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Abstract	  
Rationale & Hypothesis: Lymphatic vessel function becomes impaired during sepsis; 

with stagnation of lymphatic flow and dysfunction of the mechanisms regulating 

contractility, which contribute to tissue oedema. Angiopoietin-1 (Ang-1) is a growth 

hormone that regulates vascular permeability via Tie-2 and is known to have anti-

inflammatory effects on the blood vasculature, however, any effects on lymphatics 

have not yet been characterised. We hypothesised that inflammatory mediators 

released during sepsis compromise lymphatic function which is improved by Ang-1.  

 

Methodology: Mesenteric collecting lymphatics (80-200 µm) were dissected from 

male Sprague Dawley rats (150-200g) and mounted on a pressurised myograph system 

at 3cm H2O. Responses to inflammatory stimuli were measured up to 2.5h following 

exposure to LPS (50 µg/ml), TNF-α (10-500ng/ml) and IL-1β (10-100ng/ml). Role of 

NO in mediating effects of TNF-α was assessed by measuring contractility of TNF-α 

treated vessels in the presence of L-NAME (1mM). To determine the effects of Ang-1 

on vessel function, changes in spontaneous contractions were measured for 2.5h in 

response to 250 ng/ml recombinant human Ang-1 in the absence and presence of 

10ng/ml TNF-α. 

 

Findings & Conclusions: There was minimal change in frequency of contractions 

from baseline at the end of 2.5h with Ang-1 alone (1.33±0.66) and in combination with 

TNF-α (0.66±1.76) compared to the reduced contractions induced by TNF-α alone (-

9±1.87), suggesting a protective effect of Ang-1. Ang-1 alone slightly decreased 

amplitude (10±16%) with minimal change in combination with TNF-α (2±5%) 

compared to increased amplitude induced by TNF-α alone (15±23%). TNF-α did not 

alter frequency in presence of L-NAME, suggesting that effects may be NO mediated. 

Ang-1 does not alter spontaneous contractions but improves contraction frequency and 

amplitude in inflamed lymphatic vessels. Our study elucidates the effects of potent 

inflammatory mediators on lymphatic vessel function and demonstrates a protective 

role of Ang-1 in vessel function during sepsis. 
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1.1 Sepsis 

Sepsis yearly affects over 18 million people worldwide. It is the leading cause of death 

in noncoronary intensive care units and is expected to rise by 1 % per year (Kumar and 

Sharma 2008; Schulte et al 2013). It continues to remain a major healthcare problem 

associated with 30-50 % mortality, with severe sepsis claiming between 36 000 and 

64 000 lives annually in the UK alone (Daniels 2011; McPherson et al 2013; Weber 

and Swirski 2014). Sepsis develops when a normal host response to an infection 

intensifies and then becomes dysregulated, leading to an imbalance between 

proinflammatory and anti-inflammatory responses (Silva et al 2008; Schulte et al 

2013). The commonest sites of infection are the lungs, abdominal cavity, the urinary 

tract and primary infections of the blood stream (Cohen 2002). Sepsis is marked by an 

initial hyper-inflammatory host response that can progress to its sequelea termed as 

severe sepsis, septic shock and multiple organ failure (MOF). Severe sepsis is 

characterised by rapidly progressing cellular and tissue failure, microvascular 

perfusion deficiencies, coagulation, tissue oedema followed by organ failure, with 

septic shock representing a type of severe sepsis exhibiting hypotension despite fluid 

resuscitation. Septic shock can ultimately result in Multiple Organ Dysfunction 

Syndrome (MODS) (Remick 2007; Pinheiro da Silva and Nizet 2009). Sepsis can be 

triggered not only directly through the presence of pathogens into the bloodstream but 

also indirectly as a result of non-infectious conditions, such as post-surgical 

complications, traumas, burns, haemorrhages, and other disease states. A broader term 

Systemic Inflammatory Response Syndrome (SIRS) is used to the define host response 

resulting from infectious and non-infectious processes (Nathens and Marshall 1996). 

Hence, the diagnosis of sepsis requires existence of an underlying infection along with 

a SIRS disease state (Aziz et al 2013; Schulte et al 2013).  

1.1.1 Pathogenesis 

Gram-negative bacteria have been reputed to be the most common identified in septic 

patients amongst other pathogens like gram-positive bacteria, viruses or fungi, but 

more recently this has been disputed with studies demonstrating gram-positive as more 

frequent (van der Poll and Opal 2008). However, fundamentally the pathogenesis is 

similar and gram-negative bacteria induced sepsis will be used in this study as it has 

been more widely studied and the molecular signaling events are well characterised.   
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The host’s innate immune system recognises molecular bacterial motifs known as 

Pathogen Associated Molecular Patterns (PAMPs). PAMPs include diverse microbial 

products like lipopolysaccharide (LPS) from Gram-negative bacteria, lipotechoic acid 

and peptidoglycan from the Gram-positive bacteria as well as CpG DNA (bacterial 

DNA rich in cytosine-phosphate diesterguanosine), bacterial flagellin and double-

stranded RNA from viruses (Alexopoulou et al 2001). Additionally, intracellular 

proteins released from dying cells known as ‘alarmins’ mediate the immunological 

recognition of damaged tissue and, along with PAMPs, are referred to as damage-

associated molecular patterns (DAMPs) (Yang et al 2009). Gram-negative bacteria 

exert their effects through LPS, an endotoxin which is a highly potent activator of 

innate immune responses and is responsible for endotoxic shock (Bryant et al 2010). 

LPS directly activates monocytes, macrophages, neutrophils, complement components 

and non-immune cells like endothelial, epithelial and vascular smooth muscle cells 

(SMCs) (Remick 1995). Some of these cell types (monocytes and macrophages) 

express CD14 (a 55kDa cell-surface molecule) and an additional co-receptor myeloid 

differentiation protein-2 (MD2), required for LPS activity. CD14/MD2 bind LPS in 

conjunction with a plasma protein, LBP (LPS binding protein) to ultimately relay the 

signal via a transmembrane Pathogen Recognition Receptor (PRR) known as Toll-like 

receptor 4 (TLR4), one of the 10 TLRs identified in the human genome. All TLRs are 

single-spanning transmembrane proteins with extracellular domains containing 

leucine-rich repeats and a highly conserved cytoplasmic domain known as Toll 

interleukin-1 receptor resistance (TIR) domain (van der Poll and Opal 2008). Many 

cells that do not express CD14 (dentritic cells (DCs), fibroblasts, SMCs, and vascular 

endothelium) respond to LPS by interacting with soluble CD14 (sCD14) (Cohen 2002). 

However, CD14-TLR4-MD2 pathway is only one of the pathways that maybe 

involved in LPS recognition as several studies have shown CD14 independent 

activation of TLR4 receptors in innate immune cells (Kumar and Sharma 2008). For 

example in one study, the inability of monoclonal antibodies blocking CD14 to inhibit 

LPS-induced TNF-α secretion, implies the existence of some alternative pathways of 

LPS recognition by TLR4 (Gessani et al 1993). A more recent study reported that LPS 

activated platelets that do not express CD14 but express TLR4 receptors, stimulated 

the release of pro-inflammatory IL-1β rich microparticles (Brown and McIntyre 2011). 

Thus, there is increasing evidence to suggest that the CD14-MD2-TLR4 model is a 

simplistic portrayal of LPS recognition by innate immune cells (Kumar 2008). Various 
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other PRRs are involved in LPS recognition including the intracellular nucleotide-

binding oligomerization domain (NOD) receptors NOD-1 and NOD-2, the triggering 

receptors expressed on myeloid cells (TREM) family, the Sialic acid binding Ig-like 

Lectins (Siglec) molecules, the C-type lectin receptors and NOD-like receptor family 

pyrin-domain-containing 3 (NLRP3) inflammasome resulting in activation of an 

overwhelming innate immune response (Marshall 2008). PRRs also recognise other 

conserved PAMPs expressed by invading microorganisms in the cytosol mentioned 

above (Triantafilou and Triantafilou 2004; Kumar and Sharma 2008). PAMPs 

recognised by TLRs are listed in table 1.1.  

 

TLRs PAMPs 

TLR2 Lipoproteins, peptidoglycan, 

lipotechoic acid 

TLR4 LPS 

TLR5 Flagellin 

TLR9 CpG elements in bacterial 

DNA 

 

Table 1.1 TLRs recognising conserved bacterial structures called PAMPs (van der 

Poll and Opal 2008). 
Antibody-mediated blockade of TLR4 and MD2 confered protection against 

polymicrobial sepsis (Daubeuf et al 2007), TLR4-/- mice are sepsis resistant (Roger et 

al 2009) , and recent clinical trials with a TLR4 antagonist show promise as reduced 

mortality has been observed in patients with severe sepsis (Tidswell et al 2010). Thus, 

TLR4 pathway appears central to triggering the innate immune response mounted by 

the host. Activation of this pathway triggers nuclear translocation of NF-κB through a 

series of phosphorylation cascades triggered by mitogen-activated protein kinase 

(MAPK) family (p38 MAPK, c-Jun-N-terminal kinase/stress activated potein kinase 

(JNK/SAPK) and extra-cellular signal regulated kinase (ERK)) (Jean-Baptiste 2007). 

Phosphatidylinositol 3-kinase (PI3K), through association with myeloid differentiation 

factor 88 (MyD88) or TNF receptor-associated factor 6 (TRAF6), also participates in 

NF-κB activation through an Akt-dependent mechanism (Dauphinee and Karsan 2006). 
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NF-κB/rel transcription factors are held by inhibitory IκB-α proteins, in the cellular 

cytoplasm as inactive dimers. Inflammatory stimuli including LPS, peptidoglycan, and 

pro-inflammatory cytokines result in the phosphorylation of IκB-α by kinases IKKα 

and IKKβ, which are catalytically active components of the IκB kinase complex (IKK) 

inducing the release of NF-κB which then targets genes for synthesis of other 

inflammatory mediators like cytokines, chemokines and adhesion molecules. Other 

upstream kinases like IL-1 receptor associated kinases (IRAK-1) and IRAK-4 directly 

activated by TLRs, as well as kinases like p38 and Akt that are associated with TLRs 

or other G-protein-coupled receptors, also participate in IKK phosphorylation and 

activation. Studies have shown that NF-κB activation contributes to the severity of 

cellular and organ dysfunction (Abraham 2005) (Figure 1.1). 
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Figure 1.1 A simplified schematic representation of events following LPS binding 

to TLR4. Homodimerization of TLR4 leads to subsequent recruitment of TIR domain 

containing adaptor molecules such as MyD88, MyD88 adaptor-like protein (Mal), also 

called TIRAP, TIR-containing adaptor inducing IFN-β (TRIF), and TRIF-related 

adaptor molecule (TRAM), to the cytoplasmic tail of the receptor. MyD88 engages 

IRAK1 and 4 to the TLR4 receptor complex via interactions between the death 

domains of MyD88 and IRAKs. TRAF6 is recruited by IRAK1 and this complex, in 

turn, activates transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1), 

leading to the phosphorylation of IκB and the translocation of NF-κB to the nucleus, 

where it triggers the transcription of various pro-inflammatory cytokines. A MyD88-

independent pathway initiated by the engagement of TRAM by TLR4 leading to the 

recruitment of TRIF, receptor-interacting protein 1 (RIP1), and TRAF6, also activates 

TAK-1. Activation of TRAF6 also triggers inflammation via activation of PI3K and 

Akt. Adapted from (Dauphinee and Karsan 2006; Marshall 2008).  
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1.1.2 Immune response and inflammatory mediators 

The inflammatory response at the onset of sepsis involves the innate (cellular and 

humoral) and adaptive immune system. Endothelial, epithelial cells as well as 

inflammatory cells produce inflammatory mediators (Table 1.2; Figure 1.2). 

Inflammatory cells comprise circulating leukocytes (neutrophils, monocytes and 

lymphocytes), tissue macrophages, DCs, mast cells and eosinophils. As part of the 

cellular innate immune system, neutrophils and monocytes are activated by invading 

bacteria, their components described above and endogenous mediators from the host 

(cytokines, chemokines, complement-activation products and intracellular alarmins) to 

release secondary mediators [lipid mediators, granular enzymes, Reactive Oxygen 

Species (ROS) (e.g., superoxide, hydrogen peroxide) and Reactive Nitrogen species 

(RNS) (e.g., nitric oxide (NO))]. These cells are then directed towards sites of 

infection by chemotaxis and upregulation of adhesion molecules eg. selectins, Inter-

Cellular Adhesion Molecule 1 (ICAM-1), Vascular Cell Adhesion Molecule 1 

(VCAM-1) on endothelial cells (ECs) leading to leukocyte adhesion and 

transmigration (Bellingan 1999; Riedemann et al 2003; Hoesel et al 2006; Cepinskas 

and Wilson 2008). Leukocyte adhesion involves three main stages as described 

classically-rolling, firm adhesion and transmigration. Vascular selectins (E and P-

selectin) and L-selectin expressed by leukocytes mediate the tethering of neutrophils 

and monocytes to the endothelium allowing rolling. Integrins (leukocyte β2 integrins 

and VLA-4 (Cd29)) and Platelet Endothelial Cell Adhesion Molecule (PECAM) 

(CD31)  further allow for firm adhesion interactions via endothelial ligands ICAM-1, 

ICAM-2 and VCAM-1 leading to transmigration of neutrophils across the vessel wall. 

This causes an efflux of a significant amount of intravascular fluid partly explaining 

the prevailing tissue oedema in severe sepsis (Sriskandan and Altmann 2008). 
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Complement Effects 

TLR-4 mediated complement 
activation C3a, C5a 

Activates coagulation cascade, apoptosis, 
release of MIF and HMGB1, chemotaxis, 
granular enzymes and ROS from 
polymorphonuclear leukocytes (PMN)  
(Hoesel et al 2006; Rittirsch et al 2008) 

Pro-inflammatory cytokines Effects 

TNF-α from activated macrophages, 
lymphocytes within 30-90 min of 
stimulation 

Activates genes for complement 
components, NO-synthase (NOS), cell-
adhesion molecules, Platelet Activating 
Factor (PAF), IL-1, IL-6, IL-8 and IL-10 
(Jean-Baptiste 2007). 

IL-1 from monocytes, macrophages, 
lymphocytes, astrocytes and ECs, 
PMN within 180 min of stimulation 

Effects similar to those induced by TNF-α, 
proliferation of B and T-cells, lymphokine 
stimulation (Jean-Baptiste 2007). 

IL-6 from T cells, fibroblasts, ECs, 
lymphocytes within 6 h of 
stimulation 

T-cells, B-cells proliferation and production 
of acute phase proteins (Jean-Baptiste 
2007). 

Late release- HMGB1 from  
macrophages, monocytes and 
neutrophils necrotic cells in damaged 
tissue or from activated macrophages 
at sites of infection within 16 h of 
stimulation with C5a, PAMPs, pro-
inflammatory cytokines 

Activates TLR-4, increases activity of pro-
inflammatory cytokines TNF-α by activating 
macrophages (Shimaoka and Park 2008). 

MIF released immediately after 
macrophages, monocytes stimulation 
by endotoxins, C5a,  TNF-α, IFN-γ  

TLR-4 expression, amplifies production of 
pro-inflammatory cytokines like TNF-α 
(Jean-Baptiste 2007). 

Chemokine Effects 

IL-8 from monocytes, macrophages, 
Kupffer cells within 60-90 min of 
stimulation 

Induces IFN-γ production and acts as a 
chemotatic agent for neutrophils and T-cells 
(Jean-Baptiste 2007). 

 

Table 1.2 Pro-inflammatory mediators released during sepsis. MIF-Macrophage 

migration inhibitory factor; HMGB1- High-mobility group protein B1 
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Figure 1.2 Effects of inflammatory mediators during sepsis. Epithelial cells, ECs, 

inflammatory cells such as PMNs and macrophages as well as the complement and 

coagulation systems produce pro-inflammatory cytokines and chemokines on 

activation by invading bacteria and other stimuli. Neutrophils, monocytes and other 

phagocytes release secondary mediators such as granular enzymes and ROS in 

response to the primary mediators during the hyperactive phase of sepsis. The 

excessive pro-inflammatory environment leads to increased vascular permeability, 

bacterial killing and peripheral resistance resulting in tissue damage, organ failure and 

impaired innate immune function. This ultimately increases susceptibility to infection 

in the hyporeactive phase of the immune response accompanied by immune paralysis. 

Image from (Riedemann et al 2003).  

1.1.2.1 Cytokines 

Among the various cytokine mediators released in sepsis, the prototypic inflammatory 

cytokines TNF-α and IL-1β released by mononuclear cells that mainly mediate the 

microvascular dysfunction of LPS-induced shock will be used in this study.  Their 

main features are elaborated in the section below.  
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1.1.2.1.1	  TNF-‐α	  
Tumor necrosis factor (TNF)-α is expressed as a 17 kDa polypeptide that induces 

transmembrane signaling through two types of TNF receptors, TNF-R1 (present on 

most cells) and TNF-R2 (present on membrane of immune cells). TNF is derived 

mainly from activated immune cells like macrophages and non-immune cells like 

fibroblasts in response to infectious or inflammatory stimuli. NF-κB is activated by 

these receptors via TNF-associated factor, which leads to downstream activation of 

genes synthesising NOS, cell adhesion molecules, PAF, IL-1, IL-6, IL-8, IL-10. TNF-

α is released in inordinate amounts in severe sepsis and plays a pivotal role in the 

pathogenesis of a hypotensive septic shock-like state and organ dysfunction related to 

it (Jean-Baptiste 2007; Shimaoka and Park 2008). For example, TNF-α enhances 

vascular permeability, and promotes leukocyte recruitment to the endothelium 

(Legrand et al 2010). It acts on ECs and neutrophils provoking neutrophil-mediated 

tissue injury as well as enhancing expression of ICAM-1, VCAM-1 and chemokines in 

ECs. It further amplifies the inflammatory response in an autocrine and paracrine 

manner by activating monocytes/macrophages to secrete other pro-inflammatory 

cytokines mentioned in table 1.2 (Shimaoka and Park 2008; Schulte et al 2013). 

1.1.2.1.2	  IL-‐1β/IL-‐1α	  
Interleukin-1 (IL-1), released primarily from activated macrophages is functionally 

similar to TNF-α (Kellum and Decker 1996). The pro-inflammatory members of the 

IL-1 family include IL-1α and IL-1β which signal through two distinct receptors IL-

1R1 and IL-1R2 respectively. Engagement of IL-1β with IL-1R2 belonging to the 

TLR/IL-1 receptor family triggers NF-κB driven pro-inflammatory pathways. 

Together with NLR containing multi-protein complexes primed by TLRs, pro-IL-1β 

activates caspase-1, which subsequently processes it to its active extracellular form IL-

1β. IL-1α is more active as an intracellular membrane-associated precursor (Cinel and 

Opal 2009). 

Both molecules TNF-α and IL-1β are known to act synergistically to trigger the 

expression of further factors such as IL-6, IL-8, IL-12 and IL-18 in the inflammatory 

cascade and induce a shock-like state marked by vascular permeability, severe 

pulmonary oedema, and haemorrhage (Peters et al 2003; Schulte et al 2013).  
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1.1.2.2 Lipid Mediators 

Lipid mediators that are released after the initial inflammatory stimulus include 

eicosanoids like prostaglandins and leukotrienes and PAF which are derived from 

arachidonic acid in the cell membrane of neutrophils and macrophages (Bellingan 

1999). The effects of these agents are summarised in table 1.3. 

 

Table 1.3 Effects of lipid mediators during sepsis (Jean-Baptiste 2007). 

1.1.2.3 Nitric oxide  

NO is arguably the most important local factor regulating vasomotor tone, blood 

haemodynamics and endothelial permeability. Production of NO is catalysed from L-

arginine by three isoforms of NO synthases 1) eNOS 2) brain NOS 3) iNOS. The 

former two are constitutively expressed whereas iNOS is detectable only following 

stimulation by LPS, TNF-α, IL-1 (Sriskandan and Altmann 2008). The activation of 

constitutive NOS depends on the calcium-calmodulin system, lasts briefly and causes 

the production of small amounts of NO. Basal NO production by eNOS is necessary 

Lipid mediators Effects 

Prostaglandins (PG)- synthesised by  

microsomal enzyme cyclo-oxygenase 

(COX). Vasoactive metabolites are 

PGE2, prostacyclin (PGI1)  and 

thromboxane A2 (TXA2).  

PGE2, PGI1 cause hypotension; TXA2 is 

a vasoconstrictor 

Leukotrienes (LT)- synthesised by 

lipoxygenase. LTC4, LTD4 and LTE4 

are the main metabolites. 

Involved in vascular tone regulation and 

capillary permeability; LTB4 is 

chemotactic for PMNs, leukocytes, 

eosonophils and monocytes. 

PAF  

 

Promotes platelet activation mediating 

release of histamine, thrombosis and 

vascular injury by enhacing upregulation 

of adhesion molecules. Chemotactic for 

PMNs. 
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for maintenance of endothelial barrier function (Cepinskas and Wilson 2008).   This 

protective effect of NO is diminished during the inflammatory response due to the 

reduced production of NO by eNOS, possibly resulting from impaired PI3K/Akt 

pathway (Matsuda and Hattori 2007). The sepsis pro-inflammatory response triggers a 

sharp increase in systemic NO production via the upregulation of iNOS, which 

detrimentally increases vascular permeability (Hauser et al 2008). iNOS activation is 

triggered via NF-κB, lasts longer and causes the production of significantly larger 

amounts of NO in a calcium-independent manner (Kotsovolis and Kallaras 2010). The 

altered homeostatic balance of eNOS and iNOS thus contributes to widespread 

microvascular dysfunction. 

1.1.2.4 Other mediators and mechanisms 

The complement system is activated as part of the humoral innate immune system. The 

most potent complement protein C5a has been known to induce various cellular stress 

response mechanisms which are briefly summarised in table 1.2 (Hoesel et al 2006). 

After the initial surge of pro-inflammatory cytokines,  the later stage of sepsis is 

characterised by  production of anti-inflammatory mediators incuding IL-10, IL-13, 

TGF-β, soluble cytokine receptors (sTNFR, IL-1Ra), heat shock proteins, 

phosphatases and cortisol. Anti-inflammatory mediators mainly suppress the function 

of PMNs. In parallel, the adaptive immune response is induced upon interaction with 

the antigen presenting cells (APCs) that have encountered a pathogen. The cells of the 

adaptive immune system, such as naïve T cells, upon antigen recognition, proliferate to 

generate effector cells (Th1, Th2 and Th17) which in turn, release an array of distinct 

cytokines such as IL-2, IL-4, IL-5, IL-10 and IL-17 (Aziz et al 2013). 

Cellular dysfunction characterised by excessive activation or reduced function is 

another hallmark of sepsis. Cellular apoptosis or necrosis is one of main cellular 

functions that has been widely researched. Apoptosis results in a dysfunctional 

adaptive system. Widespread lymphocyte and DC apoptosis also contributes to the 

state of immunosuppression. A large number of epithelial cells, macrophages/ 

monocytes and to some extent ECs also undergo apoptosis. Delayed apoptosis of 

neutrophils leads to prolonged neutrophil activity driving further organ injury (Remick 

2007). ECs dysfunction after the initial hyperinflammatory response results in further 

damage to internal organs (elaborated in the next section). Damage to blood vessel 

endothelium results in dysregulated coagulation which manifests as Disseminated 
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Intravascular Coagulation (DIC) characterised by the widespread activation of the 

coagulation cascade and inhibition of fibrinolysis that results in the formation of 

micro-vascular thromboses throughout the body. The acute phase response 

characterised by secretion of acute phase proteins like C-reactive protein, serum 

amyloid A and coagulation proteins like fibrinogen and von Willebrand factor, induces 

the expression of major coagulation pathway triggers like the Tissue Factor. Tissue 

Factor is released from a variety of cell types like activated ECs, fibroblasts and 

circulating immune cells in response to TNF-α, IL-1, IL-6, LPS and promotes 

thrombus formation by activating thrombin and fibrin deposition, ultimately impairing 

tissue perfusion of vital organs (Remick 2007; Sriskandan and Altmann 2008).  

Activated thrombin stimulates pro-inflammatory cytokines and C5a, ending up in a 

vicious cycle that continually stimulates coagulation (Shimaoka and Park 2008). Thus, 

as DIC develops, there is a bidirectional interplay between coagulation and 

inflammation that worsens the ensuing damage. 

1.1.3 Microvascular changes leading to organ dysfunction 

The pathogenesis of sepsis-induced organ dysfunction is complex given the pleiotropic 

effects of the primary and secondary inflammatory mediators and non-cytokine 

mediators discussed above. Multiple cascades (coagulation, fibrinolysis and 

complement systems) that are activated, result in microvascular occlusion and vascular 

instability leading to impaired tissue perfusion and hypoxia and ultimately organ 

failure (Cohen 2002) (Figure 1.3). The endothelium activation and dysfunction play a 

central role in this process. Besides changes in their anti-coagulant properties, loss of 

barrier function, increased expression of adhesion molecules and production of 

inflammatory mediators, ECs also produce vasoactive agents such as vasodilating NO 

and prostacyclin and vasoconstricting endothelin that regulate the vascular tone, thus 

altering blood haemodynamics (Hack and Zeerleder 2001). EC dysfunction ultimately 

leads to increased permeability, altered vasomotor tone, and capillary flow shutdown 

in the microvasculature (Bateman et al 2003; Sriskandan and Altmann 2008). 

Mechanisms that alter endothelial permeability are described in the next section. 
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Figure 1.3 Simplified view of the pathogenesis of sepsis-induced organ 

dysfunction. Inflammatory cells such as macrophages recognise PAMPs, which 

trigger the release of cytokines. This process leads to the upregulation of iNOS and 

COX2 in vascular and lymphatic SMCs and ECs, which generate NO and PGI2. 

Together these secondary mediators cause vasodilation and septic shock. Activated 

macrophages also release lipid mediators such as PAF, which causes microvascular 

dysfunction, capillary leak and TXA2, which causes pulmonary hypertension. Adapted 

from (Fink and Warren 2014). 
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1.1.3.1 Mechanisms of barrier function disruption  

Endothelial permeability is regulated by two pathways-transcellular and paracellular. 

The transcellular pathway allows the vesicle-mediated passage of macromolecules 

across the endothelial barrier. The paracellular pathway is mediated by opening and 

closure of endothelial cell-cell junction, which consist of two major junctional 

structures - Adherens junctions (AJs) and Tight junctions (TJs) (Bazzoni and Dejana 

2004).  

1.1.3.1.1	  Adherens	  Junctions	  

AJs represent the majority of junctions in the endothelial barrier and are the key 

structures for maintenance of paracellular permeability to plasma fluid and proteins 

(Bazzoni and Dejana 2004). AJs have a ubiquitous distribution in the vasculature and 

are expressed in both blood and lymphatic vessels. They are comprised of 

transmembrane adhesion proteins of the cadherin family, which mediate homophilic 

adhesion and form multimeric complexes at the cell borders. ECs express a specific 

cadherin called vascular endothelial (VE)-cadherin. Under resting conditions, VE-

cadherin, is linked through its cytoplasmic tail to the AJ proteins p120, β-catenin and 

plakoglobin.  β-catenin and plakoglobin bind to α-catenin, which interacts with several 

actin-binding proteins linking VE-cadherin to the cytoskeleton (Figure 1.4).  The 

complex clusters at junctions in a zipper-like fashion (Dejana et al 2008). In addition, 

VE-cadherin interacts with a receptor-protein called vascular endothelial 

phosphotyrosine phosphatase (VE-PTP) known to strengthen cell-to-cell adhesion 

(Bazzoni and Dejana 2004). Most conditions that increase permeability affect the 

organisation of the AJs, which can be accompanied by cell-retraction obvious by the 

widening of intercellular gaps. However, mechanisms such as internalisation of VE-

cadherin or phosphorylation of AJ proteins weaken the junctions without any evidence 

of cell retraction (Bazzoni and Dejana 2004; Dejana et al 2008). Disorganization of 

VE-cadherin clustering has been implicated as the major underlying mechanism of 

vascular permeability in sepsis (Dejana et al 2008). 
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Figure 1.4 Molecular organisation of endothelial AJs. VE-cadherin, represented as 

a dimer, clusters at cell junctions to form multimolecular complexes that include the 

catenin proteins p120, β-catenin (βcat) and plakoglobin (plako). The cytoplasmic tail 

of VE-cadherin is linked to the cytoskeleton via α-catenin (αcat), which interacts with 

several actin-binding proteins. The AJ complex modulates the endothelial-barrier 

function via regulating VE-cadherin activity. Adapted from (Dejana et al 2008).  

1.1.3.1.2	  Tight	  Junctions	  

TJs constitute only one-fifth of the cell junctions in the endothelium, however they too 

are important in maintaining the integrity of the endothelial barrier (Mehta and Malik 

2006). Occludin, claudins (claudin-5 being the only endothelial specific isoform), and 

Junctional Adhesion Molecule (JAM) comprise the main transmembrane proteins at 

TJs. Zona occludins (ZO) 1-3, are intracellular components of TJs that link the 

intracellular domains of the transmembrane proteins to the actin cytoskeleton 

(Vandenbroucke et al 2008). NF-κB is known to disrupt the organisation of TJ proteins 

to increase permeability, while maintaining the expression level of the proteins, 

however there is limited research into how permeability is regulated through tight 

junctions during inflammatory conditions (Vandenbroucke et al 2008). 
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1.1.3.2 Mechanisms affecting loss of VE-cadherin function 

The pathophysiological importance of AJs in vascular inflammation during disease has 

been underscored in the literature and much emphasis has been laid on mechanisms 

that regulate VE-cadherin mediated adhesion as they play an important role in 

controlling vascular permeability (Kumar et al 2009). The main mechanisms affecting 

loss of VE-cadherin function are as follows: 1) Loss of junctional proteins destabilizes 

barrier function. TNF-α induced vascular permeability is associated with a reduction of 

VE-cadherin expression (Hofmann et al 2002).  Increased iNOS expression in 

response to LPS is associated with decrease in VE-cadherin expression (Hama et al 

2008). 2) Phosphorylation of β-catenin, plakoglobin and p120 and VE-cadherin itself 

dissociates them from the actin cytoskeleton and reduces the AJ strength. The VE-

cadherin complex might become partially disorganized without any indication of cell 

retraction. Phosphorylation of VE-cadherin not only disrupts homophilic interactions 

of the complex, but can also result in endocytosis resulting in removal of VE-cadherin 

from the cell surface if phosphorylation occurs on the serine residues. This process is 

thought to mediate VE-cadherin internalization (Gavard and Gutkind 2006). Tyrosine 

phosphorylation of β-catenin reduces its affinity for the cadherin cytoplasmic tail, thus 

weakening its association with the cytoskeletal fibres (Dejana et al 2008). Permeability 

agonists induce tyrosine phosphorylation of VE-cadherin and its counterparts. It has 

been demonstrated that LPS can phosphorylate VE-cadherin on the tyrosine residues 

via SRC family kinase activation, which may reduce the junction strength as described 

(Gong et al 2008). 3) Mechanisms initiating cell retraction involve small GTPases, 

Ca2+ which are not of focus in this thesis (Aghajanian et al 2008; Vandenbroucke et al 

2008).  

