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Abstract

Transport planning relies extensively on forecasts of traveller behaviour over hori-

zons of 20 years and more. Implicit in such forecasts is the assumption that trav-

ellers tastes, as represented by the behavioral model parameters, are constant

over time. This assumption is referred to as the temporal transferability of the

models. This thesis presents four main contributions in this area.

First, a comprehensive review of the transferability literature in the context of the

temporal transferability of mode-destination models. This review demonstrated

that there is little evidence about the transferability of mode-destination models

over typical forecasting horizons, and further that most evidence is from models

of commuter mode choice.

Second, further empirical evidence on the temporal transferability of mode-

destination models using data from Toronto and Sydney for transfer periods of

up to 20 years in duration. The transferability of commuter and non-commuter

travel has been compared, and models of non-commute travel were found to be

less temporally transferable. Improving model specification through fixed socio-

economic parameters was found to improve model transferability, and the travel

time and socio-economic parameters were found to be more transferability than

the cost parameters and the model constants.

Third, and most novel, what is believed to be the first empirical evidence on

the impact of taking account of heterogeneity in cost and in-vehicle time sensi-

tivity on the temporal transferability of mode-destination models. This analysis

demonstrated that while accounting for taste heterogeneity led to a better fit

to the base data, there was no evidence that these models were more transfer-

able than models without random heterogeneity. This may be due to the taste

heterogeneity specification over-fitting the base data.
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Fourth, practical recommendations are presented for model developers on how to

maximise the transferability of mode-destination models used for assessing policy.
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Chapter 1

Introduction

1.1 Motivation

Local and national government agencies need to be able to forecast demand

for transport, taking account of demographic changes, as well as the impact

of changes to the transport infrastructure. To make these forecasts, the approach

that is typically followed is to develop models that represent a tractable simpli-

fication of current behaviour, and then use those models to forecast behaviour.

The problem that is often followed it to represent the key travel choice decisions

on a given day, traditionally:

• travel frequency - whether to travel, and if so how many times

• mode of travel

• destination zone

• in some cases, time at which the travel takes place
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• choice of route

These choices may be modelled sequentially with no interaction of lower level

choices with higher level choices, or with some representation of the impact of

lower level choices, for example accessibility measures impacting on travel fre-

quency.

While this approach could be criticised as an over-simplification of reality, it does

represent a well established approach (Ortúzar and Willumsen, 2002). The focus

of this research is on investigating an important component of this approach,

namely the mode and destination choices, rather than investigating the validity

of the wider forecasting approach.

Models to explain the mode and destination choices may be aggregate in nature,

typically representing trips at the zonal level, or disaggregate, where the choices of

individuals are represented at the estimation/calibration stage, and then when the

models are applied the model predictions are summed over some representation of

the forecast population. Explaining observed travel patterns in terms of aggregate

correlations does not give a mechanism that is able to fully explain why current

travel patterns have occurred, and in the context of model transferability is does

not provide a theoretical basis to explain what will happen in the future as it

relies on extrapolating mean effects into the future. By contrast, by explaining

individual-level choices using behavioural parameters, disaggregate models are

able to predict the impact of changes in transport supply and socio-economic

characteristics (Ben-Akiva et al., 1976).

Separate models are usually developed by travel purpose, as experience has

demonstrated that the factors influencing these choices vary according to travel

purpose, for example commuter trips are attracted to zones with employment

whereas primary education trips are made to zones containing primary schools.

The focus of this research is on the mode and destination choice decisions, which
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may be modelled as sequential choices, or as a simultaneous choice. Understand-

ing mode and destination choices is key to understanding the impacts of transport

policy decisions, such as the construction of new infrastructure.

In a forecasting context, disaggregate mode-destination models are used to assess

the effectiveness of different policies over forecasting horizons of 20-plus years.

These models typically include detailed socio-economic segmentation, enabling

both a better fit to the estimation dataset and an ability to predict the impact

of trends in the behavioural variables over time, such as increasing car ownership

or ageing of the population. Forecasting with such models relies on a significant

assumption, namely that the parameters that describe behaviour in the base year

can be used to predict future behaviour. If this assumption is violated, then the

future forecasts will be subject to uncertainty, irrespective of how well the models

fit in the base year, how much segmentation they incorporate, and how accurately

future model inputs can be forecast.

The issue of what is meant by transferability is explored further in Section 2.1.

For the purposes of this introduction, it is useful to cite Koppelman and Wilmot

(1982), who define define a transfer as:

“...the application of a model, information, or theory about behaviour

developed in one context to describe the corresponding behaviour in

another context.”

This research is concerned with the transferability of particular model specifi-

cations rather than the behavioural theories underpinning those models in the

context of forecasting. For example, while investigating the transferability of

models which do not operate within a utility maximising framework would be

an interesting area for research, the focus of this research is on models that are

assumed to operate within the utility maximising framework that is discussed

further in Chapter 2.

In forecasting, models developed at one point at time are applied to predict

18



behaviour at a future point in time. It is thus assumed that the models are

temporally transferable, i.e. that the model parameters that best explain travel

behaviour at the time at which the estimation data was collected will also explain

future travel behaviour.

To investigate the validity of this assumption, temporal transferability can be

assessed by using datasets that have been collected at two or more points in

time in the same geographical area. Provided the same variables are collected

in each time point, it is possible to use the different years of data to develop

identically specified models at each points in time, and make assessments of

model transferability. As will be seen in Chapter 2, this is an approach that has

been used by a number of other researchers to investigate the transferability of

mode choice models, though evidence on simultaneous mode-destination models

is extremely limited.

As transferability might be expected be to change over time, such investigations

only give insight into transferability over the time horizon the data points span,

but by repeating such tests using pairs of data collected over different time hori-

zons more general assessments of temporal transferability can be made. It should

be emphasised that temporal transferability is not stated here as the only condi-

tion that must be satisfied to produce accurate forecasts, rather it is a factor that

is is often overlooked, whereas significant effort may go into predicting the com-

position of the future population and other model inputs, and sensitivity tests

are often run to assess the impact of uncertainty in key model inputs.

The issue of transferability received some attention in the late 1970s and early

1980s when disaggregate mode choice models were being applied for the first time,

but then seems to have largely dropped off the research agenda. Recent efforts

to develop activity based models, particularly in the US, have sparked renewed

interest in the topic of transferability. This thesis revisits the issue in the context

of mode-destination models applied over forecasting horizons of 20 years of more.
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Over forecasting horizons of this period, destination choice changes would be

expected in response to policy, and for this reason evidence from models of mode

choice alone is not sufficient.

1.2 Objectives

This research has the following objectives:

• to assess the transferability of mode-destination choice models over long-

term forecasting horizons, i.e. up to 20 years;

• to investigate how model transferability evolves over time;

• to investigate the transferability of mode-destination choice models incor-

porating taste heterogeneity; and

• to advise how best to specify models to maximise their temporal transfer-

ability.

A more detailed set of aims are presented at the end of Chapter 2, following

review of the temporal transferability literature.

1.3 Contribution

Four key contributions to transferability research are presented in this thesis.

1. a comprehensive review of the transferability literature in the context of

the temporal transferability of mode-destination models;

2. further empirical evidence on the temporal transferability of mode-

destination models using data from Toronto and Sydney for transfer periods
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of up to 20 years in duration, including a cross city comparison of model

transferability;

3. most novel, what is believed to be the first empirical evidence on the impact

of taking account of heterogeneity in cost and in-vehicle time sensitivity on

the temporal transferability of mode-destination models; and

4. practical recommendations for model developers on how to maximise the

transferability of mode-destination models used for assessing policy.

1.4 Thesis layout

Chapter 2 presents a review of the model transferability literature, starting with

discussions of what is meant by model transferability, and the distinction between

temporal and spatial transferability. The Chapter then discusses how transfer-

ability can be assessed, before going on to review the temporal transferability

and spatial transferability literature. It concludes with by summarising the key

findings from the temporal transferability literature and then sets out specific

research aims for the empirical work.

Chapter 3 discusses the datasets that have been assembled to make empirical tests

of model transferability. The chapter begins with a discussion of the different

datasets considered for analysis, before presenting details for the two datasets

that have been used for analysis, specifically datasets from Toronto, Canada and

Sydney, Australia.

Chapter 4 documents the model development effort. It starts by outlining the

software used for the estimation and analysis work, before going on to docu-

ment the mode and destination alternatives, the model specifications, the utility

functions used in the models, and the key model results.
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Chapter 5 presents analysis of parameter transferability using both the Toronto

and Sydney datasets. It starts by considering the issue of how to adjust cost sen-

sitivity to take account of real growth in incomes over time, and then summarises

how the comparison of individual parameters has taken account of differences in

scale between different years of data. With these two considerations taken into

account the chapter goes on to present analysis testing whether the changes in

individual parameters are significantly different over time, and analysis of the rel-

ative changes in parameter magnitude over time. Changes in the cost and time

parameters are a particular focus as these parameters are key for testing policy.

Chapter 6 presents analysis of model transferability using both the Toronto and

Sydney datasets. The first two sections use statistical tests of transferability, and

include investigation of how transferability changes over time and as the model

specification is improved. The later sections focus on more pragmatic tests, with

analysis of how well the models are able to predict observed changes in mode

share and trip length over time, and of changes in the elasticities of the models

in response to changes in travel cost and travel time.

Chapter 7 presents analysis of partial transfer and pooled models using the

Toronto dataset. The partial transfer analysis investigates how mode scale evolves

over time for different groups of utility parameters. The pooled analysis investi-

gates whether if datasets from different years can be best combined to enhance

model transferability relative to using data from the most recent year only, and

if so how best to combine them.

Chapter 8 presents analysis that investigates the impact of introducing random

taste heterogeneity for cost and in-vehicle time sensitivities on the transferability

of the Toronto mode-destination models.

Finally, Chapter 9 presents conclusions and suggests directions for future re-

search.

22



Chapter 2

Literature review

This chapter starts with by setting out the discrete choice framework used to

develop mode-destination choice models, and with a review of the literature on

mode-destination choice models. This review is presented prior to before intro-

ducing the key concept of model transferability in Section 2.2 because the various

sections on transferability are most logically presented sequentially.

Once the mode-destination choice model literature has been discussed, Section

2.2 goes on to discuss what is meant by model transferability, and in particular

explains how the concept of temporal transferability relates to this particular

research.

Section 2.3 summarises the measures that have been used to assess model trans-

ferability in the literature, and sets out the set of measures used to assess trans-

ferability in this research.

Section 2.4 presents a review of the literature on temporal transferability, the

literature most relevant to this research.
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Section 2.5 covers the literature on spatial transferability. Although findings

on spatial transferability are less relevant to the objectives of this research, the

methodologies that have been developed to undertake model transfers came from

the spatial transferability literature. Furthermore, most of the key early papers

on the transferability of disaggregate models were concerned with spatial transfer.

Finally, Section 2.6 with a summary of the findings from the transferability liter-

ature, and drawing on the literature review sets out more specific research aims

for the empirical research.

Material from this literature review was presented in Fox and Hess (2010)1 and

in Fox et al. (2014).

2.1 Disaggregate mode-destination choice models

2.1.1 Discrete choice model framework

This section sets out how disaggregate models of mode-destination choice that

are the focus of this research are defined within the discrete choice modelling

framework. Later, section 2.1.3 discusses some other model forms, such as the

cross-nested logit model, that can be used to model mode and destination choices.

Discrete choice models represent the choice of a decision maker between a num-

ber of discrete alternatives. Depending on the choice that is being represented,

the decision maker might be an individual, a household, a company or any other

decision making unit. To model mode-destination choice, most models have rep-

resented the choice at the individual level, as this is judged to be the level at

which the travel decision is made. However, in some studies models have been

1Winner of the 2010 Fred Burggraf Award for Planning and Environment.
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estimated at the household level, for example the early work to develop shop-

ping mode-destination models of Ben-Akiva (1974). The transferability analysis

presented in this thesis has been undertaking using samples of home–work and

home–other travel trips, and to model these purposes it has been assumed that

the individual rather than the household is the decision making unit.

Train (2003) sets out the three characteristics that the set of alternatives, the

choice set, needs to satisfy to fit within the discrete choice framework. First,

the alternatives must be mutually exclusive. Second, the alternatives must be

exhaustive, i.e. cover all possible alternatives. Third, the number of alternatives

must be finite.

In the context of simultaneous models of mode-destination choice, alternatives

are specified to define the possible combinations of modal alternatives and des-

tination alternatives. The exclusivity condition is satisfied by categorising the

modes into a number of mutually exclusive modal alternatives, and by breaking

up the study area into a number of contiguous non-overlapping model zones2.

As the numbers of modal and destination alternatives are finite, the total num-

ber of alternatives represented is also finite. However, the requirement that the

choice set be exhaustive is often not strictly met. Infrequently chosen modes such

as motorcycle may be excluded from the choice set because the low number of

observations does not justify the additional complexity of modelling them with

a separate alternative. Furthermore, destination alternatives outside the study

area are not always represented on the basis that they are rarely chosen.

Typically decisions to restrict the choice set in this way are justified by under-

taking analysis to demonstrate that the excluded alternatives represent a small

fraction of the observed choices. In the Toronto transferability analysis, between

3.4% and 5.9% of the data for a given year has been excluded because the mode

2In some model areas one or more zones may be used to represent an island that is separated
from the main model area by a body of water, in these cases the island zones may not be
contiguous with the rest of the model zones.
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is rarely chosen and complex to model, or because the mode chosen was not

recorded in all of the other years of the TTS data3.

Restricting the choice set to more frequently chosen alternatives can be justified

on theoretical grounds as well. As discussed in Ben-Akiva and Lerman (1985),

for a multinomial model the estimation can take advantage of the independence

from irrelevant alternatives (IIA) property, which allows consistent estimates of

the model parameters from a sub-set of the alternatives.

The key assumption used to explain choices within the discrete choice model

framework is that of utility maximisation: individuals are assumed to select the

alternative that maximises their utility (Marschak, 1960). If individuals are la-

beled n, each alternative in the choice set can be referenced as j = 1, ..., J , and the

utility individual n obtains from alternative j is Unj , then the model framework

is that the individual will choose alternative i only if Uni > Unj∀j 6= i.

Making the assumption of utility maximisation, which implies that individuals

are rational in that they select the alternative that maximises their utility, allows

discrete choice models to be specified within an economic framework.

If it was possible to fully observe individual utilities, then the mode-destination

models would be deterministic, as they could predict exactly which alternative

each individual would choose. However, in practice analysts cannot fully observe

individual utilities, and so utility is decomposed into deterministic utility Vnj and

random utility εnj :

Unj = Vnj + εnj (2.1)

The deterministic utility component is defined as a function of measurable at-

tributes of each mode-destination alternative, xnj , and a vector of model pa-

3This second condition is only required because transferability analysis is being undertaken
and therefore the modal alternatives must be the same for all the years of data.
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rameters which define the tastes of individual n, βn. While it is possible to use

non-linear functions for the parameters, such as the Box-Cox formulation (Box

and Cox, 1964), in the multinomial and nested logit formulations it is assumed

that the function is linear in parameters. This allows us to write:

Unj = βnxnj + εnj (2.2)

An important point to note is that because the analyst does not know εnj∀j
these terms are treated as random. The presence of the random term means

that the choice process becomes probabilistic, and the model is termed a random

utility model (RUM) (Marschak, 1960). The probability that individual n chooses

alternative i can now be written:

Pni = P (εnj − εni < Vni − Vnj ∀j 6= i) (2.3)

Different assumptions about the distribution of εnj give rise to different model

types. Logit models have been used for the transferability analysis presented in

later chapters.

Multinomial logit

Despite the availability of more advanced model forms, the multinomial logit

model (MNL) remains widely used in transport planning, as it has a closed form

expression that is easy to estimate. The logit formula was originally derived

by Luce (1959), and later McFadden (1974) showed that the logit formula for

the choice probabilities implies that the unobserved utility is distributed extreme

value.

The logit model assumes that each random error term εnj is independently, iden-

tically distributed extreme value. This distribution is also called Gumbel and

type I extreme value, and is close to the normal distribution but with slightly
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fatter tails. Given the Gumbel distribution for εnj , Train (2003) sets out the

algebra that shows the MNL choice probabilities can be written:

Pni =
eVni∑
j e

Vnj
(2.4)

Daly (1982) discusses the estimation of logit models incorporating size variables.

Size variables S represent the quantity of elementary choices in each destination

alternative, and appear in the models in a different way from other variables x

that describe the quality of the different alternatives. Specifically, size variables

are formulated so that the probability of choice is proportional to the size vari-

able. This is achieved by entering the size variables into the utility functions in

logarithmic form:

Pd′ =
e(Vd′+αlnSd)∑D
d=1 e

(Vd+αlnSd)
=

Sαd e
Vd′∑D

d=1 S
α
d e

Vd
(2.5)

where α is the size parameter, which in most practical applications is constrained

to one so that the model is independent of the zone system used for estimation.

In the context of simultaneous mode-destination choice, we are predicting the

choice of mode-destination alternative m′d′ from modal alternatives m = 1, ...,M

and destination alternatives d = 1, ..., D. Noting that the size parameter α has

been constrained to one, the probability expression can be written:

Pm′d′ =
Sd′e

Vm′d′∑M
m=1

∑D
d=1 Sde

Vmd

(2.6)

The key assumption in the MNL model is that the εnj terms are independent.

This means that the unobserved component of utility for a given alternative is

unrelated to the unobserved component of utility for another alternative. This

has an important implication for the substitution patterns in the model. In an

MNL model, if an alternative is improved it draws demand proportionately from

the other alternatives. So, if an improvement to one alternative caused demand
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for another alternative to reduce by 5%, then the same 5% reduction in demand is

observed for all alternatives apart from the improved alternative. This property

is termed Independence from Irrelevant Alternatives (IIA).

Nested logit

For modelling mode-destination choice, there are a number of ways in which the

IIA property may be violated. It may be that in response to an improvement

to a given mode-destination alternative, demand is more likely to be drawn from

other modes travelling to the same destination than from other destinations.

Conversely, it may be that demand is more likely to be drawn from other des-

tinations reached by the same mode than from other modes. Finally, it may be

that some modal alternatives are closer substitutes than others, for example that

individuals are more likely to switch between different PT modes than between

PT and non-PT modes. Nested logit models are able to take account of these

more complex substitution patterns by accounting for correlation between the

εnj terms across different alternatives.

In the nested logit model, alternatives are grouped into nests. Alternatives that

are expected to be closer substitutes are placed in the same nest, and the error

terms εnj for all alternatives in the same nest are correlated. However, there is

no correlation between the εnj terms for two alternatives in different nests. For

two alternatives within the same nest, the ratio of probabilities is independent

of all other alternatives, so the IIA property holds within each nest. However,

for two alternatives in different nests, the ratio of probabilities can depend on

the other alternatives, so that in general IIA does not hold for alternatives in

different nests.

Using the notation given in Train (2003), the set of alternatives j can be parti-

tioned into K non-overlapping nests B1, B2, ...., BK . Williams (1977), Daly and
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Zachary (1978) and McFadden (1978) independently proved that the nested logit

model is consistent with utility maximisation, and that the choice probability for

alternative i in nest Bk can be written:

Pni =
eVni/λk(

∑
j∈Bk

eVnj/λk)λk−1∑K
l=1(

∑
j∈Bl

eVnj/λl)λl
(2.7)

Values for λk between zero and one ensure consistency with utility maximising

behaviour. Train (2003) notes that with values of λk greater than one the model

is consistent with utility maximising behaviour for a range of the explanatory

variables, but not for all values. It can be seen that if λk = 1 for all k, then the

term in brackets on the numerator of Equation 2.7 is one, and the probability

formula reduces to the MNL formula given in Equation 2.4. Values for λk closer

to zero indicate the alternatives within nest k are much closer substitutes (i.e.

more correlated) than alternatives in other nests.

The expression in Equation 2.7 is not particularly tractable to work with. How-

ever, Train (2003) illustrates how this equation can be simplified by decomposing

observed utility into two components:

Unj = Wnk + Ynj + εnj (2.8)

for j ∈ Bk where:

Wnk depends only on variables that describe nest k

Ynj depends on variables that describe alternative j, and which vary over

the alternatives within nest k
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Using Bayes rule, we can write:

Pni = PnBk
Pni|Bk

(2.9)

PnBk
=

eWnk+λkInk∑K
l=1 e

Wnl+λlInl

(2.10)

Pni|Bk
=

eYni/λk∑
j∈Bk

eYnj/λk
(2.11)

Ink = ln
∑
j∈Bk

eYnj/λk (2.12)

The Ink term is called the inclusive value or logsum, and brings information from

the lower model into the upper model.

It should be emphasised that the nested logit model structure does not imply

sequential choice behaviour, rather a simultaneous choice between the different

alternatives is represented taking account of correlation between the different

alternatives.

An important issue highlighted by Koppelman and Wen (1998) is that there are

two different formulations of the nested logit model in use. The version presented

in Equations 2.10 to 2.12 is the RU2 formulation or Utility Maximising Nested

Logit Model (UMNL) formulation. In the alternative formulation, referred to as

the RU1 or Non-Normalised Nested Logit (NNNL), the coefficients in the lower

model are not divided by λk in Equation 2.114. Koppelman and Wen stated that

4The RU1 and RU2 notation was coined by Hensher (2002) and has been used in the discus-
sion in the remainder of this section.
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the RU1 model is not consistent with utility maximisation when coefficients are

common across nests.

However, Daly (2001) notes that the RU1 and RU2 formulations are equivalent

when the trees are symmetrical, that is to say all of the structural parameters

at each level are equal, and so if this condition is satisfied models specified using

the RU1 form with parameters shared across nests are consistent with utility

maximisation. In this work, the ALOGIT estimation software has been used

because it is quicker than alternative estimation software for estimating mode-

destination choice models, and ALOGIT works with the RU1 formulation. All of

the tree structures that have been estimated are symmetrical, and according to

Daly (2001) are therefore consistent with utility maximisation.

Daly (2001) also highlights other conditions under which the RU1 and RU2 formu-

lations are equivalent, specifically if there are no generic coefficients multiplying

terms in the utility functions in different nests, or where alternatives with asym-

metric branching have zero utility. Neither of these conditions hold in the models

tested in this research; as the tree structures are always symmetrical consistency

between RU1 and RU2 is always achieved.

Two alternative (symmetrical) tree structures for mode and destination choice

have been tested in this research, a modes above destinations structure, and a

destinations above modes structure. These structures investigate the relative

levels of error in the two choices in order to arrive at a structure where the choice

with the lower level of error is represented beneath the choice with a higher level

of error. The lowest level choice is more sensitive to changes in utility, as the

structural parameters have the effect of reducing the scale of utility at higher

levels in the tree to compensate for the higher levels of error. It is important to

emphasise therefore that the mode-destination tree structure is a reflection of the

error structure in a model of simultaneous mode and destination choice, it is not

a reflection of the sequence in which the mode and destination choices are made.
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The choice probability calculations for these two structures are detailed in the

following sections. Chapter 4 discusses the results of tests of the two alternative

structures for the Toronto and Sydney models.

Destinations above modes structure

Noting that the models are estimated using the RU1 formulation, dropping the

index for individual n for clarity, noting that the size parameter α has been

constrained to one and that the size functions must enter at the destination level

in the structure for the proportionality condition to hold, the choice probabilities

from Equations 2.9 to 2.12 can be written:

Pm′d′ = Pd′Pm′|d′ (2.13)

Pd′ =
Sd′e

(θdmln
∑M

m=1 e
Vmd′ )∑D

d=1 Sde
(θdmln

∑M
m=1 e

Vmd )
(2.14)

Pm′|d′ =
eVm′d′∑M
m=1 e

Vmd′
(2.15)

where θdm is the structural parameter that governs the relative sensitivity of

destination and mode choices. To guarantee consistency with RUM θdm must

lie between zero and one, though Börsch-Supan (1990) demonstrated that under

certain conditions it is possible to estimate models where the structural parameter

is greater than one that are consistent with RUM.
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Modes above destinations

In the modes above destinations structure, all of the utility functions including

the size functions are specified at the lower level of the structure. Again noting

that the models are estimated using the RU1 formulation, dropping the index for

individual n for clarity, and noting that the size parameter α has been constrained

to one, the choice probabilities from Equations 2.9 to 2.12 can be written:

Pm∗d∗ = Pm∗Pd∗|m∗ (2.16)

Pm∗ =
e(θmdln

∑D
d=1 e

Vm∗d )∑M
m=1 e

(θmdln
∑D

d=1 e
Vmd )

(2.17)

Pd∗|m∗ =
Sd∗e

Vm∗d∗∑D
d=1 Sde

Vm∗d
(2.18)

where θmd is the structural parameter that governs the relative sensitivity of

mode and destination choices. To guarantee consistency with RUM θmd must lie

between zero and one.

2.1.2 The development of mode and destination choice models

Predicting the modes future travellers will choose, and the destinations they will

travel to, is fundamental to making forecasts of travel demand. In the traditional

aggregate four-stage model, distribution and mode choice are predicted as sepa-

rate choices. Demand is allocated over destinations first, and then the mode split

step is applied for each origin-destination pair (Ortúzar and Willumsen, 2002).

The models are aggregate in the sense that the dependent variable represents a
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group of observations, namely observed data grouped to model zones.

Disaggregate models of simultaneous mode-destination choice are disaggregate

in the sense that they are estimated from observations from individual decision

makers, though it should be emphasised that the models are not individual-level

models, rather individual-level data is used to estimate models that represent

average preference for a particular segment of the population. Kitamura et al.

(1998) highlight that while models is this type are disaggregate in their treatment

of travellers, they are aggregate in their treatment of destination opportunities

which are represented at the zonal level.

Nearly all of the disaggregate models of simultaneous mode-destination choice

that have been developed since the 1970s have used either multinomial or nested

logit models. Vovsha (1997) suggests this is because these models are theoreti-

cally sound, they have a simple analytical structure that is readily understood,

and software to calibrate these models is widely available. Nested model forms

have been used to develop model structures where modes are grouped below des-

tinations, or destinations are grouped below modes, to investigate the relative

sensitivity of these two choices. Furthermore, nested structures may be used

to group more similar modes together, the most usual example being grouping

public transport (PT) modes together to reflect the higher rates of substitution

between PT modes than between PT and non-PT modes. For example, Fox et al.

(2011) document the development of simultaneous models of mode-destination

choice for Sydney that have main mode choice as the highest level (least sensitive)

choice, with the choice between different public transport modes as the middle

level choice, and then destination choice as the lower level choice.

This section goes to to discuss the early literature that set out the arguments for

modelling mode and destination choice simultaneously before going on to describe

both pioneering and more recent applications of mode-destination choice models.
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Simultaneous models of mode and destination choice

Estimating the mode and choice decisions simultaneously allows the relative sen-

sitivity of the two choices to be identified from the estimation data, rather than

imposing a sequence to the choices a priori, and from a behavioural perspec-

tive is more realistic, for example by properly representing the choice between

walking to the corner shop or driving to a more distant supermarket. As noted

below, some of the early work in developing simultaneous models noted that key

parameter estimates may be significantly different in simultaneous models.

Richards (1974) outlined the arguments for moving from modelling travel choices

as a series of sequential and partially independent decisions, such as separate

models for mode and destination choices, towards simultaneous choice models.

He suggested that a truly behavioural model should ideally include all those

choices relevant to the period for which predictions are required and which can

be expected to significantly influence those predictions. Estimating simultaneous

models for mode and destination choice was identified as a substantial improve-

ment on the sequential modelling approach that was possible with the data and

modelling techniques available at that time.

In the same issue of Transportation, Richards and Ben-Akiva (1974) presented

results for a simultaneous destination and mode choice model for shopping travel

estimated using data from the Eindhoven region in The Netherlands. Richards

and Ben-Akiva do not explicitly test whether the simultaneous models that they

develop gave better predictions than separate mode and destination choice mod-

els. However, in their introduction they note that because mode and destination

choices are expected to be inter-dependent a simultaneous model is preferred to

sequential models. Results are presented in the paper for both mode-choice only

and mode-destination choice models. A comparison of the two sets of parameters

demonstrates that the mode-destination choice specification yields more signif-

icant parameter estimates. For example, the in-vehicle time parameter has a

36



t-ratio of 13.3 in the mode-destination specification compared to just 3.6 in the

mode-choice only specification, which in the author’s view is likely to be due to

the greater inter-alternative variation in travel times in the simultaneous model

specification.

Ben-Akiva (1974) discussed some of the practical advantages of using disaggregate

models in place of the aggregate models widely used at the time. As aggregate

models lose detailed information when data is aggregated to model zones, Ben-

Akiva suggested that it should be possible to develop disaggregate models using

smaller sample sizes. Furthermore, because disaggregate models seek to explain

the observed choices using behavioural model parameters, Ben-Akiva suggested

that the models should be more transferable to other areas.

Ben-Akiva developed a simultaneous model of mode and destination choice for

shopping tours recorded in a 1968 home interview survey in metropolitan Wash-

ington D.C.. The models were developed at the household level, as that was

judged to be the decision making unit for shopping travel. He compared the

results from the simultaneous models to those from the two possible sequential

model structures, predicting destination choice first and then predicting mode

choice conditional on destination (m|d), and predicting mode choice first and

then predicting destination choice conditional on mode choice (d|m). In terms

of overall fit to the data, there was little difference between the three different

approaches. However, there were significant differences in the implied values of

time (VOT), with the VOTs in the simultaneous model higher than those in

the (m|d) model, but lower than those in the (d|m) model. Furthermore, the

cost elasticities in the simultaneous model where much lower than those in the

(m|d) model. Thus while the paper does not demonstrate that the simultaneous

model is superior to sequential models, it does illustrate that the choice of model

structure has an important impact on the response characteristics of the models.

In Adler and Ben-Akiva (1975), the shopping mode-destination choice structure
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developed by Ben-Akiva was extended to include frequency choice, with the choice

between zero and one household shopping tours represented. The authors as-

serted that Ben-Akiva’s finding that the model results are sensitive to the choice

structure used to represent mode and destination choices makes a convincing

case for the use of a joint-choice structure. This is only true if the model results

from the simultaneous structure were demonstrated to be more plausible, and the

Ben-Akiva paper presented no such evidence. The frequency choice introduced

to the model structure by Adler was a binary choice between no tour and one

return shopping tour (home-shopping-home). The plausibility of the joint model

structure was tested by making five policy tests to represent include gas and

parking cost increases, incentives to encourage car pooling, and wider availability

of transit. The joint model responded plausibly to these policy tests.

In summary, a number of these early papers claim that mode and destination

choices should be modelled simultaneously rather than sequentially to better re-

flect how individuals make choices, which is plausible from a behavioural perspec-

tive. However, the evidence from these studies that the simultaneous approach

actually results in better quality models and forecasts is limited.

Pioneering applications of mode-destination models

Ben-Akiva et al. (1976) provided an overview of research into disaggregate mod-

els at that time, and summarised some practical applications. They noted that

the initial applications of disaggregate models from 1962 onwards were all for

the choice of travel mode, the first extension to a multi-dimensional choice sit-

uation was a 1972 study by Charles River Associates that developed models for

frequency, destination and mode choice. However, each choice was modelled sep-

arately in a sequential fashion. Thus the first simultaneous mode-destination

choice model appears to be the Eindhoven models described in Richards and

Ben-Akiva (1974).
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Hoorn and Vogelaar (1978) describes the development of the SIGMO model sys-

tem for Amsterdam, one of the first disaggregate model systems. In the SIGMO

study, disaggregate models for distribution and mode choice were developed se-

quentially, but the models were linked by calculating a mode choice logsum for

each destination alternative represented in the distribution model. Four different

travel purposes were represented: home–work, home–shopping, home–social and

home–other (covering education, recreation, business and pleasure ride), and car

availability for purposes other than home–work was conditioned on whether car

driver was chosen for the home-work trip. Validation statistics were presented

which demonstrated that, in most cases, the mode choice models predict the

observed mode splits by distance band well.

Daly and van Zwam (1981) describes the development of the travel demand mod-

els for the Zuidvleugen (South Wing) study of the Randstad conurbation in The

Netherlands. The Zuidvleugen study created another of the earliest disaggregate

model systems. Simultaneous mode-destination choice models were developed for

shopping, personal business, social, recreation and other purposes.

Later developments

Algers et al. (1996) present an overview of the Stockholm Model System (SIMS).

In these models, the simultaneous mode-destination model structure was ex-

tended to include models of car ownership, frequency and car allocation. For

home-work, the structure was split into three substructures. In the top sub-

structure, car ownership and workplace destination are modelled. Next, fre-

quency, car allocation and mode choice are modelled. The lowest level substruc-

ture is the choice of whether to visit a secondary destination, and if so which desti-

nation to choose. The explicit representation of car allocation between household

members in the SIMS model makes this model system a forerunner of the Activity

Based Model systems that emerged in the U.S. around the turn of the century,

and which are discussed briefly below.
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Fox et al. (2003) summarises five different model systems that incorporate dis-

aggregate models of simultaneous mode and destination choice. These model

systems have been developed to model travel demand in The Netherlands, Nor-

way, Paris, Stockholm and Sydney, demonstrating that simultaneous models of

mode and destination choice have been used to forecast transport demands across

Europe and elsewhere. These models represent between four and thirteen differ-

ent modal alternatives, and between 454 and 1308 destination alternatives. The

basic approach used in these models, with separate treatment of car driver and

car passenger modes, explicit representation of walk and cycle mode, and car

availability terms taking account of the interaction between household car own-

ership and licence holding, has formed the basis of the models developed for the

transferability analysis presented in later chapters.

Since the turn of the century, there has been an increasing use of Activity Based

Model (ABM) systems to forecast demand for transport in the U.S.. These model

systems generally use disaggregate models, including models of destination choice,

through it seems that the two decisions are usually modelled sequentially rather

than simultaneously. For example, Jonnalagadda et al. (2001) describe separate

destination choice and mode choice models which are applied in that order to

model travellers in the San Francisco Bay Area. Similarly Vovsha et al. (2002)

describe sequential models of destination and mode choice developed for the New

York Metropolitan Transportation Council. The use of disaggregate models in

ABMs has led to renewed interest into the issue of transferability, for example

Sikder et al. (2013) presented comprehensive review of the spatial transferability

literature in the context of ABMs.

2.1.3 Advanced model forms

Representing complex substitution patterns
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In some contexts, the nested logit model has been found to be inadequate to fully

represent the substitution patterns between the different modes. For example,

Forinash and Koppelman (1993) found that in an intercity mode choice model,

train could be nested equally well with either car or bus, and so no clear nesting

structure could be established using a nested logit model. Vovsha (1997) sets out

the derivation of the cross-nested logit (CNL) model, which allows for more com-

plex substitution patterns to be represented. In the CNL structure, modes can be

allocated to multiple nests using allocation parameters, so in the intercity mode

choice example train could be allocated into nests with both car and bus, with

the CNL estimation procedure identifying values for the allocation parameters

which indicate the extent to which train falls in each nest.

Vovsha used a CNL model to develop a mode choice model for Tel-Aviv, Israel.

This model had two nests, one for car modes and one for PT modes, as illustrated

in Figure 2.1 where the numbers define the probability each that each modal al-

ternative is included in the car or PT nest. It can be seen from Figure 2.1 that the

park-and-ride (P&R) alternative appears in both the car and PT nests. Vovsha

presents validation results for the CNL model, but does not present a comparison

to results from nested logit models to illustrate the impact that moving to the

CNL structure has on the substitution patterns.

Bierlaire et al. (2001) developed mode choice models from a combination of re-

vealed and preference data that could be used to predict demand for a proposed

Swissmetro service, an underground maglev system that would connect the major

urban centres of Switzerland. MNL, nested logit and CNL models were estimated.

0A comparison of the model results demonstrated that the CNL model gave a

significant improvement in the fit to the data, but that the value of time showed

little change when the CNL structure was introduced.
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Figure 2.1: Cross-nested example, Vovsha(1997)
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Representing taste heterogeneity

There has been much work in recent years in developing mixed logit models to

reflect heterogeneity in tastes between individuals. In mixed logit models, rather

than estimating a single value for each model parameter (the approach used

in multinomial and nested logit models), for some parameters distributions are

estimated to identify the distribution of tastes across individuals.

An important point to note with mixed logit is that the analyst assumes a shape

for the underlying distribution of preferences. Hess et al. (2005) reviewed the

different distributions that had been used at practice, finding examples of models

using normal, log-normal, triangular and Johnson’s SB distributions. As Hess

et al. (2005) discusses, the appropriate distribution will depend on the a-priori

expectations for the model parameter distribution. For cost and travel time

parameters, if the analyst believes that the parameter should reflect negative

utility across the whole distribution, then the unbounded nature of the normal

distribution precludes its use.

Daly and Carrasco (2009) investigated taste heterogeneity in models of commuter

mode-destination choice for Sydney and Paris. They also made similar investiga-

tions using value of time models estimated from two sets of stated preference data

collected in The Netherlands. The base MNL model specifications for Sydney and

Paris used cost in logarithmic form, as this was demonstrated to give an improved

fit to the data compared to a linear cost specification, and it is noted that this

result has been observed in mode-destination models developed for other studies

(Fox et al., 2003). The log-cost formulation implies that the marginal utility of

cost decreases with increasing cost, which means that the implied values of time

increase as the cost of the journey increases.

Daly and Carrasco tested for heteroskedasticity in both cost and time in model

specifications with linear-cost, and in model specifications with log-cost. Both
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cost and time heteroskedasticity were identified, but the largest improvements in

model fit were observed when in cost sensitivity was accounted for. Interestingly,

when heteroskedasticity in cost was included in the Paris models, the log cost

formulation was no longer better than the linear cost formulation in terms of

overall fit to the data. In the Sydney case, while accounting for heteroskedasticity

gave a bigger improvement in model fit in the linear-cost model, the log-cost

formulation gave the best overall explanation of behaviour. The main conclusion

of the paper was that the increase in VOT with trip length is more likely to

be due to heterogeneity in the estimation data leading to self-selection, rather

than for VOT to be increasing with distance at an individual level. For example,

longer journeys are more likely to be made by faster modes, and these modes

tend to be more expensive and so individuals with higher VOTs are more likely

to choose them.

