

University of Sheffield
Department of Computer Science

Automated Runtime Testing of Web Services

Ervin Ramollari

Submitted towards the degree of
Doctor of Philosophy

May 2013

Abstract
Service-oriented computing (SOC) is a relatively new paradigm for developing
software applications through the composition of software units called services.
With services, software is no longer owned but offered remotely, within or across
organisational borders. Currently, the dominant technology for implementing
services is that of Web services. Since service requestors do not usually have access
to the implementation source code, from their perspective, services are offered as
black boxes. However, requestors need to verify first that provided services are
trustworthy and implemented correctly before they are integrated into their own
business-critical systems. The verification and testing of remote, third-party
services involve unique considerations, since testing must be performed in a black-
box manner and at runtime.

Addressing the aforementioned concerns, the research work described in this thesis
investigates the feasibility of testing Web services for functional correctness,
especially at runtime. The aim is to introduce rigour and automation to the testing
process, so that service requestors can verify Web services with correctness
guarantees and with the aid of tools. Thus, formal methods are utilised to specify
the functionality of Web services unambiguously, so that they are amenable to
automated and systematic testing. The well-studied stream X-machine (SXM)
formalism has been selected as suitable for modelling both the dynamic behaviour
and static data of Web services, while a proven testing method associated with
SXMs is used to derive test sets that can verify the correctness of the
implementations.

This research concentrates on testing stateful Web services, in which the presence
of state makes their behaviour more complex and more difficult to specify and test.
The nature of Web service state, its effect on service behaviour, and implications on
service modelling and testing, are investigated. In addition, comprehensive
techniques are described for deriving a stream X-machine specification of a Web
service, and for subsequently testing its implementation for equivalence to the
specification. Then, a collaborative approach that makes possible third-party Web
service verification and validation is proposed, in which the service provider is
required to supply a SXM specification of the service functionality along with the
standard WSDL description of its interface. On top of that, techniques are proposed
for service providers to include information that ground the abstract SXM
specification to the concrete Web service implementation. Having these
descriptions available, it is possible to automate at runtime not only test set
generation but also test case execution on Web services. A tool has been developed
as part of this work, which extends an existing SXM-based testing tool (JSXM).
The tool supports the tester activities, consisting of generation of abstract test cases
from the SXM specification and their execution on the Web service under test using
the supplied grounding information. Practical Web service examples are also used
throughout the thesis to demonstrate the proposed techniques.

Acknowledgements

First of all, I wish to express my deepest gratitude to both supervisors of my PhD
project: Dr Dimitris Dranidis from City College and Dr Tony Simons from the
University of Sheffield. I felt fortunate and privileged to have their insightful ideas
and much-needed advice during the whole duration of the PhD research. Also, I
would like to thank them for their continuous support and patience whenever I ran
into difficulties during this long and tough, yet exciting journey.

Special thanks go to my valued colleagues of the Software Engineering and
Service-Oriented Technologies (SoE) research group at SEERC: Dr Iraklis
Paraskakis, Dimitris Kourtesis, and Kostas Bratanis. Our discussions and
brainstorming meetings generated many of those cool ideas, which contributed
directly to the work described in this thesis, as well as to several research papers
where we were co-authors.

I could not forget to mention the support from the other colleagues from the CITY
College Computer Science Department (CSD), who made me feel part of the
department. I would like to single out Professor Petros Kefalas, for his valuable
feedback during different stages of my PhD research. His professionalism and
pursuit of excellence were always a source of inspiration for me toward
improvement.

Above all, I am particularly grateful to my dear family. Undoubtedly, without their
indispensable support, patience and encouragement, this PhD project would not
have been possible. Thank you for being with me, even when we were far away
from each other!

Table of Contents i

Table of Contents

Chapter 1 – Introduction ... 1

1.1 Motivation .. 1

1.2 Aims and objectives ... 3

1.2.1 Aims ... 3
1.2.2 Theoretical objectives .. 3
1.2.3 Technical objectives ... 4
1.2.4 Experimental objectives ... 4

1.3 Contribution of this thesis .. 4

1.4 Thesis outline ... 5

PART A – Literature Review .. 9

Chapter 2 – Background on Service Oriented Computing and Web
Services ... 11

2.1 Service Oriented Computing .. 11

2.2 Web services .. 12

2.2.1 Web Services Communication - SOAP ... 13
2.2.2 Web Services Description – WSDL ... 15
2.2.3 Web Services Discovery - UDDI ... 17
2.2.4 WS-* Extensions and the WS-I Basic Profile 18
2.2.5 Message Exchange Patterns ... 19
2.2.6 Message styles: Document- versus RPC-style Web services 20
2.2.7 XPath, XQuery and XSLT ... 21

2.3 Service descriptions beyond WSDL .. 22

2.3.1 Describing data maintained by Web services 24
2.3.2 Describing Web service conversation protocols 26

2.4 Semantic Web services .. 28

2.4.1 Necessity for Semantic Web services .. 28
2.4.2 SWS frameworks ... 29
2.4.3 Semantic Web Services Grounding ... 32

2.5 Service composition ... 33

2.5.1 Current standards in service composition .. 33
2.5.2 Service composition beyond current standards 34

2.6 Summary .. 35

Chapter 3 – Related Work on Web Service Verification and
Testing ... 36

3.1 Verification, Validation and Testing .. 36

3.2 Types of testing .. 37

3.3 Formal Methods and Model-Based Testing ... 39

3.3.1 Formal methods .. 39
3.3.2 Model-based testing ... 39

3.4 Testing SOA and Web services ... 40

3.5 Formal verification of Web services .. 41

ii Table of Contents

3.5.1 Formal methods and Web services ... 41
3.5.2 Formal verification of individual Web services 41
3.5.3 Formal verification of Web service compositions 43

3.6 Testing tools ... 45

3.6.1 Web service testing tools .. 45
3.6.2 Tools for model-based testing .. 45

3.7 Summary .. 47

Part B – Specifying and Testing Stateful Web Services 49

Chapter 4 – Web Services with State and Testing Implications 51

4.1 Stateless versus stateful Web services .. 51

4.2 Web service state and behaviour .. 53

4.2.1 Web service state .. 53
4.2.2 Web service behaviour ... 54
4.2.3 Effect of state on Web service behaviour ... 55

4.3 Characteristics of Web service state ... 56

4.3.1 State accessibility ... 56
4.3.2 State duration .. 56
4.3.3 Views on private state .. 57
4.3.4 Private state identification .. 58
4.3.5 Classification of Web service state .. 64
4.3.6 Classification of Web services based on state 66

4.4 Implementation of stateful Web services ... 68

4.4.1 Stateful Web services in Apache Axis2 ... 68
4.4.2 Stateful Web services in JAX-WS ... 70
4.4.3 Stateful Web services in Oracle Weblogic ... 70
4.4.4 Stateful Web services in IBM WebSphere studio 70

4.5 Prevalence of stateful Web services ... 71

4.6 Summary .. 71

Chapter 5 – Modelling Stateful Web Services with Stream X-
Machines ... 73

5.1 Two service examples: Bank Account and Supply Order 74

5.1.1 Bank Account ... 74
5.1.2 Supply Order .. 75

5.2 State-based formalisms and Web service modelling 76

5.2.1 Finite State Machines ... 77
5.2.2 Extended Finite State Machines ... 80
5.2.3 Stream X-Machines .. 80

5.3 Background on Stream X-Machines .. 82

5.3.1 The Stream X-Machine formalism ... 82
5.3.2 Other properties of stream X-machines .. 84
5.3.3 Other variants ... 84

5.4 Correspondence between Web service elements and SXM elements 85

5.4.1 SXM inputs ... 85
5.4.2 SXM outputs ... 87

Table of Contents iii

5.4.3 SXM states and memory .. 87
5.4.4 SXM transitions ... 88
5.4.5 SXM processing functions ... 88

5.5 Modelling practices in the Web services domain 89

5.5.1 Modelling individual stateful objects ... 90
5.5.2 Other abstraction techniques .. 92
5.5.3 Modelling large data repositories ... 95
5.5.4 Specifying sample input values .. 97

5.6 Deriving a stream X-machine model from IOPE specifications 99

5.7 Controllability and completeness of specifications 100

5.7.1 Controllability .. 100
5.7.2 Completeness ... 101

5.8 Nondeterminism ... 103

5.8.1 Nondeterminism of implementations and specifications 103
5.8.2 Shared-state Web services and nondeterminism 106

5.9 Summary .. 106

Chapter 6 – Notation and Examples ... 108

6.1 Notation for defining stream X-machine models 108

6.1.1 XMDL .. 108
6.1.2 FLAME .. 109
6.1.3 JSXM ... 110
6.1.4 Adopted notation .. 112

6.2 Examples .. 113

6.2.1 The Account example .. 113
6.2.2 The SupplyOrder example ... 115

6.3 Summary .. 120

Chapter 7 – Testing Web Services Modelled as Stream X-
Machines ... 121

7.1 The Stream X-Machine integration testing method (SXMT) 122

7.1.1 Theoretical basis .. 122
7.1.2 Derivation of sequences of processing functions 123
7.1.3 Derivation of sequences of test inputs ... 124
7.1.4 Test case generation for non-controllable and partially-specified
specifications .. 125

7.2 Test case execution .. 127

7.2.1 Overall process ... 127
7.2.2 Derivation of expected outputs .. 127

7.3 Examples .. 128

7.3.1 The Account example .. 128
7.3.2 The SupplyOrder example ... 130

7.4 Equivalence versus conformance testing ... 132

7.5 Error outputs and negative testing.. 135

7.5.1 Outputs, error responses and faults .. 135
7.5.2 Negative testing .. 136

iv Table of Contents

7.6 Testing considerations in the Web services domain 138

7.6.1 Message Exchange Patterns of Web services under test 138
7.6.2 The need for a sandbox (test) interface .. 139
7.6.3 Services with undesirable side effects .. 139
7.6.4 Resetting the WSUT to the initial state .. 140

7.7 Finding faults .. 141

7.7.1 Evaluation of test cases through manual injection of control flow faults
 142
7.7.2 Test cases evaluation through manual injection of individual processing
function faults ... 148
7.7.3 Test cases evaluation through automated mutation testing 149
7.7.4 Effectiveness of test cases when design-for-test conditions are not
satisfied ... 151

7.8 Summary .. 152

Part C – Approach for Run-Time Testing of Third-Party Web Services 153

Chapter 8 – Distributed Approach for Verification and Validation
of Services in a SOA Environment ... 155

8.1 The big picture .. 155

8.1.1 The service provider perspective .. 156
8.1.2 The service broker perspective ... 156
8.1.3 The service requester perspective ... 157

8.2 Benefits of including SXM specifications in service descriptons 158

8.3 Testing scenarios .. 158

8.4 Discussion .. 158

8.5 Summary .. 159

Chapter 9 – Technical Approach for Testable Web Services with
Stream X-Machines .. 160

9.1 Bridging the abstraction gap ... 161

9.1.1 Adaptation versus transformation .. 162
9.1.2 Adaptation .. 163
9.1.3 Transformation, lowering and lifting ... 164
9.1.4 Patterns of mismatch .. 164

9.2 SAWSDL annotation mechanisms ... 165

9.2.1 Augmenting WSDL with the JSXM specification 167
9.2.2 Annotations for grounding ... 167
9.2.3 Schema mapping examples .. 170

9.3 Runtime mapping mechanisms .. 172

9.3.1 Correspondence between Web service and JSXM inputs and outputs
 173
9.3.2 Extracting the schema mappings .. 175
9.3.3 Mapping types .. 176
9.3.4 Dispatching approach ... 176

9.4 Handling the Constant Field Pattern and Manager Pattern 177

9.4.1 Constant Field Pattern .. 178

Table of Contents v

9.4.2 Manager Pattern ... 179

9.5 Summary .. 180

Chapter 10 – Toolset for Automated Testing of Web Services
Modelled as SXM .. 181

10.1 Test case execution toolset ... 181

10.2 Review on available tools and libraries for writing Web service tools .. 182

10.3 Used tools/APIs: .. 182

10.4 Summary .. 185

Chapter 11 – Conclusions and Future Work 186

11.1 Summary of findings .. 186

11.2 In support of the initial aims .. 187

11.2.1 Formal verification and testing of stateful Web services with stream
X-machines .. 187
11.2.2 Feasibility of testing third-party Web services 188
11.2.3 Degree of test automation .. 189
11.2.4 Tool support ... 190

11.3 Future work .. 190

11.3.1 Testing individual processing functions .. 190
11.3.2 Nondeterministic Web services and specifications 191
11.3.3 Testing service compositions ... 191
11.3.4 Editor and graphical modelling tool for JSXM specifications 192
11.3.5 Graphical tool for SAWSDL annotations and mappings 192

11.4 List of Publications by the Author ... 192

Glossary and Acronyms ... 195

References ... 197

vi Table of Contents

Table of Figures

Figure 1 - Elements of the basic Web services framework 12

Figure 2 - Structure of a SOAP Envelope; notice that the business logic information
is carried in the Body payload .. 14

Figure 3 - Conceptual UML-based representation of the contents of a WSDL 1.1
document .. 16

Figure 4 - Top concepts defined by the WSMO ontology [27] 29

Figure 5 - The three OWL-S sub-ontologies [28] .. 31

Figure 6 – Different variations of testing (Tretmans 2004 [33]) 38

Figure 7 - State duration for different types of state .. 57

Figure 8 – Structure of internal state typically maintained by a multi-user Web
service ... 58

Figure 9 - State identification by a client filters the state that is accessible by
operation calls. Identification can also be performed in steps: client identification,
and then object identification. .. 59

Figure 10 – Identification information can be supplied in three different layers of
service requests ... 61

Figure 11 - Sessions store state in the server machine, while cookies, stored in the
client machine, identify that state ... 62

Figure 12 - Web service state is heterogeneous and varies along several dimensions,
projected as axes in a five-dimensional space .. 65

Figure 13 - The Axis2 context hierarchy [75] .. 69

Figure 14 – Deterministic FSM model of a simplified Bank Account 78

Figure 15 – Nondeterministic FSM model of the simplified Bank Account 79

Figure 16 - State-transition diagram of the Account SXM 88

Figure 17 – Three different views adopted by the specifications of a SupplyOrder
Web service with authentication functionality ... 91

Figure 18 – Extract of the tree representation of the XML contents of a complex
SOAP request message to the UPS Shipping Web service [58] 94

Figure 19 – Partially specified Account SXM ... 102

Figure 20 – Completely defined Account SXM ... 102

Figure 21 - State-transition diagram of a nondeterministic SXM specification
modelling a stateful SupplyOrder Web service with inventory lookup. Notice the
extra transitions labelled by function "itemUnavailable". 105

Figure 22 - Parts of a JSXM definition of a processing function and generated Java
code .. 111

Figure 23 – State-transition diagram of the SupplyOrder SXM 115

Table of Contents vii

Figure 24 - Java implementation of Web service operation "deposit", illustrating the
operation predicates. The shaded area is the implementation of processing function
“deposit” ... 137

Figure 25 - State-transition diagram of a SupplyOrder implementation with
erroneous next state fault ... 143

Figure 26 - JUnit execution results on the implementation with erroneous next sate
fault .. 143

Figure 27 - SupplyOrder implementation with erroneous transition label 144

Figure 28 - SupplyOrder implementation with missing transition 145

Figure 29 - SupplyOrder implementation with an extra transition fault 145

Figure 30 - SupplyOrder implementation with a missing state fault 146

Figure 31 - Two examples of faulty Web service implementations with one extra
state: a) revealed by test sets for k = 1 and b) not revealed by test sets for k = 1 .. 147

Figure 32 - Running the JUnit test sets for values of k between 0 and 2 on an order
of maximum capacity of three items. The fault is revealed for k = 2 that derives
sequences of four adjacent “addOrderLine” functions. ... 148

Figure 33 - Verification and validation approach of third-party Web services in a
SOA environment .. 156

Figure 34 - Validation and verification paths .. 159

Figure 35 - Three approaches to bridging the abstraction gap (adopted from Utting
and Legeard [34]) ... 162

Figure 36 - SAWSDL annotations of the SupplyOrder WSDL file with model
references and schema mappings ... 166

Figure 37 - Schema mapping languages for semantic RDF data versus schema
mappings for JSXM inputs and outputs ... 168

Figure 38 - Contents of a Web service fault message .. 169

Figure 39 – Conventions for correspondence at the instance level between JSXM
inputs and SOAP requests .. 174

Figure 40 – Convention for correspondence at the instance level between SOAP
responses and JSXM outputs ... 175

Figure 41 - Transformation approach for executing test cases 183

Figure 42 - Extension of the FUSION Semantic Registry with service verification
capabilities ... 185

viii Table of Contents

Table of Tables

Table 1 - Correspondence between stream X-machine and Web service elements . 89

Table 2 - Versions of SupplyOrder Web service specification and implementation
 .. 119

Table 3 - Combinations of SXM specification and implementation according to
their determinism .. 135

Table 4 - Comparison of mutation testing tools ... 149

Table 5 - List of publications by the author and relationship to contributions 192

Chapter 1 – Introduction

1.1 Motivation

Service-oriented computing is an emerging paradigm for distributed computing that
is changing the way software applications are architected, realised, delivered, and
consumed. The term Service-Oriented Architecture (SOA1) refers to a software
architecture perspective where nodes on a network make computational resources
available to other network nodes in the form of services. Services are self-
contained, autonomous, highly reusable software components with programmatic
interfaces that can be described, discovered and used independently of their
underlying platform, implementation language, or software vendor. The prevailing
approach for realising SOA today is through Web services, primarily due to the way
in which Web services naturally implement the SOA philosophy of loose coupling
and reusability. Web services also promote interoperability by adopting widely
accepted standards like WSDL, SOAP, and UDDI.

Web services can be offered within organisational borders in private SOA
deployments, as well as across organisational borders by third party providers.
Recent years have seen an increasing number of Web services made available over
the Web by various providers. As a consequence, the issues of trust and
dependability on third-party providers have been receiving increasing importance.
Service requestors need to ensure that provided Web services satisfy their
requirements in different aspects and that they have also been correctly
implemented, before integrating them into their systems.

One problem with the current standard for Web service description (WSDL) is that
it lacks support for descriptions beyond the external interface of operation
signatures. WSDL descriptions lack the means to specify the functionality of a Web
service, so that requestors are aware of the exact behaviour expected from the
consumed service. Therefore, different standards or languages are required to
describe the additional functional and non-functional Web service aspects,
including its behaviour.

Besides the need to know more about Web services functionality, it is also
necessary to build confidence that they correctly implement that functionality. In

1 Used acronyms are also defined in the end of this thesis report for quick reference.

2 Introduction

other words, service requestors should be able to verify that a Web service
implementation complies with its intended behaviour described in its specification.
A common technique for performing verification of systems is through testing. As
with all types of software artefacts, testing is an integral component of the Web
services development lifecycle. However, owing to distinctive characteristics that
Web services possess, such as reusability, composability, and substitutability, but
also key challenges like trustworthiness and interoperability, testing is indispensable
for post-development lifecycle phases as well. In addition, users of Web services
offered by third-party providers do not have access on their implementation, given
that services are used rather than owned. Therefore, verifying third-party Web
services introduces new problems to overcome, since there is a lack of information
regarding their behaviour and the tester has no control on their implementation.

As a result, the research work described in this thesis focuses on the possibility of
functional testing of Web services, especially ones offered by third parties for
which testing must be performed at runtime and in a black-box manner. This work
aims towards automation of Web services testing so that requestors or third-party
certification authorities are capable of verifying their correctness with accuracy and
reasonable effort. Furthermore, it is imperative for testing to be systematic and
proven in its ability to reveal possible Web service faults.

Under these circumstances, this work makes use of formal methods to specify the
intended behaviour of Web services. Formal specifications have the important
advantage of being precise, consistent and unambiguous, owing to their
mathematical basis. As a result, formal specifications are suitable for automated
testing since they can be processed by means of automated tools and algorithms
with sound theoretical foundations. The well-studied stream X-machine (SXM)
formalism has been adopted in this thesis, since it is demonstrated to be intuitive
and efficient in modelling both the dynamic behaviour and static data of Web
services. Furthermore, a powerful testing method applicable to SXMs is capable of
deriving test sets, which can prove the correctness of the implementation.

The task of creating a formal behavioural specification of a Web service under test
is especially difficult due to the extra complexity that originates from their internal
state. In Web services persisting state between invocations, the outcomes of calling
the service depend on state, besides the provided request messages. As this thesis
will present, state is prevalent in most nontrivial Web services, thus it has to be
taken into account during the tasks of specification and subsequent testing.

Taking advantage of the capability of Web services to be self-described, this work
proposes to enhance their WSDL descriptions with the inclusion of formal SXM
models that explicate their internal behaviour. In this manner, third-party Web
services are able to advertise their functionality, overcoming the limitation of
WSDL descriptions to declare functional aspects besides the external service
interface. More importantly, the supplied SXM specification can be utilised by any
interested requestors to generate test sets that can verify the correctness of the

Introduction 3

implementation. Thus they are aware of the internal behaviour of Web service
operations, and are assured that they have been correctly implemented in the service
that is about to be integrated in their systems.

As it will be explained in this thesis, executing the derived test sets on the third-
party Web service under test is in reality more complex. The specification
represents an abstraction on the Web service under test in several aspects. Thus, the
generated tests have to be grounded to the same level of abstraction as the Web
service. The work in this thesis aims to tackle this problem by requiring the service
provider also to supply additional information that specifies mappings between
abstract and concrete inputs/outputs. Having these descriptions available, Web
services also possess the desirable property of being testable, since requestors are
capable of automatically executing test sets on third-party Web services.

The following sections present the aims and objectives for the work described in
this thesis, a summary of contributions, and a synopsis of the rest of the thesis
report.

1.2 Aims and objectives

1.2.1 Aims

I. Examine methods and unique challenges in verification and testing of
stateful Web services.

II. Investigate the feasibility of testing third-party Web services, for which
implementation is unavailable and testing is black-box.

III. Investigate the degree to which testing of third-party Web services can be
systematic and automated.

1.2.2 Theoretical objectives

TH01. Investigate the occurrence of state in Web services and its characteristics.

TH02. Classify Web services according to their state and resulting behaviour.

TH03. Investigate modelling and testing requirements for each category

a. What kind of formalism and expressive power is required

b. What testing strategy and coverage is adequate

TH04. Perform a review of different testing methods and related work on testing
and verification of Web services.

TH05. Propose methods and best practices for specifying Web services as SXMs.

TH06. Devise a methodology for inferring a SXM specification of a Web service.

TH07. Examine the feasibility of testing Web services specified as steam X-
machines by application of SXM-based testing methods.

4 Introduction

TH08. Propose technical solutions for accomplishing testable third-party Web
services which can be tested automatically by interested parties.

TH09. Provide methods and derive patterns for grounding the specification of a
Web service to its implementation in order to execute derived test sets on
services.

1.2.3 Technical objectives

TE01. Design an architecture to support the different activities in model-based
testing of Web services

TE02. Implement a toolset according to the architecture

TE03. Provide facilities for:

TE04. The modeller to create a formal specification of service behaviour and
augment it to the WSDL description

TE05. The certification authority/tester to utilize the formal model and test the
service

1.2.4 Experimental objectives

E01. Find a set of motivational Web service examples, mainly mock-up, but
also at least one real to demonstrate the described techniques.

E02. Evaluate the SXM-based testing approach on the Web service examples
and demonstrate its ability to reveal various kinds of faults.

1.3 Contribution of this thesis

This section briefly lists the contributions of this work to be used as guidance for
reading the rest of the chapters. Those contributions are summarised as follows:

C1. The study of stateful Web services and service state, a classification of
stateful Web services based on state, as well as the implications to
specifying and testing such services;

C2. The analysis of the suitability of state-based formalisms for specifying the
behaviour of stateful services, with a focus on stream X-machines;

C3. The investigation of the correspondence between SXMs and Web services, a
list of best practices for Web service modelling and abstraction, as well as a
method for SXM derivation from IOPE-based descriptions;

C4. The investigation of unique testing challenges for third-party Web services;

C5. Evaluation of produced test sets with faulty implementations and mutation
tools.

C6. The approach for collaborative validation and verification of third-party
Web services, with a focus on testing;

Introduction 5

C7. The technical framework for standards-based specification of testable third-
party Web services, towards automated test case generation and automated
test case execution;

C8. The proposal for bridging the abstraction gap between the concrete Web
service implementation and its abstract specification during test cases
execution through the definition of schema mappings and patterns;

C9. The architecture and the toolset that support the above ideas;

C10. The set of demonstrative examples.

1.4 Thesis outline

This thesis is logically divided into three main parts. The first part presents a
selected overview of the area of Service Oriented Computing and surveys related
work on testing and verification of Web services. The second part focuses on
specification and testing of stateful Web services using the stream X-machine
formalism. The third part describes the application of SXM-based modelling and
testing to third-party Web services, both from a theoretical and from a technical
perspective, including a description of the developed testing tool.

The summarised contents of each chapter are as follows:

Chapter 2 is a selected overview of the field of Service Oriented Computing. It
describes Web services, the first-generation standards of SOAP, WSDL, and UDDI,
as well as more advanced topics, such as WS-* extensions, message exchange
patterns, message bindings, and finally XML query and transformation languages.
Then, this chapter reviews current proposals for addressing the description of Web
services beyond the capabilities offered by WSDL, such as describing stateful
resources and conversation protocols. Next, semantic Web services and selected
frameworks are reviewed and in the end the topic of Web service composition
through orchestration and choreography is briefly described.

Chapter 3 provides a brief theoretical background on the topics of verification,
validation, and testing. Then it proceeds with a review of existing work that
addresses testing and verification of Web service compositions and individual Web
services.

Chapter 4 describes stateful Web services and disambiguates the concepts of
service state and behaviour. Next, the characteristics and variation of service state
are described, including a treatment of state scope, identification and duration. In
addition, Web services are classified with respect to state and behaviour into a few
practical categories, along with the implications for specification and testing of each
category. This chapter concludes with a presentation of techniques for
implementing stateful Web services in some of the prevailing Web service
frameworks.

6 Introduction

Chapter 5 addresses specification of stateful Web services using SXMs. It
introduces two Web service examples to be used for illustration throughout the rest
of the thesis. This chapter follows with a theoretical background on stream X-
machines. Also, it compares three state-based formalisms with one another: FSMs,
EFSMs, and defends the choice of SXMs for specifying Web service behaviour and
data. Next, in order to provide modelling insight, parallels are drawn between the
SXM elements and their Web service counterparts. This chapter further describes
modelling practices in the domain of Web services, tackling various problems and
unique service characteristics. Derivation of SXM models from IOPE descriptions
of service operations is also presented here. In addition, specific SXM properties,
such as controllability and completeness of specification are critically investigated.
In addition, the notion of nondeterminism referring to Web services and SXM
specifications is discussed.

Chapter 6 continues the discussion from the previous chapter with a presentation of
the JSXM notation adopted to describe SXMs. This notation is contrasted with the
alternative XMDL notation. Also, the two illustrative examples of Account and
ShippingOrder are specified in this chapter using the JSXM notation.

Chapter 7 focuses on the application of SXM testing methods to derive test sets for
Web services. It describes the theory for derivation of sequences, test inputs, and
expected outputs from a SXM specification. Test set derivation is critically
illustrated with the SXM specifications of the two Web service examples, which do
not satisfy the design-for-test conditions and are partially-specified. A number of
unique testing considerations in the domain of Web services are also explored along
with proposed solutions. The chapter concludes with the description of some
experiments intended to evaluate the test sets derived earlier to reveal various faults,
such as control flow faults and ones introduced by mutation tools.

The techniques described in chapters 5, 6 and 7 can be applied in any context, such
as by the provider during development time. On the other hand Chapter 8
specifically addresses testing of third-party Web services. It uses the idea of SXM-
based Web service specification and testing in the context of a collaborative
approach that involves the service provider, broker, and requestor. It consists of
requestor-based validation of SXM models and registry-based testing of third-party
Web services specified by SXMs.

Chapter 9 focuses in depth on the service verification part of the approach from the
previous chapter. At first, it introduces the problem of bridging the abstraction gap
between the SXM specification and the Web service implementation and presents
three alternative approaches to run the abstract test cases on the concrete WSUT.
Next, techniques are described for accomplishing the vision of testable third-party
Web services. These techniques involve service providers who perform annotations
(using the SAWSDL W3C recommendation) of WSDL descriptions with extra
information for testing, and certification authorities who utilise the extra
information to derive test sets and execute them on the WSUT.

Introduction 7

Chapter 10 describes the tool developed as part of this work in support of testing
third-party Web services, drawing from the techniques presented in chapter 9. The
tool is based on the transformation approach for bridging the abstraction gap. It
takes advantage of an existing tool for SXM-based test case generation, and other
APIs for the rest of the tasks. In particular, the tool relies on EasySAWSDL for
parsing annotations in testable Web services to extract the SXM model and the
schema mappings used during test case execution. Furthermore, the tool is
incorporated into an open-source service registry, which invokes the tool to test
Web services prior to their registration.

Chapter 11 is an important chapter that concludes the work described in this thesis.

PART A – Literature Review

 Chapter 2 – Background on Service Oriented Computing and Web
Services

 Chapter 3 – Related Work on Web Service Verification and Testing

Chapter 2 – Background on Service Oriented
Computing and Web Services

2.1 Service Oriented Computing

Service Oriented Computing (SOC) is a new computing paradigm that utilizes
services as the key abstraction to support the development of rapid, low-cost and
easy composition of distributed applications even in heterogeneous environments
[1]. Services are loosely coupled, reusable, and implementation-independent
software modules with well-defined interfaces. They can be described, published,
discovered, and dynamically assembled for developing massively distributed,
interoperable, evolvable systems. Services are provided by service providers within
or outside the boundaries of an enterprise, and consumed by service requestors.

The subject of SOC is vast and enormously complex, spanning many concepts and
technologies that find their origins in diverse disciplines that are woven together in
an intricate manner [1]. The material in research spans an immense and diverse
spectrum of literature, in origin and in character. As a result research activities at
both worldwide as well as at European level are very fragmented.

Central to SOC is the concept of Service Oriented Architecture (SOA), which is a
technology-agnostic architectural style for organizing distributed applications with
services. SOA promotes the concepts of alignment between the problem domain
and IT by raising the level of abstraction of the fundamental units (services) to the
business level. Multiple patterns that define design, implementation, and
deployment of the SOA solutions, complete this architectural style [2]. A number of
technology alternatives for realizing SOA are available, of which the most popular
is the Web services framework. Two other less widespread service oriented
technologies are the Grid services and P2P services.

SOA allow flexible integration of heterogeneous systems in a variety of domains
including business-to-consumer, business-to-business and enterprise application
integration (EAI).

12 Service Oriented Computing and Web Services

2.2 Web services

Currently, Web services are the dominant implementation alternative for SOA. The
basic Web services framework consists of three areas: communication protocol,
service description, and service discovery, all of which are specified by open
standards. The standard for communication between requestor and provider is the
Simple Object Access Protocol (SOAP) [3], the standard for Web service
description is the Web Services Description Language (WSDL) [4], and the
standard for Web service discovery in service registries is the Universal Description
Discovery and Integration (UDDI) [5], [6]. All of these standards build upon the
XML language, also defined by W3C. Interaction between the three main
participants that are involved, that is, service requestors, service providers, and
service brokers, occurs as follows. Service requestors2 discover Web services in a
UDDI service registry maintained by service brokers. They retrieve WSDL
descriptions of Web services offered by service providers, who previously
published those WSDL descriptions in the UDDI registry. After the WSDL has
been retrieved, the service requestor binds to the service providers by invoking the
service through SOAP. These activities and the involved standards are illustrated in
Figure 1.

Figure 1 - Elements of the basic Web services framework

Since Web services rely on open and widely-used standards (SOAP, XML, HTTP,
URL), they have a high potential to achieve integration of heterogeneous systems,
within or across the borders of enterprises. Their long term goal is to provide the
infrastructure for plug-and-play and ubiquitous computing [7].

2 The terms “requestor”, “client”, and “consumer” are used interchangeably in the rest of this thesis
to refer to the same SOA participant.

Service Oriented Computing and Web Services 13

Due to the prevalence of the Web services framework in the implementation of
services, contemporary SOA has become intrinsically reliant on Web services [8].
Web services concepts and technology used to actualise service-orientation have
continuously shaped this paradigm. Therefore, the terms “service” and “Web
service” are almost used interchangeably in this thesis: a Web service is a kind of
service, and vice versa, by service we usually mean a Web service.

The following three subsections describe the first-generation Web service standards
in more detail. The later subsections briefly describe more advanced topics, such as
WS-* extensions, message exchange patterns, message bindings, and finally, query
and transformation languages operating on XML.

2.2.1 Web Services Communication - SOAP

Web services interact with service requestors and one another by exchanging XML
messages over a network. The protocol that governs the exchange and structure of
exchanged messages is the Simple Object Access Protocol (SOAP) [3]. The
specification of SOAP is currently in version 1.2, which became a W3C
Recommendation in 2003 [3]. The SOAP acronym should not be confused with
SOA (Service-Oriented Architecture), described previously, which stand for a
different concept.

SOAP ensures that the message format and the transport protocol are standard, so
that services of heterogeneous implementations can communicate with each other.
Exchanged XML messages are structured into SOAP envelopes. SOAP envelopes
sent as inputs to Web services are known as request messages, while SOAP
envelopes produced as outputs by Web services are known as response messages.
The structure of a SOAP envelope in terms of its high-level contents is illustrated in
Figure 2.

14 Service Oriented Computing and Web Services

Figure 2 - Structure of a SOAP Envelope; notice that the business logic information is

carried in the Body payload

Each SOAP envelope contains two main parts: the header and the body. The header
is optional, that is, it may or may not be present in the message contents. The header
area is dedicated to carrying meta information about the message, which can be
structured into several header blocks. Usually, each header block holds information
for a corresponding WS-* extensions protocol, such as WS-Security or WS-
Addressing (explained later). On the other hand, the SOAP body is the actual XML
message being conveyed. It represents the message payload and is mandatory in
every envelope. Usually this is the only part of the message that is consulted by the
business logic implementation in the service and in the requestor.

As a communication protocol, SOAP ignores the semantics of the messages it
transports. Thus, SOAP does not prescribe any further structuring of the header
blocks and the body payload. Nevertheless, one additional factor, known as the
binding (see next section on WSDL), is taken into consideration as the final XML
message is constructed or interpreted. Overall, the binding tells the SOAP processor
whether to follow a document-style or an RPC-style approach. The different
possibilities for the binding are explained in further detail in section 2.2.5, Message
Styles.

It is important to notice that a SOAP envelope does not represent all the possible
information that can be communicated between a requestor and a service. Since
SOAP envelopes are transported by a lower level protocol (usually HTTP), they are
associated by additional meta information in the headers of that protocol. As an
example, HTTP headers can be used to carry identification information as part of
cookies in order to manage stateful sessions (section 4.3.4). In addition, the HTTP
headers of request messages can contain information necessary for dispatching the
message to the correct operation of the Web service, which may not be available

Service Oriented Computing and Web Services 15

from the carried SOAP envelope. This information is specified in the SOAPAction
HTTP header, and unless consulted by the recipient, message delivery might fail.
An important implication of including additional information in the transport
protocol headers is that SOAP envelopes alone are not always the analogues of
service inputs and outputs. This fact is taken into consideration in section 9 for the
concretisation of abstract inputs to request messages.

2.2.2 Web Services Description – WSDL

An essential characteristic of services, which enables loose coupling, is that they
can be described. For this purpose, description documents are required to
accompany Web services so that they can be used by prospective requestors. These
description documents are written in an XML-based language, called the Web
Services Description Language, or WSDL [4]. The first version of the specification
was WSDL 1.03, developed in September 2000, and later revised to version 1.1 in
March 2001, without any significant changes. The next and current version, WSDL
2.0, introduced major changes to WSDL 1.1 and became a W3C recommendation in
June 2007.

The main role of a WSDL document is to describe the interface of the Web service.
In addition to the interface, WSDL also includes additional details for accessing the
service, which are required in the absence of a common middleware platform [9].
As a result, a WSDL service description is organized into two major parts: the
abstract part, and the concrete part. The abstract part describes the interface
characteristics of the Web service, without any reference to protocol binding or
hosting details for accessing the service, which constitute the concrete part.

Both the abstract and concrete description elements and their relationships are
conceptually depicted in Figure 3 in a UML class diagram fashion. The WSDL
version is 1.1, while the changes introduced in WSDL 2.0 will be described further
below.

3 The D in the acronym stood for Definition, which was changed to Description in WSDL version
2.0.

16 Service Oriented Computing and Web Services

Figure 3 - Conceptual UML-based representation of the contents of a WSDL 1.1

document

The core element of the abstract description is the port type, which represents a
logical collection of related operations. Each operation represents a specific action
and is defined as a simple exchange of messages (as described further below in
Message Exchange Patterns). Messages are the basic unit of communication with a
Web service and in WSDL they can be defined as input or output messages, as well
as fault messages in cases of operation failures. In turn, every message definition
consists of one or more message parts. At this point, to further specify the structure
of a message part, XML Schema (XSD) definitions are employed, either inline with
the WSDL document or referenced in an external document [10]. The definition of
the message part may refer to either an XSD element or an XSD type in the XML
Schema. XSD types can be either predefined primitive types (e.g. integers,
booleans, etc) or user-defined (either simpleType or complexType).

The concrete part of a WSDL description specifies how to access and invoke a Web
service. It consists of three constructs: the binding, the port and the service. A
binding specifies the message encoding and protocol bindings for all operations and
messages defined in a port type. Thus, the binding can be considered as an
implementation of an abstract port type, with several different bindings potentially
reusing the same port type. For example, a binding specifies the messaging style

Service Oriented Computing and Web Services 17

(document or RPC) and encoding rules for serializing WSDL message definitions to
SOAP messages. Also a binding defines the transport protocol (e.g. HTTP or
SMTP) to use for carrying SOAP messages.

The port construct, also known as an endpoint, specifies the physical address (as a
URI) over which a binding is made available. Decoupling the port from the binding
makes it possible for several ports to reuse the same binding, especially to increase
service reliability and to balance load. Finally, a service in WSDL is defined as a
logical grouping of related ports.

WSDL version 2.0 brings in some substantial changes to the WSDL 1.1
specification described above, in both syntactical and semantical terms [11].
Notably, WSDL 2.0 eliminates the message construct (hence, message parts) from
the abstract description of the interface. Consequently, operation inputs and outputs
refer directly to XML Schema global elements or types, rather than to message
definitions. As a result, the abstract description of WSDL is simplified significantly.
Moreover, the definition of message types is decoupled from the WSDL language
and left entirely to the XML Schema. Another change in WSDL 2.0 is that
operations do not support operator overloading. Finally, some syntactical changes
are introduced, including the renaming of the root element “definitions” to
“description” (hence the change in the meaning of the letter D in WSDL), the
renaming of “portType” to “interface”, and the renaming of “port” to “endpoint”.

One interesting thing to note here is that from the real-world Web services we have
investigated so far (such as Google, Amazon, UPS, Paypal, OneAPI, and other
services), the WSDL version 1.1 seems to be quite more popular and ubiquitous
than WSDL 2.0. This may be due to the fact that, as of the date of this writing (July
2011), the WS-I Basic Profile (see below) does not yet address WSDL version 2.0
[12]. Moreover, a number of the Web service platforms and tools, which aim to be
WS-I compliant, do not yet support WSDL 2.0 descriptions. Given these
observations, it will be assumed in the rest of this thesis that WSDL documents are
described in version 1.1. Nevertheless, this is not a restriction on the version of
WSDL expected from service implementations, rather than an assumption for
demonstration purposes. The described techniques are expected to be equally
applicable to WSDL 2.0, unless stated otherwise.

2.2.3 Web Services Discovery - UDDI

Another important characteristic of services is the ability to advertise and discover
them in service registries. Registries are especially beneficial when the amount of
services increases within and outside organisational boundaries. There are two types
of service registries: private and public. Private registries are implemented within
organizational boundaries to keep track of all services maintained by the
organization in private SOA deployments. On the other hand, public registries serve
to register services provided by any organizations (third-party services) as well as
the organisations themselves.

18 Service Oriented Computing and Web Services

In the Web services framework, the specification for service publication and
discovery is the Universal Description Discovery and Integration (UDDI) [5], [6].
UDDI is an OASIS4 standard that defines data structures and APIs for publishing
business entities and service descriptions to the registry and for querying the
registry for published descriptions. The defined data structures are businessEntity,
businessService, bindingTemplate, and tModel [6]. Eeach businessEntity record in
the registry contains basic profile information about an organisation acting as a
service provider. This record also consists of several businessServices each of
which describes abstract services offered by the business entity. In a similar fashion
to WSDL, UDDI separates binding information from the abstract descriptions.
Therefore, the technical information necessary to use a particular Web service is
stored separately in bindingTemplates. Each businessService can reference one or
more bindingTemplates. The information in a bindingTemplate may or may not
refer to an actual Web service. If it does, then it references a tModel (short for
technical model). The tModel finally provides pointers to actual service
descriptions, and optionally, additional informal descriptions of what the service
does.

In addition to the above data structures, UDDI also specifies APIs for three different
types of registry users: service providers that publish services, service requestors
that look for services, and other registries that need to share information. Two of the
most important UDDI APIs are the Inquiry API and the Publishers API [5].
Interaction with UDDI APIs takes place through the exchange of SOAP messages,
therefore UDDI registries are themselves made available as Web services.

Nevertheless, registries implementing UDDI lack the means for supporting
automated service discovery. The main reason is that indexing and retrieval in
UDDI is simply based on informal textual descriptions that can be retrieved through
keyword-based search. Instead, automated service discovery requires unambiguous
and machine-processable representations of Web service capabilities. Considerable
research has been performed to overcome this problem with semantically-enhanced
UDDI registries. An example of such a registry, which will be considered later on in
this thesis, is the open source FUSION Semantic Registry, which offers
semantically-enhanced publication and discovery functionalities [13].

2.2.4 WS-* Extensions and the WS-I Basic Profile

The first-generation Web services framework, consisting of SOAP, WSDL, and
UDDI, has been extended with further specifications to address new features. Some
of these specifications are relatively established including: WS-Security, WS-
Addressing, WS-Coordination, WS-Transaction, WS-Policy, and many others. WS-
Security, for example, defines how to use XML Encryption and XML Signature in
SOAP to secure message exchanges, as an alternative or extension to using HTTPS
to secure the channel. These extensions are collectively referred to as WS-*, or

4 http://www.oasis-open.org/

Service Oriented Computing and Web Services 19

second-generation Web services specifications [8]. Some of the WS-* extensions
aim to address the limitations of WSDL in describing certain service characteristics,
as will be described in section 2.2.7 – Service descriptions beyond WSDL.

Given the number of available Web service specifications, their complexity, and the
different ways in which they can be implemented, it is still a challenging goal to
achieve interoperability among Web services from different providers and
platforms. Consequently, a well-defined collection of the available standards should
be agreed upon to form an interoperable architecture. The Web Services
Interoperability Organisation (WS-I)5 has taken on the task to define a specification
for Web services interoperability with their WS-I Basic Profile or WSI-BP [12]. The
latest version of this specification is 2.0, which has been finalized in November
2010 [12]. This version proposes that organisations standardise on the following
specifications:

 WSDL 1.1

 SOAP 1.2

 UDDI 2.04 API Specification

 XML 1.0

 XML Schema 1.0

 WS-Addressing 1.0

In addition to recommending the specification versions for interoperability, the
basic profile also prescribes how the different features of those specifications
should or should not be implemented. For instance, WSI-BP 2.0 requires compliant
Web services to use only the document-literal and RPC-literal binding styles, and
document-literal messages to contain only one message part (further described in
section 2.2.5 - Message Styles).

Most of the prevailing Web service infrastructures, such as Apache Axis, IBM
WebSphere, Oracle Weblogic, and Glassfish Metro, aim to be compliant with this
profile, since it guarantees a level of industry-wide conformance.

2.2.5 Message Exchange Patterns

WSDL defines ways to organize message exchanges into operations, through what
are known as message exchange patterns, or MEPs. The MEP of an operation is
defined in WSDL by the appearance and order of the input and output elements
within a WSDL operation definition.

The specification of WSDL 1.1 defines four different message exchange patterns
[14]:

 request-response;

 solicit-response;

 one-way;

5 http://www.ws-i.org/

20 Service Oriented Computing and Web Services

 notification.

The request-response is the most common MEP among Web services and
distributed application environments in general. An operation following this MEP
accepts a message from the requestor and responds back with a normal or fault
message. The solicit-response MEP is the reverse of request-response: after
submitting a message, the operation expects a normal or fault message. An
operation specified with the one-way MEP expects a single message and does not
have to respond. Finally, an operation specified with the notification MEP sends a
message and expects no response.

The above MEPs are primitive, single-operation, patterns that do not encompass
multiple-operation sequences of more than two messages. Defining more complex
and longer sequences of message exchanges requires specification languages or
modelling notations beyond WSDL.

2.2.6 Message styles: Document- versus RPC-style Web services

A service requestor must be able to successfully communicate with a Web service
based solely on its WSDL description. This means that the requestor must
eventually derive SOAP request messages in order to invoke Web service
operations, and know the expected structure of SOAP response messages in order to
process them. Although the port type in the abstract WSDL description defines Web
service operations, messages, and their types, it is still not adequate to derive SOAP
messages. Translation of abstract WSDL messages to SOAP messages further
depends on the bindings defined in the concrete WSDL description. Therefore,
continuing the previous discussion on SOAP, this section looks further into how the
SOAP body payload is structured and represented, thus clarifying the
correspondence between WSDL and SOAP messages.

The WSDL binding definition consists of two attributes, style and use. The binding
style can be either RPC (standing for Remote Procedure Call) or document style. In
addition, a SOAP binding can have either literal or encoded use. Document style
Web services support embedding entire XML documents within the SOAP body.
On the other hand, RPC Web services mirror traditional RPC communication and
therefore support parameter type data [8]. It is important to notice that the RPC
binding style must not be confused with the traditional RPC programming model; it
is simply one way to translate a WSDL binding to a SOAP message. The use
attribute indicates the type system used in the message. The “literal” use states that
XSD data types in WSDL will be directly used to represent the XML content of
messages. On the other hand, the “encoded” use dictates that SOAP encoding rules
defined as part of the SOAP specification [3] will be applied.

The style and use attributes give four possible combinations that are supported by
SOAP:

 RPC + encoded

Service Oriented Computing and Web Services 21

 RPC + literal

 document + encoded

 document + literal

Of the above binding combinations, only document-literal and RPC-literal bindings
are WSI-BP compliant, thus the other two styles with “encoded” use will not be
considered here [12]. The RPC-literal binding uses the method name as the root
element of the body payload and inserts all WSDL input message parts as children
elements. The resulting request message determines the procedure name and input
parameters of an RPC call. The advantage of the RPC style is that the operation
name appears in the message body, thus it is easier for the receiver to dispatch it to
the correct operation implementation. However, it is difficult to validate such a
message with an XML validator, since much of the body contents come from the
WSDL rather than XML Schema [15].