Thus far, the described events clearly indicate that an end-result of endothelial 

activation and dysfunction and a key feature of early microvascular changes is 

increased permeability of the endothelium or loss of barrier function, which occurs in 

multiple organs during sepsis, leading to redistribution of body fluid and oedema. 

Fluid leakage from  the intravascular space contributes to hypovolemia and 

hypotension (Schouten et al 2008).  While investigations to date have mainly centered 

around blood endothelium impairment, contribution of the lymphatic system to 

oedema during sepsis has received little attention. The lymphatic microvasculature 

plays a unique role in the continuous removal of interstitial fluid and proteins and 
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impairments in the lymphatic system may have major implications in poor disease 

outcome. There is evidence that the prototypic inflammatory mediators released during 

sepsis impair lymphatic vessel contractility and endothelial barrier function (Aldrich 

and Sevick-Muraca 2013; Cromer et al 2014). Moreover, a recent study has elucidated 

a previously unidentified role of lymphatics in maintaining intestinal tissue integrity 

and conferring protection against gut-derived sepsis. Authors showed that acute 

ablation of lacteals (specialised intestinal lymphatics) compromised the integrity of the 

surrounding villi including blood vessels resulting in severe intestinal inflammation 

and sepsis  (Jang et al 2013). Lymphatic dysfunction may be amenable to therapeutic 

strategies targeting mechanisms that cause these impairments and improve rates of 

survival. Moreover, early therapeutic intervention is increasingly being recognised as 

key in improving survival in sepsis. Data from clinical and experimental studies have 

suggested a strong link between microcirculatory impairments and MOF; however, 

there is lack of data to define microvascular changes in early sepsis (Ince 2005; 

Nencioni et al 2009; Spanos et al 2010; De Backer et al 2014). Hence, this study 

undertakes the investigation of changes in the lymphatic microvasculature during early 

sepsis.  

 

The following section describes the structure, function and the dynamic nature of the 

lymphatic system as well as its role during sepsis. It also explores the current 

understanding of lymphatic vessel dysfunction during inflammatory insult, especially 

its contractile and barrier dysfunction.  
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1.2 The lymphatic vascular system 

The lymphatic system plays an important role in maintenance of tissue fluid 

homeostasis, dietary lipid absorption and immune surveillance (Figure 1.5a). The 

lymphatic vessels primarily remove water, macromolecules, immune cells, lipids (in 

case of small intestinal lymphatics), and also clear antigenic or toxic macromolecules 

from the interstitium. The lymphatic vascular network comprises the initial lymphatic 

capillaries, pre-nodal and post-nodal collecting lymphatic vessels, lymph nodes, trunks 

and ducts (Figure 1.5b). The initial lymphatics are thin-walled, blind ended vessels 

lined by a single layer of non-fenestrated overlapping lymphatic endothelial cells 

(LECs). In contrast to blood capillaries, lymphatic capillaries have an incomplete 

basement membrane and lack pericytes. The adjacent LECs form overlapping 

intercellular junctions which mediate passage of fluid and particles into the vessel 

during increased interstitial fluid pressure. Baluk et al have shown discontinous 

button-like junctions occuring on the sides of the oak-leaf shaped LECs but lacking at 

the tips in the initial lymphatics. These junctions progress to another type of junctions 

arranged continuously in a zipper-like fashion at the level of collecting lymphatics 

(Baluk et al 2007). Both of these lymphatic structures contain VE-cadherin, occludin, 

claudin-5, ZO-1 protein, TJ-associated Ig-like transmembrane proteins endothelial 

cell-selective adhesion molecule (ESAM), JAM-A and PECAM-1/CD31 (Alexander et 

al 2010; Kesler et al 2013).  

The overlapping junctions serve as primary valves or microendothelial valves that 

ensure unidirectional flow of lymph preventing convective reflow into the interstitum. 

This function is aided by fibrillin-containing filaments which pull open the valves 

during increased interstitial pressure at the same time keeping them anchored to the 

extra cellular matrix (ECM). The initial lymphatics drain into the precollecting 

lymphatic vessels that have both lymphatic capillary (oak leaf-shaped LECs) and 

collecting lymphatic vessel characteristics (valves). The precollecting vessels continue 

into the larger collecting lymphatics and contain three different layers in their wall: a 

monolayer of elongated ECs surrounded by a basement membrane; a media comprised 

of 2-3 layers of SMCs scattered with collagen and elastic fibres; and surrounded by an 

adventitia constituted by fibroblasts and connective tissue elements with nerves that 

innervate the vessel (von der Weid and Zawieja 2004). SMCs in the guinea-pig 

mesenteric lymphatics were observed to be mostly organised in the circular plane of 
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the vessel with frequently overlapping cells. These cells form a thread- or meshwork-

like structure compared to larger vessels such as those in the bovine mesentery which 

form three distinct layers: an inner longitudinal, a middle circumferential and an 

external longitudinal layer in the media (Ohhashi et al 1977). They also contain 

numerous intraluminal valves (Figure 1.6) that prevent the retrograde flow of lymph 

(Jurisic and Detmar 2009). The collecting lymphatics are contractile unlike the initial 

lymphatics. Contractile segments of collecting lymphatics between valves were termed 

as lymphangions by H.Mislin in the 1960s. Lymphagions, 600-1000 µm long, act as 

pumps during active transport of lymph against a pressure gradient or as conduits 

during passive transport down a pressure gradient (Stucker et al 2008; (Zawieja et al 

1993). The pre-nodal collecting lymphatic vessels pass through at least one or more 

lymph nodes, emerging as post-nodal lymphatics that drain into larger trunks and ducts. 

Ducts then return the lymph back into the blood circulation. Half of the total lymph 

formation in the body occurs in the intestines and liver out of the total lymph formed 

(1-2 l/day) (Swartz 2001; Zawieja 2005; Tammela and Alitalo 2010). Lymphatic 

vessels in most tissues pump fluid and proteins that comes from blood capillaries, 

however nearly all the lymph flowing through the mesenteric lymphatics is of 

intestinal origin (Fanous et al 2007). Hence, they can be more susceptible to damage 

during diseases such as sepsis in which the abdominal cavity is one of the primary sites 

of infection. 
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Figure 1.5 a) The lymphatic system b) The initial and collecting lymphatics. The 

lymphatic vasculature comprises of the small capillaries containing primary valves (A, 

B) that funnel into collecting vessels containing secondary valves and then into the 

thoracic duct or the right lymphatic trunk. LECs in collecting lymphatics are connected 

by continuous zipper-like junctions (C) and associate closely with lymphatic muscle 

cells (LMCs), which mediate contractility (D). The lymph travels to at least one 

draining lymph node (dLN) before ultimately emptying into the right or the left 

subclavian vein, where it is returned to the blood circulation. (Adapted from 

http://www.gorhams.dk/html/ the_ lymphatic_system.html; Vranova and Halin 2014). 
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Figure 1.6 Intravital image of rat mesenteric collecting mesenteric vessel (110 µm) 

showing secondary valve. The large collecting lymphatic vessels course toward the 

root of the mesentery along with paired arteries and veins. In rat mesenteric lymphatics, 

these lymph vessels range from 40-200 µm and have prominent intraluminal valves 

that divide the vessels into segments called lymphangions (Zawieja et al 1993). The 

valves consist of bileaflets, which are lined on both sides by a specialized endothelium 

anchored to the ECM (Lauweryns and Boussauw 1973).  High lymph pressure by 

incoming fluid upstream of a valve opens the leaflets enabling lymph flow, whereas 

retrograde flow closes the valve as the leaflets are pressed against each other. 

Therefore, valve opening and closure is controlled by periodic changes in fluid load 

within collecting vessels (Foldi 2006). 

1.2.1 Physics of lymphatic transport-Pumps and Valves 

The lymphatic system consists of two pumps- the extrinsic/passive and the 

intrinsic/active pumps to move lymph. The extrinsic pump relies on the cyclical 

compression and expansion of lymphatics by the external tissue forces e.g. lymph 

formation (which in turn depends on interstitial fluid pressure and strain of ECM),  

arterial and venous pulsations, respiration, skeletal muscle contractions, central venous 

pressure fluctuations and gastro-intestinal peristalsis. During expansion, the 

intralymphatic pressure which is lower than the interstitial fluid pressure, enables the 

entry of interstitial fluid into the lymphatics. Compression propels the lymph upstream 

towards the collecting lymphatics (Schmid-Schonbein 1990).  

The intrinsic pump relies on the spontaneous phasic contractions of the lymphangions. 

To generate lymph flow along the length of the vessel, the lymphangions act as a 

series of small pumps separated by valves. Each lymphangion contracts out of phase 

with the adjoining one: one lymphangion contracts when the next one dilates. Thus, 

Secondary valve 
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the intraluminal pressure that the lymph propulsion needs, depends on the intrinsic 

pump and vector sum of the extrinsic forces (Swartz 2001). The phasic intrinsic 

contractions originate from an electrical pacemaker activity in the cells of the muscle 

layer (Ohhashi et al 1980; von der Weid et al 1996). Subsequent depolarization (called 

spontaneous transient depolarizations (STDs)) of the pacemaker cell produces an 

action potential and initiates a contraction (Zawieja 2005). The action potentials are 

mediated by synchronized Ca2+ release from intracellular stores through L-type or 

long-lasting Ca2+ channels (von der Weid 2001). Recent data from a study implicates 

the T-type ‘transient’ Ca2+ channels as possible pacemaker component. It is proposed 

that activation of these channels depolarizes membrane potential and regulates the 

frequency of lymphatic contractions via opening of L-type channels, which drive the 

strength of contractions (Lee et al 2014). 

Efficient lymph propulsion requires the action potentials to rapidly propagate through 

the gap junctions connecting adjacent SMCs to allow a synchronised contraction (von 

der Weid 2001). Lymphatic vessels express contractile proteins characteristic of both 

vascular smooth muscle and cardiac muscle (striated).  In addition to the rapid, phasic 

contractile activity exhibited by lymphatic muscle, it also exhibits slower, tonic form 

of contractions driven by a basal, myogenic tone (Davis et al 2009). These 

characteristics allow them to fundamentally function as both passive conduits and 

pumps (Muthuchamy et al 2003). For example, peripheral lymphatics such as 

mesenteric and femoral act mainly as pumping vessels while thoracic duct behaves 

more like an outflow conduit (Gashev et al 2004). 

1.2.2 Modulation of lymphatic contractility 

The intrinsic pump is coupled to the activity of the surrounding tissues and hence there 

are a number of mechanical, vasoactive and neuromodulatory factors that modulate the 

contractility of the intrinsic pump via inotropic (i.e., changes in the strength of 

contraction) and/or chronotropic (i.e., changes in the contraction frequency) effects 

(Zawieja 2009). 

1.2.2.1 Physical factors  

Physical factors that mainly modulate the intrinsic lymphatic pump are transmural 

lymph pressure/stretch and lymph flow/shear stress.  
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Transmural pressure (pressure gradient across lymphatic wall)/intraluminal pressure 

allows the lymphatic wall to distend and depends on the extralymphatic forces of 

lymph formation and pressure pulses generated by contractions of upstream 

lymphangions. Increasing interstitial pressures increase lymph formation which 

increases stretch on the lymphatic wall. Vessel distension due to intraluminal flow was 

also shown to be an important factor in determining lymph propulsion as it induced 

Ca2+  release from intracellular stores as well as influx of Ca2+ across the plasma 

membrane (Davis et al 1992). Several studies (Benoit et al 1989; Gashev and Zawieja 

2001) have now proved that transmural pressure is not compulsory for pacemaking 

contrary to the initial paradigm suggesting that stretch/distension stimuli was required 

for initiation of contraction. However, transmural pressure is a modulating factor of 

contractility and causes positive inotropic and chronotropic changes in lymphatic 

contractility.  For example, isolated bovine mesenteric lymphatic vessels show 

increased frequency of contractions when pressure is raised from 1 to 5 cm H2O with 

maximum  pumping  activity at 5 cm H2O (Gashev 2008; Zawieja 2009). von der 

Weid et al observed a marked depolarisation of resting membrane potential (Vm) with 

increase in stretch in wire-myograph mounted vessels, hence showing a close 

correlation between Vm and stretch-induced increases in contraction frequency (von 

der Weid et al 2014). Stretch initially also increases the phasic contraction strength, 

but eventually dampens it due failure to match contractile force with increasing load 

(Zawieja 2009). Hence, lymphatic pumping is quite sensitive to acute changes in 

transmural pressure and is physiologically important when oedemagenic stimuli like 

increased capillary pressure come into play. Increased lymphangion pumping serves as 

a negative feedback mechanism during periods of high pressure in lymphangions 

exerted by incoming fluid and prevents oedema by increasing lymphatic filling 

pressure and supporting the lymphangion outflow to match the increased lymphangion 

inflow. Besides an acute functional response to increases in transmural pressure, 

lymphatic vessels also exhibit an adaptive functional response to prolonged changes in 

pressure by behaving as stronger pumps at low pressure ranges and better conduits at 

high pressure ranges (Dongaonkar et al 2013). Again, such a response is necessitated 

by a physiological feedback mechanism to decrease interstitial pressure and regulate 

interstitial fluid volume (Dongaonkar et al 2009). 
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Lymph flow- Shear forces resulting due to lymph flow act on the lymphatic wall 

which alter vessel contractility. Gashev et al demonstrated how imposed flow 

mimicking high extrinsic flow conditions applied to rat mesenteric lymphangions has 

negative chronotropic and inotropic effects on the vessel. Experiments investigating 

effects of increased lymph flow demonstrated that an increase in axially induced-flow 

(at constant transmural pressure) caused inhibition of active pumping (loss of basal 

tonic contraction strength, reduced contraction frequency and amplitude of phasic 

contractions) in mesenteric lymphatics and thoracic duct and resulted in uninterrupted 

flow in the vessel. This effect was shown to be endothelium-dependent, predominantly 

due to the production of NO (Gashev et al 2002; Gashev et al 2004). Suppression of 

NOS with Nω-nitro-L-arginine methyl ester (L-NAME) or L-NG-monomethyl arginine 

(L-NMMA) blocks the fall in contraction frequency and amplitude associated with 

imposed flow (Koller et al 1999; Gashev et al 2002; Tsunemoto et al 2003; Gasheva et 

al 2006). They proposed that imposed flow-dependent inhibition of the active lymph 

pump at high levels of lymph formation serves as an energy conserving mechanism, 

thereby decreasing lymph outflow resistance easing the removal of fluid and 

preventing oedema formation. In addition to the sustained forward flow through the 

lymphangion that can result in NO production from the lymphatic endothelium, 

evidence of phasic production of NO in association with the lymphatic contraction 

cycle has also emerged on further investigation. 

Gasheva et al investigated the importance of intrinsic flow on the contractile function 

generated solely by the phasic lymphatic pump. Investigations in rat thoracic duct 

revealed an interesting self-regulatory NO-dependent mechanism in the vessels. The 

authors demonstrated an increase in contraction frequency and basal tone and 

decreased contraction amplitude after blockade of eNOS in rat thoracic duct segments 

under basal conditions (i.e. phasic flows associated with phasic contractions) not 

exposed to any imposed axial flow gradient (Gasheva et al 2006). Furthermore, it was 

reported that phasically contracting thoracic duct segments had a lower lymphatic tone 

than non-active segments. This difference is tone was attributed to an NO-dependent 

mechanism that altered tone via intrinsic flow-induced NO, as these effects were 

abolished after NO-synthase blockade using L-NAME (Gasheva et al 2006).  These 

studies suggest that the vessel has a self-regulating mechanism where the active lymph 

pump is temporarily inhibited when filling occurs in a lymphangion. In contrast, in 



                                                                                                                      Introduction                                                                                                                      

  26 

segments with no flow, contractile activity was not inhibited. Thus, it is apparent that 

these vessels not only generate and propel flow through phasic contractions but also 

are capable of regulating flow via tonic contractions comparable to the 

tonic contractions in blood vessels that regulate blood pressure and flow. This gives a 

wider understanding of the role of NO in modulating contractile activity continuously 

in response to changes in local need. At low levels of inflow, low NO release will 

maintain a lymphatic pumping pattern whereas when flow dominates there is a switch 

to inhibition of contractions by increased release of NO. Authors describe the flow-

mediated relaxation of lymphatics as a regulatory mechanism for an energy-saving 

efficient mode of lymphatic pumping (stronger, but fewer contractions per minute). 

This mechanism has also been reviewed thoroughly (Gashev 2008). 

As shown in the schematic (Figure 1.7), Bohlen et al further validated the inherent role 

for NO in modulating intrinsic pumping activity of the collecting lymphatics during 

the contraction cycle. The initiation of lymphatic contraction triggers a transient rise in 

NO levels near the vessel wall within 1-3 s. With the concomitant rise in flow/shear 

stress, the valvular and tubular sections of the lymphatics increase their generation of 

NO, with the highest concentration of NO in the valve-bulb region and lower 

concentrations in the tubular portions of rat mesenteric lymphatics. 

Immunohistochemical analysis confirms a higher expression of eNOS in the bulb 

compared to tubular regions, possibly due to the increased density of ECs in the 

leaflets. It is therefore likely that the lymph flowing through the open valve leaflets 

exerts a high-shear force contributing to elevated levels of NO near the valve (Bohlen 

et al 2009; Bohlen et al 2011). 

From the studies discussed above, it appears that there are two distinct mechanisms 

occurring during high steady-state imposed flow and phasic low-level shear patterns 

generated by intrinsic lymph pumping. Taken together, these studies reveal a high 

level of complexity in the shear-dependent regulatory mechanisms in lymphatic 

vessels.  
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Figure 1.7 Simple schematic of systolic and diastolic phases of lymphatic 

contraction regulated by basal NO. It is hypothesised that contraction of the 

lymphangion results in increased flow and shear stress (depicted by shaded region), 

which stimulates NO production, allowing the diastolic filling to occur.  Degradation 

of NO constricts the vessel, driving flow into the next lymphangion. Phasically 

generated spike-release of NO during low levels of lymph flow maintains pump 

function (Bohlen et al 2009).  

1.2.2.2 Neural and humoral factors  

Neural and humoral factors can also modulate intrinsic lymphatic pump activity and 

the tonic contraction/relaxation of the lymphatic muscle. Humoral factors such as 

prostanoids, leukotrienes, neuropeptides, catecholamines, natriuretic factors, reactive 

oxygen radicals and other traditional inflammatory mediators modulate lymphatic 

vessel contractility and lymph flow (Zawieja 2005). In addition, neuromediators 

important in immune and inflammatory responses, such as substance P, calcitonin gene 

related peptide (CGRP), neuropeptide Y or vasoactive intestinal polypeptide (VIP), 

have also been reported to strongly modulate lymphatic vessel contractility. It has been 

widely demonstrated that mediators such as NO and prostanoids such as prostacyclin 

and PGE2 cause the lymphatic muscle to hyperpolarize inhibiting lymphatic 

contractility while on the other hand, PGH2/TXA2 increase it (Liao and von der Weid 

2014). Among these, endogenous NO has emerged as a major player in modulating 

lymphatic function and lymph flow as discussed above.  
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1.2.2.2.1	  Role	  of	  NO	  in	  modulation	  of	  lymphatic	  function	  
The collecting lymphatic vessel is influenced by multiple sources of NO under 

phyisological conditions. The main sources are : (1) eNOS in LECs produced due to 

shear-stress or pharmacological stimulation; (2) iNOS in immune cells or lymphatic 

muscle cells. Under inflammatory conditions, stromal cells can also produce NO via 

iNOS, independent of the endothelium (Chakraborty et al 2015; Munn 2015).  

The following section will focus on the role of NO produced from eNOS in the 

lymphatic endothelium. As in the blood vasculature, eNOS-derived NO in the LEC 

layer in response to shear stress or flow activates the NO/cyclic guanosine 

5’monophosphate (cGMP) pathway causing SMC relaxation through multiple cGMP-

dependent protein kinases (PKG) (Ohhashi and Yokoyama 1994; von der Weid 2001). 

This intrinsic flow-induced/NO-dependent relaxation of lymphatic vessel was 

inhibited by a cGMP/PKG inhibitor and thus shown to be mediated via the 

cGMP/PKG regulatory pathway (Gasheva et al 2013). 

Numerous in vitro and in vivo studies have demonstrated a role for NO in modulation 

of lymphatic pumping. Acetylcholine (Ach)-induced lymphatic smooth muscle 

relaxations are mainly mediated through the release of endothelial NO. ACh-induced 

NO and exogenous NO released by SNP (Sodium Nitroprusside, NO donor) reduced 

the frequency and amplitude of the rhythmic pump activity in isolated bovine 

mesenteric collecting lymph vessels (Yokoyama and Ohhashi 1993). von der Weid 

demonstrated that the lymphatic endothelium released NO endogenously to decrease 

the efficacy of STDs in guinea pig mesenteric lymph vessels. The reduction of STD 

frequency and amplitude was independent of the NO-mediated hyperpolarisation of 

the smooth muscle due to activation of KATP channels (von der Weid 1998). NO 

inhibited contractility primarily by production of cGMP via activation of both cGMP 

and cyclic-AMP-dependent protein kinases which in turn probably acted on the 

underlying Ins(1,4,5)P3 receptor-mediated Ca2+ release from intracellular stores (von 

der Weid et al 2001; Ohhashi et al 2005). Thus, evidence from in vitro studies 

suggests that NO has an important role in modulating tone and vasomotion.  Results 

from an in vivo study by Shirasawa et al suggested a potential role for eNOS in 

regulating lymph flow as 15-min superfusion of L-NAME in the mesenteric 

lymphatics caused a significant increase of frequency accompanied by a decrease in 
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diameter whereas a 15-min superfusion of aminoguanidine (iNOS inhibitor) caused no 

significant effect on frequency or diameter (Shirasawa et al 2000). 

Furthermore, a study using eNOS-/- mice demonstrated enhanced constriction in the 

collecting lymphatics compared to wild type (WT) controls, which resulted in 

decreased total lymph flow (Hagendoorn et al 2004). Scallan and Davis studied 

isolated popliteal lymphatic vessels from eNOS-/- mice and WT mice during acute NO 

inhibition (exposure to L-NAME for 20 min), and found that NO ablation led to 

increased contraction amplitude and modest increases in frequency (Scallan and Davis 

2013). However, Liao et al made conflicting observations in popliteal lymphatic 

vessels of both eNOS-/- mice and WT mice subjected to prolonged NOS inhibition (3 

days of L-NMMA infusion), which exhibited elevated frequency, reduced amplitude 

and increased diameter (Liao et al 2011). It was hence proposed by Scallan and Davis 

that basal NO may possibly play a role in setting contractile amplitude at a level that 

can be increased or decreased to modulate lymph flow and that a small change in local 

concentration affects contraction strength in collecting lymphatic vessels. For example, 

in cutaneous hypersensitivity (CHS)-induced skin inflammation, NO has been shown 

to influence the contraction strength through changes in local concentration (Lachance 

et al 2013). 

From the above studies, it appears that basal levels of eNOS are required for lymph 

propulsion and a decrease in these might lead to decreased lymph propulsion. The 

understanding of the role of NO to date as summarised in a current review is as 

follows. Relatively high concentrations of NO induced by agonists or high steady-state 

imposed flow inhibit both contraction frequency and amplitude whereas lower (basal) 

levels of NO are thought to decrease frequency but increase contraction 

strength/amplitude; however the latter opinion has been derived from experiments 

performed in rat thoracic duct under conditions where pressure was not variable. In 

collecting lymphatics, basal NO production depressed or strengthened contraction 

amplitude but not frequency in proportion to pressure changes (Chakraborty et al 

2015). Thus, it is evident that basal NO production is needed for active lymph 

propulsion. In inflammatory conditions such as sepsis, both depleted levels of eNOS 

and increased levels of NO are generated by immune cells, such as macrophages, or by 

inflamed tissues, such as smooth muscle could certainly depress the pumping activity 

to an extent that halts the lymph propulsion.  
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As discussed in this section, multiple mechanisms regulate both the tonic and phasic 

components of lymphatic vessel pumping, thereby constantly adjusting vessel 

pumping ability to the combination mechanical forces and biochemical factors 

influencing the vessel environment (Gashev 2008; Munn 2015).  

1.2.3 Lymphatic endothelial cell biology  

LECs share many similiarities with blood vascular endothelial cells (BECs). They 

express most of the common EC markers for BECs including von Willebrand factor, 

CD31 and CD34. More exclusively they express lymphatic vessel endothelial 

hyaluronan receptor 1 (LYVE-1) (Oliver 2004), prospero-related homeobox 1 (Prox-1) 

(Wigle and Oliver 1999), podoplanin (Kriehuber et al 2001), and vascular endothelial 

growth factor receptor 3 (VEGFR-3) (Makinen et al 2001). Receptors of the tyrosine 

kinase family such as VEGFR-3 play an important role in the proliferation, migration 

and permeability of LECs (Swartz 2001; Pepper and Skobe 2003).  

1.2.4 Lymphatics in disease 

Dysfunction of the lymphatic system has been implicated in many diseases such as 

Milroy disease associated with primary lymphoedema and filariasis associated with 

secondary lymphoedema. When lymphatic channels are absent or blocked, plasma 

filtered out from the blood stream accumulates as protein-rich oedema. This state of 

static insufficiency or low output failure of lymph flow is generally termed as 

lymphoedema. Primary lymphoedema is a congenital disorder whereas secondary 

lymphoedema can arise from inflammation, obstruction following surgery or 

irradiation of tumours (Stucker et al 2008). In contrast, when microvascular filtration 

rises to an extent that it overloads the lymphatic machinery, a lymphoedematous state 

of dynamic insufficiency or high output failure of lymph flow arises (Johnston 1989). 

This occurs mainly in inflammatory diseases like inflammatory bowel disease, Crohn’s 

disease and sepsis (Wu et al 2005; Wang and Oliver 2010). 

1.2.4.1 Lymphatics and sepsis 

One of the major pathologies resulting from sepsis is oedema. Development of oedema 

results from a simple hydrodynamic principle – the rate of lymph formation exceeds 

the rate of lymph return.  These factors are in balance with each other under normal 

physiological conditions and in healthy individuals. 
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Oedema during sepsis may arise from: 

1) Excess fluid in interstitum resulting in increased interstitial osmotic pressure due 

to increased permeability of post-capillary venules, inhibiting lymph uptake by the 

lymphatic capillaries  

2) Intial lymphatics maintaining their drainage capacity but become overloaded 

resulting in a failure to decrease the intralymphatic pressure required for uptake 

from interstitium (The initial lymphatics work via an oscillatory pump mechanism 

where high interstitial pressure compared to intralymphatic pressure pulls them 

open). This overload may be due to impaired lymph propulsion by the collecting 

lymphatics.  

3) Increased permeability of initial and collecting lymphatic vessels. Vessels are 

rendered leaky, overwhelming the interstitium with lymph (Brookes et al 2009; 

Aldrich and Sevick-Muraca 2013). 

4) Damage to interstitial-lymphatic connections or changes in ECM composition 

(Swartz 2001).   

The responses induced in the lymphatic system may occur due to inflammatory 

mediators or by direct effects of endotoxin. Endotoxin interactions with blood vessel 

endothelium has been shown to trigger devastating inflammatory cascades resulting in 

widespread microvascular permeability, vascular tone and altered blood 

haemodynamics (Dauphinee and Karsan 2006). However, there are only a few studies 

documenting the effects of endotoxin on the lymphatic vessels. Studies dating back to 

1987 reported decreased lymphatic contractile activity (frequency and amplitude of 

contraction) following intravenous endotoxin administration in sheep intestinal 

lymphatics.  Lymph flow rates increased for the first 40 min of endotoxin 

administration and then declined (Elias et al 1987). Additionally, Elias et al reported 

that endotoxin had no direct effect on the lymphatic vessels, the responses were 

suggested to be due to induced inflammatory mediators. However, a study done on 

endotoxin treated bovine mesenteric lymphatic vessels excluding flow (which contains 

humoral or cellular elements) decreased lymphatic pumping activity (Lobov and 

Kubyshkina 2004). Thus, direct effects of endotoxin may also impair lymphatic 

function resulting in oedema. In addition, LPS activated macrophages that enter the 

lymphatic vessels have been reported to release NO and prostaglandin, inhibiting 
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vessel contractions (Ohhashi et al 2005; Plaku and von der Weid 2006). More recent 

evidence of impaired pumping activity in lymphatics has emerged from a study, in 

which acute challenge with LPS in an endotoxemic guinea pig model showed 

increased pumping activity, resulting in rapidly increasing lymph flow during the first 

two hours of the challenge which remains elevated in later phase despite cessation of 

pumping activity (Nemoto et al 2011).  

Mesenteric lymphatics play a central role in pathological responses to haemorrhagic 

shock, trauma and intestinal ischemia. Mesenteric lymph has also been implicated in 

transporting gut-derived inflammatory factors to other splanchnic organs during 

bacterial translocation after gut barrier failure and/or gut-derived sepsis in ICU patients, 

inducing a systemic inflammatory response that culminates into organ injury. In vitro 

studies show that post-shock mesenteric lymph from rats activates neutrophils, 

increases human umbilical vein and rat microvascular pulmonary artery endothelial 

cell permeability and causes EC injury. Injection of shocked lymph into healthy rats 

recreates a systemic septic state and causes MODS (Deitch et al 2006). Although the 

exact nature of these inflammatory factors remains to be determined, these factors 

maybe microbial (Deitch 2012) or non-microbial (Deitch et al 2006; Fanous et al 2007) 

and have been reported to initiate tissue injury through iNOS- and TLR4-dependent 

pathways (Deitch 2010).  

However, the direct effects of these mediators on the lymphatic system are less well 

characterised with only a few research groups worldwide investigating the responses 

and mechanisms in this important system. 

1.2.5 Lymphatics and inflammation  

Inflammatory conditions usually alter the contractile behaviour in collecting lymphatic 

vessels instead of vessel density. Upon inflammatory stimulation, vessels undergo 

changes that are characterised first by loss of vessel tone and reduced contraction 

frequency, which affect the lymph transport capacity. These changes have been 

demonstrated in three different models of inflammation. Impaired lymphatic 

contractile activity and vessel dilation have been reported in a rat model of peritonitis 

(Umarova et al 2006), in a model of experimental ileitis in guinea pigs (Wu et al 2006) 

and lymphatic contractions were also suppressed in an oxazolone-induced acute skin 

inflammation in mice (Liao et al 2011). However, studies show that inflammation 
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induces both augmentation and reduction of lymphatic flow. For example, acute 

intestinal challenge with the inflammatory peptide N-formyl-methionyl-leucyl-

phenylalanine  (fMLP) (Benoit and Zawieja 1992), and oedemagenic stress (Benoit et 

al 1989), enhanced pumping activity in rat mesenteric lymphatics which has been 

suggested to lead to increase in lymph flow. These differences indicate that lymphatic 

pumping function is greatly impacted by the nature of the inflammatory stimulus 

(Aebischer et al 2014).  