A number of different authors have developed mixed logit models to better explain

mode choice. Bhat (1998) estimated inter-city mode choice models to predict the

choice between car, rail and air on the Toronto to Montréal corridor. He identified

significant heterogeneity in sensitivities to travel costs, in-vehicle times, out-of-

vehicle times and frequency of service, and found that the direct rail demand

elasticities were significantly higher in the mixed logit specification compared

to an equivalent MNL model specification. Green et al. (2006) developed mode

choice models for Sydney using stated preference data that presented a number of

potential PT modes to respondents in a corridor that at that time was only served

by buses. They identified significant heterogeneity in sensitivities of travellers to

travel costs, in-vehicle times and egress times. Pinjari and Bhat (2006) estimated

mode choice models for Austin, Texas using stated preference data that recorded

choices between drive alone, shared ride, bus and rail for commuting trips. They

identified significant heterogeneity in preference for two of the four modes, and

in sensitivities to in-vehicle time and the unreliability of travel time.

It is clear from Daly and Carrasco’s work that significant heterogeneity in tastes
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can exist in mode-destination choice datasets, and other researchers have found

the same in mode choice datasets. The analysis presented in Chapter 8 inves-

tigates the impact that taking account of this taste heterogeneity has on the

temporal transferability of the models.

2.2 Defining transferability

Koppelman and Wilmot (1982) provide the following definition of transferability

which is, in the author’s view, the best definition provided in the literature:

“First, we define transfer as the application of a model, information,

or theory about behaviour developed in one context to describe the

corresponding behaviour in another context. We further define trans-

ferability as the usefulness of the transferred model, information or

theory in the new context.”

The first part of this definition can be interpreted quite broadly. For example,

applying a model based on principles of utility maximisation assumes that those

principles apply in the context in which the model is applied, as well as in the

context in which the model is developed. However, the focus of the transferability

literature, and of this research, is on model transferability. That is to say, assessing

the ability of models developed in one context to explain behaviour in another

context, under the assumption that the underlying behavioural theory on which

the model is based is equally applicable in the two contexts.

It is interesting to note that all of the transferability papers reviewed have fo-

cussed on model transferability without considering whether changes in the ap-

plicability of the underlying economic theory are playing a role. This seems to

be an area where research would be valuable.

Somewhat surprisingly, none of the other papers reviewed attempted to set out

45



their own definition of transferability, and indeed in many cases the term is used

without definition under the implicit assumption that its meaning is known to

the reader.

A theme in a number of the early papers on the transferability of disaggregate

models was a belief that disaggregate models, which represent choice at the indi-

vidual level, should be more transferable than aggregate models, which typically

represent choices at the zonal level. In some cases, claims were made for the

models without much supporting evidence. For example, Ben-Akiva and Ather-

ton (1977) claimed that:

“A second major advantage of the disaggregate demand modelling ap-

proach is that it is transferable from one urban area to any another. It

has been hypothesised that, because disaggregate models are based on

household or individual information and do not depend on any specific

zone system, their coefficients should be transferable between different

urban areas.”

Although the second sentence of this quote concedes transferability is a hypothe-

sis, the first seems to treat it as a given for a transfer to any area. The argument

about the zone system seems to have been made in reference to aggregate mod-

elling approaches, which typically operate at the zonal level, but the arguments

were not set out. More generally, while a number of these early papers in the

transferability literature claim that disaggregate models are more transferable

than aggregate techniques, only Watson and Westin (1975) empirically demon-

strated that claim.

Later works, building on empirical findings that the disaggregate models were

not always transferable, were more measured in their claims. Daly (1985) set out

three conditions for model transferability:

• relevance, does the base model give any information on travel behaviour in

the transfer area?
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• validity, is the transfer model acceptably specified for the transfer area?

• appropriateness, is it appropriate to use the transferred model in the trans-

fer area?

Thus models are only expected to be transferable under certain circumstances.

Along similar lines, Gunn (1985) suggested that:

“..a constructive definition of transferability must be based on prag-

matic considerations. We assume a-priori that model parameters have

different values in different contexts and consider the more general is-

sue of whether or not an existing model provides information that can

be used in some way to improve forecasting in a new context.”

A key distinction is made in the literature is between temporal transferability and

spatial transferability. Temporal transferability is concerned with the application

of models developed using data collected at one point in time at another point in

time, whereas spatial transferability is concerned with the application of models

developed using data from one spatial area in another spatial area. Usually

temporal transfers take place within the same spatial area, and spatial transfers

take place at or around the same point in time. However, in some cases a model is

transferred over both time and space and so the two categories are not mutually

exclusive.

To consider temporal and spatial transferability in the context of disaggregate

mode destination choice models, it is useful to define in summary form the utility

functions used in the models:

Umd = β X + εmd (2.19)

where: Umd is the utility of mode-destination alternative md

β is a vector of model parameters
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X is a vector of observed data

εmd is the random error term

In model development, the objective is to identify model parameters that best ex-

plain the observed data. Thus, as a model is developed, and its ability to explain

the observed choices increases, the term β X increases in importance, and the

term εmd decreases in importance. Nonetheless, mode destination models do not

perfectly explain the observed choices, and so some random error remains. The

mean contribution of the random term is captured in the mode specific constants,

which in a mode choice context will capture effects such as the relative reliability

of modes, levels of comfort, climate and hilliness for walking and cycling, and so

on.

In a spatial transfer at the same point in time, the transferability of the model

will depend on the relevance of the parameters in the transfer context, for ex-

ample the degree of similarity in sensitivities to travel time and cost, and on the

appropriateness of the alternative specific constants. Models would be expected

to be transferable for areas that have similar characteristics, such as similarities

in mean travel times and costs, levels of highway and public transport reliability,

climate, hilliness and so forth.

For a temporal transfer in a given area, the considerations are different. The

effect of area to area differences is not present, instead the key issue is whether

the parameters remain constant over time. Stated more explicitly, the issue is

whether within a given population segment, the sensitivities to the different vari-

ables that form the utility functions, and the mean contribution of unmeasured

effects as measured by the alternative specific constants, remain constant over

time. In some instances, the ratio between model parameters is also important.

For example, the value-of-time implied by the ratio between the cost and time

parameters in a model, which will change over time if there are changes in the

cost and time parameters.
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Thus temporal and spatial transferability are not the same thing. A model might

be temporally transferable within a given area, but contain a specification that

does not transfer well to other areas. Another model might contain a detailed

specification that transfers well to other spatial areas, but does not transfer well

over time.

Spatial transfers typically involve a transfer sample, a sample of choices observed

in the transfer context, which may allow a locally estimated model to be developed

for comparison with the model transfer. When a model is applied to forecast

behaviour, this is a transfer of the model to a new temporal context. However,

unlike many spatial transfers, no transfer sample is available. There is, therefore,

an important practical difference between temporal and spatial transfers.

Temporal transferability can be assessed, however, by using two datasets collected

at different points in time from the same spatial area. Typically one dataset is

historical, one is contemporary. Models estimated from the two samples can be

compared to make assessments of model transferability, and from these, conclu-

sions can be drawn about the temporal transferability of similar models used for

forecasting. The current research is concerned with the transferability of mod-

els over long-term forecasting horizons of 20-plus years, and therefore requires

datasets collected up to twenty years apart.

This research is concerned with the temporal transferability of mode destination

models over long-term forecasting horizons. It is worth emphasising that over

such forecasting horizons, key model inputs, such as population, employment and

travel times and costs on the networks, will be subject to considerable uncertainty,

and different assumptions can have substantial impacts of the predictions of future

travel behaviour. Thus, temporal transferability is a factor in producing the best

possible forecasts of future behaviour, but is certainly not the only consideration.

49



2.3 Assessing transferability

Many of the approaches for assessing transferability identified from the literature

rely on the availability of a transfer sample, which is used to develop a locally

estimated model, and then the transferred model is assessed relative to this locally

estimated model. This allows the performance of the two model specifications to

be compared statistically in the transfer context.

The measures of transferability used in the literature can be placed into three

categories. First are statistical tests, discussed in Section 2.3.1.

The second category is measures that look at changes in individual parameters,

or groups of parameters, which are summarised in Section 2.3.2. These measures

provide insight into the transferability of different parameters in a model which

in turn informs assessment of the robustness of model forecasts for different types

of policy intervention.

The third category is predictive measures, described in Section 2.3.3, which are

assessments of the predictive ability of a model in the transfer context. Predictive

measures can be used to make assessments of model transferability, but they do

not necessarily directly measure transferability because errors may follow from

errors in forecasting the input variables, and so measures of this type need to be

interpreted with caution. The issue of the need to disentangle errors in the input

variables from model transferability is discussed further in Section 2.3.3.

A fourth category has been added in this research, namely calculation of model

elasticities which are discussed in Section 2.3.4. These provide a measure of the

overall sensitivity of a model to changes in key policy variables such as travel

costs and travel times.
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2.3.1 Statistical tests

A frequently used statistical test in the literature is the Transferability Test Statis-

tic (TTS), which assesses the transferability of the base model parameters βb in

the transfer context t, under the hypothesis that the two sets of parameters are

equal:

TTSt(βb) = −2(LLt(βb)− LLt(βt)) (2.20)

where: LLt(βb) is the fit (log-likelihood) of the base model to the transfer data

LLt(βt) is the fit for the model re-estimated on the transfer data

TTS is chi-squared distributed with degrees of freedom equal to the number of

model parameters. It can be seen that this test is the same as the standard likeli-

hood ratio test but applied to pairs of log-likelihood values in a different context.

An early example of the application of this test in the context of model transfer-

ability is a mode choice transfer study by Atherton and Ben-Akiva (1976), though

the TTS terminology seems to have been coined by Koppelman and Wilmot

(1982).

The TTS measure was widely used in the early transferability literature, but as

discussed in Section 2.3.3 this measure has nearly always rejected the hypothesis

of model transferability, including cases where the model has been found to have

good predictive ability in the transfer context (for example the analysis of Badoe

and Miller (1995a) reviewed in Section 2.4.1).

It should be noted that in general the TTS statistic is not symmetrical, i.e. for

a given set of base and transfer samples it is possible to accept transferability

in one direction but reject it in the other. So transferability may be accepted

for the base model applied to the transfer data, but that is no guarantee that

the same model specification estimated on the transfer data will be transferable
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to the base data. In forecasting, models only used to predict forward in time,

but assessments of model transferability can be made using data collected at two

points in time, and in these instances transfers can be made both forward and

back in time to maximise the number of tests made.

The Transfer Index (TI) measures the predictive accuracy of the transferred

model relative to a locally estimated model, with an upper bound of one. A

reference model is used in the calculation of TI, typically a market shares model

in the case of mode choice.

TIt(βb) =
LLt(βb)− LLt(βreft )

LLt(βt)− LLt(βreft )
(2.21)

where: βreft is the reference model for the transfer data

LLt(βt) ≥ LLt(βb) ≥ LLt(βreft )

This measure was devised Koppelman and Wilmot (1982), and the use of a simple

market shares model was relevant to their assessments of mode choice models.

However, this research is specifically concerned with mode-destination models,

and in this context a more appropriate measure of a base model performance

should include some fit to trip length and ensure proportionality to the attraction

variables ceteris paribus 5,. This can be achieved by specifying a reference model

with utility functions as follows:

V ref
md = δm + βdistm distmd + γ log(Ad) (2.22)

where: V ref
md is the utility function for alternative md

δm is a mode-specific constant for mode m

5i.e. that the probability of choosing a destination is proportional to the attraction variables,
all other things being equal.
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βdistm is a distance parameter for mode m

distmd is the distance to destination d by mode m

γ is the log-size multiplier

Ad is the attraction variable

Unlike the TTS, the TI does not either accept or reject the hypothesis of model

transferability. Rather it provides a relative measure of model transferability.

Within a given study area, the TI can be used to directly assess different sets of

models. When comparing between different studies, the TI still provides insight

provided the same reference model specification is used, but the TI does not have

a general scale in a formal sense.

2.3.2 Changes in individual parameters

The statistical measures discussed so far are concerned with the overall fit to

the data, but differences in individual parameter values are also of interest. For

example, the cost and time parameters in a model are key to the forecast responses

to policy, and so changes in these parameters over time are of particular relevance.

In cases where both base and transfer model parameters are available, such a

comparison should correct for scale differences between the two models. Scale

differences result from different levels of error and result in differences in the

magnitude of the parameters, in particular if a model has more error then the

parameters will be smaller in magnitude. Correcting for this scale difference

allows the parameters to be compared on a consistent basis, an issue which is

discussed further in Section 2.5.2.

A number of papers in the literature, particularly those concerned with trans-

fer methodologies, use the term ‘transfer bias’ ξ, which is simply the difference
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between base and transfer parameter values:

ξ = λβt − βb (2.23)

where: λ is a scale parameter to account for differences in error between

the base and transfer models

(if λ is not known it may be set to one, i.e. assuming no change in scale)

If the base and transfer parameters are βb and βt respectively then, assuming the

covariance to be zero, the standard error of the difference can be calculated as:

σ(βt − βb) =
√

(σ[βb])2 + (λσ[βt])2 (2.24)

where: σ[βb] is the standard error of βb

σ[βt] is the standard error of βt

In the context of tests of temporal transferability the assumption of zero covari-

ance is reasonable, because the choice samples used at different points at time

are collected from different people and so it is reasonable to assume that their

choices are not correlated.

The t-ratio for the parameter difference is then calculated as:

t(βt − βb) =
λβt − βb
σ(βt − βb)

(2.25)

If the t-ratio exceeds a critical value, such as 1.96 for a 95% confidence interval,

then the null hypothesis H0 that the parameters are identical is rejected. An

important point to note when interpreting results from this test is that the higher

the standard deviations of βb and βt, the more likely it is that the null hypothesis

will be accepted. So βb and βt could be substantially different in magnitude,

but due to low parameter significance in one or both of the parameters the null
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hypothesis that the parameters are identical could be accepted. An alternative

to calculating the significance of parameter differences is to calculate the change

in absolute parameter magnitude, accounting for scale differences between the

base and transfer contexts. To do this the relative error measure (REM) can be

calculated using as:

REMβ =
(λβt − βb)

βb
(2.26)

2.3.3 Predictive measures

Building on early empirical findings that transferred models usually failed strict

statistical tests of transferability, predictive measures were increasingly used to

assess transferability as the transferability literature developed. For example,

Lerman (1981) argued that the early transferability literature had used an exces-

sively restrictive definition of transferability with an over-emphasis on statistical

tests, and argued that transferability should not be seen as a binary issue but

rather that the extent of transferability should be explored. In the same book,

Ben-Akiva (1981) argued that achieving perfect transferability is impossible, as a

model is never perfectly specified, and therefore pragmatic transferability crite-

ria are required in addition to standard statistical tests. Daly and Gunn (1983)

made similar arguments, arguing against simple accept or reject statistical tests

of transferability in favour of more pragmatic measures.

Predictive measures need to be interpreted carefully when making assessments of

model transferability. In cases where both base and transfer samples are available,

then provided both datasets provide accurate samples of individual choices, the

ability of the base model to predict choices in the transfer context is a direct test

of the transferability of the model.
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However, in many studies that validate model predictions against observed aggre-

gate outcomes detailed transfer samples are not available, and the model forecasts

are validated against aggregate mode shares. In these studies, the predictions of

the model depend on the accuracy of the assumed inputs as well as the trans-

ferability of the model itself. So, a model may be highly transferable, but if fuel

prices dramatically increase during the forecast period, and this was not antic-

ipated when the future inputs where assembled, the model predictions may be

some way off the observed outcomes. Care needs to be taken to distinguish input

errors from transferability errors, and in some cases it is not possible to disentan-

gle the two effects. This issue has been considered in the review of temporal and

spatial transferability literature presented later in this chapter. In the empirical

analysis presented in later chapters, historical data has been used and as such

input data was available for each year of data, which means that and the input

errors issue does not arise (assuming that the input data is accurate).

This section goes on to set out a series of measures that have been used in the

literature to measure the predictive performance of models in order to provide

some assessment of model transferability.

The relative error measure (REM) for the prediction of choice frequency in some

aggregate group can be calculated as:

REMmg =
(Pmg −Omg)

Omg
(2.27)

where: Pmg is the prediction for alternative m in group g

Omg is the observed choices for alternative m in group g

The difference between Equation 2.27 and Equation 2.26 is that Equation 2.26 is

concerned with changes in individual parameter values whereas Equation 2.27 is
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concerned with changes in demand.

It should be noted that g is often dropped, i.e. predicted and observed alternative

(e.g. mode) shares are compared but the analysis is not split into separate groups.

As the REM measure is self-scaling, it can be applied both to probabilities, and

to aggregate choice predictions such as numbers of individuals choosing m and g.

Although the REM measure is widely used, it can cause problems with division

by zero if there are no observed choices in group mg. To overcome this problem

a modified measure REM∗ can be used:

REM∗mg =
(Pmg −Omg)

Pmg
(2.28)

The use of Pmg rather than Omg for the denominator avoids problems of division

by zero when there are no observations but predicted probabilities are non-zero.

2.3.4 Model elasticity

A measure that has received little consideration in the model transferability lit-

erature is model elasticity, that is to say the sensitivity of the model to changes

in key input variables, usually travel times and costs. If demand for alternative

j is Dj , then the elasticity ηjx for a change in a variable x can be calculated as:

ηjx =
x

Dj

dDj

dx
(2.29)

An important advantage of elasticities are that they are dimensionless, which
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means they can be compared between different model systems, or between model

systems and evidence from other data.

Frequently elasticities are computed by observing the changes in demand in re-

sponse to a given change in an input variable. Standard UK practice as set out

in the Department for Transport’s WebTAG guidance6 is to use a log form for

the elasticity calculations:

ηjx =
log(D0

j −D1
j )

log(x0 − x1)
(2.30)

Equation 2.30 has been used in the analysis presented in Chapter 6.

Elasticities are an important measure for model validation, as they provide a

check that the model sensitivity is in line with accepted values. In the UK con-

text, the Department of Transport sets out expected elasticity values for realism

testing, in particular for fuel cost where kilometrage elasticities values in the

range -0.25 to -0.35 are expected based on the work of Bradburn and Hyman

(2002).

However, elasticities are also important for model transferability as they define

the sensitivity of the model to changes in travel costs and time. In the UK

context, a model may give fuel cost elasticities in the expected range in the base

context, but if the elasticities change when the model is used in forecasting the

model sensitivity may no longer be acceptable. Many transport demand models

in the UK are applied using a pivot approach, whereby the model is applied in

both base and forecast contexts to define growth factors applied relative to base

matrices generated from count data. In this context, the key role of the demand

models is to provide the sensitivity of the model system to cost and time changes,

6https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/

373137/webtag-tag-unit-m2-variable-demand-modelling.pdf, accessed 19/04/15.
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and elasticities provide a measure of this sensitivity.

Daly (2008) considered the relationship between elasticity, model scale and error.

He explored the apparent paradox that improving the model specification would

be expected to increase the model scale, as the error would be reduced, but

this could potentially increase the sensitivity of the model. Daly demonstrated

that when a model is improved by adding a variable, provided that the change

does not introduce a bias to the the other coefficients, no change in sensitivity

is expected. This is because model sensitivity depends on the variance of the

predicted probabilities among the population, as well as to the magnitude of the

model coefficients. If the variance in the probabilities increases, as it will when

variables are added to the model, that will reduce model sensitivity and this

compensates for the change in the magnitude of the model coefficients. However,

if a variable is introduced which causes bias then this can impact on the model

sensitivity.

Following UK practice set out in the UK Department for Transport’s WebTAG

guidance, four elasticity measures have been calculated in the analysis presented

in Chapter 6:

• fuel cost kilometrage elasticity

• car time trip elasticity

• PT fare trip elasticity

• PT in-vehicle time trip elasticity

In a mode-destination choice model, a kilometrage elasticity will be impacted

by changes in both mode and destination, whereas trip elasticities are driven by

mode choice responses alone.

It should be emphasised that there is no expectation that elasticities will be

completely stable over time. As well as being influenced by changes in the cost
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and in-vehicle time parameters, changes in the data will impact on the model

elasticities. For example, given the non-linear treatment of cost in the models

changes in the distribution of costs between different years of data would be

expected to impact on the elasticity values. The approach that has been used

is to compare the elasticities for a base model applied in the transfer context to

the transfer model (i.e. the same model specification re-estimated in the transfer

context).

2.3.5 Assessing temporal transferability

This section sets out how the various measures of transferability identified from

the literature have been used in the context of this particular research, and then

discusses the practical difficulties involved in assessing temporal transferability

over the long term.

In terms of statistical measures, providing definitions of the TTS and TI is im-

portant before presenting the reviews of temporal transferability in Section 2.4

and spatial transferability in Section 2.5, as these two measures have been used

extensively to assess model transferability. The t-ratio test for the significance of

differences in particular parameters over time has been applied to provide addi-

tional analysis of the temporal stability of individual parameter values reported

across different studies, and to investigate across studies whether certain groups

of model parameters exhibit greater stability than others.

In the empirical analysis undertaken for this research, emphasis has been placed

on the TI measure, as it provides a measure of the ability of a transferred model

to predict observed behaviour relative to a locally estimated model. Selecting

an appropriate reference model is important for the TI measure to be able to

effectively discriminate between base and transfer models, and this is why the ref-

erence model in Equation 2.22 has been formulated specifically for this research.
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In terms of predictive measures, the REM measure has been used to compare pa-

rameter values between base and transfer contexts, as well as to compare observed

and predicted mode shares. Model elasticities in the base and transfer contexts

have also been compared to investigate changes in model sensitivity over time.

Together, these measures give a toolkit that can be used to make assessments

of transferability. However, there are practical issues in making assessments of

temporal transferability that are relevant for forecasting. If a model is used to

make a forecast 20 years into the future, then this forecast cannot be validated for

another 20 years, and even where such evidence exists it is problematic, because

the predicted inputs in terms of population and level-of-service will differ from

what actually happened.

An option that was considered was to make backcasts, e.g. to apply a model

developed using contemporaneous data to predict what was observed to happen

in the past using known information on level-of-service and attractions. The

difficulty is that this will highlight differences between model predictions and

observed data, but it does not allow the analyst to fully explore them. For

example, a model applied in backcasting may over-predict the historic car share,

but that does not provide insight into which models terms contributed to that

over-prediction. Greater insight would be gained by an approach that explored

how the model parameters varied between the two points in time.

A more insightful way to investigate transferability is to use detailed interview

data collected at two points at time so that models can be developed for both time

periods and differences analysed. As will be seen in Section 2.4, this approach

has been widely used in the transferability literature. It has the advantage that it

allows for statistical tests of transferability and analysis of changes in individual

parameters over time as well as tests comparing observed and predicted changes

in mode share and trip length, and is therefore the approach that has been used

for the empirical analysis in this thesis.
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2.4 Temporal transferability

The literature on temporal transferability has been broken down into three sub-

sections. The first two sub-sections discuss studies using disaggregate mode or

mode-destination choice models, and thus are more directly relevant than the

other literature to the objectives of this research. Section 2.4.3 then presents evi-

dence from other model types, in most cases aggregate models of trip generation.

The mode choice studies are further broken down into direct tests of model trans-

ferability (Section 2.4.1), where both base and transfer models have been devel-

oped allowing formal statistical tests of transferability to be made, and validation

studies (Section 2.4.2), where model predictions are compared to aggregate statis-

tics on mode share, often after substantial changes to travel times and/or costs.

It should be noted that these validation studies use data collected in the transfer

context to define the inputs to the models, which removes the complication of

combinations of errors in the input data discussed in Section 2.3.3. A number

of the papers present both comparisons of base and transfer models, and use the

transfer data to validate the performance of the base model in forecasting, and

so are discussed in both sections.

2.4.1 Mode choice transferability studies

Summary of studies reviewed

Ten studies of the transferability of mode choice models have been reviewed, all

of which analysed home–work trips. These studies are summarised in Table 2.1.
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Overall, these mode choice studies supported the hypothesis that model parame-

ters are reasonably stable over time, although this finding was not universal with

three of the ten studies reporting substantial changes over time.

In addition to these ten mode choice studies, two studies have investigated the

transferability of models of simultaneous mode and destination choice, the exact

focus of this research. Karasmaa and Pursula (1997) used Helsinki data from

1981 and 1988, and Gunn (2001) investigated models for the Netherlands using

1982 and 1995 data. Like the ten mode choice studies, Karasmaa looked at

home–work trips only, but Gunn ran analyses for home–work, home–shopping

and home–social and recreational travel.

The findings from these two studies were mixed. Gunn’s study was supportive of

the hypothesis of parameter stability, however in Karasmaa’s analysis there were

significant differences between the base and transfer parameters. Neither of these

two studies presented statistical test of overall model transferability.

Impact of model specification

Badoe and Miller made tested seven different model specifications to investigate

the impact of model specification on model transferability, ranging from simple

market shares models, and models with mode constants and level-of-service vari-

ables only, through to models with detailed market segmentation. For all model

specifications, the TTS rejected the hypothesis of parameter stability at a 5%

confidence interval. However, the TI increased from 0.132 for the simple market

shares model, to 0.894 in the level-of-service variables only model, although in-

terestingly more detailed specifications with market segmentation had lower TI

values, despite higher log-likelihood values, possibly due to over-fitting to the

base data.

Overall, Badoe and Miller concluded that improving model specification improves
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model transferability.

Findings from studies which have estimated models by pooling data over years

Badoe and Wadhawan compared the transferability of model specifications jointly

estimated from 1964 and 1986 data compared to models estimated using 1986

data alone by investigating how well the various models explained mode choices

observed in 1991 data. Comparing the various pooled model specifications, they

found that higher transferability was obtained if separate mode constants were

estimated for each year of data, and if separate scales were estimated for level

of service and socio-economic terms to take account of differential changes in

the scale of different groups of utility terms between years. However, the best

disaggregate predictions of the 1991 mode choices were obtained from models

estimated from 1986 data alone. So the conclusion from this study would be that

the best approach for forecasting is to apply a model from the most recently avail-

able cross-section of data, rather than jointly estimate models by supplementing

recent data with older data.

Sanko investigated how best to combine data from 1971, 1981 and 1991 to predict

the mode choices observed in 2001. Testing separate models by year first, he

found that the 1991-only model was best at predicting the 2001 choices, whereas

the 1971-only model was worst, therefore confirming the expectation that the

most recent available data should be used for forecasting. Next, he tested models

estimated by pooling 1971, 1981 and 1991 data. In the first pooled model, the

data was pooled näıvely without estimating any year specific constants or scale

terms. In the second pooled model, constants, scales for level of service terms

and scales for socio-economic terms were estimated separately by year, and then

the scales and constants for 1991 were used to apply this model to predict the

2001 mode choices. Interestingly, both of these pooled models performed worse

in predicting the 2001 mode choices than the 1991-only model. The finding that

the best results are obtained using the most recent data only is consistent with
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Badoe and Wadhawan’s analysis.

Variation in transferability with model purpose

As noted above nearly all the studies focussed on home–work travel alone, and

thus Gunn’s study is the only one that allows some assessment of differences in

model transferability with model purpose. In addition to results for commuting,

Gunn (2001) presented results for shopping, and social & recreational travel.

Analysis of the changes in the parameter values is presented in Table 2.2 using

the REM measure defined in 2.26, and the full results by purpose reported by

Gunn are presented in Appendix A.

Table 2.2: Cross purpose comparison of temporal parameter stability

LOS Terms Socio-Econ Terms
Purpose Terms REM Terms REM

Commuting 6 0.21 2 0.13
Shopping 6 0.47 2 0.44
Social & recreation 6 0.64 2 0.02

Considering first the level-of-service terms, the commute model results are the

most transferable of the three, i.e. have the lowest mean REM measure. For

the two socio-economic terms reported in each model, the social & recreational

results are the most transferable.

It is not possible to draw general results from this single comparison, but the

results give some indication that the transferability of models may vary with

purpose, and it is possible that conclusions based on commuting models alone

may overstate the transferability of models in general.

Cross-study analysis of changes in individual parameter values

Most of the studies reported the base and transfer model parameters in full, and
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these have been analysed to investigate whether there is any evidence across stud-

ies that certain types of model parameters are more transferable than others. To

perform this analysis, the parameters were grouped into alternative specific con-

stants, level-of-service parameters (including cost), and socio-economic terms7.

The detailed analysis is presented in Appendix A.

The REM measure presented in Equation 2.26 was used to analyse changes in

parameter magnitude. The following average values were calculated by parameter

group:

• cost parameters: 0.71

• level-of-service parameters: 0.59

• socio-economic terms: 0.56

• mode constants: 1.10

These results demonstrate that the socio-economic and level-of-service parame-

ters are the most transferable, and as might be expected the constants were the

least transferable parameter group. Given that many transport policies involve

changes to travel times and costs, the higher temporal stability of the level-of-

service parameters (which includes in-vehicle time parameters) is noteworthy.

Statistical tests of the changes in parameter values were also made using Equation

2.25. The hypothesis of parameter stability was accepted more often in the Train

and Silman studies, where the transfer periods are 3 and 4 years, than in the

other studies where longer transfer periods were considered, suggesting higher

parameter transferability over shorter transfer periods 8.

7Where level-of-service parameters are interacted with socio-economic variables, e.g. cost
divided by income, the parameters have been placed in the level-of-service group.

8In the Forsey study, the estimation samples were large and as consequently most of the
parameters were highly significant. As a result, the hypothesis of parameter stability was rejected
even in comparisons where the two parameters were relatively close in magnitude.
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2.4.2 Mode choice validation studies

Summary of studies reviewed

The studies that were reviewed are summarised in Table 2.3.

As noted in the introduction to this section, all these validation studies used

detailed transfer data, and therefore are not confounded by errors in the input

variables. Nonetheless, an important caveat must be made in terms of interpret-

ing an ability to predict mode shares accurately with model transferability. It is

possible to accurately predict mode shares with a model that is not temporally

transferable. For example, consider the common problem of correlation between

car cost and car time variables. It is possible to estimate a model that underes-

timates the importance of one of these variables, and overestimates the other. It

may be that in a given application, the errors associated with two these terms

cancel out, and that accurate forecasts are obtained, but in other applications

with difference combinations of cost and time changes the model forecasts may

contain substantial errors. Thus the ability to accurately predict mode shares is

an indication of model transferability, particularly if demonstrated over a number

of applications, but is not a strict test of it.

The general pattern from these studies is that the mode choice models were able

to predict the impact of often substantial changes in level-of-service on mode

share with reasonable accuracy. This finding is reassuring for the application of

mode choice models over periods of up to five years, but it does not provide any

direct evidence about the transferability of the models over the longer term.

Milthorpe (2005)’s study had a different focus, providing a comparison of the

forecasts of a four-stage model9 developed in the early 1970s to observed data

from around 2001.

9i.e. a model with generation, distribution, mode choice and assignment components.
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Impact of model specification

Parody’s analysis used panel data, and in one test assessed the impact of substan-

tial increases in parking charges. In this test, a full model specification with socio-

economic parameters performed substantially better than a model with level-of-

service parameters alone. This suggests that an improved model specification

yielded more transferable level-of-service parameters. Train’s 1979 analysis also

concluded that improving the model specification resulted in improvements in

the model predictions.

It seems that the improvement in the predictive performance of the models that

results from adding socio-economic parameters is a result of improved estimates

of the key level-of-service parameters, rather than the impact of changes in socio-

economics, given that most of these model tests have been undertaken over short

term forecasting horizons of up to five years. These improved estimates then en-

able the models to better predict the impact of changes in level-of-service. Silman

explicitly noted this pattern, by observing that when socio-economic parameters

were added, the significance of the key cost and time variables in his models were

improved.

Parameter transferability in the context of errors in the forecasts of the input

variables

Milthorpe discussed in his paper that he would have liked to be able to have been

able to re-run the original 1970s model with actual 2000 inputs, but that this was

not possible because the detailed coding was not available. Instead, Milthorpe

compares the different scenario predictions of the model with observed data. A

noteworthy point that Milthorpe highlights is the degree of uncertainty of key

input variables over a 30-year forecasting horizon. Table 2.4 summarises figures

from Milthorpe’s paper that highlight this point.
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Table 2.4: Socio-demographic growth in Sydney, 1971 to 2001

Predicted Observed

Population 55% 35%
Household size -10% -17%
Workforce 47% 40%
Vehicles 149% 123%

It can be seen that over a 30 year horizon, the predictions of key input variables

can be subject to considerable uncertainty. These results help to put model

transferability into context; if, for example, the errors due to changes in the

true parameters in Sydney impact on model predictions by ±10% over a 30-year

period, this should be assessed against an over-estimate of the population of 14%,

and of the number of vehicles of 11%.

2.4.3 Other studies

Summary of studies reviewed

The majority of the other studies reviewed were generation models. The genera-

tion model studies are summarised in Table 2.5.
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Transferability findings

Most of these studies are concerned with generation modelling, and typically used

aggregate modelling approaches, based on regression, household classification and

gravity model techniques. As such, any findings with respect to model transfer-

ability have to be interpreted with caution for the mode-destination modelling

context. Nonetheless, general findings are of interest to the broader question of

whether models developed at one point in time can be used to predict behaviour

at a future point in time. These studies also have the advantage that they have

tended to consider longer forecasting intervals, typically around 10 years, com-

pared to the mode choice studies.

Few of these studies made formal statistical tests of model transferability. Elmi

concluded that the parameters in his trip distribution models were statistically

different between 1964 and 1986, although the 1964 models were able to predict

1986 behaviour well. Cotrus also rejected the hypothesis of temporal stability,

both in Haifa and in Tel Aviv, over a 12/13 year period. Interestingly Shams

et al. accepted the hypothesis of parameter stability for their commute models,

but rejected it for their shopping models, and Badoe and Steuart found that

commute models had much better transferability than home–shopping, home–

social & recreational and home–personal business models.

The assessments of the predictive performance of the generation models are sup-

portive of the hypothesis of model transferability, with six of the nine studies

reporting the models predicted future trip generations well. It should be noted

however that, as discussed in Section 2.4.2, accurate aggregate predictions do not

necessarily indicate transferability at the individual parameter level.

A noteworthy feature of many of the tests of the generation models is that the

intervals of analysis often covered substantial changes in population, whereas the

mode choice validation studies were typically concerned with the impact of sub-
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stantial changes in travel cost and times. For example, Hill and Dodd’s analysis

covered a period when the population of the Greater Toronto area increased by

33%, and total car ownership rose by 45%. The good predictive performance

of the models under these conditions provides some evidence for the temporal

stability of socio-economic parameters that capture variation in behaviour across

the population.

Other studies

Elmi et al. (1997)’s analysis of work trip distribution models investigated the im-

pact of improving the model specification, and, consistent with the mode choice

studies, he concluded that improved model specification resulted in improved

model transferability. Elmi obtained Transferability Indices as high as 0.84 for

predicting 1996 behaviour with 1964 models, and 0.97 for predicting 1996 be-

haviour with 1986 models. An interesting result noted by Elmi was that the

disutility of travel time reduced over time, from a value of -0.13 in 1964 to -

0.08 in 1996. Elmi suggested that this reflected changes in spatial structure, and

consequent increases is the mean distance to work.

Chingcuanco and Miller (2012) and Miller estimated a meta-model to explain

changes in vehicle ownership model parameters over time as a function of macro-

economic variables, specifically fuel prices and the employment rate. They were

able to identify significant relationships between these variables and the alterna-

tive specific constants in their vehicle ownership model, for both the unadjusted

values of the variables and for the change in the variable relative to the previous

year.
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2.5 Spatial Transferability

Studies that have investigated spatial transferability provide some evidence about

the transferability of disaggregate mode choice models in general. Disaggregate

models are expected to be more transferable than aggregate models because ob-

served choices are explained as far as possible in terms of behavioural model

parameters, and the behavioural parameters should be applicable in different

contexts. However, as discussed in Section 2.2, it is important to emphasize that

a model that is spatially transferable may not be temporally transferable, and

vice-versa. The spatial transferability literature is also useful in developing meth-

ods that are useful for making assessments of model transferability, and so the

review presented here focuses on these methods.

There is a body of evidence on mode choice models that dates from the mid-1970s,

and this forms the focus for this section. In most cases, both base and transfer

samples were available in these studies, and so statistical tests of transferability

were reported. The review is split into a discussion of the findings with respect

to spatial transferability, and a discussion of papers which investigated different

methodologies for transferring models. In particular, the section on methodology

discusses transfer scaling, a technique that has been developed for undertaking

spatial transfers, but which could yield interesting findings for the assessment of

temporal transferability.

Recently the issue of spatial transferability has returned to the fore in the context

of activity based models (ABMs). As Sikder et al. (2013) note:

“..given that ABMs are more behaviorally orientated, there is a notion

in the field that these would be more transferable than the statistical

correlations reflected by aggregate four-step models”

Literature exists on the spatial transferability of generation models, however given

that the generation models are not the focus of this research, and nor is spatial
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transferability, this literature has not been reviewed here.

2.5.1 Mode choice transferability studies

The mode choice transferability studies that have been reviewed are summarised

in Table 2.6.

Results of formal statistical tests of transferability, which use the Transferability

Test Statistic (TTS) given in Equation 2.20, are mixed. Table 2.7 summarises

the results, in each case at a 95% confidence level.

Taken as a whole, and referring back to Section 2.2, these results are evidence that

spatial transferability only holds in certain cases, and in many cases does not hold.

However, as discussed in Section 2.3.3 the TTS provides a strict pass/fail test

of transferability and for temporal transfers Badoe and Miller (1995a) observed

good predictive performance in the transfer context from models that failed the

TTS test.

