A) ={(z,A(x)) : v € X}

(see [31], p. 31).

Definition 3.7.2. As A is linear G(A) is a subspace of the product Hilbert
spaces H x K. A is said to be closed if its graph G(A) is a closed subspace
of H x IC (see [14]).

Definition 3.7.3. The gap between closed subspaces V and W of a Hilbert
space H is given by,
(VW) = [|P, = Pull,

where P, and P, denote the orthogonal projections from H onto V and W

respectively.

For a closed operator G, with D(G) (Domain of G) dense and G(G) =
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3.7 Coprime Factorization

{(Mu,Nu) : uw € H}, where M and N are bounded operators that are
strongly right coprime in the sense that XM + YN = I for some operators
X and Y, we can write G = NM~" (see [31], p. 30).

Definition 3.7.4. The gap metric between two Hilbert operators A and B

which are as above is defined as the gap between their graphs, namely,
(A, B) = 4(G(A),4(B))
(see [31], p. 31).

Proposition 3.7.5. (See [31], p. 72). Let G = NM~! be a right coprime
factorization of an operator; then there exists € > 0 such that, if | Ny, — N|| <

€ and || My — M|| < ¢, then Gy, = Ny My, is still a right coprime factorization.

Proposition 3.7.6. (See [31], p. 72). Assume that G = NM™' and
Gy = NyM;"' are as in Proposition 3.7.5. Then §(Gy,G) — 0 as € —
0. Conversely, for any € > 0 there exist n > 0 such that any Gy with
§(Gr, G) < n has a coprime factorization Gj, = N,M, " with |N, — N|| < ¢
and ||My — M|| < e.

3.7.2 The chordal metric

Definition 3.7.7. The chordal distance between two points w; and ws in

the complex plane is defined by

|w1 — w2|

V@ )1+ )

K(wy,wy) =

with &(w,o0) = 1/4/1 + |w|*. In other words, the chordal distance between
two points in C|J{oo} is given by measuring the length of the chord between

the corresponding points on the Riemann sphere (see [31], p. 82).

Definition 3.7.8. For any meromorphic functions G and H in the open right
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3.7 Coprime Factorization

half plane; the chordal distance between them is given by,

k(G,H) = sgp{m(G(s),H(s)) : Res > 0}

. G(s) — H(s)|
retor20 (1+ [G(s)P)A(L+ [H(s) )2

(see [15]).

Example 3.7.9. Consider this example with z,, > 0

Iu —005 +ch _xn

h(t) = Lpu=co+ Z cpe

Gls) = Z S —|— T

This system has a pole s = 0 in the closed right half plane, so it is not stable.
We here use an approximation technique based on coprime factorization of
the system as G(s) = &% where N, M are H* functions defined on the right
half of the complex plane.

We have here,

+;s+xn

Let

C Ch,

— s+ T
We now look at the chordal metric between G and Gy,
|G(s) — Gi(s)]

\/1+|Gs\\/1+|Gk

If G(s) = oo and Gi(s) = oo then (G, Gy) =0,

k(G,Gy) = sup

otherwise,

‘ Zn k+1 s+mn

k(G, Gy) = sup
5€C+\/1+|G \\/1+|Gk
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3.7 Coprime Factorization

Now write
G(s) =<+ H(s), H(s)e H™,
s
Gils) = C—;’ 4 Hy(s), Hy(s) € H*,
and
|H — Hlloo — 0.
According to Proposition 4.2.2 in [31] we write G = 2 and Gy, = ]\]\/[[—’Z, where
Mk = i ) M = i )
s+1 s+1
N, - s k(s)’ N SG(3)7
s+1 s+1
thus
1))G
Gy = B/ DICE)
s/(s+1)
and

(s +1))Gr(s)
s/(s+1)

From 3.7.6, since | My — M| — 0 and [Ny — N|| — 0 if 5%, 2 < oo it
follows that if ¢y # 0 then, [M, N| with N, M € H® is a coprime factorization

Gals) = (s/

and satisfying the Bézout identity, XM + YN =1 for XY € H*, so

X(s+1)+Y(s%(—)1+Z(s+x,3(s+1)):1

1 _ Cn
letY—athen,X—l—Zm,
That (G, Gg) — 0 as k — oo follows from Proposition 4.2.2 in [31].
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Chapter 4

Rational Approximation

4.1 Introduction

The problem of approximating infinite dimensional linear systems is consid-

ered in this chapter. We work on rational approximation of diffusive sys-

oo f(z)
0 z+s

method, which consider the problem of numerical evaluation of the integral

tems with transfer function G(s) = dz by the Gaussian Quadrature

fabg(t)dt. This integral requires changing variables,

2 (b+a)

— t—
. b—a( 2

)

converting the integral f:g(t)dt to the one of the form f_llgo(x)dx.

In this chapter we state general theorem for smooth f (including at 0) de-
caying fast, for which we can find good rational approximants. However,
the approximation provides more information; if we have a convergence rate
of approximation ||G — G|, then these provide a convergence rate of the

Hankel singular values o, of the transfer function, since o, < |G — G, || ..

4.2 Approximation by polynomials

Theorem 4.2.1. ([23, Theorem 41.2, Gauss|). If z1, s, ..., x, are the roots

of nth Legendre polynomial P,, there exist unique Ay, As, ..., A, such that

/_ Pla)de =Y AP().
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4.2 Approximation by polynomials

whenever P is a polynomial of degree 2n — 1 or less.

Definition 4.2.2. Let f be a continuous function, then let
Fu(f) =) Aif(x))
j=1
where 1, s, ..., x, and Ay, As, ..., A,, are as in Theorem 4.2.1.

Definition 4.2.3. H,, is the set of all polynomials of degree n or less, i.e,

polynomials of the form
P(z) = co + 10 + c2° 4 ... + cpa”
where the coefficients cg, ¢4, ..., ¢, are arbitrary real numbers (see [26], p. 20).

Definition 4.2.4. Suppose that g € C([a,b]) and P(z) is an arbitrary poly-
nomial, then

A(P) = max [P(z) — g(x)]

a<z<b
and

E, = FE,(g9) = inf {A(P)}.

PEH,
E, is considered as the best approximation to g(z) by polynomials from H,

(see [26], p. 20).

Theorem 4.2.5. ([23, Theorem 4.3, Weierstrass|). If g : [a,b] — C is
continuous and € > 0 we can find a polynomial P with

sup |P(t) —g(t)] <e.

te(a,b]

Theorem 4.2.6. ([23, Theorem 41.6, Stieltjes]).

(i) Let Pan_1 be the set of polynomials of degree 2n — 1 or less and g(x) :

[—1,1] — C is continuous, then

<A4inf{ sup |g(t)— P(t)|: P € Pop_1}.

—1<t<1

R~ [ s

1

(i1) F.(g) — f_llg(a:)dx as n — oo.
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4.3 Approximation and diffusive systems

Corollary 4.2.7. ([26, Corollary VI. 2. 2|). Suppose that g(x) possesses a
bounded derivative gtV (z) such that ||g@ ) (z)|| < Ky on [a,b] then E,
(the best L™ error of approximation by polynomials of degree m or less) is

given by
Cylb— a) Ky

Y

where C,, is a constant depending on p > 0.
Definition 4.2.8. When T is a bounded operator, we define
on, = inf{||T — S| : rank(S) < n},
(singular values) and o,, — 0 if and only if 7" is compact, see ([28, 2.34]).
Definition 4.2.9. Let 7, = inf{||G — G,,|| : degree(G,) < n}, then
Ont1 < Tp L Opy1 + Onao +0pys + .o,

where o,, are the approximation numbers of the associated Hankel operator,

see([28] and [18]).

4.3 Approximation and diffusive systems

We shall consider the transfer function of a diffusive system given by G(s) =

oo f(xz
Jo 45

g(x) € C(]0, M]) and the Gaussian quadrature method.

dz and then we will use numerical evaluation of fOMg(x)dx, where

Lemma 4.3.1. Suppose that f is a measurable function and f(z) = O(x™"),
for some r >0, as x — oo, then
‘/ de‘ < C'/ "l dr =0(M™") as M — oo.
M T+ S M

Proof. The proof is clear. O

Theorem 4.3.2. If ¢**V bounded on [0, M] by K,.1 then

M - M C2P K,y
/0 g(x)de = > Ajg((a; +1)M/2)| < 5 2n =1

J=1
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4.3 Approximation and diffusive systems

Proof. From 4.2.7. O

Lemma 4.3.3. Suppose that f(xs € C([0,M]) and gs(t) = % €

C([—1,1])) and gs(t) possesses a bounded derivative gt )( t) such that
Hgﬁpﬂ)(t)” < Ky then

Co K, 20+

(2n — 1)rHl ~ O(n= ).

E,.(gs) <
Proof. We have

FOMt)2 + M/2)
Mtj2+ M/2+ s’

M
0 x—i—s :_/

according to Corollary 4.2.7

M f(a
‘ 0 x—l—sd __ZA]S

This finishes the proof. O

gs(t) =

SO

M 2T
< Zo = Tptl
— 2 P(2n— 1)t

~ O(n~ P,

Lemma 4.3.4. (i) Suppose that J;(—fs) € C([0, M]) and

t) = 4o D e (-1,
then
- [ 0] < oo - Po)] )

(ii) F,(gs) — f_llgs(x)dx as n — 0o,

where P is a polynomial of degree 2n — 1 or less.

Proof. (i) To estimate fo J; @) 4z, we have to change the variable

r=Mt/2+ M/2

converts the integral fo J; @) 4z to one of the form
M M Mt/2+ M/2)
F@) M M2+ M) Z o
0 T+S 2 Mt/2+M/2+s
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4.3 Approximation and diffusive systems

thus, according to Theorem 4.2.6,

M f(x n
’fﬁ; r— 5 Ajgs(ty)| <

P2n—1}-

inf{sup_, -,

gs(t) — ﬁ(t)) . Pe

(ii) The theorem of Weierstrass (Theorem 4.3, Weierstrass ) shows

inf{ sup |gs(t) — P(t)‘ :PEPy_1} =0 as n— oo.