Molecules like NO and prostanoids that are strongly upregulated during the 

inflammatory process have powerful effects on lymphatic pumping during 

inflammation. Indeed, the inhibition of mesenteric lymphatic pumping during 2,4,6-

trinitrobenzenesulfonic acid (TNBS)-induced ileitis in guinea pigs due to increased 

production of both NO and prostaglandins, has been demonstrated (Wu et al 2006). 

NO produced by immune cells surrounding collecting lymphatic vessels and in 

adjacent spaces of the interstitium has been shown to disrupt lymphatic function. For 

example, iNOS-expressing CD11b+Gr-1+ myeloid cells have been shown to attenuate 

lymphatic contraction by disrupting the NO gradients produced by eNOS under 

inflammatory conditions in mouse popliteal lymphatics in situ. Furthermore, NO 

produced via iNOS may cause chronic relaxation of peri-lymphatic SMCs, decreasing 

tone and inotropy, thus reducing the strength of contraction (Liao et al 2011).  

Cytokines produced during inflammation have been shown to exert negative effects on 

LECs directly by altering barrier function in vitro (Chaitanya et al 2010). A recently 

published study using non-invasive near-infrared fluorescence (NIFR) imaging 

showed systemically decreased lymphatic propulsion as early as 4 h after separate 

intradermal administration of TNF-α, IL-1β and IL-6 in mice suggesting a pivotal role 

of cytokines in modulating lymphatic function (Aldrich and Sevick-Muraca 2013). 

Importantly, these effects were noted to be NO-dependent.  

The lymphatic endothelium may have its own unique role in orchestrating the immune 

response to inflammatory mediators that are transported via the lymphatic vessel. 

LECs  respond to inflammatory cytokines and bacterial antigens by up-regulating 

chemokines, adhesion molecules, and other cytokines. Lymphatic vessels drain 

lymphocytes, antigen presenting DCs, macrophages and soluble antigens from the site 

of infection transporting them to lymph nodes which is an immune-response mounting 
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zone (Pepper and Skobe 2003). The initial lymphatic endothelium is actively involved 

in driving lymphocyte and DC transmigration towards the lymphatics. The mechanism 

for this is via LEC release of chemokine CCL21, a ligand for chemokine receptor 

CCR7 expressed on DCs in response to inflammatory stimuli (Jurisic and Detmar 

2009). Directed by chemokines CCL19 and CCL21 produced in the T cell zone, the 

activated DCs migrate to it and upon interaction with the T lymphocytes, mount an 

antigen specific T cell response (Liao and von der Weid 2014). Furthermore, LECs 

express a large repertoire of TLR molecules comprised of TLR1-6 and TLR9 (Pegu et 

al 2008) and increase the expression of TNF-α, IL-1β, IL-6, IL-8, VCAM-1, and 

ICAM-1 by TLR4 mediated recognition of LPS (Sawa et al 2008). iNOS induction has 

been shown in LECs and lymphatic SMCs in response to LPS (Robertson et al 2004). 

At the molecular level, the inflammatory response is under the transcriptional 

regulation of NF-κB, which is constitutively active in the lymphatic vasculature (von 

der Weid and Muthuchamy 2010). However, a dysregulated inflammatory response 

leads to impaired lymphatic function as evident from the studies mentioned earlier.  

Collectively, this section highlights the role of the lymphatic endothelium in the 

development of immune and inflammatory responses and the effects of inflammation 

on collecting lymphatic vessels. This role has also been reviewed in detail recently 

(Liao and von der Weid 2014). Further investigations to better understand the 

mechanisms of lymphatic function regulation during inflammation are essentially 

required.  

1.2.6 Lymphatic vessel permeability 

Lymphatic endothelial barrier function has not been delineated so far, however it is 

very likely modulated during inflammation. A recent study demonstrated increased 

endothelial permeability to FITC-albumin in cultured LEC monolayer, following 

treatment with pro-inflammatory cytokines TNF-α, IL-6, IL-1β, IFN-γ and with LPS. 

The authors further showed that this effect was sensitive to NO blockade by L-NAME 

for all cytokines except IL-1β and LPS and accompanied by down-regulation of VE-

cadherin protein levels in LECs (Cromer et al 2014). Whether lymphatic pumping is 

influenced by the increased permeability or the cytokines themselves was not 

investigated in this study. Indeed the current literature reports few studies to date that 



                                                                                                                      Introduction                                                                                                                      

  35 

have evaluated the direct effect of cytokines on lymphatic pumping (Hanley et al 

1989). 

According to their observations, Lynch et al suggested that the function of the initial 

lymphatic endothelial barrier or primary valves may be compromised during 

inflammation (Lynch et al 2007). Since the initial lymphatics and the collecting 

lymphatics exist in continuum, a speculative assumption can be made that the 

endothelial barrier may be compromised in the collecting lymphatic vessel during 

inflammation contributing to increased leakage of fluid.  Collecting lymphatics have 

predominantly closed junctions facilitating effective propulsion of lymph.	  Experiments 

performed during the 1960s concluded that the lymphatic system retains all solutes 

with molecular mass larger than MW 2300–6000 (Mayerson, 1963).  Consistently, 

Ono et al suggested that small molecular hydrophilic substances (MW 4,400) are 

permeable from the intraluminal to extraluminal compartment of isolated pre-nodal 

lymph vessels and that the LECs may play a barrier role in the permeability of large 

molecular hydrophilic substances (MW 4,400 to 12,000) through the wall of these 

vessels (Ono et al 2005). More recently, studies showed that permeability to albumin 

does not differ between venules and collecting lymphatic vessels, with a role for the 

collecting vessels in solute exchange speculated (Scallan and Huxley 2010). 

Furthermore, a study examining size-dependent regulation of permeability of the 

lymphatic endothelium to hydrophilic substances revealed that LEC layers allowed the 

passage of 4 kDa dextran, but not 12 or 66 kDa dextran. TNF-α or IL-1β significantly 

increased the permeability of human LECs (obtained from afferent lymph vessels 

nearest to the sentinel lymph node) to 4 and 12 kDa dextran via Rho kinase activation 

and the ERK 1/2 mediated F-actin redistribution in the LEC (Kawai et al 2014). These 

findings reflect a key role for the LEC layer in the transport of hydrophilic substances 

through the collecting lymphatic vessel wall. 

The lymphatic endothelium is actively involved in the regulation of fluid and cell 

transport. One study explored the function of the endothelium in this respect 

particularly in inflammation and tissue injury and showed that the lymphatic 

endothelium is highly responsive to heightened transmural flow. Particularly of 

relevance to our interest, were the results demonstrating increased lymphatic 

permeability measured by the functional uptake of dextran in mice tail and an in vitro 

permeability assay, consistent with reorganization and downregulation of PECAM-1 
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and VE-cadherin. These findings suggest that transmural flow might serve as an early 

inflammatory cue for lymphatics, (Miteva et al 2010) and changes in lymphatic 

permeability may also be associated with large changes in fluid preload (input pressure) 

that have been shown to significantly affect contractile function.  

It is possible that in an inflammatory state, permeability increases whereupon lymph 

leaks into the tissue space, thereby compromising lymphatic function.	    ECs of 

collecting lymphatic vessels are joined by continuous zippers , similar to those in 

adjacent blood vessels. Inactivation of VE-cadherin at AJs, by administration of a 

function-blocking antibody, resulted  in dispersion of VE-cadherin at zippers in 

lymphatics, similar to previous studies of junctions in blood vessels (Baluk et al 2007). 

More recently, dermal LECs treated with TNF-α showed a redistribution of both AJs 

and TJs exhibiting a dominant discontinuous morphology (Kakei et al 2014). Another 

study showed a strong downregulation in the expression of TJ molecules claudin-5 and 

ZO-1 in the inflamed lymphatic vessels of UVB-exposed WT mice and a marked 

increase in permeability of LECs after claudin-5 knockdown (Kajiya et al 2012). Thus, 

permeability mechanisms similar to those in blood vessels may be operating in the 

lymphatic vessels and this needs further investigation.  

 

The studies reviewed in this section provide overwhelming evidence that inflammatory 

mediators released or gaining entry into the lymphatic vessel during inflammatory 

conditions affect vessel function. Hence, the mechanisms modulating this is a crucial 

area of investigation in order to interpret the pathophysiological events occurring in 

lymphatics in inflammatory conditions. Besides investigating the pathophysiology of 

lymphatics in inflammatory conditions, this project will also investigate the effects of 

angiopoietins on lymphatics. The angiopoietin (Ang) signaling system has been 

defined as a major endogenous cell signaling system that helps maintain vascular 

stability through anti-inflammatory and anti-hyperpermeability mechanisms (Fukuhara 

et al 2010). The following section explores the potential of angiopoietins as a 

therapeutic target for improving lymphatic function during sepsis.  
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1.3 Angiopoietins 

The discovery of angiopoietin ligands and their corresponding Tie receptor more than 

a decade ago introduced a vascular specific receptor tyrosine kinase signaling system 

with important roles in angiogenic remodelling and stabilisation of blood and 

lymphatic vessels (Augustin and Fieldler  2008). 

1.3.1 The Tie Receptors 

Two Tie receptors, Tie-1 and Tie-2 have been identified which are receptor tyrosine 

kinases consisting of an N-terminal angiopoietin binding domain and a C-terminal 

tyrosine kinase domain (Figure 1.8). They are predominantly expressed by ECs of the 

blood and lymphatic vessels and hematopoietic stem cells.  Tie-2 is constitutively 

expressed whereas Tie-1 expression is upregulated by shear stress (Augustin and 

Fiedler  2008). 

 

Figure 1.8 Structure of Tie receptors and angiopoietins (Adapted from Augustin 

and Feidler, 2008).  
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1.3.2 The Angiopoietins 

The angiopoietin family includes four ligands Ang-1, Ang-2 and Ang-3/4 and two 

corresponding tyrosine kinase receptors, Tie-1 and Tie-2. Ang-1 and  Ang-2 are well 

known ligands of Tie-2 which act as an agonist and antagonist respectively in the 

blood vasculature but as agonists in the lymphatic vasculature. Two other ligands, 

Ang-3 and Ang-4 have also been identified; Ang-3 is the mouse orthologue of Ang-4  

and acts as a species specific Tie-2 antagonist whereas Ang-4 is an agonist. No ligand 

has been identified for Tie-1 to date. The angiopoietins are secreted glycoproteins 

consisting of an N-terminal coiled-coil oligomerizing domain and a C-terminal 

fibrinogen-like Tie-2 binding domain (Figure 1.8).  Ang-1 has a multimeric 

conformation and is expressed by many cell-types including pericytes, SMCs and 

fibroblasts. Studies with recombinant forms of Ang-1 have shown that tetrameric 

forms are necessary for the activation of Tie-2 in ECs. Owing to its constitutive 

expression, Tie-2 is found to be constitutively activated by Ang-1. In contrast, Ang-2 

has a strictly regulated expression exclusively in ECs where it is stored in Weibel-

Palade bodies at low levels (Augustin and Fieldler 2008; (Kobayashi and Lin 2005).  

1.3.3 Role of Angiopoietin/Tie system in the embryogenic and adult vasculature 

The Ang-Tie system is not required for vasculogenesis or for the initial embryonic 

formation of the lymphatic vasculature. However, both the Tie receptors are critical 

during later phases of embryonic and postnatal development for subsequent 

remodeling and maturation of the blood and lymphatic vasculatures (Thurston 2003). 

Tie-1 and Tie-2 deficient mice die during embryogenesis due to reduced vascular 

integrity which results in impaired cardiac function, hemorrhage and microvessel 

rupture. Throughout the embryo, blood vessels do not remodel or form heirarchical  

networks. Tie-2 expression was shown by immunohistochemical staining to be present 

in developing lymphatics throughout embryonic and neonatal life and in LYVE-1 

positive lymphatic vessels of adult mouse ear skin and small intestine (Wu and Liu 

2010). The specific role of Tie-2 in development and maintenance of the lymphatic 

vasculature remains unclear as Tie-2 was undetectable in lymphatic vessels in Tie-2 

GFP transgenic mice (Dellinger et al 2008). Tie-1 is known to regulate the binding of 

ligands to Tie-2 and modulate its signaling by preventing Tie-2 activation (Hansen et 

al 2010). Recent work also suggests that Ang-1 can induce Tie-1 phosphorylation in 
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cultured LECs, and BECs in a Tie-2-dependent manner and recruit both Tie-1 and Tie-

2 to cell-cell contacts (Wu and Liu 2010).  

Ang-1 deficient mice show a phenotype similar to Tie-2 deficient mice indicating that 

Ang-1 is an indispensable ligand for Tie-2 (Saharinen et al 2008). Transgenic Ang-1 

overexpressing neonatal mice show enlarged vessels covered by pericytes. A striking 

observation in these transgenic mice was the formation of leakage resistant blood 

vessels in both neonatal and adult mice (Thurston et al 2005).  Thus, Ang-1 plays a 

key role in promoting blood vessel integrity in the adult vasculature, in addition to 

other critical primary functions such as vessel remodelling and stabilisation during 

vascular development. Ang-1 is the primary regulator of vascular quiescence in the 

adult vasculature as suggested by its ability to initiate cell survival signals and prevent 

activation of endothelium in some studies. Ang-1 is also involved in physiological and 

pathological angiogenesis and lymphangiogenesis which have been observed in 

models of over expression (Morisada et al 2005; Tammela et al 2005). However, the 

pro-angiogenic role of Ang-1 is rather controversial and appears to depend on a milieu 

of other angiogenic signals (Eklund and Olsen 2006). 

In contrast, Ang-2 null mice appear to have defects only in the lymphatic vasculature 

with the lymphatic vessels in the intestine being disorganized and less branched. The 

lymphatic was rescued by Ang-1 knocked into the Ang-2 locus suggesting redundant 

roles for Ang-1 and Ang-2 as Tie-2 agonists in the lymphatic vasculature (Gale et al 

2002). However, strong systemic expression of Ang-2 results in embryonic lethality 

and phenotypic characteristics similar to that of Ang-1 and Tie-2 knockout mice, 

confirming its antagonist functions during development in the vasculature (Augustin 

and Fieldler  2008; (Saharinen et al 2008). 
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1.3.4 Protective effects of Angiopoietin-1 

Due to the involvement of angiopoietins in regulating vessel permeability and the 

increased vascular permeability during sepsis, several preclinical studies have shown 

that Ang-1 has many potential clinical benefits in the treatment of vascular 

inflammation, leakage and tissue oedema. Initially, it was shown that Ang-1 

overexpression in mice resulted in the formation of leakage-resistant blood vessels 

covered by pericytes (Thurston et al 1999). This group further reported a vessel 

sealing effect mediated by Ang-1 delivered via adenovirus (Ad.Ang-1) in mice against 

various inflammatory agents (Thurston et al 2000).  Ang-1 also inhibited VEGF-

induced pro-inflammatory adhesion molecule expression including ICAM-1, VCAM-1 

and E-Selectin in human umbilical vein endothelial cells (HUVECs), thus reducing 

leukocyte adhesion (Kim et al 2001). In the adult vasculature, Ang-1 restricted the 

number and size of gaps at the inter-endothelial junctions of inflamed venules, thereby 

reducing inflammation-induced EC permeability (Baffert et al 2006).  More recently, it 

was found that Ang-1-Tie2 binding could block LPS-induced activation of NF-κB in 

macrophages (Gu et al 2010). Thus, the anti-permeability and anti-inflammatory 

effects are evident from these studies and demonstrate potential to exploit as a 

therapeutic agent in clinical studies. 

1.3.5 Protective effects of Angiopoeitin-1 in endotoxemia 

Ang-1 cell-based and gene-based therapies have improved survival in various models 

of endotoxemia (Novotny et al 2009). Investigators have shown that LPS attenuates 

Ang-1 and Tie-2 expression in liver, diaphragm and lung contributing to enhanced 

leakage during endotoxemia (Mofarrahi et al 2008). Witzenbichler et al demonstrated 

that mice over expressing Ad.Ang-1 were more resistant to endotoxic shock and were 

protected from systemic leakage as indicated by reduced oedema in the lungs. 

Expression of the leukocyte adhesion molecules E-selectin, ICAM-1, and VCAM-1 

was also suppressed (Witzenbichler et al 2005).  Similar observations were reported in 

an acute-lung injury model (Huang et al 2008).  More stable and equally potent 

variants of Ang-1 have also attenuated vascular leakage in models of endotoxic shock. 

Hwang et al have shown restoration of PECAM-1 levels by COMP.Ang-1 (see below), 

subsequently reducing leukocyte extravasation (Hwang et al 2009). Recent data from 

our lab has also shown that matrillin Ang-1 (MAT.Ang-1) (see below), another variant 
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of Ang-1 reduces microvascular leakage and improves blood flow in septic mice 

(Alfieri et al 2012).  These findings provide strong evidence for a crucial anti-

inflammatory and anti-permeability effect of Ang-1 during sepsis.  

1.3.6 Ang-1 variants 

Due to the concerns over biosafety of adenoviral vectors, Cho et al developed Ang-1 

variants containing a minimal coiled-coil domain, which retained the property of  

oligomerization and was short enough to avoid problems of aggregation and 

insolubility (Cho et al 2004). Septic shock is a condition with widespread 

inflammation and gene therapy using adenoviral vectors may pose the danger of 

adverse inflammatory reactions that may occur  from incomplete inactivation of the 

viral replication machinery (Ye et al 2007). Morevoer,  large-scale production of 

recombinant Ang-1 is limited by the aggregation and insolubility of the protein and the 

protein activity often varies after purification. Cartilage oligomeric matrix protein 

Ang-1 (COMP.Ang-1) and MAT.Ang-1 are highly soluble, stable and potent forms of 

human Ang-1 that form mainly pentamers and tetramers respectively. In MAT.Ang-1, 

the N-terminal domain has been exchanged for the shorter domain of Chicken 

Matrillin-1. Similarly, in COMP.Ang-1, N-terminal portion is replaced with short 

coiled-coil domain of cartilage oligomeric matrix protein (Cho et al 2004). 

1.3.7 Angiopoietin/Tie induced vascular signaling 

Each of the five autophosphorylated tyrosine residues of the Tie-2 receptor activates a 

different signaling pathway by interacting with specific signaling molecules (Augustin 

and Fieldler  2008). Figure 1.9 depicts the signaling pathways activated by Ang-1 in 

ECs. The PI3K and ERK1/2 pathway form the major signaling cascades that together 

mediate the endothelial cell survival, proliferation, cell-migration, motility, anti-

permeability and anti-inflammatory effects of Ang-1 (Eklund and Olsen 2006).  P85, 

the regulatory subunit of PI3 kinase interacts with phosphorylated Tie-2 activating cell 

survival kinase Akt. Ang-1 cell survival effects are mediated by phosphorylation and 

inhibition of the forkhead transcription factor Foxo1 (known to up-regulate expression 

of genes associated with vascular destabilization and endothelial cell apoptosis) 

following Akt activation which contributes to endothelial cell survival and blood 

vessel stability. A role for A20 binding inhibitor of NF-κB activation 2 (ABIN-2) in 

Ang-1-induced anti-inflammatory effects has been shown. ABIN-2 is recruited to Tie-



                                                                                                                      Introduction                                                                                                                      

  42 

2 by Ang-1 and protects EC inflammatory gene expression by inhibiting NF-κB 

activation  (Fukuhara et al 2010).  
 

 

Figure 1.9 Schematic representation of signaling pathways activated by Ang-1 in 

ECs. Various cellular functions regulated by Ang-1 are indicated in red. Ang-1 

activated PI3K (i) promotes cell survival via stimulation of Akt that results in 

inhibition of FKHR (also known as Foxo1) (ii) increases endothelial motility by 

activating GTPases RhoA and Rac1 (iii) phosphorylates eNOS which potentially plays 

a role in reducing endothelial permeability. ERK1/2 stimulation induces EC 

proliferation via its ability to recruit Grb2 and ABIN-2 inhibits leukocyte adhesion via 

NF-κB. FKHR- Forkhead transcription factor; Grb2- Growth factor receptor-bound 

protein 2. Adapted from (Brindle et al 2006). 
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Two groups have unravelled the mechanisms involved in anti-permeability/vessel 

stabilizing effects of Ang-1. They showed that in ECs with intact cell-cell adhesion, 

Tie-2 is recruited in response to Ang-1 at the cell-cell contact forming a distinct 

signaling complex. In contrast, cells with absent cell-cell adhesions have Tie-2 

complex anchored to the cell-ECM interface by Ang-1 (Fukuhara et al 2008; 

Saharinen et al 2008). Tie-2 expressed in adjacent cells trans-associate via a bridge 

formed by the multimeric Ang-1 molecule resulting in a homophilic bonding.  The Akt 

pathway is preferentially activated by the Tie-2 engaged in this complex (Fukuhara et 

al 2008). One of the downstream effector molecules phosphorylated by Akt  is eNOS 

(Eklund and Olsen 2006). Consistently, Saharinen et al have reported the 

phosphorylation of eNOS by Akt and its co-localization at cell-cell junctions 

(Saharinen et al 2008). Hence, it is apparent that the Akt-eNOS pathway has a distinct 

role  in vessel stabilization and permeability, but the specific role of eNOS is not clear 

yet. Ang-1 has been demonstrated to maintain pulmonary eNOS expression and 

bioactivity after LPS challenge (Witzenbichler et al 2005) and MAT.Ang-1 sustained 

the increase in abdominal muscle tissue eNOS expression during endotoxemia in 

studies published from our lab (Alfieri et al 2012), thus providing direct evidence that 

the beneficial effect of Ang-1 is likely to be mediated by eNOS-derived NO. Ang-1 

also maintained vascular reactivity in hypoxia-treated superior mesenteric arteries with 

intact endothelium from haemorrhagic-shock rats through the Tie-2-Akt-eNOS 

pathway (Xu et al 2012).  

The co-localization of VE-PTP with Tie-2 at cell-cell contacts has also been reported 

as another mechanism through which AJs maintain vascular stability (Saharinen et al 

2008). VE-PTP (essential for maintenance and remodelling of the blood vascular 

system) has been shown to form a complex with Tie-2 and promote dephosphorylation 

acting as a critical modulator of  Tie-2 signaling (Augustin and Fieldler  2008).  Thus, 

during conditions of increased permeability, recruitment of VE-PTP by this activated 

complex may introduce more VE-PTP to VE-cadherin, reduce the tyrosine 

phosphorylation of VE-cadherin, which strengthens the AJs in addition to the Tie-2 

bridge (Nawroth et al 2002; Nottebaum et al 2008). Ang-1 has been shown to regulate 

permeability in EC monoloayers via PECAM-1 and VE-cadherin by reducing VE-

cadherin phosphorylation and suppressing dissociation of VE-cadherin from β-catenin 

(Gamble et al 2000).  Such mechanisms may be involved in the suppression of inter-

endothelial leakage in reponse to inflammatory agents like LPS which have been 
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shown to phosphorylate VE-cadherin (London et al 2009). More recent data has shown 

that Ang-1 promotes lymphatic integrity by modulating TJ molecule expression in 

lymphatic capillaries and collecting vessels during inflammation. Down-regulation of 

both claudin-5 and ZO-1 was blocked in UVB-exposed K14-Ang-1 mice and in vitro 

studies revealed that Ang-1 enhanced the stability of LECs via up-regulation of 

claudin-5, as well as ZO-1 (Kajiya et al 2012). A crucial role has thus emerged for 

Ang-1 in maintaining the integrity of cell-junctions in conjunction with cell-cell 

adhesion molecules.  

There are other possible mechanisms by which Ang-1 reinforces the cell-cell contact 

during inflammatory conditions, such as those induced by LPS. Ang-1 appears to exert 

its protective effects on hyperpermeability, in part through inhibition of the intrinsic 

apoptotic signaling pathway as has been shown in haemorrhagic shock induced rats. 

Caspase-3 dependent cleavage of β-catenin occurs during apoptosis, a mechanism 

inhibited by Ang-1 (Childs et al 2008).  Mechanisms involving inhibition of Rho have 

also been reported, two members of the Rho family of small GTPases, Rac and Rho 

increase and decrease barrier function respectively, Rac-mediated inhibition of Rho via 

p190RhoGAP being critical for the anti-permeability effect of Ang-1 against 

endotoxin-induced vascular leakage (Mammoto et al 2007). 

 

From the mechanisms described above, it is evident that eNOS and VE-cadherin are 

important components of the complex signaling cascade initiated by Ang-1-Tie2 

interaction in ECs. The ability of Ang-1 to inhibit NF-κB driven cytokine production 

and downregulate iNOS in conjunction with increasing expression of protective eNOS 

strengthens its potential to maintain lymphatic vessel function during sepsis. 

Furthermore, its ability to promote junctional integrity by regulating the assembly of 

adhesion proteins such as VE-cadherin and claudin-5 at EC-EC junctions make it an 

even more attractive candidate for therapeutic intervention in sepsis.  
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1.4 Hypothesis 

Although a significant body of literature exists on lymphatic vessel dysfunction during 

sepsis, the effects of potent inflammatory mediators on lymphatic vessel function such 

as pumping and permeability during early phase of sepsis have not been clearly 

established previously. This study aimed to elucidate more clearly the effects of 

inflammatory mediators on collecting lymphatic vessels within the intestinal 

mesentery by analysing the changes in macromolecular leak and variables such as 

contraction frequency and amplitude under conditions mimicking sepsis. Further, it 

aimed to investigate the mechanisms through which inflammatory mediators may 

modify these variables, mainly the role of NO, a key modulator of lymphatic vessel 

function. The study also investigated the effects on Ang-1 on lymphatic vessel 

function. Though the role of Ang-1 in the lymphatic endothelium is largely unexplored, 

Ang/Tie signaling is an important component of the lymphatic network (Morisada et al 

2005). It is known that Ang-1 acts as an agonist in the lymphatic vasculature, however 

its direct effects on the integrity of lymphatics and pump function in inflammatory 

conditions have not been investigated yet. Ang-1 appears to be a versatile molecule 

with a wide range of biological functions. It has the theoretical advantage of 

influencing multiple facets of the septic cascade. This potential therapeutic role of 

Ang-1 can be harnessed by the much compromised lymphatic system during sepsis. 

Thus, this thesis will examine  the  hypothesis that: 

Inflammatory mediators released during sepsis compromise lymphatic pump function 

and increase lymphatic vessel permeability which is improved by Ang-1. 

The aims of this project are to investigate whether 

1) collecting lymphatic vessels become leaky during sepsis. 

2) the pumping mechanism of collecting lymphatic vessels becomes impaired 

during sepsis and is improved by Ang-1. 

3) alterations in lymphatic vessel pumping are mediated via NO regulation. 

4) the expression of VE-cadherin in the collecting lymphatic endothelium is altered 

during sepsis. 

These aims will be evaluated using a combination of in vivo and ex vivo techniques 

described in the next section. 
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2.1 Preparation of reagents 

2.1.1 Conjugation of Fluorescein Isothiocyanate-Bovine Serum Albumin (FITC-

BSA) 

FITC was conjugated to BSA by a method previously published by our lab (Brookes 

and Kaufman 2005). FITC isomer I (90%, Sigma-Aldrich) 0.0378g, 2g BSA (98%, 

Sigma-Aldrich) and 20 ml bicarbonate solution (0.12g Na2CO3 (anhydrous), 0.74g 

NaHCO3) were combined in a large stoppered test tube. The conjugation components 

were then mixed gently, left overnight and centrifuged at 5000 rcf for 10 min. The 

supernatant was transferred into an a 15 cm long dialysis tubing (12, 400 MW cut off) 

and dialysed for 12 h in 2 L of Nairn’s solution (17g NaCl, 0.692g NaH2PO4.H2O, 

2.14g NaHPO4) in a large conical flask. This was replaced with 4 L of fresh Nairn’s 

and stirred for a further 12 h. The dialysis tubing was then removed and FITC-BSA 

conjugate (~66 kDa) was stored at -20°C in 1ml aliquots in the dark.  All steps were 

performed at < 5oC to avoid denaturing the BSA. 

2.1.2 Other Reagents 

LPS (E.coli serotype 055:B5; 0127:B8): A stock solution of LPS was prepared by 

dissolving in 0.9 % saline (in vivo experiments) or Dulbecco’s Phosphate Buffered 

Saline (DPBS) (in vitro experiments) to give a concentration of 5 mg.ml-1, then 

sonicated for 30 min in an ultrasonic bath. The solution was stored in a glass container 

at 4°C. On the day of the experiment, the stock solution was diluted in saline to give 

the appropriate concentration (w/v) for each rat (in vivo) or an appropriate volume was 

added to bath to give a final concentration of 50 µg/ml (in vitro). 

Sodium thiopental (MW=264.3): A 50 mg.ml-1 stock solution of thiopental was 

prepared by dissolving in 0.9 % saline. On the day of the experiment, thiopental was 

prepared by diluting the stock solution to give a final concentration of either 10 or 20 

mg.ml-1. 

Nω-nitro-L-arginine methyl ester (L-NAME) (FW = 269.69): On the day of the 

experiment, 10-1M L-NAME was prepared by dissolving 0.2697g L-NAME in 10 ml 

APSS (Appendix II) and appropriate volumes were used to give a final concentration 

of 1mM or 10mM in the bath. Alternatively, 0.1mM L-NAME was prepared from 10-2 

M L-NAME achieved by dissolving 0.02697g L-NAME in 10 ml APSS. 
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Nω-nitro-D-arginine methyl ester hydrochloride (D-NAME) (FW = 269.69): On 

the day of the experiment, 10-1M D-NAME was prepared by dissolving 0.2697g D-

NAME in 10 ml in APSS and appropriate volumes were used to give a final 

concentration of 1mM or 10mM in the bath. 

Sodium Nitroprusside (SNP) (FW = 297.95): On the day of the experiment, 10-1M 

SNP was prepared by dissolving 0.297g in 10 ml APSS and appropriate volumes were 

used to give a final concentration of 1mM in the bath. 

MAT.Ang-1 (FW: 43kDa): MAT Ang-1 was a gift from Dr Richard Kammerer, 

University of Manchester and it was prepared according to the original published 

protocol (Cho et al 2004). On the day of the experiment the stock was diluted in APSS 

to give a final concentration of 250 ng/ml in the bath.  

Human recombinant angiopoietin-1 (HR.Ang-1): 1ml stock Ang-1 (25µg/ml) 

solution was made by dissolving 25µg Ang-1 (FW: 70kDA; R&D Systems, UK) in 1 

ml PBS containing 0.001g BSA. All aliquots (30 µl) were stored at -20°C. Single 

aliquots were thawed for use on the day of the experiment and were added to the bath 

to give a final concentration of 250 ng/ml. 

