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Abstract

This work is concerned with sound propagation, reflection and absorption in air-filled

pipes with inhomogeneities such as an open end, lateral connection, cross-sectional

change or porous termination. The focus in this study is made on the sound intensity

which is a vector quantity. Because the sound intensity is treated as a complex vec-

tor, it gives more information about the local net transport of energy (real part) and

local oscillatory transport of energy (imaginary part) and its direction. This provides

a possibility to obtain more information on the nature of inhomogeneities in the pipe

and their extent. An attempt is made to study the sound intensity in a pipe transmitted

through higher-order modes. The results of this work are applied to measure the acous-

tical properties of porous media and living plants. It is shown that the frequency range

of the standard ISO 10534-2 method can be extended significantly to measure the ab-

sorption and reflection from a large, inhomogeneous material specimen such as a living

plant. The presented experimental data are supported by the hybrid numerical method

which is based on the normal modal decomposition and finite element modelling, ana-

lytical methods which are based on normal mode decomposition alone and models for

the acoustical properties of porous media. It is shown that accurate measurements of

the sound intensity in a pipe are problematic. Therefore, this work presents experimen-

tal and theoretical evidence together with a sensitivity analysis and discussion on the

applicability of this technology for the characterisation of conditions in air-filled pipes.





Acknowledgements

First of all, I would like to say how grateful and indebted I am to my PhD supervisor,

Professor Kirill Horoshenkov. His outstanding knowledge of the subject, academic and

moral support and patience helped me to overcome all encountered difficulties and made

this work possible. I would also like to thank my second supervisor, Professor Simon

Tait for his helpfulness.

It is my pleasure to express my gratitude to the technical staff in the Acoustics and

Hydraulics laboratories at the Universities of Bradford and Sheffield, especially Mr

Nigel Smith, whose extraordinary assistance in setting up the experiments is greatly

appreciated. Furthermore, I would like to thank the Acoustics Research Group for

supporting me and sharing with me happy years of my PhD. I am grateful to Dr Andy

Nichols, Mr Giulio Dolcetti and Dr Michael Pelegrinis for their help in planning and

conducting the experimental work, and to Dr Anton Krynkin for his theoretical advice.

I would also like to mention Mr Andy Birch, Mr Darren Sugden and Mrs Lindsay

Fox, whose willingness to help with planning and organising my conference trips and

secondments is very important.

I would like to thank Dr Wenbo Duan and Dr Ray Kirby for their theoretical assistance

on the subject of complex sound intensity, as well as for kindly providing me with the

requested numerical data. I am also extremely grateful to Dr Jean-Philippe Groby and

Dr Bruno Brouard for their advice on the acoustics of porous media, and their help in



setting up the experiments, getting hold of plants specimens and analysing the measured

data.

Last but not least, I would like to express my deepest appreciation to my parents and my

brother, who supported me through thick and thin and always had faith in me. I would

like to thank my closest friends for their loyalty and encouraging me in difficult times.

Finally, I am truly grateful to my boyfriend Ryan for his love and support, standing by

me through the good and bad times and being patient and understanding while I was

writing this thesis.



List of publications

Journal papers

1. Prisutova, J., Horoshenkov, K., Groby, J.-P., Brouard, B. (2014) A method to de-

termine the acoustic reflection and absorption coefficients of porous media by

using modal dispersion in a waveguide. Journal of the Acoustical Society of

America 136(6) 2947-2958.

2. Duan, W., Kirby, R., Prisutova, J., Horoshenkov, K. (2015) On the use of power

reflection ratio and phase change to determine the geometry of a blockage in a

pipe. Applied Acoustics 87 190-197.

3. Duan, W., Kirby, R., Prisutova, J., Horoshenkov, K. (2013) The measurement and

prediction of complex acoustic intensity in an acoustic waveguide. Journal of the

Acoustical Society of America 134(5) 3674-3685.

Conference papers

1. Prisutova, J., Horoshenkov, K., Groby, J.-P., Brouard, B. (2014) The frequency

and angular dependence of the absorption coefficient of common types of living

plants. Proceedings of the 43rd International Congress on Noise Control Engi-

neering. Internoise 2014, Melbourne, Australia, 2014.

v



LIST OF PUBLICATIONS

2. Brouard, B., Prisutova, J., Groby, J.-P., Horoshenkov, K. (2014) Détermination
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ũ frequency spectrum of sound velocity [m/s]

ueq fluid displacement [m]

u j(t) instantaneous velocity in j direction [m/s]

uz axial velocity [m/s]

u∗z complex conjugate of axial velocity [m/s]

v(t) Gaussian pulse function [Pa]

v velocity of fluid particles at high frequencies [m/s]

veq fluid velocity [m/s]

V homogeneisation volume [m3]

Vair volume occupied by air in pores [m3]

V f volume of plant foliage [m3]

Vp equivalent volume occupied by plant [m3]

Vtotal total volume occupied by porous material [m3]

w f mean weight of single leaf [g]

xxxvii



NOMENCLATURE

wp total weight of leaves/stems [g]

x cross-sectional coordinate [m]

xm cross-sectional microphone position [m]

y cross-sectional coordinate [m]

ym cross-sectional microphone position [m]

z axial coordinate [m]

z0 monopole sound source axial coordinate [m]

z1 initial microphone coordinate [m]

z2 final microphone coordinate [m]

zi i−th axial location of probe, [m]

Za acoustic impedance of pipe [Pa s/m3]

Zc complex characteristic impedance [Pa s/m]

Zeq characteristic impedance of equivalent fluid [Pa s/m]

Zi specific acoustic impedance of pipe [Pa s/m]

Zm mechanical acoustic impedance of pipe [Pa s m]

Zmnl generalised radiation impedances [Pa s/m]

Zs surface impedance [Pa s/m]

α00 plane wave absorption coefficient [−]

αamp absorption coefficient (amplitude method) [−]

αint absorption coefficient (intensity method) [−]

αmn zeros of ∂Jm/∂n [−]

α∞ tortuosity [−]

β Gaussian pulse width [−]

γ specific heat ratio of air [−]

γmn wavenumbers corresponding to zeros of J′m [−]

Γ1 total outer surface of region R1 [−]

ΓA surface separating regions R1 and R2 [−]

ΓB surface separating regions R2 and R3 [−]

xxxviii



NOMENCLATURE

ΓC surface separating regions R3 and R4 [−]

δ(x) Dirac delta-function [−]

δeq equivalent fluid wavenumber [m−1]

∆ spacing between two microphone positions [m]

∆F swept frequency range [Hz]

∆Ω swept frequency range [Hz]

ε error between measured and predicted data [−]

εI error between measured and predicted intensities [−]

εIm error between measured and predicted imaginary parts of

modal reflection coefficient

[−]

εRe error between measured and predicted real parts of modal re-

flection coefficient

[−]

εαtotal error between measured and predicted absorption coefficient [−]

ζ normalised acoustic impedance of pipe [−]

η viscosity of air [Pa s]

θ circumferential coordinate [rad]

θ0 monopole sound source circumferential coordinate [rad]

θ f dominant angle of leaf orientation [degrees]

θmn angle of sound incidence in air [rad]

θp angle between axes of pores and surface normal [rad]

θt refraction angle in porous material [rad]

Λ viscous characteristic length [m]

Λ′ thermal characteristic length [m]

ρ0 density of air [kg/m3]

ρ̃eq equivalent fluid density [kg/m3]

σ flow resistivity [N s/m4]

σn order of Hankel function [−]

τ transmission coefficient [−]

xxxix



NOMENCLATURE

τint transmission coefficient (integral method) [−]

τmax transmission coefficient (maximum amplitude method) [−]

Υ(r) radial component of sound pressure field in region R4 [−]

φ open porosity [−]

φmn phases of forward waves [rad]

φu phase sensitivity of Microflown [degrees]

Φn(r, θ) eigenfunctions in region R2 [−]

ψmn phases of backward waves [rad]

Ψmn eigen function of impedance tube [−]

Ψ(θ, φ) transverse component of sound pressure field in region R4 [−]

ω angular frequency [Hz]

ω0 initial frequency of sine chirp [Hz]

Ω1 volume of region R1 [m3]

xl



Chapter 1

Introduction

1.1 General background

Over the past years, the problem of sound pressure distribution in different kinds of

pipes has been extensively studied, employing a range of methods. These are analytical,

numerical and hybrid methods. These studies contribute to a better understanding of

reflection, transmission and scattering processes occurring in a pipe, and have practical

engineering applications, such as examination of the conditions of underground and

ventilation pipelines, non-destructive testing and analysis of porous media and other

materials properties. An overwhelming majority of these methods are confined to sound

pressure analysis. However, there are applications for which the knowledge of scalar

sound pressure is insufficient and there is a need to analyse the sound intensity vector

field. Sound intensity has been long used for description of the sound energy flow

in noise control applications, but it is usually treated as a real quantity by taking the

time average of the instantaneous sound intensity. This approach works well if both
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CHAPTER 1. INTRODUCTION

the sound pressure and sound velocity are in phase with each other, as it happens in a

free field. But this method would not work for those fields where the sound pressure

and sound velocity are out of phase. For such conditions one needs to treat sound

intensity as a complex quantity, where the real part would represent the net energy

transport and the imaginary part the oscillatory energy flow. However, this approach

might be challenging, because the use of the complex sound intensity to describe sound

propagation in ducts is complicated. The cause for this might be the rapid fluctuations of

sound intensity vector which makes the measurement and prediction of this quantity in

a duct rather problematic. As a result, a bulk of previous studies on sound intensity has

been confined to unguided medium with main application to sound power measurement

and noise control.

In many studies of sound propagation in pipes it is common to limit the frequency

range to that of the plane wave regime (eg. Amir et al., 1995; Sharp and Campbell,

1997; de Salis and Oldham, 1999). This approach is suitable for the majority of current

applications, but in some cases, such as material testing and damage detection, using

the higher frequencies in the modal regime may be beneficial. The procedure for the

determination of the plane wave acoustic absorption coefficient of a material is detailed

in standards ISO 10534-2 (1998). However, the high frequency limit for this regime is

restricted by cross-sectional dimensions of a pipe. As a result, there is often a conflict

between the high frequency limit which needs to be achieved and the size of the samples

which the pipe is able to accommodate in order to determine the acoustical absorbing

properties for a representative area of the material specimen. Several studies have rather

successfully been carried out in order to overcome this issue, but their results may still

be subject to poor signal-to-noise ratio, phase mismatch and calibration problems.

Therefore, the purpose of this research is to investigate the complex sound intensity dis-

tribution in waveguides with different boundary conditions and at frequencies at which

several higher order modes can be excited. This includes the problem of an open end

2
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of a pipe, blockage detection and porous media characterisation by analysing the re-

flected and transmitted sound intensity fields. This will be achieved by undertaking

the experimental measurements and comparing the obtained data against the predic-

tions generated by the numerical model and thus gaining fundamental understanding

of instantaneous and time-averaged complex intensity scattered by inhomogeneities in

pipes. Additionally, an alternative method for measuring the reflection and absorption

coefficient of a relatively large specimen of porous media and living plants in an acous-

tic waveguide will be presented. It is based on applying the two-dimensional Fourier

transform to sound pressure data, collected with a simulated microphone array. The re-

sults of this project can help to improve the quality of acoustic instruments which have

been developed for the inspection of the underground pipes (Acoustic Sensing, 2015).

These instruments analyse the acoustic intensity vector recorded in the pipe. If the sen-

sor is placed at a position where the intensity distribution is complex because of the

presence of standing waves or higher order modes propagating in different directions,

then the analysis of the recorded data becomes a challenging task. In order to resolve

it, one needs to be aware of the distribution of the acoustic intensity to compensate for

this effect.

1.2 Aims and objectives

The aim of this research is to gain a fundamental understanding of complex intensity

field distribution in an acoustic, air-filled waveguide. The obtained knowledge can then

be used to develop a fast and efficient acoustic detection system to characterise the

reflections from inhomogeneities in an air-filled waveguide. To fulfil this aim, the 8

specific objectives were set. These objectives are listed in Table 1.1.
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No. Objectives

1 Develop a new experimental facility for studying sound propagation in modal
regimes in pipes

2 Identify and use a suitable mathematical model for the prediction of sound
intensity in pipes

3 Carry out a series of experiments to validate this model

4 Use the experimental facility and the numerical model for studying the com-
plex flow of acoustic energy in pipes with inhomogeneities and near the open
ends

5 Use the numerical model and experimental facility to understand better the
behaviour of the 3-component vector of the sound intensity in a pipe before
and after an inhomogeneity

6 Develop and validate a method to determine modal reflection coefficients of
porous materials at normal and oblique incidence

7 Apply the new method to study the acoustical properties of living plants and
use these data to validate the equivalent fluid model

8 Use the above results to propose a practical method for characterisation of
inhomogeneities and materials in pipes based on acoustic data

Table 1.1: Objectives of the project

1.3 Report structure

This thesis is organised in the following manner. Chapter 2 gives coverage of the liter-

ature review. Basic concepts of the sound field in a waveguide are presented, together

with the sound intensity and methods of its measurement, as well as the existing work

on the acoustic pulse reflectometry, porous media and living plants acoustics.

Chapter 3 gives an insight into complex sound intensity theory, the methods of sep-

aration of its real and imaginary components and its validation against experimental

data.

Chapter 4 presents an application of complex sound intensity data to blockage detection

and its reflection and transmission coefficients determination. The adopted experimen-
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tal setup is described, and results obtained with it are compared to theoretical predic-

tions.

Chapter 5 describes a method to obtain modal reflection and absorption coefficients of

porous materials in a waveguide. The theoretical framework for the developed method

is presented, and the adopted experimental setups are described. The modal reflection

and total absorption coefficients are shown for several different materials and the quality

of obtained results is analysed.

Chapter 6 details the application of the proposed method to obtain the reflection and

absorption coefficients to living plants. It introduces criteria for choice of living plants

suitable for enhanced sound absorption and examines the approach of linking the mor-

phological parameters of plants with non-acoustical characteristics, such as porosity,

flow resistivity and other.

Chapter 7 presents a sensitivity analysis. It offers the comparison between the predicted

data and the data simulated to include an artificially introduced phase and a random and

constant positioning errors. Furthermore, it examines the influence of the measurement

step and window length and shape on the accuracy of the measured data. Finally, it

studies how the loudspeaker positioning affects the sound field distribution in a waveg-

uide.

Chapter 8 reviews the achievements and limitations of the conducted research, as well

as the future work and recommendations.

Each chapter is concluded with a section summarising the contents of the chapter.
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Chapter 2

Literature review

The fundamentals of the sound intensity theory are presented in this chapter to give a

reader a brief introduction into the underpinning physics. The published papers on the

sound propagation in air-filled cylindrical flanged / unflanged pipes are reviewed, as

well as the previous work on the sound propagation in the presence of living plants.

2.1 Sound field in a duct

Duct acoustics is a branch of acoustics which deals with sound propagation in ducts and

waveguides, which is of practical concern in many areas of engineering, such as noise

reduction of ventilating and air-conditioning systems, silencers for combustion engines,

use of impedance tubes for testing of acoustic properties of materials and similar appli-

cations.

A plane wave is the most basic case when a harmonic disturbance in a duct propagates

along its axis at the sound speed c0. Linearity condition suggests that any harmonic dis-
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turbance occurring at frequency ω will generate the sound field where the sound pres-

sure p will also vary sinusoidally with time and at frequency ω, and velocity changes

and perturbations of density and temperature will have the same frequency. Sound

pressure field will then be the product of the complex vibration amplitude and complex

factor eiωt, which takes time into account. It follows that any linear quantity in such

sound field can be defined as its real part, so the actual sound pressure is the real part of

the complex sound pressure field (Jacobsen, 2010):

p = Re{ p̃} = Re{|p̃|ei(ωt+ϕ)} = | p̃| cos(ωt + ϕ), (2.1.1)

where the tilde above the sound pressure p denotes its complex nature, i =
√
−1 and ϕ

is the phase of the complex sound pressure at t = 0 moment of time. When the factor

eiωt is present in the equation, the derivative operator
∂

∂t
can be replaced with iω and

∂2

∂t2 with −ω2. So the linearised wave equation

52 p̃ −
1
c2

∂2 p̃
∂t2 = 0 (2.1.2)

becomes

52 p̃ +

(
ω

c0

)2

p̃ = 52 p̃ + k2 p̃ = 0, (2.1.3)

which is called the Helmholtz equation and where k is a wavenumber. The general

solution to this equation for a given frequency ω is

p̃ = p+ei(ωt−kz) + p−ei(ωt+kz), (2.1.4)

where p+ and p− are complex quantities representing the waves travelling in the duct

forward and backward, respectively, and z is the direction of the axis of the duct.

If the sound wave is propagating from the source at z < 0 along the duct, terminated at

one end with the surface, as shown in Figure 2.1, then the right-hand side of Equation
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(2.1.4) can be considered as a superposition of a wave travelling forward and a wave

travelling backward.

Figure 2.1: Incident and reflected sound wave in a closed pipe

Za is the acoustic impedance of the pipe and it will be described later.

p+ is always equal or greater than p− and their ratio is the reflection coefficient, which

depends on the acoustic properties of the surface:

R =
p−
p+

. (2.1.5)

Equation (2.1.4) can now be rewritten as follows:

p̃ = p+

(
ei(ωt−kz) + Rei(ωt+kz)

)
, (2.1.6)

which reveals the dependence of the sound pressure amplitude on the position. The

maximum value the acoustic pressure can reach occurs in the case of constructive inter-

ference, i.e. when the incident and the reflected waves are in phase:

pmax = |p+|(1 + |R|), (2.1.7)

and the minimum value occurs in case of destructive interference, when the incident
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and the reflected waves of the sound pressure are out of phase:

pmin = |p+|(1 − |R|), (2.1.8)

and their ratio is the standing wave ratio:

s =
pmax

pmin
=

1 + |R|
1 − |R|

. (2.1.9)

The acoustic velocity is the spatial derivative of the sound pressure:

ũz = −
1

iωρ0

∂ p̃
∂z

=
1
ρ0c0

(
p+ei(ωt−kz) + p−ei(ωt+kz)

)
, (2.1.10)

where the quantity ρ0c0 is called the characteristic impedance of medium, and the acous-

tic impedance of the pipe is

Za =
p̃

S ũ
=
ρ0c0

S

(
e−ikz + Reikz

e−ikz − Reikz

)
=
ρ0c0

S

(
(1 + R)
(1 − R)

)
z=0
, (2.1.11)

where the term S ũ is sometimes referred to as the volume velocity and S is the cross-

sectional area of the duct. The specific acoustic impedance is the ratio of the sound

pressure and the normal sound velocity:

Zi =
p̃
ũz

= ρ0c0
e−ikz + Reikz

e−ikz − Reikz = ZaS . (2.1.12)

It is related to the mechanical impedance for the unit area, where the mechanical impedance

is the ratio of the force, driving the particles inside the waveguide, and the sound veloc-

ity:

Zm =
p̃S
ũz

= S ρ0c0
e−ikz + Reikz

e−ikz − Reikz = ZaS 2. (2.1.13)

From Equations (2.1.11), (2.1.12) and (2.1.13) it is easy to observe that all three types

of acoustic impedances are related to each other. Most commonly, the dimensionless,
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normalised acoustic impedance, expressed in ρ0c0 units, is used:

ζ =
Zi

ρ0c0
, (2.1.14)

which describes the ratio of the specific acoustic impedance to the characteristic acous-

tic impedance of fluid. The reflection coefficient R can also be expressed in terms of the

acoustic impedance:

R =
Za −

ρ0c0/S

Za + ρ0c0/S
. (2.1.15)

Equation (2.1.15) shows the relation between the acoustic impedance, the characteristic

impedance of the tube ρ0c0
S and the boundary conditions of the pipe. The value of the

reflection coefficient R can vary from 1 to -1. If |Za| �
ρ0c0

S , then the reflection coeffi-

cient R ' 1, which means that the sound pressure and sound velocity are in phase and

the reflection is from the rigid boundary. If |Za| =
ρ0c0

S , then R = 0 and no reflection is

taking place. If |Za| �
ρ0c0

S , then the reflection coefficient R ' −1, which implies that

the sound pressure and velocity are out of phase. This is true in case of the open-ended

pipe at low frequencies, which will be shown later.

If the pipe with the open end is considered, its terminating acoustic impedance is in

fact the radiation impedance of the piston installed at the end of the pipe. If the pipe is

flanged, then its acoustic impedance is the impedance of the piston put in a rigid baffle.

The transmission coefficient, which is the quantity opposite to the reflection coefficient,

is then expressed in a following way:

τ =
pt

p+

= 1 + R, (2.1.16)

which shows the ratio of the transmitted power to the incident power.
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2.2 Sound intensity

The instantaneous sound intensity, which is a product of the sound pressure and the

particle velocity in a three dimensional space, can be presented in a following way:

I(t) = p u. (2.2.1)

where u is the particle velocity vector. For a one dimensional plane wave in a narrow

pipe, the relationship between the instantaneous pressure and the instantaneous velocity

is expressed as follows:

u+ =
p+

(ρ0 c0)
, u− = −

p−

ρ0 c0
, (2.2.2)

where + and − signs in superscripts refer to the waves propagating forward and back-

wards in x-direction, and the dependence on z and t is implicit. Then, the instantaneous

sound intensity is given by

I(t) =
(p+)2 − (p−)2

ρ0 c0
, (2.2.3)

and the time-averaged, or mean intensity -

Ī =
(p+

rms)
2 − (p−rms)

2

ρ0 c0
, (2.2.4)

where p+
rms and p−rms are mean square pressures in the forward and backwards directions,

respectively. It follows, that if the mean intensity is zero at any point in the sound field,

it will be zero everywhere, as mean square pressures do not depend on a position. How-

ever, the instantaneous intensity at any point of the field can fluctuate about the zero

mean value, implying that the instant flow of energy in a local region can change the

direction and magnitude, as the magnitudes of the instantaneous velocity and pressure

can fluctuate. Because the potential energy is proportional to the square of the sound

pressure, and the kinetic energy is proportional to the square of the particle velocity,

there is a continuous exchange between these two keeping the total energy in the pipe
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constant in the absence of any losses. The type of this exchange can depend on the

nature of a propagating wave. If a pure progressive wave is considered, i.e. a prop-

agating wave transferring energy through the medium, then the maxima of the sound

pressure coincide with those of the potential energy, and their spatial distributions are

concentrated in clusters. Then the intensity at any point in space varies with time, but

is never negative, which results in no intensity oscillations taking place. However, if a

pure standing wave is considered, i.e. the wave pattern remaining in a constant position

due to the interference of two waves travelling in opposite directions with no net trans-

fer of energy, then the flow is purely oscillatory, indicating alternating concentrations

of kinetic and potential energies.

According to Fahy (1995), in the time-stationary fields the instantaneous sound intensity

can be divided into two parts: active intensity and reactive intensity. This distinction is

used to distinguish between the sound fields with different characteristics. For example,

in a plane wave field or in a far field the sound pressure and the particle velocity are in

phase which each other, which is a characteristic of an active sound field. In the other

types of field, such as a near field, the pressure and the velocity are in quadrature, or

90◦ out of phase, which is common for a reactive sound field. The active component

represents the net energy transport and the reactive component represents the oscillatory

transport of the energy. The time-averaged value of the former component is non-zero,

whereas the same of the latter is equal to zero. There are no physical sound fields which

would be purely reactive, such as pure standing wave field or pure diffuse field - some

amount of the mechanical energy is transformed into heat, which creates a flow of the

energy from the region where it is generated to the one where it is dissipated. Although

the active sound intensity measurement is more widespread and has more applications

(such as sound power determination and location of noise generating regions), the re-

active sound intensity is also of use (e.g. the analysis of scattering in monochromatic

sound fields).
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According to Jacobsen (1991), in a non-monochromatic sound field it is preferable to

use the narrow band source to be able to represent the complex instantaneous inten-

sity using the method suggested by Heyser (1986). This approach may cause certain

challenges, so it may be sensible to simplify the problem and use a monochromatic

representation of the sound field, i.e. use a sine wave excitation. For a monochromatic

sound field, the real part is normally called the instantaneous active intensity and the

imaginary part the instantaneous reactive intensity (Fahy, 1995). On the other hand,

in the case of a stationary sound field, it is common to take a time average of the in-

stantaneous intensity and treating this intensity as a real quantity. Here the real part is

often called the active or mean active intensity (Fahy, 1995), so that it corresponds to

the terminology used for the instantaneous active intensity discussed previously. This

definition works well for the real part of the instantaneous complex intensity. However,

if the time average of the imaginary part of the instantaneous intensity is taken, then

this will give zero. To address this, Fahy (1995) uses the amplitude of the imaginary

part of the instantaneous intensity and defines this as the reactive intensity. Thus for

instantaneous complex intensity, Fahy adopts the terminology of instantaneous active

and instantaneous reactive intensity, and for non-instantaneous intensity, active and re-

active intensity. In view of the simplicity of this approach, the terminology of Fahy is

also adopted here.

Two techniques for calculating of the instantaneous complex intensity are investigated

here. The first technique is the aforementioned method by Heyser (1986). He defines

the instantaneous active I(t) and reactive J(t) intensities as

I(t) =
1
2

pu +
1
2

p̂û (2.2.5)

and

J(t) =
1
2

p̂u −
1
2

pû, (2.2.6)

respectively. Here, t is time, and p and u are the time history values of pressure and
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velocity, respectively, with ˆ denoting the Hilbert transform. The second technique

was introduced by Schiffrer and Stanzial (1994), Stanzial et al. (1996), and Stanzial

and Prodi (1997), who define radiating and oscillating components of instantaneous

intensity so that

Irad(t) =
p2 〈pu〉
〈p2〉

(2.2.7)

and

Josc(t) =
〈p2〉pu − p2〈pu〉

〈p2〉
, (2.2.8)

respectively, and 〈·〉 denotes the time average. This method introduces the time aver-

aging, which does not appear in the method described by Heyser (1986). It is not an

issue for time stationary problems, but for transient problems the result will depend on

the choice of the time window chosen for the averaging procedure. Stanzial and Prodi

(1997) suggested that their method can be applied to transient problems if the analysis

is limited to narrow band signals. However, the latter method must be used with care for

the analysis of transient problems, as the outcome will strongly depend on the choice of

the window selected for time averaging and filtering method (see Duan et al., 2013). If

multiple signals are present within the window and they do not overlap, this may cause

interference and distorted values of complex intensity. Furthermore, the radiation of

sound from the complex noise sources should be studied with caution.

Nonetheless, if used carefully, then both methods are of use in the analysis of instan-

taneous intensity. It is still possible to use these definitions for a stationary monochro-

matic field by taking a time average of the instantaneous intensity, however, to compute

non-instantaneous, frequency dependent active and reactive intensity, it is usual practice

to use the cross-spectrum between the measured sound pressure and particle velocity:

I(ω) = Re[S pu(ω)] (2.2.9)
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and

J(ω) = −Im[S pu(ω)], (2.2.10)

which are active and reactive intensities in a time stationary sound field, respectively.

S pu(ω) denotes the cross-spectrum for ω ≥ 0, and the minus sign in Equation (2.2.10)

refers to the reactive intensity pointing in the direction of decreasing pressure.

For theoretical predictions of non-instantaneous active and reactive intensity, the fol-

lowing expressions were used, respectively (Duan et al., 2013):

I(ω) = 0.5Re{pu∗} (2.2.11)

and

J(ω) = 0.5Im{pu∗}. (2.2.12)

2.3 Sound intensity measurements

Measurements of the acoustic intensity field are far more complicated than measure-

ments of the acoustic pressure. As described above, the acoustic intensity is a product

of acoustic pressure and acoustic velocity. According to Fahy (1995), the latter two

quantities are both functions of the velocity potential of the field, but the relationship

between them depends on the acoustic field and is not single-valued. Therefore, two

transducers are required to determine the acoustic intensity. Currently, only two meth-

ods of acoustic intensity measurement are available. One of them employs a matched

pair of microphones and it is called ’p-p’ method. The other, relatively new method re-

lies on a microphone combined with a particle velocity sensor. Both methods have their

advantages and disadvantages. Background noise reduces the accuracy of ’p-p’ probe,

but has no influence on ’p-u’ probe, and reactive sound fields increase ’p-u’ probe phase

mismatch, but do not affect ’p-p’ probe (Jacobsen, 2005).
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Figure 2.2: Schematic p-p intensity probe configurations (Fahy, 1995).

2.3.1 The ’p-p’ principle

This method uses two identical pressure microphones, placed closely together, so that

the distance between the microphones is much smaller that the acoustic wavelength.

There are different types of microphones’ configurations, some of which are shown in

Figure 2.2.

In a sound field with small amplitude variations the acoustic velocity can be expressed

as

un(t) = −
1
ρ0

t∫
−∞

(
dp(τ)

dn

)
∆τ, (2.3.1)

where n is the normal in the direction perpendicular to the microphone plane, and ap-

proximated as

un(t) ≈ −
1
ρ0∆

t∫
−∞

[pm1(τ) − pm2(τ)] ∆τ, (2.3.2)

where ∆ is the distance between the microphones. The acoustic pressure at ∆
2 can be

approximated as

p(t) ≈
1
2

[pm1(t) + pm2(t)], (2.3.3)
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so the acoustic intensity becomes

In(t) ≈
1

2ρ0∆
[pm1(t) + pm2(t)]

t∫
−∞

[pm1(τ) − pm2(τ)] ∆τ. (2.3.4)

The error, associated with this principle of intensity measurements in a plane wave

interference field is equal to

epp(I) =
Ie − I

I
≈ −

2
3

(kh)2 +
2

15
(kh)4, (2.3.5)

where h is half the separation distance between two microphones, and e(I) < 5% for

2kh < 0.55. The current manufacturers of the intensity probes, based on ’p-p’ principle,

include such companies as Danish-based Brüel and Kjær and G.R.A.S.

2.3.2 The ’p-u’ principle

In this method, described by Fahy (1995, pp. 90-91), two parallel ultrasonic beams,

directed oppositely, are affected by air movement of sound wave propagation. This

results in a phase difference upon arrival to a respective receiver. If the transit times are

t+ = ∆
c+u and t− = ∆

c−u , where ∆ is the distance between the transducers (approximately

28 mm), c and u are the velocities of ultrasonic beam and particles, respectively, this

will result in following phase difference:

δϕ = ωu ∆

[
1

c − u
−

1
c + u

]
≈

2ωu du
c2 , (2.3.6)

where ωu is the ultrasonic frequency. Then the phase difference is transformed into

the electrical analogue of u. The error of ’p-u’ measurements can be quantified in a

following way, assuming perfect transduction by the associated pressure transducer:

epu(I) =
1
2

(
c2

2∆

T− − T +

u(T +/2,∆/2)
− 1

)
, (2.3.7)
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where T + and T− are signal transit times in positive and negative directions, respec-

tively.

