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Abstract

Transport planning relies extensively on forecasts of traveller behaviour over hori-
zons of 20 years and more. Implicit in such forecasts is the assumption that trav-
ellers tastes, as represented by the behavioral model parameters, are constant
over time. This assumption is referred to as the temporal transferability of the

models. This thesis presents four main contributions in this area.

First, a comprehensive review of the transferability literature in the context of the
temporal transferability of mode-destination models. This review demonstrated
that there is little evidence about the transferability of mode-destination models
over typical forecasting horizons, and further that most evidence is from models

of commuter mode choice.

Second, further empirical evidence on the temporal transferability of mode-
destination models using data from Toronto and Sydney for transfer periods of
up to 20 years in duration. The transferability of commuter and non-commuter
travel has been compared, and models of non-commute travel were found to be
less temporally transferable. Improving model specification through fixed socio-
economic parameters was found to improve model transferability, and the travel
time and socio-economic parameters were found to be more transferability than

the cost parameters and the model constants.

Third, and most novel, what is believed to be the first empirical evidence on
the impact of taking account of heterogeneity in cost and in-vehicle time sensi-
tivity on the temporal transferability of mode-destination models. This analysis
demonstrated that while accounting for taste heterogeneity led to a better fit
to the base data, there was no evidence that these models were more transfer-
able than models without random heterogeneity. This may be due to the taste

heterogeneity specification over-fitting the base data.



Fourth, practical recommendations are presented for model developers on how to

maximise the transferability of mode-destination models used for assessing policy.



Contents

1 Introduction
1.1 Motivation . . . . . ... L
1.2 Objectives . . . . . . . . o
1.3 Contribution . . . . . . . ..

1.4 Thesis layout . . . . . . . . . . ...

2 Literature review
2.1 Disaggregate mode-destination choice models . . . . ... ... ..
2.1.1 Discrete choice model framework . . . . . ... ... .. ..
2.1.2  The development of mode and destination choice models . .
2.1.3 Advanced model forms . . . . . ... ...

2.2 Defining transferability . . . . . . . ... ... ... L.



2.3 Assessing transferability . . . . . ... 0oL 50

2.3.1 Statistical tests . . . . . ... o oo 51
2.3.2  Changes in individual parameters . . . . . . . . ... .. .. 53
2.3.3 Predictive measures . . . . ... ... 55
2.3.4 Model elasticity . . . . .. ... Lo 57
2.3.5  Assessing temporal transferability . . . ... ... ... .. 60

2.4 Temporal transferability . . . . . . .. .. ... 0L, 62
2.4.1 Mode choice transferability studies . . . . . .. ... .. .. 62
2.4.2  Mode choice validation studies . . . ... ... ... .. .. 68
2.4.3 Otherstudies . . . . . ... ... ... .. ... ... 71

2.5 Spatial Transferability . . . . . . ... .. ... 0. 75
2.5.1 Mode choice transferability studies . . . . . . ... ... .. 76
2.5.2  Mode choice methodological studies . . . .. .. .. .. .. 78

2.6 Summary and aims . . . . . ... ..o 80
2.6.1 Summary of the evidence for temporal transferability . . . 80
2.6.2 Aims. . . ... 82

3 Data 84



3.1 Introduction . . . . . . . . . . .o 85

3.2 Toronto . . . . . ... 88
321 Choicedata . . . . . . ... ... 88
3.2.2 Level of service and attraction data . . . . . .. .. .. .. 95
3.2.3 Processing steps . . . ... oL 100

3.3 Sydney . . . . .o 101
3.3.1 Choicedata . . . . .. ... ... 101
3.3.2 Level of service and attraction data . . . . . .. ... ... 104
3.3.3 Processing steps . . . .. ... Lo oo 110

3.4 Comparison of Sydney and Toronto data . . . . . . ... ... ... 111

4 Model development 113

4.1 Software . . . . . . .. 114

4.2 Toronto . . . . . .. 114
4.2.1 Mode and destination alternatives . . . .. .. .. .. ... 114
4.2.2  Model specification . . . . . . ..o oo 117
4.2.3 Utility functions . . . . . .. .. .o 119
4.24 Modelresults . . . . . ..o o 122

10



4.3 Sydney . . . . .. 124
4.3.1 Mode and destination alternatives . . . .. .. .. .. ... 124
4.3.2 Model specification . . . . . . ... ... L. 127
4.3.3 Utility functions . . . . . . ... Lo oo 132
434 Modelresults . . . .. . ..o 137

5 Parameter transferability 141

5.1 Changes in cost sensitivity over time . . . . . . . . . .. ... ... 142
5.1.1  Adjusting for real income growth . . . . . . .. ... .. .. 142
5.1.2 Tests with Toronto data . . . . . .. ... ... ... .... 144
5.1.3 Tests with Sydney data . . . . ... ... ... ... .... 145
5.1.4 Discussion . . . . . . ..o 148

5.2 Scale adjustment . . . . ... .. Lo 149
5.2.1 Torontodata . . .. ... ... ... oL 149
5.2.2 Sydneydata . .. ... ... 151

5.3 Significance of parameter differences . . . ... ... ... ... .. 152
5.3.1 Torontodata . .. .. ... ... ... ... ... . ... 152
5.3.2 Sydneydata . ... ... ... 153

11



5.3.3 Discussion . . . . . . . .. 155

5.4 Relative changes in parameter values . . . . . . . . ... ... ... 155
54.1 Torontodata . . .. ... ... ... . 156
5.4.2 Sydneydata . ... ... ... oo 158
54.3 Discussion . . . . . ..o Lo 162

5,5 Valuesoftime. . . . . ... .. .. .. ... 163
5.5.1 Torontodata . . . .. .. ... .. .. ... ... ... 165
5.5.2 Sydney data . .. .. .. ... .. ... .. 166
5.5.3 Discussion . . . . ... Lo 169

5.6 Structural parameters . . . . . ... ... ... ... 170
5.6.1 Torontodata . .. .. ... ... ... ... ... ... 170
5.6.2 Sydney data . .. .. .. ... 170
5.6.3 Discussion . . . . . .. L. L oL 172

6 Model transferability 173

6.1 Transferability test statistic . . . . .. ... .. ... ... ..... 174
6.1.1 Torontodata . . ... ... ... ... ... ... 174
6.1.2 Sydney data . .. .. ... ... 175

12



6.1.3 Discussion . . . . . . . . .. 176

6.2 Transferability index . . . . . .. .. .. .o oL 177
6.2.1 Torontodata . . .. ... ... ... oL 177
6.2.2 Sydneydata . .. ... .. ... oo 180
6.2.3 Discussion . . . . . ..o Lo 182

6.3 Predictive measures . . . .. .. .. L Lo 0oL 182
6.3.1 Torontodata . . . .. .. ... ... ... ... ... 183
6.3.2 Sydney data . .. ... ... ... ... 186
6.3.3 Discussion . . . . .. ... L 189

6.4 Elasticities. . . . . . . . Lo 190
6.4.1 Torontodata . . . .. .. .. ... ... ... .. 190
6.4.2 Sydney data . .. .. ... ... 191
6.4.3 Discussion . . . . .. ... Lo Lo 193

7 Pooled models 195

7.1 Partial transfer models . . . . . . . .. ... oL 196

7.2 Pooled models . . . ... .. ... 199
7.2.1 Model specification . . . . . .. ..o 200

13



7.2.2  Model transferability . . . . . .. ... ... oo

7.2.3 Predictive measures . . . . . . .. ...

7.3 SUMMATY . . . . o vt e e

Random taste heterogeneity models

81 Introduction . . . . . . . . . . ...

8.2 Model specification . . . . . ... L oo

83 Model results . . . . ..

8.4 Transferability analysis. . . . . . .. ... ... 0.

8.5 Summary . . . ... e

Conclusions and recommendations

9.1 Mode-destination models over long-term forecasting horizons

9.2 Commuter and non-commuter travel . . . . . . . . ... ... ...

9.3 Evolution of model scale and constants . . . . . . .. ... ... ..

9.4 Accounting for random taste heterogeneity . . . . .. .. .. ...

9.5 Guidance on maximising model transferability . . . . . .. .. ...

9.6 Recommendations for further work . . . . . . . . .. ... ... ..

14

208

209

210

214

216

220

222

. 222



References

A Temporal stability analysis

B Toronto model results

C Sydney model results

D Destination sampling

15

235

246

257

265

272



1.1

Chapter 1

Introduction

Motivation

Local and national government agencies need to be able to forecast demand
for transport, taking account of demographic changes, as well as the impact
of changes to the transport infrastructure. To make these forecasts, the approach
that is typically followed is to develop models that represent a tractable simpli-

fication of current behaviour, and then use those models to forecast behaviour.

The problem that is often followed it to represent the key travel choice decisions

on a given day, traditionally:

e travel frequency - whether to travel, and if so how many times
e mode of travel
e destination zone

e in some cases, time at which the travel takes place

16



e choice of route

These choices may be modelled sequentially with no interaction of lower level
choices with higher level choices, or with some representation of the impact of
lower level choices, for example accessibility measures impacting on travel fre-

quency.

While this approach could be criticised as an over-simplification of reality, it does
represent a well established approach (Ortizar and Willumsen, 2002). The focus
of this research is on investigating an important component of this approach,
namely the mode and destination choices, rather than investigating the validity

of the wider forecasting approach.

Models to explain the mode and destination choices may be aggregate in nature,
typically representing trips at the zonal level, or disaggregate, where the choices of
individuals are represented at the estimation/calibration stage, and then when the
models are applied the model predictions are summed over some representation of
the forecast population. Explaining observed travel patterns in terms of aggregate
correlations does not give a mechanism that is able to fully explain why current
travel patterns have occurred, and in the context of model transferability is does
not provide a theoretical basis to explain what will happen in the future as it
relies on extrapolating mean effects into the future. By contrast, by explaining
individual-level choices using behavioural parameters, disaggregate models are
able to predict the impact of changes in transport supply and socio-economic

characteristics (Ben-Akiva et al., 1976).

Separate models are usually developed by travel purpose, as experience has
demonstrated that the factors influencing these choices vary according to travel
purpose, for example commuter trips are attracted to zones with employment
whereas primary education trips are made to zones containing primary schools.

The focus of this research is on the mode and destination choice decisions, which

17



may be modelled as sequential choices, or as a simultaneous choice. Understand-
ing mode and destination choices is key to understanding the impacts of transport

policy decisions, such as the construction of new infrastructure.

In a forecasting context, disaggregate mode-destination models are used to assess
the effectiveness of different policies over forecasting horizons of 20-plus years.
These models typically include detailed socio-economic segmentation, enabling
both a better fit to the estimation dataset and an ability to predict the impact
of trends in the behavioural variables over time, such as increasing car ownership
or ageing of the population. Forecasting with such models relies on a significant
assumption, namely that the parameters that describe behaviour in the base year
can be used to predict future behaviour. If this assumption is violated, then the
future forecasts will be subject to uncertainty, irrespective of how well the models
fit in the base year, how much segmentation they incorporate, and how accurately

future model inputs can be forecast.

The issue of what is meant by transferability is explored further in Section 2.1.
For the purposes of this introduction, it is useful to cite Koppelman and Wilmot
(1982), who define define a transfer as:

“..the application of a model, information, or theory about behaviour
developed in one context to describe the corresponding behaviour in

another context.”

This research is concerned with the transferability of particular model specifi-
cations rather than the behavioural theories underpinning those models in the
context of forecasting. For example, while investigating the transferability of
models which do not operate within a utility maximising framework would be
an interesting area for research, the focus of this research is on models that are
assumed to operate within the utility maximising framework that is discussed

further in Chapter 2.

In forecasting, models developed at one point at time are applied to predict

18



behaviour at a future point in time. It is thus assumed that the models are
temporally transferable, i.e. that the model parameters that best explain travel
behaviour at the time at which the estimation data was collected will also explain

future travel behaviour.

To investigate the validity of this assumption, temporal transferability can be
assessed by using datasets that have been collected at two or more points in
time in the same geographical area. Provided the same variables are collected
in each time point, it is possible to use the different years of data to develop
identically specified models at each points in time, and make assessments of
model transferability. As will be seen in Chapter 2, this is an approach that has
been used by a number of other researchers to investigate the transferability of
mode choice models, though evidence on simultaneous mode-destination models

is extremely limited.

As transferability might be expected be to change over time, such investigations
only give insight into transferability over the time horizon the data points span,
but by repeating such tests using pairs of data collected over different time hori-
zons more general assessments of temporal transferability can be made. It should
be emphasised that temporal transferability is not stated here as the only condi-
tion that must be satisfied to produce accurate forecasts, rather it is a factor that
is is often overlooked, whereas significant effort may go into predicting the com-
position of the future population and other model inputs, and sensitivity tests

are often run to assess the impact of uncertainty in key model inputs.

The issue of transferability received some attention in the late 1970s and early
1980s when disaggregate mode choice models were being applied for the first time,
but then seems to have largely dropped off the research agenda. Recent efforts
to develop activity based models, particularly in the US, have sparked renewed
interest in the topic of transferability. This thesis revisits the issue in the context

of mode-destination models applied over forecasting horizons of 20 years of more.
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1.2

1.3

Over forecasting horizons of this period, destination choice changes would be
expected in response to policy, and for this reason evidence from models of mode

choice alone is not sufficient.

Objectives

This research has the following objectives:

e to assess the transferability of mode-destination choice models over long-

term forecasting horizons, i.e. up to 20 years;
e to investigate how model transferability evolves over time;

e to investigate the transferability of mode-destination choice models incor-

porating taste heterogeneity; and
e to advise how best to specify models to maximise their temporal transfer-

ability.

A more detailed set of aims are presented at the end of Chapter 2, following

review of the temporal transferability literature.

Contribution

Four key contributions to transferability research are presented in this thesis.

1. a comprehensive review of the transferability literature in the context of

the temporal transferability of mode-destination models;

2. further empirical evidence on the temporal transferability of mode-

destination models using data from Toronto and Sydney for transfer periods

20



1.4

of up to 20 years in duration, including a cross city comparison of model

transferability;

3. most novel, what is believed to be the first empirical evidence on the impact
of taking account of heterogeneity in cost and in-vehicle time sensitivity on

the temporal transferability of mode-destination models; and

4. practical recommendations for model developers on how to maximise the

transferability of mode-destination models used for assessing policy.

Thesis layout

Chapter 2 presents a review of the model transferability literature, starting with
discussions of what is meant by model transferability, and the distinction between
temporal and spatial transferability. The Chapter then discusses how transfer-
ability can be assessed, before going on to review the temporal transferability
and spatial transferability literature. It concludes with by summarising the key
findings from the temporal transferability literature and then sets out specific

research aims for the empirical work.

Chapter 3 discusses the datasets that have been assembled to make empirical tests
of model transferability. The chapter begins with a discussion of the different
datasets considered for analysis, before presenting details for the two datasets
that have been used for analysis, specifically datasets from Toronto, Canada and

Sydney, Australia.

Chapter 4 documents the model development effort. It starts by outlining the
software used for the estimation and analysis work, before going on to docu-
ment the mode and destination alternatives, the model specifications, the utility

functions used in the models, and the key model results.

21



Chapter 5 presents analysis of parameter transferability using both the Toronto
and Sydney datasets. It starts by considering the issue of how to adjust cost sen-
sitivity to take account of real growth in incomes over time, and then summarises
how the comparison of individual parameters has taken account of differences in
scale between different years of data. With these two considerations taken into
account the chapter goes on to present analysis testing whether the changes in
individual parameters are significantly different over time, and analysis of the rel-
ative changes in parameter magnitude over time. Changes in the cost and time

parameters are a particular focus as these parameters are key for testing policy.

Chapter 6 presents analysis of model transferability using both the Toronto and
Sydney datasets. The first two sections use statistical tests of transferability, and
include investigation of how transferability changes over time and as the model
specification is improved. The later sections focus on more pragmatic tests, with
analysis of how well the models are able to predict observed changes in mode
share and trip length over time, and of changes in the elasticities of the models

in response to changes in travel cost and travel time.

Chapter 7 presents analysis of partial transfer and pooled models using the
Toronto dataset. The partial transfer analysis investigates how mode scale evolves
over time for different groups of utility parameters. The pooled analysis investi-
gates whether if datasets from different years can be best combined to enhance
model transferability relative to using data from the most recent year only, and

if so how best to combine them.

Chapter 8 presents analysis that investigates the impact of introducing random
taste heterogeneity for cost and in-vehicle time sensitivities on the transferability

of the Toronto mode-destination models.

Finally, Chapter 9 presents conclusions and suggests directions for future re-

search.
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Chapter 2

Literature review

This chapter starts with by setting out the discrete choice framework used to
develop mode-destination choice models, and with a review of the literature on
mode-destination choice models. This review is presented prior to before intro-
ducing the key concept of model transferability in Section 2.2 because the various

sections on transferability are most logically presented sequentially.

Once the mode-destination choice model literature has been discussed, Section
2.2 goes on to discuss what is meant by model transferability, and in particular
explains how the concept of temporal transferability relates to this particular

research.

Section 2.3 summarises the measures that have been used to assess model trans-
ferability in the literature, and sets out the set of measures used to assess trans-

ferability in this research.

Section 2.4 presents a review of the literature on temporal transferability, the

literature most relevant to this research.
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2.1

2.1.1

Section 2.5 covers the literature on spatial transferability. Although findings
on spatial transferability are less relevant to the objectives of this research, the
methodologies that have been developed to undertake model transfers came from
the spatial transferability literature. Furthermore, most of the key early papers

on the transferability of disaggregate models were concerned with spatial transfer.

Finally, Section 2.6 with a summary of the findings from the transferability liter-
ature, and drawing on the literature review sets out more specific research aims

for the empirical research.

Material from this literature review was presented in Fox and Hess (2010)* and
in Fox et al. (2014).

Disaggregate mode-destination choice models

Discrete choice model framework

This section sets out how disaggregate models of mode-destination choice that
are the focus of this research are defined within the discrete choice modelling
framework. Later, section 2.1.3 discusses some other model forms, such as the

cross-nested logit model, that can be used to model mode and destination choices.

Discrete choice models represent the choice of a decision maker between a num-
ber of discrete alternatives. Depending on the choice that is being represented,
the decision maker might be an individual, a household, a company or any other
decision making unit. To model mode-destination choice, most models have rep-
resented the choice at the individual level, as this is judged to be the level at

which the travel decision is made. However, in some studies models have been

"Winner of the 2010 Fred Burggraf Award for Planning and Environment.
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estimated at the household level, for example the early work to develop shop-
ping mode-destination models of Ben-Akiva (1974). The transferability analysis
presented in this thesis has been undertaking using samples of home—work and
home—other travel trips, and to model these purposes it has been assumed that

the individual rather than the household is the decision making unit.

Train (2003) sets out the three characteristics that the set of alternatives, the
choice set, needs to satisfy to fit within the discrete choice framework. First,
the alternatives must be mutually exclusive. Second, the alternatives must be
erhaustive, i.e. cover all possible alternatives. Third, the number of alternatives

must be finite.

In the context of simultaneous models of mode-destination choice, alternatives
are specified to define the possible combinations of modal alternatives and des-
tination alternatives. The exclusivity condition is satisfied by categorising the
modes into a number of mutually exclusive modal alternatives, and by breaking
up the study area into a number of contiguous non-overlapping model zones?.
As the numbers of modal and destination alternatives are finite, the total num-
ber of alternatives represented is also finite. However, the requirement that the
choice set be exhaustive is often not strictly met. Infrequently chosen modes such
as motorcycle may be excluded from the choice set because the low number of
observations does not justify the additional complexity of modelling them with

a separate alternative. Furthermore, destination alternatives outside the study

area are not always represented on the basis that they are rarely chosen.

Typically decisions to restrict the choice set in this way are justified by under-
taking analysis to demonstrate that the excluded alternatives represent a small
fraction of the observed choices. In the Toronto transferability analysis, between

3.4% and 5.9% of the data for a given year has been excluded because the mode

2In some model areas one or more zones may be used to represent an island that is separated
from the main model area by a body of water, in these cases the island zones may not be
contiguous with the rest of the model zones.
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is rarely chosen and complex to model, or because the mode chosen was not

recorded in all of the other years of the TTS data®.

Restricting the choice set to more frequently chosen alternatives can be justified
on theoretical grounds as well. As discussed in Ben-Akiva and Lerman (1985),
for a multinomial model the estimation can take advantage of the independence
from irrelevant alternatives (IIA) property, which allows consistent estimates of

the model parameters from a sub-set of the alternatives.

The key assumption used to explain choices within the discrete choice model
framework is that of wtility maximisation: individuals are assumed to select the
alternative that maximises their utility (Marschak, 1960). If individuals are la-
beled n, each alternative in the choice set can be referenced as j = 1, ..., J, and the
utility individual n obtains from alternative j is Uy, then the model framework

is that the individual will choose alternative i only if Uy,; > U,;Vj # i.

Making the assumption of utility maximisation, which implies that individuals
are rational in that they select the alternative that maximises their utility, allows

discrete choice models to be specified within an economic framework.

If it was possible to fully observe individual utilities, then the mode-destination
models would be deterministic, as they could predict exactly which alternative
each individual would choose. However, in practice analysts cannot fully observe
individual utilities, and so utility is decomposed into deterministic utility V,; and

random utility €p;:
Unj = an + €ny (2.1)

The deterministic utility component is defined as a function of measurable at-

tributes of each mode-destination alternative, x,;, and a vector of model pa-

3This second condition is only required because transferability analysis is being undertaken
and therefore the modal alternatives must be the same for all the years of data.
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rameters which define the tastes of individual n, 3,,. While it is possible to use
non-linear functions for the parameters, such as the Box-Cox formulation (Box
and Cox, 1964), in the multinomial and nested logit formulations it is assumed

that the function is linear in parameters. This allows us to write:
Unj = /annj + €ny (22)

An important point to note is that because the analyst does not know &,;Vj
these terms are treated as random. The presence of the random term means
that the choice process becomes probabilistic, and the model is termed a random
utility model (RUM) (Marschak, 1960). The probability that individual n chooses

alternative 7 can now be written:
P, = P(z’:‘nj —Eni < Vi — an Vj 7& ’L) (2.3)

Different assumptions about the distribution of ¢,; give rise to different model
types. Logit models have been used for the transferability analysis presented in

later chapters.

Multinomial logit

Despite the availability of more advanced model forms, the multinomial logit
model (MNL) remains widely used in transport planning, as it has a closed form
expression that is easy to estimate. The logit formula was originally derived
by Luce (1959), and later McFadden (1974) showed that the logit formula for
the choice probabilities implies that the unobserved utility is distributed extreme

value.

The logit model assumes that each random error term &, is independently, iden-
tically distributed extreme value. This distribution is also called Gumbel and

type I extreme value, and is close to the normal distribution but with slightly
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fatter tails. Given the Gumbel distribution for e,;, Train (2003) sets out the
algebra that shows the MNL choice probabilities can be written:

evni

Pni = ‘ZJ ean

(2.4)
Daly (1982) discusses the estimation of logit models incorporating size variables.
Size variables S represent the quantity of elementary choices in each destination
alternative, and appear in the models in a different way from other variables x
that describe the quality of the different alternatives. Specifically, size variables
are formulated so that the probability of choice is proportional to the size vari-
able. This is achieved by entering the size variables into the utility functions in

logarithmic form:

e(Vd/ +alnSy) Sé‘tevd/

T ND _(VitainSy)  N~D %
Zd:l e(VatalnSq) Zd:l Sg‘e 4

Py (2.5)
where « is the size parameter, which in most practical applications is constrained

to one so that the model is independent of the zone system used for estimation.

In the context of simultaneous mode-destination choice, we are predicting the
choice of mode-destination alternative m/d’ from modal alternatives m = 1, ..., M
and destination alternatives d = 1,..., D. Noting that the size parameter a has

been constrained to one, the probability expression can be written:

Sd/eVM’d’
M D
D om=1 2d=1 SaeVmd

The key assumption in the MNL model is that the ¢,; terms are independent.

Poar = (2.6)

This means that the unobserved component of utility for a given alternative is
unrelated to the unobserved component of utility for another alternative. This
has an important implication for the substitution patterns in the model. In an
MNL model, if an alternative is improved it draws demand proportionately from

the other alternatives. So, if an improvement to one alternative caused demand
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for another alternative to reduce by 5%, then the same 5% reduction in demand is
observed for all alternatives apart from the improved alternative. This property

is termed Independence from Irrelevant Alternatives (1IA).

Nested logit

For modelling mode-destination choice, there are a number of ways in which the
ITA property may be violated. It may be that in response to an improvement
to a given mode-destination alternative, demand is more likely to be drawn from
other modes travelling to the same destination than from other destinations.
Conversely, it may be that demand is more likely to be drawn from other des-
tinations reached by the same mode than from other modes. Finally, it may be
that some modal alternatives are closer substitutes than others, for example that
individuals are more likely to switch between different PT modes than between
PT and non-PT modes. Nested logit models are able to take account of these
more complex substitution patterns by accounting for correlation between the

€nj terms across different alternatives.

In the nested logit model, alternatives are grouped into nests. Alternatives that
are expected to be closer substitutes are placed in the same nest, and the error
terms e,; for all alternatives in the same nest are correlated. However, there is
no correlation between the €,; terms for two alternatives in different nests. For
two alternatives within the same nest, the ratio of probabilities is independent
of all other alternatives, so the ITA property holds within each nest. However,
for two alternatives in different nests, the ratio of probabilities can depend on
the other alternatives, so that in general ITA does not hold for alternatives in

different nests.

Using the notation given in Train (2003), the set of alternatives j can be parti-

tioned into K mnon-overlapping nests By, Bo, ...., Bx. Williams (1977), Daly and
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Zachary (1978) and McFadden (1978) independently proved that the nested logit
model is consistent with utility maximisation, and that the choice probability for

alternative ¢ in nest B can be written:

evni/)\k . evn]‘/)\k Ap—1
Pni _ K(ZyEBk — )\)/\ (27)
21X jen € ni /Ay

Values for A; between zero and one ensure consistency with utility maximising
behaviour. Train (2003) notes that with values of A, greater than one the model
is consistent with utility maximising behaviour for a range of the explanatory
variables, but not for all values. It can be seen that if Ay = 1 for all k, then the
term in brackets on the numerator of Equation 2.7 is one, and the probability
formula reduces to the MNL formula given in Equation 2.4. Values for Ay closer
to zero indicate the alternatives within nest k& are much closer substitutes (i.e.

more correlated) than alternatives in other nests.

The expression in Equation 2.7 is not particularly tractable to work with. How-
ever, Train (2003) illustrates how this equation can be simplified by decomposing

observed utility into two components:
Unj - nk T Ynj + Enj (28)
for j € By where:

Wik depends only on variables that describe nest k
Y,,; depends on variables that describe alternative j, and which vary over

the alternatives within nest k&
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Using Bayes rule, we can write:

eWnik+AeInk

Ellil eWnitAiln

Pup, = (2.10)

P e (2.11)
i|Br, — ) :

TLZ' k Z]EBk er/)\k

Lp =1In Y /™ (2.12)
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The I, term is called the inclusive value or logsum, and brings information from

the lower model into the upper model.

It should be emphasised that the nested logit model structure does not imply
sequential choice behaviour, rather a simultaneous choice between the different
alternatives is represented taking account of correlation between the different

alternatives.

An important issue highlighted by Koppelman and Wen (1998) is that there are
two different formulations of the nested logit model in use. The version presented
in Equations 2.10 to 2.12 is the RU2 formulation or Utility Maximising Nested
Logit Model (UMNL) formulation. In the alternative formulation, referred to as
the RU1 or Non-Normalised Nested Logit (NNNL), the coefficients in the lower
model are not divided by \; in Equation 2.11%. Koppelman and Wen stated that

“The RU1 and RU2 notation was coined by Hensher (2002) and has been used in the discus-
sion in the remainder of this section.
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the RU1 model is not consistent with utility maximisation when coefficients are

comimon across nests.

However, Daly (2001) notes that the RU1 and RU2 formulations are equivalent
when the trees are symmetrical, that is to say all of the structural parameters
at each level are equal, and so if this condition is satisfied models specified using
the RU1 form with parameters shared across nests are consistent with utility
maximisation. In this work, the ALOGIT estimation software has been used
because it is quicker than alternative estimation software for estimating mode-
destination choice models, and ALOGIT works with the RU1 formulation. All of
the tree structures that have been estimated are symmetrical, and according to

Daly (2001) are therefore consistent with utility maximisation.

Daly (2001) also highlights other conditions under which the RU1 and RU2 formu-
lations are equivalent, specifically if there are no generic coefficients multiplying
terms in the utility functions in different nests, or where alternatives with asym-
metric branching have zero utility. Neither of these conditions hold in the models
tested in this research; as the tree structures are always symmetrical consistency

between RU1 and RU2 is always achieved.

Two alternative (symmetrical) tree structures for mode and destination choice
have been tested in this research, a modes above destinations structure, and a
destinations above modes structure. These structures investigate the relative
levels of error in the two choices in order to arrive at a structure where the choice
with the lower level of error is represented beneath the choice with a higher level
of error. The lowest level choice is more sensitive to changes in utility, as the
structural parameters have the effect of reducing the scale of utility at higher
levels in the tree to compensate for the higher levels of error. It is important to
emphasise therefore that the mode-destination tree structure is a reflection of the
error structure in a model of simultaneous mode and destination choice, it is not

a reflection of the sequence in which the mode and destination choices are made.
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The choice probability calculations for these two structures are detailed in the
following sections. Chapter 4 discusses the results of tests of the two alternative

structures for the Toronto and Sydney models.

Destinations above modes structure

Noting that the models are estimated using the RU1 formulation, dropping the
index for individual n for clarity, noting that the size parameter a has been
constrained to one and that the size functions must enter at the destination level
in the structure for the proportionality condition to hold, the choice probabilities

from Equations 2.9 to 2.12 can be written:

Pa = Pd’Pm’\d’ (2.13)
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where 04, is the structural parameter that governs the relative sensitivity of
destination and mode choices. To guarantee consistency with RUM 6, must
lie between zero and one, though Borsch-Supan (1990) demonstrated that under
certain conditions it is possible to estimate models where the structural parameter

is greater than one that are consistent with RUM.
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2.1.2

Modes above destinations

In the modes above destinations structure, all of the utility functions including
the size functions are specified at the lower level of the structure. Again noting
that the models are estimated using the RU1 formulation, dropping the index for
individual n for clarity, and noting that the size parameter « has been constrained

to one, the choice probabilities from Equations 2.9 to 2.12 can be written:

e(Omaln 327 €¥m=d)

ZTAY{ e(gmdln 21?:1 ede)

Py = (2.17)

Sd*evm*d*
Py = —— (2.18)
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where 0,4 is the structural parameter that governs the relative sensitivity of
mode and destination choices. To guarantee consistency with RUM 6,,; must lie

between zero and one.

The development of mode and destination choice models

Predicting the modes future travellers will choose, and the destinations they will
travel to, is fundamental to making forecasts of travel demand. In the traditional
aggregate four-stage model, distribution and mode choice are predicted as sepa-
rate choices. Demand is allocated over destinations first, and then the mode split
step is applied for each origin-destination pair (Ortizar and Willumsen, 2002).

The models are aggregate in the sense that the dependent variable represents a
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group of observations, namely observed data grouped to model zones.

Disaggregate models of simultaneous mode-destination choice are disaggregate
in the sense that they are estimated from observations from individual decision
makers, though it should be emphasised that the models are not individual-level
models, rather individual-level data is used to estimate models that represent
average preference for a particular segment of the population. Kitamura et al.
(1998) highlight that while models is this type are disaggregate in their treatment
of travellers, they are aggregate in their treatment of destination opportunities

which are represented at the zonal level.

Nearly all of the disaggregate models of simultaneous mode-destination choice
that have been developed since the 1970s have used either multinomial or nested
logit models. Vovsha (1997) suggests this is because these models are theoreti-
cally sound, they have a simple analytical structure that is readily understood,
and software to calibrate these models is widely available. Nested model forms
have been used to develop model structures where modes are grouped below des-
tinations, or destinations are grouped below modes, to investigate the relative
sensitivity of these two choices. Furthermore, nested structures may be used
to group more similar modes together, the most usual example being grouping
public transport (PT) modes together to reflect the higher rates of substitution
between PT modes than between PT and non-PT modes. For example, Fox et al.
(2011) document the development of simultaneous models of mode-destination
choice for Sydney that have main mode choice as the highest level (least sensitive)
choice, with the choice between different public transport modes as the middle

level choice, and then destination choice as the lower level choice.

This section goes to to discuss the early literature that set out the arguments for
modelling mode and destination choice simultaneously before going on to describe

both pioneering and more recent applications of mode-destination choice models.
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Stmultaneous models of mode and destination choice

Estimating the mode and choice decisions simultaneously allows the relative sen-
sitivity of the two choices to be identified from the estimation data, rather than
imposing a sequence to the choices a priori, and from a behavioural perspec-
tive is more realistic, for example by properly representing the choice between
walking to the corner shop or driving to a more distant supermarket. As noted
below, some of the early work in developing simultaneous models noted that key

parameter estimates may be significantly different in simultaneous models.

Richards (1974) outlined the arguments for moving from modelling travel choices
as a series of sequential and partially independent decisions, such as separate
models for mode and destination choices, towards simultaneous choice models.
He suggested that a truly behavioural model should ideally include all those
choices relevant to the period for which predictions are required and which can
be expected to significantly influence those predictions. Estimating simultaneous
models for mode and destination choice was identified as a substantial improve-
ment on the sequential modelling approach that was possible with the data and

modelling techniques available at that time.

In the same issue of Transportation, Richards and Ben-Akiva (1974) presented
results for a simultaneous destination and mode choice model for shopping travel
estimated using data from the Eindhoven region in The Netherlands. Richards
and Ben-Akiva do not explicitly test whether the simultaneous models that they
develop gave better predictions than separate mode and destination choice mod-
els. However, in their introduction they note that because mode and destination
choices are expected to be inter-dependent a simultaneous model is preferred to
sequential models. Results are presented in the paper for both mode-choice only
and mode-destination choice models. A comparison of the two sets of parameters
demonstrates that the mode-destination choice specification yields more signif-

icant parameter estimates. For example, the in-vehicle time parameter has a
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t-ratio of 13.3 in the mode-destination specification compared to just 3.6 in the
mode-choice only specification, which in the author’s view is likely to be due to
the greater inter-alternative variation in travel times in the simultaneous model

specification.

Ben-Akiva (1974) discussed some of the practical advantages of using disaggregate
models in place of the aggregate models widely used at the time. As aggregate
models lose detailed information when data is aggregated to model zones, Ben-
Akiva suggested that it should be possible to develop disaggregate models using
smaller sample sizes. Furthermore, because disaggregate models seek to explain
the observed choices using behavioural model parameters, Ben-Akiva suggested

that the models should be more transferable to other areas.

Ben-Akiva developed a simultaneous model of mode and destination choice for
shopping tours recorded in a 1968 home interview survey in metropolitan Wash-
ington D.C.. The models were developed at the household level, as that was
judged to be the decision making unit for shopping travel. He compared the
results from the simultaneous models to those from the two possible sequential
model structures, predicting destination choice first and then predicting mode
choice conditional on destination (m|d), and predicting mode choice first and
then predicting destination choice conditional on mode choice (d|m). In terms
of overall fit to the data, there was little difference between the three different
approaches. However, there were significant differences in the implied values of
time (VOT), with the VOTs in the simultaneous model higher than those in
the (m|d) model, but lower than those in the (d|m) model. Furthermore, the
cost elasticities in the simultaneous model where much lower than those in the
(m|d) model. Thus while the paper does not demonstrate that the simultaneous
model is superior to sequential models, it does illustrate that the choice of model

structure has an important impact on the response characteristics of the models.

In Adler and Ben-Akiva (1975), the shopping mode-destination choice structure
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developed by Ben-Akiva was extended to include frequency choice, with the choice
between zero and one household shopping tours represented. The authors as-
serted that Ben-Akiva’s finding that the model results are sensitive to the choice
structure used to represent mode and destination choices makes a convincing
case for the use of a joint-choice structure. This is only true if the model results
from the simultaneous structure were demonstrated to be more plausible, and the
Ben-Akiva paper presented no such evidence. The frequency choice introduced
to the model structure by Adler was a binary choice between no tour and one
return shopping tour (home-shopping-home). The plausibility of the joint model
structure was tested by making five policy tests to represent include gas and
parking cost increases, incentives to encourage car pooling, and wider availability

of transit. The joint model responded plausibly to these policy tests.

In summary, a number of these early papers claim that mode and destination
choices should be modelled simultaneously rather than sequentially to better re-
flect how individuals make choices, which is plausible from a behavioural perspec-
tive. However, the evidence from these studies that the simultaneous approach

actually results in better quality models and forecasts is limited.
Pioneering applications of mode-destination models

Ben-Akiva et al. (1976) provided an overview of research into disaggregate mod-
els at that time, and summarised some practical applications. They noted that
the initial applications of disaggregate models from 1962 onwards were all for
the choice of travel mode, the first extension to a multi-dimensional choice sit-
uation was a 1972 study by Charles River Associates that developed models for
frequency, destination and mode choice. However, each choice was modelled sep-
arately in a sequential fashion. Thus the first simultaneous mode-destination
choice model appears to be the Eindhoven models described in Richards and
Ben-Akiva (1974).
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Hoorn and Vogelaar (1978) describes the development of the SIGMO model sys-
tem for Amsterdam, one of the first disaggregate model systems. In the SIGMO
study, disaggregate models for distribution and mode choice were developed se-
quentially, but the models were linked by calculating a mode choice logsum for
each destination alternative represented in the distribution model. Four different
travel purposes were represented: home—work, home—-shopping, home—social and
home—-other (covering education, recreation, business and pleasure ride), and car
availability for purposes other than home—work was conditioned on whether car
driver was chosen for the home-work trip. Validation statistics were presented
which demonstrated that, in most cases, the mode choice models predict the

observed mode splits by distance band well.