TNF-α: 10 µg/ml stock solution was made by dissolving 10 µg TNF-α in 1 ml DPBS 

and stored in 5 µl aliquots at -20°C. Aliquots were thawed prior to the experiment and 

appropriate volumes were added to the bath to achieve final concentrations of 10, 30, 

100 or 500 ng/ml. 

IL-1β: 5 µg/ml stock solution was made by dissolving 5 µg IL-1β in 1 ml DPBS and 

stored in 5 µl aliquots at -20°C. Aliquots were thawed prior to the experiment and 

appropriate volumes were added to the bath to achieve final concentrations of 10 or 

100 ng/ml. 

Indomethacin: On the day of the experiment, 1mM indomethacin was prepared by 

dissolving .0035g in 10 ml APSS and appropriate volume (30 µl) was used to give a 

final concentration of 10µM in the bath. 

Primers: Primers for iNOS were synthesized by Sigma-Aldrich (UK) and arrived in 

lyophilized powder form that was reconstituted to 100 µM by addition of sterile 

distilled H2O according to instructions given in the technical datasheet. 
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2.2 Animals and Anaesthesia 

2.2.1 Animals- in vivo studies 

Male Wistar rats weighing between 150-300g (n=19) were obtained from Charles 

River Laboratories and housed in University of Sheffield Biological Services for 1 

week before experimentation. Animals were maintained under standard conditions of 

temperature (19-22 °C), relative humidity (45-75%) and 12/12 h light/dark cycle, 

generally in groups of 3-5 in cages containing sawdust.  Food in the form of a standard 

pelleted commercial diet and tap water were available ad libitum. All procedures were 

performed under the Home Office Animal Scientific Procedures Act (1986), project 

license number PPL 40/2809 and personal license number PIL 40/9251. 

2.2.2 Anaesthesia 

Gaseous anaesthetic agents 

Animals were anaesthetised by diffusing a combination of isoflurane and oxygen (95% 

O2/5% Isoflurane) in an inhalant box for induction and then maintained on the same 

concentration outside the box via a tube (95% O2/3% Isoflurane). The depth of 

anaesthesia, determined by pedal reflex was maintained by adjusting the ratio of 

isoflurane to oxygen.  

Intravenous anaesthetic agents 

A commercially available preparation of thiopental sodium (Archimedes Pharma Ltd) 

was used.  The central tail vein was cannulated using a 25G paediatric butterfly needle 

and held in position with surgical tape. Animals were given an induction bolus dose of 

30 mg/kg thiopental after which isoflurane inhalation was stopped. A maintenance 

dose at the rate of 10 mg/kg/hr thiopental was continuously infused via an anaesthetic 

infusion machine. This regimen provided up to five hours of a light plane anaesthesia 

and adequate analgesia (Brookes et al 2000). Adequate anaesthesia was determined by 

the pedal reflex regularly during surgery and the level of thiopental infusion was 

adjusted to maintain an appropriate anaesthetic depth.   
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2.3 Surgical procedures- Non-recovery 

2.3.1 Cannulations 

Animals were placed in a supine position on a heat mat. An electric trimmer was used 

to shave a small area of fur on the neck and a midline incision was made using a 

stainless steel surgical blade to perform tracheostomy. A portex cannula (size 0.58mm 

x 0.96mm) bevelled at one end was inserted approximately 1 cm into the trachea and 

secured with a silk suture. The purpose of this cannulation was to maintain respiration 

and allow removal of any secretions from the bronchial tree throughout the experiment. 

For jugular vein cannulation, about 1 cm of the vessel to the right of the trachea was 

exposed using two pairs of curved forceps via blunt dissection and the fat was cleaned 

using a pair of angled forceps. A suture was passed under the vein and the distal end 

was ligated to occlude blood flow. A small incision was placed at the proximal end of 

the vein, as close to the heart as possible. A tiny incision was made close to the 

occlusion using a fine spring bow scissors. The clamp was then removed after which a 

bevelled polypropylene cannula (size 0.76mm x 1.65mm) was inserted approximately 

1 cm into the vein and secured in place with a suture. A small volume of blood was 

withdrawn to ensure that the cannula was placed in the correct position. This was then 

flushed back through the cannula with 50 units.ml-1 heparinised saline (approximately 

0.1 ml) to ensure that the blood within the cannula remained uncoagulated. The left 

carotid artery was also cannulated to allow continuous measurement of blood pressure 

using the BIOPAC MP system. Two pairs of curved forceps were used to expose the 

carotid artery to the left of the trachea. The carotid artery and vagus nerve were 

isolated and gently separated from each other by blunt dissection. Two silk ligatures 

were passed under the artery. The first was tied tightly at the distal (head) end and the 

second was left loose while the proximal (heart) end of the artery was clamped using a 

small artery clamp.  A small incision was made just under the head end of the artery 

and a bevelled silicone cannula (size 0.020” x 0.037”) attached to a 23G blunted 

needle and 1ml syringe containing heparinised saline, was inserted into the artery till it 

reached the clamped end. The second suture was then tied around the artery and 

cannula to secure it in position. The clamp was then released and 50 units/ml of 

heparinised saline (approximately 0.1 ml) flushed through the carotid cannula to 

prevent clotting. 
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2.3.2 Mesentery Preparation 

The rat mesentery was prepared for observation of the microcirculation by intravital 

microscopy (Figure 2.1). The method was originally described by (Zweifach 1948) and 

modified by (Kalia et al 1997). The area of the abdomen, below the rib cage and above 

the urethra was shaved using an electric trimmer.  A scalpel blade (size 15) was then 

used to make a midline incision through the skin followed by an incision along the 

linea alba which was cauterised to prevent any micro-bleeding. The area of the 

abdomen surrounding the incision was draped with gauze (5cm x 5cm) and moistened 

with sterile saline warmed to 37oC.  The proximal end of the ileum attached to the 

large bowel and the adjoining mesentery were exteriorised assisted by cotton buds 

soaked in saline. The area of interest was selected by counting ten mesenteric windows 

in a retrograde direction commencing at the large intestine, along the length of the 

small intestine to ensure that the region selected in each animal was similar. Care was 

taken to exteriorise the mesentery gently thus preventing any damage to the mesenteric 

vessels. The area of interest was carefully examined to find a mesenteric window that 

contained a lymphatic vessel, visible to the naked eye as a milky white vessel 

surrounded by fat.  These vessels were located close to the sub-mucosal mesenteric 

border usually running parallel to a venule. A 'window' was defined as an area of 

mesentery, framed by a branching mesenteric artery and vein which contained smaller 

blood, lymphatic vessels and nerves. The intestine and mesentery was moistened 

throughout the procedure with regular application of warm saline. The rest of the 

mesentery was repositioned gently into the abdominal cavity using saline soaked 

cotton buds.  

Five 5-0 silk sutures were placed through the superficial layer of the ileum to enable 

mounting on the coverslip. The rat was then transferred on to the heating mat on the 

Perspex board. The mesentery was carefully spread on a coverslip and the sutures were 

attached to the Perspex peg using Blu-tack to hold the mesentery in a firm position. 

Gauze moistened with saline was placed along the anti-mesenteric border and the 

preparation was covered by saran wrap to prevent it from dehydration. Saline was 

applied every 15 min and after each recording. A preparation was considered viable 

for experimental analysis if it showed: 

1) No obstruction of the lymphatic vessels by fat. 

2) Good blood flow (venular and arteriolar) and lymphatic flow without any signs 
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of stasis or sluggish flow. 

3) No macromolecular leak during the stabilisation period. 

 

 

 

 
 

 

     

Figure 2.1 A rat mesentery prepared for in vivo microscopy. Windows of mesentery 

framed by branching blood vessels are visible. Lymphatic vessels covered by fat run 

parallel to the blood vessels. The ruler is in mm scale. 

2.4 In vivo microscopy 

The animal laid on the perspex board was transferred to the microscope stage of a 

fluorescent microscope (Leica DMLM), which was equipped with a tungsten lamp for 

transmitted light and a 100 W mercury arc lamp for epi-illumination with blue light. 

Following administration of FITC-BSA (0.5 ml) via jugular vein, images were 

recorded using transmitted light for 2 min and fluorescent light for a maximum of 15 

sec every 30 min for the experimental duration of 4 h. Images were not exposed to 

blue light for more than 15 sec to prevent photobleaching. Intravascular administration 

of FITC-BSA and epi-illumination with blue light (493 nm) resulted in green 

fluorescence (518 nm). The power output of the blue light was 7-15 mW, measured 

using an optical power meter prior to the start of the experiment and it was ensured 

that the spot size of light was constant between experiments. The area of interest (AOI) 

was observed through a 10x objective, images were captured by a CCD camera (JVC), 

displayed on a high resolution monitor (Triniton, Sony) and recorded by a professional 

DVD recorder (MP-6000 Datavideo) for off-line analysis using Image proplus.  
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2.5 Data Collection and Analysis 

2.5.1 Measurement of Cardiovascular Variables and Temperature 

Temperature (every 30 min) and cardiovascular variables: rate (beats per min) and 

mean arterial pressure (mmHg) were recorded throughout the experiment during the 

experimental protocol. Parameters were measured via the carotid cannula which was 

connected to a pressure transducer and a BIOPAC MP system (Biopac systems, Inc.). 

This system consisted of a data acquisition unit (MP100) connected via a USB to a 

desktop computer installed with the AcqKnowledge application. The application 

digitalised the analogue signal and enabled waveforms of cardiovascular variables to 

be recorded directly and continuously on disk while a real time display on the 

computer provides continuous monitoring. The software was calibrated prior to the 

experiment using an adapted mercury manometer. Body temperature (°C) was 

monitored via the oesophagus by inserting a thermistor probe connected to a digital 

thermometer. 

2.5.2 Microcirculatory Variables 

The data collected and recorded on DVD was analysed off-line using image analysis 

software Image Proplus (Media Cybernetics, Inc.) to determine changes in lymphatic 

and venular vessel macromolecular leak and lymphatic diameter. Image Proplus allows 

acquisition of files from DVDs to characterise objects using automatic measurement 

tools. 

Vessel diameter 

The system was calibrated for the 10x objective of the Leica microscope using a stage 

micrometer, enabling vessel diameter to be quantified in microns. An image of the 

stage micrometer was taken and the Spatial Calibration dialog box was brought up on 

Image proplus. The units (µm) were selected, and a line was placed onto the image 

using the image button. The line was then stretched over the known distance. A 

reference calibration was thus generated. Diameter was measured from trans-

illuminated images of the vessel and was quantified by placing a line across the width 

of each vessel. At each time point measurements were taken from the inner edge of the 

vessel wall. Three separate measurements were taken and the mean value was used for 

analysis. Images used for measurement were captured when there was no flow or 

contractile activity in the vessel. Since diameter of the vessel was not uniform along 
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the length of the vessel, it was ensured that a similar site was chosen for measurement 

in each image. Images were placed side by side and a ruler was used to identify similar 

sites for measurement.  

Macromolecular leak 

The fluorescence intensity within the lymphatic vessel, venule and interstitium was 

quantified from images captured during exposure to fluorescent light. The fluorescence 

intensity is proportional to the FITC-BSA in each area.  The software assigned an 

integer value to the brightness of the fluorescence (arbitrary 8 bit grey scale), with 

values ranging from 0 which represented black, to 255 which represented white. The 

gain and offset (brightness and contrast) were 32 and 34 for analysing fluorescent 

images and remained constant throughout all experiments. A mean of three grey scale 

values was obtained by placing three small boxes (441 µm2) in each vessel. Intensity 

in the interstitium was measured by choosing 3 random sites immediately adjacent to 

the venule.  

2.5.3 Statistical analysis 

Statistical differences between different groups were determined through two-way 

ANOVA with Sidak’s post-hoc analysis by the GraphPad Prism statistical software 

package version 6.0e for Mac OS X. Within group variation was assessed using a one-

way ANOVA followed by Dunnett’s multiple comparisons test. Data were expressed 

as mean ± SEM, and values p < 0.05 were considered significant.  

2.6 Pressure myography 

2.6.1 Animals-ex vivo studies 

Male Sprague Dawley rats weighing between 170-250g were obtained from Harlan or 

Charles River Laboratories and maintained as described in section 2.2.1. Experiments 

were performed on vessels (n=91) obtained from 91 animals. 

2.6.2 Schedule 1 procedure  

Rats were placed in an anaesthetic box and anaesthetized with 95% O2/5% Isoflourane. 

Once loss of consciousness was observed and confirmed by loss of pedal reflex, the 

animal was removed from the box and immediately culled via cervical dislocation in 

accordance with the UK Home Office Animal Scientific Procedures Act (1986).  
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2.6.3 Mesentery removal  

An incision of approximately 3 cm was made from below the rib cage extending to the 

urethra. Curved forceps and dissection scissors were used to cut the skin (with attached 

fur) and the abdominal muscle. Using saline soaked cotton buds, loops of ileal 

mesentery were exteriorised and excised from the wall using spring scissors. The 

mesentery was the immediately immersed in 4°C HEPES solution and washed 2-3 

times with the same, to clear any loose connective tissue and blood. 

2.6.4 Set-up 

The pressure myography setup is illustrated in figures 2.2 and 2.3.  

Chamber preparation  

The organ bath of the pressure myograph (Living Systems Instrumentation) was filled 

with 3 ml Dulbecco’s Modified Eagle Medium F12 (DMEM-F12) or Albumin-

physiological salt solution (APSS). A 10 ml syringe was used to withdraw APSS from 

the organ bath, through the cannula and the tubing into the syringe. This process was 

repeated with the opposite cannula and tubing to ensure that all vessel chamber 

connections were perfused with the media. The myograph components flushed twice. 

During the second time this process was done, withdrawal of the media was done 

slowly to ensure no air bubbles were present in the myograph tubing and cannulae.  
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Figure 2.2 Pressure myograph. The chamber consists of an organ bath with two 

hollow glass cannulae extending into the bath from opposite sides.  Cannula tips have 

a distinct bevelled edge, which facilitates vessel cannulation. Upon filling the cannulae 

and organ bath with media, an isolated vessel, dissected from surrounding adipose 

tissue, can be mounted across the cannulae and tied in place, creating a sealed tube 

from one cannula tip to the other. The media-filled vessel can then be inflated to 

physiological pressure, subjected to flow and doses of desired substance can be 

applied extraluminally via the organ bath. Continuous observations can be made 

through the transparent cover slip at base of the myograph which can be positioned on 

the objective of an inverted microscope (TS100; Nikon, Japan). 

Ties  

To make ties, single fibres were removed from a 0.5 cm long multifilament braided 

nylon thread (Living Systems Instrumentation, USA). Fibres were looped to form a 

single knot using fine forceps and stored in a small petri dish. Prior to the washing of 

the chamber with media, the ties were positioned onto the cannulae.  

 

 

 

 

Outflow 
cannula  

Inflow 
cannula  
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Pressure tower 

                

Figure 2.3 Custom-built pressure tower. Both the inflow and the outflow ends 

(indicated by arrows) of the myograph are attached to the media-filled syringes via 

tubes. Intraluminal pressure or a pressure gradient (user defined to induce flow) in the 

vessel can be controlled precisely by raising the height of each reservoir. 

Dissection dish preparation  

The dissection dish (Living Systems Instrumentation) was filled with cold HEPES and 

stored at 4°C before use. The mesentery was pinned out in the dissection dish using 

0.45 x 12 mm needles such that it was immersed in the HEPES and could be easily 

viewed under the dissecting microscope (S6E; Leica) (Figure 2.4).  
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Figure 2.4 Dissection dish. The dish is lined with several millimeters of 

Sylgard® material which enables pinning of delicate tissue for dissection under the 

microscope. 

Vessel dissection  

A dissecting microscope and attached light unit was used to locate lymphatic vessels in 

the tissue pinned out on the dissecting dish. A first, second or third order venule was 

selected and lymphatics adjacent to it were located by removing the adipose tissue 

visible on the surface with fine forceps. Further dissection of the lymphatic was 

performed if i) the size of the lymphatic was approximately more than 80 µm ii) no 

branches were encountered till a minimum 1 cm length of the vessel was dissected iii) 

the length of the lymphangion was more than 1 cm.  Dissection of another vessel was 

undertaken if any of these criteria were not satisfied. Extreme care was taken not to 

damage the lymphatic wall while removing the fat globules, fibres or tiny arterioles 

entwined around it.  

Vessel transfer  

The isolated dissected lymphatic vessel was resected at both ends from the tissue. The 

inflow end of the vessel was held with fine forceps and the vessel was immediately 

and carefully transferred into the organ bath of the prepared pressure myograph for 

cannulation. 
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Mounting of the lymphatic vessel onto inflow cannula  

Two forceps were used to grip the edges of the inflow end of the lymphatic. This 

enabled the vessel to be manipulated and positioned onto the inflow cannula tip, 

following which the tie (previously looped onto the cannula) was moved over the 

inflow end of vessel to secure it tightly onto the cannula tip.  

Clearance of vessel  

The outflow end was opened with help of fine forceps to prevent excess pressure build 

up while flushing the vessel. To flush the vessel, a media-filled tube was attached to 

the inflow end of the myograph. The valve was opened and the tube raised manually to 

a maximum height 5 cm from the level of the vessel to allow flow into the vessel at a 

pressure of not more than 5 cm H2O, allowing the lymph to be released into the organ 

bath.  Care was taken to ensure pressure in the vessel did not rise above 5 cm H2O as 

this would damage the endothelial layer of the vessel. Once all lymph was cleared, the 

tube was cleared and the valve was closed. 

Mounting onto outflow cannula  

The retractable cannula was then moved forward towards the outflow end of the 

lymphatic. Two forceps were used to grip the outflow end of the vessel and to position 

onto the outflow cannula tip. The thumbwheel was then readjusted to the appropriate 

distance for the vessel to be tied onto the cannula as described for inflow end of the 

vessel. The bath was replenished with fresh media to ensure no lymph or other 

metabolites were present in the organ bath during experimentation. 

Confirmation of vessel integrity  

The vessel was aligned in a straight position by adjusting the thumbwheel. The vessel 

was pressurized by opening both the outflow and inflow tap. Damage was assumed if 

the vessel appeared constricted in any region or lost pressure. If this occurred, a new 

vessel was used. The vessel was deemed suitable for experimentation after 

confirmation of these features of integrity. 

Temperature 

A temperature controller (TC-02; Living Systems Instrumentation) enabled direct 

thermoregulation in the bath via an electronic feedback system. The controller was 

connected to the myograph, and set to 37°C with lower and upper alarm boundaries of 
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36-39°C, respectively. A thermistor sensor that remained submerged in the bath 

without touching the walls of the bath monitored the bath temperature.  

Vessel measurements  

The diameter of the vessel was measured manually using the video dimension analyser 

(VDA) (V94; Living Systems Instrumentation). The vessel was magnified x10 and 

observed via a microscope-mounted camera (XCST30CE; Sony) and displayed on a 

black and white video monitor (CMM1200N; Costar). A solid white scan line with 

measurement intervals was superimposed by the VDA on the video monitor. These 

intervals were aligned with the boundaries of both left and right walls of the vessel, 

giving diameters of left and right vessel walls, as well as luminal diameter. The VDA 

tracks diameters of vessels ranging from 50 to 350 µm using an analogue video signal. 

The instrument senses optical density changes of the vessel image at a chosen scan line 

seen on the TV monitor which were displayed as measurements continuously on 

digital panel meters. The diameter measurement was calibrated to indicate dimensions 

directly in microns according to the calibration procedure described in the VDA 

instruction manual. Images were recorded on a professional DVD player for off-line 

analysis. 

2.6.5 Pre-experimental procedures 

Stabilisation- flow and pressure  

The stopcocks at both ends of the myograph were opened, and the inflow syringe was 

raised higher than the outflow syringe to ensure that the lumen was filled with media. 

Following this the inflow syringe was lowered to 3 cm and the vessel allowed to 

equilibrate for 15-30 min until a stable contraction pattern was observed. The vessel 

was considered viable for experiment if the following criteria were satisfied during the 

equilibration period 

i) The development of spontaneous tone at pressures ≤ 3 cm H2O. 

ii) The development of spontaneous contractions with an amplitude of > 30% 

of maximal passive diameter. 

iii) Contractions are reasonably uniform over entire length of the vessel. 

Vessels that did not meet these criteria were discarded. Datasets from vessels that 

developed irregular contraction patterns during an experiment were not used for 

subsequent analysis. Where a step-pressure protocol was used, pressure was set to 1, 3 
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or 5 cm H2O for 5 min until a new contraction pattern stabilised at each time point 

recorded. Figure 2.5 shows an isolated RMLV in diastolic and systolic phase. 
 

 

Figure 2.5 Isolated RMLV pressurised at 3 cm H2O in a myograph chamber.        

 a) Lymphatic diastole (EDD-120 µm) b) Lymphatic systole (ESD-74 µm). 

2.6.6 Data Analysis 

After completion of each experiment, the video recording was analysed offline using 

ImageProplus.  The system was calibrated using a micrometer, enabling vessel 

diameter to be quantified in microns as described previously. Measurements were 

taken from the inner edge of the vessel wall during lymphatic systole and diastole. 

Frequency was computed on a contraction-by-contraction basis in each minute.  

Amplitude was calculated as follows: 

AMP= EDD-ESD, where EDD is the end-diastolic diameter and ESD is the end-

systolic diameter at any given pressure. 

Percentage dilation was calculated as follows: 

% dilation= EDD-EDD0              ,     where EDD0 is the diameter at baseline 

                          EDD0 

Maximum tone at a particular pressure was calculated as follows 

DCa-free- Dpressure                                 where DCa-free is the diameter in Ca-free APSS and  

        Dpressure                                                          Dpressure is the diameter at any given pressure. 

 

 

 

* 100 

* 100 

a b 

100 µm 100 µm 
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2.6.7 Statistical Analysis 

Statistical differences between different groups were determined through two-way 

ANOVA with Tukey’s post-hoc analysis by the GraphPad Prism statistical software 

package. Variation within groups was determined using one-way ANOVA followed by 

Tukey’s multiple comparisons test. Data were expressed as mean ± SEM, and values p 

< 0.05 were considered significant.  

2.7 Fluorescent Immunohistochemistry 

2.7.1 LYVE-1 imaging 

Rat mesenteric lymphatic vessel (RMLV) were isolated and cannulated in the 

myography chamber and rinsed with DPBS extra- and intraluminally. Vessels were 

incubated with 1 µg/ml anti-mouse LYVE-1 Alexa-fluor 488 monoclonal antibody (20 

µl in 1 ml DPBS) for 30 min at RT. Vessels were then rinsed with DPBS after 

incubation and observed under a confocal multiphoton microscope (Upright Zeiss 

LSM 510) with 10x/0.3 water dipping objective for LYVE-1 staining. The microscope 

fitted with an Ar laser detected LYVE-1 conjugated with Alexa-fluor at 488 nm. Z 

stack images for 3-D reconstruction were acquired using the Zeiss Image Browser 

software.  

2.7.2 Tie-2/VE-Cadherin Imaging 

Confocal microscopy was performed in Prof Zawieja’s lab during a lab visit to the 

Cardiovascular Research Institute, Texas A & M University. 

RMLV were isolated from rats fasted for 24 h. The vessels were cannulated in the 

myography chamber, rinsed with DPBS and fixed in freshly prepared 2% 

Paraformaldehyde-DPBS for 1 h at RT.  Intraluminal rinse was performed by 

cannulating the vessel at one end and flushing any lymph fluid which may result in 

non-specific binding. After fixing, vessels were rinsed in DPBS for 5 min. This step 

was repeated 3 times with both extra- and intraluminal rinse the third time (Step 2). 

Vessels were then permeabilized with methanol cooled at -20oC for 5 min. Step 2 was 

repeated again and vessels were transferred to a petridish for incubation in blocking 

solution. Vessels were incubated in the blocking solution (50 mg BSA (1%) and 250 µl 

normal donkey serum (5%) in 5 ml DPBS) for 60 min at RT. The vessels were cut and 

removed into the following solutions for IHC staining: V1 (vehicle-treated) + 20 µl 

anti-mouse Tie-2 polyclonal goat IgG antibody (primary) at 1:50 in 1 ml blocking 
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solution or 20 µl anti-mouse VE-cadherin polyclonal goat IgG antibody (primary) at 

1:100 in 1ml blocking solution; V2 (vehicle-treated) + normal goat IgG (same 

concentration as the primary antibody for V1) in blocking solution. This was followed 

by incubation overnight at 4oC and step 2 was repeated again. The vessels were 

incubated in Alexa-fluor 647 conjugated donkey anti-goat IgG antibody (secondary) at 

1:200 for 1 h at RT followed by step 2. Stained vessels were observed under confocal 

microscope (Leica TCS SP2) for Tie-2/VE-cadherin expression. Average 2-D 

projections of the stacks of confocal images were taken at 0.5 µm intervals in the z-

axis. 

2.8 RNA Isolation  

RNA isolation was performed to measure eNOS and iNOS gene expression in non-

stimulated and stimulated RMLV. 

2.8.1 Tissue harvesting and stabilisation of RNA 

Mesentery: The mesenteric tissue was rapidly dissected from the anesthetized animal 

and quickly rinsed in DPBS. It was then transferred to a dissection dish filled with 

RNAlater RNA stabilization reagent sufficient to completely cover the tissue in the 

dissection dish and equilibrated for at least 30 min at RT.  Up to 15 vessels were 

isolated from the tissue. Vessels were cleaned of all extravascular tissue to ensure that 

RNA isolated was specific to the cells of the lymphatic wall. The cleaned vessels were 

transferred to a 0.5 ml microcentrifuge tube containing 200-400 µl of fresh RNAlater, 

which preserves the gene expression profile by protecting cellular RNA in situ. 

Samples were stored at 4oC for a day or immediately used for RNA isolation 

(Bridenbaugh 2012). 

Lung: Two samples of lungs were resected from 2 freshly sacrificed male Wistar rats. 

One sample was stored in RNAlater and the other was flash frozen in liquid nitrogen 

and stored in -70 oC. Lungs were chosen as a positive control for the experiment as 

differential expression of all three types of NOS isoenzymes has been reported in 

normal rat lung tissue under baseline conditions (Ermert et al 2002). 

2.8.2 Disruption and homogenization of starting tissue 

Mesentery: To release all the RNA contained in the sample, complete disruption of 

cell walls and plasma membranes of cells and organelles is required. The lysates 

produced by disruption are then homogenized to reduce viscosity.  A rotor-stator 
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homogenizer was used for simultaneous disruption and homogenization of RMLV. 

The RNAlater stabilised tissue was suspended in the lysis buffer provided with the kit 

being used and immediately disrupted and homogenized using a conventional rotor-

stator homogenizer with a 7 mm probe, performed in a microcentrifuge tube until 

uniform homogenization was obtained. The probe was applied to the sample in bursts 

of 10 s over 40-60 s or until no visible pieces remained. 

Lung: To obtain optimal RNA yield and purity, the amount of starting material as 

specified for animal tissues in the manufacturer’s protocol (< 30 mg) was not exceeded. 

The lung tissue was disrupted using a mortar and pestle and homogenized using 

syringe and needle. Tissue was ground to a fine powder under liquid nitrogen and the 

suspension was transferred into a liquid nitrogen-cooled 2 ml microcentrifuge tube, 

allowing the nitrogen to evaporate without allowing sample to thaw. The lysis buffer 

was then added, and rapidly homogenized using the syringe and needle. The lysate was 

passed through a 0.9 mm needle attached to a sterile plastic syringe 5-10 times. 

2.8.3 RNA extraction 

Total RNA extraction from RMLV was attempted with three different RNA isolation 

kits in accordance with the manufacturer’s protocol: Sigma’s GenElute Mammalian 

TotalRNA Miniprep kit, mirVana PARIS Kit, and RNeasy Mini Kit. RNA extraction 

was also attempted using organic phase extraction method. Different methods were 

attempted due to the low RNA yield, which was insufficient for RT-PCR analysis. 

Total RNA extraction from lungs was performed using Sigma’s GenElute Mammalian 

TotalRNA Miniprep kit.  

2.8.3.1 RNA purification using Sigma’s GenElute Mammalian TotalRNA 

Miniprep kit 

The kit employs the silica-based solid-phase purification method. The tissue was 

transferred to an appropriate tube for homogenization, 500 µl of the Lysis solution/2-

ME mixture was added to the RNAlater stabilized tissue. After homogenization (as 

described in 2.5.2), the tissue was pipetted into a GenElute Filtration Column and 

centrifuged at 12000g for 2 min. The filtration column was discarded. 500 µl of 70% 

ethanol solution was added to the filtered lysate and it was vortexed thoroughly. Up to 

700 µl of the lysate/ethanol mixture was then pipetted into a GenElute Binding 

Column. The column was centrifuged at maximum speed for 15 s at the end of which 
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the flow-through liquid was discarded and the collection tube retained. The binding 

column was then returned to the collection tube and any remaining lysate/ethanol 

mixture was applied to the column. The centrifugation was repeated. Column washes 

were then performed. First column wash: 500 µl of Wash Solution 1 was pipetted into 

the column and centrifuged at maximum speed for 15 s. The binding column was then 

transferred into a fresh 2.0 ml collection tube. Second column wash: The flow-through 

liquid and the original collection tube were discarded. 500 µl of ethanol containing 

Wash Solution 2 was pipetted into the column and centrifuged at maximum speed for 

15 s. The collection tube was retained in this step. Third column wash: A second 500 

µl volume of Wash Solution 2 was pipetted into the column and centrifuged at 

maximum speed for 2 min to dry the binding column. RNA was eluted after the 

column washes. RNA elution: The binding column was transferred to a fresh 2 ml 

collection tube. 30 µl of the Elution Solution was added into the binding column and 

centrifuged at maximum speed for 1 min. The purified RNA was obtained in the flow-

through eluate.   

2.8.3.2 RNA purification using mirVana PARIS Kit 

This kit combines the advantages of organic extraction and solid-phase extraction 

methods. 625 µl of ice-cold cell disruption buffer was added to the RNAlater 

stabilized tissue. Once the lysate was homogenized, it was mixed thoroughly with an 

equal volume of 2X Denaturing Solution at RT. The mixture was incubated on ice for 

5 min. Acid-Phenol:Chloroform equal to the total volume of the mixture was added to 

the tube and vortexed thoroughly for 30-60 s. The tube was centrifuged for 5 min at 

10,000g at RT to separate the mixture into aqueous and organic phases. The upper 

aqueous phase was carefully removed without disturbing the lower phase or the 

interphase and transferred to a fresh tube. 1.25 volumes of RT 100% ethanol was 

added to the aqueous phase and mixed thoroughly. The lysate/ethanol mixture was 

pipetted onto a filter cartridge and centrifuged for 30 s until the mixture had passed 

through the filter. 700 µl miRNA Wash Solution 1 was applied to the filter cartridge 

and centrifuged for 15 s. The flow-through was discarded from the collection tube and 

the filter cartridge replaced into the same collection tube. 500 µl of Wash Solution 2/3 

was applied and drawn through the filter cartridge by centrifugation. The cartridge was 

washed again with a second 500 µl of Wash Solution 2/3. The flow-through was 

discarded, the filter cartridge was replaced in the same collection tube and the 
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assembly was spun for 1 min to remove residual fluid from the filter. The cartridge 

was then transferred to a fresh collection tube. RNA was eluted in the Elution solution 

provided with the kit. 100 µl of preheated Elution Solution was applied to the center of 

the filter and centrifuged for 30 s to recover RNA. The eluate was collected and stored 

at -20oC.  