Some authors sought to explain why the models they tested were not transfer-

able according to the TTS measure. Galbraith and Hensher concluded that it

was because there were unmeasured effects represented in the constants, and

that analysts should aim to include more variables to account for socio-economic

effects, ‘unmeasured’ level-of-service attributes, and situational or contextual fac-

tors which explain travel behaviour. However, the type of effects that are typi-

cally captured in the constants, such as perceptions of comfort, safety, the impact

of weather on walk and cycle modes and so on, are by their nature difficult to

measure. Thus, while there are currently efforts underway to better represent

the impact of reliability on mode choice, a typical mode choice model today will

nonetheless contain a similar model specification to the models developed by

Galbraith and Hensher 25 years ago.
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Table 2.7: TTS statistics for spatial transfers

Author(s) Transfer Between TTS Results
Watson and Westin (1975) Area type combinations 6 fail, 8 pass

Atherton and Ben-Akiva (1976) Two cities Pass
Talvitie and Kirshner (1978) Four cities All fail

Galbraith and Hensher (1982) Two regions Fail for 3 model spec.s
Koppelman and Wilmot (1986) Three city sectors Fail for all 3

McCoomb (1986) Between four cities 2 fail, 2 pass
Abdelwahab (1991) Two regions Fail for 7/8 tests
Dissanayake (2012) Bangkok & Manila Fail

Koppelman and Wilmot investigated whether improving model specification im-

proves model transferability, and found that this was indeed the case. Referring

back to Equation 2.19, improving the model specification should increase the

impact of the explanatory variables, and reduce the impact of unmeasured ef-

fects captured in the constants. When a model is transferred to a new area, the

explanatory variables will capture differences between the areas, such as differ-

ences in travel times, and socio-economic differences if these are represented in

the models. By contrast, transferring the alternative specific constants implicitly

assumes that the average effect of unmeasured effects is the same in base and

transfer contexts.

2.5.2 Mode choice methodological studies

A number of papers in the methodological class investigate an approach termed

transfer scaling Gunn et al. (1985); Gunn (1985); Daly (1985); Koppelman et al.

(1985); Gunn and Fox (2005), and it is useful to describe what is meant by this in

more detail. In spatial transfers, it is normal for both base and transfer samples

to be available, although the latter may be small in magnitude or sparse in detail.

If the base model is transferred to the new context without adjustment, then the

transfer is said to be näıve. In the transfer scaling approach, scales are estimated
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for utility parameters, or groups of parameters, to express the changes relative

to the base estimates.

Two types of transfer scaling approach have been applied. First, where an overall

utility scale is estimated to re-scale the complete set of base model parameters,

which is termed a complete transfer. Second, where a number of utility scales are

estimated to re-scale groups of base model parameters, which is termed a partial

transfer. In both cases, the original base model parameters are held fixed during

the transfer. These two approaches can be expressed in equation form as follows:

Vt,c = δt + φt βb Xt (2.31)

where: Vt,c is the transfer utility for a complete transfer

δt is the alternative-specific constant

φt is the transfer scale

βb is a vector of the base parameter estimates

Xt is a vector of observed data in the transfer context

and:

Vt,p = δt + φt,1 βb,1 Xt,1 + ...φt,G βb,G Xt,G (2.32)

where: Vt,p is the transfer utility for a partial transfer

δt is the alternative-specific constant

φt,g is the transfer scale for utility group g

βb,g is a vector of the base parameter estimates for utility group g

Xt,g is a vector of observed data in the transfer context

there are g = 1, G groups of utility terms in total

It should be noted that in the complete transfer approach, the relative trade-offs
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between parameters, such as between the cost and time parameters, are preserved

in the transfer. In the partial transfer approach, the parameter trade-offs are

preserved within each utility group.

The transfer scaling studies have demonstrated that applying transfer scaling

yields substantially more transferable models than näıve transfer of the base

model parameters. This improved performance comes about for two reasons.

First, the ability to account for different levels of error in the set of parameters as

a whole, or for groups of model parameters, between base and transfer contexts.

Second, by adjusting the constants and therefore accounting for differences in the

average contribution of unmeasured effects.

Gunn and Fox (2005) estimated significantly different transfer scales for different

groups of utility terms: for car and walk/cycle, for public transport, and for other

level of service terms. Grouping utility terms in this way is an approach that

allows generalisable results to be drawn out as to the transferability of different

utility terms, and it is an approach that can be used to investigate temporal

transferability in cases where both base and transfer samples are available.

2.6 Summary and aims

2.6.1 Summary of the evidence for temporal transferability

Overall, the direct tests of transferability summarised in Table 2.1 are supportive

of the hypothesis that mode choice models can be transferred over time, with the

majority of studies concluding the models tested were transferable. Furthermore,

some of the validation studies demonstrate the models are able to predict the

impact on mode share of substantial changes in level-of-service over short periods.
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That said, these findings are specific to the evidence base that has been analysed.

Considering the direct tests of temporal transferability summarised in Table 2.1, it

can be seen that the evidence is nearly all from commuting studies. Furthermore,

all the validation studies in Table 2.3, and many of the generation studies in Table

2.5, are also based on commuter travel. Commuting travel might be expected to

be more transferable than other purposes, as the journey to work is a regular trip,

and as such would be expected to be accurately recorded with a higher degree of

accuracy than less regular trips.

Another feature of the evidence base is that much of it is based on short-term

forecast of up to 10 years. This research is concerned with long term transfer-

ability for forecast periods of 20 years and above, and it seems reasonable to

hypothesise that over longer time intervals transferability would be less likely to

be accepted. The two studies that provide evidence on longer term transferability

give mixed findings, the studies from Toronto that developed mode choice mod-

els and distribution models are supportive of model transferability, whereas the

mode choice models developed for the Nagoya region of Japan are not (though

the Nagoya results are likely to have been influenced by the lack of cost and car

availability information).

An empirical finding from both mode choice and distribution studies is that

improving model specification improves model transferability. Although the

improvements in model specification described are often the addition of socio-

economic parameters, this improvement in model performance seems to come

about because the improved models provide better estimates of the key cost and

time parameters that respond to short-term policy changes. Over a longer term

forecasting horizon, substantial changes in the distribution of the population

across segments would be expected, and so the findings in terms of model spec-

ification may be different, depending on the relative stability of level-of-service

and socio-economic parameters over the longer term.
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It is noted that only two studies of temporal transferability have considered si-

multaneous models of mode and destination choice, the focus of this particular

research. Their findings were mixed: Gunn (2001) found a good level of temporal

transferability, but in Karasmaa and Pursula (1997) three out of four level-of-

service parameters were not transferable.

As discussed in Section 2.1.3, there has been much work in recent years to develop

mixed logit models to reflect taste heterogeneity. While this work has demon-

strated the improved fit to the base data that these specifications can offer, none

of the transferability studies reviewed in Sections 2.4 and 2.5 used model spec-

ifications including random taste heterogeneity. Evidence as to whether models

incorporating random taste heterogeneity are more transferable, and thus better

specified to make forecasts, would be valuable to model developers.

In summary, providing further empirical evidence on the temporal transferabil-

ity of mode-destination choice models over intervals up to 20 years, and with

a comparison of commute and non-commute travel, would add to the existing

literature. There is some limited evidence that there may be differences in trans-

ferability by parameter type (e.g. alternative specific constants, level-of-service

terms, socio-economic terms) and it would be useful to further investigate such

differences during the analysis. Furthermore the transferability of models incor-

porating random taste heterogeneity is an area where research would be valuable.

2.6.2 Aims

Drawing on the findings from the literature review, five specific research aims

were identified to provide a framework for the empirical work:

1. to assess the transferability of mode-destination choice models over long-

term forecasting horizons of up to 20 years;
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2. to assess the relative transferability of commuter and non-commuter travel;

3. to investigate how model scales and alternative-specific constants evolve

over time, both in total, and for model scale distinguishing utility groups

in order to enable assessment of the relative transferability of utility groups

and the constants;

4. to investigate the transferability of mode-destination choice models that

take account of preference heterogeneity; and

5. to advise practitioners how best to specify models to maximise their tem-

poral transferability.
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Chapter 3

Data

This chapter begins in Section 3.1 by setting out the data that is required to

assess the transferability of mode-destination models over long-term forecasting

horizons.

Section 3.2 describes the Toronto data that was used to allow transferability anal-

ysis. It starts by describing the mode-destination choice data, goes on to describe

the other data assembled including level of service data defining travel costs and

times by the various modes modelled, and then concludes by summarising the

processing steps undertaken by the author and by others to prepare the data for

model estimation.

Section 3.3 presents the corresponding information for the Sydney data.

The chapter concludes in Section 3.4 with a brief summary of the key differences

between the two datasets and the implications that these have for the transfer-

ability analyses presented in Chapter 5–8.
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3.1 Introduction

In order to investigate the transferability of mode-destination models over long-

term forecasting horizons, determining the availability of suitable data was a

crucial issue for this research. The data requirements were as follows:

• data collected over long-term horizons of up to 20 years;

• household interview data, with household, personal and trip level data,

with survey and data documentation, and with sufficient similarity between

surveys that the same model specifications can be applied to each year of

data;

• level of service data for each year, using identical zoning systems, or zoning

systems with similar levels of data1; and

• zonal attraction data by year, with population and employment data.

Level of service (LOS) data is best visualised as matrix data, with rows as possible

origin zones and columns as possible destination zones, and individual cell values

providing an indication of the LOS for travel by a particular origin-destination

pair. For car driver and car passenger modes, highway level of service data is

generated by running assignments to highway networks that represent the road

network for the study area. The level of service matrices generated typically

comprise travel times and distances, plus any tolls that may be payable. Often,

in the absence of a dedicated representation of walk and cycle links, distances

from the highway network are used to represent distances for the walk and cycle

modes. For public transport modes, separate assignments are run to a public

transport network. More LOS components are represented, including in-vehicle

times, walk access/egress times, wait times (possibly split between first and other

wait time) and numbers of transfers.

1New zones are often added as cities expand or redevelop, therefore identifying areas that
have used identical zoning systems for all years of data may not be possible.
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The LOS requirements for developing mode-destination choice models are more

onerous than those for mode choice models because for a given origin zone it

is necessary to have LOS information to each possible destination, whereas in a

mode choice model LOS information is only required for the chosen destination.

Therefore historical datasets that have been used to investigate the transferability

of mode choice models do not necessarily contain sufficient LOS data to allow

mode-destination models to be estimated.

The highway and public transport networks are developed using dedicated soft-

ware packages such as Emme, VISUM, Saturn, Cube Voyager and Omnitrans. In

any large metropolitan area in the developed world, it would be expected that

the local agency responsible for transport planning in the region would own and

maintain highway and public transport models. However, it is much less likely

that these agencies will maintain old networks from 20 years back, and that if

they do that those networks were developed and coded in a consistently with the

current network models. Thus, the requirement for consistent assignments from

over a 20 year period is the most challenging of the data requirements set out

above.

Two metropolitan areas were identified where the required data was available, and

crucially a local contact was supportive of the research effort and made the data

available for analysis, specifically Toronto, Canada, and Sydney, Australia. The

Toronto data was analysed first using nested logit models, and then the Sydney

data was used to investigate whether the two datasets yielded consistent findings.

Finally, the Toronto data was analysed again to investigate the transferability of

mixed logit models of mode-destination choice. Given that the datasets were

analysed in this order, details on the two datasets are presented in this chapter

rather than in chapters specific to each dataset.

The other datasets that were investigated are described below.
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Data from Helsinki has been used in a number of transferability studies, such

as the work reported in Karasmaa and Pursula (1997); Karasmaa (2003). From

the two papers reviewed, it is clear that household interviews exist for Helsinki

in 1981 and 1988, with around 6000 interviews in both cases. Further a 1995

mobility survey was used in Karasmaa’s PhD work. Attempts were made to

contact Karasmaa to investigate whether they would be willing to make the data

available for analysis. However, it turns out Karasmaa has now left the Helsinki

University of Technology, and that since Karasmaa left the institute has not

taken forward research on temporal transferability. Permission to use the data

for analysis was not forthcoming.

Data from the Netherlands was used for early research into model transferability.

However, it is not clear whether the earlier data can be retrieved, and so when

it became clear that data from both Toronto and Sydney would be available for

analysis this dataset was not pursued further. Similarly the author has been

involved in modelling studies using disaggregate data in Copenhagen (Vuk et al.,

2009) which might have been suitable, but that were not pursued further once

the Toronto and Sydney datasets were confirmed as being available.

Finally, a large household travel survey has been collected in Montréal, Canada,

every five years since 1970, and some researchers have used this to compare

travel behaviour in Toronto and Montréal (Roorda et al., 2008). However, it

is not clear whether supporting level of service information is available for this

data, and a complication is that the relevant documentation is in French. Were

level of service data to be available, a useful addition to the analysis presented in

this thesis would be for a Francophone analyst to repeat and extend the analysis

using the Montréal data.
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3.2 Toronto

The Toronto data is ideally suited to transferability analysis because large house-

hold interviews have been conducted repeatedly, collecting the same set of in-

formation at different points in time. Furthermore, supporting level-of-service

and attraction data is available for each year of data. The following sub-sections

describe the choice, level-of-service and attraction data that was assembled for

the modelling and transferability analysis.

3.2.1 Choice data

Toronto Transportation Tomorrow survey

The Transportation Tomorrow Survey (TTS) is a comprehensive travel survey

conducted in the Greater Toronto and Hamilton Area (GTHA) that has been

collected once every five years2. The first TTS, conducted in 1986, obtained

completed interviews for a 4.2% random sample of all households in the GTHA.

The 1991 survey was a smaller update of the 1986 survey focusing primarily on

those geographic areas that had experienced high growth since 1986. The survey

area was expanded slightly to include a band approximately one municipality

deep surrounding the outer boundary of the GTHA for the purpose of obtaining

more complete travel information in the fringe areas of the GTHA.

The 1996 TTS was a new survey, not an update. Agencies outside of the GTHA

were invited to participate. The survey area was expanded to include the Regional

Municipalities of Niagara and Waterloo, the counties of Peterborough, Simcoe,

Victoria and Wellington, the Cities of Barrie, Guelph, and Peterborough and the

Town of Orangeville.

2www.dmg.utoronto.ca/transportationtomorrowsurvey/index.html, accessed 20/12/10.
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The 2001 TTS was essentially a repeat of the 1996 survey. The survey area

was the same as in 1996 except for the exclusion of the Regional Municipality of

Waterloo and inclusion of City of Orillia and all of the County of Simcoe.

Similarly, the 2006 TTS was another repeat of the 1996 survey with approximately

150,000 completed interviews. The survey area was the same as in 2001 except

for the inclusion of the Regional Municipality of Waterloo, the City of Brantford

and the County of Dufferin.

Table 3.1 summarises the samples sizes in each TTS survey, detailing the number

of households, persons and trips recorded. Table 3.1 also details the household

sample rate, and the total number of households and persons in the survey areas.

It is noted that for the 1991 TTS differential sampling rates were used for high

and low growth areas.

Table 3.1: TTS sample sizes and survey area populations

1986 1991 1996 2001 2006

TTS households 61,653 24,507 115,193 136,379 149,631
TTS persons 171,086 72,496 312,781 374,182 401,653

TTS trips 370,248 157,349 657,951 817,744 858,348

% households 4.2% 5.0% high 5.0% 5.6% 5.2%
sampled 0.5% low

Total households 1,466,080 1,709,557 2,317,190 2,417,513 2,871,245

Total persons 4,062,642 4,729,193 6,285,142 6,529,615 7,705,341

It is noted that Toronto household interview data also exists that was collected

back in 1964, and this data has been used by other researchers to investigate

the transferability of mode choice models (Badoe and Miller, 1998). However,

to estimate models of mode-destination choice, level-of-service matrices defining

transport conditions for all possible combinations of origin and destination are

required. Level-of-service matrices of this type were not available for the 1964

data, and therefore it could not be used for this particular analysis.
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Extent of TTS data

As noted above the TTS data collected has changed over time in extent, specifi-

cally the geographical coverage of the data has expanded, and the person, house-

hold, and trip data collected in the TTS has undergone some changes over time.

In order to transfer the base models to the various transfer datasets, it is necessary

to base the transferability analysis upon a dataset definition which is supported

by both the base data and all of the transfer datasets.

The evolution of the geographic extent of the data is summarised in Table 3.2

and illustrated in Figure 3.1 and 3.2.

Table 3.2: Evolution of geographical extent of TTS data

1986 1991 1996 2001 2006

Greater
Toronto &
Hamilton
Area (GTHA)

Greater
Toronto &
Hamilton
Area (GTHA)

Greater
Toronto &
Hamilton
Area (GTHA)

Greater
Toronto &
Hamilton
Area (GTHA)

Greater
Toronto &
Hamilton
Area (GTHA)

One mu-
nicipality
ring around
GTHA

One mu-
nicipality
ring around
GTHA

One mu-
nicipality
ring around
GTHA

One mu-
nicipality
ring around
GTHA

Niagara mu-
nicipality

Niagara mu-
nicipality

Niagara mu-
nicipality

Waterloo mu-
nicipality

Waterloo mu-
nicipality

Counties of
Peterbor-
ough, Simcoe,
Victoria and
Wellington

Counties of
Peterbor-
ough, Simcoe,
Victoria and
Wellington

Counties of
Dufferin, Pe-
terborough,
Simcoe, Vic-
toria and
Wellington

Cities of Bar-
rie, Guelph,
Peterborough
and the Town
or Orangeville

Cities of Bar-
rie, Guelph,
Peterborough
and the Town
or Orangeville

Cities of
Barrie, Brant-
ford, Guelph,
Peterborough
and the Town
or Orangeville
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Figure 3.1: Areas surveyed in TTS data
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Survey Area

2001 only

1996 only

1996 and 2001

1986, 1991, 1996 and 2001

Figure 3.2: Variation in area surveyed by year
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For the transferability analysis, only GTHA data has been used in order that the

same geographic definition applies across both base and transfer datasets, and

therefore level of service data defined for the GTHA area only was required. The

extent of the GTHA area is indicated by the red area in Figure 3.2.

In 1986, bicycle trips were only recorded in the trip data for work and education

trips. From 1991 onwards, bicycle trips were recorded for all travel purposes.

For the home–work transferability analysis it was originally intended that bicycle

trips be included. However, in the processed trip files supplied for this analysis

bicycle trips were not included, and therefore bicycle trips were excluded from

both the home–work analysis3.

Finally, it is noted that the availability of free parking at work information was

not collected in the 1986 surveys.

Another consideration is differences in sampling strategy. The 1986 and 1996

surveys were based on a random selection of households throughout the survey

area (4.2% in 1986, 5.0% in 1996) (Data Management Group, 2008). However,

the 1991 survey used different sampling rates for high and low growth areas.

The target was 5% in the high growth areas and 0.5% in the low growth areas

such as the City of Toronto. The 2001 and 2006 surveys sampled around 5% of

households with the sample selection based on Forward Selection Areas, based

on the first three characters of the post code. Given that the 1991 survey is

considerably smaller than the other surveys it was decided to drop the 1991 data

from the transferability analysis.

Table 3.3 summarises the data definition for the transferability analyses.

3Except for the 2001 data, where bicycle trips are coded together with walk trips.
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Table 3.3: Toronto home–work transferability analysis data definition

Geographical area Greater Toronto and Hamilton area
Years of data 1986, 1996, 2001, 2006
Bicycle trips Excluded, except 2001 where merged with walk
Free parking at work Missing for 1986

TTS sample sizes

Given the dataset definitions provided in Table 3.3, Table 3.4 details the samples

of trips available for the transferability analyses.

Table 3.4: TTS sample sizes for transferability analysis

1986 1996 2001 2006

TTS home–work trips 52,154 63,865 79,371 72,893

TTS households 61,453 88,898 113,608 112,486
TTS persons 171,086 243,286 315,202 305,696

Expanded households 1,466,080 1,805,021 1,975,155 2,160,059
Expanded persons 4,062,642 4,926,367 5,386,137 5,871,885

It can be seen that the samples of home–work trips available for analysis are

substantial, with at least 50,000 records available from each of the four years of

data.

It had been hoped to also use samples of home-other travel trips from the TTS

data so that the transferability of home–other travel models could be compared to

the transferability of home–work models. However, while samples of home–work

trips had already extracted for the development of mode choice models for the

GTHA area, trip samples had not been extracted for other purposes. While it

would be possible to extract these trip samples from the TTS data, resources were

not available in Toronto to extract the data required and therefore the Toronto
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transferability analysis has been undertaken using the home–work trip samples

alone.

The expanded person totals show that the population of the GTHA has grown

by 45% between 1986 and 2006. This rapid growth is relevant for the transfer-

ability analysis, because it means many people have migrated into the GTHA

region since 1986. The assumption when applying models developed using 1986

data to predict travel behaviour in later years is that the parameters estimated

to explain the travel choices of the 1986 GTHA population apply equally to new-

comers to the GTHA region. Similar assumptions apply to models transferred

from different base years. The population of Toronto is forecast to continue to

grow rapidly, with an additional 2.6 million people and 1.4 million jobs expected

between 2001 and 2031 (Jewell and Wyatt, 2013), and so models estimated from

current residents need to be transferable to those who migrate into Toronto over

the coming decades.

3.2.2 Level of service and attraction data

The other data used in the model estimations is level-of-service and attraction

data. Both types of data are defined using the model zoning system, and so this

section starts with a discussion of the changes to the model zoning system over

the period that TTS data is available, and considers the likely impact of these

changes on the transferability analyses.

Changes to model zoning system

The number of travel zones used in the models varies between the four different

years of TTS data, as additional travel zones have been added over time. Table

3.5 summarises the changes in the number of travel zones over time.
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Table 3.5: Number of travel zones by year of TTS survey

Year Travel Increase
zones from 1986

1986 1404 n/a
1996 1677 19.4%
2001 1717 22.3%
2006 1845 31.4%

The 1404 zones used to model the 1986 data are defined in the 1991 GTHA

zoning system. The 1996 data is modelled using the 1996 GTHA zoning system,

which relative to the 1991 GTHA zone system incorporated substantial revisions

to the traffic zones for the City of Toronto, York Region and Durham Region,

and more minor changes to the traffic zones in the Peel and Halton Regions

(Data Management Group, 1998). The 2001 data is modelled using the 2001

GTHA zone system. This is similar to the 1996 GTHA zone system, but with

some minor modifications in the City of Toronto, Peel Region and Halton Region

(Data Management Group, 2003). Finally, the 2006 data is modelled using the

zoning system developed for the Hurontario model. The Hurontario zone system

is based on the 2001 GTHA zone system, but contains more detailed zoning in

the Hurontario corridor, and some zones in Hamilton and Durham have been

aggregated into larger zones. Thus outside of the Hurontario corridor, the zone

systems used to model the 1996, 2001 and 2006 datasets contain similar levels

of detail, whereas the zone system used to model the 1986 data is slightly more

aggregate.

The use of a more detailed zoning system should result in more accurate level-

of-service measures, particularly when considering access to local transit and

distances for the walk mode. Therefore, ceteris paribus we would expect more

accurate level-of-service measures for the 1996, 2001 and 2006 datasets relative

to the 1986 data.
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Level-of-service data

The transferability analysis has been undertaken for models of simultaneous mode

and destination choice. The base and transfer choice data files supplied provide

LOS for the chosen destination, but in order to model destination choice for a

trip with a given origin zone it was necessary to have LOS information for all

possible destination zones. This implied the need for LOS matrices for all possible

combinations of origin and destination zone. These LOS matrices define the LOS

based according to the results generated by assignment models, rather than by

collecting observed LOS from individuals in the TTS data.

Fortunately, significant analysis has already been undertaken at the University of

Toronto to allow mode-choice models to be developed for each year of the TTS

data. As a result of this previous work, LOS data was readily available for each of

the four years of TTS data selected for analysis. The 1996 LOS data is described

in more detail in Miller (2001). The combination of large repeated cross-sectional

surveys collected over a 20-year period with readily available LOS data for each

survey meant that the Toronto data provided the ideal dataset for investigating

temporal transferability.

Consistent with standard transport planning practice, LOS was generated sep-

arately for highway and transit modes. The LOS supplied so far is for a peak

hour assignment to an AM-peak network, which has been used in the modelling

under the assumption that all commute travel is made during peak times. LOS

has been supplied separately for each modelled year.

The highway assignments have been undertaken in Emme/2 for each modelled

year. The following LOS information is available for an AM-peak period assign-

ment:

• travel time (mins)
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• travel cost (kilometre cost plus any toll, $)

• toll ($)

It is noted that a fixed cost per kilometre is used to calculate the distance related

component of car costs. As a result, the distance in km can be inferred by sub-

tracting the toll from the total travel cost, and dividing by the cost per kilometre

which is constant for a given year. Tolls only exist in the 2006 networks. The

fixed costs per kilometre are summarised in Table 3.6. The costs are all presented

in 1986 prices so that the impact of real growth in prices over time is clear.

Parking costs are supplied separately in the form of average daily parking costs

by zone. These costs are zero for most zones, with non-zero costs defined for

the CBD and other central areas only. Consistent with home–work mode-choice

models developed in Toronto, half the average daily parking cost at the destina-

tion zone has been assumed in the home–work models. This approach assumes

half of individuals have to pay the parking costs, and the other half of individ-

uals have access to free parking at their destination. The mean average parking

costs represented in the models for zones with non-zero parking costs are also

summarised in Table 3.6.

Table 3.6: Car costs, 1986 prices

1986 1996 2001 2006

Distance related cost (cents/km) 4.70 4.76 5.43 8.30
Change relative to 1986 n/a 1.3% 15.6% 76.5%

Zones with non-zero parking cost 6.1% 7.5% 81.0% 7.2%
Mean parking cost in these zones ($) 2.37 1.92 1.18 1.92

Change relative to 1986 n/a -18.9% -50.2% -18.7%

It can be seen that real car costs per kilometre rose slowly between 1986 and

2001, but then there was a significant increase in 2006 due to increases in fuel

prices. Parking costs declined by nearly 20% between 1986 and 1996, and then
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remained essentially constant in real terms between 1996 and 2006. The parking

cost data that was supplied for 2001 is very different to the other years, with

non-zero parking costs defined in the majority of zones, rather than just central

zones. As a result, the average contribution that parking costs make to total car

costs is significantly higher in the 2001 data.

The transit assignments have been undertaken in Emme/2. The following infor-

mation has been supplied for an AM-peak period assignment:

• transit fare ($)

• transit in-vehicle time (mins)

• transit wait and transfer time (mins)

• transit walk access and egress time (mins)

Treatment of inflation

All costs in the models have been expressed in 1986 prices. To convert costs into

1986 prices, Consumer Price Indices (CPI) values assembled by Statistics Canada

have been used (Statistics Canada, 2008). The CPI values for the years of TTS

data that have been modelled are summarised in 3.7.

Table 3.7: CPI values (2002=100)

Year CPI

1986 65.6
1996 88.9
2001 97.8
2006 109.1
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Attraction data

The attractiveness of each destination alternative is defined using an attraction

variable, which for commute trips is total employment. The employment infor-

mation was taken from Census journey to work data, which is collected every 5

years in Toronto, and as such is expected to provide an accurate estimate of the

actual number of jobs in each travel zone.

3.2.3 Processing steps

The choice data was supplied by Prof. Eric Miller of the University of Toronto.

The data was supplied in text file format as home–work trip records with limited

person and household information appended. These trip files had been used

previously for the development of home–work mode choice models.

Some processing was required to convert the choice data files into a format suit-

able for use by the ALOGIT estimation software, where each line of input data

must contain the specified number of variables in numeric format. The files were

also sorted by home zone to facilitate the appending of level-of-service informa-

tion.

The level-of-service data was also received as text files, and so processing steps

were setup to convert the data to the matrix format used by the ALOGIT esti-

mation software.

The attraction data was supplied as text files which could be read directly into

ALOGIT without the need for intermediate processing.
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3.3 Sydney

3.3.1 Choice data

The Sydney choice data has been taken from two sets of household interview

data. The first is a large household interview survey collected in 1991, named

the Household Interview Survey (HIS). The HIS data was collected between 30th

September 1991 and 3rd October 1992. Face to face surveys were undertaken

which recorded all travel made by all household members during a 24-hour period,

and each day of the year was equally represented in the survey (Transport Study

Group, 1996).

From 1997 onwards, the data collection strategy in Sydney was changed and a

continuous survey was begun. The continuous survey data is named the House-

hold Travel Survey (HTS), and is organised in one year waves which run from

July to June the following year. The HTS survey collected similar trip, person

and household information to the HIS survey, and was again collected using face

to face interviews (Bureau of Transport Statistics, 2012).

In both the HIS and HTS data, detailed person and household information has

been collected, allowing the development of more detailed socio-economic segmen-

tations than are possible with the Toronto TTS data. A particular advantage of

the Sydney data is that incomes were collected and therefore the Sydney data

can be used to investigate whether mode-destination models that segment cost

sensitivity with income are more transferable than models with no income seg-

mentation. For this analysis, four waves of HTS data collected between July 2004

and June 2008 have been used to represent 2006 travel choices. This allows model

transferability to be assessed over a 15 year transfer period.

Both the HIS and HTS data were collected across the Sydney Statistical Division
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(SD), the Newcastle Statistical Sub-Division (SSD) to the north, and the Illawarra

SD to the south. However, the tour samples and LOS data for the HIS data were

only available for households interviewed in the Sydney SD. Therefore for the

transferability analysis, only data from the Sydney SD is included so that the

spatial definition is consistent between the years of data. Figure 3.3 illustrates

the area surveyed in the HIS and HTS data, and in particular the extent of the

Sydney SD that forms the study area for the Sydney transferability analysis.

In Figure 3.3, GMA is Greater Metropolitan Area, and NSW is New South Wales.
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Table 3.8 summarises the samples sizes and study area populations. The 1991

household and person totals are taken from Castles (1993). This publication

gives figures for occupied dwellings rather than households and will therefore

underestimate the number of households as some dwellings will contain more

than one household.

Table 3.8: Sydney SD sample sizes for transferability analysis

1991 HIS 2006 HTS

Home–work tours 5,111 5,173
Home–other travel tours 8,717 10,464

Sampled households 9,955 10,423
Sampled persons 28,398 28,559

Total households 1,222,568 1,572,117
Total persons 3,538,749 4,215,393

The total population has grown by 19% between 1991 and 2006. While this is not

as high as the 46% growth observed in the Toronto population between 1986 and

2006, it still represents a high level of population growth compared to European

cities.

3.3.2 Level of service and attraction data

The other data used in the model estimations is LOS and attraction data. Both

types of data are defined using the model zoning system, and so this section

starts with a discussion of the changes to the model zoning system between

1991 and 2006 data, and considers the possible impact of these changes on the

transferability analyses.
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Changes to zoning system

As illustrated in Table 3.9, the number of model zones used to represent the

Sydney SD increased by a factor of 2.7 between 1991 and 2006.

Table 3.9: Number of travel zones by year of Sydney survey

Year Travel Increase
zones from 1991

1991 845 n/a
2006 2,277 170%

The use of a substantially more detailed zoning system for the 2006 data should

result in more accurate LOS measures, especially for access to public transport

modes, and for the walk and cycle modes where tour lengths are lower. However,

it has been suggested by researchers in Sydney that the change in zoning system

results in lower distances on average. Specifically, Xu and Milthorpe (2010)

analysed Census Journey to Work data between 1981 and 2011 and found a

steady increase in mean tour length over time except over the 2001 to 2006

interval which was the period over which the move to the much more detailed

zoning system was made.

The Transport Data Centre at the New South Wales Department of Transport

have provided more detail on this issue. For the 2006 network, there were gen-

erally four connectors per model zone whereas the 1991 network is understood

to have had one to two. The lower number of connectors in the 1991 network

will tend to result in shorter tours, particulary for short distance tours where the

connector length is a higher fraction of the total distance.

The impact of these changes is illustrated in 3.10 and 3.11, which show the

changes in the mean distances by mode, with distances for all modes measured

using the highway distance skims impacted by the zone connector issue.
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Table 3.10: Sydney home–work distances by mode (km)
Mode 1991 2006 change

car driver 33.2 29.4 -11%
car pass. 26.1 20.9 -20%

train 62.7 51.6 -18%
bus 19.7 18.7 -5%
bike 12.9 11.4 -11%
walk 4.3 3.1 -28%
taxi 15.1 17.8 18%

Total 33.8 29.7 -12%

Table 3.11: Sydney home–other travel distances by mode (km)
Mode 1991 2006 change

car driver 16.9 13.1 -22%
car pass. 19.4 14.4 -26%

train 55.8 46.3 -17%
bus 18.1 11.3 -38%
bike 8.2 6.0 -26%
walk 4.2 2.2 -48%
taxi 16.4 12.2 -26%

all modes 16.4 11.9 -27%

It can be seen that with the exception of taxi for home–work, mean distances

measured by the highway network consistently reduce. Furthermore, the reduc-

tions are greater for home–other travel where tours are shorter, and for modes

such as walk and cycle where tour distances are shorter. Furthermore, Transport

Data Centre (2008) present analysis of the mean trip lengths in the same 1991

and 2006 data using a different set of distances measures that does not show the

same reduction in mean trip distance.
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Level of service data

To develop simultaneous models of mode and destination choice from the Sydney

data it was necessary to assemble LOS measures for highway and public transport

modes. These were supplied in the form of matrices defining the LOS between

each pair of travel zones in the Sydney SD. LOS was available from 1991 and

2006 Emme network models developed by the Bureau of Transport Statistics at

Transport New South Wales, which they kindly made available for use in this

research. The LOS and other information was also readily available for the HIS

data because mode-destination models were developed from a combination of

the HIS data and the early waves of the HTS data in 2000 (Milthorpe et al.,

2000). Similarly LOS and other information was available for the 2004–2008

data because mode-destination models have recently been developed using this

data (Fox et al., 2011).

For highway, LOS measures were available separately by four time periods:

• AM peak, 07:00–08:59

• inter-peak, 09:00–14:59

• PM peak, 15:00–17:59

• off-peak, 00:00–06:59, 18:0–23:59

To take account of impact of congestion in the periods adjacent to the peaks, LOS

for the ‘shoulder’ periods of 06:00–06:59, 09:00–09:59, 14:00–14:59 and 18:00–

18:59 was calculated by taking an average of the LOS in the period adjacent the

peak and the LOS in the peak.

The following LOS information was supplied for each of the four time periods:

• free flow travel time (mins)
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• congested travel time (mins)

• distance (km)

• toll ($)

The modelling work in 2000 to develop mode-destination models from the HIS

data used fixed costs per kilometre to model fuel and non-fuel car costs, and those

values have been retained in this analysis. The models developed in 2000 were

extensively updated in 2010 (Fox et al., 2011), and in the updated models a more

detailed advanced approach was used to calculate fuel costs as a function of the

mean speed for the OD pair. However, parameter values for the more detailed

approach were not available for 1991. If the more detailed approach was used

for 2006 but not 1991, this could bias the transferability analysis. Therefore, the

average fuel cost per kilometre given by the detailed approach was calculated

from the estimation samples, and then this fixed cost per kilometre was used

in the transferability analysis models. Table 3.12 summarises the car costs per

kilometre used in the models.

Table 3.12: Car costs, 1986 prices

1991 2006 change

Fuel cost (cents/km) 6.55 12.0 83.6%

It can be seen that real car costs have increased substantially between 1991 and

2006, consistent with the trend in the Toronto data observed in Table 3.6.

For public transport (PT) modes, only AM peak assignments were available, and

it is has been assumed that these can be used to model PT trips made at all

times of the day. This assumption is more reasonable for commute tours, which

tend to be made during the peak periods, than for discretionary travel, which is

more likely to take place during the inter-peak and off-peak periods. LOS from

two PT networks was used in the modelling. The first is a bus-only network,
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used to model PT tours where the only PT mode used in bus. The second is all

all PT modes network, which includes rail, light rail and ferry modes. Note that

bus can form an access or egress mode in the all PT modes network.

The following LOS information was supplied from the bus-only network:

• fare ($)

• in-vehicle time (mins)

• walk access and egress time (mins)

• first wait time (mins)

• other wait time (mins)

• boardings

For the all PT modes network, the following information was supplied:

• fare ($)

• rail in-vehicle time (mins)

• light rail in-vehicle time (mins)

• ferry in-vehicle time (mins)

• bus in-vehicle time (mins)

• walk access and egress time (mins)

• first wait time (mins)

• other wait time (mins)

• boardings
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Treatment of inflation

All costs in the models have been converted into 1991 prices. The CPI values for

the years of data that have been modelled are summarised in Table 3.13.

Table 3.13: CPI values (1989/90=100)

Year CPI

1991 106.7
2004/05 147.3
2005/06 151.0
2006/07 155.8
2007/08 159.5

Attraction data

The attraction data for the commute models is total employment. For the other

travel models, a combination of different attraction variables were used, popula-

tion and service employment. All of the attraction data was assembled by the

Bureau of Transport Statistics.

3.3.3 Processing steps

The choice data was supplied by Frank Milthorpe at Transport Data Centre,

Transport for New South Wales. The choice, level-of-service and attraction data

had already been processed into a format suitable for model estimation, and so

unlike the Toronto data discussed in Section 3.2.3 there was no need to establish

interim processing steps4.

4Some of these interim processing steps were in fact setup by the author while working on
these models for RAND Europe who developed the models on behalf of Transport Data Centre.

110



3.4 Comparison of Sydney and Toronto data

There are a number of differences between the Toronto and Sydney datasets that

impact on the transferability analyses presented in subsequent chapters.

While the TTS data recorded trips made by all travel purposes, only the com-

mute tours were available for this analysis. By contrast, tours for all purposes

were available for the Sydney data. Therefore the analyses comparing the trans-

ferability of commute and non-commute travel presented in Chapters 5 and 6

were made using the Sydney data alone.