—1<t<1

Lemma 4.3.5. If J;(—fz is a continuous function on [0, M| and

_ f(Mt/2+ M/2)
9 = A2+ 32+ s

S C([—l, 1])a

possesses a bounded derivative g™ )( t) )(t)H < K11 then

AMC,2PV Ky 2772MCL K,
= 2(2n— 1)t (2p — )Pl

M f(x
x+s __ZAJ Js

Proof. By using Lemma 4.3.3 and Lemma 4.3.4, then

M f(
0 x—i—s ZA]S

0

4M
< - inf{ sup |go(t) = P(t)] : P € Pons}

—1<t<1

AMC,2H K,
2(2n — 1)+l

asd V(N o
(2n — 1)pt1 -

IN

0

Theorem 4.3.6. Let G(s) = f0°° [@) —~dx the transfer function of a diffusive

system, and H )(pH) < L1 and in addition f(z) = O(xz™") forr >0
then
inf _|G(s) = Gu(s) |, = Ol 777
in s) — Gp(s = O(n»+r
deg(Gn)<n 0
Furthermore,

—r(p+1)
Op = O(n pt+r+2
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4.3 Approximation and diffusive systems

Proof. 1f we take
G(s) = dex = / f)

0o T+s 0 £E+$

according to Lemma 4.3.1

'/ £E—|—s 'SC/ij"”—ldx:O(M_r)

(M2 + MJ2)
9 = A2+ 32+ s

Set

€ C([-1.1]),

then
Hg(p+1 H < MpHLpH,

and, on account of Lemma 4.3.5

f ZA gl 4MCpMp+1Lp+12p+l C’pMp+2Lp+12p+2
0o T —|— s !

< 2(2n — 1)ptt = Gn 1)
Combining the previous results then,
i P2 )
deg(lcr;lf)<n ||G(S) - Gn(S)HOO ~ le + kQM

for some constants k; and ks.

Now we have to choose M to make the error as small as possible thus

] p+2
m]\}[n(k: e + ko M™T)
S0,
k 2) M+t
1(p +p+)l — rhy MO+
n
then

p+r+2 o ., p+1
M ~ N .

It follows that

inf  [|G(s) = Gu(s)]|l, = O 7557,

deg(Gn)<n &

Furthermore, since
on < HG - Gn”oo
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4.3 Approximation and diffusive systems

SO

0

Theorem 4.3.7. Suppose that for p > 0 and r > 0 there is a constant Ny,

such that
G | 29 @)
(i) || 5r2=r < Npyq forall0 <k <p+1.

(ii) f(x)=0(z™") at co.

Then
r(pt1)
inf |G — Gull. = O(n 572,
deg(Gn)<n

In addition

ey

Proof. We have, on account of the Leibniz rule,

(;ff)s) (p+1) B % (p Jkr 1) f(k>(x)(%ﬂ)(p+l_k)

k=0

. (p + 1) 09 () (—1)P"*(p+1—k)!

— k (x + s)pt2—Fk

then

I R e

(x + s)pt2=F

‘(;c(f)s)(pﬂ)

(p—]: 1) f(k)(.T) (_1)p+ B (p +1-— k)'

(x + s)pt2=Fk

IN
i\

p+1
Di(p+1—k)!
< (k) (p+
- ;}f (x)\ (p+1—Fk)! k! apt2-k
| f®) ()|
< R, sup ——.
= e Ptk
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4.3 Approximation and diffusive systems

where R, is a constant depending on p. Since % is bounded for all
0<k<p+1, thus (J;(—g)(p“) is bounded. Moreover the assumptions of the

Theorem 4.3.6 are available. It follows immediately that

r(p+1)
inf |G — G|l = O(n 7712),
deg(Gn)<n

In addition

O

Corollary 4.3.8. Ifrp > p+2 with p > 1 in Theorem 4.3.7, then the system

18 nuclear.

Example 4.3.9. We shall apply the previous theorems to the Examples
3.3.4.

1. When i = 9, we have a one dimensional system i. e. finite dimensional.

2. When f(z) = e *. This is not a good example, because ﬁ% =

(_1)kake—az

“— = is not bounded on the real line for each p with 0 <k < p+1.

3. When f(z) = % where m = 1,2, .., in this example r can be any
number greater than zero, because f(z) — 0 quickly at oc.
Then, on account of Theorem 4.3.7, we may conclude the following:
For f(x) = ze™* when p = 0 for kK = 0 we have f(x)/x* = ze %" /z?,
which is not bounded on R; and for k£ =1 then f'(x)/z = (—axe™* +
e~ %) /x, which is not bounded on R.
For f(x) = z%¢7* when p = 0 we have f(z)/2* and f'(x)/x are
bounded on R, then 7, = O(nw+2) so if 7 is large but is less than
oo then 7, = O(n~17¢) for any € > 0. In addition if p = 1, f(z)/2? is
not bounded on R.

m,—ax
€

In general if f(x) = *=%— where m = 1,2, ... then r can be any num-
(m—1)

—r(m—1
ber greater than zero, and p = m — 2 and 7,, = O(n~ =+ ) then as

r— 00, 7, = O(n~"=V+€) For example for m =2, 7, = O(n~1*)
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4.3 Approximation and diffusive systems

so, we can not conclude that it is nuclear. For m > 2 the system would

be nuclear.

- When f(z) = 228 and h(t) = 4= and G(s) = & ¢ H>, where
0 < Rea < 1. Then the system is not stable. This example is in [25]

. When f(z) = \/% and h(t) = ﬁ ¢ L' then G(s) = %, which is not
BIBO or H* stable.

. When f(z) = \;%, where u is step function,

we have

dx—

G(s) =

d
0 $+3 /\/x— L(z +s) / \/_£E+S+1)x

Let x = t*, then dx = 4t3dt,
thus

/(@) dx:4/ 47@5:4/ 7dt+4/ ——dt
0 T+S o th+s+1 o +s+1 u tr+s+1

Then
° t o t

<t
[t
v 1

< / t73dt = O(M™2).

M

On the other hand, H )P < Kpiq, where K,y does not de-

t4+s+1
pend on M, and

M ! Mz/2 + M/2
/ Ldt:M/z/ 22+ M/ dz,
o th+s+1 a(Mz/24+ M/2)*+s+1

SO

AM Gl 27 Ky (M /2

M n
t
————dt — M/2) " Ajglt
/0 H+s+1 /jzl 90| <

2(2n — 1)pt!
Combining the previous results then,
Mp+2
inf  ||G(s) — Gu(9)| = ki—— + koM~ 2,
deg(Grn)<n np+
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4.3 Approximation and diffusive systems

Now we have to choose M to make the error as small as possible thus

mﬂ/i[n(klj\f%j + koM ™?),
SO
L Zi)lMp“ = =2k M,
then

Mp+4 ~ an.
It follows that

inf ||G(s) — Gp(s)|l,, = O(n v+ ).

deg(Gn)<n

Furthermore,

For p = 0, we have 7, = O(n~1/?).

For p = 1, we have 7, = O(n™%/%).

For p = 2, we have 7, = O(n™1).
-8/7

(
(n
For p = 3, we have 7, = O(n=%7)

Letting p — oo, we have 7, = O(n=2%) for any € > 0.
. Let f(z) = \/%e_kQ/‘lx then f(z) = O(z/?) as x — oo, and

> f(=) q ok /dz q
xr = —AaXl.
0 x4+ s 0

Vra(r + )
Now, 1/y/x goes to zero very slowly, so we suppose that, x = 2! for

[ > 1, then dz = [2'"'dz

00 f(x) 1 OolZl_1€_k2/4Zld
v= | TRy
0o T+s o AP+ s)

We can rewrite our integral in the following expression
0o —1,—k?/4z M l—le—k2/4zl ooZl—le—k2/4zl
/ S . / SR +/  da
o 22(Z+s) o 222+ s) v 222+ s)
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4.3 Approximation and diffusive systems
Now
00 l 1 —k2/4z
/ 222 + 5) (2 +s) dz

M [ l—1,—k2 /42!
l/2 Z +

S /Ooz—l/2—1dz
M

= O

lz§ 1 —k2/4z
(21+s)

For [, dz and H )(p+1) H < K, 41 we have to change

the variable,

. 1 _—k2/a(Mt;/2+M/2)t
z=Mt/2+M/2 te[-1,1],let, g(t;) = (Mt /2+M/2)' e j

(Mt;)24+M/2)1/2 (Mt /2+M/2)l+s) ?

then according to Theorem 4.3.2

ooZl/2—1€—k2/4zl n
/ Wdz - M/2)  Ajg(t))] <
=1

M

AMCyp 27 Ky 1 (M /2)P7
2(2n — 1)p+1

Combining the previous results then

. MGy (M/2)PH K, 2P+ 2012
f|G(s) = Gu(s)|| < 4—2F L
s, 1G(8) = Gnls)ll = 2(2n — 1)r+1 I

then

p+2
inf ||G(s) — Gp(5)]|. ~ ki M + ko MV,

deg(Gn)<n & TLP'H

Q

Now we have to choose M to make the error as small as possible thus

p+2
m]\/ifn(kl -+ ko M~Y?),
SO
ki(p ;jr)lMpH — _é(kgM—W—l)7
then

pH/242 -, p+l
M ~nPm.

It follows that

—1/2(p+1)

1G(s) = Gu(8)[loo = O(n 717227).

Furthermore,

—1/2(p+1)
Ty = O(n p+1/2+2 )

Letting | — oo then we have, 7, = O(n ?~*¢) for each p > 1.
8. When f(x) = cos(a\/x)/(m/z), a heat kernel, it is not stable.
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Chapter 5

Diffusive systems defined by

holomorphic distributions

5.1 Introduction

In this chapter, we introduce diffusive systems defined by holomorphic dis-
tributions (and measures on a half plane). We basically start by the easier
examples where the distribution can be written as a measure on a compact
rectangle. Then we investigate more complicated distributions, where the
system is not necessarily stable, although its impulse response and transfer
function can be defined.

Diffusive systems have links with the heat equation. For instance, Montseny
[25], considered diffusive system as a convolution system y = h * u, where
h(t) = [ e ®dp, and he gave three equivalent formulas. Here we general-
ize this idea where h(t) = (e;, ®) with a diffusive representation ® (with a
measure ;) and these systems can be realized as a diffusive equation (heat
equation).

Moreover, we develop more research on rate of decay of singular values of
the associated Hankel operator and © operator, including nuclearity and the

Hilbert-Schmidt property.
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5.2 Diffusive systems defined by holomorphic distributions

5.2 Diffusive systems defined by holomorphic

distributions

For n > 0 let K,, denotes the compact rectangle
1
K, ={2€Cy:z¢€ [E,n] X [=n,nl}.