In the document-literal binding, WSDL message parts, which reference XSD
elements or types, are translated to entire XML documents that are embedded in the
SOAP body. The advantage of this approach is that the entire message body is
defined in XML Schema independently of WSDL, thus it can be easily validated.
Also, unlike RPC style, document-style messages do not assume any convention on
the contents and meaning of the payload elements, thus they allow XML documents
of arbitrary structure and complexity. However, the fact that document-style
messages do not include the operation name, makes dispatching more difficult or
even impossible. The WS-I Basic Profile restricts the maximum number of WSDL
message parts for document-style bindings to one. Therefore, it can be observed that
the basic profile always results in SOAP bodies with at most one root element:
RPC-style messages contain the operation name as the root element, while
document-style messages are allowed to contain only one document. Also it can be
noted that WSDL 2.0 does not allow multiple message parts since WSDL operation
inputs and outputs refer to only one XSD element or type directly.

The WSI-BP binding styles are taken into consideration later on in this thesis,
where the correspondence between abstract inputs/outputs and SOAP messages is
investigated. Nevertheless, most of the binding details are abstracted away and left
to tools that generate client implementations in accordance with the specified
WSDL bindings.

2.2.7 XPath, XQuery and XSLT

Since almost all Web service languages and specifications revolve around XML, it
is appropriate to give at this point a brief overview of the XPath, XQuery, and
XSLT languages, which operate on XML documents.

XPath [16] is a language for selecting parts of an XML document. XPath makes use
of path expressions, which resemble paths in file systems, for hierarchical
navigation of XML documents. The XML document is viewed as a tree of nodes
(e.g. element, attribute, and text nodes), so that the evaluation of an XPath

22 Service Oriented Computing and Web Services

expression on the document returns a set of nodes. In support of expressions, XPath
also provides basic facilities for manipulation of strings, numbers, and Booleans
[16]. XPath can be useful in various contexts in Web service tasks, such as in
extracting items of interest from SOAP messages. XPath also serves as a base
language upon which more elaborate languages, such as XQuery and XPath, are
built.

XQuery [17] is a language designed to build more intelligent queries on XML data
than XPath expressions. It adopts a syntax and approach similar to SQL for
databases. For example, XQuery uses FLWOR (For, Let, Where, Order by, Return)
clauses, which serve as building blocks to build queries of any complexity and
nesting level. However, unlike SQL, XQuery supports only querying of XML data
and does not handle updates to XML data. To address this issue, an extension to
XQuery, called Update Facility, has been defined as a new W3C recommendation
[18]. The Update Facility makes it possible to perform complex updates to XML
documents, such as node insertions, deletions and modifications. Nevertheless, as a
standard, the Update Facility is quite recent, has not been well-established in the
industry, and there is little support by libraries and tools.

Finally, XSLT (EXtensible Stylesheet Language Transformations) [19] is a
language used to transform an XML document (source tree) into another XML
document (result tree). XSLT defines transformations in a declarative style. In the
transformation process, XSLT uses XPath to define parts of the source document
that should match one or more predefined templates. When a match is found, XSLT
will transform the matching part of the source document into the result document
according to template rules. An XSLT processor takes two input documents, the
XML source document and the XSLT stylesheet, and produces an output document.

XSLT scripts can be used in various contexts in Web service environments, such as
in mediating between SOAP messages of incompatible schemas. Also, they can
transform between SOAP messages and service input/output representations in
other XML-based languages, as employed later on in this thesis.

2.3 Service descriptions beyond WSDL

Despite the aim of the Web Services Description Language to describe and
document Web services, it fails in specifying additional aspects, both functional and
non-functional (or QoS). Regarding functional aspects, WSDL is unable to specify
Web service behaviour beyond its external interface, expressed as a collection of
operation signatures, input/output messages, and their XSD types. As a result,
WSDL omits important aspects of Web services functional behaviour, including:

 Data accessed and/or modified by the Web service. Frequently, Web
services operate on large and complex data repositories. In many cases these
data repositories are structured into collections of data entities. For example,
a banking Web service may operate on a collection of bank accounts, each
of which is hidden behind an interface of several service operations.

Service Oriented Computing and Web Services 23

Describing the structure of these data entities and their lifecycle is important
in understanding the role and behaviour of the Web service.

 Correct and accepted sequencing of operations. Real-world Web services
often behave like interactive systems. They operate in accordance with a
conversation protocol (also called a choreography), when service operations
are invoked in sequences. Only certain sequences are accepted for proper
interoperability and for transactions to complete successfully, otherwise they
fail. For example, when buying items with a shopping cart Web service, a
requestor has first to create an empty shopping cart, and then continue
adding or removing cart items, before proceeding to checkout with a non-
empty cart. Except for message exchange patterns (MEPs) defined for single
operations, the WSDL specification does not support the definition of
complex MEPs, which span several operations.

 Mapping function from inputs to outputs. For each operation, WSDL
specifies input and output message types in XML Schema. This information
is intended for the service requestor to properly interact with the service
through request and response SOAP messages of valid XML structure.
However, beyond message type information there is no further description
about how response messages are computed from request messages, that is,
what the operation does. Instead, a human individual has to consult other,
informal, service documentation or use intuition in order to understand the
behaviour of individual operations and the service as a whole.

 Preconditions and effects on data. Web services that access and modify data
repositories consist of operations that take information from an initial
expected state (preconditions), and modify it to a post state (postconditions).
It is therefore important to specify how the information is modified, in order
to fully describe the role and behaviour of the service.

The interaction model that is directly supported by WSDL is essentially a stateless
model of request-response or uncorrelated one-way interactions. This amount of
specification is unsatisfactory in describing stateful Web services and Web services
operating on complex data structures.

There have been different attempts to address the above shortcomings of WSDL
with additional specifications, such as new WS-* extensions. This section gives an
overview of such specifications from standards organisations, such as W3C and
OASIS, which attempt to describe further functional characteristics of Web
services. The focus is on specifications that attempt to describe Web service data
and conversation protocols. It should be noted that, in addition to these standards,
service description beyond WSDL has also been addressed with what are known as
Semantic Web Services (SWS), which are the subject of the next section.

This section is divided into two parts: describing data maintained by Web services,
and describing Web service conversation protocols.

24 Service Oriented Computing and Web Services

2.3.1 Describing data maintained by Web services

It is sometimes important to describe the data structures accessed by Web services
in a standardized and consistent manner. It is also useful to specify the relationship
between Web service operations and those data structures. This promotes
interoperability between service requestors and stateful Web services. An
established standard in this direction is the Web Services Resource Framework
described below.

The Web Services Resource Framework

The Web Services Resource Framework (WSRF) is a family of specifications from
OASIS, which attempt to represent the relationships between a Web service and
data objects (stateful resources) it acts upon, in an explicit manner [20].

The framework attempts to describe those kinds of services which provide access to
or manipulate a set of stateful resources. These services are considered as having
stateful interfaces but stateless implementations, in the sense that the
implementation delegates responsibility for management of state to another
component (such as database or file system) while externally appearing stateful
[21].

The specification is founded on the concept of a stateful resource, which contains a
specific set of state data, with a well-defined lifecycle, and is acted upon by a Web
service. The combination of a Web service and a stateful resource is referred to as a
WS-Resource. WSRF defines the type of a WS-Resource in WSDL via the use of
the “resourceProperties” attribute of the WSDL portType (interface), which
references a Global Element Declaration (GED) in XML Schema. For example, the
GED for a simple bank account resource, which consists of two boolean status
attributes and an integer balance, would be defined in XML Schema and referenced
from the portType as follows:

<types>
<xs:schema>
 <xs:element name="AccountResource">
 <xs:sequence>
 <xs:element name="isOpened" type="xs:boolean">
 <xs:element name="isClosed" type="xs:boolean">
 <xs:element name="balance" type="xs:int">
 </xs:sequence>
 </xs:element>
</xs:schema>

</types>
...
<portType name="accountPortType"
 wsrp:resourceProperties="tns:AccountProperties">
...
</portType>

The Web service operations are associated with the modelled stateful resource
through the implied resource pattern. This pattern is a set of conventions that allow
messages to identify a particular stateful resource through the WS-Addressing

Service Oriented Computing and Web Services 25

protocol, in which the ResourceID identifier is supplied in the header of every
SOAP message.

WS-Resources follow a lifecycle model, incorporating the creation, use, and
destruction of the resource. A stateful resource is created through a factory
operation, which brings a new instance into existence, assigns an identifier, and
returns it with the response message. The identifier is then provided with Web
service operation invocations during the use phase, so that the implementation of
those operations can use it to identify the stateful resource to be used. To destroy
the resource, the requestor sends a destroy request message to the Web service with
the identifier, which causes the destruction of the corresponding stateful resource.

Finally, the WS-ResourceProperties specification makes it possible to read, modify,
and query the values of resource properties defined in the XML Schema GED (see
the above code listing). This is accomplished through standard message exchanges,
which should be included as WSDL operations in any portType that uses the
wsrp:ResourceProperties attribute to declare a WS-Resource properties document.
These messages should identify both the stateful resource with the ResourceID
identifier, and the particular resource property. For example to query the “balance”
property of an account stateful resource with identifier “ACC0001”, the message
exchange complying with WS-ResourceProperties should look as follows:

Request:

<soap:Envelope>
 <soap:Header>
 <tns:resourceID>ACC0001</tns:resourceID>
 </soap:Header>
 <soap:Body>
 <wsrp:GetMultipleResourceProperty>

<wsrp:ResourceProperty>
 tns:balance
</wsrp:ResourceProperty>

 </wsrp:GetMultipleResourceProperty>
 </soap:Body>
</soap:Envelope>

Response:

<soap:Envelope>
 <soap:Body>
 <wsrp:GetMultipleResourcePropertyResponse>
 <balance>1500</balance>
 </wsrp:GetMultipleResourcePropertyResponse>
 </soap:Body>
</soap:Envelope>

Similarly to the WSRF approach, in this thesis single instances of stateful resources
(objects) are modelled whenever possible (called the per-object view in section
4.3.3). However, while WSRF models only the static XML structure of stateful
resources, we also model their dynamic behaviour in terms of states, transitions, and
computed functions. In addition, no conventions are assumed on the Web service
implementation under test as the implied resource pattern does, so that more

26 Service Oriented Computing and Web Services

generality is allowed. Identifiers of stateful resources can appear anywhere in the
SOAP message (header and body), or even in HTTP headers during sessions (as
described in section 4). When identifiers are placed in the SOAP body, the modeller
is required to specify the locations of the identifiers in arbitrary places within the
XML document. Then, during test case execution, the correct stateful resource
instance is specified in request messages and driven through the different states.

2.3.2 Describing Web service conversation protocols

The need for specifying and supporting service conversation protocols has led to
many different standardization efforts, such as WS-Coordination, WS-Transaction,
and WSCL. Besides, other existing standards, such as BPEL and WS-CDL, have
been adopted in an ad-hoc manner to specify operation sequencing constraints.
Unfortunately, these specifications are not always coordinated and even competing.
The next subsections briefly overview some of them.

WS-Coordination

WS-Coordination is a second generation Web Services specification developed by
BEA Systems, IBM, and Microsoft in August 2002 [22]. It describes a generic
framework for supporting protocols that coordinate the actions of several Web
services.

First of all, WS-Coordination does not define a language for describing
coordination protocols; instead it is a meta-specification that supports other
specialised specifications for coordination (or coordination types) [9]. The
framework provides means for managing context information in long activities, and
supplying that information to multiple participating Web services. For this purpose,
the framework involves a central coordinator, which lessens the need for the
participating services to maintain any context information. Consequently, this
specification is not suitable for describing the conversation protocols of the
individual Web services.

The two most common coordination types associated with WS-Coordination are
WS-Transaction and WS-BusinessActivity. WS-Transaction defines a coordination
type to support long-running transactions among participating Web services. In
particular it ensures that the ACID (atomicity, consistency, isolation and durability)
properties are maintained, and the commit and rollback features are implemented.
On the other hand, WS-BusinessActivity defines a coordination type for long-
running, complex service activities, involving several participants that are required
to follow specific protocols. In contrast to WS-Transaction, business activity
protocols do not offer rollback capabilities. Given the potential for business
activities to be long-running (hours, days, or even weeks), it would not be realistic
to expect ACID properties to be satisfied. Instead business activity protocols
provide an optional compensation process that can be invoked when exceptions
occur [8].

Service Oriented Computing and Web Services 27

Web Services Conversation Language (WSCL)

WSCL is a W3C draft specification developed by Hewlett-Packard in March 2002,
which defines the conversation protocols supported by individual Web services
[23]. It specifies the XML messages being exchanged and the sequencing of those
messages.

The building blocks of the specification are document type descriptions,
interactions, transitions, and conversations. The document type descriptions specify
in XML Schema the types of XML payloads that are exchanged between the
requestor and the service. Interactions represent Web service operations as
document exchanges, which follow any of the primitive message exchange patterns
(MEPs) described earlier, with the exception of the initial and final interactions,
which are defined as empty interactions with no message exchanges. Transitions
link two interactions, i.e. they advance the conversation from a source interaction to
a destination interaction. Transitions can have constraints on the type of the
response message from the source interaction. However, WSCL lacks the means to
specify more complex transition constraints, which involve other factors, such as
the actual contents of previous messages or Web service internal data. In this sense,
the transitions can be nondeterministic. Finally, conversations, which are the top-
level constructs, are composed of several interactions and transitions linking
interactions.

Conversations in WSCL can be depicted as UML activity diagrams or transitions
graphs. The nodes are also called activity states, since they represent activities.
Activity diagrams are the reverse of state transition diagrams, since nodes represent
activities rather than states, while transitions represent continuation from one
activity to the next, rather than actual activities. Given that the WSCL transitions
are nondeterministic, WSCL conversations are also nondeterministic. This implies
that the set of all possible sequences in a correct WSCL conversation specification
is a superset of the set of all possible operation sequences accepted by the Web
service implementation.

WS-CDL

Although WS-CDL [24] (Web Service Choreography Description Language) is a
Web service choreography language (described in more detail further below), it has
also been leveraged to describe the dynamic protocol and conversation rules of Web
services.

In WS-CDL, the protocol between a user and a service is defined primarily in terms
of roleTypes, channels, and choreographies. A channel represents a connection
between one client and one service provider. Whenever an operation of the service
is invoked, a message, which has an informationType, is sent through the channel.

WS-CDL supports repeating same piece of information in several messages in
sequences of invocations through what are known as tokens. Tokens are referenced

28 Service Oriented Computing and Web Services

in the choreography by tokenLocators, which locate tokens in a message by an
XPath expression in the “query” attribute. This technique is often used to locate
identifiers within messages, in a similar approach to the one used in this thesis.

e.g

<token name="accountID" informationType="xsd:string"/>
...
<tokenLocator tokenName="accountID"
 informationType="depositRequestType"
 query="/depositRequest/AccountId"/>
...

Abstract BPEL

Abstract BPEL, which is a BPEL process specification without the concrete
bindings, has been used in various works to explicate the conversation protocol of
Web services [25]. An Abstract Process may be used to describe observable
message exchange behaviour of each of the Web services involved, without
revealing their internal implementation. [26] BPEL also supports standard
imperative constructs such as if-then-else, case choices, and loops, in order to
define complex processes.

Discussion

In this thesis, state-based models are proposed to specify the set of correct
conversations between a requestor and a service. In these kinds of models, the states
define the possible stages of a conversation. The conversation can be found in only
one state at any given time, and only operations associated with transitions from
that state are accepted. The invocation of an operation potentially transitions the
service to a new state, from which other operations can be invoked, and so forth.

State-based models of Web service protocols are specified in this thesis using the
stream X-machine (SXM) formalism, which has the advantage of being
mathematically precise, unambiguous, and more significantly, amenable to different
verification and validation techniques, including testing. In the subsequent sections
we justify the use of state-based models, and in particular, the choice of SXMs
among those models, as an intuitive way to specify not only the dynamic
conversation protocol of a Web service, but also its internal data (state).

2.4 Semantic Web services

2.4.1 Necessity for Semantic Web services

Current Web service technologies around SOAP, WSDL, and UDDI operate at a
syntactic level. As a result, although Web services support interoperability through
open standards, they still require human intervention to a large extent, in activities
like service discovery, selection, composition, and invocation. These themes are of
huge importance to the industry and an active topic of research. One solution to this

Service Oriented Computing and Web Services 29

problem, which has been widely investigated by researchers, is the addition of
semantics to Web service descriptions, with what are known as Semantic Web
Services (SWS). Semantics makes Web service artifacts machine-understandable,
and introduces the possibility of automation to the activities of service discovery,
selection, composition, data mediation, and, as explained in this thesis, service
verification. Other approaches involve application of formal methods and
mathematical descriptions to achieve unambiguous specification of user goals, Web
services, service compositions, and so on. In summary, the recurring problem is that
existing standards, such as WSDL, lack semantic and precise description and, in
addition, often miss important information.

The following subsections provide an overview of some of the proposals that have
emerged in the recent years for adding semantics to Web services. The most
prominent of these are WSMO, OWL-S, and SAWSDL (evolved from the older
WSDL-S). Collectively they are referred to as SWS frameworks.

2.4.2 SWS frameworks

WSMO

The Web Service Modelling Ontology (WSMO), which is part of the Web Service
Modelling Framework [27]) is a formal ontology and language that provides
ontological specifications for the core elements of Semantic Web services. It is a
W3C member submission that has been developed by the Digital Enterprise
Research Institute (DERI) in Galway, and is being promoted by the WSMO
initiative. WSMF also includes a Web Services Modelling Language (WSML), a
language that provides a formal syntax and semantics for WSMO [27], and the Web
Service Modelling Execution Environment (WSMX), an integrated environment for
execution.

Figure 4 - Top concepts defined by the WSMO ontology [27]

The WSMO ontology consists of four different main elements for describing
Semantic Web Services: Ontologies, Web Services, Goals, and Mediators.
Ontologies provide the formal semantics to the information used by all other

30 Service Oriented Computing and Web Services

components. Goals specify objectives that a client might have when consulting a
Web service. Web Services represent the functional (and behavioral) aspects which
must be semantically described in order to allow semi-automated use. Finally,
mediators, used as connectors, provide interoperability facilities among the other
elements.

OWL-S

OWL-S [28], formerly DAML-S, is a W3C member submission that defines an
OWL-based ontology for Web services. OWL-S consists of a core set of mark-up
language constructs for describing the properties and capabilities of their Web
services in unambiguous, computer-interpretable form. OWL-S provides building
blocks for rich, formal semantic service descriptions, in a way that builds naturally
upon OWL, while the OWL-S ontology provides a vocabulary that can be used
together with the other aspects of the OWL to create service descriptions. OWL-S
mark-up of Web services aims to facilitate the automation of Web service tasks
including automated Web service discovery, execution, interoperation, composition
and execution monitoring.

OWL-S is an upper ontology for services, already developed and presented to the
Semantic Web Services project of the DAML program, while the OWL-S
specification has already been submitted, in November 2004 [28], to become a
W3C standard regarding Semantic Web Services. OWL-S classifies the Web
Services into two categories as:

 “primitive” in the sense that they invoke only a single Web-accessible
computer program, sensor, or device that does not rely upon another Web
service, and there is no ongoing interaction between the user and the service,
beyond a simple response.

 “complex” that are composed of multiple primitive services, often requiring
an interaction or conversation between the user and the services, so that the
user can make choices and provide information conditionally.

OWL-S upper service ontology consists of three interrelated sub-ontologies, known
as the profile, process model, and grounding, providing three essential types of
knowledge about a service, each characterized by the question it answers:

 What does the service provide for prospective clients? The answer to this
question is given in the "profile", which is used for service advertising,
constructing service requests, and matchmaking,

 How is it used? Or how does it work? The answer to this question is given in
the "process model", which enables service invocation, enactment,
composition, monitoring and recovery, and

 How does one interact with it? The answer to this question is given in the
"grounding". Grounding provides the needed details about transport
protocols, mapping the constructs of the process model onto detailed
specifications of message formats and protocols.

Service Oriented Computing and Web Services 31

Figure 5 - The three OWL-S sub-ontologies [28]

All OWL-S sub-ontologies (profile, process model and grounding) are linked to the
top-level OWL-S concept called Service, which owns the properties “presents”,
“describedBy”, and “supports”, serving as an organizational point of reference for
declaring Web Services.

SAWSDL

SAWSDL [29], which evolved from the older WSDL-S, is a relatively recent W3C
recommendation (August 2007) that defines a set of extensions for WSDL. The
extensions specify how to add semantic annotations to various parts of a WSDL
document, such as input and output message structures, interfaces and operations.
The SAWSDL extensions take two forms: model references that point to semantic
concepts, and schema mappings that constitute data grounding for mappings
between XML messages and the corresponding semantic model.

A model reference is an extension attribute, sawsdl:modelReference, that annotates
WSDL and XML Schema constructs in order to point to one or more semantic
concepts. The value is a set of URIs, each one identifying some piece of semantics.
The unique feature of SAWSDL is that it does not prescribe any particular ontology
representation language; a modelReference can point to anything that carries further
semantics, such as an OWL instance, a choreography model, the specification of the
function of an operation, or even a picture. The annotations only serve as hooks for
attaching semantics. In this sense, SAWSDL is considered as a lightweight SWS
framework.

SAWSDL provides two attributes for attaching schema mappings:
sawsdl:liftingSchemaMapping and sawsdl:loweringSchemaMapping. Lifting
mappings transform XML data from a Web service message into a semantic model
(for instance, into RDF data that follows some specific ontology), whereas lowering
mappings transform data from a semantic model into an XML message.

32 Service Oriented Computing and Web Services

Lifting and lowering transformations are useful for communicating with a Web
service from a semantic client - for example, the client software will lower some of
its semantic data into a request message and send it to the Web service; when the
client software receives the response message, it can lift the data contained in the
message for semantic processing.

We can also use lifting and lowering annotations for XML data mediation through a
shared ontology (see Figure 3b). An automated mediator can lift the data in one
XML format to data in the shared ontology and then lower it to another XML
format using the lifting annotation from the first format’s schema and the lowering
one from the second schema.

In XML Schema, we describe an XML element’s content by a type definition and
add the element’s name as an element declaration. SAWSDL model reference and
schema mapping annotations can be both on types and on elements; in fact, a type’s
annotations also apply to the elements of that type.

In particular, a SAWSDL processor merges the type’s model references with the
element’s model references, and all of them apply to the element. Schema
mappings, on the other hand, are only propagated from the type if the element
doesn’t declare any schema mappings of its own. This lets a type provide generic
schema mappings and an element specify more concrete mappings appropriate for
the type’s specific use.

2.4.3 Semantic Web Services Grounding

Any semantic model that describes a Web service needs to be linked with, or
grounded to, the syntactic WSDL specification, if it is to be used in activities
involving service execution. For example, to invoke a discovered semantic Web
service, the client needs to know how to construct the request message. Grounding
is considered as the glue that links the semantic layer with the syntactic WSDL
layer of specifications. In the case of testing, a SXM model must be grounded to
WSDL, so that the SXM model inputs and outputs can be correlated with Web
service requests and responses, during test case execution.

Grounding information can be put in three different places according to Kopecky et
al [30]:

 within the semantic model (WSMO, OWL-S);

 embedded in the WSDL document (SAWSDL pointers);

 in an external document.

There are two major types of grounding: data grounding and behaviour grounding.
Data grounding addresses the problem of mapping between Web service SOAP
messages and semantic models of those messages. That is, data grounding describes
how to transform semantic data to XML messages that will be sent to the Web
service, and how XML messages coming back from the service will be interpreted
semantically. On the other hand, behaviour grounding addresses the problem of

Service Oriented Computing and Web Services 33

linking the semantic behavioural model in the SWS specification to the WSDL
model of separate operations, each one with a simple exchange pattern (MEP). The
behaviour described at the semantic level is also known as the choreography model
of the service. The choreography model is described either explicitly, in terms of
the allowed sequencing of operations, or implicitly, in terms of operation
preconditions and effects. Sometimes inputs and outputs of operations are included
in the implicit choreography description. The resulting inputs, outputs,
preconditions, and effects are also known as IOPE.

In SAWSDL, grounding is accomplished through schema mappings added to
WSDL, pointing to XSLT transformation scripts. Grounding for SAWSDL is
described in further depth in section 9.2.

2.5 Service composition

Services are normally designed to form part of larger applications by being
composed with other services. From a software engineering perspective,
applications are no longer developed with traditional design and coding techniques,
but through composition of reusable services, which may be provided by third
parties. As a result, service composition, and more specifically, Web service
composition, has attracted a huge amount of interest from the research community.
This interest is also partly due to a number of grand challenges raised in the service
composition domain, which require sound and practical solutions, including
automated composition, planning, interoperability between composed services,
verification of functional and QoS properties in composed services, etc. The next
subsection describes current standards in service composition, which tend to be
static and manual, while the other subsection briefly gives the state of the art on
service composition beyond current standards, including dynamic and automated
service composition.

2.5.1 Current standards in service composition

There are two distinct approaches to achieve service composition: service
orchestration, and service choreography. In service orchestration services are
combined by a central coordinator (the orchestrator) to realise business processes.
In contrast, service choreography does not assume a central coordinator, but defines
business processes in terms of the conversation that should be undertaken by each
participant individually. The resulting process is the summation of the peer-to-peer
interactions between the participating services. Several proposals exist for service
orchestration, while the proposals for choreography languages are still at a
preliminary stage.

Notably, the result from composition of Web services can be published as a new
Web service with a new WSDL description, and is known as a composite service.
Therefore, it is irrelevant from the perspective of requesters whether a Web service
is atomic or composite, since it is only an implementation issue.

34 Service Oriented Computing and Web Services

The dominating standard for Web service composition through orchestration is the
Business Process Execution Language for Web Services (BPEL4WS or simply
BPEL), which is also an XML based standard [26]. BPEL originates from two
previous languages: WSFL from IBM, and XLANG from Microsoft, mainly to
compete with an earlier language, BPML, developed by BPMI.org. Unlike BPEL
whose roots were in workflow theory, BPML was inspired by the π-calculus, and
hence had a more complete semantics. BPEL models the flow of services through
processes, which are net-based concurrent descriptions connecting activities that
exchange messages with external WS providers. The BPEL orchestration model
combines the activity diagram approach with the activity hierarchy approach [9].
The control structures offered for combining activities are: sequence, switch, pick,
while, and flow. In addition to constructs for control flow, variables are used in
order to maintain the state of processes and to modify control data. BPEL also
supports exception handling with a try-catch-throw approach, as well as
transactional properties of processes with compensation handlers. However, BPEL
omits certain semantics and process constructs, which make it impossible to model
all conceivable business processes. As a result, BPEL is often used in conjunction
with other programming languages, such as Java, or extended with proprietary
constructs in vendor-specific process execution engines.

On the other hand, the currently prevailing standard for Web services choreography
is WS-CDL, an XML-based language that defines the peer-to-peer collaborations of
Web service participants [24]. WS-CDL complements BPEL since it defines
process behaviour in terms of the common and complementary observable
behaviour of the participant, instead of defining it from the point of view of one
particular service. The most important element of WS-CDL is the interaction, which
describes an information exchange between parties. It consists of three main parts:
the participants being involved, the information being exchanged and the channel
over which to exchange the information. Messages exchanged between participants
are modeled with variables and tokens, whose types can be specified in XML
schema or in WSDL. Channels are used to specify how and where message
exchanges can take place. Synchronisation among activities is achieved via work
units, which define the guard condition that must be fulfilled to continue specific
activities.

2.5.2 Service composition beyond current standards

A significant amount of research effort, both in academia and in the industry, is
being dedicated to better service composition techniques, than current orchestration
and choreography standards can offer. One dimension of improvement in service
composition is the replacement of current static and design-time composition
strategies, with dynamic and run-time ones. The other dimension, closely related to
the first, is automated service composition, as opposed to current manual service
composition approaches.

Service Oriented Computing and Web Services 35

Static composition takes place during design-time, where all participating services
are discovered and service interactions are anticipated at design-time. However, the
service environment is a highly flexible and dynamic environment. New services
become available on a daily basis and the number of service providers is constantly
growing. Furthermore, as certain services in a composition fail, or service level
agreement (SLA) criteria are not met, it should be possible to discover new similar
services (or composite services) from other providers during execution time. Any
adaptations to environment changes or user requirements should be able to occur
transparently with minimal user intervention. They require dynamic re-composition
of services, where a degree of automation is necessary.

Numerous research initiatives are also directed to automated composition of
services, where the complex and error-prone task of service composition is moved
from the human developer to automated tools. One of the most promising
techniques to solve this problem views service composition as a planning problem
where individual services are the building blocks that are put together to create end-
to-end business processes that satisfy user goals. Some AI planning methods have
been proposed, such as situation calculus, PDDL, and rule-based planning [31].
Another approach is the semantic annotation of service descriptions and user goals
to make them machine-processable, and hence, to introduce automation in the
discovery and composition process. Finally, formal methods, such as automata,
Petri nets, process calculi, and Abstract State Machines, have already been proposed
as part of automated and semi-automated service composition approaches.

However, in spite of these research initiatives, dynamic and automated service
composition is in an early stage of maturity, and is far from being achieved in
practice. No effective, easy-to-use, flexible support is provided that can cope with
the lifecycle of distributed business processes. Service composition today is largely
a static affair, where all service interactions are anticipated in advance and there is a
perfect match between output and input signatures and functionality.

2.6 Summary

This aim of this chapter was to familiarise the reader with the general area of
service oriented computing and with Web service concepts that are used throughout
this thesis. It provided a technical overview of SOAP, WSDL, and UDDI, which are
the core standards of the Web services framework. Also, more advanced topics
relevant to this thesis were described, such as WS-* extensions, message exchange
patterns and bindings, XML query and transformation languages, and frameworks
for describing stateful resources and conversation protocols. Next, semantic Web
services and selected frameworks were reviewed, which are considered later in this
thesis for annotating Web services with behavioural models and their groundings. In
the end the important area of Web service composition through orchestration and
choreography was briefly described.

Chapter 3 – Related Work on Web Service
Verification and Testing

This chapter starts the review of existing work on Web services verification and
testing. But, before proceeding to the main part, a brief theoretical background is
provided on the topics of verification, validation, and testing. This chapter is split
into five sections. The first section aims to disambiguate the commonly-used terms
verification and validation, to clarify the role of testing in the context of verification
and validation. The second section is a high-level overview of the different flavours
of testing, which vary along a number dimensions. The third section introduces
formal methods, and their advantages in specifying the behaviour of systems. It also
introduces the need for automation of test case generation through formal
specifications and model-based testing. The fourth section investigates the
application of traditional testing techniques to the service-oriented paradigm, and
specifically to Web services. It turns out that, due to the paradigm shift and special
characteristics of services, some traditional testing techniques have to be retrofitted
into service-oriented computing, while others are not applicable. Finally, the fifth
section is the core review of related work on testing and verification of Web
services and service compositions, employing formal methods. In the end, the
conclusion of this chapter presents the gaps in the existing work, such as achieving
automation and bridging of the abstraction gap. The conclusion also motivates the
use of the stream X-machine formalism in support of the Web service testing
approach described in this thesis.

3.1 Verification, Validation and Testing

According to the IEEE standard computer dictionary [32], verification is the
process of evaluating a system or component to determine whether the products of a
given development phase satisfy the conditions imposed at the start of that phase.
Therefore, verification checks that the system correctly implements the
specifications.

On the other hand, validation is the process of evaluating software during or at the
end of the development process to determine whether it satisfies specified

Related Work on Web Service Verification and Testing 37

requirements [32]. That is, validation evaluates the product itself and ensures that it
meets user needs. This is difficult to determine and often involves subjective
judgements.

It is sometimes said that validation can be expressed by the query “Are we building
the right thing?” and verification by “Are we building it right?”. “Building the right
thing” refers back to the user's needs, while “building it right” checks that the
specifications are correctly implemented by the system.

Since the focus of this thesis is testing of individual third-party Web services, it is
relevant to define this activity in the context of verification and validation.
Generally, testing as an activity can be used to support both validation and
verification, depending on what is being tested, and how. Unit, component, and
integration testing can be considered as verification activities (being checked
against another specification), while system and acceptance testing are generally
considered validation activities (checked against user requirements). (Consider the
V-model and its different types of testing) Is the black-box testing of individual
third-party Web services validation or verification? Is it unit or system testing?

Model-based testing of third-party Web services as described in this thesis is a
verification activity, since the Web service implementation is checked against
another artefact, which is the SXM specification. Therefore, testing Web services
against a formal stream X-machine specification aims to verify conformance of the
implementation to the behavioural specification. On the other hand, the SXM model
itself is normally validated against unspecified and ambiguous user requirements.
Ultimately, the verification of the implementation against the SXM specification
(this service has right implementation) is not useful unless the service requestor is
sure the service satisfies the requirements (this is the right service).

3.2 Types of testing

Testing as a concept encompasses a wide variety of testing methods, which differ
along a number of dimensions, such as the scale of the system being tested, the
properties being tested, and the degree of knowledge about the system
implementation (Figure 6).

38 Related Work on Web Service Verification and Testing

Figure 6 – Different variations of testing (Tretmans 2004 [33])

At first, a high-level distinction can be made between active testing and passive
testing (monitoring). In active testing the tester drives the system under test with
test data and observes the outputs. On the other hand, in passive testing the tester
monitors the results of a running system without introducing any special test data.

Black-box (or functional, behavioural) testing builds a test-set from the system's
specification and attempts to prove that the abstract behaviour of the
implementation is identical to the specification. White-box (or clear-box, structural)
testing bases its strategy directly on the implementation code and attempts to show
that all parts of the software have been exercised without failure.

Next we make a distinction between functional testing and non-functional testing.
Functional testing tests the SUT against business requirements. Functional testing is
done using the functional specifications provided by the client or by using the
design specifications like use cases or a formal model provided by the design team.
Some common types of functional testing include: unit testing, smoke testing,
integration testing, system testing, regression testing, and user acceptance testing.
On the other hand, non-functional testing tests the SUT against non-functional
requirements. Non-functional requirements tend to be those that reflect the quality
of the product, particularly in the context of the suitability perspective of its users.
Common types of non-functional testing include load and performance testing,
stress testing, security and penetration testing, etc.

Related Work on Web Service Verification and Testing 39

Usually, functional testing techniques rely on the availability of a test oracle. A test
oracle is any entity, which determines the expected, correct output from a system
under test. The expected output is used for comparison with the actual output
returned by the system, in order to obtain a verdict regarding system correctness.
The oracle can be a human tester who knows the expected system behaviour,
another system (such as a legacy system), or, as will be discussed further below, a
formal specification of the system under test.

3.3 Formal Methods and Model-Based Testing

3.3.1 Formal methods

With formal methods systems are specified and modelled by applying techniques
from mathematics and logic. Such formal specifications and models have a precise,
unambiguous semantics, which enables the analysis of systems and the reasoning
about them with mathematical precision and rigour. Moreover, formal languages are
more easily amenable to automatic processing by means of tools. Until recently
formal methods were a merely academic topic, but now their use in industrial
software development is increasing, in particular for safety critical systems and for
telecommunication software [33].

A formal specification is a precise, complete, consistent and unambiguous basis for
design and code development as well as for testing. This is a first big advantage in
contrast with traditional testing processes where such a basis for testing is often
lacking. A second advantage of the use of formal specifications for testing is their
suitability to automatic processing by means of tools. Algorithms have been
developed which derive tests from a formal specification. These algorithms have a
sound theoretical foundation. Moreover, they have been implemented in tools
leading to automatic, faster and less error-prone test generation. This opens the way
towards completely automatic testing where the system under test and its formal
specification are the only required prerequisites. Formal methods provide a rigorous
and sound basis for algorithmic and automatic generation of tests. Tests can be
formally proved to be valid, i.e., they test what should be tested, and only that.

3.3.2 Model-based testing

Model-based testing is defined as the automation of the design of black-box tests
[34].

Functional (or black box) testing, should start with a functional specification or
description of what the desired system should behave like. The test set is then
constructed on this basis and the result of applying the test set is evaluated and
compared with the desired result deduced from the specification. It is difficult to
construct test sets from informal specifications, it has to be done by hand.

Coverage criteria of testing methods from state-based models [35]:

 State coverage

40 Related Work on Web Service Verification and Testing

 Transition coverage

 Full predicate coverage

 Transition pair coverage

 Complete sequence

Effectiveness is another measure, indicating the ratio of the number of detected
faults over the overall number of faults in the implementation.

3.4 Testing SOA and Web services

Although traditional verification and testing techniques can be reapplied to service
oriented architectures, they need re-inspection due to several specific properties of
services. Services are used but not owned, thus they are just interfaces to service
requestors. As a result of the lack of access to the source code, it is not possible to
perform white-box testing, as well as mutation-testing techniques, which require
seeding the code with errors [36].

Another major implication of the lack of service ownership is the need for
trustworthiness, security, and reliability, especially when third-party services are
being integrated in business-critical or mission-critical applications. Therefore,
robust service testing and verification techniques are crucial in order for consumers
and integrators to build confidence on third-party services. In addition to testing
functional and behavioural conformance, it is also necessary to ensure that a service
delivers the expected quality of service (QoS), including indicators such as
performance, availability, stress-tolerance, failure handling, etc. Such QoS
indicators are often part of established service level agreements (SLAs) that are
negotiated between providers and consumers. Testing to guarantee compliance to
SLAs has to be performed continuously since the QoS can often vary unpredictably
over time.

The separation between the provider and the consumer introduces a number of
issues to testing. For example, QoS testing by the provider is not realistic because it
doesn’t take into account the provider and consumer infrastructure, and the network
configuration or load [36]. Since services are consumed remotely, considerable
costs in terms of bandwidth and time are involved during testing. Therefore,
conducting exhaustive test cases upon services is neither feasible nor practical, and
the set of test cases to be applied has to be as selective as possible (Zhang et al.,
2005). Moreover, the traditional way of Independent Verification and Validation
(IV&V) by the developer is not adequate in the context of services. All parties that
are involved, including providers, brokers, and clients, must collaborate in what is
referred to as Collaborative Verification and Validation (CV&V) [37].

Integration and regression testing of service oriented systems also raise serious
issues [36]. Because of runtime binding to services, it is difficult to exactly predict
the services that will be part of a composition and their relationships. Thus,
performing integration testing against all possibilities would be costly, and possible
endpoints might be unknown at testing time. Regression testing is also challenging,

Related Work on Web Service Verification and Testing 41

since it is the provider controlling the implementation of individual services, and
the consumer is unaware of any updates that may occur beyond the service
interface. Therefore, the consumer does not know when to ensure that changes to
individual services have not caused any adverse effects to the whole system.

3.5 Formal verification of Web services

3.5.1 Formal methods and Web services

Formal methods have been attracting significant attention in the domain of service
verification, because of their sound mathematical foundation, precise semantics, and
automation support. Besides their utilization in the derivation of test cases to verify
the correctness of services and service compositions, formal models are also useful
in other activities, such as animation and model checking. Different kinds of formal
methods have been found valuable in modelling single and composed services.
Those formalisms range from process calculi, to algebras, Petri nets, graph
transformation rules, and finally, the various kinds of state machines (UML
Protocol State Machines, STS, abstract state machines, EFSMs, etc).

The first part of this section, which is more closely related to the work presented in
this thesis, describes research works on verification of individual Web services
through model-based testing. The second part reviews existing work on formal
verification of Web service compositions.

3.5.2 Formal verification of individual Web services

A number of research works have addressed the verification of individual Web
services through model-based testing. Different notations have been proposed to
specify the desired Web service behaviour in order to verify the compliance of the
service implementation to the model. Some of those works make use of formal
methods to specify the Web service model.

One of the earliest attempts in this direction is by Tsai et al [46]. The authors
propose attaching so-called “test scripts” to WSDL descriptions for use by both
service registries and service requestors. The test scripts contain information helpful
to testing, including input-output dependency, invocation sequences, hierarchical
functional description, and sequence specifications. However, no method is given
for generating test cases from this augmented information. In a subsequent work by
the same authors [47], they describe a specification-based validation and
verification technique, where the specification is written in OWL-S, and the method
of Boolean expression analysis is used to extract the full scenario coverage of
Boolean expressions. The results are then provided as input to a tool named “Swiss
Cheese” in order to generate both positive and negative test cases. The test cases
can be used for verifying the correctness of individual service operations but cannot
be applied to sequences of operation invocations that constitute the complex
behaviour of stateful Web services. As a result, the testing procedure cannot be
considered adequate for verifying the functional behaviour of stateful Web services.

42 Related Work on Web Service Verification and Testing

Heckel and Mariani [48] propose Graph Transformation (GT) rules as the
modelling formalism for specifying the behaviour of stateful services. In essence,
the GT rules provide a graphical notation similar to UML class diagrams, which
represent the internal state of the service before (preconditions) and after
(postconditions) an operation is invoked. A test case derivation method is used to
test the actual service implementation against the provided model. This verification
is proposed as part of a “high-quality service discovery” approach. The basic idea
behind this approach is that both the behaviour of the provided service and the
requestor’s requirements are specified with GT rules. The service broker utilises the
provided specifications to automatically test services before they are admitted in the
registry, ensuring that all registered services comply with their formal
advertisements. On the other hand, the broker enables matchmaking of request and
advertisement models expressed as GT rules during discovery. Thus it returns
verified service candidates that satisfy the consumer's behavioural constraints.

Bertolino et al [49] describe a framework where the provider augments the WSDL
document with behavioural descriptions in a UML 2.0 Protocol State Machine
(PSM) diagram that can be semi-automatically transformed into a Symbolic
Transition System (STS) on which existing automated test generation methods can
be readily applied. On the other hand, the broker utilises the attached STS model to
automatically generate the test cases and run them on the provided Web service for
behavioural conformance verification. Upon successful test results the Web service
is admitted in the UDDI registry as a certified service. For this reason, the authors
call their approach an "audition framework”, where the Web service undergoes a
monitored trial before being put "to stage".

Keum et al [50] propose Extended Finite State Machines (EFSMs) to model and test
stateful Web services. They describe a manual procedure to derive the EFSM model
from a WSDL document and additional informal descriptions supplied by a human
individual. With proper tool support the EFSM model can be used to automatically
generate Web service test cases with increased test coverage that includes both
control flow and data flow. The authors provide experimental results showing that
their method has the potential to find more faults compared to other methods, but
notably without completeness guarantees.

Some existing research work proposes utilising semantic Web service descriptions
to infer a formal state-based model of the Web service. In [51] a method is proposed
for annotating a WSDL document with concepts from an OWL ontology
representing inputs, outputs, preconditions and effects (IOPE), and automatically
translating the resulting WSDL-S specification into a semantically-equivalent
extended Finite State Machine (EFSM) model. A set of manual or automated
techniques for generating test cases based on the EFSM model is also provided. The
techniques vary in terms of adequacy criteria, coverage and completeness.
However, the derived EFSM model contains only one control state, which is not

Related Work on Web Service Verification and Testing 43

sufficient to represent the control flow and state transitions. Therefore the model is
not helpful in the process of generating test sequences.

3.5.3 Formal verification of Web service compositions

Numerous formal approaches and languages have been suggested to formally verify
certain properties in service compositions, including functional and non-functional
ones. Formal verification is also used in conjunction with service composition,
especially in dynamic approaches, to ensure the correctness of the resulting
compositions. In most verification approaches, service compositions are treated as
single processes to be modelled, analysed, and verified, oblivious of the constituent
services. On the other hand, in some rare approaches, individual services in service
compositions are modelled as communicating entities, to build up a model that can
undergo formal verification. Among the most common formalisms used in
verification of service compositions are the process calculi, Petri nets, and
automata.

A plethora of process calculi (SCC, PEPA, SOCK, COWS, SC, etc) is extensively
used in EU-Funded Integrated Project SENSORIA [38]. They serve as a basis of
mathematical specification of several complementary aspects of service oriented
systems, and allow analysis and verification on the models. The Service Centered
Calculus (SCC) is a general purpose calculus which enriches traditional process
calculi with the concept of sessions. Performance Evaluation Process Algebra
(PEPA) is an expressive formal language for modelling distributed systems, which
is used for quantitative analysis of services, such as scalability verification. The
Service Oriented Computing Kernel (SOCK) is a three-layered calculus, which,
among other things, allows reasoning about the whole system composed of all
services.

The authors in [39] make use of the Finite State Processes (FSP) calculus to verify
Web service composition implementations against specification models through the
technique of trace equivalence verification. To perform this type of verification,
both the implementation and specifications are expressed in the same language, i.e.
FSP. On one hand, the requirements are modelled as Message Sequence Charts
(MSCs), a similar notation to UML sequence diagrams, which are in turn compiled
to FSPs. On the other hand, the BPEL4WS implementation is translated with tool
support to FSPs, and fed to the tool that checks message trace equivalence.
Additionally, model-checking is performed on both FSP models to check for certain
properties, such as reachability.

Petri nets have also been widely used to model service compositions, since they are
a natural way of modelling the various aspects of concurrent systems. A rich theory
of concurrent systems based on Petri nets has been developed, and Petri nets have
become the model of choice in many applications. For example, the authors in [40]
describe an approach where service compositions in BPEL are semantically
annotated in DAML-S in terms of a first order logic. With tool support, the DAML-

44 Related Work on Web Service Verification and Testing

S descriptions are automatically converted to Petri nets, which are analysed, tested,
and verified. Three of the most important properties that are checked by the tool are
reachability, liveness, and existence of deadlocks. In [41] a complete and formal
Petri-net semantics for BPEL is presented, thus including exception handling and
compensations. Furthermore, the authors present their BPEL2PN parser which can
automatically translate BPEL processes into Petri nets. As a result, a variety of
Petri-net verification tools are applicable to automatically analyze BPEL processes.

Automata, or labeled transition systems are a well-known formalism that can model
system behaviour in an intuitive way. Several variations of automata exist, such as
I/O automata, timed automata, and team automata. Their precise semantics and tool
support makes them appropriate to specify, compose, and verify service
compositions. One widely used form of automaton is the Promela notation, which
can faithfully capture behavioural semantics of processes, and is supported by
mature model-checking tools. In [42], the author describes an approach where
composition of services is written in WSFL (Web Services Flow Language) and
translated into Promela processes, the input language of the SPIN model checker.
The application-specific properties to be checked are encoded as formulas of LTL
(Linear Temporal Logic), which are also fed into SPIN. General application-
independent properties are also checked, which are reachability, and deadlock-
freedom. In [43] a case study shows how Web service choreographies written in
WS-CDL can be automatically translated to timed automata and subsequently
verified by the well-known model checker UPPAAL. In [44] the Orc programming
model is used to provide a structured way of orchestrating distributed Web services.
It offers intuitive constructors to manage concurrent communication, time-outs,
priorities, failure of sites or of communication, etc. Although the precise semantics
of Orc makes it suitable for model checking, no tools exist, so the authors define a
Timed-Automata semantics for Orc expressions. UPPAAL is then used to model
check the Orc models.

The use of state machines and related formalisms to verify service compositions is
rarely encountered in the literature. Some approaches that model services as finite
state machines, usually aim at automated service composition. For example in [45],
a version of Abstract State Machines (ASMs) is used to semi-automatically
construct collaborative business processes composed of Web services or simpler
individual processes. To the best of the author’s knowledge, no approach based on
state machines is used to derive test cases for verifying service compositions. A
potential formalism to be used for this purpose is the X-machine model, which has a
sound theoretical basis on modeling critical systems and concurrent systems
(communicating X-machines). Exiting research on X-machines already offers
algorithms for deriving test cases for complete testing, model checking techniques,
and an adequate number of tools to support different activities related to
specification and verification.