The Toronto data was also limited in terms of the socio-economic data recorded,

and in particular by the omission on income from the survey. By contrast, the

Sydney data collected incomes allowing income segmented models to be devel-

oped, and the Sydney data also recorded more socio-economic information allow-

ing richer model specifications to be developed.

Only four modes have been modelled in the Toronto data, in part because the

modes recorded varied between the different years and a set of modes common

to all years was required for the transferability analysis, and in part because of

a decision to omit park-and-ride trips from the analysis on the basis that the

mode share for these trips did not justify the complexity of including them in the

analysis. Seven models are represented in the Sydney data, the key difference is

that train and bus are represented as separate modes, the other two additional

modes of cycle and taxi account for just 1% of tours between them.

A key advantage of the Toronto data is that four separate years of data are

available for analysis, allowing temporal transfers to be made for transfers ranging

from 5 to 20 years. By contrast, only two years of Sydney data are available

allowing only a 15 year transfer period. This means that the analysis of how

transferability changes with transfer period presented in Chapters 5 and 6 have
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been undertaken using the Toronto data, and similarly the models that pooled

data from different years that are presented in Chapter 7 have been developed

using the Toronto data alone. The ability to make transfers over a long 20 year

period was the reason that the Toronto data was used to make the random taste

heterogeneity tests presented in Chapter 8.
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Chapter 4

Model development

This chapter starts with a brief description of the software used for the model

estimation work, before going to on describe the development of the nested logit

models that have been used for the transferability analyses presented in Chapters

5 to 7. The work to develop models incorporating random taste heterogeneity is

described later in Chapter 8.

Section 3.2 describes the Toronto data that was used to allow transferability anal-

ysis. It starts by describing the mode-destination choice data, goes on to describe

the other data assembled including level of service data defining travel costs and

times by the various modes modelled, and then concludes with a description

of the commuter model specification that was developed for the transferability

investigations.

Section 3.3 presents the corresponding information for the Sydney data, describ-

ing both the commute and home–other travel model specifications that were

developed for the Sydney transferability analyses.
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4.1 Software

The model estimation work was undertaken using the ALOGIT software1. The

ALOGIT software was chosen because the author has more than a decade of

experience in using the software, and because it is particularly well suited to

estimating models with large numbers of alternatives such as mode-destination

choice models, both in terms of data handling capabilities and in terms of speed.

A further advantage is that one of the author’s supervisors, Andrew Daly, is the

author of the software, and his help proved particularly valuable when estimating

models with randomly distributed parameters that pushed the software to its

limits.

Some of the data processing prior to model estimation was undertaken using

Microsoft Excel, and Excel was also used for analysis and interim tabulation of

model results.

4.2 Toronto

4.2.1 Mode and destination alternatives

In order to make tests of model transferability, it was necessary to specify modal

alternatives that could be defined by each year of the TTS survey included in

the analysis. Specifying the modal alternatives was complicated by the fact that

the transit modes recorded in the various TTS surveys have varied from year to

year. Table 4.1 summarises the modes recorded for the home–work samples.

With the exception of 2001, transit has been split into local transit, subway

with car access, GO-Rail with transit access and GO-Rail with car access. Local

1www.alogit.com.
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Table 4.1: home–work mode shares by year of TTS survey

Mode 1986 1996 2001 2006

car driver 34,211 65.6% 44,528 69.7% 55,966 70.5% 50,032 68.6%
car passenger 4,755 9.1% 5,853 9.2% 6,789 8.6% 5,775 7.9%
local transit 10,283 19.7% 9,230 14.5% 12,603 15.9% 10,604 14.5%

walk 1,155 2.2% 1,389 2.2% 808 1.0% 2,159 3.0%

Modelled 50,404 96.6% 61,000 95.5% 76,166 96.0% 68,570 94.1%

subway, car access 692 1.3% 741 1.2% 1190 1.6%
GO-Rail, transit access 426 0.8% 499 0.8% 111 0.2%

GO-Rail, car access 632 1.2% 1418 2.2% 2411 3.3%
transit, car access 3198 4.0%

premium bus 151 0.2%
bike 207 0.3% 151 0.2%

Not modelled 1,750 3.4% 2,865 4.5% 3,198 4.0% 4,323 5.9%

transit can be modelled directly using Emme LOS, but for the other transit modes

there is a need to model choice of access station, which results in a more complex

treatment of LOS, with origin to access station and access station to destination

legs represented separately. This results in a substantial increase in model run

times, and given that these modes account for a relatively small percentage of

the total data, and are defined differently in 2001, it was decided to exclude

them from the modelling. It is noted that the 2001 local transit definition will

include transit access to GO-Rail trips which are excluded in other years, which

explains why the local transit share in 2001 is slightly higher than the 1996 and

2006 shares. Premium bus is only recorded in 2006, and accounts for just 0.2% of

data, and has therefore been excluded. Finally, bike is only recorded separately in

the 1996 and 2006 datasets, and has therefore been excluded from the modelling.

However, in the 2001 data bike trips were recorded together with walk and so

could not be excluded, and so the walk share presented for 2001 is actually for

walk plus bike. This makes the low walk share in the 2001 data relative to the

other years appear suspicious2.

2The low walk share in the 2001 data has been discussed with Eric Miller who coordinated
the supply of the TTS data. Eric agrees the share looks suspiciously low but does not have an
explanation for why this is so. There are other areas where the 2001 data is also anomalous, for
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The models included in the models are therefore car driver, car passenger, local

transit and walk which account for at least 94% of observations in each year of

TTS data. The availability conditions for these four modes were specified as

follows:

• car driver (CD) is available if the individual has a licence and their house-

hold owns at least one car

• car passenger (CP) is available to all individuals

• local transit (LT) is available if there is a transit path with non-zero transit

in-vehicle time between the origin and destination zone

• walk (WK) is available to all individuals

These availability conditions are consistent with those that have been used to

develop mode choice models used by planning agencies in the study area (Miller,

2007), though Miller additionally imposes a 150 minute total travel time in one

direction upper limit on local transit and a 3km upper limit on walk trips. The

walk distance parameter in the model specifications tested means that upper

limits are not required as availability conditions as longer tours have a lower

probability of choice.

Destination alternatives are available if there is at least one job in the destina-

tion zone. Setting alternatives that are rarely or never chosen to be unavailable is

expected to yield better parameter estimates. Furthermore, the availability con-

ditions should improve model transferability because they provide a mechanism

for taking account of future changes. For example, growth in licence holding and

car ownership over time would be expected to result in increases in the car driver

share ceteris paribus.

The size variable in the models is total employment. Total employment is used

example the high fraction of zones with non-zero parking costs highlighted in Table 3.6.
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because the number of commuters travelling to a zone is expected to be directly

proportional to the number of jobs in that zone.

4.2.2 Model specification

The model specification and associated estimation code was developed by the

author alone. However, the basic design of the model draws heavily on standard

RAND Europe modelling practice summarised in Fox et al. (2003).

The model specifications used to make the transferability tests were developed by

making a series of tests to develop model specifications that best explained the

mode-destination choices observed in the 1986 TTS data. Parody (1977), Train

(1978) and Badoe and Miller (1995a) all demonstrated that the temporal transfer-

ability of mode choice models improves with model specification. To investigate

whether this finding holds for models of mode-destination choice, and to facilitate

analysis of changes in cost sensitivity over time, three model specifications have

been developed:

• ‘sparse’ – linear and log cost terms, level of service terms, and mode and

destination constants

• ‘car avail’ – sparse specification plus car availability terms

• ‘detailed’ – car avail specification plus socio-economic terms

Fox et al. (2009) found that estimating separate linear and log cost terms could

yield a significant improvement in model fit relative to linear-only and log-only

cost specifications. Furthermore, this specification can yield more plausible elas-

ticities than a pure log-cost formulation which usually gives a better fit than a

pure linear-cost formulation, but has the disadvantage of giving low kilometrage
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elasticities3. Therefore separate linear and log cost terms were tested on the TTS

data, and were found to be significant in all three specifications.

Daly and Carrasco (2009) suggested that the influence of the log cost term, which

gives rise to an increase in value of time with distance, is in part as a result of

significant heterogeneity of preference leading to self-selection, so that value of

time does not necessarily increase with distance at an individual level. They

presented empirical analysis in support of this hypothesis in their paper, and this

issue is discussed in more detail in Chapter 9.

No intrazonal tours, i.e. tours where the origin and destination zones are the

same, were included in the sample of home–work tours used for model estimation

and therefore intrazonal destinations were set to be unavailable. As discussed

in section 2.1.1, in a multinomial model the IIA property means that consistent

estimates of the model parameters can be obtained from a sub-set of the model

alternatives. However, as discussed below the final model specifications are not

multinomial and therefore the consistency condition does not strictly hold.

Two alternative model structures were tested, destinations above modes, and

modes above destinations. In the modes above destinations structure, the struc-

tural parameter was significantly greater than one (1.18 with a t-ratio relative

to a value of 1 of 8.4) and therefore the structure could be rejected. For the

destinations above modes structure, the structural parameter was significantly

lower than one, and therefore this structure was adopted.

Only a single PT mode has been modelled, and therefore it was not possible to

test a structure with a PT nest (in models with a number of PT modes, the

public transport models are often placed in a nest as these modes are closer

substitutes than non-PT modes). A car nest was tested to investigate whether

3In a pure log-cost formulation, a uniform percentage increase to the cost of each destina-
tion results in the utility of each destination increasing by the same amount, and therefore no
destination choice response is observed in an elasticity test.
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car driver and car passenger are closer substitutes than the other modes, but the

nest parameter was significantly greater than one and therefore the structure was

rejected to guarantee consistency with utility maximisation. Thus in the final

model structure the four modal alternatives are at the same level in the choice

structure.

The final model specifications are defined in Table 4.2. On the left hand side of

the table, the different model parameters β are defined. The columns for each

mode define the data items x that each of the model parameters are multiplied

by. For constant terms, the x values are simply 1 indicating that the constant

is applied to that mode. The relatively small number of socio-economic terms

added in the detailed specification reflects the fact that just two socio-economic

variables, age and gender, were included on the estimation files. All costs are in

cents and all times are in minutes.

The age bands used on the estimation file supplied for the 2001 TTS data differ

to those used for the other survey years. As a result, the age terms identified in

the detailed specification cannot be defined using the 2001 estimation file, and

so the detailed specification cannot be estimated on, or transferred to, the 2001

data.

4.2.3 Utility functions

The final Toronto model uses a destinations and modes structure. The mode-

destination utilities Vm′d for the detailed model specification that enter into Equa-

tion 2.15 are defined in Table 4.3. The size functions Sd′ that enter into Equation

2.14 at the destination level in the structure are defined separately.

where: Auto Cost(d) is the car cost to destination d in cents

Auto T ime(d) is the travel time to destination d in minutes
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Table 4.2: Toronto model specifications

Parameter Car driver Car pass. Local transit Walk
Attraction term

TotEmp jobs jobs jobs jobs jobs
Cost terms

Cost linear cost car cost LT fare
LogCost log cost ln(car cost) ln(LT fare)

LOS terms
CarTime car IVT IVT IVT
TranIVT transit IVT IVT
TranWait transit wait time wait time
TranWalk transit walk time walk time
APDist car pass. distance distance
WalkDist walk distance distance

Destination terms
CBDDest CBD destination 1 1 1 1
CBDLT CBD destination 1

Mode constants
AP car passenger 1
LT local transit 1
WK walk 1

Car availability (car avail and detailed spec.s only)
AD2pVeh 2+ vehicles 1
AP1Veh 1 vehicle 1
AP2pVeh 2+ vehicles 1

Socio-economics (detailed spec. only)
ADAge1617 aged 16 to 17 1
ADAge1825 aged 18 to 25 1
ADAge2630 aged 26 to 30 1
ADMale male 1
WkMale male 1

where: LT denotes local transit, IVT denotes in-vehicle time

CBD(d) is 1 if destination d is located in the CBD, 0 otherwise

NV eh is the number of vehicles owned by the household

female is 1 is the individual is female, 0 otherwise

age is the age of the individual in years

Hway Dist(d) is the highway distance to destination d in kilometres
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Table 4.3: Toronto detailed model specification utility functions
Mode Parameter β Variable X Variable type

Car driver Cost Auto Cost(d) cost
LogCost log(max(Auto Cost(d), 1)) cost
AutoTime Auto Time(d) level-of-service
CBDDest CBD(d) constant
AD2pVeh ifge(Nveh, 2) socio-economic
ADmale ifeq(female, 0) socio-economic
ADage1617 ifin(age, 16,17) socio-economic
ADage1825 ifin(age, 18,25) socio-economic
ADage2630 ifin(age, 26,30) socio-economic

Car passenger AP constant
AutoTime Auto Time(d) level-of-service
APDist Hway Dist(d) level-of-service
CBDDest CBD(d) constant
AP1Veh ifeq(Nveh, 1) socio-economic
AP2pVeh ifge(Nveh, 2) socio-economic

Local transit LT constant
Cost Tran Fare(d) cost
LogCost log(max(Tran Fare(d), 1)) cost
TranIVT Tran IVT(d) level-of-service
TranWalk Tran Walk(d) level-of-service
TranWait Tran Wait(d) level-of-service
CBDDest CBD(d) constant
CBDLT CBD(d) constant

Walk Wk constant
WalkDist Hway Dist(d) level-of-service
CBDDest CBD(d) constant
WkMale ifeq(female, 0) socio-economic

Tran Fare(d) is the transit fare to destination d in cents

Tran IV T (d) is the transit in-vehicle time to destination d in minutes

Tran Walk(d) is the transit walk time to destination d in minutes

Tran Wait(d) is the transit wait time to destination d in minutes
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4.2.4 Model results

The model results for the detailed model specification are given in Table 4.4. In

Table 4.4, in each column the parameter value β is presented on the left and

the t-ratio for the parameter is presented on the right. The t-ratio is given by

the ratio β/σ where σ is the standard deviation of the parameter estimate. For

model parameters, the t-ratios define the significance of the parameter relative

to a value of zero. For the structural parameters and the scale parameters the

t-ratios have been presented relative to a value of one.

All costs in the models are defined in 1986 prices and furthermore adjustments

have been applied to account for real growth in incomes relative to 1986 val-

ues. Furthermore the parameters have been adjusted to take account of scale

differences between the different years of data. These procedures are described

in detail in Section 5.1 and 5.2 respectively.

Model results for the ‘sparse’ and ‘car avail’ model specifications are presented

in Appendix B.

122



T
a
b

le
4.

4:
H

om
e–

w
or

k
m

o
d

el
re

su
lt

s,
d

et
ai

le
d

m
o
d

el
sp

ec
ifi

ca
ti

on
H

W
M

D
19

86
C

H
W

M
D

19
96

C
D

X
H

W
M

D
20

06
C

L
o
g-

li
ke

li
h

o
o
d

-3
06

,3
65

.0
-3

65
,9

42
.4

-4
11

,8
33

.4
O

b
se

rv
a
ti

o
n

s
50

,2
54

60
,2

41
64

,9
59

L
L

p
er

ob
s

-6
.0

96
-6

.0
75

-6
.3

40

C
os

t
p

ar
am

et
er

s
L

o
g
C

os
t

-0
.3

58
-2

2.
9

-0
.5

95
-3

2.
8

-0
.3

35
-1

6.
3

C
os

t
-0

.0
01

1
-1

2.
5

-0
.0

00
6

-7
.7

-0
.0

01
6

-2
0.

1

L
ev

el
o
f

se
rv

ic
e

C
ar

T
im

e
-0

.0
42

-4
2.

5
-0

.0
38

-4
1.

7
-0

.0
44

-3
7.

2
T

ra
n

IV
T

-0
.0

28
-4

0.
5

-0
.0

29
-3

8.
2

-0
.0

25
-3

5.
5

T
ra

n
W

ai
t

-0
.0

59
-2

2.
5

-0
.0

51
-2

9.
3

-0
.0

52
-2

5.
6

T
ra

n
W

al
k

-0
.0

27
-1

5.
9

-0
.0

29
-1

1.
1

-0
.0

26
-1

7.
7

A
P

D
is

t
-0

.0
22

-2
7.

4
-0

.0
26

-3
3.

4
-0

.0
30

-3
5.

2
W

a
lk

D
is

t
-0

.6
21

-4
4.

0
-0

.7
12

-4
6.

8
-0

.6
22

-5
0.

3

D
es

ti
n

a
ti

o
n

te
rm

s
C

B
D

D
es

t
0.

51
8

15
.2

0.
66

3
18

.2
-0

.1
35

-4
.5

C
B

D
L
T

0.
14

3
3.

6
0.

17
1

3.
8

1.
01

4
23

.4

M
o
d

e
co

n
st

an
ts

A
P

-4
.3

17
-4

3.
2

-5
.5

73
-5

0.
8

-4
.1

09
-3

8.
9

L
T

1.
02

3
20

.3
1.

57
9

22
.7

1.
05

4
20

.0
W

k
0.

12
5

1.
3

-0
.1

59
-1

.5
0.

83
3

8.
6

S
tr

u
ct

u
ra

l
p

a
ra

m
et

er
T

R
D

M
0.

81
5

56
.4

0.
78

2
56

.2
0.

78
5

49
.5

C
ar

av
a
il

a
b

il
it

y
A

D
2
p

V
eh

1.
32

1
41

.8
1.

65
0

42
.0

1.
70

0
47

.3
A

P
1V

eh
1.

58
0

21
.8

1.
83

1
25

.2
1.

68
2

23
.4

A
P

2p
V

eh
2.

01
9

27
.1

2.
31

5
29

.8
2.

17
3

28
.8

S
o
ci

o
ec

on
om

ic
s

A
D

A
g
e1

61
7

-2
.1

73
-6

.4
-4

.0
69

-4
.9

-3
.2

41
-5

.7
A

D
A

g
e1

82
5

-0
.8

72
-2

5.
2

-1
.0

84
-2

2.
5

-1
.4

63
-3

2.
3

A
D

A
g
e2

63
0

-0
.1

77
-5

.0
-0

.2
43

-6
.0

-0
.3

83
-8

.5
A

D
M

a
le

1.
02

4
37

.8
1.

17
5

38
.6

0.
92

4
33

.0
W

k
M

al
e

0.
27

5
4.

1
0.

15
7

2.
1

0.
15

9
2.

5

A
tt

ra
ct

io
n

te
rm

T
o
tE

m
p

1.
00

0
n

/a
1.

00
0

n
/a

1.
00

0
n

/a

123



4.3 Sydney

4.3.1 Mode and destination alternatives

With the exception of two commmute tours made by air and one by monorail,

and four other travel tours made by air and two by monorail, all of the modes

recorded in the STM data were modelled. Table 4.5 summarises the mode shares

for the home–work samples.

Table 4.5: Sydney home–work mode shares by year

Mode 1991 2006

car driver 3,231 63.2% 3,369 65.1%
car passenger 473 9.3% 328 6.3%

train 762 14.9% 734 14.2%
bus 318 6.2% 415 8.0%

cycle 31 0.6% 32 0.6%
walk 275 5.4% 276 5.3%
taxi 21 0.4% 19 0.4%

Total 5,111 100.0% 5,173 100.0%

Occupancy 1.146 1.097

A modest increase in car driver share is observed between 1991 and 2006, but the

big change is the large reduction in the car passenger share and the consequent

reduction in mean occupancy. The bus share has also increased. These changes

are consistent with those observed by Xu and Milthorpe (2010) who analysed

changes in the Census Journey to Work data over the 1981 to 2011 period, and

including analysis of the 1991 and 2006 datasets.

Table 4.6 summarises the mode shares for the home–other travel samples.

The car driver share has increased at the expense of car passenger, train and bus.

The walk share has also increased slightly.
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Table 4.6: Sydney home–other travel mode shares by year

Mode 1991 2006

car driver 4,647 43.7% 4,918 47.0%
car passenger 3,455 32.5% 3,123 29.8%

train 218 2.0% 176 1.7%
bus 272 2.6% 180 1.7%

cycle 111 1.0% 100 1.0%
walk 1,892 17.8% 1,936 18.5%
taxi 49 0.5% 31 0.3%

Total 10,644 100.0% 10,464 100.0%

Occupancy 1.743 1.635

For home–other travel, transferability tests were also undertaken for three sub-

purposes that collectively sum to total home–other travel:

• serve passenger (travel to pick up or drop up another individual)

• personal business

• leisure (specifically social visits, recreation, entertainment, sport, holiday)

Table 4.7 presents the mode shares by year for these three sub-purposes.

Table 4.7: Sydney home–other travel sub-purpose mode shares by year
Mode Serve passenger Personal business Leisure

1991 2006 1991 2006 1991 2006

car driver 48.9% 55.9% 53.6% 57.5% 37.5% 38.0%
car pass. 36.0% 31.5% 19.0% 19.6% 34.0% 31.6%

train 0.3% 0.4% 3.3% 3.0% 2.8% 2.2%
bus 1.1% 0.3% 5.1% 3.8% 2.8% 2.1%
bike 0.0% 0.0% 0.5% 0.7% 1.8% 1.5%
walk 13.6% 11.8% 17.9% 14.7% 20.4% 24.2%
taxi 0.1% 0.1% 0.6% 0.7% 0.6% 0.3%

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
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It can be seen from Table 4.7 that the mode shares vary across the three sub-

purposes, with car driver usage highest for personal business, but car passenger

use highest for serve passenger and leisure, and with very little public transport

usage for serve passenger travel. Furthermore, the changes in mode share vary

between the sub-purposes, in particular for serve passenger and personal business

the car driver share has increased and the walk share has reduced, whereas for

leisure there has been little change in the car driver share and an increase in the

walk share.

The availability conditions for the seven modelled modes were specified as follows:

• car driver (CD) is available if the individual has a licence and their house-

hold owns at least one car

• car passenger (CP) is available to all individuals

• train (TR) is available if there is a path in the PT assignment with non-zero

train in-vehicle time between the origin and destination zone

• bus (BS) is available if there is a path in the bus-only assignment with

non-zero bus in-vehicle time between the origin and destination zone

• cycle (CY) is available to all individuals

• walk (WK) is available to all individuals

• taxi (TX) is available to all individuals

Destination alternatives are available in the home–work model if there is at least

one job in the destination zone, and available in the home–other travel model if

the population is at least one in the destination zone.

Total employment was used as the size variable in the home–work model as the

number of individuals commuting to each zone is expected to be proportional

to the number of jobs in that zone. For home–other travel, drawing on earlier
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modelling work in Sydney (Fox et al., 2003), multiple size variables were tested

to reflect the heterogenous nature of home–other travel. Population was used to

represent the attractiveness of destinations for sub-purposes like serve passenger

and visiting friends, whereas service employment was used to reflect personal

business travel.

4.3.2 Model specification

The model specification and associated estimation code took as its starting point

existing ALOGIT code that RAND Europe had developed over a number of years

on behalf of the Bureau of Transport Statistics, Transport for New South Wales.

The author modified the code so that identical model specifications were used

for each year of data. Furthermore, for home–other travel the author created

sub-purpose models by filtering the data by sub-purpose.

Consistent with the Toronto specifications described in Section 4.2.2, a number

of model specifications have been tested to investigate whether transferability

increases as models specification improves:

• ‘sparse’ – linear and log cost terms, level of service terms and constants

• ‘car avail’ – sparse specification plus car availability terms

• ‘detailed’ – car avail specification plus socio-economic terms

• ‘detailed & income’ – detailed specification but with cost sensitivity seg-

mented by income

The home–other sub-purpose models were developed using the ‘detailed’ specifi-

cation (i.e. the cost sensitivity terms were not segmented by income) after initial

tests found that the income segmented cost terms were not significantly better

than a single cost term for all of the sub-purposes.
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No LOS was available for PT for intrazonals (i.e. tours with the same origin

and destination zone) and as few PT intrazonals were observed in the data PT

modes were set to be unavailable for intrazonals. For the other modes which use

highway LOS, intrazonals are more frequently observed (particularly for walk),

but once again no level of service was available from the Emme skims. Therefore

intrazonal LOS was imputed using a ‘nearest neighbour’ whereby the nearest zone

by distance on the highway network was identified, and then half of the travel

time and distance to this done was used to calculate the intrazonal LOS.

Two alternative model structures were tested for home–work travel, destinations

above modes, and modes above destinations. In the destinations above modes

structure, the structural parameter was significantly greater than one (1.13 with

a t-ratio compared to a value of 1 of 2.7) and therefore the structure could be

rejected. For the modes above destinations structure, the structural parameter

was significantly lower than one, and therefore this structure was adopted. It is

noteworthy that this is the opposite structure to that identified from the analysis

of the Toronto data despite the fact that the car driver and public transport

shares for home–work travel are similar in the two contexts. This result suggests

that mode-destination model structures are not spatially transferable.

Similar tests were undertaken for home–other travel and again the modes above

destinations structure was accepted, but the reverse destinations above modes

structure was rejected.

The final home–work and home–other travel model specifications are defined in

Table 4.8 and Table 4.9. Note that due to space limitations the separate cost

parameters used by income group in the ‘detailed & income’ specification are

not presented; however these are detailed in the utility functions presented in

Section 4.3.3. On the left hand side of the table, the different model parameters

β are defined. The columns for each mode define the data items x that each of

the model parameters are multiplied by. For constant terms, the x values are
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simply 1 indicating that the constant is applied to that mode. Car competition is

defined as a household where the number of licence holders exceeds the number

of vehicles owned. The passenger opportunity term is applied if the household

owns at least one car and there is at least one other individual in the household

who owns a licence. All costs are in cents and all times are in minutes.
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4.3.3 Utility functions

The utility functions used in the detailed & income specification of the home–

work model are detailed in Table 4.10.

Table 4.10: Sydney home–work detailed & income model specification utility
functions

Mode Parameter β Variable X Variable type

Car driver TotEmp LogEmp(d) attraction
Cost1 CDfact * car cst NT(d) * ifeq(incb, 1) cost
Cost2 CDfact * car cst NT(d) * ifeq(incb, 2) cost
Cost3 CDfact * car cst NT(d) * ifeq(incb, 3) cost
LogCost log(max(CDfact*car cst NT(d), min cost)) cost
CarTime Car Tm Nt(d) level-of-service
CBDDest CBD(d) constant
Intra IZ(d) constant
CarComp ifgt(hhld fplic, hhcars+ccars) socio-economic
CmpCrDr ifge(ccars, 1) socio-economic
MaleCrDr ifeq(gender, 1) socio-economic
Ageu24CrD ifle(age, 24) socio-economic

Car passenger CrP constant
TotEmp LogEmp(d) attraction
Cost1 CPfact * car cst NT(d) * ifeq(incb, 1) cost
Cost2 CPfact * car cst NT(d) * ifeq(incb, 2) cost
Cost3 CPfact * car cst NT(d) * ifeq(incb, 3) cost
LogCost log(max(CPfact*car cst NT(d), min cost)) cost
CarTime Car Tm Nt(d) level-of-service
CarPDist Car Ds Nt(d) level-of-service
Intra IZ(d) constant
CBDDest CBD(d) constant
PassOpts ifge(hhcars+ccars, 1) * ifgt(hhld fplic, fullp lic) socio-economic
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Table 4.11: Sydney home–work detailed & income model specification utility
functions (continued)

Mode Parameter β Variable X Variable type

Train Trn constant
TotEmp LogEmp(d) attraction
Cost1 Rail fare(d) * ifeq(incb, 1) cost
Cost2 Rail fare(d) * ifeq(incb, 2) cost
Cost3 Rail fare(d) * ifeq(incb, 3) cost
LogCost log(max(Rail fare(d), min cost)) cost
RlTime Rail IVT(d) level-of-service
BusTime TBus IVT(d) level-of-service
AccTime Rail walkT(d) level-of-service
FrWtTm Rail fwait(d) level-of-service
OrWtTme Rail owait(d) level-of-service
CBDDest CBD(d) constant
CBDRail CBD(d) constant
HiPersInc ifge(incb, 3) socio-economic
FullTmRl ifeq(adult st, 3) socio-economic

Bus Bus constant
TotEmp LogEmp(d) attraction
Cost1 Bus fare(d) * ifeq(incb, 1) cost
Cost2 Bus fare(d) * ifeq(incb, 2) cost
Cost3 Bus fare(d) * ifeq(incb, 3) cost
LogCost log(max(Bus fare(d), min cost)) cost
BusTime Bus IVT(d) level-of-service
AccTime Bus walkT(d) level-of-service
FrWtTm Bus fwait(d) level-of-service
OrWtTme Bus owait(d) level-of-service
CBDDest CBD(d) constant
CBDBus CBD(d) constant

Bike Bk constant
TotEmp LogEmp(d) attraction
BkDist slow dist(d) level-of-service
Intra IZ(d) constant
CBDDest CBD(d) constant
MaleBike ifeq(gender, 1) socio-economic

Walk Wk constant
TotEmp LogEmp(d) attraction
WkDist slow dist(d) level-of-service
Intra IZ(d) constant
CBDDest CBD(d) constant

Taxi Tx constant
TotEmp LogEmp(d) attraction
CarTime Car Tm Nt(d) level-of-service
Cost1 tx cst(d) * ifeq(incb, 1) cost
Cost2 tx cst(d) * ifeq(incb, 2) cost
Cost3 tx cst(d) * ifeq(incb, 3) cost
LogCost log(max(tx cst(d), min cost)) cost
CBDDest CBD(d) constant
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where: LogEmp(d) is the log of total employment in destination d

CDfact is the proportion of the total car cost allocated to car driver

car cst NT (d) is the car cost to destination d in cents

incb is the income band (1: under $15.6k, 2: $15.6–26k, 3: $26–36.4k+)

Car Tm Nt(d) is the car time to destination d in minutes

CBD(d) is 1 if destination d is located in the CBD, 0 otherwise

IZ(d) is 1 if destination d is an intrazonal, 0 otherwise

hhld fplic is the number of licence holders in the household

hhcars is the number of privately owned cars available to the household

ccars is the number of company owned available to the household

gender is 1 is the individual is male, 0 otherwise

age is the age of the individual in years

CPfact is the proportion of the total car cost allocated to car passenger

Car Ds Nt(d) is the highway distance to destination d in kilometres

Rail fare(d) is the train fare to destination d in cents

Rail IV T (d) is the train in-vehicle time to destination d in minutes

TBus IV T (d) is the bus access time for train to destination d in minutes

Rail Walk(d) is the walk access time for train to destination d in minutes

Rail fwait(d) is the first wait time for train to destination d in minutes

Rail owait(d) is the other wait time for train to destination d in minutes

adult st is the adult status code of the individual

Bus fare(d) is the bus fare to destination d in cents

Bus IV T (d) is the bus in-vehicle time to destination d in minutes

Bus walkT (d) is the walk access time for bus to destination d in minutes

Bus fwait(d) is the first wait time for bus to destination d in minutes

Bus owait(d) is the other wait time for bus to destination d in minutes

slowdist(d) is the off-peak highway distance to destination d in kilometres

tx cst(d) is the taxi cost to destination d in cents
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The utility functions used in the detailed & income specification of the home–

other travel model are detailed in Table 4.12.

Table 4.12: Sydney home–other travel detailed & income model specification
utility functions

Mode Parameter β Variable X Variable type

Car CarTime Car Tm Nt(d) level-of-service
driver LogCost20 log(max(CDfact*car cst NT(d), min cost)) * ifeq(pinc band, 1) cost

LogCost2050 log(max(CDfact*car cst NT(d), min cost)) * ifeq(pinc band, 2) cost
LogCost50pl log(max(CDfact*car cst NT(d), min cost)) * ifeq(pinc band, 3) cost
CBDDest CBD(d) constant
Intra IZ(d) constant
CarComp ifgt(hhld fplic, hhcars+ccars) socio-economic

Car CrP constant
passenger LogCost20 log(max(CPfact*car cst NT(d), min cost)) * ifeq(pinc band, 1) cost

LogCost2050 log(max(CPfact*car cst NT(d), min cost)) * ifeq(pinc band, 2) cost
LogCost50pl log(max(CPfact*car cst NT(d), min cost)) * ifeq(pinc band, 3) cost
CarTime Car Tm Nt(d) level-of-service
CarPDist Car Ds Nt(d) level-of-service
Intra IZ(d) constant
CBDDest CBD(d) constant
PassOpts ifge(hhcars+ccars, 1) * ifgt(hhld fplic, fullp lic) socio-economic
CarPMale ifeq(gender, 1) socio-economic
CarPu10 iflt(age, 10) socio-economic
CarP60pl ifge(age, 60) socio-economic
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Table 4.13: Sydney home–other travel detailed & income model specification
utility functions (continued)

Mode Parameter β Variable X Variable type

Train Trn constant
LogCst20 log(max(Rail fare(d), min cost)) * ifeq(pinc band, 1)) cost
LogCst2050 log(max(Rail fare(d), min cost)) * ifeq(pinc band, 2)) cost
LogCst50pl log(max(Rail fare(d), min cost)) * ifeq(pinc band, 3)) cost
RlTime Rail IVT(d) level-of-service
BusTime TBus IVT(d) level-of-service
AccTime Rail walkT(d) level-of-service
FrWtTm Rail fwait(d) level-of-service
OrWtTme Rail owait(d) level-of-service
CBDDest CBD(d) constant
CBDRail CBD(d) constant
PT10to19 ifin(age, 10,19) socio-economic
PT60pl ifge(age, 60) socio-economic

Bus Bus constant
LogCst20 log(max(bus fare(d), min cost)) * ifeq(pinc band, 1) cost
LogCst2050 log(max(bus fare(d), min cost)) * ifeq(pinc band, 2) cost
LogCst50pl log(max(bus fare(d), min cost)) * ifeq(pinc band, 3) cost
LogCost log(max(Bus fare(d), min cost)) cost
BusTime Bus IVT(d) level-of-service
AccTime Bus walkT(d) level-of-service
WaitTime Bus fwait(d) level-of-service
WaitTime Bus owait(d) level-of-service
CBDDest CBD(d) constant
CBDBus CBD(d) constant
BusMale ifeq(gender, 1) socio-economic
PT10to19 ifin(age, 10,19) socio-economic
PT60pl ifge(age, 60) socio-economic

Bike Bk constant
BkDist slow dist(d) level-of-service
Intra IZ(d) constant
CBDDest CBD(d) constant
BikeMale ifeq(gender, 1) socio-economic

Walk Wk constant
WkDist slow dist(d) level-of-service
Intra IZ(d) constant
CBDDest CBD(d) constant

Taxi Tx constant
CarTime Car Tm Nt(d) level-of-service
LogCst20 log(max(tx cst(d), min cost)) * ifeq(pinc band, 1) cost
LogCst2050 log(max(tx cst(d), min cost)) * ifeq(pinc band, 2) cost
LogCst50pl log(max(tx cst(d), min cost)) * ifeq(pinc band, 3) cost
CBDDest CBD(d) constant
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where: the variable definitions are as per the home–work, plus:

pinc band is the personal income band (1: under $20k, 2: $20–50k, 3: $50k+)

4.3.4 Model results

The model results for the ‘detailed & income’ model specifications are given in

Table 4.14 for home–work, Table 4.15 for home–other travel and Table 4.16 for

the home–other travel sub-purpose models.

In the results tables in each column the parameter value β is presented on the left

and the t-ratio for the parameter is presented on the right. The t-ratio is given by

the ratio β/σ where σ is the standard deviation of the parameter estimate. For

model parameters, the t-ratios define the significance of the parameter relative

to a value of zero. For the structural parameters and the scale parameters the

t-ratios have been presented relative to a value of one. All cost parameters are

presented in 1986 prices and values after applying the adjustment procedures

described in Sections 5.1 and 5.2.

Model results for the ‘sparse’, ‘car avail’ and ‘detailed’ model specifications are

presented in Appendix C.
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Table 4.14: Sydney commute model results, detailed & income specification
COM D3 91 COM D3 0408

Log-likelihood -29,507.5 -34,182.9
Observations 5,111 5,173
LL per obs -5.773 -6.608

Cost parameters
LogCost -0.379 -9.1 -0.271 -7.2
Cost1 -0.0023 -10.7 -0.0023 -12.7
Cost2 -0.0018 -10.8 -0.0010 -9.4
Cost3 -0.0006 -5.2 -0.0003 -3.3

Level of service
CarTime -0.025 -27.0 -0.029 -35.3
RlTime -0.010 -8.5 -0.012 -11.5
BusTime -0.020 -12.3 -0.020 -14.8
AccTime -0.026 -8.8 -0.011 -5.3
FrWtTm -0.012 -1.7 -0.012 -2.5
OtWTme -0.042 -7.8 -0.041 -9.6
CarPDist -0.020 -7.8 -0.026 -7.2
BkDist -0.164 -7.4 -0.160 -7.4
WlkDist -0.598 -21.0 -0.601 -20.8

Destination terms
Intra -0.123 -1.4 0.265 2.3
CBDDest -0.122 -1.3 -0.473 -5.7
CBDRail 0.865 6.4 1.392 11.8
CBDBus 0.454 2.7 1.293 9.7

Mode constants
CrP -6.053 -13.7 -4.312 -17.4
Trn -3.076 -9.1 -1.473 -9.0
Bus -2.495 -9.4 -1.637 -11.9
Bk -10.667 -10.5 -6.515 -11.3
Wk -2.044 -5.9 -0.424 -2.4
Tx -5.977 -10.6 -4.696 -19.1

Car availability
CarComp -2.154 -13.1 -1.485 -19.4
CmpCrDr 0.872 5.9 0.690 7.1
PassOpts 1.850 5.9 1.546 6.5

Socio-economic
Ageu24CrD -0.872 -5.6 -0.382 -3.4
MaleCrDr 0.755 6.2 0.149 2.0
FullTmRl 1.302 5.5 0.014 0.1
HiPersInc 0.351 2.3 0.301 2.9
MaleBike 3.488 4.2 2.168 4.0

Attraction term
TotEmp 1.000 n/a 1.000 n/a

Structural parameter
TR M D 0.695 18.1 1.000 n/a
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Table 4.15: Sydney home–other travel model results, detailed & income specifi-
cation

OTH D3 91 OTH D3 0408

Log-likelihood -46,922.1 -53,400.3
Observations 10,644 10,464
LL per obs -4.408 -5.103

Cost parameters
LogCst20 -1.169 -32.2 -0.700 -33.2
LogCst2050 -1.058 -26.2 -0.700 -33.2
LogCst50pl -0.948 -13.0 -0.700 -33.2

Level of service
CarTime -0.053 -41.9 -0.066 -51.4
RlTime -0.021 -7.9 -0.016 -7.5
BusTime -0.023 -8.9 -0.029 -10.9
AccTime -0.040 -7.5 -0.015 -4.2
WaitTime -0.024 -4.2 -0.025 -5.2
CarPDist 0.007 4.5 0.014 8.0
BkDist -0.332 -14.0 -0.319 -13.7
WlkDist -0.740 -47.7 -0.927 -50.8

Destination terms
Intra -0.024 -0.5 -0.163 -4.0
CBDDest -0.348 -2.6 -1.497 -10.9
CBDRail 0.893 3.6 1.707 7.1
CBDBus 0.453 1.8 1.199 4.1

Mode constants
CrP -11.204 -12.2 -6.347 -15.7
Trn -10.630 -8.8 -5.911 -11.3
Bus -9.226 -8.4 -5.329 -10.5
Bk -20.509 -12.3 -11.373 -14.7
Wk -6.565 -11.5 -2.271 -10.6
Tx -14.144 -9.1 -8.583 -12.1

Car availability
CarComp -1.645 -7.3 -0.812 -7.1
PassOpts 5.519 10.1 2.762 11.2

Socio-economic
CarPMale -1.889 -8.3 -0.481 -4.6
BusMale -1.394 -3.3 -0.274 -1.0
BikeMale 4.424 5.4 2.939 6.0
CarPu10 4.612 10.6 3.279 14.1
CarP60pl 1.086 4.1 0.518 3.8
PT10to19 -1.031 -2.2 -0.305 -1.1
PT60pl 3.465 7.8 0.881 3.8

Attraction term
L S M 1.000 n/a 1.000 n/a
ServEmp 6.046 45.2 6.570 45.2

Structural parameter
TR M D 0.399 18.3 0.594 11.2
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Chapter 5

Parameter transferability

This chapter presents analysis of changes in model parameters over time that has

been undertaken using both the Toronto and Sydney datasets.