The limitation of this probe is its inability to perform in conditions when any non-

acoustical flow is present, such as wind. Furthermore, as it measured the particle veloc-

ity only in one direction at a time, it is impossible to get a full instantaneous intensity

vector. However, if the information on the mean intensity is sufficient, three sequential

measurements can be performed and their results combined. The only manufacturer of

the intensity probes based on the ’p-u’ principle is the company called Norwegian Elec-

tronics, but due to more accurate and smaller probes becoming commercially available,

its production has been discontinued.

2.3.3 Microflown

Figure 2.3: Close-up of Microflown velocity sensors situated at the sides of the probe -
radial blue, circumferential red, axial green (on the opposite side of the red sensor), and
a microphone at the top of the probe.
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Figure 2.4: Temperature distribution due to the convection between two wires, (De
Bree, 2004).

Microflown is an acoustic probe, based on the ’p-u’ principle, but it uses a different

approach to the velocity measurement than the one described above (de Bree, 2007). It

was invented at the University of Twente, Netherlands, in 1994, and was firstly used for

the analysis of the noise-related problems, but later it was discovered that it can deliver

intensity data of a higher quality that traditionally used ’p-p’ sensors. It consists of

a standard microphone and another velocity sensor which is two tiny platinum wires,

separated by approximately 100 µm. Overall, the sensor is 1 mm wide, 2 mm long and

300 µm thick. The wires themselves are 200 nm thin and 10 µm wide. They are heated

to the operational temperature of about 200◦C. Particle velocity alters the temperatures

of both wires, and the upstream wire is heated less than the downstream due to the con-

vective heat transfer. So the temperature difference occurs (see Figure 2.4), causing the

change in the electrical resistance and a voltage difference. This difference is propor-

tional to the velocity of the flow, and is also directional, so it is possible to determine

the direction of the sound wave movement. This velocity probe seems to use a similar

principle to hot wire probes used in wind tunnels in the 1960’s and 70’s and still made

by companies such as Dantec Dynamics.

The frequency response of the sensor is flat only in the region between 100 Hz and

1 kHz. At the lower frequencies the sensitivity is believed to be increasing due to
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the thermal boundary layer on the wires. At the higher frequencies the sensitivity is

decreased because of the diffusion effects. To correct the frequency response, electric

signal conditioning is used, which modifies the amplitude and the phase response to

make them flat. The Microflown conditioning amplifier has two data recording modes:

corrected and uncorrected. In the uncorrected mode, the particle velocity sensitivity and

the phase can be estimated using the following formulae:

S u [mV/Pa] =
S u@250 Hz√

1 +
f 2
c1u
f 2

√
1 +

f 2

f 2
c2u

√
1 +

f 2

f 2
c3u

√
1 +

f 2
c4u
f 2

, (2.3.8)

φu [deg] = arctan
C1u

f
− arctan

f
C2u
− arctan

f
C3u

+ arctan
C4u

f
, (2.3.9)

and for the corrected mode:

S u [mV/Pa] =
S u@250 Hz√

1 +
f 2
c1u
f 2

√
1 +

f 2
c4u
f 2

, (2.3.10)

φu [deg] = arctan
C1u

f
+ arctan

C4u

f
, (2.3.11)

where S u@250 Hz is the sensitivity at 250 Hz, fc1u, fc2u, fc3u, fc4u are sensitivity corner-

frequencies, C1u,C2u,C3u,C4u are phase cornerfrequencies, f is the frequency of inter-

est, and a cornerfrequency is a frequency at which the frequency response decays 3dB.

These formulae are given in a conditioning report, which is provided with every Mi-

croflown probe. Therefore, it is possible to correct the sensitivity and phase mismatch

of the recorded signal.

There are several commercially available Microflown products, such as Scanning Probe,

which consists of a single Microflown sensor; 1/2” PU and 1/2” mini PU probes, which

consist of a small pressure element, a velocity sensor, are packaged in a special case

which has a gain of 15 dB, with the latter being smaller in size; the PU match being the

smallest ’p-u’ probe and the USP, which consists of a pressure microphone and three
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orthogonally placed velocity sensors and which is depicted in Figure 2.3. The latter has

been used for several measurements described in this thesis. Its advantages are its size,

which is approximately 5x5x5 mm3 without a cap, whole audible frequency bandwidth,

measurements in the near and reactive fields and the need of only four channels for a

full three-dimensional sound field description.

2.4 Models for sound propagation in a pipe

One old problem which continues to attract the attention is the problem of sound prop-

agation in a pipe with a discontinuity. The most simple discontinuity is the end of an

open pipe with or without a flange. The problem of the acoustic pressure distribution in

flanged and unflanged circular pipes is not new and it has been studied intensively. The

initial studies go back to Lord Rayleigh (1896), who investigated the wave motion in

open-ended pipes and made the first approximate calculations of the correction for an

open end.

Levine and Schwinger (1948) used the Green’s function to formulate a problem. They

derived the integral equation resembling Wiener-Hopf integral and solved it using the

Fourier transform method. However, their solution was for an unflanged pipe only, as

the presence of an infinite flange on an open end of the pipe would require the additional

term in the Green’s function, representing the image effect of the flange, which consid-

erably complicates the solution. Furthermore, the solution included the fundamental

mode only and did not take into account the effect of higher order modes.

Nomura et al. (1960) solved the radiation problem for the pipe with the infinite flange

for γ = ka < 3.8317, making use of Weber-Schafheitlin integrals and Jacobi polyno-

mials. They derived two infinite sets of equations, one for the outside and one for the

inside region, solved them numerically and connected the solutions at the boundary
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Felsen and Yee (1968) calculated the modal reflection and coupling coefficients for both

flanged and unflanged semi-infinite pipes using the ray tracing method. The incident

mode was decomposed into the local plane waves colliding with the edge of the pipe

mouth and the discontinuity on the mouth was treated as an equivalent nonisotropic ring

source, whose radiation back into the pipe is regarded as the reflected waves. These

waves were then converted to the modal form to derive the modal reflection coeffi-

cients. Although the solution for the low-frequency regime is not straightforward when

applying this method, the authors succeeded in modifying the suggested algorithm to

accommodate all frequencies.

A solution for the two-dimensional case of sound propagation inside an open-ended

flanged pipe was proposed by Shenderov (1972). He uses the modal expansion of the

velocity potential inside a pipe, and solves the equation for the unknown modal reflec-

tion coefficients using a change of variables and Dirichlet double integral substitution

formula. The results of his method are compared with the three-dimensional models in

the subsequent chapter of this thesis.

Zorumski (1973) extended the Morse’s equation (1949) for the radiation impedance of

a vibrating rigid piston to calculate the generalised radiation impedances Zmnl for all

modes in circular and annular waveguides with the infinite flange on an end of a waveg-

uide. The equation for Zmnl was simplified to a single infinite integral and then was used

to derive an infinite matrix equation, which related the generalised radiation impedances

to the generalised mode reflection coefficients Rmnl. The possible singularity was treated

using the Sonine’s infinite integral and Neumann’s addition theorem.

Norris and Sheng (1989) have also represented the acoustic potential in the pipe as the

modal series. They solve the problem in a way similar to Nomura, but the novelty of

their method is the fact that they are treating a flanged pipe as a rigid half-space with

infinitely deep holes.
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Silva et al. (2009) used the results of Levine and Schwinger for the unflanged case and

the results of Zorumski for the case of infinite flange and derived the approximation for-

mulae for the reflection coefficients by numerical and analytical fitting. They ensured

that all the basic mathematical and physical principles, like causality and hermitian

symmetry, were met and presented three models for the reflection coefficient calcula-

tion, which are shown in Figure 2.5 [see Equations (15), (16) and (21) in the original

paper].

Figure 2.5: Results of approximate radiation models (Silva, 2009).

2.4.1 Hybrid FEM model

A suitable theory that was used to predict the sound field distribution at the end of an

open-ended flanged pipe was proposed by Duan et al. (2013). It is a hybrid model,

originally developed by Kirby (2008), and applied to study the sound propagation in

ventilation ducts (Duan and Kirby, 2012). It makes use of the modal decomposition

approach for uniform and rather simple regions in the pipe, where the sound field dis-

tribution is rather simple, but employs finite element modelling for regions such as a
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geometrical discontinuity, point source or wall impedance change. This model is used

for the theoretical predictions of the sound intensity distribution in waveguides in this

thesis.

Figure 2.6: Schematic drawing of a pipe (Duan et al., 2013).

Figure 2.6 schematically shows the problem which is modelled here. Sound propagation

in region Rq (q = 1, 2, 3, and 4) is governed by the following acoustic wave equation:

1
c2

0

∂2 pq

∂t2 − ∇
2 pq = F1, (2.4.1)

where c0 is the speed of sound, pq is the acoustic pressure, t is time, and F1 is assumed

to be a time harmonic sound source in region R1, given as

F1 = δ(r − r0) δ(θ − θ0) δ(z − z0) eiωt, (2.4.2)

for a cylindrical coordinate system (r, θ, z), with (r0, θ0, z0) denoting the location of the

monopole sound source, and δ(x) is the Dirac delta-function.

A finite element discretisation is used for regions R1 and R3, so that the pressure p = Np,

where N and p are row and column vectors, respectively, and these hold the global trial

(or shape) functions and the unknown acoustic pressures. After applying the Galerkin
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method, the governing equation in region R1 can be written as

∫
Ω1

[
∇N1

T∇N1 − k2
1N1

T N1
]

dΩ1 p1 =

∫
ΓA

N1
T∇p1 · nA dΓ1 +

∫
Ω1

N1
T F1 dΩ1 (2.4.3)

with ∫
Ω1

N1
T F1 dΩ1 = N1

T (r0, θ0, z0). (2.4.4)

Here, Ω1 denotes the volume of region R1, Γ1 is its total outer surface, and nA is the

outward unit normal vector over surface ΓA; the surfaces of region R1 that do not lie on

ΓA are assumed to be hard walled so the integral over these surfaces in Equation (2.4.3)

is zero.

For region R3, the acoustic pressure is approximated in a similar way as described pre-

viously:

p3(x, y, z) =

n3∑
j=1

N3 j p3 j = N3 p3, (2.4.5)

where N3 j is a global trial (shape) function for the mesh in region R3, p3 j are values of

sound pressure at nodes j, n3 in the number of nodes in region R3, and N3 and p3, are

row and column vectors, respectively. After applying Galerkin method, the governing

equation for region R3 is

∫
Ω3

[
∇NT

3∇N3 − k2
3NT

3 N3
]

dΩ3 p3 =

∫
Γ3

NT
3∇p3 · n3 dΓ3, (2.4.6)

where n3 is the outward unit normal vector to R3.

The pressure in regions R2 and R4 is expanded over a series of eigenmodes to give

p2(r, θ, z) =

∞∑
n=0

An Φn(r, θ) e−ikλnz +

∞∑
n=0

Bn Φn(r, θ) e ikλnz (2.4.7)
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and

p4(r, θ, z) =

∞∑
n=0

Cn Υ(r) Ψn(θ, φ), (2.4.8)

respectively. Here, An, Bn and Cn are modal amplitudes. The dimensionless wavenum-

ber in region R2 is given by λn, and the eigenfunctions in regions R2 and R4 are given

by Φn(r, θ) and Ψn(θ, φ), respectively. In region R4, the sound pressure field is sepa-

rated into a radial component Υ(r) and a transverse component Ψ(θ, φ). Substituting

Equation (2.4.8) in the governing equation (2.4.1) yields, after separating variables and

re-arranging:

1
Υn(r)

[
r2∂

2Υn(r)
∂r2 + 2 r

∂Υn(r)
∂r

]
+ k2

4 r2 = −
1

Ψn(θ, φ)
∇2
θφ Ψn(θ, φ), (2.4.9)

where the operator ∇2
θφ = (1/ sin θ) (∂/∂θ) (sin θ (∂/∂θ)) + (1/ sin θ) (∂2/∂φ2). Separa-

tion of variables in Equation (2.4.9) means that both sides of it must be equal to some

constant on the right-hand side of Equation (2.4.9), then Ψ(θ, φ) must satisfy:

∇2
θφΨn(θ, φ) + s2

n Ψn(θ, φ) = 0. (2.4.10)

In the same manner, the left-hand side of Equation (2.4.9) can be substituted with

σn(σn + 1) = s2
n, and then

ζ2 ∂
2Υn(r)
∂ζ2 + 2 ζ

∂Υn(r)
∂ζ

+
[
ζ2 − σn(σn + 1)

]
Υn(r) = 0 (2.4.11)

with ζ = k4 r, and k4 is the wavenumber in region R4. Then

s2
n = σn(σn + 1). (2.4.12)

Equation (2.4.11) can be solved analytically, yielding

Υn(r) = h(2)
σn(k4r), (2.4.13)
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where h(2)
σn is spherical Hankel function of the second kind, of order σn, which is a well-

known solution for spherical harmonics. For sound radiation from a sphere Hankel

functions are of integer order, with σn = 0, 1, 2, 3. However, a truncated sphere is used

in the this study, so that the order of Hankel function is no longer integer except for the

fundamental mode, where σn = 0.

The hybrid method proceeds by enforcing continuity of the acoustic pressure and nor-

mal velocity over the surfaces ΓA, ΓB and ΓC, and these conditions are enforced here

using mode matching procedure (Kirby, 2008). The final system of equations is written

in the matrix form to give R12 R13

R31 R34


T12

T34

 =

F1

0

 (2.4.14)

Equation (2.4.14) forms a set of nt = n1 + 2m2 + n3 + m4 linear equations, where n1

and n3 are the number of nodes in regions R1 and R3, and m2 and m4 are the number of

modes in regions R2 and R4, respectively. The terms of Equation (2.4.14) are defined in

the original papers by Kirby (2008) and Duan et al. (2013).

Here, the outer radius of the finite element mesh in Region R3 is R. If only one plane

wave propagates, the problem is reduced to two dimensions only. However, above the

first cut-on frequency the problem is no longer axisymmetric, and a three dimensional

model is required. A very fine mesh must be used in regions R1 and R3 to ensure a good

accuracy of the predictions. For the two dimensional model, a minimum of 45 nodes

per wavelength is recommended to use (Duan et al., 2013). For the three-dimensional

model the mesh within R3 is optimised, so it is finer on surfaces ΓB and ΓC, but coarser

inside these regions for computational efficiency. Here, at least 27 nodes per wavelength

are present on the surfaces ΓB and ΓC, and 11 nodes per wavelength within the volume

of the regions. 40 and 60 modes are used in Region R2 for two dimensional and three

dimensional models, respectively, while 80 and 120 modes were employed in Region

R4.
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2.5 Acoustics pulse reflectometry

Acoustic methods have been used extensively to test the conditions of a pipe and locate

blockages, cracks or other inhomogeneities. The primary application of these methods

is linked to the quality inspection of pipes in chemical engineering, oil, gas and water

industries and musical instruments. These methods are attractive as they offer a fast

and non-destructive means for locating inhomogeneities or determining the geometry

of a remote section of a pipeline. Many of the methods are based on the acoustic pulse

reflectometry, the original application of which was seismological, to observe the strat-

ifications in the earth’s crust. The crust is made up of several layers of different rock,

so when a pressure wave penetrates these layers, reflections occur due to impedance

differences between the layers and they are recorded at the surface. An impulsive pres-

sure wave is used as a source of sound excitation, produced by a dynamite explosion,

or similar. Due to the impulsive nature of the excitation signal, the recorded signal is

called the input impulse response. Ware and Aki (1969) were the first to calculate the

reflection coefficients of different layers from the input impulse response. Their method

assumes no losses during the propagation. Once the boundary reflection coefficients

and surface impedances of the rock are known, the impedances of the deeper layers of

the rock can be obtained. This phenomenon is similar to that when the pulse reflects

from any impedance discontinuity in the pipe, and several reflections are combined into

one impulse response. This allows the determination of the pipe geometry and detection

of leaks, blockages and other discontinuities.

One of the first works on the blockage detection in pipes was by Antonopoulos-Domis

(1980). He found that the first two resonant frequencies of the pipe depend on the lo-

cation of the blockage and employed the eigen-frequency shift analysis to detect the

blockage in the cooling system wrapper of sodium-cooled fast nuclear reactors. How-

ever, his method cannot identify the size and the location of the blockage.

28



2.5. ACOUSTICS PULSE REFLECTOMETRY

It was subsequently found by Wu and Fricke (1990) that the eigen-frequency shift is

uniquely related to the location of the blockage, and the amplitude of this shift depends

on the blockage size. Although their method delivers very accurate results, it is inap-

plicable for a majority of measurements. It requires two separate tests to be performed,

with and without the blockage in the pipe, and with different boundary conditions at the

pipe termination, where each of the tests asks for at least on end of the pipe to be closed

with a perfectly rigid termination.

Based on the work of Wu and Fricke, de Salis and Oldham (1999) introduced a method

to recover the blockage area under one set of pipe termination boundary conditions.

It relies on the measurement of resonance and anti-resonance frequencies. The authors

made use of a deterministic maximum length sequence to drive the loudspeaker, in order

to minimise the problem of the anti-resonance frequencies, corresponding to pressure

minima, being affected by background noise. It was shown later by the same authors

(2001) that it is possible to omit the measurements in the duct without the blockage.

Recently, Duan et al. (2015) suggested a method to obtain both the length and cross-

sectional area of a blockage using a single microphone to capture the incident and re-

flected pulses. The amplitude and phase change between the incident and reflected sig-

nals were substituted into two independent equations which in turn recover the length

and cross-sectional area of the blockage. Although the measurements are limited to the

plane wave regime, a relatively large number of blockage types can be recovered.

A substantial amount of research was performed in the musical acoustics area. Recon-

structions of the bores of various brass instruments were presented by Smith (1988),

Watson and Bowsher (1987, 1988) and Watson (1989), using the input impulse re-

sponses measured with a pulse reflectometer. The cylindrical symmetry was assumed

in their works. Later, Amir et al. (1995) presented a layer-peeling method, which in-

cluded the effect of losses.
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2.6 Sound propagation in porous media

2.6.1 Porous materials

Porous materials play a significant role in everyday life. Their physical properties are

of interest in geophysics, aero and civil engineering, medicine and other science and

engineering disciplines. Hence, it is important to have robust analytical and numeri-

cal methods which are capable of predicting their behaviour in real-life applications.

In acoustics, porous materials are used mainly for noise abatement. In these applica-

tions porous materials are able to convert a considerable amount of mechanical energy

of vibration or incident sound wave into heat. This is achieved through the viscous,

inertial and thermal energy dissipation in the material pores and through the inherent

mechanical damping in the material frame.

Porous materials are heterogeneous structures, which consist of a solid skeleton (solid

phase) and a network of interconnected pores, saturated by a fluid, usually air or wa-

ter (fluid phase). Generally, the volume occupied by air in acoustic porous media is

higher than 90%, which means that the density of a porous material is more than 10

times smaller than that of the skeleton, making the material lightweight and dissipa-

tive, which is of a great advantage in engineering applications. The skeleton may be

either continuous, as in foams or ceramics, or non-continuous, as in fibrous or granular

materials. The process of energy dissipation by porous materials is governed by three

separate mechanisms. The first one is structural losses, which are attributed to the vi-

bration of the skeleton. At the molecular level, this mechanism is caused by the rotation

of molecules with respect to one another, which decreases the initial energy gained by

the material. The second mechanism is associated with the heat transfer between the

areas occupied by the pores and solid skeleton. The thermal conductivity of air is usu-

ally much smaller than that of the skeleton material, which causes the diffusion and the

heat exchange between the two phases. Finally, the third mechanism is connected to
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the viscous losses. The viscous losses in porous materials are caused by the movement

of viscous fluid layers with respect to one another, which generates dissipation. A vis-

cous boundary layer is formed. If the thickness of the viscous boundary layer is much

smaller in comparison to the side of the pore, then the viscous effects can be neglected,

whereas if they are of the same order of magnitude, the viscous effects have to be taken

into account.

There are several non-acoustical parameters of a porous medium which values deter-

mine its acoustical properties. The first macroscopic parameter is the open porosity,

which is usually denoted by φ. It is the dimensionless ratio of the volume of air con-

tained in a porous material sample to the total volume of that sample:

φ =
Vair

Vtotal
, (2.6.1)

where Vair is the volume occupied by the air in pores, and Vtotal is the total volume

occupied by the porous material. It should be noted that only the air contained in open

pores counts towards the open porosity. A material is acoustically non-porous if its

pores are closed. The porosity of good quality sound absorbing materials is usually

above 0.9.

The flow resistivity σ is another macroscopic parameter, defining the resistance to move

air through a material sample of the thickness ds:

σ =
P2 − P1

Q ds
, (2.6.2)

where P2 − P1 is the pressure difference across the thickness of the sample and Q is the

airflow per unit surface. The unit of the flow resistivity is N m−4s.

Another macroscopic parameter is the tortuosity α∞. Johnson et al. (1987) describe it

as a “measure of a disorder in a material system”. Its mathematical definition is given
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Figure 2.7: A schematic representation of a pore. The thermal characteristic length,
controlling the thermal effects at medium and high acoustical frequencies is related to
the size of the pores whereas the viscous characteristic length, controlling the viscous
effects at medium and high acoustical frequencies is related to the size of the inter-
connection between two pores (Matelys, 2014).

by

α∞ =

1
V

∫
V

v2dV 1
V

∫
V

vdV
2 , (2.6.3)

where V is the homogeneisation volume and v is the velocity of the fluid particles at

high frequencies, where the viscous boundary layer is much smaller compared to the

characteristic size of the pores. The tortuosity can also be described as a factor of the

structure shape and expressed as (Zwikker and Kosten, 1949):

α∞ =
1

cos2 θp
, (2.6.4)

where θp is an angle between the axes of the pores and the surface normal.

Another parameters are the viscous (Johnson et al., 1987) and thermal (Champoux and

Allard, 1991) characteristic lengths. These parameters describe the thermal and viscous

effects in a porous material and relate to the geometry of a pore (see Figure 2.7).

To express the wave equation for porous media, it is assumed to be an equivalent fluid

with complex and frequency-dependent parameters. It is achieved by combining the
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equation of motion:

iωρ̃eqveq = −∇p, (2.6.5)

and constitutive law:

p = −K̃eq∇.ueq, (2.6.6)

where veq = iωueq is the fluid velocity, ueq is the fluid displacement, ρ̃eq is the equivalent

fluid density and K̃eq is the equivalent fluid bulk modulus. Then the wave propagation

equation is defined in a similar way to Helmholtz equation:

∇2 p + δ2
eq p = 0, (2.6.7)

with δeq being the equivalent fluid wavenumber. It can be expressed as follows:

δeq = ω

√
ρ̃eq

K̃eq
. (2.6.8)

The characteristic impedance and the complex sound speed of the equivalent fluid are

then presented in the following way, respectively:

Zeq = ρ̃eqc̃eq =

√
K̃eqρ̃eq (2.6.9)

and

c̃eq =

√
K̃eq

ρ̃eq
. (2.6.10)

In order to predict the acoustical behaviour of porous media, numerous equivalent fluid

models were proposed, and each of them offers different expressions for the equivalent

fluid density and compressibility. The model which is used in this work for the majority

of theoretical predictions of the acoustical properties of porous materials is the five-

parameter Johnson-Champoux-Allard model (Champoux and Allard, 1991). It presents
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the expression for the equivalent fluid density in the following form:

ρ̃eq(ω) = ρ0α∞

1 +
σφ

iα∞ρ0ω

(
1 +

4iα2
∞ηρ0ω

σ2Λ2φ2

)1/2 , (2.6.11)

and the equivalent fluid compressibility

K̃eq(ω) = γP0

γ − (γ − 1)[
1 +

σφ

iα∞ρ0NPrω

(
1 +

4iα2
∞ηρ0NPrω

σ2Λ2φ2

)1/2]

−1

, (2.6.12)

where η is the viscosity of air, γ is the specific heat ratio of air, P0 is the air equilibrium

pressure, ρ0 is the density of air, NPr is the Prandtl number, and Λ and Λ′ are viscous

and thermal characteristic lengths.

Some porous materials are heterogeneous, with the varying size of pores. It was found

that the acoustic effectiveness of a material can be largely determined by its pore size

distribution (Horoshenkov et al., 2004). This parameter can be directly measured us-

ing a water suction method (Leclaire et al., 1998) and then used to obtain a log-normal

probability density function, which, together with porosity, tortuosity and flow resistiv-

ity can be substituted into expressions for the characteristic impedance and the prop-

agation constant. In this case, Pade approximation model can be used to predict the

acoustic behaviour of the material. The dynamic density and complex compressibility

can be expressed as follows (Horoshenkov et al., 1998):

ρ̃eq(ω) =
α∞
φ

(
ρ0 −

φσ

iωα∞
F(ω)

)
(2.6.13)

and

K̃eq(ω) =
φ

γP0

γ − γ − 1

1 − φσ

iωα∞ρ0NPr
F(ωNPr)

 , (2.6.14)

where NPr � 0.709 is the Prandtl number for air and F(ω) is the viscosity correction

function originally introduced by Biot (1956). In the case of the materials with the log-

normal pore size distribution, this function can be given by a simple polynomial ratio
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(Horoshenkov et al., 1998):

F(ε) � F̄(ε)
1 + a1ε + a2ε

2

1 + b1ε
. (2.6.15)

Here, a1, a2 and b1 are real coefficients which depend on the pore geometry. The

frequency-dependent parameter ε can be expressed as follows:

ε =

(
−iωα∞ρ0

σφ

)1/2

(2.6.16)

and represents the ratio of the mean pore radius to the viscous boundary layer thickness.

In some cases, e.g. when it is necessary to model the acoustical properties of living

plants, it is sufficient to use semi-empirical models which depend on a fewer parame-

ters. One particular model adopted for this work is the Miki model (1990). This model

depends on the porosity, tortuosity and flow resistivity which are used to predict the

complex characteristic impedance and wavenumber in a porous medium using the fol-

lowing empirical formulae:

Zc = ρ0c0

[
1 + 5.50

(
103X

)−0.632
− 8.43i

(
103X

)−0.632
]
, (2.6.17)

kc =
ω

c0

[
1 + 7.81

(
103X

)−0.618
− 11.41i

(
103X

)−0.618
]
, (2.6.18)

where X = f /σ and f being the frequency of sound in Hertz.

The following formulae were used in this work to calculate the surface impedance and

the modal reflection coefficients at oblique angles of incidence:

Zs(ω) = −i
Zc (ω)

cos θt(ω)
cot

(
kc(ω) cos θt(ω) ds

)
, (2.6.19)

Zc(ω) =

√
ρ̃eq(ω)K̃eq(ω), kc(ω) = ω

√
ρ̃eq(ω)

K̃eq(ω)
, (2.6.20)
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Rmn(ω) =
Zs(ω) cos θmn − ρ0c0

Zs(ω) cos θmn + ρ0c0
, (2.6.21)

where
sin θmn(ω)

c0
=

sin θt(ω)
c′(ω)

, (2.6.22)

ds is the material sample thickness, θmn and c0 are the angle of incidence and the speed

of sound in air, respectively, and θt and c′ are the refraction angle and the speed of sound

in the porous material, respectively. Equation (2.6.22) is the classical form of Snell’s

law of refraction (Allard, 2009).

2.6.2 Porous material absorption measurement techniques

Impedance tube measurements are used extensively for acoustic material characterisa-

tion. The procedure for the determination of the plane wave, normal incidence acoustic

absorption coefficient of a material is detailed in ISO 10534-2 (1998). However, this

procedure bounds the adopted frequency range, which depends on the size of the sam-

ple. As a result, there is a conflict between the highest frequency which can be attained

with this method and the size of the samples which the tube is able to accommodate in

order to determine the acoustical absorbing properties for a representative area of the

material specimen.

Several efforts have been made in the past to overcome this problem. Coulon et al.

(2012) used an impedance tube coupled with a horn to increase the area of the sample

which can be tested under the plane wave regime. This method is believed to work

well provided there is little or no scattering of the incident plant wave into higher order

modes.

Akoum and Ville (1998) and Schultz et al. (2006) have been the first to propose multi-

modal decomposition methods which can be used to extend the frequency range of
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an impedance tube to enable to measure the reflection and absorption properties of

relatively large material specimens beyond the maximum frequency of the plane wave

regime in an acoustic waveguide. However, these studies are based on the use of a num-

ber of microphone pairs installed at several cross-sectional positions near the terminated

end of the waveguide. It can be argued that the use of several microphones increases

the probability of a phase mismatch and can be time-consuming in terms of calibration.

Additionally, the proximity of these microphones to the acoustic termination can result

in a poor signal-to-noise ratio, problems associated with the standing waves in the tube

and from the influence of the evanescent modes near the tube termination.

Out-of-tube methods of the reflection and absorption measurements at oblique inci-

dence also exist, as it was detailed by Tamura (1990, 1995). In these papers, the nu-

merical method to measure the reflection coefficient at the range of angles is described

and its predictions are compared to experimentally obtained results for two types of

material. One can assume the theoretical underpinning of the Tamura’s method allows

to suggest that this method can be more stable than the one described in this study, as it

does not employ numerical fitting and function minimisation. However, the method by

Tamura predicts the total reflection coefficient instead of modal reflection coefficient,

which might be of interest in some cases. The experimental setup detailed in Tamura’s

paper is also not easy to run, as it requires an anechoic chamber to control the unwanted

reflections, a relatively large material sample and a much larger number of measurement

positions (over 200 positions according to Tamura (1995)). The authors in the Tamura’s

paper do not provide any data for the acoustical properties of the tested materials be-

low 500 Hz. This might lead to a conclusion that this method suffers from a typical

limitation of those methods which require the compensation for the edge diffraction

effect.

Another out-of tube method was presented by Minten et al. (1988). In this work, a two-

microphone technique is employed to determine the specific acoustic impedance, which
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can later be used to calculate such acoustical characteristics of an absorbing sample as

the reflection and absorption coefficients. The measurements are performed at a range

of angles. The authors also consider two most common two-microphone measurements

errors, i.e. the error due to the finite distance approximation and the error as a result

of a systematic phase error between measurement channels, and take these errors into

account when calculating the absorption coefficient. However, this method may suffer

from the same issues as the one by Tamura (1995) - it requires an anechoic chamber

to run it and it only predicts the total reflection and absorption coefficient, as opposed

to modal reflection coefficients. Finally, the authors did not provide the data for the

measurements at high angles of incidence for frequencies below 500 Hz because of the

phase error being of the same order of magnitude as the measured phase.