Let C, = |J K, and H(C,) denotes the Fréchet space of holomorphic func-
tion on K, equipped with the topology that can be derived from the semi-

norms
[f1l, == sup{[f(2)| : 2 € Kn}.
Now let ¢ : H(C,) — C be a bounded (continuous) linear functional, then

there exists a constant M > 0 such that

[(f. o) = lo(f)] < M|, ,
for all f € H(C,).

The Fourier-Borel transform of ¢, which is the impulse response of a system,

can be given by
h(t) = FB(9)(t) = (e, ¢),
for t > 0, where e_4(z) = e " for z € K,,.

The transfer function of a diffusive system is given by Stieltjes’s transform,

G(s) = S(¢)(s) = (ks, 0), s€Cy
where ky(2) = =, see ([24]).

stz
Theorem 5.2.1. Let G(s) = S(¢)(s) = (ks,¢), s € Cy and h(t) =
FB(¢)(t) = (e_t,¢), then h € L' and G(s) € H*®.

Proof. We have for some n

(e~ @) < M sup [e*|

ZEKn
S Me—t/n’
so, h € L.
Similarly
1
G(s)] < M sup
2€Ky,5€C, |2+ S
< M.mn,
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5.2 Diffusive systems defined by holomorphic distributions
since, |z + s| > Re(z + s) > & thus ‘ —| <n, hence G(s) € H™. O

5.2.1 Distribution as a measure

In general for a given distribution ¢, by the Hahn-Banach theorem one can
extend ¢ to C'(K,)* i.e. there is a measure p of compact support K, in C,
such that

1f.6)] = ' / fdu' < If1l, 11 (K) Vf € Hol(C,)

and it is possible to define the impulse response function and the transfer

function as follows:
) = (ed) = [ e autz),

and
1

G<S>:<’fs’¢>:/m+s

i. e. the distribution can be written as a measure on the set K,,.

du(z),

Example 5.2.2. (i) If (f,¢) = f'(1) then h(t) = —te **|,..;= —te™" and
G(s) =

= . o /(z) d’z (where C'is a circle centred at (1,0)), corresponding to u

o7 l==1= 7 but by the Cauchy integral formula f'(1) =

that is not unique.

= [ F K. ), and ® acts on functions defined on K,,, given by
1 Where 1 is a measure on K, C C,.

The next result generalizes [25].

Theorem 5.2.3. A convolution system y = hxu, where h(t) = (e_;, D), with
diffusive representation ® (with a measure ) can be realized as a diffusive

equation (heat equation)

P(z,t) = —z2(z,t) +ul(t). (5.2.1)
y(t) = ((e—oxu)(1),P), = / (e— xu)(z,t)du(2)

with ¥(z,t) a state variable such as that ¥(z,0) = 0 and then,

(s)
z+s
82
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5.2 Diffusive systems defined by holomorphic distributions

and
V(o) = wo). = [ Taue)

Proof. We have 1) is a solution for the heat equation, from

Ui(z,t) = —zp(z,t) + ult)
y(t) = (¥, @) = (e *u, ).
Take the Laplace transform for the heat equation then we obtain,
sU(z,s) = —2¥(z,s) + U(s)

and hence

thus

Y@)::ATL“@du@):<W¢®Z:(E@‘”*uﬂ@s)@p

xr—+ s
n

then v is a solution for the heat equation.

Moreover h(t) = (e_4, ®). = [, e *dpu(z), and
y(t) = (h*u)(t) = /0 h(T)u(t — 7)dr,
= /( T D)t — 1)dT

_ / /n u(t — )dp(2)dr,
- / n / ot — 7)drdp(z)

= *u)(t), @),

by Fubini’s theorem

Also, we could express y(t) as the following,

o) = [ et (F) duce)
-/ [ e rate = ryildncs)

:(/EL*uzth)

n

= ((ezxu)(t), ).
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5.2 Diffusive systems defined by holomorphic distributions

O

Corollary 5.2.4. The following diffusive systems are equivalent to (5.2.1).
(¢, t) = —AT*CW (¢, t) + ult) (5.2.2)
y(t) = (¥, ).
with W(¢,0) = 0.
This is also equivalent to
Oi(w,t) = Ouu(w,t) + 0(x)u(t) (5.2.3)
yt) = (©,9)
with ©(x,0) = 0.
Proof. We are now in a position to show that (5.2.1) < (5.2.2); it is sufficient
to make the following substitution z = 4722, then ¥ (¢) = ¥ (472¢?), ¥,(¢) =
Yy (4m%C?). Tt remains to prove that (5.2.2) < (5.2.3), thus we only need to

observe that ¥ = FO transforming with respect to the { variable.
]

Theorem 5.2.5. If i is a measure supported on K,, then the Hankel operator

15 nuclear.
Proof. Let
Tue) = [ uBhit+ €t (0<¢ <)
0
where h(t) = (e, @) = [, e *du(2).
Assume that ¢, (x) = e ** and define

TOZ/ <"90z>30zd,u(z)a

this integral converges.

Tou(§) = ((u, 2)p:(£), P)
= / u(t){e e %, ®)dt

_ /Ooou h(t+ €)d



5.3 More general distributions

Then, T' =Ty by using Fubini’s theorem.

Tou(r) = ((u, p=) = (), P)

then,
2
tr((u, ¢2) @) < |l@:ll7e -

To is not a positive operator, but according to Lemma 1.11 28, p. 11], the

nuclear norm of T is

MMS/H%%MM@<w
Ky

since ||<pz||2LQ is bounded uniformly on K,,.

5.3 More general distributions

Definition 5.3.1. Let X be the set of f: C, — C analytic such that

sup }(Rez)kf(j)(z)} < 0

ZE(C+
whenever 0 < k£ < j+ 1.

So X is a Fréchet space with these seminorms

Iflly = max  sup {|(Rez)"fV(2)]}.

0<5<
0<k<j+1

The sequence of these seminorms is increasing.

Note: e ; € X forallt > 0 and k, € X for all s € C,.

Definition 5.3.2. We have ¢ € X* (the dual space of X) if and only if there

are n € N and a constant M such that

(f, )] < MHfH(n)’ Vf e X.

Proposition 5.3.3. Let h(t) = (e_y, ¢) with t > 0 and G(s) = (ks, ¢) with

s € Cy then |le™®||,y < oo Vn and sup,cc, ||ksll,) is infinite
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5.3 More general distributions

Proof. Let us first notice that
(e7#)™ = (—t)"e~* is bounded on C,
SO

He_tzH(n) = mmax Zset(lcp {}(Re z)k(—t)je_tz}} < 00
0<k<j+1

then e_, € X, and |h(t)| < M [le™|,) < oo Vn.
Now

_ (=175
||k5||(n) - Oglaé)fm ZSEL}CI?—{ (ReZ) m .

Here we have two cases.
When k = j +1 then [|k[, = j!, however when k < j + 1 then ||k, =~
(Re s)k=0+D)
then [|ksl[,,) < oo Vs but sup, ||ksl|,, = oco.
Moreover since
G(s) = (ks, 0)
SO

|G (s)| = (ks 9)| < M [[Es]l )

where M is a constant, since ||/€3H(n) depends on Re s so as we shall see later

G is not always in H* see for instance, 5.3.11. O

5.3.1 General case

A convolution system y = hxu, where h(t) = (e_q, ¢), with diffusive represen-
tation ¢ (distribution) that acts on analytic functions f € X as in Definition

5.3.1 can be realized as a diffusive equation (heat equation)

U(z,t) = —z(z,t) +ul(t). (5.3.1)
y(t) = <77b7 ¢>z - <e—t * U, ¢>z
with 1 (z,t) a state variable such as that 1(z,0) = 0 and then,

U(s)
Z+ S

U(z,8) =

and




5.3 More general distributions

Proof. We have ¢ (distribution) acts on analytic function f € X is defined
in Definition 5.3.1.

1) is a solution for the heat equation, from

Ui(z,t) = —z(z,t) +ul(t)
y(t) = (¥, ¢) = (e xu,9).

Take the Laplace transform for the heat equation then we obtain,

sU(z,8) = —2¥(z,s) + U(s),

and hence
U
U(z,s) = . fl
Thus
U
V(5) = (0,0). = (£l wu)(z,5), 6)- = (1 g)
and 1 is a solution for the heat equation.
Therefore
y(t) = (hxu)(t) = /h u(t —71)d
= [ttt - e
_ —TZ o d
([ e mutt =
= (e_yxu,d),.
See ([36], p. 52-53). O

It is elementary to show the following.
Lemma 5.3.4. Forr >0 then |[t"e™"|| » = =% for some ¢, > 0.

Proposition 5.3.5. (z) If the function v — M lies in L' and we define
fo x)dz for f € X, then this gives a bounded ¢ and if
@ELl thenhELl and G € H*®.

87



5.3 More general distributions

(i) If the function x — 2+ +1 lies in L* and we define (f,¢) = [}~ g dz
for f € X, then this gives a bounded ¢ and if ic(—ﬁ € L' then h € L1
and G € H*.

(#ii) If the function x — Zk“(“ — lies in L' and we deﬁne qb )= g(z) fP(z)da
for f € X, then this gives a bounded ¢ and zf wnﬂ € L' then h € L
and G € H*.

Proof. For the case (i) ¢ is a bounded functional since

[(frol =

/ " o) ()

/
9

r+ 1],
< Cfll

g(z)
r+1

[max[e ()| + max | ()]

max |(x 4+ 1) f(z)|dx

A

where C' is a constant.

We next claim that h € L' and G € H®,

h(t) = /000 g(z)e " dx

then
/Ooo\h(t)\dt < // (2)] e~ dadt
= [ )l e < .
Now
G(s):/ooog(x)sixdx
SO

T
s+x

o 1
/ lg(x)] —dx < 0.
0 T
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5.3 More general distributions

So, G € H*. Similar arguments apply to prove the case (ii); as in the proof

of the first case we have to show that ¢ is a bounded functional

ol = | [ gl @
> g(z) 2 /
< /0 7562““‘\(:6 +a+1)f ()| dz
D] [o?70)| + o (o) + x| o))
22| 1l

We now prove that h € L' and G € H®*®,

h(t) = / " () (—t)ed,

thus
/ ()| dt < / / ()| te~=dadt
0 0 0
= [l e <
= ; gz = T < 00.
Now
& —1
G(s) = " d
©= [ o) g
thus
Gol = [ oo
S
= o PG
o 1
< /0 |g(x)\?dx<oo.
Similar arguments apply to prove the case (iii). O

5.3.2 The Hankel operator
We shall consider the Hankel operator Ty,
Tua(e) = [ e+ g)ulu)dy
0

where h(t) = (e_y, ¢).
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5.3 More general distributions

Proposition 5.3.6. (i) If (f,¢) = = [ z)dz and h(t) =

(e_t, @) then, the Hankel operator is nuclear zf
°° dx
| @IS <.