Daly and van Zwam (1981) describes the development of the travel demand mod-
els for the Zuidvleugen (South Wing) study of the Randstad conurbation in The
Netherlands. The Zuidvleugen study created another of the earliest disaggregate
model systems. Simultaneous mode-destination choice models were developed for

shopping, personal business, social, recreation and other purposes.
Later developments

Algers et al. (1996) present an overview of the Stockholm Model System (SIMS).
In these models, the simultaneous mode-destination model structure was ex-
tended to include models of car ownership, frequency and car allocation. For
home-work, the structure was split into three substructures. In the top sub-
structure, car ownership and workplace destination are modelled. Next, fre-
quency, car allocation and mode choice are modelled. The lowest level substruc-
ture is the choice of whether to visit a secondary destination, and if so which desti-
nation to choose. The explicit representation of car allocation between household
members in the SIMS model makes this model system a forerunner of the Activity
Based Model systems that emerged in the U.S. around the turn of the century,

and which are discussed briefly below.
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2.1.3

Fox et al. (2003) summarises five different model systems that incorporate dis-
aggregate models of simultaneous mode and destination choice. These model
systems have been developed to model travel demand in The Netherlands, Nor-
way, Paris, Stockholm and Sydney, demonstrating that simultaneous models of
mode and destination choice have been used to forecast transport demands across
Europe and elsewhere. These models represent between four and thirteen differ-
ent modal alternatives, and between 454 and 1308 destination alternatives. The
basic approach used in these models, with separate treatment of car driver and
car passenger modes, explicit representation of walk and cycle mode, and car
availability terms taking account of the interaction between household car own-
ership and licence holding, has formed the basis of the models developed for the

transferability analysis presented in later chapters.

Since the turn of the century, there has been an increasing use of Activity Based
Model (ABM) systems to forecast demand for transport in the U.S.. These model
systems generally use disaggregate models, including models of destination choice,
through it seems that the two decisions are usually modelled sequentially rather
than simultaneously. For example, Jonnalagadda et al. (2001) describe separate
destination choice and mode choice models which are applied in that order to
model travellers in the San Francisco Bay Area. Similarly Vovsha et al. (2002)
describe sequential models of destination and mode choice developed for the New
York Metropolitan Transportation Council. The use of disaggregate models in
ABMs has led to renewed interest into the issue of transferability, for example
Sikder et al. (2013) presented comprehensive review of the spatial transferability

literature in the context of ABMs.

Advanced model forms

Representing complex substitution patterns
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In some contexts, the nested logit model has been found to be inadequate to fully
represent the substitution patterns between the different modes. For example,
Forinash and Koppelman (1993) found that in an intercity mode choice model,
train could be nested equally well with either car or bus, and so no clear nesting
structure could be established using a nested logit model. Vovsha (1997) sets out
the derivation of the cross-nested logit (CNL) model, which allows for more com-
plex substitution patterns to be represented. In the CNL structure, modes can be
allocated to multiple nests using allocation parameters, so in the intercity mode
choice example train could be allocated into nests with both car and bus, with
the CNL estimation procedure identifying values for the allocation parameters

which indicate the extent to which train falls in each nest.

Vovsha used a CNL model to develop a mode choice model for Tel-Aviv, Israel.
This model had two nests, one for car modes and one for PT modes, as illustrated
in Figure 2.1 where the numbers define the probability each that each modal al-
ternative is included in the car or PT nest. It can be seen from Figure 2.1 that the
park-and-ride (P&R) alternative appears in both the car and PT nests. Vovsha
presents validation results for the CNL model, but does not present a comparison
to results from nested logit models to illustrate the impact that moving to the

CNL structure has on the substitution patterns.

Bierlaire et al. (2001) developed mode choice models from a combination of re-
vealed and preference data that could be used to predict demand for a proposed
Swissmetro service, an underground maglev system that would connect the major
urban centres of Switzerland. MNL, nested logit and CNL models were estimated.
0A comparison of the model results demonstrated that the CNL model gave a
significant improvement in the fit to the data, but that the value of time showed

little change when the CNL structure was introduced.
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Figure 2.1: Cross-nested example, Vovsha(1997)



Representing taste heterogeneity

There has been much work in recent years in developing mixed logit models to
reflect heterogeneity in tastes between individuals. In mixed logit models, rather
than estimating a single value for each model parameter (the approach used
in multinomial and nested logit models), for some parameters distributions are

estimated to identify the distribution of tastes across individuals.

An important point to note with mixed logit is that the analyst assumes a shape
for the underlying distribution of preferences. Hess et al. (2005) reviewed the
different distributions that had been used at practice, finding examples of models
using normal, log-normal, triangular and Johnson’s S distributions. As Hess
et al. (2005) discusses, the appropriate distribution will depend on the a-priori
expectations for the model parameter distribution. For cost and travel time
parameters, if the analyst believes that the parameter should reflect negative
utility across the whole distribution, then the unbounded nature of the normal

distribution precludes its use.

Daly and Carrasco (2009) investigated taste heterogeneity in models of commuter
mode-destination choice for Sydney and Paris. They also made similar investiga-
tions using value of time models estimated from two sets of stated preference data
collected in The Netherlands. The base MNL model specifications for Sydney and
Paris used cost in logarithmic form, as this was demonstrated to give an improved
fit to the data compared to a linear cost specification, and it is noted that this
result has been observed in mode-destination models developed for other studies
(Fox et al., 2003). The log-cost formulation implies that the marginal utility of
cost decreases with increasing cost, which means that the implied values of time

increase as the cost of the journey increases.

Daly and Carrasco tested for heteroskedasticity in both cost and time in model

specifications with linear-cost, and in model specifications with log-cost. Both
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cost and time heteroskedasticity were identified, but the largest improvements in
model fit were observed when in cost sensitivity was accounted for. Interestingly,
when heteroskedasticity in cost was included in the Paris models, the log cost
formulation was no longer better than the linear cost formulation in terms of
overall fit to the data. In the Sydney case, while accounting for heteroskedasticity
gave a bigger improvement in model fit in the linear-cost model, the log-cost
formulation gave the best overall explanation of behaviour. The main conclusion
of the paper was that the increase in VOT with trip length is more likely to
be due to heterogeneity in the estimation data leading to self-selection, rather
than for VOT to be increasing with distance at an individual level. For example,
longer journeys are more likely to be made by faster modes, and these modes
tend to be more expensive and so individuals with higher VOTs are more likely

to choose them.

A number of different authors have developed mixed logit models to better explain
mode choice. Bhat (1998) estimated inter-city mode choice models to predict the
choice between car, rail and air on the Toronto to Montréal corridor. He identified
significant heterogeneity in sensitivities to travel costs, in-vehicle times, out-of-
vehicle times and frequency of service, and found that the direct rail demand
elasticities were significantly higher in the mixed logit specification compared
to an equivalent MNL model specification. Green et al. (2006) developed mode
choice models for Sydney using stated preference data that presented a number of
potential PT modes to respondents in a corridor that at that time was only served
by buses. They identified significant heterogeneity in sensitivities of travellers to
travel costs, in-vehicle times and egress times. Pinjari and Bhat (2006) estimated
mode choice models for Austin, Texas using stated preference data that recorded
choices between drive alone, shared ride, bus and rail for commuting trips. They
identified significant heterogeneity in preference for two of the four modes, and

in sensitivities to in-vehicle time and the unreliability of travel time.

It is clear from Daly and Carrasco’s work that significant heterogeneity in tastes
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2.2

can exist in mode-destination choice datasets, and other researchers have found
the same in mode choice datasets. The analysis presented in Chapter 8 inves-
tigates the impact that taking account of this taste heterogeneity has on the

temporal transferability of the models.

Defining transferability

Koppelman and Wilmot (1982) provide the following definition of transferability

which is, in the author’s view, the best definition provided in the literature:

“First, we define transfer as the application of a model, information,
or theory about behaviour developed in one context to describe the
corresponding behaviour in another context. We further define trans-
ferability as the usefulness of the transferred model, information or

theory in the new context.”

The first part of this definition can be interpreted quite broadly. For example,
applying a model based on principles of utility maximisation assumes that those
principles apply in the context in which the model is applied, as well as in the
context in which the model is developed. However, the focus of the transferability
literature, and of this research, is on model transferability. That is to say, assessing
the ability of models developed in one context to explain behaviour in another
context, under the assumption that the underlying behavioural theory on which

the model is based is equally applicable in the two contexts.

It is interesting to note that all of the transferability papers reviewed have fo-
cussed on model transferability without considering whether changes in the ap-
plicability of the underlying economic theory are playing a role. This seems to

be an area where research would be valuable.

Somewhat surprisingly, none of the other papers reviewed attempted to set out
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their own definition of transferability, and indeed in many cases the term is used
without definition under the implicit assumption that its meaning is known to

the reader.

A theme in a number of the early papers on the transferability of disaggregate
models was a belief that disaggregate models, which represent choice at the indi-
vidual level, should be more transferable than aggregate models, which typically
represent choices at the zonal level. In some cases, claims were made for the
models without much supporting evidence. For example, Ben-Akiva and Ather-
ton (1977) claimed that:

“A second major advantage of the disaggregate demand modelling ap-
proach is that it is transferable from one urban area to any another. It
has been hypothesised that, because disaggregate models are based on
household or individual information and do not depend on any specific
zone system, their coefficients should be transferable between different

urban areas.”

Although the second sentence of this quote concedes transferability is a hypothe-
sis, the first seems to treat it as a given for a transfer to any area. The argument
about the zone system seems to have been made in reference to aggregate mod-
elling approaches, which typically operate at the zonal level, but the arguments
were not set out. More generally, while a number of these early papers in the
transferability literature claim that disaggregate models are more transferable
than aggregate techniques, only Watson and Westin (1975) empirically demon-

strated that claim.

Later works, building on empirical findings that the disaggregate models were
not always transferable, were more measured in their claims. Daly (1985) set out

three conditions for model transferability:

e relevance, does the base model give any information on travel behaviour in

the transfer area?
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e walidity, is the transfer model acceptably specified for the transfer area?

e appropriateness, is it appropriate to use the transferred model in the trans-

fer area?

Thus models are only expected to be transferable under certain circumstances.

Along similar lines, Gunn (1985) suggested that:

“.a constructive definition of transferability must be based on prag-
matic considerations. We assume a-priori that model parameters have
different values in different contexts and consider the more general is-
sue of whether or not an existing model provides information that can

be used in some way to improve forecasting in a new context.”

A key distinction is made in the literature is between temporal transferability and
spatial transferability. Temporal transferability is concerned with the application
of models developed using data collected at one point in time at another point in
time, whereas spatial transferability is concerned with the application of models
developed using data from one spatial area in another spatial area. Usually
temporal transfers take place within the same spatial area, and spatial transfers
take place at or around the same point in time. However, in some cases a model is
transferred over both time and space and so the two categories are not mutually

exclusive.

To consider temporal and spatial transferability in the context of disaggregate
mode destination choice models, it is useful to define in summary form the utility

functions used in the models:

Und = BX + €md (2.19)

where: U,,q is the utility of mode-destination alternative md

5 is a vector of model parameters
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X 1is a vector of observed data

€md 1 the random error term

In model development, the objective is to identify model parameters that best ex-
plain the observed data. Thus, as a model is developed, and its ability to explain
the observed choices increases, the term S X increases in importance, and the
term &,,4 decreases in importance. Nonetheless, mode destination models do not
perfectly explain the observed choices, and so some random error remains. The
mean contribution of the random term is captured in the mode specific constants,
which in a mode choice context will capture effects such as the relative reliability
of modes, levels of comfort, climate and hilliness for walking and cycling, and so

on.

In a spatial transfer at the same point in time, the transferability of the model
will depend on the relevance of the parameters in the transfer context, for ex-
ample the degree of similarity in sensitivities to travel time and cost, and on the
appropriateness of the alternative specific constants. Models would be expected
to be transferable for areas that have similar characteristics, such as similarities
in mean travel times and costs, levels of highway and public transport reliability,

climate, hilliness and so forth.

For a temporal transfer in a given area, the considerations are different. The
effect of area to area differences is not present, instead the key issue is whether
the parameters remain constant over time. Stated more explicitly, the issue is
whether within a given population segment, the sensitivities to the different vari-
ables that form the utility functions, and the mean contribution of unmeasured
effects as measured by the alternative specific constants, remain constant over
time. In some instances, the ratio between model parameters is also important.
For example, the value-of-time implied by the ratio between the cost and time
parameters in a model, which will change over time if there are changes in the

cost and time parameters.

48



Thus temporal and spatial transferability are not the same thing. A model might
be temporally transferable within a given area, but contain a specification that
does not transfer well to other areas. Another model might contain a detailed
specification that transfers well to other spatial areas, but does not transfer well

over time.

Spatial transfers typically involve a transfer sample, a sample of choices observed
in the transfer context, which may allow a locally estimated model to be developed
for comparison with the model transfer. When a model is applied to forecast
behaviour, this is a transfer of the model to a new temporal context. However,
unlike many spatial transfers, no transfer sample is available. There is, therefore,

an important practical difference between temporal and spatial transfers.

Temporal transferability can be assessed, however, by using two datasets collected
at different points in time from the same spatial area. Typically one dataset is
historical, one is contemporary. Models estimated from the two samples can be
compared to make assessments of model transferability, and from these, conclu-
sions can be drawn about the temporal transferability of similar models used for
forecasting. The current research is concerned with the transferability of mod-
els over long-term forecasting horizons of 20-plus years, and therefore requires

datasets collected up to twenty years apart.

This research is concerned with the temporal transferability of mode destination
models over long-term forecasting horizons. It is worth emphasising that over
such forecasting horizons, key model inputs, such as population, employment and
travel times and costs on the networks, will be subject to considerable uncertainty,
and different assumptions can have substantial impacts of the predictions of future
travel behaviour. Thus, temporal transferability is a factor in producing the best

possible forecasts of future behaviour, but is certainly not the only consideration.
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2.3

Assessing transferability

Many of the approaches for assessing transferability identified from the literature
rely on the availability of a transfer sample, which is used to develop a locally
estimated model, and then the transferred model is assessed relative to this locally
estimated model. This allows the performance of the two model specifications to

be compared statistically in the transfer context.

The measures of transferability used in the literature can be placed into three

categories. First are statistical tests, discussed in Section 2.3.1.

The second category is measures that look at changes in individual parameters,
or groups of parameters, which are summarised in Section 2.3.2. These measures
provide insight into the transferability of different parameters in a model which
in turn informs assessment of the robustness of model forecasts for different types

of policy intervention.

The third category is predictive measures, described in Section 2.3.3, which are
assessments of the predictive ability of a model in the transfer context. Predictive
measures can be used to make assessments of model transferability, but they do
not necessarily directly measure transferability because errors may follow from
errors in forecasting the input variables, and so measures of this type need to be
interpreted with caution. The issue of the need to disentangle errors in the input

variables from model transferability is discussed further in Section 2.3.3.

A fourth category has been added in this research, namely calculation of model
elasticities which are discussed in Section 2.3.4. These provide a measure of the
overall sensitivity of a model to changes in key policy variables such as travel

costs and travel times.
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2.3.1

Statistical tests

A frequently used statistical test in the literature is the Transferability Test Statis-
tic (T'TS), which assesses the transferability of the base model parameters f; in
the transfer context ¢, under the hypothesis that the two sets of parameters are

equal:

TTSi(Be) = —2(LLt(Bp) — LL(fr)) (2.20)

where: LL(0) is the fit (log-likelihood) of the base model to the transfer data
LL(B;) is the fit for the model re-estimated on the transfer data

TTS is chi-squared distributed with degrees of freedom equal to the number of
model parameters. It can be seen that this test is the same as the standard likeli-
hood ratio test but applied to pairs of log-likelihood values in a different context.
An early example of the application of this test in the context of model transfer-
ability is a mode choice transfer study by Atherton and Ben-Akiva (1976), though
the TTS terminology seems to have been coined by Koppelman and Wilmot
(1982).

The T'T'S measure was widely used in the early transferability literature, but as
discussed in Section 2.3.3 this measure has nearly always rejected the hypothesis
of model transferability, including cases where the model has been found to have
good predictive ability in the transfer context (for example the analysis of Badoe
and Miller (1995a) reviewed in Section 2.4.1).

It should be noted that in general the TT'S statistic is not symmetrical, i.e. for
a given set of base and transfer samples it is possible to accept transferability
in one direction but reject it in the other. So transferability may be accepted
for the base model applied to the transfer data, but that is no guarantee that

the same model specification estimated on the transfer data will be transferable
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to the base data. In forecasting, models only used to predict forward in time,
but assessments of model transferability can be made using data collected at two
points in time, and in these instances transfers can be made both forward and

back in time to maximise the number of tests made.

The Transfer Index (7'I) measures the predictive accuracy of the transferred
model relative to a locally estimated model, with an upper bound of one. A
reference model is used in the calculation of T'I, typically a market shares model

in the case of mode choice.

LLy(By) — LL,(8;)

) = L0 — L)

(2.21)

where: 37/ is the reference model for the transfer data
LLi(Be) 2 LLi(B) = LL(5]))

This measure was devised Koppelman and Wilmot (1982), and the use of a simple
market shares model was relevant to their assessments of mode choice models.
However, this research is specifically concerned with mode-destination models,
and in this context a more appropriate measure of a base model performance
should include some fit to trip length and ensure proportionality to the attraction
variables ceteris paribus °,. This can be achieved by specifying a reference model

with utility functions as follows:

Vel = G + B! distoma + v log(Ag) (2.22)

where: Vy;zf is the utility function for alternative md

dm is a mode-specific constant for mode m

5i.e. that the probability of choosing a destination is proportional to the attraction variables,
all other things being equal.
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2.3.2

B%St is a distance parameter for mode m

dist,,q is the distance to destination d by mode m
Yy

v is the log-size multiplier

A, is the attraction variable

Unlike the T'T'S, the T'I does not either accept or reject the hypothesis of model
transferability. Rather it provides a relative measure of model transferability.
Within a given study area, the T'I can be used to directly assess different sets of
models. When comparing between different studies, the T'I still provides insight
provided the same reference model specification is used, but the T'I does not have

a general scale in a formal sense.

Changes in individual parameters

The statistical measures discussed so far are concerned with the overall fit to
the data, but differences in individual parameter values are also of interest. For
example, the cost and time parameters in a model are key to the forecast responses

to policy, and so changes in these parameters over time are of particular relevance.

In cases where both base and transfer model parameters are available, such a
comparison should correct for scale differences between the two models. Scale
differences result from different levels of error and result in differences in the
magnitude of the parameters, in particular if a model has more error then the
parameters will be smaller in magnitude. Correcting for this scale difference
allows the parameters to be compared on a consistent basis, an issue which is

discussed further in Section 2.5.2.

A number of papers in the literature, particularly those concerned with trans-

fer methodologies, use the term ‘transfer bias’ £, which is simply the difference
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between base and transfer parameter values:

§=ABt — B (2.23)

where: ) is a scale parameter to account for differences in error between
the base and transfer models

(if X is not known it may be set to one, i.e. assuming no change in scale)

If the base and transfer parameters are 5, and 5; respectively then, assuming the

covariance to be zero, the standard error of the difference can be calculated as:

a(Bt = By) = V (0[Be])? + (Ao [B])? (2.24)

where: o[fp] is the standard error of £
o[B] is the standard error of j3;

In the context of tests of temporal transferability the assumption of zero covari-
ance is reasonable, because the choice samples used at different points at time
are collected from different people and so it is reasonable to assume that their

choices are not correlated.

The t-ratio for the parameter difference is then calculated as:

A _
t(Be — B) = U(Z—?;) (2.25)

If the t-ratio exceeds a critical value, such as 1.96 for a 95% confidence interval,
then the null hypothesis Hy that the parameters are identical is rejected. An
important point to note when interpreting results from this test is that the higher
the standard deviations of 8, and B, the more likely it is that the null hypothesis
will be accepted. So (8, and B; could be substantially different in magnitude,

but due to low parameter significance in one or both of the parameters the null
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2.3.3

hypothesis that the parameters are identical could be accepted. An alternative
to calculating the significance of parameter differences is to calculate the change
in absolute parameter magnitude, accounting for scale differences between the
base and transfer contexts. To do this the relative error measure (REM) can be
calculated using as:

REMjg = A8 = B) (2.26)

Bb

Predictive measures

Building on early empirical findings that transferred models usually failed strict
statistical tests of transferability, predictive measures were increasingly used to
assess transferability as the transferability literature developed. For example,
Lerman (1981) argued that the early transferability literature had used an exces-
sively restrictive definition of transferability with an over-emphasis on statistical
tests, and argued that transferability should not be seen as a binary issue but
rather that the extent of transferability should be explored. In the same book,
Ben-Akiva (1981) argued that achieving perfect transferability is impossible, as a
model is never perfectly specified, and therefore pragmatic transferability crite-
ria are required in addition to standard statistical tests. Daly and Gunn (1983)
made similar arguments, arguing against simple accept or reject statistical tests

of transferability in favour of more pragmatic measures.

Predictive measures need to be interpreted carefully when making assessments of
model transferability. In cases where both base and transfer samples are available,
then provided both datasets provide accurate samples of individual choices, the
ability of the base model to predict choices in the transfer context is a direct test

of the transferability of the model.
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However, in many studies that validate model predictions against observed aggre-
gate outcomes detailed transfer samples are not available, and the model forecasts
are validated against aggregate mode shares. In these studies, the predictions of
the model depend on the accuracy of the assumed inputs as well as the trans-
ferability of the model itself. So, a model may be highly transferable, but if fuel
prices dramatically increase during the forecast period, and this was not antic-
ipated when the future inputs where assembled, the model predictions may be
some way off the observed outcomes. Care needs to be taken to distinguish input
errors from transferability errors, and in some cases it is not possible to disentan-
gle the two effects. This issue has been considered in the review of temporal and
spatial transferability literature presented later in this chapter. In the empirical
analysis presented in later chapters, historical data has been used and as such
input data was available for each year of data, which means that and the input

errors issue does not arise (assuming that the input data is accurate).

This section goes on to set out a series of measures that have been used in the
literature to measure the predictive performance of models in order to provide

some assessment of model transferability.

The relative error measure (REM) for the prediction of choice frequency in some

aggregate group can be calculated as:

(Prng — Omg)

REMyg = =%
mg

(2.27)

where: P, is the prediction for alternative m in group g

Omyg is the observed choices for alternative m in group g

The difference between Equation 2.27 and Equation 2.26 is that Equation 2.26 is

concerned with changes in individual parameter values whereas Equation 2.27 is
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2.34

concerned with changes in demand.

It should be noted that g is often dropped, i.e. predicted and observed alternative
(e.g. mode) shares are compared but the analysis is not split into separate groups.
As the REM measure is self-scaling, it can be applied both to probabilities, and

to aggregate choice predictions such as numbers of individuals choosing m and g.

Although the REM measure is widely used, it can cause problems with division
by zero if there are no observed choices in group mg. To overcome this problem

a modified measure REM™* can be used:

Prg — Omyg)

REM},, = ( . (2.28)
mg

The use of P, rather than O,,, for the denominator avoids problems of division

by zero when there are no observations but predicted probabilities are non-zero.

Model elasticity

A measure that has received little consideration in the model transferability lit-
erature is model elasticity, that is to say the sensitivity of the model to changes
in key input variables, usually travel times and costs. If demand for alternative

J is Dj, then the elasticity 7;, for a change in a variable x can be calculated as:

x dD;
= 2.2
i D; dx (2.29)

An important advantage of elasticities are that they are dimensionless, which
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means they can be compared between different model systems, or between model

systems and evidence from other data.

Frequently elasticities are computed by observing the changes in demand in re-
sponse to a given change in an input variable. Standard UK practice as set out
in the Department for Transport’s WebTAG guidance® is to use a log form for

the elasticity calculations:

log(D? - Djl)

log (@0 —21) (2.30)

Njz =

Equation 2.30 has been used in the analysis presented in Chapter 6.

Elasticities are an important measure for model validation, as they provide a
check that the model sensitivity is in line with accepted values. In the UK con-
text, the Department of Transport sets out expected elasticity values for realism
testing, in particular for fuel cost where kilometrage elasticities values in the
range -0.25 to -0.35 are expected based on the work of Bradburn and Hyman
(2002).

However, elasticities are also important for model transferability as they define
the sensitivity of the model to changes in travel costs and time. In the UK
context, a model may give fuel cost elasticities in the expected range in the base
context, but if the elasticities change when the model is used in forecasting the
model sensitivity may no longer be acceptable. Many transport demand models
in the UK are applied using a pivot approach, whereby the model is applied in
both base and forecast contexts to define growth factors applied relative to base
matrices generated from count data. In this context, the key role of the demand

models is to provide the sensitivity of the model system to cost and time changes,

Shttps://www.gov.uk/government/uploads/system/uploads/attachment_data/file/
373137/webtag-tag-unit-m2-variable-demand-modelling.pdf, accessed 19/04/15.
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and elasticities provide a measure of this sensitivity.

Daly (2008) considered the relationship between elasticity, model scale and error.
He explored the apparent paradox that improving the model specification would
be expected to increase the model scale, as the error would be reduced, but
this could potentially increase the sensitivity of the model. Daly demonstrated
that when a model is improved by adding a variable, provided that the change
does not introduce a bias to the the other coefficients, no change in sensitivity
is expected. This is because model sensitivity depends on the variance of the
predicted probabilities among the population, as well as to the magnitude of the
model coefficients. If the variance in the probabilities increases, as it will when
variables are added to the model, that will reduce model sensitivity and this
compensates for the change in the magnitude of the model coefficients. However,
if a variable is introduced which causes bias then this can impact on the model

sensitivity.

Following UK practice set out in the UK Department for Transport’s WebTAG
guidance, four elasticity measures have been calculated in the analysis presented

in Chapter 6:
o fuel cost kilometrage elasticity
e car time trip elasticity
e PT fare trip elasticity
e PT in-vehicle time trip elasticity

In a mode-destination choice model, a kilometrage elasticity will be impacted
by changes in both mode and destination, whereas trip elasticities are driven by

mode choice responses alone.

It should be emphasised that there is no expectation that elasticities will be

completely stable over time. As well as being influenced by changes in the cost
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2.3.5

and in-vehicle time parameters, changes in the data will impact on the model
elasticities. For example, given the non-linear treatment of cost in the models
changes in the distribution of costs between different years of data would be
expected to impact on the elasticity values. The approach that has been used
is to compare the elasticities for a base model applied in the transfer context to
the transfer model (i.e. the same model specification re-estimated in the transfer

context).

Assessing temporal transferability

This section sets out how the various measures of transferability identified from
the literature have been used in the context of this particular research, and then
discusses the practical difficulties involved in assessing temporal transferability

over the long term.

In terms of statistical measures, providing definitions of the T7'S and T'I is im-
portant before presenting the reviews of temporal transferability in Section 2.4
and spatial transferability in Section 2.5, as these two measures have been used
extensively to assess model transferability. The t-ratio test for the significance of
differences in particular parameters over time has been applied to provide addi-
tional analysis of the temporal stability of individual parameter values reported
across different studies, and to investigate across studies whether certain groups

of model parameters exhibit greater stability than others.

In the empirical analysis undertaken for this research, emphasis has been placed
on the T'I measure, as it provides a measure of the ability of a transferred model
to predict observed behaviour relative to a locally estimated model. Selecting
an appropriate reference model is important for the 7'/ measure to be able to
effectively discriminate between base and transfer models, and this is why the ref-

erence model in Equation 2.22 has been formulated specifically for this research.
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In terms of predictive measures, the RE M measure has been used to compare pa-
rameter values between base and transfer contexts, as well as to compare observed
and predicted mode shares. Model elasticities in the base and transfer contexts

have also been compared to investigate changes in model sensitivity over time.

Together, these measures give a toolkit that can be used to make assessments
of transferability. However, there are practical issues in making assessments of
temporal transferability that are relevant for forecasting. If a model is used to
make a forecast 20 years into the future, then this forecast cannot be validated for
another 20 years, and even where such evidence exists it is problematic, because
the predicted inputs in terms of population and level-of-service will differ from

what actually happened.

An option that was considered was to make backcasts, e.g. to apply a model
developed using contemporaneous data to predict what was observed to happen
in the past using known information on level-of-service and attractions. The
difficulty is that this will highlight differences between model predictions and
observed data, but it does not allow the analyst to fully explore them. For
example, a model applied in backcasting may over-predict the historic car share,
but that does not provide insight into which models terms contributed to that
over-prediction. Greater insight would be gained by an approach that explored

how the model parameters varied between the two points in time.

A more insightful way to investigate transferability is to use detailed interview
data collected at two points at time so that models can be developed for both time
periods and differences analysed. As will be seen in Section 2.4, this approach
has been widely used in the transferability literature. It has the advantage that it
allows for statistical tests of transferability and analysis of changes in individual
parameters over time as well as tests comparing observed and predicted changes
in mode share and trip length, and is therefore the approach that has been used

for the empirical analysis in this thesis.
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2.4.1

Temporal transferability

The literature on temporal transferability has been broken down into three sub-
sections. The first two sub-sections discuss studies using disaggregate mode or
mode-destination choice models, and thus are more directly relevant than the
other literature to the objectives of this research. Section 2.4.3 then presents evi-

dence from other model types, in most cases aggregate models of trip generation.

The mode choice studies are further broken down into direct tests of model trans-
ferability (Section 2.4.1), where both base and transfer models have been devel-
oped allowing formal statistical tests of transferability to be made, and validation
studies (Section 2.4.2), where model predictions are compared to aggregate statis-
tics on mode share, often after substantial changes to travel times and/or costs.
It should be noted that these validation studies use data collected in the transfer
context to define the inputs to the models, which removes the complication of
combinations of errors in the input data discussed in Section 2.3.3. A number
of the papers present both comparisons of base and transfer models, and use the
transfer data to validate the performance of the base model in forecasting, and

so are discussed in both sections.

Mode choice transferability studies

Summary of studies reviewed

Ten studies of the transferability of mode choice models have been reviewed, all

of which analysed home—work trips. These studies are summarised in Table 2.1.
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Overall, these mode choice studies supported the hypothesis that model parame-
ters are reasonably stable over time, although this finding was not universal with

three of the ten studies reporting substantial changes over time.

In addition to these ten mode choice studies, two studies have investigated the
transferability of models of simultaneous mode and destination choice, the exact
focus of this research. Karasmaa and Pursula (1997) used Helsinki data from
1981 and 1988, and Gunn (2001) investigated models for the Netherlands using
1982 and 1995 data. Like the ten mode choice studies, Karasmaa looked at
home—work trips only, but Gunn ran analyses for home—work, home-shopping

and home—social and recreational travel.

The findings from these two studies were mixed. Gunn’s study was supportive of
the hypothesis of parameter stability, however in Karasmaa’s analysis there were
significant differences between the base and transfer parameters. Neither of these

two studies presented statistical test of overall model transferability.
Impact of model specification

Badoe and Miller made tested seven different model specifications to investigate
the impact of model specification on model transferability, ranging from simple
market shares models, and models with mode constants and level-of-service vari-
ables only, through to models with detailed market segmentation. For all model
specifications, the TTS rejected the hypothesis of parameter stability at a 5%
confidence interval. However, the TI increased from 0.132 for the simple market
shares model, to 0.894 in the level-of-service variables only model, although in-
terestingly more detailed specifications with market segmentation had lower TI
values, despite higher log-likelihood values, possibly due to over-fitting to the

base data.

Overall, Badoe and Miller concluded that improving model specification improves
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model transferability.

Findings from studies which have estimated models by pooling data over years

Badoe and Wadhawan compared the transferability of model specifications jointly
estimated from 1964 and 1986 data compared to models estimated using 1986
data alone by investigating how well the various models explained mode choices
observed in 1991 data. Comparing the various pooled model specifications, they
found that higher transferability was obtained if separate mode constants were
estimated for each year of data, and if separate scales were estimated for level
of service and socio-economic terms to take account of differential changes in
the scale of different groups of utility terms between years. However, the best
disaggregate predictions of the 1991 mode choices were obtained from models
estimated from 1986 data alone. So the conclusion from this study would be that
the best approach for forecasting is to apply a model from the most recently avail-
able cross-section of data, rather than jointly estimate models by supplementing

recent data with older data.

Sanko investigated how best to combine data from 1971, 1981 and 1991 to predict
the mode choices observed in 2001. Testing separate models by year first, he
found that the 1991-only model was best at predicting the 2001 choices, whereas
the 1971-only model was worst, therefore confirming the expectation that the
most recent available data should be used for forecasting. Next, he tested models
estimated by pooling 1971, 1981 and 1991 data. In the first pooled model, the
data was pooled nalvely without estimating any year specific constants or scale
terms. In the second pooled model, constants, scales for level of service terms
and scales for socio-economic terms were estimated separately by year, and then
the scales and constants for 1991 were used to apply this model to predict the
2001 mode choices. Interestingly, both of these pooled models performed worse
in predicting the 2001 mode choices than the 1991-only model. The finding that

the best results are obtained using the most recent data only is consistent with

65



Badoe and Wadhawan’s analysis.
Variation in transferability with model purpose

As noted above nearly all the studies focussed on home-work travel alone, and
thus Gunn’s study is the only one that allows some assessment of differences in
model transferability with model purpose. In addition to results for commuting,
Gunn (2001) presented results for shopping, and social & recreational travel.
Analysis of the changes in the parameter values is presented in Table 2.2 using
the REM measure defined in 2.26, and the full results by purpose reported by

Gunn are presented in Appendix A.

Table 2.2: Cross purpose comparison of temporal parameter stability

LOS Terms | Socio-Econ Terms
Purpose Terms REM | Terms REM
Commuting 6 0.21 2 0.13
Shopping 6 0.47 2 0.44
Social & recreation 6 0.64 2 0.02

Considering first the level-of-service terms, the commute model results are the
most transferable of the three, i.e. have the lowest mean REM measure. For
the two socio-economic terms reported in each model, the social & recreational

results are the most transferable.

It is not possible to draw general results from this single comparison, but the
results give some indication that the transferability of models may vary with
purpose, and it is possible that conclusions based on commuting models alone

may overstate the transferability of models in general.

Cross-study analysis of changes in individual parameter values

Most of the studies reported the base and transfer model parameters in full, and
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these have been analysed to investigate whether there is any evidence across stud-
ies that certain types of model parameters are more transferable than others. To
perform this analysis, the parameters were grouped into alternative specific con-
stants, level-of-service parameters (including cost), and socio-economic terms’.

The detailed analysis is presented in Appendix A.

The REM measure presented in Equation 2.26 was used to analyse changes in

parameter magnitude. The following average values were calculated by parameter

group:
e cost parameters: 0.71
e level-of-service parameters: 0.59
e socio-economic terms: 0.56

e mode constants: 1.10

These results demonstrate that the socio-economic and level-of-service parame-
ters are the most transferable, and as might be expected the constants were the
least transferable parameter group. Given that many transport policies involve
changes to travel times and costs, the higher temporal stability of the level-of-

service parameters (which includes in-vehicle time parameters) is noteworthy.

Statistical tests of the changes in parameter values were also made using Equation
2.25. The hypothesis of parameter stability was accepted more often in the Train
and Silman studies, where the transfer periods are 3 and 4 years, than in the
other studies where longer transfer periods were considered, suggesting higher

parameter transferability over shorter transfer periods ®.

"Where level-of-service parameters are interacted with socio-economic variables, e.g. cost
divided by income, the parameters have been placed in the level-of-service group.

8In the Forsey study, the estimation samples were large and as consequently most of the
parameters were highly significant. As a result, the hypothesis of parameter stability was rejected
even in comparisons where the two parameters were relatively close in magnitude.
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2.4.2

Mode choice validation studies

Summary of studies reviewed
The studies that were reviewed are summarised in Table 2.3.

As noted in the introduction to this section, all these validation studies used
detailed transfer data, and therefore are not confounded by errors in the input
variables. Nonetheless, an important caveat must be made in terms of interpret-
ing an ability to predict mode shares accurately with model transferability. It is
possible to accurately predict mode shares with a model that is not temporally
transferable. For example, consider the common problem of correlation between
car cost and car time variables. It is possible to estimate a model that underes-
timates the importance of one of these variables, and overestimates the other. It
may be that in a given application, the errors associated with two these terms
cancel out, and that accurate forecasts are obtained, but in other applications
with difference combinations of cost and time changes the model forecasts may
contain substantial errors. Thus the ability to accurately predict mode shares is
an indication of model transferability, particularly if demonstrated over a number

of applications, but is not a strict test of it.

The general pattern from these studies is that the mode choice models were able
to predict the impact of often substantial changes in level-of-service on mode
share with reasonable accuracy. This finding is reassuring for the application of
mode choice models over periods of up to five years, but it does not provide any

direct evidence about the transferability of the models over the longer term.

Milthorpe (2005)’s study had a different focus, providing a comparison of the
forecasts of a four-stage model® developed in the early 1970s to observed data

from around 2001.

%.e. a model with generation, distribution, mode choice and assignment components.

68



pajorpaad

-I9A0  JIUSIS 9powW I98

-uossed IeD IOUIW  ‘[[om
pajorpard sopour snq pue | (9L6T-GL6T) [oeI (1861)
IOALIP IBD UIRW - POXIJN | SIedA i% ammwo)) | -S[ ‘AIAY-[AT, uewIS
uory
-eoyroods [opowr pasoxduut
eyep ouwlry yrem | yym oasoxdur suorjorpaxd
sSnosuolLd ‘epowl [MVyY | ‘erep indur yym swejqord ‘S ‘00sIO (6261
MOU I0J  'OJUl JO O®T | 0} onp 3sueI} I10j J100J om0y | -uel]  ueg | ‘gLGT) UIRIT,
(ATuo
uoryeordde)
SN Bl
-UOJN  ‘BJUEG (2261) w0y
so10 SO'T ut sagueyd et VL6T ‘NS s DA | My pue
-1jod 8urjood-1ed uo snoo | -Jrudis 0} asuodsol ur poor) | FL-0L6T DA IMWIWO) | UOISUIYSBAN ALY/ -Uog]
sutey | §), sutudg §
OTIIOU0ID-01008 Uym (g, umumnmny ‘¢
poaoxduut uoryeoymads | ¢y Suudg g 'S USSeN
porrod oW} I9AO S3S00 | [PpOW  UeUM JueweAold |g), uwmniny ‘T “sIequy (L261)
[epowl Ul soSueYD S3IeT | -WI [eIURISNS  ‘POOK) | :SoAem i onuwoy) | Jjo “ATU() Aporeq
sjuomrmoy) [ ooueuiIogog oATIpaIrg | owrery ourty, | (s)esodm | eIy | toded |

SOTPN)S UOIYePI[eA D101 dpowl [erodwWd], :¢'g 9[qe],

69



Impact of model specification

Parody’s analysis used panel data, and in one test assessed the impact of substan-
tial increases in parking charges. In this test, a full model specification with socio-
economic parameters performed substantially better than a model with level-of-
service parameters alone. This suggests that an improved model specification
yielded more transferable level-of-service parameters. Train’s 1979 analysis also
concluded that improving the model specification resulted in improvements in

the model predictions.

It seems that the improvement in the predictive performance of the models that
results from adding socio-economic parameters is a result of improved estimates
of the key level-of-service parameters, rather than the impact of changes in socio-
economics, given that most of these model tests have been undertaken over short
term forecasting horizons of up to five years. These improved estimates then en-
able the models to better predict the impact of changes in level-of-service. Silman
explicitly noted this pattern, by observing that when socio-economic parameters
were added, the significance of the key cost and time variables in his models were

improved.