2.7 Sound absorption by living plants

In the recent years, noise reduction using sustainable means, such as green walls and

barriers has become increasingly popular. However, there have been almost no con-

trolled experiments on the sound absorption by living plants. Some work has been done

on the sound absorption by plant leaves in the free-field conditions. Martens (1981)

estimated the sound absorption by leaves by studying four types of plants (privet, birch,

oak and hazel) in the laboratory conditions and measuring their leaves’ vibration veloc-

ity using the laser vibrometry technique. They found out that it varies considerably with

the frequency of sound and the orientation of leaf with respect to the source of sound.

Also, the measured vibration velocities were much smaller than those of air particles,

meaning that only a fraction of the sound energy will cause a leaf to vibrate, and the

remaining energy will be reflected or diffracted by the leaf. However, although the total

amount of leaves is large and their overall contribution to the sound energy absorption

may be rather significant, it is still to be estimated how large is the fraction of the energy

38



2.7. SOUND ABSORPTION BY LIVING PLANTS

which is absorbed by the leaf rather than due to the ground effect and the thermoviscous

absorption in boundary layers.

Wong et al. (2010) conducted the experiments with different vertical greenery systems,

both in field conditions and in a reverberation room. For the field experiments, eight

vertical greenery systems situated in HortPark in Singapore were used to determine the

insertion loss, i.e. the attenuation of noise due to the introduction of greenery systems

between a source and a receiver. They concluded that these systems have a positive

effect on the noise abatement, up to 8.8 dB for some vertical systems, which is caused

by the soil absorption at low to medium frequencies and by the leaf scattering at higher

frequencies. The vertical greenery systems were also tested in controlled conditions in

a reverberation room. It was found that there is a strong positive correlation between

the systems being present and the enhanced sound absorption, which increased with

greater greenery coverage.

The experiments on the sound transmission through foliage and its dependence on a

plant geometry were first performed by Aylor (1972). He used dense reeds growing in

water to account for the effect of the ground attenuation and estimated the relationship

between leaf area density, breadth of canopy, leaf width and frequency. It was estab-

lished that for effective sound absorption, vegetation has to be dense and have wide

leaves, but its depth does not play a major role in noise attenuation.

Some research was done in the area of the sound propagation through trees. Martens

(1980) performed the experiments on four model forests in an anechoic chamber. Based

on his results, it becomes clear that foliage has a strong positive effect on sound absorp-

tion, acting as noise amplifier in low to medium frequency band and as a noise filter in

higher frequency band. The quality of the filter enhances with an increase in the leaf

size and in the total volume of biomass. Additionally, it was found that the filter does

not attenuate the traffic noise spectrum, however, it changes its pitch which is useful for

urban noise abatement.
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Burns (1979) measured the sound absorption by pine trees in a controlled conditions in

a reverberant chamber. The purpose of his research was to determine the mechanism

of absorption in forests, previously studied by Aylor (1972) and Embleton (1963) who

claim that the mid-frequency absorption in forests was due to the soil absorption. The

results of Burns were consistent with those of the latter two, however, he could nei-

ther prove or disprove the statement that the high-frequency absorption is due to the

scattering from boughs.

Finally, some more recent research was to measure directly the sound absorption by

plants in an impedance tube in a plane wave regime by Horoshenkov (2013). In this

work the authors were treating living plants as porous media. Such plant geometry data

as the angle of leaf orientation and leaf area density were linked to non-acoustical pa-

rameters, such as the tortuosity and flow resistivity via the optimisation analysis. These

are later substituted into an equivalent fluid model for acoustical behaviour predictions.

The influence of two types of soil on sound absorption by living plants was also anal-

ysed. This research proved that plants significantly enhance the sound absorption of

soil and that plants morphological characteristics can be used to predict their acoustical

performance.

2.8 Summary

This chapter summarises the research which has been performed in the area of sound

propagation in pipes, sound intensity and its measurements, acoustics of porous media

and living plants and methods of measurement of their sound absorption properties.

The sections on the sound field in a pipe and the sound intensity provide a substantial

basis for the complex sound intensity measurements in a waveguide and for the sub-

sequent data analysis. In addition, no published work has been found on the complex

sound intensity measurements in a waveguide above the first cut-on frequency, so the
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measurements and models presented in this thesis cover the existing gap in the litera-

ture. The section on the acoustic pulse reflectometry reviews the existing methods and

applications, and serves as a basis for the sound intensity measurements for blockage

characterisation, presented in this thesis. The section on the porous media discusses

the basic principles of porous media acoustics, as well as the existing models used for

porous media characterisation, some of which are used in this thesis for the experimen-

tal data validation. Moreover, this section provides the overview of the existing methods

of measuring the absorption by porous materials, and there is no published work known

to the author that would allow to recover the reflection and absorption properties of a

relatively large material sample in an impedance tube. Finally, the last section revises

the existing research on the acoustics of living plants. It shows that although a consid-

erable amount of studies focused on the sound propagation and absorption by greenery

have been carried out, there has been no work which would attempt to characterise large

specimens of living plants above the plane wave regime in an impedance tube.
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Sound intensity measurements

Sound intensity has been extensively used previously to describe the flow of energy in

sound fields. When the acoustic velocity is in phase with pressure, it is common to

take the time average of the instantaneous sound intensity and treat it as a real quan-

tity. However, when measurements are performed in regions of sound scattering or

in a vicinity of a sound source, the acoustic velocity is no longer in phase with the

acoustic pressure. Treating the sound intensity as a complex value in such cases results

in an additional information regarding energy transport. It is rather attractive to make

use of this information, however, the quality level of such measurements remains un-

clear. To address this issue and quantify the degree of accuracy one may achieve while

measuring the complex sound intensity under controlled laboratory conditions, a study

has been performed, comparing measurement and prediction of instantaneous and non-

instantaneous sound intensity in an open-ended flanged pipe. An experimental setup

was adopted to perform a set of measurements, the results of which were subsequently

compared to those predicted by the hybrid model, described in Section 2.4.1. The capa-

bilities and complications of the study are discussed. Some of the results of this study
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can also be found in a paper by Duan et al. (2013).

3.1 Experimental setup

The experimental setup used for the comparison with the complex intensity predictions

is depicted in Figure 3.1. It consists of a 6 m long 150 mm diameter flanged PVC pipe

with 10 mm thick walls, with a Fane compression driver (see Figure 3.2) placed at the

closed end of the pipe. The driver is connected to the PVC pipe with a short tube of

15.4 mm inner diameter and 13 mm length (see Figure 3.2a). Here the use of a short

tube with a relatively small diameter to connect the driver (see Figure 3.2b) to the main

pipe helps to simulate an acoustically hard wall at this end of the pipe. The flange was

2 m tall and 1.3 m wide, which was sufficiently larger that an adopted wavelength, so

the flange could be approximated as infinite.

A sine wave excitation was used to drive the loudspeaker, and aforementioned tri-axial

Microflown (2014) USP intensity probe was used to measure the intensity field near the

open end of the pipe. The Microflown “p-u” probe used in this work permits the mea-

surement of all three velocity components simultaneously, so that the signals obtained

by the pressure and velocity sensors can be Fourier transformed synchronously and used

in Equations (2.2.9) and (2.2.10) to calculate the complex intensity vector components

in the three orthogonal directions.

The probe was supported by a rigid plastic frame, which is shown in Figure 3.3. It

allowed the position of the probe to be fixed in the axial direction. Two PVC frames

were constructed, one with the probe positioned in the centre of the pipe cross section

and one with the probe located 9 mm away from the wall of the pipe; this permitted

measurements to be taken at different circumferential locations (at a fixed radius). The

probe was oriented in such a way that the three velocity sensors were set to measure
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Figure 3.1: A photograph of the open flanged pipe used for the experiments.

(a) Top view (b) Side view

Figure 3.2: Fane compression driver: top view and a lid, through which it is connected
to the pipe (left); side view (right).
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Figure 3.3: The Microflown probe and the frame supporting it in the centre of a cross-
section of the pipe.

the axial, radial, and circumferential velocity components. The frame was designed to

be slimline so as to minimise the disturbance to the sound intensity field, while still

providing sufficient stability when supporting the probe.

A National Instruments DAQ NI PXIE-6358 system was used to acquire the signals

from the USP probe. This system was controlled with LABVIEW software and it was

designed to generate acoustic stimulus and synchronously record the USP probe sig-

nals at the sampling rate of 48 kHz. The Microflown USP intensity probe was chosen

here because it is the smallest device available on the market for measuring the three

components of the acoustic velocity vector over a broad audio frequency range. The

device was calibrated using calibration formulae provided by Microflown. Generally,

this calibration procedure improved the accuracy of the results. However, at very low

or high frequencies when the sound field was either strongly active or reactive, the mea-

surement accuracy strongly depended on the accuracy of the phase calibration (Stanzial

et al., 2011).
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3.1.1 Intensity measurement errors

The aim of this subsection is to assess the errors associated with the adopted experi-

mental setup, such as influence of the supporting frame and the protective grill at the

end of the probe and the probe orientation. The data are presented for different frequen-

cies, but the focus is made on the frequency of 1800 Hz, as this is the frequency used

for subsequent complex intensity measurements. This frequency was chosen due to it

being situated approximately in the middle of the two cut-on frequencies of 1340 Hz

and 2220 Hz. These were determined by making use of the following equation:

fmn =
αmn c0

2a
, (3.1.1)

where fmn are the cut-off frequencies of mode (mn), αmn are the zeros of the first deriva-

tive of Bessel function of the first kind and the m−th order, and a is the radius of a

pipe. It was assumed that the sound field at this frequency is relatively unaffected by

the peculiarities caused by the proximity of cut-on frequencies, making the measured

results more accurate. Preliminary measurements were performed at a range of fre-

quencies from 1500 Hz to 2000 Hz and compared to corresponding predictions, and it

was observed that the match between the two weakened as the measurements frequency

got closer to a cut-on frequency. The measured data are compared to the hybrid model

(Duan et al., 2013), described in Section 2.4.1. The results of this model have been val-

idated against a number of existing models and FEM predictions, and they have been

found to be accurate.

At the beginning experiments were carried out to determine if the frame had any impact

on the recorded signal. In order to achieve that, two sets of measurements were carried

out, one with the frame present, and then the same set would be repeated, but the probe

would be attached to the wall of the pipe with the help of duct tape. The results of the

test are shown in Figure 3.4. It presents the axial active and reactive intensities recorded

46



3.1. EXPERIMENTAL SETUP

at the frequency of 1600 Hz, 100 mm from the open pipe end. For the data obtained

with no frame, only positions from 180◦ to 360◦ were tested as it was not possible

to attach the probe to the upper half of the pipe without affecting the sound field, i.e.

without inserting the potential scattering objects to support the probe. The frequency of

1600 Hz was chosen as it was initially assumed that this will be the frequency at which

the subsequent complex intensity measurements will be performed, however, a decision

was made later to use the 1800 Hz frequency due to the reasons outlined at the beginning

of the section. The axial location of 100 mm from the open pipe end was chosen because

the effect of evanescent waves is negligible at this depth. The measurements performed

with and without the frame suggest that the results are reproducible and that agreement

between the two data sets for the axial and circumferential intensities is good, with the

mean error for active intensities below 10% in the case of axial and below 20% in the

case of circumferential intensities. The mean error was estimated using the following

procedure:

εI =
1
N

N∑
i=1

|Im
i − I pred

i |

I pred
i

, (3.1.2)

where Im
i and I pred

i are the measured and predicted intensities, respectively. These values

are about 5% higher for the corresponding reactive intensities. However, the match

between the two data sets, with and without the frame, in the case of radial intensity

is weaker, with the mean error being higher than 30%. This may be explained by the

fact that the frame has the biggest influence on the radial intensity component, resulting

in a higher levels of scattering. However, the errors between the sets recorded in the

presence and in the absence of the frame can also be caused by the fact that the accurate

positioning of the probe becomes more challenging without the frame, and the observed

discrepancies may have been caused by a slight difference in location and direction of

the probe. Overall, the observed error was considered acceptable, and it was further

assumed that the influence of the frame was negligible.

Additionally, due to a finite size of the velocity sensors on the probe’ the quality of
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Figure 3.4: Comparison of the active and reactive intensities obtained with the support-
ing frame vs. obtained without the supporting frame. Black crosses: with the frame;
black circles: without the frame.

the recorded data may depend on the orientation of the probe inside the frame. Two

possible ways of the probe positioning are shown in Figs. 3.5a and 3.5b.

The difference between the alternative sensor orientations is that whilst the direction

of the axial sensor is the same, the directions of the radial and circumferential sensors

are reversed. The comparison is presented on the example of the active and reactive

radial intensities in Figure 3.6. The data obtained with Orientation A are marked with

black crosses, whereas the data obtained with Orientation B are denoted with black

circles. The black solid line is the predicted results. It was experimentally found that

Orientation B generally gives a better agreement between the experimental data and

the predictions for all three intensity components. It can be attributed to the fact that

with Orientation A, one of the sensors was directly facing the wall, which could affect

the quality of its readings. The upper subplot of Figure 3.6 shows the active radial
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(a) Orientation A (b) Orientation B

Figure 3.5: Two ways of probe positioning.

intensity, and it can be observed that the both experimental data sets follow the same

trend as the predictions. However, from the lower subplot of Figure 3.6, presenting the

reactive radial intensity, it is clear that the data measured with the Orientation B follows

the predictions more closely. It is also worth mentioning that the theoretical model

attempted to ideally represent the sensors’ distribution on the probe, assuming that they

all are not situated in one point, but assigning an individual position to each sensor. But,

as a difference between the centre of the probe cross-section (where the sensors were

assumed to be situated) and the sensors’ actual position is rather small, approximately

3.5 mm, it did not affect the results.

The protective grill covering the tip of the probe where all the sensors are situated has

also raised concerns regarding its effect on the data quality (see Figure 2.3). Therefore

a set of tests was conducted, where the difference between the results obtained with

and without the protective grill was quantified. The results are shown in Figure 3.7,

which presents the active and reactive axial intensities. In general, the discrepancy

between two sets of data is rather small, normally not exceeding 10%. In the case of

active radial intensity the error between the data sets reaches the maximum of 35%.

This can be attributed to the fact that the radial intensity is directed perpendicular to the

walls of the protective grill, which affects its value. The similar effect was observed in
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Figure 3.6: Sensor orientation comparison on an example of the complex radial inten-
sity at 1800 Hz, 0.2 m from the open pipe end. Black crosses: Orientation A; black
circles: Orientation B; solid black line: predictions.

case of active circumferential intensity, although to a lesser extent. There was a small

discrepancy between active and reactive axial intensities measured with and without the

protective grill. On the whole, the match between the two sets of measured intensities

is reasonably good, which results in conclusion that the protective grill has no major

influence on measurements.
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Figure 3.7: Comparison of data obtained with protective grill (diamonds) on vs. data
obtained without protective grill (crosses).

3.2 Results and discussion

In order to examine the complexity of the complex intensity field, the theoretical pre-

dictions were studied before comparing them to the experimentally obtained data. The

predictions for the complex sound intensity in the vicinity of the open pipe end were

plotted as a function of position. For these predictions, the pipe facility pictured in

Figure 2.6 was used, with the following dimensions: L1 = 75 mm, L2 = 5.85 m, and

L3 = 75 mm, where L1 and L2 denote the axial length of regions R1 and R2, respectively,

and L3 denotes the boundary between the modal representation and the finite element

discretisation in the pipe. The radius of the pipe was 75 mm. The sound source was

located at r = 65 mm, θ = −90◦, and z = 6 m.

In Figure 3.8 the active and reactive intensities are plotted for a frequency of 1000
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Hz in the vicinity of the open end of the pipe. A streamline vector plot is used in

which the length of the vector is proportional to the magnitude of the acoustic intensity

component. At 1 kHz, only the fundamental mode propagates in the pipe, resulting in

the problem being axisymmetric. It is seen in Figure 3.8 that the amplitude of the active

intensity is larger than that of the reactive intensity, so the sound intensity field is mostly

active. In the vicinity of the open end of the pipe a small radial component appears in

the complex intensity field due to the presence of evanescent modes. This is caused by

oscillatory behaviour of the sound intensity, and it is seen to be more pronounced for

the reactive intensity, which illustrates why the use of complex intensity is potentially

attractive.

Figure 3.9 shows the influence of a higher order mode on the non-instantaneous active

and reactive intensity fields. A frequency of 1800 Hz was chosen so that the fundamen-

tal and the first circumferential modes were excited in the pipe. Figure 3.9 shows the

complex intensity field for the r−z plane that is coincident with the sound source (so that

θ = −90◦). When a higher order mode was propagating in the pipe, the intensity field

contained strong radial and circumferential components. Also, a circulatory pattern was

observed, which repeated itself over the pipe length. This pattern surrounds the points

of minimum acoustic pressure, whereas the regions of maximum acoustic pressure are

indicated by regions of divergence in the reactive intensity pattern in the vicinity of the

pipe wall. An important observation which can be made here is that the higher order

mode has a significant influence on the reactive intensity, which becomes much more

complex than the active intensity. Consequently, it is necessary to be able to capture the

three-dimensional intensity field accurately in order to measure the reactive intensity. It

means that the instrumentation used for these measurements has to be very precise. The

theoretical predictions seen in Figures 3.8 and 3.9 confirm that the complex intensity

field becomes very complicated even with just one higher mode propagating in a pipe.

After the behaviour of the complex sound intensity in the vicinity of the open end of
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Figure 3.8: Predicted active (a) and reactive (b) intensity near the end of the pipe at
1000 Hz.
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Figure 3.9: Predicted active (a) and reactive (b) intensity near the end of the pipe at
1800 Hz.
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the pipe has been examined, a comparison between the predictions and measurements

can be carried out. Figure 3.10 presents the instantaneous active and reactive intensities

at the pipe end (r = 0, z = 0) for a sound field, excited with a sine wave signal at

the frequency of 1000 Hz. This frequency was chosen to study the sound intensity

field in a plane wave regime. Three sets of data are shown: predictions, denoted by

the solid line, and experimental data, calculated using the methods of Heyser (1986)

(short-dash line) and Stanzial and Prodi (1997) (long-dash line). Figure 3.10 shows that

there is a clear difference between two sets of the experimental data. The method of

Heyser shows a running average of the active intensity and an upper envelope of the

reactive intensity. In contrast, the method of Stanzial and Prodi matches the oscillatory

nature of the predicted active and reactive intensities. The error between the measured

and predicted results for this method is about 5% for times above 2 ms. However, in the

region of approximately 0-2 ms, the system response is transient, and the error is higher,

being about 20% (see Figure 3.10(a)). The method of Stanzial and Prodi delivers more

accurate data for the sound field excited by a sine wave below the first cut-on frequency,

which supports the original findings of Schiffrer and Stanzial (1994).

Figure 3.11 shows the measured and predicted active and reactive intensities as a func-

tion of axial coordinate z at the frequency of 1000 Hz. The measured data were calcu-

lated using Equations (2.2.9) and (2.2.10). There are two sets of theoretical results in

the figure: the hybrid model results, which were predicted via Equations (2.2.11) and

(2.2.12) (see Section 2.4.1), and the two-dimensional model results, proposed by Shen-

derov (1972) and briefly described in Section 2.4. A good agreement is generally ob-

served between the experiments and predictions, with the mean difference being below

10%. There is some discrepancy between the measured and predicted active intensity

data as the distance from the open pipe end increases, with the predicted active inten-

sity becoming constant, whereas the measured active intensity exhibits the oscillatory

behaviour. Nevertheless the match between the two data sets is sufficiently accurate.

The two theoretical data sets generally exhibit good match, but the two-dimensional
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Figure 3.10: Instantaneous complex intensity at 1000 Hz: Instantaneous active (a)
and instantaneous reactive (b): , theory; , experimental data based on
Stanzial and Prodi’s method (Stanzial and Prodi, 1997); , experimental data based
on Heyser’s method (Heyser, 1986).
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Figure 3.11: Active (a) and reactive (b) axial intensity at 1000 Hz: , hybrid model;
· · , 2D model; N, experiment.

model fails to represent accurately the complex sound intensity field in the vicinity

of the open pipe end. With such a restriction in the plane wave regime, it is evident

that the discrepancy between the two-dimensional model and experimental data will be

even larger beyond the first cut-on frequency, so the hybrid model was preferred to the

two-dimensional model and was used for subsequent calculations.

However, when one more mode becomes propagating in the pipe, the complex sound

intensity field becomes much more complicated. Figures 3.12-3.14 show the predicted

and measured data for the three components of the non-instantaneous complex intensity,

excited with a sine wave at a frequency of 1800 Hz. For this experiment, the sound

source was installed at a 9 mm distance from the pipe wall and at a circumferential
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CHAPTER 3. SOUND INTENSITY MEASUREMENTS

position of θ0 = −90◦. The Microflown probe was placed inside the pipe at z = −0.2

m and 9 mm away from the pipe wall. Data for the axial, circumferential, and radial

intensity vector components were then obtained for different circumferential locations

by rotating the probe frame through a full circle and taking measurements every 10◦

and presented for each circumferential location.

The results presented in Figures 3.12-3.14 illustrate that when more than one mode

is present in the pipe, obtaining a good agreement between the experiments and pre-

dictions becomes a challenging task. In this sound field, the dominant components of

the complex sound intensity vector are axial and circumferential intensities. Figure 3.12

presents the measured and predicted active and reactive axial intensities. The agreement

between the measured and predicted active intensities is generally very good, although

the pattern in the measured data is shifted by approximately 20◦ with respect to the pre-

dicted result. The relative error between the amplitudes of the maxima in the predicted

and measured active axial intensity is relatively small, being less than 1%, but this error

increases significantly when the value of the circumferential coordinate θ is less than

120◦, and the amplitude of the active axial intensity becomes relatively small. This

suggests that the probe is able to capture well the qualitative behaviour of the sound

energy radiating from the pipe, but not its exact amplitude at a given circumferential

coordinate. Moreover, there is a large discrepancy between the theoretical and experi-

mental axial reactive intensities for circumferential coordinates greater than 50◦, which

may be caused by the fact that most of the energy is radiated from the pipe at 1800 Hz,

resulting in a reduce signal-to-noise ratio and making accurate measurements with the

’p-u’ probe more challenging.

Figure 3.13 shows the measured and predicted results for the active and reactive cir-

cumferential intensities. The reactive part of the circumferential intensity component

oscillates over the pipe cross section, and the agreement between the measured and

predicted behaviour is good. However, a shift between the measured and predicted in-
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Figure 3.12: Active (a) and reactive (b) axial intensity in the pipe at 1800 Hz: ,
theory; N, experiment.
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Figure 3.13: Active (a) and reactive (b) circumferential intensity in the pipe at 1800 Hz:
, theory; N, experiment.
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Figure 3.14: Active (a) and reactive (b) radial intensity in the pipe at 1800 Hz: ,
theory; N, experiment.
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tensities can again be observed, this time of about 15◦. The match for the active part

of the circumferential intensity component is much less accurate, and the predictions

and measurements do no agree even in terms of the sign. A symmetric intensity field

distribution is expected, which should not be entirely negative, as it is observed in the

case of the measured data. It is likely that some scattering from the frame supporting

the probe has affected these measurements and that this effect is more pronounced in

the case of the circumferential velocity component, especially at the higher frequencies

and/or when higher-order modes are excited.

Finally, Figure 3.14 shows the radial complex intensity. This intensity vector compo-

nent is smaller than the axial and circumferential components. Good agreement be-

tween the predicted and measured active and reactive intensities is observed, and the

match is more accurate compared to the errors in the measured data for the axial and

circumferential intensities as shown in Figures 3.12 and 3.13. This improvement may

be explained by a reduced influence of the supporting frame and the probe body when

taking measurements in the radial direction and more accurate response of the radially

orientated velocity sensor in the USP probe.

3.3 Summary

The comparison between the predictions and measurements in Figures 3.12-3.14 demon-

strates that obtaining a good agreement between measured and predicted complex in-

tensity presents a significant challenge when using a tri-axial intensity probe by Mi-

croflown, even in the case of a well-defined problem such as an open ended pipe. The

agreement between the measured and predicted axial reactive and circumferential ac-

tive intensities is insufficiently accurate. It is possible that these problems are caused

by an increase in sound scattering from the supporting frame and the body of the probe

as the frequency of sound is increased. Alternatively, it is also possible that the tri-axial
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probe finds it more difficult to resolve accurately all three complex intensity compo-

nents at higher frequencies and/or under multimodal conditions because of errors in the

acoustic velocity measurements. It can also be caused by the fact that the measured

intensity can be sensitive to any imperfections in the pipe geometry which are difficult

to characterise. Thus, it is clear that accurately measuring all three intensity compo-

nents in a complex sound field in a pipe remains a challenge, so precautions should be

taken when interpreting the complex intensity data obtained when higher order modes

are propagating in a pipe.

The results presented here illustrate the difficulty of measuring the complex intensity

vector accurately, even under harmonic sound field conditions. Thus the quantitative

understanding of the complex intensity behaviour in a pipe remains limited even for

a relatively simple and well-defined problem, such as an open end of a pipe. This

is because the reactive sound intensity field is typically very complicated under those

conditions, and current measurement techniques are not sufficiently accurate to enable

precise assessment of the complex intensity vector. This has important consequences

for the use of complex intensity in sound scattering problems, especially if one is at-

tempting to apply inverse analysis techniques in an attempt to recover information about

the sound source.

In the next chapter, the application of sound intensity measurements will be presented.

Sound intensity will be used to predict the reflection and transmission coefficients of a

symmetrical blockage in a cylindrical pipe.

63



Chapter 4

Application of sound intensity for

blockage detection

This chapter describes some applications of complex sound intensity measurements

and predictions for blockage detection and localisation in a pipe. For this purpose,

controlled experiments were performed in the Hydraulics Laboratory at the University

of Bradford, where blockages of different shapes were placed in the pipe and their

reflection and transmission characteristics were studied. Measured data were compared

to predictions, obtained using the hybrid method described in Section 2.4.1.
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4.1 Experimental methodology

4.1.1 Laboratory setup

For the analysis of sound pressure, velocity and complex intensity distribution in a pipe

in presence of a blockage, a set of controlled experiments was performed. For this

purpose, an 18 m long 150 mm diameter air-filled PVC pipe was constructed and used

to measure the effect of an obstacle on the sound pressure and particle velocity fields.

Figure 4.1 shows this experimental arrangement in the Hydraulics Laboratory at the

University of Bradford. It consisted of three 6 m sections in which the joints were

carefully machined, connected leaving no air gaps and sealed with the duct tape. One

end of this pipe was rigidly terminated and the Fane compression driver described in

the previous chapter was installed. In the other end of the pipe a sound-absorbing cone

was inserted to reduce the reflections from this end of the pipe.

Figure 4.1: A photograph of the 18 m long, 150 mm diameter pipe. The red arrow
denotes the 18 m long pipe used for the described experiments.
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CHAPTER 4. BLOCKAGE DETECTION

A coaxial cylinder was used as a blockage and is depicted in Figure 4.2. It was made of

a hollow PVC tube and covered with wooden lids from both sides. The gaps between

the lids and the walls of the cylinder were treated with silicon to prevent air gaps. The

length of the cylinder was 305 mm and its diameter was 110 mm and it was placed at a

distance of 12 m from the loudspeaker. The cylinder had 20 mm “legs” on its sides to

ensure that it sits exactly in the middle of the pipe’s cross-section.

Figure 4.2: A photograph of the coaxial cylinder used as a blockage.

As both transmission and reflection characteristics of the blockage were of interest, two

types of experimental setup were adopted. In one, a sensor was positioned behind the

blockage, in the vicinity of the absorbing end of the pipe, to record the sound transmitted

through the blockage. In another, the sensor was between the blockage and the loud-

speaker to record the reflected sound wave. Schematic drawings of the transmission

and reflection setups are shown in Figures 4.3a and 4.3b, respectively. Furthermore,

measurements were performed at the same positions in the absence of the blockage in

the pipe, to determine the reference incident sound field which was needed to calculate

the reflection and transmission coefficients.

For these experiments, an array of four MEMS microphones, which is shown in Figure

4.4, was used to record the signal. It allowed the measurement of the axial component

of the sound velocity, from which the sound intensity along this direction was calculated

in accordance with the ’p-p’ method. There are six microphone pairs in total, 1-2, 1-

3, 1-4, 2-3, 2-4 and 3-4. In the following experiments, microphone pair 1-2 was used
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4.1. EXPERIMENTAL METHODOLOGY

(a) Transmission mode setup

(b) Reflection mode setup

Figure 4.3: Schematic drawings of the experimental setup for transmission (a) and re-
flection (b) measurements.

throughout, where the separation distance was 27.5 mm.

Figure 4.4: MEMS microphone array.

A separate experiment was carried out to study the performance of the MEMS micro-

phone array and the Microflown probe in the long closed pipe and to determine if the

results obtained are comparable. For these experiments, the MEMS microphone array

was preferred to the Microflown probe because the intensity was measured in the axial

direction only. The microphone pair was matched and did not require any compensa-

tion. In this experiment one type of sensor at the time was attached to the frame which

was inserted in the empty pipe approximately 6 m away from the loudspeaker. The

frame was then rotated in 10◦ steps to measure the angular sound field distribution. It
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was discovered that the quality of data recorded by the microphone array is superior to

that of the USP probe, therefore the former was preferred for all the subsequent sets of

measurements. The comparison of the data recorded by both devices is shown in Fig-

ures 4.5a-4.5b. One can see that the experimental data obtained using the microphone

array agree with the numerical data very well, reproducing the predicted amplitude

almost spot-on. There is a mismatch between both sets of experimental data and pre-

dictions between 0 and 180 degrees in the case of the reactive intensity, but for the

remaining angles, the agreement between the measurements and predictions is closer

in the case of the MEMS microphone array. The mean differences between the mea-

sured and predicted data were quantified in the same manner as suggested by Equation

(3.1.2). The mean differences for the MEMS microphone array were equal to 51.8%

and 46.9% for active and reactive intensities, respectively. For the Microflown probe,

the same mean differences were equal to 148.3% and 69.9%.

(a) Active axial intensity (b) Reactive axial intensity

Figure 4.5: Comparison of data obtained with Microflown USP probe vs. MEMS mi-
crophone array: (a) active axial intensity; (b) reactive axial intensity. Red line: predic-
tions; black triangles: Microflown; black circles: MEMS.

4.1.2 Signal

Gaussian pulse was employed for the excitation of the sound field in the pipe. The

reason for its use was the possibility to window out the unnecessary reflections and
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4.1. EXPERIMENTAL METHODOLOGY

to prevent the formation of standing waves in the pipe. The form of this pulse was

described with the following equation:

v(t) = A0 cos(ωt)e−
(t−t0)2

β2 , (4.1.1)

where t is time, t0 is delay, ω is the angular frequency and β is a temporal variable that

controls the width of the pulse. The sample Gaussian pulses at frequencies of 300 and

1800 Hz are plotted in Figure 4.6.

(a) 300 Hz (b) 1800 Hz

Figure 4.6: Gaussian pulse temporal data at the frequencies of (a) 300 Hz and (b) 1800
Hz.