Moreover, if g > 0 the Hankel operator is nuclear if and only if

o dz
/0 g(x)? < 0.

(i) If {f, o) = =/ x)dx and h(t) = (e_y, ¢) then, the Hankel

o 1
/0 lg(z)] ;dx < 00.

(iii) If (f, ¢) = Sp 0 J5 ge(2) f*) (z)dx then, the Hankel operator is nuclear
if

operator is nuclear zf

o dx
; |gr ()] s
for each k.

Proof. We shall use the fact ||t"e ||, = ﬁa Vn > 0, with n not nec-

essarily an integer and C' a constant see Lemma 5.3.4 .

(i) If o(f fo x)dx and h(t) = (e_s, ¢) then the Hankel operator

is given by

Tu(©) = [ ulon(e o
= /0 oOU(15)<€—(t+£>> ¢)dt

= / / u(t)e 'dte * g(z)d.
o Jo

For a fixed z let

Tou(§) = (u,e™™)e™™

= (u,e_p)e_,.
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5.3 More general distributions

This operator has rank 1 and

1
tr|Te] < lle-all lle-sll = 5.

So, if [;%|g(z)] & < oo we can write

T:/ g(x)Tdx
0

and T is a trace class operator. Moreover, if g > 0 then T is nuclear if

and only if fooo@dx < 00, since for x > 0, T,, > 0.

Ifo(f) = J,"g x)dz and h(t) = (e_4, ¢) then 5.3.2

Tu(€) - / wu<t>< Lt == [ utt) [Tt aa)e GOz

Let
Tuul6) = [ gto) [ uttte 4 ity atas
and
Tu(e) = / S 9 / T u(t)e e ") g(x)da
— / / t)(t + &)e e g(x)dxdt.
Then, Ty =T.

For a fixed z

T, - / Tut)(t + e e Edt
0
= (u,te ) ™ + (u, e ") e ™
This operator has rank 2 and
tr Tl < [l o [le™* ]| o + [l | 2 l€e™

Iz

So, if [7|g(z)|tr |T,|dz < oo we can write

T:/ g(x)T,dx
0
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5.3 More general distributions

and T is a trace class operator. where

triTel < e o €7 + 7] 2 llee™ .
- 1 1 N 1 1
= 2(2)32 (22)12 T 2(x)32 (21)1/2
1
" VaER
Thus, if [~ [g(x)| \/— dx < oo then T is a trace class operator.

(iii) If ( f, Zk o jo gr(x) f® (x)dz. Then 5.3.2

fo 6 (t4r)» dT _ fo Zk ofo ( 1)k(t—i]:!-)ke_(t+7)mdxd7'.
Then
k k
Z/ / gu(z k, ( )t’ ety (r)drda.
i=
Write
o k
(TLu)(t) = /0 Z( )t” h=ie= Dy (r)dr
7=0
k
- Z (k) (u,tle ") rk=ieg=e,
=0
then
k
TS Y (o T N s
=0
C

P12 k—j+1/2"
This operator has rank k + 1.
Then, if
o dx
; |gx(@)] ) < 00,

we can write
N

Tut) = / on(2)Todz,
k=00
then N
tr|Tu(t) = / gi(@)tr |T,| de.
k=00
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5.3 More general distributions

Thus the Hankel operator is nuclear.
Here we used the fact ||t"e ™|, = z,ﬁ—’;m Vn > 0, with n not neces-

sarily an integer and C' is a constant.

5.3.3 The O operator

In this section we shall consider the scaled Hankel operator © on L? given

by
U :L 00_1/4 )V Yiu(r)dr
©u)() = —= [ n( ) (e,

™

where, h(t) = (e_q, ¢).

Proposition 5.3.7. In the examples 5.3.11 we consider three cases

(1) If {f,¢) = = Jg x)dz and h(t) = (e_;, @) then the © oper-
ator is nuclear zf
o d
/0 Ig(;fl)/\2 %
(i) If (f,¢) = = [ z)dz and h(t) = (e_t,¢) then the ©

operator is nuclear if

/°° |g<§3>/\2dx o
(iti) If (f,0) = o(f) = X0 Jo~ gu(@)f®(x) and h(t) = (e, ¢) then the

O operator is nuclear if

[Tl

Proof. (i) In the first case let

for each k=0,1,...,n

u 41/4 1/4
(Tu) f/ Bt + )€ u()de

SO

TU \/7/ / 1/4 (t+§)z€—l/4u(€)dxd§



5.3 More general distributions

Let

T - [ T ey (6) e

0
_ <u7t—1/4€—tw>§—1/4€—§m.

This operator has rank 1, and

tr| Tl < [t e €717 o

where Ht_l/“e_mH = m§}4.

Since ( = [*g o 9(z)T,dz then

t7’|T\<C'/ 9 |dx.

7172

The proof follows as in proof Proposition 5.3.6.

(il) If (f, ¢) = =g r)dz, let
W (1) — L Ry ~1/4,,
T = —= / V(4 e u(e)de,

SO

= 1/4 —(t4E)x —1/4
(Tu / / £)(t 4 €)eCHOTE Ay (¢)dade.

(Teu)(t) = - / T e O () g
0
_ —<U,t3/46_m>£_1/46_5x+<u,t_1/46_m>§3/46_5x.

This operator has rank 2, and

t’f’|Tx| S Ht3/4€—tz HS 1/4 —&x

I S

Iz Iz Iz

HL2 = ﬁ
Since ( fo 1)T,dz it follows that

> |g(@)| dx
t7’|T\<C'/ e

where }}t3/4e_tx
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5.3 More general distributions

(i) If (f, ) = o(f) = Doh_o Jy gr(2) f P () let
W) = N Ry ~1/4,,
() = = / YR+ €)eVhu(€)de,

So

TU \/7/ / 1/4ng t—i—f)k —(t+€) :CS 1/4 (f)dxdf

1 n o) k k o] k’ 1/4 ph— 1/4 (t+6)e
ﬁk:o/o . Z:;/o () e e wronagagas.

k 00

raw = 3 [T (§)pre e o

j=0 "0

=

_ (k) t] 1/4 —tz)gk j— 1/4 —f:c
J

Q

This operator has rank k + 1, and

k
I ) i P i
1
S CW.
Then, if

o dx
0 |gk(x>| $k+1/2 < 00,

we can write
n

Tu(t) = Z /Ooogk(x)Tzdx.

k=0

Thus the © operator is nuclear.

We can consider more general ©, sometimes written ©,,,.
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5.3 More general distributions

Boundedness of ©

Theorem 5.3.8. Write O, u(t) = [ w(t)h(t + 7)w(T)u(r)dT and suppose
that h(t) = {e_y, @), with w > 0 and u € L2.

(i) If (f,¢) = fo

x)dz. Then © is bounded if

/0 V2 () [g(x)] dz < oo,

where Vi(z) = [lw(T)e™ ™| 12 -

(i) If (f.0) = [y 9

x)dz. Then © is bounded if

/0 Vi(0)Vala) lg(@)] de < oo,

where Vi(z) = [|w(T)e™ || f2(y and Va(z) = [[rw(T)e™ | 27y -

(iii) If (f,0) = [ 9

x)f"(z)dz. Then © is bounded if

/0 Vi (0)Vale) 9(x)| da < oo,

where Vi(x) = [lw(T)e™™([ 2y, and Vi(x) = HT2W(7')6_TI||L2(T) :

Proof. (i) If (f,¢) =

f 0 r)dz, we have

[(Bu) ()] < /Ooow(t)e_” |9 ()| Vi) [lully dz,

where Vi(x) = ||W(T)e_m||L2(r)'

Thus

(O(u), O(u)) =

IN

IN

/0 “(0u) () [@w) Dt
/0 N / "ot 9(@)| Va(a) [lul da

/ () 9(y) | Viy) [lull, gl

ul [* [ [ etwre e @l Vi) lat) Vi)

dtdzdy
clul’ / / Vi@)Va) lo(@)] lg()] Vi () Vi (y)dardy.

where ¢ is a constant.

The result now follows.
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5.3 More general distributions

(i) If (f,0) = [3"g x)dx, we have

/ / )(t 4 7)e ) g(z)w(T)u(r)drd.

Ou] < [ we+nlglole e () uf)]drds
= [T wl@le e o ol ar
+ [Tt gt e e () fu(r) drlda
<l [ om)e ™ g ) bl e o
#lull [l gy w0 )] da
= full | wlt) oo Vi) + Vale)ld,
Thus

(O(u). O(u))
- / COICION

< [Tl [ e @l e i)

V(e >1dx/ () lg()| e VA () + Va(y)]dydt

=l [ [ [ la@l et Vato) + lo(@)] el Va(o)

lg@)| tw(t)e™Vi(y) + l9(y)| w(t)e Va(y)ldtdady
< cful? / / 19()] 19(9)] Vi (2)Va() Vi () Va(y)dardy

where ¢ is a constant.

The result now follows.

(ili) If (f,¢) = [, g(x)f"(x)dz, we have

/ / )(t 4 7)%e ) g(2)w(T)u(r)drd.
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5.3 More general distributions

Then
(©u)(t)| < / / )t + ) lg(x)] e e w(r) fu(r)| drde
_ / / D2 + 267 + 72) g(2)| e e w(7) |u(r)| drda.
Hence
[(Ou)(t)] < Huﬂz/ooo[tzw(t) lg(2)| e”Vi(2) + 2tw(t) [g(x)| e Va(x)

o (t) 9(@)| Vi (@)
Now we shall calculate ||©||
(6(w), 6(w))
S ACOICICDIGH
<l [ [ et @ Vi) + 2050 + V()] [ e
l9)| [£*Vily) + 2tVa(y) + Va(y))dadydt

2 / / / 19()] 9)] [V (@)Vi (9) + EVA (@) Valy) + L2V (2)Va(y)
L) Viy) + ACVa(0)Valy) + 20Va(e)Valy) + PVa(@)Vi(y)

IN

L2V(2)Va(y) + Va(o)Va(y) dadydr,
By using Cauchy-Schwarz
< ull [ [ la@ )l V@ ViVato) + Vi@V )
+Vi(2)Va(2)Viy) Va(y) + 2V (2)Vi(y) Valy) + 4V (2) Vi (y)
+2V5 () Vi (y)Vs(y) + Vi () Vs(z) Vi (y) Va(y)

2V (2) Vi (@) Va ()2 + Vi (2) Vi (@) Vi () V() daly.