Parameter transferability in the context of errors in the forecasts of the input

variables

Milthorpe discussed in his paper that he would have liked to be able to have been
able to re-run the original 1970s model with actual 2000 inputs, but that this was
not possible because the detailed coding was not available. Instead, Milthorpe
compares the different scenario predictions of the model with observed data. A
noteworthy point that Milthorpe highlights is the degree of uncertainty of key
input variables over a 30-year forecasting horizon. Table 2.4 summarises figures

from Milthorpe’s paper that highlight this point.
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2.4.3

Table 2.4: Socio-demographic growth in Sydney, 1971 to 2001

Predicted Observed
Population 55% 35%
Household size -10% -17%
Workforce 47% 40%
Vehicles 149% 123%

It can be seen that over a 30 year horizon, the predictions of key input variables
can be subject to considerable uncertainty. These results help to put model
transferability into context; if, for example, the errors due to changes in the
true parameters in Sydney impact on model predictions by +10% over a 30-year
period, this should be assessed against an over-estimate of the population of 14%,

and of the number of vehicles of 11%.

Other studies

Summary of studies reviewed

The majority of the other studies reviewed were generation models. The genera-

tion model studies are summarised in Table 2.5.
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Transferability findings

Most of these studies are concerned with generation modelling, and typically used
aggregate modelling approaches, based on regression, household classification and
gravity model techniques. As such, any findings with respect to model transfer-
ability have to be interpreted with caution for the mode-destination modelling
context. Nonetheless, general findings are of interest to the broader question of
whether models developed at one point in time can be used to predict behaviour
at a future point in time. These studies also have the advantage that they have
tended to consider longer forecasting intervals, typically around 10 years, com-

pared to the mode choice studies.

Few of these studies made formal statistical tests of model transferability. Elmi
concluded that the parameters in his trip distribution models were statistically
different between 1964 and 1986, although the 1964 models were able to predict
1986 behaviour well. Cotrus also rejected the hypothesis of temporal stability,
both in Haifa and in Tel Aviv, over a 12/13 year period. Interestingly Shams
et al. accepted the hypothesis of parameter stability for their commute models,
but rejected it for their shopping models, and Badoe and Steuart found that
commute models had much better transferability than home-shopping, home—

social & recreational and home—personal business models.

The assessments of the predictive performance of the generation models are sup-
portive of the hypothesis of model transferability, with six of the nine studies
reporting the models predicted future trip generations well. It should be noted
however that, as discussed in Section 2.4.2, accurate aggregate predictions do not

necessarily indicate transferability at the individual parameter level.

A noteworthy feature of many of the tests of the generation models is that the
intervals of analysis often covered substantial changes in population, whereas the

mode choice validation studies were typically concerned with the impact of sub-

73



stantial changes in travel cost and times. For example, Hill and Dodd’s analysis
covered a period when the population of the Greater Toronto area increased by
33%, and total car ownership rose by 45%. The good predictive performance
of the models under these conditions provides some evidence for the temporal
stability of socio-economic parameters that capture variation in behaviour across

the population.
Other studies

Elmi et al. (1997)’s analysis of work trip distribution models investigated the im-
pact of improving the model specification, and, consistent with the mode choice
studies, he concluded that improved model specification resulted in improved
model transferability. Elmi obtained Transferability Indices as high as 0.84 for
predicting 1996 behaviour with 1964 models, and 0.97 for predicting 1996 be-
haviour with 1986 models. An interesting result noted by Elmi was that the
disutility of travel time reduced over time, from a value of -0.13 in 1964 to -
0.08 in 1996. Elmi suggested that this reflected changes in spatial structure, and

consequent increases is the mean distance to work.

Chingcuanco and Miller (2012) and Miller estimated a meta-model to explain
changes in vehicle ownership model parameters over time as a function of macro-
economic variables, specifically fuel prices and the employment rate. They were
able to identify significant relationships between these variables and the alterna-
tive specific constants in their vehicle ownership model, for both the unadjusted
values of the variables and for the change in the variable relative to the previous

year.

74



2.5

Spatial Transferability

Studies that have investigated spatial transferability provide some evidence about
the transferability of disaggregate mode choice models in general. Disaggregate
models are expected to be more transferable than aggregate models because ob-
served choices are explained as far as possible in terms of behavioural model
parameters, and the behavioural parameters should be applicable in different
contexts. However, as discussed in Section 2.2, it is important to emphasize that
a model that is spatially transferable may not be temporally transferable, and
vice-versa. The spatial transferability literature is also useful in developing meth-
ods that are useful for making assessments of model transferability, and so the

review presented here focuses on these methods.

There is a body of evidence on mode choice models that dates from the mid-1970s,
and this forms the focus for this section. In most cases, both base and transfer
samples were available in these studies, and so statistical tests of transferability
were reported. The review is split into a discussion of the findings with respect
to spatial transferability, and a discussion of papers which investigated different
methodologies for transferring models. In particular, the section on methodology
discusses transfer scaling, a technique that has been developed for undertaking
spatial transfers, but which could yield interesting findings for the assessment of

temporal transferability.

Recently the issue of spatial transferability has returned to the fore in the context
of activity based models (ABMs). As Sikder et al. (2013) note:

“.giwen that ABMs are more behaviorally orientated, there is a notion
in the field that these would be more transferable than the statistical

correlations reflected by aggregate four-step models”

Literature exists on the spatial transferability of generation models, however given

that the generation models are not the focus of this research, and nor is spatial
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2.5.1

transferability, this literature has not been reviewed here.

Mode choice transferability studies

The mode choice transferability studies that have been reviewed are summarised
in Table 2.6.

Results of formal statistical tests of transferability, which use the Transferability
Test Statistic (TTS) given in Equation 2.20, are mixed. Table 2.7 summarises

the results, in each case at a 95% confidence level.

Taken as a whole, and referring back to Section 2.2, these results are evidence that
spatial transferability only holds in certain cases, and in many cases does not hold.
However, as discussed in Section 2.3.3 the TTS provides a strict pass/fail test
of transferability and for temporal transfers Badoe and Miller (1995a) observed
good predictive performance in the transfer context from models that failed the

TTS test.

Some authors sought to explain why the models they tested were not transfer-
able according to the TTS measure. Galbraith and Hensher concluded that it
was because there were unmeasured effects represented in the constants, and
that analysts should aim to include more variables to account for socio-economic
effects, ‘unmeasured’ level-of-service attributes, and situational or contextual fac-
tors which explain travel behaviour. However, the type of effects that are typi-
cally captured in the constants, such as perceptions of comfort, safety, the impact
of weather on walk and cycle modes and so on, are by their nature difficult to
measure. Thus, while there are currently efforts underway to better represent
the impact of reliability on mode choice, a typical mode choice model today will
nonetheless contain a similar model specification to the models developed by

Galbraith and Hensher 25 years ago.
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2.5.2

Table 2.7: T'TS statistics for spatial transfers

Author(s) Transfer Between TTS Results
Watson and Westin (1975) Area type combinations 6 fail, 8 pass
Atherton and Ben-Akiva (1976) Two cities Pass
Talvitie and Kirshner (1978) Four cities All fail
Galbraith and Hensher (1982) Two regions Fail for 3 model spec.s
Koppelman and Wilmot (1986) Three city sectors Fail for all 3
McCoomb (1986) Between four cities 2 fail, 2 pass
Abdelwahab (1991) Two regions Fail for 7/8 tests
Dissanayake (2012) Bangkok & Manila Fail

Koppelman and Wilmot investigated whether improving model specification im-
proves model transferability, and found that this was indeed the case. Referring
back to Equation 2.19, improving the model specification should increase the
impact of the explanatory variables, and reduce the impact of unmeasured ef-
fects captured in the constants. When a model is transferred to a new area, the
explanatory variables will capture differences between the areas, such as differ-
ences in travel times, and socio-economic differences if these are represented in
the models. By contrast, transferring the alternative specific constants implicitly
assumes that the average effect of unmeasured effects is the same in base and

transfer contexts.

Mode choice methodological studies

A number of papers in the methodological class investigate an approach termed
transfer scaling Gunn et al. (1985); Gunn (1985); Daly (1985); Koppelman et al.
(1985); Gunn and Fox (2005), and it is useful to describe what is meant by this in
more detail. In spatial transfers, it is normal for both base and transfer samples
to be available, although the latter may be small in magnitude or sparse in detail.
If the base model is transferred to the new context without adjustment, then the

transfer is said to be naive. In the transfer scaling approach, scales are estimated
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for utility parameters, or groups of parameters, to express the changes relative

to the base estimates.

Two types of transfer scaling approach have been applied. First, where an overall
utility scale is estimated to re-scale the complete set of base model parameters,
which is termed a complete transfer. Second, where a number of utility scales are
estimated to re-scale groups of base model parameters, which is termed a partial
transfer. In both cases, the original base model parameters are held fixed during

the transfer. These two approaches can be expressed in equation form as follows:

Vie =0t + ¢ By Xy (2.31)

where: V; . is the transfer utility for a complete transfer
& is the alternative-specific constant
¢ is the transfer scale
By is a vector of the base parameter estimates

X; is a vector of observed data in the transfer context

and:

Vip =0+ ¢e1 Bo1 Xea + . 0va Br.a Xic (2.32)

where: V;, is the transfer utility for a partial transfer
& is the alternative-specific constant
@14 is the transfer scale for utility group g
Bp,g is a vector of the base parameter estimates for utility group g
Xi,4 is a vector of observed data in the transfer context

there are g = 1, G groups of utility terms in total

It should be noted that in the complete transfer approach, the relative trade-offs
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2.6

2.6.1

between parameters, such as between the cost and time parameters, are preserved
in the transfer. In the partial transfer approach, the parameter trade-offs are

preserved within each utility group.

The transfer scaling studies have demonstrated that applying transfer scaling
yields substantially more transferable models than naive transfer of the base
model parameters. This improved performance comes about for two reasons.
First, the ability to account for different levels of error in the set of parameters as
a whole, or for groups of model parameters, between base and transfer contexts.
Second, by adjusting the constants and therefore accounting for differences in the

average contribution of unmeasured effects.

Gunn and Fox (2005) estimated significantly different transfer scales for different
groups of utility terms: for car and walk/cycle, for public transport, and for other
level of service terms. Grouping utility terms in this way is an approach that
allows generalisable results to be drawn out as to the transferability of different
utility terms, and it is an approach that can be used to investigate temporal

transferability in cases where both base and transfer samples are available.

Summary and aims

Summary of the evidence for temporal transferability

Overall, the direct tests of transferability summarised in Table 2.1 are supportive
of the hypothesis that mode choice models can be transferred over time, with the
majority of studies concluding the models tested were transferable. Furthermore,
some of the validation studies demonstrate the models are able to predict the

impact on mode share of substantial changes in level-of-service over short periods.
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That said, these findings are specific to the evidence base that has been analysed.
Considering the direct tests of temporal transferability summarised in Table 2.1, it
can be seen that the evidence is nearly all from commuting studies. Furthermore,
all the validation studies in Table 2.3, and many of the generation studies in Table
2.5, are also based on commuter travel. Commuting travel might be expected to
be more transferable than other purposes, as the journey to work is a regular trip,
and as such would be expected to be accurately recorded with a higher degree of

accuracy than less regular trips.

Another feature of the evidence base is that much of it is based on short-term
forecast of up to 10 years. This research is concerned with long term transfer-
ability for forecast periods of 20 years and above, and it seems reasonable to
hypothesise that over longer time intervals transferability would be less likely to
be accepted. The two studies that provide evidence on longer term transferability
give mixed findings, the studies from Toronto that developed mode choice mod-
els and distribution models are supportive of model transferability, whereas the
mode choice models developed for the Nagoya region of Japan are not (though
the Nagoya results are likely to have been influenced by the lack of cost and car

availability information).

An empirical finding from both mode choice and distribution studies is that
improving model specification improves model transferability. Although the
improvements in model specification described are often the addition of socio-
economic parameters, this improvement in model performance seems to come
about because the improved models provide better estimates of the key cost and
time parameters that respond to short-term policy changes. Over a longer term
forecasting horizon, substantial changes in the distribution of the population
across segments would be expected, and so the findings in terms of model spec-
ification may be different, depending on the relative stability of level-of-service

and socio-economic parameters over the longer term.

81



2.6.2

It is noted that only two studies of temporal transferability have considered si-
multaneous models of mode and destination choice, the focus of this particular
research. Their findings were mixed: Gunn (2001) found a good level of temporal
transferability, but in Karasmaa and Pursula (1997) three out of four level-of-

service parameters were not transferable.

As discussed in Section 2.1.3, there has been much work in recent years to develop
mixed logit models to reflect taste heterogeneity. While this work has demon-
strated the improved fit to the base data that these specifications can offer, none
of the transferability studies reviewed in Sections 2.4 and 2.5 used model spec-
ifications including random taste heterogeneity. Evidence as to whether models
incorporating random taste heterogeneity are more transferable, and thus better

specified to make forecasts, would be valuable to model developers.

In summary, providing further empirical evidence on the temporal transferabil-
ity of mode-destination choice models over intervals up to 20 years, and with
a comparison of commute and non-commute travel, would add to the existing
literature. There is some limited evidence that there may be differences in trans-
ferability by parameter type (e.g. alternative specific constants, level-of-service
terms, socio-economic terms) and it would be useful to further investigate such
differences during the analysis. Furthermore the transferability of models incor-

porating random taste heterogeneity is an area where research would be valuable.

Aims

Drawing on the findings from the literature review, five specific research aims

were identified to provide a framework for the empirical work:

1. to assess the transferability of mode-destination choice models over long-

term forecasting horizons of up to 20 years;
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. to assess the relative transferability of commuter and non-commuter travel;

. to investigate how model scales and alternative-specific constants evolve
over time, both in total, and for model scale distinguishing utility groups
in order to enable assessment of the relative transferability of utility groups

and the constants;

. to investigate the transferability of mode-destination choice models that

take account of preference heterogeneity; and

. to advise practitioners how best to specify models to maximise their tem-

poral transferability.
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Chapter 3

Data

This chapter begins in Section 3.1 by setting out the data that is required to
assess the transferability of mode-destination models over long-term forecasting

horizons.

Section 3.2 describes the Toronto data that was used to allow transferability anal-
ysis. It starts by describing the mode-destination choice data, goes on to describe
the other data assembled including level of service data defining travel costs and
times by the various modes modelled, and then concludes by summarising the
processing steps undertaken by the author and by others to prepare the data for

model estimation.
Section 3.3 presents the corresponding information for the Sydney data.

The chapter concludes in Section 3.4 with a brief summary of the key differences
between the two datasets and the implications that these have for the transfer-

ability analyses presented in Chapter 5-8.
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3.1

Introduction

In order to investigate the transferability of mode-destination models over long-
term forecasting horizons, determining the availability of suitable data was a

crucial issue for this research. The data requirements were as follows:
e data collected over long-term horizons of up to 20 years;

e household interview data, with household, personal and trip level data,
with survey and data documentation, and with sufficient similarity between
surveys that the same model specifications can be applied to each year of

data;

e level of service data for each year, using identical zoning systems, or zoning

systems with similar levels of data'; and

e zonal attraction data by year, with population and employment data.

Level of service (LOS) data is best visualised as matrix data, with rows as possible
origin zones and columns as possible destination zones, and individual cell values
providing an indication of the LOS for travel by a particular origin-destination
pair. For car driver and car passenger modes, highway level of service data is
generated by running assignments to highway networks that represent the road
network for the study area. The level of service matrices generated typically
comprise travel times and distances, plus any tolls that may be payable. Often,
in the absence of a dedicated representation of walk and cycle links, distances
from the highway network are used to represent distances for the walk and cycle
modes. For public transport modes, separate assignments are run to a public
transport network. More LOS components are represented, including in-vehicle
times, walk access/egress times, wait times (possibly split between first and other

wait time) and numbers of transfers.

New zones are often added as cities expand or redevelop, therefore identifying areas that
have used identical zoning systems for all years of data may not be possible.
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The LOS requirements for developing mode-destination choice models are more
onerous than those for mode choice models because for a given origin zone it
is necessary to have LOS information to each possible destination, whereas in a
mode choice model LOS information is only required for the chosen destination.
Therefore historical datasets that have been used to investigate the transferability
of mode choice models do not necessarily contain sufficient LOS data to allow

mode-destination models to be estimated.

The highway and public transport networks are developed using dedicated soft-
ware packages such as Emme, VISUM, Saturn, Cube Voyager and Omnitrans. In
any large metropolitan area in the developed world, it would be expected that
the local agency responsible for transport planning in the region would own and
maintain highway and public transport models. However, it is much less likely
that these agencies will maintain old networks from 20 years back, and that if
they do that those networks were developed and coded in a consistently with the
current network models. Thus, the requirement for consistent assignments from
over a 20 year period is the most challenging of the data requirements set out

above.

Two metropolitan areas were identified where the required data was available, and
crucially a local contact was supportive of the research effort and made the data
available for analysis, specifically Toronto, Canada, and Sydney, Australia. The
Toronto data was analysed first using nested logit models, and then the Sydney
data was used to investigate whether the two datasets yielded consistent findings.
Finally, the Toronto data was analysed again to investigate the transferability of
mixed logit models of mode-destination choice. Given that the datasets were
analysed in this order, details on the two datasets are presented in this chapter

rather than in chapters specific to each dataset.

The other datasets that were investigated are described below.
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Data from Helsinki has been used in a number of transferability studies, such
as the work reported in Karasmaa and Pursula (1997); Karasmaa (2003). From
the two papers reviewed, it is clear that household interviews exist for Helsinki
in 1981 and 1988, with around 6000 interviews in both cases. Further a 1995
mobility survey was used in Karasmaa’s PhD work. Attempts were made to
contact Karasmaa to investigate whether they would be willing to make the data
available for analysis. However, it turns out Karasmaa has now left the Helsinki
University of Technology, and that since Karasmaa left the institute has not
taken forward research on temporal transferability. Permission to use the data

for analysis was not forthcoming.

Data from the Netherlands was used for early research into model transferability.
However, it is not clear whether the earlier data can be retrieved, and so when
it became clear that data from both Toronto and Sydney would be available for
analysis this dataset was not pursued further. Similarly the author has been
involved in modelling studies using disaggregate data in Copenhagen (Vuk et al.,
2009) which might have been suitable, but that were not pursued further once

the Toronto and Sydney datasets were confirmed as being available.

Finally, a large household travel survey has been collected in Montréal, Canada,
every five years since 1970, and some researchers have used this to compare
travel behaviour in Toronto and Montréal (Roorda et al., 2008). However, it
is not clear whether supporting level of service information is available for this
data, and a complication is that the relevant documentation is in French. Were
level of service data to be available, a useful addition to the analysis presented in
this thesis would be for a Francophone analyst to repeat and extend the analysis

using the Montréal data.
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3.2

3.2.1

Toronto

The Toronto data is ideally suited to transferability analysis because large house-
hold interviews have been conducted repeatedly, collecting the same set of in-
formation at different points in time. Furthermore, supporting level-of-service
and attraction data is available for each year of data. The following sub-sections
describe the choice, level-of-service and attraction data that was assembled for

the modelling and transferability analysis.

Choice data

Toronto Transportation Tomorrow survey

The Transportation Tomorrow Survey (TTS) is a comprehensive travel survey
conducted in the Greater Toronto and Hamilton Area (GTHA) that has been
collected once every five years?. The first TTS, conducted in 1986, obtained
completed interviews for a 4.2% random sample of all households in the GTHA.
The 1991 survey was a smaller update of the 1986 survey focusing primarily on
those geographic areas that had experienced high growth since 1986. The survey
area was expanded slightly to include a band approximately one municipality
deep surrounding the outer boundary of the GTHA for the purpose of obtaining

more complete travel information in the fringe areas of the GTHA.

The 1996 TTS was a new survey, not an update. Agencies outside of the GTHA
were invited to participate. The survey area was expanded to include the Regional
Municipalities of Niagara and Waterloo, the counties of Peterborough, Simcoe,
Victoria and Wellington, the Cities of Barrie, Guelph, and Peterborough and the

Town of Orangeville.

2yww .dmg . utoronto.ca/transportationtomorrowsurvey/index.html, accessed 20/12/10.
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The 2001 TTS was essentially a repeat of the 1996 survey. The survey area
was the same as in 1996 except for the exclusion of the Regional Municipality of

Waterloo and inclusion of City of Orillia and all of the County of Simcoe.

Similarly, the 2006 T'TS was another repeat of the 1996 survey with approximately
150,000 completed interviews. The survey area was the same as in 2001 except
for the inclusion of the Regional Municipality of Waterloo, the City of Brantford
and the County of Dufferin.

Table 3.1 summarises the samples sizes in each TTS survey, detailing the number
of households, persons and trips recorded. Table 3.1 also details the household
sample rate, and the total number of households and persons in the survey areas.
It is noted that for the 1991 TTS differential sampling rates were used for high

and low growth areas.

Table 3.1: TTS sample sizes and survey area populations

’ ‘ 1986 1991 1996 2001 2006
TTS households 61,653 24,507 115,193 136,379 149,631
TTS persons 171,086 72,496 312,781 374,182 401,653
TTS trips 370,248 157,349 657,951 817,744 858,348
% households 4.2% 5.0% high 5.0% 5.6% 5.2%
sampled 0.5% low
Total households | 1,466,080 1,709,557 2,317,190 2,417,513 2,871,245
Total persons 4,062,642 4,729,193 6,285,142 6,529,615 7,705,341

It is noted that Toronto household interview data also exists that was collected
back in 1964, and this data has been used by other researchers to investigate
the transferability of mode choice models (Badoe and Miller, 1998). However,
to estimate models of mode-destination choice, level-of-service matrices defining
transport conditions for all possible combinations of origin and destination are
required. Level-of-service matrices of this type were not available for the 1964

data, and therefore it could not be used for this particular analysis.
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Extent of TTS data

As noted above the TTS data collected has changed over time in extent, specifi-
cally the geographical coverage of the data has expanded, and the person, house-

hold, and trip data collected in the TTS has undergone some changes over time.

In order to transfer the base models to the various transfer datasets, it is necessary
to base the transferability analysis upon a dataset definition which is supported

by both the base data and all of the transfer datasets.

The evolution of the geographic extent of the data is summarised in Table 3.2

and illustrated in Figure 3.1 and 3.2.

Table 3.2: Evolution of geographical extent of TTS data

1986 | 1991 | 1996 | 2001 | 2006 |
Greater Greater Greater Greater Greater
Toronto & | Toronto & | Toronto & | Toronto & | Toronto &
Hamilton Hamilton Hamilton Hamilton Hamilton

Area (GTHA)

Area (GTHA)

Area (GTHA)

Area (GTHA)

Area (GTHA)

One mu- | One mu- | One mu- | One mu-
nicipality nicipality nicipality nicipality
ring around | ring around | ring around | ring around
GTHA GTHA GTHA GTHA
Niagara mu- | Niagara mu- | Niagara mu-
nicipality nicipality nicipality
Waterloo mu- Waterloo mu-
nicipality nicipality
Counties  of | Counties of | Counties of
Peterbor- Peterbor- Dufferin, Pe-
ough, Simcoe, | ough, Simcoe, | terborough,
Victoria and | Victoria and | Simcoe, Vic-
Wellington Wellington toria and
Wellington
Cities of Bar- | Cities of Bar- | Cities of

rie, Guelph,
Peterborough
and the Town
or Orangeville

rie, Guelph,
Peterborough
and the Town
or Orangeville

Barrie, Brant-
ford, Guelph,
Peterborough
and the Town
or Orangeville
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Figure 3.1: Areas surveyed in TTS data
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Figure 3.2: Variation in area surveyed by year
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For the transferability analysis, only GTHA data has been used in order that the
same geographic definition applies across both base and transfer datasets, and
therefore level of service data defined for the GTHA area only was required. The

extent of the GTHA area is indicated by the red area in Figure 3.2.

In 1986, bicycle trips were only recorded in the trip data for work and education
trips. From 1991 onwards, bicycle trips were recorded for all travel purposes.
For the home—work transferability analysis it was originally intended that bicycle
trips be included. However, in the processed trip files supplied for this analysis
bicycle trips were not included, and therefore bicycle trips were excluded from

both the home-work analysis®.

Finally, it is noted that the availability of free parking at work information was

not collected in the 1986 surveys.

Another consideration is differences in sampling strategy. The 1986 and 1996
surveys were based on a random selection of households throughout the survey
area (4.2% in 1986, 5.0% in 1996) (Data Management Group, 2008). However,
the 1991 survey used different sampling rates for high and low growth areas.
The target was 5% in the high growth areas and 0.5% in the low growth areas
such as the City of Toronto. The 2001 and 2006 surveys sampled around 5% of
households with the sample selection based on Forward Selection Areas, based
on the first three characters of the post code. Given that the 1991 survey is
considerably smaller than the other surveys it was decided to drop the 1991 data

from the transferability analysis.

Table 3.3 summarises the data definition for the transferability analyses.

3Except for the 2001 data, where bicycle trips are coded together with walk trips.
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Table 3.3: Toronto home—work transferability analysis data definition

Geographical area Greater Toronto and Hamilton area

Years of data 1986, 1996, 2001, 2006

Bicycle trips Excluded, except 2001 where merged with walk
Free parking at work | Missing for 1986

TTS sample sizes

Given the dataset definitions provided in Table 3.3, Table 3.4 details the samples

of trips available for the transferability analyses.

Table 3.4: TTS sample sizes for transferability analysis

1986 1996 2001 2006
TTS home work trips | 52,154 63,865 79,371 72,893
TTS households 61,453 88,898 113,608 112,486
TTS persons 171,086 243,286 315,202 305,696
Expanded households | 1,466,080 1,805,021 1,975,155 2,160,059
Expanded persons | 4,062,642 4,926,367 5,386,137 5,871,885

It can be seen that the samples of home—work trips available for analysis are
substantial, with at least 50,000 records available from each of the four years of

data.

It had been hoped to also use samples of home-other travel trips from the TTS
data so that the transferability of home—other travel models could be compared to
the transferability of home—work models. However, while samples of home—work
trips had already extracted for the development of mode choice models for the
GTHA area, trip samples had not been extracted for other purposes. While it
would be possible to extract these trip samples from the TTS data, resources were

not available in Toronto to extract the data required and therefore the Toronto
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3.2.2

transferability analysis has been undertaken using the home—work trip samples

alone.

The expanded person totals show that the population of the GTHA has grown
by 45% between 1986 and 2006. This rapid growth is relevant for the transfer-
ability analysis, because it means many people have migrated into the GTHA
region since 1986. The assumption when applying models developed using 1986
data to predict travel behaviour in later years is that the parameters estimated
to explain the travel choices of the 1986 GTHA population apply equally to new-
comers to the GTHA region. Similar assumptions apply to models transferred
from different base years. The population of Toronto is forecast to continue to
grow rapidly, with an additional 2.6 million people and 1.4 million jobs expected
between 2001 and 2031 (Jewell and Wyatt, 2013), and so models estimated from
current residents need to be transferable to those who migrate into Toronto over

the coming decades.

Level of service and attraction data

The other data used in the model estimations is level-of-service and attraction
data. Both types of data are defined using the model zoning system, and so this
section starts with a discussion of the changes to the model zoning system over
the period that TTS data is available, and considers the likely impact of these

changes on the transferability analyses.

Changes to model zoning system

The number of travel zones used in the models varies between the four different
years of T'TS data, as additional travel zones have been added over time. Table

3.5 summarises the changes in the number of travel zones over time.
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Table 3.5: Number of travel zones by year of TTS survey

Year | Travel Increase

zones from 1986
1986 1404 n/a
1996 1677 19.4%
2001 1717 22.3%
2006 1845 31.4%

The 1404 zones used to model the 1986 data are defined in the 1991 GTHA
zoning system. The 1996 data is modelled using the 1996 GTHA zoning system,
which relative to the 1991 GTHA zone system incorporated substantial revisions
to the traffic zones for the City of Toronto, York Region and Durham Region,
and more minor changes to the traffic zones in the Peel and Halton Regions
(Data Management Group, 1998). The 2001 data is modelled using the 2001
GTHA zone system. This is similar to the 1996 GTHA zone system, but with
some minor modifications in the City of Toronto, Peel Region and Halton Region
(Data Management Group, 2003). Finally, the 2006 data is modelled using the
zoning system developed for the Hurontario model. The Hurontario zone system
is based on the 2001 GTHA zone system, but contains more detailed zoning in
the Hurontario corridor, and some zones in Hamilton and Durham have been
aggregated into larger zones. Thus outside of the Hurontario corridor, the zone
systems used to model the 1996, 2001 and 2006 datasets contain similar levels
of detail, whereas the zone system used to model the 1986 data is slightly more

aggregate.

The use of a more detailed zoning system should result in more accurate level-
of-service measures, particularly when considering access to local transit and
distances for the walk mode. Therefore, ceteris paribus we would expect more
accurate level-of-service measures for the 1996, 2001 and 2006 datasets relative

to the 1986 data.
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Level-of-service data

The transferability analysis has been undertaken for models of simultaneous mode
and destination choice. The base and transfer choice data files supplied provide
LOS for the chosen destination, but in order to model destination choice for a
trip with a given origin zone it was necessary to have LOS information for all
possible destination zones. This implied the need for LOS matrices for all possible
combinations of origin and destination zone. These LOS matrices define the LOS
based according to the results generated by assignment models, rather than by

collecting observed LOS from individuals in the TTS data.

Fortunately, significant analysis has already been undertaken at the University of
Toronto to allow mode-choice models to be developed for each year of the TTS
data. As a result of this previous work, LOS data was readily available for each of
the four years of TTS data selected for analysis. The 1996 LOS data is described
in more detail in Miller (2001). The combination of large repeated cross-sectional
surveys collected over a 20-year period with readily available LOS data for each
survey meant that the Toronto data provided the ideal dataset for investigating

temporal transferability.

Consistent with standard transport planning practice, LOS was generated sep-
arately for highway and transit modes. The LOS supplied so far is for a peak
hour assignment to an AM-peak network, which has been used in the modelling
under the assumption that all commute travel is made during peak times. LOS

has been supplied separately for each modelled year.

The highway assignments have been undertaken in Emme/2 for each modelled
year. The following LOS information is available for an AM-peak period assign-

ment:

e travel time (mins)
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e travel cost (kilometre cost plus any toll, $)

e toll ($)

It is noted that a fixed cost per kilometre is used to calculate the distance related
component of car costs. As a result, the distance in km can be inferred by sub-
tracting the toll from the total travel cost, and dividing by the cost per kilometre
which is constant for a given year. Tolls only exist in the 2006 networks. The
fixed costs per kilometre are summarised in Table 3.6. The costs are all presented

in 1986 prices so that the impact of real growth in prices over time is clear.

Parking costs are supplied separately in the form of average daily parking costs
by zone. These costs are zero for most zones, with non-zero costs defined for
the CBD and other central areas only. Consistent with home—work mode-choice
models developed in Toronto, half the average daily parking cost at the destina-
tion zone has been assumed in the home—work models. This approach assumes
half of individuals have to pay the parking costs, and the other half of individ-
uals have access to free parking at their destination. The mean average parking
costs represented in the models for zones with non-zero parking costs are also

summarised in Table 3.6.

Table 3.6: Car costs, 1986 prices

1986 1996 2001 2006
Distance related cost (cents/km) 4.70 4.76 5.43 8.30
Change relative to 1986 n/a  1.3% 15.6% 76.5%

Zones with non-zero parking cost 6.1% 7.5%  81.0% 7.2%
Mean parking cost in these zones ($) | 2.37 1.92 1.18 1.92
Change relative to 1986 n/a -18.9% -50.2% -18.7%

It can be seen that real car costs per kilometre rose slowly between 1986 and
2001, but then there was a significant increase in 2006 due to increases in fuel

prices. Parking costs declined by nearly 20% between 1986 and 1996, and then

98



remained essentially constant in real terms between 1996 and 2006. The parking
cost data that was supplied for 2001 is very different to the other years, with
non-zero parking costs defined in the majority of zones, rather than just central
zones. As a result, the average contribution that parking costs make to total car

costs is significantly higher in the 2001 data.

The transit assignments have been undertaken in Emme/2. The following infor-

mation has been supplied for an AM-peak period assignment:

e transit fare ($)
e transit in-vehicle time (mins)
e transit wait and transfer time (mins)

e transit walk access and egress time (mins)

Treatment of inflation

All costs in the models have been expressed in 1986 prices. To convert costs into
1986 prices, Consumer Price Indices (CPI) values assembled by Statistics Canada
have been used (Statistics Canada, 2008). The CPI values for the years of TTS

data that have been modelled are summarised in 3.7.

Table 3.7: CPI values (2002=100)

Year | CPI
1986 | 65.6
1996 | 88.9
2001 | 97.8
2006 | 109.1
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3.2.3

Attraction data

The attractiveness of each destination alternative is defined using an attraction
variable, which for commute trips is total employment. The employment infor-
mation was taken from Census journey to work data, which is collected every 5
years in Toronto, and as such is expected to provide an accurate estimate of the

actual number of jobs in each travel zone.

Processing steps

The choice data was supplied by Prof. Eric Miller of the University of Toronto.
The data was supplied in text file format as home-work trip records with limited
person and household information appended. These trip files had been used

previously for the development of home—work mode choice models.

Some processing was required to convert the choice data files into a format suit-
able for use by the ALOGIT estimation software, where each line of input data
must contain the specified number of variables in numeric format. The files were
also sorted by home zone to facilitate the appending of level-of-service informa-

tion.

The level-of-service data was also received as text files, and so processing steps
were setup to convert the data to the matrix format used by the ALOGIT esti-

mation software.

The attraction data was supplied as text files which could be read directly into

ALOGIT without the need for intermediate processing.
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3.3

3.3.1

Sydney

Choice data

The Sydney choice data has been taken from two sets of household interview
data. The first is a large household interview survey collected in 1991, named
the Household Interview Survey (HIS). The HIS data was collected between 30"
September 1991 and 3¢ October 1992. Face to face surveys were undertaken
which recorded all travel made by all household members during a 24-hour period,
and each day of the year was equally represented in the survey (Transport Study
Group, 1996).

From 1997 onwards, the data collection strategy in Sydney was changed and a
continuous survey was begun. The continuous survey data is named the House-
hold Travel Survey (HTS), and is organised in one year waves which run from
July to June the following year. The HTS survey collected similar trip, person
and household information to the HIS survey, and was again collected using face

to face interviews (Bureau of Transport Statistics, 2012).

In both the HIS and HTS data, detailed person and household information has
been collected, allowing the development of more detailed socio-economic segmen-
tations than are possible with the Toronto TTS data. A particular advantage of
the Sydney data is that incomes were collected and therefore the Sydney data
can be used to investigate whether mode-destination models that segment cost
sensitivity with income are more transferable than models with no income seg-
mentation. For this analysis, four waves of HTS data collected between July 2004
and June 2008 have been used to represent 2006 travel choices. This allows model

transferability to be assessed over a 15 year transfer period.

Both the HIS and HTS data were collected across the Sydney Statistical Division
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(SD), the Newcastle Statistical Sub-Division (SSD) to the north, and the Illawarra
SD to the south. However, the tour samples and LOS data for the HIS data were
only available for households interviewed in the Sydney SD. Therefore for the
transferability analysis, only data from the Sydney SD is included so that the
spatial definition is consistent between the years of data. Figure 3.3 illustrates
the area surveyed in the HIS and HTS data, and in particular the extent of the
Sydney SD that forms the study area for the Sydney transferability analysis.

In Figure 3.3, GMA is Greater Metropolitan Area, and NSW is New South Wales.
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3.3.2

Table 3.8 summarises the samples sizes and study area populations. The 1991
household and person totals are taken from Castles (1993). This publication
gives figures for occupied dwellings rather than households and will therefore
underestimate the number of households as some dwellings will contain more

than one household.

Table 3.8: Sydney SD sample sizes for transferability analysis

1991 HIS | 2006 HTS

Home-work tours 5,111 5,173
Home—other travel tours 8,717 10,464
Sampled households 9,955 10,423
Sampled persons 28,398 28,559
Total households 1,222,568 | 1,572,117
Total persons 3,538,749 | 4,215,393

The total population has grown by 19% between 1991 and 2006. While this is not
as high as the 46% growth observed in the Toronto population between 1986 and
2006, it still represents a high level of population growth compared to European

cities.

Level of service and attraction data

The other data used in the model estimations is LOS and attraction data. Both
types of data are defined using the model zoning system, and so this section
starts with a discussion of the changes to the model zoning system between
1991 and 2006 data, and considers the possible impact of these changes on the

transferability analyses.
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Changes to zoning system

As illustrated in Table 3.9, the number of model zones used to represent the
Sydney SD increased by a factor of 2.7 between 1991 and 2006.

Table 3.9: Number of travel zones by year of Sydney survey

Year | Travel Increase

zones from 1991
1991 845 n/a
2006 | 2,277 170%

The use of a substantially more detailed zoning system for the 2006 data should
result in more accurate LOS measures, especially for access to public transport
modes, and for the walk and cycle modes where tour lengths are lower. However,
it has been suggested by researchers in Sydney that the change in zoning system
results in lower distances on average. Specifically, Xu and Milthorpe (2010)
analysed Census Journey to Work data between 1981 and 2011 and found a
steady increase in mean tour length over time except over the 2001 to 2006
interval which was the period over which the move to the much more detailed

zoning system was made.

The Transport Data Centre at the New South Wales Department of Transport
have provided more detail on this issue. For the 2006 network, there were gen-
erally four connectors per model zone whereas the 1991 network is understood
to have had one to two. The lower number of connectors in the 1991 network
will tend to result in shorter tours, particulary for short distance tours where the

connector length is a higher fraction of the total distance.

The impact of these changes is illustrated in 3.10 and 3.11, which show the
changes in the mean distances by mode, with distances for all modes measured

using the highway distance skims impacted by the zone connector issue.
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Table 3.10: Sydney home-work distances by mode (km)
Mode 1991 2006 change
car driver | 33.2 294  -11%
car pass. | 26.1 20.9 -20%
train 62.7 51.6  -18%

bus 19.7  18.7 -5%
bike 129 114 -11%
walk 4.3 3.1 -28%

taxi 15.1 178 18%
Total 33.8  29.7 -12%

Table 3.11: Sydney home-other travel distances by mode (km)
Mode 1991 2006 change
car driver | 16.9 13.1 -22%
car pass. | 19.4 144  -26%
train 55.8  46.3 -17%

bus 18.1 11.3 -38%
bike 8.2 6.0 -26%
walk 4.2 2.2 -48%

taxi 16.4 12.2 -26%
all modes | 16.4 11.9 -27%

It can be seen that with the exception of taxi for home—work, mean distances
measured by the highway network consistently reduce. Furthermore, the reduc-
tions are greater for home—other travel where tours are shorter, and for modes
such as walk and cycle where tour distances are shorter. Furthermore, Transport
Data Centre (2008) present analysis of the mean trip lengths in the same 1991
and 2006 data using a different set of distances measures that does not show the

same reduction in mean trip distance.
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Level of service data

To develop simultaneous models of mode and destination choice from the Sydney
data it was necessary to assemble LOS measures for highway and public transport
modes. These were supplied in the form of matrices defining the LOS between
each pair of travel zones in the Sydney SD. LOS was available from 1991 and
2006 Emme network models developed by the Bureau of Transport Statistics at
Transport New South Wales, which they kindly made available for use in this
research. The LOS and other information was also readily available for the HIS
data because mode-destination models were developed from a combination of
the HIS data and the early waves of the HTS data in 2000 (Milthorpe et al.,
2000). Similarly LOS and other information was available for the 2004-2008
data because mode-destination models have recently been developed using this
data (Fox et al., 2011).