The examples of the spectra at the frequencies of 300 and 1800 Hz are presented in

Figure 4.7.

An example of the recorded time histories of the windowed signal, which was used in

a later analysis, is presented in Figures 4.8-4.10. Figure 4.8 shows the time history of

the sound pressure in the pipe for a 1800 Hz pulse. It can be seen that the incident

pulse corresponding to the fundamental mode is followed by its higher-order mode

components.

Figure 4.9 presents the time history of three components of the acoustic velocity vector,

measured with Microflown at 1800 Hz frequency. These components are of the same
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(a) 300 Hz (b) 1800 Hz

Figure 4.7: Gaussian pulse spectra at the frequencies of (a) 300 Hz and (b) 1800 Hz.

order of magnitude, which means that at frequencies higher that the first cut-on fre-

quency, none of the components can be neglected in analysis, as opposed to plane wave

regime, where the axial component alone gives a plausible picture. However, as the

blockage characterisation procedure, described in what follows, focused on the plane

wave regime, the use of MEMS microphones and the axial velocity component alone

was sufficient.

Three components of the instantaneous acoustic intensity are shown in Figure 4.10.

They were obtained by multiplying the time history of the sound pressure by the time

history of the corresponding velocity component, i.e.:

I j(t) = p(t) u j(t), j = 1, 2, 3. (4.1.2)

The cut-on frequencies for the 150 mm diameter pipe are presented in Table 4.1. The

initial goal was to recover the reflection and transmission coefficients for the plane wave

(fundamental) mode and for the first few higher order modes. However, in the course

of experiments it was decided to restrict this type of analysis to the plane wave mode

only due to the data processing challenges. Hence, the loudspeaker and the microphone

were initially placed in the middle of the tube cross-section. In this case, the first higher-

order mode which can be measured with this setup cuts on at 2789 Hz, as opposed to
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4.1. EXPERIMENTAL METHODOLOGY

Figure 4.8: A time history of the sound pressure in the Gaussian pulse filled with the
frequency of 1800 Hz, recorded at 0.2 m from the open pipe end, 0 degrees angular
position.

Figure 4.9: A time history of the three components of sound velocity in the Gaussian
pulse filled with the frequency of 1800 Hz, recorded at 0.2 m from the open pipe end, 0
degrees angular position.
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Figure 4.10: A time history of the three components of sound intensity in the Gaussian
pulse filled with the frequency of 1800 Hz, recorded at 0.2 m from the open pipe end, 0
degrees angular position.

1340 Hz when the loudspeaker is placed near the edge of the tube. Gaussian pulses

were emitted for a range of frequencies, starting with 300 Hz and up until 3100 Hz.

The pulse central frequency step was 100 Hz until 2000 Hz and 50 Hz after, to capture

the peculiar behaviour of the sound field in the vicinity of the cut-on frequency more

accurately.

HH
HHHHn

m
0 1 2 3

0 0 2789 5106 7405
1 1340 3881 6213 8520
2 2223 4881 7256 9586
3 3058 5834 8258 10617

Table 4.1: The values of the cut-on frequencies in Hz for a 150 mm circular waveguide.
m and n are indices of the modes propagating in the waveguide.
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4.1. EXPERIMENTAL METHODOLOGY

4.1.3 Data acquisition

In order to evaluate the transmission and reflection coefficients for the coaxial cylinder,

two sets of experiments were conducted for each phenomenon and cross-sectional po-

sitioning of the equipment in the pipe. As a benchmark for transmission and reflection

estimation, a set of measurements was first performed in the empty pipe, where the mi-

crophone array was placed at 13.5 m from the loudspeaker and then moved in the axial

direction in 50 mm steps until it covered the axial distance of 1.5 m, which resulted in

31 axial positions. The described measurements were then repeated in the presence of

the blockage. In order to measure the transmission coefficient, the microphone array

was installed between the blockage and the sound-absorbing end of the pipe, and for

reflection, it was between the loudspeaker and the blockage, starting at a 6 m distance

from the loudspeaker.

A National Instruments DAQ NI PXIE-6358 was used in this experiment. A special

LabVIEW based subroutine was developed to control the data acquisition process. A

screen shot of the LabVIEW subroutine is shown in Figure 4.11. The features of the

subroutine screen are listed in Table 4.2. The block diagram of this subroutine is pre-

sented in Figure 4.12.

The recorded data were stored automatically in text files as a six-column array, consist-

ing of time data, pressure, three velocity vectors and reference pressure.
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No. Field Its function

1 Pulse file Sets the path to a text file containing the emitted pulse
data.

2 Amplitude multiplyer Multiplies the incident signal amplitude by a specified
coefficient.

3 Duration Sets the duration of recording in seconds.

4 Sample rate Sets the sampling frequency of the recorded data in
Hz.

5 Filename Sets the path to a text file where the recorded data are
to be stored.

6 Measurement Shows the plot presenting time histories of recorded
signals.

7 Waveform graph Shows the plot presenting the emitted signal time his-
tory.

Table 4.2: Basic features of the LabVIEW subroutine.
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4.1.4 Wavenumber-frequency analysis

After all the data were recorded, they were detrended, filtered and windowed. A time

window was applied to the three sets of data (empty pipe / reflection / transmission) to

control the length of the multi-modal sound pressure data recorded in the waveguide.

A rectangular window with the edges rounded with Hamming window was used. Be-

low the examples of windowed time histories at 2500 Hz frequency are presented to

illustrate the part of a sound pressure signal used in the Fourier analysis. These were

recorded in the centre of pipe cross-section, for both the empty pipe and the pipe with

the cylinder inside in the transmission mode (see Figures 4.13 and 4.14).

Figure 4.13: Sound pressure time history at 2500 Hz, empty pipe.

After the data were windowed and zero-padded, two-dimensional Fourier transform

was applied:

p̃(k, ω) =

+∞∫
−∞

+∞∫
−∞

p(z, t) exp−i(ωt−kz) dzdt. (4.1.3)
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Figure 4.14: Sound pressure time history at 2500 Hz, coaxial cylinder in the pipe.

It was calculated in Matlab using the fft() function twice, first to perform the trans-

form in the temporal and then in spatial domain. This procedure was repeated for

the data recorded for each type of the Gaussian pulse excitation. After a series of

wavenumber-frequency-dependent sound pressure spectra was obtained, it was com-

bined into one spectrum by taking the average value of individual spectra. Three sep-

arate spectra were determined: (i) for the empty pipe; (ii) in front of the blockage;

(iii) behind the blockage. The pressure transmission coefficient frequency spectra were

calculated as the ratio of the integrals of the wavenumber spectra:

τint( f0) =

k0∫
0

pb,tr( f0, k)dk

k0∫
0

pe( f0, k)dk

, (4.1.4)

τmax( f0) =
max

(
pb,tr( f0, k)

)
max (pe( f0, k))

, (4.1.5)
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where pe is the frequency-wavenumber spectrum recorded in the empty pipe, pb,tr is the

frequency-wavenumber spectrum measured behind the blockage, and f0 is the centre

frequency of the Gaussian pulse. A similar procedure was performed to calculate the

pressure reflection coefficient, which was determined as:

Rint( f0) =

k0∫
0

pb,r( f0, k)dk

k0∫
0

pe,r( f0, k)dk

, (4.1.6)

Rmax( f0) =
max

(
pb,r( f0, k)

)
max (pe( f0, k))

, (4.1.7)

where pb,r is the frequency-wavenumber spectrum measured in front of the blockage.

The intensity reflection and transmission coefficients were obtained in a likewise man-

ner. In order to calculate them, the velocity data were retrieved from the recorded sound

pressure in a following way:

uz(t) ≈ −
1
ρ0∆

t∫
−∞

[pm1(τ) − pm2(τ)] dτ, (4.1.8)

Then, after these data were transformed to have frequency dependence as opposed to

time dependence, the active and reactive intensity components were calculated:

Ĩz,a = 0.5Re
(
p u∗z

)
, (4.1.9)

Ĩz,re = 0.5Im
(
p u∗z

)
, (4.1.10)

where an asterisk denotes the complex conjugate.
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4.2 Results and discussion

Figures 4.15-4.17 show the frequency-wavenumber spectra for the sound pressure recorded

in the 150 mm diameter pipe in the absence and presence of a coaxial cylinder. Figure

4.15 shows the frequency-wavenumber spectrum recorded in the empty pipe, and Fig-

ures 4.16 and 4.17 shows the frequency-wavenumber spectra recorded in front of and

behind the blockage, respectively. These figures present the data in a frequency range

up to 3500 Hz, which includes the first axi-symmetric cut-on frequency of 2789 Hz.

However, at the frequencies at which this mode is excited little energy is reflected by

the cylinder. Therefore, the 3rd mode is not visible very well in Figure 4.16. On the

other hand, quite a considerable amount of sound energy propagates past the cylinder,

therefore the modal trace in Figure 4.17 is strong and can be used to determine the

modal transmission coefficient. Nevertheless, only the plane wave (fundamental mode)

was considered for the later analysis. The theoretical predictions for higher-order modes

are much more challenging to compute, so by obtaining the predictions for the plane

wave regime only, the time costs were significantly reduced and the method was deemed

to be more attractive in terms of it practical realisation. The frequency-wavenumber

spectra were subsequently used to derive the reflection and transmission coefficients

as described by expressions (4.1.4)-(4.1.7). The measured and predicted absolute val-

ues of the sound pressure and active sound intensity reflection coefficients are shown

in Figures 4.18 and 4.19, whereas those for the transmission coefficient are shown in

Figures 4.20 and 4.21. The predictions were obtained using the hybrid model (Duan et

al., 2013), described in Section 2.4.1. Three sets of data are presented in each figure: a

red line denotes the theoretical predictions, black dots show the integral method results

and black crosses - maximum value method results. Firstly, it is worth noticing that

there is a good match between experiments and predictions. The mean error for the

transmission measurements was quantified in accordance with Equation (4.2.1) and is
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Figure 4.15: The measured k-ω spectrum for the empty 150 mm diameter pipe, with
the microphone placed in the centre of the pipe cross-section.

Figure 4.16: The measured pressure k-ω spectrum for the 150 mm diameter pipe in
presence of a coaxial cylinder in reflection, with the microphone placed in the centre of
the pipe cross-section.
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Figure 4.17: The measured k-ω spectrum for the 150 mm diameter pipe in presence of
a coaxial cylinder in transmission, with the microphone placed in the centre of the pipe
cross-section.

equal to 1.9%:

ετ =
1
Ni

Ni∑
i=1

|τ(m)(ωi) − τ(ωi))|, (4.2.1)

where τ(ωi)) and τ(m)(ωi) are the measured and predicted transmission coefficients, re-

spectively. The amplitude of the measured transmission coefficient is smaller than the

one of the predicted which can be attributed to non-perfectly reflecting walls of the

pipe or sound leaking through the small gaps between pipe sections. The numerical

and experimental results start to diverge at a frequency of approximately 1 kHz. The

discrepancy was also observed when the experiments were performed with the loud-

speaker and the microphone near the wall. This leads to a conclusion that the cylinder

inserted in the pipe had irregularities, such as an imperfect seal between the cylindrical

shell and termination ends. As a result, the walls of the cylinder might not be perfectly

reflecting as it was assumed in the model.

The reflection coefficient for this cylinder is shown in Figures 4.18 and 4.19. The error
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Figure 4.18: The measured and predicted values of the sound pressure reflection coef-
ficient. Red line: predictions; black dots: integral method; black crosses: maximum
value method.

between the predicted and the measured values is quantified in a similar manner as the

transmission coefficient error. It is slightly higher that in the case of the transmission

coefficient and is equal to 8.4%. Again, the measured reflection coefficient is lower than

predicted throughout the adopted frequency range for the same reasons as described

above. The measured transmission coefficient curve is not perfectly smooth which is

an outcome of experimental data processing. The frequency-wavenumber spectra for

sound reflection from cylinder were not as clear as for sound transmission which made

the data acquisition from them challenging.
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Figure 4.19: The measured and predicted values of the active sound intensity reflection
coefficient. Red line: predictions; black dots: integral method; black crosses: maximum
value method.

Figure 4.20: The measured and predicted values of the sound pressure transmission
coefficient. Red line: predictions; black dots: integral method; black crosses: maximum
value method.
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Figure 4.21: The measured and predicted values of the active sound intensity trans-
mission coefficient. Red line: predictions; black dots: integral method; black crosses:
maximum value method.

4.3 Summary

This chapter describes the method of characterisation of an axi-symmetrical blockage in

a pipe. It is based on simulating an axial microphone array and substituting the obtained

data into the two-dimensional Fourier transform. Measurements in an empty pipe have

been performed in order to give a guideline to the incident signal. The obtained data

have been subsequently used to estimate the blockage reflection and transmission coef-

ficients, combined with the measurements performed in the presence of the blockage,

in front of it or behind it, respectively. The results have been presented for the plane

wave regime, which is up to 2789 Hz for the given pipe, with the microphone array

placed in the middle of cross-section. The experimental data exhibit a good agreement

with the predictions by the hybrid model. This means that the suggested method can

be successfully used to locate and characterise blockages in waveguides. However, the

method can be developed further to include higher modes, as well as to measure more

complex blockages, which are not perfectly reflecting or misaligned with respect to the
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centre of the pipe.

The next chapter will talk about another kind of inhomogeneity in a pipe, a porous

termination. Sound intensity measurements will be employed to determine the total

absorption coefficient of the porous termination in a wide range of frequencies.
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Material characterisation methods

This chapter focuses on sound reflection and absorption of porous materials. A new

method to determine modal sound reflection coefficients at normal and oblique inci-

dence is proposed, which allows to extend significantly the frequency range of the stan-

dard ISO 10534-2 method (1998). The method is successfully tested on a range of

porous materials and its results have a good match with the predictions obtained with

the Johnson-Champoux-Allard model (Champoux and Allard, 1991).

5.1 A new impedance tube method

The following method has been developed to overcome the restriction on the mate-

rial sample size when used for sound absorption measurements in an impedance tube

(Prisutova et al., 2014).

According to this new method it is proposed to measure the sound pressure spectra

at a number of axial positions in an impedance tube. This provides a possibility to
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obtain a set of frequency- and position-dependent sound pressure data, to which the

spatial Fourier transform can then be applied to determine the relations between the

wavenumber and frequency spectra (convention e−iωt). Fourier integral was applied in

the spatial domain and it was approximated with a sum which was taken using the

trapezoidal rule. This trapezoidal rule was applied to the sound pressure data measured

at the N microphone positions:

p̃m(K, ω) =

∞∫
−∞

pm(z, ω)eiKzdz '
∆

2

N−1∑
j=1

[
pm

(
z j+1, ω

)
eiKz j+1 + pm

(
z j, ω

)
eiKz j

]
, (5.1.1)

where ∆ is the separation between two subsequent microphone positions in the axial

direction, z j and z j+1 are the j-th and ( j + 1)-th axial positions, respectively.

For an impedance tube with the square cross-section which is terminated with an ab-

sorbing lid (e.g. a porous layer), the sound pressure can be expressed as a superposition

of an infinite number of normal modes:

p(z, ω) =

∞∑
m=0

∞∑
n=0

cos
mπ
a

x cos
nπ
a

y
(
Amne−ikmnz + AmnRmneikmnz

)
, (5.1.2)

where x, y and z are the coordinates of the microphone, m, n are the indices of the

modes propagating in the tube, a is the width of the tube cross-section, kmn is the modal

wavenumber, kmn =

√
k2 −

(
mπ
a

)2
−

(
nπ
a

)2
, with k = 2π f /c0 , and Amn are the modal

excitation coefficients in the incident sound wave and Rmn are the unknown modal re-

flection coefficients which depend on the frequency, on the angle at which the mode

is incident on the termination and on the acoustical properties of the porous material

from which the specimen at this termination is constructed. The values of the cut-on

frequencies for the first few normal modes for the particular impedance tubes used in

this experiment are presented in Tables 5.1, 5.2 and 5.10 (at 20◦ C). The modal patterns

for square and circular tubes are shown in Figures 5.1 and 5.2.
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(00) (01) (02) (03)

(10) (11) (12) (13)

(20) (21) (22) (23)

(30) (31) (32) (33)

Figure 5.1: Modal patterns for the first four propagating modes in a square impedance
tube. x-axis: x coordinate, [m]; y-axis: y coordinate, [m]. Colorbar: -1 - black, 0 -
orange, 1 - white.

The Fourier transform of Equation (5.1.2) is

p̃(K, ω) =

∞∑
m=0

∞∑
n=0

cos
mπ
a

x cos
nπ
a

y

Amn

∞∫
−∞

ei(K−kmn)zdz + AmnRmn

∞∫
−∞

ei(K+kmn)zdz

 .
(5.1.3)

Equation (5.1.3) can be analytically simplified by replacing the infinite integration lim-
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(00) (01) (02) (03)

(10) (11) (12) (13)

(20) (21) (22) (23)

(30) (31) (32) (33)

Figure 5.2: Modal patterns for the first four propagating modes in a circular impedance
tube. x-axis: x coordinate, [m]; y-axis: y coordinate, [m]. Colorbar: -1 - black, 0 -
orange, 1 - white.

its with the coordinates of the first and the last microphone measurement positions, z1
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and z2, to take the following form:

p̃(K, ω) =

∞∑
m=0

∞∑
n=0

cos
mπ
a

x cos
nπ
a

y × · · ·

· · ·

[
Amn ei(K−kmn) z2+z1

2 (z2 − z1) sinc
(
(K − kmn)

z2 − z1

2

)
+ · · ·

· · · Amn Rmn ei(K+kmn) z2+z1
2 (z2 − z1) sinc

(
(K + kmn)

z2 − z1

2

)]
, (5.1.4)

where sinc z = sin z
z .

For a circular impedance tube, the sum (5.1.2) takes the following form:

p(z, ω) =

∞∑
m=0

∞∑
n=0

cos (mθ) Jm(γmnr)
(
Amne−ikmnz + AmnRmneikmnz

)
, (5.1.5)

where θ, r and z are the cylindrical coordinates of the microphone, Jm is Bessel function

of the first kind and of the m-th order, γmn are the wavenumbers which correspond to

the zeros of the first derivative of Jm, and kmn =
√

k2 − γ2
mn. For this tube, Equations

(5.1.3) and (5.1.4) become

p̃(K, ω) =

∞∑
m=0

∞∑
n=0

cos (mθ) Jm(γmnr)

Amn

∞∫
−∞

ei(K−kmn)zdz + AmnRmn

∞∫
−∞

ei(K+kmn)zdz


(5.1.6)

and

p̃(K, ω) =

∞∑
m=0

∞∑
n=0

cos (mθ) Jm(γmnr) × · · ·

· · ·

[
Amn ei(K−kmn) z2+z1

2 (z2 − z1) sinc
(
(K − kmn)

z2 − z1

2

)
+ · · ·

· · · Amn Rmn ei(K+kmn) z2+z1
2 (z2 − z1) sinc

(
(K + kmn)

z2 − z1

2

)]
, (5.1.7)

respectively.

In Equations (5.1.4) and (5.1.7) Amn and Rmn are the unknowns which have to be deter-

mined for every mode and frequency. For this purpose, the optimisation algorithm was
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applied to the cost function F to minimise the difference:

min
Amn,Rmn

F (ω) =

Kmax∑
Kmin

|p̃m (K, ω) − p̃ (K, ω)|2, (5.1.8)

for each of the angular frequencies ω in the measured modal pressure spectra p̃m (K, ω).

In the above expression F is the cost function to be minimised, p̃(K, ω) is the pre-

dicted sound pressure expressed with Equation (5.1.4) or (5.1.7), and Kmin and Kmax are

the minimum and maximum values of the wavenumber in the wavenumber spectra for

which the measured data are available, respectively.

It is convenient to express the modal amplitude and the modal reflection coefficient in

the following form:

Amn = amneiφmn , AmnRmn = bmneiψmn , (5.1.9)

where amn, bmn are the absolute values of the forward and backward waves, i.e. Amn

and AmnRmn, respectively, whereas φmn and ψmn are their phases. These quantities are

real numbers which are convenient to use in the minimisation procedure to estimate the

amplitudes and phases in the incident and reflected normal waves and which can then

be combined to represent the proportion of the sound energy in the reflected sound wave

and the proportion of the sound energy absorbed by the porous specimen through the

decomposition of normal waves at a particular frequency.

The minimisation procedure (5.1.8) was applied to recover the absolute values of the

modal amplitudes and phases in the considered range of frequencies so that the modal

reflection coefficients were determined by the following expression:

Rmn =
bmneiψmn

amneiφmn
. (5.1.10)

The procedure was performed by making use of MATLAB in-built fminsearch func-

tion. It was applied to each mode separately, i.e. the adopted frequency range was
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divided into several regions, limited by modal cut-on frequencies from each side (eg.

50-572 Hz, 572-808 Hz, 808-1143 Hz, 1143-1278 Hz, 1278-1617 Hz and 1617-1800

Hz for the 300 mm square tube). In each region, amplitudes and phases of incident and

reflected waves were recovered for each propagating mode, frequency-by-frequency, so

for the frequency band of 50-572 Hz amplitudes and phases were recovered for the fun-

damental mode only, for the frequency band of 572-808 Hz - for the fundamental mode

and the first higher mode, etc. The recovered values were imprecise in the vicinity of

cut-on frequencies, but as soon as the frequency of interest was about 40 Hz from the

cut-on, the recovered values stabilised.

Four examples of the application of the minimisation procedure for the 300 mm square

tube are shown in Figures 5.3-5.4, presenting the data in two different frequency regimes:

plane wave (214 Hz) and fully modal (1236 Hz). These examples are for a square

82 mm hard-backed layer of melamine foam. The figures show the amplitudes and

phases as functions of the wavenumber before (upper subplots) and after (lower sub-

plots) the application of the minimisation procedure. The amplitudes Amn and AmnRmn

of the wavenumber in the upper subplots were assumed to be equal to 1, and the phases

φmn and ψmn - equal to 0. The results suggest that the minimisation procedure allows to

match very closely both the amplitude and the phase of the reflection coefficient below

the cut-on frequency with the mean error ε of 1.1% for the amplitude and 1.9% for the

phase calculated using

ε =

Nw∑
w=1
| p̃m − p̃|

Nw∑
w=1

∣∣∣ p̃m+p̃
2

∣∣∣ . (5.1.11)

This error can be higher (of the mean value of 5.3% and 23.2%, respectively) when

several modes have to be accounted for (see Figure 5.4).

The absorption coefficient for the plane wave regime, α00, was then calculated in the

following standard manner:

α00 = 1 − |R00|
2. (5.1.12)
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Figure 5.3: The measured and predicted sound pressure amplitude and phase for 214
Hz before and after the application of sound pressure matching procedure. Solid line:
experiments; dashed line: predictions.

This acoustical quantity does not account for the energy dissipated by the higher or-

der modes. The modal absorption coefficient defines the amount of energy which is

absorbed by one particular mode only and is defined as follows:

αmn = 1 − |Rmn|
2, (5.1.13)

where Rmn is the modal reflection coefficient, given by expression (2.6.21).

The total absorption coefficient, which does include the energy transmitted by and dis-

sipated through the high order mode absorption mechanisms can be derived from the

basic knowledge of the energy relations in a waveguide. Two ways of its calculation

have been used in this work. The first method makes use of the ratio of incident and

reflected amplitudes in the tube. Equations (5.1.2) and (5.1.5) suggest that the modal

decomposition of the sound field in the impedance tube combines two groups of waves:
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Figure 5.4: The measured and predicted sound pressure amplitude and phase for 1236
Hz before and after the application of sound pressure matching procedure. Solid line:
experiments; dashed line: prediction.

those which are incident on the material specimen (t being the time):

p(i)
mn(x, y, z, t) = ΨmnAmne−ikmnz+iωt, (5.1.14)

and those which are reflected from it

p(r)
mn(x, y, z, t) = ΨmnAmnRmneikmnz+iωt, (5.1.15)

where Ψmn = cos mπ
a x cos nπ

a y for a square impedance tube, and Ψmn = cos(mθ)Jm(γmnr)

for a circular impedance tube. The difference between these two groups is in the sign

in the exponential function e±ikmnz and in the presence of the reflection coefficient term

in (5.1.15). The z-component of the intensity vector in a propagating normal wave is a

measure of energy which this wave carries from the source towards the material sample.

This instantaneous intensity is the product of the sound pressure Imn = Re{p(i)
mnvmn}. The
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z-component of the acoustic velocity vector of the mode (mn) is given by

vmn =
1

iωρ0

∂p(i)
mn

∂z
=

kmn p(i)
mn

ωρ0
. (5.1.16)

This above suggests that

Imn(x, y, x, t) =
kmnA2

mn

ωρ0
Ψ2

mn cos2(−kmnz + ωt), (5.1.17)

and the time-averaged intensity is

Ĩmn(x, y) =
kmnA2

mn

2ωρ0
Ψ2

mn. (5.1.18)

The mode (mn) incident on the material surface carries the energy flux through the

cross-section of the impedance tube which is the integral of (5.1.18), i.e.

Emn =

∫
S

ĨmndS . (5.1.19)

It is easy to show that the integration of (5.1.19) gives the following expression for the

total energy flux in the normal mode (mn) incident on the material specimen

E(i)
mn =

Re(kmn)A2
mn

2εmεnωρ0
, (5.1.20)

where εm (m=0) = 1 and εm (m>0) = 2 are the same as defined in Equation (5.1.28). The

wavenumber kmn here is considered to be real because evanescent modes do not carry

the energy.

The above arithmetical manipulations can be used to derive the total energy flux in the

mode (mn) reflected from the material specimen and it is easy to show that

E(r)
mn =

Re(kmn)‖AmnRmn‖
2

2εmεnωρ0
, (5.1.21)
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where the norm ‖AmnRmn‖ is applied because the quantity AmnRmn which contains the

modal reflection coefficient Rmn is no longer real.

The total energy flux is the sum of the energies in all of the propagating modes, therefore

E(i) =
∑
mn

Re(kmn)A2
mn

2εmεnωρ0
, (5.1.22)

and

E(r) =
∑
m′n′

Re(km′n′)‖Am′n′Rm′n′‖
2

2εm′εn′ωρ0
. (5.1.23)

By its definition, the absorption coefficient is the ratio of the energy absorbed by the

surface (E(i)−E(r)) to the incident sound energy (E(i)), i.e. α = (E(i)−E(r))/E(i). Making

use of this definition and Equations (5.1.22) and (5.1.23) yields

αamp(ω) = 1 −

∑
m′n′

Re(km′n′)‖Am′n′Rm′n′‖
2

εm′εn′∑
mn

Re(kmn)A2
mn

εmεn

, (5.1.24)

For the second method, the total absorption coefficient was calculated using the sound

intensity data. The sound intensity was calculated by making use of the mean sound

pressure between two closely spaced microphone positions and sound velocity mea-

sured as the integral of the pressure difference, i.e.:

p(z j, ω) =
1
2

(
p(z j, ω) + p(z j−1, ω)

)
, (5.1.25)

u(z j, ω) = −
1

iωρ0∆

(
p(z j, ω) − p(z j−1, ω)

)
, (5.1.26)

where z j denotes the j-th position of the microphone and ∆ is the separation between

these two positions. Such an expression for sound velocity was chosen for its simplicity
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and to avoid the need to deal with separate modes during the calculations. The spatial

Fourier transform was applied subsequently to determine the wavenumber spectra of the

quantities in Equations (5.1.25) and (5.1.26). However, in the case of the 150 mm circu-

lar tube, the measurements were performed with the Microflown probe, which records

both sound pressure and velocity. Hence, the recorded pressure and velocity readings

were used at each position for the substitution in the Fourier transform, so Equations

(5.1.25) and (5.1.26) were not used for the 150 mm circular tube. The total absorption

coefficient was then calculated from the knowledge of the measured intensities in the

incident and the reflected sound waves from:

Ii(K, ω) =
1
2

Re
(
pi(K, ω) u∗i (K, ω)

)
, Ir(K, ω) =

1
2

Re
(
pr(K, ω) u∗r(K, ω)

)
. (5.1.27)

αint(ω) = 1 −

∣∣∣∣∣∣∣∣∣∣
∫
K

Ir(K, ω) dK∫
K

Ii(K, ω) dK

∣∣∣∣∣∣∣∣∣∣ , (5.1.28)

where K is the wavenumber and the asterisk symbol denotes the complex conjugation.

Equation (5.1.28) can also be used to predict the total absorption coefficient in the case

when the sound pressures are calculated using Equation (5.1.4).

The angles at which the higher modes impinged on the porous material surface were

calculated separately for each mode by making use of the following formula:

θmn(ω) = arccos


√(

ω
c0

)2
−

(
mπ
a

)2
−

(
nπ
a

)2

ω/c0

 , (5.1.29)

where m, n are the indices of the modes propagating in the tube.
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5.2 Measurements in square cross-section tube

5.2.1 Acoustic setup

The reported experiments were carried out using the impedance tube facilities avail-

able at the Laboratoire d’Acoustique de l’Université du Maine (LAUM) in France. Two

impedance tubes were used and both had square cross-sections, which makes subse-

quent data processing easier than that in a rectangular cross-section tube. One of them

was a square waveguide, a sketch of which is presented in Figure 5.5. It was constructed

from 38 mm thick panels of medium density fibreboard which were varnished to ensure

that the walls are sufficiently reflective so that they do not contribute noticeably to the

level of air attenuation expected for this tube. The tube was 4.15 m long and the dimen-

sions of the square cross-section were 300 mm x 300 mm. According to the standard

method the high frequency limit for the plane wave regime in this tube was 572 Hz

assuming that the sound speed was c0 = 343 m/s at 20◦ C (ISO 10534-2, 1998) (see

Table 5.1). One end of this tube was terminated with a 30 mm thick metal lid, and at the

opposite end there were three loudspeakers (S1-S3) which were connected in parallel

as shown in Figure 5.5. The coordinates of the centres of these three speakers were

(50 mm, 50 mm), (50 mm, 150 mm), (150 mm, 150 mm), for speakers S1, S2 and S3,

respectively. Such distribution was necessary to increase the number of propagating

modes which can be excited in the adopted frequency range of 50 to 1800 Hz. A porous

material sample was accurately cut to fit the cross-section of the tube and attached to

the metal lid end without an air gap. The signal used for the sound field excitation was

a step-by-step sine sweep, ranging from 50 to 1800 Hz, with a step of 12 Hz.