Since

Vy'(z) < Vi(2)Vs(x),

then

©(u),0(w)) < clul? / N / " 19(@)] [9(y)| Vi (2) Vi)V () Va(y)drdy,

where ¢ is a constant.
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5.3 More general distributions

The following results are given in Proposition 5.3.6 and Proposition 5.3.7

but they are special cases of Theorem 5.3.8.

Corollary 5.3.9. (a) For w(r) = 1, then Vi(z) = -5
V(1) = 5. Thus,

(x) = 23 and

(o) If (f,0) = [ g x)dz, then T is bounded if

/ o)l de _
0 x

(o) If (f.0) = [ g x)dz, then T is bounded if
/ﬂwmm<w.
0

xr2

(o) If (f,0) = [, g(x)f"(x)dx, then T is bounded if

/ / de<oo.
0 0 T

(b) For w(t) = 77 Y4, then Vi(z) = s

Thus,
(o) If (f,0) = [,"g x)dx, then © is bounded if
/0 > Ig(;fl)/\de “ o
(o) If (f,0) = [,g x)dz, then © is bounded if
Ry
or

*lg(z)|dx
[Tl

(o) If (f.0) = [, g(x)f"(x)dx, then © is bounded if
*lg(@)|
/0 52 do < oo
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5.3 More general distributions

5.3.4 Reproducing Kernel test
If the © operator is bounded then [§]

Hfo tAR(t + T)T e _MdTHm(ooo

sup
w>0 ||6 t HL2 (0,00)

If we do not know whether © is bounded we can use this test and if it does

not hold then © is not bounded. However, for the I" operator this test for

w € C, is necessary and sufficient, i. e. the I' operator is bounded if and

only if

IJ5™ e+ )e “”dTHm
sup — < 00,
250 le= 2

for more details see [8].

Theorem 5.3.10. If h(t) = 1 then the integral operator (Hankel operator)
I' is a bounded operator which is unitarily equivalent to multiplication by
m(cosh(zm/2))~t on L3(R). In particular there are no eigenvalues and the

spectrum and essential spectrum are equal to the interval [0, 7], see [33, p.

18].
Example 5.3.11. In Proposition 5.3.5

(i) If we take g(x) = 1 and ¢(f) = [;°g z)dz but ¢ ¢ X*, || fll o) =
sup |[f(2)], |[Re zf(2)], for == € X but gzﬁ( -) = 0o where, (X* is the

z+1

dual space of X i. e. the space of all bounded functionals)

o0l = | [ ot <1 [ ar=oc

o 1
ht) = / Letdr = ¢ I
0

then the system is not BIBO stable, hence it is not nuclear. Moreover,

Next,

o 1
G(s):/o 1.S+xdx:log(s+x)\8°,

is not defined.

Now we will study the Hankel operator and the © operator.
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5.3 More general distributions

Firstly, the Hankel operator is Hilbert-Schmidt if and only if t'/2h € L?

28, p. 67] so, it is not a Hilbert-Schmidt operator since,

o

Hence I' is not nuclear either.

2
tl/Q% dt)/? = .

Secondly, the © operator is Hilbert-Schmidt if and only if h € L?(0, o)
because [|O]| ;¢ = [|hll, [28, p. 94], so here in this example h ¢ L? so it
is not a Hilbert-Schmidt operator. Hence it is not nuclear either.

According to Corollary 5.3.9 we do not know whether the I' operator

/ ‘g(x)‘dx:/ ldar::oo.
0 z o T

However, according to Power [33, Theorem 2.6 p. 18] the I' operator

is bounded since,

is bounded. We will see later that the I'" operator is bounded but © is

not.

If we take g(z) = 1 and ¢(f) = fooog(x)f’(x)dx (¢ is a bounded func-

/0 " P ()de

h(t) = /OOO L(=t)e ™dz =1¢ L'

then the system is not BIBO stable, hence it is not nuclear. Moreover,

tional) since

= | fim 1) = FO] <21f1l.

thus, ¢ € X*.

g 1,
G(s):/o Lode = B

The integrator example is y(t) = (h* u)(t) = [, u(7)d7.

Now we will study the Hankel operator and the © operator.

Similarly, firstly h(t) = 1 and the Hankel operator is not Hilbert-
Schmidt operator since, t'/2h ¢ L?. Hence I is not nuclear either.

Secondly, the © operator is not Hilbert-Schmidt operator since, h ¢ L2.
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5.3 More general distributions

Hence © is not nuclear either.

According to Corollary 5.3.9 we do not know whether the I' operator

o o 1
/ ‘g(f)‘dx = / —2dx = 0.
0 x o <

He_thLQ(t) -
V2w

is bounded since,

However

and

=00
L2(t)

then the I' operator is unbounded.

/ h(t +71)e”™dr
0

According to Corollary 5.3.9 we do not know whether the © operator

“lg=)|, > 1
/0 a2 dox = i de—oo.

e = 5
Vow

is bounded since,

However

and

=0

and so the © operator is unbounded. We see this later by another

/ t= Y4Bt + 7)r Vi T™edr
0

L2(t)

argument.
(ili) If we take g(z) = e and ¢(f) = [, g(z) f(z)dz then,
NI [ 1l do = 1l

thus, ¢ € X*. Next,

o 1
h(t) = / e e dy = —— ¢ L.
0

t+1

However the transfer function,




5.3 More general distributions

converges, but G ¢ H™.
Similarly, firstly h(t) = Hil and the Hankel operator is not a Hilbert-

Schmidt operator since,

00 1 2 0o , 00 1
t|——| dt= [ (u—1)u*du= — — —du = .

u o u?
From 5.3.2 the Hankel operator is nuclear if [ |g(z)] % < oo, but in

this case it is not nuclear since

o —X
e
dx = oo.
0

According to Proposition 5.3.7, the © operator is nuclear, since

e ?dx
0 vV 2x
Hence it is a Hilbert-Schmidt operator and we can notice that

h € L*(0,00) and hence © is bounded.

< Q0.

If we take g(z) = ze™® and ¢(f) = [, g(x)f(x)dz then

6(f)] = / g@)f(@)dz| < Il / 26~z = || g) < 0o,
thus, ¢ € X*.
Next,
> —x —tx _ 1
h(t):/o re Te dr = (t+1)27

1 0 1
L =1—se’F =G(s) = v d
G se’Eu(s) = Gls) /0 s
In addition,
< 1 <1
|G(s)| = / xe * dz §/ re "—dr =1 < oo,
0 x+s 0 x
then, G € H*™.

The Hankel operator is a Hilbert-Schmidt operator since,

> tde o
= — Du? .
/0 L /1 (u Ju~*du < 0o
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5.3 More general distributions

From Proposition 5.3.6 the Hankel operator is nuclear since,

/ ‘g(x)‘dx:/ e dr < oo.
0 r 0 r

Also, because h € L? then the © operator is a Hilbert-Schmidt opera-

tor.
According to Proposition 5.3.7, the © operator is nuclear, since
*° re *dx

o V2
If we take g(z) = ze™® and ¢(f) = [} g(z) f'(z)dz then,

6(f)] = \ [ st s

< fllo / we~dz = |fll o)

thus, ¢ € X*.
Next,
o —t
h(t) = (—t)e dr =
)= [ et = o
thus h ¢ L.
Moreover,

G(s) = /Oooxe_x(_ildx,

s+ x)?
since, when s — 0+ then G(s) — —oo and so G ¢ H*.

The Hankel operator is not a Hilbert-Schmidt operator since
/°° t3dt
= 00.
o (t+1)*
According to Proposition 5.3.7, the © operator is nuclear, since,

ooxe‘“"zdx_\/7<
i = V<o

Hence the © operator is a Hilbert-Schmidt operator and bounded op-

Hence it is not nuclear.

erator.

According to Corollary 5.3.9 we do not know whether the I" operator

/ ‘g(x)‘dx = / e dx = oco.
0 72 0 72
104
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5.3 More general distributions

However,

el o) = 75z and || [57h(t + m)e mdr| ) = o0

2w

and so the I' operator is unbounded.

If we take g(z) = z¢™" and ¢(f) = [,"g x)dz then,
lp(f)] = a?e”" f'(x)da| < Hf“(o)/o we " dr =2 ||f||(o)
thus, ¢ € X*.
Next
*° —2t
hit) = 2 —x —twd — 7
(t) /Oxe (—t)e *dx CEE

thus h € L.

The Hankel operator is nuclear since,

/ de:/ e dr =1 < o0.
0 r 0

Hence, the Hankel operator is a Hilbert-Schmidt operator.

According to Proposition 5.3.7, the © operator is nuclear, since

*g(w)] Xrte
/0 pEYE doe = ; pE dx < oo.

Hence the © operator is a Hilbert-Schmidt operator.

If we take g(z) = 23" and ¢(f) = [, g(z) f"(x)dx then,

lo(f)] = g(z) f(z)dz| < HfH(O)/O we " dr = 6| f[|
thus, ¢ € X*.
o] 6t2
o 3 —x/42\, —tlx o
h(t)—/o e (t%)e de = S
thus h € L'.

The Hankel operator is nuclear since,

/ ‘g(gﬂdx = / e dr =1 < o0.
0 r 0

Hence, the Hankel operator is a Hilbert-Schmidt operator.

JCT Y R TR.s
0 0

x5/2 2

Hence the © operator is nuclear and Hilbert-Schmidt as well.
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5.3.5 Discrete distributions

5.3 More general distributions

(1) If <f, ¢> = Z;il )\]f(Z]) with Zj S C+ and )\j e C.

Since \(f ) < Y55 NI < 252 NI llye and [{f, )] <
S | f H(o then, ¢ is a bounded functional if

00
Z |)\]‘ < 00,
=1

7=1 Rezj

or
= |\
ZRez =0
7j=1
We have
ht) = (e_y, ¢) = Z)\e_zﬂt
and
_ N
G<s>—<ks,¢>—;Zj+s-
Then h € L' if
- s A
> Pe ™, = @ 00,
j=1

and this implies also G € H*.