Related Work on Web Service Verification and Testing 45

3.6 Testing tools

3.6.1 Web service testing tools

A number of Web service testing tools that have emerged support a wide variety of
types of testing, in addition to functional testing. These are generic tools and not
specialised to a specific form of testing. None are model-based testing tools, but
commercial ones, requiring complex executable test scripts. Examples include:
SOAPUI, Parasoft SOAtest, PushToTest, SOAPSonar, WSUnit for testing WS
consumers, etc.

For example, SOAtest by Parasoft6 can perform functional testing, load testing,
security testing, and interoperability testing. Coyote, described in [90] consists of
two parts, test master and test engine. The test master allows testers to specify test
scenarios and test cases, and may use WSDL specifications to derive test scenarios,
which are sequences of service operations. The test engine interacts with the web
services under test, and provides tracing information.

3.6.2 Tools for model-based testing

Spec Explorer

Spec Explorer [91] is a Model-Based Testing tool from Microsoft. It extends the
Visual Studio Integrated Development Environment with the ability to define a
model describing the expected behavior of a software system. From these models,
the tool can generate tests automatically for execution within Visual Studio's own
testing framework, or many other unit testing frameworks.

Spec Explorer uses a theory of interface automata to generate tests from Spec#
models. Test generation is viewed as a game between the test generation process
and the SUT. To enable this game approach to test generation, each method in the
model can be annotated as either an Action method (which is under the control of
the test generator) or an Observation method (which is under the control of the
SUT).

The online testing algorithm (OLT) works as follows (see [91] for a more detailed
description). The test generation starts from the initial state of the model and can
end whenever execution reaches an accepting state of the model (the modeler can
specify which states are accepting states). In each state, Spec Explorer first waits for
a state-dependent timeout period to see if an observable event arrives from the SUT.
If one does arrive, Spec Explorer checks that the event is allowed by the model, and
then takes that transition so that the model follows the SUT behavior. If no
observable events arrive before the timeout, Spec Explorer executes one of the
controllable methods in the model whose precondition is true, sends the

6 http://www.parasoft.com/jsp/products/soatest.jsp

46 Related Work on Web Service Verification and Testing

corresponding event to the SUT, and checks that this transition is allowed by the
SUT.

ModelJUnit

The ModelJUnit library [92] is an open-source extension of JUnit for model-based
unit testing of Java classes. ModelJUnit supports both Finite State Machine (FSM)
and Extended Finite State Machine (EFSM) models. EFSM models are written in
Java language, and because it is an extension of JUnit, the tests are run in the same
way as other JUnit tests. With the ModelJUnit library, one can start with an
extremely simple FSM model and begin testing immediately, and then progress to
slightly more sophisticated EFSM models as desired.

The basic philosophy of ModelJUnit is to take advantage of the expressive power of
Java (procedures, parameters, inheritance, annotations, etc.) to make it easier to
write EFSM models, and then provide a collection of common traversal algorithms
for generating tests from those models. It is typically used for online testing, which
means that the tests are executed while they are being generated. The EFSM model
usually serves both as the abstract specification of possible states and transitions, as
well as the adaptor that bridges the gap between the specification and the SUT
(which is usually another Java class).

To be a valid EFSM model, a Java class must have minimally four methods:

 Object getState(): returns the current visible state of the EFSM. So this
method defines an abstraction function that maps the internal state of the
EFSM to the visible states of the EFSM graph. Typically, the result is a
string, but it is possible to return any type of object.

 void reset(boolean): This method resets the EFSM to its initial state. When
online testing is being used, it should also reset the SUT or create a new
instance of the SUT class.

 @Action void namei(): The EFSM must define several of these action
methods, each marked with an @Action annotation. These action methods
define the transitions of the EFSM. They can change the current state of the
EFSM, and when online testing is being used, they also send test inputs to
the SUT and check the correctness of its responses.

 boolean nameiGuard(): Each action method can optionally have a guard,
which is a boolean method with the same name as the action method but
with “Guard” added to the end of the name. When the guard returns true,
then the action is enabled (so may be called), and when the guard returns
false, the action is disabled (so will not be called). Any action method that
does not have a corresponding guard method is considered to have an
implicit guard that is always true.

Each action method typically defines a short, straight-line sequence of JUnit code
that tests one aspect of the SUT by calling one or more SUT methods and checking
the correctness of their results. The effect of applying model-based testing to the

Related Work on Web Service Verification and Testing 47

EFSM is to make a traversal through the EFSM graph, and this weaves those short
sequences of test code into longer sequences of more sophisticated tests that
dynamically explore many aspects of the SUT.

Using Java as the notation for writing EFSMs has benefits and limitations. The
benefits include the familiarity of Java, having the expressiveness of a full
programming language available, and the ability to quickly change the structure of
the EFSM graph simply by redefining the getState() abstraction function or by
modifying the guards and actions.

Some of the limitations are that the guards and transitions are defined as executable
methods rather than as symbolic formulae. So graph exploration and test generation
algorithms can execute guards and transitions and inspect their results (true/false
from a guard or a new EFSM state after a transition), but they cannot inspect the
internal structure of the guards or transitions. To create the EFSM graph,
ModelJUnit is limited to exploring it dynamically by executing enabled transitions.
This means that it can be difficult to obtain the whole graph if some guards are
rarely true. On the other hand, even if the EFSM graph is too large to explore
completely, some forms of test generation are still possible, so the EFSM approach
is still useful.

Another limitation is that the SUT interactions are handled internally within each
transition, so the SUT input and output values are not explicitly represented in the
EFSM graph as they are in a Mealy machine FSM model. This places some small
limitations on the test generation algorithms and coverage metrics that we can use
in ModelJUnit. For example, we can measure action coverage and state coverage
but not input coverage or output coverage. One can use transition-tour test
generation algorithms but not some other test generation methods, such as the W-
method, that analyze the output part of transitions. However, in practice this
limitation is outweighed by the benefit of being able to generate rich SUT inputs
dynamically and perform more sophisticated checking of the SUT outputs than the
simple equality check of a Mealy machine FSM.

3.7 Summary

This chapter provided a brief theoretical background on the topics of verification,
validation, and testing. More significantly, previous research performed by other
authors on Web service testing was critically evaluated in order to position the work
described in this thesis relative to the state-of-the-art. Existing research was
categorised into work addressing testing and verification of individual Web
services, as well as Web service compositions. In the end of the chapter, two
software tools used in model-based testing of systems were reviewed: Spec
Explorer and ModelJUnit. This tool review is considered as a necessary background
to the Web service testing toolset described in chapter 10, which makes use of the
JSXM model-based testing tool that utilises the stream X-machine formalism.

Part B – Specifying and Testing Stateful Web
Services

 Chapter 4 – Web Services with State and Testing Implications

 Chapter 5 – Modelling Stateful Web Services with Stream X-
Machines

 Chapter 6 – Notation and Examples

 Chapter 7 – Testing Web Services Modelled as Stream X-Machines

Chapter 4 – Web Services with State and
Testing Implications

Frequently, Web services operate on internal state (or data), which affects and is
affected by the execution of the service operations. The presence of state and its
characteristics, have major impact on the functional behaviour and complexity of a
Web service. The extra complexity introduced by state brings about further
challenges to specifying Web service behaviour as well as testing the
implementation against the specified behaviour. Therefore, it is important to clarify
what Web service state is, what are its characteristics, how it is implemented, and
how it affects the tasks of modelling and testing. This is the topic of this chapter,
which is divided into four main parts.

The first part clarifies the term stateful, referring to Web services, as commonly
used in the literature, and as adopted in this thesis. The next section aims to define
what exactly Web service state is, what is Web service behaviour, and how the
former affects the latter. Since state is highly heterogeneous and takes on various
forms in service implementations, the third section identifies the characteristics of
state and its effects on behaviour. It describes state scope and identification, state
duration, and its variation along other dimensions. The fourth section provides a
categorisation of Web services with respect to state and behaviour, and investigates
testing implications for the different categories. The fifth section gives a practical
flavour, where the different techniques for implementing stateful Web services are
investigated, in some of the prevailing Web service frameworks. The final section
contains some closing remarks regarding the occurrence of stateful Web services in
the real world.

4.1 Stateless versus stateful Web services

Service statelessness is often regarded as a good service orientation principle, which
promotes service reusability, composability and scalability [8], [75], [21].
According to T. Erl [8], services should minimize the amount of state information
they manage and the duration for which they hold it. Upon the completion of each
operation, the service should not have to remember any local state information for

52 Web Services with State and Testing Implications

processing the subsequent requests. This stateless model differs from the one
adopted in object-oriented programming, where objects remember their state in the
form of attributes and the results of method calls depend on previous calls.

Nevertheless, in certain situations it is useful for a Web service to remember the
communication status in conversations that involve multiple steps. For example,
after a client is authenticated to a banking Web service, it can proceed with bank
transactions in subsequent requests without having to resend the credentials, since
the service remembers the client. This is usually achieved by means of sessions
(described later on) which are managed automatically, allowing the Web service to
simulate a single-user interactive system. Generally, the Web services community
uses the term “stateful” to refer to this kind of Web services, i.e. services which
manage sessions to keep state specific to a current conversation [8][75]. Web
services with sessions raise reliability and scalability concerns: resetting the session,
restarting the service following a failure, or creating new service copies for load
balancing should take into account the previous history of invocations.

The need to maintain sessions can be avoided if the client identifies itself with every
request message sent to the service. Nevertheless, the service still has to maintain
internal state for that client, which is accessed based on the supplied identification.
For example, even though clients of a banking Web service supply their credentials
with every request message, the service has to keep track of the bank account
information for each client. Therefore, such a Web service can be also considered as
stateful, even though it does not manage sessions. Finally, services that delegate the
responsibility for the management of state to another component such as a file
system or database (stateful resources [21]) are fairly common. Although those
services are conventionally regarded as stateless, they still keep state that persists
between service invocations. Therefore, the range of Web services storing some
form of data, or state, which persists between operation invocations, is much
broader.

Consequently, in this thesis, the definition of stateful services is generalised to
encompass any services that maintain some form of state, rather merely services
that maintain sessions. The state, along with the provided inputs, affects the
outcomes of operation calls. Therefore, while in a stateless service the response of
any operation depends solely on the provided input, in a stateful service, the
response of an operation depends not only on the input but also on the service state.

While part of the data used by a service operation may come from state, the rest is
supplied by the client with the request message. According to T. Erl [8], as more
information is included in a request message (encouraged by document-style
messaging), dependence on state information is reduced, and thus statelessness is
supported. However, as further explained in section 4.5, the client cannot pass all
the state information in the contents of request messages, since certain information
must be stored by the service in any case. Consequently, it is not always possible to
avoid the need for implementing stateful services.

Web Services with State and Testing Implications 53

4.2 Web service state and behaviour

Non-trivial Web services are expected to operate on some form of internal data, or
state information. This state eventually affects the responses returned from the
invocation of service operations. That is, the final result returned from a service
operation depends not only on the input (request message) but also on the state the
service is found in.

The relevance of service state in this section is that it significantly affects service
behaviour and complexity. Web services exhibiting state are more challenging to
test, and need to be modelled beyond their WSDL interfaces. Also the nature of
state and the category of the Web service with respect to state (see section 4.3.5)
have implications on the suitable modelling approach, as well as the testing strategy
employed for ensuring correct behaviour.

4.2.1 Web service state

As will be discussed later in this chapter, Web service state exhibits a high level of
heterogeneity over several dimensions. Thus, it is important to seek an umbrella
definition that encompasses all forms of state.

Web service state can be persistent in the form of a file and stored indefinitely, or it
can be volatile and pertaining to a single multiple-step transaction. State can be in
the form of HTTP session variables; variables maintained by service instances
serving separate clients; context and configuration information kept by the Web
service platform or application server; a file on the server’s secondary storage; or
even a whole database. Additionally, state can be maintained for and accessed by a
single client, or shared among several clients invoking the service.

Amongst all this heterogeneity, it is possible to observe one common characteristic
of service state: in all cases it is information (or data) accessed by the Web service.
State information is stored, read, modified and/or deleted by the service operations.
If any information is maintained by the service requestor, then it is not considered
as state, since it plays no role on the service behaviour, unless it is supplied with the
inputs. For example, HTTP cookies are files stored on the client machine, thus they
are not considered as state, although cookies do serve to identify state stored on the
service machine (see section 4.3.4 – state identification).

The other common characteristic of service state is that, as data, it can persist
between one operation invocation and the next. Even HTTP sessions, whose
durations are among the shortest (section 4.3.1), are able span the invocations of
several operations in sequences. If, instead, a Web service does not support
sessions, then any memory variables maintained by its implementation are lost with
the next invocation, since a fresh service instance is spawned by the infrastructure.
This is generally due to the stateless nature of Web service platforms, such as

54 Web Services with State and Testing Implications

Axis27, which by default do not remember the state of conversations for scalability
reasons [75]. In all situations, the data that pertains only to the current operation
invocation is not regarded as state.

4.2.2 Web service behaviour

Web service behaviour and state are closely related to each other, thus it is
appropriate at this point to define what is meant by behaviour in this thesis. The
term behaviour is restricted to encompass only the functional characteristics of a
Web service, excluding any other non-functional (QoS) characteristics, such as
performance, availability, robustness, and stress-tolerance.

The functional behaviour manifested by a Web service may be seen from two
different perspectives. One perspective is the imposed sequencing of operations for
successful interaction with the service, also called the explicit choreography
(protocol) of the service in [30], and alternatively referred to as the conversation
protocol in this thesis. For instance, an order management Web service may require
a requestor to authenticate with the login operation prior to creating an order with
the createOrder operation, after which items can be added or removed with the
addItem and removeItem operations, respectively. Moreover, an order quotation has
to be first requested and then confirmed, through the invocation of the
corresponding service operations, before the order is finalised.

The other perspective on service behaviour is the computation logic of individual
service operations to produce outputs in response to inputs (IO), as well as pre- and
postconditions (effects) on the internal state (PE). This collective viewpoint of
inputs, outputs, preconditions, and effects (commonly known as IOPEs) is also
called the implicit choreography (protocol) of the service. For example, consider an
operation of the order management Web service, which allows adding a new item to
the current order. The operation takes as inputs the identifier and quantity of the
desired item; with precondition that the order is in a manipulation status and the
item is available in the inventory for the requested quantity; with postconditions that
the requested quantity has been added to the current order and subtracted from the
items inventory; and finally, producing an output indicating success and reminding
of the item identifier and added quantity.

The two views on service behaviour are interrelated. The preconditions for
successfully invoking an operation, and the effects produced by its execution,
determine how the operation can be placed in sequences of invocations. For
example, the addItem operation described above requires the order to be in
manipulation status, thus it cannot be successfully invoked if the order has been
cancelled with the cancelOrder operation, since the effect of the latter sets the order
to a cancelled status. Therefore, the explicit service choreography is dependent on
implicit choreography, and vice versa. As demonstrated in section 5.6, starting with

7 Apache Axis2 (http://axis.apache.org/axis2/java/core/) is an open source Web service platform
developed by the Apache Software Foundation.

Web Services with State and Testing Implications 55

pre- and postconditions of individual Web service operations in form of IOPEs, it is
possible to derive the control states and transitions of a stream X-machine, which
are a representation of the explicit choreography of the service.

4.2.3 Effect of state on Web service behaviour

In non-trivial Web services, the output (response message) returned by an operation
is often not based solely on the provided input (request message). Other factors
come into play, such as the state maintained by the Web service, as well as other
nondeterministic factors.

In short, the behaviour exhibited by a Web service may depend on:

 The request message (or input) contents;

 The state information (data) maintained by the Web service;

 Nondeterministic factors:
o Unknown state information,
o Timing constraints,
o Back-end applications updating the state information,
o Human and manual factors,
o Reliance on third-party Web services, etc.

In this thesis we aim to model the first two factors on service behaviour: inputs and
state information, while specifying the processing logic that from inputs and service
state computes outputs and modifies the state. I.e. state may be checked by the
precondition predicates of Web service operations, whose execution, in turn, may
modify that state information (postconditions). These IOPE characteristics also
affect the rules for correct sequencing of service operations.

When additional factors, such as the ones listed above, affect the outputs (and hence
behaviour), then the observed behaviour of the WSUT will appear to be
nondeterministic. Those factors are not specified in the modelling approach
described in this thesis and the returned outputs are determined
nondeterministically. Refer to section 5.8 for a more detailed description of
nondeterministic services and nondeterministic specifications.

In the light of the above discussion on state and behaviour we can make a note on
the suitability of the stream X-machine computational model for specifying stateful
Web service behaviour. SXMs combine behavioural modelling with data modelling,
and decouple computation blocks, known as processing functions, from the high-
level specification of the control flow. Therefore, in this thesis we consider SXMs
as highly suitable for formally explicating the different facets of service behaviour
and the internal state data. Control flow is modelled by abstract SXM states and
transitions between those states. Data, on the other hand, is modelled by the SXM
memory construct for state data, and by inputs and outputs declarations for service
input and output data. Furthermore, control flow transitions are labelled by
processing functions (instead of simple inputs), which allow expressing the

56 Web Services with State and Testing Implications

computation logic of operations in terms of preconditions (processing function
domain) and effects (processing function memory update). Section 5.2 presents a
more comprehensive analysis on the appropriateness of SXMs as models of stateful
Web services, especially as compared to other, simpler, state-based formalisms,
such as finite state machines, and extended finite state machines.

4.3 Characteristics of Web service state

4.3.1 State accessibility

State information managed by a Web service can be accessible by operation
invocations from a single client, from several clients, or from other applications or
third-party Web services. Based on these levels of accessibility, state can be
categorised into private and shared (or global). As the term suggests, private state is
stored for an individual client, and therefore is accessible only by operation calls
from that client. It is not accessible by other clients, applications, or Web services.
This implies that the value of private state at any instant is determined exclusively
by the history of previous interactions between the specific client and the Web
service. The contents of the shopping cart in an e-commerce Web service are an
example of private state.

In contrast, shared state is shared among all clients, and possibly other applications
or Web services. That is, it can be accessed and possibly modified by operation
invocations from any client. This implies that the value of shared state may change
over time by invocations from other participants, and is not determined exclusively
by the previous conversation history of any specific client. As an example, the
inventory of available items in the above e-commerce Web service is an example of
shared state. It is accessed and potentially modified as other clients purchase items.
Also, the inventory is possibly modified by applications that manage its contents,
e.g. when new supplies arrive in the warehouse.

4.3.2 State duration

The lifetime, ore duration, of state entities in a Web service implementation affects
the way the test sequences are executed on the implementation. It is especially
important to know whether state entities live within single sessions, within single
server instances, or span multiple server instances. In addition, it is necessary to
know how to reset the state to its initial value (see section 7.6.4).

Duration of state is determined by the form it takes (e.g. whether it is session data,
configuration information, file etc.) and by the platform-specific details of its
implementation in the Web service. For example, in the Apache Axis2 Web service
platform, duration of state stored in the context hierarchy is determined by the value
of the “scope” attribute in the service descriptor file (section 4.4).

Overall, in terms of duration, we can distinguish state into volatile and persistent.
This distinction is not necessarily determined by whether state variables are stored

Web Services with State and Testing Implications 57

in the volatile memory or in the persistent storage. While data in the volatile
memory could persist for the whole duration of the server instance, data in the
persistent storage could be deleted as soon as a service operation completes
execution. Here we define the distinction between volatile and persistent state by
whether it can span several sessions (SOAP or HTTP sessions). Volatile state lives
within a single session and is erased as soon as the session ends, while persistent
state outlives sessions.

Figure 7 compares the durations of different forms of state to one another.
Persistent objects have the longest durations of all. Some types of persistent objects
do not survive a server or system crash or restart. Such persistent data, for example,
can be part of the configuration information pertaining to an instance of the
application server or the Web service platform. Other persistent data, such as data
stored in the secondary storage, is not lost when the server or system is shut down.
The lifetime of such a persistent object starts upon its creation and ends with its
deletion, by means of invocations of the appropriate CRUD (Create-Read-Update-
Delete) service operations. On the other hand, SOAP and HTTP session state
information is created by the server upon a session start, and is deleted upon the
session end. Both types of sessions can span several operation calls and store
context information pertaining to complete operation sequences (transactions). A
SOAP session may span more than one HTTP session, but not vice versa. Observe
that no type of session can survive a client shut down or restart, thus causing the
session data to be lost.

Figure 7 - State duration for different types of state

4.3.3 Views on private state

Web services are usually designed to be accessed by several clients (users)
simultaneously. To address the concurrency, stateful Web services maintain state
data separately for each client, which in turn may be structured into several stateful
objects (instances), as shown in Figure 8. The state allocated to any client is private
and is not meant to be accessed by the other clients using the Web service

58 Web Services with State and Testing Implications

simultaneously. Therefore, the state scope of service operations invoked by a
particular client is restricted to that client’s private portion of the complete Web
service state. From the perspective of the particular client, the behaviour of the Web
service is affected only by the private state. The rest of the service state, which is
allocated to the other clients, is invisible, thus creating the illusion of isolation.
Therefore, we distinguish between two views on Web service state and behaviour,
referred to as the per-client and pan-client views, terms adopted from Atkinson et al
[72].

Figure 8 – Structure of internal state typically maintained by a multi-user Web

service

As an example, consider an order management Web service where every service
client is allowed to create and place one order at a time. In this case an individual
order instance being manipulated constitutes the per-client view, while the
collection of all orders being manipulated by all clients of the service constitutes the
pan-client view. To an individual client the outcomes of the service operations are
affected only by the status and the items on the specific order being placed,
regardless of the other orders belonging to the rest of the clients.

Next, consider an extended order management service where every client is allowed
to manipulate several orders at a time. The per-client view now becomes a
collection of order instances. Nevertheless, it is possible to abstract away a
conversation encompassing only the operation calls referring to one order object. To
such a conversation the data in the other order objects is irrelevant, and its
behaviour is affected solely by the specific order object. Hence, in addition to the
two views defined earlier, a third, per-object, view is introduced in this thesis.

As will be seen later on, adopting the per-client and per-object abstractions vastly
simplifies the behavioural specification of the service as well as the testing process.

4.3.4 Private state identification

In the previous section it was stated that operations invoked by a particular client
are allowed to access only the private state allocated to that client. Moreover, a
group of operation calls referring to a single object are affected by and affect only

Web Services with State and Testing Implications 59

the data for that object. However, given the stateless nature of the HTTP (or other)
protocol used to transfer messages between the client and the service, a mechanism
is necessary to correlate those messages into conversations, as well as to tell the
service the target of those messages. Without such a mechanism the Web service
cannot determine which stateful entity to access and modify.

The mechanism for informing the Web service of the client or the stateful object
being targeted is referred to as state identification. The client supplies one or more
unique identifiers with every request message, which associate the request with the
corresponding client and/or target stateful object. The invoked operation uses the
provided identifiers to reduce its scope from the complete service state to a fraction
of it. As depicted in Figure 9, client identification enables the per-client view, while
object identification enables the per-object view.

Figure 9 - State identification by a client filters the state that is accessible by operation

calls. Identification can also be performed in steps: client identification, and then
object identification.

Identifiers are also used by the Web service implementation to correlate messages
into conversations (execution contexts). To an external observer with the pan-client
perspective, the messages from different clients arriving to the service are
interleaved. There seem to be no conversations or sequencing of operations
according to any protocol, but random invocations. However, if messages are
grouped by their IDs, then the per-client (or per-object) view is adopted and
individual conversations emerge.

It is important to examine how state identification is performed in practice, since the
identification information must eventually be part of every input sent to the service
during test execution. If the service model adopts an abstracted per-client or per-
object view, then the state identification is not captured in the model and it does not
appear in the generated abstract inputs. The options for inserting identifiers during
concretisation of abstract inputs to request messages are discussed in section 0 –
Bridging the abstraction gap.

Obtaining identification information

There are two key scenarios the service requestor knows the identification
information to supply with every request:

60 Web Services with State and Testing Implications

(a) known in advance, and

(b) retrieved from the Web service at run time.

The first case is simplest to address, where it is possible to derive concrete test
inputs with identifiers during test case generation and before test case execution (the
Constant Field pattern, section 9.4.1). In the second scenario client and/or object
identifiers are initially obtained from the Web service during run time. As a result,
in this second case it is not possible to fully concretise test inputs during test
generation time, since the identifier information is unavailable. The derivation of
concrete test inputs is deferred until run time when the tests are executed.

A client that obtains identifiers from the Web service at run time expects to find
them in a response message after a specific event. Two such common events are:

(a) the creation of a stateful entity at the beginning of a conversation, and

(b) substitution of previous identifiers with new identifiers.

In the first case, conversation starts with the creation of a new stateful entity by the
Web service and the return of the entity’s identifier in a response message. After the
client retrieves the identifier from the service, it adds the identifier to every
subsequent request message to associate the conversation with the newly-created
stateful entity. For example, consider the previous Web service, which manages
(creates, reads, updates, and deletes) several supply order instances. Invoking the
create operation instantiates a new order and returns its unique orderID. That
orderID is then repeated in the following request messages to operations
manipulating the specific order. In the end, the delete operation supplied with the
orderID deletes the order instance and concludes the conversation. Another
identification mechanism that works according to this scheme is that of sessions, as
described further below.

An example of the second case, where identifiers are substituted by new ones, is the
invocation of a user authentication operation. During the execution of that operation
the username and password identifiers are substituted by an authentication token,
which is returned by the Web service. Alternatively the username and password can
be substituted by a session identifier. It is noteworthy that although the
identification information changes over time, it is associated with exactly the same
stateful entity.

Location of identification information

Technically, state identification information may be inserted in different places in
service requests and responses, depending on the identification mechanism being
used. In this thesis we pinpoint three different locations for identifiers, as shown in
Figure 10:

1. the header of HTTP (or other protocol) messages carrying SOAP envelopes,

2. the header portion of SOAP envelopes, and

Web Services with State and Testing Implications 61

3. the body portion of SOAP envelopes.

Recall from section 2.2.1 that SOAP envelopes consist of a SOAP header and a
SOAP body, and are carried over a transport protocol, most commonly HTTP.

Figure 10 – Identification information can be supplied in three different layers of

service requests

Usually, HTTP headers are used in HTTP sessions to carry session identifiers that
group operation invocations within the same session. SOAP headers are utilised by
second-generation WS-* protocols, such as WS-Addressing (see below) to carry
protocol-related information, including identifiers. Identifiers in HTTP and SOAP
headers are usually hidden from the business logic and are accessed only by the
infrastructure that implements the particular WS-* protocol. This implies that HTTP
and SOAP header identification is handled automatically and the service client
implementation does not have to worry about the details of retrieving and adding
identifiers.

The third case, SOAP body identification, operates at the business logic level. The
identifiers are part of the XML information exchanged in SOAP body payloads. For
example, when invoking operations of the order management Web service on a
specific order instance, each request message includes the orderID identifier as a
child of the root element of the body payload (Figure 10). Note that the identifier
element appears in arbitrary nodes and nesting levels in the DOM tree of the XML
document, both in request and response messages. This implies that the service
client implementation has to know where exactly to locate an identifier in a
response message, and where to insert it in the body of a request message. The
location of the identifier element does not follow any conventions as in the case of
sessions, but is inferred by human individuals from the WSDL document or the
informal service documentation. Nevertheless, if some recognisable pattern is
followed, it may be possible to automate SOAP body identification as well. Two

62 Web Services with State and Testing Implications

such patterns (the Manager and the Constant Field pattern) are introduced in section
9.4, to allow automated execution of test cases with identifiers.

The next two subsections illustrate the discussed concepts on private state storage
and identification with the case study of sessions: HTTP sessions and SOAP
sessions.

HTTP sessions

The underlying transport protocols, such as TCP, HTTP, and SMTP, specified by
the bindings to carry the SOAP messages are stateless in nature, i.e. they do not
remember any previous communication. The most prevalent of those protocols in
Web services is the HTTP (HyperText Tranfer Protocol), which is the standard for
transporting documents on the World Wide Web [73]. HTTP supports a request-
response model of transferring data between a client and a service and does not
correlate requests from the same client.

It is through a popular mechanism combining HTTP sessions and cookies that
HTTP communication can be made stateful. This mechanism addresses the problem
of storing state information between one request and the next, as well as the
identification problem, for relating requests from the same client with that state
information. While HTTP sessions store bits of data on the server, HTTP cookies
store bits of data on the client machine.

As Figure 11 shows, state is maintained by the service in the form of session
variables, which can contain any information pertaining to a conversation with a
client, such as the contents of a shopping cart. The identification of that state on the
client part is solved through cookies, which are stored automatically by the client
infrastructure whenever instructed by the server in the HTTP header of a response.
The data stored in cookies can include session identifiers, which are then
automatically supplied in the HTTP header of every request.

Figure 11 - Sessions store state in the server machine, while cookies, stored in the

client machine, identify that state

The following monitoring logs illustrate the stateful conversation between a client
and an Axis2 Web service. The contents of the HTTP headers are exposed in
addition to the contents of the SOAP envelopes. In the following response message,
the service instructs the client to store a session identifier (JSESSIONID) in a
cookie, marking the start of the session.

Web Services with State and Testing Implications 63

==== Response ====
HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Set-Cookie: JSESSIONID=2293BF8E54A3B13ED4CFACD8C235177B; Path=/axis2
Content-Type: application/soap+xml; action="urn:openResponse";charset=UTF-8
Transfer-Encoding: chunked
Date: Wed, 17 Nov 2010 16:53:14 GMT

107
<?xml version='1.0' encoding='UTF-8'?>
<soapenv:Envelope xmlns:soapenv="http://www.w3.org/2003/05/soap-envelope">
<soapenv:Body>
 <ns:openResponse xmlns:ns="http://ws.apache.org/axis2">
 <ns:return>openOut</ns:return>
 </ns:openResponse>
</soapenv:Body>
</soapenv:Envelope>
0
==============

The client stores the identifier in a cookie and repeats the contents of that cookie in
the HTTP header of every subsequent request for the length of the session:

==============
Listen Port: 8888
Target Host: 127.0.0.1
Target Port: 8080
==== Request ====
POST /axis2/services/Account?wsdl HTTP/1.1
Content-Type: application/soap+xml; charset=UTF-8; action="urn:deposit"
Cookie: JSESSIONID=2293BF8E54A3B13ED4CFACD8C235177B; Path=/axis2
User-Agent: Axis2
Host: 127.0.0.1:8888
Transfer-Encoding: chunked

101
<?xml version='1.0' encoding='UTF-8'?>
<soapenv:Envelope xmlns:soapenv="http://www.w3.org/2003/05/soap-envelope">
<soapenv:Body>
 <axis:deposit xmlns:axis="http://ws.apache.org/axis2">
 <axis:param0>5</axis:param0>
 </axis:deposit>
</soapenv:Body>
</soapenv:Envelope>
0

SOAP sessions

By design, the SOAP protocol is stateless and one-way, to support loosely-coupled
applications that interact by exchanging asynchronous messages with each other. As
a result, operation message exchange patterns (MEP) and complete stateful
conversations have to be implemented by the underlying system. Similarly to HTTP
as explained above, it is possible for SOAP envelopes to simulate stateful
conversations by carrying identification information in their headers. One common
WS-* protocol that is utilised to for this purpose is WS-Addressing [74]. The
following snippets show that a similar approach to HTTP sessions is followed,
except that this time the information is put in a different location.

64 Web Services with State and Testing Implications

The SOAP envelope returned by the first operation invoked on the Web service
within a SOAP session instructs the WS-Addressing-enabled client to repeat the
contents of ReferenceParameters, which include the session identifier:

<soapenv:Envelope xmlns:soapenv="http://www.w3.org/2003/05/soap-envelope">
<soapenv:Header xmlns:wsa="http://www.w3.org/2005/08/addressing">

 <wsa:ReplyTo>
 <wsa:Address>http://www.w3.org/2005/08/addressing/none</wsa:Address>
 <wsa:ReferenceParameters>
 <axis2:ServiceGroupId
 xmlns:axis2="http://ws.apache.org/namespaces/axis2">
 urn:uuid:B9AB09FCC14882B1521230369826635
 </axis2:ServiceGroupId>
 </wsa:ReferenceParameters>
 </wsa:ReplyTo>

<wsa:MessageID>urn:uuid:B9AB09FCC14882B1521230369826637</wsa:MessageID>

 <wsa:Action>urn:getCountResponse</wsa:Action>

<wsa:RelatesTo>urn:uuid:80CBCC10EFFA51034F1230369826309</wsa:RelatesTo>

</soapenv:Header>

<soapenv:Body>
 <ns:getCountResponse xmlns:ns="http://service.session.sample">
 <ns:return>1</ns:return>
 </ns:getCountResponse>
</soapenv:Body>
</soapenv:Envelope>

For subsequent requests, the WS-Addressing-enabled client includes the identifier
in the SOAP header.

<soapenv:Envelope xmlns:soapenv="http://www.w3.org/2003/05/soap-envelope">
<soapenv:Header xmlns:wsa="http://www.w3.org/2005/08/addressing">

 <axis2:ServiceGroupId
 xmlns:axis2="http://ws.apache.org/namespaces/axis2"
 wsa:IsReferenceParameter="true">
 urn:uuid:B9AB09FCC14882B1521230369826635
 </axis2:ServiceGroupId>

 <wsa:To>
http://localhost:8088/axis2/services/SampleSessionService.SampleSessionServ
iceHttpSoap12Endpoint/
 </wsa:To>

 <wsa:MessageID>urn:uuid:80CBCC10EFFA51034F1230369826738</wsa:MessageID>
 <wsa:Action>urn:getCount⁢/wsa:Action>

</soapenv:Header>
<soapenv:Body/>
</soapenv:Envelope>

4.3.5 Classification of Web service state

As described in the previous sections, Web service state is highly heterogeneous
and is characterised in a number of ways. Characteristics of Web service state affect
the approach taken to modelling and testing Web services, as will be discussed in
other parts of this thesis. In an attempt to categorise Web service state and resultant
behaviour, Figure 12 identifies five different dimensions along which state can

Web Services with State and Testing Implications 65

vary, on the basis of the discussion from the previous sections. These dimensions
are projected as different axes and consist of: state implementation (non-
exhaustive), state duration, state accessibility, and state identification method,
regarding both identifier location and identifier availability.

Figure 12 - Web service state is heterogeneous and varies along several dimensions,

projected as axes in a five-dimensional space

The above identified dimensions are not always mutually orthogonal since the
different characteristics may depend on one another. For example, the
implementation form a service takes determines most of the other characteristics.
State implemented with HTTP sessions, SOAP sessions, or software variables is
generally private and volatile, while identifiers are dynamically obtained from the
server and located in the respective headers. In contrast, state implemented in the
form of files or in databases can be both private and shared, is usually persistent,
and identification takes place in the SOAP body (business logic). Private state can
be both volatile and persistent and is identified in different forms. Also, the
different perspectives (per-object, per-client, and pan-client) pertain only to private
state. On the contrary, shared state is always persistent (there is no concept of

66 Web Services with State and Testing Implications

sessions) and is usually not identified. Therefore, although a large number of
combinations result from the five dimensions of variation, practically only a few of
them are meaningful.

4.3.6 Classification of Web services based on state

First of all, from a high-level perspective, Web services can be categorised into
stateless and stateful ones, depending on whether they exhibit any observable state.
Recall that in a stateless service the response of any operation depends solely on the
provided input; the same result is delivered for the same input every time the
operation is invoked (e.g. a simple Web service converting temperatures between
Fahrenheit and Celsius). In contrast, in a stateful service, the response of an
operation depends not only on the input arguments but also on the internal state of
the service. As a result, attempting to specify and test the behaviour of a stateful
Web service should take into account its state. Since the work described in this
thesis focuses on stateful services, a further classification is attempted for this
category.

The types of service state described in the previous section can be taken as a basis
for deriving a few meaningful stateful Web service categories. In addition, Web
services can also be distinguished according to the behaviour that emerges from
their state, rather than from state alone. One such important distinction is into non-
conversational and conversational:

 In a non-conversational service all operations are successfully accepted at
all states without producing any errors. From an explicit choreography
perspective (see above), this means that the service does not impose a
conversation protocol and accepts any sequences of operations. From an
implicit choreography perspective (IOPE), the success scenarios of
operations do not have any preconditions on Web service state. The testing
implication for non-conversational services is that the behaviour of
individual operations can be tested in isolation from other operations. An
example of a non-conversational stateful service is a currency converter
Web service: although its operations access a database of exchange rates,
they can be invoked in any sequences.

 In a conversational service only specific operation sequences are
successfully accepted. Therefore, a conversational service imposes a
conversation protocol that consists of the set of all acceptable operation
sequences. From an implicit choreography perspective, some operations
have preconditions on Web service state for successful completion. The
testing implication for conversational services is that it is not sufficient to
test individual operations in isolation, but as part of sequences of
invocations. A shopping cart Web service is a typical example of a
conversational stateful service: items cannot be removed from the cart if
they were not added in the cart in a previous step.

Web Services with State and Testing Implications 67

Secondly, an important distinction between stateful Web services is whether the
state they access is private, shared, or both. Therefore, stateful services can be
further categorised depending on state accessibility:

 In a private-state service all accessed state is private. Thus, to a client, the
behaviour of the service depends only on state which is determined
exclusively by the interactions among the client and the service. An example
of a private-state service is a shopping-cart Web service whose behaviour is
affected solely by the contents of the internal shopping cart.

 In a shared-state service some or all of the accessed state is shared. Thus,
the state of the service cannot be fully determined by the sequences of
previous service invocations. The behaviour of the service depends on some
state variables which may be modified by invocations from other clients,
Web services, or applications. An example of a shared-state service is a
shopping cart Web service whose behaviour also depends on inventory
information for stock levels. Although the shopping cart itself is private to a
single service client, the presence of a shared inventory classifies the Web
service as a shared-state one.

As will be seen later in chapter 0, shared-state services introduce other challenges to
service specification and testing. Since part of the state is shared among a number
of clients, it can potentially attain huge sizes and may be difficult to model.
Furthermore, since shared state can be modified by other, unknown, clients or
applications, the resulting behaviour of the service is nondeterministic.

While shared state is persistent, private state can be both volatile and persistent.
Thus, it is possible to further split private-state services according to state
durability:

 In a volatile-state service part of the state information persists only for one
session. The next time the client starts a conversation with the service the
context information relating to the previous conversation is lost. An example
is a shopping cart Web service that stores cart information in session
variables. If a new session is initiated or the service is restarted, conversation
has to start all over again with an empty shopping cart.

 In a persistent-state service all of the state information is persistent and
outlives sessions. Therefore, the next time a conversation is started with the
service no context information relating to the previous conversation is lost.
An example is a shopping cart Web service that stores cart information on a
database. If the current conversation is disrupted by a session end or service
restart, the client can still continue shopping with the original cart stored in
the database.

As will be discussed later on in this thesis, state durability details are not usually
captured in a service model. The modelled state is assumed to persist indefinitely.
However, state persistence is relevant during testing. The tester has to know
whether the next time a sequence of operation invocations is exercised, the state in

68 Web Services with State and Testing Implications

the service implementation is automatically reset to its initial values (volatile-state
services) or special techniques are required to perform the reset (persistent-state
services). More details are given in chapter 0.

4.4 Implementation of stateful Web services

The preceding sections described stateful services, the variations of state, and a
classification of services according to state characteristics. This section proceeds
with a brief technical overview on implementation of state in Web services.
Techniques are described for implementing stateful Web services in four
representative Web service platforms: Apache Axis28, JAX-WS9, Oracle Weblogic10,
and IBM Websphere11. More focus is given to Apache Axis2, which will be used as
a basis for development of the testing tool.

4.4.1 Stateful Web services in Apache Axis2

Apache Axis2 provides specific mechanisms to persist state between one operation
invocation and the next. State is stored in what is called the context hierarchy,
illustrated by the diagram in Figure 13 [75]. The Axis2 engine stores contextual
information in this hierarchy, starting from Message context, going up to Operation
context, Service context, ServiceGroup context, and finally Configuration context.
Message context is information that pertains to a single request or response
message. Similarly, Operation context refers to one operation, Service context
refers to one Web service, ServiceGroup context refers to one service group, and
Configuration context refers to the whole Axis2 application, hence to all services.

8 http://axis.apache.org/axis2/java/core/
9 http://jax-ws.java.net/
10 http://www.oracle.com/technetwork/middleware/weblogic/
11 http://www-01.ibm.com/software/websphere/

Web Services with State and Testing Implications 69

Figure 13 - The Axis2 context hierarchy [75]

Moreover, in Axis2 the duration (or scope) of all these context objects is controlled
in the service configuration file through the “scope” attribute. The context objects
can have request scope, transport (i.e. HTTP) session scope, SOAP session scope,
and application scope. With request scope the context objects live for only one
request, thus it defines stateless services. With transport and SOAP session scopes,
the context objects live as long as the HTTP and SOAP session, respectively.
Hence, this scope defines stateful, conversational Web services. Finally, in
application scope, the context objects in the hierarchy persist as long as the Axis2
executable instance, thus they span several sessions and are shared by multiple
clients. Therefore, this scope defines shared-state Web services.

By default, the Axis2 platform spawns a new instance of the implementation class
(server instance) to serve a request message and, upon completion of the operation,
the software object is destroyed. Since no session is maintained, the next time a
request message is received, a different instance is created, even if the request is
from the same client. On the other hand, if sessions are specified with the transport
and SOAP session scopes, the service associates clients with implementation
objects. Subsequent requests from the same client are dispatched to the methods of
the same object, thus context state persists in the object attributes.

It can be observed that the hierarchical level of the context object and its scope are
not orthogonal to each other. The scope attribute only affects the duration of the
Service and ServiceGroup context objects. Regardless of the specified scope,
Message and Operation context objects pertain to individual SOAP messages and
operations respectively, thus they do not have to span more than one operation

70 Web Services with State and Testing Implications

invocation. On the other hand, the Configuration context pertains to the whole
service platform and persists as long as the Axis2 executable instance, regardless of
the specified scope.

4.4.2 Stateful Web services in JAX-WS

JAX-WS is the Sun technology for building Web services, and defines a set of APIs
for Java starting from version 1.5.

JAX-WS provides interfaces and methods for implementing stateful Web services
that manage HTTP sessions [76]. The service implementation class is required to
implement the ServiceLifecycle interface. This interface defines two methods:
init and destroy. In the implementation of the init method, upon the start of a
session, the infrastructure passes as parameter an instance of
ServletEndpointContext, where session variables are stored. The rest of the
methods that implement corresponding operations have access to this
ServletEndpointContext instance and retrieve the HTTP session object
through invocation of method getHttpSession() on that instance. The returned
HTTPSession object consists of key-value pairs that constitute the session data.

The implementation class is then packaged as a Web Application Archive (war) file
representing the service, and deployed in the Glassfish12 application server.

4.4.3 Stateful Web services in Oracle Weblogic

Like the previous Web service platforms, Oracle Weblogic allows implementation
of Web services with sessions [77]. Such services are coded with the aid of special
Java annotations such as @Conversational, @Context, and @Conversation.
The state duration is defined by a life cycle containing phases START,
CONTINUE, and FINISH, through overriding the start, middle, and finish methods
in the implementation class.

Alternatively, stateful (conversational) Web services can be implemented without
sessions. Instead, conversations can be mimicked by allowing clients to supply
unique identifiers in every request message (as described in section 4.3.4 on state
identification). Weblogic provides mechanisms to implement state through
mechanism such as database connectivity and entity beans, while state identification
is performed at the SOAP body layer [78].

4.4.4 Stateful Web services in IBM WebSphere studio

IBM WebSphere allows development of both stateful services with sessions, and
stateful services operating on persistent data [79]. For the second type of services,
WebSphere provides mechanisms to implement WS-Resource services via what is
known as the Common Information Model (CIM). [80]

12 http://glassfish.java.net/

Web Services with State and Testing Implications 71

4.5 Prevalence of stateful Web services

Although it is possible to use stream X-machines to model and test both stateful and
stateless Web services, the SXM testing method is especially useful when applied to
stateful Web services. Thus, it is relevant to consider how frequent stateful Web
services are in the real world, either in private SOA deployments within
organisational boundaries or publicly over the Internet. It is reasonable to expect
that non-trivial Web services have to operate on internal data of some sort. From
our experience, services that support sessions (conventional definition of stateful
services) are relatively rare in the real world. This is mainly due to the scalability
concerns mentioned earlier. Nevertheless, services operating on persistent data are
fairly ubiquitous, including services from Amazon, Google, UPS, Paypal, etc. A
considerable number of these Web services store data separately for each client
(private-state services) and moreover they assume a conversation protocol
(conversational services).

There are cases when the responsibility for maintaining state can be handed over
from the Web service to the service requestor. In those cases implementing the Web
service as stateful can be avoided. The requestor managing the contents of state data
can supply that information to the service with every request message, so that the
service can remain stateless. For example, a shopping cart Web service is stateful if
it maintains shopping carts for clients, to keep track of the items to be purchased.
But alternatively, the shopping cart contents can be managed by the client
application as the user adds shopping items to the cart. Then, upon checkout, the
shopping cart contents are passed to the stateless Web service.13

Nevertheless, delegating state maintenance to the service requestor is not always
feasible. The client cannot be entrusted with maintaining sensitive data, which
could be accidentally or purposefully corrupted. For example, the client of a
banking Web service should not be allowed to keep track of the status of its bank
account and the remaining balance, as this is business-critical information. In
addition, stateful Web services have the responsibility for ensuring correct
behaviour and enforcing a conversation protocol for the successful completion of
transactions. For instance, when ordering raw materials from a supplier, a supply
order is defined in accordance with a multi-step protocol. Requiring the client to
remind the Web service, with every request message, about the current step of the
transaction, can potentially result in violation of the protocol.

4.6 Summary

This chapter presented an in-depth investigation of stateful services, i.e. services
that maintain state between operation invocations. The different characteristics of
service state, such as state scope, state identification and sate duration, were

13 In many real-world shopping cart Web services, such as the Amazon E-commerce Service [56],
shopping cart contents are indeed managed by the (stateful) service rather than the client, for more
convenience.

72 Web Services with State and Testing Implications

identified along with their variation. Also, a classification framework for Web
services with respect to state was presented. This classification framework gives
rise to a few practical Web service categories, which have distinct requirements for
formal modelling and testing. The results from this chapter, which relate to
contribution C1 of this thesis (see section 1.3), will be referred to in the subsequent
chapters, where ad hoc modelling and testing techniques are described for Web
services with different state characteristics.

The next two chapters present challenges and techniques for modelling Web
services using the stream X-machine formalism.

Chapter 5 – Modelling Stateful Web Services
with Stream X-Machines

The core activity of the testing approach described in this thesis is the creation of a
formal stream X-machine (SXM) specification of the Web service to be tested.
Having investigated and classified stateful Web services in the previous chapter,
this chapter describes how stateful Web services are modelled by SXMs. Creating a
SXM specification requires modelling techniques as well as an expressive language
to write the specification, possibly supported by editor tools.