The second impedance tube is a square 3 m long waveguide with a 150 x 150 mm

cross-section. Its walls are constructed of 30 mm thick PVC panels. Its both ends are

terminated with transparent PVC, one of them having two openings for the microphone

insertion. The loudspeaker was installed at the side of the tube in the vicinity of one
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Figure 5.5: A schematic illustration of the 300 mm wide tube setup: (1) loudspeakers;
(2) microphone; (3) microphone frame designed to maintain the microphone’s position
in a corner of tube; (4) porous material sample; (5) signal analyser; (6) PC.

end, as shown in Figure 5.6. At the opposite end, a porous material sample of the same

cross-sectional size as the tube was installed, both with and without an air gap. The

higher modes cut-on frequencies for this tube are presented in Table 5.2 at 20◦ C, and

the high frequency limit of this tube was 1143 Hz. The adopted frequency range for this

setup was from 50 to 3500 Hz. It was implemented using the step-by-step sine sweep

of the same frequency range.

For both impedance tubes, a single 1/4” B&K microphone was used to avoid problems

with phase and amplitude mismatch. Two cross-sectional positions were used, one in

the corner of the pipe’s cross-section, at xm = 5 mm, ym = 5 mm, where the amplitude of

all the modes was maximum. Another position was at the middle of the cross-section,

at xm = 150 mm, ym = 150 mm for the wooden tube, and at xm = 75 mm, ym = 75

mm for the PVC tube. In this way, the amplitude of the plane wave was maximum.

The pressure readings were taken at 52 axial positions and the movement of the mi-
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Figure 5.6: A schematic illustration of the 150 mm tube setup: (1) loudspeaker; (2)
microphone; (3) microphone frame designed to maintain the microphone’s position in
a corner of tube; (4) porous material sample; (5) signal analyser; (6) PC.

m / n 0 1 2 3
0 0 572 1143 1715
1 572 808 1278 1807
2 1143 1278 1617 2061
3 1715 1807 2061 2425

Table 5.1: The values of the cut-on frequencies in Hz for a 300 mm square waveguide.

crophone was controlled by a robotic arm. The first position of the microphone was

at the 5 mm distance from the porous material sample, and then the microphone was

moved at a 40 mm step, which is consistent with the minimum spacing interval per-

mitted by the Nyquist sampling theorem. This spacing allows to measure the spatial

spectrum with the minimum wavelength of 80 mm. Also, this combination of spac-

ing and maximum adopted frequency allows to avoid the spatial aliasing problem in

frequency-wavenumber space. The data were acquired using a Stanford Research Sys-

tems SR785 signal analyser which allowed to measure and store the sound pressure

spectra in the text file format. The frequency resolution of this system was 12 Hz.
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m / n 0 1 2 3
0 0 1143 2287 3430
1 1143 1617 2557 3616
2 2287 2557 3234 4122
3 3430 3616 4122 4851

Table 5.2: The values of the cut-on frequencies in Hz for a 150 mm square waveguide.

5.2.2 Materials

Several materials were used for the experiments described above, such as (a) melamine

foam, (b) wood fibre, (c) Armasound foam (Armacell, 2014), and (d) porous foam.

These materials were characterised in the Centre of Technology Transfer of Le Mans

(CTTM) and their non-acoustical properties are provided in Table 5.3.

Parameter Melamine foam Wood fibre Armasound Porous foam Units
φ 0.99 0.98 0.79 0.95 -
α∞ 1.01 1.07 2.06 1.42 -
σ 1.1 · 104 5.0 · 103 8.3 · 104 8.9 · 103 N s/m4

Λ 1.2 · 10−4 1.0 · 10−4 1.7 · 10−5 1.8 · 10−4 m
Λ′ 2.4 · 10−4 2.0 · 10−4 5.3 · 10−5 3.6 · 10−4 m
ds 0.082 0.095 0.026 0.01 m

Table 5.3: Characteristics of porous materials: porosity (φ), tortuosity (α∞), flow re-
sistivity (σ), viscous characteristic length (Λ), thermal characteristic length (Λ′), layer
thickness (ds).

5.2.3 Results and discussion

Results from the 300 mm impedance tube

Figure 5.7 presents the frequency-wavenumber spectrum for the empty 300 mm square

tube, measured at the corner of the tube cross-section. It shows a clear separation be-

tween the first six cross-sectional modes (including the fundamental mode) which are

excited in the impedance tube in the frequency range of 50 - 1800 Hz and at a range

of angles of incidence −π/2 < θmn(ω) < +π/2. The waves with positive wavenumbers
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in Figure 5.7 correspond to those modes which propagate towards the end of the tube,

terminated with a rigid lid, whereas the waves with the negative wavenumbers are the

modes reflected by the lid. Figure 5.8 presents the modal absorption coefficients mea-

sured in the corner of the same tube for modes (00), (01), (11) and (02). These were

calculated in the following way:

αmn = 1 − |Rmn|
2, (5.2.1)

where Rmn are the modal reflection coefficients. It is clear from the graph that the ab-

sorption of the fundamental mode does not exceed 15% and thus can be neglected in

the analysis of the porous materials fundamental mode reflection coefficients. However,

for higher modes the modal absorption coefficients take larger values and are more scat-

tered, which can affect the accuracy of the measured reflection absorption coefficients

of porous materials. All possible precautions were made to minimise the residual ab-

sorption by the tube, such as varnishing its inner walls and sealing the gaps between the

tube and its terminations. One might also argue that higher levels of residual absorption

may be caused by vibrating walls of the tube.

Figures 5.9 and 5.10 show the frequency-wavenumber spectra for a layer of Arma-

sound foam, measured in the corner and in the middle of the tube, respectively. There

is a clear separation between the dispersion curves of the first six propagating modes.

This provides a possibility to determine the acoustic reflection coefficient of the porous

layer in the frequency range that is much broader than that suggested in the ISO 10534

document ISO 10534-2 (1998) and for a range of the angles of incidence. This can be

achieved using the modal decomposition method and optimisation technique detailed

in Section 5.1. The relationship between the value of the angles θmn(ω), θt(ω), the fre-

quency f = ω/2π and the modal number is illustrated graphically in Figure 5.11 for

the case of melamine foam (see Equation (2.6.22)). The frequency-wavenumber plots

for the remaining materials, measured in the 300 mm square tube, are presented in Ap-
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Figure 5.7: The frequency-wavenumber spectrum measured in the empty 300 mm wide
square tube, with the microphone placed in the corner of the tube cross-section.

Figure 5.8: The first four modal absorption coefficients measured in the empty 300 mm
square tube, with the microphone placed in the corner of the tube cross-section.
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pendix A. However, for the melamine foam and wood fibre samples only measurements

in the corner are available.

Figures 5.12 and 5.13 show the measured and predicted real and imaginary parts of the

modal reflection coefficients, measured in the corner and in the middle of the tube cross-

section, respectively. These were obtained as a function of the frequency and the inci-

dence angle which were obtained from the analysis of the wavenumber-frequency spec-

tra for the layer of Armasound foam. The reason for measuring at two cross-sectional

locations was the ability to recover the reflection coefficient for mode (00) beyond the

first higher-order mode cut-on frequency, as opposed to the method specified in ISO

10534-2 standard (1998). With the middle cross-sectional microphone positioning, it

was not possible to measure the reflection coefficients for modes (01) and (11), how-

ever, the mode (22) became sufficiently pronounced to measure its reflection coefficient.

The discrepancies between the measurements and predictions have been quantified in

terms of the mean difference given by

εRe =
1

Nq

Nq∑
q=1

|Re(R(m)
mn (ωq) − Rmn(ωq))|, εIm =

1
Nq

Nq∑
q=1

|Im(R(m)
mn (ωq) − Rmn(ωq))|, (5.2.2)

where R(m)
mn (ωq) is the experimentally determined modal reflection coefficient, Rmn(ωq)

is the predicted reflection coefficient and Nq is the number of frequency points in the

reflection coefficient spectrum. This difference for the fundamental mode reflection

coefficient does not change significantly from the corner to the middle of the tube mea-

surements (5.07% error in the real part of the reflection coefficient measured in the

corner as opposed to 7.52% error in the middle of the tube, and 7.76% and 5.67% er-

rors for the imaginary part, measured in the corner and in the middle, respectively).

However, the ability to recover the fundamental mode reflection coefficient in a much

broader frequency range makes the measurements in the middle rather useful. After the

mode (02) cuts on at 1278 Hz, the amplitude of the fundamental mode drastically de-

creases, which makes the measurement of the reflection coefficient of the fundamental
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Figure 5.9: The frequency-wavenumber spectrum for the layer of Armasound foam
measured in 300 mm wide square tube, with the microphone placed in the corner of the
tube cross-section.

Figure 5.10: The frequency-wavenumber spectrum for the layer of Armasound foam
measured in 300 mm wide square tube, with the microphone placed in the middle of the
tube cross-section.
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Figure 5.11: The mode angle of incidence and real and imaginary parts of the corre-
sponding refraction angle as a function of a frequency for melamine foam in the 300
mm wide square tube. Solid line: angle of incidence; dashed line: real part of the
refracted angle; dotted line: imaginary part of the refracted angle.

mode problematic. For the thin foam sample, the data measured in the middle and in

the corner will be combined in one graph, mode (00) being recovered in the middle and

the remaining modes - in the corner. For the melamine and wood fibre samples only

the data measured in the corner of the tube are available. This resulted in the reflection

coefficient for mode (00) being recovered only up to the first cut-on frequency of 572

Hz.

Figures 5.14 - 5.16 show the real and imaginary parts of the modal reflection coeffi-

cients as a function of the frequency and the incidence angle for the layer of melamine,

wood fibre and porous foam, respectively. Black dots denote the experimental data ob-

tained through the application of the optimisation algorithm (5.1.8), whereas the solid

line is the numerical simulation results obtained using the Johnson-Champoux-Allard

equivalent fluid model via expression (2.6.21). The experimental data are only provided
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Figure 5.12: The modal reflection coefficients for the layer of Armasound foam, when
the microphone was placed in the corner of the 300 mm tube cross-section. Solid line:
predictions; dots: experiments.

Figure 5.13: The modal reflection coefficients for the layer of Armasound foam, when
the microphone was placed in the middle of the 300 mm tube cross-section. Solid line:
predictions; dots: experiments.
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for those frequencies at which the signal to noise ratio was better than 20 dB. The dif-

ferences between the measured and predicted plane wave reflection coefficient do not

exceed 7.5% for all the materials except the thin foam, for which the difference between

the prediction and measurements is below 15%. The maximum difference is observed

between the real parts for mode (01) for the case of the thin foam sample. The most

probable cause for that is the fact that the thin foam sample was the least absorbing

of all. It exhibits higher mean differences between the predicted and measured data

for all modal reflection coefficients, which may signify that the optimisation algorithm

is more susceptible to errors when the absorbing abilities of the sample present in the

tube are weak. It can also be observed that the mean difference between real parts of

the predicted and measured reflected coefficient for mode (01) is one of the highest for

three out of four material samples. This may attributed to the close proximity of the

dispersion curves for modes (01) and (11) beyond the cut-on frequency of the latter

(808 Hz). Furthermore, the dispersion curves for modes (01) and (11) are difficult to

separate beyond the cut-on frequency of mode (02) at 1143 Hz, making the modal re-

flection coefficient recovery even more challenging. This also may explain a relatively

high mean difference between the real parts of the predicted and measured reflection

coefficients for mode (11), observed for all four material samples.

The excitation of some modes can be favoured compared to that for the other modes be-

cause of the adopted speaker arrangement (see Figure 5.5) and cross-sectional position

of the microphone array in the corner of the tube. As a result, the signal to noise ratio

for some modes at some frequencies and angles was limited so that the recovered re-

flection coefficient data for those modes were less accurate. It is also likely that a better

speaker arrangement is required to make use of the orthogonality of the mode shapes in

the tube so that the mode filtering which is currently attained with Equation (5.1.3) can

be enhanced as suggested by Vinogradov and Gavrilov (1987). Another solution is to

make use of the orthogonality of normal modes to maximise the excitation coefficients

by adopting speakers connected in the form of a phased array.
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Figure 5.14: The modal reflection coefficients for the layer of melamine foam, recov-
ered in the 300 mm square tube cross-section. Solid line: predictions; dots: experi-
ments.

Figure 5.15: The modal reflection coefficients for the layer of wood fibre, recovered in
the 300 mm square tube cross-section. Solid line: predictions; dots: experiments.
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Figure 5.16: The modal reflection coefficients for the layer of thin foam, recovered in
the 300 mm square tube cross-section. Solid line: predictions; dots: experiments.

A common feature between Figures 5.12,5.13 and 5.14-5.16 is that the largest discrep-

ancies between the measured and predicted values of the modal reflection coefficients

are in the vicinity of the modal cut-on frequencies. Otherwise, the model and mea-

surement agree and the errors are small. The possible explanation of this is that the

integration limits in the Fourier transform analysis were not sufficiently large to cap-

ture the modal pressures at or near a cross-sectional resonance. At a cut-on frequency

or near it the modal attenuation is relatively low whereas the modal phase velocity is

relatively high so that the adopted spatial length of the FFT window in Equation (5.1.1)

may not be sufficiently long to capture a representative lengths of the modal wavefront.

The other issue is cross-sectional modes were not properly excited above the frequency

of the next cross-sectional resonance.

Figures 5.17-5.20 show the measured and predicted values of the total absorption coef-

ficient for the layer of Armasound foam, measured in the 300 mm square tube. Figures

5.17 and 5.18 present the data measured in the corner and in the middle of the 300 mm
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Mode Melamine foam Wood fibre Armasound foam Porous foam
εRe(R00) 0.0696 0.0406 0.0752 0.1499
εIm(R00) 0.0486 0.0599 0.0567 0.1074
εRe(R01) 0.0661 0.1189 0.1943 0.3353
εIm(R01) 0.0736 0.0979 0.1355 0.1917
εRe(R11) 0.0998 0.1273 0.1818 0.2808
εIm(R11) 0.0770 0.0980 0.0766 0.1538
εRe(R02) 0.0711 0.0664 0.1597 0.1961
εIm(R02) 0.0630 0.0437 0.2014 0.0833

Table 5.4: A summary of the mean differences between the real and imaginary parts of
the measured and predicted modal reflection coefficients for the four material samples,
when the microphone was placed in the corner of the 300 mm tube cross-section.

square tube, respectively. These were calculated according to the incident and reflected

amplitudes ratio method, given by Equation (5.1.24). Figures 5.19 and 5.20 also present

the total absorption coefficient measured in the corner (Figure 5.19) and in the middle

(Figure 5.20) of the 300 mm square tube, but calculated using the intensity method given

by Equation (5.1.28). The mean differences between the measurements and predictions

are summarised in Table 5.5. It is worth noting, that for the incident and reflected am-

plitude ratio method, the data for each mode were not available throughout the whole

frequency range. For example, as it can be seen on the frequency-wavenumber plot for

the Armasound foam, obtained in the corner of the tube (Figure 5.9), the dispersion

curve for mode (00) disappears after the first cut-on frequency of 572 Hz. This means

that the information on the fundamental mode incident and reflected amplitudes was

available only in the frequency range between 50 and 572 Hz, instead of 50 to 1800

Hz. Similarly, other modes were also considered in the frequency ranges, where they

had a sufficient signal-to-noise ratio. Due to this limitation, two ways of calculating the

total absorption coefficient predictions were employed: full theoretical reflection coef-

ficient (full Rtheo), where each mode exists starting from its cut-on frequency and until

the maximum adopted frequency of 1800 Hz, and partial theoretical reflection coeffi-

cient (partial Rtheo), where a frequency range for each mode was matched to that of the

measured data. These two different ways of the total theoretical absorption coefficient
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calculation are reflected in Table 5.5, which presents the mean differences between the

measured and predicted data. However, the partial theoretical reflection coefficient does

not reflect the real picture of the sound field in the tube, whereas the full theoretical re-

flection coefficient cannot be directly compared to the measured data as the latter does

not have all the information contained in the theoretical predictions. Due to this issue, it

was chosen to use the intensity ratio method for the remaining plants. In addition, Fig-

ures 5.17-5.20 show the data obtained both in the corner and in the middle of the tube.

As the difference between the two is small, for the remaining materials the average total

absorption coefficient will be presented.

εαtotal

Amp method, corner (full Rtheo) 0.082
Amp method, corner (partial Rtheo) 0.039
Amp method, middle (full Rtheo) 0.084

Amp method, middle (partial Rtheo) 0.022
Int method, corner 0.100
Int method, middle 0.178

Table 5.5: A summary of the mean differences between the measured and predicted total
absorption coefficient for the layer of Armasound foam in the 300 mm square tube.
Amp method: incident and reflected amplitudes ratio method; Int method: intensity
ratio method.

Figures 5.21, 5.22 and 5.23 present the total absorption coefficients for the layer of

melamine foam, wood fibre and thin porous foam, respectively. These data were cal-

culated using the intensity method (Equation (5.1.28)). The presented total absorption

coefficient for the thin foam layer is the averaged value of the total absorption coeffi-

cients obtained in the corner and in the middle of the tube. As for the layers of melamine

foam and wood fibre, the experimental data were available only for the corner of the

tube. The match between the measurements and predictions for the melamine foam and

wood fibre is remarkably close, with the mean difference being equal to 1.5% in the

case of melamine foam and 2.2% in the case of wood fibre. However, the observed

agreement is worse for the thin foam layer, with the mean difference equal to 18.5%.

This may be caused by the same reason as the mismatch in the measured and predicted

113



CHAPTER 5. MATERIAL CHARACTERISATION METHODS

Figure 5.17: The measured and predicted total absorption coefficients for the layer of
Armasound foam calculated using the amplitude method, measured in 300 mm wide
square tube, with the microphone placed in the corner of the tube cross-section. Solid
line: full absorption coefficient predictions; dashed line: partial absorption coefficient
predictions; dots: experiments.

Figure 5.18: The measured and predicted total absorption coefficients for the layer of
Armasound foam calculated using the amplitude method, measured in 300 mm wide
square tube, with the microphone placed in the middle of the tube cross-section. Solid
line: full absorption coefficient predictions; dashed line: partial absorption coefficient
predictions; dots: experiments.
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Figure 5.19: The measured and predicted total absorption coefficients for the layer of
Armasound foam calculated using the intensity method, measured in 300 mm wide
square tube, with the microphone placed in the corner of the tube cross-section. Solid
line: predictions; dots: experiments.

Figure 5.20: The measured and predicted total absorption coefficients for the layer of
Armasound foam calculated using the intensity method, measured in 300 mm wide
square tube, with the microphone placed in the middle of the tube cross-section. Solid
line: predictions; dots: experiments.
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reflection coefficients for the thin foam. This porous foam sample was the thinnest of

all tested samples and thus exhibited inferior absorbing properties, which prevented the

optimisation algorithm to predict the measured absorption with high accuracy.

Figure 5.21: The measured and predicted total absorption coefficients for the layer of
melamine foam measured in 300 mm wide square tube. Solid line: predictions; dots:
experiments.

Material εαtotal

Melamine foam 0.015
Wood fibre 0.022
Thin foam 0.185

Table 5.6: A summary of the mean differences between the measured and predicted
total absorption coefficient for the three material specimens in the 300 mm square tube.
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Figure 5.22: The measured and predicted total absorption coefficients for the layer
of wood fibre measured in 300 mm wide square tube. Solid line: predictions; dots:
experiments.

Figure 5.23: The measured and predicted total absorption coefficients for the layer
of thin foam measured in 300 mm wide square tube. Solid line: predictions; dots:
experiments.
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Results for the 150 mm impedance tube

Figures 5.24 and 5.25 show the frequency-wavenumber spectrum and the partial modal

absorption coefficients measured in the 150 mm square tube, respectively. The frequency-

wavenumber plot shows a clear separation between the dispersion curves for propagat-

ing modes, which allows to use these data to recover the modal reflection and total ab-

sorption coefficients of tested materials. However, mode (11) with the cut-on frequency

of 1617 Hz is excited much less than other propagating modes (see Figure 5.24). This

may be caused by the loudspeaker positioning, which does not favour the excitation of

this particular mode. This peculiarity explains the partial absorption coefficient of this

mode being very scattered (Figure 5.25). Furthermore, this can affect the recovery of

the reflection coefficient for mode (11) for the tested porous materials.

Figures 5.26 and A.8 present the frequency-wavenumber sound pressure spectra ob-

tained in the 150 mm square tube for the Armasound foam sample and two microphone

positions. As previously, positive wavenumbers carry information about the incident

sound field, and negative wavenumbers correspond to the reflected sound field. The

data depicted in Figures 5.26 and 5.27 were subsequently used for the modal reflection

coefficient recovery. The frequency-wavenumber plots for other two porous material

setups, which are Armasound foam with 100 mm air gap and Armasound foam with

200 mm air gap can be found in Appendix A1.

Figures 5.28 and 5.29 show the first four modal reflection coefficients for the Arma-

sound foam layer with no air gap, measured in the corner and in the middle of the

tube cross-section, respectively. The mean differences between the measured and the

predicted results are shown in Table 5.7. These differences were estimated using ex-

pression (5.2.2). The theoretical predictions for the no air gap case were calculated

using the Johnson-Champoux-Allard model (1991). It is clear from the plots that the

quality of the recovered fundamental mode reflection coefficient is much higher when
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Figure 5.24: The frequency-wavenumber spectrum measured in the empty 150 mm
wide square tube, with the microphone placed in the corner of the tube cross-section.

Figure 5.25: The first four modal absorption coefficients measured in the empty 150
mm square tube, with the microphone placed in the corner of the tube cross-section.
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Figure 5.26: The frequency-wavenumber spectrum for the layer of Armasound foam,
measured in the empty 150 mm wide square tube, with the microphone placed in the
corner of the tube cross-section.

Figure 5.27: The frequency-wavenumber spectrum for the layer of Armasound foam,
measured in the empty 150 mm wide square tube, with the microphone placed in the
middle of the tube cross-section.
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measured in the middle of the tube (24.3% error for the real part and 19.4% for the

imaginary part in the corner as opposed to 9.3% error for the real part and 9.0% for the

imaginary part in the middle). Moreover, the measurements in the middle enable the

recovery of the fundamental mode reflection coefficient up to 2557 Hz. This extends

the plane wave regime limit more than by a factor of two, which the first higher mode

cut-on frequency being 1143 Hz (see Table 5.2). Due to this fact, the reflection coeffi-

cient plots for the other two materials will present the plane wave reflection coefficient

data recovered in the middle, whereas the remaining three modes reflection coefficients

have been recovered in the corner of the tube.

Figure 5.28: The modal reflection coefficients for the layer of Armasound foam, when
the microphone was placed in the corner of the 150 mm tube cross-section. Solid line:
predictions; dots: experiments.

Figures 5.30 and 5.31 show the predicted and measured modal reflection coefficients

for the Armasound foam layer with 100 mm and 200 mm air gap, respectively, mea-

sured in the 150 mm square tube. The predictions for the case of the presence of air gap

were calculated using the Pade approximants model (Horoshenkov et al., 1998), which

proved to be the most suitable to characterise the behaviour of such complex porous
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Figure 5.29: The modal reflection coefficients for the layer of Armasound foam, when
the microphone was placed in the middle of the 150 mm square tube cross-section.
Solid line: predictions; dots: experiments.

materials as the Armasound foam. The agreement between the measured and predicted

modal reflection coefficients for the 150 mm tube is not as close as it is for 300 mm

tube. This can be attributed to several reasons. Firstly, the Armasound material is man-

ufactured from recycled materials, which makes it rather heterogeneous. This makes

the prediction of its acoustical behaviour challenging, as the non-acoustical parameters

depend on the position in the sample and can differ significantly from one sample to an-

other (Horoshenkov et al., 2007). Ideally, each material sample has to be characterised

separately to estimate its non-acoustical parameters for the accurate prediction of its

acoustical behaviour, which is not always feasible. Secondly, it was discovered that

the residual absorption of the tube may have some influence on the measured reflection

and absorption coefficients. This issue will be discussed in more detail in Chapter 7.

The residual absorption may contribute to the mismatch between the predictions and

the experiment. Finally, the reflection coefficients for the higher-order modes are more

challenging to predict, as they decrease significantly with the increased mode order.
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This may make their amplitude comparable to that of background noise or processing

artefacts, which appear after applying the finite Fourier transform (Equation (5.1.1)),

which influences the quality of the recovered data.

Mode Armasound foam, Armasound foam, Armasound foam,
no gap 100 mm gap 200 mm gap

εRe(R00) 0.0932 0.0308 0.0318
εIm(R00) 0.0905 0.0954 0.0416
εRe(R01) 0.3275 0.3069 0.3206
εIm(R01) 0.3969 0.3370 0.3653
εRe(R11) 0.8748 0.6698 0.6130
εIm(R11) 0.8018 0.6076 0.6389
εRe(R02) 0.2896 0.7748 0.5578
εIm(R02) 0.2908 0.9432 0.3720

Table 5.7: A summary of the mean differences between the real and imaginary parts of
the measured and predicted modal reflection coefficients for the three material setups,
when the microphone was placed in the corner of the 150 mm tube cross-section.

Figures 5.32-5.35 show the measured and predicted total absorption coefficients mea-

sured in the 150 mm square tube. Figures 5.32 and 5.33 present the data obtained using

the incident and reflected amplitude ratio, and measured in the corner and in the middle

of the tube, respectively. Figures 5.34 and 5.35 present the similar data, but obtained

using the intensity method. As in the case of the 300 mm square tube, two ways of

calculating the total absorption coefficient predictions were employed: full theoreti-

cal reflection coefficient (full Rtheo) and partial theoretical reflection coefficient (partial

Rtheo). Table 5.8 presents the mean differences between the measured and predicted

data, where for the data, obtained with the amplitude method, two sets of theoretical

predictions are given. However, the partial theoretical reflection coefficient does not re-

flect the real picture of the sound field in the tube, whereas the full theoretical reflection

coefficient cannot be directly compared to the measured data as the latter does not have

all the information contained in the theoretical predictions. For the remaining materials,

tested in the 150 mm square tube, the intensity method will be preferred, and the data

measured in the corner and in the middle of the tube will be averaged.
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Figure 5.30: The modal reflection coefficients for the layer of Armasound foam with
100 mm air gap, recovered in the 150 mm square tube cross-section. Solid line: predic-
tions; dots: experiments.

Figure 5.31: The modal reflection coefficients for the layer of Armasound foam with
200 mm air gap, recovered in the 150 mm square tube cross-section. Solid line: predic-
tions; dots: experiments.
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Figure 5.32: The measured and predicted total absorption coefficients for the layer of
Armasound foam calculated using the amplitude method, measured in 150 mm wide
square tube, with the microphone placed in the corner of the tube cross-section. Solid
line: predictions (full); dashed line: predictions (partial); dots: experiments.

Figure 5.33: The measured and predicted total absorption coefficients for the layer of
Armasound foam calculated using the amplitude method, measured in 150 mm wide
square tube, with the microphone placed in the middle of the tube cross-section. Solid
line: predictions (full); dashed line: predictions (partial); dots: experiments.
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Figure 5.34: The measured and predicted total absorption coefficients for the layer of
Armasound foam calculated using the intensity method, measured in 150 mm wide
square tube, with the microphone placed in the corner of the tube cross-section. Solid
line: predictions; dots: experiments.

Figure 5.35: The measured and predicted total absorption coefficients for the layer of
Armasound foam calculated using the intensity method, measured in 150 mm wide
square tube, with the microphone placed in the middle of the tube cross-section. Solid
line: predictions; dots: experiments.
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εαtotal

Amp method, corner (full Rtheo) 0.092
Amp method, corner (partial Rtheo) 0.204
Amp method, middle (full Rtheo) 0.154

Amp method, middle (partial Rtheo) 0.198
Int method, corner 0.086
Int method, middle 0.218

Table 5.8: A summary of the mean differences between the measured and predicted total
absorption coefficient for the layer of Armasound foam in the 150 mm square tube.
Amp method: incident and reflected amplitudes ratio method; Int method: intensity
ratio method.

Figures 5.36 and 5.37 show the measured and predicted total absorption coefficients

for the 26 mm wide layer of Armasound foam, backed with 100 mm and 200 mm air

gap, respectively, measured in the 150 mm square tube. The mean differences between

the predictions and experiments are presented in Table 5.9. Both figures show that the

match between the predicted and measured total absorption coefficients in very close

until the first cut-on frequency of 1143 Hz. However, beyond this frequency there is a

high scatter in the measured data, and the agreement is weaker. This may be due to the

low signal-to-noise ratio observed in the case of higher order modes.

Material εαtotal

Armasound with 100 mm air gar 0.123
Armasound with 200 mm air gar 0.122

Table 5.9: A summary of the mean differences between the measured and predicted
total absorption coefficient for the two material specimens in the 150 mm square tube.
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Figure 5.36: The measured and predicted total absorption coefficients for the layer of
Armasound foam with 100 mm air gap measured in 150 mm wide square tube. Solid
line: predictions; dots: experiments.

Figure 5.37: The measured and predicted total absorption coefficients for the layer of
Armasound foam with 200 mm air gap measured in 150 mm wide square tube. Solid
line: predictions; dots: experiments.
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5.3 Measurements in round cross-section tube

5.3.1 Acoustic setup

A schematic drawing of an experimental setup at the University of Sheffield is shown in

Figure 5.38. The setup consisted of a 6 m long 150 mm diameter pipe, which was made

of 10 mm thick PVC. Assuming the sound speed of c0 = 343 m/s at 20◦ C, the first

cut-on frequency for this tube was 1340 Hz (see Table 5.10). One end of the pipe was

terminated with a Fane compression driver, which was attached to the pipe via a PVC

lid (see Section 3.1). The opposite end of the pipe was covered with a thick metal lid,

which ensured the boundary conditions close to rigid. A porous material sample was

fitted at this end inside the pipe without an air gap between the sample and the lid. The

signal used to excite the sound field was a sine chirp, which is described in a following

way:

s(t) = sin
(
ω0t +

∆Ω

2T
t2
)
, (5.3.1)

where s(t) is the sine chirp signal, ω0 = 2π f0 is the initial frequency, with f0 = 100

Hz, ∆Ω = 2π∆F is the swept frequency range, with ∆F = 4900 Hz, and T = 10 s is

the total duration of the signal. The signal was generated using a Matlab subroutine,

saved in a text file and used for subsequent measurements through LabVIEW subrou-

tine and National Instruments NI PXie-6538 DAQ system, which were also responsible

for recording the signal. The sampling frequency of the system was 12 kHz. The fac-

tors which determined its choice were the compatibility with the Nyquist criterion and

the quality of the sound pressure spectra which were subsequently used to obtain the

impulse response.