In other words, G(s) converges in H* if

(e}

1G ()] 7o = sup

s

J=1

The Hankel operator with symbo

operator I' = 3 3°° | T'; is nuclear if,

Ty <

IN

IN
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5.3 More general distributions

We know that T is a Hilbert-Schmidt operator if t'/2h € L? then,

/ oo}tl/zh(t)fdt = / T (i )\ne_Z"t> (i Xme—zmt> dt
0 0 n=1 m=1
An A
DI

n=1 m=1

In order to use this, we observe that

|zn + Zm| > Rez,+Rez,
> (Rez,)Y*(Rezp)Y?,

thus

)‘nxm ‘)‘n‘ 2
zn:zm: (zn +Zm)? — (zn: 22 Rezn)
We deduce that the Hankel operator is Hilbert-Schmidt if
Sl <
- Re z, ’

Similarly for the © operator,

1 [e.e]
Qu(t) = ﬁ/o t= Y4 (t + 1) Yi(r)dr
1 /OO —1/4 S —(t+7)z; . ~1/4
= — t Aje TR By (T)d
b TN

o0 1 00
_ Z - t—1/4>\.6—(t+7)zj7_—1/4u(7_)d7_
AR

j=1

00 1 B
— § )\ <u’ e—tht—1/4>€—Z]'T7_—1/4.
— /r"’
Jj=1

Then, Ou = Z;}; ©ju, where every ©; operator has rank 1.
Since if ©; : u — (u,v)w hasrank 1 so, tr |0, = [|0;[| y = ||v|l 12 |w|| 12,
it follows that

tr |®]| — ‘}e_zjtt_1/4‘}L2 He—fj7'7_—1/4HL2
C
(Re z;)~1/4+1/2(Re z;)~1/4+1/2
&

(Rez) /2

IN
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5.3 More general distributions

where ¢ is a constant.

The © operator is nuclear if Z 7z < 00.

Rez i)
Now the © operator is Hilbert- Schmldt if h € L?, so

/0 Oo|h(t)\2dt = /0 h <7§ )\ne_z"t) (gxme—m> dt

= ZZ/MA Ame G tEmlidy
0

n=1 m=1
co 00

An A
n=1 m=1 (Zn + Zm)

Thus the © operator is Hilbert-Schmidt if ) \/% < 00, since

- )‘nxm |)‘n| 2
ZZ (zn 4+ Zm) = (zn: 2\/Rezn) '

(i) Suppose (f,¢) = > 272, Ajf'(z;) with z; € Cy and \; € C.
Since
£ 11y = sup [f(25)]
£y = sup [(Re 2;) f'(z)]
£l = sup |(Re25)* f(25)]
it follows that if -
[(fro) < ed IN] < oo,

—1
or

J
o0
Y
< c; Ro > < 00

or
00

by
()l < e s <o
j=1 J

then ¢ is a bounded functional.

We have
h( 6 t>¢ Z)\

and

G(s) = (ks ) = >

(749
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5.3 More general distributions

Then h € L' if

; N (e =1, = (Re;j)2 < 00,

Jj=1

and this implies also G € H*.

In other words, G(s) converges in H> if

G(s
COIPRED Dt
j=1
Since, I' = 3 72 | T'j, so
Ty < 511
j=1
< 2 Gl
j=1

L <o
Now the Hankel operator is Hilbert-Schmidt if t'/2h € L2,

hence

/O\tl/Qh e = /Ooot(z

Thus the Hankel operator is nuclear if Z

—znt ixm —zmt d

n=1 m=1
_ / B3 e )3 Rme5)dt
0 n=1 m=1

(VAN
g
i\
;N\y
%

The Hankel operator is Hilbert-Schmidt if > (Rez |)2 < 00.
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5.3 More general distributions

Similarly for the © operator,

Ou(t)

1 / —1/4 —1/4
— ()T Pu(T)dr

—1

— g4 Z \j(t + 7)e” Dz = Ay (1) dr
— tYAN (b + 7)e” Tz Ay (1) dr
\/7?/0 J

1 [
Z — [ N e Uz Ay (r)dr +
— /7 Jo

7j=1

/ t_1/4)\je_(t+T)Zf7'3/4u(7')d7']

0

Z u t3/4 tZ]'>7_—1/4€—Z_j+

)\j<u,t Vae=tzi\ p3/4e=%

Thus Ou = 77, ©;u, where every ©; has rank 2, then

tr |6

<

<

e84 57

(Pl o Y (i 1

¢

(Re z;)~V/4+1/2(Re z;)~1/4+1/2

(Re z;)3/?
We deduce that tr |0 < >°°°

Jj=1 (Rez )5/2 < 0.

Now the © operator is Hilbert-Schmidt if h € L2.

Now

[e.e]

/oo|h(t)‘2dt = / t2 Z)\ e Z"t Z —zmt
0 n=1

= ZZ / 2N A e Tl

n=1m=1
N 2;; Gon + 5]
2
L~
= ?(; Re z, 3/2>
< 0Q.

So O is Hilbert-Schmidt if

i 7‘)\71‘ 2 < 0
n=1 (Re Z”>3/2 '
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5.3 More general distributions

(iii) Tf (f, ¢) = S o (272 Mg f P (25)) with z; € Cy and Ay € C.
In order to get a bounded functional ¢ it is sufficient to have a bounded

¢y, for each k, where

f¢k Z)‘k]f( Zk]

Then
We have
N
h(t) = (e_y, ¢ Z Ao (—t)Fe759)
k=0 j5=1
and
& (_1)k)‘kj
f— ks7 p—
G(S) < 925) ;(; (ij + s)kﬂ)

Then the system is BIBO stable if h € L*

[ monar - /

< ZZ/ Pl e

k=0 j=1

|A
S D) L.

k=0 j=1
< Q.

"\’w| )
(Rezp ;)1 /0

This implies also G € H* also, ||G(s)]] e < Zk 0(2

since,

GO < 33 | e
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5.3 More general distributions

Now the Hankel operator I' satisfies
Tu(t) = / h(t + 7)u(r)dr
0

o N [ee]
N / Z Z Mej(t+ 7)F(=1)Fe” Dy (7)dr
0

k=0 j=1

N oo 00
= 33 [ st et (s
0

k=0 j=1

k i k—i —(t+7)zk 4

|t e Riu(T)dT.
i

Then let

00 k
tut) = [Tascr Y ()it emnar

Then Tu =S5 T®y =3V >y F§k)u and

ST < |t
j=1
< Ci
= (Rezg) 12 (Re z )k =172
Ck

(Re Zk7j)k+1 )

Therefore, the Hankel operator I' is nuclear if

and then I' will be a Hilbert-Schmidt operator as well.
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5.3 More general distributions

Now we will consider the © operator:

Ou(t) = %/Oot_l/4h(t+7')7'_1/4u(7')d7'

R / S Rt (1) e (e

k=0 j=1

- ZZ 1/4)\k: (t+7)"(—1)%e ~(47)205 2=y (7)d 7
J
k=0 j=1 \/_/
N oo &
_ 1 —1/4 k EN i i () -1/
B Zz—ﬂ'/ t )\k’j(_l) Z i tt" e T U(T)dT
k=0 j=1 i—0
N [e’e) k
1 k . e i o
k=0 j=1 i=0

Thus
N
0=> oW
k=0

where %) uses k" derivatives.
Then O is nuclear if each ©®) ig

0o k
G(k)u t fg R / _1/4>\ k ( )tl k— Z — t+7—)zk’ju T dT

_ (*)
= CH

where

k
1 k i— —t2p. 5 —i— —TZk i

and @gk) has rank at most k=1, since its range is spanned by t /4e~** for =

0,1,..., k.
Therefore
[0l < (k+ 1|6

So, if

> o] <=
j=1

113



5.3 More general distributions

thus, ©®) is nuclear.

1 : k i— —tzp 5 —i— —TZk,j
T2 3 Dl () et | ot
=0

Cr | Al
(Re Zk,j>k+1/2 :

o

IN

"

Moreover, O is Hilbert-Schmidt as well.

Example 5.3.12. (i) If (f,¢) = f()\) then h(t) = {e_4,¢) = e * and ¢

is a bounded functional since, || f|| = max.(|f|, z|f|) then

O] < [1f1l) -

(i) If (f,¢) = F'(\) with A € Cy then h(t) = (e_p,¢) = (e")()) =

—te ™ and ¢ is a bounded functional since

[(f. o) < sup|f'(2)]

< Al -

Lemma 5.3.13. If an operator A satisfies that ||A — A,||y = €n, where

en — 0 for rank(A,) = n, then dy = > 3, 0n < en and oy = O(F).

Proof. We have
Z or < A= Anlly

k=n+1
then
Opg1 + Opyo+ o + 021 < 0y,
SO
(n+ 1091 < 0p.
Similarly,
Oni1+ Ongo+ oo + 09, < 0y,

SO

Noan S 5n .
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5.3 More general distributions

As a result

O

Example 5.3.14. (i) Suppose (f,¢) = 2511 f(y) for f analytic in C
with [|fl,) < oo Vn. Then if f(z) = 2,

zy Ll =
0+1 141 241 7

hence ¢ is not bounded.

We have

Ze = 1—6 et 1

J=1

Then h ¢ L'.
The system is not BIBO stable, hence is not H> because also (Z%rs, o)

does not converge for Res > 0.
(ii) Suppose (f,¢) = > 72, f'(j). Since
1£lly = supmax{|f(2)], [Re 2| [ £(2)], [f' ()], [Re 2| [f'(2)], |(

SO

vvns%wwmmﬂuw>

(and equal if z = j).
Thus

dOIFG |<Z—Hf||

As a result ¢ is a bounded functional.

We have
- , —te™!
= —te It =
>t =1
7=1
and also, lim;_ te:;f;t = —1 ( by L’Hopital’s rule). Then h € L!,
and

Z 8+j € H™®.

]:
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5.3 More general distributions

In fact G(s) = W (s 4 1) where ¥ is a polygamma function [I, p
260].