2.8.3.3 RNA purification using Bridenbaugh’s organic phase extraction method 

An optimized protocol for the isolation and preparation of RNA from rat microvessels 

developed by Bridenbaugh (2012) was used in the next attempt due to the resulting 

low yield and purity of RNA from RMLV. The protocol is based on the standard 

organic phase extraction method for RNA purification. In this method, the isolated 

cleaned vessels were transferred from RNAlater to a 2.0 ml microcentrifuge tube 

containing 500 µl of chilled TRIzol Reagent (TRI Reagent®, Sigma-Aldrich) and 

immediately homogenized at 30,000 rpm for 20-30 s using a rotor-stator homogenizer 

with a 7 mm stainless steel generator. The sample was then placed on ice immediately 

until the next step. To ensure the complete dissociation of nucleoprotein complexes, 

the samples were vortexed and allowed to stand for 10 min at RT. 100 µl of 

chloroform was added to the sample and mixed for 1 min by repeated inversion. The 

sample was incubated for 5 min at RT and then centrifuged at 12000g at 4oC. This step 

separates the mixture into 3 phases: a red organic phase (containing protein), an 

interphase (containing DNA) and a colorless upper aqueous phase (containing RNA). 

The aqueous phase was carefully transferred to a new 1.5 ml centrifuge tube. 400 µl of 

isopropanol was added and mixed.  The sample was allowed to stand for 5-10 min at 

RT and centrifuged at 12000g for 10 min at 4oC. The supernatant was removed and the 

RNA precipitate in the form of a pellet was washed with 500 µl of cold 75% EtOH, 

vortexed gently for 10 s and then centrifuged at 7500g for 5 min at 4oC. The pellet was 

air dried for 10 min at RT and any supernatant removed. 15 µl of 75oC RNase-free 

water was added to the RNA pellet and it was gently vortexed several times to 

resuspend the pellet. 

2.8.3.4 RNA Purification using RNeasy Mini Kit 

RNAeasy Mini Kit designed for purification of up to 100 µg of total RNA from small 

amounts of animal cells and tissues was used in the fourth attempt. The technology 

employs silica-based membrane to selectively bind RNA. The RNAlater stabilized 

tissue was suspended in 600 µl lysis buffer RLT. QIAzol agent was also used in place 
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of lysis buffer RLT in one experiment to achieve more optimal tissue lysis. The lysate 

was centrifuged for 3 min at full speed, supernatant removed by pipetting and then 

transferred to a new microcentrifuge tube. 1 volume of 70% ethanol was added to the 

cleared lysate and mixed immediately by pipetting. Up to 700 µl of the sample 

including the precipitate was added to an RNeasy spin column placed in a 2 ml 

collection tube and centrifuged for 15 s at 10,000 rpm. The flow-through was 

discarded. 700 µl RW1 was added to the RNeasy spin column and centrifuged for 15 s 

at 10,000 rpm to wash the spin-column membrane. The flow-through was discarded. 

500 µl buffer RPE was then added to the RNeasy spin column and centrifuged for 15 s 

at 10,000 rpm to wash the spin membrane. The flow-through was discarded again and 

the step was repeated. The column was centrifuged for 2 min in this step to ensure the 

complete drying of ethanol from the column. The column was placed in a new 1.5 ml 

collection tube. 30 µl RNase-free water was added directly to the spin column 

membrane and centrifuged for 1 min at 10,000 rpm to elute the RNA.  

2.8.4 Eliminating genomic DNA contamination  

TURBO DNA-free Kit was used to eliminate any contaminating DNA from purified 

RNA preparations. 0.1 volume of 10X TURBO DNase Buffer and 1 µl TURBO 

DNase was added to the RNA and mixed gently. The tube was incubated at 37oC for 

30 min. Resuspended DNase Inactivation Reagent (0.1 volume) was added and mixed 

well. The tube was incubated at RT for 5 min and flicked 2-3 times to mix the contents. 

It was then centrifuged at 10,000g for 1.5 min to pellet the DNase Inactivation Reagent. 

The supernatant was carefully transferred into a fresh tube and stored at -20oC for 

further analysis. 

2.8.5 Quantification of RNA 

UV spectroscopy is the most widely used method to quantitate RNA. The 

concentration and quality of the total RNA purified was determined by measuring the 

absorbance at 260 nm and 280 nm in a spectrophotometer (Nanodrop ND-1000). An 

A260 reading of 1.0 is equivalent to ~40 µg/mL single-stranded RNA. An 

A260/A280 ratio of 1.8–2.1 indicates highly purified RNA (http://www.ambion.com/ 

techlib/tn/94/949.html). The integrity of RNA was assessed by Agarose Gel analysis.  
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2.9 cDNA synthesis  

High capacity RNA-to-cDNA Kit (Applied Biosystems) was used to quantitatively 

synthesise single-strand cDNA from the total RNA. 2 µg of total RNA was used per 20 

µl reaction. The kit components were allowed to thaw on ice, and the RT reaction mix 

was prepared with the volume of components tabulated below. The mix was prepared 

on ice. 

 

Component Volume/Reaction (µl) 

 +RT -RT 

2X RT Buffer 10.0 10.0 

20X RT Enzyme Mix 1.0 - 

Nuclease-free H2O 6 6 

RNA sample 3 3 

Total per reaction 20.0 20.0 

         

        Table 2.1 RT reaction mix with volume of components 

cDNA RT reactions were performed. 20 µl of RT reaction mix was aliquoted into each 

tube, which were then sealed and centrifuged to spin down the contents and eliminate 

any air bubbles. The thermocycler was programmed under the following conditions: 

 

 

The reaction volume was set to 20 µl, the reactions were loaded into the cycler and RT 

run was started. The tubes were stored at 4oC until agarose gel analysis of the cDNA. 

 

2.10 PCR 

PCR was used for second strand synthesis and amplification of the synthesised cDNA. 

The reactions components (tabulated below) were assembled on ice and quickly 

transferred to a thermocycler with the block preheated to the denaturation temperature 

(95oC).  

 Step 1 Step 2 Step 3 

Temperature (oC) 37 95 4 

Time 60 min 5 min ∞ 
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Component Reaction (µl) 

PCR Mastermix, 2X 10 

Forward primer, 10 µM 3 

Reverse primer, 10 µM 3 

cDNA template 1 

Nuclease-free water 3 

Total 20 

         

        Table 2.2 PCR reaction mix 

The thermocycling conditions were set as follows. Amplified DNA was analysed using 

agarose gel electrophoresis. 

     

      Table 2.3 Thermocycling conditions for PCR 

 

2.11 Agarose Gel Electrophoresis 

A standard 2% agarose gel was prepared as follows. 2 g of agarose gel was added into 

a microwavable flask along with 100 mL of 1x TBE. The flask was microwaved for 1-

3min until the agarose started to boil and completely dissolved. The agarose solution 

was allowed to cool down. 20 µl EtBr (0.2 µg/ml) was then added to the solution and it 

was slowly poured into a gel tray with the well comb in place. The gel was left to 

solidify at RT for 15-20 min. Once the gel had solidified it was placed into the 

electrophoresis unit. The unit was filled with 1x TAE running buffer to completely 

immerse the gel. A molecular weight ladder was loaded into the first lane. Loading 

buffer was added to the samples and they were loaded into the adjacent wells. The gel 

Step Temp (oC) Time (min) 

Initial Denaturation 94 8 

3 cycles 62 1 

30 cycles 60 1 

Final extension 72 10 min 

Hold 4 ∞ 
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was run at 150V until the dye indicated that the samples had reached 75-80% of the 

way down the gel. It was removed carefully and placed under a UV transilluminator to 

visualise the DNA bands. 
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Chapter	  Three	  

Effect	  of	  LPS	  on	  rat	  mesenteric	  

lymphatic	  vessels	  in	  vivo	  
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3.1 Introduction 

Lymphatic dysfunction has long been associated with oedema and inflammation; 

however, integrity of the lymphatic endothelial barrier during inflammation has only 

recently been an area of focus for lymphatic biologists (Cromer et al 2014; Kawai et al 

2014). A study published from our lab (Brookes et al 2009) reported macromolecular 

leak of FITC-BSA (66 KDa) from extrasplenic lymphatics in endotoxemic rats, thus 

allowing leakage of protein-rich fluid into interstitial spaces, contributing to 

hypovolemia and hypotension. In this study, we wanted to evaluate the integrity of the 

lymphatic barrier, particularly mesenteric collecting lymphatic vessels in response to 

inflammatory stimuli such as LPS, which is associated with increased blood 

endothelial permeability during sepsis. Mesenteric lymph has been implicated in 

transporting gut-derived inflammatory factors to other splanchnic organs during gut-

origin of sepsis following conditions like hemorrhagic shock, trauma and intestinal 

ischemia (Fanous et al 2007). Thus, they play a pivotal role in the pathological 

response to sepsis and are likely to dysfunction in this inflammatory mileau. Several 

studies have demonstrated that endotoxemia disturbs the lymphatic pump mechanism 

and affects lymph flow rates (Elias et al 1987; Elias and Johnston 1990; Nemoto et al 

2011), but the timeline of alterations in lymphatic pumping and how it correlates with 

lymph flow is not well defined. An understanding of how lymphatic barrier and vessel 

contractile function is affected during endotoxemia could lay the groundwork for 

investigating the initial mechanisms that disrupt lymphatic function and lead to the 

development of interventions to improve the resolution of inflammation. The aim of 

this study therefore, was to investigate the effects of LPS on macromolecular leak, 

tone, contractions and lymph flow in the mesenteric collecting lymphatic vessel. We 

hypothesised that changes in lymphatic physiology begin to occur during early stages 

of sepsis (0-4 h) including macromolecular leak from mesenteric lymphatics, reduced 

contractions and flow. The time period 0-4 h has been associated with alterations in 

blood endothelial barrier function during sepsis (Andrew and Kaufman 2001) and it 

stands to reason that this was chosen for our study. These changes were investigated 

using an in vivo model of sepsis induced using continuous low dose infusion of LPS. 

Fluorescent intravital microscopy with 66 KDa FITC-BSA was used during the 4 h 

exposure to LPS.  
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3.2 Experimental Design 

The protocol followed is outlined in figure 3.1. Details of animal anaesthesia and 

surgery can be found in section 2.2.  

 
3.2.1 Experimental groups 

To examine differences in macromolecular leak, tone, contractions and lymph flow in 

the collecting lymphatic vessel, rats were allocated randomly into two experimental 

groups LPS or saline. LPS with doses ranging from 150 µg/kg/hr-1 mg/kg/hr was 

used. Number of experiments (n) performed with each LPS concentration was limited 

to three, as the expected endotoxemic response was not observed. A higher 

concentration was used to achieve an endotoxemic response at each dose and 

experiments were terminated at n=3, once this was not observed. 

1) Control (n=6) 

2) LPS 150 µg/kg/hr (n=3) 

3) LPS 300 µg/kg/hr (n=3) 

4) LPS 600 µg/kg/hr (n=3) 

5) LPS 1 mg/kg/hr (n=3) 

3.2.2 Stabilisation period (t= -45 to -30 min) 

Animals were allowed an equilibration period of 15 min following surgery, prior to the 

administration of FITC-BSA. During this time the carotid cannula was connected to 

the blood pressure transducer. At t=-30, FITC-BSA (100 mg.kg-1) was administered 

via the jugular cannula.  

3.2.3. Recordings 

Pre-baseline recordings (t= -15 min) 

Microcirculatory and cardiovascular variables were recorded prior to the start of the 

experimental period. If macromolecular leak was occurring from venules or blood 

flow was poor at this point (i.e. prior to LPS administration), the preparation was 

deemed not viable for experimentation and the animal euthanised by thiopental 

overdose.  
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Baseline recording (0 min) 

A baseline recording was made at this time-point, immediately before LPS 

administration. Macromolecular leak measurements at all experimental time points 

were compared to this baseline value. 

 

Experimental Period (t=0-4 h) 

Temperature and arterial blood pressure were recorded online throughout the 

experimental period.  The AOI was recorded onto DVD using transmitted light for 2 

min and fluorescent light for 15 s with 10x objective.  

 

 

 
   
- 120 min    Surgery 

- 45 min     Stabilisation period 

- 30 min Administration of FITC-BSA (100 
mg.kg-1) i.v. 

   0  min Continuous infusion of 150 µg.kg-1.hr-1 
LPS or equivalent volume of saline (1 
ml.kg-1) i.v. 

 

 
 
 
 

Record IVM images of lymphatics and 
body temperature every 30 min, arterial 
blood pressure, heart rate throughout. 

        
 
 

 
240   min                                     Animal euthanised by thiopental 

overdose.  
 

 

Figure 3.1 Timeline demonstrating the experimental protocol of control and LPS 

experiments.  
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3.3 Results  

3.3.1 Cardiovascular Variables 

LPS (055:B5; Endotoxin units - 600,000 EU, 1.2 x 106 EU and 3 x 106 EU) was 

administered in doses ranging from 150 µg/kg/hr – 1 mg/kg/hr. Doses were increased 

as the expected hypotensive response shown in previous studies published from our 

lab was not observed at lower doses. A different serotype of LPS (0127:B8) was also 

administered at the rate of 150 µg/kg/hr in a separate experiment; however, it failed to 

elicit the expected hypotensive response (Figure 6.1, Appendix III). Experiments using 

the same batches of LPS to induce endotoxemia in rats performed in parallel in our lab 

for another study also failed produce a hypotensive response in animals (Personal 

communication received from Julia Beglov). 

LPS at 600 µg/kg/hr reduced MAP significantly (p < 0.05) compared to baseline (45-

135 min) but the effect was not significant compared to controls (Figure 3.2). Changes 

in MAP over four hours at all other doses of LPS were not significant compared to 

baseline (no LPS) or controls. A short-lived hypotensive phase was noticeable in all 

LPS treated groups; however this effect did not reach statistical significance. LPS at 

higher doses (600 µg/kg/hr and 1 mg/kg/hr) induced a significant increase (p < 0.05) in 

heart rate compared to controls; however the time points over which this was observed 

were variable at different doses (Figure 3.3). This suggests the onset of tachychardia 

two hours post infusion, which was the only noticeable trend in the cardiovascular 

variables that correlated with increasing doses of LPS. 150 µg/kg/hr LPS (0127:B8) 

also induced a significant increase (p < 0.05) in heart rate at 4 h compared to controls 

(Figure 6.2, Appendix III). No changes were observed in the control group (Figures 

3.2, 3.3).  There were no differences between groups at baseline (Table 3.1). 
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Group MAP (mmHg) Heart Rate (bpm) 

Saline 121.9 ± 6.7 329.2 ± 23.1 

LPS (150 µg/kg/hr) 122.2 ± 6.7 346.8 ± 9 

LPS (300 µg/kg/hr) 114.5 ± 4.8 330.1 ± 28.4 

LPS (600 µg/kg/hr) 140.3 ± 4.4 356.2 ± 3.4 

LPS (1 mg/kg/hr) 124.9 ± 6.9 335.1 ± 29.3 

 

Table 3.1 Mean (± SEM) baseline MAP and heart rate for all experimental 

groups. 

 

 

Figure 3.2 Mean arterial pressure (MAP) (mean ± SEM) in LPS and control 

groups. No significant differences were observed between experimental and control 

groups. 
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Figure 3.3 Heart rate (bpm; beats per minute) (mean ± SEM) in LPS and control 

groups.  LPS induced an increase in heart rate at 600 µg/kg/hr and 1 mg/kg/hr. *p < 

0.05 significantly different to saline. 
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3.3.2 Lymphatic vessel Diameter 

There were fluctuations in diameters of lymphatic vessels in both LPS and control 

groups throughout the experiment but these were not significant compared to baseline 

(Figure 3.4). LPS compared to controls induced minimal changes in diameter. 

Lymphatic vessel diameters were not significantly different between groups at baseline 

(Table 3.2). 

 

Group Lymphatic vessel diameters (µm) 

Saline 80.2 ± 11.2 

LPS (150 µg/kg/hr) 75 ± 13.1 

LPS (300 µg/kg/hr) 99.8 ± 13.2 

LPS (600 µg/kg/hr) 68.8 ± 5.4 

LPS (1 mg/kg/hr) 78.7 ± 6.5 

 

Table 3.2 Mean (± SEM) baseline lymphatic vessel diameters for all experimental 

groups. 
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Figure 3.4 Lymphatic diameters (mean ± SEM) in LPS and control groups. 

Diameters were not altered significantly by different doses of LPS compared to 

controls.  
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3.3.3 Macromolecular Leak 

Control and LPS treated animals did not demonstrate significant changes in 

macromolecular leak compared to baseline. There was a significant increase (p < 0.05) 

in leak at 150 µg/kg/hr LPS at 2 h but any differences in macromolecular leak at other 

doses did not reach significance compared to controls (Figure 3.5). 150 µg/kg/hr LPS 

(0127:B8) did not induce leak (Figure 6.3, Appendix III). 

 

Figure 3.5 Effect of LPS on macromolecular leak. Macromolecular leak is 

expressed as mean cumulative change in grey level (arbitrary units) (±SEM). 

Significant difference in leak was observed at 150µg/kg/hr LPS dose (t=2 h) compared 

to the control group. Levels were not significantly altered at other doses. *p < 0.05 

significantly different to control. 
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3.3.4 Levels of FITC-BSA in lymphatics  

Levels of FITC-BSA in lymphatic vessels in the control and experimental groups 

following administration of FITC-BSA are indicated in table 3.3. Levels of FITC-BSA 

in lymphatic vessels decreased significantly (p < 0.05) at later time points in groups 

administered with LPS at 300 µg/kg/hr and 1 mg/kg/hr compared to controls. A similar 

trend was observed at 600 µg/kg/hr but the decrease was not statistically significant 

compared to control (Figure 3.6). 150 µg/kg/hr LPS (0127:B8) significantly decreased 

(p < 0.01) FITC-BSA in the vessels at 4 h (Figure 6.4, Appendix III). FITC-BSA 

fluorescence is maintained within the lymphatic vessels and post capillary venules in 

control conditions (Figure 3.7). Figure 3.8 shows macromolecular leak in the 

interstitium after intravenous administration of 300 µg/kg/hr LPS. 

 

Group Grey levels in lymphatic vessels 

Saline 39.8 ± 6.6 

LPS (150 µg/kg/hr) 48.5 ± 9.5 

LPS (300 µg/kg/hr) 53.2 ± 12.2 

LPS (600 µg/kg/hr) 46.5 ± 9.9 

LPS (1 mg/kg/hr) 65 ± 19.1 

 

Table 3.3 Mean (± sem) baseline grey levels in lymphatic vessels for all 

experimental groups. 
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Figure 3.6 Effect of LPS on level of FITC-BSA in lymphatic vessel.  Change in 

protein concentration within the lymphatic vessel is expressed as mean cumulative 

change in grey level (arbitrary units) (± SEM). A gradual decrease in grey levels is 

observed at subsequent time points at all doses of LPS compared to control group 

which is significant at 3 and 4 h at doses 1 mg/kg/hr and 300 µg/kg/hr respectively. *p 

< 0.05, **p < 0.01 significantly different to control. 
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Figure 3.7 IVM images of rat mesenteric lymphatic vessels (40-60 µm) 

demonstrating FITC-BSA levels in the vasculature at 60, 120, 180 and 240 min 

after intravenous administration of saline (control). FITC-BSA was activated by 

blue light (495 nm), to induce fluorescence. It can be observed that intact lymphatic 

vessel (indicated by blue arrow) and post-capillary venules (indicated by red arrow) 

maintain FITC-BSA within the vasculature. 

!!!!!60!min!

!!120!min!

!!180!min!

!!240!min!
100	  μm	  
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Figure 3.8 IVM images of rat mesenteric lymphatic vessels (90-110 µm) 

demonstrating FITC-BSA levels in the vasculature and interstitium at 60, 120, 

180 and 240 min after intravenous administration of LPS (300 µg/kg/hr). FITC-

BSA was activated by blue light (495 nm), causing it to fluoresce. White flare in the 

interstitium indicates leakage of FITC-BSA from vasculature when integrity of the 

endothelium is compromised. Macromolecular leak may occur from lymphatic vessel 

(indicated by blue arrow) and post-capillary venules (indicated by red arrow).  

!!!!!60!min!

!!120!min!

!!180!min!

!!240!min!
100	  μm	  



                                                                                                               Results chapter I                                                                                                  
 

  85 

3.4 Summary of results 

The dose range of LPS (150 µg/kg/hr-1 mg/kg/hr) used did not induce marked 

hypotension but induced tachychardia at higher doses (600 µg/kg/hr and 1 mg/kg/hr). 

LPS did not elicit obvious changes in lymphatic diameter at any dose. 

Increasing doses of LPS did not alter macromolecular leak. 

Higher doses of LPS (300 µg/kg/hr and 1 mg/kg/hr) decreased levels of FITC-BSA 

from the lymphatic vessels evident from the lower than baseline values at later time 

points (4 and 3 h respectively). 
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3.5 Discussion 

The aim of these experiments was to assess the effect of LPS on various lymphatic 

parameters. Although the haemodynamic response favours the conclusion that 

endotoxemia was triggered in the animals at higher doses of LPS, the levels of 

interstitial leak did not represent an endotoxemic pathophysiology i.e. minimal leak 

from the vessels. Moreover, it was not possible to evaluate effects on contractility and 

flow for reasons discussed below. These observations have called into question the 

suitability of the model to investigate our hypothesis. 

3.5.1 Low dose infusion model of endotoxemia 

The model of continuous low dose LPS infusion in anaesthetised rats was used to 

mimic the more subtle pathophysiological septic response, which may be more 

clinically relevant in patient groups showing pathophysiological responses such as 

haematological alterations and elevated cytokine levels (Rittirsch et al 2007). This 

model is non-lethal but haemodynamic changes such as prolonged hypotension and 

tachychardia, which represent the classical features of sepsis, have been reported to 

occur (Andrew and Kaufman 2001; McGown et al 2010). However, the data is 

conflicting since prolonged hypotension using this regime of endotoxin administration 

was not demonstrated in other studies (Huang et al 1994; Bennett et al 2004; Gardiner 

et al 2005). A normotensive response throughout the duration of LPS infusion, even at 

high doses has also been reported widely (Schmidt et al 1996; Schmidt et al 1998).  In 

agreement with the latter studies, we observed a largely normotensive response, 

accompanied by a transient phase of early hypotension with all doses of LPS 

administered. The short-lived hypotension has been attributed to LPS-induced 

secretion of endothelial kinins that trigger NO and prostacyclin (Fleming et al 1992). 

Elevated NO may not always result in prolonged hypotension as these effects may be 

dependent on the time lapsed between surgery and LPS administration, at least during 

early endotoxemia (Mailman et al 1999). Authors reported that LPS reduced blood 

pressure for only 15 min when injected in rats 2 h post-surgery, whereas caused 

hypotension for 2 h when injected 15 min post-surgery. It is possible that rats 

developed a desensitisation to the hypotensive effects of LPS in our study, as was 

suggested by authors from their observations, since LPS was administered ~2 h after 

surgery was initiated.  
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In the current study, tachychardia was observed in experimental groups treated with 

higher doses of LPS, indicating increased cardiac output to match the increased 

oxygen demand similar to previously published studies from both our laboratory and 

others (Bateman et al 2003; McGown et al 2010). Thus, the haemodynamic response 

indicates that the low dose infusion of LPS at the higher concentration resulted in 

endotoxemic rats.  

3.5.2 Flow 

Lymph flow is an important modulator of lymphatic function as it affects lymphatic 

contractility and tone by means of wall-shear stress (Gashev et al 2002; Gashev et al 

2004; Dixon et al 2006). The pattern and magnitude of flow can either activate or 

inhibit the intrinsic lymph pump, thus influencing the force of lymph propulsion. 

Oedemagenic stress increases lymph flow due to increased rates of lymph formation 

resulting from raised interstitial pressure (Benoit et al 1989). Increased lymphatic 

outflow has also been reported during hypovolaemic shock (Magnotti et al 1998) and 

after endotoxin exposure (Lattuada and Hedenstierna 2006; Nemoto et al 2011). 

However, as the inflammatory insult increases, cessation of lymphatic flow occurs 

(Elias et al 1987). Hence, an estimation of the flow profiles within the lymphatic 

vessels under normal and pathophysiological conditions is vital to understanding 

lymphatic dysfunction. For example, it has been proposed that temporal changes in 

shear stress determine the production of endothelium-derived factors that modulate 

pumping (Munn 2015). In our studies, visual observations did not identify any obvious 

differences in lymphatic flow in the presence or absence of LPS. However, 

observations made in this manner are subjective and non-quantitative and the 

possibility remains that subtle changes may be occurring in lymphatic flow during the 

early stages of endotoxemia. The standard video microscopy available in our 

laboratory has limitations in measuring flow as the camera has an imaging rate of 25 

frames/sec, which is not sufficiently sensitive.  Flow in mesenteric lymphatics has 

been measured with a high-speed imaging system at the rate of 500 frames/sec (Dixon 

et al 2005). This technique has the advantage of allowing measurement of cell velocity 

throughout the cycle of the lymphatic phasic contraction. Propulsive function has also 

been measured using the NIRF imaging system where responses to acute inflammatory 

insult locally and systemically were successfully investigated (Aldrich and Sevick-

Muraca 2013). Hence, future studies are required using systems to accurately compare 
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lymph flow velocities under different treatments and in dilated and quiescent 

lymphatics, as it occurs in sepsis (Liao and von der Weid 2014).  

3.5.3 Contractility 

In rat mesenteric lymphatics, regular spontaneous contractions form the basis of an 

active lymph pump. These contractions are well co-ordinated and propagated 

throughout the vessel (Zawieja et al 1993). However, in the current study we found 

that in most preparations, segments of vessels that were visible (mostly branches of 

collecting lymphatics) did not show consistent contractile activity and hence could not 

be used to accurately measure pump frequency. There may be various reasons for lack 

of a consistent contraction pattern. According to one of the earliest observations by 

(Hargens and Zweifach 1977), lymphatic contractions in mesenteric collecting 

lymphatics are irregular and varied with intraluminal pressure. Indeed, studies 

performed later have shown the profound mutual interdependency of contraction 

frequency and intraluminal pressure exerted by changes in lymph flow (Gashev et al 

2002; Gashev et al 2004). This is especially relevant to the mesenteric lymphatics 

because of their role in gastrointestinal function. The rate of lymph formation, a 

principal passive force influencing lymph flow, in these lymphatics, are highly 

variable as they are directly dependent on intestinal digestion and absorption (Gashev 

et al 2004). Also, the possibility of a depressant effect on contractions by thiopental 

cannot be ignored, as previously reported in a study investigating the effects of 

barbiturates (10-4 M or greater dose) on lymphatic contractility (McHale and 

Thornbury 1989). FITC photoactivation has also been shown to reduce lymphatic 

contraction frequency (Zhang et al 1997). Another reason that the vessels observed 

had weak contractions maybe the constant application of exogenous saline potentially 

causing oncoctic changes in the tissue and impair lymphatic contractility similar to 

observations by (Galanzha et al 2005). Hence, due to these confounding factors it 

would be preferable to use an in vitro method that excludes the influence of extrinsic 

forces, to assess the effects of LPS and other pharmacological agents on contractility.  

3.5.4 Diameter 

The lymphatic muscle tone largely determines the lymphatic vessel resistance, which 

in turn regulates the lymph flow and output (von der Weid and Zawieja 2004). In vitro 

studies have shown that a certain degree of basal tone exists in lymphatic vessels 
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similar to arterioles (Gashev et al 2004); however, in contrast to arterioles, lymphatics 

exhibit myogenic constrictions and dilations to intraluminal pressure changes (Davis et 

al 2009). Authors suggested that the myogenic response may be an important 

modulator of vessel tone during acute inflammatory/oedematous conditions preventing 

overdistension of the vessel. In our studies, there were no discernible changes in the 

diameter of vessels during early endotoxemia compared to controls. Results suggest 

that vessel tone remains robust in the first 4 h of LPS-induced endotoxemia. However, 

it is possible that the effects of changes in preload that are known to increase vessel 

diameter are being compensated by a myogenic constriction response, thus 

maintaining a robust vessel tone during the period of our observation. Hence, an in 

vitro model that excludes the effects of incoming fluid pressure would be more 

suitable to assess changes in lymphatic vessel tone. 

3.5.5 Macromolecular Leak  

Significant differences in interstitial grey levels are an indicator of the loss of 

endothelial integrity in the surrounding microvasculature. Although, this method is not 

a direct permeability measurement in post-capillary venules as described by (Michel 

2004), it is used as an indication of changes in vessel integrity (Walther et al 2003; 

McGown et al 2010; Reeves et al 2012). Changes in interstitial grey levels were not 

significant between control and experimental groups although there were increases in 

some LPS groups. However, it is difficult to determine whether the leak in the 

interstitium is venular or lymphatic because of the close proximity of the two vessels, 

which is a major limitation of the study. Moreover, declining grey levels in the 

lymphatics and the interstitium suggest the possibility of increased lymphatic 

clearance rather than ‘leaky’ lymphatics. The slightly increased fluorescent intensity in 

lymphatic vessels of endotoxemic rats, during the first hour of administration indicates 

a higher uptake of FITC-BSA from the interstitium compared to control rats. This may 

be the result of increased lymphatic contractility as shown previously (Elias et al 1987; 

Elias and Johnston 1990) and possibly increased flow, which supports the possibility 

of increased lymphatic clearance at later time points. Another ambiguity in interpreting 

the dynamics of macromolecular efflux and uptake is presented by the lower than 

baseline values at LPS doses of 300 and 600 µg/kg/hr which suggest that the FITC-

BSA is being cleared from the interstitium rapidly. In contrast, in groups receiving 150 

µg/kg/hr and 1 mg/kg/hr LPS, interstitial grey levels were increased over the 4 h 
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period indicate two possibilities: (i) that the effects of LPS at 150 µg/kg/hr and 1 

mg/kg/hr are less potent on lymphatic contractility resulting in less clearance and (ii) 

the effects of LPS are more potent such that the interstitial overload of FITC-BSA 

from leaky venules is not compensated for even by increased pumping, thereby 

resulting in more leak but less clearance. One factor that favours the latter possibility is 

the EU of LPS used for different doses. Whereas n=2 experiments each at doses of 300 

and 600 µg/kg/hr were performed with LPS containing EU 6 x 105 and 1.2 x 106, 

experiments at doses of 150 µg/kg/hr and 1 mg/kg/hr LPS were performed with a 

higher EU (3 x 106). Experiments with LPS containing higher EU correlate to 

increased interstitial grey levels indicating a more potent effect thus favouring the 

latter possibility.  The inability to measure the contractile characteristics in this model 

makes it difficult to ascertain the reason for this discordant data. The results derived 

from this model did not yield any conclusive evidence for our hypothesis that 

macromolecular leak may occur from collecting lymphatics during inflammatory 

conditions as induced by LPS.  