The Chapter starts in Section 5.1 by considering how to take account of changes

in cost sensitivity that result from real income growth over time. This analysis is

presented first because the analysis presented in subsequent sections of this chap-

ter, and the analysis described in subsequent chapters, incorporates the approach

for adjusting for real income growth discussed in Section 5.1. Next, section 5.2

briefly details how adjustments have been applied to take account of scale differ-

ences – i.e. differences in the level of unexplained error – between different years

of data.

The analysis of parameter transferability is split into three sections. In Section

5.3, analysis of the significance of parameter differences in presented. Section 5.4

documents analysis of changes in the changes in parameter magnitude. Finally,

Section 5.6 focuses on the transferability of the structural parameters that capture

the relative levels of error in mode and destination choice.
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The thinking in Section 5.1.1 was informed by the literature review presented in

Daly and Fox (2012). Earlier results from the analyses presented in Sections 5.2

and 5.4 were presented in Fox et al. (2014).

5.1 Changes in cost sensitivity over time

5.1.1 Adjusting for real income growth

In Daly and Fox (2012), the literature on the longitudinal elasticity of VOT to real

income growth over time was reviewed. The conclusion from this review was that

longitudinal income elasticities are around 1. A key piece of UK evidence is the

meta-analysis work undertaken by Mark Wardman and others which has fed into

the UK Department for Transport’s web-based guidance (named ’WebTAG’).

The most recent set of this UK analysis identified a GDP/capita elasticity of

0.9 (Abrantes and Wardman, 2011). Subsequently Börjesson (2014) found that

significant reduction in the magnitude of the cost parameter for 1994 and 2007

Swedish value of time data models could be entirely explained by adjusting for

real income growth over the period, i.e. that the longitudinal income elasticity

for her Swedish values of time data was 1.

Drawing on this evidence, model tests were undertaken where adjustments were

made to the cost parameters to take account of real income growth measured

using GDP/capita (i.e. using a longitudinal elasticity of 1). The results of model

transfers where costs were adjusted in this way were then compared to the fit in

the transfer context of models where no adjustment to the cost parameters was

made.

The real income growth adjustment is applied to satisfy Equation 5.1.
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V OTt = G.V OTb (5.1)

where: V OTt is the VOT in the transfer context t

V OTb is the VOT in the base context b

G is the real income growth adjustment

In the base context, VOT in a model with both linear and log cost parameters is

given by Equation 5.2.

V OTb =
∂U/∂time

∂U/∂cost
=

βT ime

βCost +
βLogCost

cost

(5.2)

where: βT ime is the travel time parameter

βCost is the linear cost parameter

βLogCost is the log cost parameter

cost is the modelled cost

The utility functions for the Toronto and Sydney models which include βTime,

βCost and βLogCost parameters are defined in Sections 4.2.3 and 4.3.3.

Combining Equations 5.1 and 5.2, VOT in the transfer context is then given by

Equation 5.3.

V OTt = G.V OTb =
βT ime

1
G(βCost +

βLogCost

cost )
(5.3)

Equation 5.3 has been operationalised by multiplying the cost contribution
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βCost +
βLogCost

cost by the reciprocal of the real income growth between the base

and transfer contexts, i.e. by 1/G.

This approach makes the assumption that the marginal utility of time does not

changes over time, i.e. is perfectly temporally transferable, so that changes in

VOT occur solely as a result of changes in the marginal utility of cost. This

assumption is discussed further in Section 5.4 in the light of the findings from

empirical tests with the Toronto and Sydney datasets of the temporal stability

of the travel time parameters.

5.1.2 Tests with Toronto data

The tests for the Toronto data were undertaken for the 1986, 1996 and 2006

datasets, in each case making transfers to the other two possible years of data.

The 2001 data was excluded from these analyses because in the ‘car avail’ spec-

ification the linear cost parameter was insignificant1. Table 5.1 summarises the

improvement in fit in the transfer context that results from reducing the cost

parameters to take account of growth in income (measured by GDP/capita).

Table 5.1: Toronto income adjustment tests (detailed specification)

Base year
Transfer year

1986 1996 2006

1986 n/a 152.2 780.3
1996 123.7 n/a -607.2
2006 419.9 -314.4 n/a

For four of the six tests, an improvement in fit in the transfer context is observed

when the cost contribution is reduced by the growth in GDP/capita. For transfers

1Given that the 2001 data could not be used, the ‘detailed’ specification, the most detailed
model specification, was used for these tests. The detailed specification cannot be estimated
from the 2001 data because the age terms cannot be specified from the 2001 estimation file.
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from 1996 to 2006, and from 2006 to 1996, adjusting the cost contribution by real

growth in GDP/capita gave a worse fit than making no adjustment at all.

5.1.3 Tests with Sydney data

A key advantage of the Sydney data over the Toronto data is that incomes were

recorded. By calculating the mean incomes in the base and transfer samples,

Equation 5.3 could be operationalised using observed real income changes across

the study area rather than by approximating the real income change using a GDP

per capita measure.

In the best Sydney commute model specification (the ‘detailed & income’ specifi-

cation) cost sensitivity is segmented by income. Specifically, there are three sepa-

rate linear cost terms for different incomes bands, but a single log-cost parameter

estimated across all income bands. The complication with applying Equation 5.3

in this model is that some of the growth in VOT G comes about due to a shift

in the distribution of individuals into higher income bands between the base and

transfer samples. If the G factor calculated from the observed change in mean

real income is applied, then the effect of re-distribution will be to give an overall

VOT adjustment greater than G.

To deal with this issue, a two-step procedure was employed. First, the cross-

sectional income elasticity was calculated from the model parameters and the

disaggregate incomes in the estimation sample using Equation 5.4.

Einc =
(βH−βLβL

)

( incH−incLincL
)

(5.4)

where: βL is linear cost parameter in the lowest income band
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βH is linear cost parameter in the highest income band

incL is the mean income in the lowest income band in the estimation sample

incH is the mean income in the highest income band in the estimation sample

The βL and βH parameters are defined in Table 4.10.

From the income elasticity it is possible to calculate income growth due to re-

distribution alone:

GR = −Einc ∗G (5.5)

The remainder of the income growth can be viewed as a uniform increase GU

which is applied to across all income bands:

GU = G−GR (5.6)

In the commute model, the linear cost parameters vary with income band. From

Equation 5.2 it can be seen that the contribution of the linear cost term to the

VOT calculation does not vary with the cost of the journey. However, in the

home–other travel model the log-cost parameters vary with income band. It can

be seen from Equation 5.2 that in a log-cost formulation, the contribution from

the log-cost term increases with the cost of the journey, and higher income trav-

ellers tend to make longer and more expensive journeys. Thus to the extent that

journey cost is correlated with income, the log-cost formulation itself accounts

for an income effect, and so higher VOTs for higher travellers come about due to

a combination of the log-cost parameters and more expensive journeys.
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Table 5.2 summarises the values for the income growth components in the com-

mute and home–other travel models calculated using Equations 5.4, 5.5 and 5.6.

Following the discussion above, for home–other travel the elasticity values pre-

sented are for journeys of constant cost.

Table 5.2: Components of income growth in Sydney models

Purpose Transfer Einc GR GU G

commute
1991 to 2006 -0.38 1.120 1.198 1.318
2006 to 1991 -0.32 1.102 1.216 1.318

home–other travel
1991 to 2006 -0.013 1.004 1.302 1.306
2006 to 1991 0 (fixed) 0.000 1.306 1.306

For commute, cross-sectional elasticities Einc of -0.38 and -0.32 were calculated.

It can be seen from Table 5.2 that re-distribution therefore accounts for around

one-third of the total income increase G.

For home–other travel, for transfers from 1991 to 2006 a much lower elasticity

Einc of just -0.013 was calculated. As per the discussion above, the much lower

income elasticity follows from the fact that higher income travellers make more

expensive journeys, and in a log-cost formulation this results in higher implied

VOTs. For example, in the 1991 dataset the mean journey costs are $0.95 in the

lowest income band but $1.56 in the highest income band.

For the 2006 dataset, the model results with the income segmented specification

were implausible, as cost sensitivity was slightly higher in the top income band

than the two lower income bands. Therefore for the transferability tests the 2006

parameters from the detailed specification (without income segmentation) were

used, which means that Einc is zero (from Equation 5.4) and all income growth

is applied through the GU adjustment2.

2Constraining the income segmented log-cost parameters in the ‘detailed & income’ specifica-
tion to be the same for each income band give a model equivalent to the ‘detailed’ specification.
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Tables 5.3 and 5.4 summarise the results from the VOT adjustment tests for

commute and home–other travel with the tables showing the improvement in

model fit that results from applying the VOT adjustment.

Table 5.3: Sydney VOT adjustment tests, commute

Base year obs
Model specification

sparse car avail detailed detailed
& income

1991 transfer to 2006 5,173 69.2 49.8 56.8 79.2
2006 transfer to 1991 5,111 55.9 48.3 31.4 45.3

Table 5.4: Sydney VOT adjustment tests, home–other travel

Base year obs
Model specification

sparse car avail detailed detailed
& income

1991 transfer to 2006 10,464 84.2 24.1 11.5 13.1
2006 transfer to 1991 10,644 -339.7 -414.4 -433.7 -433.7

For both transfers of the commute models, and for the transfer of the 1991 home–

other travel model to 2006, modest increases in fit to the data are observed across

all four model specifications when the cost parameters are adjusted by the real

income growth. However, for the transfer of the 2006 home–other travel model

to 1991 the fit is substantially worse than when no adjustment is applied for all

four model specifications3.

5.1.4 Discussion

Overall, the tests on the Toronto and Sydney datasets presented in Tables 5.1,

5.3 and 5.4 demonstrate that adjusting the cost parameters by the real growth

3Given how poorly the 2006 models transfer to 1991 the setups were double-checked for errors
but no issues were identified.
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in income (i.e. using a longitudinal income elasticity of 1) gives an improved fit

to the data relative to making no adjustment. For the Sydney commute models,

cross-sectional income elasticities in the range -0.32 to -0.38 are observed. These

values are in line with other evidence summarised in Daly and Fox (2012), who

reported cross-sectional elasticities of around -0.3.

The approach developed for models that incorporate income segmentation that

decomposes total income growth into redistribution between bands, and a further

uniform increase applied across all bands, appears to work well. An important

consideration that the analysis highlights for models that work with log-cost terms

segmented by income band is that the cross-sectional elasticity may be consider-

ably lower than -0.3; this results from the fact that higher income travellers tend

to make more expensive journeys and these are subject to higher implied VOTs

in a log-cost formulation.

5.2 Scale adjustment

In order to compare individual parameters between models estimated separately

from each available year of the data, it was necessary to take account of scale

differences between the models estimated for different years. To do this, models

were estimated by pooling the data and estimating the parameters across all

years of data. In these models, scale parameters were estimated relative to a

base dataset to identify differences in scale between the different years of data.

5.2.1 Toronto data

For the Toronto data, pooled models for the three model specifications defined

in Table 4.2 were jointly estimated from the 1986, 1996, 2001 and 2006 TTS
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datasets4. The 1986 scale was fixed to one, so all other datasets are scaled

relative to the base 1986 data. The resulting scale parameter estimates are given

in Table 5.5 (the t-ratios presented are calculated with respect to a value of 1).

Table 5.5: Toronto scale parameters

Model specification
Year Sparse Car avail Detailed

scale t-ratio scale t-ratio scale t-ratio

1986 1.000 n/a 1.000 n/a 1.000 n/a
1996 0.843 38.0 0.866 32.0 0.861 33.2
2001 0.963 8.0 0.920 18.3 n/a n/a
2006 0.913 19.8 0.939 13.7 0.939 13.5

The results imply that the level of unexplained error is higher in the 1996, 2001

and 2006 databases, despite the fact that the level of detail in the zoning system

has increased over time. The scale parameters presented in Table 5.5 were used

to re-scale the parameters from the separately estimated models for 1996, 2001

and 2006 before individual parameters were compared. The model parameter

values after rescaling are presented in Table 4.4 and in Appendix B.

A possible explanation for the pattern of increasing error with time is increased

labour market specialisation, and the associated decentralisation of employment

away from central areas, which may make it more difficult to explain commuter

destination choice. Statistics Canada (2003) have found that the majority of

employment growth over recent decades has taken place in suburban municipal-

ities of urban areas, with a 61% increase in employment in these areas between

1981 and 2001 compared to a 7% increase in central municipalities over the same

period. This is consistent with analysis of the model estimation results, which

showed that the percentage of commute tours travelling to zones in the Central

Business District declined from 8.8% in 1986 to 5.9% in 2006.

4The pooled model for the detailed specification omits the 2001 data because the 2001 data
does not contain the age information required to estimate that specification.
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5.2.2 Sydney data

For the Sydney data, pooled models were run where scale parameters for the 1991

data were estimated relative to the 2006 data. The scale parameters that were

estimated are given in Table 5.6 for commute and 5.7 for home–other travel (the

t-ratios presented are calculated with respect to a value of 1).

Table 5.6: Sydney scale parameters, commute

Model specification
Sparse Car avail Detailed Detailed

Year & income
scale t-ratio scale t-ratio scale t-ratio scale t-ratio

1991 0.947 4.4 0.968 2.5 0.968 2.5 0.952 3.8
2006 1.000 n/a 1.000 n/a 1.000 n/a 1.000 n/a

Table 5.7: Sydney scale parameters, home–other travel

Model specification
Sparse Car avail Detailed Detailed

Year & income
scale t-ratio scale t-ratio scale t-ratio scale t-ratio

1991 0.823 29.9 0.827 26.8 0.811 31.9 0.811 31.7
2006 1.000 n/a 1.000 n/a 1.000 n/a 1.000 n/a

The scale parameters indicate a higher level of error in the 1991 data relative

to the 2006 data. A factor that will contribute to this result is the substantial

increase in the number of zones between 1991 and 2006, from 845 to 2,277. For

public transport, walk and cycle in modes in particular the use of a more detailed

zone system will give more realistic level of service and this will contribute to the

lower level of error in the 2006 data.
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5.3 Significance of parameter differences

To test the transferability of individual parameters, Equation 2.25 was applied

to test whether pairs of parameters were significantly different from one another.

The following subsections present the results of these tests for the Toronto and

Sydney data.

5.3.1 Toronto data

This analysis has been undertaken taking both the 1986 parameters as the base,

and the 2006 parameters as the base. The results have been summarised sep-

arately for the cost terms, the level of service terms, the mode and destination

constants, and the socio-economic constants (as per the classification detailed in

Table 4.2.3) to investigate whether different types of model parameter are more

transferable. The results are presented in Table 5.8 and Table 5.9, which sum-

marise the number of parameters that are not significantly different from the 1986

and 2006 base values at a 95% confidence level.

Table 5.8: Parameters that are not significantly different, 1986 base

Parameter group Sparse specification Car avail specification Detailed specification
1996 2001 2006 1996 2001 2006 1996 2001 2006

cost terms 0/2 0/2 0/2 0/2 0/2 0/2 0/2 n/a 0/2
level of service terms 2/6 0/6 4/6 2/6 2/6 3/6 2/6 n/a 4/6

mode and dest. constants 1/5 1/5 1/5 1/5 1/5 1/5 2/5 n/a 2/5
socio-economic terms n/a n/a n/a 0/3 0/3 2/3 2/8 n/a 4/8

Total 3/13 1/13 5/13 3/16 3/16 6/16 6/21 n/a 10/21

Overall, the null hypothesis that the base and transfer parameters are not signif-

icantly different is rejected for the majority of parameters. It might be expected

that the hypothesis that parameters are not significantly different would be more

likely to be accepted for short transfers, however no clear pattern of variation with

152



Table 5.9: Parameters that are not significantly different, 2006 base

Parameter group Sparse specification Car avail specification Detailed specification
2001 1996 1986 2001 1996 1986 2001 1996 1986

cost terms 0/2 0/2 0/2 0/2 0/2 0/2 0/2 n/a 0/2
level of service terms 1/6 1/6 4/6 2/6 2/6 3/6 2/6 n/a 4/6

mode and dest. constants 0/5 0/5 1/5 1/5 0/5 1/5 0/5 n/a 2/5
socio-economic terms n/a n/a n/a 0/3 3/3 2/3 4/8 n/a 4/8

Total 1/13 1/13 5/13 3/16 5/16 6/16 6/21 n/a 10/21

length of transfer is apparent. Comparing across the three model specifications,

then if comparisons are restricted to the three parameter groups present in all

three model specifications, there is no clear pattern of increasing transferability

with improved model specification.

No clear pattern emerges when comparing across the four parameter groups. The

hypothesis of parameter equality is always rejected for the cost parameters, but

there are only two cost parameters in each comparison and the clear majority of

all comparisons reject the hypothesis of parameter equality.

5.3.2 Sydney data

For the Sydney models, the analysis of significance of parameter differences has

been calculated with the 1991 parameters as the base. Table 5.10 summarises

the results from the analysis of the significance of differences in the commute

parameters. The tests have been undertaken using a 95% confidence level, and

the classification of each individual parameter into the four groups is detailed in

Table 4.10.

Like the Toronto analysis presented in Table 5.8 and Table 5.9, the hypothesis of

parameter equality is rejected for the majority of parameter comparisons in Ta-
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Table 5.10: Parameters that are not significantly different, Sydney commute
models

Model specification
Parameter group Sparse Car avail Detailed Detailed

& income

cost terms 1/2 1/2 1/2 1/4
level of service terms 7/9 7/9 7/9 7/9

constants 3/10 0/10 1/10 0/10
socio-economic terms n/a 2/3 4/8 4/8

Total 11/21 10/24 13/29 12/31

ble 5.10. However, unlike the Toronto analysis clear patterns emerge comparing

across the parameters. The hypothesis of parameter equality is rejected for most

of the constants, whereas in most cases the level of services terms are not signifi-

cantly different. The cost and socio-economic terms lie somewhere between. Thus

these results suggest that there are differences in transferability across different

types of model parameters.

Table 5.11 presents analysis of parameter differences for the home–other travel

model. The allocation of individual parameters into the four parameters groups

is given in Table 4.12.

Table 5.11: Parameters that are not significantly different, Sydney home–other
travel models

Model specification
Parameter group Sparse Car avail Detailed Detailed

& income

cost terms 0/1 0/1 0/1 0/3
level of service terms 3/8 4/8 4/8 4/8

constants 7/10 1/10 1/10 1/10
socio-economic terms n/a 0/2 3/9 3/9

Total 11/19 5/21 8/28 8/30
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Overall, the results in Table 5.11 indicate that the home–other travel parameters

are less transferable than the home-work parameters. However, the patterns of

variation between parameter groups are similar, with the hypothesis of parameter

equality rejected for most of the constants, and with the hypothesis of parameter

equality more likely to be accepted for the level of service terms.

5.3.3 Discussion

A limitation of the significance of parameter differences is that the hypothesis

that the parameters are equal is less likely to be rejected if the parameters are

imprecisely estimated. For example, the level of service terms in the Toronto

commute models are precisely estimated, with t-ratios ranging from 11 to 50,

and this means that the hypothesis that the parameters are equal is rejected even

when the parameters are relatively close in magnitude. In the following section,

the relative changes in the parameter values are analysed using a measure that

is independent of the significance of the parameter estimates.

While the results for the Sydney models are subject to the same limitation, they

do suggest that the constants are the least transferable parameter group, and the

level of service terms the most transferable. The analysis of the Sydney models

also indicates that the commute parameters are more transferable than the home–

other travel parameters. In Section 5.4, differences in the relative changes in the

parameter values for the two purposes are compared.

5.4 Relative changes in parameter values

The REM measure defined in Equation 2.27 has been used to calculate the abso-

lute change in individual parameter values relative to the base parameter values
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accounting for the overall difference in scale between the base and transfer models.

These differences have been calculated separately for the cost terms, the level of

service terms, the mode and destination constants, and the socio-economic terms.

For each model analysed, average values have been calculated for each of these

parameter groups.

5.4.1 Toronto data

Table 5.12 summarises the results obtained. It is possible that the 1986 param-

eters are more transferable, or less transferable, than the parameters for other

years of data. To avoid producing results that are specific to a particular base

year, the analysis has been repeated taking the 2006 parameters as the base.

These results are presented in Table 5.13.

Table 5.12: REM measures by model year and specification, 1986 base

Model specification
Parameter group Sparse Car avail Detailed

1996 2001 2006 1996 2001 2006 1996 2001 2006

cost terms 0.47 1.42 0.36 0.52 1.61 0.38 0.50 n/a 0.37
level of service terms 0.10 0.20 0.10 0.09 0.16 0.12 0.09 n/a 0.11

constants 0.51 2.25 1.67 0.75 2.44 2.56 0.65 n/a 2.76
socio-economic terms n/a n/a n/a 0.17 0.29 0.17 0.30 n/a 0.42

Comparing between different groups of utility terms, the cost, LOS terms and

socio-economic terms show smaller changes in parameter magnitude over time

compared to the mode and destination constants. This result is expected, as the

constants capture the mean contributions of effects not captured in the other

parameters, and the contributions of these uncaptured effects would be expected

to change over time.
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Table 5.13: REM measures by model year and specification, 2006 base

Model specification
Parameter group Sparse Car avail Detailed

1996 2001 2006 1996 2001 2006 1996 2001 2006

cost terms 1.03 0.88 0.36 1.08 0.88 0.33 n/a 0.88 0.34
level of service terms 0.19 0.11 0.09 0.18 0.10 0.10 n/a 0.11 0.10

constants 2.82 5.93 3.91 0.67 1.93 1.49 n/a 1.70 1.32
socio-economic terms n/a n/a n/a 0.11 0.04 0.14 n/a 0.16 0.31

The REM measures for the cost terms do not exhibit any consistent pattern of

evolution over time, with the largest differences between parameters observed

by comparing the 1986 and 2001 parameter values. They do not reduce with

improving model specification either, with the largest differences observed for

the car avail specification.

The LOS parameters show the smallest REM measures for all but two of the

transfer tests, i.e. in general the LOS parameters are more transferable than

the other parameter groups. Comparing across model specifications, with the

exception of the 20 year transfers, the REM measures reduce between the sparse

and car avail specifications when the car availability parameters are added. Thus

improving the model specification by adding additional socio-economic terms

improves the transferability of the LOS parameters over transfer periods up to 15

years in duration. However, there is no further improvement in the transferability

of the LOS parameters when the age and gender mode terms are added in the

detailed specification. Examining the changes in parameter values over time

reveals no clear patterns.

The socio-economic parameters show relatively small changes over time, particu-

larly when the changes are calculated relative to the 2006 model, which indicates

that the socio-economic effects are transferable over time. Interestingly, the mean
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REM measures are larger for the detailed specification models than for the car

avail specification models. This is because the car availability parameters are

more transferable than the age and gender parameters introduced in the detailed

specification.

As discussed in Section 5.1, when applying the adjustments to account for real

growth in VOT with income it has assumed that the growth in VOT can be ap-

plied by making adjustments to the cost parameter alone, rather than adjusting

both the cost and time parameters (the implied VOT is calculated as function of

the two). To investigate the validity of this assumption, changes in the values of

cost and time parameters from the detailed specifications were analysed, calcu-

lating changes relative to the 1986 base parameters. The analysis is presented in

Table 5.14, in which the model results presented in Table 4.4 have been used to

calculate the change in the parameter values relative to the 1986 base values.

Table 5.14: Changes in Toronto cost and in-vehicle time parameters, 1986 base
Parameter 1986 1996 2006

Log(cost) -0.358 -0.575 61% -0.335 -6%
Cost -0.0011 -0.0006 -42% -0.0016 48%

Car time -0.042 -0.038 -8% -0.044 5%
Transit IVT -0.028 -0.029 2% -0.025 -10%

The in-vehicle time parameters are relatively stable over time, with the 1996

and 2006 values within ± 10% of the 1986 values. The cost parameters are

considerably less stable, with differences of up to 60% observed despite accounting

for real income growth.

5.4.2 Sydney data

Table 5.15 presents the REM measures for the Sydney commute models, with the

REM measures calculated for changes relative to the 1991 parameters.
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Table 5.15: REM values for parameter changes, Sydney commute models

Model specification
Parameter group Sparse Car avail Detailed Detailed

& income

cost terms 0.215 0.223 0.240 0.447
level of service terms 0.143 0.152 0.145 0.145

constants 0.857 0.915 0.902 1.097
socio-economic terms n/a 0.190 0.383 0.445

The commute results are consistent with those observed in the Toronto analysis,

with the level of service of service terms showing the highest level of transferabil-

ity, and with noticeably lower levels of transferability for the constants relative to

the other three groups. A result common to both the Toronto and Sydney com-

mute models is that lower REM measures are observed for the car availability

terms than the other socio-economic terms introduced in the detailed specifica-

tion.

Table 5.16 presents the REM measures for the Sydney home–other travel mod-

els, with the REM measures again calculated for changes relative to the 1991

parameters.

Table 5.16: REM values for parameter changes, Sydney home–other travel models

Model specification
Parameter group Sparse Car avail Detailed Detailed

& income

cost terms 0.480 0.335 0.377 0.401
level of service terms 0.474 0.427 0.419 0.346

constants 0.199 3.483 3.533 1.448
socio-economic terms n/a 0.417 0.485 0.503

In most cases the REM values for the home–other travel parameters are higher
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than those for the commute models, indicating the models to be less transferable.

Consistent with commute, the constants show the highest levels of error, but

unlike the commute models the level of service terms are not more transferable

than the cost and socio-economic terms. A possible explanation for this result is

that the home–other level of service terms are more impacted by the changes in

the modelled highway distances and travel times that come about as a result of

changes in the model zoning between 1991 and 2006 (discussed in Section 3.3.2)

because home–other travel tours are shorter on average than commute tours.

Analysis has also been undertaken to investigate the impact on parameter trans-

ferability of estimating models for three sub-purposes that cover home–other

travel:

• serve passenger

• personal business

• leisure

Table 5.17 presents analysis comparing the REM values for these three sub-

purposes to those obtained from an overall home–other travel model. The tests

were undertaking using the detailed specification (i.e. without income segmenta-

tion) as the income terms in the detailed & income specification were not always

significant for the sub-purposes.

Table 5.17: Sydney home–other travel sub-purpose tests, REM measures
All Serve Personal Leisure Mean

purposes passenger business

Cost 0.226 0.202 0.259 0.170 0.211
LOS 1.113 0.589 1.413 0.399 0.800

Constants 2.059 0.943 0.551 1.216 0.903
Socio-econ. 0.495 0.724 0.307 0.390 0.474

Mean 0.973 0.614 0.633 0.544 0.597

It can be seen that the mean REM values is lower for all three of the sub-
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purposes than for the all purposes model. In particular, the REM values for the

constants are considerably lower in the sub-purpose models reflecting differences

in mode share and destination choice, and the level of service parameters also

have somewhat lower REM values. Overall the results suggest segmenting other

travel does give rise to more transferable model parameters.

Table 5.18 and Table 5.19 show the changes in the cost and in-vehicle time pa-

rameters between the 1991 and 2006 models for the detailed specification, i.e. the

best specification prior to the introduction of income segmented cost parameters

(the full set of parameter results for these two model are presented in Tables C.3

and C.5 of Appendix C).

Table 5.18: Changes in Sydney commute cost and in-vehicle time parameters
Parameter 1991 2006

Log(cost) -0.445 -0.327 -26%
Cost -0.00035 -0.00027 -22%

Car time -0.027 -0.031 15%
Rail IVT -0.012 -0.013 11%
Bus IVT -0.022 -0.021 -6%

Table 5.19: Changes in Sydney home–other travel work cost and in-vehicle time
parameters

Parameter 1991 2006

Log(cost) -1.124 -0.700 -38%

Car time -0.053 -0.066 25%
Rail IVT -0.022 -0.016 -25%
Bus IVT -0.023 -0.029 23%

For both models, the in-vehicle time parameters are more stable over time than

the cost parameters, through the changes in the in-vehicle time parameters are

greater than those observed in the Toronto models in Table 5.14, particularly

for home–other travel. A relevant factor when considering changes in the Syd-

ney parameters is the significantly more detailed zone system used for the 2006

models. As discussed in Section 3.3.2, these changes would be expected to have
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more impact on shorter tours which is consistent with the larger changes in the

home–other travel in-vehicle time parameters.

5.4.3 Discussion

The finding that the LOS parameters are more transferable than other parameter

types is consistent with the analysis of parameter changes from other mode choice

and mode-destination choice models reported in the literature. The magnitudes

of the mean parameter differences presented in Tables 5.12 and 5.13 are also

broadly consistent with the values reported in other studies summarised in Table

A.1 of Appendix A. Habib et al. (2012) estimated mode choice models for Toronto

(using the same TTS data that have been used for this analysis) for 1996, 2001

and 2006, and also found that the LOS parameters were more transferable than

the cost parameters.

The REM measures for the mode and destination constants show much larger

differences in parameter values between years, and indeed some constants have

changed sign between years. Thus the stability of these parameters over time is

poor. This result is consistent with the analysis of Habib and Weiss (2014) who

estimated mode choice models incorporating modal captivity using the TTS data

for 1996, 2001 and 2006, and found that the constants showed larger changes

between year than the other parameters. The finding that the constants show

greater changes between years than other model parameters suggests that im-

proving model specification, which will reduce the role of the constants relative

to other model terms, would be expected to improve model transferability. This

hypothesis is confirmed by analysis presented in Chapter 6.

In summary, the level of service and socio-economic terms are more transferable

than the other terms. The cost terms are considerably less transferable than the

level of service terms, and the least transferable parameters are the mode and
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destination constants, which implies that reducing the role of the constants by

improving model specification would be expected to improve model transferabil-

ity.

Many transport policies are formulated principally in terms of changes in cost

and/or travel time, and so the degree of stability in the cost and in-vehicle time

parameters is a particularly relevant consideration of model transferability. For

the Toronto commute models, the in-vehicle time parameters show a high level

of stability, and the Sydney commute models also show a reasonable level of

stability. For home–other travel a lower level of stability was observed, but this

result seems to be influenced by changes in the modelled highway level of service

rather than real changes in behaviour. For all comparisons, the cost parameters

are less transferable than the in-vehicle time parameters, despite accounting for

real income growth. These results suggest the models are better placed to assess

the impact of policies whose main impact is changes in travel time than to assess

policies whose main impact is changes in travel costs.

The stability in the in-vehicle time parameters in the Toronto models, and to a

lesser extent the Sydney models, suggests that the assumption made in Section

5.1.1 that VOT growth can be applied through adjustments to the cost parame-

ters while assuming sensitivity to travel time is constant over time is reasonable.

This result is consistent with the findings of Börjesson (2014), who observed a

high degree of stability in the time parameters in models estimated from Swedish

stated preference value of time data collected in 1994 and 2007.

5.5 Values of time

Values of time (VOTs) are key to transport modelling as they provide a measure

of how individuals trade off travel cost and travel time. In models with separate
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cost and time parameters such as those used for this transferability analysis,

validation of the implied values of time is a key step as it ensures that the cost-

time trade offs in the models are consistent with other evidence, such as the

UK Department for Transport’s WebTAG guidance. Therefore analysis has been

undertaken to examine the transferability of the VOT relationships over time.

As detailed in Section 5.1.1 the VOT for the utility functions presented in Chapter

4 can be calculated from the following relationship:

V OT =
∂U/∂time

∂U/∂cost
=

βT ime

βCost +
βLogCost

cost

(5.7)

where: βT ime is the travel time parameter

βCost is the linear cost parameter

βLogCost is the log cost parameter

cost is the modelled cost

It can be seen from Equation 5.7 that the VOT for a given journey depends on

both the model parameters and the cost of the journey. For each year of data,

Equation 5.7 can be applied to each individual tour record and an average VOT

calculated. However, even if the model parameters were perfectly transferable, if

the mean journey cost changes over time then the mean VOTs will also change.

As shown by Tables 3.6 and 3.12, mean car costs have increased significantly over

time and this results in higher implied VOTs.

Therefore the approach that has been followed is to plot the variation in VOT

withe journey cost. This allows the VOT relationships to be compared over a

range of journey costs, and further allows the impact of changes in the relative

contribution of the linear and log cost parameters to be visualised. It should be

noted that these comparisons are made after applying the adjustment to take
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account of real terms income growth set out in Section 5.1.1.

5.5.1 Toronto data

VOTs have been calculated using the parameters from the detailed model speci-

fication. The analysis has been undertaken using the 1986, 1996 and 2006 model

parameters5 for car driver and for PT.
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Figure 5.1: Variation in Toronto car values of time with journey cost

The mean car costs in 1986 prices are $2.00 for the 1986 data, $2.30 for the and

$3.60 for the 2006 data. Over this cost range it can be seen that the 1986 and

5In the 2001 model results, the log-cost term insignificant and wrong-signed (positive) and
so the 2001 results were omitted from this analysis.
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2006 VOT relationships match closely, i.e. the VOTs are highly transferable,

whereas somewhat lower VOTs are observed in the 1996 model due to the more

linear VOT relationship for 1996.
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Figure 5.2: Variation in Toronto PT values of time with journey cost

The mean PT costs in 1986 prices are $1.70 for the 1986 data, $3.20 for the and

$2.60 for the 2006 data. Over this cost range 1996 and 2006 VOT relationships

correspond closely, whereas the VOTs in the 1986 model are somewhat higher.

5.5.2 Sydney data

For commute, car VOTs have been calculated for the detailed & income model

specification. In this model specification, VOTs vary with income band as well
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as journey cost and so the VOT relationships are plotted separately by the four

income bands B1 to B4 defined in Section 4.3.36. The VOTs are plotted in Figure

5.3 in which the solid lines show the VOT relationships for 1991, the dashed lines

show the VOT relationships for 2006, and the same colour is used for the 1991

and 2006 for a given income band. Note that the y-axis chosen truncates the

VOTs for the higher income bands at higher costs so that the relationships for

lower income bands can be more clearly distinguished.
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Figure 5.3: Variation in Sydney commute car values of time with journey cost
and income band

For all income bands, the 2006 VOTs are higher for a given tour cost than the 1991

costs, particularly for the second income band where the 2006 VOTs are around

twice the 1991 VOTs. Analysis of the changes in the time and cost parameters

6Note that in the top band ($36.4k+), there is no linear cost term and so cost sensitivity is
determined by the log-cost parameter alone.
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which enter into the VOT calculation showed that the VOT increases results from

both a reduction in the magnitude of the cost parameters and an increase in the

magnitude of the car time parameter. It can be seen from Equation 5.7 shows

that both of these changes work to increase the VOTs.

For home–other, for 2006 the income terms in the detailed & income specification

were not significant, and therefore the VOTs have been compared for the detailed

specification without income specification. Figure 5.4 illustrates how the car

VOTs vary with journey cost.
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Figure 5.4: Variation in Sydney commute car values of time with journey cost
and income band

The 2006 VOTs are significantly higher than the 1991 values, consistent with the

commute results. Again this result follows from changes to the relative magnitude

of the cost and time parameters, and as discussed in Section 5.4.2 these changes
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are believed to be impacted by the change in the zone system between 1991 and

2006 and the resulting changes to mean distances and travel times. Thus the

changes to the Sydney VOT relationships are believed to be strongly influenced

by the changes in the level of service.

5.5.3 Discussion

The Toronto car and PT VOT relationships show a reasonably good level of

temporal transferability. However, for Sydney significant increases in implied

VOT are observed between 1991 and 2006 due to changes in the relative strength

of the travel time and cost terms, and these changes are believed to be influenced

by the changes in level of service that follow from the changes to the zoning

system.