Now we consider the I' operator:
Tu(t) = / Bt + 7yu(r)dr
= / —(t+7))e” DIy (r)dr

— Z/ —(t 4 7))e” iy (r)dr
— Z[/o —te” Iy (7 )dT—/OOO re~ iy (r)dr]

j=1

= - Z[(u, te e ™ + (u, e ¥)Te ],

thus, I'v = > 22| I'ju where every I'; has rank 2, and then

Il < It ] (]| + [l |lre|
C1 Co

53/241/2 - §1/2j3/2

C

7

In addition,

o0

0]l < Z 1Tl < Z E

and

S

=1
op1(I) < Z = =
j:n-i-l]

where

n

r->)'r,
j=1

According to Lemma 5.3.13,

Q\

o
c
< — < — forsome ¢ >0.
<) msy
N =
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5.3 More general distributions

Now the © operator satisfies

Ou(t) = %/0 t= V4t + )Y (r)dr
1 /OO ~1/4 S —(t+7)j,~1/4
= t —(t+7))e T u(7)dr
IS (7

1, [ , o0 :

= —Z[/ t3/4et+7)]7'_1/4u(7')d7'+/ t_1/4et+7)]7'3/4u(7')d7'
VT i 0

_ Z u, t¥e —1/46—Tj i <u7t—1/4€—tj>7_3/46—7—j.

Thus, Ou(t) = Zj’;l ©,u(t) where every ©; has rank 2.
Then

101y <1165l -
j=1

Thus,
1011y < (#7415 o + ([ 2679 | o [l 7267
c
< W
Hence -
CIESY J—/
j=1
and . .
O - Z 95| < Z 30/2 L
j=1 N j=n+1 \/_
According to Lemma 5.3.13,
1
ON = O(W)?

so, © is a nuclear operator.

Note that h € L? since © is a Hilbert-Schmidt operator.

(ili) (General case). Suppose (f,¢) = >, f®(4) for some k > 1.
In order to get a bounded functional ¢ it is convenient to have a

bounded functional for each k,

()] < jip |(Re2)*1| | £09(2)]
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5.3 More general distributions

(with equality if z = j).
Thus

1
Z |FB )| < Z TR 1 1l ey

As a result ¢ is a bounded functional, and
h(t) = (e_t,¢) = Z AR Z (—t)ke 1.
j=1
Also,

dt

(~t)fe
7=1

| o = [
0 0 i—
Z / the=ti qt
j=170

=1
- ij—i—l'

j=1

IN

So, since Z(;il ]k% < 00, the system is BIBO stable and hence is H*.

We can define the I' operator for each k by
Tu(t) = / h(t + 7)u(r)dr
0
_ / S (=t + 7)) (r)dr
0

J=1

ook k
= (—1)’“(2) (u, t'e” )y rhie™md,

Then I' = Z;}; I';, where each I'; has rank at most &+ 1 and so

1051y < (R + )T
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5.3 More general distributions

where

k

Insll < 3 [lee ] |~
=0 .

C

i

Thus if >377, ]k% < 00, the I' operator is nuclear.

We have
P=>1; < > Il
Jj=1 N Jj=n+1
- c
< 2
j:n+lj
= O(n™).

Then by Lemma 5.3.13 we have oy = O(571)-

Now the © operator satisfies

Ou(t) = %/Ooot_l/4h(t+7)7_l/4u(7)d7

- %

14 Z(—(t + 7)) ke i =4y (1) dr
=1

0
1 & k 2
= — Z/ (174 Z(—l)k( ,)tiTk—z'e—(t+r)j7.—1/4u(7_)d7_
m Jj=1 0 =0 ?
1 & k | | | |
B R ([
[ v

so © = >, ©; where each ©; has rank at most & + 1 and

185l < (K +1)[164]]

k
I e [ ]
i=0

< G
= ji—1/4+1/2jk—z'—1/4+1/2
- jk+l/2’
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. [e'e) c

However
-3
=1y
Hence, by Lemma 5.3.13
ON — O(

and so, © is a nuclear operator.

5.3 More general distributions

< oo then © is nuclear.

> eyl

Jj=n+1

IN

oo

Ck
Z k+1/2

j=n+1 J

O(n_“%).

IN

Ck

Nk+1/2 );

Note that h € L? since © is a Hilbert-Schmidt operator.
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Chapter 6

Carleson Measures

6.1 Introduction

The boundedness of weighted Hankel operators and © operators is the main
outstanding problem in this chapter. Therefore, we use the proof in Power’s
book [33] to get results about boundedness of Hankel operators, via Carleson
measures. Also, we prove a new theorem for © operators using Carleson
embeddings; and this requires Theorem 3.11 in [21]. We look at those explicit
examples of © operators for which we have not yet determined whether they

are bounded.

6.2 Boundedness theorems

Lemma 6.2.1. Let f, g be continuous functions supported on a closed subin-

terval of (0,00). Then

(Tuf,9) = {Zuf, Zu9)
where, p is a measure on Ry, Z, : L*(0,00) — L*(p) and Z,f(x) =
foooe_xyf(y)dy (the Laplace transform) and Ty, is the Hankel operator, (see

/337 p 13/)

The classical Carleson theorem is to do with finding simple condition for
the boundedness of the canonical injection H 2((C+) — L?(u) where pu is a
Borel measure on C; and h(x fc “du(y), see ([20]).
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6.2 Boundedness theorems

Theorem 6.2.2. (Carleson embedding theorem). Let i be a positive reqular

Borel measure on the right half-plane C.. Then the following are equivalent:
(i) The natural embedding
Ju H'(Cy) — LP(Cy, p)
is bounded for some (or equivalently, for all) 1 < p < oo.

(ii) There exists a constant C' > 0 such that

kx(2)]? dp(2) < C ||k |32 for all X € Cy,
Cy

where ky(z) = 5=—= for \,z € C,.

on z—i—x

(iii)
w(Qr) < cl|lI| for all intervals I € iR,

where Q7 denotes the Carleson square
Qr={z=x+4+iyeC,:iyel,0<z<]|I|}.
In this case, p is called a Carleson measure, see ([20, theorem 1.1]).
We just use part (i) and (iit) in this theorem.
We now extend Lemma 6.2.1 to measures on C,.

Lemma 6.2.3. (Extension of Lemma 6.2.1). Let f, g be continuous functions
supported on a closed subinterval of (0,00), and p a positive Borel measure
on C,. Define
) = [ e anty
Ct

and

Zy+ L2(0,00) — L().

Z,1(x) = /0 T (y)dy,
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6.2 Boundedness theorems

for
[, : L*(0,00) — L*(0,00) is the Hankel operator.

Then

<Fhf7 g> = <Zﬂf> Zﬂg>

Proof. We have

(Tnfrg) = /Om/oooh(x+y)f(y)mdydx

= /0 N /0 N /C +e‘(””“")zf(y)@dydﬂcdu(@

= [ e rman [ e amdau)
= (7). 7,9).

0

Since Z, = J,L : L*(0,00) — L*(C,, u), it is bounded if and only if J,

is a bounded operator.

Theorem 6.2.4. (Carleson Theorem). p (a positive Borel measure) is a
Carleson measure for H*(C,) if and only if u(Qr) = O(|I]) as |I| — 0 or

|I| — 0o , where Qp is a Carleson square, see( [22]).

We now consider the ©,, operator.

Lemma 6.2.5. Let f, g be continuous functions supported on a closed subin-

terval of (0,00), w € L? and u >0 on C,. Define,

) = [ e auty)

and
Zy: L*(0,00) — L*(Cy, ),
by
2,00 = [ el i,
and

6., f(x) = / " w(@)h(x + y)wy) fy)dy.

123



6.2 Boundedness theorems

Then
(Ouf,9) ={Zuf Zu9)

Proof. We have
©ufa) = [ .l
= [ ] ettt prwetsis
-] ) ol

- / [ / wy)e ¥ £ (y)dy]| /Omwu)e—“@dx]du(z)
= <Z,uf7Z,ug>

Theorem 6.2.6. Let O, f(z) = [ w(x)h(z + y)w(y) f(y)dy and define,
Z,U« : L2(07 OO) - Lz(c-i-a:u)?
by

(@) = / " oly)e Fy)dy,

where x € Cy.

Then ©,, is bounded if and only if Z,, bounded and Z, is bounded if and only
of

dy
L:L? (0, 00, w(y)2) — L*(Cy, p)

18 bounded.

Proof. We have

(Ouf,9) = (Zuf, Zug).
Take ||g]| =1 so
10 /1 < 12l 1/

and also putting f =g

124



6.2 Boundedness theorems

1ZufI1* < 1l 11 £11”
So ©,, is bounded if and only if Z,, is bounded. Take g = fw, then Lg = Z,,f,
and

1912wy = 17l 20,009 -

w(y)?

So,
1291 < C lglnan
if and only if

1Zu Il < Cl e -

Special cases

o [i| If w(y) = 1 then the operator is the Hankel operator I" and, the
operator is bounded if and only if £ : L*(0,00) — L*(Cy,p) is a

Carleson operator.

e [ii] If w(y) = y~'/* then the operator is the © operator and it is bounded
if and only if

L: L*(0,00;y'*dy) — L*(Cy, ),

is bounded.

6.2.1 Zen space

Let 7 be a positive regular Borel measure on [0,00) and satisfying the fol-

lowing (Az)-condition:

(A2)

Let v be the positive regular Borel measure on C; = [0,00) x iR given by
dv = dv®d\, where A denotes Lebesgue measure. In the case of 1 < p < o0,
we call
AP ={f.C, — C analytic:sup [ |f(z+¢)]dv(z) < o}
e>0 JT,
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6.2 Boundedness theorems

a Zen space on C,. If 7(0) > 0, then by standard Hardy space theory, f
has a well-defined boundary function f, and we can give meaning to the

expression. Therefore, we can write
[f1laz = ( C_\f(Z)\pdV(Z))l/p-
+

Note that this expression makes sense in the case that 7(0) = 0 (e.g. the
Bergman space, since f is still defined v-a.e. on C, Clearly the space A2 is
a Hilbert space. In addition, it is known that examples of Zen spaces are the
Hardy spaces H?(C, ), where v is the Dirac measure in 0, or the standard

Bergman spaces AP, where dv(t) = t*, a > —1, see ([20]).

6.2.2 Carleson measure on Zen spaces

Proposition 6.2.7. Let A% be a Zen space, and let w : (0,00) — R be given
by
olt) = 27 / () (r > 0).
0
Then the Laplace transform defines an isometric map L : L2(0,00) — A2

see ([20, Proposition 2.3]).