Before starting the main discussion, this chapter introduces two Web service
examples, which are used in the rest of the chapter and thesis for illustration
purposes. It follows with a comparison of three representative state-based
computational models, which are FSMs, EFSMs and SXMs. The strengths and
limitations of each of those three formalisms in specifying various kinds of stateful
Web services are examined, and the choice of SXMs is justified. Next, SXMs are
described in further depth, including their mathematical definition, properties, and
variants. Having introduced SXMs, the fourth section clarifies the correspondence
between the elements of SXM specifications and their counterparts in stateful Web
service implementations, using the Bank Account Web service example introduced
in the beginning of this chapter. The next section describes more advanced
modelling techniques and best practices. Given that the model should stand at a
higher level of abstraction than the implementation, abstraction techniques in terms
of data and behaviour are suggested. This section also discusses modelling obstacles
for more complex Web services, and suggests possible solutions. Those Web
services include services managing several instances of data objects, services
maintaining huge data repositories, and services requiring confidential inputs or
inputs that are difficult to generate. The next section of this chapter demonstrates
that a SXM model, which represents the explicit Web service choreography, can be
inferred from an implicit choreography description through IOPE specifications of
service operations, which are considered easier to declare. The described algorithm
ensures that states and transitions are properly derived, and that the necessary
design-for-test properties are satisfied. Since SXM specifications do not always

74 Modelling Stateful Web Services with Stream X-Machines

satisfy certain expected properties, sections 7 and 8 critically investigate
completeness, controllability, and determinism and their implication in the context
of Web services.

5.1 Two service examples: Bank Account and Supply Order

This section introduces the Bank Account and Supply Order Web service examples,
which are used for motivating and better explaining the proposed testing approach
and the employed methods. The Bank Account (or simply Account) Web service
serves as a simple Web service of minimal complexity, to demonstrate basic
modelling and testing activities. The Supply Order (or simply SupplyOrder) Web
service serves as a more sophisticated example and representative of real-world
Web services, which will be used for explaining more complex specification and
testing techniques. Both Web services are stateful and conversational.

5.1.1 Bank Account

The Bank Account Web service exposes operations for performing elementary
transactions on a bank account over the Internet. For simplicity, it is assumed that
the service interface consists of five operations: (i) open, (ii) deposit, (iii) withdraw,
(iv) getBalance, and (v) close. When an account is created it is initialised as inactive
and therefore needs to be set to active (opened) before any transaction can be
performed. The deposit of an amount will result in increasing the balance of the
account as appropriate, while the withdrawal of an amount can take place only if the
amount does not exceed the balance, and will result in reducing the balance
accordingly. A successful deposit or withdrawal will also result in having the
updated balance returned to the client as part of the invocation response message.
Finally, an account can be closed only if its balance is zero, and once closed cannot
be re-activated.

Web service WSDL

The following is an extract of the WSDL document for the Account Web service. It
lists only the abstract interface (portType), which summarises the service operations
and their inputs and outputs.

<wsdl:portType name="AccountPortType">
 <wsdl:operation name="withdraw">
 <wsdl:input message="ns:withdrawRequest"/>
 <wsdl:output message="ns:withdrawResponse"/>
 </wsdl:operation>
 <wsdl:operation name="open">
 <wsdl:input message="ns:openRequest"/>
 <wsdl:output message="ns:openResponse"/>
 </wsdl:operation>
 <wsdl:operation name="deposit">
 <wsdl:input message="ns:depositRequest"/>
 <wsdl:output message="ns:depositResponse"/>
 </wsdl:operation>
 <wsdl:operation name="getBalance">
 <wsdl:input message="ns:getBalanceRequest"/>

Modelling Stateful Web Services with Stream X-Machines 75

 <wsdl:output message="ns:getBalanceResponse"/>
 </wsdl:operation>
 <wsdl:operation name="close">
 <wsdl:input message="ns:closeRequest"/>
 <wsdl:output message="ns:closeResponse"/>
 </wsdl:operation>
</wsdl:portType>

5.1.2 Supply Order

The SupplyOrder Web service is another example of a stateful Web service, which
allows the procurement of new raw materials by a manufacturer from a supplier
partner [81]. The order processing transaction is performed in a number of steps and
in accordance with a conversation protocol. The SupplyOrder Web service consists
of the following operations: createOrder, cancelOrder, addItem, removeItem,
getQuotation, rejectOrder, and confirmOrder, which can be called in sequences
permissible by the protocol. This second Web service example has been selected on
purpose, since it exhibits more complex behaviour and operates on complex data
repositories, in order to be closer to the kinds of Web services that are expected to
be found in the industry.

Normally, in accordance with the CRUD (create-read-update-delete) lifecycle of
data objects, the manufacturer should be able to create new orders, and read, update,
or delete existing orders. However, for simplicity, in this scenario only the creation
of a new empty order with the createOrder operation is modelled. The manufacturer
can populate the new supply order by adding items specifying their id and requested
quantities, through the repetitive invocation of the addItem operation. Order items
can also be removed or the order cancelled altogether, after which the manufacturer
has to create a new order. The addItem operation is successfully fulfilled if the
items of the requested quantities are available in the inventory. The getQuotation
operation returns an order quotation (unless the order is empty), listing the items
that are ordered, their availability and their prices. This gives the manufacturer the
choice to proceed with the confirmation of the order, even if it is partially fulfilled
(because some items are out of stock), or alternatively reject the order. The
getQuotation operation temporary locks the ordered items of the requested (or
available) quantities in the inventory, so that no other client simultaneously
accessing the system can order them until the current order is confirmed or rejected.
Upon confirmation of the supply order, the item quantities that are fulfilled are
subtracted from the inventory and the transaction ends.

In contrast to the Account Web service, the SupplyOrder service follows the
Manager (or Factory) pattern [72], which manages several order instances and
allows order creation, modification, and deletion. It also accesses a large database
of the available inventory items and respective quantities, which are simultaneously
accessed and possibly modified by other clients. That is, the SupplyOrder Web
service consists of shared state and introduces new testing challenges.

76 Modelling Stateful Web Services with Stream X-Machines

Different versions of the SupplyOrder service have been implemented for
experimentation purposes, starting from a naïve Web service managing a single
order, standing at the same level of abstraction as the specification, and without any
inventory lookup. Later, as new testing techniques are introduced, implementations
of increasing degree of sophistication and complexity are used. These include a
multiple-order Web service, an implementation with SOAP and WSDL faults for
negative testing, an implementation with inventory lookup, and finally a Web
service implementation following the Manager pattern. In addition, a number of
faulty implementations are used in the next chapter to demonstrate the ability of
generated test cases to reveal various types of faults.

Web service WSDL

An extract of the WSDL document for the SupplyOrder Web service, describing the
abstract interface (portType) is the following.

<wsdl:portType name="SupplyOrderPortType">
 <wsdl:operation name="getQuotation">
 <wsdl:input message="ns:getQuotationRequest"/>
 <wsdl:output message="ns:getQuotationResponse"/>
 </wsdl:operation>
 <wsdl:operation name="confirmOrder">
 <wsdl:input message="ns:confirmOrderRequest"/>
 <wsdl:output message="ns:confirmOrderResponse"/>
 </wsdl:operation>
 <wsdl:operation name="cancelOrder">
 <wsdl:input message="ns:cancelOrderRequest"/>
 <wsdl:output message="ns:cancelOrderResponse"/>
 </wsdl:operation>
 <wsdl:operation name="addItem">
 <wsdl:input message="ns:addItemRequest"/>
 <wsdl:output message="ns:addItemResponse"/>
 </wsdl:operation>
 <wsdl:operation name="createOrder">
 <wsdl:input message="ns:createOrderRequest"/>
 <wsdl:output message="ns:createOrderResponse"/>
 </wsdl:operation>
 <wsdl:operation name="rejectOrder">
 <wsdl:input message="ns:rejectOrderRequest" />
 <wsdl:output message="ns:rejectOrderResponse"/>
 </wsdl:operation>
 <wsdl:operation name="removeItem">
 <wsdl:input message="ns:removeItemRequest"/>
 <wsdl:output message="ns:removeItemResponse"/>
 </wsdl:operation>
</wsdl:portType>

5.2 State-based formalisms and Web service modelling

A stateful Web service keeps track of internal state, which is determined by the
previous inputs applied to the service, and in turn, determines the outcome of future
inputs. Attempting to model such a service should take into consideration the
current state the service is found in. Thus, we believe a stateful service is intuitively
modelled as a set of abstract states and transitions between those states. A
considerably large variety of computational models that adopt this modelling

Modelling Stateful Web Services with Stream X-Machines 77

approach have been developed up to date, including X-machines, which are
collectively referred to as state-based formalisms, or state machines.

Selecting a proper state-based formalism for the purpose of modelling a Web
service is dependent on different factors. These include, the expressive power of the
formalism being used, the modelling overhead, the characteristics of the Web
service being modelled, as well as the power of the testing method applicable to the
formalism. In this section we briefly examine three representative state-based
formalisms, which are: finite state machines (FSMs), extended finite state machines
(EFSMs), and finally, stream X-machines (SXMs). Advantages and drawbacks of
each formalism are considered. Overall, going from FSMs through EFSMs to
SXMs, the formalism becomes more expressive and powerful, the complexity of
models and modelling overhead increases, and the set of possible Web services that
can be modelled becomes broader.

5.2.1 Finite State Machines

Among the simplest variations of state machines are the finite state machines
(FSMs). They model computation as transitions between a finite set of states.
Although different flavours of finite state machines exist (finite automata, accepters,
transducers, etc), here we adopt the definition by [68].

A nondeterministic (or stochastic) finite state machine is mathematically defined as
a 6-tuple (Σ, Γ, Q, F, λ, I), where:

 Σ is a finite set called the input alphabet;

 Γ is a finite set called the output alphabet;

 Q is a finite, non-empty set of states;

 F is the state-transition function, F: Q × Σ → 2Q;

 λ is the output function, λ: Q × Σ → Γ;

 I  Q is the set of initial states.

Deterministic finite state machines are defined similarly to nondeterministic finite
state machines as above, with two differences:

 The transition function F maps each (state, input) pair into at most one state,
i.e. F: Q × Σ → Q;

 The machine contains only one initial state, i.e. I = {q0}.

In other words, a finite state machine specifies the states, the transitions between
states, the inputs triggering transitions, and the outputs produced. Thus, FSMs are
valuable in describing the dynamic behaviour of systems. Furthermore, since FSMs
can be represented graphically by state transition diagrams, they are easy to
understand by people with minimal mathematical background.

However, there are serious limitations when plain FSMs are employed to specify
Web services. The main limitation is that FSMs cannot model complex data
structures that constitute the static aspect of the system. This causes what is known

78 Modelling Stateful Web Services with Stream X-Machines

as the state explosion problem, which is made obvious if we attempt to model the
Account Web service described above. At first, let us consider a simplified (and
rather naïve) version of the Account Web service, in which one is only allowed to
make deposit and withdrawal transactions by discrete amounts of 10 (currency is
not specified), and the maximum allowable balance is 50. Figure 14 is the state
transition diagram of the FSM model for the simplified Account service. Notice that
there is a state for every possible value of the bank account balance. When the state
“max” is reached, only withdrawals are allowed. Imagine now that deposit and
withdrawal transactions of amounts of 5 are allowed. The diagram in Figure 14
would consist of five additional states. If transactions of amounts of 1 are allowed
the resulting FSM would have to contain many more states. If unlimited transaction
amounts are allowed, or if there is no limit on the balance value, then there would
be infinite possible values for balance, which would be impossible to model with a
finite state machine.

Figure 14 – Deterministic FSM model of a simplified Bank Account

An alternative approach to deal with state explosion is to abstract all states
representing the values of balance as a single state called normal (Figure 15). The
resultant FSM consists of fewer states, but it does not fully specify the Account
service, as it does not capture the balance information that affects outputs produced
by the service. As can be noticed, the FSM model is nondeterministic. For example,
the input-state pair (deposit_10, normal) is mapped to a set of two possible states,
normal and max (and produces two different outputs). This form of
nondeterminism, in which there is more than one possible next state for an input-
state pair, is also referred to as state nondeterminism in [69].

Modelling Stateful Web Services with Stream X-Machines 79

Figure 15 – Nondeterministic FSM model of the simplified Bank Account

It can be concluded that there are two possibilities in employing FSMs to specify
stateful Web services:

 create deterministic specifications of very simple, trivial Web services;

 create abstracted, nondeterministic specifications of realistic Web services.

Apparently, most stateful Web services are expected to operate on data variables
that can take on infinite values, hence the second alternative is a more likely
scenario.

On the positive side, finite state machines are a simple formalism requiring little
modelling overhead. FSM models are kept abstract, while being able to capture in
the machine language L the control flow of conversational Web services, which
follow a conversation protocol of allowed operation sequences. Nevertheless, for
Web services maintaining non-trivial internal state or services operating on large
data repositories, such as databases, finite state machines are not appropriate. Not
only can’t they model non-trivial data structures, they are also unable to specify the
computations that produce outputs from provided inputs, except for the state
transitions between the abstract states.

For deterministic FSM specifications of trivial Web services, a strong notion of
testing, called equivalence testing, is applicable (explained in more detail in section
7.4). On the other hand, when nondeterministic FSMs are used to specify more
realistic Web services, a weaker notion of testing, called conformance testing, can
be applied [69]. Testing the conformance of Web service conversation protocols to
the language of the specification machine may be useful, but is not always
sufficient, especially for services operating on complex data structures. Finally, a
significant disadvantage of nondeterministic FSM specifications is that they cannot
serve as precise test oracles in defining the outputs, as the expected output will be
any from a set of possible outputs.

80 Modelling Stateful Web Services with Stream X-Machines

5.2.2 Extended Finite State Machines

Extended Finite State Machines (EFSMs) enhance FSMs with the addition of a set
of variables to the machine, which formally constitute an n-dimensional space, or
memory. In this way, EFSMs address the state explosion problem by parameterising
the states with variables that can potentially assume an infinite number of values.

As with FSMs, there are several different definitions for EFSMs. A common
definition, taken from [70], and [64], is provided below. The symbols have been
renamed for better comparativeness with the stream X-machine definition.

An Extended Finite State Machine is defined as the 7-tuple (Q, Σ, Γ, D, F, U, T),
where:

 Q is a set of symbolic states;

 Σ is a set of input symbols;

 Γ is a set of output symbols;

 D is an n-dimensional space D1 × . . . × Dn;

 F is a set of enabling functions fi such that fi: D → {0, 1};

 U is a set of update transformations ui such that ui: D → D;

 T is a transition relation such that T: Q × F × Σ → Q × U × Γ.

In another variant of EFSM definition, the set of enabling functions F and the set of
update transformations U are merged into the transition relation T: Q × D × Σ → Q
× D × Γ, hence the machine is a 5-tuple, (Q, Σ, Γ, D, T) [68]. In this rearrangement,
the transition relation does not use predefined predicates from the set F and
assignments from the set U, but maps (state, memory, input) triples to (state,
memory, output) triples directly.

In addition to the benefit of addressing the state explosion problem with memory
variables, EFSMs can model both the conversation protocol and the internal data of
a Web service. The service protocol is represented by the state transition diagram of
the machine, consisting of the states from Q and the transitions between any two
states as permitted by T. Service data is represented in the n-dimensional space D of
the EFSM. As a result, the range of stateful Web service categories that can be
specified with EFSMs is broadened, including services operating on large or
complex data repositories, and shared state services. Furthermore, it is possible to
create EFSM specifications which are deterministic, even for relatively complex
Web services, as it is possible to capture all the factors that determine their
behaviour.

5.2.3 Stream X-Machines

Stream X-machines (SXMs), formally defined in the next section, are a kind of
EFSM. The difference is that the variables in the n-dimensional space are replaced
by a memory element M; the sets of enabling functions F and update
transformations U are merged into a set of processing functions, Φ; and the
mapping of inputs to outputs is defined by the individual processing functions rather

Modelling Stateful Web Services with Stream X-Machines 81

than the transition function T. As a result, in SXMs the transition function F: Q × Φ
→ Q is much simpler and is easily represented by a state-transition diagram.

Being a kind of EFSM, the stream X-machine inherits the advantages of EFSMs
relative to FSMs. SXM specifications are capable of modelling both the dynamic
control and the static data of systems. This specification power is essential in
modelling stateful Web services, which often enforce operation sequencing rules in
accordance with a protocol (conversational Web services), and operate on data
structures which can get fairly complex and large. Notably, SXMs subsume the
expressive power of FSMs, since the memory element can be specified as empty
and the processing functions can map single input symbols to output symbols. More
abstract, nondeterministic versions of SXM specifications can also be utilised to
model complex and large-scale Web services, as described later in this section.

An important characteristic of SXMs, as compared to the generic EFSMs, is that the
preconditions, memory updates, and output computations, which associate
transitions between two states, are decoupled from the transition function and
modularised as processing functions. Since SXMs employ a diagrammatic approach
to modelling the control with state-transition diagrams, the transitions are labelled
with processing functions. Therefore, it is possible to define an associated finite
automaton (FA) of a SXM, by treating the processing functions as abstract input
symbols. Logically, the associated finite automaton represents the integration of
individual system components, which are in turn specified by processing functions.

This separation of the system integration level from the lower level components
makes it possible to apply the powerful SXM integration testing (SXMT) method
[62], [61], which is described in the next chapter. SXMT relies on the application of
Chow’s W-method [63] to the associated finite automaton of the machine.
Assuming the individual processing functions to be correctly implemented, the
method guarantees that all faults are revealed in the Web service under test. In
contrast, it is not possible to apply the SXMT to the generic EFSMs, as they do not
decouple state transitions from processing functions. Instead, EFSM-based testing
methods involve flattening the EFSM into an equivalent finite state machine (whose
states are the state-memory pairs of the EFSM), which frequently results in state
explosion [64].

In addition, it is possible to further model the individual processing functions as
simpler SXMs and test their correctness separately in a similar manner. The process
may proceed down to lowest level where the components can be safely assumed
correct (such as standard library calls, or operating system routines). Further details
about this divide-and-conquer specification approach and complete SXM testing
method are described in [65].

Finally, X-machines, and stream X-machines in particular, are backed by sound
theoretical foundations, languages, and supporting tools (described later). Also, X-
machines have been used in a wide variety of practical application areas, as diverse
as cell biology, multi-agent systems, and hardware design.

82 Modelling Stateful Web Services with Stream X-Machines

The advantages described above make SXMs preferable over EFSMs for modelling
and testing stateful Web services. In this thesis SXMs are employed for creating
behavioural specifications of Web services, which are amenable to the SXM
integration testing method with correctness guarantees. The disadvantages relative
to finite state machines, such as specification overhead, are generally compensated
by the fact that specifications are more precise, deterministic, and the applicable
equivalence testing method ensures the trustworthiness of the Web services, which
is an especially important attribute in critical applications.

5.3 Background on Stream X-Machines

This section provides selected theoretical background on stream X-machines, being
the formalism employed to specify Web services for testing.

5.3.1 The Stream X-Machine formalism

Stream X-machine (SXM) is a computational model introduced by Gilbert Laycock
in 1993 [66], which extends the X-machine model introduced by Samuel Eilenberg
in 1974 [67]. In essence an X-machine is like a finite state machine, with the
difference that transitions are associated with relations (often functions) that operate
on a basic data set X. SXMs further enhance this model by including input and
output streams as parts of the data set X, thus making the important distinction
between memory and I/O.

A stream X-machine is mathematically defined as a 9-tuple, (Σ, Γ, Q, M, Φ, F, I, T,
m0) [61] where:

 Σ and Γ is the input and output finite alphabet respectively;

 Q is the finite set of states;

 M is the (possibly) infinite set called memory;

 Φ, which is called the type of the machine, is a finite set of distinct
processing relations that the machine can use; a processing relation is a non-
empty relation of the form φ: Σ × M ↔ Γ × M; Φ often is a set of (partial)
functions;

 F is the next state partial function that given a state and a function from the
type Φ, provides the next state, F: Q × Φ → 2Q (F is often described by a
state-transition diagram);

 I and T are the sets of initial and terminal states respectively, I  Q, T  Q;

 m0 is the initial memory value, m0  M.

It is sometimes helpful to think of a SXM as a finite automaton (FA) by treating the
relations that label the transitions as abstract input symbols [57]. This automaton,
defined as the tuple (Φ, Q, F, I, T) is called the associated FA of the X-machine.
One helpful practice in SXM modelling is the use of state-transition diagrams to
depict graphically the control flow of the associated FA. A human person with
minimal mathematical knowledge can understand the dynamic behaviour of the

Modelling Stateful Web Services with Stream X-Machines 83

modelled system by viewing the state diagram. Obviously, to further understand the
data structure maintained in the memory of the machine and the computations
performed on the memory by the processing relations, the interested human
individual has to read the detailed specification.

According to the preceding definition, a SXM can be nondeterministic, in the sense
that the application of an input σ  Σ in a state q  Q for a memory value m  M
may produce more than one possible output. More specifically, the machine may
contain more than one initial state, an input may trigger one of several possible
processing relations, the triggered processing relation may produce one of several
possible outputs and memory updates, and the next state may be one of several
possible next states. That is, the starting state, the triggered processing relation, the
output, the memory update, and the next state are uncertain.

In this thesis focus will be given to deterministic stream X-machines (DSXMs). A
SXM Z is defined as deterministic if the following hold:

 The associated FA of the machine is deterministic, i.e.
o Z has only one initial state, i.e. I = {q0};
o The next state function of Z maps each pair (state, processing

function) onto at most one state, i.e. F : Q × Φ → Q;

 Φ is a set of (partial) functions rather than relations;

 Any two distinct processing functions that label arcs emerging from the
same state have disjoint domains, i.e. φ1, φ2  Φ, ((q  Q with (q, φ1),

(q, φ2)  dom (F))  (φ1 = φ2 or dom (φ1) ∩ dom (φ2) = ∅)).

Therefore, a DSXM with all states terminal (T = Q), is now defined mathematically
as an 8-tuple, (Σ, Γ, Q, M, Φ, F, q0, m0). The associated FA of a DSXM is then a 4-
tuple, (Φ, Q, F, q0).

In a DSXM, starting from the initial state q0 and initial memory value m0, an input
symbol σ  Σ triggers a processing function φ  Φ, which in turn triggers a
transition to a new state q  Q and a new memory value m  M, while producing
an output γ  Γ. The sequence of transitions (path) triggered by the stream of input
symbols is called a computation. The computation halts when all input symbols are
consumed. The result of a computation is the sequence of outputs symbols produced
by this path [68]. All possible computations performed by a DSXM comprise the
function computed by the machine, which maps input sequences to output
sequences and is denoted by f: Σ* → Γ*.

Apart from being formal as well as proven to possess the computational power of
Turing machines [61], the SXM computational model has the significant advantage
of being associated with a well-studied testing method with completeness
guarantees [61], [62]. This method generates test sets for a system specified as a
SXM whose application ensures that the system behaviour is equivalent to that of
the specification, provided that the system is made of fault-free components and
some explicit design-for-test requirements are met (see next chapter).

84 Modelling Stateful Web Services with Stream X-Machines

5.3.2 Other properties of stream X-machines

In the previous section, a particular subset of SXMs, the DSXMs, were defined
based on the property of determinism. In this section, further properties that
characterise SXM models are defined. These properties will be referred to in other
parts of the thesis, especially in the testing section, since some of them are
prerequisites in the application of the SXM testing method. Further properties of
SXMs include the following:

 minimalism

 output-distinguishability (observability)

 input-completeness (controllability)

 completeness of specification

 uniformity (of the machine type Φ)

A deterministic FA, A, is called minimal if any other FA that accepts the same
language as A has at least the same number of states as A. It follows that a SXM is
considered as minimal if its associated FA is minimal.

Φ is called output-distinguishable if φ1, φ2  Φ, ((m  M, σ  Σ with
π1(φ1(m, σ)) = π1(φ2 (m, σ)))  φ1 = φ2). This says that we must be able to
distinguish between any two different processing functions by examining outputs. If
we cannot then we will not always be able to tell them apart.

Φ is called input-complete if φ  Φ, m  M, σ  Σ such that (m, σ)  dom (φ).
This condition ensures that any processing function can be exercised from any
memory value using appropriate input symbols (regardless of the state q).

A completely defined SXM is one in which there is at least one possible transition
for any triplet q  Q, m  M, σ  Σ. That is,  q  Q, m  M, σ  Σ, φ  Φ
such that ((m, σ)  dom(φ) and (q, φ)  dom(F)). Therefore, a SXM which is
completely defined specifies functionality that handles every input symbol in any
state and for any memory value.

It is easy to see that in a DSXM there is at most one possible transition for any
triplet q  Q, m  M, σ  Σ. Also note that if a deterministic SXM is completely
defined then there is exactly one transition for any triplet q  Q, m  M, σ  Σ.
More on completeness of Web service specifications will be discussed in section
5.7 of this chapter.

5.3.3 Other variants

Object Machines

Object Machines (OM) are a variation of SXMs, intended to bring the formalism
closer to the object orientation paradigm [71]. OMs specify the behaviour of
individual software objects, whose behaviour is implemented by methods and state
is maintained in attributes. Also, protocol machines are decoupled from method
machines. In addition, a transition is fired from a state and the next state is decided

Modelling Stateful Web Services with Stream X-Machines 85

after the execution of the processing function (i.e. method code). Thus the logic for
deciding the next state is decoupled from processing code. Model animation
corresponds more closely to execution of class methods, and Web service
operations as well.

Although OMs are relevant to consider as a variant for specifying Web services, the
formalism is not yet supported by tools and is not considered in this thesis.

5.4 Correspondence between Web service elements and
SXM elements

Although the role of SXMs is to specify the externally-visible system behaviour,
and the associated testing method is black-box, it is still useful to investigate the
correspondence between the SXM elements and their counterparts in stateful Web
service implementations. This correspondence is especially helpful when attempting
to model already existing Web services, rather than specifying the user
requirements for desired Web services.

Both a stateful Web service and a SXM accept inputs and produce outputs, while
performing computations and transitioning between internal states. Therefore, the
correspondence is fairly obvious. SXM input symbols model Web service requests,
while SXM output symbols model Web service responses. SXM states and memory
represent Web service state (data), which was described in the previous chapter.
SXM processing functions (relations, in nondeterministic SXMs) represent the
computations performed by invoked service operations.

5.4.1 SXM inputs

The correspondence for inputs and outputs is slightly more complex than just
presented. As mentioned in the overview of the SOAP protocol, in section 2.2.1,
SOAP envelopes are often associated with essential header information from the
underlying transport protocol, such as HTTP. This means that, sometimes, Web
service requests can be more than SOAP request messages, and responses can be
more than SOAP response messages.

In the case of inputs, Web service requests need to define:

(a) the operation to invoke and

(b) the business payload to provide as argument to the operation.

Requests may also contain further header information, such as session identifiers or
security protocol information, but this is not considered as essential and is usually
abstracted away. While the business payload is contained in the body of a SOAP
request message, the target operation could be specified either inside the SOAP
envelope or externally to it (See section 9.3.4 for a description of how message
dispatching is performed during testing). Therefore, it is not always accurate to
consider abstract SXM input symbols as analogues of SOAP request messages.
Since the intent of a service request is to invoke an operation on the Web service,

86 Modelling Stateful Web Services with Stream X-Machines

then it is more helpful to view SXM input symbols as representing operation
invocations (calls) with the message data passed as arguments.

In the approach adopted by the JSXM notation [59], described later in this chapter,
input symbols are grouped by the Web service operation they represent. For
example, in the specification of the Account Web service, all input symbols that
represent invocations of the “open” operation belong to one group; those that
represent invocations of the “deposit” operation belong to another group, and so on.
Each group representing an operation is defined separately in the specification.
Input definitions can be either simple or complex. Simple inputs are specified only
by the target operation, thus they define single SXM input symbols. On the other
hand, complex inputs, in addition to the target operation, are specified by one or
more arguments of designated data types. Hence, every complex input defines a
potentially infinite set of SXM input symbols. This set is the Cartesian product of
the set consisting of the target operation (input name) and the sets defined by the
types of all arguments.

 Σi = {input_name}, for simple inputs;

 Σi = {input_name} × argi1 × … × argin, for complex inputs of n arguments.

Arbitrary complexities in input argument types are achieved recursively from
simpler types, and eventually from elementary types (finite or infinite sets).
However, attempting a mathematical representation of all possible types is out of
scope of this thesis.

For example, the “open” simple input modelling operation “open” in the Account
Web service is defined as the set:

Σ open = {open},

while the deposit complex input modelling operation deposit, which contains an
integer amount argument, is defined as the following set,

Σ deposit = {deposit} × Z = {deposit} × (-∞, +∞) =

= {…, (deposit, -1), (deposit, 0), (deposit, 1), …}.

The resulting input alphabet, Σ, of the machine, is the union of all input sets. For a
machine of n input definitions in the specification:

Σ = Σ 1  …  Σ n.

Assuming that the SXM specification of the Account Web service consists of five
inputs (modelling five operations): open, close, getBalance, deposit and withdraw,
of which the last two are associated by an integer argument, then the input alphabet
is the following infinite set:

Σ = {open}  {close}  {getBalance}  ({deposit} × Z})  ({withdraw}
× Z}), or,

Σ = {open, close, getBalance, …, (deposit, -1), (deposit, 0), (deposit, 1), …,
(withdraw, -1), (withdraw, 0), (withdraw, 1), …}.

Modelling Stateful Web Services with Stream X-Machines 87

5.4.2 SXM outputs

Usually, all essential information in a Web service response is contained within a
SOAP envelope. Thus, SXM output symbols represent SOAP response messages,
or in cases of failure, fault messages. Despite being semantically different kinds of
responses from the Web service, they correspond to outputs in the SXM
specification, since the SXM formalism does not differentiate between normal and
error outputs.

As with SXM input symbols, SXM output symbols can be grouped by the source
operation. Simple outputs are defined only by the source operation (output name),
thus they specify single SXM output symbols. Complex outputs, are additionally
defined by one or more parts (called results in JSXM) of designated data types. The
same reasoning used to derive the input alphabet, applies to the output alphabet of
the machine. For the Account SXM:

Γ = {openOut}  {closeOut}  ({getBalanceOut}× Z})  ({depositOut}
× Z})  ({withdrawOut} × Z});

Γ = {openOut, closeOut, …, (getBalanceOut, -1), (getBalanceOut, 0),
(getBalanceOut, 1), …, (depositOut, -1), (depositOut, 0), (depositOut, 1),
…, (withdrawOut, -1), (withdrawOut, 0), (withdrawOut, 1), …}.

5.4.3 SXM states and memory

As described in the previous chapter, Web service state is data in various forms,
which is accessed and/or modified by the Web service and affects its functional
behaviour. It is possible to break down Web service state into individual variables,
which in this thesis are referred to as state variables. Some or all of those variables
may be represented in the SXM specification, depending on whether that
specification is going to be deterministic, or nondeterministic.

State variables are modelled as control states and in the memory structure of the
SXM. Complex state variables of infinite values are specified in the memory
element M (SXM testing can deal with infinite memory). Important state variables
of discrete values can be specified as SXM control states. Since control states stand
at a higher level of abstraction (integration level) of the machine, each control state
can also represent an abstraction over a range of values assumed by the SXM
memory. For example, a SXM state could stand for all non-zero values of the bank
account balance. The significance of SXM control states is that they define discrete
ranges of values over Web service state, for which the subsequent behaviour is
considerably distinct. Determining which part of Web service state is modelled as
control states and which as memory is a matter of decision, depending on the
modelling and testing goals.

The Account Web service keeps track of the status of the bank account and the
remaining amount in the balance. Having an integer type, the account balance
assumes infinite values, thus it is driven to the SXM memory to avoid state

88 Modelling Stateful Web Services with Stream X-Machines

explosion. Thus, M = Z. The initial memory value corresponds to the initial amount
of zero in the balance: m0 = 0.

We can choose the control states of the machine to represent the discrete statuses of
the account (initial, active, closed) and two ranges of values for the balance (zero
and non-zero). There are four valid combinations (initial and zero, active and zero,
active and non-zero, closed and zero). Therefore, the set of states Q of the Account
SXM consists of four elements, which we name as follows:

Q = {initial, opened, normal, closed}.

The initial state is q0 = initial.

5.4.4 SXM transitions

SXM transitions represent transitions between the abstracted states assumed by the
Web service. They are triggered by operation invocations and associated with some
computations represented by processing functions.

The state transition function F: Q × Φ → Q is depicted as a state-transition diagram
in Figure 16.

Figure 16 - State-transition diagram of the Account SXM

5.4.5 SXM processing functions

While an input symbol triggers a processing function on a SXM, the invocation of
an operation on a Web service triggers a set of actions, which consist of state
updates and output computations. Technically, those actions are performed by the
execution of the code implementing the invoked operation. However, since a
processing function can be triggered only from some of the states and since it
defines a domain on inputs and memory, the Web service counterpart is that portion
of the code, which is executed upon the satisfaction of specific predicates involving
the request message and the service state. Therefore, it can be noticed that
processing functions do not necessarily correspond one-to-one with Web service

Modelling Stateful Web Services with Stream X-Machines 89

operations and should not be confused with each other. The invoked operation may
take different paths under different conditions, which are possibly modelled by
different processing functions. As a result a Web service operation implements one
or more processing functions.

For example, although in Figure 16 some of the transition labels do coincide with
operation names, they do not represent the whole operations, but their success
scenarios. The invocation of the success scenario of the “open” operation, when the
status is “initial”, triggers the “open” processing function, but it may also trigger an
“openError” function (not modelled, see section 5.7 for completeness of
specifications) if the operation is invoked when the Web service has already been
opened. Similarly, there are two possible transitions triggered by the invocation of
operation withdraw: one leading to the same “normal” state of positive balance, and
the other to the “opened” state of zero balance if all money is withdrawn. They are
labelled by two different processing functions, in order to keep the associated FA
deterministic. Both cases are considered as success scenarios. Another case, which
is not modelled to keep the specification uncluttered, is when the amount to be
withdrawn is unavailable (failure scenario).

As a result, the set of processing functions for the (partially-specified) Account
SXM is specified as the following machine type:

Φ = {open, close, getBalance, deposit, withdraw, withdrawAll}.

Table 1 summarises the correspondence between SXM elements and the Web
service counterparts, as discussed in this section.

Table 1 - Correspondence between stream X-machine and Web service elements

SXM Web service

input symbol (σ  Σ) operation invocation

output symbol (γ  Γ) SOAP response or fault message

state (q  Q) abstracted state of the Web service, considerably
characterizing its subsequent behaviour

memory (M) other state/data accessed by the Web service

processing function (φ  Φ) code executed by a Web service operation under
certain preconditions on input and state

transition (f  F) transition between abstract Web service states

initial state (q0) the abstract state the Web service is initially found

initial memory (m0) initial value(s) of other internal state/data

5.5 Modelling practices in the Web services domain

A number of best practices are suggested when deriving the SXM model of a Web
service implementation. These modelling practices account for some characteristics
that are common among Web services and present challenges during the modelling

90 Modelling Stateful Web Services with Stream X-Machines

task. Generally, these techniques aim to raise the level of abstraction of the
specification and deal with other aspects such as huge service state and confidential
inputs required to drive the service.

5.5.1 Modelling individual stateful objects

One common characteristic of real-world Web services is that they are intended to
serve several clients and thus maintain data separately for each one of them. Let us
return to the example of the SupplyOrder Web service, which manages a collection
of supply orders for a number of clients. Attempting to model this Web service as a
SXM will normally require capturing all the service state, consisting of all order
instances, in the memory structure of the machine. Although individual order
instances may be in different stages of their lifecycle, the state of the Web service is
defined by the combination of all current order objects in the SXM memory. Thus,
one could not abstract a discrete number of useful control states that would specify
the high level behaviour of the Web service. Instead there would be one single
control state and all the rest of the Web service state represented in the memory. A
SXM with one state is inadequate to represent the control flow and is not conducive
to test set generation.

Alternatively, it would be more useful to model the state of an individual order
instance and the behaviour of operations on that order. As already explained in
section 0, there are three different views on stateful Web services with increasing
levels of abstraction: pan-client, per-client, and per-object. The per-object view is
made possible when properly identified invocations of operations access and
modify only one object and are not affected by the rest of the state. Therefore, it is
often possible for a SXM specification to adopt any of the above views: the more
abstract, the better. Although the Account Web service actually manages a
collection of bank accounts for several clients, the SXM specified in the previous
section models a single account, corresponding to the per-object view. Similarly,
the SXM for the SupplyOrder Web service can represent all service state, the state
for a single client, or the state for a single order instance.

The advantages of adopting a per-client or per-object view are summarized as
follows:

 The behavioural specification is vastly simplified:
o Only the portion of the state referring to a single client or object is

specified;
o Only the operations accessing the per-client or per-object state are

specified in the model;

 Control states of individual objects are exposed for specification and for
testing purposes;

 Client or object identification details are abstracted away from the
specification.

Modelling Stateful Web Services with Stream X-Machines 91

Figure 17 aims to demonstrate the relationships between the pan-client, per-client,
and per-object SXM models of a SupplyOrder Web service requiring
authentication.

Figure 17 – Three different views adopted by the specifications of a SupplyOrder Web

service with authentication functionality

One can imagine the three SXMs as operating concurrently; an input symbol may
trigger transitions in all three machines simultaneously. The per-object machine
represents the behaviour of one of multiple order instances in the memory structure
of the per-client machine, which in turn represents the behaviour of one of multiple
client state instances in the memory of the pan-client machine.

Transitions in one machine may relate to transitions or events in the other two
machines. For example, a “login” transition in the single-state pan-client machine
corresponds to a “loginOK” transition in the per-client machine. The “createOrder”
transition in the per-client machine is associated with a creation event, which brings
into existence the per-object machine for the newly-created order instance. In
addition, the transitions in the order machine also correspond to transitions in the
parent machines (not modelled to keep the diagrams simple). For example, input
symbol (addItem, itemId, qty) triggers a transition labelled by “addOrderLine” in
the per-object machine. However, in the parent machines the input symbol also has
to include identifiers for the target order and/or client, thus it is of the form
(addItem, orderId, itemId, qty) in the per-client machine, and (addItem, authToken,
orderId, itemId, qty) in the pan-client machine. The identifiers filter the scope of
processing functions to one object in the SXM memory.

92 Modelling Stateful Web Services with Stream X-Machines

Finally, it is necessary to define associations between the per-object SXM
specification and the modelled Web service. This is necessary in activities that
involve the invocation of the Web service, such as testing. The association can be
accomplished through conventions that constitute a pattern. For example, the WS-
Resource Framework described in section 0 uses the implied resource pattern,
which defines identification mechanisms and Web service operations for creating,
reading, updating, and deleting the modelled stateful resource. In this thesis we
assume two generic patterns called the Manager pattern and the Constant Field
pattern, described in chapter 0. The Manager pattern is outlined by Atkinson et al in
[72] and defines a commonly-occurring relationship between a “manager” service
interface and “managed” instances of a simple abstract data type (ADT). By
“managing” it is meant that the service allows instances of the managed ADT to be
created and destroyed and operations of the ADT to be applied to identified
instances. In contrast, the Constant Field pattern, introduced in this thesis, does not
assume that instances of the ADT are created or destroyed by service operations;
thus the identifiers are static and known in advance.

The stateful object modelled by a per-object SXM is a special kind of object among
others that are part of Web service state. Every input that triggers a transition in the
per-object specification corresponds to an operation in the modelled Web service.
Therefore, the per-object machine is controllable in practice, since it can be driven
through different states and paths by appropriate operation invocations on the Web
service under test.

5.5.2 Other abstraction techniques

A formal SXM specification represents a simplified view of the Web service
implementation, so that it is more understandable and easier to validate against the
user requirements. Unimportant details are left out of the specification in order to
capture only the essential service behaviour.

Web service aspects that can be abstracted away include service functionality,
inputs, outputs, and state. Abstraction of service functionality may involve leaving
out some of the operations, which are not considered important and do not interfere
with the modelled behaviour (see section 0). Other functionality is excluded by
specifying only the success scenarios of service operations (section 0). In addition,
since inputs, outputs, and state can be fairly complex in Web service
implementations, it is often necessary to simplify their representation in the SXM
specification and exclude certain data elements. Web service inputs and state are
taken into account when computing outputs, thus they are factors that determine
behaviour. Consequently, exclusion of input and state information from the
specification may potentially result in nondeterminism, if the skipped information
eventually affects produced outputs. In contrast to inputs and state, outputs may be
abstracted in the specification, for comparison at an abstract level, without
sacrificing determinism.

Modelling Stateful Web Services with Stream X-Machines 93

Subset of operations

In a number of situations it is possible to simplify the SXM specification of a Web
service significantly by omitting functionality for one or more inputs. This means
that the implementation of the missing functionality is not important in the context
of the Web service under test. The missing functionality may correspond to a set of
Web service operations, which are logically separated from the core behaviour,
which comprises the operations that the modeller wishes to specify and test.

For example, the Amazon E-Commerce Service [56] consists of more than twenty
operations, including operations for searching and browsing items, and five
operations for managing shopping carts: CartCreate, CartGet, CartAdd, CartModify,
and CartClear. If the modeller is interested in specifying and testing the behaviour
relating to shopping carts, then only the functionality of those five operations
involving shopping carts needs to be captured in the specification.

Theoretically, the SXM integration testing method assumes that both the
implementation and the specification are of the same type Φ, i.e. the
implementation cannot contain more functionality than the specification if they are
to be equivalent. However, the Web service functionality restricted to a subset of
the input alphabet (subset of the operations) can be logically isolated from the rest
of the functionality. Consequently, the aim of testing becomes to verify the
equivalence between the restricted Web service functionality and the abstracted
SXM specification. Additional processing functions are allowed to be included in
the implementation, as long as they are distinguishable from those in the
specification [57].

Specifying success scenarios only

Input symbols representing invocations to the same service operation may trigger
more than one processing function, depending on the current state and memory
value. Those different possible processing functions are implemented by the same
Web service operation and represent distinct scenarios after invoking the operation:
some of them success and others failure scenarios.

Recall from section 5.4.5, that the processing functions labelling the transitions in
the Account SXM state-transition diagram represent the success scenarios of the
named operations. As will be further explained in section 5.7, such a specification is
incomplete, since inputs are not handled when they trigger processing functions that
represent failure scenarios. If the specification was completely defined, the state-
transition diagram would also include numerous failure transitions, which would
make it much more cluttered.

Therefore, it is generally considered as a good modelling and abstraction principle
to specify only the important scenarios of operations, which are usually the success
scenarios. The resulting state-transition diagram of the SXM is made more abstract
and easier to understand. Its visual semantics represents the conversation protocol

94 Modelling Stateful Web Services with Stream X-Machines

that should be followed for successful conduction of conversations (protocol
diagram), and is more appropriate for communicating it to human individuals who
validate the service. This modelling practice is taken into consideration in section
5.6, where the modeller can start by determining the preconditions and effects of the
success scenarios of individual service operations, from which a partially-specified
SXM is inferred.

Data abstraction

SOAP request and response messages of realistic Web services, such as the UPS14
Shipping Web service [58] or the Amazon E-Commerce service [56] often get
enormously complex, including tens or even hundreds of XML leaf elements. In
order to give an idea of the size and complexity that concrete SOAP messages can
attain, Figure 18 shows only the first of ten pages containing the tree representation
of a complex XML request in the UPS Shipping Web services documentation [58].

Figure 18 – Extract of the tree representation of the XML contents of a complex SOAP request

message to the UPS Shipping Web service [58]

Needless to say that modelling all this complexity in input arguments and output
results in the SXM specification is impractical, since it defeats the purpose of
having an abstracted and understandable model of the service.

A large portion of the data fields should be abstracted away from the specification
of input argument types and only those data fields that affect the behaviour one

14 United Parcel Service, www.ups.com

Modelling Stateful Web Services with Stream X-Machines 95

wishes to test are captured. XML nodes in the request message, which can be left
out include:

 optional nodes (e.g. nillable=true or minoccurs=0 in XML
Schema);

 nodes that can be calculated from other data in the message (e.g. a total of
the costs of ordered items);

 nodes representing identification/authentication information, which is
abstracted away from the specification as described earlier in this chapter;

 nodes that virtually remain constant and can be supplied during test case
execution (such as access keys);

 nodes in the request message affecting a portion of the Web service state and
functionality that is not captured in the specification.

Finally, it is possible to exclude from the specification input data fields that affect
Web service behaviour and the computation of outputs, with the trade-off of making
the specification nondeterministic (i.e. same abstract input symbol will potentially
produce different output symbols for different values of the omitted data fields).

On the other hand, response message XML nodes should be captured in the
specification of outputs only if their values are useful as oracles for the test. This
decision depends on the level of granularity at which the tester wishes to make the
comparisons between expected and actual outputs.

Apart from excluding data fields in the abstract input and output specifications it is
possible to make use of enumerations. Enumerated inputs and outputs are discrete
values (enumerated types or booleans) that represent ranges of values or complex
XML data. During test case execution, those enumerated values in input symbols
are replaced by carefully chosen example values or data instances, one for each
enumeration. On the other hand, during outputs comparison, complex XML data
instances are mapped to the corresponding abstract enumerations. The technical
means for performing these mappings along with examples are further described in
chapter 0.

5.5.3 Modelling large data repositories

As discussed in the previous chapter, Web service state often takes the form of
complete databases, such as users or inventory databases. These types of Web
services, which operate on large data repositories, have become fairly common over
the Internet and in private SOA deployments as well. Since the contents of those
repositories affect the outcomes of service operation invocations, they should be
taken into account when modelling Web services. However, in realistic Web
services databases are often exceedingly large and populated with thousands of data
instances. Therefore, specifying all of their contents in the memory element of the
SXM is not practical.

96 Modelling Stateful Web Services with Stream X-Machines

One possible solution to this problem, as further described in section 5.8, is to
exclude large repositories from the SXM specification altogether, with the
drawback of introducing nondeterminism in the specification.

The other solution proposed in this section is to capture only a portion of the
repository in the initial memory m0 of the SXM. This portion should consist of a
small and manageable subset of all the data instances, which serve as sample values
during animation and testing.

As an example, the SupplyOrder Web service introduced in the beginning of this
chapter may consult an items inventory for availability, as items are added to the
order and order quotations are requested. The items inventory is a shared data
repository and includes information on all available items that can be ordered, thus
it can attain exceedingly large sizes. Instead of modelling all the inventory items in
the initial memory of the SXM, we propose specifying a small number of sample
inventory items.

In SXMs the memory element has a generic type and does not prescribe any
particular structure. Thus, it is difficult to write and understand the memory
structure for complex Web services like SupplyOrder, in which state is structured as
collections of objects. For this reason, the more convenient Object X-Machine
approach to structuring memory is applied here for specifying the initial memory of
the SupplyOrder Web service [54]. In accordance with object-oriented principles,
Object X-Machines represent memory as three elements: the set of classes (C), the
set of attributes (A), and the set of mappings from attributes to respective types
(type). For the SupplyOrder example:

C = {INVENTORY_ITEM}

A = {AINVENTORY_ITEM}, where AINVENTORY_ITEM = {itemId, availableQuantity}

typeINVENTORY_ITEM(itemId) = STRING

typeINVENTORY_ITEM(availableQuantity) = N

The initial memory m0 is then defined by the OM memory constructor [54] as a set
of INVENTORY_ITEM objects and sets of attribute-value pairs. For example, the
set of inventory items could be initialised to three sample elements:

OINVENTORY_ITEM = {item1, item2, item3}

VitemId,INVENTORY_ITEM = {(item1, “I0001”), (item2, “I0005”), (item3, “I0010”)}

VavailableQuantity,INVENTORY_ITEM = {(item1, 100), (item2, 50), (item3, 150)}

As regards the state of the repository in the Web service implementation there are
two possible scenarios:

 the service is a sandbox version under controlled test conditions;

 the service is operational and accessing the real items inventory.