The sound signal was recorded using the Microflown intensity probe, described in

Chapter 3. As seen in Figure 5.38, two loudspeaker and two microphone cross-sectional

configurations were used. In order to capture both the axisymmetric and non-axisymmetric
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Figure 5.38: A schematic illustration of the 150 mm diameter tube setup: (1) two loud-
speaker configurations (centre and wall); (2) two microphone configurations (centre and
wall); (3) porous material sample; (4) PC; (5) data acquisition system.

m / n 0 1 2 3
0 0 2789 5106 7405
1 1340 3881 6213 8520
2 2223 4881 7256 9586
3 3058 5834 8258 10617

Table 5.10: The values of the cut-on frequencies in Hz for a 150 mm circular waveguide.

modes, two sets of measurements were conducted for each material sample: with the

loudspeaker and microphone in the middle of tube cross-section and with the loud-

speaker and microphone near the wall. The (r, θ, z) coordinates of the loudspeaker cen-

tre were (0, 0, 6) and (0.065, −π/2, 6) for the middle and the edge of the cross-section,

respectively. The (r, θ) coordinates of the probe cross-section centre when placed in the

middle and near the wall were (0, 0) and (0.07, −π/2), respectively. The data from both

sets were subsequently combined to obtain a full summary of a sound field in the pipe.

For each set of data, measurements were taken at N = 301 axial positions in the pipe.

The probe was moved manually at a step of approximately 10 mm, simulating the axial

microphone array. The recorded sound pressure p(z, t) was transformed into an impulse

response using the deconvolution procedure and synchronised. MATLAB built-in fft

function was subsequently used in order to obtain sound pressure spectra p̃(z, ω). Com-
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bined with the temperature readings to obtain the exact speed of sound, these data were

used to estimate the exact axial locations of the probe using the following expression:

zi =
ni − n0

fs c0,i
, (5.3.2)

where zi is the i−th axial location of the probe, ni and n0 are the i−th and the initial

sampling position of the impulse response maximum (dimensionless), respectively, fs

is the sampling frequency and c0,i is the speed of sound at the i−th location, provided

the temperature readings were taken at each measurement position. Also, the Hamming

window was applied to the pressure data along the spatial dimension of the array, to

smooth them out at the initial and the final spatial positions and weaken the effect of the

Gibb’s phenomenon (expression (5.1.1)) on the quality of the estimated spectral data

with finite spatial limits. After the frequency and wavenumber sound pressure spectra

p(K, ω) were obtained, the expression (5.1.8) was used to recover the modal reflection

coefficients.

5.3.2 Materials

For the measurements in a circular waveguide, one material sample was used. It was

made of 106 mm thick melamine foam. The foam was characterised using a one-

parameter model. A 20 mm thick material sample was cut out of the large melamine

foam block and its sound absorption was determined in a 100 mm impedance tube. The

thickness of the sample was known and the porosity and tortuosity were assumed to

be equal to 1, as these values are typical for melamine foam. The flow resistivity was

recovered via a fitting procedure, based on the Miki model (1990) described in Section

2.6, and was equal to 9000 N s/m4. The fitting procedure was based on the minimi-

sation of the difference between the measured and the fitted absorption coefficients,

and searching for the flow resistivity value which gives the smallest difference. Then
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the three non-acoustical parameters were substituted in the Miki model to obtain the

theoretical predictions for reflection and absorption coefficients.

5.3.3 Results and discussion

Figures 5.39 and 5.40 depict the wavenumber spectra of the sound pressure measured

in the empty 150 mm circular tube with the microphone being near the wall and in

the centre. In these plots, the negative wavenumbers correspond to the incident sound

field, and the positive wavenumbers - to the reflected sound field. These figures prove

that there is a separation between different modes propagating in the waveguide in the

adopted frequency regime. Figure 5.39 shows the fundamental mode and the first ax-

isymmetric mode, (01), and Figure 5.40 - the first several non-axisymmetric modes,

namely (10), (20) and (30). Figure 5.41 presents the absolute values of the partial ab-

sorption coefficients measured in the empty 150 mm circular tube and recovered from

the frequency-wavenumber plots, described above. These were calculated in accor-

dance with Equation 5.2.1. Although it appears from the figure, that the absorption

values in the empty tube are high, it is highly likely that a range of reasons contributed

to that. Firstly, the multiple reflections in the empty tube complicated the data analysis

procedure. Secondly, the vibration of pipe walls might have influenced the measured

data, which compromised the accuracy of the obtained results.

Figure 5.43 presents the frequency-wavenumber spectrum for the layer of melamine

foam placed in the 150 mm circular tube and measured near the wall of the tube. These

data, together with the frequency-wavenumber spectrum measured in the middle of the

tube and presented in the Appendix A, were used for the subsequent recovery of the

modal reflection coefficients. Figure 5.44 presents real and imaginary parts of the pre-

dicted and measured modal reflection coefficients for a layer of melamine foam in the

circular tube. It combines the data from two sets of measurements, when the loud-
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Figure 5.39: The frequency-wavenumber spectrum measured in the empty 150 mm
circular tube, with the microphone placed near the wall of the tube cross-section.

Figure 5.40: The frequency-wavenumber spectrum measured in the empty 150 mm
circular tube, with the microphone placed in the middle of the tube cross-section.
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Figure 5.41: The first five modal absorption coefficients for the empty 150 mm circular
tube.

Figure 5.42: The modal angle of incidence and real and imaginary parts of the corre-
sponding refraction angle as a function of a frequency for melamine foam in the 150
mm diameter circular tube. Solid line: angle of incidence; dashed line: real part of the
refracted angle; dotted line: imaginary part of the refracted angle.
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Figure 5.43: The wavenumber-frequency spectra (k-ω plot) for the layer of melamine
foam in the 150 mm circular tube, when the microphone was placed near the wall of the
tube cross-section.

speaker and the microphone were placed in the middle (modes (00) and (01)) and when

they were near the wall (modes (10), (20) and (30)). The solid lines denote the predic-

tions, calculated using the Miki equivalent fluid model (1990), and the dots denote the

experimental data obtained through the application of the algorithm (5.1.8). It is worth

noting here that the fundamental mode reflection coefficient could have been recovered

from the measurements near the edge of the tube cross-section, but the measurements

in the middle of the cross-section were favoured for its recovery as it allowed mea-

surement over the wider frequency range. The differences between the theory and the

measurements were quantified in accordance with Equation (5.2.2) and are summarised

in Table 5.11. The largest difference of 17% is observed in case of the imaginary part

of the fundamental mode. Here, after about 500 Hz, the match between the predicted

and the measured reflection coefficient values becomes worse, although they follow

the similar trend. After the first axisymmetric cut-on frequency of 2789 Hz, the be-

haviour of the measured reflection coefficient becomes rather oscillatory. This may be
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Figure 5.44: The modal reflection coefficients for the layer of melamine foam, recov-
ered in the 150 mm circular tube cross-section. Solid line: predictions; dots: experi-
ments.

explained by the fact that the fundamental mode lacks energy once the sound field in the

tube becomes modal, which compromises the accuracy of the recovered higher modes

reflection coefficients.

Figures 5.45, 5.46 and 5.47 present the measured and predicted absolute values of the

total absorption coefficient, measured in the 150 mm circular tube. The mean differ-

ences between the experiments and predictions are summarised in Table 5.12. Figure

5.45 shows the absorption coefficients, calculated using the incident and reflected am-

plitude method, given by Equation (5.1.24). It can be noted here that the data recorded

in the middle and near the wall of the tube were combined for the calculations, which

resulted in one graph. Figures 5.46 and 5.47 present the results calculated using the in-

tensity method (Equation (5.1.28)), obtained near the wall and in the middle of the tube,

respectively. It is clear from these figures that although all three figures exhibit a very

good match between the predictions and measurements, the intensity method is more
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Mode εRe εIm

R00 0.1054 0.1764
R01 0.1497 0.0838
R10 0.0729 0.0740
R20 0.1114 0.0569
R30 0.2080 0.0542

Table 5.11: A summary of the mean differences between the real and imaginary parts of
the measured and predicted modal reflection coefficients for the melamine foam mate-
rial sample, when the microphone was placed in the centre of the 150 mm circular tube
cross-section (modes (00) and (01)) and near the edge of the cross-section (modes (10),
(20) and (30)).

susceptible to an error in the vicinity of the cut-on frequencies (1300 Hz, 2200 Hz and

3000 Hz in Figure 5.46 and 2800 Hz in Figure 5.47). The respective mean differences

between the measured and predicted data for these figures are 5.76% and 0.83%. This

may be caused by the fact that the spacing between the microphone positions (approx-

imately 10 mm) is too small for a given wavelength at the cut-on frequencies, which

results in big phase errors in intensity. The mean difference between the predictions

and experiments, calculated using the amplitude method, is 0.46%, which means that

the amplitude method seems to work best for the 150 mm circular tube experimental

setup, as opposed to the square tube setups. The most probable reason for this is the

fact that for the 150 mm circular tube experimental data analysis, the modal amplitudes

recorded both in the middle and near the wall were combined. This eliminated the need

to calculate the full and partial total absorption coefficients (as in Figures 5.17-5.18 and

5.32-5.33), and resulted in a higher accuracy results.

εαtotal

Amp method, combined 0.005
Int method, corner 0.057
Int method, middle 0.008

Table 5.12: A summary of the mean differences between the measured and predicted
total absorption coefficient for the layer of melamine foam in the 150 mm circular tube.
Amp method: incident and reflected amplitudes ratio method; Int method: intensity
ratio method.
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Figure 5.45: The measured and predicted total absorption coefficients for the layer of
melamine foam calculated using the amplitude method, measured in 150 mm circular
tube, with the microphone placed near the wall of the tube cross-section. Solid line:
predictions; dots: experiments.

Figure 5.46: The measured and predicted total absorption coefficients for the layer of
melamine foam calculated using the intensity method, measured in 150 mm circular
tube, with the microphone placed near the wall of the tube cross-section. Solid line:
predictions; dots: experiments.
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Figure 5.47: The measured and predicted total absorption coefficients for the layer of
melamine foam calculated using the intensity method, measured in 150 mm circular
tube, with the microphone placed in the middle of the tube cross-section. Solid line:
predictions; dots: experiments.

5.4 Summary

This chapter presents a novel method to measure the sound absorption by porous mate-

rials in an impedance tube. The proposed method is based on measuring the sound pres-

sure spectra with a horizontal microphone array and then applying the spatial Fourier

transform to these data to separate the incident modal field from the modal field re-

flected from the porous layer. It has been shown that in this way the high frequency

limit of a rectangular impedance tube can be extended at least by a factor of three.

An attractive feature of this method is that it yields both frequency and angular depen-

dent complex reflection coefficient data for a porous layer. This allows the laboratory

measurements of the acoustical properties of a large porous specimen at a range of the

angles of incidence and in a relatively wide frequency band. Furthermore, the proposed

experimental setup is time-efficient and easy to run and it does not require a very large

material specimen, as suggested in the standard ISO 354 (2003) reverberation chamber

method.
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This method has been validated with the controlled laboratory experiments, performed

in three tubes: 300 mm and 150 mm wide square tubes and 150 mm diameter circular

tube, and such materials as melamine, Armasound and a thin porous foams, as well

as wood fibre have been tested. The experimental results have been compared to the

predictions of the existing equivalent fluid models, such as Johnson-Champoux-Allard

model (1991) and Pade approximants model (1998). The measured modal reflection

coefficients agree with the predictions well, with the mean difference being around 15%

and less for the plane wave, and normally not exceeding 30% in the case of higher

modes. These values are higher for the 150 mm square tube, which may be caused by

the residual absorption of the tube affecting the accuracy of the measured data. In the

case of the total absorption coefficient, the mean differences between the measurements

and predictions do not exceed 22%, but are generally lower. In general, the method

has been successfully tested and can be employed to characterise large porous material

samples in an impedance tube.

The sound reflection and absorption coefficient determination method, presented in this

chapter, will be applied to living plants in the next. Several plants species will be tested

in an impedance tube and be treated as porous media for the prediction calculation.
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Chapter 6

Application of material

characterisation methods to living

plants

In the recent years, novel sustainable means to reduce the noise pollution in urban and

rural areas have been used together with traditional, man-made sound absorbing ma-

terials. One of such means is the use of living plants, which are planted on green

walls and barriers to provide the noise insulation. However, the process of plant selec-

tion for this purpose remains unclear, as there are no studies, directly linking plants’

geometry with their sound absorbing abilities. To address this issue, a study was per-

formed, in which several plants of different size and shape were chosen, characterised

and tested in an impedance tube to estimate their sound absorption coefficient. It has

been shown that living plants can be regarded as porous media (Horoshenkov, 2013),

so that their acoustical behaviour can be predicted using equivalent fluid models. The

non-acoustical parameters of in these models can be linked to the plant morphology. In
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CHAPTER 6. SOUND ABSORPTION BY LIVING PLANTS

Figure 6.1: A schematic illustration of the experimental setup: (1) loudspeakers, (2)
simulated horizontal microphone array, (3) metal lid, (4) plant specimen.

this way, plants can be selected to control noise with particular spectral characteristics.

This chapter shows how the intensity-based methods can be used to measure the acous-

tical properties of relatively large plant specimens. The predicted and measured results

are compared and the capabilities and limitations of the study are discussed.

6.1 Experimental methodology

For measurements of sound absorption by living plants, the same experimental facilities

were employed as those described in Section 5.2.1. Two square cross-section tubes, 300

mm wide and 150 mm wide, were used to accommodate plant specimen of a reasonable

size. Instead of a porous material specimen, a layer of living plants foliage was inserted

in the tube, as shown in Figure 6.1. Stems with leaves were cut from their pots and

arranged at the end of the tube in a way which provides the best coverage of the cross-

section with greenery. A square wooden frame of the same width as the tube and with

a wire mesh across its cross-section was used to hold the plants parallel to the bottom

of the tube, with additional help of thin wires which supported the plants in horizontal

position (see Figure 6.2. The frame with the plants was inserted at the end of the tube

which was subsequently terminated with the metal lid.
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Figure 6.2: The wooden frame used for holding the living plants parallel to the bottom
of the tube. On the left: side view; on the right: back view.

6.2 Plant analysis

To study sound characteristics by living plants, six plant species were chosen: (1) gar-

den geranium (Pelargonium hortorum); (2) ficus (Ficus benjamina); (3) ivy (Hedera

helix); (4) begonia (Begonia benariensis); (5) rudbeckia (Rudbeckia hirta); (6) kalan-

choe (Kalanchoe blossfeldiana). These plants were purchased from a local garden cen-

ter. Figure 6.4 shows the photographs of these plants, and Figure 6.5 illustrates the

shape and dimensions of their leaves. For the reported experiments plant stems with the

foliage were cut off from their roots and placed in the impedance tube with the stems

parallel to the direction of sound propagation. The amount of water in the plants was

not measured, but all dry and faded leaves were removed, so that only fresh greenery

remained. The following morphological characteristics of these plants were measured:

mean weight of a single leaf w f , mean thickness of a single leaf h f , mean area of a

single leaf s f , number of leaves on a plant n f , estimated thickness of a plant layer hp

(which coincides with the estimated height of the plant), and dominant angle of leaf

orientation θ f . The latter parameter defines an angle between a leaf and the direction
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of sound wave propagation, and is shown in Figure 6.3. These values are presented in

Figure 6.3: A schematic illustration of a dominant angle of leaf orientation.

Table 6.1, except the thickness of the plant layer. This parameter is presented together

with derived characteristics of plants in Tables 6.2 and 6.3, as it differed for the two

tubes used for the experiments. Twenty-five leaves from the tested plants were ran-

domly chosen for the determination of plant characteristics. The weight of leaves was

measured using electronic scales the precision of which was ±0.005 g. The thickness

was estimated with the electronic caliper which is capable of measuring distance to

±0.01 mm. For the leaf area estimation, a picture of a leaf framed by rulers was taken

as shown in Figure 6.5a. Then the picture was imported to Adobe Photoshop software

and the amount of pixels in the leaf was determined. Subsequently the leaf area was

calculated using the following formula:

s f = p f p−1
s ss (6.2.1)
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where p f is the number of pixels in a single leaf, ps is the number of pixels in a reference

square and ss is the area of a reference square. The leaf orientation angles were also

estimated using digital images of plants and the screen protractor tool, as shown in

Figure 6.3. The above characteristics were used to derive the following quantities:

equivalent volume occupied by the plant Vp, leaf area per unit volume Av, total area

of leaves on a plant sp, total weight of leaves/stems wp, and volume of plant foliage

V f . These values were derived separately for two tubes used for experiments and are

presented in Tables 6.2 and 6.3.

Plant w f (g) h f (mm) s f (m2) n f (-) θ f (degrees)
Geranium 0.794 0.383 0.0020 41 42.6

Ficus 0.091 0.160 0.0005 700 35.7
Ivy 0.124 0.308 0.0006 228 60.9

Begonia 1.010 0.461 0.0032 37 35.9
Rudbeckia 0.982 0.636 0.0025 16 13.1
Kalanchoe 6.227 1.974 0.0037 53 36.9

Table 6.1: Measured characteristics of plant specimen: average weight of single leaf
w f ; average thickness of single leaf h f ; average area of single leaf s f ; number of leaves
on plant n f ; dominant angle of leaf orientation θ f .

Plant hp Vp (m3) Av (m−1) sp (m2) wp (kg) V f (m3)
Geranium 0.35 0.0079 12.31 0.097 0.0319 0.000055

Ficus 0.15 0.0034 107.58 0.363 0.0633 0.000058
Ivy 0.09 0.0027 51.01 0.138 0.0282 0.000042

Begonia 0.18 0.0032 37.76 0.122 0.0390 0.000056
Rudbeckia 0.23 0.0021 19.98 0.041 0.0161 0.000026
Kalanchoe 0.20 0.0045 43.45 0.196 0.3269 0.000386

Table 6.2: Calculated characteristics for the 6 plant specimens in the 300 mm wide
square tube: estimated plant layer thickness hp; equivalent volume occupied by plant
Vp; leaf area per unit volume Av; total area of leaves on plant sp; total weight of
leaves/stems wp; total volume of plant foliage V f .
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Plant hp Vp (m3) Av (m−1) sp (m2) wp (kg) V f (m3)
Geranium 0.36 0.0081 11.96 0.097 0.0319 0.000055

Ivy 0.16 0.0018 76.52 0.138 0.0282 0.000042
Begonia 0.21 0.0024 51.78 0.122 0.0390 0.000056

Rudbeckia 0.25 0.0014 29.41 0.041 0.0161 0.000026
Kalanchoe 0.20 0.0022 86.91 0.196 0.3269 0.000386

Table 6.3: Calculated characteristics for the 5 plant specimens in the 150 mm wide
square tube: estimated plant layer thickness hp; equivalent volume occupied by plant
Vp; leaf area per unit volume Av; total area of leaves on plant sp; total weight of
leaves/stems wp; total volume of plant foliage V f .

6.3 Theoretical predictions for plants acoustical behaviour

Recently, it was proposed by Horoshenkov (2013) to use an equivalent fluid model to

estimate the sound absorption by living plants (see Section 2.6). The authors suggested

to link the key morphological parameters of plants, described in the previous section,

to the non-acoustical characteristics used in the model: porosity, flow resistivity and

tortuosity. These characteristics were estimated in the following manner. The porosity

was deduced from the total volume of the plant foliage, V f , and volume occupied by

the plant, Vp, i.e.:

φ = 1 −
V f

Vp
, (6.3.1)

The flow resistivity of the equivalent fluid occupied by the plant was estimated using the

empirical relations suggested in the aforementioned reference (Horoshenkov, 2013):

log10 σ = 0.0083 Av + 1.413, for θ > 70◦, (6.3.2)

log10 σ = 0.0067 Av + 0.746, for θ < 40◦. (6.3.3)

where Av is the leaf area density of the plant and θ is the difference between the domi-

nant angle of leaf orientation and the angle of incidence of sound. Finally, the tortuosity

was estimated from the knowledge of the dominant angle of leaf orientation and the an-

gle of incidence of sound (Horoshenkov, 2013). It is shown in Figure 6.3 how the value
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of tortuosity depends on the effective path between points A and B. The schematic rep-

resentation of the problem, shown on the right in Figure 6.3 corresponds to the leaf

staying in the middle of the path of the wave propagation between points A and B,

which is a valid assumption. Then the obstruction created by this leaf is symmetrical,

so that the effective path length c = c′ + c′′, which the sound wave travels along on

the either side of the leaf is identical. It is assumed here that the leaf area density in

the plants under consideration is rather high. In this case, the height of the plant or the

length of leave stems have no impact on the maximum value of tortuosity. Hence, it

is easy to show that the effective path length for the sound wave travelling through the

plant is controlled solely by the leaf orientation angle and is given by

c = b
(
cos

θ

2
+ 2 sin

θ

2

)
. (6.3.4)

Then, the tortuosity can be expressed as follows (Zwikker and Kosten, 1949):

α∞ = cos
θ

2
+ 2 sin

θ

2
. (6.3.5)

The estimated values of these parameters for the plants adopted for this work are listed

in Tables 6.4 and 6.5. Table 6.4 lists the characteristics of the plants tested in the 300

mm wide tube, and Table 6.5- in the 150 mm wide square tube. As porosity and flow

resistivity depend on the volume occupied by a plant and its height, and these param-

eters were different for two tubes, the estimated values are presented in separate tables

for each tube.

After these parameters were measured, they were substituted into Equations (2.6.17)

and (2.6.18). These two parameters enabled the calculation of the surface impedance

and the modal reflection coefficients in accordance with Equation (2.6.21).
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Plant φ [-] α∞ [-] σ [ N s/m4]

Geranium 0.99 1.51 6.74
Ficus 0.98 1.56 29.29
Ivy 0.98 1.57 68.61

Begonia 0.98 1.57 9.98
Rudbeckia 0.99 1.22 7.58
Kalanchoe 0.91 1.58 10.89

Table 6.4: Estimated non-acoustical parameters for the 6 plant specimen in the 300 mm
tube: porosity, φ; tortuosity, α∞; flow resistivity, σ.

Plant φ [-] α∞ [-] σ [ N s/m4]

Geranium 0.99 1.41 6.70
Ivy 0.98 1.57 18.14

Begonia 0.98 1.57 12.39
Rudbeckia 0.98 1.22 8.77
Kalanchoe 0.83 1.58 21.29

Table 6.5: Estimated non-acoustical parameters for the 5 plant specimen in the 150 mm
tube: porosity, φ; tortuosity, α∞; flow resistivity, σ.

6.4 Results and discussion

This section presents the modal reflection and total absorption coefficients measured

with the proposed method. Figures 6.6 and 6.7 show the frequency-wavenumber plots

for the geranium plant, measured in the 300 mm tube, with the microphone placed in

the corner and in the middle of the tube cross-section, respectively. The separation of

the first few higher order modes is evident from these plots, which makes them suitable

for the subsequent recovery of reflection and absorption information. The frequency-

wavenumber plots for the remaining plant specimens are provided in Appendix B.

Figures 6.8-6.9 present the predicted (solid line) and measured (black dots) absolute

values of the modal reflection coefficients for the geranium specimen, obtained in the

corner and in the middle of the cross-section, respectively. The measured data were

recovered from the frequency-wavenumber data using the optimisation technique de-

scribed in Section 5.1. The predictions for the modal reflection coefficient were calcu-
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Figure 6.6: The frequency-wavenumber spectrum for geranium plants measured in 300
mm wide square tube, with the microphone placed in the corner of the tube cross-
section.

Figure 6.7: The frequency-wavenumber spectrum for geranium plants measured in 300
mm wide square tube, with the microphone placed in the middle of the tube cross-
section.
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lated according to the method explained in Section 6.2. The reflection coefficients are

plotted as a function of frequency (bottom axis) and incidence angle (top axis for higher

order modes). Figure 6.8 presents the reflection coefficients for the first four modes,

(00),(01), (11) and (02), whereas Figure 6.9 shows the reflection coefficients of the axi-

symmetric modes, (00), (02) and (22). One of the reasons to perform the measurements

at two cross-sectional locations was to extend the frequency range where the fundamen-

tal mode reflection coefficient can be recovered. Fewer modes can be recorded in the

middle of the cross-section, and the cut-on frequency of the first axisymmetric mode,

(02), is 1143 Hz. This provides a possibility to increase the frequency range by a fac-

tor of two, compared to the cut-on frequency of 572 Hz for mode (01). Although the

scattering is still rather strong beyond 572 Hz, the quality of the recovered fundamental

mode reflection coefficient in the higher frequency range is better than that recovered

with the microphone in the corner of the cross-section. Another important observa-

tion is the fact that the model overpredicts the reflection coefficient of mode (00) above

the first cross-sectional resonance. This may be due to the scattering processes in the

greenery, which the model does not account for. For the remaining plants, the reflection

coefficient for mode (00) measured in the middle of the tube will be combined with re-

flection coefficients for modes (01), (11) and (02) measured in the corner of the tube and

presented in one figure for each plant. The exception is ficus, as for this plant specimen

only the data measured in the corner of the tube are available.

The mean differences between the measurements and predictions were quantified in

accordance with Equation (5.2.2) and presented on the plots, as well as in Table 6.6.

Generally, the differences are low and they do not exceed the maximum of 10%. This

allows for an important conclusion that the proposed plant characterisation method gen-

erally works well and it is possible to use it to measure the acoustic behaviour of plants.

However, the match for higher modes is worse than that for the fundamental mode, and

the model mainly overpredicts the absolute reflection coefficient of the plant above the

first cross-sectional resonance frequency (572 Hz). This may signify that the acoustical

152



6.4. RESULTS AND DISCUSSION

Figure 6.8: The measured and predicted modal reflection coefficients for geranium
plants measured in 300 mm wide square tube, with the microphone placed in the corner
of the tube cross-section. Solid line: predictions; dots: experiments.

Figure 6.9: The measured and predicted modal reflection coefficients for geranium
plants measured in 300 mm wide square tube, with the microphone placed in the middle
of the tube cross-section. Solid line: predictions; dots: experiments.
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Figure 6.10: The measured and predicted modal reflection coefficients for ficus plants
measured in 300 mm wide square tube, with the microphone placed in the corner of the
tube cross-section. Solid line: predictions; dots: experiments.

Figure 6.11: The measured and predicted modal reflection coefficients for begonia
plants measured in 300 mm wide square tube, with the microphone placed in the corner
of the tube cross-section. Solid line: predictions; dots: experiments.
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Figure 6.12: The measured and predicted modal reflection coefficients for ivy plants
measured in 300 mm wide square tube, with the microphone placed in the corner of the
tube cross-section. Solid line: predictions; dots: experiments.

Figure 6.13: The measured and predicted modal reflection coefficients for rudbeckia
plants measured in 300 mm wide square tube, with the microphone placed in the corner
of the tube cross-section. Solid line: predictions; dots: experiments.
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Figure 6.14: The measured and predicted modal reflection coefficients for kalanchoe
plants measured in 300 mm wide square tube, with the microphone placed in the corner
of the tube cross-section. Solid line: predictions; dots: experiments.

behaviour of plants above the first cut-on frequency is more complex than that predicted

by the model. There is a decrease in the measured reflection coefficient for the angles

of incidence in the range of 30◦ < θ01 < 45◦ for mode (01), which is observed for the

six plants. This may happen due to the increase in the effective value of plant tortuosity,

calculated via expression (6.3.5).

Plant ε|R00 | ε|R01 | ε|R11 | ε|R02 |

Geranium 0.009 0.088 0.043 0.078
Ficus 0.005 0.073 0.013 0.057

Begonia 0.003 0.057 0.016 0.051
Ivy 0.050 0.005 0.001 0.018

Rudbeckia 0.003 0.079 0.015 0.028
Kalanchoe 0.029 0.038 0.039 0.085

Table 6.6: The mean difference between the absolute values of the measured and pre-
dicted modal reflection coefficients for the first four modes for the 300 mm tube.

Figures 6.15-6.18 show the measured and predicted values of the total absorption co-

efficient for the geranium plant in the 300 mm square tube, calculated using Equations
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5.1.24 and 5.1.28. Figures 6.15 and 6.16 present the total absorption coefficients mea-

sured in the corner and in the middle of the tube, respectively, and calculated using

the incident and reflected amplitudes ratio method, as specified by Equation (5.1.24).

Figures 6.17 and 6.18 present the same type of data, but obtained using the intensity

method, given by Equation (5.1.28). The mean differences between the measurements

and predictions for these four data sets are shown in Table 6.7. It is worth noting, that

for the incident and reflected amplitude ratio method, the data for each mode were not

available throughout the whole frequency range. For example, as it can be seen on the

frequency-wavenumber plot for geranium, obtained in the corner of the tube (Figure

6.6), the dispersion curve for mode (00) disappears after the first cut-on frequency of

572 Hz. This means that the information on the fundamental mode incident and re-

flected amplitudes was available only in the frequency range between 50 and 572 Hz,

instead of 50 to 1800 Hz. Similarly, other modes were also considered in the frequency

ranges, where they had a sufficient signal-to-noise ratio. Due to this limitation, two

ways of calculating the total absorption coefficient predictions were employed: full the-

oretical reflection coefficient (full Rtheo), where each mode exists starting from its cut-on

frequency and until the maximum adopted frequency of 1800 Hz, and partial theoret-

ical reflection coefficient (partial Rtheo), where a frequency range for each mode was

matched to that of the measured data. Both of these sets of the theoretical predictions

are given in Table 6.7. However, the partial theoretical reflection coefficient does not

reflect the real picture of the sound field in the tube, whereas the full theoretical re-

flection coefficient cannot be directly compared to the measured data as the latter does

not have all the information contained in the theoretical predictions. Due to this issue,

it was chosen to use the intensity ratio method for the remaining plants. In addition,

Figures 6.15-6.18 show the data obtained both in the corner and in the middle of the

tube. As the difference between the two is small, for the remaining plants the average

total absorption coefficient will be presented.

Figures 6.19-6.23 show the measured and predicted total absorption coefficients for the
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CHAPTER 6. SOUND ABSORPTION BY LIVING PLANTS

Figure 6.15: The measured and predicted total absorption coefficients for geranium
plants calculated using the amplitude method, measured in 300 mm wide square tube,
with the microphone placed in the corner of the tube cross-section. Solid line: full ab-
sorption coefficient predictions; dashed line: partial absorption coefficient predictions;
dots: experiments.

Figure 6.16: The measured and predicted total absorption coefficients for geranium
plants calculated using the amplitude method, measured in 300 mm wide square tube,
with the microphone placed in the middle of the tube cross-section. Solid line: full ab-
sorption coefficient predictions; dashed line: partial absorption coefficient predictions;
dots: experiments.
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Figure 6.17: The measured and predicted total absorption coefficients for geranium
plants calculated using the intensity method, measured in 300 mm wide square tube,
with the microphone placed in the corner of the tube cross-section. Solid line: predic-
tions; dots: experiments.