Theorem 6.2.8. Let A% be a Zen space, v =0® N\, and let w : (0,00) — R,
be defined as following

w(t) = 27r/ e tdo(r)  (r > 0).
0
Then the following are equivalent:

1. The Laplace transform L given by Lf(z) = foooe_tzf(t)dt defines a

bounded linear map
L: L(0,00) — L*(Cy, ),

where

L2(0,00) = L*(0, co; w(t)dt).
2. There exists a constant C > 0 such that

w(Qr) < Cv(Qr) for each Carleson square Q,
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6.2 Boundedness theorems

see ([20, Theorem 2.4]).

We now have a new result about boundedness of weighted Hankel oper-

ators.

Theorem 6.2.9. Let u be a positive Borel measure on C, h(z) = fc+ e "¥du(y)
and v =0 @ A.
Also let a: (0,00) — Ry be given by

at) =2m /000 e *dp(r)  (r > 0).

Then the weighted Hankel operator

0ufa) = [~ ale) V(e + p)aly) 2 )y
s bounded if and only if
L : L0, 00; ay)dy) — L*(Cy, p)
is bounded. This happens if and only if

wQr) < Cv(Qr).

Proof. From Proposition 6.2.7 and Theorems 6.2.8 and 6.2.6 the result comes

immediately. O

Example 6.2.10. (i) Let a(y) = i, and © be Lebesgue measure then the

space A2 would be the Bergman space, and

a(t) = 27r/ e id|r| = % (t>0).
0

and
v[0,1) I
R=sup——"~~=— =2< 0.
10 7[0,1/2)  1/2
Then the (Az)-condition is satisfied.

The operator O, defined by

Oulr) = - / 22h(z + y)yuly)dy

™ Jo
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(iii)

6.2 Boundedness theorems

is equivalent to

d
L: L2(O,OO, ?y) - L2(C+alu)7

and is bounded if and only if
1(Qr) < Cw(Qr) < C I < o,

where

h(z) = /C e "du(y).

Let a(t) = 2 [, e *'ddy(r) = 2w, and 7 = & be the Dirac measure

in 0, then the space A% would be the Hardy space.

Then
v(Qr) =v[0,I| x I =1x1=1,
and
v[0,1)
R:=sup ———= =1 < o0,
120 7[0,1/2)
then the (As)-condition is satisfied.
Then

1 [ 1 1
Ouu(x) = ;/0 \/—Q—Wh(ﬁ + Z/)Eu(y)dy,

is bounded if and only if
L : L*(0,00;21dy) — L*(Cy, p)
is bounded and this happens if and only if

w(Qr) < Cwv(Qr) =C.I < .

The case a(t) = t'/2 is not covered by the above methods however,

from [21] we can deduce the solution in the case of sectorial measures.

Theorem 6.2.11. Let i be a positive Borel measure supported in a sector

S(0) c Cy, where S(0) = {z € C : |argz| < 0}, and let 0 < o < 1. The

following are equivalent.
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6.2 Boundedness theorems

1. The Laplace-Carleson embedding
L:L*0,00;t%dt) — L*(Cy,p), f+ Lf
1s well-defined and bounded.

2. There exists a constant v such that
w(Tr) <~ I

for all intervals in I C iR which are symmetric about 0, where Ty s

the right half of the Carleson square Qy.

3. There exists a constant k > 0 such that

128%™ o,y < FlE"ET ] 1o

Cq,p 0,00;tdt)

forallr € Ry,

see ([21, Theorem 3.11])

1

The case o = 5

is important here.

Corollary 6.2.12. If h(t) = % and p is Lebesgue measure, then the I' oper-

ator is bounded, however the © operator is not.

Proof. Firstly, according to Theorem 2.6 [33, page 18] the I' operator is
bounded.
Secondly, we show that the © operator is not bounded.

Let
L: L(0,00;y'*dy) — L*(Cy, ),
and
k() =e™ r>0
then
L(ky) = —
[ +7r



6.2 Boundedness theorems

. 1/2
1
k’r . — / e—27“ttl/2dt) —
H ||L2(0,oo,t1/2dt) ( 0 Ar\/2r T

and
2 — —_
’|‘C(k7“)||L2(C+,u) - /0 md% = ;
Then
1L o,y 772
Pk P T
r Kl 20 oo r2ay) r
Therefore

L*(0, 00;y'/*dy) — L*(Cy, ),

is unbounded. Also, by using Theorem 6.2.11, then the © operator is not

bounded since
1
u(Tr) = 5 | £y |12

where 7 is a constant. O

Example 6.2.13. (i) If h(t) =1 and p = Jy to use the previous test take
k.(t) =e ™.
Let
£:12(0,00) — LX(Cy, )

Firstly, for the I'" operator

. 1/2 1
kvl 12(0,00) = (/0 e_mdt) ~ 2
and
€0 e, = 577, = 7
Then
L S
L

Then, the I' operator is unbounded.
Secondly, for the © operator
Let
L: L*(0,00;y'*dy) — L*(Cy, ),
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(i)

(iii)

6.2 Boundedness theorems

then /9
L _ * —2rt,1/2 / _ 1
H T||L2(0,oo;t1/2dt) - 0 € t/edt B Ar\/2r
and
1 1
T+, r
Then 1
H:c-i—r”&o %

sup =8Sup —7— = Q.
>0 HkTHLQ(O,oo;yl/Qdy) >0 Ar\/2rm

Then, the © operator is unbounded. Here we can not use Theorem

6.2.11, because p = dy is not sectorial measure.

If h(t) = l%rt and du = e *dx then by using Theorem 6.2.11, the ©

operator is bounded since

1]
w(Ty) = [ e “dx
3

]

1
M) (AT

< |]—|1/2

If h(t) = e and p = ) then the I' operator is bounded as well as the
© operator (we knew that from Example 3.3.4 the Hankel operator is
nuclear so it is bounded, and because h € L? then the © operator is
Hilbert-Schmidt hence it is bounded).

Firstly, we have for the I'" operator
L: L(0,00) — L*(Cy, ).

Then N "
csont< e [k a)

since, by Cauchy-Schwarz

/ Ooe-*yﬂy)dy\ < ( | e dy) " ( / Ooe-”ydy) -
- 0</Ooo\f(y)|2dy)l/2
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6.2 Boundedness theorems

Secondly, we have for the © operator
L: LQ(Oa 003 yl/2dy) - L2(C+>M)a

then
00 1/2
wmmc(/ \f<y>\2y1/2dy) |
0

since, by Cauchy-Schwarz

o0 1S9 1/2 00 1/2
/0 6‘Ayf(y)dy‘ < ( /0 \f(y)\zy”zdy) ( /0 e‘”yy‘l/2dy)
0o 1/2
- C ’ 1/2d> .
( [ s
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Chapter 7

Possibilities for further research

First of all, in Chapter 2 we investigated the question of stability. As we
know there are three type of stability: BIBO, H* and asymptotic stability.
In general the question of BIBO stability of a linear system given in terms of
a transfer function is difficult in general; however, our methods now enable

us to resolve the question for many systems. For instance, let

1

Gls) = GG T 1T

k=0,1,2, ..,

this transfer function is asymptotically stable, also it is known that it does
not lie in H* for k = 0, but it is H> stable for k > 1 see [32].

We have developed new methods that enable us to resolve the cases k = 2
and k = 3. The case of G as defined in [10] remains open.

Moreover, BIBO stability is a necessary condition for the Hankel operator of
a linear system to be nuclear (trace class), a property that has certain im-
plications for model reduction [18], and some related questions remain open.
For example, it would be useful to have more precise estimates of Hankel
singular values.

In Chapter 2 also, we deal with some specific examples such as 2.3.7. How-
ever, we would like to prove results applicable to a wider class of examples
and use the Walton-Marshall-Bonnet-Partington method to study these ex-
amples and determine the intervals of stability.

A systematic method for fractional systems is considered as an essential
method to identify the crossing points and the intervals of stability (asymp-
totic stability) but on other hand BIBO and H® stability are still open

questions when we use this method.
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In Chapter 3, we introduce diffusive systems, the Hankel operator and the
O operator. We look at a wide class of problems involving BIBO and H>
stability. In addition, we study the properties of operators such as nuclearity
and Hilbert-Schmidt properties. In general, we consider diffusive systems

defined with impulse response

W) = / Tetdpe)

[ du()
G(S>_/o (5+&)

The majority of results and theorems are with the measure g > 0 thus in

and transfer function

further study we can think about all cases, examples and theorems when p
is not necessarily positive.

Moreover, in some examples we could not tell if I';, (Hankel operator) is nu-
tDé

T;; so, it is still an open

question. Also, in Example 3.3.6 with h(t) = ﬁ the © operator is Hilbert-

Schmidt but using Theorem 3.4.4 fails to say © is nuclear.

clear for instance Example 3.3.4, where h(t) =

The reproducing kernel test gives necessary and sufficient conditions for the
Hankel operator to be bounded, however, for © this test just gives a nec-
essary condition to be bounded. We do not know whether it is a sufficient
condition.

In the Curtain-Zwart book [9] and many other references there are several
partial differential equations and systems where h is given by a series and u
is a sum of point masses (discrete systems), therefore more research can be

done for these examples.

Chapter 4 focuses mainly on using the Gaussian Quadrature method to ap-
proximate irrational transfer function of diffusive system by rational ones.
Therefore we can improve the technique of approximation by using other
numerical methods. Also, we can develop more research in approximation of

unstable systems by coprime factor techniques.

Diffusive systems defined by holomorphic distributions and measures on a
half plane is the main subject in Chapter 5. Again the case of non-real and

non-positive measures could be investigated further.
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In Chapter 6 we mainly concentrate on the boundedness of weighted Han-
kel operators and © operators. Some cases that we solve give boundedness
results for the solution to the case of sectorial measures but some difficult

questions about non-sectorial measures are still open.
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Appendix A

Maple worksheet

[This is related to Example 3.3.6
> assume(t,'real’);
5

> x=88+230+23¢4+88(A+1)° +9 tz+3(t‘2+1) t+1

Xx=818423t8423t44813(t2+1)""° 491243 (t%+1)
3

N

5/2
et

> k= 4( ;+2t)2(18+4t6+6t+4t2+1+(12+1)7 )

2
—4 (= 1+2t~) Biar Syt 4atla14(t241)"%t~)

1
(e
[ (=)
0
signum (x)
signum (k)

N =

1
> evalfJ tt [n—kxj dt
0

signum (x)

Float( ) signum (k)
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