Modelling Stateful Web Services with Stream X-Machines 97

If the Web service is deployed under test conditions, it is possible to initialise its
inventory with the same sample items as those in the memory of the specification.
Therefore, the implementation and the specification are equivalent.

In the second case, if no sandbox version is available for testing, the Web service is
accessing the real items inventory. Thus, the initial memory in the specification
represents a small portion of the items inventory in the implementation.
Theoretically, this means that the specification is not only incomplete, but also
incorrect, since the behaviour for adding items that are in the Web service inventory
but not modelled in the specification is incompatible between the specification and
the implementation. However, if the tester ensures that inputs chosen during testing
operate only on the modelled portion of the inventory, then the implementation can
be considered to be logically equivalent with the specification. The actual inputs are
either produced by the test function (see chapter 0), or supplied by the mappings of
abstract inputs to request messages that are sent to the service under test (see
chapter 0). As an example, in the case of the addItem operation, the test function or
the tester executing the tests selects:

 an itemId specified in the SXM memory, in order to exercise the transition
for the case when given itemId exists;

 an itemId not existing in the Web service inventory (hence, SXM memory),
in order to exercise the transition for non-existent itemId.

The usefulness of the above technique is that the tester is able to drive the different
possible paths. In the case of the SupplyOrder Web service, the tester is able to test
the addItem operation for both cases: when the provided itemId is available in the
inventory, and when it is not available.

5.5.4 Specifying sample input values

It is common for realistic Web services to require input data that is unknown and
difficult to generate randomly. Such data items are usually confidential and include:
usernames, passwords, authentication tokens, access keys, credit card numbers, and
so on. Therefore, in order to be able to test those services, the test inputs should
include genuine values for confidential data.

This challenging problem is handled with similar alternatives to the ones described
above for modelling large data repositories:

 create a nondeterministic specification;

 supply sample input data in the SXM specification;

 supply sample input data in the mappings that are used during test case
execution.

As an example, assume that the SupplyOrder Web service requires user
authentication before any other action can be performed. Authentication is achieved
through the invocation of operation “login”, which takes two arguments: username
and password. A correct username-password combination triggers the success

98 Modelling Stateful Web Services with Stream X-Machines

loginOK processing function, while an incorrect combination triggers the failure
loginFailure processing function.

The first possibility is not to specify any sample login data at all. The domains of
both loginOK and loginFailure processing functions are defined as the set of inputs
with all possible username-password combinations. Thus, having two processing
functions with the same (hence, overlapping) domains from the same initial state,
the resulting SXM specification is nondeterministic. As it will be explained in
section 7.3 on testing of nondeterministic SXMs, it is practically impossible for the
test process to find genuine username-password combinations that can trigger the
successful loginOK processing function. As a result, only conformance can be
ensured, by exercising only the loginFailure processing function, without being able
to drive the other paths that traverse the rest of the states and the success scenarios.

Since the previous alternative is not satisfactory for testing, the recommended
solution is to supply sample input data in the SXM specification. Those sample
input data are used to restrict the domains of the success and failure processing
functions, so that the test function is able to derive inputs for exercising both
functions. As in the previous section, it is suggested to specify the sample inputs in
the initial memory m0, which is accessed by the guard conditions of the processing
functions. For the SupplyOrder example, the memory is initialised with a single
user account that consists of a genuine username-password pair:

OUSER= {user1}

Vusername,USER = {(user1, “ervin”)}

Vpassword,USER = {(user1, “123”)}

Once again, the domain of the loginOK processing function is much larger in the
Web service implementation than in the specification, since the service is expected
to maintain several user accounts. Thus, theoretically, the specification is incorrect,
since there are behaviour mismatches for those valid username-password pairs that
are not specified in the SXM. It is the responsibility of the test function (or the
tester) to avoid generating such inputs that cause incompatible behaviours.
Nevertheless, being able to drive the success loginOK function makes it possible for
the tester to drive the implementation through the rest of the states and the success
scenarios.

The other possibility is to abstract the correct and incorrect sets of credentials as
two enumerations in the specification and concretise them during test case
execution. As will be described in chapter 0, the modeller specifies the sample input
values in the transformation scripts.

It is a matter of decision whether the sample inputs information is included in the
SXM specification itself or abstracted away and defined in the transformations.
This usually depends on whether those input fields are considered as part of the
business logic being modelled and tested. The choice is a trade-off between keeping
the SXM specification abstract (leaving details to mappings during test case

Modelling Stateful Web Services with Stream X-Machines 99

execution) and making the specification self-sufficient (facilitating the mapping
task).

5.6 Deriving a stream X-machine model from IOPE
specifications

The task of modelling a stateful Web service as a stream X-machine is not
straightforward, even for the developer of the service. It is possible to derive
different SXMs that correctly specify the same Web service implementation, thus
the decisions for arriving at the final specification are often a matter of testing
priorities. The modelling process requires involves identification of states,
transitions and other SXM elements, which has to be performed correctly.

The core step in creating a SXM specification is the identification of the control
states, i.e. the set Q. Along with the transitions, the control states define the control
flow (or, as referred to in the previous chapter, explicit choreography) of the Web
service. The significance of each control state is that it characterises the subsequent
behaviour of the modelled Web service, which is defined by the set of sequences of
operation scenarios that can be invoked from that state. Therefore, it may be simpler
for the modeller to start by defining the distinct scenarios followed by operation
invocations, for each Web service operation. Usually, the modeller is interested in
specifying only the success scenarios of every operation, which was considered as a
good practice in section 5.5.2. It will be shown that having this information
available, it is possible to infer the interesting control states of the SXM in a proper
way.

Therefore, it is proposed that the modeller starts by declaring the success scenario
of every operation in terms of its inputs, outputs, preconditions, and effects (IOPE).
As mentioned in the previous chapter, the IOPEs of operations are also referred to
as the implicit choreography of the service. Often, the preconditions and effects
involve the internal service state, in addition to inputs and outputs: while
preconditions check the values of state variables, effects update state variables.
Some of those state variables represent control states in the final SXM. Hence, it
can be observed that the preconditions for successfully invoking an operation define
the pre-states of SXM transitions, while operation effects define the next states.
Furthermore, the preconditions for successfully invoking an operation, and the
effects produced by its execution, determine how the operation can be placed in
sequences of invocations. As a result, some form of equivalence exists between
implicit and explicit views on the service choreography (protocol).

A detailed transformation algorithm from IOPEs to SXMs has been described in a
co-authored paper [52], which can be utilised by modellers to create SXM
specifications. The difference is that the transformation described in the paper
assumes that IOPE descriptions already exist as semantic annotations in WSDL.
IOPEs are expressed in a rule language called RIF-PRD (Rule Interchange Format –

100 Modelling Stateful Web Services with Stream X-Machines

Production Rule Dialect), while the data model is expressed in terms of OWL
ontologies.

The transformation to obtain all the constructs of the SXM specification is outlined
by the following steps, while more details are given in the paper.

1. Identifying state variables
2. Partition analysis of state variables
3. Identifying preliminary states
4. Determining inputs and outputs
5. Determining transition pre-states
6. State merging
7. Determining transition next states
8. Determining memory
9. Determining guard conditions for processing functions
10. Determining memory updates for processing functions

There have been some similar attempts to derive formal EFSM specifications from
IOPE-based descriptions of individual service operations. For example, Keum et al
[50] outline a manual algorithm to derive a multi-state EFSM model from plain
WSDL specifications, with extra information supplied by a human individual.
However, the described algorithm focuses on the derivation of states, whereas little
or no detail is provided on obtaining state transitions and other EFSM elements,
such as the functions, memory constructs, inputs, and outputs. In a different
approach, Sinha and Paradkar [51] make use of WSDL-S annotations of service
operations with SWRL (Semantic Web Rule Language) rules to obtain an EFSM
model to test the service. Nevertheless, the resultant model contains only one state,
which is not sufficient to express the dynamic behaviour of the service and guide
the generation of test sequences. On the other hand, the transformation described in
Ramollari et al [52] is more complete, since it starts from IOPE descriptions of the
success scenarios of service operations and infers all the elements of the SXM
specification.

5.7 Controllability and completeness of specifications

Often, SXM specifications of Web services do not satisfy certain desirable
properties, such as controllability (input-completeness), completeness of
specification, and determinism. The first two are discussed in this section, while
determinism is discussed in the next section.

The JSXM tools, described later, accept both non-controllable and partially
specified SXM specifications for animation as well as for test case generation.

5.7.1 Controllability

As mentioned in section 5.3.2, a SXM is called input-complete (controllable) if it is
possible to exercise any processing function from any memory value using
appropriate input symbols, regardless of the state q.

Modelling Stateful Web Services with Stream X-Machines 101

Those processing functions that do not restrict their domains on memory values are
always controllable, since they can always be exercised by any of the input symbols
in their domain. On the other hand, controllability may not be satisfied when
transitions define guard conditions that involve memory values.

For the Account SXM example presented earlier, processing functions open,
getBalance, close and deposit do not define guard conditions on memory. As a
result, they can always be exercised by input symbols (operation invocations): open,
getBalance, close and (deposit, 5)  dom(deposit), respectively, thus they are input-
complete. On the other hand, processing functions withdraw and withdrawAll
contain guard conditions on the account balance in the memory. For example,
withdrawAll requires the balance to be greater than zero, thus there are no input
symbols that can exercise this processing function when the balance has a value of
zero. As a result, processing function withdrawAll is not input-complete, which
makes the whole specification not input-complete.

Controllability is a requirement for SXM integration testing, although test sets can
also be derived for non-controllable SXMs, as described in the next chapter.

5.7.2 Completeness

Generally, a Web service following the request-response message exchange pattern
responds to all invocations of its operations, either with normal or fault SOAP
response messages. This means that the Web service implements functionality that
handles all possible request messages defined in its WSDL description and does not
ignore any of them. In order to fully capture such functionality in the SXM
specification, the SXM should be completely defined as well. As can be recalled
from section 5.3.2 on SXM properties, a completely defined SXM specification is
one in which there is at least one possible transition for any triplet q  Q, m  M, σ
 Σ.

However, as explained in section 0, it is sometimes desirable to create partially
specified SXMs for simplification purposes. Such specifications usually define
transitions only for the success scenarios, while leaving out abnormal functionality
that is not considered essential to testing. Input symbols, which consist of an input
name and several optional arguments, may not be handled for certain values of the
arguments (e.g. in the case of the withdraw input, when the amount is negative), for
certain memory values (in the case of the withdraw input, when the available
balance in the memory is less than the requested amount), and for certain control
states (in the case of the withdraw input, when the state is other than “normal”).

The most usual case of incompleteness is when inputs are not handled in some
control states. The intention is to specify in which of the states operations can be
successfully invoked, so that the operation sequencing rules (conversation protocol
or explicit choreography) are explicated in the state-transition diagram. Complying
with the conversation protocol is essential for successful interoperability with the
service. The diagram in Figure 19 portrays the partially specified SXM of the

102 Modelling Stateful Web Services with Stream X-Machines

Account Web service where inputs representing each operation are accepted only in
some of the states.

Figure 19 – Partially specified Account SXM

The next figure is the state diagram of a completely defined SXM model of the
same Web service. In order to handle all inputs at all states, it defines labelled
transitions for the error scenarios as well.

Figure 20 – Completely defined Account SXM

Making a SXM model of a Web service completely defined is not always practical.
Such a specification must define in each state at least one transition for every
operation. For card(Q) states and n operations, a completely defined SXM model
will define at least card(Q)*n transitions. If we consider a Web service with 10
operations and 10 states, a completely defined SXM model would consist of at least
100 transitions, which make it quite complex and hard to understand. In addition,

Modelling Stateful Web Services with Stream X-Machines 103

the derived test set X will be much larger in terms of the number and length of
sequences, thus increasing the cost of the testing process.

The semantics of an unhandled input, which does not cause any transition in the
specification, can be interpreted in different possible ways:

 the input is ignored;

 computation is stopped;

 an error output is produced.

Since in the domain of Web services, normally no request message is ignored and
the service continues to accept subsequent requests, the first two cases do not
correspond with the actual behaviour of the implementation. Instead, the Web
service implementation is expected to produce error SOAP responses or faults, to
indicate that it is not being invoked according to the specified rules. For instance, if
a requestor of the Account Web service tries to perform a deposit or withdrawal
transaction in the initial state, i.e. before it is activated with the open request, the
corresponding error or fault message will be returned.

As a result, this modelling approach adopts the convention that unhandled inputs
produce error outputs and the SXM remains in the same state with an unchanged
value of memory. The JSXM animation and test set generation tools described later
in this chapter follow this convention, by generating default error messages as
expected outputs for unhandled inputs. In this sense, the SXMs depicted in Figure
19 and Figure 20 are equivalent, with the difference that in the partially specified
SXM the self-transitions for unhandled inputs are implicit, while in the completely
defined SXM those transitions are modelled explicitly. On the other hand,
modelling the failure scenarios explicitly also allows defining custom outputs, and
even different next states and memory updates. Thus, the test case derivation
method will consider the error transitions as part of the language of the machine and
will include them in the produced test sequences. As a result, completely defined
specifications are favourable for negative testing, when it is desirable to test the
exact behaviour of handling abnormal invocations, especially when they trigger
more complex behaviour associated with state transitions or memory updates.

5.8 Nondeterminism

5.8.1 Nondeterminism of implementations and specifications

Nondeterminism is a common phenomenon among real-world Web services. As a
property, nondeterminism (and determinism) can refer both to (a) a Web service
implementation and (b) its SXM specification.

Nondeterminism of service implementations is a topic that often causes confusion,
since a service considered as deterministic from one’s perspective may be seen as
nondeterministic from someone else’s perspective. In fact, determinism is not an
intrinsic property of an implementation, but a judgment based on how much is

104 Modelling Stateful Web Services with Stream X-Machines

known about the service and its environment. For example, to a service requestor
that knows only the external WSDL interface of a stateful Web service, the same
input to an operation can produce different outputs at different times. Since the
internal state maintained by the Web service is an unknown factor, the outputs seem
to be randomly decided, and the Web service is considered as nondeterministic
from the requestor’s point of view. If, on the other hand, the requestor also knows
the current state and how it affects the produced output, then the service becomes
deterministic.

Recall from the previous sections that, in addition to the input and internal state,
there are other factors that take part in determining the final outputs of Web
services. Examples of such factors include:

 shared state that is accessed and potentially modified by several concurrent
clients;

 timing constraints;

 back-end applications invoking the service operations or directly modifying
its internal state;

 human and other manual factors;

 other services invoked by the (composite) service under consideration.

Once again, unless the requestor has complete knowledge of any of the above
factors involved, and how they exactly affect the output, then the service is
considered nondeterministic.

In the context of this thesis, only the input and the internal state are considered as
deterministic factors, while the rest as nondeterministic. Therefore, we define a
deterministic service implementation as one, which, for the same sequence of inputs
and initial internal state, produces the same sequence of outputs. If this is not the
case, i.e. if the application of a sequence of inputs from a given initial state
produces different sequences of outputs at different times, then the service is
defined as nondeterministic.

SXM specifications can also be deterministic or nondeterministic. The properties
that must hold for a SXM to be deterministic were defined in section 5.3.1. They
include determinism of the associated finite automaton, non-intersection of the
domains of processing functions, and members of Φ to be functions rather than
relations. If any of those properties does not hold, then the SXM specification is
nondeterministic. Recall that in a nondeterministic SXM the initial state, the
triggered processing relation, the produced output, the memory update, and the next
state are uncertain.

Nondeterministic stream X-machines (NSXMs) can be used to specify the
behaviour of both deterministic and nondeterministic service implementations. It is
often impractical to create deterministic SXM specifications of complex, large-scale
deterministic Web services. In these situations, nondeterministic SXM
specifications make it possible to capture only the essential features and omit any

Modelling Stateful Web Services with Stream X-Machines 105

complex data structures and computations that determine the final outputs. Thus,
nondeterministic specifications are more abstract and easier to understand.

As an example of the utility of NSXMs in modelling complex Web services,
consider a more sophisticated version of the SupplyOrder Web service, which
accesses an inventory of the available items and their corresponding quantities. The
invocation of operation addItem first checks that the item of specified itemId is
available in the inventory in the requested quantity. However, due to the huge size
of the inventory and its nondeterministic nature (see below), it is impractical to
model it in the memory of the SXM specification. Instead, the inventory is left out
of the specification, and the resulting SXM, whose state-transition diagram is
shown in Figure 21, is nondeterministic. An (addItem, itemId, qty) input triggers
one of two possible transitions: one labelled “addOrderLine” if the item of given
itemId is available in the requested quantity and the other labelled
“itemUnavailable” if it is not available. The domains of these two processing
functions are the same (any input symbols of input name addItem and any order
contents in the memory), hence they are not disjoint. This form of nondeterminism
is also known as domain nondeterminism.

Figure 21 - State-transition diagram of a nondeterministic SXM specification

modelling a stateful SupplyOrder Web service with inventory lookup. Notice the extra
transitions labelled by function "itemUnavailable".

Nevertheless, the abstraction benefit of nondeterministic stream X-machines comes
at the cost of losing modelling precision, uncertain prediction of outputs, and partial
testing. Conformance testing, which is more practically applicable to
nondeterministic specifications, does not possess the verification power of
equivalence testing (section 7).

106 Modelling Stateful Web Services with Stream X-Machines

5.8.2 Shared-state Web services and nondeterminism

It would be possible to create a deterministic SXM specification of the SupplyOrder
Web service with inventory lookup, if the inventory is modelled as well in the SXM
memory. The inventory is shared state, since in a production deployment (interface)
of the service it is possibly accessed and modified by other clients and even back-
end inventory management applications. As a result, the state of the inventory at
any given time is uncertain, the Web service implementation is nondeterministic,
and its SXM specification becomes incorrect.

On the other hand, using a sandbox interface of the Web service under controlled
testing conditions, it is possible for the tester to be the only client invoking the
service. Under such conditions, the state of the inventory is known at any given
time and the Web service behaviour appears to be deterministic. As described
earlier in this chapter, it is also possible to populate the inventory of the sandbox
interface with a few sample items, and model only those items in the SXM memory.
Consequently, it becomes feasible to test the sandbox interface of the service for
equivalence to its deterministic specification.

However, we pinpoint one problem with the above technique for testing shared-
state Web services with deterministic SXMs. In the production interface, additional
behaviour may emerge due to the nondeterministic invocations by other clients or
applications. Suppose that, in the SupplyOrder Web service with inventory lookup,
the getQuotation operation also checks for availability of the ordered items in the
requested quantities. There are two possible outcomes: one that the items are still
available from the last time they were checked by operation addItem, and the other
outcome is that those items have been ordered in the meantime by other concurrent
clients and are no longer available. As a result, apart from the successful
getQuotation processing function, a new processing function has to be defined, e.g.
getQuotationUnavailable. This additional behaviour is not exhibited in the single-
client sandbox interface, since availability of items was already checked in the
inventory during their addition to the order, so that a subsequent request for
quotation is guaranteed to succeed. Therefore, the failure getQuotationUnavailable
transition is extra behaviour, which is dependent on the simultaneous access by
other clients and cannot be reproduced in the single-client interface.

In spite of the above problem, modelling the item inventory allows precise
specification and testing of the behaviour of operation addItem. Therefore, in a
number of occasions, the described technique for modelling and testing shared-state
Web services with deterministic SXMs is considered useful.

5.9 Summary

This chapter presented some major contributions of this thesis, concerning
specification of stateful Web services using SXMs, specifically contributions C2
and C3 of this thesis. In the beginning two Web service examples were introduced,
which will be used for illustration throughout the rest of the thesis. Also, three state-

Modelling Stateful Web Services with Stream X-Machines 107

based formalisms were compared with one another: FSMs, EFSMs, and SXMs,
while defending the choice of the SXM formalism for specifying Web service
behaviour and data. Parallels were drawn between the SXM elements and their Web
service counterparts in order to provide modelling insights. This chapter further
described modelling practices in the domain of Web services, tackling a number of
problems and unique service characteristics. A semi-automated method for
derivation of SXM models from IOPE descriptions of service operations were also
presented here. In addition, specific SXM properties, such as controllability and
completeness of specification were critically investigated. Finally, this chapter
provided an in-depth discussion of the notion of nondeterminism referring to Web
services as well as SXM specifications.

Chapter 6 – Notation and Examples

This chapter describes the adopted language for serialising SXM specifications,
namely JSXM, which is supported by a set of tools for model animation and
automated test set generation. Example specifications in JSXM are listed in Section
6.2 for illustration of the JSXM notation.

6.1 Notation for defining stream X-machine models

Tools designated to automate different activities on SXM models, such as model
animation and automated test set generation, have their own internal representations
of the SXM mathematical model. However, descriptions in standardised languages
are necessary for exchanging models between developers and tools and between
developers themselves. That is, some form of interlingua is necessary for specifying
and serialising SXM models.

Currently there exist two notations for specifying SXMs: XMDL and JSXM, which
are described in the following two subsections. These two notations can be
considered as complementary works, since they adopt very different styles to
describing SXM models.

6.1.1 XMDL

The X-Machine Definition Language (XMDL) [53] is an interchange language for
representing the SXM tuple elements in ASCII text files. Therefore XMDL files can
be written in any text editor and interpreted by various automation tools. The full
syntax of the language is defined in the XMDL User Manual [53].

A SXM written in XMDL consists of definitions corresponding to the elements of
the SXM 8-tuple presented in section 5.3.1. Thus, the notation contains declarations
for the input and output symbols, the set of states and the initial state, the memory
tuple and initial memory, function definitions, and the transition function. The
language also provides syntax for built-in types (such as integers, booleans, sets,
sequences, bags, etc.), standard operations on these types, and the means for
defining new types.

Notation and Examples 109

A more challenging task is the specification of processing functions, which can
attain high levels of complexity. The XMDL notation makes it possible to define
function domains on inputs and memory, computations of outputs, and memory
updates. Function definitions in XMDL take two parameters: an input symbol and a
memory value, and return two new parameters: an output and a new memory value.
A function may be applicable under if-then conditions or unconditionally. Variables
are denoted by a preceding “?”. The informative “where” in combination with the
operator “<-“ is used to describe operations on memory values.

An extension to the XMDL language for supporting Object X-Machines, introduced
earlier in section 5.5.3, is XMDL-O [54]. Thus, XMDL-O allows the specification
of the memory element in an object-oriented style in terms of classes, attributes, and
objects. As a result, the memory structure is derived by standard-object oriented
design techniques (e.g. class diagrams) and the task is significantly simplified for
the modeller.

A set of Prolog-based tools, collectively known as X-System, have been developed
to support the XMDL notation [55]. X-System tools allow compilation and
animation SXM models written in XMDL. Also, a Java-based graphical user
interface on top of X-System is available. Nevertheless, no tool for generating test
cases from XMDL descriptions has been yet developed.

6.1.2 FLAME

FLAME (Flexible Large-scale Agent Modelling Environment) is an agent-based
modelling framework which allows defining multi-agent models based on the X-
Machine formalism. The framework then generates code in the C programming
language. This allows for detailed validation, systematic and formalised simulation
and testing of multi-agent systems. The main advantage of using FLAME is that it
produces models which are automatically parallelisable, which can thus allow
simulations of high concentrations of agents to run on large scale mainframes,
without effort required by modellers, and achieve results in finite time [101].

Agents in FLAME are based on communicating X-machines. They comprise of:

 Memory Variables

 Messages for communication

 Functions agents can perform

The FLAME framework uses a model XMML file and a functions file as inputs into
the parser program, XParser. The XParser then converts the inputs into simulation
code which with starting values can then simulate the model to produce results. The
XMML definition is the X Machine Modelling Language which uses similar XML
tags to code the model specifications.

The X Machine Modelling Language (XMML) of the FLAME framework is not
considered as a candidate notation in this thesis, since it is specialised for the

110 Notation and Examples

specification of multi-agent systems, while in this thesis we aim to specify the
behaviour of individual Web services.

6.1.3 JSXM

JSXM (Java Stream X-Machines) is an XML-based notation for defining SXM
models [59]. The notation is supported by a set of tools having the same name. The
JSXM tools can be used for SXM model animation, automated test set generation,
and test transformation to executable tests in JUnit.

JSXM specifications are written in XML with some inline Java code for certain
elements. A thorough presentation of the syntax of the notation is provided in the
JSXM user manual [59], while specifications for the SupplyOrder and Account
examples are given in the next section. Different sections of the specification define
the different elements of the SXM 8-tuple: control states (including initial state),
state transitions, memory (including initial memory), inputs and outputs, and
processing functions.

As described in section 5.4, input and output definitions in JSXM consist of a name
and one or more optional typed parts, called arguments in inputs and results in
outputs. Thus, input/output symbols are mathematically represented as tuples of one
or more elements, where the first element is the input/output name. JSXM makes
use of XML Schema (XSD) types to define the types of input arguments and output
results. The types can be built-in, as well as user-defined, which are supplied in
separate XSD files.

A restriction on JSXM specifications is that every input definition must be
associated with only one output definition, although it can also result in possible
errors. That is, any two input symbols of the same name that are accepted by any
two processing functions of the machine, must always produce output symbols of
the same name:

 σ1, σ2  Σ with π1(σ1) = π1(σ2), φ1, φ2  Φ, ((m1, m2  M: (σ1, m1) 
dom(φ1) and (σ2, m2)  dom(φ2))  π1(π1(φ1(σ1, m1))) = π1(π1(φ2(σ2,
m2)))).

Although this restriction is not part of the SXM formalism, it is convenient in
specifying the behaviour of classes in object-oriented languages and Web services.
A class method or Web service operation signature, which corresponds to a JSXM
input definition, does define a single output type (Web services also define the
name of the output root element, in addition to its XSD type). It would be illegal for
Web service operations to return response messages of different root element names
or XSD types, although they can return different fault responses.

Every processing function definition in JSXM consists of an initialisation block for
binding variables, a precondititions block of predicates for defining the function
domain on Σ and M, and an effects block for defining the output computations and
memory updates performed by the function. Predicates in preconditions and

Notation and Examples 111

computations in the initialisation and effects block are written in embedded Java
code. The Java programming language has the advantage of being familiar among
developers and possessing virtually unlimited expressive power for complex
preconditions and effects. When function inputs (or outputs) consist of arguments
(or results) of complex user-defined XSD types, they are in the form of XML
documents. Those XML documents are accessed and manipulated in JSXM
function preconditions and effects using JAXB bindings into Java objects [60]. If
parallels are drawn with XMDL, the initialisation block is similar to the “where”
block, the precondition expression is similar to the “if” block, and effect block is
similar to the “then” block in XMDL. Unlike XMDL, where the definition of
preconditions and effects closely resembles the mathematical notation, JSXM
adopts the procedural programming style of Java. The provided inline Java code is
directly reused by the JSXM tools to generate Java classes (as shown in Figure 22),
which are compiled and exploited to animate the model and to generate test sets.

Figure 22 - Parts of a JSXM definition of a processing function and generated Java

code

As with processing functions, in JSXM specifications the memory tuple is declared
and initialised using inline Java code. Therefore, modellers can specify the structure
and type of the memory element by taking advantage of the built-in Java types and
the rich library of data structures, such as lists and maps.

Finally, JSXM allows specifying the interaction between two SXMs, by passing
whole SXM models as inputs to processing functions. This interaction resembles
the object-oriented model of method invocation, where an object may send a
message to another object if it knows its identity [59]. The model of operation calls
among interacting Web services, in service orchestration and choreography, is also
similar. However, modelling interactions among services is out of the scope of this
thesis.

112 Notation and Examples

There is the possibility for inconsistencies in the JSXM specification regarding the
names of processing functions, states, and transitions, as well as definition of inputs,
outputs, and memory. E.g. a processing function name mentioned in the definition
of a transition may not appear in the processing function definitions section. Or, an
input/output name mentioned in the definition of a processing function may not
appear in the inputs or outputs definition sections. Also there is a great possibility
for typos and errors in the XML specification syntax. Therefore, intelligent editors
that validate the specification are needed as well as graphical modelling tools that
hide most of the JSXM syntax.

6.1.4 Adopted notation

The earlier sections in this chapter described methods and best practices for
modelling stateful Web services as SXMs. The next chapter presents techniques for
testing from those SXM models. However, in addition to the SXM formalism,
modellers and testers should agree on a common notation for representing SXM
models. The two main factors that are taken into consideration are the
appropriateness of the notation and the availability of tools.

The two alternative languages for representing SXM models are the ones described
above, that is, XMDL and JSXM. XMDL defines a relatively mature and full-
fledged syntax for built-in and new types, standard type operations, and for
expressing processing function preconditions and effects. As expected for formal
specifications, the language is close to mathematical notation and independent of
any specific programming language. Moreover, the XMDL-O variant, which
supports Object X-Machines, provides convenient syntax for structuring the
memory element in an object-oriented manner. In spite of its strong points, XMDL
introduces a relatively large amount of new syntax, which may involve a steep
learning curve for the average developer. In addition, as of the date of this writing,
there is not yet a tool for generating test cases from XMDL specifications.

On the other hand, JSXM defines a smaller amount of new syntax, which is based
on XML elements and inline Java code. Since both of these languages are fairly
familiar among developers, JSXM is expected to be easier to learn. As mentioned
earlier, modellers can take full advantage of the expressive power of the Java
programming language to define complex preconditions and effects in function
specifications.

Furthermore, as explained earlier in this section, the JSXM specification approach
is suitable for Web service modelling in a number of aspects. JSXM inputs
represent operation invocations and outputs represent response messages more
conveniently than generic tuples. Also, the use of XML Schema types to define
arbitrarily complex inputs and outputs is advantageous, since it facilitates modelling
and testing of Web services. Being defined by XSD types, the generated test inputs
and expected outputs are XML instances, which have the potential to closely
represent XML-based SOAP requests and responses of Web services. As regards

Notation and Examples 113

automation support, tools are available not only for animation of JSXM models, but
also test set generation and transformation. Those tools are capable of handling
specifications that are both uncontrollable (non-input-complete) and partially
specified.

Therefore, in this research work, JSXM is the preferred notation for describing
SXM models of Web services. JSXM is used for demonstration purposes and to
describe the examples in the next section. The modelling, WSDL annotation, and
testing approach presented in this thesis assumes that SXM specifications are
expressed in JSXM. Also, as described later on, the tool developed as part of this
research work for testing Web services extends the JSXM toolset.

6.2 Examples

This section presents extracts from the JSXM specifications of the two sample Web
services introduced in the beginning of this chapter: Bank Account and Supply
Order.

6.2.1 The Account example

First of all, JSXM defines XML elements to represent the states (and initial state)
and transitions of a SXM. The following extract is the JSXM representation of the
state-transition diagram for the Account SXM depicted in Figure 16.

<SXM name="Account">
 <states>
 <state name="initial" />
 <state name="opened" />
 <state name="closed" />
 <state name="normal" />
 </states>

 <initialState state="initial" />

 <transitions>
 <transition from="initial" function="open" to="opened" />
 <transition from="opened" function="close" to="closed" />
 <transition from="opened" function="deposit" to="normal" />
 <transition from="normal" function="deposit" to="normal" />
 <transition from="normal" function="withdraw" to="normal" />
 <transition from="normal" function="withdrawAll" to="opened"
/>
 <transition from="opened" function="getBalance" to="opened"
/>
 <transition from="normal" function="getBalance" to="normal"
/>
 </transitions>
 ...
</SXM>

114 Notation and Examples

The memory element, which consists of the account balance, is declared and
initialized with Java statements, as follows. The <display> element is used by the
animator to display the memory contents.

<memory>
 <declaration>
 int balance
 </declaration>
 <initial>
 balance = 0
 </initial>
 <display>
 balance
 </display>
</memory>

As described earlier, in JSXM, inputs and outputs are defined by a name and
optional parts for complex inputs/outputs. The Account Web service consists of five
operations, thus there are five inputs. As can be noticed, input and output definitions
make use of XSD types, which in this case are primitive types.

<inputs>
 <input name="open" />
 <input name="close" />
 <input name="getBalance" />
 <input name="deposit">
 <arg name="amount" type="xs:int" />
 </input>
 <input name="withdraw">
 <arg name="amount" type="xs:int" />
 </input>
</inputs>
<outputs>
 <output name="openOut" />
 <output name="closeOut" />
 <output name="depositOut">
 <result name="amount" type="xs:int" />
 </output>
 <output name="withdrawOut">
 <result name="amount" type="xs:int" />
 </output>
 <output name="getBalanceOut">
 <result name="amount" type="xs:int" />
 </output>
</outputs>

Processing functions are declared in the <functions> section. Function definitions
can be simple by specifying the inputs they accept and the outputs they produce,
such as function “open” defined below. On the other hand, functions can contain
complex preconditions on inputs and memory and effects on outputs and memory,
such as function “deposit”. Java predicates are used to express function
preconditions on input arguments and memory values, while Java code is used to
assign new memory values and output results.

<functions>
 <function name="open" input="open" output="openOut"/>
 ...

Notation and Examples 115

 <function name="deposit" input="deposit" output="depositOut">
 <precondition>
 deposit.get_amount() > 0
 </precondition>
 <effect>
 balance = balance + deposit.get_amount();
 depositOut.amount = deposit.get_amount();
 </effect>
 </function>
 ...
</functions>

6.2.2 The SupplyOrder example

Figure 23 depicts the state-transition diagram for the SXM specification of a simple
version of the SupplyOrder Web service, without inventory lookup.

Figure 23 – State-transition diagram of the SupplyOrder SXM

The states and transitions of the SupplyOrder SXM are represented as follows:

<SXM name="SupplyOrder">
 <states>
 <state name="empty_order" />
 <state name="filling_order" />
 <state name="pending" />
 <state name="cancelled" />
 <state name="confirmed" />
 </states>

 <initialState state="empty_order" />

 <transitions>
 <transition from="empty_order" function="addOrderLine"
 to="filling_order" />
 <transition from="empty_order" function="getQuotationEmpty"
 to="empty_order" />
 <transition from="empty_order" function="cancelOrder"

116 Notation and Examples

 to="cancelled" />
 <transition from="filling_order"
function="removeLastOrderLine"
 to="empty_order" />
 <transition from="filling_order" function="addOrderLine"
 to="filling_order" />
 <transition from="filling_order" function="removeOrderLine"
 to="filling_order" />
 <transition from="filling_order" function="getQuotation"
 to="pending" />
 <transition from="filling_order" function="cancelOrder"
 to="cancelled" />
 <transition from="pending" function="rejectOrder"
 to="filling_order" />
 <transition from="pending" function="confirmOrder"
 to="confirmed" />
 <transition from="confirmed" function="getConfirmedQuotation"
 to="confirmed" />
 </transitions>
 …
</SXM>

The memory tuple specifies the contents of the order as a collection of order lines in
the form of (itemId, quantity) pairs, where itemId is a character string, while
quantity is an integer. Therefore, it is possible to take advantage of the HashMap
data structure provided by standard Java libraries, which defines a list of (key,
object) pairs. The order is initialised to an empty map. Also, the JSXM memory
declaration includes the <javaImports> element to allow defining any necessary
import statements.

<memory>
 <javaImports>
 import java.util.HashMap;
 </javaImports>
 <declaration>
 HashMap<String, Integer> order;
 </declaration>
 <initial>
 order = new HashMap<String,Integer>();
 </initial>
 <display></display>
</memory>

If the modelled Web service also accesses an items inventory, the deterministic
SXM specification would need to include another map of items and available
quantities in the memory declaration and initialisation:

HashMap<String, Integer> inventory;

The SupplyOrder Web service consists of seven operations. Since there is a one-to-
one correspondence between Web service operations and JSXM inputs, there are
seven input declarations in the JSXM specification. The “itemRemoved” output,
produced by a “removeItem” input, contains an integer result to indicate the number
of order lines remaining in the current order. This additional information in the
output is necessary to make the specification output-distinguishable, by being able
to tell whether function “removeOrderLine”, or “removeLastOrderLine” (when all

Notation and Examples 117

items have been removed and the order is empty again), has been exercised.
Similarly, output “quotation”, produced by input “getQuotation”, is abstractly
defined by a message result to distinguish between function “getQuotation”, when a
quotation is requested for a non-empty order, and the failure function
“getQuotationEmpty” when a quotation is requested for an empty order. Notably, it
would not have been possible to define two outputs of different names, e.g.
“normalQuotation”, and “emptyOrderError”. As explained earlier, an input (in this
case “getQuotation”) is associated with only one output (in this case “quotation”).
In fact, in the modelled Web service, the “getQuotation” operation defines only one
XSD type for the output, thus responses of different root element names are not
allowed, unless they are fault responses.

<inputs>
 <input name="addItem">
 <arg name="itemId" type="xs:string" />
 <arg name="quantity" type="xs:int" />
 </input>
 <input name="removeItem">
 <arg name="itemId" type="xs:string" />
 </input>
 <input name="getQuotation" />
 <input name="getConfirmedQuotation" />
 <input name="rejectOrder" />
 <input name="confirmOrder" />
 <input name="cancelOrder" />
</inputs>
<outputs>
 <output name="itemAdded" />
 <output name="itemRemoved">
 <result name="itemsRemaining" type="xs:int" />
 </output>
 <output name="quotation">
 <result name="message" type="xs:string" />
 </output>
 <output name="confirmedQuotation" />
 <output name="orderRejected" />
 <output name="orderConfirmed" />
 <output name="orderCancelled" />
</outputs>

Due to space constraints, only the definition of function “removeLastOrderLine” is
provided here. This function is triggered by input “removeItem”, which consists of
an integer argument for the itemId of the item to remove. The result of exercising
this function is that the last (itemId, quantity) pair is removed from the order,
resulting in an empty order. As the extract below shows, the function precondition
checks that the itemId argument (accessed by the “.” operator) is contained in the
memory map and that there is only one item in the order. The effect is that the item
of given itemId is removed from the order. Also, in the produced “itemRemoved”
output, the integer “itemsRemaining” result is assigned the number of items (order
lines) remaining in the order.

<function name="removeLastOrderLine" input="removeItem"
 output="itemRemoved">
 <precondition>

118 Notation and Examples

 order.containsKey(removeItem.get_itemId()) && order.size() ==
1
 </precondition>
 <effect>
 order.remove(removeItem.get_itemId());
 itemRemoved.itemsRemaining = order.size();
 </effect>
</function>

Suppose that the modeller would like to specify the “quotation” output to be more
complex than a simple message, e.g. to contain a list of the current items in the
order. In this case, the output could be defined with two results, where the second
result is of a complex user-defined XSD type, QuotationType:

<output name="quotation">
 <result name="message" type="xs:string" />
 <result name="items" type="QuotationType" />
</output>

QuotationType is defined in a separate XML Schema document as follows:

<xs:schema>
 <xs:complexType name="QuotationType">
 <xs:sequence>
 <xs:element name="orderLine" type="OrderLineType"
 minOccurs="0" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="OrderLineType">
 <xs:attribute name="itemId" type="xs:string" />
 <xs:attribute name="quantity" type="xs:int" />
 </xs:complexType>
</xs:schema>

In the definition of function “getQuotation”, the “items” result is an XML
document, and is instantiated, accessed and edited as a Java object according to the
JAXB conventions [60]:

<function name="getQuotation" input="getQuotation"
 output="quotation">
 <effect>
 quotation.message = "successful";

 QuotationType quotationItems = new QuotationType();
 for (String id: order.keySet()) {
 Integer qty = order.get(id);
 OrderLineType orderLine=new OrderLineType();
 orderLine.setItemId(id);
 orderLine.setQuantity(qty);
 quotationItems.getOrderLine().add(orderLine);
 }

 quotation.items = quotationItems;
 </effect>
</function>

Notation and Examples 119

Other variations of the SupplyOrder Web service

Several variants of the SupplyOrder Web service have been implemented, with
increasing levels of complexity, which require additional specification and testing
effort (Table 2). Besides, three different versions of the SXM specification have
been created: partially specified, completely specified, and one with inventory
lookup.

The simplest SupplyOrder implementation is a single-order Web service, which
exposes operations that access and modify that single order instance. This Web
service stands at the same level of abstraction as the SXM specification, thus the
generated test inputs can be fed directly to the service, and the produced outputs can
be compared directly to the ones predicted by the SXM specification. Three other
variants of the SupplyOrder Web service maintain multiple order instances, one for
each client: one implemented through HTTP sessions, the other one through SOAP
body identification, and the third one complying with the Manager pattern regarding
identifiers. The last two introduce an abstraction gap between inputs/outputs in the
implementation and those in the specification. Consequently, the derivation of
concrete inputs to feed to the Web service and the handling of produced concrete
outputs require mappings, which are described in section 0. Other versions of the
Web service implementation support WSDL/SOAP faults (discussed in the next
chapter), and inventory checking for item availability. Finally, the single-order Web
service has been seeded with various implementation faults in order to demonstrate
the ability of the SXM testing method to reveal meaningful faults, especially in
conversational Web services. These faulty versions are further described in the next
chapter.

Table 2 - Versions of SupplyOrder Web service specification and implementation

SXM specification Web service implementation

co
m

pl
et

el
y

de
fin

ed

in
ve

nt
o

ry

lo
ok

up

 m
ul

tip
le

-o
bj

ec
t

w
ith

 s
es

si
on

s

m
ul

tip
le

-o
bj

ec
t

w
ith

 id
en

tif
ie

rs

M
an

a
ge

r
pa

tt
er

n

S
O

A
P

/W
S

D
L

fa
ul

ts

In
ve

nt
or

y
lo

ok
up

fa
ul

ty
*

1 1

2  2 

3  3  

 4   

 5  

 6  

 7 

120 Notation and Examples

* Implementation injected with one of the following control-flow faults:
extra/missing transition, erroneous transition label, erroneous next state, missing
state, one extra state, two extra states.

6.3 Summary

This chapter presented and defended the use of the JSXM notation for specifying
SXM models, which was contrasted with the alternative XMDL notation. The
JSXM notation was also used to specify the two example Web services: Account
and SupplyOrder, thus relating to contribution C10 listed in section 1.3. Having a
SXM model of the WSUT specified in a machine-processable notation, it is now
possible to apply a test set generation method that proves the correctness of the
implementation (the subject of the following chapter). The JSXM notation
described in this chapter is also revisited in chapters 9 and 10, where the technical
approach for testable Web services and the toolset implementation are described.

Chapter 7 – Testing Web Services Modelled as
Stream X-Machines

One of the main benefits of formally specifying a Web service with a stream X-
machine is the ability to test the correctness of the Web service implementation
against the specification, which is also the focus of this thesis. The formal SXM
specification serves a number of important roles during the process of testing a Web
service, including:

 Derivation of test sequences (scenarios) of operation invocations from paths
in the specification machine.

 Generation of test input data to drive the test sequences.

 Deciding when testing should stop, in accordance with the coverage criteria
of the SXM-based test generation method. Testing stops when all test
sequences derived from the specification have been exercised.

 Acting as a test oracle for defining the expected outputs to be compared with
the actual outputs returned by the Web service implementation, during the
execution of the test cases. In the case of deterministic specifications, one
expected output is defined, while in the case of nondeterminisitic
(stochastic) specifications, a set of expected outputs is defined.

SXMs are associated with test generation techniques that are guaranteed to
determine the correctness of the SUT, provided that certain well-defined
assumptions hold [61]. The correctness of third-party Web services is considered a
crucial attribute when they are integrated in critical applications. Different variants
of SXM-based testing (SXMT) methods have been proposed, which basically differ
according to the variant of SXM being employed and the characteristics of the
specification. Nevertheless, all of those methods are generally founded on the
(D)SXM integration testing method, which is supported by extensive research and
theoretical underpinnings [62], [61].

The focus of this chapter is on the application of the SXMT method to generate test
sets for Web services, and is structured as follows. The first section is an overview
of the SXM integration testing method. It describes the process of deriving
sequences of processing functions from machine paths and converting them to

122 Testing Web Services Modelled as Stream X-Machines

sequences of inputs. Given that specifications can often be partially specified and
not input-complete, a modified variant of the test generation method is described to
handle those cases as well, which is also supported by JSXM. The second section
describes derivation of expected outputs, test case execution, and different issues
arising during this activity. The third section focuses on the effectiveness of SXMT
in accomplishing negative testing, and clarifies the meaning of error outputs for
Web services, and their representations in SXM models. The next section illustrates
the different steps during the test set derivation process using the previously
described Bank Account and Supply Order Web service examples. The SXM
testing method is to be applied to Web services, which possess unique
characteristics that make them different from traditional software systems. Web
service testing is potentially performed at run time, and they often are made
available across organisational boundaries. Therefore, section 5 of this chapter
explores the issues that need to be considered in the domain of Web services, and
suggests solutions to those problems. Finally, the last section of this chapter
investigates the ability of SXMT to reveal faults, using the Account and
SupplyOrder examples. The implementations are seeded with manual and
meaningful business logic faults, both control-flow and individual processing
function faults. In addition, the strength of the generated test cases is evaluated for
different values of the parameter k, utilising the automated mutation testing tools
Jumble and Jester.

7.1 The Stream X-Machine integration testing method
(SXMT)

7.1.1 Theoretical basis

Stream X-machines are associated with a test set generation method [62], [61],
which under certain assumptions, is proven to find all faults in the implementation.
Examples of such faults include erroneous transition labels, erroneous next-states,
missing states, extra states, etc [82]. The testing method is a generalization of
Chow’s W-method [63]. It works on the assumption that the system specification
and the implementation can be both represented as SXMs of the same type (i.e. both
specification and implementation have the same set of processing functions) and
satisfy the following design for test conditions: input-completeness (controllability)
and output-distinguishability (observability). As defined in section 5.3.2 on SXM
properties, input-completeness ensures that all processing functions can be
exercised from any memory value using appropriate input symbols. Output-
distinguishability ensures that any two different processing functions will produce
different outputs if applied on the same memory/input pair.

When the above requirements are met, the stream X-machine integration testing
method may be employed to obtain a complete test set of input sequences which can
be used for the verification of the implementation under test. It is proved that only if
the specification and the implementation are behaviourally equivalent, the test set

Testing Web Services Modelled as Stream X-Machines 123

produces identical results when applied to both of them. Otherwise it is guaranteed
that it will expose the faults in the implementation.

7.1.2 Derivation of sequences of processing functions

The first step to constructing the test set of input sequences is based on the
application of the W-method to the associated finite automaton of the specification
machine, where processing functions are treated as input symbols. It involves the
derivation of a characterization set W and a state cover S of the associated finite
automaton. A characterization set W is a set of sequences of processing functions
for which any two distinct states of the machine are distinguishable and a state
cover S is a set of sequences of processing functions such that all states are
reachable from the initial state. In addition, an estimate is made on the maximum
difference, k, between the number of states in the implementation, and the number
of states in the specification. In practice, the value of k is not usually large; for
especially sensitive applications one can make very pessimistic assumptions about k
at the cost of an exponentially larger test set [57].