3.5.6 Summary and future directions  

This is the first study to investigate the effects of LPS on macromolecular leak from 

mesenteric lymphatics. Further studies were not performed, as this model was deemed 

unviable for accurate measurement of functional lymphatic parameters in vivo. 

Nevertheless, our speculation that LPS increases lymphatic permeability is supported 

by studies showing that extra-splenic lymphatics allow the efflux of large protein 

molecules into interstitial spaces during endotoxemia in vivo (Brookes et al 2009) and 

more recently by a study demonstrating leaky lymphatic vessels in inflamed skin of 

mice (Kajiya et al 2012). These findings further substantiate our hypothesis and 

warrant a further investigation into LEC barrier dysfunction during inflammation. We 

suggest that macromolecular leak from lymphatics could be investigated using a 

technique that allows observation of leak into the interstitium exclusively from 

lymphatics.  Trzewik et al employed such a technique that involved micropipette 

manipulation to investigate transport of fluorescent microspheres (.31 µm) across the 

endothelium into the lumen of initial lymphatics in the rat cremaster muscle (Trzewik 

et al 2001). This technique could be used to design experiments to measure changes in 

permeability in mesenteric lymphatics. However, this model may still pose a problem 

in accurate measurement of contractility. An ex vivo model as described by Ono et al 
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would be most viable for assessment of both lymphatic endothelial barrier function 

and contractility during early endotoxemia (Ono et al 2005).  
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4.1 Introduction 

The importance of the role of lymphatics in the direct induction and resolution of 

inflammation has surfaced from studies spanning the last decade (Hong 2013; 

Lachance et al 2013; Liao and von der Weid 2014). However, this role can be severely 

compromised in diseases such as sepsis, hence making it an imperative to study the 

effects of external and internal inflammatory mediators on the lymphatic system in 

disease, and identify agents to restore their functionality. The model we used in the in 

vivo study was not suitable for characterising lymphatic vessel responses in the early 

endotoxemic phase as discussed. Hence, the purpose of our ex vivo study was to 

address this issue by investigating the direct effects of LPS and cytokines released in 

early sepsis on RMLV.  

Further, we were interested in the mechanisms mediating these effects. Numerous 

studies have demonstrated the role of NO in modulating lymphatic contractility and 

tone. This role has been elaborated in section 1.2.3.3. Under physiological conditions, 

NO is mostly derived from constitutively expressed NOS. The expression of the 

inducible form is usually triggered during inflammatory conditions and it is well 

known that eNOS is destabilised concomitantly (Steyers and Miller 2014). Recent 

literature suggests that eNOS plays an important role in the regulation of lymphatic 

pumping and tone. Two important studies confirm that eNOS in LECs is essential for 

maintaining robust lymphatic contractions under physiological conditions, hence 

depleted levels of eNOS in the inflammatory state result in impaired contractile 

activity (Liao et al 2011; Scallan and Davis 2013). Since LPS is known to disrupt the 

delicate physiological balance between eNOS and iNOS in the blood vasculature 

(McGown and Brookes 2007), we speculated the possibility of similar mechanisms 

operating in the lymphatic vasculature on exposure to inflammatory mediators, thus 

effecting the production of NO and consequentially altering contractility. Hence, we 

investigated whether effects of mediators were NO mediated and levels of eNOS/iNOS 

were altered. 

We were also interested in the potential role of Ang-1 in counteracting the effects of 

inflammatory mediators on lymphatic vessels due to the burgeoning evidence of its 

anti-inflammatory effects in blood vessels, particularly restoration of permeability via 

eNOS upregulation (Alfieri et al 2014). NO derived from eNOS is attributed to play a 
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protective role against the toxic effects of LPS-released mediators and hence we 

wondered if Ang-1 could protect lymphatic pump function by providing beneficial NO. 

These questions led us to hypothesise that LPS and cytokines such as TNF-α and IL-

1β impair lymphatic contractility via NO regulation and Ang-1 has a protective effect 

on pump function in inflamed vessels. 

This study aimed to utilise lymphatic pressure myography to investigate this 

hypothesis. This system allows the ex vivo study of isolated lymphatic vessels under 

controlled pressure and flow, excludes any external neural, physical or hormonal 

factors and removes the sources/sinks for NO production/action (Chakraborty et al 

2015). Hence, any effects observed could be attributed to the direct actions of 

inflammatory mediators than to a secondary consequence of inflammatory outcomes 

such as oedema (Chakraborty et al 2011). Moreover, rat mesenteric lymphatics exhibit 

much stronger contractile characteristics as isolated vessels (Gashev et al 2002; 

Gashev et al 2004). 

4.2 Control Optimisation 

The technique was initially learnt at Dr Zawieja’s lab in Texas A&M University using 

a set-up where the myography chamber was designed to allow continuous suffusion of 

the media (DMEM-F12 or APSS) into the bath. Only one experiment with each 

medium was performed due to time constraints, however vessels exhibited a stable 

frequency throughout the duration of the experiment (Figure 6.5, Appendix IV). The 

experimental design had to be altered when experiments were initiated in the 

University of Sheffield as continuous suffusion was not possible using the chamber 

model available in the laboratory. To mimic early endotoxemia and observe the effects 

of LPS, it was important to achieve a stable frequency of contraction for ~3 h. 

Different protocols (Table 4.1) were attempted to determine the volume of media and 

intervals at which it should be replaced to maintain a robust vessel for the length of the 

experiment. Vessels were maintained in DMEM-F12 and APSS with or without 

changes in pressure and a number of studies (each study denoting a group) were 

undertaken to obtain optimal bath conditions. Ordinary one-way ANOVA followed by 

Tukey’s multiple comparisons test was used to analyse differences within groups to 

determine change in frequency over 3 h. 
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Protocol for media replacement in the 
bath 

Effects on frequency of contraction 

DMEM-F12 replaced every 30 min with 
changes in pressure 

High variability at 1.5 h and 3 h 

DMEM-F12 replaced every 1 h with 
changes in pressure 

High variability at 1.5 h and 3 h 

DMEM-F12 replaced every 1 h without 
changes in pressure 

Reduced contractions at 3 h 

APSS replaced every 45 min with 
changes in pressure 

High variability at 1.5 h 

APSS replaced every 45 min without 
changes in pressure 

Stable frequency up to 3 h 

APSS not replaced  Stable frequency up to 2 h; rapid decline 
after 2 h  

1mM Ca2+ dissolved in ultrapure water 
added to APSS every 30 min after 
equilibration 

Stable frequency up to 2.30 h 

 

Table 4.1 Different media replacement methods that were attempted to obtain a 

stable frequency for the duration of the experiments (~3 h). 

The first set of experiments was performed using DMEM-F12. Media was replaced 

every 30 min or 1 h in two groups of experiments. Since our aim was to perform 

frequency measurements at a range of pressures, vessels were subjected to 1, 3 and 5 

cm H2O at three different time-points. A range of pressures was used to mimic 

intraluminal pressure variation in physiological conditions (Gashev et al 2004). There 

were differences between the frequency of contractions at 1.5 h and 3 h at 3 cm H2O in 

both groups from baseline. Change in frequency at 1.5 h (3 ± 6) and 3 h (2 ± 2) in the 

group where media was replaced every 30 min was considerably different from 

baseline (11 ± 4). Similarly, differences in frequency change from baseline (12 ± 2) 

were also notable at 1.5 h (8 ± 4) and 3 h (5 ± 4) in the group where media was 

replaced every 1 h. Though these differences were not significant, groups exhibited 

high variability indicated by the error bars (Figure 4.1). A third group of experiments 
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was then performed without changes in pressure to minimise variation in frequency, 

but reduced contractions were observed at 3 h. 

The next set of experiments was performed with APSS (Figure 4.2). Considerable 

differences in frequency from baseline were observed at different time points in 

vessels subjected to pressure changes (group 1). Change in frequency at 1.5 h (5 ± 4) 

and 3 h (1 ± 3) was considerably different from baseline (7 ± 1). Differences were 

minimal in vessels maintained at 3 cm H2O (group 2). The protocol was modified 

further (group 3) as it could not be used in further experiments involving addition of 

other agents to the bath. For example, when the protocol was used with experiments 

that involved the addition of LPS to the bath, stable frequency was disrupted. Addition 

of 1mM Ca2+ maintained a fairly stable frequency throughout the experiment. Vessels 

also exhibited consistent amplitude therefore ensuring stable vessel characteristics. 

Figures 4.3 and 4.4 depict the frequency and amplitude changes in the vessel every 5 

min up to 2.5 h, respectively.   Experiments were also performed without replacing the 

media. Stable frequency was observed in this group (group 4) for at least up to 1.5 h 

after which there was a rapid decline in frequency.  Hence, the protocol used for group 

3 was used in further experiments to ensure optimal conditions that minimised 

variation in vessel frequency and 2.5 h was chosen as the standard duration of 

experiments, as there was a considerable reduction in frequency after this time-point in 

group 3. Baseline frequency is indicated as (mean ± SEM) contractions/min and 

amplitude as (mean ± SEM) micrometers.  
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Figure 4.1 Change in frequency of contractions (mean ± SEM) at 3 cm H2O in 

vessels maintained in DMEM-F12 which was replaced with fresh media every 30 

min and 1 h with or without pressure changes. No significant differences in 

frequency were observed at different time points in groups. Baseline frequency for 

DMEM-F12 replaced every 30 min= 11 ± 4, DMEM-F12 replaced every 1 h= 12 ± 2, 

DMEM-F12 replaced every 1 h with no pressure changes= 8. 
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Figure 4.2 Change in frequency of contractions (mean ± SEM) at 0, 1.5 and 3 h in 

vessels maintained in APSS 1) replaced every 45 min at different pressures and at 

3 cm H2O 2) with Ca2+ added to media and 3) without replacing media. Change in 

frequency in control without replacing media was significantly different at 3 h from 

baseline and 1.5 h. No significant differences were observed between time-points in 

other groups.  *p < 0.05 vs baseline, **p < 0.01 vs 1.5 h. Baseline frequency for APSS 

at different pressures (3 cm H2O shown in graph) = 7 ± 1, APSS at 3 cm H2O= 7, and 

for control without replacing media=10 ± 2.  
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Figure 4.3 Change in frequency of contractions (mean ± SEM) in vessels 

maintained in APSS with Ca2+ added to media every 30 min. No significant 

differences were observed from baseline. A stable frequency was observed over 2.5 h. 

Baseline frequency= 10 ± 2. 

  

Figure 4.4 Change in amplitude of contractions (mean ± SEM) in vessels 

maintained in APSS with Ca2+ added to media every 30 min. No significant 

differences were observed from baseline. A stable amplitude was observed over 2.5 h. 

Baseline amplitude = 113.3 ± 7.7 µ. 
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4.3 Investigation into the role of NO 

We first wanted to establish the role played by intrinsic and extrinsic NO in the 

contractility of lymphatic vessels in our experimental setting. L-NAME was used to 

globally inhibit intrinsic NO production. Effects of intrinsic NO were assessed by 

stimulation of vessels with Ach and Acetyl-β-methylcholine chloride (AMch). 

Extrinsic NO was provided by the NO-donor, SNP.  

L-NAME 

L-NAME was added to the bath at concentrations of 1mM and 10mM in separate 

groups of experiments to determine whether inhibition of basal NO altered frequency 

or amplitude of contraction in the vessels. Initially, 1mM L-NAME was used as in vivo 

effects have been observed at this concentration (Bohlen et al 2009). Application of 

1mM L-NAME or its inactive isomer D-NAME did not alter the frequency (9 ± 2 vs 

10 ± 4) (Figure 4.5) or amplitude (117.07 ± 11.35 vs 116.71 ± 2.24) (Figure 4.6). An 

irregular frequency was observed on treatment with 10mM L-NAME and this effect 

was not different compared to 10mM D-NAME treatment (Figure 4.7). 

 

Figure 4.5 Frequency of contractions (mean ± SEM) in vessels treated with 1mM 

L-NAME and D-NAME. Minimal decrease in frequency (6 ± 13%) was observed 

over 30 min from baseline but differences within groups from baseline or between L-

NAME and D-NAME were not significant at any time point. Baseline frequency for L-

NAME=10 ± 1, D-NAME= 8 ± 2. 
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Figure 4.6 Amplitude of contractions (mean ± SEM) in vessels treated with 1mM 

L-NAME and 1mM D-NAME. No significant difference was observed in groups 

from baseline or between L-NAME and D-NAME. Baseline amplitude for L-NAME= 

114.8  ± 11.7 µ, D-NAME= 121.9 ± 2.9 µ. 

 

Figure 4.7 Frequency of contractions (mean ± SEM) in vessels treated with 10mM 

L-NAME and D-NAME. No significant difference was observed in groups from 

baseline or between L-NAME and D-NAME at any time point. Baseline frequency for 

L-NAME= 10 ± 1, D-NAME= 7 ± 3. 

 

 

 

5 10 15 20 25 30

-20

-10

0

10

20

Time (min)C
on

tr
ac

tio
n 

am
pl

itu
de

 (µ
m

)

L-NAME  (1mM) (n=4)
D-NAME (1mM) (n=3)

Equi 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
-5

0

5

10

15

20

L-NAME 10mM

Time (min)

C
on

tr
ac

tio
n 

fr
eq

ue
nc

y/
m

in

L-NAME (10mM) 
(n=3)

D-NAME (10mM) 
(n=3)



                                                                                                              Results chapter II 

  102 

Acetylcholine chloride and Acetyl-β-methylcholine chloride 

Vessels were stimulated with 10-5 M Ach to assess the effects of endogenous NO 

production on vessel frequency and amplitude of contraction. A considerable increase 

in frequency was observed in stimulated vessels compared to baseline after 10 min of 

application. Since this effect was in contrast with the previously published studies 

(Yokoyama and Ohhashi 1993), 10-5 M AMch, an analogue of Ach was used in the 

next experiment. Effects on frequency observed were similar to that of Ach (Figure 

4.8). Both substances decreased amplitude after 10 min of application to vessels 

(Figure 4.9). 

 

Figure 4.8 Change in frequency of contraction in vessels treated with 

acetylcholine chloride (10-5 M) and Acetyl-β-methylcholine chloride (10-5 M). A 

considerable increase in frequency was observed in stimulated vessels compared to 

baseline after 10 min of application of Ach and AMch. Baseline frequency with Ach= 

6, AMch= 4. 
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Figure 4.9 Change in amplitude of contraction in vessels treated with 

acetylcholine chloride (10-5 M) and Acetyl-β-methylcholine chloride (10-5 M). 

Stimulated vessels exhibited decreased amplitude after 10 min of application of Ach 

and AMch. Baseline amplitude with Ach= 147.2 ± 4.2 µ, AMch= 149.6 µ. 

SNP 

To determine the effects of external application of an NO donor on contractility, 1mM 

SNP was added to the bath. 1mM SNP was used in these experiments, but effects have 

also been observed with 10-4 M (von der Weid et al 2001). Treatment with 1mM SNP 

appeared to reduce frequency of contraction over 15 minutes when compared to 

baseline (44 ± 17 %), however this was not significant (Figure 4.10). Considerable 

reduction (13 ± 4 %) was observed in the amplitude of contractions within 5 min of 

treatment with SNP, which appeared minimal at subsequent time points (Figure 4.11). 
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Figure 4.10 Change in frequency of contractions (mean ± SEM for 5 experiments) 

from baseline after addition of 1mM SNP. SNP induced a reduction in frequency 

over 15 min (44 ± 17 %). Reduction was not significantly different from baseline at 

any time point. Baseline frequency= 5 ± 1. 

 

Figure 4.11 Change in amplitude of contractions (mean ± SEM for 5 experiments) 

from baseline after addition of 1mM SNP. Marked reduction in amplitude (13 ± 4%) 

was observed within 5 min of treatment with SNP. Reduction was not significantly 

different from baseline at any time point. Baseline amplitude= 122.9 ± 23.8 µ. 

5 10 15
-6

-4

-2

0

SNP (1mM) (n=5)

Time (min)

C
on

tr
ac

tio
n 

fr
eq

ue
nc

y/
m

in

1 5 10 15
-25

-20

-15

-10

-5

0

Time (min)

C
on

tr
ac

tio
n 

am
pl

itu
de

 (µ
m

)

SNP (1mM) (n=5)



                                                                                                              Results chapter II 

  105 

Whereas no significant role for basal NO in regulating contraction frequency and 

amplitude under normal pulsatile flow could be established from the results, 

exogenous NO caused a considerable reduction in contractility. Hence, we wanted to 

determine the effects of different inflammatory mediators on these parameters and if 

these effects were mediated by NO. 

4.4 Effect of LPS 

Figures 4.12 and 4.13 illustrate the effects of LPS on lymphatic contractile activity. 

These effects were assessed at a dose of 50 µg/ml LPS with and without 1% heat 

inactivated fetal calf serum (FCS) from Gibco® added to the media. FCS was added to 

the media as various reports have shown that serum provides LBP which accelerates 

the binding of the LPS–LBP complexes to CD14, thus enhancing cell activation (Ohki 

et al 1999). The number of contractions measured over 2.5 h revealed a potent 

inhibitory effect on phasic contractions in vessels treated with LPS (Batch 1). LPS 

(Batch 1) treated vessels appeared to reduce the frequency of contractions and 

amplitude at 45 min progressing to complete inhibition at 1 h. This effect however was 

not reproducible when a second set of experiments was performed with a different 

batch of LPS under the same conditions. No significant effect was observed with LPS 

treatment in the absence of FCS.  In a different experimental setting (Texas A&M 

University), LPS reduced the frequency of contraction at 0 h and 1.5 h progressing to 

complete inhibition by 3 h (Figure 6.5, Appendix IV). 
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Figure 4.12 Change in frequency of contractions after addition of APSS 

containing 50 µg/ml LPS with and without serum. Decline in frequency was 

significant between 60-145 min in LPS treated with serum (batch 1) compared to 

baseline and control. **p < 0.01, ***p < 0.001 vs control. Baseline frequency for LPS 

with serum (batch 1)= 13 ± 2, LPS with serum (batch 2)= 11 ± 1, LPS without serum= 

6 ± 1. 

 

Figure 4.13 Change in amplitude of contractions after addition of APSS 

containing 50 µg/ml LPS with and without serum. Amplitude significantly dropped 

at 45 min in LPS with serum (batch 1) compared to control and maximum reduction in 

amplitude was observed at 60 min compared to baseline and control. *p < 0.05, ****p 

< 0.0001 vs control. Baseline amplitude for LPS with serum (batch 1)= 68.7 ± 15.5 µ, 

LPS with serum (batch 2)= 99.2 ± 12.1 µ, LPS without serum= 111.2 ± 50.6 µ. 
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4.5 Effect of TNF-α 

Recombinant rat TNF-α was added to the bath in concentrations ranging from 10 – 500 

ng/ml. Lower concentrations (10 and 30 ng/ml) reduced frequency of contractions 

consistently over the duration of the experiment. 100 ng/ml TNF-α increased 

frequency whereas 500 ng/ml resulted in an increase until 80 min after which a rapid 

decline was observed (Figure 4.14). A decline in amplitude observed at both 

concentrations reached significance over the last 15 min at 500 ng/ml (Figure 4.15). 10 

ng/ml TNF-α was used for further studies as the response at higher concentrations was 

toxic as indicated by the biphasic response curve. 

 

 

Figure 4.14 Change in frequency of contractions after addition of APSS 

containing TNF-α (10 – 500 ng/ml). Compared to the change in frequency in 

untreated vessels (control), 10 ng/ml and 30 ng/ml TNF-α depressed frequency 

gradually as evident from the consistently declining trend. An increase in frequency 

was observed with 100 ng/ml. Response with 500 ng/ml was more complicated with a 

marked increase in frequency for up to 80 min leading to complete inhibition at 120 

min. Baseline frequency for TNF-α (10 ng/ml)= 14 ± 4, TNF-α (30 ng/ml)= 15 ± 3, 

TNF-α (100 ng/ml)= 7 ± 1, TNF-α (500 ng/ml)= 7. 
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Figure 4.15 Change in amplitude of contractions after addition of APSS 

containing TNF-α (10 – 500 ng/ml). Amplitude was not significantly different from 

control in any group except between 135-150 min in the group treated with 500 ng/ml 

TNF-α and from baseline at 150 min. **p < 0.01 vs control. Baseline amplitude for 

TNF-α (10 ng/ml)= 72 ± 12.7 µ, TNF-α (30 ng/ml)= 92.4 ± 16 µ, TNF-α (100 ng/ml)= 

103 ± 9 µ, TNF-α (500 ng/ml)= 109.2 ± 16.3 µ.  

4.6 Effect of IL-1β 

Recombinant rat IL-1β at 10 or 100 ng/ml did not effect change in the frequency of 

contractions (Figure 4.16). Higher concentration of IL-1β evoked a complicated 

response with a noticeable increase in frequency up to 60 min and a sharp decline at 65 

min, which was consistent until the end of the experiment. In combination with 10 

ng/ml TNF-α, the effects on frequency were relatively similar to 10 ng/ml TNF-α 

added alone (Figure 4.17). There was a significant reduction in amplitude between 75-

90 min at 10 ng/ml IL-1β, which was not observed at a higher concentration or in 

combination with TNF-α  (Figure 4.18). 
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Figure 4.16 Change in frequency of contractions after addition of APSS 

containing IL-1β (10 – 100 ng/ml). No significant changes in frequency were 

observed in either group compared to control or baseline. 100 ng/ml IL-1β appeared to 

increase frequency up to 60 min with a rapid decline at 65 min that lasted until 150 

min. Baseline frequency for IL-1β (10 ng/ml)= 7 ± 2, IL-1β (100 ng/ml)= 8 ± 5. 
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Figure 4.17 Change in frequency of contractions after addition of APSS 

containing TNF-α (10 ng/ml) alone and in combination with IL-1β (10 ng/ml). A 

gradual decrease in frequency was observed in vessels treated with TNF-α and IL-1β 

between 60-150 min. This trend was comparable to the reduction in frequency between 

30-150 min induced by TNF-α alone. Differences were not significant in either group 

compared to control or baseline. Baseline frequency for IL-1β +TNF-α= 8 ± 2. 

 

Figure 4.18 Change in amplitude of contractions after addition of APSS 

containing IL-1β (10 – 100 ng/ml) and IL-1β (10 ng/ml) with TNF-α (10 ng/ml). 

Amplitude decreased significantly between 75-90 min with 10 ng/ml IL-1β compared 

to control but not baseline. No changes were observed at 100 ng/ml or in combination 

with TNF-α. *p < 0.05 vs control. Baseline amplitude for IL-1β (10 ng/ml)= 115.3 ± 

9.3 µ, IL-1β (100 ng/ml)= 127.8 ± 19.4 µ, IL-1β +TNF-α= 100.6 ± 20.3 µ. 
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Amongst the 3 different inflammatory mediators we tested, the most consistent effects 

on the frequency of contraction were demonstrated by 10 ng/ml TNF-α. We then 

investigated if these effects were NO mediated. L-NAME was added to the bath at 2 

different concentrations of 0.1mM and 1mM. Both concentrations prevented the 

decline in frequency observed with TNF-α alone (Figure 4.19). Change in amplitude 

did not reach statistical significance in any group (Figure 4.20). 

 

 

Figure 4.19 Change in frequency of contractions after addition of APSS 

containing 10 ng/ml TNF-α to vessels treated with L-NAME (0.1 – 1 mM) or D-

NAME (1 mM). Frequency of contractions altered by TNF-α in presence of 0.1mM L-

NAME between 105-165 min was significantly lower than frequency altered by TNF-

α in presence of D-NAME. *p < 0.05, ***p < 0.001, ****p < 0.0001 vs D-NAME + 

TNF-α.  Effect of TNF-α + 1mM L-NAME on frequency between 115-145 min was 

significantly lower than TNF-α + D-NAME. *p < 0.05, **p < 0.01 vs D-NAME + 

TNF-α. TNF-α + D-NAME significantly lowered frequency between 125-165 min 

compared to D-NAME alone. *p < 0.05, **p < 0.01 vs D-NAME. Baseline frequency 

for L-NAME (.1mM) + TNF-α= 9, D-NAME + TNF-α= 12 ± 2, L-NAME (1mM) + 

TNF-α= 10 ± 2. 
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Figure 4.20 Change in amplitude of contractions after addition of APSS 

containing 10 ng/ml TNF-α to vessels treated with L-NAME (0.1 – 1 mM) or D-

NAME (1mM). Amplitude remained unaltered in vessels treated with TNF-α with or 

without NO blockade. Baseline amplitude for L-NAME (.1mM) + TNF-α= 140.4 ± 

13.8 µ, D-NAME + TNF-α= 102.6 ± 5.2 µ, L-NAME (1mM) + TNF-α= 94.8 ± 13.4 µ. 

We then wanted to investigate if prostaglandins had a role in mediating the response 

resulting from exposure to TNF-α. Addition of 10µM indomethacin reverted the 

effects of TNF-α on frequency of contractions (Figure 4.21). Indomethacin induced a 

stable increase in amplitude for the duration of the experiment compared to TNF-α 

treated vessels (Figure 4.22). 
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Figure 4.21 Change in frequency of contractions after treatment of vessels with 10 

ng/ml TNF-α or Indomethacin (10µM) followed by 10 ng/ml TNF-α. Indomethacin 

appeared to prevent the reduction in frequency of contractions compared to frequency 

reduced by TNF-α. Baseline frequency for indomethacin + TNF-α= 6 ±1. 

 

Figure 4.22 Change in amplitude of contractions after treatment of vessels with 

10 ng/ml TNF-α or Indomethacin (10µM) followed by 10 ng/ml TNF-α. A decrease 

in amplitude was noticeable between 90-150 min with a rapid increase at 165 min in 

TNF-α treated vessels. Treatment with indomethacin maintained an increased 

amplitude between 15-165 min. Differences observed were not significant. Baseline 

amplitude for indomethacin + TNF-α= 118.5 ±10.5 µ.  
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Studies with inflammatory mediators showed that LPS and TNF-α have negative 

chronotropic effects on the vessels. LPS abolished contraction amplitude within 60 

min whereas increased amplitude was observed with 10 ng/ml TNF-α at the end of 2.5 

h. IL-1β alone did not alter frequency of contraction but decreased amplitude over a 

brief 15 min time period. Decline in frequency with TNF-α was prevented by L-

NAME and indomethacin independently. 

4.7 Effect of Ang-1 

Following on from the response obtained with TNF-α treatment, we wanted to 

determine if Ang-1 attenuated or prevented this response. Vessels were treated with 

HR.Ang-1 (denoted as Ang-1) to investigate effects on the lymphatic vessel. The dose 

used was 250 ng/ml (Hall and Brookes 2005). Vessels incubated in 250 ng/ml Ang-1 

15 min prior to addition of TNF-α maintained a stable frequency and amplitude 

throughout the experiment. There were no changes in frequency or amplitude when 

vessels were treated with Ang-1 alone. These data suggest that pre-treatment with 

Ang-1 abrogated the deleterious effects of TNF-α on lymphatic vessel function 

(Figures 4.23, 4.24). There was minimal change in frequency of contractions from 

baseline at the end of 2.5 h with Ang-1 alone (1.33 ± 0.66) and in combination with 

TNF-α (0.66 ± 1.76) compared to the reduced contractions induced by TNF-α alone (-

9 ± 1.87), suggesting a protective effect of Ang-1. Ang-1 alone slightly decreased 

amplitude (-10 ± 16%) with minimal change in combination with TNF-α (2 ± 5%) 

compared to increased amplitude induced by TNF-α alone (15 ± 23%).  

Response of vessels to 250 ng/ml MAT.Ang-1 alone was also investigated during 

studies performed at Texas A&M University (Figures 6.7, 6.8, Appendix IV). 

Additionally, one experiment using MAT.Ang-1 was performed in our lab but 

experiments could not be continued due to unavailability of MAT.Ang-1. Hence 

HR.Ang-1 was used for further experiments. Frequency remained unaltered in 

presence of MAT.Ang-1 over 3 h in experiments performed using set-ups in Texas and 

Sheffield (Figure 6.7, Appendix IV). 
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Figure 4.23 Change in frequency of contractions after treatment of vessels with 

Ang-1 alone (250 ng/ml) or Ang-1 followed by TNF-α (10 ng/ml). Contraction 

frequency changed minimally at the end of 2.5 h in vessels treated with Ang-1 alone 

(1.33 ± 0.66) or with TNF-α in presence of Ang-1 (0.66 ± 1.76). Baseline frequency 

for Ang-1= 6 ± 2, Ang-1 + TNF-α= 4 ±1. 

 

 

Figure 4.24 Change in amplitude of contractions after treatment of vessels with 

Ang-1 alone (250 ng/ml) or Ang-1 followed by TNF-α (10 ng/ml).  Amplitude did 

not change significantly in vessels treated with Ang-1 alone (10 ± 16%) or with TNF-α 

in presence of Ang-1 (2 ± 5%) at the end of 2.5 h. Baseline amplitude for Ang-1= 

110.2 ± 12 µ, Ang-1 + TNF-α= 115.2 ± 7.5 µ. 
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4.8 Molecular analysis of NOS levels 

Our next objective was to investigate the levels of eNOS and iNOS expressed in 

unstimulated vessels and vessels treated with inflammatory mediators. Attempts to 

achieve this objective were made using routine RNA isolation methods and RT-PCR. 

Quantification of eNOS and iNOS levels in inflamed vessels would allow further 

evaluation of the effects of Ang-1 on eNOS/iNOS levels in inflamed RMLV.  

4.8.1 RNA isolation  

RNA isolation was attempted using different protocols described in chapter 2. The first 

kit used for isolation was Sigma’s GenElute Mammalian Total RNA Miniprep Kit. 