The Sydney result illustrates the limitation of using models of the this type

with separate cost and in-vehicle time parameters to calculate VOTs, namely

that if the cost terms reduce in explanatory power then given car cost and car

time are highly correlated and the car modes tend to dominate the overall mode

share, then the car time term term will tend to increase in magnitude and these

changes result in a larger percentage change in VOT than the percentage change

in the cost and time parameters. In summary, the implied car VOTs are strongly

influenced by the relative strength of the cost and car time parameters.
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5.6 Structural parameters

5.6.1 Toronto data

The structural tests to investigate the relative sensitivity of the mode and destina-

tion choices were undertaken using the base 1986 data. These tests demonstrated

that the best fit to the data was obtained using a structure with destinations

above modes, which implies mode choice is more sensitive to changes in utility

than destination choice. The destinations above modes structure remained valid

for all model specifications, and furthermore was valid when the model specifica-

tions were estimated using the 1996, 2001 and 2006 data. Table 5.20 summarises

the structural parameters that have been estimated. The t-ratios presented in

brackets define the significance of the structural parameters relative to a value of

one.

Table 5.20: Toronto commute models, relative sensitivity of destination and mode
choice

Specification 1986 1996 2001 2006

Sparse 0.862 (9.6) 0.858 (9.9) 0.907 (5.5) 0.865 (8.1)
Car avail 0.814 (13.4) 0.773 (17.0) 0.761 (16.8) 0.768 (17.5)
Detailed 0.815 (12.8) 0.782 (15.6) n/a 0.785 (13.6)

5.6.2 Sydney data

In the Sydney models, the best fit to the 1991 data was obtained with a modes

above destinations structure which is the other way up to the best Toronto struc-

ture. Table 5.21 summarises the structural parameters that have been estimated

for the commute models.

For the 2006 data, the freely estimated values of the structural parameters were

170



Table 5.21: Sydney commute models, relative sensitivity of destination and mode
choice

Specification 1991 2006

Sparse 0.737 (6.6) 1.0 (*)
Car avail 0.726 (6.7) 1.0 (*)
Detailed 0.729 (6.6) 1.0 (*)

Detailed & income 0.695 (7.9) 1.0 (*)

greater than one and therefore the parameter was constrained to one. It would

have been possible to estimate the opposite structure (destinations above modes),

however the transferability tests were for transferring the 1991 specification to

2006 and so the 1991 specification was retained.

Table 5.22: Sydney home–other travel models, relative sensitivity of destination
and mode choice

Specification 1991 2006

Sparse 0.500 (15.3) 0.650 (10.0)
Car avail 0.450 (16.9) 0.582 (11.8)
Detailed 0.416 (17.2) 0.581 (11.8)

Detailed & income 0.399 (18.3) 0.594 (11.2)

The 2006 home–other travel structural parameters do not reject the destinations

below modes structure, but they do show a pattern of increase between 1991 and

2006, consistent with the commute results. This suggests that the relative errors

in destination and mode choice have reduced between 1991 and 2006 it could be

that the mode choice error has reduced which may relate to the changes in level

of service associated with the change in zoning system discussed in Section 3.3.2.

Note that this result does not necessarily mean that the destination choice error

has increased, it could equally be explained by a reduction in the mode choice

error.
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5.6.3 Discussion

The Toronto commute structural parameters demonstrate a good level of trans-

ferability over time, with the values for 1996, 2001 and 2006 all within ± 7%

of the 1986 values, and for all tests the structural parameters are significantly

lower than one. Thus these results suggest that the Toronto nesting structures

are transferable over time.

For the Sydney models, the structural parameters for the destinations below

modes structure have moved closer to 1 between 1991 and 2006, indicating that

the errors in destination choice have increased relative to the errors in mode

choice. This result may be related to the changes in level of service that follow

from the substantial changes to the model zone system between 1991 and 2006.

It is noteworthy that while the Toronto structural parameters are transferable

over time, comparison of the Toronto and Sydney commute values demonstrates

that they are not spatially transferable.
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Chapter 6

Model transferability

This chapter presents analysis of model transferability undertaken using both the

Toronto and Sydney datasets.

Sections 6.1 and 6.2 present results from statistical tests of model transferability,

including analysis of how model transferability varies with model specification

and length of transfer period, and for the Sydney data analysis of how the trans-

ferability of commute and home–other travel models compare.

Section 6.3 investigates the ability of transferred models to predict observed

changes mode share and observed tour length by mode.

The Chapter concludes in Section 6.4 with analysis of how the model elasticities

vary between different base years, and how base and transfer model elasticities

compare for a given year.

Earlier results from the analyses presented in Sections 6.2 and 6.3 were presented

in Fox et al. (2014).
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6.1 Transferability test statistic

A strict pass/fail test of model transferability is the Transferability Test Statistic

(TTS), defined earlier in Section 2.3.1 but specified again here as the measure is

referred to throughout this section:

TTSt(βb) = −2(LLt(βb)− LLt(βt)) (6.1)

where: LLt(βb) is the fit (log-likelihood) of the base model to the transfer data

LLt(βt) is the fit for the model re-estimated on the transfer data

This section presents the results of TTS tests using the Toronto and Sydney

datasets.

6.1.1 Toronto data

The results from the TTS tests are presented in Table 6.1 to Table 6.3, in which

the title gives the number of degrees of freedom (d.o.f.) and the critical value for

the TTS statistic at a 99.5% confidence level, the rows define the base year, the

columns define the transfer year and the cell values give the values of the TTS

statistic.

Table 6.1: TTS tests, sparse specification: 14 d.o.f., χ2
99.5% = 31.3

Base Transfer year
year 1986 1996 2001 2006

1986 n/a 3652.3 4241.3 2460.1
1996 2795.6 n/a 4923.7 4936.8
2001 4330.6 4822.5 n/a 3225.8
2006 3309.9 2824.2 4019.2 n/a

It can be seen that the hypothesis of parameter equality is strongly rejected in
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Table 6.2: TTS tests, car avail specification: 17 d.o.f., χ2
99.5% = 35.7

Base Transfer year
year 1986 1996 2001 2006

1986 n/a 3,292.4 4,308.2 2,282.1
1996 2,373.9 n/a 4,236.0 5,096.7
2001 4,006.8 4,433.7 n/a 3,228.1
2006 3,095.0 3,083.2 4,113.7 n/a

Table 6.3: TTS tests, detailed specification: 22 d.o.f., χ2
99.5% = 42.8

Base Transfer year
year 1986 1996 2001 2006

1986 n/a 3,372.9 n/a 2,517.1
1996 2,739.2 n/a n/a 5,222.2
2001 n/a n/a n/a n/a
2006 3,579.6 3,180.8 n/a n/a

all comparisons.

6.1.2 Sydney data

Table 6.4 and Table 6.5 summarises the TI values calculated for the Sydney

commute and home–other travel models for the two possible model transfers.

Table 6.4: TTS tests, Sydney commute models
Model specification

Sparse Car avail Detailed Detailed
& income

degrees of freedom 21 24 29 31
χ2
99.5% 41.4 45.6 52.3 55.0

1991 to 2006 240.3 260.8 386.6 436.1
2006 to 1991 326.0 352.3 493.5 500.6

Consistent with the Toronto analysis, the hypothesis of parameter equality is

strongly rejected for all possible transfers.
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Table 6.5: TTS tests, Sydney home–other travel models
Model specification

Sparse Car avail Detailed Detailed
& income

degrees of freedom 21 23 30 32
χ2
99.5% 41.4 44.2 53.7 56.3

1991 to 2006 1,502.8 1,246.8 1,362.4 1,425.2
2006 to 1991 2,706.1 2,649.7 2,797.8 2,823.5

6.1.3 Discussion

It can be seen that the hypothesis of parameter equality in the base and transfer

contexts is strongly rejected for all possible transfers with both the Toronto and

Sydney datasets.

It is emphasised that rejection of the hypothesis of parameter equality does not

mean that the models are not useful for predicting behaviour in the transfer con-

text. As was discussed in Section 2.3.3, other researchers have found the TTS

to be an over-restrictive definition of transferability. In particular, the model

constants would not be expected to be transferable between base and transfer

contexts, and so achieving perfect transferability is unlikely, and the analysis

presented in Section 5.4 has confirmed that the model constants are less trans-

ferable than the other parameters. Thus the assessments of model transferability

have focussed on the Transferability Index which provides a relative measure of

transferability instead of a strict pass/fail test (Section 6.2), measures of the

ability of the transferred models to predict the observed mode and destination

choices in the transfer context (Section 6.3), and analysis of the evolution of the

model elasticities (Section 6.4).
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6.2 Transferability index

The Transfer Index (TI) measures the predictive accuracy of the transferred

model relative to a locally estimated model, with an upper bound of one. It was

discussed in Section 2.3.1 but is defined again here:

TIt(βb) =
LLt(βb)− LLt(βreft )

LLt(βt)− LLt(βreft )
(6.2)

where: βreft is the reference model for the transfer data

LLt(βt) ≥ LLt(βb) ≥ LLt(βreft )

A reference model is used in the calculation of TI. As discussed in Section 2.3.1,

the reference model used for this analysis has constants and tour distance terms

by mode so that the observed shares and tour lengths by mode are replicated by

the reference model.

6.2.1 Toronto data

Four different years of TTS data are available for analysis, and models estimated

from a given year can be transferred to the data for the three other years. There-

fore a total of 12 different transfers can be made. Transfers have been undertaken

for the spare, car avail and detailed model specifications A (except for transfers

to/from the 2001 data, where only the sparse and car avail specifications can

be estimated). Building on the analysis presented in Section 5.1.1, all model

transfers have been undertaken by adjusting costs by the growth in GDP/capita

relative to 19861.

Table 6.6 to Table 6.8 summarise the resulting TI values for the three model

1Noting that for all years of data, the cost parameters have been estimated in 1986 values.
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specifications tested.

Table 6.6: Toronto commute TI values, sparse specification

Base Transfer year
year 1986 1996 2001 2006

1986 n/a 0.55 0.71 0.71
1996 0.66 n/a 0.67 0.41
2001 0.48 0.40 n/a 0.61
2006 0.60 0.65 0.73 n/a

Table 6.7: Toronto commute TI values, car avail specification

Base Transfer year
year 1986 1996 2001 2006

1986 n/a 0.71 0.78 0.81
1996 0.78 n/a 0.78 0.57
2001 0.63 0.61 n/a 0.73
2006 0.72 0.73 0.79 n/a

Table 6.8: Toronto commute TI values, detailed specification

Base Transfer year
year 1986 1996 2001 2006

1986 n/a 0.75 n/a 0.82
1996 0.79 n/a n/a 0.63
2001 n/a n/a n/a n/a
2006 0.73 0.76 n/a n/a

Examining the TI values for the sparse specification first, the TI values might

be expected decline with the length of the transfer period, but no clear pattern

of variation with transfer period emerges. Coming on to the TI values for the

car avail specification, the first observation is that the TI values are higher than

those for the sparse specification for each of the the 12 transfers. Therefore

improving the model specification with the addition of car availability terms has
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consistently improved the transferability of the models. The TI values for the

detailed specification are in turn consistently higher than those for the car avail

specification, and therefore the finding that transferability improves with model

specification is again demonstrated for each possible transfer.

Table 6.8 demonstrates that for the detailed model specification, on average the

transferred models explain, relative to the reference model, 75-80% of behaviour

explained by the models re-estimated on the transfer data.

To summarise these results, Figure 6.1 presents the mean TI values by transfer

period and model specification. Figure 6.1 clearly demonstrates that there is no

trend for the Toronto TI values to decrease with increasing length of transfer

period.
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Figure 6.1: Mean TI values by transfer period and model specification

179



6.2.2 Sydney data

Home–work analysis

Table 6.9 summarises for the Sydney commute models the TI values and the fit of

the model in the transfer context, LLt(βb) for the two possible model transfers.

Table 6.9: TI values, Sydney commute models
Model specification

Transfer measure Sparse Car avail Detailed Detailed
& income

1991 to 2006 TI 0.90 0.91 0.87 0.87
LLt(βb) -34,630.7 -34,361.3 -34,376.2 -34,277.2

2006 to 1991 TI 0.81 0.85 0.80 0.82
LLt(βb) -30,142.8 -29,887.3 -29,837.2 -29,731.2

For all model specifications the Sydney commute model have a high level of trans-

ferability, with at least 80% of the explanatory power of the transfer context model

(relative to the reference model). Adding the car availability parameters leads

to increases in model transferability, but the addition of further socio-economic

terms in the detailed specification, and income segmented cost terms in the de-

tailed & income specification, does not lead to further increases in transferability

as measured by the TI.

It should be noted that the decline in TI in the detailed specifications does not

necessarily mean that the fit to the transfer data has worsened, in fact as Table

6.9 illustrates the 2006 to 1991 results show that the fit in the transfer context

consistently improves with model specification despite the pattern shown by the

TI measures. It can be seen from Table 6.2 that the TI can worsen if the im-

provement in fit in the transfer context relative to the base model is lower than

the improvement in fit in the base context. This is a limitation of using the TI

measure alone to assess the impact of transferability.
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Home–other travel analysis

Table 6.10 summarises the TI values calculated for the Sydney home–other travel

models.

Table 6.10: TI values, Sydney home–other travel models
Model specification

Transfer measure Sparse Car avail Detailed Detailed
& income

1991 to 2006 TI 0.62 0.73 0.75 0.74
LLt(βb) -54,910.4 -54,468.9 -54,084.2 -54,115.6

2006 to 1991 TI 0.15 0.33 0.41 0.41
LLt(βb) -49,068.9 -48,650.9 -48,333.8 -48,333.8

The home–other travel models are consistently less transferable than the equiva-

lent commute model, particularly for the four transfers from 2006 back to 1991.

Once again, adding the car availability terms results in a clear increase in model

transferability. The addition of further socio-economic terms in the detailed spec-

ification leads to some further increase in transferability, but no further improve-

ment is observed when income segmented cost terms are introduced in the detailed

& income specification.

Tests have also been undertaken for the three other travel sub-purposes using

the detailed specification. Initially these were also undertaken using the TI mea-

sure, but a complication is that these were impacted by differences in the fit

of the models re-estimated in the transfer context. To allow for a more direct

comparison, Table 6.11 summarises the fit of the transferred models.

Table 6.11: TI values, Sydney other–travel sub-purpose transfers
Transfer Without Serve Personal Leisure Total Gain in

segmentation passenger business likelihood

1991 to 2006 -54,759.0 -16,742.4 -7,719.1 -29,005.2 -53,466.6 1,292.4
2006 to 1991 -48,347.1 -13,666.4 -7,024.6 -27,421.0 -48,112.1 235.1
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It can be seen that the predictions of the three sub-purpose models give a better

fit to the transfer data, particularly for the transfers from 1991 to 2006. Thus

the tests indicate that segmenting home–other travel into separate sub-purposes

gives more transferable models.

6.2.3 Discussion

Overall, the results demonstrate that transferability improves with model specifi-

cation, consistent with the findings of Parody (1977), Train (1978) and Badoe and

Miller (1995a), all of whom found that the transferability of mode choice models

improved with model transferability. The implication for analysts is that improv-

ing the model specification would be expected to improve the transferability of

models, particularly when the improvements are to add car availability terms to

the model. This is an important result, because adding additional model terms

can make it more time consuming to apply the models in model application.

The Sydney analysis suggests that home–other travel models are less transfer-

able than commute models. However, improved transferability was observed for

the Sydney data when home–other travel was segmented into serve passenger,

personal business and other travel sub-purposes.

6.3 Predictive measures

Statistical measures of transferability are useful in providing an understanding

of the ability of the models to predict the individual level choices observed in

the transfer context. However, when models are used in forecasting by definition

detailed travel behaviour data is not available in the transfer context, i.e. the

future year that is being forecast, and what is important is the ability of the
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models to predict aggregate changes in mode and trip length. Therefore in this

section, the ability of the transferred models to predict the observed changes in

mode share and trip length is analysed.

To make the predictive tests, the base models were applied in the transfer context

using the transfer data, and the predicted mode shares and tour lengths were

calculated. These predicted mode share and tour lengths were then compared to

the mode shares and tour lengths observed in the transfer data, and the differences

between observed and predicted data were tabulated.

6.3.1 Toronto data

The Toronto analysis has been undertaking using the detailed model specification,

the specification that gives the best fit to the base data. Tests have been made

using both the 1986 and 2006 base models of the ability of the models to predict

the observed changes in mode share and trip length over 10 and 20 year transfer

periods. Tables 6.12 and 6.13 compare the predicted and observed changes in

mode share and tour length for the 1986 base models.

The overall RMS measures for mode share and tour length were calculated using

Equation 6.3 and Equation 6.4.

RMS(S) =

√∑
m(Spm − Som)2

M
(6.3)

RMS(T ) =

√∑
m(T pm − T om)2

M
(6.4)

where: m is the mode, with M modes in total

Spm and Som are the predicted and observed mode shares
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T pm and T om are the predicted and observed tour lengths by mode

Table 6.12: Mode share predictions, 1986 base model

Mode 1986 obs 1996 obs 1996 pred error 2006 obs 2006 pred error

car driver 67.9% 73.3% 75.7% 2.4% 76.0% 77.2% 1.3%
car passenger 9.4% 9.7% 9.8% 0.1% 8.7% 11.1% 2.4%
local transit 20.3% 14.7% 12.0% -2.7% 12.7% 9.4% -3.4%

walk 2.3% 2.3% 2.6% 0.3% 2.6% 2.3% -0.3%

Total 100.0% 100.0% 100.0% 0.0% 100.0% 100.0% 0.0%

RMS 1.8% RMS 2.4%

Table 6.13: Tour length predictions (km), 1986 base model

Mode 1986 obs 1996 obs 1996 pred error 2006 obs 2006 pred error

car driver 34.0 40.1 36.5 -3.6 39.5 38.2 -1.3
car passenger 28.6 33.0 29.3 -3.7 29.7 32.2 2.5
local transit 23.3 25.9 23.5 -2.5 25.7 23.1 -2.7

walk 4.1 4.1 4.0 0.0 4.3 4.1 -0.3

Total 30.6 36.5 33.2 -3.3 36.0 35.3 -0.7

RMS 2.9 RMS 1.9

The key changes in mode share between 1986 and 1996 are the 5.4% increase

in the car driver share, and the 5.7% reduction in the local transit share. The

transferred model over-predicts these changes by 2.4% and 2.7% respectively. By

2006, the car driver share has increased by 8.1%, which is over-predicted by just

1.3%, and the local transit share has declined by 7.6%, which is over-predicted

by 3.4%.

Overall mean tour lengths increased by 5.9 km between 1986 and 1996, whereas

the transferred model only predicts a 2.8 km increase. The observed increases in

tour length for car driver, car passenger and local transit are all under-predicted

by 2 to 4 km. Observed tour lengths show no further increase between 1996

and 2006, whereas the transferred model predicts a further increase in mean tour

length, and consequently overall mean tour lengths are predicted well in 2006.

However, the fit at the modal level is less good, in particular local transit tour
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lengths are predicted to reduce relative to 1986 when in fact they increased by

2.4 km.

Tables 6.14 and 6.15 summarises compares the predicted and observed changes

in mode share and tour length for the 2006 base models.

Table 6.14: Mode share predictions, 2006 base model

Mode 2006 obs 1996 obs 1996 pred error 1986 obs 1986 pred error

car driver 76.0% 73.3% 73.4% 0.1% 68.0% 64.1% -3.8%
car passenger 8.7% 9.7% 8.0% -1.7% 9.4% 7.4% -2.1%
local transit 12.7% 14.7% 15.7% 1.1% 20.3% 26.0% 5.7%

walk 2.6% 2.3% 2.9% 0.6% 2.3% 2.5% 0.2%

Total 100.0% 100.0% 100.0% 0.0% 100.0% 100.0% 0.0%

RMS 1.0% RMS 3.5%

Table 6.15: Tour length predictions (km), 2006 base model

Mode 2006 obs 1996 obs 1996 pred error 1986 obs 1986 pred error

car driver 39.5 40.1 38.5 -1.6 34.0 37.6 3.6
car passenger 29.7 33.0 27.6 -5.4 28.6 27.1 -1.3
local transit 25.7 25.9 27.1 1.2 23.3 27.2 3.8

walk 4.3 4.1 4.2 0.2 4.1 4.3 0.2

Total 36.0 36.5 34.8 -1.7 30.6 33.3 2.6

RMS 2.9 RMS 2.7

The transferred 2006 model accurately predicts the car driver share in 1996, and

also predicts the local transit share to within 1%. However, the car passenger

share is predicted to reduce slightly when a small increase is observed, leading

to a 1.7% error. The reduction in car driver share to 1986 was over-predicted by

3.8%, and the increase in local transit share was over-predicted by 5.7%. So as

per the 1986 base model, the large changes in mode share which occur between

1986 and 1996 are over-predicted.

As noted above, overall tour lengths remain more or less constant between 2006

and 1996, whereas the transferred model predicts a 1.6 km reduction.
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6.3.2 Sydney data

The analysis followed the approach developed for the Toronto data, with observed

and predicted changes in mode share and tour length over the transfer period

investigated. The tests were undertaken using the detailed & income specification

models, i.e the best model specifications incorporating variation in cost sensitivity

with income band.

Home–work analysis

Table 6.16 and Table 6.17 present the results from the predictive tests made

with the 1991 and 2006 base models respectively. In these tables the first set

of comparisons compare the predicted modes shares in the transfer context to

the shares observed in both the base and transfer contexts, and the second set

of comparisons compare the predicted tour lengths in the transfer context to the

values observed in both the base and transfer contexts.

Table 6.16: Sydney commute predictive tests, 1991 base
Mode share Tour length (km)

Mode 1991 obs 2006 obs 2006 pred error 1991 obs 2006 obs 2006 pred error

car driver 63.2% 65.1% 68.4% 3.2% 32.5 29.6 31.1 1.5
car passenger 9.3% 6.3% 7.8% 1.4% 25.6 21.0 24.3 3.2

train 14.9% 14.2% 10.6% -3.6% 62.7 51.6 50.3 -1.3
bus 6.2% 8.0% 6.1% -1.9% 19.7 18.7 17.1 -1.6
bike 0.6% 0.6% 0.5% -0.1% 12.9 11.4 11.8 0.4
walk 5.4% 5.3% 5.8% 0.5% 4.3 3.1 3.5 0.4
taxi 0.4% 0.4% 0.8% 0.4% 15.1 17.8 25.3 7.5

Total 100.0% 100.0% 100.0% 0.0% 33.8 29.7 30.0 0.3

RMS 2.0% RMS 3.3

The models predict the observed changes in mode share only reasonably. While

in the author’s view the overall RMS is good at 2.0–2.7%, this result is biased by

modes with a low share. Both transfers over-predict the observed changes in the

car driver share. Given that Section 5.4 found that the car availability parameters

have a good level of temporal transferability, one explanation is that the models
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Table 6.17: Sydney commute predictive tests, 2006 base
Mode share Tour length (km)

Mode 2006 obs 1991 obs 1991 pred error 2006 obs 1991 obs 1991 pred error

car driver 65.1% 63.2% 58.7% -4.5% 29.6 32.5 31.1 -1.3
car passenger 6.3% 9.3% 7.5% -1.8% 21.0 25.6 21.4 -4.2

train 14.2% 14.9% 19.5% 4.6% 51.6 62.7 61.7 -1.0
bus 8.0% 6.2% 8.5% 2.3% 18.7 19.7 21.9 2.2
bike 0.6% 0.6% 0.7% 0.1% 11.4 12.9 12.3 -0.5
walk 5.3% 5.4% 4.9% -0.5% 3.1 4.3 3.7 -0.6
taxi 0.4% 0.4% 0.2% -0.2% 17.8 15.1 26.4 11.3

Total 100.0% 100.0% 100.0% 0.0% 29.7 33.8 34.1 0.3

RMS 2.7% RMS 4.7

over-predict the change in the car driver share because they are under-sensitive

to the 84% increase in fuel costs between 1991 and 2006.

The change in overall tour length given by the level of service measures2 is mod-

elled well by the models (the high RMS is as a result of taxi, but this mode has

a very low mode share).

Home–other travel analysis

Table 6.18 and Table 6.19 present the results from the predictive tests made with

the 1991 and 2006 base models respectively. Again, the first set of comparisons

compare the predicted modes shares in the transfer context to the shares observed

in both the base and transfer contexts, and the second set of comparisons compare

the predicted tour lengths in the transfer context to the values observed in both

the base and transfer contexts.

The observed changes in mode share are predicted more accurately than in the

commute model, and in particular the observed change in the car driver share is

more accurately predicted, possibly because the home–other travel model is more

sensitive to cost changes than the commute model.

2as discussed in Section 3.3.2 this is believed to be a result of the changes in the networks,
not a real change in tour length
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Table 6.18: Sydney home–other travel predictive tests, 1991 base
Mode share Tour length (km)

Mode 1991 obs 2006 obs 2006 pred error 1991 obs 2006 obs 2006 pred error

car driver 43.7% 47.0% 48.5% 1.5% 16.7 13.1 18.7 5.6
car passenger 32.5% 29.8% 30.1% 0.2% 19.2 14.4 19.5 5.2

train 2.0% 1.7% 2.3% 0.7% 55.8 46.3 48.5 2.2
bus 2.6% 1.7% 3.1% 1.4% 18.1 11.3 17.4 6.1
bike 1.0% 1.0% 0.9% -0.1% 8.2 6.0 7.0 1.0
walk 17.8% 18.5% 14.4% -4.1% 4.2 2.2 3.2 1.0
taxi 0.5% 0.3% 0.8% 0.5% 16.4 12.2 20.5 8.3

Total 100.0% 100.0% 100.0% 0.0% 16.1 11.9 17.3 5.4

RMS 1.8% RMS 4.9

Table 6.19: Sydney home–other travel predictive tests, 2006 base
Mode share Tour length (km)

Mode 2006 obs 1991 obs 1991 pred error 2006 obs 1991 obs 1991 pred error

car driver 47.0% 43.7% 44.2% 0.5% 13.1 16.7 13.7 -3.1
car passenger 29.8% 32.5% 33.9% 1.4% 14.4 19.2 16.6 -2.6

train 1.7% 2.0% 3.1% 1.1% 46.3 55.8 59.2 3.4
bus 1.7% 2.6% 2.6% 0.0% 11.3 18.1 17.9 -0.2
bike 1.0% 1.0% 1.1% 0.0% 6.0 8.2 7.0 -1.2
walk 18.5% 17.8% 15.0% -2.8% 2.2 4.2 3.1 -1.1
taxi 0.3% 0.5% 0.2% -0.2% 12.2 16.4 17.5 1.0

Total 100.0% 100.0% 100.0% 0.0% 11.9 16.1 14.5 -1.5

RMS 1.3% RMS 2.1

However, the tour length predictions are less good, particular for the 1991 base

model which predicts a 1.2 km increase in tour length when the observed change

is a 4.2 km reduction. These results are likely to be a combination of the network

changes discussed in Section 3.3.2 and the model predictions, but disentangling

the two effects is difficult.

The predictive tests have also been undertaken for the sub-purpose models to

investigate whether these models are better able to predict observed changes

in mode share and tour length than the total other travel model. Table 6.20

summarises the RMS measures for mode share and tour length obtained when

the 1991 base sub-purpose models were transferred to 2006.

Table 6.21 presents the corresponding set of results obtained when the 2006 base
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Table 6.20: Sub-purpose predictive tests, 1991 base transferred to 2006
Without Serve Personal Leisure Mean

segmentation passenger business

Mode share 1.8% 0.6% 1.4% 4.8% 2.3%
Tour length (km) 4.9 3.4 5.0 4.4 4.3

sub-purpose models were transferred to 1991.

Table 6.21: Sub-purpose predictive tests, 2006 base transferred to 1991
Without Serve Personal Leisure Mean

segmentation passenger business

Mode share 1.3% 1.1% 1.6% 2.7% 1.8%
Tour length (km) 2.1 5.9 3.5 3.6 4.3

On the basis of these results there is no evidence that segmenting home–other

travel into separate sub-purpose models results in better predictions of observed

changes in mode share and tour length.

6.3.3 Discussion

The mode share and tour length predictions are reasonable, with the models

generally predicting the direction of key changes correctly (though in the case

of the car mode share, this will be driven principally by higher car availability

in later years of data). The Sydney tour length analysis is complicated by the

impact of network changes following from the change to the zoning system, and

this highlights that if a model is applied to a network that is significantly different

from the network used in model application can have a significant impact on the

model predictions, and therefore the transferability of the original model.

In both the Toronto and Sydney analyses, the observed increase in car driver

share over time is over-predicted by the transferred models. In both cases the

increase in share has been accompanied by a significant real terms increase in
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car costs, and so one explanation is that the models are under-sensitive to the

longitudinal change in costs. As Section 5.1.1 highlights, longitudinal income

elasticities have been found to be significantly lower than the cross-section val-

ues, and it is possible that a similar relationship exists for modal cost changes.

An alternative explanation is that the growth in car use has been suppressed

by increased congestion and associated parking difficulties, which impacts upon

commute travel more than on the other travel purpose. More research would be

valuable here to explore these different hypotheses.

6.4 Elasticities

6.4.1 Toronto data

The elasticity tests were undertaken using the detailed model specification. Elas-

ticities were calculated for the 1986, 1996 and 2006 base models, and then the

elasticities for the 1996 and 2006 base models were compared to those obtained

by transferring the 1986 models.

Table 6.22: Toronto commute model elasticities

Elasticity Units 1986
1996 2006

base 1986 tran tran/base base 1986 tran tran/base

fuel cost kms -0.156 -0.113 -0.141 1.244 -0.234 -0.179 0.763
car time trips -0.149 -0.095 -0.087 0.914 -0.106 -0.074 0.699
PT fare trips -0.280 -0.344 -0.358 1.042 -0.376 -0.309 0.823
PT IVT trips -0.780 -0.799 -0.830 1.039 -0.881 -0.912 1.035

Comparison of the 1986 values to base values for 1996 and 2006 shows the elastici-

ties change when the same model specification is estimated on the 1986, 1996 and

2006 datasets. The elasticities from the best fitting model for each year fluctuate

noticeably, particularly for the fuel cost kilometrage elasticity. The kilometrage

elasticities are impacted by the relative strength of the linear and log cost terms –

in a pure log cost model the impact of a uniform 10% increase in cost is to add a
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constant to the utility of each destination alternative and therefore no destination

choice response would be observed. Thus the low fuel cost kilometrage elasticity

in the 1996 model can be explained by the fact that the linear cost term is smaller

in magnitude than in the 1986 and 2006 models. Thus an important point is that

the elasticities calculated are impacted by the particular model results as well as

any changes in sensitivity in the population.

A general pattern is that the difference between the transfer elasticity and the

base elasticity is higher over the longer 20 year transfer to 2006 than over the

10 year transfer to 1996. While this result is intuitive, the analysis of the trans-

ferability index presented in Section 6.2 did not identify a pattern of reducing

transferability with increased transfer period. No consistent pattern of diver-

gence between the base and transferred elasticities emerges, such as higher or

lower sensitivity in the transferred models.

6.4.2 Sydney data

The Sydney elasticity tests were undertaken using the detailed & income model

specification which incorporates variation in cost sensitivity with income. Elas-

ticities were calculated for both the 1991 and 2006 base models, and then the

elasticities for the 2006 base models were compared to those obtained by trans-

ferring the 1991 models to 2006. Table 6.4.2 summarises the results for commute.

Table 6.23: Sydney commute model elasticities

Elasticity Units 1991
2006

base 1991 tran tran/base

Fuel cost kms -0.15 -0.16 -0.18 1.12
Car time tours -0.27 -0.25 -0.11 0.45
PT cost tours -0.38 -0.32 -0.33 1.05
PT IVT tours -0.50 -0.77 -0.54 0.70

The correspondence between the base and transfer cost elasticities in 2006 is
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better than in the Toronto models. However, the transferred model gives lower

time elasticities than the 2006 base model. It seems likely that the time elasticities

will be impacted by the reductions in mean trip distance, and hence mean travel

time, that result from the move to a more detailed zoning system in 2006 (as

discussed in Section 3.3.2).

Table 6.4.2 summarises the results for home–other travel.

Table 6.24: Sydney home–other travel model elasticities

Elasticity Units 1991
2006

base 1991 tran tran/base

Fuel cost kms -0.02 -0.03 -0.02 0.76
Car time tours -0.14 -0.10 -0.06 0.57
PT cost tours -0.33 -0.27 -0.23 0.86
PT IVT tours -0.47 -0.79 -0.46 0.58

There are larger differences between the 2006 base elasticities and those obtained

by transferring the 1991 models to 2006 than were observed for commute, with a

general pattern whereby the transferred model under-predicts the 2006 base sen-

sitivity. It was observed in Section 3.3.2 that home–other travel is more strongly

impacted by the change in zoning system because mean tour lengths are lower,

and therefore it is not possible to draw any wider conclusions from this result.

Elasticity tests were also undertaken for the home–other sub-purposes. These

tests were restricted to the fuel cost kilometrage and PT IVT tests to restrict

the number of tests run. Table 6.25 summarises the results for the fuel cost

kilometrage tests.

For both the 1986 base and 2006 base values, there is considerable variation in the

elasticities between the different sub-purposes, through the elasticity values are

low in all cases due to the log cost formulation used in the model. The transfer

elasticities are consistently lower than the 2006 base values, but again the impact

of the change in zoning system is likely be influence this result.
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Table 6.25: Sydney home–other travel sub-purpose fuel cost kilometrage elasticity
tests

Purpose 1991
2006

base 1991 trans tran/base

Without segmentation -0.025 -0.029 -0.022 0.76

Serve passenger -0.009 -0.023 -0.008 0.33
Personal business -0.037 -0.035 -0.031 0.90

Other travel -0.033 -0.047 -0.023 0.50

Table 6.26 summarises the results for the PT IVT elasticity tests.

Table 6.26: Sydney home–other travel sub-purpose PT IVT trip elasticity tests

Purpose 1991
2006

base 1991 trans tran/base

Without segmentation -0.472 -0.788 -0.458 0.58

Serve passenger -0.439 -0.817 -0.402 0.49
Personal business -0.529 -0.766 -0.567 0.74

Other travel -0.481 -0.732 -0.455 0.61

There is less variation between sub-purposes in the base elasticities for the PT

IVT trip elasticity tests. Once again the change in zoning system is likely to be

a key factor in the lower sensitivity obtained when the 1986 model is transferred

to 2006.

6.4.3 Discussion

A key point that the elasticity comparison highlights is that the elasticities cal-

culated from a given model are specific to the model results, and in particular

in these models are impacted by the relative strength of the linear and log cost

terms. This makes it difficult to draw firm conclusions about how well the trans-

ferred models replicate any observed changes in sensitivity over time.

In general the transferred models give reasonable similar results to the base mod-
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els. No pattern of systematic under- or over-prediction of sensitivity emerged

from the Toronto analysis, and the impact of zoning change makes it difficult

to draw out conclusions from the Sydney analysis. It is noteworthy that while

the analysis of differences in individual parameter values presented in Section 5.4

suggested the in-vehicle time parameters to be more transferable than the cost

parameters, this pattern is not repeated in the elasticity measures.

Further research would be valuable on this issue to try to better disentangle

changes in model sensitivity from the evolution of changes in the underlying

sensitivity of travellers to cost and time changes. An issue here is the relative

lack of evidence on how, if at all, elasticities are actually changing over time. For

example, Dunkerley (2014), in a review of elasticity values relevant to the UK

context, found limited evidence on changes in car cost and car time elasticities

over time.
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Chapter 7

Pooled models

This chapter presents results from models that investigate model transferability

by pooling different years of the Toronto data.

Section 7.1 presents partial transfer models, whereby the base model is transferred

be estimating scale parameters in the transfer context. Repeating this approach

for different transfer years allows analysis of how the transfer scale parameters

vary over time and between parameter type.

Section 7.2 presents models that are estimated by pooling over different years of

data. The analysis investigates whether pooling data in this way can yield models

which are better at predicting behaviour in the transfer context than using data

from the most recent year alone.

The chapter concludes in Section 7.3 with a summary of the findings from the

pooled model analysis.
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7.1 Partial transfer models

A number of authors in the spatial transfer literature have employed a partial

transfer approach whereby different groups of utility terms are transferred from

the base to transfer context by estimating scale parameters using some infor-

mation from the transfer context. For example, Koppelman and Wilmot (1982)

transferred mode choice models from one area of Washington D.C. to another,

Gunn et al. (1985) transferred mode-destination choice models between adjacent

regions of the Netherlands, Daly (1985) transferred mode choice models from

Grenoble to Nantes, and Gunn and Fox (2005) used the partial transfer approach

to transfer national models for the Netherlands to four regions of the Netherlands.

When models are used in forecasting, information is not available in the transfer

context. However, the partial transfer approach can be used to make assessments

of transferability using historical data collected at different points in time. The

Toronto data has been used for this analysis because data is available collected

at four different points in time over a 20 year period.

Changes in the scale of the following groups of utility parameters has been inves-

tigated:

• cost terms

• level-of-service (LOS) terms

• socio-economic (SE) terms

• mode and destination constants

These groupings were used drawing on the findings from the literature review and

the analysis presented in Section 5.4 that parameters in these different groups

exhibit different degrees of temporal transferability.
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By transferring a given base model to each other year of data, the evolution in

the scale parameters over time can be investigated. Two sets of tests have been

undertaken, all using model specification B so that the models can be transferred

to 2001. First, 1986 base models have been transferred to 1996, 2001 and 2006.

Second, 2006 base models have been transferred to 2001, 1996 and 1986.