Given the above definitions, the test set Y for the associated finite automaton
consists of sequences of processing functions and is given by the formula:

Y = S(Φk+1  Φk  … Φ  {ϵ})W

where the concatenation of any two sets of sequences, U and V, is defined by UV =
{ab | a  U, b  V}. Also, for any set of sequences, U, Un is defined by U0 = {ϵ}
and Un = Un-1U for n ≥ 1. Derivation of the sets S, W, and Y for the Account and
SupplyOrder Web service examples is presented in section 7.3.

As can be observed from the above formula, the state cover S is included in all test
sets. Thus, Y is minimally characterised by state coverage and contains sequences
that reach every state q  Q in the machine. Also, for the minimal value of k = 0,
the state cover is appended with the set of processing functions Φ (as well as with
the sequences from the characterisation set W for distinguishing states). This means
that the sequences of the test set reach all the states of the machine, and from each
state all possible transitions labelled by elements of Φ are exercised. Therefore, Y is
also minimally characterised by transition coverage. Similarly, for a value of k = 1,
from every reached state all possible transition pair combinations (elements of Φ2)
are exercised, resulting in transition-pair coverage. Thus, larger values of k, apart
from reaching any redundant states in the implementation, also allow traversing
paths of several adjacent transitions.

The scope of the testing approach in this thesis covers the DSXM integration testing
method, which assumes the individual processing functions φ  Φ have been
correctly implemented. Nevertheless, it is still possible to test the machine at the
level of individual processing functions through enhanced SXM specifications and
the application of suitable variants of the SXMT method, such as the complete
DSXM testing method in [65], and the method in [82]. These two methods are not
supported by the JSXM test case generation tool and are not discussed in this thesis.

124 Testing Web Services Modelled as Stream X-Machines

7.1.3 Derivation of sequences of test inputs

The sequences of processing functions from the set Y derived in the previous
section have to be converted to sequences of inputs, which comprise the test set X.
This is achieved by a mechanism called the test function: t: Φ* → Σ*. For a SXM Z,
a test function is defined as follows [61]:

 t(ϵ) = ϵ;

 for φ1, …, φn, with n > 0, t(φ1…φn) = σ1…σk, where σ1, …, σk  Σ are such
that (m0, σ1…σk)  dom(||φ1…φn||) and k is as follows:

o φ1…φn  LZ  k = n;
o φ1…φn  LZ  k = i + 1, where 0 ≤ i < n is such that (φ1…φi  LZ

and φ1…φi+1)  LZ

where LZ is the language accepted by the associated finite automaton of Z. In other
words, for a sequence of processing functions, t finds a sequence of inputs that
exercises the longest prefix that is a path in the machine and, if that prefix is shorter
than the original sequence, it also exercises the function that follows this prefix. The
input-completeness condition ensures that there always exists a sequence of inputs
as defined above.

Notably, a test function finds input symbols for the sole purpose of exercising each
processing function in a sequence. If there is a finite or infinite set of input symbols
that can trigger a function, the input is selected arbitrarily and possibly randomly.
There is no heuristic or data coverage criterion to choose good data values for the
test input symbols. Other data coverage testing methods could be possibly used for
such a purpose, such as equivalence class or boundary-value testing.

In JSXM specifications the test function is defined in the
<testinputgeneration> section. Input generators are declared for every
processing function that receives complex inputs. On the other hand, processing
functions that receive simple inputs do not need input generators in the
specification, since simple inputs define single input symbols. In theory, the
information contained in the SXM specification should be adequate for the tool to
generate test inputs, without having to rely on a <testinputgeneration>
section. However, in practice, the process is time-consuming and hard to automate.
The test generators provide shortcuts to generate real test data, either randomly, or
according to specified criteria, such that they satisfy the preconditions to exercise
the intended processing functions. The shortcuts are in the form of Java code to
execute to generate the test data, so that JSXM does not have to check the
satisfaction of preconditions on input values and current memory state.

Thus, the derived input sequences constitute the final test set X, which are applied
both to the specification and the Web service under test to reveal all implementation
faults.

Testing Web Services Modelled as Stream X-Machines 125

7.1.4 Test case generation for non-controllable and partially-
specified specifications

As discussed in section 5.7, SXM specifications do not always satisfy certain
properties, such as completeness of specification and controllability. Nevertheless,
it may still be possible to apply the SXM integration testing method in such cases.

It is not always feasible for SXM specifications to satisfy the design-for-test
conditions, especially the controllability requirement that any processing function
can be triggered for any memory value by selecting appropriate inputs. In practice,
this condition can be achieved by designing extra functionality that will have to be
disabled after testing has been completed. However, this can often be a time
consuming and error-prone process. In addition, when testing third-party Web
services, the tester does not have control on the implementation of the WSUT and
cannot ensure the satisfaction of the design-for-test conditions.

It is not always necessary to be able to trigger processing functions from Φ for
every possible memory value, if the memory values produced by prefixes of
function sequences are restricted within a range. However, the derivation of input
sequences is complicated by the fact that whole sequences of functions, rather than
individual functions, should be taken into account. If inputs are derived
incrementally for each processing function in a sequence, it is possible that at a
point no input exists to trigger the next function for the current memory value
produced by the prefix. Therefore, a different sequence has to be tried from the
beginning with new input symbols. This makes input generation a complex process
which is especially difficult to automate.

The input sequence derivation algorithm for non-controllable specifications is
simplified significantly if the specification is input-uniform. Basically, input-
uniformity requires all memory values that are produced by the application of any
single sequence of processing functions to any single memory to be processed in a
uniform way by any processing function - that is, any function can either process all
such memory values or none [83]. In this case, appropriate input symbols can be
selected one at a time for each processing function in the sequence without having
to know the processing functions that will be applied next. The Account SXM
example described in the previous chapter is an example of non-uniform non-
controllable specification. The selected amount for exercising function “deposit”
matters, since it determines how many times function “withdraw” can be
subsequently invoked.

The JSXM test case generation tool supports specifications that are not input-
complete. However, during derivation of test inputs, JSXM selects input symbols
for each processing function in isolation from the rest of the sequence, based only
on the knowledge of the current memory [59]. Thus, JSXM assumes that non-
controllable specifications are input-uniform. If the specification is not input-
uniform, the tool will fail if the first attempted input sequence cannot be completed
for a function sequence, even though other attempts might have succeeded. The

126 Testing Web Services Modelled as Stream X-Machines

result is that the function sequence is considered as not applicable (no input
sequence exists to exercise it) and is reduced to applicable by removing the function
that is not admitted.

Furthermore, as explained in section 5.7.2, SXMs are quite often partially-defined.
Even though in a partially-specified SXM some inputs are not handled, the test
function t defined earlier selects inputs such that they can exercise the intended
processing functions for the current memory values m (regardless of the current
state). As a result, the only case when inputs from the test set are not handled is
when the intended processing function is not accepted at the current state q.
According to the definition of the test function in the previous section, such
unhandled inputs occur as the last elements of sequences that are not in the
language L of the machine. There are two possible outcomes for those inputs:

 A different processing function is actually triggered in the machine, if the
specification is completely-defined. For example, in the completely-defined
Account SXM in Figure 20, function sequence <open, open> is not in the
language of the machine. However, since processing function “open” is
input-complete (no preconditions on memory), the input “openRequest”15 is
derived by the test function. Thus, input sequence <openRequest,
openRequest> is generated by t, which, when animated, exercises processing
function sequence <open, openError>. The second “openRequest” is indeed
handled, by processing function “openError”, because the SXM is
completely defined and handles input “openRequest” at any state.

 No processing function is triggered in the machine if the specification is
partially-specified, thus the input is not handled. In the partially-specified
Account SXM in Figure 19, the second input in the sequence <openRequest,
openRequest> is not handled by any processing function. As described in
section 5.7.2, the convention adopted for unhandled inputs is that they cause
exceptional conditions that result in error or fault messages, thus the
animation of the SXM should also produce a default error, for instance,
“open_Error”.

The last input that attempts a transition not in the language of the machine is
included in order to check that the attempted transition is not exercised in the
implementation. A correct implementation either activates a different processing
function, or returns an error. The test set performs this check for all missing
transitions (since the W-method reaches all states, and from each state it attempts
every member of Φ, regardless of whether it is accepted or not). Therefore, SXMT
verifies that the implementation does not take transitions that it is not supposed to
take (negative testing). No further unhandled inputs are tried after the first one,
since the SXM may have transitioned to an unknown state.

15 Input “open” has been renamed to “openRequest” in this discussion in order not to confuse it with
the processing function of the same name.

Testing Web Services Modelled as Stream X-Machines 127

The JSXM animator and test case generator tools accept partially-specified SXMs
and deal with unhandled inputs as described above. That is, whenever the JSXM
animator encounters an input that does not trigger any function in the specification,
it yields a default error output, “open_Error”. Test set generation for the Account
and SupplyOrder SXMs, which are partially-specified and non-controllable, is
described in section 7.3 of this chapter.

7.2 Test case execution

7.2.1 Overall process

Having derived the test set of abstract input symbols, as described above, it is
necessary to execute them on the Web service under test. According to [33], test
execution involves the development of a test environment in which the tests can be
executed, the actual execution of the tests, analysis of the execution results, and the
assignment of a verdict about the well-functioning of the Web service under test

As will be described later on, test cases can be either executed on a sandbox version
of the Web service, which represents the test environment, or on a production
deployment of the Web service. The first scenario is applicable when testing is
performed during development time or during run time if the provider makes
available a sandbox interface. If the first scenario is not applicable, this means that
test cases have to be executed at runtime on a production deployment of the third-
party Web service, for which the service provider does not make available a
sandbox interface.

The derived sequences of abstract input symbols must eventually be translated to
corresponding sequences of operation invocations on the WSUT. As explained in
section 5.5, the SXM specification represents a simplification of the modelled Web
service in a number of aspects (single stateful resources, functional abstraction, data
abstraction, etc). Consequently, the derived input symbols stand at a higher level of
abstraction than the corresponding request messages. For this reason, additional
effort is required to map abstract inputs to concrete request messages to be
dispatched to the corresponding Web service operation. This problem is further
investigated in chapter 0.

In addition, while test cases are being executed, the tester needs to know the
expected outputs for comparison with the actual outputs returned by the WSUT.
Derivation of expected output sequences is further examined in the following
subsection.

7.2.2 Derivation of expected outputs

SXM-based testing is a black box testing method. Thus, all that can be observed are
the inputs sent to the SUT and the outputs it produces, without any knowledge of
the internal implementation. The input sequences from the test set X are applied to
both specification and implementation machines and the produced output sequences

128 Testing Web Services Modelled as Stream X-Machines

are compared to assign a verdict. If the output sequences are identical, then the two
machines are considered to be equivalent (see above the definition of a test set in
SXMT), otherwise, the SUT contains implementation faults. Therefore, the
specification machine, previously utilised to generate test sequences, also serves as
the test oracle to determine the correct output sequences. As defined earlier, a test
oracle is a mechanism for predicting the outputs that are expected from a correct
implementation.

Nevertheless, the application of input symbols to the specification and the
implementation machines does not have to be simultaneous. In the testing approach
described in this thesis, the input sequences are applied offline to the SXM
specification, before the actual test case execution. The derived sequences of
expected outputs form part of the abstract test cases, which can be later executed on
the WSUT.

Theoretically, it is possible to apply the function (f) computed by the machine on
the input sequences manually. However, this is a time consuming and error-prone
process which requires automation support. The JSXM toolset incorporates a model
animation tool, which receives sequences of input symbols and produces sequences
of output symbols. This tool is also utilised by the test case generation tool to
produce extended test sets that contain sequences of input-output pairs.

7.3 Examples

The Account and SupplyOrder SXM examples described in the previous chapter are
non-controllable and partially-specified. The following two subsections illustrate
the process adopted by JSXM to derive a test set of sequences of input symbols for
such specifications.

7.3.1 The Account example

The first step toward the generation of test input sequences is the application of the
W-method to the associated finite automaton of the Account SXM, depicted in
Figure 16. The state cover S needs to reach all four states and therefore consists of
four sequences:

S = {ϵ, <open>, <open, close>, <open, deposit>}

The characterisation set needs to contain sequences that distinguish between four
states, thus three sequences are adequate:

W = {<open>, <close>, <deposit>}

The set Φ consists of the six processing functions labelling the transitions in the
associated FA:

Φ = {open, close, getBalance, deposit, withdraw, withdrawAll}

If we assume that the implementation does not contain any extra states, i.e. k = 0,
the set of processing function sequences Y to be traversed is given by:

Testing Web Services Modelled as Stream X-Machines 129

Y = S{Φ  {ϵ}}W = SΦW  SW

= {ϵ, <open>, <open, close>, <open, deposit>}Φ{<open>, <close>,
<deposit>}  {ϵ, <open>, <open, close>, <open, deposit>}{<open>,
<close>, <deposit>}

= {<open, open>, <open, close>, <open, deposit>, <close, open>, <close,
close>, <close, deposit>, <getBalance, open>, <getBalance, close>,
<getBalance, deposit>, <deposit, open>, <deposit, close>, <deposit,
deposit>, <withdraw, open>, < withdraw, close>, < withdraw, deposit>,
<withdrawAll, open>, < withdrawAll, close>, < withdrawAll, deposit> …}
 {<open>, <close>, <deposit>, <open, open>, <open, close>, <open,
deposit>, <open, close, open>, <open, close, close>, <open, close, deposit>,
…}

Therefore, for k=0, the test set is essentially a transition cover of the model,
appended with characterisation sequences to distinguish the final states. For k=1 the
resulting test set is characterised by transition-pair coverage, again appended with
characterisation sequences.

When processing function sequences from Y are not in the language of the machine,
the test function t generates input sequences for prefixes φ1…φi+1, where φ1…φi 
LZ. Therefore, the JSXM test set generation tool cuts those sequences to prefixes of
length i + 1, before the test function is applied to Y. In addition, JSXM removes
duplicates and sequences that are subsequences of longer sequences. Thus, the set Y
has been reduced substantially to 31 sequences as follows:

Y = {<close>, <getBalance>, <deposit>, <withdraw>, <withdrawAll>,
<open, open>, <open, withdraw>, <open, withdrawAll>, <open, close,
open>, <open, close, close>, <open, close, deposit>, <open, deposit, open>,
<open, deposit, close>, <open, getBalance, open>, <open, getBalance,
close>, <open, getBalance, deposit>, <open, close, withdraw>, <open, close,
withdrawAll>, <open, close, getBalance>, …}

up to sequences of length 4.

The next step is to convert those sequences of processing functions to sequences of
inputs. Derivation of input symbols for functions accepting simple inputs is
straightforward. For functions that accept complex inputs, the JSXM test case
generation tool relies on definitions of test input generators, as described in section
7. The domains of such processing functions include a (potentially infinite) set of
input symbols. The input generators are consulted to assign values to the input
arguments, since the input names are fixed.

As mentioned earlier, the input is selected for the processing function in isolation
from the rest of the sequence, based only on the current memory value. In the
Account SXM example, there are three functions with complex inputs: deposit,
withdraw, and withdrawAll. The input generators are defined as follows in the
JSXM specification:

<testinputgeneration>
 <inputgenerator function="deposit">

130 Testing Web Services Modelled as Stream X-Machines

 deposit.set_amount(5);
 </inputgenerator>
 <inputgenerator function="withdraw">
 if (balance != 1)
 withdraw.set_amount(1);
 else
 withdraw.set_amount(2);
 </inputgenerator>
 <inputgenerator function="withdrawAll">
 withdraw.set_amount(balance);
 </inputgenerator>
</testinputgeneration>

Function deposit accepts any positive value for the amount argument, thus the input
generator simply assigns it a fixed value of 5. Functions withdraw and withdrawAll
also accept positive amount arguments, but they also have preconditions on
memory. Those preconditions are satisfied in the test input generators. Thus, to
exercise function withdrawAll, the input generator specifies the value selected for
the amount argument to be equal to the balance variable in the SXM memory. The
specified selected value for function withdraw is a fixed value of 1, unless it is
equal to the balance in the memory, in which case withdrawAll would have been
triggered. If this is the case, a different value of 2 is selected.

Some attempted function sequences contain non-input-complete processing
functions that are not admitted. For example, function withdraw in sequence
<withdraw> is not admitted, since the current memory value when it is attempted
has a balance of zero. Given that the precondition of withdraw is:

withdraw.get_amount() > 0 && balance > withdraw.get_amount()

the withdraw amount should be greater than zero, thus there exists no input symbol
that can exercise it. JSXM terminates input sequences from the first encountered
function that is not admitted, so that the sequence is reduced to applicable.

Thus the set Y derived above is translated to the final test set X of sequences of
input symbols, which contains 25 sequences and is as follows:

X = {<close>, <getBalance>, <(deposit, 5)>, <open, open>, <open, close,
open>, <open, close, close>, <open, close, (deposit, 5)>, <open, (deposit, 5),
open>, …}

7.3.2 The SupplyOrder example

The state cover and characterisation sets for the associated FA of the SupplyOrder
SXM (Figure 23) are as follows:

S = {ϵ, <addOrderLine>, <cancelOrder>, <addOrderLine, getQuotation>,
<addOrderLine, getQuotation, confirmOrder>}

W = {<getQuotationEmpty>, <getQuotation>, <confirmOrder>,
<getConfirmedQuotation>}

The set Φ consists of the nine processing functions labelling the transitions in the
associated FA:

Testing Web Services Modelled as Stream X-Machines 131

Φ = {addOrderLine, removeOrderLine, removeLastOrderLine, cancelOrder,
getQuotationEmpty, getQuotation, getConfirmedQuotation, rejectOrder,
confirmOrder}

For k=0, the set of processing function sequences Y is as follows:

Y = S{Φ  {ϵ}}W = SΦW  SW

= {ϵ, <addOrderLine>, <cancelOrder>, <addOrderLine, getQuotation>,
<addOrderLine, getQuotation, confirmOrder>}Φ{<getQuotationEmpty>,
<getQuotation>, <confirmOrder>, <getConfirmedQuotation>} 
{ϵ, <addOrderLine>, <cancelOrder>, <addOrderLine, getQuotation>,
<addOrderLine, getQuotation, confirmOrder>}{<getQuotationEmpty>,
<getQuotation>, <confirmOrder>, <getConfirmedQuotation>}

After cutting the resulting sequences to prefixes of length i + 1, and removing
duplicates and sequences that are subsequences of longer sequences, the set Y is
substantially reduced to 62 sequences as follows:

Y = {<getQuotation>, <confirmOrder>, <getConfirmedQuotation>,
<removeOrderLine>, <removeLastOrderLine>, <rejectOrder>,
<addOrderLine, getQuotationEmpty>, <addOrderLine, confirmOrder>,
<addOrderLine, getConfirmedQuotation>, <cancelOrder,
getQuotationEmpty>, <cancelOrder, getQuotation>, <cancelOrder,
confirmOrder>, <cancelOrder, getConfirmedQuotation>,
<getQuotationEmpty, getQuotationEmpty>, <getQuotationEmpty,
getQuotation>, <getQuotationEmpty, confirmOrder>, <getQuotationEmpty,
getConfirmedQuotation>, <addOrderLine, rejectOrder>, <cancelOrder,
addOrderLine>, <cancelOrder, removeOrderLine>, <cancelOrder,
removeLastOrderLine>, <cancelOrder, rejectOrder>, <cancelOrder,
cancelOrder>, <addOrderLine, getQuotation, getQuotationEmpty>,
<addOrderLine, getQuotation, getQuotation>, <addOrderLine,
getQuotation, getConfirmedQuotation>, …}

up to sequences of length 5.

In the SupplyOrder SXM example the test input generators are defined for functions
receiving complex inputs, that is, “addOrderLine”, “removeOrderLine”, and
“removeLastOrderLine”, as follows:

<testinputgeneration>
 <inputgenerator function="addOrderLine">
 String id = UUID.randomUUID().toString().substring(0, 3);
 Integer quantity = (new Random()).nextInt(10);
 addItem.set_itemId(id);
 addItem.set_quantity(quantity);
 </inputgenerator>

 <inputgenerator function="removeOrderLine">
 if (order.size() > 1)
 removeItem.set_itemId((String)
order.keySet().toArray()[
 (new Random()).nextInt(order.size())]);
 </inputgenerator>

 <inputgenerator function="removeLastOrderLine">

132 Testing Web Services Modelled as Stream X-Machines

 if (order.size() == 1)
 removeItem.set_itemId((String)
order.keySet().toArray()[
 (new Random()).nextInt(order.size())]);
 </inputgenerator>
</testinputgeneration>

Since function addOrderLine does not check an items inventory, any item identifier
that is a string of characters is accepted. Therefore, the input generator for this
function generates a random string for the itemId argument, using Java utilities for
random string generation. Similarly, this function accepts any value for the item
quantity argument. Thus, the input generator generates a random value between 1
and 9 for the quantity argument.

The input generators for functions removeOrderLine and removeLastOrderLine
specify that the value for the itemId to be removed is the identifier of a random item
in the current order. The difference is that for function removeLastOrderLine such
an argument value is selected if there is only one item remaining, while for the
removeOrderLine function there is more than one item remaining in the order.

Functions removeOrderLine and removeLastOrderLine are not input-complete, thus
some sequences of processing functions have to be reduced to applicable. Examples
of non-applicable sequences are <removeOrderLine> and <addOrderLine,
removeOrderLine, getQuotationEmpty>. The initial memory contains an empty
order, while function removeOrderLine requires at least one item (order line) in the
order, hence there exists no input that can exercise that function. In the second
sequence, the prefix <addOrderLine> updates the order in the memory to consist of
one item. However, the next function in the sequence, removeOrderLine requires an
order of at least two items in the memory. Thus it is not admitted and removed from
the sequence.

The final test set X consists of 52 sequences of input symbols as follows:

X = {<getQuotation>, <confirmOrder>, <getConfirmedQuotation>,
<rejectOrder>, <(addItem, a6a, 9), getQuotation>, <(addItem, fc9, 1),
confirmOrder>, … , <(addItem, 07a, 9), (removeItem, 07a), confirmOrder>,
…}

We remark that the fifth sequence of input symbols, <(addItem, a6a, 9),
getQuotation>, was selected to attempt function sequence <addOrderLine,
getQuotationEmpty>. Since the second function in the sequence
(getQuotationEmpty) is not admitted at the current state (filling_order), the selected
input actually triggers a different function, getQuotation. Thus, the expected output
is the pair (getQuotation, successful) instead of (getQuotation, emptyOrder).

7.4 Equivalence versus conformance testing

There are two forms of testing with stream X-machines: equivalence testing and
conformance testing. Equivalence testing aims to establish that the implementation
computes the same function (or relation) as the specification, i.e. fZ = fZ’, where Z’ is

Testing Web Services Modelled as Stream X-Machines 133

the implementation machine and Z is the specification machine [57]. The
deterministic SXM integration testing method described above is able to determine
the equivalence of the system under test to its SXM specification.

As explained in section 5.8, SXM specifications can be made nondeterministic in
order to raise their level of abstraction and to allow modelling complex or
nondeterministic Web services. In certain situations it is considered as sufficient to
demonstrate that the behaviour contained in an implementation is a subset of the
behaviour contained in its nondeterministic SXM specification [69]. This means
that a NSXM allows a range of possible behaviours for the WSUT to implement.
Therefore, conformance testing aims to establish that the relation computed by the
implementation machine Z’ is a subset of the relation computed by the specification
machine Z, i.e. fZ’  fZ [57]. As can be seen, conformance is a weaker notion of

correctness than equivalence.

Test generation algorithms for testing an implementation against a nondeterministic
SXM for conformance [69] and also for equivalence [84] have been proposed. Both
assume that the nondeterministic SXM is completely defined [57]. Like the SXM
integration testing method described earlier, these algorithms are based on the
application of the W-method to the associated FA, in order to generate sequences of
relations. However, test data generation with a test function and the test execution
process are complicated by two main cases of nondeterminism:

(a) transitions are labeled by relations that can produce different memory
values and outputs;

(b) different relations can be triggered due to possibly overlapping domains
(domain nondeterminism).

To address the first case of nondeterminism, both equivalence and conformance
testing use an adaptive test process, where a tester observes the decision made by
the implementation in every step of a sequence and adapts testing accordingly. The
need to observe decisions taken adds further assumptions on the implementation
under test, such as being able to determine memory updates performed by relations
by observing the outputs [69]. The test process attempts to exercise a sequence of
relations starting from the first relation in the sequence and proceeding toward the
last one. In each step the input is chosen based on the new memory value and output
produced by the previous step, so that it can possibly trigger the next relation in the
sequence.

Equivalence testing mainly differs from conformance testing on the way domain
nondeterminism is handled. Testing for equivalence aims to prove that the
implementation computes the same relation as the specification, with the
assumption that the individual relations have been correctly implemented.
Therefore, the tester attempts to exercise all possible paths that may be taken in
response to sequences of inputs generated by the test process for an attempted
sequence of relations. As a result, the same sequence of relations is attempted up to

134 Testing Web Services Modelled as Stream X-Machines

a maximum number of times (using possibly different sequences of inputs) and if
outputs from an implementation show that it did not execute the expected sequence
of relations on any of the attempts, it is assumed that such a sequence of relations is
not implemented [84].

Consider the SXM specification of the SupplyOrder Web service example with
inventory lookup, depicted in Figure 21 of section 5.8. Recall that the specification
is nondeterministic, since it does not model the items inventory in its memory
construct, which affect the service behaviour. As a result, the success
“itemUnavailable” and the nonsuccess “addOrderLine” processing relations do not
check for item availability in the inventory and are triggered nondeterministically
(overlapping domains).

In the SXM specification, input symbol (addItem, itemId, qty) triggers
nondeterministically two relations: addOrderLine and itemUnavailable, producing
outputs (itemAdded, successful) and (itemAdded, unavailable), respectively. Hence,
testing the SupplyOrder Web service for equivalence aims to demonstrate that the
implementation follows paths that include both relations addOrderLine and
itemUnavailable. In other words, input sequences including input symbol (addItem,
itemId, qty) should produce output sequences that include both expected outputs in
the set {(itemAdded, successful), (itemAdded, unavailable)}. On the other hand,
conformance testing tries to show that the language of the implementation machine
is included in the language of the specification machine (language inclusion).
Therefore, testing the SupplyOrder Web service for conformance aims to
demonstrate that the implementation follows paths that include any or both of
relations addOrderLine and itemUnavailable, without having to attempt them
several times. I.e., input sequences including input symbol (addItem, itemId, qty)
should produce output sequences that include any of the expected outputs in the set
{(itemAdded, successful), (itemAdded, unavailable)}, but not other unexpected
outputs. As can be deduced, in deterministic SXM specifications only one output is
allowed for every input, thus conformance testing coincides with equivalence
testing.

In the Web services domain there are limitations on the ability to drive all possible
paths by attempting the same sequence of relations multiple times. In the
SupplyOrder Web service with inventory lookup described above, it is unrealistic to
expect the conditions in the inventory to change so that the same sequence of inputs
can trigger both relations on the WSUT: addOrderLine when the item is available in
the inventory and itemUnavailable if the item is not available. Even if different
input sequences are attempted for the same sequence of relations, it would be
difficult for the test function to generate identifiers for items that are available in the
inventory, since no inventory items are modelled. The other difficulty in attempting
to drive all possible paths in a Web service implementation is that conversations in
Web services are often long-running and may involve manual or other factors,
which are both time-costly and difficult to reproduce a large number of times.

Testing Web Services Modelled as Stream X-Machines 135

Therefore, in practice, the SupplyOrder Web service can only be tested for
conformance to its nondeterministic SXM specification, which is not satisfactory,
since not being able to successfully add an item to the order will exercise only paths
that traverse two states: empty_order and cancelled. This problem can be handled
by techniques described in sections 5.5.3 and 5.5.4 from the previous chapter,
where sample item identifiers are placed in the memory and the SXM is made
deterministic to apply equivalence testing.

Because of the above reasons, it is more preferable to have a deterministic SXM
specification of a WSUT than a nondeterministic one. The specification and testing
approach in this thesis mainly focuses on DSXMs, which are also supported by the
JSXM toolset for animation and test case generation. Therefore, this thesis pursues
the more challenging objective of raising the level of abstraction of SXM
specifications, while keeping them deterministic.

The applicable testing methods for different combinations of SXM specifications
and implementations concerning their determinism are summarized in Table 3.
Notice that it is not possible to specify a nondeterministic implementation with a
correct deterministic specification, since the latter cannot be more concrete than the
former. Therefore testing does not make sense in such a scenario.

Table 3 - Combinations of SXM specification and implementation according to their
determinism

Specification Implementation Testing for

deterministic deterministic equivalence [62], [61]

deterministic nondeterministic (undefined)

nondeterministic deterministic conformance [69]

equivalence [84]

nondeterministic nondeterministic conformance [69]

equivalence [84]

7.5 Error outputs and negative testing

7.5.1 Outputs, error responses and faults

Unsuccessful invocations of Web service operations cause them to return error
SOAP response messages or fault messages. Such errors are returned when invalid
inputs are provided or when sequences that violate the conversation protocol are
invoked. As can be recalled from section 2.2.2, every operation description in
WSDL specifies an output message, and optionally one or more fault messages.
This model is similar to OOP where every method defines a return value and throws
one or more optional exceptions. While a Web service implementation can return
faults as defined in WSDL, it is also allowed to produce runtime (or SOAP) faults
that are not anticipated in WSDL. Therefore, a WSDL Web service returns one of
the following types of outputs:

136 Testing Web Services Modelled as Stream X-Machines

 Normal SOAP response message

 Error SOAP response message

 Fault message
o WSDL-defined fault
o Runtime SOAP fault

It is important not to confuse Web service fault messages with implementation
faults. Web service faults are error outputs that can be part of expected Web service
behaviour, while implementation faults are deviations from the expected behaviour.
For example, a fault can be returned by the Account Web if the client tries to
perform transactions on an inactivated bank account, but the implementation is
correct as its behaviour is as expected. On the contrary, if the client is allowed to
perform transactions on an inactivated account, without returning faults, then the
Web service implementation contains faults.

Moreover, this heterogeneity in the semantics of outputs returned by a WSDL Web
service is complicated by the fact that services operate over a network. The
introduction of a network into any computing system raises the complexity
enormously. As a result, a huge variety of faults is introduced, caused by network
and Web service platform failures. It is not feasible to capture such infrastructure
faults in SXM specifications. Therefore, only Web service errors at the business
logic level are specified and tested in SXMs, excluding any infrastructure errors. If
infrastructure errors do occur during testing, they will not match the expected
outputs, and will be reported as implementation faults. As a result, an assumption
made during Web service testing is that the network, Web service platform,
application server, databases, and so on, are correctly set up and work normally.

The described types of Web service error outputs are all modelled as abstract output
symbols by SXMs. This means that the formalism represents all types of outputs
equally and does not differentiate between normal and error ones16.

7.5.2 Negative testing

Generally, exercising functionality that produces error outputs constitutes negative
testing. Negative testing ensures that the WSUT operations handle abnormal
invocations gracefully with expected errors, instead of terminating successfully or
crashing. In support of negative testing one should be able to compare error Web
service responses with SXM output symbols. A human individual can perform the
comparison directly; however, if the process is to be automated, one representation
should first be mapped into the other before comparison. A more technical
treatment of mapping different types of error Web service outputs to abstract output
symbols is provided in chapter 0.

16 An exception is the case of default errors, which are a special type of outputs produced at runtime
by the JSXM toolset for unhandled inputs.

Testing Web Services Modelled as Stream X-Machines 137

The SXM integration testing method does not separate negative test cases from the
rest of the test set. Thus, it is appropriate to investigate how well the derived test set
is able to cover paths that produce errors. A processing function in the specification
that defines the success scenario of a service operation, may fail to be triggered for
two possible reasons:

 it is not accepted at a certain control state, or

 the guard condition for triggering the function evaluates to false (input
argument(s) and memory value are not in the domain of the function)

As an example, Figure 24 illustrates the internal Java implementation of operation
“deposit” in the Account Web service example. To exercise the success scenario of
this operation (specified by processing function “deposit” in the Account SXM),
both predicates “isOpen” and “amount > 0” must evaluate to true. The first
predicate is defined in the control states (state-based conditional) of the SXM, while
the second predicate involving the input is defined in the processing function
domain (domain-based conditional).

Figure 24 - Java implementation of Web service operation "deposit", illustrating the operation

predicates. The shaded area is the implementation of processing function “deposit”

Proper negative testing should be able to make both conditionals fail in the
implementation at different times, and check whether the expected error outputs are
produced. That is, test cases should cover both cases: when the function is not
accepted in current state, and when the function’s guard condition is not satisfied.

As explained in section 7.1.4, the W-method attempts to exercise all processing
functions in all states, regardless of whether they are accepted or not. Thus SXMT
checks that a function that is not accepted in a state is not exercised in the
implementation; instead, either a different (failure) processing function is triggered,
or, if the specification is partially-defined, a default error is produced.

On the other hand, SXMT does not cover all failure scenarios which result when
processing function guards on input and memory fail. This is the case because the
test function t always selects input symbols that do satisfy the guard conditions and

138 Testing Web Services Modelled as Stream X-Machines

trigger the function. In partially-specified SXMs, if no alternative processing
functions are defined, the negative scenario is not exercised. However, in
completely defined SXMs failure scenarios are also modelled as transitions, and are
therefore exercised by the SXMT.

In the above example, SXMT tests what happens when trying to deposit when the
account is opened (success expected), as well as when the account is not opened
(error output expected). This means negative testing is performed at the integration
level. On the other hand, since the specification is partially-defined, SXMT does not
test what happens when the input is negative or zero.

In summary, the SXM integration testing method has varying strengths on negative
testing. The state transition diagram is fully tested positively and negatively, by
attempting all possible transitions, whether they are accepted or not in each state.
However, for further negative testing of processing functions labelling transitions,
the SXM needs to be completely defined, in order to exercise failure scenarios as
well.

7.6 Testing considerations in the Web services domain

Owing to Web service characteristics, the application of the SXM testing method to
Web services requires further investigation. Some additional assumptions need to
be made on Web services under test, as described in the following subsections.

7.6.1 Message Exchange Patterns of Web services under test

Recall from chapter 0 that Web service operations do not always accept inputs
(request messages) and return outputs (response messages), as they are usually
portrayed. Besides the common request-response message exchange pattern (MEP),
three other possible MEPs characterise operations: solicit-response, one-way, and
notification.

 Web service implementations containing one-way operations do not produce
outputs when those operations are invoked. Therefore, those Web services
cannot be output-distinguishable and are not testable by the SXMT method.

 Web service implementations containing notification and solicit-response
operations are not driven by inputs, but initiate those operations internally.
Consequently, it is not possible to drive such operations through appropriate
inputs, and the Web services containing this kind of operations cannot be
controllable. Therefore, these categories of Web services are not testable by
the SXMT method.

This thesis considers only Web services, in which all operations follow the request-
response message exchange pattern. Only this kind of Web services can be
controllable and observable – they can be controllable by choosing proper request
messages and observable by examining response messages during test execution.
This requirement is not considered as too restrictive, since, from our experience,

Testing Web Services Modelled as Stream X-Machines 139

Web services with operations characterized by MEPs other than request-response
are fairly rare on the Internet.

7.6.2 The need for a sandbox (test) interface

The application of active testing (as opposed to passive testing, or monitoring) to
the verification of third-party Web services, separates service testing activities from
service usage (consumption) activities. Test inputs are generated and actively
executed on the service under test without depending on other requestors invoking
the service. This gives the opportunity to avoid running the tests on the Web service
deployment that is made available to service requestors. Instead, the service
provider can make available another deployment of the same Web service
implementation, called a sandbox (or test) interface, for the purpose of testing.

The introduction of a sandbox interface available for testing is a powerful technique
that provides solutions to a number of problems. Among such solutions are
included:

 Augmenting the service to satisfy the design-for-test conditions;

 Implementing the modelled portion of a large data repository (section 5.5.3).

 Avoiding undesirable side effects (described later);

 Implementing the reliable reset (described later);

However certain issues arise when a sandbox interface is tested instead of the
production Web service.

 Some test conditions are not satisfied if several tester participants (clients,
certification authorities, etc) invoke the sandbox interface simultaneously
during testing.

 It can be unclear whether the sandbox interface being tested has the same
implementation as the real (production) interface. Nevertheless, the sandbox
and real Web services are expected to be different deployments (instances)
of the same Web service implementation. It follows that if the sandbox
deployment is verified as correct, then the production deployment is also
correct.

7.6.3 Services with undesirable side effects

Very often, invoking operations on commercial Web services, apart from returning
outputs, will result in undesirable side effects. Such side effects could involve state
modifications, invocation of other applications or services, financial transactions, or
physical tasks. For example, testing the banking Web service with a real bank
account will initiate undesirable financial transactions, which are not practical or
feasible for the purpose of testing. Similarly, in the case of a shopping cart Web
service, testing the checkout operation involves charging the credit card, which is
not desirable.

140 Testing Web Services Modelled as Stream X-Machines

For that reason, commercial services such as PayPal, UPS, and FedEx make
sandbox interfaces available, which simulate the operation of real production Web
services, without the side effects. For example, the United Parcel Service (UPS)
[58] maintains a special “staging” version of its shipping Web service, which
supports testing of applications by simulating transactions with UPS. The staging
service responds to Web service requests just like the UPS production service;
however, it does not initiate actual business activities. For example, if one sends a
shipping request to the UPS production service, a UPS driver will be dispatched to
the specified location, expecting to pick up a package (and expecting payment for
the service). Sending the shipping request to the staging service will avoid this
problem.

Therefore, it is assumed in this thesis that Web service sandbox interfaces do not
incur any harmful or undesirable side effects when their operations are invoked.

7.6.4 Resetting the WSUT to the initial state

Every input sequence from the test set is exercised under the assumption that the
state of the WSUT has the initial values. However, the execution of previous test
sequences may have transitioned the potentially faulty implementation into a state
and memory that is unknown. Thus, it is necessary to bring the WSUT back to the
initial, hence known, state.

There are two known approaches that address the reset problem. The approach
adopted by the SXMT requires the system under test to feature a reliable reset
function, which is implicitly assumed to be appended at the end of every test
sequence. The reset is considered as reliable if it is known to have been
implemented correctly. The role of the reset feature is to set the initial state and
memory back to their initial values. This technique is not always practical since it
requires intervention on the implementation. Concerning Web services, a reset
would also require resetting shared state that is captured in the specification. The
other technique adopted by some testing methods [50], [85] is to append test
sequences with postambles, which are sequences that return the SUT back to the
initial state. Although this technique is less restrictive on the SUT, it also produces
longer test sequences, and requires that from any state and memory value, the initial
state is reachable.

It is important to note that only the modelled state and memory need to be reset to
the initial values. As described in the previous chapter, SXM specifications model
only the per-client state maintained by private-state Web services. As a result, it is
sufficient to reset only that portion of the state in the WSUT, instead of the whole
pan-client state. For instance, while testing a Web service managing several bank
accounts, it is not only unnecessary, but also impractical or impossible to set the
bank accounts of other clients back to their initial status and balance, in the end of
each test sequence. The reset operation also has to be associated with identification
information for the specific client. In a similar fashion, if the abstract specification

Testing Web Services Modelled as Stream X-Machines 141

captures the per-object state (when every client potentially accesses several
objects), it is sufficient to reset only the state variables for the identified object. E.g.
if in the SupplyOrder Web service each client places several orders, only the
identified order instance is set back to its empty state in the WSUT. Evidently, for
any other cases where the abstract specification models only a portion of the service
state, then it is adequate for the WSUT to reset those state variables that are
captured as control states and memory in the specification. The rest of the service
state that is abstracted away is left intact.

Therefore, three different cases are identified based on Web service category and
state duration (see section 4.3.6). In each case a distinct approach is proposed for
the provider to implement the reliable reset in the WSUT, and for the tester to
trigger the reset.

 In volatile, private-state services all state lives within one SOAP or HTTP
session. No intervention is required on the WSUT, while the tester triggers
the reliable reset by terminating the current session. As a result, the
application of the next input sequence initiates a new session. All previous
context information for the particular requestor is erased and the next
conversation starts from the initial state values.

 In persistent, private-state services the per-client state spans multiple
sessions. Therefore, the WSUT must implement a “reset” operation that
accepts the same identifiers as the rest of the service operations. The reset
operation resets only that portion of the state variables, which pertain to the
client (per-client specification) or object (per-object specification) being
identified and tested. On the other hand, the tester triggers the reliable reset
by invoking the reset operation in the end of every test sequence. In practice,
this involves appending input symbol “reset” at the end of every sequence of
input symbols. Identifiers are then supplied during input concretisation as for
the rest of the operations.

 In shared-state services part of the state is accessed and/or modified by other
requestors simultaneously. If part, or all, of the shared state is modelled in
the specification, the implementation of the reliable reset is more difficult.
As above, the WSUT must include a “reset” operation, which resets not only
the per-client state, but also the modelled shared state. This approach is not
feasible in production deployments of Web services, since it is accessed
concurrently by other requestors and would corrupt the shared state. Thus, a
sandbox deployment is assumed, where the tester is the only requestor.
Similarly, the tester triggers the reliable reset by invoking the reset operation
in the end of very test sequence.

7.7 Finding faults

In the examples section the test sets were derived from non-controllable SXM
specifications. Since controllability is one of the design-for-test conditions required

142 Testing Web Services Modelled as Stream X-Machines

by SXMT to find all faults in the implementation, it is possible that the derived test
sets do not detect all faults. Also, the SXM integration testing method assumes that
the individual components have already been verified as correct. Thus, this section
illustrates the faults that can be detected, as well as those that are not detected by
the test sets generated for the Account and SupplyOrder Web services.

7.7.1 Evaluation of test cases through manual injection of
control flow faults

The SXM integration testing method is able to find all control flow faults in the
implementation, such as missing or extra transition, erroneous transition labels,
erroneous next state, and missing or extra state. Quite often, such control flow
faults in the state machine correspond to meaningful business logic faults and
violations of conversation protocols. For example, an extra “cancel” transition from
state “pending” to state “cancelled” in the SupplyOrder Web service, violates the
business requirement that an order pending confirmation by the client cannot be
cancelled, but first rejected, and then cancelled. As the following experiments show,
this type of fault is revealed by the toolset for k = 0.

In this section the SupplyOrder Web service is tested using the test set generated
earlier, in order to reveal various kinds of control-flow faults. This is done for two
purposes: to evaluate the ability of SXMT to reveal these kinds of faults for
different values of k, and to illustrate some meaningful types of business-logic
faults that can be revealed.

Given the assumption that the implementation is a machine of the same type Φ as
the specification (i.e. all processing functions have been correctly implemented), the
SXMT does not target faults where processing functions are erroneously
implemented. On the other hand, it can find all faults where the wrong processing
function from the set Φ labels a transition.

Control flow faults are expected to be common in implementations. Normally, in
programming code transition pre-states are checked inside the conditions of “if” and
other selection control structures, while next states are determined in the processing
blocks. It is common to mistake predicate conditions (such as wrong logical and
mathematical operators) and variable assignments, which may result in
missing/extra states or erroneous next states.

Erroneous next state

An example of a SupplyOrder Web service with erroneous next state fault is
represented by the SXM in Figure 25. Due to this fault, rejection of a pending order
actually causes confirmation of the order. That is, transition labelled by
“rejectOrder” leads to state “confirmed”.

Testing Web Services Modelled as Stream X-Machines 143

Figure 25 - State-transition diagram of a SupplyOrder implementation with erroneous

next state fault

The test set generated for k = 0 is able to reveal this fault, as shown in the JUnit
output in Figure 26. This is an expected result for for k = 0, since the
implementation contains no extra states.

Figure 26 - JUnit execution results on the implementation with erroneous next sate

fault

Erroneous transition label

An example of an erroneous transition label fault is depicted by the state-transition
diagram in Figure 27. In the faulty implementation, rejecting an order in the normal
“filling_order” state actually results in transitioning the order to the “cancelled”

144 Testing Web Services Modelled as Stream X-Machines

state, instead of a default error. Being in a “cancelled” state, there is no further
possibility to continue processing the order. In other words, the cancelOrder
transition has been mislabelled with function rejectOrder. Running the test set for k
= 0 reveals this kind of fault in the implementation.

Figure 27 - SupplyOrder implementation with erroneous transition label

Missing transition

In the faulty implementation only an empty order can be cancelled. If the order has
items added to it (“filling_order” state) it cannot be cancelled, but first emptied and
then cancelled. This violates the business requirement of also being able to cancel
non-empty supply orders. The test set for k = 0 reveals this kind of fault in the
implementation.

Testing Web Services Modelled as Stream X-Machines 145

Figure 28 - SupplyOrder implementation with missing transition

Extra transition

In the faulty implementation, the order can be cancelled even after a quotation has
been obtained, i.e. while the service is pending for a confirmation or rejection. This
means an extra “cancelOrder” transition exists from state “pending” to state
“cancelled”. Again, as expected, the test set for k = 0 reveals this kind of fault in the
implementation.

Figure 29 - SupplyOrder implementation with an extra transition fault

146 Testing Web Services Modelled as Stream X-Machines

Missing state

Missing states may occur, for example, when two modelled states are actually non-
distinguishable in the implementation under test. That is, they accept the same set of
processing function sequences, essentially merging into one. Usually, mising states
are also associated with other control flow faults, such as missing transitions.

As an example, suppose that a request for quotation from the SupplyOrder service
directly results in the confirmation of the order. This means that the intermediary
“pending” state, where the service waits for a confirmation or a rejection, is
omitted. This scenario also involves missing transitions that originate from the
missing state. Thus, the state “pending” and transitions “confirmOrder” and
“rejectOrder” are missing. The test set generated earlier for k = 0 reveals this
missing state fault.

Figure 30 - SupplyOrder implementation with a missing state fault

One extra state

Detection of implementation faults involving extra states is a different case that
requires values of k that are greater than zero, depending on the number of extra
states in the implementation. Figure 31 shows the state diagrams for two different
cases of faulty SupplyOrder implementations with one extra state.

The first example is a SupplyOrder service, in which the removal of all items from
the order transitions the service to a state where the order can only be cancelled. In
difference from the initial state “empty_order”, from this hidden state the client is
not allowed to add any more new items to the order. Running the test set for k = 0
on the implementation does not reveal the fault, but as expected, for k = 1 the fault
is revealed. Notably, the fault might also have been revealed for k = 0 if the
sequence <addOrderLine> distinguishing between state “empty_order” and the
hidden state “emptied_order” was included in the characterisation set W.

Testing Web Services Modelled as Stream X-Machines 147

Figure 31 - Two examples of faulty Web service implementations with one extra state:

a) revealed by test sets for k = 1 and b) not revealed by test sets for k = 1

The other example of a hidden extra state fault is a SupplyOrder Web service
implementation, which does not allow adding more than a maximum number of
items (order lines) to the current order. That is, the service transitions to a different
state, where it has become full and cannot accept additional requests for adding
items. As the diagram illustrates, this extra state is called “full”.