Low yields of RNA were obtained from both the control and RMLV tissue. The 

protocol was repeated twice resulting in similar yield of RNA. The mirVana Paris 

RNA Isolation Kit was used for the next series of isolations (repeated four times). A 

standard amount of RNA was obtained from the lung tissue, however the amount of 

RNA extracted from RMLV was still low and insufficient for amplification. An 

organic extraction method (three repeats) was also used to compare yields with the 

previous methods. The last attempt was made using RNeasy Kit (three repeats) but 

there was no difference in the yield obtained from RMLV. The methods and the results 

obtained over a period of ⁓3 months are tabulated below: 

Kit/Procedure RNA yields 

 Lung 
(control) 
(ng/ul) 

RMLV 

(ng/ul) 

Blank 

(ng/ul) 

RNeasy 232.53 20.17 0.01 

Sigma GenElute Mammalian Total 
RNA Miniprep Kit 

20.48 11.71 0.01 

mirVana Paris RNA Isolation Kit 577.69 6.28 0.06 

Organic extraction method - 10.71 0.02 

 
Table 4.2 RNA yields obtained from different kits used. 
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4.8.2 PCR  

Semi-quantitative RT-PCR was carried out to detect mRNA expression of eNOS and 

iNOS genes in the lung sample. Oligonucleotide primer sequences used are as follows: 

rat eNOS sense: 5′-AAGACAAGGCAGCGGTGGAA-3′, antisense: 5′-GCAGGGGA 

CAGGAAATAGTT-3′, 292 bp; iNOS sense 5′-CCGGGCAGCCTGTGAGACG-3′, 

antisense: 5′-AGCTGGGTGGGAGGGGTAGTGATG-3′, 482 bp. Total RNA was 

extracted from isolated rat lung tissue. cDNA was synthesized from the total RNA. 1 

µg of total RNA was used for the synthesis of 20 µl first strand cDNA. cDNA was 

detected in the lung sample but not in the RMLV sample. The resulting cDNA from 

lung sample was used as template for subsequent PCR. Following RT-PCR, 10 µl 

samples of amplified products were resolved by electrophoresis on agarose gel and 

stained with ethidium bromide. The level of each PCR product was semi-quantitatively 

evaluated using a gel image analysis system. Expected product size for eNOS was 292 

bp and 482 bp for iNOS. Bands were observed in the sample indicating presence of 

eNOS (⁓200 bp) and iNOS (⁓400 bp) in the isolated lung RNA. The band intensities 

indicate a higher level of eNOS expression compared to iNOS (Figure 4.25).  
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Figure 4.25 Evidence for iNOS and eNOS gene expression in lung tissue of male 

Sprague Dawley rats. Base-pair markers denoting DNA size are shown on the 

extreme left. From left to right, columns depict results for iNOS expression, non-DNA 

negative (−ve) control followed by eNOS expression. The band corresponding to 

iNOS is a ⁓400 bp product and a ⁓200 bp product for eNOS.  

4.9 Confocal immunofluorescent microscopy  

Lymphatic endothelium 

RMLV was stained with anti-mouse LYVE-1 Alexa fluor 488 to confirm that an intact 

endothelium is maintained by lymphatic myography. Strong LYVE-1 staining was 

detectable in the lymphatic vessel indicating the presence of an intact endothelial layer 

(Figure 4.26).  
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Figure 4.26 LYVE-1 staining in RMLV. Confocal immunofluorescent micrographs 

(x10) of isolated rat mesenteric lymphatic stained with anti-mouse LYVE-1 Alexa 

fluor 488. Strong LYVE-1 staining is detectable in LECs (indicated by red arrows in 

fig A and B). An intact endothelial layer is detectable in the wall of the vessel 

(indicated by blue arrow in fig C).  Fig D shows a 3-D reconstruction of the vessel. 

Scale bar- 20 µm. 

Tie-2 

To our knowledge, expression of Tie-2 has not been shown in RMLV previously. 

RMLV were stained with a primary goat anti-mouse Tie-2 polyclonal antibody to 

detect the expression of Tie-2. A secondary anti-goat IgG antibody conjugated with 

Alexa-fluor 647 was used to observe immunofluorescence under a confocal 

microscope (Figure 4.27).  
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Figure 4.27 Tie-2 expression in rat mesenteric lymphatics. Multiple confocal 

immunofluorescent micrographs (x10) (pseudocoloured) of isolated mesenteric 

lymphatics stained with goat anti-mouse Tie-2 polyclonal antibody (A) or goat IgG (B) 

and Alexa-fluor 647 conjugated anti-goat IgG. Strong Tie-2 expression is detectable in 

SMCs in a circumferential pattern and ECs of the lymphatic vessel. Red arrow 

indicates unstained vessel. 
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4.10 Summary of results 

Minimal decrease (6 ± 13%) in frequency of contractions with no change in amplitude 

was observed in presence of L-NAME (NOS inhibitor) over 30 min. 

SNP (NO donor) reduced frequency of contractions by 44 ± 17 % over 15 min and 

decreased amplitude by 13 ± 4% within 5 min. 

LPS (batch 1) abolished frequency and amplitude of contractions at 60 min whereas 

no changes in contractility were observed with LPS (batch 2).  

TNF-α (10 ng/ml) decreased frequency of contractions (-9 ± 1.87) and increased 

amplitude (15 ± 23%) from baseline at the end of 2.5 h. 

IL-1β (10 ng/ml) did not alter frequency alone but reduced frequency in combination 

with TNF-α (-6.3 ± 2.7) at the end of 2.5 h. Significant change in amplitude compared 

to control was observed between 75-90 min with IL-1β alone. 

No considerable change was observed in frequency or amplitude with TNF-α (10 

ng/ml) in presence of L-NAME or indomethacin (COX inhibitor). 

There was minimal change in frequency of contractions from baseline at the end of 2.5 

h with Ang-1 alone (1.33 ± 0.66) and in combination with TNF-α (0.66 ± 1.76).  

Ang-1 alone slightly decreased amplitude (10 ± 16%) with minimal change in 

combination with TNF-α (2 ± 5%) from baseline at the end of 2.5 h. 

LYVE-1 staining was detectable in the lymphatic vessel indicating the presence of an 

intact endothelial layer. Tie-2 expression on RMLV was confirmed using confocal 

microscopy. 
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4.11 Discussion 

The aim of these experiments was to assess the effects of pro-inflammatory mediators 

on the functional parameters of collecting lymphatics, determine whether effects were 

mediated via NO and evaluate the anti-inflammatory potential of Ang-1 in protecting 

lymphatic vessel function during inflammation. The ex vivo model used for this series 

of investigations successfully allowed evaluation of vessel responses which are 

discussed in detail below. Our results provide preliminary evidence to support the 

hypothesis that lymphatic contractility is impaired during sepsis via regulation of NO 

and Ang-1 protects pump function in vessels exposed to inflammatory mediators. 

4.11.1 Control optimisation 

A number of problems were encountered whilst achieving a stable frequency of 

contraction for 3 h in untreated lymphatic vessels. With DMEM-F12, there were 

frequent changes in pH of the media, which were measured by submerging a pH probe 

in the organ bath. The media was changed to APSS in an attempt to achieve stable 

frequency throughout the protocol. The vessel required the media to be replenished at 

least every 45 min due to variable frequency of contractions and amplitude.  Media 

was changed every 45 min in the same step-pressure protocol at each time point. Only 

1 ml of the media (3 ml total in the bath) was changed to minimise changes in pH. 

Further, to reduce agitation to the vessel, the changes in pressure were eliminated. 

Indeed, the variability was observed to be reduced. However, in an experiment where 

LPS was added to the media and replaced every 45 min, unstable frequency was 

observed. There was an abnormal increase in frequency of contractions as soon as the 

media was replaced. Therefore, addition of 1mM Ca2+ dissolved in ultrapure water was 

added instead of media. The rationale behind this change was that Ca2+ is the single 

most important ion required to maintain the frequency of contractions and removal of 

extracellular Ca2+ from the media abolishes spontaneous contractions (Mizuno et al 

1997). As evident from the results, the variation is frequency was reduced. Hence, 

further experiments were carried out with this adapted protocol. 

4.11.2 Investigation into the role of NO 

Negative chronotropic and inotropic effects of endothelium-derived NO were shown in 

bovine and rat collecting lymph vessels treated with Ach (Yokoyama and Ohhashi 

1993; Mizuno et al 1998) and by continuous unidirectional flow (Gashev et al 2002). 
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Hence, stimulation of NO production by the lymphatic endothelium was originally 

shown to inhibit lymphatic contractile function. However, the role of lower levels of 

NO, due to the basal NO production in lymphatic function has been continuously 

questioned due to contrasting outcomes in a number of studies. Three studies 

performed prior to the current study, investigating of the role of basal NO in regulation 

of phasic contractions, demonstrated that basal NO either increased or induced no 

effect on the amplitude of contractions but reduced contraction frequency 

(Hagendoorn et al 2004; Gasheva et al 2006; Bohlen et al 2009). However, the study 

by Gasheva et al was performed in isolated rat thoracic duct, which possesses different 

contractile characteristics to that of the mesenteric lymphatic vessels we used in this 

study. The other two studies were performed under conditions where the intraluminal 

pressure and flow were not controlled. It is known that pressure and flow exert 

profound and opposite effects on lymphatic contractile function that may complicate 

the interpretation of in vivo observations (Scallan et al 2012). Hence, it was important 

to establish the function of basal NO in our experimental setting under constant 

transmural pressure and normal pulsatile flow. We investigated whether global 

inhibition of NO by L-NAME affected the frequency and amplitude of mesenteric 

lymphatic vessels in conditions where there was no continuous flow in the vessel. 

Though L-NAME is not a specific eNOS inhibitor, we assumed that it mainly inhibited 

NO production via eNOS since under physiological conditions, basal NO is mainly 

produced by eNOS (Yamashita et al 2000). The integrity of the endothelium was 

confirmed by LYVE-1 staining.  As indicated by the results, L-NAME had no effect 

on either of these parameters. Though a slightly elevated amplitude in L-NAME 

treated vessels compared to D-NAME treated vessels was observed, the difference was 

not significant. Our results agree in part with a study performed by Scallan and Davis 

where popliteal collecting lymphatic vessels from WT and eNOS−/− mice were treated 

with L-NAME.  Contractile parameters remained the same in vessels from mice of 

both genotypes after treatment with L-NAME; however, an increased contraction 

amplitude was observed in the eNOS−/− vessels when compared to WT (Scallan and 

Davis 2013). The authors concluded that basal NO production depresses contraction 

amplitude without increasing frequency. However, we cannot definitively make this 

conclusion from our results as the change in amplitude was not significant.  
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A number of studies performed more recently, support the initial hypothesis that basal 

NO increases lymphatic contraction amplitude by reducing the contraction frequency, 

thereby allowing more time for lymphangion filling to occur so that the next 

contraction becomes stronger (Bohlen et al 2011; Liao et al 2011; Kesler et al 2013). 

To address this discrepancy, Scallan and Davis proposed that in a complex in vivo 

setting, the elevated frequency and decreased contraction amplitude in response to 

eNOS ablation are best explained by an increase in intraluminal hydrostatic pressure, 

in agreement with their previous reports that increased lymphatic preload leads to an 

increase in EDD and frequency while reducing contraction amplitude in proportion to 

the pressure change (Davis et al 2012; Scallan and Davis 2013). They further proposed 

that a possible role for basal NO in collecting lymphatics might be to set contraction 

amplitude at a level that can be increased or decreased to modulate lymph flow. This 

current hypothesis may be further investigated in lymphatic vessels from different 

regions to determine whether basal NO indeed modulates lymph flow as proposed by 

authors. Differences in contractility of lymphatics such as the rat thoracic duct, 

mesenteric, cervical, and femoral lymphatics from different regions, in response to 

pressure and imposed flow have been shown previously. Imposed flow inhibited 

pumping activity by different degrees in different types of lymphatics and vessels 

exhibited optimal pumping activity at low levels of transmural pressure (Gashev et al 

2004). Hence, an investigation into the effects of eNOS ablation on lymphatic vessels 

from different regions will corroborate the role of NO in modulating lymph flow under 

different hydrodynamic conditions. 

We then investigated the role of exogenous NO on RMLV. Exogenous NO released by 

SNP has previously been shown to have inhibitory effects on lymphatic contractile 

function in guinea-pig mesenteric lymphatics (von der Weid et al 2001). It was 

proposed that NO inhibits contractile activity by production of cyclic GMP and cyclic-

AMP-dependent protein kinase which affect the pacemaker activity by decreasing the 

synchronized release of underlying Ca2+ from intracellular stores. Though our results 

did not significantly alter the lymphatic contractile activity, considerable negative 

chronotropic and inotropic effects on the vessel were observed. These results 

combined with other studies mentioned previously clearly identify the role of 

exogenous NO (von der Weid et al 1996) or increased NO production stimulated by 

Ach (Mizuno et al 1998; Scallan and Davis 2013), as a regulator of spontaneous 
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contractions in pathophysiological conditions. The effect of endogenous NO 

stimulation was additionally assessed by treatment of vessels with Ach and AMch. 

Both substances appeared to increase frequency of contraction and caused a decrease 

in amplitude. Though effects on amplitude were in agreement with previous studies, 

the effects on frequency were contradictory (Yokoyama and Ohhashi 1993). This 

discordant data may be due to the intraluminal application of Ach and AMch after 

equilibration. This method was chosen instead of extraluminal application in order to 

achieve a dilatory response in the vessel. However, no changes were observed in 

vessel diameter, possibly due to loss of vessel tone (discussed in Appendix IV). Vessel 

agitation due to intraluminal application may have caused an increase in frequency 

thus disrupting the normal response of the vessel.  

4.11.3 Effects of LPS 

Next, we directed our attention to exploring the effects of LPS, TNF-α and IL-1β on 

lymphatic function. Previously, in vivo studies using intravenous administration of 

endotoxin in sheep, reduced lymph flow and suppressed contractile activity in the 

intestinal lymphatic vessels (Elias et al 1987). An in vitro study investigating 

lymphatic function in bovine mesenteric lymphatics (BML) treated with E.Coli 

endotoxin showed reduction in contractility and tone of the vessels. The latter was 

shown to be mediated by NO and prostacyclin released from ECs; however reduction 

in contractility was endothelium-dependent at higher concentrations of LPS (1 mg/l) 

(Lobov and Kubyshkina 2004). Indeed, in vessels isolated from live animals we 

observed an increase in diameter after treatment with LPS. The study by Elias et al 

also demonstrated that endotoxin exerts its effect on the lymph pump via interaction 

with cellular and/or humoral components in vivo. This could explain the lack of 

response in vessels in experiments where FCS was not added to the media. However, 

in groups where FCS was added, two different responses were observed with different 

batches of LPS. Whereas potent effects of LPS were observed on frequency and 

amplitude of contraction in one group, the second group did not demonstrate any 

changes in these parameters. These differences could be attributed to the variation in 

potency of LPS batches. A similar problem with LPS was encountered in in vivo 

experiments where we employed the low-dose infusion model of endotoxemia 

(discussed in section 3.3.1). Further experiments with LPS were not performed due to 

the inconsistency of effects observed between different groups. Future experiments 
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could be performed with LPS from the same lot to overcome any potential batch 

variation.  

4.11.4 Effects of TNF-α 

The production of pro-inflammatory cytokines is a prime marker of the inflammatory 

process. LECs, macrophages and other cells are a source of cytokine production in 

response to LPS (Sawa and Tsuruga 2008). We wanted to investigate if cytokines 

could affect lymphatic function directly. On treatment of vessels with TNF-α, we 

found a reduction in frequency of contractions consistently at lower concentrations and 

increased contraction amplitude. Effects at higher concentrations of TNF-α were 

inconsistent. 10 ng/ml concentration of TNF-α was chosen for our study as cultured 

human neonatal dermal LECs stimulated with 10 ng/ml TNF-α showed increased 

VCAM-1 and ICAM-1 expression suggesting inflammatory effects on the lymphatic 

endothelium (Sawa et al 2007). Responses at higher concentrations (100 – 500 ng/ml) 

were also investigated, as any effects at these concentrations have not been reported so 

far. This is the first study to demonstrate the chronotropic and inotropic effects of 

TNF-α on internal vessels such as mesenteric lymphatic vessels ex vivo. Increased 

amplitude of contractions suggests a compensatory response by the vessel to maintain 

pumping during acute inflammation as frequency of contraction decreases. The results 

we obtained with TNF-α are consistent with a recently published study, which 

demonstrated that TNF-α, IL-1β and IL-6 acutely and systemically decrease lymphatic 

frequency and lymph velocity in inguinal-to-axillary vessels after intradermal 

administration in mice (Aldrich and Sevick-Muraca 2013).  

We further showed that effects induced by TNF-α were inhibited by L-NAME and 

indomethacin. Thus, our results implicate NO and a COX product as one of the main 

mediators of the effects of TNF-α. iNOS-driven NO production in LEC cultures 

stimulated with TNF-α alone has indeed been shown previously (Leak et al 1995). The 

study showed that TNF-α induced an increase in levels of NO, maximum at 4 h 

reverting to below normal levels by 24 h.  

Arachidonic acid and its metabolites are also known to be important mediators of 

inflammatory reactions. These substances are important modulators of lymphatic 

function and have been shown to directly act on lymphatic vessels (Johnston, 1987). 

The response of lymphatics to arachidonic acid can be inhibitory or excitatory 
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response depending on the predominant metabolite to which it is converted (Johnston 

et al 1983). This was further substantiated by experiments in which the COX inhibitor 

indomethacin inhibited increases in the contraction frequency in microlymphatics of 

rat iliac lymphatics (Mizuno et al 1998). Further evidence of the critical role in 

pathophysiological events was reported from an animal model of intestinal 

inflammation in which impaired contractility in mesenteric lymphatics was attributed 

to PGE2 and prostacyclin (Wu et al 2005). Indeed, in vivo studies demonstrated that the 

inhibition of lymphatic contraction frequency was reverted upon application of 

indomethacin or a combination of COX-1 and COX-2 selective inhibitors to inflamed 

mesenteric vessels in TNBS-induced ileitis in guinea pigs (Wu et al 2006). Increased 

expression of PGE2 and prostacyclin in lymphatic tissues of TNBS-treated animals has 

recently been reported (Rehal and von der Weid 2015). An important role for 

prostanoids in inflammation-induced lymphatic contractile dysfunction surfaced with 

these findings. 

In the experiments we performed, the TNF-α effects were inhibited by indomethacin 

suggesting that metabolites produced through COX, had an inhibitory effect on the 

frequency. These observations are supported by studies which showed that PGE2 and 

prostacyclin decreased frequency of contraction without affecting the amplitude (Rehal 

et al 2009).  Our results indicate that independent inhibition of NO and prostanoids 

prevents the decline in the frequency of contraction. This suggests a mechanism 

linking NO and prostanoids that modulates lymphatic frequency in a manner where the 

effects of one mediator are abrogated when the other is inhibited. These studies 

confirm the complicated mechanism through by which the lymphatic system, may 

respond to its modulators.  

4.11.5 Effects of IL-1β 

A study as early as 1989 showed that intraluminal application of IL-1α and IL-1β 

inhibits pressure-dependent increase in lymphatic pumping in BML (Hanley et al 

1989). The effects in this study were observed at 10-8 M, however this concentration 

was chosen due to limited supplies. 10 ng/ml was chosen in our study as IL-1β at this 

concentration was shown to induce EC adhesion molecule expression and disrupt LEC 

barrier in mouse and human LEC cell lines (Chaitanya et al 2010). Our results showed 

that IL-1β did not have any effect on the frequency; however significant reduction in 
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amplitude of contractions was observed between 75-90 min after stimulation. Again, 

this is the first study to demonstrate inotropic effects of IL-1β on lymphatic vessels. 

Interestingly, observations of one group studying effects of IL-1β in isolated guinea 

pig mesenteric vessels were similar to our observations relating to frequency but 

authors did not report effects on amplitude (Liao and von der Weid 2014). However, 

two recent studies provide evidence in favour of our hypothesis that IL-1β directly 

impairs lymphatic pump function. The more recently published in vitro study 

demonstrated an IL-1β-induced decrease in tonic contractility of rat mesenteric 

lymphatic muscles cells at doses of 5, 10 and 20 ng/ml via upregulation of COX-2 

levels leading to PGE2 production (Al-Kofahi et al 2015). The other study 

investigating the effects of cytokines on lymphatic vessels in vivo, showed decreased 

pumping and reduced flow following intradermal administration of IL-1β in mice, 

which were abated by pre-treatment with an iNOS inhibitor. However, NO production 

by LECs in direct response to IL-1β, was not detected (Aldrich and Sevick-Muraca 

2013). The former study directly demonstrates that the effects of IL-1β on tonic 

contraction are mediated by PGE2, whereas the latter study shows that effects on 

phasic contractility are NO mediated. However, the absence of NO production in 

LECs in the latter study indicates that inhibitory effects on phasic contractions in vivo 

may be mediated via NO induced in other inflammatory cells such as macrophages. 

Further, drawing upon the results of Hanley et al, we postulated that IL-1β may also 

exert its actions on phasic contractility by interacting with other mediators such as 

PGE2 in the inflammatory milieu. Authors showed that IL-1 requires PGE2 for some of 

its actions, so we thought it is possible that production of various prostaglandins such 

as PGE2 and prostacyclin via TNF-α application may stimulate IL-1β activity (Hanley 

et al 1989). Hence, we investigated if a combination of IL-1β and TNF-α would evoke 

a stronger vessel response.  Our results indicated that the level of inhibition of 

frequency in response to a combination of both agents was not different from that 

stimulated by TNF-α administered alone. Future experiments using PGE2 directly in 

combination with IL-1β could be performed to assess whether IL-1β requires a 

synergism with COX-2 products such as PGE2, to mediate its effects on phasic 

contractility. 
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4.11.6 Effects of Ang-1 

We then investigated the effects of Ang-1 on the lymphatic vessel function. No 

changes were observed in frequency and amplitude of contractions in vessel explants 

suggesting that Ang-1 does not have any effect on the contractile function of the 

lymphatic vessel. However, treatment of vessels with Ang-1 prior to application of 

TNF-α maintained stable contractility for the whole duration of the experiment 

indicating a protective effect of Ang-1. This effect of Ang-1 on inflamed lymphatic 

vessels is in agreement with previous studies (Alfieri et al 2012), establishing an anti-

inflammatory effect of Ang-1 on blood endothelium (section 1.3.5). Furthermore, 

Ang-1-modified endothelial progenitor cells attenuated inflammatory responses 

induced by TNF-α in vitro, strengthening its potential to counteract cytokine-induced 

inflammation (Wang et al 2014).  

As discussed in section 1.3.7, effects of Ang-1 are mediated via the downstream 

signaling cascade triggered by its binding to the Tie-2 receptor (Saharinen et al 2008). 

We confirmed the expression of Tie-2 in RMLV by confocal immunofluorescent 

microscopy (Figure 4.27). We speculate that the protective effect observed is mediated 

via the ability of Ang-1 to inhibit NF-κB activation triggered by TNF-α, which in turn 

prevents iNOS upregulation that promotes excessive NO production in the 

endothelium. The inflammatory response at the molecular level is mainly mediated by 

the transcription factors of the NF-κB family. NF-κB is constitutively active in the 

lymphatic vasculature (Saban et al 2004; Wang and Oliver 2010). Through association 

with the inhibitor proteins of the IκB family, it remains in an inactive state in the 

cytoplasm of quiescent cells. Activation of cells by pro-inflammatory factors leads to 

the phosphorylation and degradation of the IκBs, subsequently releasing NF-κB and its 

nuclear translocation. Studies demonstrated that phosphorylation of Tie-2 suppresses 

the activation of NF-κB via recruitment and activation of ABIN-2, which binds to and 

inhibits IKK, the upstream regulator of IκB (Simoes et al 2008; Gu et al 2010).  

Moreover, Ang-1 may be a source of NOS beneficial to the vessel by upregulating 

eNOS expression via the PI3K/Akt pathway (Augustin et al 2009). While the total 

concentration of NO that the lymphatic is exposed to is critical, locally generated 

temporal and spatial gradients of NO due to its short half-life in vivo are integral to its 

action on vessels. As described earlier (section 1.2.2.1), elevated shear force resulting 
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from a contraction in the valvular region during the systolic phase triggers release of 

NO. The NO released causes vessel relaxation necessary for diastolic filling and 

starting the next cycle of contraction. eNOS activation by Ang-1 could maintain these 

temporal and spatial NO gradients, thus preventing the decrease in frequency due to 

TNF-α. This dual action of Ang-1 could prove beneficial in improving lymph flow 

during septic insult.  

4.11.7 RNA isolation 

RNA extraction from RMLV was attempted using different protocols, as the amplified 

cDNA was undetectable with low yields (≈20 ng/ml) of RNA. However, a PCR 

product was obtained after isolation of RNA from the lung sample using mirVana 

Paris RNA Isolation Kit. Though, the size of the amplified cDNA was smaller than 

expected, it may be due to the binding of primers to an internal hybridisation site in the 

template and could be resolved by using a different annealing temperature to enable 

specific primer binding. Nevertheless, obtaining a successful PCR product indicated 

that a different strategy was needed for isolating RNA from lymphatic vessels. 

Bridenbaugh described an organic extraction method to isolate RNA from lymphatic 

vessels due to the difficulties in obtaining a high RNA yield by standard procedures. 

The RNA isolation strategy in this study was particularly developed and optimized to 

isolate high-quality RNA from very small quantities of dissected rat vessel tissue 

(Bridenbaugh 2012). Due to time constraints, further experiments using this method 

could not be performed. However, this study reveals the reasons for our lack of 

success during several attempts to isolate RNA and clearly outlines a strategy for 

confidently approaching RNA isolation from lymphatic vessels in the future. An 

optimum RNA yield would allow detection and quantification of eNOS and iNOS 

levels in non-inflamed and inflamed vessels. Once successful isolation of RNA is 

achieved, inflamed vessels could be treated with Ang-1 to identify changes in levels of 

eNOS and iNOS. These experiments would be critical in establishing the role of Ang-1 

in lymphatic vessel modulation during inflammation.  

4.11.8 Summary and future directions  

These series of studies have begun to characterise the effects of inflammatory 

mediators such as TNF-α and IL-1β on lymphatic function and demonstrated that 

effects of TNF-α may be mediated via NO and prostanoids during early sepsis. An 
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anti-inflammatory role of Ang-1 in ameliorating the effects of TNF-α on lymphatic 

contractile function has also been demonstrated. Since a fundamental role of basal and 

agonist-evoked NO in modulating lymphatic pump function has been identified by 

several studies (Bohlen et al 2011; Kesler et al 2013; Scallan and Davis 2013), further 

experiments were warranted to investigate the expression of NOS isoforms in inflamed 

vessels in order to delineate whether TNF-α mediates alterations via NOS modulation. 

Therefore, studies were performed to assess eNOS and iNOS expression in RMLV 

tissue. It was not possible to offer mechanistic insights into the modulation of 

lymphatic function in this study. Nevertheless, it offers useful insights into the 

challenges of RNA isolation from lymphatic vessels. Whether modulation of 

lymphatic contractility by cytokines occurs due to eNOS-iNOS imbalance and Ang-1 

mediates a protective effect on contractile function via NOS regulation, needs further 

investigation. In our knowledge, there have been no reports on the mechanism of 

cytokine action on lymphatic contractility. Successful quantification of NOS 

transcripts in lymphatic tissue is needed to substantiate our hypothesis.  
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5.1 The lymphatic system in sepsis 

The inflammatory response is a central component of sepsis driving the multiple 

physiological impairments that lead to its progression. A tight regulation of this 

response is crucial to maintain a balance between protective and host-damaging 

responses. However, a loss of this balance is a key feature that identifies the 

destructive nature of sepsis. Thus far, a large number of immunomodulatory agents 

have been investigated in pre-clinical models and clinical settings to find an effective 

therapeutic agent that reduces mortality in patients affected with severe sepsis.  

Particularly, increased attention has been directed towards strategies targeting the 

exaggerated pro-inflammatory response after the onset of sepsis (Marshall 2008; 

Rittirsch et al 2008). However, despite some success in experimental models, most of 

the clinical trials have shown little success in reducing mortality rates (Ulloa et al 2009; 

Angus and van der Poll 2013; Fink and Warren 2014). These poor clinical outcomes 

warrant further research into under-investigated inflammatory aspects of the 

pathophysiology and anti-inflammatory strategies to resolve particular pathological 

processes that contribute to disease progression.  

Over the last decade, the importance of microcirculatory dysfunction resulting due to 

the ensuing inflammation has been increasingly recognised. As discussed in section 

1.3.7, multiple derangements at the microcirculatory level drive the pathophysiology 

of sepsis (Vincent and De Backer 2005; De Backer et al 2014). While investigative 

research has mostly been focused on these derangements in the blood vasculature, 

there is an equally important involvement by its counterpart, the lymphatic vasculature. 

In this study, we have discussed the changes that occur in the lymphatic vasculature 

during an inflammatory state, focusing on that which follows a septic insult. A greater 

knowledge of changes in the lymphatic vasculature would inform the potential for 

future therapies that can be designed to ameliorate dysfunction at the microcirculatory 

level in sepsis.  

The principal function of lymphatics in maintaining tissue fluid balance by adapting its 

pumping activity to changes in fluid load has been recognised historically (Gashev and 

Zawieja 2001). The role of the lymphatic circulatory system is sepsis was identified 

nearly three decades ago when authors suggested that impaired lymph propulsion may 

contribute to oedema by reducing the ability of the lymphatic vessel to remove 
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interstitial fluid from the extravascular tissue spaces (Elias et al 1987; Johnston et al 

1987). Oedema, defined as the accumulation of excess interstitial fluid volume can be 

a cause and an effect of inflammation-induced organ failure. Endotoxin-induced 

oedema worsens with increased microvascular pressure due to increased microvascular 

filtration and reduced lymphatic function (Dongaonkar et al 2008). The biological role 

of lymphatic vessels in the pathogenesis of inflammation is not clearly established to 

date. Lymphatic vessels clear inflammation-associated oedema by active pumping 

activity removing immune cells and inflammatory cytokines from the site of infection 

in the process but in contrast they partake in mounting an immune response by 

transporting activated APCs from the site of infection to regional lymph nodes. 

Growing evidence (reviewed in section 1.2.5) suggests that lymphatic vessels play an 

active role in the inflammatory process (Cueni and Detmar 2008; Shields 2011). 

However, dysregulated inflammation, such as occurs in sepsis, causes lymphatic 

impairment and dysfunctional lymphatics may be a key contributing factor to its 

pathogenesis. Moreover, a recent study unravelled a protective role for lymphatics in 

maintaining intestinal tissue integrity, thus protecting us from sepsis. It showed that 

ablation of intestinal lymphatics leads to gut-derived sepsis (Jang et al 2013). 

The lymphatic endothelial and smooth muscle cell layer, as active players in 

inflammatory conditions where oedema is a hallmark have only been the focus of 

research over the last decade (von der Weid and Muthuchamy 2010). The classical 

view of the function of LECs of the initial lymphatic vessels has been that of a passive 

barrier equipped with primary valves facilitating the convective diffusion of interstitial 

fluid into the lymphatic vessel. Over the years, a number of labs unravelled an active 

role of the lymphatic endothelium in regulating translymphatic flux of fluids and 

solutes (Ono et al 2005; Scallan and Huxley 2010). However, hyper-permeability of 

the lymphatic system in an inflammatory condition is a very recent area of 

investigation. It has been suggested that mesenteric lymphatics may be especially 

compromised, as they are rich in lipids and gut-derived antigens. Moreover, 

inflammation in the region may be aggravated by loss of compartmentalization of 

these factors (Deitch 2012; Cromer et al 2014).  
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5.2 Modulation of lymphatic endothelial barrier function by LPS 

One of the objectives of our first study was to investigate whether mesenteric 

collecting lymphatic vessels become ‘leaky’ during an LPS-induced endotoxemic state. 