The utilities for the base models were detailed earlier in Section 4.2.3. The

utilities for the partial transfer models can then be written as follows:

V t
md = µtcost

∑
e

βbcost,ex
t
cost,e + µtLOS

∑
f

βbLOS,fx
t
LOS,f +

µtSE
∑
g

βbSE,gx
t
SE,g + µtconst

∑
h

βbconst,hx
t
const,h (7.1)

where: µtcost is the scale parameter estimated for the e cost parameters

µtLOS is the scale parameter estimated for the f LOS parameters

µtSE is the scale parameter estimated for the g socio-economic parameters

µtconst is the scale parameter estimated for the h constants

βbcost,e, β
b
LOS,f , βbSE,g and βbconst,h are the base parameters

xtcost,e, x
t
LOS,f , xtSE,g and xtconst,h is the transfer context data

The results from these tests are summarised in Table 7.1 and Table 7.2. The

t-ratios of the scale parameters are given in brackets and define the significance

of the scale parameter relative to a value of one. The tables also present the

Transferability Indices (TI) defined in Equation 2.21 for both the partial transfer

models, and for the equivalent näıve transfers of the base model (i.e. transferring

the base parameters without adjustment, which is equivalent to a partial transfer

model in which all of the scale parameters are constrained to a value of 1).

Examining the results from the partial transfers of the 1986 model, the cost terms
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Table 7.1: Partial transfers, 1986 base, specification B

1996 2001 2006

µt
cost 0.879 (11.4) 0.736 (21.1) 1.192 (17.0)

µt
LOS 0.814 (45.7) 0.892 (31.1) 0.898 (24.2)
µt
SE 1.074 (3.7) 1.157 (9.2) 0.976 (1.2)

µt
const 0.984 (2.0) 0.927 (9.9) 1.072 (9.4)

TI (partial transfer) 0.970 0.882 0.857
TI (näıve transfer) 0.691 0.716 0.675

Table 7.2: Partial transfers, 2006 base, specification B

2001 1996 1986

µt
cost 0.664 (28.1) 0.777 (19.2) 0.896 (7.6)

µt
LOS 0.962 (9.9) 0.910 (20.1) 1.126 (22.0)
µt
SE 1.184 (12.9) 1.013 (0.8) 0.962 (2.3)

µt
const 0.884 (16.8) 0.863 (19.3) 0.864 (18.2)

TI (partial transfer) 0.875 0.852 0.879
TI (näıve transfer) 0.784 0.705 0.762

have a good level of transferability to the 1996 and 2006 data (i.e. the scale pa-

rameters have values close than one), but the low scale for 2001 demonstrates

that their transferability to the 2001 data is not as good. The LOS terms are

more stable, with the scale of the parameters reduced by between 10% and 20%.

The socio-economic parameters have a high degree of transferability, with scale

parameters relatively close to one for each of the transfer years. Finally, the con-

stants also retain a good level of transferability over time, with scale parameters

not too far from one. These results show some discrepancies relative to the com-

parisons of changes in individual model parameters by year relative to the 1986

base model presented in Section 5.4. In those comparisons, the LOS parameters

were most transferable on average, and the constants least.

The TI values for the partial transfers of the 1986 model demonstrate that a

noticeable improvement in transferability is achieved relative to näıve transfers.
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Analysing the results from the partial transfers of the 2006 base model, it can be

seen that the cost terms have the lowest scale values, highlighting the relatively

low transferability of the cost terms. The model constants have the second lowest

scale values in all three partial transfers. The LOS and socio-economic parameters

have the scale values closest to one and therefore are more transferable over

time. The patterns of variation between parameter group are generally consistent

with the comparisons of individual parameters relative to the 1986 base model

presented in Section 5.4.

The TI values for the partial transfers of the 2006 model demonstrate that a

noticeable improvement in transferability is achieved relative to näıve transfers,

but the improvements in TI values are not as large as those obtained from the

partial transfers of the 1986 model.

In summary, while the partial transfer approach results in improved transferabil-

ity measures relative to näıve transfers, the patterns of change in the individual

scale parameters over time do not indicate any consistent patterns where one of

the utility groups steadily increases or decreases in scale over time.

7.2 Pooled models

If household interview, level-of-service and attraction data exists for different

points in time, then the question arises as to whether it is best to pool the

different datasets in some way, or simply follow the conventional approach of using

the most recent data to forecast future behaviour. This question is particularly

relevant in the current economic climate, where due to restrictions on government

spending there may be pressure to cut sample sizes for household interviews.

Badoe and Wadhawan (2002) estimated mode choice models by pooling 1964

and 1986 data for the Toronto area, and compared the ability of these models
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to predict 1991 travel choices to the predictive performance of models estimated

using the more recent 1986 data only. Different specifications for the pooled

models were tested, ranging from näıve pooling to models with separate mode

constants, level-of-service parameter scales and socio-economic parameter scales

by year. The models with separate constants and scales by year gave better a

better fit to the disaggregate 1991 mode choices than the näıve pooled model, but

none of the pooled models gave as good a fit as the 1986-only model. However,

using an aggregate measure of predictive performance across different spatial

segments, the best pooled model performed slightly better than the 1986-only

model. Sanko (2014a) investigated the ability of models developed from 1971,

1981 and 1991 data to explain 2001 mode choices in the Nagoya region of Japan.

He found that a model estimated from the most recent 1991 data better predicted

the 2001 mode choices than a pooled model with different constants and LOS and

socio-economic scale parameters by year. Thus, despite using estimating pooled

models using separate scale parameters and constants by year, other researchers

have found using only the most recent data gives the best fit to the transfer data

for mode choice models.

As the experimental approach relies on estimating a pooled model from two years

of data, and investigating the ability of the pooled model to predict behaviour in

a third transfer context, the Toronto data was once again used for this analysis.

7.2.1 Model specification

Badoe and Wadhawan (2002) found that pooled models yielded better predictive

performance if separate constants and scale parameters were used for different

years of data. A number of pooled model specifications were tested to investigate

whether the same result is observed for the Toronto home-work mode-destination

models. A total of five pooled models have been estimated by pooling the 1986

and 1996 data. The pooled models all use specification B.
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• Pooled 1: näıve pooling

• Pooled 2: 1986 data scaled relative to 1996 data

• Pooled 3: 1986 data scaled relative to 1996 data, mode constants by year

• Pooled 4: 1986 data scaled relative to 1996 data, separate scaling by utility

group

• Pooled 5: 1986 data scaled relative to 1996 data, separate scaling by utility

group, mode constants by year

The 1986 and 1996 data has been pooled by taking the full 1986 sample, and

50% of the 1996 sample. This allows investigation of the transferability of models

estimated by pooling a large old dataset with a smaller more recent dataset to be

compared to the transferability of models estimated from a large recent dataset

alone. In the pooled model, the utilities for the 1986 and 1996 data can be written

as follows:

V 86
md = µ86cost

∑
e

βcost,e x
86
cost,e + µ86LOS

∑
f

βLOS,f x
86
LOS,f +

µ86SE
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βSE,g x
86
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86
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∑
h

βconst,h x
86
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V 96
md =

∑
e

βcost,e x
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cost,e +

∑
f

βLOS,f x
96
LOS,f +

∑
g

βSE,g x
96
SE,g + β96ASC +

∑
h

βconst,h x
96
const,h (7.3)

In model 1, the four scale parameters µ86cost, µ
86
LOS , µ

86
SE and µ86const are all con-

strained to one. Furthermore, β86ASC = β96ASC∀m.

In model 2, the four scale parameters µ86cost, µ
86
LOS , µ

86
SE and µ86const are replaced by

a single scale parameter µ86, and β86ASC = β96ASC∀m.
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In model 3, a single scale parameter µ86 is estimated but separate mode constants

are estimated by year.

In model 4, separate scale parameters are estimated by utility group but β86ASC =

β96ASC∀m.

Finally, in model 5 the utility functions given in Equations 7.2 and 7.3 are esti-

mated directly.

The same set of five pooled models has been estimated by combining the 1996

and 2006 data. The data has been pooled by using 50% of the 1996 data and the

full 2006 sample, which are then used to predict behaviour in the 1986 transfer

context. The utilities for the 1996 data are given by Equation 7.3. The utilities

for the 2006 data are given by the following equation:

V 06
md = µ06cost
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βcost,e x
06
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∑
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06
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06
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06
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06
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7.2.2 Model transferability

The full parameter results from the Pooled models are presented in Appendix B.

The transferability of the pooled 1986 & 1996 models to 2001 and 2006 has been

compared to that obtained from the specification B model estimated from the full

1996 sample alone. The pooled models are applied using the 1996 parameters,

i.e. the utilities are not scaled by the 1986 scale parameters and the 1996 mode

constants are used. Table 7.3 and Table 7.4 compare the log-likelihood values

obtained when the pooled and 1996 models are used to predict the 2001 and

2006 mode-destination choices, and also present the corresponding TI measures.
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Table 7.3: Pooled 1986 & 1996 models transferred to 2001

1996 model Pooled 1 Pooled 2 Pooled 3 Pooled 4 Pooled 5
Naive pooling Overall scale Overall scale Scale by Scale by util

ASCs by year util group group, ASCs
by year

LL01(β96) -477,901.4 -478,790.2 -478,616.7 -477,401.4 -477,421.2 -477,441.9
gain in LL n/a -888.8 -715.3 500.0 480.2 459.4

TI 0.781 0.689 0.707 0.833 0.831 0.829

Table 7.4: Pooled 1986 & 1996 models transferred to 2006

1996 model Pooled 1 Pooled 2 Pooled 3 Pooled 4 Pooled 5
Naive pooling Overall scale Overall scale Scale by Scale by util

ASCs by year util group group, ASCs
by year

LL06(β96) -415,454.1 -415,090.6 -415,531.7 -414,893.3 -414,788.2 -414,891.6
gain in LL n/a 363.5 -77.6 560.9 665.9 562.5

TI 0.570 0.631 0.557 0.664 0.682 0.665

For transfers to 2001, the Pooled 3, 4 and 5 models explain the 2001 mode-

destination choices better than the 1996 model. As would be expected, when a

different scale is estimated for the 1986 data in Pooled 2 the transferability of

the pooled model improves, and there is a substantial improvement in Pooled 3

when separate mode constants are estimated for each year of data. Comparing

Pooled 2 and Pooled 4, scaling the 1986 terms separately by the four groups of

utility terms leads to a further improvement in model transferability. However,

estimating separate mode constants by year of data in Pooled 5 actually results

in a slight loss in transferability relative to Pooled 4.

For transfers to 2006, four of the five pooled models better explain the 2006

mode-destination choices than the 1996 model. Consistent with the transfers to

2001, the best model fit is obtained from model Pooled 4 which incorporates

scaling by utility group but not separate ASCs by year. However, comparison of
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Pooled 2 and Pooled 3 shows estimating separate mode constants by year gives

an improvement in fit.

The pooled 1996 and 2006 models have been used to predict the choices observed

in the 1986 data, and the fit to the 1986 data compared to that achieved by

applying the specification B model estimated from the full 1996 sample. When

the pooled models are applied in the 2006 context, the 1996 mode constants are

used and the 2006 scale parameters are not applied. Table 7.5 compares the

log-likelihood and TI measures obtained from the 1996-only model and the five

pooled model specifications.

Table 7.5: Pooled 1996 & 2006 models transferred to 1986

1996 model Pooled 1 Pooled 2 Pooled 3 Pooled 4 Pooled 5
Naive pooling Overall scale Overall scale Scale by Scale by util

ASCs by year util group group, ASCs
by year

LL86(β96) -308,674.2 -308,277.8 -308,854.2 -308,737.2 -308,861.6 -308,756.2
gain in LL n/a 396.4 -180.0 -63.1 187.5 -82.0

TI 0.783 0.855 0.750 0.771 0.748 0.768

For transfers to 1986, only the Pooled 1 model which pools the 1996 and 2006 data

näıvely gives a better fit the 1986 data than the 1996-only model. Comparison

of Pooled 2 and Pooled 3, and of Pooled 4 and Pooled 5, demonstrates the

estimating separate mode constants by year and using the more recent constants

in forecasting consistently improves model transferability.

It is noteworthy that for five of the six comparisons of the impact of estimating

the constants by year (comparisons of Pooled 2 & Pooled 3 and comparisons

of Pooled 4 & Pooled 5) the transferability of the pooled model is improved

by estimating the constants separately by year. Chingcuanco and Miller (2012)

estimated pooled vehicle ownership models for large urban centres in Ontario

incorporating both varying constants and varying scales, and they found that
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temporal variation was predominately due to differences in the constants rather

than differences in overall model scale.

7.2.3 Predictive measures

To test the ability of the transferred models to predict the aggregate shares and

tour lengths by mode, RMS measures have been calculated for each of the model

transfers to calculate the average error in the predictions at the modal level. The

RMS measures have been calculated using Equation 6.3 and Equation 6.4. The

results for the transfers to 2001 are presented in Table 7.6, and those for transfers

to 2006 are presented in Table 7.7. The measures for 2001 exclude walk, because

the walk alternative in the 2001 data is walk and cycle combined, which results

in differences in mode shares and trip lengths relative to a pure walk mode.

Table 7.6: Pooled 1986 & 1996 models transferred to 2001 RMS measures

1996 model Pooled 1 Pooled 2 Pooled 3 Pooled 4 Pooled 5
Näıve Overall scale Overall scale Scale by Scale by util

pooling ASCs by year util group group, ASCs
by year

Mode share 1.36% 0.96% 1.37% 0.90% 1.30% 1.31%
Tour length (km) 3.82 4.26 4.67 2.99 2.67 3.01

Table 7.7: Pooled 1986 & 1996 models transferred to 2006 RMS measures

1996 model Pooled 1 Pooled 2 Pooled 3 Pooled 4 Pooled 5
Näıve Overall scale Overall scale Scale by Scale by util

pooling ASCs by year util group group, ASCs
by year

Mode share 1.26% 0.94% 1.29% 1.13% 0.95% 0.98%
Tour length (km) 5.06 2.98 4.27 4.70 4.37 4.73

For the 2001 transfers, all the pooled models except Pooled 2 predict mode share
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better than the 1996 only model. Pooled models 3, 4 and 5 predict the 2001 tour

lengths better than the 1996 model.

For the 2006 transfers, again all the pooled models except Pooled 2 predict mode

share better than the 1996 model. All of the pooled models predict tour lengths

better than the 1996 model, though consistent with mode share the best pre-

dictions are given by the Pooled 1 model which pools the 1986 and 1996 data

näıvely.

Table 7.8: Pooled 1996 & 2006 models transferred to 1986 RMS measures

1996 model Pooled 1 Pooled 2 Pooled 3 Pooled 4 Pooled 5
Näıve Overall scale Overall scale Scale by Scale by util

pooling ASCs by year util group group, ASCs
by year

Mode share 2.11% 2.35% 3.04% 1.64% 2.45% 1.70%
Tour length (km) 4.47 2.59 3.95 4.31 4.23 4.33

Only Pooled models 3 and 5, with separate mode shares by year, give better

predictions of mode share than the 1996 only model. By contrast, the best

prediction of tour lengths is given by the Pooled 1 model, and the other four

pooled models perform only slightly better than the 1996-only model.

Overall, although the results are somewhat mixed the recommendation when

working with pooled data is that separate scales are estimated by utility group

and separate mode constants are estimated by year, with only the more recent

constants used to forecast future behaviour.

7.3 Summary

The transfer scaling analysis presented in Section 7.1 sought to investigate model

transferability by transferring the base models to the transfer context through
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the estimation of scale parameters applied to particular parameter groups. The

parameter groups used were consistent with those used successfully in Section 5.4

to investigate differences in the transferability of individual parameters.

While the variation in the transfer scale parameters between parameter groups

was broadly consistent with the analysis of differences in individual parameters

presented in Section 5.4, the variation in the parameters between years did not

identify any pattern whereby particular parameter groups increased or reduced in

scale with time. While this is consistent with the findings for overall model trans-

ferability presented in Section 6.2.1, it does mean that this particular analysis

was less insightful than expected.

A possible contribution to the result is that individual parameters may reduce

or increase in magnitude, when grouped together these differences may tend to

balance out. For example, while Section 5.4 highlighted that the mean change in

the constants is higher than that for other parameter groups this did not translate

into scale parameters for the constants in the partial transfer analysis that were

further from a value of 1 than those for other parameter groups.

Clearer conclusions emerged from the pooled analysis presented in Section 7.2.

If data is available from multiple years for model development, then pooling over

different years can give more transferable models compared to using data from

the most recent available year alone. This is best done by scaling the older data

to account for differences in scale over time, and by estimating separate mode

constants by year with the most recent constants used for forecasting. This

approach may be particularly useful when a larger older survey is available to

supplement a smaller more recent survey.
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Chapter 8

Random taste heterogeneity

models

This chapter presents an investigation into whether accounting for random taste

heterogeneity in the Toronto commute models results in improvements in model

transferability.

Section 8.1 introduces the analysis, including discussion of some of the difficulties

in estimating mode-destination models of this type.

Section 8.2 describes how random taste heterogeneity has been introduced into

the model specification s through the introduction of symmetrical triangularly

distributed parameters.

Section 8.3 presents the results for models incorporating random taste hetero-

geneity that have been estimating using the 1986 and 2006 datasets.

Section 8.4 summarises the analysis that was undertaken to investigate the trans-
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ferability of the 1986 and 2006 models incorporating random taste heterogeneity,

including comparison of the results obtained in comparable model specifications

that did not incorporate random taste heterogeneity.

Finally, Section 8.5 presents a summary of the analysis.

8.1 Introduction

As discussed in Section 2.1.3, there has been much work in recent years to de-

velop mixed logit models that are able to reflect heterogeneity in individual’s

tastes. Random taste heterogeneity models can yield significant improvements

in model fit relative to multinomial and nested logit forms, and Bhat (1998) has

demonstrated that the inclusion of distributed parameters can have a significant

impact on the elasticities of models of intercity mode choice.

Random taste heterogeneity models present complications for model estimation

because no closed form solution exists for the likelihood function. An approach

that is often adopted to estimate the models is to use simulation. For each

observation, multiple draws are made from the underlying distribution of the dis-

tributed parameters in order to simulate the parameter distributions. Typically

at least 100 draws are made per individual, and making these multiple draws

leads to significant increases in estimation run times because the choice proba-

bilities need to be calculated separately for each of the draws for each individual.

The distributed nature of the parameters also needs to be considered in model

application, either by making multiple draws per observation, or for models ap-

plied to large samples by using a Monte-Carlo approach to select a value from

the parameter distribution for each observation.

Multinomial and nested logit models of mode-destination choice already have rel-

atively long run times because of the large number of alternatives that are repre-
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sented. Furthermore, if the models are implemented using a sample enumeration

approach, the models are applied for a number of different segments which define

the different socio-economic terms in the model. Given these issues, to date to the

author’s knowledge mixed logit models of simultaneous mode-destination choice

have not been used in an application system. However, as computing power

continues to improve the potential to use mixed logit mode-destination models

increases.

The analysis presented in Chapters 5 and 6 demonstrated that improving the

model specification of nested logit models by adding terms to account for varia-

tion in tastes across different socio-economic groups. The analysis presented in

this chapter investigates whether mixed logit models that take account of random

taste heterogeneity yield further improvements in transferability relative to com-

parable multinomial model specifications. This addresses the important question

as to whether the improvements in base year model fit that random taste het-

erogeneity specifications can deliver yields models that are better at forecasting

changes in behaviour over time.

The random taste heterogeneity models have been developed using the Toronto

TTS data that is described in Section 3.2, and using the Toronto models presented

in Section 4.2.2 as a starting point. The Toronto data was used rather than

the Sydney data because it allowed assessments over a 20 year transfer period,

compared to 15 years with the Sydney data.

8.2 Model specification

The starting point for the mixed logit model specifications was the detailed spec-

ification of the Toronto commute model described in Section 4.2.2.

To reduce model run times as far as possible, the models were estimated from
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a sample of the full set of destination alternatives, a process termed destina-

tion sampling. However, the theory used to justify destination sampling only

applies to multinomial logit models (Ben-Akiva and Lerman, 1985). Therefore,

the model tests were using multinomial logit models with modes and destination

alternatives constrained to be at the same level. The destination sampling ap-

proach used is documented in Appendix D. It should be noted that it has yet been

proved that the sampling theory holds for models that incorporate random taste

heterogeneity, but because of the problem size limits in the estimation software

it was necessary to work with models estimated using sampling.

Building on previous work, randomly distributed parameters for both cost and

in-vehicle time (IVT) were tested. For example, Bhat (1998) developed models of

intercity mode choice for travel between Toronto and Montréal incorporating both

log-normally distributed cost and IVT parameters; however only for IVT was a

significant log-normal parameter identified. Daly and Carrasco (2009) developed

mode-destination choice models with both cost and IVT parameters using both

normal and log-normal distributions; in most cases distributed parameters were

added to either cost or time but not both, however in one case it was possible to

estimate both effects.

The distributed parameters have been estimated using ALOGIT, which uses an

error components specification, where for symmetrical random terms the param-

eters β are decomposed into a mean effect α and a vector of random effects γ:

Unj = αxnj + γ ynj + εnj (8.1)

where: xnj and ynj are vectors of observed variables relating to alternative j

α is a vector of fixed parameters

γ is a vector of distributed random terms with zero mean
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εnj is iid extreme value

For the subset of terms where distributed parameters are estimated, xnj = ynj .

For all other terms ynj = 0 and only the fixed parameter α is estimated. Tests

have been undertaken estimating γ terms for cost, car time and PT in-vehicle

time.

Different assumptions were made about the distribution of the random terms.

The initial model testing was undertaken using normally distributed parameters.

However, as Hess et al. (2005) highlights, the unbounded nature of the normal

distribution means that using it assumes both positive and negative values for the

parameter whatever the sign of the mean value is. This is problematic for cost

and IVT sensitivity, which are expected to be negative, i.e. increasing cost and

time would be expected to reduce utility. Other specifications for the random

parameters are possible. Hensher (2003) describes the use of normal, triangu-

lar, uniform and log-normal distributions. While there are limitations with the

log-normal distribution – specifically the long tail on the unbounded side and

problems achieving convergence (Hess et al., 2005) – it ensures that cost sensi-

tivity is always negative, and further it would allow an investigation of whether

assuming cost sensitivity in Toronto has an asymmetric distribution gives a bet-

ter fit to the data. For example, Hulchanski et al. (2007) highlighted significant

increases in income polarisation in Toronto between 1970 and 2005.

Unfortunately, software difficulties prevented tests with the log-normal distribu-

tion. Therefore later model tests were undertaken using triangularly distributed

parameters in place of normally distributed parameters because in a triangular

distribution the range is finite. The triangular distribution was generated using

random terms taking the range -1 to 1 with zero mean:

T [−1, 1] = U1[0, 1] + U2[0, 1]− 1 (8.2)
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where: T [−1, 1] is a triangular distribution taking the range −1 to 1 with zero mean

U1[0, 1] is a uniform distribution taking the range 0 to 1

U2[0, 1] is an independent uniform distribution taking the range 0 to 1

The subtraction of one in Equation 8.2 gives a distribution with zero mean that

ranges from -1 to 1. This means that the term can be used to estimate a spread

parameter that defines the range of the triangular distribution around the mean

sensitivity for the random term. In some models it was necessary to constrain

the range to be equal to the mean to ensure that the distribution always gave

negative cost or time sensitivity.

To estimate the random terms, repeated draws are made for each individual to

simulate the parameter distribution. An issue with these runs was that limits on

the problem size that it is possible to represent in the estimation software meant

that no more than 100 draws could be used for the 1986 data, and no more than

90 for the 2006 data. Given these limitations, Halton draws were used (Halton,

1960). The use of Halton draws ensures more uniform coverage of the 0–1 space,

which is particularly important when working with a low number of draws.

A potential issue with using Halton sequences for problems with higher numbers

of random terms is that the individual Halton sequences used for each random

term can be highly correlated. However, the mixed logit models described in this

chapter have at most three random terms and so this is not an issue for these

models (Bhat, 2003).
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8.3 Model results

The random taste heterogeneity specification was developed on the 1986 data.

Initially, four triangularly distributed parameters were tested on the linear cost,

log cost, car time and transit in-vehicle time parameters. However, the terms on

the log cost and transit in-vehicle time parameters were not significant and so

the final model specification incorporates triangularly distributed linear cost and

car time parameters only.

Table 8.1 summarises the impact of adding the triangular cost and car time terms

on the fit to the data and on the other model parameters. It was necessary to

constrain the range of the triangular term for cost to be equal to the mean value

to ensure that cost sensitivity remained negative across the whole range of the

parameter distribution. The changes in the other model parameters (i.e. the non-

random terms) have been analysed by calculating the mean change in parameter

value using the REM measure given in Equation 2.26.

Table 8.1: Toronto random taste heterogeneity results, 1986
Model MNL spec. C Plus distrib.

parameters

Fit -285,610.7 -285,499.1
Gain 111.6

Cost -0.0010 -12.7 -0.0015 -17.7
CostTri 0.0015 n/a
LogCost -0.300 -23.6 -0.176 -10.9
CarTime -0.033 -77.6 -0.037 -65.4

CarTimeTri 0.035 21.7

Other level of service terms REM = 0.023
Constants REM = 0.371

Socio-economics REM = 0.033

The addition of the two distributed parameters leads to a significant gain in log-

likelihood. The mean magnitude of the linear cost term increases relative to the

model without distributed parameters, and it can be seen that the log-cost term
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reduces in magnitude and significance. The mean value of car time term increases

only slightly relative to the model without distributed parameters.

The REM measures for changes in the non-random model terms show that the

level of service and socio-economic terms changes only slightly when the dis-

tributed parameters are added. The constants show larger changes, however this

result is strongly impacted by changes in the walk mode constant. A full com-

parison of the two sets of model results is provided in Table B in Appendix B.

When the equivalent mixed logit model specification was estimated on the 2006

data, the log cost term was insignificant and was therefore dropped from the

model with random parameters. Table 8.2 summarises the impact of adding the

triangular cost and car time terms on the fit to the data and on the other model

parameters.

Table 8.2: Toronto mixed logit results, 2006
Model MNL spec. C Plus distrib.

parameters

Fit -388,455.2 -388,320.9
Gain 134.0

Cost -0.0012 -21.2 -0.0016 -32.4
CostTri 0.0016 n/a
LogCost -0.255 -16.6 -0.176 -10.9
CarTime -0.031 -68.8 -0.034 -75.1

CarTimeTri 0.002 26.2

Other level of service terms REM = 0.015
Constants REM = 0.436

Socio-economics REM = 0.007

The addition of the two triangular terms leads to a significant gain in log-

likelihood despite the loss of the log cost parameter. The mean values of the

linear cost and car time parameters are essentially unchanged when the distri-

butions are introduced. Consistent with the 1986 results, it was necessary to

constrain the cost distribution to ensure it was correctly signed across the range
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of possible values. However, the distribution for the car time parameter shows

noticeably less spread than the 1986 results.

The REM parameters show the mean impact of the introduction of the distributed

parameters terms on the other level of service parameters is small, as is the impact

upon the socio-economic terms. However, much larger differences are observed

to the mode constants, and as per the 1986 results the largest change is observed

for the walk mode constant. A full comparison of the two sets of model results

is provided in Table B in Appendix B.

In these tests it was necessary to constrain both the cost and car time parameter

distributions to ensure both remained negative across the range of possible values.

For car time this confirms the different results with the 1986 and 2006 datasets,

namely a wide distribution for 1986 and a tight distribution for 2006.

The findings from these tests that adding a distribution to the linear cost term

reduces the important of log cost (1986) or results in the log-cost effect losing sta-

tistical significance altogether (2006) is consistent with the suggestion of Daly and

Carrasco (2009) that the log cost term in a model without distributed parameters

is capturing preference heterogeneity.

8.4 Transferability analysis

Individual parameters

To investigate the transferability of individual model parameters, the REM mea-

sure given in Equation 2.26 has been used to examine changes in parameter

values between 1986 and 2006. This analysis has been made for the models with

distributed parameters, and for the corresponding multinomial models without

distributed parameters, with comparison of the two sets of numbers giving insight
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into the impact of introducing distributed model parameters on the transferabil-

ity of individual model parameters. The REM measures have been averaged for

the four parameter groupings used in Section 5.4.

Table 8.3: Impact of distributed parameters on parameter changes between 1986

and 2006

Parameter group MNL spec C Plus distrib.

parameters

Cost 0.213 0.153

Car time 0.011 0.020

Other level of service 0.141 0.145

Constants 1.546 1.556

Socio economics 0.416 0.392

For cost and car time, the two parameters with distributed parameters, the REM

for the mean parameter values increases when distributed parameters are intro-

duced1. For the other parameters there are no substantial changes in the REM

values which follows from the minor impact on these parameters of the introduc-

tion of the two distributed terms.

Statistical tests of model transferability

To assess the transferability of model specifications with and without distributed

parameters, the 1986 models have been transferred to 2006 and the fit to the

transfer data has been calculated. The results are presented in Table 8.4.

The fit of the model with distributed parameters to the 1986 data is significantly

worse than the fit of the corresponding model without distributed parameters2.

1For the cost terms, the 1986 model has a fixed log-cost term in addition to the triangularly
distributed linear cost term whereas the 2006 model has just a triangularly distributed linear
cost term

2The fit is some much worse that the result at first appeared erroneous, however tests have
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Table 8.4: Mixed logit statistical tests of transferability, 1986 base
MNL spec C Plus distrib. Difference

parameters

LL2006(β1986) -391,657.8 -441,564.0 -44,525.8

As the fit is also worse than that of the reference model3 a negative TI value

results. Thus the addition of the distributed parameters has significantly reduced

the transferability of the 1986 model to the 2006 data.

The same set of tests have been run for the 2006 models, which have been trans-

ferred back to 1986. The results are presented in Table 8.5.

Table 8.5: Mixed logit statistical tests of transferability, 2006 base
MNL spec C Plus distrib. Difference

parameters

LL1986(β2006) -287,146.5 -287,142.7 3.8

In contrast to the 1986 models, for the 2006 models a modest improvement in fit to

the transfer context is observed when distributed parameters are added. However,

this gain in fit is modest compared to the 134.0 gain in likelihood observed when

distributed parameters were added to the 2006 model specification (see Table

8.2).

Predictive tests

The predictive performance of the models with and without distributed parame-

ters has been compared. The analysis procedures set out in Section 6.3 have been

repeated to examine fit to observed mode shares and tour lengths by mode. Table

8.6 summarises the results obtained when the 1986 models are used to predict

mode share and tour lengths in 2006.

confirmed that the likelihood was calculated correctly.
3A model with constants and tour length terms by mode only.
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Table 8.6: Mixed logit predictive tests, 1986 base transferred to 2006
MNL spec C Plus distrib.

parameters

Mode share 1.7% 3.6%
Tour length (km) 1.6 4.1

The predictive performance of the model with distributed parameters is worse

for both mode share and tour length by mode. This is consistent with the worse

overall model fit in the transfer context highlighted in Table 8.4.

Table 8.7 presents the corresponding results for the 2006 base models transferred

to 1986.

Table 8.7: Mixed logit predictive tests, 2006 base transferred to 1986
MNL spec C Plus distrib.

parameters

Mode share 3.1% 3.1%
Tour length (km) 2.8 2.9

The predictive performance of the 2006 base model is little changed by the intro-

duction of the two distributed parameters, consistent with the small difference in

fit to the 1986 data in Table 8.5.

Elasticity tests

The procedure used to assess the impact of the introduction of the distributed

parameters on the model elasticities also followed the approach set out in Section

6.4. Given the finding in Section 8.3 that the changes on the other level of service

parameters (including PT in vehicle time) was small the analysis focussed on the

fuel cost kilometrage and car time elasticity tests to restrict the number of model

runs made.

Table 8.8 summarises the results from the elasticity analysis, with ’DB’ in the
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table denoting distributed parameters.

Table 8.8: Mixed logit elasticity tests

Elasticity
1986 2006 1986 transfer to 2006

MNL plus DB MNL plus DB MNL plus DB

Fuel cost, km -0.157 -0.232 -0.274 -0.242 -0.188 -0.117
Car time, trip -0.124 -0.145 -0.093 -0.095 -0.065 -0.057

For the 1986 models, the fuel cost elasticity kilometrage is lower in the model

without random parameters. However, this model includes a log cost term which

damps the kilometrage elasticity. A model without log cost gave an elasticity of

-0.221 which is close to the value for the model with random parameters. For the

2006 models where the model specification is identical apart from the distributed

terms, there is little change in the elasticities. Thus, the results suggest account-

ing for taste heterogeneity has not substantially altered the responsiveness of the

models to changes in travel cost and time in the base year.

Comparison of the 1986 elasticities to those obtained when the 1986 models are

transferred to 2006 shows that the elasticities with distributed parameters reduce

over the transfer period, and show greater changes relative to the base values

compared to the models without distributed parameters. Model elasticities are

used to validate the sensitivity of models in the base year, and so if introducing

taste heterogeneity makes the model elasticities less temporally transferable this

is problematic for policy analysis, as the same policy intervention would have a

different impact on different forecast years.

8.5 Summary

The tests undertaken with the Toronto data found that accounting for random

taste heterogeneity led to an increase in fit to the data, which is consistent with

the findings of other researchers. Introducing heterogeneity in sensitivity to lin-
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ear cost reduced the role of the fixed log cost parameter. This is consistent with

the findings of Daly and Carrasco (2009) who suggested that in model without

random taste heterogeneity the log cost term accounts for preference heterogene-

ity through a self-selection effect rather than by representing variation in cost

sensitivity with distance at an individual level.

Analysis of changes in individual parameter values demonstrated that the intro-

duction of random taste heterogeneity had little impact on the other parameters.

The mode constants were an exception, and in particular the walk constants

changed substantially which suggests that the introduction of random taste het-

erogeneity had impacted on short tours in particular.

A key finding was that there was no evidence from the transferability analysis

that the improvement in fit in the base context resulting in improvements in

model transferability. Furthermore, for transfers from 1986 to 2006 the model

with distributed parameters was noticeably worse than for the model without

distributed parameters, and the introduction of taste heterogeneity had reduced

the temporal transferability of the model elasticities. Further analysis to be better

understand the impact on the elasticities is an area where further research would

be valuable.

In Chapters 5 and 6, evidence was presented that improving the specification of

models with fixed parameters to account for variation in tastes between different

socio-economic groups resulted in improvements in model transferability. It is

noteworthy therefore that further improving model specification does not lead

to further improvements in model transferability. A possible explanation is that

the random taste heterogeneity models are over-fitting the base year data, par-

ticularly for the 1986 model which transfers poorly and in which the car time

parameter has a much wider spread than in the 2006 model.
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Chapter 9

Conclusions and

recommendations

This chapter presents the conclusions from this research, and then sets out rec-

ommendations for further work.

9.1 Mode-destination models over long-term forecasting

horizons

Accounting for changes in cost sensitivity

The evidence from the literature reviewed in Daly and Fox (2012) is that the

longitudinal elasticity of value of time to real income growth is around one. Tests

were made using the Toronto and Sydney datasets to assess this approach relative

to making no adjustment to cost sensitivity, and overall the tests concluded cost

sensitivity should indeed be adjusted in this way.
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A complication in models that incorporate variation in cost sensitivity with in-

come band is that some income growth comes about due to re-distribution be-

tween income bands. The literature suggests that the cross-sectional elasticities

average around 0.3, i.e. significantly lower than the longitudinal values, and using

the Sydney data an approach was developed and tested to take proper account

of these two effects by implementing separate cross-sectional and re-distribution

income elasticities.

Model transferability

Statistical tests strongly rejected the hypothesis that the base and transfer pa-

rameters are not statistically different for all transfers tested on the Toronto and

Sydney datasets. This finding is consistent with transferability tests of mode

choice models reported in the literature, and indeed some studies demonstrated

models to be useful at predicting behaviour in the transfer context despite the

rejection of the hypothesis of parameter equality.

Therefore assessments of overall model transferability have focussed instead on

the transferability index (TI), a relative measure which assessed the predictive

ability of the transferred model compared to the same model specification re-

estimated in the transfer context. The conclusions from the TI tests support

the notion of model transferability, with the transferred commute models giving

around 75% of the predictive ability of the model re-estimated in the transfer

context in the Toronto tests, and at least 80% in the Sydney tests. Thus, overall

the results support the notion that the models are reasonably transferable and

as such suitable for use in forecasting.

Four separate years of Toronto data were available for analysis, enabling investi-

gation of how model transferability changes over time. Interestingly, the analysis

of TI values found no evidence of changes over time for transfer periods ranging

from 5 to 20 years.
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In all of the Toronto tests, and most of the Sydney tests, a pattern on increasing

TI with improvements to model specification made using fixed parameters did

emerge, a result that is consistent with the mode choice transferability literature.

The conclusion for model developers is that improvements in model specification,

particularly when car availability terms are added to the model specification, are

justified by improved model transferability. This is a useful result, because model

developers may be under pressure to keep model specifications parsimonious to

make models easier to implement. For example, a model without a car availability

specification avoids the need to make forecasts of how car availability changes

in the future. However, it should be noted that this result did not extend to

improving the model specification by adding random parameters to account for

heterogeneity in cost and time sensitivity.

Tests of the predictive ability of the models, assessed by their ability to predict

observed changes in overall mode share and tour length by mode, demonstrated

that they were reasonably able to predict the key changes observed over the

years studied. However, they did exhibit a general tendency to over-predict the

observed increase in the car driver mode share, an issue which is discussed further

in Section 9.5 below.

Elasticities provide an important measure of overall model sensitivity for model

developers, as they are a dimensionless measure that can be compared between

models and in a UK context there are expectations for the range of acceptable

elasticity values. Further, they capture the sensitivity of the models to changes in

travel cost and travel time which are the key changes resulting from many policy

measures.

The elasticity analysis suggested that the model elasticities are reasonably trans-

ferable between base and transfer contexts. An important point the analysis

highlighted was that the elasticity values associated with a particular model are

significantly impacted by the parameter estimates for that model, and in par-

224



ticular in these models the balance of linear and log cost effects. This impacts

upon analysis of the how the elasticities change over time, making it difficult to

separate out any true behavioural change in sensitivity over time.

Parameter transferability

For both the Toronto and Sydney transferability analyses, models were estimated

by pooling over each available year of data and estimating model scales by year.