For highway, LOS measures were available separately by four time periods:
e AM peak, 07:00-08:59
e inter-peak, 09:00-14:59
e PM peak, 15:00-17:59
e off-peak, 00:00-06:59, 18:0-23:59

To take account of impact of congestion in the periods adjacent to the peaks, LOS
for the ‘shoulder’ periods of 06:00-06:59, 09:00-09:59, 14:00-14:59 and 18:00—
18:59 was calculated by taking an average of the LOS in the period adjacent the
peak and the LOS in the peak.

The following LOS information was supplied for each of the four time periods:

e free flow travel time (mins)
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e congested travel time (mins)
e distance (km)

e toll ($)

The modelling work in 2000 to develop mode-destination models from the HIS
data used fixed costs per kilometre to model fuel and non-fuel car costs, and those
values have been retained in this analysis. The models developed in 2000 were
extensively updated in 2010 (Fox et al., 2011), and in the updated models a more
detailed advanced approach was used to calculate fuel costs as a function of the
mean speed for the OD pair. However, parameter values for the more detailed
approach were not available for 1991. If the more detailed approach was used
for 2006 but not 1991, this could bias the transferability analysis. Therefore, the
average fuel cost per kilometre given by the detailed approach was calculated
from the estimation samples, and then this fixed cost per kilometre was used
in the transferability analysis models. Table 3.12 summarises the car costs per

kilometre used in the models.

Table 3.12: Car costs, 1986 prices

1991 2006 change
Fuel cost (cents/km) | 6.55 12.0 83.6%

It can be seen that real car costs have increased substantially between 1991 and

2006, consistent with the trend in the Toronto data observed in Table 3.6.

For public transport (PT) modes, only AM peak assignments were available, and
it is has been assumed that these can be used to model PT trips made at all
times of the day. This assumption is more reasonable for commute tours, which
tend to be made during the peak periods, than for discretionary travel, which is
more likely to take place during the inter-peak and off-peak periods. LOS from

two PT networks was used in the modelling. The first is a bus-only network,
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used to model PT tours where the only PT mode used in bus. The second is all
all PT modes network, which includes rail, light rail and ferry modes. Note that

bus can form an access or egress mode in the all PT modes network.

The following LOS information was supplied from the bus-only network:

o fare (%)

e in-vehicle time (mins)

e walk access and egress time (mins)
e first wait time (mins)

e other wait time (mins)

e boardings
For the all PT modes network, the following information was supplied:

o fare (%)

e rail in-vehicle time (mins)

e light rail in-vehicle time (mins)

e ferry in-vehicle time (mins)

e bus in-vehicle time (mins)

e walk access and egress time (mins)
e first wait time (mins)

e other wait time (mins)

e boardings
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3.3.3

Treatment of inflation

All costs in the models have been converted into 1991 prices. The CPI values for

the years of data that have been modelled are summarised in Table 3.13.

Table 3.13: CPI values (1989/90=100)

Year CPI
1991 106.7
2004/05 | 147.3
2005/06 | 151.0
2006/07 | 155.8
2007/08 | 159.5

Attraction data

The attraction data for the commute models is total employment. For the other
travel models, a combination of different attraction variables were used, popula-
tion and service employment. All of the attraction data was assembled by the

Bureau of Transport Statistics.

Processing steps

The choice data was supplied by Frank Milthorpe at Transport Data Centre,
Transport for New South Wales. The choice, level-of-service and attraction data
had already been processed into a format suitable for model estimation, and so
unlike the Toronto data discussed in Section 3.2.3 there was no need to establish

interim processing steps.

4Some of these interim processing steps were in fact setup by the author while working on
these models for RAND Europe who developed the models on behalf of Transport Data Centre.
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3.4

Comparison of Sydney and Toronto data

There are a number of differences between the Toronto and Sydney datasets that

impact on the transferability analyses presented in subsequent chapters.

While the TTS data recorded trips made by all travel purposes, only the com-
mute tours were available for this analysis. By contrast, tours for all purposes
were available for the Sydney data. Therefore the analyses comparing the trans-
ferability of commute and non-commute travel presented in Chapters 5 and 6

were made using the Sydney data alone.

The Toronto data was also limited in terms of the socio-economic data recorded,
and in particular by the omission on income from the survey. By contrast, the
Sydney data collected incomes allowing income segmented models to be devel-
oped, and the Sydney data also recorded more socio-economic information allow-

ing richer model specifications to be developed.

Only four modes have been modelled in the Toronto data, in part because the
modes recorded varied between the different years and a set of modes common
to all years was required for the transferability analysis, and in part because of
a decision to omit park-and-ride trips from the analysis on the basis that the
mode share for these trips did not justify the complexity of including them in the
analysis. Seven models are represented in the Sydney data, the key difference is
that train and bus are represented as separate modes, the other two additional

modes of cycle and taxi account for just 1% of tours between them.

A key advantage of the Toronto data is that four separate years of data are
available for analysis, allowing temporal transfers to be made for transfers ranging
from 5 to 20 years. By contrast, only two years of Sydney data are available
allowing only a 15 year transfer period. This means that the analysis of how

transferability changes with transfer period presented in Chapters 5 and 6 have
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been undertaken using the Toronto data, and similarly the models that pooled
data from different years that are presented in Chapter 7 have been developed
using the Toronto data alone. The ability to make transfers over a long 20 year
period was the reason that the Toronto data was used to make the random taste

heterogeneity tests presented in Chapter 8.
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Chapter 4

Model development

This chapter starts with a brief description of the software used for the model
estimation work, before going to on describe the development of the nested logit
models that have been used for the transferability analyses presented in Chapters
5 to 7. The work to develop models incorporating random taste heterogeneity is

described later in Chapter 8.

Section 3.2 describes the Toronto data that was used to allow transferability anal-
ysis. It starts by describing the mode-destination choice data, goes on to describe
the other data assembled including level of service data defining travel costs and
times by the various modes modelled, and then concludes with a description
of the commuter model specification that was developed for the transferability

investigations.

Section 3.3 presents the corresponding information for the Sydney data, describ-
ing both the commute and home-other travel model specifications that were

developed for the Sydney transferability analyses.
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4.1

4.2

4.2.1

Software

The model estimation work was undertaken using the ALOGIT software'. The
ALOGIT software was chosen because the author has more than a decade of
experience in using the software, and because it is particularly well suited to
estimating models with large numbers of alternatives such as mode-destination
choice models, both in terms of data handling capabilities and in terms of speed.
A further advantage is that one of the author’s supervisors, Andrew Daly, is the
author of the software, and his help proved particularly valuable when estimating
models with randomly distributed parameters that pushed the software to its

limits.

Some of the data processing prior to model estimation was undertaken using
Microsoft Excel, and Excel was also used for analysis and interim tabulation of

model results.

Toronto

Mode and destination alternatives

In order to make tests of model transferability, it was necessary to specify modal
alternatives that could be defined by each year of the TTS survey included in
the analysis. Specifying the modal alternatives was complicated by the fact that
the transit modes recorded in the various TTS surveys have varied from year to

year. Table 4.1 summarises the modes recorded for the home—work samples.

With the exception of 2001, transit has been split into local transit, subway

with car access, GO-Rail with transit access and GO-Rail with car access. Local

Laww . alogit.com.
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Table 4.1: home—work mode shares by year of T'TS survey

Mode 1986 1996 2001 2006
car driver 34,211  65.6% | 44,528 69.7% | 55,966 70.5% | 50,032 68.6%
car passenger 4,755 9.1% 5853  9.2% | 6,789  8.6% 5,775 7.9%
local transit 10,283  19.7% 9,230 14.5% | 12,603 15.9% | 10,604 14.5%
walk 1,155 2.2% 1,389 2.2% 808 1.0% 2,159 3.0%
Modelled 50,404 96.6% | 61,000 95.5% | 76,166 96.0% | 68,570 94.1%
subway, car access 692  1.3% 741 1.2% 1190  1.6%
GO-Rail, transit access 426 0.8% 499 0.8% 111 0.2%
GO-Rail, car access 632 1.2% 1418 2.2% 2411 3.3%

transit, car access 3198 4.0%

premium bus 151 0.2%
bike 207 0.3% 151 0.2%
Not modelled 1,750 3.4% 2,865 4.5% 3,198 4.0% 4,323 5.9%

transit can be modelled directly using Emme LOS, but for the other transit modes
there is a need to model choice of access station, which results in a more complex
treatment of LOS, with origin to access station and access station to destination
legs represented separately. This results in a substantial increase in model run
times, and given that these modes account for a relatively small percentage of
the total data, and are defined differently in 2001, it was decided to exclude
them from the modelling. It is noted that the 2001 local transit definition will
include transit access to GO-Rail trips which are excluded in other years, which
explains why the local transit share in 2001 is slightly higher than the 1996 and
2006 shares. Premium bus is only recorded in 2006, and accounts for just 0.2% of
data, and has therefore been excluded. Finally, bike is only recorded separately in
the 1996 and 2006 datasets, and has therefore been excluded from the modelling.
However, in the 2001 data bike trips were recorded together with walk and so
could not be excluded, and so the walk share presented for 2001 is actually for
walk plus bike. This makes the low walk share in the 2001 data relative to the

other years appear suspicious?.

2The low walk share in the 2001 data has been discussed with Eric Miller who coordinated
the supply of the TTS data. Eric agrees the share looks suspiciously low but does not have an
explanation for why this is so. There are other areas where the 2001 data is also anomalous, for
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The models included in the models are therefore car driver, car passenger, local
transit and walk which account for at least 94% of observations in each year of
TTS data. The availability conditions for these four modes were specified as

follows:

e car driver (CD) is available if the individual has a licence and their house-

hold owns at least one car
e car passenger (CP) is available to all individuals

e local transit (LT) is available if there is a transit path with non-zero transit

in-vehicle time between the origin and destination zone

e walk (WK) is available to all individuals

These availability conditions are consistent with those that have been used to
develop mode choice models used by planning agencies in the study area (Miller,
2007), though Miller additionally imposes a 150 minute total travel time in one
direction upper limit on local transit and a 3km upper limit on walk trips. The
walk distance parameter in the model specifications tested means that upper
limits are not required as availability conditions as longer tours have a lower

probability of choice.

Destination alternatives are available if there is at least one job in the destina-
tion zone. Setting alternatives that are rarely or never chosen to be unavailable is
expected to yield better parameter estimates. Furthermore, the availability con-
ditions should improve model transferability because they provide a mechanism
for taking account of future changes. For example, growth in licence holding and
car ownership over time would be expected to result in increases in the car driver

share ceteris paribus.

The size variable in the models is total employment. Total employment is used

example the high fraction of zones with non-zero parking costs highlighted in Table 3.6.
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4.2.2

because the number of commuters travelling to a zone is expected to be directly

proportional to the number of jobs in that zone.

Model specification

The model specification and associated estimation code was developed by the
author alone. However, the basic design of the model draws heavily on standard

RAND Europe modelling practice summarised in Fox et al. (2003).

The model specifications used to make the transferability tests were developed by
making a series of tests to develop model specifications that best explained the
mode-destination choices observed in the 1986 TTS data. Parody (1977), Train
(1978) and Badoe and Miller (1995a) all demonstrated that the temporal transfer-
ability of mode choice models improves with model specification. To investigate
whether this finding holds for models of mode-destination choice, and to facilitate
analysis of changes in cost sensitivity over time, three model specifications have

been developed:

e ‘sparse’ — linear and log cost terms, level of service terms, and mode and

destination constants
e ‘car avail’ — sparse specification plus car availability terms
e ‘detailed’ — car avail specification plus socio-economic terms
Fox et al. (2009) found that estimating separate linear and log cost terms could
yield a significant improvement in model fit relative to linear-only and log-only
cost specifications. Furthermore, this specification can yield more plausible elas-

ticities than a pure log-cost formulation which usually gives a better fit than a

pure linear-cost formulation, but has the disadvantage of giving low kilometrage
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elasticities®. Therefore separate linear and log cost terms were tested on the TTS

data, and were found to be significant in all three specifications.

Daly and Carrasco (2009) suggested that the influence of the log cost term, which
gives rise to an increase in value of time with distance, is in part as a result of
significant heterogeneity of preference leading to self-selection, so that value of
time does not necessarily increase with distance at an individual level. They
presented empirical analysis in support of this hypothesis in their paper, and this

issue is discussed in more detail in Chapter 9.

No intrazonal tours, i.e. tours where the origin and destination zones are the
same, were included in the sample of home—work tours used for model estimation
and therefore intrazonal destinations were set to be unavailable. As discussed
in section 2.1.1, in a multinomial model the ITA property means that consistent
estimates of the model parameters can be obtained from a sub-set of the model
alternatives. However, as discussed below the final model specifications are not

multinomial and therefore the consistency condition does not strictly hold.

Two alternative model structures were tested, destinations above modes, and
modes above destinations. In the modes above destinations structure, the struc-
tural parameter was significantly greater than one (1.18 with a t-ratio relative
to a value of 1 of 8.4) and therefore the structure could be rejected. For the
destinations above modes structure, the structural parameter was significantly

lower than one, and therefore this structure was adopted.

Only a single PT mode has been modelled, and therefore it was not possible to
test a structure with a PT nest (in models with a number of PT modes, the
public transport models are often placed in a nest as these modes are closer

substitutes than non-PT modes). A car nest was tested to investigate whether

3In a pure log-cost formulation, a uniform percentage increase to the cost of each destina-
tion results in the utility of each destination increasing by the same amount, and therefore no
destination choice response is observed in an elasticity test.
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4.2.3

car driver and car passenger are closer substitutes than the other modes, but the
nest parameter was significantly greater than one and therefore the structure was
rejected to guarantee consistency with utility maximisation. Thus in the final
model structure the four modal alternatives are at the same level in the choice

structure.

The final model specifications are defined in Table 4.2. On the left hand side of
the table, the different model parameters 8 are defined. The columns for each
mode define the data items x that each of the model parameters are multiplied
by. For constant terms, the x values are simply 1 indicating that the constant
is applied to that mode. The relatively small number of socio-economic terms
added in the detailed specification reflects the fact that just two socio-economic
variables, age and gender, were included on the estimation files. All costs are in

cents and all times are in minutes.

The age bands used on the estimation file supplied for the 2001 TTS data differ
to those used for the other survey years. As a result, the age terms identified in
the detailed specification cannot be defined using the 2001 estimation file, and
so the detailed specification cannot be estimated on, or transferred to, the 2001

data.

Utility functions

The final Toronto model uses a destinations and modes structure. The mode-
destination utilities V,,+4 for the detailed model specification that enter into Equa-
tion 2.15 are defined in Table 4.3. The size functions Sy that enter into Equation

2.14 at the destination level in the structure are defined separately.

where: Auto_Cost(d) is the car cost to destination d in cents

Auto_Time(d) is the travel time to destination d in minutes
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Table 4.2: Toronto model specifications

Parameter Car driver Car pass. Local transit Walk

Attraction term

TotEmp jobs jobs jobs jobs jobs
Cost terms

Cost linear cost car cost LT fare

LogCost log cost In(car cost) In(LT fare)
LOS terms

CarTime car IVT VT IVT

TranIVT transit IVT IVT

TranWait  transit wait time wait time

TranWalk  transit walk time walk time

APDist car pass. distance distance

WalkDist walk distance distance
Destination terms

CBDDest  CBD destination 1 1 1 1

CBDLT CBD destination 1
Mode constants

AP car passenger 1

LT local transit 1

WK walk 1
Car availability (car avail and detailed spec.s only)

AD2pVeh 24 vehicles 1

AP1Veh 1 vehicle 1

AP2pVeh 2+ vehicles 1
Socio-economics (detailed spec. only)

ADAgel617 aged 16 to 17 1

ADAgel825 aged 18 to 25 1

ADAge2630 aged 26 to 30 1

ADMale male 1

WkMale male 1

where: LT denotes local transit, IVT denotes in-vehicle time

CBD(d) is 1 if destination d is located in the CBD, 0 otherwise
NVeh is the number of vehicles owned by the household

female is 1 is the individual is female, 0 otherwise

age is the age of the individual in years

Hway_Dist(d) is the highway distance to destination d in kilometres




Table 4.3: Toronto detailed model specification utility functions

Mode

Parameter 3

Variable X

Variable type

Car driver

Cost

Auto_Cost(d)

cost

LogCost log(max(Auto_Cost(d), 1)) | cost
AutoTime Auto_Time(d) level-of-service
CBDDest CBD(d) constant
AD2pVeh ifge(Nveh, 2) socio-economic
ADmale ifeq(female, 0) socio-economic
ADagel617 | ifin(age, 16,17) socio-economic
ADagel825 | ifin(age, 18,25) socio-economic
ADage2630 | ifin(age, 26,30) socio-economic

Car passenger | AP constant
AutoTime Auto_Time(d) level-of-service
APDist Hway _Dist(d) level-of-service
CBDDest CBD(d) constant
AP1Veh ifeq(Nveh, 1) socio-economic
AP2pVeh ifge(Nveh, 2) socio-economic

Local transit | LT constant
Cost Tran_Fare(d) cost
LogCost log(max(Tran Fare(d), 1)) | cost
TranIVT Tran IVT(d) level-of-service
TranWalk Tran_Walk(d) level-of-service
TranWait Tran_Wait(d) level-of-service
CBDDest CBD(d) constant
CBDLT CBD(d) constant

Walk Wk constant
WalkDist Hway _Dist(d) level-of-service
CBDDest CBD(d) constant
WkMale ifeq(female, 0) socio-economic

Tran_Fare(d) is the transit fare to destination d in cents

Tran_IVT(d) is the transit in-vehicle time to destination d in minutes

Tran-Walk(d) is the transit walk time to destination d in minutes

Tran_Wait(d) is the transit wait time to destination d in minutes
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4.2.4

Model results

The model results for the detailed model specification are given in Table 4.4. In
Table 4.4, in each column the parameter value S is presented on the left and
the t-ratio for the parameter is presented on the right. The t-ratio is given by
the ratio /o where o is the standard deviation of the parameter estimate. For
model parameters, the t-ratios define the significance of the parameter relative
to a value of zero. For the structural parameters and the scale parameters the

t-ratios have been presented relative to a value of one.

All costs in the models are defined in 1986 prices and furthermore adjustments
have been applied to account for real growth in incomes relative to 1986 val-
ues. Furthermore the parameters have been adjusted to take account of scale
differences between the different years of data. These procedures are described

in detail in Section 5.1 and 5.2 respectively.

Model results for the ‘sparse’ and ‘car avail’ model specifications are presented

in Appendix B.
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4.3

4.3.1

Sydney

Mode and destination alternatives

With the exception of two commmute tours made by air and one by monorail,
and four other travel tours made by air and two by monorail, all of the modes
recorded in the STM data were modelled. Table 4.5 summarises the mode shares

for the home—work samples.

Table 4.5: Sydney home—work mode shares by year

Mode 1991 2006
car driver 3,231  63.2% | 3,369  65.1%
car passenger | 473 9.3% | 328 6.3%
train 762 14.9% 734 14.2%
bus 318 6.2% 415 8.0%
cycle 31 0.6% 32 0.6%
walk 275 5.4% 276 5.3%
taxi 21 0.4% 19 0.4%
Total 5,111 100.0% | 5,173 100.0%
Occupancy 1.146 1.097

A modest increase in car driver share is observed between 1991 and 2006, but the
big change is the large reduction in the car passenger share and the consequent
reduction in mean occupancy. The bus share has also increased. These changes
are consistent with those observed by Xu and Milthorpe (2010) who analysed
changes in the Census Journey to Work data over the 1981 to 2011 period, and
including analysis of the 1991 and 2006 datasets.

Table 4.6 summarises the mode shares for the home-other travel samples.

The car driver share has increased at the expense of car passenger, train and bus.

The walk share has also increased slightly.
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Table 4.6: Sydney home—other travel mode shares by year

Mode 1991 2006
car driver 4,647  43.7% | 4,918  47.0%
car passenger | 3,455  32.5% | 3,123  29.8%
train 218 2.0% 176 1.7%
bus 272 2.6% 180 1.7%
cycle 111 1.0% 100 1.0%
walk 1,892 17.8% 1,936 18.5%
taxi 49 0.5% 31 0.3%
Total 10,644 100.0% | 10,464 100.0%
Occupancy 1.743 1.635

For home—other travel, transferability tests were also undertaken

purposes that collectively sum to total home—other travel:

for three sub-

e serve passenger (travel to pick up or drop up another individual)

e personal business

e leisure (specifically social visits, recreation, entertainment, sport, holiday)

Table 4.7 presents the mode shares by year for these three sub-purposes.

Table 4.7: Sydney home—other travel sub-purpose mode shares by year

Mode Serve passenger | Personal business Leisure
1991 2006 1991 2006 1991 2006

car driver | 48.9%  55.9% | 53.6% 57.5% | 37.5%  38.0%
car pass. | 36.0% 31.5% | 19.0% 19.6% | 34.0%  31.6%
train 0.3% 0.4% 3.3% 3.0% 2.8% 2.2%
bus 1.1% 0.3% 5.1% 3.8% 2.8% 2.1%
bike 0.0% 0.0% 0.5% 0.7% 1.8% 1.5%
walk 13.6% 11.8% | 17.9% 14.7% | 204%  24.2%
taxi 0.1% 0.1% 0.6% 0.7% 0.6% 0.3%
Total 100.0% 100.0% | 100.0%  100.0% | 100.0% 100.0%
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It can be seen from Table 4.7 that the mode shares vary across the three sub-
purposes, with car driver usage highest for personal business, but car passenger
use highest for serve passenger and leisure, and with very little public transport
usage for serve passenger travel. Furthermore, the changes in mode share vary
between the sub-purposes, in particular for serve passenger and personal business
the car driver share has increased and the walk share has reduced, whereas for
leisure there has been little change in the car driver share and an increase in the

walk share.

The availability conditions for the seven modelled modes were specified as follows:

e car driver (CD) is available if the individual has a licence and their house-

hold owns at least one car
e car passenger (CP) is available to all individuals

e train (TR) is available if there is a path in the PT assignment with non-zero

train in-vehicle time between the origin and destination zone

e bus (BS) is available if there is a path in the bus-only assignment with

non-zero bus in-vehicle time between the origin and destination zone
e cycle (CY) is available to all individuals
e walk (WK) is available to all individuals
e taxi (TX) is available to all individuals
Destination alternatives are available in the home—work model if there is at least

one job in the destination zone, and available in the home—other travel model if

the population is at least one in the destination zone.

Total employment was used as the size variable in the home-work model as the
number of individuals commuting to each zone is expected to be proportional

to the number of jobs in that zone. For home-other travel, drawing on earlier
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4.3.2

modelling work in Sydney (Fox et al., 2003), multiple size variables were tested
to reflect the heterogenous nature of home—other travel. Population was used to
represent the attractiveness of destinations for sub-purposes like serve passenger
and visiting friends, whereas service employment was used to reflect personal

business travel.

Model specification

The model specification and associated estimation code took as its starting point
existing ALOGIT code that RAND Europe had developed over a number of years
on behalf of the Bureau of Transport Statistics, Transport for New South Wales.
The author modified the code so that identical model specifications were used
for each year of data. Furthermore, for home—other travel the author created

sub-purpose models by filtering the data by sub-purpose.

Consistent with the Toronto specifications described in Section 4.2.2, a number
of model specifications have been tested to investigate whether transferability

increases as models specification improves:

e ‘sparse’ — linear and log cost terms, level of service terms and constants

e ‘car avail’ — sparse specification plus car availability terms

e ‘detailed’ — car avail specification plus socio-economic terms

e ‘detailed & income’ — detailed specification but with cost sensitivity seg-

mented by income

The home—other sub-purpose models were developed using the ‘detailed’ specifi-
cation (i.e. the cost sensitivity terms were not segmented by income) after initial
tests found that the income segmented cost terms were not significantly better

than a single cost term for all of the sub-purposes.
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No LOS was available for PT for intrazonals (i.e. tours with the same origin
and destination zone) and as few PT intrazonals were observed in the data PT
modes were set to be unavailable for intrazonals. For the other modes which use
highway LOS, intrazonals are more frequently observed (particularly for walk),
but once again no level of service was available from the Emme skims. Therefore
intrazonal LOS was imputed using a ‘nearest neighbour’ whereby the nearest zone
by distance on the highway network was identified, and then half of the travel

time and distance to this done was used to calculate the intrazonal LOS.

Two alternative model structures were tested for home—work travel, destinations
above modes, and modes above destinations. In the destinations above modes
structure, the structural parameter was significantly greater than one (1.13 with
a t-ratio compared to a value of 1 of 2.7) and therefore the structure could be
rejected. For the modes above destinations structure, the structural parameter
was significantly lower than one, and therefore this structure was adopted. It is
noteworthy that this is the opposite structure to that identified from the analysis
of the Toronto data despite the fact that the car driver and public transport
shares for home—work travel are similar in the two contexts. This result suggests

that mode-destination model structures are not spatially transferable.

Similar tests were undertaken for home—other travel and again the modes above
destinations structure was accepted, but the reverse destinations above modes

structure was rejected.

The final home—work and home—other travel model specifications are defined in
Table 4.8 and Table 4.9. Note that due to space limitations the separate cost
parameters used by income group in the ‘detailed & income’ specification are
not presented; however these are detailed in the utility functions presented in
Section 4.3.3. On the left hand side of the table, the different model parameters
[ are defined. The columns for each mode define the data items x that each of

the model parameters are multiplied by. For constant terms, the x values are
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simply 1 indicating that the constant is applied to that mode. Car competition is
defined as a household where the number of licence holders exceeds the number
of vehicles owned. The passenger opportunity term is applied if the household
owns at least one car and there is at least one other individual in the household

who owns a licence. All costs are in cents and all times are in minutes.
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4.3.3

Utility functions

The utility functions used in the detailed & income specification of the home—

work model are detailed in Table 4.10.

Table 4.10: Sydney home—work detailed & income model specification utility

functions
Mode Parameter Variable X Variable type

Car driver TotEmp LogEmp(d) attraction
Cost1 CDfact * car_cst_NT(d) * ifeq(incb, 1) cost
Cost?2 CDfact * car_cst_NT(d) * ifeq(incb, 2) cost
Cost3 CDfact * car_cst_NT(d) * ifeq(incb, 3) cost
LogCost log(max(CDfact*car_cst_ZNT(d), min_cost)) cost
CarTime Car_Tm_Nt(d) level-of-service
CBDDest CBD(d) constant
Intra 1Z(d) constant
CarComp ifgt(hhld_fplic, hhcars+ccars) socio-economic
CmpCrDr ifge(ccars, 1) socio-economic
MaleCrDr ifeq(gender, 1) socio-economic
Ageu24CrD | ifle(age, 24) socio-economic

Car passenger | CrP constant
TotEmp LogEmp(d) attraction
Costl CPfact * car_cst_ZNT(d) * ifeq(incb, 1) cost
Cost?2 CPfact * car_cst_NT(d) * ifeq(incb, 2) cost
Cost3 CPfact * car_cst NT(d) * ifeq(incb, 3) cost
LogCost log(max(CPfact*car_cst_NT(d), min_cost)) cost
CarTime Car_-Tm_Nt(d) level-of-service
CarPDist Car_Ds_Nt(d) level-of-service
Intra 1Z(d) constant
CBDDest CBD(d) constant
PassOpts ifge(hhcars+ccars, 1) * ifgt(hhld_fplic, fullp_lic) | socio-economic
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Table 4.11: Sydney home—work detailed & income model specification utility

functions (continued)

Mode | Parameter g Variable X Variable type
Train | Trn constant
TotEmp LogEmp(d) attraction
Costl Rail fare(d) * ifeq(incb, 1) cost
Cost2 Rail_fare(d) * ifeq(incb, 2) cost
Cost3 Rail_fare(d) * ifeq(incb, 3) cost
LogCost log(max(Rail fare(d), min_cost)) | cost
RlTime Rail IVT(d) level-of-service
BusTime TBus IVT(d) level-of-service
AccTime Rail_walkT(d) level-of-service
FrwtTm Rail_fwait(d) level-of-service
OrWtTme Rail_owait(d) level-of-service
CBDDest CBD(d) constant
CBDRail CBD(d) constant
HiPersInc ifge(incb, 3) socio-economic
FullTmRI ifeq(adult_st, 3) socio-economic
Bus Bus constant
TotEmp LogEmp(d) attraction
Cost1 Bus_fare(d) * ifeq(incb, 1) cost
Cost2 Bus_fare(d) * ifeq(incb, 2) cost
Cost3 Bus_fare(d) * ifeq(incb, 3) cost
LogCost log(max(Bus_fare(d), min_cost)) | cost
BusTime Bus IVT(d) level-of-service
AccTime Bus_walkT(d) level-of-service
FrwtTm Bus_fwait(d) level-of-service
OrWtTme Bus_owait(d) level-of-service
CBDDest CBD(d) constant
CBDBus CBD(d) constant
Bike Bk constant
TotEmp LogEmp(d) attraction
BkDist slow_dist(d) level-of-service
Intra 1Z(d) constant
CBDDest CBD(d) constant
MaleBike ifeq(gender, 1) socio-economic
Walk | Wk constant
TotEmp LogEmp(d) attraction
WkDist slow_dist(d) level-of-service
Intra 1Z(d) constant
CBDDest CBD(d) constant
Taxi Tx constant
TotEmp LogEmp(d) attraction
CarTime Car_Tm_ Nt( ) level-of-service
Cost1 tx_cst(d) * ifeq(incb, 1) cost
Cost2 tx_cst(d) * ifeq(incb, 2) cost
Cost3 tx_cst(d) * ifeq(incb, 3) cost
LogCost log(max(tx_cst(d), min_cost)) cost
CBDDest CBD(d) constant
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where: LogEmp(d) is the log of total employment in destination d
CD fact is the proportion of the total car cost allocated to car driver
car_cst_NT(d) is the car cost to destination d in cents
incb is the income band (1: under $15.6k, 2: $15.6-26k, 3: $26-36.4k+)
Car_T'm_Nt(d) is the car time to destination d in minutes
CBD(d) is 1 if destination d is located in the CBD, 0 otherwise
IZ(d) is 1 if destination d is an intrazonal, 0 otherwise
hhld_fplic is the number of licence holders in the household
hhcars is the number of privately owned cars available to the household
ccars is the number of company owned available to the household
gender is 1 is the individual is male, 0 otherwise
age is the age of the individual in years
CP fact is the proportion of the total car cost allocated to car passenger
Car_Ds_Nt(d) is the highway distance to destination d in kilometres
Rail_fare(d) is the train fare to destination d in cents
Rail IVT(d) is the train in-vehicle time to destination d in minutes
TBus_IVT(d) is the bus access time for train to destination d in minutes
Rail . Walk(d) is the walk access time for train to destination d in minutes
Rail_fwait(d) is the first wait time for train to destination d in minutes
Rail owait(d) is the other wait time for train to destination d in minutes
adult_st is the adult status code of the individual
Bus_fare(d) is the bus fare to destination d in cents
Bus_IVT(d) is the bus in-vehicle time to destination d in minutes
Bus_walkT(d) is the walk access time for bus to destination d in minutes
Bus_fwait(d) is the first wait time for bus to destination d in minutes
Bus_owait(d) is the other wait time for bus to destination d in minutes
slowgist(d) is the off-peak highway distance to destination d in kilometres

tx_cst(d) is the taxi cost to destination d in cents
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The utility functions used in the detailed & income specification of the home-

other travel model are detailed in Table 4.12.

Table 4.12: Sydney home—other travel detailed & income model specification

utility functions

Mode Parameter (8 Variable X Variable type
Car CarTime Car_Tm_Nt(d) level-of-service
driver LogCost20 log(max(CDfact*car_cst_NT(d), min_cost)) * ifeq(pinc_band, 1) | cost

LogCost2050 | log(max(CDfact*car_cst_-NT(d), min_cost)) * ifeq(pinc-band, 2) | cost
LogCost50pl | log(max(CDfact*car_cst_-NT(d), min_cost)) * ifeq(pinc_band, 3) | cost
CBDDest CBD(d) constant
Intra 1Z(d) constant
CarComp ifgt(hhld _fplic, hhcars+ccars) socio-economic
Car CrP constant
passenger | LogCost20 log(max(CPfact*car_cst_NT(d), min_cost)) * ifeq(pinc_band, 1) | cost
LogCost2050 | log(max(CPfact*car_cst_ZNT(d), min_cost)) * ifeq(pinc_band, 2) | cost
LogCost50pl | log(max(CPfact*car_cst_ZNT(d), min_cost)) * ifeq(pinc_band, 3) | cost
CarTime Car_Tm_Nt(d) level-of-service
CarPDist Car_Ds_Nt(d) level-of-service
Intra 1Z(d) constant
CBDDest CBD(d) constant
PassOpts ifge(hhcars+ccars, 1) * ifgt(hhld_fplic, fullp_lic) socio-economic
CarPMale ifeq(gender, 1) socio-economic
CarPul0 iflt(age, 10) socio-economic
CarP60pl ifge(age, 60) socio-economic
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Table 4.13: Sydney home—other travel detailed & income model specification
utility functions (continued)

Mode | Parameter 3 Variable X Variable type

Train | Trn constant
LogCst20 log(max(Rail_fare(d), min_cost)) * ifeq(pinc_band, 1)) | cost
LogCst2050 | log(max(Rail _fare(d), min_cost)) * ifeq(pinc_band, 2)) | cost
LogCst50pl | log(max(Rail_fare(d), min_cost)) * ifeq(pinc_band, 3)) | cost
RlITime Rail TVT(d) level-of-service
BusTime TBus IVT(d) level-of-service
AccTime Rail_walkT(d) level-of-service
FrwtTm Rail_fwait(d) level-of-service
OrWtTme Rail _owait(d) level-of-service
CBDDest CBD(d) constant
CBDRail CBD(d) constant
PT10to19 ifin(age, 10,19) socio-economic
PT60pl ifge(age, 60) socio-economic

Bus Bus constant
LogCst20 log(max(bus_fare(d), min_cost)) * ifeq(pinc-band, 1) cost
LogCst2050 | log(max(bus_fare(d), min_cost)) * ifeq(pinc_band, 2) cost
LogCst50pl | log(max(bus_fare(d), min_cost)) * ifeq(pinc_band, 3) cost
LogCost log(max(Bus_fare(d), min_cost)) cost
BusTime Bus IVT(d) level-of-service
AccTime Bus_walkT(d) level-of-service
WaitTime Bus_fwait(d) level-of-service
WaitTime Bus_owait(d) level-of-service
CBDDest CBD(d) constant
CBDBus CBD(d) constant
BusMale ifeq(gender, 1) socio-economic
PT10to19 ifin(age, 10,19) socio-economic
PT60pl ifge(age, 60) socio-economic

Bike Bk constant
BkDist slow_dist(d) level-of-service
Intra 1Z(d) constant
CBDDest CBD(d) constant
BikeMale ifeq(gender, 1) socio-economic

Walk | Wk constant
WkDist slow_dist(d) level-of-service
Intra 1Z(d) constant
CBDDest CBD(d) constant

Taxi Tx constant
CarTime Car_Tm_Nt(d) level-of-service
LogCst20 log(max(tx_cst(d), min_cost)) * ifeq(pinc_band, 1) cost
LogCst2050 | log(max(tx_cst(d), min_cost)) * ifeq(pinc_band, 2) cost
LogCst50pl | log(max(tx-cst(d), min_cost)) * ifeq(pinc_band, 3) cost
CBDDest CBD(d) constant
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where: the variable definitions are as per the home—work, plus:
pinc_band is the personal income band (1: under $20k, 2: $20-50k, 3: $50k+)

4.3.4 Model results

The model results for the ‘detailed & income’ model specifications are given in
Table 4.14 for home—work, Table 4.15 for home—other travel and Table 4.16 for

the home—other travel sub-purpose models.

In the results tables in each column the parameter value ( is presented on the left
and the t-ratio for the parameter is presented on the right. The t-ratio is given by
the ratio /o where o is the standard deviation of the parameter estimate. For
model parameters, the t-ratios define the significance of the parameter relative
to a value of zero. For the structural parameters and the scale parameters the
t-ratios have been presented relative to a value of one. All cost parameters are
presented in 1986 prices and values after applying the adjustment procedures
described in Sections 5.1 and 5.2.