Figure 6.18: The measured and predicted total absorption coefficients for geranium
plants calculated using the intensity method, measured in 300 mm wide square tube,
with the microphone placed in the middle of the tube cross-section. Solid line: predic-
tions; dots: experiments.
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εαtotal

Amp method, corner (full Rtheo) 0.217
Amp method, corner (partial Rtheo) 0.082
Amp method, middle (full Rtheo) 0.144

Amp method, middle (partial Rtheo) 0.007
Int method, corner 0.294
Int method, middle 0.314

Table 6.7: A summary of the mean differences between the measured and predicted total
absorption coefficient for the geranium plant in the 300 mm square tube. Amp method:
incident and reflected amplitudes ratio method; Int method: intensity ratio method.

remaining five plant specimens. It can be seen that for all tested plants the match be-

tween the measurements and predictions is close up to the first cut-on frequency. How-

ever, the graphs suggest that the model generally underpredicts the absorption by plants

beyond this frequency and indicate a presence of a strong scattering in the tube. As in

the case of the reflection coefficients, this discrepancy is caused by the fact that the the-

oretical model does not take into account the scattering and leaf vibration phenomena,

which become stronger as the frequency increases. Also, it can be due to the method

- the plants may cause too much scattering which results in the evanescent modes and

energy exchange between modes, introducing an error to the phase. This affects the

quality of the dispersion curves which are subsequently used in the optimisation analy-

sis.

Plant εαtotal

Begonia 0.240
Ivy 0.081

Ficus 0.157
Rudbeckia 0.223
Kalanchoe 0.244

Table 6.8: A summary of the mean differences between the measured and predicted
total absorption coefficient for the five plant specimens in the 300 mm square tube.

For the experiments in the 150 mm wide square tube, the geranium, begonia, ivy, rud-

beckia and kalanchoe plants were used. The ficus plants were not available at the

moment of performng the experiments in the 150 mm square tube. The frequency-
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6.4. RESULTS AND DISCUSSION

Figure 6.19: The measured and predicted total absorption coefficients for ficus plants
measured in 300 mm wide square tube. Solid line: predictions; dots: experiments.

Figure 6.20: The measured and predicted total absorption coefficients for begonia plants
measured in 300 mm wide square tube. Solid line: predictions; dots: experiments.
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Figure 6.21: The measured and predicted total absorption coefficients for ivy plants
measured in 300 mm wide square tube. Solid line: predictions; dots: experiments.

Figure 6.22: The measured and predicted total absorption coefficients for rudbeckia
plants measured in 300 mm wide square tube. Solid line: predictions; dots: experi-
ments.
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6.4. RESULTS AND DISCUSSION

Figure 6.23: The measured and predicted total absorption coefficients for kalanchoe
plants measured in 300 mm wide square tube. Solid line: predictions; dots: experi-
ments.

wavenumber spectra for the geranium plants measured in the corner and in the middle

of the tube cross-section are presented in Figures 6.24-6.25, respectively. The frequency

range was extended up to 3500 Hz and the number of frequencies at which measure-

ments were performed was doubled, but the spatial step was the same as in case of

the 300 mm tube experiments, 40 mm. This resulted in dispersion curves covering

relatively narrow frequency ranges compared to the whole adopted frequency range.

In order to recover the modal reflection coefficients from the frequency-wavenumber

plots for wider frequency ranges, the spatial step should be decreased. However, for the

present work it was chosen to leave it equal to 40 mm as otherwise the measurements

would be rather time consuming. Nevertheless, Figures 6.24-6.25 show a clear separa-

tion between the first several higher modes and can be used for the recovery of modal

reflection coefficients.

Figures 6.26 and 6.27 show the predicted and measured absolute values of modal re-

flection coefficients for the geranium plant measured in 150 mm wide square tube in the
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Figure 6.24: The frequency-wavenumber spectrum for geranium plants measured in
150 mm wide square tube, with the microphone placed in the corner of the tube cross-
section.

Figure 6.25: The frequency-wavenumber spectrum for geranium plants measured in
150 mm wide square tube, with the microphone placed in the middle of the tube cross-
section.
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corner and in the middle of the tube, respectively. As in the case of the 300 mm square

tube, placing the microphone in the middle of the cross-section allowed to recover the

plane wave reflection coefficient in a frequency range, the upper limit of which is twice

the first cut-on frequency. The central cross-sectional positioning of the microphone

also resulted in a better match between the predicted and experimental values for mode

(00) (see Figure 6.26). For a majority of tested plants, the mean difference between the

predictions and measurements is smaller in the case of the central microphone position.

However, there is no improvement in the quality of the measured reflection coefficient

data for mode (02), compared to the data collected in the corner of the cross-section.

This may suggest that its quality does not depend on the microphone positioning and

signal-to-noise ratio, nor it is caused by the optimisation procedure, but rather is be-

yond the scope of the method. A living plant is a complex material, with no exact data

on its thickness and lacking a flat surface. Furthermore, scattering is present, and it is

more pronounced at higher frequencies, when sound waves impinge at angles different

from a straight angle. This complicates analysis in three ways. Firstly, the collection

of stable and consistent data is compromised, as each frequency may be scattered at a

different angle, because the sound energy in a given mode can be scattered in a plurality

of directions, affecting the amount of energy which gets reflected back. Secondly, it

influences the optimisation procedure, which is based on the modal decomposition that

assumes that the normal modes are orthogonal and that there is no modal cross-talk, as

assumed in Equations (5.1.2) and (5.1.5).

Figures 6.28-6.31 show the predicted and measured absolute values of modal reflection

coefficients for the four plants measured in 150 mm wide square tube, recovered from

the frequency-wavenumber spectra. The reflection coefficient for mode (00) was mea-

sured in the middle of the tube, whereas the reflection coefficients for modes (01), (11)

and (02) were measured in the corner. It is clear from the graphs that the predicted and

measured fundamental mode reflection coefficients exhibit a good match. This means

that the proposed reflection and absorption coefficient recovery method works well for
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Figure 6.26: The measured and predicted modal reflection coefficients for geranium
plants measured in 150 mm wide square tube, with the microphone placed in the corner
of the tube cross-section. Solid line: predictions; dots: experiments.

Figure 6.27: The measured and predicted modal reflection coefficients for geranium
plants measured in 150 mm wide square tube, with the microphone placed in the middle
of the tube cross-section. Solid line: predictions; dots: experiments.
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tubes of different size. However, it is evident that for some modal reflection coefficients

the match between the predictions and measurements is better than for others. There

are a few possible causes to that. Firstly, the adopted loudspeaker positioning may

have favoured the excitation of some modes compared to others. It can be observed in

frequency-wavenumber plots shown in Figures 6.24-6.25, that some dispersion curves

have much lower amplitude in comparison to others, e.g. mode (11). This leads to the

amplitude of the mode being comparable to the level of background noise, which results

in large errors. This phenomenon is clearly shown in Figures 6.26 and 6.28-6.31, where

for every plant the reflection coefficient for mode (11) is highly scattered. Secondly, the

residual absorption of the tube can influence the quality of the recorded data. It has been

quantified and the first six partial absorption coefficients of the empty 150 mm tube are

shown in Figure 5.25 in Section 5.2.3. The fundamental mode absorption coefficient

stays rather low throughout the frequency range, slightly increasing in the vicinity of

the first cut-on frequency, which results in a good quality of the recovered reflection

coefficient for this mode for tested material and plants specimen. The partial absorption

coefficient for mode (01) is generally low as well, with higher values at its cut-on fre-

quency and beyond 2000 Hz. The partial absorption coefficients for the remaining four

modes are relatively large and scattered, which places limitations on the quality of the

recovered modal reflection coefficients for these modes. The other possible origin of

the discrepancy between the predictions and measurements which is caused by the ex-

perimental setup may be the vibration of pipe walls. Finally, the theoretical model has

previously only been used for predicting the behaviour of the fundamental mode and

may not capture the complex behaviour of higher modes. Moreover, it may be chal-

lenging to estimate some morphological parameters of plants precisely, such as a plant

layer thickness, as it is not clear which point should be regarded as the end of the layer.

Also, although every precaution was taken to ensure that the measured plant parameters

(leaf size, thickness, angle of orientation, etc) are representative for the whole tested

group of plant specimens, it is possible that there are some discrepancies, which may
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influence the recovered results.

Plant ε|R00 | ε|R01 | ε|R11 | ε|R02 |

Geranium 0.051 0.223 0.289 0.091
Begonia 0.014 0.092 0.563 0.071

Ivy 0.008 0.115 0.203 0.158
Rudbeckia 0.013 0.090 0.292 0.018
Kalanchoe 0.062 0.185 0.233 0.138

Table 6.9: The mean difference between the absolute values of the measured and pre-
dicted modal reflection coefficients for the first four modes for the 150 mm tube.

Figures 6.32-6.35 show the measured and predicted total absorption coefficients for the

geranium plant specimen for the 150 mm square tube. Figures 6.32 and 6.33 present the

data obtained using the incident and reflected amplitude ratio method for the corner and

middle cross-sectional positions, respectively. Figures 6.34 and 6.35 show the corner

and middle data obtained using the intensity ratio method. As it was discussed in the

case of the 300 mm square tube, the intensity ratio method is preferred to the incident

and reflected amplitude ratio method and will be used to estimate the acoustical proper-

ties of the remaining plants. Also, the average value of the total absorption coefficients

measured in the corner and in the middle will be presented for the four remaining plant

specimens.

εαtotal

Amp method, corner (full Rtheo) 0.854
Amp method, corner (partial Rtheo) 1.123
Amp method, middle (full Rtheo) 16.743

Amp method, middle (partial Rtheo) 16.280
Int method, corner 0.269
Int method, middle 0.360

Table 6.10: A summary of the mean differences between the measured and predicted
total absorption coefficient for the geranium plant in the 150 mm square tube. Amp
method: incident and reflected amplitudes ratio method; Int method: intensity ratio
method.

In the case of the total plant absorption coefficient, the agreement between the theory

and experiments for the 1500 mm square tube is not as good as that for the 300 mm
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Figure 6.28: The measured and predicted modal reflection coefficients for begonia
plants measured in 150 mm wide square tube. Solid line: predictions; dots: experi-
ments.

Figure 6.29: The measured and predicted modal reflection coefficients for ivy plant
measured in 150 mm wide square tube. Solid line: predictions; dots: experiments.
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Figure 6.30: The measured and predicted modal reflection coefficients for rudbeckia
plants measured in 150 mm wide square tube. Solid line: predictions; dots: experi-
ments.

Figure 6.31: The measured and predicted modal reflection coefficients for kalanchoe
plant measured in 150 mm wide square tube. Solid line: predictions; dots: experiments.
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Figure 6.32: The measured and predicted total absorption coefficients for geranium
plants calculated using the amplitude method, measured in 150 mm wide square tube,
with the microphone placed in the corner of the tube cross-section. Solid line: predic-
tions; dots: experiments.

Figure 6.33: The measured and predicted total absorption coefficients for geranium
plants calculated using the amplitude method, measured in 150 mm wide square tube,
with the microphone placed in the middle of the tube cross-section. Solid line: predic-
tions; dots: experiments.
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Figure 6.34: The measured and predicted total absorption coefficients for geranium
plants calculated using the intensity method, measured in 150 mm wide square tube,
with the microphone placed in the corner of the tube cross-section. Solid line: predic-
tions; dots: experiments.

Figure 6.35: The measured and predicted total absorption coefficients for geranium
plants calculated using the intensity method, measured in 150 mm wide square tube,
with the microphone placed in the middle of the tube cross-section. Solid line: predic-
tions; dots: experiments.
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square tube. The predictions match the experimental data in the plane wave frequency

range. However, the model constantly underpredicts the absorption beyond the first

cut-on frequency. In addition, the measured values are highly scattered, which may

be caused by the same factors as the lack of the agreement for the modal reflection

coefficients. As the total absorption coefficient for all the tested plants exhibited a very

similar behaviour, it was decided to present the plots only for the geranium plant and not

to include the plots for the remaining tested plants. The mean difference values between

the measured and predicted total absorption coefficients for the remaining plants are

shown in Table 6.11.

Plant εαtotal

Begonia 0.420
Ivy 0.377

Rudbeckia 0.268
Kalanchoe 0.322

Table 6.11: A summary of the mean differences between the measured and predicted
total absorption coefficient for the five plant specimens in the 150 mm square tube.

6.5 Summary

This chapter describes the measurements of the reflection and absorption coefficients

of living plants in an impedance tube, using the method outlined in Chapter 5. The

particularities of the plant selection process are explained in the light of their sound-

absorbing properties, and the link between these properties and the key morphological

parameters of plants is established (Horoshenkov, 2013). Six plant species have been

chosen for the subsequent experiments: Pelargonium hortorum, Ficus benjamina, Hed-

era helix, Begonia benariensis, Rudbeckia hirta and Kalanchoe blossfeldiana, and these

have been tested in two square impedance tubes, 300 mm and 150 mm wide.

The observed agreement between the measurements and predictions in the plane wave
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regime is relatively good for the 300 mm square tube, but is weaker for 150 mm square

tube. In the case of the 300 mm square tube, the mean differences between the measured

and predicted modal reflection coefficients are less than 10%, and for the total absorp-

tion coefficients - less than 25%. The agreement is weaker for the 150 mm square tube -

the mean differences between the predicted and measured modal reflection coefficients

are generally below 30%, and these for the total absorption coefficient are below 42%.

This can be attributed to the higher residual absorption of the latter tube. The agreement

between the measurements and predictions becomes worse beyond the fist cut-on fre-

quency. Hence it is clear that the success of the proposed method is limited. The method

can be useful provided some important improvements are applied to it, but in its current

state it is relatively raw. It can benefit from better tube facilities with harder walls, where

their residual absorption and vibration are lower. Alternatively, the wall vibration may

be accounted for in the model, but this will significantly complicate it. Also, the ex-

perimental procedure may be improved by taking measurements over a longer distance

in the tube and in smaller steps. Furthermore, the theoretical model may be improved

to accommodate for all peculiarities of behaviour of living plants at higher frequencies.

Currently, the model does not take into account the scattering processes which become

more pronounced in living plants as the frequency increases. However, it is clear from

the obtained results that these processed cannot be neglected in order to achieve a better

match between the measured and predicted data. Nevertheless, the performed study,

outlined in this chapter, confirms that plants do contribute to the sound absorption and

thus can be successfully used as a means of noise reduction. In addition, it has been

shown that plants can be characterised as porous media in a plane wave regime. With

several modifications to the method, this can be extended into higher frequency regime

as well.

The next chapter will focus on the errors, which could have been induced by any im-

perfections in the experimental setups, such as imprecise microphone positioning, in-

fluence of windowing and effect of a loudspeaker location.
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Chapter 7

Sensitivity analysis

In order to estimate what influence the measurement errors may have on the measured

modal reflection coefficients, a sensitivity analysis was carried out. Firstly, several types

of error were artificially introduced to examine to which extent they influence the re-

covered modal reflection coefficients. Three materials with different sound-absorbing

abilities were examined: (1) melamine foam, (2) Armasound foam, (3) geranium plants.

The analysis was performed for three different impedance tubes, to determine whether

any of them was more susceptible to measurement errors. Furthermore, for the 150

mm circular tube the experimental data were available to determine sensitivity to such

factors as the microphone step length, the length of the spatial window and the spatial

window shape. Finally, for the 300 mm square tube experiments were performed en-

gaging only one of the three loudspeakers at a time, to study how it affects the excitation

of different modes in the tube.
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7.1 Sensitivity to simulated error

The Johnson-Champoux-Allard equivalent fluid model (Champoux and Allard, 1991)

was used to predict the modal reflection coefficients for melamine and Armasound

foam samples, whereas the Miki model (Miki, 1990) was used for a geranium plant

layer. The characteristics of the samples, such as thickness, porosity, flow resistivity

and tortuosity, were assumed to be equal to those of the actual samples used for the

predictions described in the previous chapters. The predicted reflection coefficients

were then substituted in the equation for the frequency spectrum of the sound pressure

(see Equation (5.1.2)) in which measurement errors, e(ω) were artificially added, i.e.

pe(z, ω) = p(z, ω) + e(ω). The simulated sound pressure with errors, pe(z, ω), was then

used to calculate the spatial Fourier transform p̃e(K, ω) in accordance with Equation

(5.1.1). The simulated spatial spectra, p̃e(K, ω), were used in the optimization analysis

(see Equation (5.1.8)) instead of the measured sound pressure, p̃m(K, ω), to study how

the artificially added errors affect the ability of the proposed measurement affect the

values of the modal reflection coefficients, Rmn.

Three types of error were considered in this analysis: (i) a random error to the sound

pressure phase spectrum within 20%; (ii) a random ±10 mm positioning error applied

separately to the sound pressure at each of the microphone positions; and (iii) a constant

10 mm bias in positioning applied to the whole microphone array. These errors were

chosen as rough estimates of measured errors. A microphone phase mismatch error

can reach ±5%, which results in a total error of 10%. A factor of 2 was applied to

this number to study the worst-case scenario. For the random positioning error, it was

noticed that the final microphone axial position can be as far as 0.5 m off the expected

position (measurements in the 150 mm circular tube), i.e. 3.5 m instead of 3 m. These

discrepancies were accounted for in the data analysis by using a variable step Fourier

transform, however, it showed that each axial microphone position can be off by at

least 1 mm. This error was also multiplied by 10 to account for a possible human error
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while moving the microphone manually. This was also the reason for choosing the

constant bias equal to 10 mm. The thickness of the cable, which was pulled to move

the microphone in the pipe was of the same order of magnitude, so it is possible for it

to cause errors in microphone positioning as large as 10 mm.

The mean difference between the modal reflection coefficient computed exactly for the

52 microphone positions as assumed in Section 5.2.1 and the simulated one containing

the added error was then determined. This difference was quantified for the real and

imaginary parts of the reflection coefficient according to the following expressions:

εRe =
1
N

N∑
i=1

|Re(Rpred
mn (ωi))−Re(Rsim

mn (ωi))|, εIm =
1
N

N∑
i=1

|Im(Rpred
mn (ωi))− Im(Rsim

mn (ωi))|,

(7.1.1)

where Rpred
mn is the frequency-dependent reflection coefficient calculated exactly, and

Rsim
mn is the frequency-dependent reflection coefficient with simulated error.

7.1.1 300 mm square tube

The results suggest that the ±20 % uncertainty in the measured phase results in the

0.0280 maximum difference between the exact value of the modal reflection coefficient

and its simulated counterpart for melamine foam, which is approximately 2.5 times less

than the measured error value. For the same type of uncertainty for Armasound foam,

the maximum mean difference is 0.1695, being 1.1 times larger than its measured coun-

terpart, and 0.1084 for geranium plants, which is also 2.5 times less than the measured

value. A 10 mm misalignment in any of the 52 the microphone positions results in

the maximum difference of 0.0268 for melamine foam, being approximately 5 times

less that the measured mean difference, 0.1716 for Armasound foam and 0.1073 for

geranium plants, resulting in 1.1 times more and 2.5 times less than their measured

counterparts, respectively. The constant axial bias introduced to the microphone array

as a whole results in the maximum difference of 0.0382 for melamine foam, which is

177



CHAPTER 7. SENSITIVITY ANALYSIS

half as much as the measured result, 0.1615 for Armasound foam, again 1.1 times larger

than the measured value, and 0.1087 for geranium plants, 3 times less than its measured

counterpart. The complete summary of the mean differences is presented in Tables 7.1

- 7.3.

After comparing the mean difference between the predictions and the simulated data

and between the predictions and the measured data, it becomes evident that the simu-

lated mean difference is consistently smaller than the measured for melamine and gera-

nium specimen, but is of comparable magnitude for Armasound foam. This may be

explained by the fact that Armasound foam is manufactured from recycled materials,

which causes variability in the foam structure. The heterogeneous structure of the foam

leads to a higher level of unpredictability of material behaviour (Horoshenkov et al.,

2007). Moreover, Armasound is a medium-absorbing material, as opposed to highly

absorbing melamine foam and low absorbing geranium plants. The reflection coeffi-

cients for materials with either high or low absorbing properties (as two latter examples)

tend to converge better than those for materials with medium absorbing properties, like

Armasound, which is more sensitive to errors either in the experimental procedure or

data processing, and hence exhibit weaker convergence.

However, these differences are not enough to explain the observed mismatch between

the predicted modal reflection coefficients and the measured data. The measured re-

flection coefficient seems to exhibit a greater sensitivity to other factors which may

influence the accuracy of the collected data. One of such factors may be the residual

absorption of the impedance tube (see Figure 5.8). Although the empty tube absorption

is relatively small in comparison to melamine foam and on average does not exceed

15%, there are certain frequencies at which the residual absorption is relatively high

and can be of the same magnitude as the material’s absorption. This places a restric-

tion on the accuracy of the absorption coefficient data which can be measured with the

proposed method in this particular impedance tube.
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CHAPTER 7. SENSITIVITY ANALYSIS

7.1.2 150 mm square tube

For the 150 mm square tube, the experimental data were available for Armasound foam

and geranium, but measurements of a melamine foam layer were not performed, hence

they are omitted from the sensitivity analysis. Furthermore, as the absolute values of

the measured modal reflection coefficients were presented for geranium rather than the

real and imaginary values, the sensitivity analysis for this specimen has been consistent

with that and offers also the absolute values only.

When the ±20 % uncertainty in the measured phase results was introduced, the mean

difference between the simulated results with the uncertainty and the predicted results

did not exceed 28% (see Table 7.4). However, the maximum mean difference between

the experimentally obtained and measured results was 87 % for mode (11), which is

about 3.5 times than that observed in the simulated data. For geranium specimen, the

simulated and experimentally observed mean difference differ by about a factor of 2.

When a random uncertainty was introduced in the cross-sectional or axial position of

the microphone, the simulated and measured mean differences were similar except for

mode (11), for which the mean difference was 70-80 % for the both materials (Table

7.5). The same situation was observed in the case of the constant microphone posi-

tioning error (Table 7.6). This suggests that the experimental setup was particularly

unfavourable for mode (11) excitation and recording. The discrepancies between the

measured and predicted results in the case of other modes can be explained by errors in

microphone positioning. The residual absorption of the tube (see Figure 5.25) may also

contribute to the lack of match between the experiments and predictions.
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CHAPTER 7. SENSITIVITY ANALYSIS

7.1.3 150 mm circular tube

The sensitivity analysis for the simulated data for the 150 mm circular tube was per-

formed on melamine foam only as that was the only material the laboratory measure-

ments were performed with. The mean differences between the simulated and predicted

data for a phase uncertainty and random and constant microphone positioning uncer-

tainties are summarised in Tables 7.7, 7.8 and 7.9, respectively. It is evident from the

tables that the differences between simulated and predicted data for all three uncer-

tainty scenarios barely exceed 2 %, whereas the differences between the measured and

the simulated data reach about 20 %. Again, it is likely that it may be due to the residual

tube absorption, as well as background noise or tube wall vibration.
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CHAPTER 7. SENSITIVITY ANALYSIS

7.2 Sensitivity to array dimensions

For the 150 mm circular pipe, measured data with a small step (10 mm) and over a

large spatial window (3 m) were available. This provided a possibility to conduct an

analysis which would estimate how the length of a spatial step, the length of a spatial

window and the shape of the spatial window influence the recovered modal reflection

coefficients. The analysis was performed for the wall loudspeaker and microphone

position, resulting in the recovery of the reflection coefficients for modes (00), (10),

(20) and (30).

Figure 7.1 shows the measured and predicted real and imaginary values of the non-

axisymmetric modal reflection coefficients for a layer of melamine foam measured in

150 mm circular tube. There are five sets of data in the figure, the solid black line

being the predictions, and the green, blue, magenta and red dots denote 10 mm, 20 mm,

40 mm and 80 mm step, respectively. The mean differences between the predictions

and the four measured data sets are summarised in Table 7.10. It is evident from the

collected data that an increase of the measurement step from 10 to 20 mm does not

significantly affect the final result. There is a scatter in both data sets beyond 3000 Hz

in the reflection coefficient for mode (20), but it is likely to happen due to the lack of

energy for this mode in the higher frequency range, which results in the inferior quality

of the recovered data. The 40 mm step is marked with magenta dots, and the reflection

coefficient recovered with this step is notably more oscillatory. However, for modes (00)

and (10) it is stable until the cut-on of the next mode. The 80 mm step provides with

the most inaccurate result. For mode (00) the reflection coefficient starts to oscillate at

about 600 Hz, and almost immediately after the cut-on for mode (10).

Figure 7.2 shows the influence of the window length on the quality of the real and imag-

inary parts of the measured modal reflection coefficients. The green dots denote the 3

m long spatial window, blue dots - 1 m long window, magenta dots - 2 m long window,
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7.2. SENSITIVITY TO ARRAY DIMENSIONS

Figure 7.1: The measured and predicted real and imaginary values of the modal reflec-
tion coefficients in the 150 mm circular tube for a layer of melamine foam. Solid black
line: predictions; green dots: 10 mm step; blue dots: 20 mm step; magenta dots: 40
mm step; red dots: 80 mm step.

all starting at the first measurement position (approximately 10 mm from the material

sample), red dots - 2 m long window, starting at the 100th measurements position (ap-

proximately 1 m from the material sample). The predictions are plotted with a solid

black line. The figure suggests that the 1 m long window results are more oscillatory

than the other results, which is expected, as this window provides less data for the re-

flection coefficient recovery, affecting its accuracy. The 2 m long window also gives a

rather scattered result, although to a lesser extent than the 1 m long window. An inter-

esting result is obtained with the 2 m long window, starting at the 100th microphone

position. The quality of this result is superior to that of the 2 m long window start-

ing at the 1st position. This may lead to a conclusion that the spatial locations of the

microphone are more precise further from the material sample, which results in more

accurate recovered reflection coefficients. Also, the effect of evanescent modes may be
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CHAPTER 7. SENSITIVITY ANALYSIS

10 mm 20 mm 40 mm 80 mm
Re (R00) 0.0830 0.1134 0.2710 0.5977
Im (R00) 0.1259 0.1636 0.2888 0.5818
Re (R10) 0.0682 0.1121 13.2139 0.5031
Im (R10) 0.0745 0.1032 14.0054 0.5287
Re (R20) 0.1459 0.6141 0.0912 0.0894
Im (R20) 0.0901 0.5622 0.0332 0.0355
Re (R30) 0.2104 0.4470 0.2073 6.7666
Im (R30) 0.0579 0.3177 0.0322 20.5068

Table 7.10: A summary of the mean differences between the real and imaginary parts
of the measured and predicted modal reflection coefficients for the four step lengths, 10
mm, 20 mm, 40 mm and 80 mm.

smaller when the microphone array is far away from the sample.

0 - 3 m 0 - 1 m 0 - 2 m 1 - 3 m
Re (R00) 0.0830 0.0869 0.0724 0.0894
Im (R00) 0.1259 0.1005 0.1061 0.1413
Re (R10) 0.0682 0.0695 0.1477 0.0672
Im (R10) 0.0745 0.0886 0.1304 0.0705
Re (R20) 0.1459 0.0757 0.0916 0.1238
Im (R20) 0.0901 0.0539 0.0429 0.0589
Re (R30) 0.2104 0.2029 0.2365 0.2327
Im (R30) 0.0579 0.0439 0.0765 0.0795

Table 7.11: A summary of the mean differences between the real and imaginary parts of
the measured and predicted modal reflection coefficients for the four window lengths,
3 m from the initial position, 1 m from the initial position, 2 m from the initial position
and 2 m from the 1 m position.

Figure 7.3 presents the analysis of the influence of different window shapes on the re-

covered reflection coefficient accuracy. Four windows are considered: plain rectangular

window (green dots), rectangular window with first and last 10 points rounded with the

Hamming window (blue dots), Blackman window (magenta dots) and Hamming win-

dow (red dots). The solid black line denotes the predicted reflection coefficients. As the

figure suggests, there is no big difference between different window results for the plane

wave mode. However, there is a visible scatter in the data windowed with the Black-

man and Hamming windows in higher modes reflection coefficients, even where there

is no scatter in the rectangular window data (eg. 3500 Hz and higher for modes (10)
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7.2. SENSITIVITY TO ARRAY DIMENSIONS

Figure 7.2: The measured and predicted real and imaginary values of the modal reflec-
tion coefficients in the 150 mm circular tube for a layer of melamine foam. Solid black
line: predictions; green dots: 3 m long window (0 - 3 m); blue dots: 1 m long window
(0 - 1 m); magenta dots: 2 m long window (0 - 2 m); red dots: 2 m long window (1 - 3
m).

and (20)). This may suggest that although data windowing results in cleaner frequency-

wavenumber plots, without the artefact lines caused by non-infinite bounds of Fourier

transform, it also contributes to the loss of data to some extent, which decreases the

quality of the recovered reflection coefficients. This leads to the conclusion that the

balance between the extent of data windowing and the quality of a final result is crucial.
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CHAPTER 7. SENSITIVITY ANALYSIS

Figure 7.3: The measured and predicted real and imaginary values of the modal reflec-
tion coefficients in the 150 mm circular tube for a layer of melamine foam. Solid black
line: predictions; green dots: rectangular window; blue dots: rectangular window with
rounded edges; magenta dots: Blackman window; red dots: Hamming window.

Rectangular Rectangular Blackman Hamming
with round edges

Re (R00) 0.0830 0.0854 0.1081 0.0829
Im (R00) 0.1259 0.1412 0.1584 0.1185
Re (R10) 0.0682 0.1018 0.0932 0.0728
Im (R10) 0.0745 0.0989 0.0942 0.0739
Re (R20) 0.1459 0.1721 0.2016 0.1114
Im (R20) 0.0901 0.1138 0.1428 0.0569
Re (R30) 0.2104 0.2740 0.2144 0.2080
Im (R30) 0.0579 0.1776 0.1253 0.0542

Table 7.12: A summary of the mean differences between the real and imaginary parts
of the measured and predicted modal reflection coefficients for the four window shapes,
rectangular, rectangular with rounded edges, Blackman and Hamming.
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7.3. SOURCE POSITIONING INFLUENCE

7.3 Source positioning influence

For measurements in the 300 mm square tube, three loudspeakers were employed to

excite the sound field inside the tube (see Figure 5.5). It seems of interest to conduct

a study, which would determine how the cross-sectional position of each loudspeaker

influences the modal field excitation in the tube. For this purpose, the loudspeakers

were activated one after another, and for each loudspeaker a set of measurements, de-

scribed in Chapter 5, was performed, resulting in a total of three sets. A sketch of the

loudspeaker positioning is presented in Figure 7.4. The cross-sectional coordinates of

loudspeaker centres are as follows: (50 mm, 50 mm) for the corner loudspeaker, (50

mm, 150 mm) for the wall loudspeaker and (150 mm, 150 mm) for the middle loud-

speaker. Other than the loudspeaker setup, the experimental apparatus was consistent

with that described in subsection 5.2.1 of Chapter 5. The end, opposite to the loud-

speakers was terminated with a layer of Armasound foam, the characteristics of which

are provided in Table 5.3.