The in vivo model we chose complicated the interpretation of altered vessel leakage. 

However, recent in vitro studies have provided evidence of altered LEC permeability 

to LPS and cytokines thus warranting further investigation into vessel leakiness during 

inflammation (Cromer et al 2014; Kawai et al 2014). The model used by Ono et al 

would be useful to accurately measure the permeability of hydrophilic substance 

through the walls of collecting lymphatics in inflammatory conditions (Ono et al 2005). 

Further, we were also interested in examining the mechanisms of endothelial 

permeability, which is modulated by inter-endothelial junctional disruption and 

intracellular contraction of the cytoskeletal components (Bazzoni and Dejana 2004; 

Dejana et al 2008). We used confocal immunofluorescent microscopy to detect VE-

cadherin expression as it plays a major role in regulating BEC permeability. We could 

not further this objective due to time constraints but determining whether sepsis-

related factors such as TNF-α and LPS influence VE-cadherin expression or induce 

dissociation of the junctional complex via phosphorylation of VE-cadherin, is key to 

understanding if lymphatic permeability is regulated through mechanisms similar to 

those in blood vessels.  The challenge, however, will be to visualize VE-cadherin 

clustering with other adhesion molecules and quantify expression in response to 

stimulation of receptors such as Tie-2 that control permeability. Molecular techniques 

combined with high-resolution confocal microscopy would be the next step to take the 

investigation forward. Identifying these mechanisms should reveal novel therapeutic 

targets that may be applicable in the treatment of many pathological situations where 

vascular permeability is adversely affected (Aghajanian et al 2008). 

5.3 Modulation of lymphatic contractile function by inflammatory mediators 

Striking alterations in lymphatic vessel pumping are linked to acute inflammation, 

such as that in sepsis (Alitalo 2011). The rapid release of mediators in tissue injury and 

inflammation during sepsis that increases vascular permeability, results in elevated 

interstitial fluid pressure and increased lymph flow. As lymphatic drainage changes 

rapidly and dramatically, augmented fluid flow serves as an early signal for 

inflammation (Miteva et al 2010). Moreover, lymph flow declines after a certain 

duration due to alterations in lymphatic contractility. Thus, we were interested in 
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assessing changes in flow during early sepsis and any correlation to changes in 

contractility (0-4 h). However, our observations were limited by the camera used for 

imaging lymph flow; moreover, in vivo measurement of contractility was difficult. 

With the advent of new agents such as NIR organic fluorophores or fluorescent 

nanoparticles such as upconverting nanocrystals conjugated with macromolecules 

these have been used to image lymphatic flow using advanced optical techniques; 

pathophysiological changes in flow can now be readily measured (Lucarelli et al 2009). 

Studies using in vivo photo thermal flow cytometry (PTFC) integrated with 

transmission digital microscopy (TDM) have demonstrated the potential of these 

techniques for real-time high-resolution monitoring of functional parameters such as 

diameter, phasic contraction frequency, lymph flow velocity, valve function, and cell 

behaviour in physiological and pathological states and under the influence of different 

therapeutic interventions (Galanzha et al 2007). 

Due to the limitations posed by in vivo measurement of contractile characteristics, 

lymphatic myography was used to determine changes in lymphatic contractility, upon 

inflammatory stimulus ex vivo. The response to the effects of inflammatory mediators 

released in the vicinity of lymphatic vessels was investigated. LPS and the classical 

cytokines TNF-α and IL-1β were chosen to stimulate vessels, as reports on the direct 

effects of these mediators on lymphatic pumping are sparse. LPS and TNF-α decreased 

frequency of lymphatic contractions and reduction in amplitude was observed with 

LPS and IL-1β; however, due to the inconsistent vessel responses to LPS from 

different batches, mechanisms through which TNF-α mediates its effects were 

investigated further.  

The role of NO in mediating the effects of TNF-α was further investigated. Since 

TNF-α is known to disrupt the physiological balance between eNOS and iNOS in 

blood vasculature (Zhang et al 2009), we hypothesised that downregulation of 

lymphatic contractility by TNF-α is mediated via alterations in NO production. Indeed, 

our results showed no reduction in frequency with TNF-α in the presence of L-NAME.  

The role of NO in regulating lymphatic contractile function has been intensively 

studied over the past decade and a series of elegant studies demonstrate a key role for 

basal levels of NO in maintaining lymphatic function (Gashev et al 2002; Gasheva et 

al 2006; Bohlen et al 2011). The most recent hypothesis that has been proposed 
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regarding the role for endogenous NO in collecting lymphatics is that basal NO 

regulates the contraction amplitude at a level allowing either increased or decreased 

levels to modulate lymph flow without altering frequency (Scallan and Davis 2013). 

Whether the increase in strength of contraction is a consequence of reduced frequency 

by basal levels of endogenous NO, is a disputed hypothesis. Results from our 

investigation showed that endogenous may regulate amplitude but not frequency in 

physiological conditions, which is in support of the recent hypothesis proposed by 

Scallan and Davis. The effect in response to exogenous NO, is supportive of the 

current hypothesis that higher agonist-evoked concentrations of NO reduce contractile 

function (Chakraborty et al 2015).  

Chronotropic effects of TNF-α were also blocked by indomethacin, which suggested a 

role for a COX product such as PGE2  and/or prostacyclin in regulation of frequency 

(Rehal and von der Weid 2015). Our results demonstrate that multiple bioactive agents 

may modulate the frequency of lymphatic vessels in an inflammatory environment. 

The pathways involved in the mechanism of action of these agents, is an area of 

further research.  

5.4 Modulation of lymphatic function by Ang-1 

We then evaluated the potential of Ang-1 in restoring lymphatic contractility impaired 

by TNF-α. We chose Ang-1 because of its ability to provide beneficial eNOS and 

remove NO produced by iNOS (Augustin et al 2009). Recent studies have shown that 

temporal and spatial gradients of NO, in addition to the total concentration produced, 

are fundamental to its action on lymphatic pumping. Under physiological conditions, 

NO is produced in LECs via eNOS at specific sites and times during a contraction 

cycle, which facilitates lymphangion filling in the diastolic phase (Bohlen et al 2011). 

While suppression of NOS in activated lymph vessels disrupts the 

contraction/relaxation cycle to increase contraction frequency, NO production via 

eNOS is essential by an activated lymph vessel to facilitate diastolic filling and hence 

sustain elevated lymph pump flow (Kesler et al 2013). Hence, we speculated Ang-1 to 

be an ideal candidate to improve lymphatic contractile function. Indeed, Ang-1 

prevented the decline in frequency observed with TNF-α.  

We next wanted to determine if these effects were mediated via maintaining eNOS and 

preventing an increase in iNOS levels in the vessels. We observed Tie-2 expression in 
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RMLV suggesting that Ang-1 might exert direct effects on the lymphatic endothelium. 

Time constraints did not allow us to fully investigate these mechanisms underlying the 

action of Ang-1 on lymphatic pumping. Delineation of pathways involved in this 

phenomenon may facilitate the development of therapeutic strategies that restore the 

eNOS - iNOS balance. 

Ang-1 may serve as a powerful therapeutic target in improving lymphatic function as it 

has the potential to redress lymphatic barrier dysfunction, another potential mechanism 

that may be underlying lymphatic vessel dysfunction during sepsis (Kajiya et al 2012; 

Kakei et al 2014). Again, we speculate a role for protective eNOS upregulating Ang-1. 

Our speculation that Ang-1 may improve lymphatic endothelial barrier function via 

NO regulation is supported by results from a recent in vivo study performed in our lab 

which suggests that both reduced eNOS and increased NO production via iNOS impair 

blood endothelial barrier function through reduction of VE-cadherin expression at the 

inter-endothelial junctions. This was restored to control levels by MAT.Ang-1. 

Furthermore, VE-cadherin phosphorylation, a mechanism that causes disassembly of 

the protein from the endothelial junction, was increased by L-NAME and restored to 

normal levels after MAT.Ang-1 administration (Alfieri et al 2014). As evident from 

this study, and shown previously, maintenance of the endothelial barrier requires a 

basal level of NO produced via eNOS (Predescu et al 2005). Both reduced NO levels 

and increased NO production, secondary to expression of iNOS during an 

inflammatory response, induce increases in endothelial permeability (Lucas et al 2013). 

iNOS expression activates IP3, triggering intracellular release of Ca2+ and activation of 

myosin light chain kinase (MLCK). Increased amount of phosphorylated myosin light 

chain 20 is indicative of enhanced permeability (Giannotta et al 2013). NO production 

in response to shear stress, independent of NOS, also increases permeability 

(Vandenbroucke et al 2008). Though the permeability response at different 

concentrations of NO is likely to be mediated by different mechanisms, both NO 

deficiency as well as high NO levels destabilize inter-endothelial junctions. Ang-1 

binding to Tie-2 receptors, initiates eNOS activation via Akt, thus providing the much-

needed protective NOS for junctional stability. VE-cadherin is also a direct target of 

Tie-2 activation as sequestration of non-receptor tyrosine kinase Src through the RhoA 

downstream target mDia prevents internalization of VE-Cadherin (Gavard et al 2008). 

Thus, there is a current consensus that eNOS-derived NO regulates the integrity of 
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endothelial barrier by directly affecting the adhesive properties of AJs 

(Vandenbroucke et al 2008; Alfieri et al 2014). The ability of Ang-1 to regulate NOS 

levels and VE-cadherin, strengthen its potential to overcome lymphatic endothelial 

barrier dysfunction. It warrants an investigation into the mechanism of barrier 

disruption in LEC junctions and the potential of Ang-1 in protecting the lymphatic 

endothelial barrier. Ang-1 has been shown to bridge trans-interactions of Tie-2 on 

neighbouring cells, which support cell-cell adhesion. It also increases the availability 

of VE-PTP molecules at inter-endothelial junctions, which may strengthen the 

adhesive function of VE-cadherin (Fukuhara et al 2009). Whether Tie-2 can strengthen 

cell-cell contact in LECs is an interesting question for the future. A mechanism 

through which Ang-1 may mediate its protective effects in LECs in inflammatory 

conditions is proposed in figure 5.1.  

 

 

Figure 5.1 Proposed mechanism of action of Ang-1 in LECs in inflammatory 

conditions. Trans-association of Tie-2 may occur at cell-cell contacts in the presence 

of Ang-1 leading to the activation of PI3K/Akt pathway. Activated Akt may result in 

upregulation of eNOS contributing to vessel integrity and contractility. ABIN-2 

recruited to Tie-2 by Ang-1 may prevent iNOS induction by inhibiting NF-κB 

activation. Adapted from (Fukuhara et al 2010). 

5.5 Conclusions and future directions 

Our studies characterise the lymphatic vessel behaviour in inflammatory conditions 

such as sepsis and elucidate the potential mechanisms that may be involved.  We 

established an ex vivo model of sepsis to investigate changes in mesenteric lymphatic 

Activated	  Tie2	  
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vessel function during early phase of sepsis. This model has allowed the exclusion of 

external influences such as flow, assess direct effects of inflammatory agents on vessel 

contractility and identify any modulation via NO, a key modulator of lymphatic 

contractility. Vessels stimulated with inflammatory cytokines such as TNF-α and IL- 
1β have shown a reduction in pump function, with protection from effects of TNF-α in 

vessels pre-treated with Ang-1. 

Results from our study provide preliminary evidence that modulation of eNOS in 

sepsis may be a promising strategy. eNOS plays a crucial role not only in the control 

of blood flow at the microcirculatory level, but also lymphatic flow. Stimulation of 

eNOS leads to an increase in microcirculatory perfusion in the relevant vessels and 

maintains lymphatic pumping. In sepsis, inadequate production of eNOS, results in 

impaired perfusion and decreased clearance of interstitial fluid aggravating disease 

outcomes. Modulation of eNOS, enabling local generation of NO may thus be 

beneficial not only for microcirculatory perfusion but also for lymphatic function (De 

Backer et al 2014). Cumulatively, our data and results from in vitro and in vivo studies 

performed over a decade suggest that an Ang-1 mimetic might be an effective 

therapeutic tool for increasing microvascular perfusion, mitigating the effects of 

incomplete lymphatic drainage by improving lymphatic contraction and lymph flow 

(David et al 2013). In vivo studies using Ang-1 as a prophylatic agent could be 

designed to assess effects on lymphatic flow in acute and chronic models of 

endotoxemia. It is also necessary to assess whether the protective effects of Ang-1 are 

mediated via eNOS upregulation. IHC of vessels exposed to inflammatory mediators 

following pre-treatment with Ang-1 to detect eNOS expression could clarify the role 

of this NOS isoform in mediating effects of Ang-1.  

As discussed in section 1.2.7, the inflammatory process triggers an increase in the 

permeability in post-capillary venules and evidence in now emerging that the 

lymphatic endothelial barrier may be compromised as well (Cromer et al 2014; Kawai 

et al 2014). The LECs of the collecting lymphatics, which transport lymph and 

immune cells into ducts, form continuous zipper-like junctions comprised of AJ 

protein VE-cadherin and TJ proteins claudin-5 and ZO-1, TJ-associated Ig-like 

transmembrane proteins ESAM, JAM-A, and PECAM-1/CD31(Kesler et al 2013). 

Destabilisation of endothelial AJs by TNF-α has been reported (Angelini et al 2006). 

Future experiments could be designed to investigate the effects of inflammatory 
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mediators on VE-cadherin in RMLV and assess differences in expression and 

organization of VE-cadherin and its binding partners pre- and post-treatment with 

Ang-1. We began the investigation of this objective with confocal immunofluorescent 

microscopy of VE-cadherin in Prof Zawieja’s laboratory (Figure 6.9, Appendix IV). 

Studies were initiated in this lab due to the available expertise in confocal 

immunofluorescent microscopy of lymphatic vessels; however, time constraints did 

not allow us to continue the studies in our lab. 

Our study also supports the role of NO and other inflammatory mediators in the 

vicinity of the lymphatics in regulating basic contractile parameters during sepsis. A 

better understanding of the signaling pathways and regulatory mechanisms involved is 

critical as insufficient lymphatic drainage or fluid stasis is the key underlying feature 

of several other inflammatory pathologies. An effective protocol developed for 

maintenance of isolated RMLV in culture up to 12 days without compromising 

contractile patterns and successful adenoviral/GFP transfection of LECs and lymphatic 

muscle cells, will aid investigation into the mechanisms during this response (Gashev 

et al 2009). Furthermore, the recent successful generation of an in vivo murine model 

of lymphatic contraction will further advance the research by allowing investigation 

into these underlying molecular mechanisms as molecular reagents, genetic knockouts, 

and disease models in mice are easily available (Liao et al 2011). Determining the 

mechanisms in this important response will answer critical questions, which will 

inform the future of developing potent clinically relevant agents as lymphatic disease 

interventions. Hence, future studies, would investigate:  

1) mechanisms regulating lymphatic barrier integrity. 

2) mechanisms mediating the effects of potent inflammatory mediators on 

lymphatic barrier and contractile function. 

3) growth factors as a potential therapeutic target for modulating lymphatic 

function during inflammation. 
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APPENDIX I 

Chapter 2- Materials and methods 

Consumables 

Item Supplier 

2.0 ml eppendorf tubes Fisher Scientific UK Ltd 

Aluminium foil Terinex Ltd 

BD Plastipak™ 1 ml, 2 ml, 5 ml, 20 

ml, 50 ml syringes 

BD Biosciences  

Cellulose dialysis tubing (12, 400 

MW) 

Lot# 10B040530 

Sigma-Aldrich Ltd 

Hospira Butterfly needles, 10 mm Venisystems  

Mersilk 5-0 Sutures Ethicon 

MICRO-MATE® Interchangeable 

hypodermic syringe 

Popper & Sons Inc. 

Portex fine bore polythene tubing 

0.58mm x 0.96mm 

Cole-Parmer Instrument Co. Ltd 

Propax® 8-ply 5 x 5 cm sterile gauze Shermond Surgical Supply Ltd 

Saran wrap SC Johnson 

Scalpel blades Size 11 Paragon 

Silastic® Laboratory polypropylene 

tubing 0.76mm x 1.65mm 

Cole-Parmer Instrument Co. Ltd 

Silclear™ silicone tubing size 0.020” x 

0.037” 

Degania Silicone Ltd 

Terumo® 23G, 26G needles  Neolus 

Trigene disinfectant, concentration 

diluted 1:50 

Medichem International Ltd 

Universal tubes Scientific Laboratory Supplies Ltd 
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Drugs & Reagents 

Acetyl-β-methylcholine chloride Sigma-Aldrich 

Acetylcholine chloride Sigma-Aldrich 

BSA Sigma-Aldrich 

Calcium chloride dihydrate 

Lot# BCBF6545V 

Sigma 

D-NAME Sigma-Aldrich 

DEPC-treated water Ambion 

Dextrose 

Lot# 060M0141V 

Sigma 

Donkey serum 

Product# D9663 

Sigma 

DPBS  

Product# D8862 

Sigma 

EDTA disodium salt dihydrate 

Batch# 067K01442 

Sigma-Aldrich 

Heparin sodium 5000 I.U./ml Wockhardt UK Ltd 

HEPES 

Batch# 030M5402 

Sigma 

HR.Ang-1 

Lot# FHW17 

R&D Systems 

Indomethacin 

Lot# BCBF9122V 

Sigma 

Isoflo® Isoflurane 100%w/w Abbott 

L-NAME Sigma-Aldrich 

LPS (L2637)  

Pressure myography: 

Lot# 078K4067; 100M4061V (Shef) 

Lot# 067K4135; 038K4056 (Tx) 

IVM: 

Lot# 067K847;   EU- 6 x 105 

Lot# 127K4026; EU-1.2 x 106 

Lot# 038K4056; EU-3 x 106 

 

 

 

Sigma 
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Antibodies (Ab) and kits 

Alexa fluor 647 donkey anti-goat IgG Invitrogen 

Anti-mouse LYVE-1 Alexa fluor 488 eBioscience 

Mouse Tie-2 polyclonal Ab goat IgG 

352588, Lot# EFK0208111 

R&D systems 

Mouse VE-Cadherin affinity polyclonal 

Ab goat IgG 

AF1002, Lot# FQI0109041 

R&D systems 

GenElute™ Mammalian TotalRNA Sigma-Aldrich 

Magnesium sulphate 

Lot# 031M01341V 

Sigma 

MOPS 

Batch# 098K0033 

Sigma 

Potassium chloride 

Lot# BCBF2693V 

Sigma-Aldrich 

Potassium phosphate monobasic 

Lot# 018K0128 

Sigma 

Recombinant rat IL-1β 

Lot# 100991-1 

Peprotech 

Recombinant rat TNF-α 

Lot # 070473 

Peprotech 

RNAlater® stabilisation solution 

Cat No# AM7020 

Ambion™ 

Saline Fresenius Kabi Ltd 

Sodium chloride 

Lot# BCBF8020V 

Sigma-Aldrich 

Sodium nitroprusside dihydrate Sigma-Aldrich 

Sodium phosphate monobasic  

Lot# BCBD2824V 

Sigma 

Thiopental sodium  Archimedes Pharma Ltd 

TRI Reagent® 

Cat No. T9424 

Sigma-Aldrich 
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Miniprep kit 

Product# RTN10 

mirVana PARIS Kit 

Product# AM1556 

Applied Biosystems 

RNeasy Mini Kit  

Cat. No. 74104 

Qiagen 

TURBO DNA-free™ Kit Ambion 

High capacity RNA-to-cDNA Kit  Applied Biosystems 

 

Equipment 

Anaesthesia syringe Pump (Graseby 

3400) 

Graseby Medical 

Anaesthetic machine Burtons Medical Equiment Ltd. 

Angled forceps 

Product Code: 00649-11 

Fine Science Tools 

Artery clamp 

Product Code: 18055-04 

Fine Science Tools 

BIOPAC MP system Biopac systems, Inc. 

Black and white video monitor (Model: 

CMM1200N) 

Costar video systems 

C28 rechargeable cordless cautery Warecrest Ltd 

CH/2/M vessel chamber Living Systems Instrumentation 

Colour video camera  JVC; Sony Trinitron 

Colour video monitor Sony Trinitron 

Curved forceps 

Product Code: 11051-10 

Fine Science Tools 

Dumont Forceps #5 

Product Code: 11255-20 

Fine Science Tools 

Glass cannula pack Living Systems Instrumentation 

Optical Power Meter Omega Universal Technologies Inc 

Professional DVD recorder MP-6000 

Mk2 

Datavideo 

Spectrophotometer (Nanodrop ND-1000) Labtech International 
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Sphygmomanometer Model No. 605 Kenzmedico Co. Ltd. 

Spring scissors 

Product Code: 15012-12 

Fine Science Tools 

Surgical scissors  

Product Code: 14559-11 

Fine Science Tools 

Temperature controller (Model TC-02) Living Systems Instrumentation 

Thermometer Fluke Ltd 

Video Dimension Analyser (V94) Living Systems Instrumentation 
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APPENDIX II 

Chapter 2- Materials and Methods 

 
APSS was prepared from the following components: 
 

Salt Chemical MW Molarity (mM) Amount per 500 
ml (g) 

NaCl 58.44 145.000 4.235 
KCl 74.56 4.700 0.175 
CaCl2.2H2O 147.02 2.000 0.145 
MgSO4 120.37 1.170 0.07 
NaH2PO4 119.98 1.200 0.07 
Dextrose 180.16 5.000 0.45 
Sodium Pyruvate 100mM solution 2.000 10ml 
EDTA.2H2O 372.2 0.020 0.0037 
MOPS 209.2 3.000 0.628 

                                      
To prepare APSS, 500ml glass bottle was filled with 0.4 l of ultrapure H2O. The above 

ingredients were added while mixing until they dissolved. 10g/l BSA (96%, Sigma) 

was added to the solution until it completely dissolved. The volume was adjusted to 

500 ml by ultrapure H2O. The pH of the solution was adjusted to 7.4 at RT. It was 

filtered into a sterile polypropylene bottle using a bottle top filter unit (50 mm, 

Nalgene filtration product) and kept refrigerated. Prior to use in the experiment, the 

solution was warmed to 38oC and the pH adjusted if needed. 

Ca2+ -free solution was prepared in a manner similar to preparation of APSS using the 

same ingredients as above except CaCl2 and EDTA. Prior to use in the experiment, 

0.075g of EDTA was added to 50 ml of stock solution and mixed until all the EDTA 

dissolved. The pH was adjusted to 7.4 at 38oC. 

 
HEPES was prepared from the following components: 
 

Salt MW Amount per 500 ml 
HEPES 237.3 11.915 

RINGER 
NaCl 
KCl 

KH2PO4 
 

 

58.44 
74.56 
136.09 

 

41.4915 
1.752 
0.803 

MgSO4 120.4 1.442 
CaCl2 147.02 3.675 
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Stock solutions of MgSO4, CaCl2, HEPES, Ringer were stored for 1 month at 4°C. 500 

ml of intermediate HEPES solution was prepared by mixing 50 ml of MgSO4, HEPES, 

Ringer each (stock solutions), 16 ml of CaCl2 (stock) and the volume was adjusted to 

500 ml with distilled water. This was stored for 1 week at 4°C. Working HEPES was 

prepared on the day of the experiment by adding 0.99 g/L D(+) glucose (Fw: 180.16) 

to the required  volume of intermediate HEPES and  pH was adjusted to 7.4. 
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APPENDIX III 

Results Chapter 1  

 

Figure 6.1 Mean arterial pressure (MAP) (mean ± SEM) in LPS (n=1) and 

control groups. No significant differences were observed between experimental and 

control groups. 

 

 

Figure 6.2 Heart rate (bpm; beats per minute) (mean ± SEM) in LPS (n=1) and 

control groups.  LPS induced an increase in heart rate at 4 h. *p < 0.05 significantly 

different to saline. 
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Figure 6.3 Effect of LPS (0127:B8) on macromolecular leak. Macromolecular leak 

is expressed as mean cumulative change in grey level (arbitrary units) (±SEM) in LPS 

(n=1) and control groups. No significant difference in leak was observed compared to 

control.  

 

 

Figure 6.4 Effect of LPS (0127:B8) on level of FITC-BSA in lymphatic vessel.  

Change in protein concentration within the lymphatic vessel is expressed as mean 

cumulative change in grey level (arbitrary units) (±SEM) in LPS (n=1) and control 

groups. A significant decrease in grey levels is observed at 4 h after LPS 

administration. **p < 0.01 significantly different to control. 
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APPENDIX IV 

Results chapter 2 

LPS 

 

Figure 6.5 Change in frequency of contractions in vessels continuously suffused 

with DMEM-F12 containing LPS (50 µg/ml). Frequency declined markedly at 3 h in 

LPS treated vessels pressurised at 1, 3 and 5 cm H2O compared to baseline and control.  
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There were significant changes in diameter at 3 h (3 cm H2O) as indicated by % 

increase in diameter in LPS (3 x 106 EU, 1.2 x 106 EU) treated vessels compared to the 

control (Figure 6.6, Table 6.2).  

 

Figure 6.6 Percentage change in diameter of vessels continuously suffused with 

DMEM-F12 containing LPS (50 µg/ml). Increase in diameter was observed at all 

time points in LPS treated vessels pressurised at 1, 3 and 5 cm H2O compared to 

baseline and control. Increase was significant at 3 h at a pressure of 3 cm H2O 

compared to untreated vessels suffused with APSS. **p < 0.01 vs APSS. Vessels were 

maximally dilated in Ca-free APSS. 
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MAT.Ang-1 

Figure 6.7 Change in frequency of contractions in presence of MAT.Ang-1. 

Frequency remained unaltered in presence of MAT.Ang-1 in experiments performed 

using set-ups in Texas (Tx) and Sheffield (Shef) at 0, 1.5 and 3 h. 

Figure 6.8 Percentage change in diameter of vessels in presence of MAT.Ang-1. 

Increase in diameter was observed at all time points in vessels at 0, 1.5 and 3 h 

compared to baseline and control in experiments performed using the set-up in Tx. 

Vessels were maximally dilated in Ca-free APSS (35.75 ± 6.3 %). Minimal change in 

diameter was observed in the experiment performed using the set-up in Shef.  
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Tone of vessels 

Vessels isolated from animals culled after Schedule 1 procedure exhibited much lesser 

tone than vessels isolated from anaesthetised animals. The tone, indicated by 

maximum percentage change in diameter of vessels in Ca-free solution using both 

methods is tabulated below (Table 6.1). The latter procedure, which was performed in 

Texas A&M University (Gashev et al 2002), could not be adopted at the Biological 

services in the University of Sheffield due to limitations imposed by Home Office 

ethics guidelines. Therefore, experiments were performed with the vessels obtained 

after schedule 1 procedure was performed on animals. Percentage change in diameter 

at the end of the experiment when compared to baseline in vessels isolated from 

anesthetised animals (maintained in APSS or DMEM-F12) or after animal was culled 

by Schedule 1 procedure and treated with different pharmacological or inflammatory 

agents is shown in table 6.2. Vessels isolated from live animals exhibited a higher 

increase in diameter after treatment with LPS and MAT.Ang-1 compared to vessels 

isolated from culled animals. The decreased tone of vessels maybe due to the 

stimulation of vessels by dilatory agents released during the schedule 1 procedure.  

 

Table 6.1 Percentage change in diameter of vessels in Ca-free solution. Percentage 

change in diameter in Ca-free solution when compared to baseline in vessels isolated 

from anesthetised animals (maintained in APSS or DMEM-F12) or after animal was 

culled by Schedule 1 procedure in control and experimental conditions. 

 

Treatment Max % change in diameter (Ca-free) 

Vessel isolated from live animal 
(maintained in DMEM-F12)(n=1) 

10% 

Vessel isolated from live animal 
(maintained in APSS)(n=1) 

14.11% 

Vessel isolated after animal culled by 
Schedule 1(maintained in APSS) 
(n=3) 

4.07 ± 1.09 % 

LPS treated vessel isolated from live 
animal 

17 ± 1.7 % 

MAT.Ang-1 treated vessel isolated 
from live animal 

35.75 ± 6.3 % 
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Treatment Max % change in diameter 

Control (APSS; Tx) 2% 

Control (DMEM-F12; Tx) 3% 

LPS (DMEM-F12; Tx) 13 ± 2 % 

LPS with serum batch 1 (APSS; Shef) 10.2 ± 3.6 % 

LPS with serum batch 2 (APSS; Shef) -0.8 ± 2.5 % 

LPS without serum (APSS; Shef) 0.92 % 

Ach <1% 

L-NAME (1mM) 0.8  ± 0.6 % 

D-NAME (1mM) -2.6 ± 1.7 % 

SNP 4  ± 5 % 

TNF-α 4  ± 5.9 % 

L-NAME (1mM) + TNF-α 16 ± 8 % 

L-NAME (.1mM) + TNF-α  -1.4 ± 1.2 % 

D-NAME (1mM) + TNF-α  11 ± 4 % 

Indomethacin + TNF-α  3.3  ± 0.7  % 

IL-1β -0.3 ± 3.1 % 

TNF-α + IL-1β -2.3 ± 3.8 % 

MAT.Ang-1 (Tx) 24   ± 0.9 % 

MAT.Ang-1 (Shef) 0 % 

HR.Ang-1 4.2 ± 3.7 % 

Ang-1+ TNF-α  5.4 ± 2.3 % 

Table 6.2 Percentage change in diameter of treated vessels in Ca-free solution. 

Percentage change in diameter at the end of the experiment when compared to baseline 

in vessels isolated from anesthetised animals (maintained in APSS or DMEM-F12) or 

after animal was culled by Schedule 1 procedure and treated with different 

pharmacological or inflammatory agents. 
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Confocal immunofluorescent microscopy  

VE-cadherin 

To detect expression of VE-cadherin, RMLV were treated with purified goat anti-

mouse CD144 polyclonal antibody. Alexa-fluor 647 conjugated anti-goat IgG antibody 

was used to observe immunofluorescence under a confocal microscope (Figure 6.9). 

Specific VE-cadherin staining with the antibody concentrations used could not be 

achieved. Further optimisation was needed to obtain specific staining of VE-cadherin, 

however this was not possible due to time constraints. Detection and visualisation of 

VE-cadherin expression will enable assessment of AJ integrity in the lymphatic 

endothelium during sepsis.  

 

Figure 6.9 Non-specific staining in rat mesenteric lymphatics. Confocal 

immunofluorescent micrographs (x10) (pseudocoloured) of isolated mesenteric 

lymphatics stained with goat anti-mouse CD144 polyclonal antibody (A) (primary Ab) 

or goat IgG (B) and Alexa-fluor 647 conjugated anti-goat IgG (secondary Ab). 

Staining for VE-cadherin is non-specific and visible in non-endothelial cells present in 

the vessel. Red arrow indicates unstained vessel. 
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