Model results for the ‘sparse’, ‘car avail’ and ‘detailed” model specifications are

presented in Appendix C.
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Table 4.14: Sydney commute model results, detailed & income specification

COM_D3.91 COM_D3.0408
Log-likelihood -29,507.5 -34,182.9
Observations 5,111 5,173
LL per obs -5.773 -6.608
Cost parameters
LogCost -0.379 -9.1 -0.271 -7.2
Cost1 -0.0023 -10.7 | -0.0023 -12.7
Cost2 -0.0018 -10.8 | -0.0010 -9.4
Cost3 -0.0006 -5.2 | -0.0003 -3.3
Level of service
CarTime -0.025 -27.0 -0.029 -35.3
RITime -0.010 -8.5 -0.012 -11.5
BusTime -0.020 -12.3 -0.020 -14.8
AccTime -0.026 -8.8 -0.011 -5.3
FrWtTm -0.012 -1.7 -0.012 -2.5
OtWTme -0.042 -7.8 -0.041 -9.6
CarPDist -0.020 -7.8 -0.026 -7.2
BkDist -0.164 -7.4 -0.160 -7.4
WIkDist -0.598 -21.0 -0.601 -20.8
Destination terms
Intra -0.123 -1.4 0.265 2.3
CBDDest -0.122 -1.3 -0.473 -5.7
CBDRail 0.865 6.4 1.392  11.8
CBDBus 0.454 2.7 1.293 9.7
Mode constants
CrP -6.053 -13.7 -4.312 -17.4
Trn -3.076 -9.1 -1.473 -9.0
Bus -2.495 -9.4 -1.637 -11.9
Bk -10.667 -10.5 -6.515 -11.3
Wk -2.044 -5.9 -0.424 -2.4
Tx -5.977  -10.6 -4.696 -19.1
Car availability
CarComp -2.154  -13.1 -1.485 -194
CmpCrDr 0.872 5.9 0.690 7.1
PassOpts 1.850 5.9 1.546 6.5
Socio-economic
Ageu24CrD -0.872 -5.6 -0.382 -3.4
MaleCrDr 0.755 6.2 0.149 2.0
FullTmRI1 1.302 5.5 0.014 0.1
HiPersInc 0.351 2.3 0.301 2.9
MaleBike 3.488 4.2 2.168 4.0
Attraction term
TotEmp 1.000 n/a 1.000 n/a
Structural parameter
TR-M_D 0.695 18.1 1.000 n/a
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Table 4.15: Sydney home—other travel model results, detailed & income specifi-
cation

OTH_D3.91 OTH_D3.0408
Log-likelihood -46,922.1 -53,400.3
Observations 10,644 10,464
LL per obs -4.408 -5.103
Cost parameters
LogCst20 -1.169 -32.2 -0.700 -33.2
LogCst2050 -1.058 -26.2 -0.700 -33.2
LogCst50pl -0.948 -13.0 -0.700 -33.2
Level of service
CarTime -0.053 -41.9 -0.066 -51.4
RITime -0.021 -7.9 -0.016 -7.5
BusTime -0.023 -8.9 -0.029 -10.9
AccTime -0.040 -7.5 -0.015 -4.2
WaitTime -0.024 -4.2 -0.025 -5.2
CarPDist 0.007 4.5 0.014 8.0
BkDist -0.332  -14.0 -0.319 -13.7
WIkDist -0.740 -47.7 -0.927 -50.8
Destination terms
Intra -0.024 -0.5 -0.163 -4.0
CBDDest -0.348 -2.6 -1.497  -10.9
CBDRail 0.893 3.6 1.707 7.1
CBDBus 0.453 1.8 1.199 4.1
Mode constants
CrP -11.204 -12.2 -6.347  -15.7
Trn -10.630 -8.8 -5.911  -11.3
Bus -9.226 -8.4 -5.329 -10.5
Bk -20.509 -12.3 | -11.373 -14.7
Wk -6.565 -11.5 -2.271  -10.6
Tx -14.144 -9.1 -8.583  -12.1
Car availability
CarComp -1.645 -7.3 -0.812 -7.1
PassOpts 5.519  10.1 2.762  11.2
Socio-economic
CarPMale -1.889 -8.3 -0.481 -4.6
BusMale -1.394 -3.3 -0.274 -1.0
BikeMale 4.424 5.4 2.939 6.0
CarPul0 4.612 10.6 3.279 141
CarP60pl 1.086 4.1 0.518 3.8
PT10t019 -1.031 -2.2 -0.305 -1.1
PT60pl 3.465 7.8 0.881 3.8
Attraction term
LSM 1.000 n/a 1.000 n/a
ServEmp 6.046  45.2 6.570  45.2
Structural parameter
TR-M_D 0.399 18.3 0.594 11.2
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Chapter 5

Parameter transferability

This chapter presents analysis of changes in model parameters over time that has

been undertaken using both the Toronto and Sydney datasets.

The Chapter starts in Section 5.1 by considering how to take account of changes
in cost sensitivity that result from real income growth over time. This analysis is
presented first because the analysis presented in subsequent sections of this chap-
ter, and the analysis described in subsequent chapters, incorporates the approach
for adjusting for real income growth discussed in Section 5.1. Next, section 5.2
briefly details how adjustments have been applied to take account of scale differ-
ences — i.e. differences in the level of unexplained error — between different years

of data.

The analysis of parameter transferability is split into three sections. In Section
5.3, analysis of the significance of parameter differences in presented. Section 5.4
documents analysis of changes in the changes in parameter magnitude. Finally,
Section 5.6 focuses on the transferability of the structural parameters that capture

the relative levels of error in mode and destination choice.
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5.1

5.1.1

The thinking in Section 5.1.1 was informed by the literature review presented in
Daly and Fox (2012). Earlier results from the analyses presented in Sections 5.2
and 5.4 were presented in Fox et al. (2014).

Changes in cost sensitivity over time

Adjusting for real income growth

In Daly and Fox (2012), the literature on the longitudinal elasticity of VOT to real
income growth over time was reviewed. The conclusion from this review was that
longitudinal income elasticities are around 1. A key piece of UK evidence is the
meta-analysis work undertaken by Mark Wardman and others which has fed into
the UK Department for Transport’s web-based guidance (named 'WebTAG’).
The most recent set of this UK analysis identified a GDP /capita elasticity of
0.9 (Abrantes and Wardman, 2011). Subsequently Borjesson (2014) found that
significant reduction in the magnitude of the cost parameter for 1994 and 2007
Swedish value of time data models could be entirely explained by adjusting for
real income growth over the period, i.e. that the longitudinal income elasticity

for her Swedish values of time data was 1.

Drawing on this evidence, model tests were undertaken where adjustments were
made to the cost parameters to take account of real income growth measured
using GDP /capita (i.e. using a longitudinal elasticity of 1). The results of model
transfers where costs were adjusted in this way were then compared to the fit in
the transfer context of models where no adjustment to the cost parameters was

made.

The real income growth adjustment is applied to satisfy Equation 5.1.
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VOT, = G.VOT, (5.1)

where: VOT; is the VOT in the transfer context t
VOTy is the VOT in the base context b

G is the real income growth adjustment

In the base context, VOT in a model with both linear and log cost parameters is

given by Equation 5.2.

oU/dcost BCost - BLogCost

cost

VOT, =

(5.2)

where: Brime is the travel time parameter
Bcost is the linear cost parameter
BLogCost s the log cost parameter

cost is the modelled cost

The utility functions for the Toronto and Sydney models which include Brime,

Bcost and Brogcost parameters are defined in Sections 4.2.3 and 4.3.3.

Combining Equations 5.1 and 5.2, VOT in the transfer context is then given by
Equation 5.3.

VOT, = G.VOT, = - ’BTW;L _ (5.3)
@(BCost + M)

cost

Equation 5.3 has been operationalised by multiplying the cost contribution

143



5.1.2

Bcost + % by the reciprocal of the real income growth between the base

and transfer contexts, i.e. by 1/G.

This approach makes the assumption that the marginal utility of time does not
changes over time, i.e. is perfectly temporally transferable, so that changes in
VOT occur solely as a result of changes in the marginal utility of cost. This
assumption is discussed further in Section 5.4 in the light of the findings from
empirical tests with the Toronto and Sydney datasets of the temporal stability

of the travel time parameters.

Tests with Toronto data

The tests for the Toronto data were undertaken for the 1986, 1996 and 2006
datasets, in each case making transfers to the other two possible years of data.
The 2001 data was excluded from these analyses because in the ‘car avail’ spec-
ification the linear cost parameter was insignificant!. Table 5.1 summarises the
improvement in fit in the transfer context that results from reducing the cost

parameters to take account of growth in income (measured by GDP /capita).

Table 5.1: Toronto income adjustment tests (detailed specification)

Transfer year
1986 | 1996 | 2006
1986 n/a | 152.2 | 780.3
1996 123.7 n/a | -607.2
2006 4199 | -314.4 n/a

Base year

For four of the six tests, an improvement in fit in the transfer context is observed

when the cost contribution is reduced by the growth in GDP /capita. For transfers

1Given that the 2001 data could not be used, the ‘detailed’ specification, the most detailed
model specification, was used for these tests. The detailed specification cannot be estimated
from the 2001 data because the age terms cannot be specified from the 2001 estimation file.
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5.1.3

from 1996 to 2006, and from 2006 to 1996, adjusting the cost contribution by real

growth in GDP /capita gave a worse fit than making no adjustment at all.

Tests with Sydney data

A key advantage of the Sydney data over the Toronto data is that incomes were
recorded. By calculating the mean incomes in the base and transfer samples,
Equation 5.3 could be operationalised using observed real income changes across
the study area rather than by approximating the real income change using a GDP

per capita measure.

In the best Sydney commute model specification (the ‘detailed & income’ specifi-
cation) cost sensitivity is segmented by income. Specifically, there are three sepa-
rate linear cost terms for different incomes bands, but a single log-cost parameter
estimated across all income bands. The complication with applying Equation 5.3
in this model is that some of the growth in VOT G comes about due to a shift
in the distribution of individuals into higher income bands between the base and
transfer samples. If the G factor calculated from the observed change in mean
real income is applied, then the effect of re-distribution will be to give an overall

VOT adjustment greater than G.

To deal with this issue, a two-step procedure was employed. First, the cross-
sectional income elasticity was calculated from the model parameters and the

disaggregate incomes in the estimation sample using Equation 5.4.

(ﬂH—ﬂL)
Eipe = —P2_~_ (5.4)

( incyg—incr, )
incry,

where: (r, is linear cost parameter in the lowest income band
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B is linear cost parameter in the highest income band
incy, is the mean income in the lowest income band in the estimation sample

incy is the mean income in the highest income band in the estimation sample

The f;, and By parameters are defined in Table 4.10.

From the income elasticity it is possible to calculate income growth due to re-

distribution alone:

GR:— Z‘nc*G (5.5)

The remainder of the income growth can be viewed as a uniform increase Gy

which is applied to across all income bands:

Gy =G - Gp (5.6)

In the commute model, the linear cost parameters vary with income band. From
Equation 5.2 it can be seen that the contribution of the linear cost term to the
VOT calculation does not vary with the cost of the journey. However, in the
home—-other travel model the log-cost parameters vary with income band. It can
be seen from Equation 5.2 that in a log-cost formulation, the contribution from
the log-cost term increases with the cost of the journey, and higher income trav-
ellers tend to make longer and more expensive journeys. Thus to the extent that
journey cost is correlated with income, the log-cost formulation itself accounts
for an income effect, and so higher VOTs for higher travellers come about due to

a combination of the log-cost parameters and more expensive journeys.

146



Table 5.2 summarises the values for the income growth components in the com-
mute and home-other travel models calculated using Equations 5.4, 5.5 and 5.6.
Following the discussion above, for home—other travel the elasticity values pre-

sented are for journeys of constant cost.

Table 5.2: Components of income growth in Sydney models

Purpose Transfer FEine Gr Gy G
. 1991 to 2006 20.38 | 1.120 | 1.198 | 1.318
comuute 2006 to 1991 20.32 | 1.102 | 1.216 | 1.318

1991 to 2006 -0.013 | 1.004 | 1.302 | 1.306

home-other travel | o0c 1991 | 0 (fixed) | 0.000 | 1.306 | 1.306

For commute, cross-sectional elasticities Ej,. of -0.38 and -0.32 were calculated.
It can be seen from Table 5.2 that re-distribution therefore accounts for around

one-third of the total income increase G.

For home—other travel, for transfers from 1991 to 2006 a much lower elasticity
Eine of just -0.013 was calculated. As per the discussion above, the much lower
income elasticity follows from the fact that higher income travellers make more
expensive journeys, and in a log-cost formulation this results in higher implied
VOTs. For example, in the 1991 dataset the mean journey costs are $0.95 in the

lowest income band but $1.56 in the highest income band.

For the 2006 dataset, the model results with the income segmented specification
were implausible, as cost sensitivity was slightly higher in the top income band
than the two lower income bands. Therefore for the transferability tests the 2006
parameters from the detailed specification (without income segmentation) were
used, which means that Ejy. is zero (from Equation 5.4) and all income growth

is applied through the Gy adjustment?.

2Constraining the income segmented log-cost parameters in the ‘detailed & income’ specifica-
tion to be the same for each income band give a model equivalent to the ‘detailed’ specification.
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5.1.4

Tables 5.3 and 5.4 summarise the results from the VOT adjustment tests for
commute and home—other travel with the tables showing the improvement in

model fit that results from applying the VOT adjustment.

Table 5.3: Sydney VOT adjustment tests, commute

Base year obs Model specification
sparse | car avail | detailed detailed
& income
1991 transfer to 2006 | 5,173 69.2 49.8 56.8 79.2
2006 transfer to 1991 | 5,111 55.9 48.3 31.4 45.3

Table 5.4: Sydney VOT adjustment tests, home—other travel

Base year obs Model specification
sparse | car avail | detailed detailed
& income
1991 transfer to 2006 | 10,464 84.2 24.1 11.5 13.1
2006 transfer to 1991 | 10,644 | -339.7 -414.4 -433.7 -433.7

For both transfers of the commute models, and for the transfer of the 1991 home—
other travel model to 2006, modest increases in fit to the data are observed across
all four model specifications when the cost parameters are adjusted by the real
income growth. However, for the transfer of the 2006 home—other travel model
to 1991 the fit is substantially worse than when no adjustment is applied for all

four model specifications?.

Discussion

Overall, the tests on the Toronto and Sydney datasets presented in Tables 5.1,
5.3 and 5.4 demonstrate that adjusting the cost parameters by the real growth

3Given how poorly the 2006 models transfer to 1991 the setups were double-checked for errors
but no issues were identified.
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5.2.1

in income (i.e. using a longitudinal income elasticity of 1) gives an improved fit
to the data relative to making no adjustment. For the Sydney commute models,
cross-sectional income elasticities in the range -0.32 to -0.38 are observed. These
values are in line with other evidence summarised in Daly and Fox (2012), who

reported cross-sectional elasticities of around -0.3.

The approach developed for models that incorporate income segmentation that
decomposes total income growth into redistribution between bands, and a further
uniform increase applied across all bands, appears to work well. An important
consideration that the analysis highlights for models that work with log-cost terms
segmented by income band is that the cross-sectional elasticity may be consider-
ably lower than -0.3; this results from the fact that higher income travellers tend
to make more expensive journeys and these are subject to higher implied VOTs

in a log-cost formulation.

Scale adjustment

In order to compare individual parameters between models estimated separately
from each available year of the data, it was necessary to take account of scale
differences between the models estimated for different years. To do this, models
were estimated by pooling the data and estimating the parameters across all
years of data. In these models, scale parameters were estimated relative to a

base dataset to identify differences in scale between the different years of data.

Toronto data

For the Toronto data, pooled models for the three model specifications defined
in Table 4.2 were jointly estimated from the 1986, 1996, 2001 and 2006 TTS
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datasets®. The 1986 scale was fixed to one, so all other datasets are scaled
relative to the base 1986 data. The resulting scale parameter estimates are given

in Table 5.5 (the t-ratios presented are calculated with respect to a value of 1).

Table 5.5: Toronto scale parameters

Model specification

Year Sparse Car avail Detailed
scale t-ratio | scale t-ratio | scale t-ratio
1986 | 1.000 n/a | 1.000 n/a | 1.000 n/a
1996 | 0.843 38.0 | 0.866 32.0 | 0.861 33.2
2001 | 0.963 8.0 | 0.920 18.3 n/a n/a
2006 | 0.913 19.8 | 0.939 13.7 | 0.939 13.5

The results imply that the level of unexplained error is higher in the 1996, 2001
and 2006 databases, despite the fact that the level of detail in the zoning system
has increased over time. The scale parameters presented in Table 5.5 were used
to re-scale the parameters from the separately estimated models for 1996, 2001
and 2006 before individual parameters were compared. The model parameter

values after rescaling are presented in Table 4.4 and in Appendix B.

A possible explanation for the pattern of increasing error with time is increased
labour market specialisation, and the associated decentralisation of employment
away from central areas, which may make it more difficult to explain commuter
destination choice. Statistics Canada (2003) have found that the majority of
employment growth over recent decades has taken place in suburban municipal-
ities of urban areas, with a 61% increase in employment in these areas between
1981 and 2001 compared to a 7% increase in central municipalities over the same
period. This is consistent with analysis of the model estimation results, which
showed that the percentage of commute tours travelling to zones in the Central
Business District declined from 8.8% in 1986 to 5.9% in 2006.

4The pooled model for the detailed specification omits the 2001 data because the 2001 data
does not contain the age information required to estimate that specification.
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5.2.2

Sydney data

For the Sydney data, pooled models were run where scale parameters for the 1991
data were estimated relative to the 2006 data. The scale parameters that were

estimated are given in Table 5.6 for commute and 5.7 for home-other travel (the

t-ratios presented are calculated with respect to a value of 1).

Table 5.6: Sydney scale parameters, commute

Model specification
Sparse Car avail Detailed Detailed
Year & income
scale t-ratio | scale t-ratio | scale t-ratio | scale t-ratio
1991 | 0.947 4.4 | 0.968 2.5 | 0.968 2.5 | 0.952 3.8
2006 | 1.000 n/a | 1.000 n/a | 1.000 n/a | 1.000 n/a
Table 5.7: Sydney scale parameters, home—other travel
Model specification
Sparse Car avail Detailed Detailed
Year & income
scale t-ratio | scale t-ratio | scale t-ratio | scale t-ratio
1991 | 0.823 29.9 | 0.827 26.8 | 0.811 31.9 | 0.811 31.7
2006 | 1.000 n/a | 1.000 n/a | 1.000 n/a | 1.000 n/a

The scale parameters indicate a higher level of error in the 1991 data relative
to the 2006 data. A factor that will contribute to this result is the substantial
increase in the number of zones between 1991 and 2006, from 845 to 2,277. For
public transport, walk and cycle in modes in particular the use of a more detailed

zone system will give more realistic level of service and this will contribute to the

lower level of error in the 2006 data.
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5.3.1

Significance of parameter differences

To test the transferability of individual parameters, Equation 2.25 was applied

to test whether pairs of parameters were significantly different from one another.

The following subsections present the results of these tests for the Toronto and

Sydney data.

Toronto data

This analysis has been undertaken taking both the 1986 parameters as the base,

and the 2006 parameters as the base. The results have been summarised sep-

arately for the cost terms, the level of service terms, the mode and destination

constants, and the socio-economic constants (as per the classification detailed in

Table 4.2.3) to investigate whether different types of model parameter are more

transferable. The results are presented in Table 5.8 and Table 5.9, which sum-

marise the number of parameters that are not significantly different from the 1986

and 2006 base values at a 95% confidence level.

Table 5.8: Parameters that are not significantly different, 1986 base

Parameter group

Sparse specification

Car avail specification

Detailed specification

1996 2001 2006 | 1996 2001 2006 1996 2001 2006

cost terms 0/2 0/2 0/2 | 0/2 0/2 0/2 0/2 n/a 0/2

level of service terms 2/6 0/6 4/6 | 2/6 2/6 3/6 2/6 nj/a 4/6
mode and dest. constants | 1/5 1/5 1/5 | 1/5 1/5 1/5 2/5 n/a 2/5
socio-economic terms n/a  n/a nj/a | 0/3 0/3 2/3 2/8 nja 4/8
Total 3/13 1/13 5/13 | 3/16 3/16 _ 6/16 | 6/21 nj/a _ 10/21

Overall, the null hypothesis that the base and transfer parameters are not signif-

icantly different is rejected for the majority of parameters. It might be expected

that the hypothesis that parameters are not significantly different would be more

likely to be accepted for short transfers, however no clear pattern of variation with
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Table 5.9: Parameters that are not significantly different, 2006 base

Parameter group Sparse specification | Car avail specification | Detailed specification
2001 1996 1986 | 2001 1996 1986 2001 1996 1986
cost terms 0/2 0/2 0/2 | 0/2 0/2 0/2 0/2 n/a 0/2
level of service terms 1/6  1/6 4/6 | 2/6  2/6 3/6 2/6 n/a 4/6
mode and dest. constants | 0/5 0/5 1/5 | 1/5  0/5 1/5 0/5 n/a 2/5
socio-economic terms n/a n/a n/a | 0/3  3/3 2/3 4/8 n/a 4/8
Total 1/13 1/13 5/13 | 3/16 5/16  6/16 | 6/21 nja  10/21

length of transfer is apparent. Comparing across the three model specifications,
then if comparisons are restricted to the three parameter groups present in all
three model specifications, there is no clear pattern of increasing transferability

with improved model specification.

No clear pattern emerges when comparing across the four parameter groups. The
hypothesis of parameter equality is always rejected for the cost parameters, but
there are only two cost parameters in each comparison and the clear majority of

all comparisons reject the hypothesis of parameter equality.

Sydney data

For the Sydney models, the analysis of significance of parameter differences has
been calculated with the 1991 parameters as the base. Table 5.10 summarises
the results from the analysis of the significance of differences in the commute
parameters. The tests have been undertaken using a 95% confidence level, and

the classification of each individual parameter into the four groups is detailed in
Table 4.10.

Like the Toronto analysis presented in Table 5.8 and Table 5.9, the hypothesis of

parameter equality is rejected for the majority of parameter comparisons in Ta-
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Table 5.10: Parameters that are not significantly different, Sydney commute

models
Model specification
Parameter group Sparse Car avail Detailed Detailed
& income
cost terms 1/2 1/2 1/2 1/4
level of service terms 7/9 7/9 7/9 7/9
constants 3/10 0/10 1/10 0/10
socio-economic terms n/a 2/3 4/8 4/8
Total 11/21 10/24  13/29 12/31

ble 5.10. However, unlike the Toronto analysis clear patterns emerge comparing

across the parameters. The hypothesis of parameter equality is rejected for most

of the constants, whereas in most cases the level of services terms are not signifi-

cantly different. The cost and socio-economic terms lie somewhere between. Thus

these results suggest that there are differences in transferability across different

types of model parameters.

Table 5.11 presents analysis of parameter differences for the home—other travel

model. The allocation of individual parameters into the four parameters groups

is given in Table 4.12.

Table 5.11: Parameters that are not significantly different, Sydney home-other

travel models

Model specification
Parameter group Sparse Car avail Detailed Detailed
& income
cost terms 0/1 0/1 0/1 0/3
level of service terms 3/8 4/8 4/8 4/8
constants 7/10 1/10 1/10 1/10
socio-economic terms n/a 0/2 3/9 3/9
Total 11/19 5/21 8/28 8/30
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5.4

Overall, the results in Table 5.11 indicate that the home—other travel parameters
are less transferable than the home-work parameters. However, the patterns of
variation between parameter groups are similar, with the hypothesis of parameter
equality rejected for most of the constants, and with the hypothesis of parameter

equality more likely to be accepted for the level of service terms.

Discussion

A limitation of the significance of parameter differences is that the hypothesis
that the parameters are equal is less likely to be rejected if the parameters are
imprecisely estimated. For example, the level of service terms in the Toronto
commute models are precisely estimated, with t-ratios ranging from 11 to 50,
and this means that the hypothesis that the parameters are equal is rejected even
when the parameters are relatively close in magnitude. In the following section,
the relative changes in the parameter values are analysed using a measure that

is independent of the significance of the parameter estimates.

While the results for the Sydney models are subject to the same limitation, they
do suggest that the constants are the least transferable parameter group, and the
level of service terms the most transferable. The analysis of the Sydney models
also indicates that the commute parameters are more transferable than the home—
other travel parameters. In Section 5.4, differences in the relative changes in the

parameter values for the two purposes are compared.

Relative changes in parameter values

The REM measure defined in Equation 2.27 has been used to calculate the abso-

lute change in individual parameter values relative to the base parameter values
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accounting for the overall difference in scale between the base and transfer models.
These differences have been calculated separately for the cost terms, the level of
service terms, the mode and destination constants, and the socio-economic terms.
For each model analysed, average values have been calculated for each of these

parameter groups.

Toronto data

Table 5.12 summarises the results obtained. It is possible that the 1986 param-
eters are more transferable, or less transferable, than the parameters for other
years of data. To avoid producing results that are specific to a particular base
year, the analysis has been repeated taking the 2006 parameters as the base.

These results are presented in Table 5.13.

Table 5.12: REM measures by model year and specification, 1986 base

Model specification

Parameter group Sparse Car avail Detailed
1996 2001 2006 | 1996 2001 2006 | 1996 2001 2006
cost terms 047 142 036 | 0.52 1.61 0.38 | 0.50 m=n/a 0.37
level of service terms | 0.10 0.20 0.10 | 0.09 0.16 0.12 | 0.09 =n/a 0.11
constants 0.51 225 1.67 | 0.75 244 256 | 0.65 n/a 2.76
socio-economic terms | n/a n/a n/a | 0.17 0.29 0.17 | 0.30 n/a 0.42

Comparing between different groups of utility terms, the cost, LOS terms and
socio-economic terms show smaller changes in parameter magnitude over time
compared to the mode and destination constants. This result is expected, as the
constants capture the mean contributions of effects not captured in the other
parameters, and the contributions of these uncaptured effects would be expected

to change over time.
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Table 5.13: REM measures by model year and specification, 2006 base

Model specification
Parameter group Sparse Car avail Detailed
1996 2001 2006 | 1996 2001 2006 | 1996 2001 2006
cost terms 1.03 0.88 0.36 | 1.08 0.88 0.33 | n/a 0.88 0.34
level of service terms | 0.19 0.11 0.09 | 0.18 0.10 0.10 | n/a 0.11 0.10
constants 282 593 391|067 193 149 | n/a 1.70 1.32
socio-economic terms | n/a n/a n/a | 0.11 0.04 0.14 | n/a 0.16 0.31

The REM measures for the cost terms do not exhibit any consistent pattern of
evolution over time, with the largest differences between parameters observed
by comparing the 1986 and 2001 parameter values. They do not reduce with
improving model specification either, with the largest differences observed for

the car avail specification.

The LOS parameters show the smallest REM measures for all but two of the
transfer tests, i.e. in general the LOS parameters are more transferable than
the other parameter groups. Comparing across model specifications, with the
exception of the 20 year transfers, the REM measures reduce between the sparse
and car avail specifications when the car availability parameters are added. Thus
improving the model specification by adding additional socio-economic terms
improves the transferability of the LOS parameters over transfer periods up to 15
years in duration. However, there is no further improvement in the transferability
of the LOS parameters when the age and gender mode terms are added in the
detailed specification. Examining the changes in parameter values over time

reveals no clear patterns.

The socio-economic parameters show relatively small changes over time, particu-
larly when the changes are calculated relative to the 2006 model, which indicates

that the socio-economic effects are transferable over time. Interestingly, the mean
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REM measures are larger for the detailed specification models than for the car
avail specification models. This is because the car availability parameters are
more transferable than the age and gender parameters introduced in the detailed

specification.

As discussed in Section 5.1, when applying the adjustments to account for real
growth in VOT with income it has assumed that the growth in VOT can be ap-
plied by making adjustments to the cost parameter alone, rather than adjusting
both the cost and time parameters (the implied VOT is calculated as function of
the two). To investigate the validity of this assumption, changes in the values of
cost and time parameters from the detailed specifications were analysed, calcu-
lating changes relative to the 1986 base parameters. The analysis is presented in
Table 5.14, in which the model results presented in Table 4.4 have been used to

calculate the change in the parameter values relative to the 1986 base values.

Table 5.14: Changes in Toronto cost and in-vehicle time parameters, 1986 base

Parameter 1986 1996 2006
Log(cost) -0.358 | -0.575 61% -0.335  -6%
Cost -0.0011 | -0.0006 -42% | -0.0016  48%

Car time -0.042 | -0.038 -8% | -0.044 5%
Transit IVT | -0.028 | -0.029 2% | -0.025 -10%

The in-vehicle time parameters are relatively stable over time, with the 1996
and 2006 values within + 10% of the 1986 values. The cost parameters are
considerably less stable, with differences of up to 60% observed despite accounting

for real income growth.

Sydney data

Table 5.15 presents the REM measures for the Sydney commute models, with the

REM measures calculated for changes relative to the 1991 parameters.
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Table 5.15: REM values for parameter changes, Sydney commute models

Model specification
Parameter group Sparse Car avail Detailed Detailed
& income
cost terms 0.215 0.223 0.240 0.447
level of service terms | 0.143 0.152 0.145 0.145
constants 0.857 0.915 0.902 1.097
socio-economic terms n/a 0.190 0.383 0.445

The commute results are consistent with those observed in the Toronto analysis,

with the level of service of service terms showing the highest level of transferabil-

ity, and with noticeably lower levels of transferability for the constants relative to

the other three groups. A result common to both the Toronto and Sydney com-

mute models is that lower REM measures are observed for the car availability

terms than the other socio-economic terms introduced in the detailed specifica-

tion.

Table 5.16 presents the REM measures for the Sydney home—other travel mod-

els, with the REM measures again calculated for changes relative to the 1991

parameters.

Table 5.16: REM values for parameter changes, Sydney home—other travel models

Model specification
Parameter group Sparse Car avail Detailed Detailed
& income
cost terms 0.480 0.335 0.377 0.401
level of service terms 0.474 0.427 0.419 0.346
constants 0.199 3.483 3.533 1.448
socio-economic terms n/a 0.417 0.485 0.503

In most cases the REM values for the home-other travel parameters are higher
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than those for the commute models, indicating the models to be less transferable.
Consistent with commute, the constants show the highest levels of error, but
unlike the commute models the level of service terms are not more transferable
than the cost and socio-economic terms. A possible explanation for this result is
that the home—other level of service terms are more impacted by the changes in
the modelled highway distances and travel times that come about as a result of
changes in the model zoning between 1991 and 2006 (discussed in Section 3.3.2)

because home-other travel tours are shorter on average than commute tours.

Analysis has also been undertaken to investigate the impact on parameter trans-
ferability of estimating models for three sub-purposes that cover home—other

travel:
e serve passenger
e personal business

e leisure

Table 5.17 presents analysis comparing the REM values for these three sub-
purposes to those obtained from an overall home—other travel model. The tests
were undertaking using the detailed specification (i.e. without income segmenta-
tion) as the income terms in the detailed & income specification were not always

significant for the sub-purposes.

Table 5.17: Sydney home—other travel sub-purpose tests, REM measures

All Serve Personal Leisure Mean

purposes | passenger business
Cost 0.226 0.202 0.259 0.170 0.211
LOS 1.113 0.589 1.413 0.399 0.800
Constants 2.059 0.943 0.551 1.216  0.903
Socio-econ. 0.495 0.724 0.307 0.390 0.474
Mean 0.973 0.614 0.633 0.544 0.597

It can be seen that the mean REM values is lower for all three of the sub-
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purposes than for the all purposes model. In particular, the REM values for the
constants are considerably lower in the sub-purpose models reflecting differences
in mode share and destination choice, and the level of service parameters also
have somewhat lower REM values. Overall the results suggest segmenting other

travel does give rise to more transferable model parameters.

Table 5.18 and Table 5.19 show the changes in the cost and in-vehicle time pa-
rameters between the 1991 and 2006 models for the detailed specification, i.e. the
best specification prior to the introduction of income segmented cost parameters
(the full set of parameter results for these two model are presented in Tables C.3
and C.5 of Appendix C).

Table 5.18: Changes in Sydney commute cost and in-vehicle time parameters

Parameter 1991 2006
Log(cost) -0.445 -0.327  -26%
Cost -0.00035 | -0.00027 -22%
Car time -0.027 -0.031  15%
Rail IVT -0.012 -0.013  11%
Bus IVT -0.022 -0.021 -6%

Table 5.19: Changes in Sydney home—other travel work cost and in-vehicle time
parameters

Parameter | 1991 2006

Log(cost) | -1.124 | -0.700 -38%
Car time | -0.053 | -0.066  25%
Rail IVT | -0.022 | -0.016 -25%
Bus IVT | -0.023 | -0.029 23%

For both models, the in-vehicle time parameters are more stable over time than
the cost parameters, through the changes in the in-vehicle time parameters are
greater than those observed in the Toronto models in Table 5.14, particularly
for home—other travel. A relevant factor when considering changes in the Syd-
ney parameters is the significantly more detailed zone system used for the 2006

models. As discussed in Section 3.3.2, these changes would be expected to have
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5.4.3

more impact on shorter tours which is consistent with the larger changes in the

home—other travel in-vehicle time parameters.

Discussion

The finding that the LOS parameters are more transferable than other parameter
types is consistent with the analysis of parameter changes from other mode choice
and mode-destination choice models reported in the literature. The magnitudes
of the mean parameter differences presented in Tables 5.12 and 5.13 are also
broadly consistent with the values reported in other studies summarised in Table
A1 of Appendix A. Habib et al. (2012) estimated mode choice models for Toronto
(using the same TTS data that have been used for this analysis) for 1996, 2001
and 2006, and also found that the LOS parameters were more transferable than

the cost parameters.

The REM measures for the mode and destination constants show much larger
differences in parameter values between years, and indeed some constants have
changed sign between years. Thus the stability of these parameters over time is
poor. This result is consistent with the analysis of Habib and Weiss (2014) who
estimated mode choice models incorporating modal captivity using the T'TS data
for 1996, 2001 and 2006, and found that the constants showed larger changes
between year than the other parameters. The finding that the constants show
greater changes between years than other model parameters suggests that im-
proving model specification, which will reduce the role of the constants relative
to other model terms, would be expected to improve model transferability. This

hypothesis is confirmed by analysis presented in Chapter 6.

In summary, the level of service and socio-economic terms are more transferable
than the other terms. The cost terms are considerably less transferable than the

level of service terms, and the least transferable parameters are the mode and
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5.5

destination constants, which implies that reducing the role of the constants by

improving model specification would be expected to improve model transferabil-

ity.

Many transport policies are formulated principally in terms of changes in cost
and/or travel time, and so the degree of stability in the cost and in-vehicle time
parameters is a particularly relevant consideration of model transferability. For
the Toronto commute models, the in-vehicle time parameters show a high level
of stability, and the Sydney commute models also show a reasonable level of
stability. For home—other travel a lower level of stability was observed, but this
result seems to be influenced by changes in the modelled highway level of service
rather than real changes in behaviour. For all comparisons, the cost parameters
are less transferable than the in-vehicle time parameters, despite accounting for
real income growth. These results suggest the models are better placed to assess
the impact of policies whose main impact is changes in travel time than to assess

policies whose main impact is changes in travel costs.

The stability in the in-vehicle time parameters in the Toronto models, and to a
lesser extent the Sydney models, suggests that the assumption made in Section
5.1.1 that VOT growth can be applied through adjustments to the cost parame-
ters while assuming sensitivity to travel time is constant over time is reasonable.
This result is consistent with the findings of Borjesson (2014), who observed a
high degree of stability in the time parameters in models estimated from Swedish

stated preference value of time data collected in 1994 and 2007.

Values of time

Values of time (VOTSs) are key to transport modelling as they provide a measure

of how individuals trade off travel cost and travel time. In models with separate
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cost and time parameters such as those used for this transferability analysis,
validation of the implied values of time is a key step as it ensures that the cost-
time trade offs in the models are consistent with other evidence, such as the
UK Department for Transport’s WebTAG guidance. Therefore analysis has been

undertaken to examine the transferability of the VOT relationships over time.

As detailed in Section 5.1.1 the VOT for the utility functions presented in Chapter

4 can be calculated from the following relationship:

oU/otime Blime
oU/dcost Beost - Brogcost

cost

VOT =

where: Bpime is the travel time parameter
Bcost is the linear cost parameter
BLogCost s the log cost parameter

cost is the modelled cost

It can be seen from Equation 5.7 that the VOT for a given journey depends on
both the model parameters and the cost of the journey. For each year of data,
Equation 5.7 can be applied to each individual tour record and an average VOT
calculated. However, even if the model parameters were perfectly transferable, if
the mean journey cost changes over time then the mean VOTs will also change.
As shown by Tables 3.6 and 3.12, mean car costs have increased significantly over

time and this results in higher implied VOTs.

Therefore the approach that has been followed is to plot the variation in VOT
withe journey cost. This allows the VOT relationships to be compared over a
range of journey costs, and further allows the impact of changes in the relative
contribution of the linear and log cost parameters to be visualised. It should be

noted that these comparisons are made after applying the adjustment to take
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5.5.1

account of real terms income growth set out in Section 5.1.1.

Toronto data

VOTs have been calculated using the parameters from the detailed model speci-
fication. The analysis has been undertaken using the 1986, 1996 and 2006 model

parameters® for car driver and for PT.
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Figure 5.1: Variation in Toronto car values of time with journey cost

The mean car costs in 1986 prices are $2.00 for the 1986 data, $2.30 for the and
$3.60 for the 2006 data. Over this cost range it can be seen that the 1986 and

®In the 2001 model results, the log-cost term insignificant and wrong-signed (positive) and
so the 2001 results were omitted from this analysis.
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5.5.2

2006 VOT relationships match closely, i.e. the VOTs are highly transferable,
whereas somewhat lower VOTs are observed in the 1996 model due to the more

linear VOT relationship for 1996.
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Figure 5.2: Variation in Toronto PT values of time with journey cost

The mean PT costs in 1986 prices are $1.70 for the 1986 data, $3.20 for the and
$2.60 for the 2006 data. Over this cost range 1996 and 2006 VOT relationships
correspond closely, whereas the VOTSs in the 1986 model are somewhat higher.

Sydney data

For commute, car VOTs have been calculated for the detailed & income model

specification. In this model specification, VOTs vary with income band as well
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as journey cost and so the VOT relationships are plotted separately by the four
income bands B1 to B4 defined in Section 4.3.35. The VOTs are plotted in Figure
5.3 in which the solid lines show the VOT relationships for 1991, the dashed lines
show the VOT relationships for 2006, and the same colour is used for the 1991
and 2006 for a given income band. Note that the y-axis chosen truncates the
VOTs for the higher income bands at higher costs so that the relationships for

lower income bands can be more clearly distinguished.

0 1 2 3 4 5 6 7 8 9 10

——1991 B1 — 1991 B2 1991 B3 ——1991 B4 ----- 2006 B1 ----- 2006 B2 2006 B3 ----- 2006 B4

Figure 5.3: Variation in Sydney commute car values of time with journey cost
and income band

For all income bands, the 2006 VOTs are higher for a given tour cost than the 1991
costs, particularly for the second income band where the 2006 VOTs are around

twice the 1991 VOTs. Analysis of the changes in the time and cost parameters

SNote that in the top band ($36.4k4), there is no linear cost term and so cost sensitivity is
determined by the log-cost parameter alone.
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which enter into the VOT calculation showed that the VOT increases results from
both a reduction in the magnitude of the cost parameters and an increase in the
magnitude of the car time parameter. It can be seen from Equation 5.7 shows

that both of these changes work to increase the VOTs.

For home—other, for 2006 the income terms in the detailed & income specification
were not significant, and therefore the VOT's have been compared for the detailed
specification without income specification. Figure 5.4 illustrates how the car

VOTs vary with journey cost.
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Figure 5.4: Variation in Sydney commute car values of time with journey cost
and income band

The 2006 VOTs are significantly higher than the 1991 values, consistent with the
commute results. Again this result follows from changes to the relative magnitude

of the cost and time parameters, and as discussed in Section 5.4.2 these changes
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5.5.3

are believed to be impacted by the change in the zone system between 1991 and
2006 and the resulting changes to mean distances and travel times. Thus the
changes to the Sydney VOT relationships are believed to be strongly influenced

by the changes in the level of service.