Figure 7.4: A sketch of the cross-sectional positioning of loudspeakers. The x- and y-
coordinates of the speakers are: (50 mm, 50 mm) for the corner speaker; (50 mm, 150
mm) for the wall speaker; (150 mm, 150 mm) for the middle speaker.

Figures 7.5-7.7 present the frequency-wavenumber sound pressure plots for the cor-

ner, wall and middle loudspeaker positions, respectively. It is evident from the graphs
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that the cross-sectional location of a loudspeaker had an influence on a modal field

pattern in the tube. The highest number of modes was excited with the corner loud-

speaker activated. All propagating modes in the adopted frequency range are visible

in the frequency-wavenumber plot. Modes (12) and (22) have a lower amplitude than

the other modes, but still within the reasonable signal-to-noise ratio of 20dB. The wall

loudspeaker also excited almost all the modes, with the exception of mode (11), the

amplitude of which was significantly lower than that of the other modes. This is to be

expected, as the amplitude of this mode is zero at this cross-sectional position (see Fig-

ure 5.1). The middle loudspeaker excited modes (00), (02) and (22), but the remaining

modes either did not have enough energy to propagate or their amplitudes were rela-

tively low. In general, all three loudspeakers excited all the modes which are capable of

propagating in the tube in the adopted frequency range.

Figure 7.5: A frequency-wavenumber spectrum of an Armasound foam layer, excited
with a loudspeaker in a corner of the 300 mm square tube cross-section.

Figure 7.8 provides the comparison of the measured and predicted real and imagi-

nary parts of the first four modal reflection coefficients for the Armasound foam layer.

It presents three measured reflection coefficients recovered separately from the mea-
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7.3. SOURCE POSITIONING INFLUENCE

Figure 7.6: A frequency-wavenumber spectrum of an Armasound foam layer, excited
with a loudspeaker near the wall of the 300 mm square tube cross-section.

surements with only one loudspeaker active. The predictions were calculated using

the Johnson-Champoux-Allard model (see Equation (2.6.21)). The measured results

marked with black dots correspond to the corner loudspeaker, blue dots - to the wall

loudspeaker, and red dots - to the middle loudspeaker. The mean differences between

these three sets of measured data and the predictions were quantified and are sum-

marised in Table 7.13. Generally, the smallest mean difference is found in the case of

the corner loudspeaker being active. This outcome is anticipated as the loudspeaker

placed in the corner of the tube cross-section is capable of exciting all the modes which

can propagate in the adopted frequency range. The largest mean difference is observed

when the loudspeaker is in the middle of the tube cross-section. Again, this is expected

as this source positioning excites only even modes. However, even for modes (01) and

(11) the reflection coefficient measured with the middle loudspeaker provides a rea-

sonable match with the predictions, despite the higher level of scattering in the data.

Moreover, it provides more accurate data for mode (22), which is not sufficiently ex-

cited with the corner loudspeaker. The mean differences between the predicted modal
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Figure 7.7: A frequency-wavenumber spectrum of an Armasound foam layer, excited
with a loudspeaker in the middle of the 300 mm square tube cross-section.

reflection coefficients and those measured near the wall are comparable to the ones esti-

mated for the corner loudspeaker data. Hence, it can be concluded that in order to have

a complete and sufficiently accurate picture of the sound field distribution in the pipe,

two loudspeaker positions should be used, in the corner and in the middle. This will

ensure a relatively high signal-to-noise ratio for all the modes which can propagate in

the adopted frequency range.

Corner Wall Middle
Re (R00) 0.0133 0.0239 0.0231
Im (R00) 0.0448 0.0222 0.0211
Re (R01) 0.1675 0.1451 0.4149
Im (R01) 0.1564 0.1173 0.3301
Re (R11) 0.2053 0.2409 0.3028
Im (R11) 0.1055 0.1734 0.2966
Re (R02) 0.1491 0.1911 0.1816
Im (R02) 0.0933 0.1278 0.0620

Table 7.13: A summary of the mean differences between the real and imaginary parts
of the measured and predicted modal reflection coefficients for the three loudspeaker
cross-sectional locations.
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7.4. SUMMARY

Figure 7.8: The measured and predicted real and imaginary values of the modal reflec-
tion coefficients in the 300 mm square tube for a layer of Armasound foam. Solid black
line: predictions; black dots: corner loudspeaker; blue dots: wall loudspeaker; red dots:
middle loudspeaker.

7.4 Summary

A sensitivity analysis has been performed and its results have been described in this

chapter. Artificial errors were introduced to the pressure spectra phase and axial and

cross-sectional positions of the microphone array. This has been done in order to es-

timate which factors may have influenced the accuracy of the data measured in the

laboratory. However, none of the mean differences in the simulated data have been

sufficiently large to explain discrepancies between the predictions and experimentally

obtained data. This means that the errors in the laboratory measurements were most

likely caused by such factors as residual wall absorption, wall vibration or background

noise.

The experimental data collected in the 150 mm circular tube allowed to study the sen-
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sitivity of the measured acoustical properties to the step, window length and shape. It

has been found that the steps of 10 and 20 mm have a similar effect on the accuracy

of obtained data, and then the quality of data deteriorated with the increase of the step.

An interesting result has been observed when the influence of the window length was

examined, showing that the starting position of the window can strongly influence the

quality of the experimental data. The shape of the window also has been noted to affect

the data, which suggests that the balance between the cleaner frequency-wavenumber

spectra and the accurate reflection coefficients is important.

Finally, the influence of the loudspeaker positioning has been analysed, where three

loudspeaker cross-sectional positions have been tested. It was concluded that, although

the corner loudspeaker position excites all the modes capable of propagating in the

adopted frequency range and their amplitude is sufficiently high to recover the corre-

sponding reflection coefficients, it is preferable to employ both corner and middle loud-

speaker positions, as such setup will result in the most accurate experimental results

due to the high signal-to-noise ratio for all the modes.
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Chapter 8

Conclusions

This chapter summarises the results of the research described in this thesis. An overview

of achievements and limitations of the conducted study are presented and discussed. In

addition, recommendations for the future work are listed.

8.1 Achievements

This project was aimed at studying and understanding the complex sound intensity in

pipes, with application to inhomogeneity analysis, such as an open pipe end and block-

ages, and porous media characterisation, which included regular porous materials and

living plants. To fulfil the aim of this work, the objectives, listed in Chapter 1 were

met. Several experimental facilities have been employed to study the sound field distri-

bution in a pipe, of different length and cross-sectional size and shape. This variability

was necessary to suit the needs of each set of experiments, and to validate the methods

using various experimental setups.
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For the study on the complex intensity vector in an open-ended pipe and a pipe with

an obstacle, a suitable numerical model was found and validated through sets of ex-

periments. The hybrid model by Duan et al. (2013) was chosen due to its robustness,

accuracy and time efficiency. This model combined modal decomposition in the regions

where the calculations were relatively straightforward (straight section of a pipe, open

space, etc), with finite element modelling for the regions which required more complex

computations, such as a monopole sound source or an open end of a pipe. The hybrid

model was used for subsequent comparison with measured data to gain understand-

ing of the complex sound intensity field in the vicinity of an open end of a pipe at a

frequency beyond the first cut-on frequency of the pipe and to recognise the capabili-

ties and limitations of its measurements. The measurements were performed with the

tri-axial Microflown probe, which was capable of simultaneously measuring the sound

pressure and three components of the sound velocity. The probe was rotated in a sup-

porting frame with a 10◦ step to cover a full circumference of the pipe, and the active

and reactive axial, radial and circumferential intensities were obtained. It was shown

that it is possible to obtain good quantitative agreement between predicted and mea-

sured complex intensity, provided a very simple problem is under consideration, which

in this case was the use of plane waves in the 150 mm diameter pipe at the frequency

of 1000 Hz. A good agreement was observed both at the end of the open ended pipe

and within the pipe itself. The mean error between the measured and predicted data as

in general less than 5%. It was higher for times between 0 and 2 ms, where the system

response was transient, resulting in the mean error about 20%. However, at a frequency

of 1800 Hz, which was beyond the first cut-on frequency for this pipe, obtaining a good

match between the measurements became more challenging. The best agreement was

achieved in the case of active and reactive radial intensities. It may have been caused

by the fact that the influence of the supporting frame and the probe body on the radial

intensity was smaller than on the remaining two intensity components. In the case of

the active and reactive axial intensities, the match was good for the active component;
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however, there was a shift of about 20◦ in the pattern of the measured intensity. The

relative error between the amplitudes of the maxima in the predicted and measured ac-

tive axial intensity is less than 1%, but this error increases significantly when the value

of the circumferential coordinate becomes less than 120◦. The mean error between the

amplitudes of measured and predicted active axial intensities was less than 1%, but it

became higher at low circumferential coordinates, where the amplitude of the active

axial intensity was relatively small. For the circumferential intensity, a good agreement

was observed for the reactive part, although there was a shift in the pattern of about 15◦.

The match between the measured and predicted active circumferential intensities was

the weakest out of all six components. It is likely that the influence of the supporting

frame is the most pronounced in the case of the circumferential component of the sound

velocity, especially at high frequencies. Based on the collected measured and predicted

data, it is clear that the understanding of the complex intensity vector behaviour in the

vicinity of an open end of a pipe remains limited at frequencies beyond the first cut-

on frequency of the pipe. Difficulties were encountered even for a simpler case, when

only one mode propagated in the pipe. When more than one mode became propagat-

ing, it was possible to qualitatively assess the behaviour of the complex sound intensity

in the pipe, but the agreement between measurements and predictions was insufficient

for accurate quantitative analysis. It is probable that scattering from the supporting

frame,probe body and imperfections in the pipe geometry have strong influence on the

accuracy of the measured data.

To locate and characterise blockages in a pipe, several set of experiments in 18 m long

closed pipe were conducted, and their results were compared to the model proposed by

Duan et al. (2015). For this purpose, an array of four MEMS microphones was used to

simulate an axial array of microphones in the pipe, by manually moving it in 40 mm

steps to cover the 2 m distance. Three sets of measurements were performed: one in the

empty pipe, one in front of a blockage to measure the reflection from it, and one behind

the blockage to measure its transmission. A coaxial cylinder of a diameter of 110 mm
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and of a length of 305 mm was used as the blockage. The measured pressure and axial

velocity data were subsequently subjected to a two-dimensional Fourier transform. This

led to obtaining frequency-wavenumber spectra for the three measurement conditions,

which were later used to calculate reflection and transmission coefficients. The mea-

sured and predicted data were in good agreement for such simple blockage and under

the plane wave conditions. The mean error was below 2% in the case of the transmis-

sion coefficient, and below 10% in the case of the reflection coefficient. This signifies

that the proposed method of employing the frequency-wavenumber spectra for calcu-

lating the blockage transmission and reflection coefficients can be successfully used for

locating and characterising blockages in pipes. This method can be developed further to

include the transmission and reflection of higher-order modes; however, it was chosen

to limit it to the plane wave conditions. Considering the effect of more than one mode

would have made the theoretical model significantly more complicated and would have

required much more complex measured data analysis. Confining the method to only

one mode made it more attractive for practical execution.

A novel method was proposed to characterise large porous material samples in an

impedance tube (Prisutova et al., 2014). This method does not require using special

experimental facilities such as an anechoic chamber, is time-efficient and prone to mi-

crophone mismatch issues. It relies on simulating an axial array of microphones along

the axis of the tube, by moving a single microphone with the help of a robotic arm. The

obtained position-dependent data were transformed into a wavenumber space. Then a

minimisation procedure was carried out, which enabled the recovery of incident and

reflected amplitudes and phases for each propagating mode. These data were combined

together to obtain the modal reflection and total absorption coefficients. The method

was tested in three impedance tubes of different cross-sectional shape and width, and

on several porous material samples of different absorbing properties. It was found to

accurately measure modal reflection coefficients at normal and oblique incidence, and

successfully employ sound intensity measurements to calculate total absorption coeffi-
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cients. The mean error for modal reflection coefficients for such well-absorbing mate-

rials as melamine foam and wood fibre did not exceed 10% for the former and 15% for

the latter, for all considered modes, measured in the 300 mm wide square tube. This

error was slightly higher for Armasound foam (below 20%), which was likely due to

its heterogeneous nature and inability to precisely predict its absorptive behaviour. For

the thin foam the error was the highest (35% and below), which may signify that the

method works worse for low-absorbing materials. These errors were higher in the 150

mm square tube, where only Armasound foam was tested. This was attributed to the

higher residual absorption of the pipe walls, as well as inhomogeneities in the material

structure. To calculate the total absorption coefficient, two approaches were adopted.

One used the amplitudes of incident and reflected waves, and the other used the sound

intensity data. Although the former approach exhibited smaller error, it was due to the

used assumptions, which either did not reflect the real picture of the sound field distri-

bution in the pipe, or were different for measurements and predictions. Because of that,

the intensity method was preferred for the total absorption coefficient calculation. The

mean error was within 20% for Armasound and thin foam, and within 3% for melamine

foam and wood fibre. For the 150 mm circular pipe, where only a melamine foam

sample was tested, the mean errors were below 20% in the case of modal reflection co-

efficients, and below 6% in the case of the total absorption coefficients. In general, the

suggested method was proven to work successfully for characterisation of large porous

material samples in an impedance tube. It allows the recovery of both frequency and

angular dependent complex reflection coefficient data for a porous layer, which makes

possible the laboratory measurements of the acoustical properties of a large porous

specimen at a range of the angles of incidence and in a relatively wide frequency band.

Furthermore, it extended the frequency range, suggested by ISO 10534-2 (1998), by at

least a factor of three. Finally, it is easy to run and does not ask for special equipment

or large material samples.

Subsequently, this method was used to characterise sound absorption by living plants.
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Several plants specimen were chosen and bought from a local gardening centre. These

plants had different leaf number, sizes and shapes, as well as height and greenery vol-

ume. It allowed to deduce which morphological parameters of plants were key to good

sound-absorbing abilities. These morphological parameters were carefully quantified.

A set of twenty-five leaves was selected from each plant, which was used for evalua-

tion of the leaf area and thickness. Additionally, an average height of each plant, an

average number of leaves on each plants and an average angle of leaf orientation were

estimated. These parameters were subsequently substituted into a model (Horoshenkov,

2013) which related morphological parameters of plants to their acoustical behaviour,

which was calculated using the Miki model (1990). A good agreement was observed be-

tween the measured and predicted reflection and absorption coefficients values, which

confirmed that plants can be successfully characterised as porous media. The mean

error between measurements and predictions in the case of the modal reflection coeffi-

cients was below 10% for the 300 mm square tube. This error was higher in the case

of the total absorption coefficient (below 30%). This happened due to the fact that the

agreement between the measurements and predictions beyond the first cut-on frequency

notably decreased. It was likely caused by the theoretical model not taking into account

the scattering and leaf vibration phenomena, which became more pronounced at higher

frequencies. It could also be due to the method assuming no modal cross-talk, which

might have been present when the plants caused too much scattering, introducing the

phase error. The errors were higher in the case of the 150 mm square tube, which was

likely due to the residual absorption and wall vibration of the pipe. However, it was

confirmed that the morphology of the plants had influence on their sound-absorbing

capabilities. Such morphological parameters of living plants as the leaf area per unit

volume and the dominant angle of leaf orientation were singled out as being key to in-

fluence the sound absorption of a plant. Additionally, it was proven that living plants

can be successfully characterised as porous media. They contribute noticeably to sound

absorption and can be used to aid the traditional man-made means of noise abatement.
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Overall, the aim of this research of studying and understanding the complex intensity

behaviour in waveguides and its application to real-life problems has been achieved.

Capturing the distribution of the components of the complex intensity vector has been

found to be a challenging problem, however, it was shown that it is possible to resolve at

least four of the six complex intensity vector components under the harmonic excitation

conditions in a multimodal field. Furthermore, its application to such cases as blockage

characterisation and porous media absorption measurements yielded valuable results.

8.2 Limitations

Several limitations were noticed in the course of this research. Firstly, it was found that

obtaining a good agreement between measured and predicted complex intensity is chal-

lenging even for such well-defined problem as an open end of a pipe. This may be due

to the fact that current measurement techniques, such as the tri-axial intensity probe,

are not precise enough to address the assessment of all six complex intensity compo-

nents simultaneously. In addition, the inaccuracies in measured data may arise from

imperfections of pipe geometry or scattering off a probe supporting frame. Only four

out of six complex intensity components presented a good match, with the agreement

between the measured and predicted axial reactive and circumferential active intensities

being insufficient.

Secondly, the blockage characterisation technique is currently limited to simple block-

ages and plane wave regime. However, this limitation is due to the fact that the em-

ployed theoretical model did not account for more complex geometries and modal

sound field.

The discrepancies between the measured and predicted reflection and absorption coef-

ficients of porous materials and living plants specimens were higher than expected in
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some cases. The reason for this may be the sensitivity of the method to such exper-

imental setup imperfections as residual absorption of a pipe or pipe wall vibrations.

Furthermore, it was discovered that the agreement is worse in the case of thin materi-

als, ie. when the sound-absorbing abilities of a material are lower. In addition, in the

case of the living plants, the agreement between the measurements and predictions be-

comes weaker with increasing frequency. This happens due to not taking into account

such phenomena as leaf vibration and scattering, which become pronounced at higher

frequencies.

8.3 Future work

Although the objectives of this work were successfully fulfilled, there are several rec-

ommendations for the future work. It would be of interest to develop both the theoret-

ical model and the measured data analysis technique for characterisation of blockages

in pipes to allow for a wider variety of blockage shapes, as well as for recovering the

transmission and reflection coefficients above the first cut-on frequency of a pipe. In

the case of porous material absorption measurements, the wall absorption and vibration

could be taken into account when analysing the measured data, to see if this improves

the match with the predictions. Moreover, it is necessary to include the leaf vibration

and scattering in the theoretical model for living plants absorption, thus representing the

actual plants absorption at higher frequencies with higher accuracy. Finally, it would be

interesting to perform living plants absorption measurements with soil, as opposed to

stems and foliage only, as described in this thesis. This would require manufacturing a

plant holder, which can hold the soil vertically and the size of which is small enough in

order to have a negligible influence on the measurements.
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APPENDIX A. FREQUENCY-WAVENUMBER SPECTRA

Appendix A

Frequency-wavenumber spectra

Figure A.1: The frequency-wavenumber spectrum for the layer of melamine foam mea-
sured in 300 mm wide square tube, with the microphone placed in the corner of the tube
cross-section.
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Figure A.2: The frequency-wavenumber spectrum for the layer of wood fibre measured
in 300 mm wide square tube, with the microphone placed in the corner of the tube
cross-section.

Figure A.3: The frequency-wavenumber spectrum for the layer of thin foam measured
in 300 mm wide square tube, with the microphone placed in the corner of the tube
cross-section.
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Figure A.4: The frequency-wavenumber spectrum for the layer of thin foam measured
in 300 mm wide square tube, with the microphone placed in the middle of the tube
cross-section.

Figure A.5: The frequency-wavenumber spectrum for the layer of Armasound foam
with 100 mm air gap measured in 150 mm wide square tube, with the microphone
placed in the corner of the tube cross-section.
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Figure A.6: The frequency-wavenumber spectrum for the layer of Armasound foam
with 100 mm air gap measured in 150 mm wide square tube, with the microphone
placed in the middle of the tube cross-section.

Figure A.7: The frequency-wavenumber spectrum for the layer of Armasound foam
with 200 mm air gap measured in 150 mm wide square tube, with the microphone
placed in the corner of the tube cross-section.
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Figure A.8: The frequency-wavenumber spectrum for the layer of Armasound foam
with 200 mm air gap measured in 150 mm wide square tube, with the microphone
placed in the middle of the tube cross-section.

Figure A.9: The frequency-wavenumber spectrum for the layer of melamine foam mea-
sured in 150 mm circular tube, with the microphone placed near the wall of the tube
cross-section.
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Figure A.10: The frequency-wavenumber spectrum for begonia plants measured in 300
mm wide square tube, with the microphone placed in the corner of the tube cross-
section.

Figure A.11: The frequency-wavenumber spectrum for begonia plants measured in 300
mm wide square tube, with the microphone placed in the middle of the tube cross-
section.
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Figure A.12: The frequency-wavenumber spectrum for ivy plants measured in 300 mm
wide square tube, with the microphone placed in the corner of the tube cross-section.

Figure A.13: The frequency-wavenumber spectrum for ivy plants measured in 300 mm
wide square tube, with the microphone placed in the middle of the tube cross-section.
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Figure A.14: The frequency-wavenumber spectrum for rudbeckia plants measured in
300 mm wide square tube, with the microphone placed in the corner of the tube cross-
section.

Figure A.15: The frequency-wavenumber spectrum for rudbeckia plants measured in
300 mm wide square tube, with the microphone placed in the middle of the tube cross-
section.
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Figure A.16: The frequency-wavenumber spectrum for kalanchoe plants measured in
300 mm wide square tube, with the microphone placed in the corner of the tube cross-
section.

Figure A.17: The frequency-wavenumber spectrum for kalanchoe plants measured in
300 mm wide square tube, with the microphone placed in the middle of the tube cross-
section.
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Figure A.18: The frequency-wavenumber spectrum for ficus plants measured in 300
mm wide square tube, with the microphone placed in the corner of the tube cross-
section.

Figure A.19: The frequency-wavenumber spectrum for begonia plants measured in 150
mm wide square tube, with the microphone placed in the corner of the tube cross-
section.
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Figure A.20: The frequency-wavenumber spectrum for begonia plants measured in 150
mm wide square tube, with the microphone placed in the middle of the tube cross-
section.

Figure A.21: The frequency-wavenumber spectrum for ivy plants measured in 150 mm
wide square tube, with the microphone placed in the corner of the tube cross-section.
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Figure A.22: The frequency-wavenumber spectrum for ivy plants measured in 150 mm
wide square tube, with the microphone placed in the middle of the tube cross-section.

Figure A.23: The frequency-wavenumber spectrum for rudbeckia plants measured in
150 mm wide square tube, with the microphone placed in the corner of the tube cross-
section.
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Figure A.24: The frequency-wavenumber spectrum for rudbeckia plants measured in
150 mm wide square tube, with the microphone placed in the middle of the tube cross-
section.

Figure A.25: The frequency-wavenumber spectrum for kalanchoe plants measured in
150 mm wide square tube, with the microphone placed in the corner of the tube cross-
section.
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Figure A.26: The frequency-wavenumber spectrum for kalanchoe plants measured in
150 mm wide square tube, with the microphone placed in the middle of the tube cross-
section.
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Appendix B

Matlab code

The details of main Matlab subroutines used to calculate the results presented in this

thesis are presented in Table B.1. All subroutines are available upon request.

File name Path Description

Intensity OpenPipe.m ..\SoundIntensity Complex measured sound intensity

calculations using Eqs. (2.2.9) and

(2.2.10).

KOmega Refl.m ..\IntensityApp Applies a window designed for

reflected temporal pressure sig-

nal, calculates temporal veloc-

ity and complex intensity and

takes Fourier transform of these

quantities.
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KOmega Transm.m ..\IntensityApp Applies a window designed for

transmitted temporal pressure sig-

nal, calculates temporal veloc-

ity and complex intensity and

takes Fourier transform of these

quantities.

TotalKOmega Coeff.m ..\IntensityApp Calculates a total frequency-

wavenumber spectrum for all

adopted frequencies and evaluates

pressure and complex inten-

sity reflection and transmission

coefficients.

K Omega Calculation BT.m ..\MaterialChar \BT Converts frequency- and position-

dependent amplitude and phase

data measured in the 300 mm

square tube into sound pres-

sure, calculates a frequency-

wavenumber spectrum.

R mn Calculation BT c.m ..\MaterialChar \BT Calculates modal reflection co-

efficients measured in the corner

of the 300 mm square tube based

on the frequency-wavenumber

spectrum.
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TotalAlpha BT c.m ..\MaterialChar \BT Calculates total absorption coeffi-

cients measured in the corner of

the 300 mm square tube using am-

plitude and intensity methods.

R mn Calculation BT m.m ..\MaterialChar \BT Calculates modal reflection coef-

ficients measured in the middle

of the 300 mm square tube based

on the frequency-wavenumber

spectrum.

TotalAlpha BT m.m ..\MaterialChar \BT Calculates total absorption coeffi-

cients measured in the middle of

the 300 mm square tube using am-

plitude and intensity methods.

K Omega Calculation MT.m ..\MaterialChar \MT Converts frequency- and position-

dependent amplitude and phase

data measured in the 150 mm

square tube into sound pres-

sure, calculates a frequency-

wavenumber spectrum.

R mn Calculation MT c.m ..\MaterialChar \MT Calculates modal reflection co-

efficients measured in the corner

of the 150 mm square tube based

on the frequency-wavenumber

spectrum.

233



APPENDIX B. MATLAB CODE

TotalAlpha MT c.m ..\MaterialChar \MT Calculates total absorption coeffi-

cients measured in the corner of

the 150 mm square tube using am-

plitude and intensity methods.

R mn Calculation MT m.m ..\MaterialChar \MT Calculates modal reflection coef-

ficients measured in the middle

of the 150 mm square tube based

on the frequency-wavenumber

spectrum.

TotalAlpha MT m.m ..\MaterialChar \MT Calculates total absorption coeffi-

cients measured in the middle of

the 150 mm square tube using am-

plitude and intensity methods.

FFT CT.m ..\MaterialChar \CT Windows time- and position-

dependent pressure data measured

in the 150 mm circular tube and

applies Fourier transform.

KOmega CT.m ..\MaterialChar \CT Calculates a frequency-

wavenumber spectrum of the

time- and position-dependent

pressure data measured in the 150

mm circular tube.
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R mn Calculation CT c.m ..\MaterialChar \CT Calculates modal reflection coef-

ficients measured near the wall of

the 150 mm circular tube based

on the frequency-wavenumber

spectrum.

R mn Calculation CT m.m ..\MaterialChar \CT Calculates modal reflection co-

efficients measured in the mid-

dle of the 150 mm circular

tube based on the frequency-

wavenumber spectrum.

BegoniaH BT c.m ..\Plants \BT Calculates measured and predicted

modal reflection coefficients and

total absorption coefficients using

amplitude and intensity methods

for begonia plants data collected in

the corner of the 300 mm square

tube.

FicusH BT c.m ..\Plants \BT Calculates measured and predicted

modal reflection coefficients and

total absorption coefficients using

amplitude and intensity methods

for ficus plants data collected in the

corner of the 300 mm square tube.
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GeraniumH BT c.m ..\Plants \BT Calculates measured and predicted

modal reflection coefficients and

total absorption coefficients using

amplitude and intensity methods

for geranium plants data collected

in the corner of the 300 mm square

tube.

IvyH BT c.m ..\Plants \BT Calculates measured and predicted

modal reflection coefficients and

total absorption coefficients using

amplitude and intensity methods

for ivy plants data collected in the

corner of the 300 mm square tube.

KalanchoeH BT c.m ..\Plants \BT Calculates measured and predicted

modal reflection coefficients and

total absorption coefficients using

amplitude and intensity methods

for kalanchoe plants data collected

in the corner of the 300 mm square

tube.
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RudbeckiaH BT c.m ..\Plants \BT Calculates measured and predicted

modal reflection coefficients and

total absorption coefficients using

amplitude and intensity methods

for rudbeckia plants data collected

in the corner of the 300 mm square

tube.

BegoniaH BT m.m ..\Plants \BT Calculates measured and predicted

modal reflection coefficients and

total absorption coefficients using

amplitude and intensity methods

for begonia plants data collected in

the middle of the 300 mm square

tube.

GeraniumH BT m.m ..\Plants \BT Calculates measured and predicted

modal reflection coefficients and

total absorption coefficients using

amplitude and intensity methods

for geranium plants data collected

in the middle of the 300 mm square

tube.
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IvyH BT m.m ..\Plants \BT Calculates measured and predicted

modal reflection coefficients and

total absorption coefficients using

amplitude and intensity methods

for ivy plants data collected in the

middle of the 300 mm square tube.

KalanchoeH BT m.m ..\Plants \BT Calculates measured and predicted

modal reflection coefficients and

total absorption coefficients using

amplitude and intensity methods

for kalanchoe plants data collected

in the middle of the 300 mm square

tube.

RudbeckiaH BT m.m ..\Plants \BT Calculates measured and predicted

modal reflection coefficients and

total absorption coefficients using

amplitude and intensity methods

for rudbeckia plants data collected

in the middle of the 300 mm square

tube.
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BegoniaH MT c.m ..\Plants \MT Calculates measured and predicted

modal reflection coefficients and

total absorption coefficients using

amplitude and intensity methods

for begonia plants data collected in

the corner of the 150 mm square

tube.

GeraniumH MT c.m ..\Plants \MT Calculates measured and predicted

modal reflection coefficients and

total absorption coefficients using

amplitude and intensity methods

for geranium plants data collected

in the corner of the 150 mm square

tube.

IvyH MT c.m ..\Plants \MT Calculates measured and predicted

modal reflection coefficients and

total absorption coefficients using

amplitude and intensity methods

for ivy plants data collected in the

corner of the 150 mm square tube.
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KalanchoeH MT c.m ..\Plants \MT Calculates measured and predicted

modal reflection coefficients and

total absorption coefficients using

amplitude and intensity methods

for kalanchoe plants data collected

in the corner of the 150 mm square

tube.

RudbeckiaH MT c.m ..\Plants \MT Calculates measured and predicted

modal reflection coefficients and

total absorption coefficients using

amplitude and intensity methods

for rudbeckia plants data collected

in the corner of the 150 mm square

tube.

BegoniaH MT m.m ..\Plants \MT Calculates measured and predicted

modal reflection coefficients and

total absorption coefficients using

amplitude and intensity methods

for begonia plants data collected in

the middle of the 150 mm square

tube.
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GeraniumH MT m.m ..\Plants \MT Calculates measured and predicted

modal reflection coefficients and

total absorption coefficients using

amplitude and intensity methods

for geranium plants data collected

in the middle of the 150 mm square

tube.

IvyH MT m.m ..\Plants \MT Calculates measured and predicted

modal reflection coefficients and

total absorption coefficients using

amplitude and intensity methods

for ivy plants data collected in the

middle of the 150 mm square tube.

KalanchoeH MT m.m ..\Plants \MT Calculates measured and predicted

modal reflection coefficients and

total absorption coefficients using

amplitude and intensity methods

for kalanchoe plants data collected

in the middle of the 150 mm square

tube.
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RudbeckiaH MT m.m ..\Plants \MT Calculates measured and predicted

modal reflection coefficients and

total absorption coefficients using

amplitude and intensity methods

for rudbeckia plants data collected

in the middle of the 150 mm square

tube.
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