Unpredictably, the execution of the test set for k = 1 does not reveal this extra state.
This situation arises because the “full” extra state is not reached by a sequence of a
single processing function, but by repetitive triggers of function “addOrderLine”
until the maximum capacity is attained. Large capacities also require large values of
k that result in huge test sets. It seems that in this situation, k represents the
maximum path length to the extra hidden state, instead of the difference in the
number of states (Figure 32). However, closer examination shows that this is a fault
in the implementation of processing function “addOrderLine”, whose preconditions,
in contrast to the specification, also check the number of items in the order. This
violates the requirement that the specification and implementation machines are of
the same type Φ. However, in practice, it can be difficult for the tester to separate
control flow from individual components in the implementation, in order to reach
the conclusion that the specification and implementation have identical types.

148 Testing Web Services Modelled as Stream X-Machines

Figure 32 - Running the JUnit test sets for values of k between 0 and 2 on an order of
maximum capacity of three items. The fault is revealed for k = 2 that derives

sequences of four adjacent “addOrderLine” functions.

7.7.2 Test cases evaluation through manual injection of
individual processing function faults

The stream X-machine integration testing method is able to reveal all control-flow
faults in the system under test, but not necessarily faults in the implementation of
individual processing functions. As regards Web services, the SXMT is able to
verify the conformance of the Web service under test to the protocol advertised in
the SXM model. But this method is not able to verify the correctness of the
functions labeling the state transitions. Possibly, the generated test set may detect
some of the faults in the implementation of individual processing functions, while
trying to reveal control flow faults. However, there are no guarantees regarding
coverage and effectiveness.

This section presents a number of experiments with the Account and SupplyOrder
examples, in order to demonstrate cases where processing function faults are
detected and cases where they are not. In addition, these examples give an idea
about how such faults look like and how critical they are. They can be faults in the
guard conditions, as well as faults in the memory updates and output computations.

Consider the Account example. One possible fault in the deposit function is an
incorrect balance increase, either by a wrong amount or not at all.

In the case of the simple SupplyOrder example, possible faults in the memory
update of the addItem processing function include, not updating the order at all,
adding the wrong item identifier, or the wrong quantity. The contents of the list of
order lines in the supply order are updated by addItem, but they are only checked by
getQuotation to determine whether the order is empty or not, and in this case only
the number of order items. The item ID’s and quantities in the order lines are not
checked by any of the processing functions. As a result, while it might be possible
that addItem and removeItem faults concerning the number of order lines are
reported, no faults concerning item ID’s and quantities are detected, as they do not
affect the outputs of any processing function. On the other hand, if processing
function getQuotation returns not only a simple output message about operation
success, but also the current contents of the order, where item identifiers and
quantities are listed, it would have been possible to detect those types of faults.

Furthermore, as previously mentioned, the SXM testing method does not include
data coverage criteria. Thus, the different cases for inputs to the same processing
function are not tested. E.g., the method does not attempt boundary inputs for
negative testing, classes of inputs producing different results, etc.

Testing Web Services Modelled as Stream X-Machines 149

7.7.3 Test cases evaluation through automated mutation testing

In the previous experiments various types of control-flow faults were seeded in the
implementation under test, and the effectiveness of the generated JSXM test cases
was evaluated regarding their ability to reveal those faults. As the results of test
execution demonstrated, all control-flow faults were detected for values of k = 0,
with the exception of hidden extra states in the faulty implementation where larger
values of k were required..

A complementary approach to evaluating the effectiveness of the test set in fault
detection is mutation testing. Mutation testing involves taking the code under test,
seeding faults (called mutants), and executing the test set on the mutated code. That
is, while test cases aim to expose faults in the implementation, mutation tests aim to
expose weaknesses in the test cases themselves. A number of mutation testing tools
exist (Table 4), which introduce various types of mutations automatically, run the
test cases and report their effectiveness in detecting (“killing”) the mutants.

Table 4 - Comparison of mutation testing tools

 Jumble MuJava Jester Judy

JUnit support Yes No Yes Yes

Operation on bytecode bytecode source code source code

In this work a number of simple mutation tests have been performed with two of the
above tools: Jumble [86] and Jester [87]. Both tools are able to seed faults into Java
code and evaluate JUnit tests on that code, which were derived by transformation of
JSXM abstract tests. For convenience, the test cases were run on the Java classes
that implement the actual Web services. The Account and SupplyOrder examples
were used as the classes under test, while JUnit test cases for different values of k
were evaluated.

In the SupplyOrder example, Jumble tried only 8 mutation points (faults) on the
class under test, SupplyOrder.java. The test set for k = 0 was evaluated with a
maximum score of 100%, meaning that all 8 mutations were detected (killed).
Obviously, the larger test sets for higher values of k subsume this effectiveness, thus
they also received the maximum score of 100%. Nevertheless, the test cases for k =
0 cannot be considered as perfect, as the previous experiments with manual control-
flow faults demonstrated. The test cases for k = 0 often failed to reveal extra-state
faults, and test cases for values of k of at least 1 were required to reveal those faults.

In the case of the Account example, the generated JUnit test cases were again
evaluated as perfect (100% score). 12 mutation points were tried, and all were
detected by the JSXM test cases, as illustrated in the following Jumble output.

Jumble output:

Mutating SupplyOrder
Tests: SupplyOrderTest_k0
Mutation points = 8, unit test time limit 2.16s

150 Testing Web Services Modelled as Stream X-Machines

........
Score: 100%

Mutating Account
Tests: AccountTest_k0
Mutation points = 12, unit test time limit 2.0s
............
Score: 100%

It can be speculated that the kinds of mutation faults injected by Jumble on the class
under test are relatively simple and easy to detect by the SXMT test cases. The
mutations are not as advanced as introducing new states in the implementation.
However, it was expected that Jumble might introduce some faults into individual
processing functions, in which case the test cases would probably fail in fault
detection, given that SXMT assumes processing functions to be correct. Possibly,
the implementation of individual functions might have been modified, but the test
cases generated to detect control flow faults were also able to detect faults in
individual processing functions as a side-effect. More complex, industrial examples
would have to be tried for better evaluation of the strength of JSXM test cases and
to derive more accurate mutation scores. In any case, the evaluations on the two
examples give some confidence as to the effectiveness of the generated test cases.

The other tool, Jester, also gave the maximum score of 100 to all JUnit tests
generated by JSXM for the SupplyOrder class. However, Jester was able to detect
problems in the JUnit test cases for the Account class. Out of 20 mutations, 2 of
them were not detected (survived) by the test sets, apparently regardless of the
values of k (assigned values from 0 to 2 in the experiment).

Jester output:

SupplyOrder, k=0:

0 mutations survived out of 24 changes. Score = 100
took 3 minutes

Account, k=0:

For File src\Account.java: 2 mutations survived out of 20 changes.
Score = 90
src\Account.java - changed source on line 33 (char index=619) from
if (to if (true ||
c String withdraw(int x) {
 >>>if (isOpen && balance != 0 && balance >= x) {
src\Account.java - changed source on line 33 (char index=644) from
0 to 1
{
 if (isOpen && balance != >>>0 && balance >= x) {
 balance -= x;
 re

2 mutations survived out of 20 changes. Score = 90
took 2 minutes

Account, k=1:

Testing Web Services Modelled as Stream X-Machines 151

(same results)

Account, k=2:

(same results)

The first surviving mutation changes the precondition of the success scenario of
operation withdraw (isOpen && balance != 0 && balance >= x) to evaluate always
to true. Since the test cases do not detect this modification, it means that they never
test the operation when the preconditions evaluate to false. The first part of the
precondition (isOpen && balance != 0) consists of state-based predicates (encoded
in the states) and evaluates to false in states “initial”, “opened” and “closed”. Not
being input-complete, functions withdraw and withdrawAll cannot be exercised
with any input when the balance in the account is equal to zero, which always holds
in states “initial”, “opened” and “closed”. Therefore, SXMT cannot attempt
functions withdraw and withdrawAll from those three states. As presented in the
examples section, sequences such as <withdraw>, <withdrawAll>, and <open,
close, withdraw> were removed from the test set or reduced to applicable.

The other predicate in the preconditions (balance >= x) is a domain-based predicate.
As explained earlier, since it represents the guards of processing functions withdraw
and withdrawAll, the test function selects inputs such that they make this predicate
succeed (i.e. amounts less than or equal to the available balance). Also, the SXM
specification is not completely-defined, hence no other processing function handles
the case when the predicate evaluates to false (i.e. amounts greater than the
available balance).

The second surviving mutation changes the predicate (balance != 0) to (balance !=
1). The test cases do not detect this modification since the correct and faulty
predicates evaluate to the same truth value for all test cases. The test set would have
been able tell the difference if it had tried the case when the correct predicate
evaluates to false, i.e. (balance = 0). However, as explained for the first mutant, no
possible input can exercise this case, since functions withdraw and withdrawAll are
not input-complete with respect to memory.

Therefore, it can be concluded that both surviving mutations are a consequence of
the specification not being input-complete and completely-defined. The next
subsection briefly discusses the implication of not satisfying the design-for-test
conditions on the effectiveness of the test cases.

7.7.4 Effectiveness of test cases when design-for-test conditions
are not satisfied

The stream X-machine integration testing method that is able to find all faults
requires the specification and implementation machines to satisfy the design-for-test
conditions. An algorithm that ensures that these conditions are satisfied is provided
in Ipate & Holcombe [88]. This algorithm requires designing extra functionality that
will have to be disabled after testing has been completed. However, this process

152 Testing Web Services Modelled as Stream X-Machines

requires extra effort and may inadvertently introduce new implementation faults.
Furthermore, when testing Web services, which are provided across organisational
borders by third-parties, the tester has no control on their implementations, thus the
satisfaction of the design-for-test conditions depends on the service provider. As a
result, it is often expected for Web services to be modelled by SXM specifications
that are not input-complete and output-distinguishable.

The previous subsection exposed some faults introduced by mutation-testing tools,
which are detected due to the violation of the design-for-test conditions, and
specifically input-completeness. However, an empirical evaluation of the above
results suggests that the derived test sets are still quite powerful. In the SupplyOrder
Web service they were capable of revealing all control-flow faults, as demonstrated
in section 7.7.1. Furthermore, the test sets for both Account and SupplyOrder Web
service examples were evaluated with very high scores (100%, except the score of
80% given by Jester to the SupplyOrder test set).

An industrial case study described in Vanak [89] has given encouraging coverage
results for the SXM integration testing method even when the design-for-test
conditions are not met. The method was applied to existing code that was not
designed to meet those conditions and could not be augmented with extra
functionality. Yet, the results were shown to be significantly better than the inhouse
test sets. Statement and branch coverage were all over 94%, while predicate
coverage was over 90%.

7.8 Summary

Having already described Web services with state and techniques for modelling
those services as stream X-machines, the aim of this chapter was to investigate the
application of SXM testing methods to derive test sets for Web services. Test set
derivation was demonstrated with the SXM specifications of the two Web service
examples, which do not satisfy the design-for-test conditions and are partially-
specified. A number of unique testing considerations in the domain of Web services
were explored along with proposed solutions (relating to contribution C4). The
chapter concluded with the description of some experiments intended to evaluate
the test sets derived earlier to reveal various faults, such as control flow faults and
ones introduced by mutation tools (relating to contribution C5). Although the
models did not satisfy all design-for-test conditions, and although they were
partially specified, the experiments demonstrated that the test sets were significantly
powerful in detecting various types of meaningful faults in the WSUT.

Part C – Approach for Run-Time Testing of
Third-Party Web Services

 Chapter 8 – Distributed Approach for Verification and Validation of
Services in a SOA Environment

 Chapter 9 – Technical Approach for Testable Web Services with
Stream X-Machines

 Chapter 10 - Toolset for Automated Testing of Web Services
Modelled as SXM

Chapter 8 – Distributed Approach for
Verification and Validation of Services in a
SOA Environment

The preceding chapters described the approach to formal modelling and complete
functional testing of Web services behaviour based on SXMs. Complete functional
testing of Web services is beneficial in a number of practical scenarios, both in
development-time activities (testing and verification of services being developed),
as well as in run-time activities (such as publication and discovery). In addition,
complete functional testing of Web services can yield benefits for all types of
stakeholders in a SOA environment, i.e. the service consumer, the service provider,
and the service broker.

This section describes a novel approach based on formal modelling of Web service
behaviour with SXMs. The SXM specifications are included as part of service
WSDL descriptions and serve as advertisements of their behaviour. The described
approach consists of validation of behavioural specifications against consumer
needs and in verification of behavioural compliance of service implementations to
their SXM specifications. The first part of this chapter provides an overview of the
envisioned approach covering both (i) service discovery, and (ii) automated testing
of services to be published. The second part focuses in more detail on the second
objective, through describing practical challenges and possible solutions in
implementing this objective.

8.1 The big picture

The approach proposed for registry-based testing and certification of Web services
involves all three main stakeholders in a SOA environment, that is, service
providers, service registries, and service requestors (consumers). As depicted in
Figure 33, the role of each participant is associated with a number of activities. In
brief, we propose that the behaviour of a Web service should be formally modelled
at the provider-side, in order to facilitate registry-side verification at the time of
service publication and requestor-side validation at the time of service selection.

156 Verification and Validation of Services in a SOA Environment

The following three subsections give an overview of the activities performed by
each participant in the scheme.

Figure 33 - Verification and validation approach of third-party Web services in a

SOA environment

8.1.1 The service provider perspective

The service provider has three main tasks in augmenting the behavioural
specifications to the service description: defining the (abstract) SXM model,
defining the grounding of the model to the real Web service, and annotating the
service description with the extra information.

The next step by the provider is the publication of the Web service to a service
registry maintained by a broker. The publication query, which references the
semantically annotated WSDL document at the provider site, initiates the
publication procedure at the broker site.

8.1.2 The service broker perspective

A key role of the service broker in this approach is to verify the behaviour of the
provided Web service implementation through model-based testing, and upon
successful test results, to accept it in the service registry. This step is necessary to
ensure that the implementation of the provided Web service really conforms to the
advertised behavioural specifications. It is possible that this might not be the case,
either because of insufficient testing at the provider site, or because of malicious

Verification and Validation of Services in a SOA Environment 157

intent. With the attached SXM specification, the broker is able to derive the test
sequences for verification automatically. Established SXM testing methods can be
used to derive a complete, finite set of test cases, which is proven to find all faults
in the implementation under test.

The input sequences and the expected output sequences produced by the testing
algorithm are at the same level of abstraction as the SXM model, so they need to be
mapped to concrete data types, which can be understood by the Web service. This is
possible if the provider also includes necessary information to link the specification
with the Web service implementation. This information is utilised by a test engine
to run the test cases by communicating with the Web service under test through
SOAP messages. If the test results are successful, i.e. the expected and produced
outputs match, then the Web service implementation has been shown to be free of
faults with respect to the behavioural specifications. In such a case, an
advertisement of the Web service is created and added to the service registry,
otherwise the Web service is rejected as faulty. The benefit of performing the
verification procedure at the broker site, as opposed to performing it at the
consumer site upon discovery, is that it needs to be done only once. Since only
successfully tested Web services are accepted by the broker, consumers are ensured
that the Web services they discover have been verified with respect to their
specifications.

8.1.3 The service requester perspective

As a first step during discovery, the service consumer formulates a service request
and submits it to the service registry. In response, the service broker returns a set of
annotated service descriptions that match the service request. Notably, this approach
is not bound to any particular matchmaking mechanism, so that any existing
mechanism may be employed to perform syntactic or semantic matchmaking
between the service request and the service advertisements. The service consumer
can take advantage of the SXM behavioural model provided with each service
candidate, in order to perform service selection. This is a validation process where
the consumer ensures that a service model satisfies his or her requirements. An
important validation technique is model animation, during which the user feeds the
model with sample inputs and observes the current state, transitions, processing
functions, memory values, and last but not least, the outputs. For example, X-
System is a prolog-based tool supporting the animation of SXM models [55]. In
addition, model checking may be employed on the SXM model to check for
desirable or undesirable properties, which are specified in a temporal logic formula.
Research on X-machines offers a model-checking logic, called XmCTL, which
extends Computation Tree Logic (CTL) with memory quantifiers in order to
facilitate model-checking of X-machine models [68]. Alternatively, if the consumer
has a SXM model of the required service, it can be validated by state and transition
refinement against the published SXM of the provided service.

158 Verification and Validation of Services in a SOA Environment

8.2 Benefits of including SXM specifications in service
descriptons

The benefits of augmenting WSDL with a formal behavioural specification for the
SOA participants include the following:

 Explication of the conversation protocol enforced by the Web service for
successful interoperability and binding.

 Explication of Web service behaviour and processing logic of individual
operations beyond the WSDL operation signatures.

 The formal behavioural specification serves as a contract between the
service provider and service requester in regards to expected service
behaviour.

 The SXM model is available to model animation techniques that make it
possible for human actors to understand the protocol and behaviour of
discovered Web services.

 Being formal, the SXM specification is available to various analysis
techniques, such as model checking (XmCTL).

 There is the possibility of eliminating false positives with incorrect
behaviour during service discovery, matchmaking, and selection.

8.3 Testing scenarios

There are a number of situations where testing Web services offered by third-party
providers is necessary. In these scenarios different stakeholders in a SOA
environment need to test the WSUT as follows:

 Test before you sell/provide (by the developer). The third-party developer of
the Web service performs the necessary functional testing before publishing
it in a registry.

 Test before you register (by the broker). This is testing performed by the
service broker, who acts as a certification authority for the service clients.
The advantage of this approach is that services are tested only once and
offered as verified services.

 Test before you buy/consume (by the requestor). In this scenario it is the
requestor who performs all the necessary testing activities before consuming
the offered Web service.

8.4 Discussion

The end goal of the described verification and validation approach is for service
requestors to discover, select and consume Web services that fulfil their needs. That
is, the approach validates the implementation of a Web service offered by a service
provider against some informal user requirements.

Verification and Validation of Services in a SOA Environment 159

In essence, the approach breaks down the validation goal into two main activities
(Figure 34): (a) verification of the Web service implementation against a formal
specification of its behaviour, and (b) validation of the service specification against
the requirements of the service requestor, who in this case is a human individual.
Service verification is handled by the service broker through functional testing of
the service implementation against the advertised specification. Only Web services
that are compliant with their specifications are accepted in the registry. On the other
hand, the service requestor validates the advertised behavioural specification of a
discovered Web service against his/her informal requirements. Since the
specification represents the behaviour of a Web service that has already been
verified to be compliant, this implies that also the Web service implementation has
been validated against the user requirements.

Figure 34 - Validation and verification paths

8.5 Summary

This chapter presented a novel Web service verification and validation approach,
which relates to contribution C6 of this thesis. This collaborative approach relies on
the previously described SXM-based Web service specification and testing
techniques and involves the service provider, service broker, and service requestor.
The two main activities are requestor-based validation of SXM models, and
registry-based testing of third-party Web services specified by SXMs. The next
chapter continues the treatment of this approach by focusing on the registry-based
testing of Web services. It describes a technical solution based on open standards,
which realises the vision of testable Web services.

Chapter 9 – Technical Approach for Testable
Web Services with Stream X-Machines

The previous chapter described a novel approach for functional verification and
validation of third-party Web services through a cooperative scheme involving the
three main SOA stakeholders: the service provider, the service broker, and the
service requestor. It described the advantages of explicating the internal behaviour
of third-party Web services in an unambiguous, formal model, for the different
involved participants. The role of each participant in this cooperative scheme was
also investigated.

This chapter focuses in more depth on the service verification part. A standards-
based technical solution is described, which aims to accomplish the vision of
testable third-party Web services. It involves service providers who make available
Web service descriptions augmented with extra information for testing, and
certification authorities who utilise the extra information to derive test sets and
execute them on the WSUT. The end goal of the described technical solution is to
automate both activities of test case derivation and their execution on the Web
service under test.

The problem of automated third-party Web service testing is split into three main
parts:

a) annotating the WSDL document with extra information for testing;

b) extracting the information from the annotations; and

c) using that information to test the third-party Web service.

Annotation of WSDL documents with additional information is carried out by the
service provider. This information includes the formal SXM specification of the
Web service, and any grounding information that links the specification with the
Web service implementation. The grounding information consists of transformation
scripts, which map abstract inputs to concrete request messages, and concrete
response messages to abstract outputs. Hence, these scripts serve to bridge the gap
between the abstraction levels of the specification and the implementation.

Technical Approach for Testable Web Services with Stream X-Machines 161

The additional information supplied with WSDL is utilised by the tester to test the
service. This information is in the form of annotations of different WSDL elements,
thus the tester has to parse the document and extract the extra information to a
convenient representation. The formal SXM specification is used as described in
chapter 0 to derive a complete test set consisting of abstract inputs and expected
outputs. The transformation scripts that are part of grounding annotations are used
during test case execution to concretise abstract inputs to request messages and to
transform response messages to abstract outputs for comparison.

This chapter starts with a discussion on the problem of bridging the abstraction gap
between the SXM specification and the Web service implementation. It presents
three different approaches to run the abstract test cases on the WSUT. Then the
chapter focuses on the transformation approach with more technical details. It
explains the concepts of lowerings and liftings, identifies a set of common patterns
of mismatch between inputs and outputs, and concludes with some examples. The
second section describes the mechanisms for annotating WSDL with a SXM model
and with grounding information that consists of schema mappings. The mappings
address inputs, outputs and service faults. Also the options for dealing with
mismatches in operation names are described. The third section describes the
approach implemented by the tester infrastructure to extract annotations and use
them during test set generation and execution. Emphasis is placed on the
mechanism for derivation of concrete request messages and their proper dispatching
and for mapping of response messages to abstract outputs. The last section
describes a technical solution for handling the two patterns introduced earlier in this
thesis: the Manager pattern and the Constant field pattern. As it will be explained,
such patterns are a convenient means for grounding the specification to the Web
service implementation, since they do not require specification of schema mappings
for all inputs and outputs.

9.1 Bridging the abstraction gap

Model-based testing requires the specification to be made more abstract than the
system under test. If the specification were not more abstract than the SUT, then the
efforts of validating17 the specification would match the efforts of validating the
SUT itself. Abstract models are simpler to understand and convey system behaviour
among individuals, thus they are easier to validate.

Section 5.5 described a number modelling practices to accomplish abstraction by
deliberately omitting details and losing information that is not considered essential
to specification and testing. While the use of abstraction in SXM specifications is
indispensable, and for the sake of intellectual mastery, desirable, it comes at a cost.
Details of Web service behaviour that are not captured in the SXM specification
obviously cannot be tested on the grounds of this specification. In addition, an
important aspect of abstraction is data abstraction of requests and responses as input

17 In the sense that an artifact is compared to often implicit, informal requirements.

162 Technical Approach for Testable Web Services with Stream X-Machines

and output symbols. This raises the need of bridging the gap between abstract and
concrete inputs and outputs as test cases are applied on the WSUT.

The two main motives for having to bridge the gap between the SXM specification
and the Web service for inputs and outputs during test case execution are:

 difference in the level of abstraction (as described above)

 difference in their representation.

Differences in the level of abstraction involve loss of information, which will have
to be supplied in some way during concretisation. On the other hand, differences in
representation between abstract test cases and concrete ones do not involve loss of
information. However, abstract test cases are meant to be platform and language
independent, while the SUT cat take various forms, such as a Web service, a class
in an OOP programming language, a complete system, etc. Furthermore, concrete
test cases can be implemented in the scripting language of a specific testing tool,
such as JUnit, SOAPUI18, etc.

9.1.1 Adaptation versus transformation

There are three basic approaches to bridging the abstraction level between the
model and the implementation for the purpose of executing the test cases: a)
adaptation, b) transformation, and c) hybrid. These different approaches are
illustrated in Figure 35.

Figure 35 - Three approaches to bridging the abstraction gap (adopted from Utting

and Legeard [34])

The adaptation approach involves manually writing adapter code that wraps the
WSUT. Then the abstract test cases are run directly on the adapter. The
transformation approach involves transformation of abstract test cases to executable
test scripts that are understandable by some Web service testing tool, or directly to

18 http://www.soapui.org/

Technical Approach for Testable Web Services with Stream X-Machines 163

concrete inputs that can be applied on the WSUT. The hybrid approach is a
combination of the previous two approaches. It is sometimes useful to write some
adapter code for the Web service under test to raise its abstraction level and make
testing easier, and then transform the abstract tests into a more concrete form that
matches the adapter interface.

To wrap up, there are the following possibilities regarding the correspondence
between the SXM specification and the WSUT:

 No abstraction gap (usually when the WSUT is trivial)

 Abstraction gap (complex, real-world WSUT)
o Adaptation (manual)
o Transformation

 Manual (impractical)
 Automatic

o Hybrid

between the specification and the implementation.

9.1.2 Adaptation

Adaptation is a manual approach and involves the service tester, who needs to
implement the adapter. We can distinguish between two types of adapters: proper
adapters and pseudo-adapters. The role of a proper adapter in the WS testing
architecture is to bridge levels of abstraction, while a pseudo-adapter serves to
bridge different representations. Thus, proper adapters raise the abstraction of a
WSUT to a level where it can be tested without the supply of new information. As a
result, they bridge the abstraction gap and cannot be generated automatically. The
inputs and outputs accepted by proper adapters do not have to be necessarily the
same as the automatically generated abstract inputs/outputs, since the latter can be
automatically transformed to other formats, e.g. to JUnit test cases or to XML
instances in accordance with some convenstions.

On the other hand, pseudo-adapters can be generated automatically, which bridge
the representation gap of inputs/outputs or languages, but not the degree of
abstraction. Java stubs are examples of pseudo-adapters that are used in both the
adaptation and transformation approaches to hide direct SOAP communication with
the Web service behind a local Java object. The stub can make use of generic,
untyped object models of SOAP XML, or typed Java beans, in which SOAP XML
documents are bound to Java objects (different binding options: xmlbeans, adb,
jaxb, jibx, and so on).

Besides stubs, in the adaptation approach, proper Java adapters called wrappers can
be employed as well. The Java wrappers wrap the Java proxy to bridge the
abstraction gap. That is, proper adapters can wrap pseudo-adapters.

164 Technical Approach for Testable Web Services with Stream X-Machines

9.1.3 Transformation, lowering and lifting

Input to the SXM, as given by a test case, is concretized before it is sent to the Web
service. The output of the latter is abstracted before it is compared to the output of
the model as defined by the test case. The granularity of the comparison between
the system’s and the model’s output depends on the desired precision of the test
process.

The transformation approach offers the advantage of splitting the complexity of the
Web service into an abstract model, and mapping definitions that perform
concretizations and abstractions. These mapping definitions are then used during
the execution of test cases on the Web service under test. In contrast to the
adaptation approach, mappings can be defined by the modeller, thus the bridging of
the abstraction gap is a provider-based task. The tester does not have to perform any
mappings, since they are part of the Web service descriptions. Consequently, test
case execution can be performed automatically by the tester.

There are two types of transformations: lowering and lifting. Lowering, as the term
suggests, is the lowering of the abstraction level of a data entity, that is, its
concretisation from abstract to concrete. On the other hand, lifting refers to the
lifting of the abstraction level of a data entity, i.e. mapping it from concrete to
abstract.

Lowering is used when deriving concrete inputs to be applied to the WSUT, while
lifting is used to abstract returned outputs for comparison with outputs returned by
the model. Generally, lifting is an easier and less challenging task than lowering, as
the data is made more abstract, and no new information is introduced. On the other
hand, lowering can be difficult, challenging or even impossible, since the
concretisation of abstract inputs may require introduction of new information. The
new information may be available in advance during concretisation of inputs or at
runtime as the test cases are being executed.

9.1.4 Patterns of mismatch

This section lists a number of patters of mismatch between concrete and abstract
inputs/outputs. The list is not necessarily exhaustive, but it includes very common
cases, and provides an insight into the types of mismatch to consider when
executing test cases.

Ranges of values

Often, abstract input symbols in a SXM specification do not represent single values,
but ranges of values. For example, a stream X-machine may accept three inputs: r1,
r2 and r3, where r1 = {0…10}, r2 = {11…20}, r3 = {20…∞}. During lifting, the
mapping determines the range to which a concrete value belongs and results in the
abstract input. During lowering, a representative value belonging in each range is
selected.

Enumerations

Technical Approach for Testable Web Services with Stream X-Machines 165

Enumerations in the abstract model offer a simplified view of complex data values
such as enumerating a few typical values. For example, shopping cart items: i1, i2,
i3, or customers c1, c2, c3 (defined as strings or enums), are mapped to
representative XML instances, as specified by the modeller in the grounding.

Enumerations allow comparing outputs at a coarse granularity, without going to
details; or when modelling the precise computations is impractical; resulting model
may be nondeterministic. Sometimes an enumerated output can be simply a success
or error output, which can be considered enough for obtaining a verdict on the
correctness of the SUT.

Missing data fields

E.g. customer ID, shopping cart ID, etc provided in SOAP request messages.

Often repeated at the body of every SOAP message (such as the Amazon developer
access key).

9.2 SAWSDL annotation mechanisms

In order to annotate the WSDL description file with additional information for
testing, the SAWSDL19 W3C recommendation for semantic annotations has been
selected among other SWS alternatives. SAWSDL is both lightweight and non-
intrusive, since it only augments WSDL with pointers to external semantic
concepts. Furthermore it provides pointers to schema mappings which define the
grounding of the abstract model to the WSDL descriptions. Remarkably, SAWSDL
does not prescribe any particular representation language for the referenced
concepts or any particular mapping language for realising the grounding. The
referenced concepts could indeed be entities from an OWL ontology, rules, or even
pictures. Therefore, owing to its lightweight nature and its support for schema
mappings, SAWSDL is considered as suitable for accomplishing the annotation of
WSDL with the JSXM specification, and with mappings between JSXM and XSD
input/output representations.

Figure 36 illustrates the SAWSDL annotations of the WSDL file for the
SupplyOrder Web service.

19 Semantic Annotations for WSDL and XML Schema

166 Technical Approach for Testable Web Services with Stream X-Machines

Figure 36 - SAWSDL annotations of the SupplyOrder WSDL file with model

references and schema mappings

Elements that can be annotated with modelReference in WSDL 1.1 are the
following [29]:

- portType

- operation

- wsdl:fault

- message part

- XML Schema

o simpleType

o complexType

o Global Element Declaration

Elements that can be annotated with loweringSchemaMapping and
liftingSchemaMapping in WDL 1.1 are the following:

- Message part

- XML Schema

o simpleType

o complexType

Technical Approach for Testable Web Services with Stream X-Machines 167

o Global Element Declaration

9.2.1 Augmenting WSDL with the JSXM specification

The SXM model most closely models the WSDL portType, since this is the abstract
part of the WSDL interface that abstractly defines which are the operations, inputs,
outputs, and their types, leaving out protocol, and access details. That’s why we
annotate the portType. The portType/interface is annotated with a modelReference
pointing to the location (URL) of the JSXM model.

9.2.2 Annotations for grounding

The grounding problem deals with generating concrete test request messages,
dispatching them to the proper operation of the WSUT, and mapping the concrete
response message to abstract outputs. So there are two parts, mapping inputs and
outputs via schema mappings and mapping operations names for correct
dispatching. Furthermore, Web services can return fault messages instead of normal
SOAP responses. In SAWSDL it is possible to define schema mappings for faults as
well.

Schema mapping annotations for inputs and outputs

The SAWSDL specification defines two annotations for grounding abstract inputs
and outputs to WSDL messages or XML Schema types: loweringSchemaMapping,
liftingSchemaMapping [29]. As their names suggest, loweringSchemaMapping
annotations reference lowering transformations, while liftingSchemaMaping
annotations reference lifting transformations.

Referenced transformations convert one XML document to another. In the context
of test case execution, XML representations of abstract JSXM inputs would need to
be transformed to XML-based SOAP request messages, while SOAP response
messages would need to be transformed to XML representations of abstract JSXM
outputs. The W3C Recommendation for a language defining transformations of
XML documents is the XSL Transformations (XSLT) language [19], described in
chapter 0.

XSLT transformations are based on an XML query language, of which the most
common is XPath. However, in the SAWSDL working group non-normative
example, RDF is used as the base of the semantic model [29]. Consequently, in
order to lower RDF triplets to XML, XSLT is used in conjunction with an RDF
query language like SPARQL, since with XPath this would have been a challenging
task. On the other hand, for lifting, the input is SOAP XML and XPath is more
appropriate as a query language. Thus in the working group example XSLT in
conjunction with XPath is employed for lifting.

However, in the context of grounding a JSXM model to a WSDL Web service, both
the concrete and abstract data are expressed in XML. Therefore, XPath is adopted

168 Technical Approach for Testable Web Services with Stream X-Machines

as the query language for transformations in both directions: lowering and lifting
(Figure 37).

Figure 37 - Schema mapping languages for semantic RDF data versus schema

mappings for JSXM inputs and outputs

Of all the schema mappings, the ones referenced by loweringSchemaMapping are
most challenging to define, as they usually require the supply of new information.
The loweringSchemaMappings cannot be avoided since they are necessary at least
for converting abstract inputs to concrete SOAP messages for invoking the Web
service under test. In contrast, transformations referenced by
liftingSchemaMappings usually involve data abstraction and are easier to define.

Fault annotations

Web service faults are modelled in SXM either as normal output symbols or as
default errors produced when inputs are not handled. As mentioned in section 7.5.1
on negative testing, there are two types of Web service faults: WSDL faults and
runtime SOAP faults. WSDL faults are declared in the specification of service
operations in the abstract part of WSDL descriptions. The document of the XSD
type referenced by a WSDL fault becomes part of the WSDL fault detail element
(see below). Web service faults do not always have to be declared in the WSDL
descriptions, since service operations can return runtime SOAP faults, which are not
anticipated in WSDL.

Nevertheless, from the investigation of various real-world Web services (Amazon
ECWS, Google, UPS, FedEx, etc) we observed that the use of WSDL faults is rare.
Instead, Web service faults are generated at runtime as SOAP faults whenever
errors occur.

The components of a Web service fault according to SOAP 1.2 are the following
(Figure 38):

Technical Approach for Testable Web Services with Stream X-Machines 169

 faultcode

 faultstring (corresponds to an exception message string, in Java)

 faultactor

 detail (may include the XML element defined in the XSD of WSDL)

Figure 38 - Contents of a Web service fault message

The faultcode is a concise string identifying the type of fault, while faultstring is a
textual fault description in natural language, intended for human individuals. The
detail element contains the XML document defined by the XSD type in the WSDL
specification of the fault. As a result, the following convention is assumed in
specifying faults as SXM abstract outputs, and during the lowering of fault response
messages to SXM outputs. The faultstring is specified as the SXM output name,
while the XML block within the detail element is specified as SXM output results.
Therefore, during mapping, the test engine constructs a SXM output with the same
name as the faultcode. If there is any XML block within detail, it comprises the
results elements of the SXM output. In case a loweringSchemaMapping annotation
is defined in SAWSDL, the referenced transformation is applied to the fault XML
block before it is inserted in the SXM output. The derived SXM output, and the
output in the test set are then compared.

Operation names

As described earlier in the thesis, inputs model operation calls not just request
messages, thus JSXM input names should represent names of operations to be
called. Dispatching is based by default on calling the operation with the same name
as the output.

There is a problem when dispatching (i.e. delivering the request to the appropriate
Web service and operation) test messages when the JSXM input name and the
operation name disagree. There are three main approaches to mapping JSXM input
names to WS operation names, to correctly dispatch request messages.

170 Technical Approach for Testable Web Services with Stream X-Machines

9.2.3 Schema mapping examples

In this section are listed a number of illustrative examples of mismatches between
low-level SOAP message elements and abstract SXM inputs or outputs.

Value mismatches

E.g. mismatch in the value of messages returned by the Web service:

SOAP body:

<message>Order successfully placed</message>

JSXM output instance:

<message>success</message>

XSLT transformation:

<xsl:template match="/">
 <xsl:choose>
 <message>
 <xsl:when test=
 "message == 'Order successfully placed'">
 success
 </xsl:when>

 <xsl:otherwise>
 error
 </xsl:otherwise>
 </message>
 </xsl:choose>
</xsl:template>

Element/attribute name mismatches

Mismatches in XML element and attribute names:

SOAP body:

<resultDetails>success</resultDetails>

JSXM output instance:

<message>success</message>

XSLT transformation:

<xsl:template match="/">
 <message>
 <xsl:value-of select="resultDetails"/>
 </message>
</xsl:template>

Structural mismatches

Structural mismatches involve differences in the XML structure, the arrangement of
elements, attributes, etc.

E.g. the following extract from a JSXM input instance:

Technical Approach for Testable Web Services with Stream X-Machines 171

<fullName>First Last</fullName>

is mapped to:

<firstName>First</firstName>
<lastName>Last</lastName>

Structural mismatches are often a data mediation problem.

Missing elements

The concrete SOAP body payload and the abstract inputs/outputs can differ with
complete XML elements. Since the SOAP body payload normally stands at a lower
level of abstraction, mapping a JSXM input to a SOAP body payload requires
introducing new data, such as new children elements.

JSXM input instance:

<input name=”confirmOrder” /> (empty)

SOAP body:

<confirmOrder>
 <customerId>1234</customerId>
</confirmOrder>

Value ranges

Whole ranges of data values may be abstracted as symbols in the SXM model.
Lifting is straightforward, while lowering requires selecting a specific value within
the range. In the example below, the symbol positive_value is replaced by a
random positive number by the XSLT script during lowering schema mappings.

JSXM input instance:

<input name=”updateQuantity”>
 <quantity>
 positive_value
 </quantity>
<input>

SOAP body:

<quantity>
 15.5
</quantity>

Enumerated values

As mentioned in chapter 0, enumerations are an important technique in data
abstraction. They are discrete values (booleans, enumerated types, strings, etc) that
represent complex XML instances. During input concretisation enumerated values
are replaced by carefully chosen example XML instances. During outputs
comparison, complex XML data instances are mapped to the corresponding abstract
enumerations.

172 Technical Approach for Testable Web Services with Stream X-Machines

JSXM input type:

<input name=”addItem”>
 <arg name=”item” type=”xs:string” />
</input>

JSXM input instance:

<input name=”addItem”>
 <item>
 item1
 </item>
<input>

SOAP body:

 <addItem>
<item>

 <itemId>1</itemId>
 <ASIN>0131858580</ASIN>
 <type>Book</type>
 <author>Thomas Erl</author>
 <title>Service-Oriented Architecture</title>
</item>

 </addItem>

9.3 Runtime mapping mechanisms

The previous section described how guidelines from the SAWSDL W3C
recommendation are leveraged to augment WSDL descriptions with the JSXM
model and grounding information. Having accomplished these annotations it should
be possible to utilise the SXM model and ground it to the real Web service at
runtime. However, the SAWSDL specification does not recommend an approach to
properly map the schemas while executing the Web service. Instead, this task has
been left to the SAWSDL processor that implements the specification, with
different processors possibly supporting different approaches.

Therefore, it is important to define in this section the steps of the algorithm used to
map data types during runtime and to execute the Web service operations. The
implementation of the SAWSDL processor must overcome a number of obstacles:

 Dealing with the unidirectional nature of SAWSDL annotations: lifting
schema mappings annotate WSDL output types explicitly, but lowering
schema mappings do not annotate inputs in the abstract SXM model.

 Locating a lowering schema mapping for an abstract test input in the
SAWSDL descriptions.

 Dispatching the resulting request message to the proper operation.

 Locating the lifting schema mapping for an incoming response message in
SAWSDL descriptions.

 Defining the action taken when no schema mapping is defined for a request
or response message.

Technical Approach for Testable Web Services with Stream X-Machines 173

The answer to such questions is not given by the SAWSDL specification, but left to
the tool implementers who design the mapping approach. The problem of locating
the proper schema mappings in a unidirectional annotations framework like
SAWSDL is handled during the extraction of schema mappings described later in
this section.

The first subsection investigates the correspondence between inputs/outputs in
JSXM specifications and in Web services under test. Therefore, a set of default
mapping rules are defined for inputs and outputs, in order to bridge the
representation gap. These default mappings are applied:

 When no schema mappings are specified in the SAWSDL annotations for
inputs and outputs (i.e. there is no abstraction gap).

 Before the application of schema mappings to abstract inputs or after the
application of XSLT schema mappings to outputs, if any (i.e. there is an
abstraction gap).

The subsequent subsections describe the approach for extracting schema mappings,
runtime transformation of inputs and outputs, and the approach for performing
proper dispatching.

9.3.1 Correspondence between Web service and JSXM inputs
and outputs

Before discussing mappings let us first examine how Web service inputs and
outputs XML types and instances correspond to JSXM inputs and outputs.

Derivation of test SOAP request messages involves the construction of complete
SOAP envelopes from the abstract JSXM inputs. In case a SOAP processor tool
(such as Apache Axis2) is used, it involves the supply of the information required
the tool to construct SOAP envelopes. In this section we describe how abstract
inputs correspond to SOAP request messages and operation calls, as well as how
SOAP response messages correspond to abstract outputs.

Some pre-processing is performed according to a set of default rules, before inputs
are transformed, or after outputs are transformed. As described earlier, in the JSXM
notation inputs consist of an input name, and optionally, one or more arguments,
each of which defined by its name and XSD type. The correspondence with the
domain of Web services is relatively straightforward. The input name corresponds
to the name of the service operation to be called, whereas the input arguments
correspond to the contents of the SOAP body payload.

We can identify three different cases for JSXM inputs (Figure 39):

 input with a name but no arguments (i.e. simple input),

 input with one argument, and

 input with several arguments.

174 Technical Approach for Testable Web Services with Stream X-Machines

For simple inputs with no arguments, the operation is called with an empty SOAP
body payload. For inputs with one argument, the single document is put in the
SOAP body. Inputs with more than one argument are a different case that may
cause problems. In the treatment of messaging styles earlier in this thesis, it was
explained that the WS-I Basic Profile restricts the maximum number of WSDL
message parts to one. For interoperability reasons, this work assumes that Web
services under test are WS-I compliant, thus the derived request messages must
contain at most one root element (document) in the SOAP body. Therefore, when
complex inputs contain multiple arguments, the latter are included as children of a
root element with the same name as the input. Finally, transformation may also
involve addition of namespaces to XML element names; however these technical
details are out of scope of this discussion and are handled by the tool
implementation.

Figure 39 – Conventions for correspondence at the instance level between JSXM

inputs and SOAP requests

In mapping outputs, the root element of the body payload becomes the output name.
The children elements are treated as results of the JSXM output (Figure 40).

Technical Approach for Testable Web Services with Stream X-Machines 175

Figure 40 – Convention for correspondence at the instance level between SOAP

responses and JSXM outputs

9.3.2 Extracting the schema mappings

The goal of extracting the schema mappings is to locate the lowering XSLT scripts
for abstract inputs to generate test request messages, and lifting XSLT scripts for
incoming response messages to compare with abstract outputs. The latter is easy,
since liftingSchemaMapping annotates the WSDL output (message part/GED/GTD)
to be lifted for comparison. However, extracting the lowering schema mappings for
JSXM inputs is not straightforward since the loweringSchemaMapping does not
annotate the JSXM input to be lowered but the Web service input to be obtained
(reverse direction). For this reason an extra modelReference annotation is required
for Web service inputs, pointing to the input in the JSXM file (separated by a #).

When annotating a WSDL input/output, it is unclear whether we annotate:

 The message part

 The Global Element Declaration in the XML Schema

 The type declaration in the XML Schema

The SAWSDL parser component of the tool should start from the message part, to
the element name and if applicable to the referred XSD type (simple or complex) in
that order, to decide whether a mapping exists, and if yes, which one.

A mapping table is constructed in the memory for easy fetching of the schema
mappings for every operation: one for lowering of operation inputs and one for
lifting of operation outputs. This map is consulted during the execution of test cases
as described below.

176 Technical Approach for Testable Web Services with Stream X-Machines

9.3.3 Mapping types

The mapping table described in the previous subsection consists of (operation name,
lowering XSLT script, lifting XSLT script) triplets for all operations.

The steps performed during lowering are:

1. Get next abstract input in test sequence.

2. Get the children elements of the input (arguments) if any.

3. Pre-process the arguments to derive a preliminary XML document
according to the default rules defined earlier. This preliminary document
would be used as the SOAP payload if there is no XSLT script.

4. Fetch the lowering XSLT from the map, if any.

5. Apply it to the preliminary document derived in step 3.

6. Use the transformation result as the payload of the SOAP request message
and dispatch it either directly to the Web service, or as an argument to a Java
stub, with the operation/method having the input name.

The steps performed during lifting are:

1. Retrieve the response message body payload either as direct XML message
or as a Java binding representation returned by the Java stub’s method.

2. Fetch the lifting XSLT script from the map, if any.

3. Apply the transformation and compare the result with the expected output.

Therefore, the inputs sent by the test engine are the results of applying the specified
lowering transformations. On the other hand, the results of applying the specified
lifting transformations, rather than the actual outputs, are compared with the outputs
predicted by the test oracle. A question that naturally arises is whether one should
trust the mappings. Checking whether the mappings make sense is a validation task
that can be performed by a human individual. It is considered easier for the human
individual to validate separately the abstract specification and the individual
mappings (which in the absence of automation would have to be performed
manually), rather than to validate a large, unabstracted, specification that does not
make use of mappings.

9.3.4 Dispatching approach

Since the name of the target operation is not specified in a standard place in service
requests (e.g. it can appear in HTTP headers, in SOAP headers via WS-Addressing,
in the SOAP body, etc), it is easier to leave the technical details to the Web service
platform, such as Apache Axis2. Axis2 can build Java stubs automatically, which
provides methods with the same names as Web service operations. By invoking the
stub’s methods with argument the SOAP body payload, the stub invokes the
corresponding operation on the Web service. The XML document passed as

Technical Approach for Testable Web Services with Stream X-Machines 177

argument to the method comprises the body of the SOAP request message sent to
the invoked Web service operation. The return value of the sub’s method is the
body of SOAP response message from the invoked Web service operation.

Therefore, the stub’s method with the same name as the input name is called. The
SOAP body that results from the mappings described earlier in this section is passed
as an argument to the method.

9.4 Handling the Constant Field Pattern and Manager
Pattern

Often, specifying schema mappings for every single input and output is a non-trivial
and time-consuming task. Although schema mappings are often necessary for
achieving automatically testable Web services, in some cases they can be omitted
by the modeller. This is especially the case when adding identifier information to
test inputs. As described in section 5.5.1 on modelling individual state objects,
identifier information can be excluded from the SXM specification and the
generated abstract test cases. They can be supplied later on during test case
execution as inputs are concretized to request messages.

One approach is to specify XSLT lowering schema mappings, which insert
identifier fields into the abstract inputs to derive the payload of request messages.
This has to be done fore every input declaration in JSXM. Nevertheless, as
mentioned earlier in this thesis, it is frequently possible for the per-object SXM
specification and the modelled Web service to follow a pattern. Patterns are
identified in those situations when the mismatch between the specification and the
implementation fits the pattern for all inputs or outputs. In the case of identification,
identifiers can be the same for all request messages in a conversation and are
inserted in the same location in the XML tree of the SOAP payload. In these
situations there is the opportunity to specify the identifier information and its
location in every request only once, rather than write XSLT transformations for
each and every input.

As described in section 4.3.4: Private state identification, there are two main cases
the identifier information is known: either in advance or retrieved from the server
during run time. In the first case, an identified state entity exists in the Web service
before test sequences are executed, thus their identifiers are known in advance. This
case is defined by the Constant Field Pattern. The second case is when an object
identifier is obtained at runtime from the service after an object is created with the
create operation. The obtained identifier is included in every subsequent invocation
to the service, until the identified object is finally destroyed with a destroy
operation. This second case is defined by the Manager Pattern introduced earlier in
this thesis (Section 5.5.1).