Discussion

The Toronto car and PT VOT relationships show a reasonably good level of
temporal transferability. However, for Sydney significant increases in implied
VOT are observed between 1991 and 2006 due to changes in the relative strength
of the travel time and cost terms, and these changes are believed to be influenced
by the changes in level of service that follow from the changes to the zoning

System.

The Sydney result illustrates the limitation of using models of the this type
with separate cost and in-vehicle time parameters to calculate VOTs, namely
that if the cost terms reduce in explanatory power then given car cost and car
time are highly correlated and the car modes tend to dominate the overall mode
share, then the car time term term will tend to increase in magnitude and these
changes result in a larger percentage change in VOT than the percentage change
in the cost and time parameters. In summary, the implied car VOT's are strongly

influenced by the relative strength of the cost and car time parameters.
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5.6

5.6.1

5.6.2

Structural parameters

Toronto data

The structural tests to investigate the relative sensitivity of the mode and destina-
tion choices were undertaken using the base 1986 data. These tests demonstrated
that the best fit to the data was obtained using a structure with destinations
above modes, which implies mode choice is more sensitive to changes in utility
than destination choice. The destinations above modes structure remained valid
for all model specifications, and furthermore was valid when the model specifica-
tions were estimated using the 1996, 2001 and 2006 data. Table 5.20 summarises
the structural parameters that have been estimated. The t-ratios presented in
brackets define the significance of the structural parameters relative to a value of

one.

Table 5.20: Toronto commute models, relative sensitivity of destination and mode
choice

Specification 1986 1996 2001 2006
Sparse | 0.862 (9.6) | 0.858 (9.9) | 0.907 (5.5) | 0.865 (8.1)
Car avail | 0.814 (13.4) | 0.773 (17.0) | 0.761 (16.8) | 0.768 (17.5)
Detailed | 0.815 (12.8) | 0.782 (15.6) n/a | 0.785 (13.6)

Sydney data

In the Sydney models, the best fit to the 1991 data was obtained with a modes
above destinations structure which is the other way up to the best Toronto struc-
ture. Table 5.21 summarises the structural parameters that have been estimated

for the commute models.

For the 2006 data, the freely estimated values of the structural parameters were
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Table 5.21: Sydney commute models, relative sensitivity of destination and mode

choice

Specification 1991 2006
Sparse 0.737 (6.6) | 1.0 (*)

Car avail 0.726 (6.7) | 1.0 (*)
Detailed 0.729 (6.6) | 1.0 (*)
Detailed & income | 0.695 (7.9) | 1.0 (*)

greater than one and therefore the parameter was constrained to one. It would
have been possible to estimate the opposite structure (destinations above modes),
however the transferability tests were for transferring the 1991 specification to

2006 and so the 1991 specification was retained.

Table 5.22: Sydney home—other travel models, relative sensitivity of destination
and mode choice

Specification 1991 2006
Sparse 0.500 (15.3) | 0.650 (10.0)
Car avail 0.450 (16.9) | 0.582 (11.8)
Detailed 0.416 (17.2) | 0.581 (11.8)
Detailed & income | 0.399 (18.3) | 0.594 (11.2)

The 2006 home—-other travel structural parameters do not reject the destinations
below modes structure, but they do show a pattern of increase between 1991 and
2006, consistent with the commute results. This suggests that the relative errors
in destination and mode choice have reduced between 1991 and 2006 it could be
that the mode choice error has reduced which may relate to the changes in level
of service associated with the change in zoning system discussed in Section 3.3.2.
Note that this result does not necessarily mean that the destination choice error
has increased, it could equally be explained by a reduction in the mode choice

error.
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Discussion

The Toronto commute structural parameters demonstrate a good level of trans-
ferability over time, with the values for 1996, 2001 and 2006 all within 4+ 7%
of the 1986 values, and for all tests the structural parameters are significantly
lower than one. Thus these results suggest that the Toronto nesting structures

are transferable over time.

For the Sydney models, the structural parameters for the destinations below
modes structure have moved closer to 1 between 1991 and 2006, indicating that
the errors in destination choice have increased relative to the errors in mode
choice. This result may be related to the changes in level of service that follow

from the substantial changes to the model zone system between 1991 and 2006.

It is noteworthy that while the Toronto structural parameters are transferable
over time, comparison of the Toronto and Sydney commute values demonstrates

that they are not spatially transferable.
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Chapter 6

Model transferability

This chapter presents analysis of model transferability undertaken using both the

Toronto and Sydney datasets.

Sections 6.1 and 6.2 present results from statistical tests of model transferability,
including analysis of how model transferability varies with model specification
and length of transfer period, and for the Sydney data analysis of how the trans-

ferability of commute and home—other travel models compare.

Section 6.3 investigates the ability of transferred models to predict observed

changes mode share and observed tour length by mode.

The Chapter concludes in Section 6.4 with analysis of how the model elasticities
vary between different base years, and how base and transfer model elasticities

compare for a given year.

Earlier results from the analyses presented in Sections 6.2 and 6.3 were presented

in Fox et al. (2014).
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6.1

6.1.1

Transferability test statistic

A strict pass/fail test of model transferability is the Transferability Test Statistic
(TTS), defined earlier in Section 2.3.1 but specified again here as the measure is

referred to throughout this section:

TTSy(By) = —2(LL(By) — LLi(Br)) (6.1)

where: LLi(0p) is the fit (log-likelihood) of the base model to the transfer data
LL(B;) is the fit for the model re-estimated on the transfer data

This section presents the results of TTS tests using the Toronto and Sydney

datasets.

Toronto data

The results from the TTS tests are presented in Table 6.1 to Table 6.3, in which
the title gives the number of degrees of freedom (d.o.f.) and the critical value for
the TTS statistic at a 99.5% confidence level, the rows define the base year, the
columns define the transfer year and the cell values give the values of the TTS

statistic.

Table 6.1: TTS tests, sparse specification: 14 d.o.f., X§9.5% =31.3
Base Transfer year

year | 1986 1996 2001 2006

1986 n/a 3652.3 4241.3 2460.1
1996 | 2795.6 n/a 4923.7 4936.8
2001 | 4330.6 4822.5 n/a 3225.8
2006 | 3309.9 2824.2 4019.2 n/a

It can be seen that the hypothesis of parameter equality is strongly rejected in

174



Table 6.2: TTS tests, car avail specification: 17 d.o.f., X39.5% = 35.7
Base Transfer year

year | 1986 1996 2001 2006
1986 n/a 3,292.4 4,308.2 2,282.1
1996 | 2,373.9 n/a 4,236.0 5,096.7
2001 | 4,006.8 4,433.7 n/a 3,228.1
2006 | 3,095.0 3,083.2 4,113.7 n/a

Table 6.3: TTS tests, detailed specification: 22 d.o.f., ng.s% =428
Base Transfer year

year | 1986 1996 2001 2006
1986 n/a 3,372.9 n/a 2517.1
1996 | 2,739.2 n/a n/a 52222
2001 n/a n/a n/a n/a
2006 | 3,579.6 3,180.8 n/a n/a

all comparisons.

6.1.2 Sydney data

Table 6.4 and Table 6.5 summarises the TI values calculated for the Sydney

commute and home—other travel models for the two possible model transfers.

Table 6.4: T'TS tests, Sydney commute models

Model specification
Sparse Car avail Detailed Detailed
& income
degrees of freedom 21 24 29 31
Xao 5% 41.4 45.6 52.3 55.0
1991 to 2006 240.3 260.8 386.6 436.1
2006 to 1991 326.0 352.3 493.5 500.6

Consistent with the Toronto analysis, the hypothesis of parameter equality is

strongly rejected for all possible transfers.
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6.1.3

Table 6.5: TTS tests, Sydney home—other travel models
Model specification
Sparse Car avail Detailed Detailed

& income
degrees of freedom 21 23 30 32
Xao 5% 41.4 44.2 53.7 56.3

1991 to 2006 15028  1,246.8 1,362.4  1,425.2
2006 to 1991 2,706.1  2,649.7 277978  2,8235

Discussion

It can be seen that the hypothesis of parameter equality in the base and transfer
contexts is strongly rejected for all possible transfers with both the Toronto and

Sydney datasets.

It is emphasised that rejection of the hypothesis of parameter equality does not
mean that the models are not useful for predicting behaviour in the transfer con-
text. As was discussed in Section 2.3.3, other researchers have found the TTS
to be an over-restrictive definition of transferability. In particular, the model
constants would not be expected to be transferable between base and transfer
contexts, and so achieving perfect transferability is unlikely, and the analysis
presented in Section 5.4 has confirmed that the model constants are less trans-
ferable than the other parameters. Thus the assessments of model transferability
have focussed on the Transferability Index which provides a relative measure of
transferability instead of a strict pass/fail test (Section 6.2), measures of the
ability of the transferred models to predict the observed mode and destination
choices in the transfer context (Section 6.3), and analysis of the evolution of the

model elasticities (Section 6.4).
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6.2

6.2.1

Transferability index

The Transfer Index (7'I) measures the predictive accuracy of the transferred
model relative to a locally estimated model, with an upper bound of one. It was

discussed in Section 2.3.1 but is defined again here:

LLy(By) — LL(8;)

TIt(ﬁb) = LLt(,Bt) _ LLt( tref)

(6.2)

where: 7/ is the reference model for the transfer data

LLy(B) > LLy(B) > LL(B,)

A reference model is used in the calculation of T'I. As discussed in Section 2.3.1,
the reference model used for this analysis has constants and tour distance terms
by mode so that the observed shares and tour lengths by mode are replicated by

the reference model.

Toronto data

Four different years of TTS data are available for analysis, and models estimated
from a given year can be transferred to the data for the three other years. There-
fore a total of 12 different transfers can be made. Transfers have been undertaken
for the spare, car avail and detailed model specifications A (except for transfers
to/from the 2001 data, where only the sparse and car avail specifications can
be estimated). Building on the analysis presented in Section 5.1.1, all model
transfers have been undertaken by adjusting costs by the growth in GDP /capita
relative to 1986".

Table 6.6 to Table 6.8 summarise the resulting 7' values for the three model

!Noting that for all years of data, the cost parameters have been estimated in 1986 values.
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specifications tested.

Table 6.6: Toronto commute TI values, sparse specification

Base Transfer year

year | 1986 1996 2001 2006
1986 | n/a  0.55 0.71 0.71
1996 | 0.66 n/a 0.67 0.41
2001 | 048 0.40 =n/a 0.61
2006 | 0.60 0.65 0.73 n/a

Table 6.7: Toronto commute TI values, car avail specification

Base Transfer year

year | 1986 1996 2001 2006
1986 | n/a 0.71 0.78 0.81
1996 | 0.78 n/a 0.78 0.57
2001 | 0.63 0.61 =n/a 0.73
2006 | 0.72 0.73 0.79 n/a

Table 6.8: Toronto commute TI values, detailed specification

Base Transfer year

year | 1986 1996 2001 2006
1986 | n/a 0.75 n/a 0.82
1996 | 0.79 n/a n/a  0.63
2001 | n/a n/a n/a n/a
2006 | 0.73 0.76 n/a n/a

Examining the T'I values for the sparse specification first, the T'I values might
be expected decline with the length of the transfer period, but no clear pattern
of variation with transfer period emerges. Coming on to the T values for the
car avail specification, the first observation is that the T'I values are higher than
those for the sparse specification for each of the the 12 transfers. Therefore

improving the model specification with the addition of car availability terms has
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consistently improved the transferability of the models. The T'I values for the
detailed specification are in turn consistently higher than those for the car avail
specification, and therefore the finding that transferability improves with model

specification is again demonstrated for each possible transfer.

Table 6.8 demonstrates that for the detailed model specification, on average the
transferred models explain, relative to the reference model, 75-80% of behaviour

explained by the models re-estimated on the transfer data.

To summarise these results, Figure 6.1 presents the mean T'I values by transfer
period and model specification. Figure 6.1 clearly demonstrates that there is no
trend for the Toronto TT values to decrease with increasing length of transfer

period.

g
=}

4
©

o
©

o
3

o
)

I
IS

Transferability Index
o
o

o
w

0.2 -

0.1 4

0.0 -

5 10 15
Transfer period (years)

® Sparse specification ® Car avail specification = Detailed specification

Figure 6.1: Mean T'I values by transfer period and model specification
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Sydney data

Home—work analysis

Table 6.9 summarises for the Sydney commute models the TI values and the fit of

the model in the transfer context, LL;(S) for the two possible model transfers.

Table 6.9: TT values, Sydney commute models

Model specification
Transfer measure | Sparse  Car avail Detailed Detailed
& income
1991 to 2006 TI 0.90 0.91 0.87 0.87
LLi(By) | -34,630.7 -34,361.3 -34,376.2 -34,277.2
2006 to 1991 TI 0.81 0.85 0.80 0.82
LL,(Bp) | -30,142.8 -29,887.3 -29,837.2 -29,731.2

For all model specifications the Sydney commute model have a high level of trans-
ferability, with at least 80% of the explanatory power of the transfer context model
(relative to the reference model). Adding the car availability parameters leads
to increases in model transferability, but the addition of further socio-economic
terms in the detailed specification, and income segmented cost terms in the de-
tailed & income specification, does not lead to further increases in transferability

as measured by the TL.

It should be noted that the decline in TT in the detailed specifications does not
necessarily mean that the fit to the transfer data has worsened, in fact as Table
6.9 illustrates the 2006 to 1991 results show that the fit in the transfer context
consistently improves with model specification despite the pattern shown by the
TT measures. It can be seen from Table 6.2 that the TI can worsen if the im-
provement in fit in the transfer context relative to the base model is lower than
the improvement in fit in the base context. This is a limitation of using the TI

measure alone to assess the impact of transferability.

180



Home—other travel analysis

Table 6.10 summarises the T1 values calculated for the Sydney home-other travel

models.
Table 6.10: TT values, Sydney home—other travel models
Model specification
Transfer measure | Sparse  Car avail Detailed Detailed
& income
1991 to 2006 TI 0.62 0.73 0.75 0.74
LLi(By) | -54,910.4 -54,468.9 -54,084.2 -54,115.6
2006 to 1991 TI 0.15 0.33 0.41 0.41
LL(Bp) | -49,068.9 -48,650.9 -48,333.8 -48,333.8

The home—-other travel models are consistently less transferable than the equiva-

lent commute model, particularly for the four transfers from 2006 back to 1991.

Once again, adding the car availability terms results in a clear increase in model
transferability. The addition of further socio-economic terms in the detailed spec-
ification leads to some further increase in transferability, but no further improve-
ment is observed when income segmented cost terms are introduced in the detailed

& income specification.

Tests have also been undertaken for the three other travel sub-purposes using
the detailed specification. Initially these were also undertaken using the TI mea-
sure, but a complication is that these were impacted by differences in the fit
of the models re-estimated in the transfer context. To allow for a more direct

comparison, Table 6.11 summarises the fit of the transferred models.

Table 6.11: TT values, Sydney other—travel sub-purpose transfers

Transfer Without Serve Personal Leisure Total Gain in
segmentation | passenger business likelihood
1991 to 2006 -54,759.0 | -16,742.4  -7,719.1 -29,005.2 -53,466.6 1,292.4
2006 to 1991 -48,347.1 | -13,666.4  -7,024.6 -27,421.0 -48,112.1 235.1
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6.3

It can be seen that the predictions of the three sub-purpose models give a better
fit to the transfer data, particularly for the transfers from 1991 to 2006. Thus
the tests indicate that segmenting home—other travel into separate sub-purposes

gives more transferable models.

Discussion

Overall, the results demonstrate that transferability improves with model specifi-
cation, consistent with the findings of Parody (1977), Train (1978) and Badoe and
Miller (1995a), all of whom found that the transferability of mode choice models
improved with model transferability. The implication for analysts is that improv-
ing the model specification would be expected to improve the transferability of
models, particularly when the improvements are to add car availability terms to
the model. This is an important result, because adding additional model terms

can make it more time consuming to apply the models in model application.

The Sydney analysis suggests that home-other travel models are less transfer-
able than commute models. However, improved transferability was observed for
the Sydney data when home-other travel was segmented into serve passenger,

personal business and other travel sub-purposes.

Predictive measures

Statistical measures of transferability are useful in providing an understanding
of the ability of the models to predict the individual level choices observed in
the transfer context. However, when models are used in forecasting by definition
detailed travel behaviour data is not available in the transfer context, i.e. the

future year that is being forecast, and what is important is the ability of the
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models to predict aggregate changes in mode and trip length. Therefore in this
section, the ability of the transferred models to predict the observed changes in

mode share and trip length is analysed.

To make the predictive tests, the base models were applied in the transfer context
using the transfer data, and the predicted mode shares and tour lengths were
calculated. These predicted mode share and tour lengths were then compared to
the mode shares and tour lengths observed in the transfer data, and the differences

between observed and predicted data were tabulated.

Toronto data

The Toronto analysis has been undertaking using the detailed model specification,
the specification that gives the best fit to the base data. Tests have been made
using both the 1986 and 2006 base models of the ability of the models to predict
the observed changes in mode share and trip length over 10 and 20 year transfer
periods. Tables 6.12 and 6.13 compare the predicted and observed changes in
mode share and tour length for the 1986 base models.

The overall RMS measures for mode share and tour length were calculated using

Equation 6.3 and Equation 6.4.

RMS(S) = \/ Zm(sﬁ&_ Sin)” (6.3)
RMS(T) = \/ Zm(T@_ )" (6.4)

where: m is the mode, with M modes in total

S, and S9, are the predicted and observed mode shares
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Th, and T? are the predicted and observed tour lengths by mode

Table 6.12: Mode share predictions, 1986 base model

Mode 1986 obs | 1996 obs 1996 pred  error | 2006 obs 2006 pred  error
car driver 67.9% 73.3% 75.7%  2.4% 76.0% 772%  1.3%
car passenger 9.4% 9.7% 9.8% 0.1% 8.7% 11.1%  2.4%
local transit 20.3% 14.7% 12.0% -2.7% 12.7% 9.4% -3.4%
walk 2.3% 2.3% 2.6%  0.3% 2.6% 2.3% -0.3%
Total 100.0% 100.0% 100.0%  0.0% 100.0% 100.0%  0.0%
RMS 1.8% RMS  2.4%

Table 6.13: Tour length predictions (km), 1986 base model

Mode 1986 obs | 1996 obs 1996 pred error | 2006 obs 2006 pred error
car driver 34.0 40.1 36.5 -3.6 39.5 38.2 -1.3
car passenger 28.6 33.0 29.3 -3.7 29.7 32.2 2.5
local transit 23.3 25.9 23.5 -2.5 25.7 23.1 -2.7
walk 4.1 4.1 4.0 0.0 4.3 4.1 -0.3
Total 30.6 36.5 33.2  -3.3 36.0 353  -0.7
RMS 2.9 RMS 1.9

The key changes in mode share between 1986 and 1996 are the 5.4% increase
in the car driver share, and the 5.7% reduction in the local transit share. The
transferred model over-predicts these changes by 2.4% and 2.7% respectively. By
2006, the car driver share has increased by 8.1%, which is over-predicted by just
1.3%, and the local transit share has declined by 7.6%, which is over-predicted

by 3.4%.

Overall mean tour lengths increased by 5.9 km between 1986 and 1996, whereas
the transferred model only predicts a 2.8 km increase. The observed increases in
tour length for car driver, car passenger and local transit are all under-predicted
by 2 to 4 km. Observed tour lengths show no further increase between 1996
and 2006, whereas the transferred model predicts a further increase in mean tour
length, and consequently overall mean tour lengths are predicted well in 2006.

However, the fit at the modal level is less good, in particular local transit tour
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lengths are predicted to reduce relative to 1986 when in fact they increased by

2.4 km.

Tables 6.14 and 6.15 summarises compares the predicted and observed changes

in mode share and tour length for the 2006 base models.

Table 6.14: Mode share predictions, 2006 base model

Mode 2006 obs | 1996 obs 1996 pred  error | 1986 obs 1986 pred  error
car driver 76.0% 73.3% 73.4%  0.1% 68.0% 64.1% -3.8%
car passenger 8.7% 9.7% 8.0% -1.7% 9.4% 7.4% -2.1%
local transit 12.7% 14.7% 15.7%  1.1% 20.3% 26.0%  5.7%
walk 2.6% 2.3% 2.9%  0.6% 2.3% 2.5%  0.2%
Total 100.0% 100.0% 100.0%  0.0% 100.0% 100.0%  0.0%
RMS 1.0% RMS  3.5%

Table 6.15: Tour length predictions (km), 2006 base model

Mode 2006 obs | 1996 obs 1996 pred error | 1986 obs 1986 pred error
car driver 39.5 40.1 38.5 -1.6 34.0 37.6 3.6
car passenger 29.7 33.0 27.6 -5.4 28.6 27.1 -1.3
local transit 25.7 25.9 27.1 1.2 23.3 27.2 3.8
walk 4.3 4.1 4.2 0.2 4.1 4.3 0.2
Total 36.0 36.5 34.8 -1.7 30.6 33.3 2.6
RMS 2.9 RMS 2.7

The transferred 2006 model accurately predicts the car driver share in 1996, and
also predicts the local transit share to within 1%. However, the car passenger
share is predicted to reduce slightly when a small increase is observed, leading
to a 1.7% error. The reduction in car driver share to 1986 was over-predicted by
3.8%, and the increase in local transit share was over-predicted by 5.7%. So as
per the 1986 base model, the large changes in mode share which occur between

1986 and 1996 are over-predicted.

As noted above, overall tour lengths remain more or less constant between 2006

and 1996, whereas the transferred model predicts a 1.6 km reduction.
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Sydney data

The analysis followed the approach developed for the Toronto data, with observed
and predicted changes in mode share and tour length over the transfer period
investigated. The tests were undertaken using the detailed & income specification
models, i.e the best model specifications incorporating variation in cost sensitivity

with income band.
Home—work analysis

Table 6.16 and Table 6.17 present the results from the predictive tests made
with the 1991 and 2006 base models respectively. In these tables the first set
of comparisons compare the predicted modes shares in the transfer context to
the shares observed in both the base and transfer contexts, and the second set
of comparisons compare the predicted tour lengths in the transfer context to the

values observed in both the base and transfer contexts.

Table 6.16: Sydney commute predictive tests, 1991 base

Mode share Tour length (km)
Mode 1991 obs | 2006 obs 2006 pred error | 1991 obs | 2006 obs 2006 pred error
car driver 63.2% 65.1% 68.4%  3.2% 32.5 29.6 31.1 1.5
car passenger 9.3% 6.3% 78% 1.4% 25.6 21.0 24.3 3.2
train 14.9% 14.2% 10.6% -3.6% 62.7 51.6 50.3  -1.3
bus 6.2% 8.0% 6.1% -1.9% 19.7 18.7 17.1 -1.6
bike 0.6% 0.6% 0.5% -0.1% 12.9 11.4 11.8 0.4
walk 5.4% 5.3% 58%  0.5% 4.3 3.1 3.5 0.4
taxi 0.4% 0.4% 0.8%  0.4% 15.1 17.8 25.3 7.5
Total 100.0% 100.0% 100.0%  0.0% 33.8 29.7 30.0 0.3
RMS  2.0% RMS 3.3

The models predict the observed changes in mode share only reasonably. While
in the author’s view the overall RMS is good at 2.0-2.7%, this result is biased by
modes with a low share. Both transfers over-predict the observed changes in the
car driver share. Given that Section 5.4 found that the car availability parameters

have a good level of temporal transferability, one explanation is that the models
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Table 6.17: Sydney commute predictive tests, 2006 base

Mode share Tour length (km)
Mode 2006 obs | 1991 obs 1991 pred error | 2006 obs | 1991 obs 1991 pred error
car driver 65.1% 63.2% 58.7% -4.5% 29.6 32.5 31.1 -1.3
car passenger 6.3% 9.3% 7.5% -1.8% 21.0 25.6 214 -4.2
train 14.2% 14.9% 19.5%  4.6% 51.6 62.7 61.7 -1.0
bus 8.0% 6.2% 85%  2.3% 18.7 19.7 21.9 2.2
bike 0.6% 0.6% 0.7%  0.1% 114 12.9 12.3 -0.5
walk 5.3% 5.4% 4.9% -0.5% 3.1 4.3 3.7 -0.6
taxi 0.4% 0.4% 0.2% -0.2% 17.8 15.1 26.4 11.3
Total 100.0% 100.0% 100.0%  0.0% 29.7 33.8 34.1 0.3
RMS 2.7% RMS 4.7

over-predict the change in the car driver share because they are under-sensitive

to the 84% increase in fuel costs between 1991 and 2006.

2 is mod-

The change in overall tour length given by the level of service measures
elled well by the models (the high RMS is as a result of taxi, but this mode has

a very low mode share).
Home—other travel analysis

Table 6.18 and Table 6.19 present the results from the predictive tests made with
the 1991 and 2006 base models respectively. Again, the first set of comparisons
compare the predicted modes shares in the transfer context to the shares observed
in both the base and transfer contexts, and the second set of comparisons compare
the predicted tour lengths in the transfer context to the values observed in both

the base and transfer contexts.

The observed changes in mode share are predicted more accurately than in the
commute model, and in particular the observed change in the car driver share is
more accurately predicted, possibly because the home—other travel model is more

sensitive to cost changes than the commute model.

Zas discussed in Section 3.3.2 this is believed to be a result of the changes in the networks,
not a real change in tour length
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Table 6.18: Sydney home—other travel predictive tests, 1991 base

Mode share Tour length (km)
Mode 1991 obs | 2006 obs 2006 pred error | 1991 obs | 2006 obs 2006 pred error
car driver 43.7% 47.0% 48.5%  1.5% 16.7 13.1 18.7 5.6
car passenger 32.5% 29.8% 30.1%  0.2% 19.2 14.4 19.5 5.2
train 2.0% 1.7% 2.3% 0.7% 55.8 46.3 48.5 2.2
bus 2.6% 1.7% 3.1% 1.4% 18.1 11.3 174 6.1
bike 1.0% 1.0% 0.9% -0.1% 8.2 6.0 7.0 1.0
walk 17.8% 18.5% 14.4% -4.1% 4.2 2.2 3.2 1.0
taxi 0.5% 0.3% 0.8%  0.5% 16.4 12.2 20.5 8.3
Total 100.0% 100.0% 100.0% 0.0% 16.1 11.9 17.3 5.4
RMS 1.8% RMS 4.9

Table 6.19: Sydney home—other travel predictive tests, 2006 base

Mode share Tour length (km)
Mode 2006 obs | 1991 obs 1991 pred error | 2006 obs | 1991 obs 1991 pred error
car driver 47.0% 43.7% 44.2%  0.5% 13.1 16.7 13.7  -3.1
car passenger 29.8% 32.5% 33.9%  1.4% 14.4 19.2 16.6 -2.6
train 1.7% 2.0% 31%  1.1% 46.3 55.8 59.2 3.4
bus 1.7% 2.6% 2.6% 0.0% 11.3 18.1 17.9 -0.2
bike 1.0% 1.0% 1.1% 0.0% 6.0 8.2 7.0 -1.2
walk 18.5% 17.8% 15.0% -2.8% 2.2 4.2 3.1 -1.1
taxi 0.3% 0.5% 0.2% -0.2% 12.2 16.4 17.5 1.0
Total 100.0% 100.0% 100.0%  0.0% 11.9 16.1 145  -1.5
RMS 1.3% RMS 2.1

However, the tour length predictions are less good, particular for the 1991 base
model which predicts a 1.2 km increase in tour length when the observed change
is a 4.2 km reduction. These results are likely to be a combination of the network
changes discussed in Section 3.3.2 and the model predictions, but disentangling

the two effects is difficult.

The predictive tests have also been undertaken for the sub-purpose models to
investigate whether these models are better able to predict observed changes
in mode share and tour length than the total other travel model. Table 6.20
summarises the RMS measures for mode share and tour length obtained when

the 1991 base sub-purpose models were transferred to 2006.

Table 6.21 presents the corresponding set of results obtained when the 2006 base
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Table 6.20: Sub-purpose predictive tests, 1991 base transferred to 2006

Without Serve Personal Leisure Mean

segmentation | passenger business
Mode share 1.8% 0.6% 1.4% 4.8%  2.3%
Tour length (km) 4.9 3.4 5.0 4.4 4.3

sub-purpose models were transferred to 1991.

Table 6.21: Sub-purpose predictive tests, 2006 base transferred to 1991

Without Serve Personal Leisure Mean

segmentation | passenger business
Mode share 1.3% 1.1% 1.6% 2.7%  1.8%
Tour length (km) 2.1 5.9 3.5 3.6 4.3

On the basis of these results there is no evidence that segmenting home—other
travel into separate sub-purpose models results in better predictions of observed

changes in mode share and tour length.

Discussion

The mode share and tour length predictions are reasonable, with the models
generally predicting the direction of key changes correctly (though in the case
of the car mode share, this will be driven principally by higher car availability
in later years of data). The Sydney tour length analysis is complicated by the
impact of network changes following from the change to the zoning system, and
this highlights that if a model is applied to a network that is significantly different
from the network used in model application can have a significant impact on the

model predictions, and therefore the transferability of the original model.

In both the Toronto and Sydney analyses, the observed increase in car driver
share over time is over-predicted by the transferred models. In both cases the

increase in share has been accompanied by a significant real terms increase in
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car costs, and so one explanation is that the models are under-sensitive to the
longitudinal change in costs. As Section 5.1.1 highlights, longitudinal income
elasticities have been found to be significantly lower than the cross-section val-
ues, and it is possible that a similar relationship exists for modal cost changes.
An alternative explanation is that the growth in car use has been suppressed
by increased congestion and associated parking difficulties, which impacts upon
commute travel more than on the other travel purpose. More research would be

valuable here to explore these different hypotheses.

Elasticities

Toronto data

The elasticity tests were undertaken using the detailed model specification. Elas-
ticities were calculated for the 1986, 1996 and 2006 base models, and then the
elasticities for the 1996 and 2006 base models were compared to those obtained

by transferring the 1986 models.

Table 6.22: Toronto commute model elasticities

- . 1996 2006
Elasticity - Units | 1986 base 1986 tran tran/base | base 1986 tran tran/base
fuel cost kms | -0.156 | -0.113 -0.141 1.244 | -0.234 -0.179 0.763
car time trips | -0.149 | -0.095 -0.087 0.914 | -0.106 -0.074 0.699
PT fare trips | -0.280 | -0.344 -0.358 1.042 | -0.376 -0.309 0.823
PT IVT trips | -0.780 | -0.799 -0.830 1.039 | -0.881 -0.912 1.035

Comparison of the 1986 values to base values for 1996 and 2006 shows the elastici-
ties change when the same model specification is estimated on the 1986, 1996 and
2006 datasets. The elasticities from the best fitting model for each year fluctuate
noticeably, particularly for the fuel cost kilometrage elasticity. The kilometrage
elasticities are impacted by the relative strength of the linear and log cost terms —

in a pure log cost model the impact of a uniform 10% increase in cost is to add a
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constant to the utility of each destination alternative and therefore no destination
choice response would be observed. Thus the low fuel cost kilometrage elasticity
in the 1996 model can be explained by the fact that the linear cost term is smaller
in magnitude than in the 1986 and 2006 models. Thus an important point is that
the elasticities calculated are impacted by the particular model results as well as

any changes in sensitivity in the population.

A general pattern is that the difference between the transfer elasticity and the
base elasticity is higher over the longer 20 year transfer to 2006 than over the
10 year transfer to 1996. While this result is intuitive, the analysis of the trans-
ferability index presented in Section 6.2 did not identify a pattern of reducing
transferability with increased transfer period. No consistent pattern of diver-
gence between the base and transferred elasticities emerges, such as higher or

lower sensitivity in the transferred models.

Sydney data

The Sydney elasticity tests were undertaken using the detailed & income model
specification which incorporates variation in cost sensitivity with income. Elas-
ticities were calculated for both the 1991 and 2006 base models, and then the
elasticities for the 2006 base models were compared to those obtained by trans-

ferring the 1991 models to 2006. Table 6.4.2 summarises the results for commute.

Table 6.23: Sydney commute model elasticities

.. . 2006
Elasticity ~ Units | 1991 base 1991 tran tran/base
Fuel cost kms | -0.15 | -0.16 -0.18 1.12
Car time tours | -0.27 | -0.25 -0.11 0.45
PT cost  tours | -0.38 | -0.32 -0.33 1.05
PT IVT  tours | -0.50 | -0.77 -0.54 0.70

The correspondence between the base and transfer cost elasticities in 2006 is
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better than in the Toronto models. However, the transferred model gives lower
time elasticities than the 2006 base model. It seems likely that the time elasticities
will be impacted by the reductions in mean trip distance, and hence mean travel
time, that result from the move to a more detailed zoning system in 2006 (as

discussed in Section 3.3.2).

Table 6.4.2 summarises the results for home—other travel.

Table 6.24: Sydney home—other travel model elasticities

.. . 2006
Elasticity ~ Units | 1991 base 1991 tran tran/base
Fuel cost kms | -0.02 | -0.03 -0.02 0.76
Car time tours | -0.14 | -0.10 -0.06 0.57
PT cost tours | -0.33 | -0.27 -0.23 0.86
PT IVT  tours | -0.47 | -0.79 -0.46 0.58

There are larger differences between the 2006 base elasticities and those obtained
by transferring the 1991 models to 2006 than were observed for commute, with a
general pattern whereby the transferred model under-predicts the 2006 base sen-
sitivity. It was observed in Section 3.3.2 that home—other travel is more strongly
impacted by the change in zoning system because mean tour lengths are lower,

and therefore it is not possible to draw any wider conclusions from this result.

Elasticity tests were also undertaken for the home—other sub-purposes. These
tests were restricted to the fuel cost kilometrage and PT IVT tests to restrict
the number of tests run. Table 6.25 summarises the results for the fuel cost

kilometrage tests.

For both the 1986 base and 2006 base values, there is considerable variation in the
elasticities between the different sub-purposes, through the elasticity values are
low in all cases due to the log cost formulation used in the model. The transfer
elasticities are consistently lower than the 2006 base values, but again the impact

of the change in zoning system is likely be influence this result.
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Table 6.25: Sydney home-other travel sub-purpose fuel cost kilometrage elasticity
tests

2006
Purpose 1991 base 1991 trans tran/base
Without segmentation | -0.025 | -0.029 -0.022 0.76
Serve passenger -0.009 | -0.023 -0.008 0.33
Personal business -0.037 | -0.035 -0.031 0.90
Other travel -0.033 | -0.047 -0.023 0.50

Table 6.26 summarises the results for the PT IVT elasticity tests.

Table 6.26: Sydney home—other travel sub-purpose PT IVT trip elasticity tests

2006
Purpose 1991 base 1991 trans tran/base
Without segmentation | -0.472 | -0.788 -0.458 0.58
Serve passenger -0.439 | -0.817 -0.402 0.49
Personal business -0.529 | -0.766 -0.567 0.74
Other travel -0.481 | -0.732 -0.455 0.61

There is less variation between sub-purposes in the base elasticities for the PT
IVT trip elasticity tests. Once again the change in zoning system is likely to be
a key factor in the lower sensitivity obtained when the 1986 model is transferred

to 2006.

Discussion

A key point that the elasticity comparison highlights is that the elasticities cal-
culated from a given model are specific to the model results, and in particular
in these models are impacted by the relative strength of the linear and log cost
terms. This makes it difficult to draw firm conclusions about how well the trans-

ferred models replicate any observed changes in sensitivity over time.

In general the transferred models give reasonable similar results to the base mod-
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els. No pattern of systematic under- or over-prediction of sensitivity emerged
from the Toronto analysis, and the impact of zoning change makes it difficult
to draw out conclusions from the Sydney analysis. It is noteworthy that while
the analysis of differences in individual parameter values presented in Section 5.4
suggested the in-vehicle time parameters to be more transferable than the cost

parameters, this pattern is not repeated in the elasticity measures.

Further research would be valuable on this issue to try to better disentangle
changes in model sensitivity from the evolution of changes in the underlying
sensitivity of travellers to cost and time changes. An issue here is the relative
lack of evidence on how, if at all, elasticities are actually changing over time. For
example, Dunkerley (2014), in a review of elasticity values relevant to the UK
context, found limited evidence on changes in car cost and car time elasticities

over time.
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Chapter 7

Pooled models

This chapter presents results from models that investigate model transferability

by pooling different years of the Toronto data.

Section 7.1 presents partial transfer models, whereby the base model is transferred
be estimating scale parameters in the transfer context. Repeating this approach
for different transfer years allows analysis of how the transfer scale parameters

vary over time and between parameter type.

Section 7.2 presents models that are estimated by pooling over different years of
data. The analysis investigates whether pooling data in this way can yield models
which are better at predicting behaviour in the transfer context than using data

from the most recent year alone.

The chapter concludes in Section 7.3 with a summary of the findings from the

pooled model analysis.
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Partial transfer models

A number of authors in the spatial transfer literature have employed a partial
transfer approach whereby different groups of utility terms are transferred from
the base to transfer context by estimating scale parameters using some infor-
mation from the transfer context. For example, Koppelman and Wilmot (1982)
transferred mode choice models from one area of Washington D.C. to another,
Gunn et al. (1985) transferred mode-destination choice models between adjacent
regions of the Netherlands, Daly (1985) transferred mode choice models from
Grenoble to Nantes, and Gunn and Fox (2005) used the partial transfer approach

to transfer national models for the Netherlands to four regions of the Netherlands.

When models are used in forecasting, information is not available in the transfer
context. However, the partial transfer approach can be used to make assessments
of transferability using historical data collected at different points in time. The
Toronto data has been used for this analysis because data is available collected

at four different points in time over a 20 year period.

Changes in the scale of the following groups of utility parameters has been inves-

tigated:

e cost terms
o level-of-service (LOS) terms
e socio-economic (SE) terms

e mode and destination constants

These groupings were used drawing on the findings from the literature review and
the analysis presented in Section 5.4 that parameters in these different groups

exhibit different degrees of temporal transferability.
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By transferring a given base model to each other year of data, the evolution in
the scale parameters over time can be investigated. Two sets of tests have been
undertaken, all using model specification B so that the models can be transferred
to 2001. First, 1986 base models have been transferred to 1996, 2001 and 2006.
Second, 2006 base models have been transferred to 2001, 1996 and 1986.

The utilities for the base models were detailed earlier in Section 4.2.3. The

utilities for the partial transfer models can then be written as follows:

t t b t t b t
de = Meost Z /Bcost,excost,e + Hros Z BLOSJ'%:LOSJC +
e f

t b t t b t
HsE E :ﬁSE,ngE,g + Heonst E :ﬁconst,hxconst,h (71)
g h

where: !, is the scale parameter estimated for the e cost parameters
1Y o s the scale parameter estimated for the f LOS parameters
ph s is the scale parameter estimated for the g socio-economic parameters
Ulonss is the scale parameter estimated for the h constants

b b b b
Blost.es 5Los,fv 65}379 and Bconst’h are the base parameters

¢ t t t :
Teoster TLos,fr Lsp,g a0 Ty, I8 the transfer context data

The results from these tests are summarised in Table 7.1 and Table 7.2. The
t-ratios of the scale parameters are given in brackets and define the significance
of the scale parameter relative to a value of one. The tables also present the
Transferability Indices (TI) defined in Equation 2.21 for both the partial transfer
models, and for the equivalent naive transfers of the base model (i.e. transferring
the base parameters without adjustment, which is equivalent to a partial transfer

model in which all of the scale parameters are constrained to a value of 1).

Examining the results from the partial transfers of the 1986 model, the cost terms
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Table 7.1: Partial transfers, 1986 base, specification B

1996 2001 2006

Heost 0.879 (11.4) | 0.736 (21.1) | 1.192 (17.0)

1hos 0.814 (45.7) | 0.892 (31.1) | 0.898 (24.2)

1S 1.074  (3.7) | 1157 (9.2) | 0.976  (1.2)

(i onat 0.984  (2.0) | 0.927  (9.9) | 1.072  (9.4)
TI (partial transfer) 0.970 0.882 0.857
TI (naive transfer) 0.691 0.716 0.675

Table 7.2: Partial transfers, 2006 base, specification B

2001 1996 1986

[itost 0.664 (28.1) | 0.777 (19.2) | 0.896 _ (7.6)

1hos 0962  (9.9) | 0.910 (20.1) | 1.126  (22.0)

1se 1184 (12.9) | 1.013  (0.8) | 0.962  (2.3)

filonst 0.884 (16.8) | 0.863 (19.3) | 0.864 (18.2)
TI (partial transfer) 0.875 0.852 0.879
TI (naive transfer) 0.784 0.705 0.762

have a good level of transferability to the 1996 and 2006 data (i.e. the scale pa-
rameters have values close than one), but the low scale for 2001 demonstrates
that their transferability to the 2001 data is not as good. The LOS terms are
more stable, with the scale of the parameters reduced by between 10% and 20%.
The socio-economic parameters have a high degree of transferability, with scale
parameters relatively close to one for each of the transfer years. Finally, the con-
stants also retain a good level of transferability over time, with scale parameters
not too far from one. These results show some discrepancies relative to the com-
parisons of changes in individual model parameters by year relative to the 1986
base model presented in Section 5.4. In those comparisons, the LOS parameters

were most transferable on average, and the constants least.

The TI values for the partial transfers of the 1986 model demonstrate that a

noticeable improvement in transferability is achieved relative to naive transfers.
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Analysing the results from the partial transfers of the 2006 base model, it can be
seen that the cost terms have the lowest scale values, highlighting the relatively
low transferability of the cost terms. The model constants have the second lowest
scale values in all three partial transfers. The LOS and socio-economic parameters
have the scale values closest to one and therefore are more transferable over
time. The patterns of variation between parameter group are generally consistent
with the comparisons of individual parameters relative to the 1986 base model

presented in Section 5.4.

The TI values for the partial transfers of the 2006 model demonstrate that a
noticeable improvement in transferability is achieved relative to naive transfers,
but the improvements in TI values are not as large as those obtained from the

partial transfers of the 1986 model.

In summary, while the partial transfer approach results in improved transferabil-
ity measures relative to naive transfers, the patterns of change in the individual
scale parameters over time do not indicate any consistent patterns where one of

the utility groups steadily increases or decreases in scale over time.

Pooled models

If household interview, level-of-service and attraction data exists for different
points in time, then the question arises as to whether it is best to pool the
different datasets in some way, or simply follow the conventional approach of using
the most recent data to forecast future behaviour. This question is particularly
relevant in the current economic climate, where due to restrictions on government

spending there may be pressure to cut sample sizes for household interviews.

Badoe and Wadhawan (2002) estimated mode choice models by pooling 1964
and 1986 data for the Toronto area, and compared the ability of these models
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to predict 1991 travel choices to the predictive performance of models estimated
using the more recent 1986 data only. Different specifications for the pooled
models were tested, ranging from naive pooling to models with separate mode
constants, level-of-service parameter scales and socio-economic parameter scales
by year. The models with separate constants and scales by year gave better a
better fit to the disaggregate 1991 mode choices than the naive pooled model, but
none of the pooled models gave as good a fit as the 1986-only model. However,
using an aggregate measure of predictive performance across different spatial
segments, the best pooled model performed slightly better than the 1986-only
model. Sanko (2014a) investigated the ability of models developed from 1971,
1981 and 1991 data to explain 2001 mode choices in the Nagoya region of Japan.
He found that a model estimated from the most recent 1991 data better predicted
the 2001 mode choices than a pooled model with different constants and LOS and
socio-economic scale parameters by year. Thus, despite using estimating pooled
models using separate scale parameters and constants by year, other researchers
have found using only the most recent data gives the best fit to the transfer data

for mode choice models.

As the experimental approach relies on estimating a pooled model from two years
of data, and investigating the ability of the pooled model to predict behaviour in

a third transfer context, the Toronto data was once again used for this analysis.

Model specification

Badoe and Wadhawan (2002) found that pooled models yielded better predictive
performance if separate constants and scale parameters were used for different
years of data. A number of pooled model specifications were tested to investigate
whether the same result is observed for the Toronto home-work mode-destination
models. A total of five pooled models have been estimated by pooling the 1986
and 1996 data. The pooled models all use specification B.
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e Pooled 1: naive pooling
e Pooled 2: 1986 data scaled relative to 1996 data
e Pooled 3: 1986 data scaled relative to 1996 data, mode constants by year

e Pooled 4: 1986 data scaled relative to 1996 data, separate scaling by utility
group

e Pooled 5: 1986 data scaled relative to 1996 data, separate scaling by utility

group, mode constants by year

The 1986 and 1996 data has been pooled by taking the full 1986 sample, and
50% of the 1996 sample. This allows investigation of the transferability of models
estimated by pooling a large old dataset with a smaller more recent dataset to be
compared to the transferability of models estimated from a large recent dataset
alone. In the pooled model, the utilities for the 1986 and 1996 data can be written

as follows:

86 256
V /‘cost Z BCOSt e Lcost,e + luLOS Z Bros f xLOS f +
!

86 86 86
MSE25SE,9 Tspg T Hoonst(BAsc + Zﬂconsth xconsth) (7.2)
g

md = Zﬁcoste ggste + ZﬂLOSf xLOSf +

ZBSE,Q xSE,g + ﬁASC’ + Zﬁconst,h wsc)gnst,h (7.3)
g

h

In model 1, the four scale parameters uSS.,, u3%,q, u2% and p8, ., are all con-

strained to one. Furthermore, 350 G5 =B ASCVm.

In model 2, the four scale parameters 85, %% o, u8%. and (88, ., are replaced by

a single scale parameter 156, and 5,84630 = B%%CVm.
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7.2.2

In model 3, a single scale parameter ;%0 is estimated but separate mode constants

are estimated by year.

In model 4, separate scale parameters are estimated by utility group but 5,84%0 =

ﬁASC

Finally, in model 5 the utility functions given in Equations 7.2 and 7.3 are esti-

mated directly.

The same set of five pooled models has been estimated by combining the 1996
and 2006 data. The data has been pooled by using 50% of the 1996 data and the
full 2006 sample, which are then used to predict behaviour in the 1986 transfer
context. The utilities for the 1996 data are given by Equation 7.3. The utilities
for the 2006 data are given by the following equation:

06 206
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g9

Model transferability

The full parameter results from the Pooled models are presented in Appendix B.

The transferability of the pooled 1986 & 1996 models to 2001 and 2006 has been
compared to that obtained from the specification B model estimated from the full
1996 sample alone. The pooled models are applied using the 1996 parameters,
i.e. the utilities are not scaled by the 1986 scale parameters and the 1996 mode
constants are used. Table 7.3 and Table 7.4 compare the log-likelihood values
obtained when the pooled and 1996 models are used to predict the 2001 and

2006 mode-destination choices, and also present the corresponding T'1 measures.
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Table 7.3: Pooled 1986 & 1996 models transferred to 2001

1996 model

Pooled 1 Pooled 2
Naive pooling Overall scale

Pooled 3
Overall scale
ASCs by year

Pooled 4 Pooled 5
Scale by Scale by util
util group group, ASCs

by year

LLoi(Bos) | -477,001.4|  -478,790.2  -478,616.7  -477,401.4 -477,421.2  -477,441.9

gain in LL n/a -888.8 -715.3 500.0 480.2 459.4

TI 0.781 0.689 0.707 0.833 0.831 0.829
Table 7.4: Pooled 1986 & 1996 models transferred to 2006

1996 model Pooled 1 Pooled 2 Pooled 3 Pooled 4 Pooled 5

Naive pooling Overall scale Overall scale  Scale by Scale by util

ASCs by year util group group, ASCs

by year

LLos(Boes) | -415,454.1 -415,090.6 -415,531.7 -414,893.3 -414,788.2 -414,891.6

gain in LL n/a 363.5 -77.6 560.9 665.9 562.5

TI 0.570 0.631 0.557 0.664 0.682 0.665

For transfers to 2001, the Pooled 3, 4 and 5 models explain the 2001 mode-
destination choices better than the 1996 model. As would be expected, when a
different scale is estimated for the 1986 data in Pooled 2 the transferability of
the pooled model improves, and there is a substantial improvement in Pooled 3
when separate mode constants are estimated for each year of data. Comparing
Pooled 2 and Pooled 4, scaling the 1986 terms separately by the four groups of
utility terms leads to a further improvement in model transferability. However,
estimating separate mode constants by year of data in Pooled 5 actually results

in a slight loss in transferability relative to Pooled 4.

For transfers to 2006, four of the five pooled models better explain the 2006
mode-destination choices than the 1996 model. Consistent with the transfers to
2001, the best model fit is obtained from model Pooled 4 which incorporates

scaling by utility group but not separate ASCs by year. However, comparison of
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Pooled 2 and Pooled 3 shows estimating separate mode constants by year gives

an improvement in fit.

The pooled 1996 and 2006 models have been used to predict the choices observed
in the 1986 data, and the fit to the 1986 data compared to that achieved by
applying the specification B model estimated from the full 1996 sample. When
the pooled models are applied in the 2006 context, the 1996 mode constants are
used and the 2006 scale parameters are not applied. Table 7.5 compares the
log-likelihood and T'I measures obtained from the 1996-only model and the five

pooled model specifications.

Table 7.5: Pooled 1996 & 2006 models transferred to 1986

1996 model Pooled 1 Pooled 2 Pooled 3 Pooled 4 Pooled 5
Naive pooling Overall scale Overall scale  Scale by Scale by util
ASCs by year util group group, ASCs

by year

LLgs(Bos) | -308,674.2 -308,277.8 -308,854.2 -308,737.2 -308,861.6 -308,756.2
gain in LL n/a 396.4 -180.0 -63.1 187.5 -82.0
TI 0.783 0.855 0.750 0.771 0.748 0.768

For transfers to 1986, only the Pooled 1 model which pools the 1996 and 2006 data
naively gives a better fit the 1986 data than the 1996-only model. Comparison
of Pooled 2 and Pooled 3, and of Pooled 4 and Pooled 5, demonstrates the
estimating separate mode constants by year and using the more recent constants

in forecasting consistently improves model transferability.

It is noteworthy that for five of the six comparisons of the impact of estimating
the constants by year (comparisons of Pooled 2 & Pooled 3 and comparisons
of Pooled 4 & Pooled 5) the transferability of the pooled model is improved
by estimating the constants separately by year. Chingcuanco and Miller (2012)
estimated pooled vehicle ownership models for large urban centres in Ontario

incorporating both varying constants and varying scales, and they found that
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temporal variation was predominately due to differences in the constants rather

than differences in overall model scale.

Predictive measures

To test the ability of the transferred models to predict the aggregate shares and
tour lengths by mode, RMS measures have been calculated for each of the model
transfers to calculate the average error in the predictions at the modal level. The
RMS measures have been calculated using Equation 6.3 and Equation 6.4. The
results for the transfers to 2001 are presented in Table 7.6, and those for transfers
to 2006 are presented in Table 7.7. The measures for 2001 exclude walk, because
the walk alternative in the 2001 data is walk and cycle combined, which results

in differences in mode shares and trip lengths relative to a pure walk mode.

Table 7.6: Pooled 1986 & 1996 models transferred to 2001 RMS measures

1996 model | Pooled 1 Pooled 2 Pooled 3 Pooled 4 Pooled 5

Naive Overall scale Overall scale Scale by Scale by util

pooling ASCs by year util group group, ASCs

by year

Mode share 1.36% 0.96% 1.37% 0.90% 1.30% 1.31%
Tour length (km) 3.82 4.26 4.67 2.99 2.67 3.01

Table 7.7: Pooled 1986 & 1996 models transferred to 2006 RMS measures

1996 model | Pooled 1 Pooled 2 Pooled 3 Pooled 4 Pooled 5

Naive Overall scale Overall scale Scale by Scale by util

pooling ASCs by year util group group, ASCs

by year

Mode share 1.26% 0.94% 1.29% 1.13% 0.95% 0.98%
Tour length (km) 5.06 2.98 4.27 4.70 4.37 4.73

For the 2001 transfers, all the pooled models except Pooled 2 predict mode share
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better than the 1996 only model. Pooled models 3, 4 and 5 predict the 2001 tour
lengths better than the 1996 model.

For the 2006 transfers, again all the pooled models except Pooled 2 predict mode
share better than the 1996 model. All of the pooled models predict tour lengths
better than the 1996 model, though consistent with mode share the best pre-
dictions are given by the Pooled 1 model which pools the 1986 and 1996 data

naively.

Table 7.8: Pooled 1996 & 2006 models transferred to 1986 RMS measures

1996 model | Pooled 1 Pooled 2 Pooled 3 Pooled 4 Pooled 5

Naive Overall scale Overall scale Scale by Scale by util

pooling ASCs by year util group group, ASCs

by year

Mode share 2.11% 2.35% 3.04% 1.64% 2.45% 1.70%
Tour length (km) 4.47 2.59 3.95 4.31 4.23 4.33

Only Pooled models 3 and 5, with separate mode shares by year, give better
predictions of mode share than the 1996 only model. By contrast, the best
prediction of tour lengths is given by the Pooled 1 model, and the other four
pooled models perform only slightly better than the 1996-only model.

Overall, although the results are somewhat mixed the recommendation when
working with pooled data is that separate scales are estimated by utility group
and separate mode constants are estimated by year, with only the more recent

constants used to forecast future behaviour.

Summary

The transfer scaling analysis presented in Section 7.1 sought to investigate model

transferability by transferring the base models to the transfer context through
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the estimation of scale parameters applied to particular parameter groups. The
parameter groups used were consistent with those used successfully in Section 5.4

to investigate differences in the transferability of individual parameters.

While the variation in the transfer scale parameters between parameter groups
was broadly consistent with the analysis of differences in individual parameters
presented in Section 5.4, the variation in the parameters between years did not
identify any pattern whereby particular parameter groups increased or reduced in
scale with time. While this is consistent with the findings for overall model trans-
ferability presented in Section 6.2.1, it does mean that this particular analysis

was less insightful than expected.

A possible contribution to the result is that individual parameters may reduce
or increase in magnitude, when grouped together these differences may tend to
balance out. For example, while Section 5.4 highlighted that the mean change in
the constants is higher than that for other parameter groups this did not translate
into scale parameters for the constants in the partial transfer analysis that were

further from a value of 1 than those for other parameter groups.

Clearer conclusions emerged from the pooled analysis presented in Section 7.2.
If data is available from multiple years for model development, then pooling over
different years can give more transferable models compared to using data from
the most recent available year alone. This is best done by scaling the older data
to account for differences in scale over time, and by estimating separate mode
constants by year with the most recent constants used for forecasting. This
approach may be particularly useful when a larger older survey is available to

supplement a smaller more recent survey.
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Chapter 8

Random taste heterogeneity

models

This chapter presents an investigation into whether accounting for random taste
heterogeneity in the Toronto commute models results in improvements in model

transferability.

Section 8.1 introduces the analysis, including discussion of some of the difficulties

in estimating mode-destination models of this type.

Section 8.2 describes how random taste heterogeneity has been introduced into
the model specification s through the introduction of symmetrical triangularly

distributed parameters.

Section 8.3 presents the results for models incorporating random taste hetero-

geneity that have been estimating using the 1986 and 2006 datasets.

Section 8.4 summarises the analysis that was undertaken to investigate the trans-
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ferability of the 1986 and 2006 models incorporating random taste heterogeneity,
including comparison of the results obtained in comparable model specifications

that did not incorporate random taste heterogeneity.

Finally, Section 8.5 presents a summary of the analysis.

Introduction

As discussed in Section 2.1.3, there has been much work in recent years to de-
velop mixed logit models that are able to reflect heterogeneity in individual’s
tastes. Random taste heterogeneity models can yield significant improvements
in model fit relative to multinomial and nested logit forms, and Bhat (1998) has
demonstrated that the inclusion of distributed parameters can have a significant

impact on the elasticities of models of intercity mode choice.

Random taste heterogeneity models present complications for model estimation
because no closed form solution exists for the likelihood function. An approach
that is often adopted to estimate the models is to use simulation. For each
observation, multiple draws are made from the underlying distribution of the dis-
tributed parameters in order to simulate the parameter distributions. Typically
at least 100 draws are made per individual, and making these multiple draws
leads to significant increases in estimation run times because the choice proba-
bilities need to be calculated separately for each of the draws for each individual.
The distributed nature of the parameters also needs to be considered in model
application, either by making multiple draws per observation, or for models ap-
plied to large samples by using a Monte-Carlo approach to select a value from

the parameter distribution for each observation.

Multinomial and nested logit models of mode-destination choice already have rel-

atively long run times because of the large number of alternatives that are repre-
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sented. Furthermore, if the models are implemented using a sample enumeration
approach, the models are applied for a number of different segments which define
the different socio-economic terms in the model. Given these issues, to date to the
author’s knowledge mixed logit models of simultaneous mode-destination choice
have not been used in an application system. However, as computing power
continues to improve the potential to use mixed logit mode-destination models

increases.

The analysis presented in Chapters 5 and 6 demonstrated that improving the
model specification of nested logit models by adding terms to account for varia-
tion in tastes across different socio-economic groups. The analysis presented in
this chapter investigates whether mixed logit models that take account of random
taste heterogeneity yield further improvements in transferability relative to com-
parable multinomial model specifications. This addresses the important question
as to whether the improvements in base year model fit that random taste het-
erogeneity specifications can deliver yields models that are better at forecasting

changes in behaviour over time.

The random taste heterogeneity models have been developed using the Toronto
TTS data that is described in Section 3.2, and using the Toronto models presented
in Section 4.2.2 as a starting point. The Toronto data was used rather than
the Sydney data because it allowed assessments over a 20 year transfer period,

compared to 15 years with the Sydney data.

Model specification

The starting point for the mixed logit model specifications was the detailed spec-

ification of the Toronto commute model described in Section 4.2.2.
To reduce model run times as far as possible, the models were estimated from
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a sample of the full set of destination alternatives, a process termed destina-
tion sampling. However, the theory used to justify destination sampling only
applies to multinomial logit models (Ben-Akiva and Lerman, 1985). Therefore,
the model tests were using multinomial logit models with modes and destination
alternatives constrained to be at the same level. The destination sampling ap-
proach used is documented in Appendix D. It should be noted that it has yet been
proved that the sampling theory holds for models that incorporate random taste
heterogeneity, but because of the problem size limits in the estimation software

it was necessary to work with models estimated using sampling.

Building on previous work, randomly distributed parameters for both cost and
in-vehicle time (IVT) were tested. For example, Bhat (1998) developed models of
intercity mode choice for travel between Toronto and Montréal incorporating both
log-normally distributed cost and IVT parameters; however only for IVT was a
significant log-normal parameter identified. Daly and Carrasco (2009) developed
mode-destination choice models with both cost and IVT parameters using both
normal and log-normal distributions; in most cases distributed parameters were
added to either cost or time but not both, however in one case it was possible to

estimate both effects.

The distributed parameters have been estimated using ALOGIT, which uses an
error components specification, where for symmetrical random terms the param-

eters [ are decomposed into a mean effect o and a vector of random effects ~:

Unj = QTpj + Y Ynj T Enj <81)

where: x,; and y,; are vectors of observed variables relating to alternative j
« is a vector of fixed parameters

~ is a vector of distributed random terms with zero mean
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€nj is iid extreme value

For the subset of terms where distributed parameters are estimated, x,; = yn;.
For all other terms y,; = 0 and only the fixed parameter « is estimated. Tests
have been undertaken estimating v terms for cost, car time and PT in-vehicle

time.

Different assumptions were made about the distribution of the random terms.
The initial model testing was undertaken using normally distributed parameters.
However, as Hess et al. (2005) highlights, the unbounded nature of the normal
distribution means that using it assumes both positive and negative values for the
parameter whatever the sign of the mean value is. This is problematic for cost
and IVT sensitivity, which are expected to be negative, i.e. increasing cost and
time would be expected to reduce utility. Other specifications for the random
parameters are possible. Hensher (2003) describes the use of normal, triangu-
lar, uniform and log-normal distributions. While there are limitations with the
log-normal distribution — specifically the long tail on the unbounded side and
problems achieving convergence (Hess et al., 2005) — it ensures that cost sensi-
tivity is always negative, and further it would allow an investigation of whether
assuming cost sensitivity in Toronto has an asymmetric distribution gives a bet-
ter fit to the data. For example, Hulchanski et al. (2007) highlighted significant

increases in income polarisation in Toronto between 1970 and 2005.

Unfortunately, software difficulties prevented tests with the log-normal distribu-
tion. Therefore later model tests were undertaken using triangularly distributed
parameters in place of normally distributed parameters because in a triangular
distribution the range is finite. The triangular distribution was generated using

random terms taking the range -1 to 1 with zero mean:

T[-1,1] = U1[0,1] + U3[0,1] — 1 (8.2)
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where: T[—1,1] is a triangular distribution taking the range —1 to 1 with zero mean
U1[0,1] is a uniform distribution taking the range 0 to 1

Us[0,1] is an independent uniform distribution taking the range 0 to 1

The subtraction of one in Equation 8.2 gives a distribution with zero mean that
ranges from -1 to 1. This means that the term can be used to estimate a spread
parameter that defines the range of the triangular distribution around the mean
sensitivity for the random term. In some models it was necessary to constrain
the range to be equal to the mean to ensure that the distribution always gave

negative cost or time sensitivity.

To estimate the random terms, repeated draws are made for each individual to
simulate the parameter distribution. An issue with these runs was that limits on
the problem size that it is possible to represent in the estimation software meant
that no more than 100 draws could be used for the 1986 data, and no more than
90 for the 2006 data. Given these limitations, Halton draws were used (Halton,
1960). The use of Halton draws ensures more uniform coverage of the 0-1 space,

which is particularly important when working with a low number of draws.

A potential issue with using Halton sequences for problems with higher numbers
of random terms is that the individual Halton sequences used for each random
term can be highly correlated. However, the mixed logit models described in this
chapter have at most three random terms and so this is not an issue for these

models (Bhat, 2003).
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Model results

The random taste heterogeneity specification was developed on the 1986 data.
Initially, four triangularly distributed parameters were tested on the linear cost,
log cost, car time and transit in-vehicle time parameters. However, the terms on
the log cost and transit in-vehicle time parameters were not significant and so
the final model specification incorporates triangularly distributed linear cost and

car time parameters only.

Table 8.1 summarises the impact of adding the triangular cost and car time terms
on the fit to the data and on the other model parameters. It was necessary to
constrain the range of the triangular term for cost to be equal to the mean value
to ensure that cost sensitivity remained negative across the whole range of the
parameter distribution. The changes in the other model parameters (i.e. the non-
random terms) have been analysed by calculating the mean change in parameter

value using the REM measure given in Equation 2.26.

Table 8.1: Toronto random taste heterogeneity results, 1986

Model MNL spec. C Plus distrib.

parameters
Fit -285,610.7 -285,499.1
Gain 111.6
Cost -0.0010 -12.7 | -0.0015 -17.7
CostTri 0.0015 n/a
LogCost -0.300 -23.6 | -0.176 -10.9
CarTime -0.033 -77.6 | -0.037 -65.4
CarTimeTri 0.035 21.7
Other level of service terms | REM = 0.023
Constants REM = 0.371
Socio-economics REM = 0.033

The addition of the two distributed parameters leads to a significant gain in log-
likelihood. The mean magnitude of the linear cost term increases relative to the

model without distributed parameters, and it can be seen that the log-cost term
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reduces in magnitude and significance. The mean value of car time term increases

only slightly relative to the model without distributed parameters.

The REM measures for changes in the non-random model terms show that the
level of service and socio-economic terms changes only slightly when the dis-
tributed parameters are added. The constants show larger changes, however this
result is strongly impacted by changes in the walk mode constant. A full com-

parison of the two sets of model results is provided in Table B in Appendix B.

When the equivalent mixed logit model specification was estimated on the 2006
data, the log cost term was insignificant and was therefore dropped from the
model with random parameters. Table 8.2 summarises the impact of adding the
triangular cost and car time terms on the fit to the data and on the other model

parameters.

Table 8.2: Toronto mixed logit results, 2006
Model MNL spec. C Plus distrib.

parameters
Fit -388,455.2 -388,320.9
Gain 134.0
Cost -0.0012 -21.2 | -0.0016 -32.4
CostTri 0.0016 n/a

LogCost -0.255 -16.6 | -0.176 -10.9
CarTime -0.031 -68.8 | -0.034 -75.1

CarTimeTri 0.002 26.2
Other level of service terms | REM = 0.015
Constants REM = 0.436
Socio-economics REM = 0.007

The addition of the two triangular terms leads to a significant gain in log-
likelihood despite the loss of the log cost parameter. The mean values of the
linear cost and car time parameters are essentially unchanged when the distri-
butions are introduced. Consistent with the 1986 results, it was necessary to

constrain the cost distribution to ensure it was correctly signed across the range
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of possible values. However, the distribution for the car time parameter shows

noticeably less spread than the 1986 results.

The REM parameters show the mean impact of the introduction of the distributed
parameters terms on the other level of service parameters is small, as is the impact
upon the socio-economic terms. However, much larger differences are observed
to the mode constants, and as per the 1986 results the largest change is observed
for the walk mode constant. A full comparison of the two sets of model results

is provided in Table B in Appendix B.

In these tests it was necessary to constrain both the cost and car time parameter
distributions to ensure both remained negative across the range of possible values.
For car time this confirms the different results with the 1986 and 2006 datasets,
namely a wide distribution for 1986 and a tight distribution for 2006.

The findings from these tests that adding a distribution to the linear cost term
reduces the important of log cost (1986) or results in the log-cost effect losing sta-
tistical significance altogether (2006) is consistent with the suggestion of Daly and
Carrasco (2009) that the log cost term in a model without distributed parameters

is capturing preference heterogeneity.

Transferability analysis

Individual parameters

To investigate the transferability of individual model parameters, the REM mea-
sure given in Equation 2.26 has been used to examine changes in parameter
values between 1986 and 2006. This analysis has been made for the models with
distributed parameters, and for the corresponding multinomial models without

distributed parameters, with comparison of the two sets of numbers giving insight
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into the impact of introducing distributed model parameters on the transferabil-
ity of individual model parameters. The REM measures have been averaged for

the four parameter groupings used in Section 5.4.

Table 8.3: Impact of distributed parameters on parameter changes between 1986
and 2006

Parameter group MNL spec C  Plus distrib.
parameters

Cost 0.213 0.153

Car time 0.011 0.020
Other level of service 0.141 0.145
Constants 1.546 1.556
Socio economics 0.416 0.392

For cost and car time, the two parameters with distributed parameters, the REM
for the mean parameter values increases when distributed parameters are intro-
duced!. For the other parameters there are no substantial changes in the REM
values which follows from the minor impact on these parameters of the introduc-

tion of the two distributed terms.
Statistical tests of model transferability

To assess the transferability of model specifications with and without distributed
parameters, the 1986 models have been transferred to 2006 and the fit to the

transfer data has been calculated. The results are presented in Table 8.4.

The fit of the model with distributed parameters to the 1986 data is significantly

worse than the fit of the corresponding model without distributed parameters?.

LFor the cost terms, the 1986 model has a fixed log-cost term in addition to the triangularly
distributed linear cost term whereas the 2006 model has just a triangularly distributed linear
cost term

2The fit is some much worse that the result at first appeared erroneous, however tests have
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Table 8.4: Mixed logit statistical tests of transferability, 1986 base

MNL spec C  Plus distrib. Difference
parameters

L Lagos(S1986) -391,657.8 -441,564.0  -44,525.8

As the fit is also worse than that of the reference model® a negative TI value
results. Thus the addition of the distributed parameters has significantly reduced
the transferability of the 1986 model to the 2006 data.

The same set of tests have been run for the 2006 models, which have been trans-

ferred back to 1986. The results are presented in Table 8.5.

Table 8.5: Mixed logit statistical tests of transferability, 2006 base

MNL spec C  Plus distrib. Difference
parameters

LLioss(Bao0s) | -287,146.5  -287,142.7 3.8

In contrast to the 1986 models, for the 2006 models a modest improvement in fit to
the transfer context is observed when distributed parameters are added. However,
this gain in fit is modest compared to the 134.0 gain in likelihood observed when
distributed parameters were added to the 2006 model specification (see Table
8.2).

Predictive tests

The predictive performance of the models with and without distributed parame-
ters has been compared. The analysis procedures set out in Section 6.3 have been
repeated to examine fit to observed mode shares and tour lengths by mode. Table
8.6 summarises the results obtained when the 1986 models are used to predict

mode share and tour lengths in 2006.

confirmed that the likelihood was calculated correctly.
3 A model with constants and tour length terms by mode only.
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Table 8.6: Mixed logit predictive tests, 1986 base transferred to 2006

MNL spec C  Plus distrib.

parameters

Mode share 1.7% 3.6%
Tour length (km) 1.6 4.1

The predictive performance of the model with distributed parameters is worse
for both mode share and tour length by mode. This is consistent with the worse

overall model fit in the transfer context highlighted in Table 8.4.

Table 8.7 presents the corresponding results for the 2006 base models transferred
to 1986.

Table 8.7: Mixed logit predictive tests, 2006 base transferred to 1986

MNL spec C  Plus distrib.

parameters

Mode share 3.1% 3.1%
Tour length (km) 2.8 2.9

The predictive performance of the 2006 base model is little changed by the intro-
duction of the two distributed parameters, consistent with the small difference in
fit to the 1986 data in Table 8.5.

Elasticity tests

The procedure used to assess the impact of the introduction of the distributed
parameters on the model elasticities also followed the approach set out in Section
6.4. Given the finding in Section 8.3 that the changes on the other level of service
parameters (including PT in vehicle time) was small the analysis focussed on the
fuel cost kilometrage and car time elasticity tests to restrict the number of model

runs made.

Table 8.8 summarises the results from the elasticity analysis, with 'DB’ in the
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table denoting distributed parameters.

Table 8.8: Mixed logit elasticity tests

Elasticity 1986 2006 1986 transfer to 2006
MNL plus DB | MNL plus DB | MNL plus DB

Fuel cost, km | -0.157 -0.232 | -0.274 -0.242 | -0.188 -0.117

Car time, trip | -0.124 -0.145 | -0.093 -0.095 | -0.065 -0.057

For the 1986 models, the fuel cost elasticity kilometrage is lower in the model
without random parameters. However, this model includes a log cost term which
damps the kilometrage elasticity. A model without log cost gave an elasticity of
-0.221 which is close to the value for the model with random parameters. For the
2006 models where the model specification is identical apart from the distributed
terms, there is little change in the elasticities. Thus, the results suggest account-
ing for taste heterogeneity has not substantially altered the responsiveness of the

models to changes in travel cost and time in the base year.

Comparison of the 1986 elasticities to those obtained when the 1986 models are
transferred to 2006 shows that the elasticities with distributed parameters reduce
over the transfer period, and show greater changes relative to the base values
compared to the models without distributed parameters. Model elasticities are
used to validate the sensitivity of models in the base year, and so if introducing
taste heterogeneity makes the model elasticities less temporally transferable this
is problematic for policy analysis, as the same policy intervention would have a

different impact on different forecast years.

Summary

The tests undertaken with the Toronto data found that accounting for random
taste heterogeneity led to an increase in fit to the data, which is consistent with

the findings of other researchers. Introducing heterogeneity in sensitivity to lin-
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ear cost reduced the role of the fixed log cost parameter. This is consistent with
the findings of Daly and Carrasco (2009) who suggested that in model without
random taste heterogeneity the log cost term accounts for preference heterogene-
ity through a self-selection effect rather than by representing variation in cost

sensitivity with distance at an individual level.

Analysis of changes in individual parameter values demonstrated that the intro-
duction of random taste heterogeneity had little impact on the other parameters.
The mode constants were an exception, and in particular the walk constants
changed substantially which suggests that the introduction of random taste het-

erogeneity had impacted on short tours in particular.

A key finding was that there was no evidence from the transferability analysis
that the improvement in fit in the base context resulting in improvements in
model transferability. Furthermore, for transfers from 1986 to 2006 the model
with distributed parameters was noticeably worse than for the model without
distributed parameters, and the introduction of taste heterogeneity had reduced
the temporal transferability of the model elasticities. Further analysis to be better
understand the impact on the elasticities is an area where further research would

be valuable.

In Chapters 5 and 6, evidence was presented that improving the specification of
models with fixed parameters to account for variation in tastes between different
socio-economic groups resulted in improvements in model transferability. It is
noteworthy therefore that further improving model specification does not lead
to further improvements in model transferability. A possible explanation is that
the random taste heterogeneity models are over-fitting the base year data, par-
ticularly for the 1986 model which transfers poorly and in which the car time

parameter has a much wider spread than in the 2006 model.
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9.1

Chapter 9

Conclusions and

recommendations

This chapter presents the conclusions from this research, and then sets out rec-

ommendations for further work.

Mode-destination models over long-term forecasting

horizons

Accounting for changes in cost sensitivity

The evidence from the literature reviewed in Daly and Fox (2012) is that the
longitudinal elasticity of value of time to real income growth is around one. Tests
were made using the Toronto and Sydney datasets to assess this approach relative
to making no adjustment to cost sensitivity, and overall the tests concluded cost

sensitivity should indeed be adjusted in this way.
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A complication in models that incorporate variation in cost sensitivity with in-
come band is that some income growth comes about due to re-distribution be-
tween income bands. The literature suggests that the cross-sectional elasticities
average around 0.3, i.e. significantly lower than the longitudinal values, and using
the Sydney data an approach was developed and tested to take proper account
of these two effects by implementing separate cross-sectional and re-distribution

income elasticities.
Model transferability

Statistical tests strongly rejected the hypothesis that the base and transfer pa-
rameters are not statistically different for all transfers tested on the Toronto and
Sydney datasets. This finding is consistent with transferability tests of mode
choice models reported in the literature, and indeed some studies demonstrated
models to be useful at predicting behaviour in the transfer context despite the

rejection of the hypothesis of parameter equality.

Therefore assessments of overall model transferability have focussed instead on
the transferability index (TI), a relative measure which assessed the predictive
ability of the transferred model compared to the same model specification re-
estimated in the transfer context. The conclusions from the TI tests support
the notion of model transferability, with the transferred commute models giving
around 75% of the predictive ability of the model re-estimated in the transfer
context in the Toronto tests, and at least 80% in the Sydney tests. Thus, overall
the results support the notion that the models are reasonably transferable and

as such suitable for use in forecasting.

Four separate years of Toronto data were available for analysis, enabling investi-
gation of how model transferability changes over time. Interestingly, the analysis
of TI values found no evidence of changes over time for transfer periods ranging

from 5 to 20 years.
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In all of the Toronto tests, and most of the Sydney tests, a pattern on increasing
TI with improvements to model specification made using fixed parameters did
emerge, a result that is consistent with the mode choice transferability literature.
The conclusion for model developers is that improvements in model specification,
particularly when car availability terms are added to the model specification, are
justified by improved model transferability. This is a useful result, because model
developers may be under pressure to keep model specifications parsimonious to
make models easier to implement. For example, a model without a car availability
specification avoids the need to make forecasts of how car availability changes
in the future. However, it should be noted that this result did not extend to
improving the model specification by adding random parameters to account for

heterogeneity in cost and time sensitivity.

Tests of the predictive ability of the models, assessed by their ability to predict
observed changes in overall mode share and tour length by mode, demonstrated
that they were reasonably able to predict the key changes observed over the
years studied. However, they did exhibit a general tendency to over-predict the
observed increase in the car driver mode share, an issue which is discussed further

in Section 9.5 below.

Elasticities provide an important measure of overall model sensitivity for model
developers, as they are a dimensionless measure that can be compared between
models and in a UK context there are expectations for the range of acceptable
elasticity values. Further, they capture the sensitivity of the models to changes in
travel cost and travel time which are the key changes resulting from many policy

measures.

The elasticity analysis suggested that the model elasticities are reasonably trans-
ferable between base and transfer contexts. An important point the analysis
highlighted was that the elasticity values associated with a particular model are

significantly impacted by the parameter estimates for that model, and in par-
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ticular in these models the balance of linear and log cost effects. This impacts
upon analysis of the how the elasticities change over time, making it difficult to

separate out any true behavioural change in sensitivity over time.
Parameter transferability

For both the Toronto and Sydney transferability analyses, models were estimated
by pooling over each available year of data and estimating model scales by year.
These scale parameters were then used to take account of variation in model scale
(i.e. levels of unexplained error) when comparing models estimated separately
from different years of data. This is the correct approach when comparing models
estimated from different years of data, but it is one that is frequently overlooked

in the temporal transferability literature.

Analysis was undertaken to investigate the transferability of different groups of
model parameters, namely cost terms, level of service terms, socio-economic terms
and constants. This analysis found the level of service terms to be the most trans-
ferable, the cost and socio-economic parameters to be somewhat less transferable,
and the constants to be by some way the least transferable group. The finding
that the constants are the least transferable group is not unexpected, as they
represent the mean effect of unmeasured effects not captured in the other terms

and no insight into how these unmeasured effects might change in the future.

The high level of stability observed in the in-vehicle time parameter values pro-
vides evidence that the approach to adjusting the models to take account of VOT
growth over time, which is applied through adjustments to the cost sensitivity
terms alone on the assumption that travel time sensitivity is temporally stable,

is reasonable.