This section proposes solutions for realizing both patterns. On the one hand, the
modeller who specifies annotations should annotate the Web service portType with
a description of the pattern. On the other hand, the test engine implementation

178 Technical Approach for Testable Web Services with Stream X-Machines

consults this pattern description during execution of the test cases. Identification
information is supplied by the test engine after the application of any optional
schema mapping that is specified for the input.

9.4.1 Constant Field Pattern

In the constant field pattern, there are constant data elements that are repeated in
every request message, e.g. an access key or an object identifier. Writing a
transformation script for inserting the constant data element in every type of request
message is time consuming and error-prone. Therefore, it is desirable to have this
task handled by the test engine automatically by declaring the service as one
following the constant field pattern, and supplying an XPath expression locating the
identifier.

Another possibility would be XQuery [17], however it is too elaborate and is used
for complex queries, while selecting children elements can be successfully
performed by XPath alone. For inserting the identification information in requests,
it would be necessary to use XQuery update facility [18], but again due to the
simplicity of the update operation, an XPath expression for the location to insert the
ID is sufficient, which translates to XSLT.

Example:

Request message (taken from the Amazon E-Commerce service documentation
[56]):

Before XSLT transformation:

<input name="ItemSearch">
 <Keywords>Pink Floyd</Keywords>
</input>

After XSLT transformation:

<ns:ItemSearch xmlns:ns="...">
 <ns:AWSAccessKeyId></ns:AWSAccessKeyId>
 <ns:Request>
 <ns:Keywords>Pink Floyd</ns:Keywords>
 <ns:SearchIndex>Music</ns:SearchIndex>
 </ns:Request>
</ns:ItemSearch>

Pattern specification:

<pattern name="ConstantField">
 <field location="ns:ItemSearch\ns:AWSAccessKeyId">
 0KRFZH9WHG92C4VK1B02
 </field>
 ...
 <field location="xpath_expression2">field2</field>
 ...

Technical Approach for Testable Web Services with Stream X-Machines 179

</pattern>

After application of pattern:

<ns:ItemSearch xmlns:ns="...">
 <ns:AWSAccessKeyId>0KRFZH9WHG92C4VK1B02</ns:AWSAccessKeyId>
 <ns:Request>
 <ns:Keywords>Pink Floyd</ns:Keywords>
 <ns:SearchIndex>Music</ns:SearchIndex>
 </ns:Request>
</ns:ItemSearch>

Complete SOAP request message:

<soapenv:Envelope xmlns:soapenv="...">
 <soapenv:Body>
 <ns:ItemSearch xmlns:ns="...">
 <ns:AWSAccessKeyId>0KRFZH9WHG92C4VK1B02</ns:AWSAccessKeyId>
 <ns:Request>
 <ns:Keywords>Pink Floyd</ns:Keywords>
 <ns:SearchIndex>Music</ns:SearchIndex>
 </ns:Request>
 </ns:ItemSearch>
 </soapenv:Body>
</soapenv:Envelope>

9.4.2 Manager Pattern

The manager pattern [72], also known as the Factory pattern, gives rise to new
challenges in generating concrete test cases for Web services, since the object
identifier to be supplied with every operation invocation is only known at run time,
after it is returned from the response of the object creation operation. Therefore, the
generation of concrete test cases is deferred to run time and is accomplished by the
test engine.

Since the object identifier (e.g. shopping cart ID) may be nested deep in the XML
response message of the object creation operation (e.g. CartCreate) we propose
adding to the Manager Pattern annotation the XPath expression that selects the
identifier information. Additionally, to insert the identifier in the correct place in the
subsequent request messages directed to a specific object, another XPath expression
is specified, which the test engine uses to dynamically generate an XSLT script.

Example

Pattern Specification:

<pattern name="Manager">
 <creation name="create"
identifierLocation="xpath_expression">
 <invocation identifierLocation="xpath_expression">
 <destruction name="destroy">
</pattern>

180 Technical Approach for Testable Web Services with Stream X-Machines

9.5 Summary

The focus of this chapter was the Web service verification portion of the
collaborative approach described in the previous chapter (contribution C7). After
introducing the problem of bridging the abstraction gap between the SXM
specification and the Web service implementation, three approaches were described
for running the abstract test cases on the WSUT. The technical solution proposed
subsequently adopts the transformation approach through grounding annotations
with XSL transformation scripts (contribution C8 of this thesis). While SXM inputs
are transformed to SOAP request messages (lowering schema mappings), returned
SOAP response messages are transformed to SXM outputs for comparison at an
abstract level (lifting schema mappings). Next, this chapter presented a mechanism
for annotating Web services with extra information, in order to accomplish the
vision of testable third-party Web services. According to this mechanism, service
providers perform the annotations of WSDL descriptions (using the SAWSDL W3C
recommendation), while certification authorities utilise the extra information in the
annotations to derive test sets and execute them on the WSUT. The implementation
of a toolset, which automates the testing activities in the above mechanism, is
described in the next chapter.

Chapter 10 – Toolset for Automated Testing of
Web Services Modelled as SXM

The technical approach described in the previous chapter to automate testing of
third-party Web services is supported by a toolset, which implements the activities
of the certification authority for extracting semantic annotations, generating abstract
test cases, and performing runtime mappings during test case execution.

The tool relies on the JSXM test case generator described earlier.

10.1 Test case execution toolset

 Different architectural alternatives

 Adapter-based versus Transformation-based

 Comparison table

182 Toolset for Automated Testing of Web Services Modelled as SXM

10.2 Review on available tools and libraries for writing Web
service tools

 Apache Axis, etc
o Approach for writing stubs, skeletons, etc.

 Specification, animation, and abstract test case generation tool (JSXM)

 Automatic execution of test cases on WSUT, Java adapters

 UDDI service registry integrating the automated Web services testing tool
o Extended FUSION semantic registry that uses JUnit

programmatically
o PublicationManager’s addService()
o Returns a AddServiceResponse containing a test results report and

registration status (successful/not)

10.3 Used tools/APIs:

 WSDL4J (object model for reading, manipulating, and creating WSDL
documents)

 SAWSDL4J EasySAWSDL, Woden4SAWSDL (object model for SAWSDL
annotations), v 1.1 vs v 2.0

 Apache HTTPClient (service invocation client)

 XMLUnit (for comparing XML messages), some discussion

 Apache Axis2 (Web service platform)

Toolset for Automated Testing of Web Services Modelled as SXM 183

 Jaxen (XPath Engine)

 Xalan (XSLT engine)

 FUSION Semantic Registry (certification authority)

 JSXM toolset.

 Ant integration

The approach for model-based testing of Web services is based on the architecture
depicted in Figure 41. In this particular approach the transformation (rather than
adapter) method is used to execute test cases. That is, abstract SXM input/output
symbols are mapped to SOAP requests/responses that are used to communicate with
the Web service under test. The benefit of this approach is that the concrete
representation of inputs/outputs is SOAP XML rather than a vendor-dependent
representation that usually is required by adapters (e.g.

Figure 41 - Transformation approach for executing test cases

All the steps depicted in the above picture are integrated in an ANT script. Given
the annotated SAWSDL document, consisting of model reference and schema

184 Toolset for Automated Testing of Web Services Modelled as SXM

mapping annotations as prescribed in the previous chapter, the JSXM specification,
and the schema mapping scripts, it is possible to fully automate testing and
verification of the Web service relative to the specification.

Apart from parsing SAWSDL annotations, the toolset should also offer the ability
to create these annotations, when the modeller wants to link the WSDL with the
SXM specifications and the schemaMappings.

Since human intervention is not required, it is possible to integrate the above script
for fully automated testing of testable Web services into certification authorities.
Usually such authorities are service registries, which may consist of hundreds or
thousands of Web services. Testing is invoked upon registration request by service
providers, and, if all the test cases pass successfully, the service is accepted and
registered. As a result all registered services in the service registry have been
verified for behavioural conformance to their advertised JSXM specifications.

A number of registries implementing the UDDI specification are available, some of
them open source. However, in order to support the approach proposed in this
thesis, the registry should support Web services described by SAWSDL documents.
These registries are also known as semantic registries, and offer additional benefits,
such as semantic discovery based on inputs, outputs, and category. One open source
implementation of a semantic registry supporting SAWSDL is the FUSION
Semantic Registry [13].

This registry is implemented as three different Web services, exposing interfaces for
registry administration, Web service registration, and Web service discovery. In this
thesis we are interested in the registration API. The registration API includes
operation “addService”, which is invoked upon registration by service providers.
We have modified the implementation of this operation to invoke the Web service
testing script.

Toolset for Automated Testing of Web Services Modelled as SXM 185

Figure 42 - Extension of the FUSION Semantic Registry with service verification

capabilities

10.4 Summary

This chapter concludes the description of the work performed as part of this PhD
research. It described the tool implemented to support runtime testing of third-party
Web services (contribution C9), drawing from the techniques presented in the
previous chapter. The tool takes advantage of another existing tool for SXM-based
test case generation, and other APIs for the rest of the tasks. In particular, the tool
relies on EasySAWSDL for parsing annotations in testable Web services to extract
the SXM model and the schema mappings used during test case execution.
Furthermore, the tool is incorporated into an open-source service registry, which
tests Web services prior to their registration.

Chapter 11 – Conclusions and Future Work

This final chapter concludes the thesis. Therefore, at this point it presents a
summary of the findings and contributions of this research work. Also, in
retrospective, this chapter critically examines the fulfillment of the original aims
that constitute the thesis, and points out some of the limitations that have been
identified. The last section presents ideas for future work that can be inspired from
this thesis.

11.1 Summary of findings

The main accomplishments of the research work described in this thesis are briefly
summarised as follows:

 A comprehensive study on stateful Web services, service state and its effects
on service behaviour. Also, a classification of Web services into a few
practical categories, based on their state characteristics. The implications of
service state on the tasks of specification and testing are further examined.

 An investigation of the suitability of different state-based formalisms, with a
focus on SXMs, for specifying both the behaviour and internal data of
stateful Web services.

 Recommendation of guidelines and best practices to create SXM
specifications of stateful Web services. Ad-hoc practices are proposed in the
domain of Web services, owing to their specific characteristics. Also a
method is described for inferring a SXM from IOPE-based declarations of
Web service operations.

 Investigation of unique testing challenges in the Web services domain.

 Evaluation of produced test sets with faulty implementations and mutation
tools.

 Description of a novel collaborative approach for validation and verification
of third-party Web services, with a focus on service verification through
testing.

 Realisation of third-party Web service testing in the above approach through
technical solutions for:

Conclusions and Future Work 187

o providers to annotate the services they offer with additional
descriptions, which include the formal SXM specification of their
behaviour, and the grounding for mapping between abstract and
concrete inputs/outputs;

o testers to utilise the supplied descriptions to derive test cases and run
the tests on the WSUT.

 Solution for bridging the abstraction gap between the specification and the
WSUT, both through transformations of individual inputs/outputs and
through definition of patterns.

 An architecture and toolset that extends an existing tool (JSXM), for
supporting the above techniques for testers verifying Web services.

 A set of examples for demonstrating and validating the described techniques.

11.2 In support of the initial aims

11.2.1 Formal verification and testing of stateful Web services
with stream X-machines

One of the original aims of this research work has been to model stateful Web
services with formal SXM specifications. Among the different benefits of
specifying the behaviour of Web services is testing their implementation. Formal
methods were used in the hope of automating the process of testing (see below) and
ensuring the effectiveness of the generated test sets.

As chapters 0 and 0 demonstrated, the stream X-machine formalism is quite
appropriate for specifying stateful Web services, as it is capable of capturing both
dynamic behaviour and internal service state in unambiguous specifications.
Moreover, SXMs are seen as fairly intuitive as they have close correspondence with
the implementation elements of stateful Web services. A number of techniques were
employed to perform abstraction in the specification without making it
nondeterministic. Also, as the two case studies demonstrated, it was feasible to
derive complete SXM specifications of Web services of varying complexity, which
could then be expressed in the JSXM notation for processing by tools. More
importantly, those SXM specifications, with automation support, could be used to
derive test sets with proven fault detection effectiveness. Although the models did
not satisfy all design-for-test conditions, and although they were partially specified,
a number of experiments were able to demonstrate that the test sets were
significantly powerful in detecting various types of meaningful faults in the WSUT.

Limitations

As mentioned, one of the limitations of the SXM-based specification and testing
approach is that it is difficult to satisfy the design-for-test conditions, which are
often fairly restrictive. This is especially the case with Web services, since the tester
might not have control over the implementation in order to augment it for
compliance with the design-for-test conditions.

188 Conclusions and Future Work

Another quite problematic assumption is that the individual processing functions
corresponding with components in the implementation have already been proven to
be correct. Although techniques are suggested by existing work to continue the
hierarchical testing process in a similar fashion beyond the integration level, in
practice this was considered difficult for a number of reasons. First of all, as
demonstrated in the testing chapter, it can be difficult to separate control flow from
implementation of the individual components, thus it is difficult to decouple them in
the implementation to ensure their correctness. Secondly, from a preliminary
examination it was found difficult to express individual processing functions in
terms of the function computed by simpler SXMs, since the latter handle sequences
of symbols rather than individual input and output symbols. Finally, the JSXM
toolset does not yet support test set generation from complete hierarchical
specifications. The issue of testing individual members of the machine type is
considered as future work.

Finally, although large-scale and commercial Web services are commonly
nondeterministic, this thesis was not focused on NSXMs. The test set generation
tool is also unable to support test set generation from nondeterministic
specifications, which require different versions of the algorithm. Nevertheless, a
concise treatment of nondeterminism and conformance testing was provided in this
thesis, and is considered as future research. Moreover, abstraction techniques were
proposed, which can preserve the determinism of specifications.

11.2.2 Feasibility of testing third-party Web services

Another important aim set out in the beginning of this research was towards testing
of third-party Web services, which have recently become pretty common and
require methods to ensure their reliability. As was explained, third-party Web
services need to be tested at runtime, as opposed to development time. In addition,
testers usually do not possess functional service specifications, due to the
limitations of WSDL, and have no control on the service implementation.

Testing of third-party Web services has been tackled with a novel approach
described starting from chapter 0. This approach requires the cooperation of both
providers and certification authorities, such as brokers. Providers append the WSDL
descriptions with the formal SXM specification and additional grounding
information, so that the services are verifiable by prospective requestors. This
vision was addressed with methods and technical solutions based on various
standards, which make it achievable in practice.

Limitations

Although the approach for testing third-party Web services is technically feasible
with the described techniques, in practice it may be difficult to adopt. First of all, it
requires cooperation between different stakeholders (providers, certification
authorities, and requestors), thus it requires broad acceptance in the industry.

Conclusions and Future Work 189

In addition, the third-party Web service testing approach requires, in a number of
circumstances, the availability of sandbox versions from service providers. It is
necessary to avoid testing the production version of the service for various reasons,
such as shared data repositories, undesirable side effects, etc. This is also a reason
for not managing to test a commercial third-party Web service in this work, since
providers often do not make such versions available. One question that naturally
arises from testing the sandbox interface is whether its verified implementation is
indeed the same as the real implementation. However, it can be assumed that
providers offer the sandbox service as a different deployment (instance) of the same
implementation.

Finally, it is possible for a service provider to offer different versions of a Web
service implementation at different times. If a Web service has been verified by a
certification authority as correct, it does not necessarily mean that the current
version is the same as the verified one. As a result, the tester should be able to know
whenever different versions of a Web service are offered by a service provider.
Thus, a limitation of the described approach is that it does not yet provide a solution
to the versioning issue, which is left as future work.

11.2.3 Degree of test automation

A key research question in this work has been to explore the degree to which Web
service testing can be automated. Automation is desirable in order to remove the
testing burden from service testers, so as to make service verification affordable for
requestors and third-party certification authorities.

As mentioned earlier, the use of formal methods allows derivation of abstract test
sets with automation support. However, the major obstacle that had to be overcome
was the execution of those abstract test sets on a concrete (and probably less
abstract) Web service implementation. Consequently, methods and technical means
have been proposed for the provider or modeller to specify grounding information
in the WSDL description, apart from augmenting it with the SXM specification.
These techniques are based on widely-accepted standards, such as SAWSDL,
XSLT, and XPath, which are W3C recommendations.

Limitations

Although automation of both test set derivation and test case execution has been
demonstrated to be technically possible, it requires substantial effort from the
service provider to specify all the extra information, especially the schema
mappings. In cases of simple Web services, no schema mappings might be
necessary, but for complex commercial Web services it is highly demanding to
specify mappings for all inputs and outputs. This problem is also enforced by the
fact that no tool has been developed in this work to support the modeller in
performing SAWSDL annotations. Thus it has been left as future work.

190 Conclusions and Future Work

Nevertheless, the use of various patterns, described in section 9.4, requires only a
minimal pattern descriptor file, which substantially simplifies the task of grounding
the SXM model to the WSDL description.

11.2.4 Tool support

It has been a key objective to support some of the techniques proposed in this thesis
through tool automation. Development of tools was considered important not only
to provide automation, but also to demonstrate the practicability of the described
methods. Although, as said earlier, no tool has been developed for the modeller to
annotate WSDL and to define schema mappings, a toolset has been developed with
the aim of supporting the activities of the tester. It relies on the JSXM test case
generation tool which derives abstract test sets as sequences of input/output pairs
from JSXM specifications. This tool has been extended to support execution of the
test cases on the Web service under test using the approach described in section 0.

Nevertheless, although the architecture that supports the testing approach has been
defined, and the tool implementation is under constant improvement, the latter has
not yet been completed to support runtime mappings of inputs and outputs, as well
as the two described patterns. However, at this point, the tool is able to extract the
information from SAWSDL annotations, including the JSXM specification, an is
able to run the test cases on Web services under test that are at the same level of
abstraction as the specification. The default mapping rules defined in section 9.3.1
are supported by the tool.

11.3 Future work

During the period this research has been performed, additional work has been under
consideration for addressing various issues, which had to be left out of the scope of
this thesis due to time and priority constraints. Moreover, numerous ideas and
opportunities for further investigation have appeared during this research.
Therefore, this section provides ideas on possible future research that could be
inspired by the work described in this thesis.

11.3.1 Testing individual processing functions

As mentioned in the previous section, it is important to address the restrictive
assumption that the SXM and the WSUT contain identical processing functions.
There are different alternative solutions that should be further researched. There
have been two distinct attempts to test processing functions with SXMs: the work
on complete DSXM testing with hierarchical decomposition [65], and the work in
Ipate 2007 [82]. These testing algorithms are extensions of the SXM integration
testing method and require more elaborate specifications. Besides the option of
SXM-based testing, individual processing functions can also be tested with
complementary methods, such as equivalence class and boundary testing. These
other methods do not require enhanced SXM specifications.

Conclusions and Future Work 191

Further work should examine the implication of adopting any of the above
alternatives on the presented testing approach. It needs to take into consideration the
fact that testing is performed at runtime on Web service implementations, which are
not under the control of the tester (as apposed to development-time testing).

11.3.2 Nondeterministic Web services and specifications

Since commercial Web services are often complex and involve nondeterministic
factors, it is not always feasible to specify their functionality with deterministic
SXM models. Although most of the techniques proposed in this thesis do not
require specifications to be deterministic, focus has been given to the latter.

Further work needs to investigate in more depth the feasibility of specifying Web
services with nondeterministic SXMs. Thus, it will be possible to cover a much
wider range of Web services, including large-scale ones and services with
nondeterministic behaviour. Furthermore, to allow automation support for NSXMs,
the JSXM tool must be extended to compile, animate, and generate test cases (for
conformance as well as for equivalence). The applicability of the algorithms that
have been devised for testing NSXMs should be examined for Web services, since
besides the test function they also involve an adaptive test process.

11.3.3 Testing service compositions

Since services are often used as part of compositions and orchestrations, an
important area that requires further research is verification of service compositions.
One of the problems that arise when attempting to test a service composed of other
services is that, to an external requestor, composite services appear identical with
usual atomic services. On the other hand, SXM-based testing can be employed by
the developer who has control of the implementation under test and of the
orchestration code that implements business processes. As an example, BPEL
processes consist of multiple steps, transitions, activities and data that persists
between activities. It might be possible to specify them with SXMs, since the latter
are capable of capturing control flow. Nevertheless, a problem that was identified in
this work was that the individual steps of BPEL orchestrations are not controllable
with inputs, thus it is not feasible to drive the different paths during testing. Instead,
the user provides one input to a BPEL orchestration, which upon completion
provides an output.

A further direction of research is to specify the internal behaviour of composite
Web services by also modelling atomic services. As explained in section 5.8 atomic
services invoked by the service under test are not modelled, thus they represent
nondetermistic factors. If those atomic services are specified as well, then it is
possible to test for equivalence using deterministic SXMs. SXM varieties that may
be investigated for this purpose include the JSXM model of interacting SXMs [59],
as well as Communicating Stream X-Machines (CSXMs) [93].

192 Conclusions and Future Work

11.3.4 Editor and graphical modelling tool for JSXM
specifications

The JSXM notation defines a complete syntax and is supported by automation tools
for different activities that make use of JSXM specifications. However, currently
there is no tool available for editing JSXM files, which often may suffer from
inconsistencies and from syntax errors. A graphical editor tool for JSXM would
also be convenient for modellers to quickly create SXM specifications. The
graphical editor would also be handy for human individuals with minimal
mathematical background or knowledge of SXMs, who would like to visualise an
available specification of a Web service. For example, visualisation of the state-
transition diagram of a SXM would assist the service requestor in validating the
behaviour of a provided Web service in the approach described in chapter 0.

11.3.5 Graphical tool for SAWSDL annotations and mappings

As mentioned above, it has been out of the scope of this research work to develop
tools that facilitate the job of the modeller. One of the demanding modelling tasks
the modeller has to perform is the annotation of WSDL files with model references
pointing to the SXM specification and JSXM input/output definitions, as well as
with schema mappings that point to XSLT transformations mapping between
abstract and concrete data. For the latter, standard XSLT editors can be used to
facilitate the task.

As regards the SAWSDL annotation tool, it should be similar to existing tools that
facilitate annotation of WSDL files with concepts from OWL ontologies, such as
Radiant [94] from the Meteor-S project. In essence, this graphical tool should load
the JSXM specification and the WSDL file to be annotated and depict them as trees.
Model reference annotations can then be accomplished with drag-and-drop actions,
without having to deal directly with SAWSDL XML files.

11.4 List of Publications by the Author

Several papers related to the research presented in this PhD thesis have been
published in various journals and conferences by the author (either as first author or
co-author). These papers and their relationship to the thesis contributions, as stated
in Section 1.3, are listed in Table 5:

Table 5 - List of publications by the author and relationship to contributions

Contribution Papers

C1 [95]

C2 [98]

C3 [52], [98]

Conclusions and Future Work 193

C4 [81], [96], [97]

C6 [81], [96], [97]

C9 [52]

In addition, the author has published two more research papers, which do not
correspond directly to any of the above contributions, but nonetheless are relevant
to the research work described in this thesis. The first paper [99] presents an
overview of the area of service-oriented software engineering and investigates
unique issues in the development of service-oriented applications. The second paper
[100] is a state-of-the-art survey on the existing service-oriented development
methodologies, introducing a novel framework for the evaluation and classification
of those methodologies.

Glossary and Acronyms 195

Glossary and Acronyms

Glossary

 Control state – Member of the set Q of a SXM specification.
 Memory state – Values of the memory element M of a SXM at a particular

instant.
 Service broker – Participant in a SOA that provides a service registry.
 Service instance – Separate instance of the software implementing a

service, which is spawned by the service infrastructure to serve a particular
requestor during a session.

 Service provider – Participant in a SOA that makes services available to
service requestors.

 Service registry – A repository of service descriptions where service
providers can publish their service descriptions and service requestors can
search for services.

 Service requestor/client/consumer – Participant in a SOA that interacts
with a service. The terms “requestor”, “client”, and “consumer” are used
interchangeably to indicate the same concept.

 Stateful resource/object; state object; context object – Logical entity
consisting of state data, having a well-defined lifecycle, and accessed by one
or more Web services.

Acronyms

 ASM – Abstract State Machine
 BPEL – Business Process Execution Language
 EFSM – Extended Finite State Machine
 FSM – Finite State Machine
 GED – Global Element Declaration
 IOPE – Inputs, Outputs, Preconditions, Effects
 MEP – Message Exchange Pattern
 QoS – Quality of Service
 RPC – Remote Procedure Call
 SAWSDL – Semantic Annotations for WSDL
 SLA – Service Level Agreements
 SOA – Service Oriented Architecture
 SOAP – Simple Object Access Protocol
 SOC – Service Oriented Computing
 STS – Symbolic Transition System
 SUT – System Under Test
 SWS – Semantic Web Services
 SXM – Stream X-Machine
 UDDI – Universal Description Discovery and Integration

196 Glossary and Acronyms

 WS-CDL – Web Service Choreography Description Language
 WS-I – Web Services Interoperability
 WSI-BP – Web Services Interoperability (WS-I) Basic Profile
 WSCL – Web Services Conversation Language
 WSDL – Web Services Definition/Description Language
 WSMO – Web Service Modeling Ontology
 WSRF – Web Services Resource Framework
 WSUT – Web Service Under Test
 XSD – XML Schema Definition

References 197

References

[1] M. P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann, Roadmap of Service
Oriented Computing. Available: http://infolab.uvt.nl/pub/papazogloump-2006-
96.pdf. March 2006.

[2] B. Lublinsky, “Defining SOA as an architectural style,” IBM developerWorks,
09-Jan-2007. [Online]. Available:
http://www.ibm.com/developerworks/architecture/library/ar-soastyle/.

[3] M. Gudgin et al., “SOAP Version 1.2 Part 1: Messaging Framework (Second
Edition).” W3C Recommendation, 27-Apr-2007. Available:
http://www.w3.org/TR/soap12-part1/.

[4] E. Christensen, F. Curbera, G. Meredith and S. Weerawarana, “Web Service
Definition Language (WSDL) 1.1.” W3C Note, 15-Mar-2001. Available:
http://www.w3.org/TR/wsdl.

[5] T. Bellwood et al., “UDDI Version 2.04 API Specification.” UDDI Committee
Specification, 19-Jul-2002. Available: http://uddi.org/pubs/ProgrammersAPI-
V2.04-Published-20020719.htm.

[6] C. von Riegen et al., “UDDI V2.03 Data Structure Specification.” UDDI
Committee Specification, 19-Jul-2002. Available:
http://uddi.org/pubs/DataStructure-V2.03-Published-20020719.htm.

[7] M. Weiser, “Some computer science issues in ubiquitous computing,”
Communications of the ACM, vol. 36, no. 7, pp. 75-84, Jul. 1993.

[8] T. Erl, Service-Oriented Architecture (SOA): Concepts, Technology, and
Design. Prentice Hall, 2005.

[9] G. Alonso, F. Casati, H. Kuno and V. Machiraju, Web Services: Concepts,
Architectures and Applications, 1st ed. Springer, 2004.

[10] S. Gao, C. M. Sperberg-McQueen and H. S. Thompson, “W3C XML Schema
Definition Language (XSD) 1.1 Part 1: Structures.” W3C Candidate
Recommendation, 21-Jul-2011.

[11] R. Chinnici, J.-J. Moreau, A. Ryman and S. Weerawarana, “Web Services
Description Language (WSDL) Version 2.0 Part 1: Core Language.” W3C
Recommendation, 26-Jun-2007. Available: http://www.w3.org/TR/wsdl20/.

[12] K. Ballinger, D. Ehnebuske, M. Gudgin, M. Nottingham and P. Yendluri,
“Basic Profile - Version 1.0 (Final specification).” WS-I - Web Services
Interoperability Organization, 16-Apr-2004. Avaliable: http://www.ws-
i.org/Profiles/BasicProfile-1.0-2004-04-16.html.

198 References

[13] D. Kourtesis and I. Paraskakis, “Web Service Discovery in the FUSION
Semantic Registry,” in Business Information Systems, vol. 7, W. Abramowicz and
D. Fensel, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 285-296.

[14] M. Gudgin, M. Hadley, T. Rogers and Ü. Yalçinalp, “Web Services
Addressing 1.0 - WSDL Binding: Section 5.1 - WSDL 1.1 Message Exchange
Patterns.” W3C Candidate Recommendation, 29-May-2006. Available:
http://www.w3.org/TR/ws-addr-wsdl/#WSDL11MEPS.

[15] R. Butek, “Which style of WSDL should I use?” [Online]. Available:
http://www.ibm.com/developerworks/webservices/library/ws-whichwsdl/.

[16] J. Clark and S. DeRose, “XML Path Language (XPath), Version 1.0.” W3C
Recommendation, 16-Nov-1999. Available: http://www.w3.org/TR/xpath/.

[17] S. Boag, D. Chamberlin, M. Fernandez, D. Florescu, J. Robie and J. Simeon,
“XQuery 1.0: An XML Query Language (Second Edition).” W3C
Recommendation, 14-Dec-2010. Available: http://www.w3.org/TR/xquery/.

[18] J. Robie, D. Chamberlin, M. Dyck, D. Florescu, J. Melton and J. Simeon,
“XQuery Update Facility 1.0.” W3C Recommendation, 17-Mar-2011. Available:
http://www.w3.org/TR/xquery-update-10/.

[19] J. Clark, “XSL Transformations (XSLT), Version 1.0.” W3C
Recommendation, 16-Nov-1999. Available: http://www.w3.org/TR/xslt.

[20] K. Czajkowski et al., “The WS-Resource Framework, Version 1.0.” The
Globus Alliance, 03-May-2004. Available: http://www.globus.org/wsrf/specs/ws-
wsrf.pdf.

[21] I. Foster et al., “Modeling Stateful Resources with Web Services - Version
1.1.” IBM developerWorks, 03-May-2004.

[22] E. Newcomer and I. Robinson, “Web Services Coordination (WS-
Coordination) Version 1.2.” OASIS Standard, 02-Feb-2009.

[23] A. Banerji et al., “Web Services Conversation Language (WSCL) 1.0.” W3C
Note, 14-Mar-2002. Available: http://www.w3.org/TR/wscl10/.

[24] N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, Y. Lafon and C. Barreto,
“Web Services Choreography Description Language Version 1.0.” W3C Working
Draft, 09-Nov-2005.

[25] M. Pistore, M. Roveri and P. Busetta, “Requirements-Driven Verification of
Web Services,” Electronic Notes in Theoretical Computer Science (ENTCS), vol.
105, pp. 95–108, 2004.

References 199

[26] D. Jordan and Evdemon, Eds., “Web Services Business Process Execution
Language Version 2.0.” OASIS Standard, 11-Apr-2007. Available:
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

[27] H. Lausen, A. Polleres and D. Roman, “Web Service Modeling Ontology
(WSMO).” W3C Member Submission, 03-Jun-2005. Available:
http://www.w3.org/Submission/WSMO/.

[28] D. Martin et al., “OWL-S: Semantic Markup for Web Services.” W3C Member
Submission, 22-Nov-2004. Available: http://www.w3.org/Submission/OWL-S/.

[29] J. Farell and H. Lausen, “Semantic Annotations for WSDL and XML Schema.”
W3C Recommendation, 28-Aug-2007. Available: http://www.w3.org/TR/sawsdl/.

[30] J. Kopecky, D. Roman, M. Moran and D. Fensel, “Semantic Web Services
Grounding,” in Advanced Int’l Conference on Telecommunications and Int’l
Conference on Internet and Web Applications and Services (AICT-ICIW’06),
Guadelope, French Caribbean, 2006, pp. 127-127.

[31] J. Rao and X. Su, “A Survey of Automated Web Service Composition
Methods,” in Semantic Web Services and Web Process Composition, vol. 3387, J.
Cardoso and A. Sheth, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005,
pp. 43-54.

[32] “610-1991: IEEE Standard Computer Dictionary. A Compilation of IEEE
Standard Computer Glossaries.” IEEE Computer Society, 1991.

[33] J. Tretmans, Testing Techniques. The Netherlands: University of Twente,
2002. Available: http://www.cs.aau.dk/~kgl/TOV04/tretmans-notes.pdf.

[34] M. Utting and B. Legeard, Practical model-based testing: a tools approach.
Amsterdam; Boston: Morgan Kaufmann Publishers, 2007.

[35] J. Offutt, S. Liu, A. Abdurazik and P. Ammann, “Generating test data from
state�based specifications,” Software Testing, Verification and Reliability, vol. 13,
no. 1, pp. 25-53, Jan. 2003.

[36] G. Canfora and M. Di Penta, “Testing services and service-centric systems:
challenges and opportunities,” IT Professional, vol. 8, no. 2, pp. 10-17, Mar. 2006.

[37] W. T. Tsai, Y. Chen, R. Paul, N. Liao and H. Huang, “Cooperative and group
testing in verification of dynamic composite web services,” in Proceedings of the
28th Annual International Computer Software and Applications Conference, 2004.
COMPSAC 2004., Hong Kong, pp. 170-173.

[38] M. Wirsing et al., “Sensoria Process Calculi for Service-Oriented Computing,”
in Trustworthy Global Computing, vol. 4661, U. Montanari, D. Sannella and R.
Bruni, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 30-50.

200 References

[39] H. Foster, S. Uchitel, J. Magee and J. Kramer, “Model-based verification of
Web service compositions,” in 18th IEEE International Conference on Automated
Software Engineering, 2003. Proceedings., Montreal, Que., Canada, pp. 152-161.

[40] S. Narayanan and S. A. McIlraith, “Simulation, verification and automated
composition of web services,” in Proceedings of the eleventh international
conference on World Wide Web - WWW ’02, Honolulu, Hawaii, USA, 2002, p. 77.

[41] S. Hinz, K. Schmidt and C. Stahl, “Transforming BPEL to Petri Nets,” in
Business Process Management, vol. 3649, W. M. P. Aalst, B. Benatallah, F. Casati
and F. Curbera, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 220-
235.

[42] S. Nakajima, “Model-checking verification for reliable Web service,” in
Proceedings of OOPSLA’02 Workshop on Object-Oriented Web Services, Seattle,
USA, 2002.

[43] G. Diaz, J.J. Pardo, M.E. Cambronero, V. Valero and F. Curartero, Automatic
Translation of WS-CDL Choreographies to Timed Automata. In Proceedings of
WS-FM’05, LNCS-3670, Springer, pp 230–242.

[44] J.S. Dong, Y. Liu, J. Sun and X. Zhang, Verification of Computation
Orchestration via Timed Automata. In Proceedings of ICFEM’06.

[45] J. Lemcke and A. Friesen, “Composing Web-service-like Abstract State
Machines (ASMs),” in 2007 IEEE Congress on Services (Services 2007), Salt Lake
City, UT, USA, 2007, pp. 262-269.

[46] W. T. Tsai, R. Paul, Yamin Wang, Chun Fan and Dong Wang, “Extending
WSDL to facilitate Web services testing,” in 7th IEEE International Symposium on
High Assurance Systems Engineering, 2002. Proceedings., Tokyo, Japan, pp. 171-
172.

[47] W.-T. Tsai, Y. Chen and R. Paul, “Specification-Based Verification and
Validation of Web Services and Service-Oriented Operating Systems,” in 10th
IEEE International Workshop on Object-Oriented Real-Time Dependable Systems,
Sedona, AZ, USA, pp. 139-147.

[48] R. Heckel and L. Mariani, “Automatic Conformance Testing of Web
Services,” in Fundamental Approaches to Software Engineering, vol. 3442, M.
Cerioli, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 34-48.

[49] A. Bertolino, L. Frantzen, A. Polini and J. Tretmans, “Audition of Web
Services for Testing Conformance to Open Specified Protocols,” in Architecting
Systems with Trustworthy Components, vol. 3938, R. H. Reussner, J. A. Stafford
and C. A. Szyperski, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp.
1-25.

[50] C. Keum, S. Kang, I.-Y. Ko, J. Baik and Y.-I. Choi, “Generating Test Cases for
Web Services Using Extended Finite State Machine,” in Testing of Communicating

References 201

Systems, vol. 3964, M. Ü. Uyar, A. Y. Duale and M. A. Fecko, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 103-117.

[51] A. Sinha and A. Paradkar, “Model-based functional conformance testing of
web services operating on persistent data,” in Proceedings of the 2006 workshop on
Testing, analysis, and verification of web services and applications - TAV-WEB
’06, Portland, Maine, 2006, pp. 17-22.

[52] E. Ramollari, D. Kourtesis, D. Dranidis and A. J. H. Simons, Leveraging
Semantic Web Service Descriptions for Validation by Automated Functional
Testing. Springer Berlin / Heidelberg, 2009.

[53] P. Kefalas, X-Machine Description Language: User manual, version 1.6. City
College, 2000.

[54] D. Dranidis, G. Eleftherakis and P. Kefalas, “Object-based language for
generalized state machines,” Annals of Mathematics, Computing and
Teleinformatics (AMCT), vol. 1, no. 3, pp. 8-17, 2005.

[55] P. Kapeti and P. Kefalas, “A Design Language and Tool for X-machines
Specification,” Advances in Informatics, pp. 134-145, 2000.

[56] “Product Advertising API, Developer Guide, API Version 2010-10-01.”
Amazon.com, 2010.

[57] K. Bogdanov, M. Holcombe, F. Ipate, L. Seed and S. Vanak, “Testing methods
for X-machines: a review,” Formal Aspects of Computing, vol. 18, no. 1, pp. 3–30,
2006.

[58] United Parcel Service of America (UPS), “UPS OnLine Tools: Shipping Web
services developers guide.” 27-Jul-2007.

[59] D. Dranidis, JSXM: A suite of tools for model-based automated test
generation: User manual. City College, 2009.

[60] E. Ort and B. Mehta, “Java Architecture for XML Binding (JAXB).” Oracle
Technology Network, Mar-2003.

[61] Holcombe, M. and Ipate, F. (1998). Correct Systems: Building Business
Process Solutions. Springer-Verlag, Berlin.

[62] F. Ipate and M. Holcombe, “An Integration Testing Method that is Proved to
Find all Faults,” International Journal of Computer Mathematics, vol. 63, no. 3/4,
pp. 159-178, 1997.

[63] T. S. Chow, “Testing Software Design Modeled by Finite-State Machines,”
IEEE Transactions on Software Engineering, vol. 4, no. 3, pp. 178- 187, May.
1978.

202 References

[64] D. Lee and M. Yannakakis, “Principles and methods of testing finite state
machines-a survey,” Proceedings of the IEEE, vol. 84, no. 8, pp. 1090-1123, Aug.
1996.

[65] F. Ipate, “Complete deterministic stream X-machine testing,” Formal Aspects
of Computing, vol. 16, no. 4, pp. 374–386, 2004.

[66] G. Laycock, “The Theory and Practice of Specification-Based Software
Testing,” PhD Thesis, Department of Computer Science, University of Sheffield,
1993.

[67] S. Eilenberg, Automata, languages, and machines, Volume 59A. New York,
NY, USA: Academic Press, 1974.

[68] G. Eleftherakis, “Formal Verification of X-machine Models: Towards Formal
Development of Computer-based Systems,” PhD Thesis, University of Sheffield,
2003.

[69] R. M. Hierons and M. Harman, “Testing Conformance to a Quasi-Non-
Deterministic Stream X-Machine,” Formal Aspects of Computing, vol. 12, no. 6,
pp. 423-442, Dec. 2000.

[70] K. T. Cheng and A. S. Krishnakumar, “Automatic functional test generation
using the extended finite state machine model,” in Proceedings of the 30th
international on Design automation conference - DAC ’93, Dallas, Texas, United
States, 1993, pp. 86-91.

[71] A. J. H. Simons, K. Bogdanov and M. Holcombe, Complete functional testing
using object machines. Department of Computer Science, University of Sheffield:
Technical Report CS-01-18, 2001.

[72] C. Atkinson, D. Stoll, H. Acker, P. Dadam, M. Lauer and M. Reichert,
“Separating per-client and pan-client views in service specification,” in Proceedings
of the 2006 international workshop on Service-oriented software engineering -
SOSE ’06, Shanghai, China, 2006, p. 47.

[73] R. Fielding, U. Irvine, J. Gettys, J. Mogul, H. Frystyk and T. Berners-Lee,
“RFC 2068: Hypertext Transfer Protocol - HTTP/1.1.” Jan-1997.

[74] D. Box et al., “Web Services Addressing (WS-Addressing).” W3C Member
Submission, 10-Aug-2004.

[75] A. Suriarachchi, “Stateful Web Services with Axis2,” WSO2 Oxygen Tank, 22-
Jul-2009. [Online]. Available: http://wso2.org/library/articles/stateful-web-services-
axis2#session_mgt.

[76] P. Wang, “Web services programming tips and tricks: Build stateful sessions in
JAX-RPC applications,” IBM developerWorks, 02-Sep-2004. [Online]. Available:
http://www.ibm.com/developerworks/webservices/library/ws-tip-
stateful/index.html.

References 203

[77] BEA Systems, “Creating Conversational Web Services,” WebLogic Web
Services: Advanced Programming. [Online]. Available:
http://download.oracle.com/docs/cd/E11035_01/wls100/webserv_adv/conversation.
html.

[78] BEA Systems, “Designing WebLogic Web Services,” WebLogic Web Services:
Advanced Programming. [Online]. Available:
http://download.oracle.com/docs/cd/E13222_01/wls/docs81/webserv/design.html#1
058330.

[79] S. Hidayatullah and S. Fulkerson, “Implement and access stateful Web services
using WebSphere Studio, Part 1,” IBM developerWorks, 09-Mar-2004. [Online].
Available: http://www.ibm.com/developerworks/webservices/library/ws-
statefulws/index.html.

[80] S. Hidayatullah, A. Jaipaul and R. Subramanian, “Implement and access
stateful Web services using WebSphere Studio, Part 4,” IBM developerWorks, 27-
Jul-2004. [Online]. Available:
http://www.ibm.com/developerworks/webservices/library/ws-statefulws4/.

[81] D. Kourtesis, E. Ramollari, D. Dranidis and I. Paraskakis, “Increased
Reliability in SOA Environments through Registry-Based Conformance Testing of
Web Services,” Engagement in Collaborative Networks. Special Issue in
International Journal of Production Planning & Control: The Management of
Operations (JPPC), vol. in press, 2009.

[82] F. Ipate and R. Lefticaru, “State-based Testing is Functional Testing,” in
Testing: Academic and Industrial Conference Practice and Research Techniques -
MUTATION (TAICPART-MUTATION 2007), Windsor, UK, 2007, pp. 55-66.

[83] F. Ipate, “Testing against a non-controllable stream X-machine using state
counting,” Theoretical Computer Science, vol. 353, no. 1, pp. 291–316, 2006.

[84] F. Ipate and M. Holcombe, “Generating Test Sets from Non-Deterministic
Stream X-Machines,” Formal Aspects of Computing, vol. 12, no. 6, pp. 443-458,
Dec. 2000.

[85] C. Bourhfir, R. Dssouli and E. Aboulhamid, “Automatic Executable Test Case
Generation for Extended Finite State Machine Protocols,” in Proceedings of
IWTCS’97, 1997, pp. 75-90.

[86] S. A. Irvine, Tin Pavlinic, L. Trigg, J. G. Cleary, S. Inglis and M. Utting,
“Jumble Java Byte Code to Measure the Effectiveness of Unit Tests,” in Testing:
Academic and Industrial Conference Practice and Research Techniques -
MUTATION (TAICPART-MUTATION 2007), Windsor, UK, 2007, pp. 169-175.

[87] M. Ivan, “Jester - a JUnit test tester.,” presented at the eXtreme Programming
and Flexible Processes in Software Engineering - XP200, 2000.

204 References

[88] F. Ipate and M. Holcombe, “A method for refining and testing generalised
machine specifications,” International Journal of Computer Mathematics, vol. 68,
no. 3, pp. 197-219, 1998.

[89] S. Vanak, “Complete Functional Testing of Hardware Descriptions,” PhD
Thesis, University of Sheffield, 2002.

[90] W. T. Tsai, R. Paul, Weiwei Song and Zhibin Cao, “Coyote: an XML-based
framework for Web services testing,” in 7th IEEE International Symposium on
High Assurance Systems Engineering, 2002. Proceedings., Tokyo, Japan, pp. 173-
174.

[91] M. Veanes, C. Campbell, W. Schulte and N. Tillmann, “Online testing with
model programs,” ACM SIGSOFT Software Engineering Notes, vol. 30, no. 5, p.
273, Sep. 2005.

[92] M. Utting, G. Perrone, J. Winchester, S. Thompson, R. Yang and P.
Douangsavanh, “The ModelJUnit test generation tool,” 15-May-2009. [Online].
Available: http://www.cs.waikato.ac.nz/~marku/mbt/modeljunit/.

[93] T. Balanescu, A. J. Cowling, H. Georgescu, M. Gheorghe, M. Holcombe and
C. Vertan, “Communicating stream X-machines systems are no more than X-
machines,” Journal of Universal Computer Science, vol. 5, no. 9, pp. 492-507,
1999.

[94] K. Verma, D. Brewer, A. Sheth and J. Miller, “Radiant: A tool for semantic
annotation of Web Services Karthik Gomadam,” presented at the 4th International
Semantic Web Conference (ISWC 2005), Galway, Ireland, 2005.

[95] D. Dranidis, E. Ramollari and D. Kourtesis, “Run-time Verification of
Behavioural Conformance for Conversational Web Services,” in Proceedings of the
7th IEEE European Conference on Web Services (ECOWS 2009), Eindhoven,
Netherlands, 2009, pp. 139–147.

[96] D. Kourtesis, E. Ramollari, D. Dranidis and I. Paraskakis, “Discovery and
Selection of Certified Web Services Through Registry-Based Testing and
Verification,” in Pervasive Collaborative Networks, L. M. Camarinha-Matos and
W. Picard (Eds.), IFIP International Federation for Information Processing,
Springer Boston, pp. 473–482.

[97] E. Ramollari, D. Dranidis and A. J. H. Simons, “Reliable Web Service
Discovery based on Formal Behavioural Modelling,” in Proceedings of the 3rd
South East European Doctoral Student Conference (DSC 2008), vol. 2,
Thessaloniki, Greece: South-East European Research Centre (SEERC), pp. 302–
314.

[98] D. Dranidis, D. Kourtesis and E. Ramollari, “Formal Verification of Web
Service Behavioural Conformance through Testing,” Annals of Mathematics,
Computing & Teleinformatics, vol. 1, no. 5, pp. 36–43.

References 205

[99] E. Ramollari, D. Dranidis and A. J. H. Simons, “A Survey of Service Oriented
Development Methodologies,” in Proceedings of the 2nd European Young
Researchers Workshop on Service Oriented Computing (YR-SOC 2007), Leicester,
UK.

[100] E. Ramollari, D. Dranidis and A. J. H. Simons, “State-of-the-Art and Future
of Service Oriented Software Engineering,” in Proceedings of the 2nd South East
European Doctoral Student Conference (DSC 2007). Thessaloniki, Greece: South-
East European Research Centre (SEERC).

[101] EURACE Project, “FLAME and Agent-Based Modelling”, [Online].
Available: http://www.eurace.org/index.php?TopMenuId=3