Many transport policy measures can be formulated in terms of changes in travel

cost and/or travel times. The result that level-of-service terms, which includes
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sensitivity to travel times, are more transferable than the cost terms is therefore
important. It might be expected that this result would have played out in the
elasticity analysis, i.e. the travel time elasticities would have been observed to be
more transferable than the cost elasticities, but this result was not observed. As

discussed in Section 9.6, this is an area where further analysis would be valuable.

The relative sensitivities of mode and destination choice were estimated in the
models, and therefore the model results allow investigation of how these relative
sensitivities change over time. For the Toronto commute analysis, a destinations-
above-modes structure was found to give the best fit to the data, and the struc-
tural parameters were remarkably stable over time. For the Sydney commute and
home—other travel analyses, modes-above-destinations structures gave the best fit
to the 1991 data, but the difference between the mode and destination sensitiv-
ities reduced between 1991 and 2006 so that the 2006 structures were closer to
a multinomial structure where both choices are equally sensitive to changes in
utility. However, this result is believed to be impacted by the significant change
in zone system between 1991 and 2006 which results in changes in the destination

choice error (sensitivity).
Comparison of Toronto and Sydney results

Commute models were developed using both the Toronto and Sydney datasets,

allowing comparison of the two sets of transferability analysis.

For the best specification, models for both datasets had good transferability over-
all. The Sydney models had higher transferability, consistent with the richer
socio-economic segmentation in the models and the more detailed treatment of

public transport modes.

Both sets of results supported the finding that improving model specification im-

proves model transferability, with the largest improvements coming about when
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9.2

car availability parameters were added to the specifications.

The predictive tests demonstrated that the two sets of transferred models per-
formed similarly when predicting the observed changes in mode share and tour
length over the transfer period. In both cases, the growth in the car driver share
was over-predicted. No significant differences between the two sets of models

emerged from the elasticity analysis either.

It is noteworthy that while the Toronto results suggest the mode destination
structures to be temporally stable within a given study area, comparison of the
Toronto and Sydney commute model structures suggests they they are not spa-

tially transferable.

Overall, the Toronto and Sydney commute transferability analyses gave rise to

consistent findings.

Commuter and non-commuter travel

Comparison of commuter and non-commuter travel

It was not possible to obtain the Toronto home-other! tour samples for this
analysis. However, the Sydney data was available for all purposes and therefore
was used to make analysis to compare the transferability of commute and home-

other travel.

Model transferability was assessed using the TI measure for different model spec-
ifications. This analysis demonstrated the home-other work models to be con-

sistently less transferable than the equivalent commute models. However, as

L All travel that is not for commute, business, education or shopping purposes. This includes
serve passenger, personal business and leisure travel.
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per the commute models the transferability of the home—other travel models im-
proves when the model specification improves, particular when car availability

parameters are added to the model specification.

The predictive ability of the transferred home—other travel models, assessed by
their ability to forecast observed changes in mode share and tour length, was

similar to that of the commute models.

The elasticities of the transferred models were consistently lower than the elas-
ticity for the same model specification re-estimated on the transfer data, however
it is believed that the change in zone system between 1991 and 2006 and the

associated changes in level of service play a significant role in this result.

Analysis of changes in the individual parameters by parameter group showed
that the home—other travel parameters were consistently less transferable than
the commute values, with the transferability of the level of service parameters
noticeably worse than in the commute model. Again, a possible contribution to
this result is the significant changes in the zoning and level of service between 1991
and 2006 which impacted more significantly on the home-other results because

the tour lengths are shorter.

Overall it is concluded that the home-other travel models are less transferable
than those for commute. Therefore researchers need to be cautious about making
conclusions about model transferability based on commute travel alone, as the
review of the temporal transferability literature presented in Section 2.4 demon-

strated that most previous work has done.

Home—other travel sub-purpose tests

A plausible hypothesis for the lower transferability of home—other travel models
is that the purpose covers a heterogenous range of sub-purposes. Therefore tests

were made whereby separate models were developed for three sub-purposes —
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serve passenger, personal business and leisure — and then the transferability of
these models compared to that observed for modelling these three sub-purposes

together.

In terms of overall fit to the transfer data, the separate sub-purpose models
gave a better fit compared to modelling the three purposes together as a single
purpose for both possible transfers, i.e. from 1991 to 2006 and from 2006 back
to 1991. However, tests of the ability of the sub-purpose models to predict the
observed changes in mode share and tour length showed no improvement relative

to modelling the three sub-purposes together in a single model.

Analysis of model elasticities provided some evidence of variation in the fuel
cost kilometrage elasticity between sub purposes. However, the impact of the
significant changes in zoning system prevented conclusions being drawn about

the transferability of elasticity values in the sub-purpose models.

Analysis of changes in individual parameters by parameter group showed that
overall the sub-purpose model parameters were more transferable than those ob-
tained when the three sub-purposes were modelled together. Particularly notice-
able improvements in transferability were obtained for the model constants, a
plausible result given that mode and destination choice patterns would be ex-

pected to vary between the three sub-purposes.

Overall, on the basis of fit to the transfer data and the analysis of changes in
individual parameters it is concluded that segmenting home—other travel into
separate sub-purposes does result in more transferable models. However, taken
together these sub-purposes models are still less transferable than the comparable

commute models.
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9.3

9.4

Evolution of model scale and constants

If data is available in the base and transfer contexts, then a model can be esti-
mated by pooling the data and estimating a scale capturing the different levels
of error in the base and transfer contexts. This is the approach that has been
used in this analysis to account for scale differences when comparing models es-
timated from different years, but it is approach that is not always followed by

other researchers.

The analysis of the evolution of model scales over time presented in Chapter 7
did not identify any patterns whereby particular parameters groups increased or
reduced in scale over time. While this is consistent with the unexpected finding
that model transferability did not reduce over time, it does mean that the analysis
of changes in scale by parameter group over time was less insightful than had been

hoped.

One of the scale parameters that was estimated was for the mode and destination
constants, and therefore no clear insights emerged from this particular analysis
on changes in the constants over time. However, the analysis of changes in the
individual parameters between years clearly demonstrated the constants to be

less temporally transferable than other parameter groups.

Accounting for random taste heterogeneity

Accounting for random heterogeneity in sensitivity to cost and car time was
found to give significant improvements in fit to the base data. Introducing het-
erogeneity in sensitivity to linear cost reduced or eliminated the role of the log
cost term identified in models without taste heterogeneity. This is consistent

with the findings of Daly and Carrasco (2009), who suggested that the log cost
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9.5

term accounts for taste heterogeneity through a self-selection effect rather than
representing variation in value of time with distance at an individual level. Anal-
ysis of changes in individual parameters demonstrated that the introduction of

parameter distributions had little impact on the fixed parameters.

The key finding was that there was no evidence that the improvement in fit
in the base context resulted in more transferable models, in fact for one of the
transfers the model with distributed parameters was noticeably worse than the
model without distributed parameters which may be explained by the model over-
fitting the base year data. Table 9.1 summarises the results from the random taste

heterogeneity tests.

Table 9.1: Random taste heterogeneity tests

Context Impact on model results
Base Significant improvement in fit, however this may be due to over-fitting
Transfer No improvement in fit relative to models without random terms

The wider implication for researchers is that they cannot assume that improve-
ments in fit to the base year data resulting from accounting for taste heterogeneity
will result in better quality forecasts. In most practical cases, it is not possible
to validate models using data collected at different points in time. Therefore, a
sensible approach would be to retain a holdout sample in the base year, and test
whether model specifications that account for taste heterogeneity are better able

to explain the choices observed in the holdout sample.

Guidance on maximising model transferability

The Sydney analysis demonstrated that substantial changes in the level of service

following the move to a more detailed zoning system had a significant impact on
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the models, and in particular the model sensitivities. Thus a clear recommenda-
tion is that models should be applied using level of service that is generated on

a consistent basis to the data used in model estimation.

Drawing on literature and the empirical analysis presented in this thesis, it is
recommended that in forecasting the cost sensitivity terms are adjusted to take
account of the impact of real income growth on values of time using a longitudinal
elasticity of 1. The in-vehicle time parameters have been shown to have a good
level of temporal stability, and thus applying the the value-of-time adjustment by
adjusting the cost parameter while holding the time parameter constant appears

to be reasonable.

When applying models that incorporate variation in cost sensitivity with income
band, account should be taken of the impact of the cross-sectional income elastic-
ity which will result in an overall value of time growth because of shifts from lower
to higher income bands over time? The cross-sectional elasticities are typically
lower than the longitudinal values, with evidence in the literature and results

from the Sydney analysis suggesting average values of around -0.3.

A clear finding from the empirical analysis that is consistent with the mode
choice transferability literature is that improving model specification using fixed
parameters to account for variation in preference between socio-economic groups
improves model transferability. Particularly noticeable improvements were ob-
served when car availability terms were added to the model specifications. This
is an important result for model developers who may be under pressure to keep
model specifications as parsimonious as possible to simplify model implementa-
tion. However, as discussed in Section 9.4 there was no evidence from the tests
undertaken that accounting for heterogeneity in cost and travel time sensitivity
results in improved model transferability, and indeed models of this type may

over-fit the base data resulting in worse transferability compared to models with

2 Assuming incomes rise over the forecast period.
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9.6

fixed parameters.

If data from multiple years is available for model development, then pooling over
different years can give more transferable models than using the most recent data
alone. This approach may be particularly valuable if a smaller more recent survey
is available alongside a larger older survey. If data is combined in this way, then
the older data should be scaled relative to the more recent data to account for
changes in scale over time, and separate mode constants should be estimated by

year, with the most recent mode constants retained for forecasting.

Recommendations for further work

Assessments of the ability of the Toronto and Sydney models to predict observed
changes in mode share and tour length highlighted a consistent pattern of over-
prediction of the increase in the car driver share over time. In both cases this
increase has been accompanied by a significant real terms increase in car costs,
and so a potential explanation is that the models which are estimated from cross-
sectional data are under-sensitive to the longitudinal change in costs. However,
at the same time as the increase in car costs, congestion and associated parking
difficulties have increased. Further analysis would be valuable to explore these
different factors and better investigate whether there are differences between the

cross-sectional and longitudinal cost sensitivities.

A conclusion from the analysis of changes in model elasticity (sensitivity) is that
further research would be valuable to try to better disentangle changes in model
sensitivity — which are impacted by differences in the relative strength of partic-
ular model parameters between different years — from the evolution of changes in
the underlying sensitivity of travellers to cost and time changes. Related to this,

there is a wider lack of evidence on how elasticities are evolving over time.
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The finding that models which incorporated preference heterogeneity were no
more, and potentially much less, transferable than models without results in a
clear recommendation that other researchers should consider what evidence exists
to demonstrate that improvements in fit to the base year data yields models that
are better able to forecast behaviour. As discussed above, using holdout samples
to test whether models incorporating taste heterogeneity give better base year
predictions is one possible approach when a transfer sample is not available.
Further work would also be valuable to explore whether the assumptions around
the shape of parameter distribution have an impact on model transferability,
for example by investigating whether different distributions give the best fit for

different years of data.
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Appendix A

Temporal stability analysis

To test whether individual parameters were stable over time, Equation 2.25 was
used to test the null hypothesis that the base and transfer parameters were equal,
but only when both base and transfer parameters were significant at a 95% level®.
To provide an assessment of the magnitude of the differences between parameters,
the REM statistic defined in Equation 2.27 was used. The detailed results are
presented in Appendix A, but Table A.1 summarises the key results by the three

groups of parameters.

In Table A.1, the ‘Acc’ columns give the number of model parameters where the
hypothesis that the parameters are stable is accepted at a 95% confidence level,
the ‘Rej’ columns give the number of model parameters where the hypothesis
of stability was rejected at a 95% confidence level, and the ’Insig’ columns give
the number of cases where the comparison could not be made because the base
and/or transfer parameter was not significant. The ‘REM’ columns present the

mean REM statistic for the parameters in that group. The Sanko results were

1Otherwise the null hypothesis may be accepted even if the base and transfer parameters are
substantially different.
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excluded from this analysis on the basis that that omission of cost and car avail-
ability information from his models resulted in significant bias to the other terms,

particularly the mode constants.

The full set of parameter values for each of the studies is presented below.
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Appendix B

Toronto model results

The following tables present the model parameter values. In the tables, in each
column the parameter value (§ is presented on the left and the t-ratio for the
parameter is presented on the right. The t-ratio is given by the ratio 5/o where
o is the standard deviation of the parameter estimate. For model parameters,
the t-ratios define the significance of the parameter relative to a value of zero.
For the structural parameters and the scale parameters the t-ratios have been
presented relative to a value of one. The estimation outputs give the significance
of all parameters relative to a value of zero (¢y), so for the structural and scale
parameters these have been converted into values relative to one (¢;) using the

following expression:

15|
g

In Table B.1 to Table 4.4, the cost parameters are all presented in 1986 values and
prices. For the 1996, 2001 and 2006 models this means that the cost parameters

t1 = tg *

(B.1)

have been adjusted to take account of real income growth using the procedure

documented in Section 5.1.1.
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In Table B.3 and Table B.4, the cost parameters are all presented in 1996 values
but 1986 prices. This means that the cost parameters presented for the 1996-only

models have been rescaled related to those presented in Table B.2.

The 1996, 2001 and 2006 parameters values are presented after rescaling to take
account of differences in model scale between years, following the procedure de-

scribed in Section 5.2.
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Table B.5:

1986 models with distributed cost and car time terms

HW_MD_1986_C_DS_MNL

HW_MD_1986_C_DS_EC40

Percentage change

MNL spec. C Triangular EC terms Param. t-ratio
100 Halton draws
Log-likelihood -285,610.7 -285,499.1
gain 111.6
Observations 50,254 50,254
Cost parameters
Cost | -0.0010 -12.7 | -0.0015 -17.7 56.6% 38.9%
CostTri 0.0015 n/a
LogCost | -0.3004 -23.6 | -0.1759 -10.9 | -41.4% -53.6%
Level of service
CarTime -0.033 -77.6 -0.037 -65.4 12.6% -15.7%
AutoTimTri -0.035 -21.7
TranIVT -0.022 -60.2 -0.022 -60.1 0.1% -0.2%
TranWait -0.060 -24.5 -0.062 -24.9 2.6% 1.7%
TranWalk -0.025 -16.1 -0.027 -16.7 4.8% 3.9%
APDist -0.020 -27.0 -0.020 -26.2 -3.7% -2.7%
WalkDist -0.584 -45.0 -0.585 -44.9 0.2% 0.0%
Destination terms
CBDDest 0.392 13.9 0.408 14.4 4.0% 3.6%
CBDLT 0.189 5.1 0.170 4.6 | -10.1% -10.4%
Mode constants
AP -3.940 -44.6 -3.572 -38.0 -9.3% -14.8%
LT 0.970 20.4 0.842 17.0 | -13.1% -16.5%
Wk 0.248 2.8 0.617 6.7 | 149.1% 135.4%
Car availability
AD2pVeh 1.298 42.1 1.335 42.3 2.9% 0.5%
AP1Veh 1.474 20.9 1.566 21.7 6.2% 3.7%
AP2pVeh 1.889 26.2 2.017 27.1 6.8% 3.7%
Socio economics
ADAgel617 -2.101 -6.2 -2.106 -6.2 0.2% -0.8%
ADAgel825 -0.834 -24.7 -0.845 -24.7 1.3% -0.1%
ADAge2630 -0.167 -4.8 -0.178 -5.1 6.6% 5.1%
ADMale 1.016 38.3 1.010 37.6 -0.6% -1.8%
WkMale 0.215 3.4 0.219 3.5 2.1% 1.9%
Attraction term
TotEmp 1.000 n/a 1.000 n/a
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Table B.6: 2006 models with distributed cost and car time terms
HW_MD_2006_.C_DS_MNL2 | HW_MD_2006_C_DS_EC5 | Percentage change
MNL spec. C Triangular EC terms Param. t-ratio
90 Halton draws
Log-likelihood -388,455.2 -388,320.9
gain 134.4
Observations 50,254 50,254
Cost parameters
Cost | -0.0012 -21.2 | -0.0016 -32.4 35.6% 53.1%
CostTri 0.0016 n/a
LogCost -0.255 -16.6
Level of service
AutoTime -0.031 -68.8 -0.034 -75.1 9.1% 9.1%
AutoTimTri -0.002 -26.2
TranIVT -0.018 -50.4 -0.018 -50.4 0.0% 0.0%
TranWait -0.050 -28.0 -0.051 -28.6 2.3% 2.1%
TranWalk -0.022 -17.2 -0.022 -17.5 1.9% 1.9%
APDist -0.025 -35.9 -0.024 -34.7 -4.7% -3.4%
WalkDist -0.532 -54.3 -0.531 -54.3 -0.1% -0.1%
Destination Terms
CBDDest -0.147 -6.3 -0.126 5.4 | -14.1% -14.0%
CBDLT 0.873 23.7 0.851 23.1 -2.6% -2.5%
Mode constants
AP -3.480 -41.0 -2.571 -39.3 | -26.1% -4.2%
LT 0.853 18.8 0.765 16.9 | -10.4% -9.8%
Wk 0.764 9.6 1.648 27.5 | 115.7% 187.4%
Car Availability
AD2pVeh 1.553 47.3 1.553 47.3 0.0% -0.1%
AP1Veh 1.433 22.4 1.427 22.3 -0.4% -0.6%
AP2pVeh 1.849 27.7 1.840 27.5 -0.5% -0.7%
Socio economics
ADAgel617 -3.005 -5.7 -3.000 -5.6 -0.2% -0.6%
ADAgel825 -1.342 -32.1 -1.343 -32.0 0.0% -0.1%
ADAge2630 -0.343 -8.3 -0.343 -8.3 0.0% -0.1%
ADMale 0.869 33.6 0.867 33.5 -0.2% -0.3%
WkMale 0.108 1.9 0.105 1.9 -3.3% -3.4%
Attraction term
TotEmp 1.000 n/a 1.000 n/a
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Appendix C

Sydney model results

The following tables present the model parameter values. In the tables, in each
column the parameter value (§ is presented on the left and the t-ratio for the
parameter is presented on the right. The t-ratio is given by the ratio 5/o where
o is the standard deviation of the parameter estimate. For model parameters,
the t-ratios define the significance of the parameter relative to a value of zero.
For the structural parameters and the scale parameters the t-ratios have been

presented relative to a value of one.

The cost parameters are presented in 1991 prices and values. For the 1996, 2001
and 2006 models this means that the cost parameters have been adjusted to take

account of real income growth using the procedure documented in Section 5.1.1.

The 1991 parameters values are presented after rescaling to take account of differ-
ences in model scale between the 1991 and 2006 datasets, following the procedure

described in Section 5.2.
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Table C.1: Sydney commute model results, sparse specification

COM_A391 COM_A _0408
Log-likelihood -29,979.8 -34,510.5
Observations 5,111 5,173
LL per obs -5.866 -6.671
Cost parameters
LogCost -0.461 -11.1 | -0.341 -8.9
Cost -0.0004 -3.4 | -0.0003 -3.3
Level of service
CarTime -0.027 -26.9 | -0.030 -31.4
RlTime -0.012 -10.3 | -0.014 -13.0
BusTime -0.022 -13.5 | -0.021 -15.9
AccTime -0.028 -9.8 | -0.014 -6.2
FrWtTm -0.021 -3.2 | -0.020 -4.2
OtWTme -0.046 -8.5 | -0.044 -10.0
CarPDist -0.017 -6.5 | -0.023 -6.5
BkDist -0.167 -7.5 | -0.162 -7.4
WilkDist -0.605 -21.1 | -0.606 -21.0
Destination terms
Intra -0.162 -1.8 0.227 2.0
CBDDest -0.167 -1.6 | -0.452 -5.0
CBDRail 0.873 6.3 1.328 10.8
CBDBus 0.461 2.7 1.264 9.1
Mode constants
CrP -3.620 -16.8 | -2.604 -24.8
Trn -0.865 -4.8 | -0.710 -5.5
Bus -1.460 -7.2 | -1.057 -8.6
Bk -7.525 -12.9 | -4.779 -14.3
Wk -1.371 -4.7 | -0.162 -0.9
Tx -5.431 -9.4 | -4.285 -15.0
Structural parameter
TR_-M_D 0.737 3.6 1.000 n/a
Attraction term
TotEmp 1.000 n/a 1.000 n/a
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Table C.2: Sydney commute model results, car avail specification

COM_B3.91 COM_B_0408
Log-likelihood -29,691.6 -34,230.9
Observations 5,111 5,173
LL per obs -5.809 -6.617
Cost parameters
LogCost -0.444 -10.8 | -0.329 -85
Cost -0.0004 -3.2 | -0.0003 -3.0
Level of service
CarTime -0.027 -27.2 | -0.031 -31.8
RlTime -0.012 -10.1 -0.013 -124
BusTime -0.022 -13.3 -0.020 -15.2
AccTime -0.026 -9.1| -0.012 -5.6
FrwtTm -0.016 -24| -0.014 -3.0
OtWTme -0.044 -8.3 | -0.044 -10.0
CarPDist -0.017 -6.4 | -0.023 -6.3
BkDist -0.163  -7.4 | -0.160 -7.4
WilkDist -0.588 -21.1 | -0.599 -20.9
Destination terms
Intra -0.143  -1.6 0.275 2.4
CBDDest -0.176  -1.7 | -0.477 -5.3
CBDRail 0.891 6.6 1.370 11.1
CBDBus 0.471 2.8 1.270 9.2
Mode constants
CrP -5.903 -13.9 | -4.296 -17.6
Trn -1.839 -84 | -1.267 -9.2
Bus -2.424  -96 | -1.606 -12.3
Bk -8.255 -13.3 -5.152 -15.3
Wk -2.207 -6.6 | -0.558 -3.2
Tx -6.291 -10.1 -4.727 -16.4
Structural parameter
TR-M_D 0.726 17.8 1.000 n/a
Attraction term
TotEmp 1.000 n/a| 1.000 n/a
Car availability
CarComp -2.028 -13.1 | -1.468 -19.3
CmpCrDr 0.823 6.0 0.678 7.0
PassOpts 1.754 6.0 1.546 6.5
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Table C.3: Sydney commute model results, detailed specification

COM_C3.91 COM_C_0408
Log-likelihood -29,590.5 -34,182.9
Observations 5,111 5,173
LL per obs -5.790 -6.608
Cost parameters
LogCost -0.445 -11.2 -0.248 -8.4
Cost -0.0003 -3.2 | -0.0002 -2.8
Level of service
CarTime -0.027 -28.2 -0.031 -32.0
RITime -0.012 -10.2 -0.013  -12.1
BusTime -0.022 -13.8 -0.021 -154
AccTime -0.026 -9.4 -0.012 -5.6
FrwtTm -0.014 -2.3 -0.014 -2.9
OtWTme -0.044 -8.6 -0.043 -9.9
CarPDist -0.017 -6.6 -0.023 -6.3
BkDist -0.162 -7.7 -0.159 -7.4
WIkDist -0.588 -21.7 -0.599  -20.9
Destination terms
Intra -0.146 -1.7 0.271 2.4
CBDDest -0.179 -1.8 -0.484 -5.4
CBDRail 0.901 6.9 1.383 11.2
CBDBus 0.489 3.0 1.306 94
Mode constants
CrP -5.676  -14.0 -4.294  -17.3
Trn -3.145 -10.1 -1.773  -10.8
Bus -2.236 -9.2 -1.604 -11.7
Bk -10.168 -10.9 -6.598 -11.4
Wk -1.997 -6.2 -0.544 -3.0
Tx -6.089 -10.2 -4.765 -16.2
Structural parameter
TR_M_D 0.729 17.8 1.000 n/a
Attraction term
TotEmp 1.000 n/a 1.000 n/a
Car availability
CarComp -2.029 -13.5 -1.481 -19.3
CmpCrDr 0.831 6.2 0.691 7.1
PassOpts 1.732 6.1 1.558 6.6
Socio-economic
Ageu24CrD -0.862 -6.0 -0.473 -4.2
MaleCrDr 0.752 6.8 0.197 2.6
FullTmRI 1.324 6.2 0.131 1.3
HiPersInc 0.758 5.7 0.683 6.9
MaleBike 3.169 4.2 2.093 3.9
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Table C.4: Sydney home—other travel model results, sparse specification

OTH_A3.91 OTH_A_0408

Log-likelihood -47,715.9 -53,849.2
Observations 10,644 10,464
LL per obs -4.483 -5.146
Cost parameters

LogCost -1.371 -35.6 | -0.713 -34.1
Level of service

CarTime -0.045 -34.6 | -0.066 -51.4

RlITime -0.021 -8.1 | -0.016 -7.6

BusTime -0.020 -8.0 | -0.028 -10.8

AccTime -0.046 -9.0 | -0.014 -4.2

WaitTime -0.029 -5.2 | -0.025 -5.3

CarPDist 0.005 3.5 | 0.013 7.3

BkDist -0.332 -14.1 | -0.320 -13.7

WIkDist -0.750 -48.2 | -0.927 -50.8
Destination terms

Intra -0.222 -4.6 | -0.170 -4.2

CBDDest -1.328 -10.5 | -1.488 -10.8

CBDRail 1.948 8.2 | 1.701 7.1

CBDBus 1.601 6.6 | 1.189 4.0
Mode constants

CrP -4.669 -18.0 | -6.267 -16.1

Trn -6.003 -8.2 | -6.114 -11.9

Bus -5.521 -8.3 | -5.604 -11.5

Bk -14.808 -17.3 | -9.941 -16.9

Wk -5.564 -15.7 | -2.771 -11.7

Tx -9.450 -9.5 | -8.998 -12.4
Structural parameter

TR_M_D 0.499 15.3 | 0.650 10.0
Attraction terms

LS M 1.000 n/a | 1.000 n/a

ServEmp 4.610 45.4 | 6.611 454
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Table C.5: Sydney home—other travel model results, car avail specification

OTH_B3.91 OTH_B_0408

Log-likelihood -47.326.0 -53,849.2
Observations 10,644 10,464
LL per obs -4.446 -5.146
Cost parameters

LogCost -1.105 -32.3 | -0.713 -34.1
Level of service

CarTime -0.052 -41.7 | -0.066 -51.4

RITime -0.022 -83|-0.016 -7.6

BusTime -0.022 -8.8 | -0.028 -10.8

AccTime -0.042 -8.21-0.014 -4.2

WaitTime -0.027  -4.9 | -0.025 -5.3

CarPDist 0.005 3.4 | 0.013 7.3

BkDist -0.323 -14.0 | -0.320 -13.7

WIlkDist -0.720 -47.8 | -0.927 -50.8
Destination terms

Intra -0.006 -0.1 | -0.170 -4.2

CBDDest -0.326  -2.5 | -1.488 -10.8

CBDRail 0.833 3.5 | 1.701 7.1

CBDBus 0.445 1.8 | 1.189 4.0
Mode constants

CrP -10.210 -13.8 | -6.267 -16.1

Trn -8.685 -9.3 | -6.114 -11.9

Bus -8.003 -9.2 | -5.604 -11.5

Bk -16.058 -15.0 | -9.941 -16.9

Wk -6.234 -13.1 | -2.771 -11.7

Tx -12.547 -10.1 | -8.998 -12.4
Structural parameter

TR_M_D 0.450 16.9 | 0.582 11.8
Attraction term

L.S.M 1.000 n/a | 1.000 n/a

ServEmp 6.010 45.3 | 6.594 45.3
Car availability

CarComp -1.318  -7.3 | -0.756  -6.7

PassOpts 5.335 11.5 | 3.159 12.3
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Table C.6: Sydney home—other travel model results, detailed specification

OTH_C3.91 OTH_C_0408
Log-likelihood -46,935.0 -53,403.8
Observations 10,644 10,464
LL per obs -4.410 -5.104
Cost parameters
LogCost -1.124  -32.1 -0.700 -33.2
Level of service
CarTime -0.0563 -41.8 -0.066 -51.4
RITime -0.022 -8.0 -0.016 -7.5
BusTime -0.023 -9.0 -0.029 -10.9
AccTime -0.040 -7.6 -0.015 -4.2
WaitTime -0.024 -4.3 -0.025 -5.2
CarPDist 0.005 3.6 0.014 8.0
BkDist -0.331 -14.0 -0.319 -13.7
WikDist -0.736  -47.8 -0.927 -50.8
Destination terms
Intra -0.006 -0.1 -0.163 -4.0
CBDDest -0.341 -2.5 -1.497  -10.9
CBDRail 0.887 3.6 1.707 7.1
CBDBus 0.448 1.8 1.199 4.1
Mode constants
CrP -10.799 -12.7 -6.347  -15.7
Trn -10.115 9.1 -5.911 -11.3
Bus -8.772 -8.7 -5.329 -10.5
Bk -19.697  -12.7 | -11.373 -14.7
Wk -6.267 -12.0 -2.271  -10.6
Tx -13.562 -9.5 -8.583 -12.1
Structural parameter
TR-M_D 0.416 17.8 0.581 11.8
Attraction term
L.S.M 1.000 n/a 1.000 n/a
ServEmp 6.038  45.2 6.570  45.2
Car availability
CarComp -1.594 -7.5 -0.812 -7.1
PassOpts 5.308 10.4 2.762 11.2
Socio-economic
CarPMale -1.825 -8.4 -0.481 -4.6
BusMale -1.301 -3.2 -0.274 -1.0
BikeMale 4.190 5.3 2.939 6.0
CarPj10 4.374  10.8 3.279 14.1
CarP60pl 1.049 4.1 0.518 3.8
PT10to19 -1.082 -2.4 -0.305 -1.1
PT60pl 3.285 7.9 0.881 3.8
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Appendix D

Destination sampling

The theory for estimation of multinomial logit models using destination sampling
was set out in McFadden (1978), and the equations that explain how the process
operates are given in Ben-Akiva and Lerman (1985). McFadden showed that
under the positive conditioning property (the condition that the probability of
each alternative being sampled is positive), asymptotically consistent estimates
of model parameters can be obtained if a modified log likelihood function is

maximised:

. exp(V. + logm(D|c))

where: V; is the systematic part of utility for alternative j
c is the chosen alternative
D is the sampled set of alternatives, a subset of the set of all available alternatives C

m(D|j) is the probability of sampling D, if j is the chosen alternative
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The positive conditioning property is that 7(D|j) > 0Vj € D. It is essential that

the chosen alternative c is included in D.

To perform independent importance sampling, C'— 1 draws are made, one for each
alternative j except for the chosen alternative c, selecting each alternative with
probability g;, and then adding the chosen alternative to the choice set. The

sample of alternatives that results has the following probability distribution:

D)= I «][0-g) (D.2)

jeD, j#i j#D

m(Dli) = 1/q(i) Q(D) (D.3)
where: Q(D) = [I;ep ¢j [1;2p(1 — 45)

Substituting Equation D.3 into Equation D.1 gives:

b exp(Ve — log(qc))
bh=tog (ZjeD exp(Vp — log(%’))) (D4

Ben-Akiva and Lerman (1985) suggested a simple negative exponential model to

allow the calculation of g;:

qj < Sjexp(—pd;) (D.5)

where: S is the attraction variable
¢ is a parameter

d; is the distance to destination j

Following Ben-Akiva and Lerman a value for a of 2/d, where d is the mean tour

distance, has been used.
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To operationalise Equation D.5, the weights for each zone are expressed relative

to a key zone by calculating:

gj = min(w;/wg, 1) (D.6)

wj = Sjexp(—pd;) (D.7)

The key zone is determined by ranking the zones by wj;, and then key zone k
is then the k' most attractive zone. It should be noted that the implication
of Equation D.6 is that all zone ranks up to k are included in the sample as
gj = 1 if w; > wy,. Scaling the weights also ensures that all zones have reasonable

probability values.

A measure of the accuracy of different destination samples is provided by deter-
mining the coverage of the sampled choice set, calculated as an average over the

N observations in the sample:

W = Z (Z wj/ij) /N (D.S)
N D C

As W approaches 1, the accuracy of the sample approaches achieved by modelling
the full sample.

Models using destination sampling were estimated for both the 1986 and 2006
Toronto datasets, as these are the two datasets that have been used for the mixed
logit analysis. For the 1986 data the total number of destination alternatives C
is 1404, whereas for the 2006 data the C' = 1845.

Generation of 1986 destination sample

Table D summarises the results from tests using different key zones to determine

a destination sample size giving an acceptable level of coverage for the 1986 data.
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The tests were undertaken using a modified version of model specification C,
defined in Table 4.2 in Section 4.2.2. The modified was that the model was

converted into a multinomial specification.

Table D.1: 1986 destination sample size tests
k | max(D)| D W | mazx(D)/C
50 212 151.6 | 76.0% 15.1%

60 229 167.3 | 79.0% 16.3%
80 258 195.0 | 83.6% 18.4%
100 294 221.0 | 86.7% 20.9%
120 324 245.2 | 89.0% 23.1%
125 325 251.1 | 89.5% 23.1%
130 325 257.1 | 90.0% 23.1%
140 337 268.5 | 90.9% 24.0%

On the basis of these tests, a destination sample D of 325 alternatives was used
with a key zone of 130. This sample achieved 90% coverage using just under
one-quarter of the 1404 destinations. Table D demonstrates that the impact of
destination sampling on the model parameters is very small, with an RMS mea-
sure calculated for the change in parameter value relative to a model estimated

without destination sampling of just 0.06%.
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Table D.2: Impact of destination sampling on 1986 model parameters

all 1404 dest.s 235 dest. sample | param.s differences
Log-likelihood -306,427.2 -285,610.7
Observations 50,254 50,254
Cost parameters
LogCost | -0.3004 -23.6 | -0.3004 -23.6 0.0000 0.00
Cost | -0.0010 -12.7 | -0.0010 -12.7 | 0.0000 0.01
Level of service
CarTime | -0.0329 -77.6 | -0.0329 -77.6 0.0000 -0.02
TranIVT | -0.0222 -60.3 | -0.0222 -60.2 0.0000 0.00
TranWait | -0.0603 -24.5 | -0.0603 -24.5 0.0000 0.00
TranWalk | -0.0254 -16.1 | -0.0254 -16.1 0.0000 -0.01
APDist | -0.0205 -27.0 | -0.0204 -27.0 0.0000 0.02
WalkDist | -0.5837 -45.0 | -0.5837 -45.0 0.0000 0.00
Destination terms
CBDDest | 0.3918 13.9 | 0.3923 13.9 0.0005 0.01
CBDLT | 0.1888 5.1 | 0.1889 5.1 0.0001 0.00
Mode constants
AP | -3.9405 -44.6 | -3.9403 -44.6 0.0002 0.00
LT | 0.9698 20.4 | 0.9695 20.4 | -0.0002 0.00
Wk | 0.2475 2.8 | 0.2476 2.8 0.0001 0.00
Attraction term
TotEmp | 1.0000 n/a | 1.0000 n/a [ 0.0000 n/a
Car availability
AD2pVeh | 1.2977 42.0 | 1.2979 42.1 0.0003 0.01
AP1Veh | 1.4742 20.9 | 1.4736 20.9 | -0.0006 -0.01
AP2pVeh | 1.8900 26.2 | 1.8894 26.2 | -0.0006 -0.01
Socio economics
ADAgel617 | -2.104 -6.2 | -2.101 -6.2 0.0029 0.01
ADAgel825 | -0.834 -24.7 | -0.834 -24.7 | -0.0005 -0.01
ADAge2630 | -0.167 -4.8 | -0.167 -4.8 0.0000 0.00
ADMale 1.016 38.4 1.016 38.3 | -0.0002 -0.01
WkMale 0.215 3.4 0.215 3.4 | -0.0002 0.00
RMS: 0.06%
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Generation of 2006 destination sample

Table D summarises the results from tests using different key zones to determine

a destination sample size giving an acceptable level of coverage for the 1986 data.

Table D.3: 1986 destination sample size tests
k | max(D)| D W | maz(D)/C
50 263 186.1 | 70% 14.3%
60 278 203.5 | 2% 15.1%
80 304 235.9 | 7% 16.5%
100 344 265.9 | 81% 18.6%
120 376 294.3 | 83% 20.4%
140 407 320.7 | 85% 22.1%
160 441 345.7 | 8% 23.9%
180 471 370.0 | 89% 25.5%
190 481 382.1 | 89% 26.1%
200 492 394.2 | 90% 26.7%

On the basis of these tests, a destination sample D of 492 alternatives was used
with a key zone of 200. This sample achieved 90% coverage using just over
one-quarter of the 1845 destinations. Table D demonstrates that the impact of
destination sampling on the model parameters is very small, with an RMS mea-
sure calculated for the change in parameter value relative to a model estimated

without destination sampling of just 0.06%.
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Table D.4: Impact of destination sampling on 2006 model parameters

all 1845 dest.s 492 dest. sample | param.s differences
Log-likelihood -411,904.1 -394,123.3
Observations 64,808 64,808
Cost parameters
LogCost | -0.1976 -16.6 | -0.1975 -16.6 0.0000 0.00
Cost | -0.0012 -21.2 | -0.0012 -21.2 0.0000 0.01
Level of service
CarTime | -0.0312 -68.8 | -0.0312 -68.9 0.0000 -0.02
TranIVT | -0.0181 -50.4 | -0.0181 -50.4 0.0000 -0.02
TranWait | -0.0495 -28.0 | -0.0495 -28.0 0.0000 0.01
TranWalk | -0.0215 -17.2 | -0.0215 -17.2 0.0000 0.00
APDist | -0.0253 -35.9 | -0.0253 -35.9 0.0000 0.02
WalkDist | -0.5318 -54.3 | -0.5318 -54.3 0.0000 0.00
Destination terms
CBDDest | -0.1467 -6.3 | -0.1466 -6.3 0.0001 0.00
CBDLT | 0.8734 23.7 | 0.8734 23.7 | 0.0001 0.00
Mode constants
AP | -3.4282 -41.3 | -3.4277 -41.3 0.0006 0.00
LT | 0.8530 18.8 | 0.8532 18.8 0.0002 0.00
Wk | 0.8154 10.5 | 0.8158 10.5 0.0004 0.00
Attraction term
TotEmp | 1.0000 n/a | 1.0000 n/a [ 0.0000 n/a
Car availability
AD2pVeh | 1.5528 47.3 | 1.5532 47.3 0.0005 0.01
AP1Veh | 1.4324 22.4 | 1.4317 22.4 | -0.0006 -0.01
AP2pVeh | 1.8485 27.7 | 1.8483 27.7 | -0.0003 0.00
Socio economics
ADAgel617 | -3.011 -5.7 | -3.008 -5.7 0.0030 0.00
ADAgel825 -1.342 -32.1 -1.341 -32.1 0.0006 0.01
ADAge2630 | -0.343 -8.3 | -0.343 -8.3 | -0.0001 0.00
ADMale 0.869 33.6 0.868 33.6 | -0.0002 -0.01
WkMale 0.108 1.9 0.108 1.9 | -0.0002 0.00
RMS: 0.06%
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