These scale parameters were then used to take account of variation in model scale

(i.e. levels of unexplained error) when comparing models estimated separately

from different years of data. This is the correct approach when comparing models

estimated from different years of data, but it is one that is frequently overlooked

in the temporal transferability literature.

Analysis was undertaken to investigate the transferability of different groups of

model parameters, namely cost terms, level of service terms, socio-economic terms

and constants. This analysis found the level of service terms to be the most trans-

ferable, the cost and socio-economic parameters to be somewhat less transferable,

and the constants to be by some way the least transferable group. The finding

that the constants are the least transferable group is not unexpected, as they

represent the mean effect of unmeasured effects not captured in the other terms

and no insight into how these unmeasured effects might change in the future.

The high level of stability observed in the in-vehicle time parameter values pro-

vides evidence that the approach to adjusting the models to take account of VOT

growth over time, which is applied through adjustments to the cost sensitivity

terms alone on the assumption that travel time sensitivity is temporally stable,

is reasonable.

Many transport policy measures can be formulated in terms of changes in travel

cost and/or travel times. The result that level-of-service terms, which includes
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sensitivity to travel times, are more transferable than the cost terms is therefore

important. It might be expected that this result would have played out in the

elasticity analysis, i.e. the travel time elasticities would have been observed to be

more transferable than the cost elasticities, but this result was not observed. As

discussed in Section 9.6, this is an area where further analysis would be valuable.

The relative sensitivities of mode and destination choice were estimated in the

models, and therefore the model results allow investigation of how these relative

sensitivities change over time. For the Toronto commute analysis, a destinations-

above-modes structure was found to give the best fit to the data, and the struc-

tural parameters were remarkably stable over time. For the Sydney commute and

home–other travel analyses, modes-above-destinations structures gave the best fit

to the 1991 data, but the difference between the mode and destination sensitiv-

ities reduced between 1991 and 2006 so that the 2006 structures were closer to

a multinomial structure where both choices are equally sensitive to changes in

utility. However, this result is believed to be impacted by the significant change

in zone system between 1991 and 2006 which results in changes in the destination

choice error (sensitivity).

Comparison of Toronto and Sydney results

Commute models were developed using both the Toronto and Sydney datasets,

allowing comparison of the two sets of transferability analysis.

For the best specification, models for both datasets had good transferability over-

all. The Sydney models had higher transferability, consistent with the richer

socio-economic segmentation in the models and the more detailed treatment of

public transport modes.

Both sets of results supported the finding that improving model specification im-

proves model transferability, with the largest improvements coming about when
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car availability parameters were added to the specifications.

The predictive tests demonstrated that the two sets of transferred models per-

formed similarly when predicting the observed changes in mode share and tour

length over the transfer period. In both cases, the growth in the car driver share

was over-predicted. No significant differences between the two sets of models

emerged from the elasticity analysis either.

It is noteworthy that while the Toronto results suggest the mode destination

structures to be temporally stable within a given study area, comparison of the

Toronto and Sydney commute model structures suggests they they are not spa-

tially transferable.

Overall, the Toronto and Sydney commute transferability analyses gave rise to

consistent findings.

9.2 Commuter and non-commuter travel

Comparison of commuter and non-commuter travel

It was not possible to obtain the Toronto home–other1 tour samples for this

analysis. However, the Sydney data was available for all purposes and therefore

was used to make analysis to compare the transferability of commute and home–

other travel.

Model transferability was assessed using the TI measure for different model spec-

ifications. This analysis demonstrated the home–other work models to be con-

sistently less transferable than the equivalent commute models. However, as

1All travel that is not for commute, business, education or shopping purposes. This includes
serve passenger, personal business and leisure travel.
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per the commute models the transferability of the home–other travel models im-

proves when the model specification improves, particular when car availability

parameters are added to the model specification.

The predictive ability of the transferred home–other travel models, assessed by

their ability to forecast observed changes in mode share and tour length, was

similar to that of the commute models.

The elasticities of the transferred models were consistently lower than the elas-

ticity for the same model specification re-estimated on the transfer data, however

it is believed that the change in zone system between 1991 and 2006 and the

associated changes in level of service play a significant role in this result.

Analysis of changes in the individual parameters by parameter group showed

that the home–other travel parameters were consistently less transferable than

the commute values, with the transferability of the level of service parameters

noticeably worse than in the commute model. Again, a possible contribution to

this result is the significant changes in the zoning and level of service between 1991

and 2006 which impacted more significantly on the home–other results because

the tour lengths are shorter.

Overall it is concluded that the home–other travel models are less transferable

than those for commute. Therefore researchers need to be cautious about making

conclusions about model transferability based on commute travel alone, as the

review of the temporal transferability literature presented in Section 2.4 demon-

strated that most previous work has done.

Home–other travel sub-purpose tests

A plausible hypothesis for the lower transferability of home–other travel models

is that the purpose covers a heterogenous range of sub-purposes. Therefore tests

were made whereby separate models were developed for three sub-purposes –
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serve passenger, personal business and leisure – and then the transferability of

these models compared to that observed for modelling these three sub-purposes

together.

In terms of overall fit to the transfer data, the separate sub-purpose models

gave a better fit compared to modelling the three purposes together as a single

purpose for both possible transfers, i.e. from 1991 to 2006 and from 2006 back

to 1991. However, tests of the ability of the sub-purpose models to predict the

observed changes in mode share and tour length showed no improvement relative

to modelling the three sub-purposes together in a single model.

Analysis of model elasticities provided some evidence of variation in the fuel

cost kilometrage elasticity between sub purposes. However, the impact of the

significant changes in zoning system prevented conclusions being drawn about

the transferability of elasticity values in the sub-purpose models.

Analysis of changes in individual parameters by parameter group showed that

overall the sub-purpose model parameters were more transferable than those ob-

tained when the three sub-purposes were modelled together. Particularly notice-

able improvements in transferability were obtained for the model constants, a

plausible result given that mode and destination choice patterns would be ex-

pected to vary between the three sub-purposes.

Overall, on the basis of fit to the transfer data and the analysis of changes in

individual parameters it is concluded that segmenting home–other travel into

separate sub-purposes does result in more transferable models. However, taken

together these sub-purposes models are still less transferable than the comparable

commute models.
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9.3 Evolution of model scale and constants

If data is available in the base and transfer contexts, then a model can be esti-

mated by pooling the data and estimating a scale capturing the different levels

of error in the base and transfer contexts. This is the approach that has been

used in this analysis to account for scale differences when comparing models es-

timated from different years, but it is approach that is not always followed by

other researchers.

The analysis of the evolution of model scales over time presented in Chapter 7

did not identify any patterns whereby particular parameters groups increased or

reduced in scale over time. While this is consistent with the unexpected finding

that model transferability did not reduce over time, it does mean that the analysis

of changes in scale by parameter group over time was less insightful than had been

hoped.

One of the scale parameters that was estimated was for the mode and destination

constants, and therefore no clear insights emerged from this particular analysis

on changes in the constants over time. However, the analysis of changes in the

individual parameters between years clearly demonstrated the constants to be

less temporally transferable than other parameter groups.

9.4 Accounting for random taste heterogeneity

Accounting for random heterogeneity in sensitivity to cost and car time was

found to give significant improvements in fit to the base data. Introducing het-

erogeneity in sensitivity to linear cost reduced or eliminated the role of the log

cost term identified in models without taste heterogeneity. This is consistent

with the findings of Daly and Carrasco (2009), who suggested that the log cost
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term accounts for taste heterogeneity through a self-selection effect rather than

representing variation in value of time with distance at an individual level. Anal-

ysis of changes in individual parameters demonstrated that the introduction of

parameter distributions had little impact on the fixed parameters.

The key finding was that there was no evidence that the improvement in fit

in the base context resulted in more transferable models, in fact for one of the

transfers the model with distributed parameters was noticeably worse than the

model without distributed parameters which may be explained by the model over-

fitting the base year data. Table 9.1 summarises the results from the random taste

heterogeneity tests.

Table 9.1: Random taste heterogeneity tests

Context Impact on model results

Base Significant improvement in fit, however this may be due to over-fitting
Transfer No improvement in fit relative to models without random terms

The wider implication for researchers is that they cannot assume that improve-

ments in fit to the base year data resulting from accounting for taste heterogeneity

will result in better quality forecasts. In most practical cases, it is not possible

to validate models using data collected at different points in time. Therefore, a

sensible approach would be to retain a holdout sample in the base year, and test

whether model specifications that account for taste heterogeneity are better able

to explain the choices observed in the holdout sample.

9.5 Guidance on maximising model transferability

The Sydney analysis demonstrated that substantial changes in the level of service

following the move to a more detailed zoning system had a significant impact on
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the models, and in particular the model sensitivities. Thus a clear recommenda-

tion is that models should be applied using level of service that is generated on

a consistent basis to the data used in model estimation.

Drawing on literature and the empirical analysis presented in this thesis, it is

recommended that in forecasting the cost sensitivity terms are adjusted to take

account of the impact of real income growth on values of time using a longitudinal

elasticity of 1. The in-vehicle time parameters have been shown to have a good

level of temporal stability, and thus applying the the value-of-time adjustment by

adjusting the cost parameter while holding the time parameter constant appears

to be reasonable.

When applying models that incorporate variation in cost sensitivity with income

band, account should be taken of the impact of the cross-sectional income elastic-

ity which will result in an overall value of time growth because of shifts from lower

to higher income bands over time2 The cross-sectional elasticities are typically

lower than the longitudinal values, with evidence in the literature and results

from the Sydney analysis suggesting average values of around -0.3.

A clear finding from the empirical analysis that is consistent with the mode

choice transferability literature is that improving model specification using fixed

parameters to account for variation in preference between socio-economic groups

improves model transferability. Particularly noticeable improvements were ob-

served when car availability terms were added to the model specifications. This

is an important result for model developers who may be under pressure to keep

model specifications as parsimonious as possible to simplify model implementa-

tion. However, as discussed in Section 9.4 there was no evidence from the tests

undertaken that accounting for heterogeneity in cost and travel time sensitivity

results in improved model transferability, and indeed models of this type may

over-fit the base data resulting in worse transferability compared to models with

2Assuming incomes rise over the forecast period.
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fixed parameters.

If data from multiple years is available for model development, then pooling over

different years can give more transferable models than using the most recent data

alone. This approach may be particularly valuable if a smaller more recent survey

is available alongside a larger older survey. If data is combined in this way, then

the older data should be scaled relative to the more recent data to account for

changes in scale over time, and separate mode constants should be estimated by

year, with the most recent mode constants retained for forecasting.

9.6 Recommendations for further work

Assessments of the ability of the Toronto and Sydney models to predict observed

changes in mode share and tour length highlighted a consistent pattern of over-

prediction of the increase in the car driver share over time. In both cases this

increase has been accompanied by a significant real terms increase in car costs,

and so a potential explanation is that the models which are estimated from cross-

sectional data are under-sensitive to the longitudinal change in costs. However,

at the same time as the increase in car costs, congestion and associated parking

difficulties have increased. Further analysis would be valuable to explore these

different factors and better investigate whether there are differences between the

cross-sectional and longitudinal cost sensitivities.

A conclusion from the analysis of changes in model elasticity (sensitivity) is that

further research would be valuable to try to better disentangle changes in model

sensitivity – which are impacted by differences in the relative strength of partic-

ular model parameters between different years – from the evolution of changes in

the underlying sensitivity of travellers to cost and time changes. Related to this,

there is a wider lack of evidence on how elasticities are evolving over time.
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The finding that models which incorporated preference heterogeneity were no

more, and potentially much less, transferable than models without results in a

clear recommendation that other researchers should consider what evidence exists

to demonstrate that improvements in fit to the base year data yields models that

are better able to forecast behaviour. As discussed above, using holdout samples

to test whether models incorporating taste heterogeneity give better base year

predictions is one possible approach when a transfer sample is not available.

Further work would also be valuable to explore whether the assumptions around

the shape of parameter distribution have an impact on model transferability,

for example by investigating whether different distributions give the best fit for

different years of data.
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Appendix A

Temporal stability analysis

To test whether individual parameters were stable over time, Equation 2.25 was

used to test the null hypothesis that the base and transfer parameters were equal,

but only when both base and transfer parameters were significant at a 95% level1.

To provide an assessment of the magnitude of the differences between parameters,

the REM statistic defined in Equation 2.27 was used. The detailed results are

presented in Appendix A, but Table A.1 summarises the key results by the three

groups of parameters.

In Table A.1, the ‘Acc’ columns give the number of model parameters where the

hypothesis that the parameters are stable is accepted at a 95% confidence level,

the ‘Rej’ columns give the number of model parameters where the hypothesis

of stability was rejected at a 95% confidence level, and the ’Insig’ columns give

the number of cases where the comparison could not be made because the base

and/or transfer parameter was not significant. The ‘REM’ columns present the

mean REM statistic for the parameters in that group. The Sanko results were

1Otherwise the null hypothesis may be accepted even if the base and transfer parameters are
substantially different.
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excluded from this analysis on the basis that that omission of cost and car avail-

ability information from his models resulted in significant bias to the other terms,

particularly the mode constants.

The full set of parameter values for each of the studies is presented below.
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Appendix B

Toronto model results

The following tables present the model parameter values. In the tables, in each

column the parameter value β is presented on the left and the t-ratio for the

parameter is presented on the right. The t-ratio is given by the ratio β/σ where

σ is the standard deviation of the parameter estimate. For model parameters,

the t-ratios define the significance of the parameter relative to a value of zero.

For the structural parameters and the scale parameters the t-ratios have been

presented relative to a value of one. The estimation outputs give the significance

of all parameters relative to a value of zero (t0), so for the structural and scale

parameters these have been converted into values relative to one (t1) using the

following expression:

t1 = t0 ∗
|1− β|
β

(B.1)

In Table B.1 to Table 4.4, the cost parameters are all presented in 1986 values and

prices. For the 1996, 2001 and 2006 models this means that the cost parameters

have been adjusted to take account of real income growth using the procedure

documented in Section 5.1.1.
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In Table B.3 and Table B.4, the cost parameters are all presented in 1996 values

but 1986 prices. This means that the cost parameters presented for the 1996-only

models have been rescaled related to those presented in Table B.2.

The 1996, 2001 and 2006 parameters values are presented after rescaling to take

account of differences in model scale between years, following the procedure de-

scribed in Section 5.2.
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Table B.5: 1986 models with distributed cost and car time terms
HW MD 1986 C DS MNL HW MD 1986 C DS EC40 Percentage change

MNL spec. C Triangular EC terms Param. t-ratio
100 Halton draws

Log-likelihood -285,610.7 -285,499.1
gain 111.6

Observations 50,254 50,254

Cost parameters
Cost -0.0010 -12.7 -0.0015 -17.7 56.6% 38.9%

CostTri 0.0015 n/a
LogCost -0.3004 -23.6 -0.1759 -10.9 -41.4% -53.6%

Level of service
CarTime -0.033 -77.6 -0.037 -65.4 12.6% -15.7%

AutoTimTri -0.035 -21.7
TranIVT -0.022 -60.2 -0.022 -60.1 0.1% -0.2%

TranWait -0.060 -24.5 -0.062 -24.9 2.6% 1.7%
TranWalk -0.025 -16.1 -0.027 -16.7 4.8% 3.9%

APDist -0.020 -27.0 -0.020 -26.2 -3.7% -2.7%
WalkDist -0.584 -45.0 -0.585 -44.9 0.2% 0.0%

Destination terms
CBDDest 0.392 13.9 0.408 14.4 4.0% 3.6%

CBDLT 0.189 5.1 0.170 4.6 -10.1% -10.4%

Mode constants
AP -3.940 -44.6 -3.572 -38.0 -9.3% -14.8%
LT 0.970 20.4 0.842 17.0 -13.1% -16.5%

Wk 0.248 2.8 0.617 6.7 149.1% 135.4%

Car availability
AD2pVeh 1.298 42.1 1.335 42.3 2.9% 0.5%

AP1Veh 1.474 20.9 1.566 21.7 6.2% 3.7%
AP2pVeh 1.889 26.2 2.017 27.1 6.8% 3.7%

Socio economics
ADAge1617 -2.101 -6.2 -2.106 -6.2 0.2% -0.8%
ADAge1825 -0.834 -24.7 -0.845 -24.7 1.3% -0.1%
ADAge2630 -0.167 -4.8 -0.178 -5.1 6.6% 5.1%

ADMale 1.016 38.3 1.010 37.6 -0.6% -1.8%
WkMale 0.215 3.4 0.219 3.5 2.1% 1.9%

Attraction term
TotEmp 1.000 n/a 1.000 n/a
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Table B.6: 2006 models with distributed cost and car time terms
HW MD 2006 C DS MNL2 HW MD 2006 C DS EC5 Percentage change

MNL spec. C Triangular EC terms Param. t-ratio
90 Halton draws

Log-likelihood -388,455.2 -388,320.9
gain 134.4

Observations 50,254 50,254

Cost parameters
Cost -0.0012 -21.2 -0.0016 -32.4 35.6% 53.1%

CostTri 0.0016 n/a
LogCost -0.255 -16.6

Level of service
AutoTime -0.031 -68.8 -0.034 -75.1 9.1% 9.1%

AutoTimTri -0.002 -26.2
TranIVT -0.018 -50.4 -0.018 -50.4 0.0% 0.0%

TranWait -0.050 -28.0 -0.051 -28.6 2.3% 2.1%
TranWalk -0.022 -17.2 -0.022 -17.5 1.9% 1.9%

APDist -0.025 -35.9 -0.024 -34.7 -4.7% -3.4%
WalkDist -0.532 -54.3 -0.531 -54.3 -0.1% -0.1%

Destination Terms
CBDDest -0.147 -6.3 -0.126 -5.4 -14.1% -14.0%

CBDLT 0.873 23.7 0.851 23.1 -2.6% -2.5%

Mode constants
AP -3.480 -41.0 -2.571 -39.3 -26.1% -4.2%
LT 0.853 18.8 0.765 16.9 -10.4% -9.8%

Wk 0.764 9.6 1.648 27.5 115.7% 187.4%

Car Availability
AD2pVeh 1.553 47.3 1.553 47.3 0.0% -0.1%

AP1Veh 1.433 22.4 1.427 22.3 -0.4% -0.6%
AP2pVeh 1.849 27.7 1.840 27.5 -0.5% -0.7%

Socio economics
ADAge1617 -3.005 -5.7 -3.000 -5.6 -0.2% -0.6%
ADAge1825 -1.342 -32.1 -1.343 -32.0 0.0% -0.1%
ADAge2630 -0.343 -8.3 -0.343 -8.3 0.0% -0.1%

ADMale 0.869 33.6 0.867 33.5 -0.2% -0.3%
WkMale 0.108 1.9 0.105 1.9 -3.3% -3.4%

Attraction term
TotEmp 1.000 n/a 1.000 n/a
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Appendix C

Sydney model results

The following tables present the model parameter values. In the tables, in each

column the parameter value β is presented on the left and the t-ratio for the

parameter is presented on the right. The t-ratio is given by the ratio β/σ where

σ is the standard deviation of the parameter estimate. For model parameters,

the t-ratios define the significance of the parameter relative to a value of zero.

For the structural parameters and the scale parameters the t-ratios have been

presented relative to a value of one.

The cost parameters are presented in 1991 prices and values. For the 1996, 2001

and 2006 models this means that the cost parameters have been adjusted to take

account of real income growth using the procedure documented in Section 5.1.1.

The 1991 parameters values are presented after rescaling to take account of differ-

ences in model scale between the 1991 and 2006 datasets, following the procedure

described in Section 5.2.
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Table C.1: Sydney commute model results, sparse specification
COM A3 91 COM A 0408

Log-likelihood -29,979.8 -34,510.5
Observations 5,111 5,173
LL per obs -5.866 -6.671

Cost parameters
LogCost -0.461 -11.1 -0.341 -8.9
Cost -0.0004 -3.4 -0.0003 -3.3

Level of service
CarTime -0.027 -26.9 -0.030 -31.4
RlTime -0.012 -10.3 -0.014 -13.0
BusTime -0.022 -13.5 -0.021 -15.9
AccTime -0.028 -9.8 -0.014 -6.2
FrWtTm -0.021 -3.2 -0.020 -4.2
OtWTme -0.046 -8.5 -0.044 -10.0
CarPDist -0.017 -6.5 -0.023 -6.5
BkDist -0.167 -7.5 -0.162 -7.4
WlkDist -0.605 -21.1 -0.606 -21.0

Destination terms
Intra -0.162 -1.8 0.227 2.0
CBDDest -0.167 -1.6 -0.452 -5.0
CBDRail 0.873 6.3 1.328 10.8
CBDBus 0.461 2.7 1.264 9.1

Mode constants
CrP -3.620 -16.8 -2.604 -24.8
Trn -0.865 -4.8 -0.710 -5.5
Bus -1.460 -7.2 -1.057 -8.6
Bk -7.525 -12.9 -4.779 -14.3
Wk -1.371 -4.7 -0.162 -0.9
Tx -5.431 -9.4 -4.285 -15.0

Structural parameter
TR M D 0.737 3.6 1.000 n/a

Attraction term
TotEmp 1.000 n/a 1.000 n/a
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Table C.2: Sydney commute model results, car avail specification
COM B3 91 COM B 0408

Log-likelihood -29,691.6 -34,230.9
Observations 5,111 5,173
LL per obs -5.809 -6.617

Cost parameters
LogCost -0.444 -10.8 -0.329 -8.5
Cost -0.0004 -3.2 -0.0003 -3.0

Level of service
CarTime -0.027 -27.2 -0.031 -31.8
RlTime -0.012 -10.1 -0.013 -12.4
BusTime -0.022 -13.3 -0.020 -15.2
AccTime -0.026 -9.1 -0.012 -5.6
FrWtTm -0.016 -2.4 -0.014 -3.0
OtWTme -0.044 -8.3 -0.044 -10.0
CarPDist -0.017 -6.4 -0.023 -6.3
BkDist -0.163 -7.4 -0.160 -7.4
WlkDist -0.588 -21.1 -0.599 -20.9

Destination terms
Intra -0.143 -1.6 0.275 2.4
CBDDest -0.176 -1.7 -0.477 -5.3
CBDRail 0.891 6.6 1.370 11.1
CBDBus 0.471 2.8 1.270 9.2

Mode constants
CrP -5.903 -13.9 -4.296 -17.6
Trn -1.839 -8.4 -1.267 -9.2
Bus -2.424 -9.6 -1.606 -12.3
Bk -8.255 -13.3 -5.152 -15.3
Wk -2.207 -6.6 -0.558 -3.2
Tx -6.291 -10.1 -4.727 -16.4

Structural parameter
TR M D 0.726 17.8 1.000 n/a

Attraction term
TotEmp 1.000 n/a 1.000 n/a

Car availability
CarComp -2.028 -13.1 -1.468 -19.3
CmpCrDr 0.823 6.0 0.678 7.0
PassOpts 1.754 6.0 1.546 6.5
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Table C.3: Sydney commute model results, detailed specification
COM C3 91 COM C 0408

Log-likelihood -29,590.5 -34,182.9
Observations 5,111 5,173
LL per obs -5.790 -6.608

Cost parameters
LogCost -0.445 -11.2 -0.248 -8.4
Cost -0.0003 -3.2 -0.0002 -2.8

Level of service
CarTime -0.027 -28.2 -0.031 -32.0
RlTime -0.012 -10.2 -0.013 -12.1
BusTime -0.022 -13.8 -0.021 -15.4
AccTime -0.026 -9.4 -0.012 -5.6
FrWtTm -0.014 -2.3 -0.014 -2.9
OtWTme -0.044 -8.6 -0.043 -9.9
CarPDist -0.017 -6.6 -0.023 -6.3
BkDist -0.162 -7.7 -0.159 -7.4
WlkDist -0.588 -21.7 -0.599 -20.9

Destination terms
Intra -0.146 -1.7 0.271 2.4
CBDDest -0.179 -1.8 -0.484 -5.4
CBDRail 0.901 6.9 1.383 11.2
CBDBus 0.489 3.0 1.306 9.4

Mode constants
CrP -5.676 -14.0 -4.294 -17.3
Trn -3.145 -10.1 -1.773 -10.8
Bus -2.236 -9.2 -1.604 -11.7
Bk -10.168 -10.9 -6.598 -11.4
Wk -1.997 -6.2 -0.544 -3.0
Tx -6.089 -10.2 -4.765 -16.2

Structural parameter
TR M D 0.729 17.8 1.000 n/a

Attraction term
TotEmp 1.000 n/a 1.000 n/a

Car availability
CarComp -2.029 -13.5 -1.481 -19.3
CmpCrDr 0.831 6.2 0.691 7.1
PassOpts 1.732 6.1 1.558 6.6

Socio-economic
Ageu24CrD -0.862 -6.0 -0.473 -4.2
MaleCrDr 0.752 6.8 0.197 2.6
FullTmRl 1.324 6.2 0.131 1.3
HiPersInc 0.758 5.7 0.683 6.9
MaleBike 3.169 4.2 2.093 3.9
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Table C.4: Sydney home–other travel model results, sparse specification
OTH A3 91 OTH A 0408

Log-likelihood -47,715.9 -53,849.2
Observations 10,644 10,464
LL per obs -4.483 -5.146

Cost parameters
LogCost -1.371 -35.6 -0.713 -34.1

Level of service
CarTime -0.045 -34.6 -0.066 -51.4
RlTime -0.021 -8.1 -0.016 -7.6
BusTime -0.020 -8.0 -0.028 -10.8
AccTime -0.046 -9.0 -0.014 -4.2
WaitTime -0.029 -5.2 -0.025 -5.3
CarPDist 0.005 3.5 0.013 7.3
BkDist -0.332 -14.1 -0.320 -13.7
WlkDist -0.750 -48.2 -0.927 -50.8

Destination terms
Intra -0.222 -4.6 -0.170 -4.2
CBDDest -1.328 -10.5 -1.488 -10.8
CBDRail 1.948 8.2 1.701 7.1
CBDBus 1.601 6.6 1.189 4.0

Mode constants
CrP -4.669 -18.0 -6.267 -16.1
Trn -6.003 -8.2 -6.114 -11.9
Bus -5.521 -8.3 -5.604 -11.5
Bk -14.808 -17.3 -9.941 -16.9
Wk -5.564 -15.7 -2.771 -11.7
Tx -9.450 -9.5 -8.998 -12.4

Structural parameter
TR M D 0.499 15.3 0.650 10.0

Attraction terms
L S M 1.000 n/a 1.000 n/a
ServEmp 4.610 45.4 6.611 45.4
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Table C.5: Sydney home–other travel model results, car avail specification
OTH B3 91 OTH B 0408

Log-likelihood -47,326.0 -53,849.2
Observations 10,644 10,464
LL per obs -4.446 -5.146

Cost parameters
LogCost -1.105 -32.3 -0.713 -34.1

Level of service
CarTime -0.052 -41.7 -0.066 -51.4
RlTime -0.022 -8.3 -0.016 -7.6
BusTime -0.022 -8.8 -0.028 -10.8
AccTime -0.042 -8.2 -0.014 -4.2
WaitTime -0.027 -4.9 -0.025 -5.3
CarPDist 0.005 3.4 0.013 7.3
BkDist -0.323 -14.0 -0.320 -13.7
WlkDist -0.720 -47.8 -0.927 -50.8

Destination terms
Intra -0.006 -0.1 -0.170 -4.2
CBDDest -0.326 -2.5 -1.488 -10.8
CBDRail 0.833 3.5 1.701 7.1
CBDBus 0.445 1.8 1.189 4.0

Mode constants
CrP -10.210 -13.8 -6.267 -16.1
Trn -8.685 -9.3 -6.114 -11.9
Bus -8.003 -9.2 -5.604 -11.5
Bk -16.058 -15.0 -9.941 -16.9
Wk -6.234 -13.1 -2.771 -11.7
Tx -12.547 -10.1 -8.998 -12.4

Structural parameter
TR M D 0.450 16.9 0.582 11.8

Attraction term
L S M 1.000 n/a 1.000 n/a
ServEmp 6.010 45.3 6.594 45.3

Car availability
CarComp -1.318 -7.3 -0.756 -6.7
PassOpts 5.335 11.5 3.159 12.3
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Table C.6: Sydney home–other travel model results, detailed specification
OTH C3 91 OTH C 0408

Log-likelihood -46,935.0 -53,403.8
Observations 10,644 10,464
LL per obs -4.410 -5.104

Cost parameters
LogCost -1.124 -32.1 -0.700 -33.2

Level of service
CarTime -0.053 -41.8 -0.066 -51.4
RlTime -0.022 -8.0 -0.016 -7.5
BusTime -0.023 -9.0 -0.029 -10.9
AccTime -0.040 -7.6 -0.015 -4.2
WaitTime -0.024 -4.3 -0.025 -5.2
CarPDist 0.005 3.6 0.014 8.0
BkDist -0.331 -14.0 -0.319 -13.7
WlkDist -0.736 -47.8 -0.927 -50.8

Destination terms
Intra -0.006 -0.1 -0.163 -4.0
CBDDest -0.341 -2.5 -1.497 -10.9
CBDRail 0.887 3.6 1.707 7.1
CBDBus 0.448 1.8 1.199 4.1

Mode constants
CrP -10.799 -12.7 -6.347 -15.7
Trn -10.115 -9.1 -5.911 -11.3
Bus -8.772 -8.7 -5.329 -10.5
Bk -19.697 -12.7 -11.373 -14.7
Wk -6.267 -12.0 -2.271 -10.6
Tx -13.562 -9.5 -8.583 -12.1

Structural parameter
TR M D 0.416 17.8 0.581 11.8

Attraction term
L S M 1.000 n/a 1.000 n/a
ServEmp 6.038 45.2 6.570 45.2

Car availability
CarComp -1.594 -7.5 -0.812 -7.1
PassOpts 5.308 10.4 2.762 11.2

Socio-economic
CarPMale -1.825 -8.4 -0.481 -4.6
BusMale -1.301 -3.2 -0.274 -1.0
BikeMale 4.190 5.3 2.939 6.0
CarP¡10 4.374 10.8 3.279 14.1
CarP60pl 1.049 4.1 0.518 3.8
PT10to19 -1.082 -2.4 -0.305 -1.1
PT60pl 3.285 7.9 0.881 3.8
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Appendix D

Destination sampling

The theory for estimation of multinomial logit models using destination sampling

was set out in McFadden (1978), and the equations that explain how the process

operates are given in Ben-Akiva and Lerman (1985). McFadden showed that

under the positive conditioning property (the condition that the probability of

each alternative being sampled is positive), asymptotically consistent estimates

of model parameters can be obtained if a modified log likelihood function is

maximised:

LL = log

(
exp(Vc + log π(D|c))∑

j∈D exp(VD + log π(D|j))

)
(D.1)

where: Vj is the systematic part of utility for alternative j

c is the chosen alternative

D is the sampled set of alternatives, a subset of the set of all available alternatives C

π(D|j) is the probability of sampling D, if j is the chosen alternative
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The positive conditioning property is that π(D|j) > 0 ∀j ∈ D. It is essential that

the chosen alternative c is included in D.

To perform independent importance sampling, C−1 draws are made, one for each

alternative j except for the chosen alternative c, selecting each alternative with

probability qj , and then adding the chosen alternative to the choice set. The

sample of alternatives that results has the following probability distribution:

π(D|i) =
∏

j∈D, j 6=i
qi
∏
j 6=D

(1− qj) (D.2)

π(D|i) = 1/q(i) Q(D) (D.3)

where: Q(D) =
∏
j∈D qj

∏
j 6=D(1− qj)

Substituting Equation D.3 into Equation D.1 gives:

LL = log

(
exp(Vc − log(qc))∑

j∈D exp(VD − log(qj))

)
(D.4)

Ben-Akiva and Lerman (1985) suggested a simple negative exponential model to

allow the calculation of qj :

qj ∝ Sjexp(−ϕdj) (D.5)

where: Sj is the attraction variable

ϕ is a parameter

dj is the distance to destination j

Following Ben-Akiva and Lerman a value for α of 2/d, where d is the mean tour

distance, has been used.
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To operationalise Equation D.5, the weights for each zone are expressed relative

to a key zone by calculating:

qj = min(wj/wk, 1) (D.6)

wj = Sjexp(−ϕdj) (D.7)

The key zone is determined by ranking the zones by wj , and then key zone k

is then the kth most attractive zone. It should be noted that the implication

of Equation D.6 is that all zone ranks up to k are included in the sample as

qj = 1 if wj > wk. Scaling the weights also ensures that all zones have reasonable

probability values.

A measure of the accuracy of different destination samples is provided by deter-

mining the coverage of the sampled choice set, calculated as an average over the

N observations in the sample:

W =
∑
N

(∑
D

wj/
∑
C

wj

)
/N (D.8)

As W approaches 1, the accuracy of the sample approaches achieved by modelling

the full sample.

Models using destination sampling were estimated for both the 1986 and 2006

Toronto datasets, as these are the two datasets that have been used for the mixed

logit analysis. For the 1986 data the total number of destination alternatives C

is 1404, whereas for the 2006 data the C = 1845.

Generation of 1986 destination sample

Table D summarises the results from tests using different key zones to determine

a destination sample size giving an acceptable level of coverage for the 1986 data.
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The tests were undertaken using a modified version of model specification C,

defined in Table 4.2 in Section 4.2.2. The modified was that the model was

converted into a multinomial specification.

Table D.1: 1986 destination sample size tests
k max(D) D W max(D)/C

50 212 151.6 76.0% 15.1%
60 229 167.3 79.0% 16.3%
80 258 195.0 83.6% 18.4%
100 294 221.0 86.7% 20.9%
120 324 245.2 89.0% 23.1%
125 325 251.1 89.5% 23.1%
130 325 257.1 90.0% 23.1%
140 337 268.5 90.9% 24.0%

On the basis of these tests, a destination sample D of 325 alternatives was used

with a key zone of 130. This sample achieved 90% coverage using just under

one-quarter of the 1404 destinations. Table D demonstrates that the impact of

destination sampling on the model parameters is very small, with an RMS mea-

sure calculated for the change in parameter value relative to a model estimated

without destination sampling of just 0.06%.
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Table D.2: Impact of destination sampling on 1986 model parameters
all 1404 dest.s 235 dest. sample param.s differences

Log-likelihood -306,427.2 -285,610.7
Observations 50,254 50,254

Cost parameters
LogCost -0.3004 -23.6 -0.3004 -23.6 0.0000 0.00

Cost -0.0010 -12.7 -0.0010 -12.7 0.0000 0.01
Level of service

CarTime -0.0329 -77.6 -0.0329 -77.6 0.0000 -0.02
TranIVT -0.0222 -60.3 -0.0222 -60.2 0.0000 0.00
TranWait -0.0603 -24.5 -0.0603 -24.5 0.0000 0.00
TranWalk -0.0254 -16.1 -0.0254 -16.1 0.0000 -0.01

APDist -0.0205 -27.0 -0.0204 -27.0 0.0000 0.02
WalkDist -0.5837 -45.0 -0.5837 -45.0 0.0000 0.00

Destination terms
CBDDest 0.3918 13.9 0.3923 13.9 0.0005 0.01

CBDLT 0.1888 5.1 0.1889 5.1 0.0001 0.00
Mode constants

AP -3.9405 -44.6 -3.9403 -44.6 0.0002 0.00
LT 0.9698 20.4 0.9695 20.4 -0.0002 0.00

Wk 0.2475 2.8 0.2476 2.8 0.0001 0.00
Attraction term

TotEmp 1.0000 n/a 1.0000 n/a 0.0000 n/a
Car availability

AD2pVeh 1.2977 42.0 1.2979 42.1 0.0003 0.01
AP1Veh 1.4742 20.9 1.4736 20.9 -0.0006 -0.01

AP2pVeh 1.8900 26.2 1.8894 26.2 -0.0006 -0.01
Socio economics

ADAge1617 -2.104 -6.2 -2.101 -6.2 0.0029 0.01
ADAge1825 -0.834 -24.7 -0.834 -24.7 -0.0005 -0.01
ADAge2630 -0.167 -4.8 -0.167 -4.8 0.0000 0.00

ADMale 1.016 38.4 1.016 38.3 -0.0002 -0.01
WkMale 0.215 3.4 0.215 3.4 -0.0002 0.00

RMS: 0.06%

276



Generation of 2006 destination sample

Table D summarises the results from tests using different key zones to determine

a destination sample size giving an acceptable level of coverage for the 1986 data.

Table D.3: 1986 destination sample size tests
k max(D) D W max(D)/C

50 263 186.1 70% 14.3%
60 278 203.5 72% 15.1%
80 304 235.9 77% 16.5%
100 344 265.9 81% 18.6%
120 376 294.3 83% 20.4%
140 407 320.7 85% 22.1%
160 441 345.7 87% 23.9%
180 471 370.0 89% 25.5%
190 481 382.1 89% 26.1%
200 492 394.2 90% 26.7%

On the basis of these tests, a destination sample D of 492 alternatives was used

with a key zone of 200. This sample achieved 90% coverage using just over

one-quarter of the 1845 destinations. Table D demonstrates that the impact of

destination sampling on the model parameters is very small, with an RMS mea-

sure calculated for the change in parameter value relative to a model estimated

without destination sampling of just 0.06%.
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Table D.4: Impact of destination sampling on 2006 model parameters
all 1845 dest.s 492 dest. sample param.s differences

Log-likelihood -411,904.1 -394,123.3
Observations 64,808 64,808

Cost parameters
LogCost -0.1976 -16.6 -0.1975 -16.6 0.0000 0.00

Cost -0.0012 -21.2 -0.0012 -21.2 0.0000 0.01
Level of service

CarTime -0.0312 -68.8 -0.0312 -68.9 0.0000 -0.02
TranIVT -0.0181 -50.4 -0.0181 -50.4 0.0000 -0.02
TranWait -0.0495 -28.0 -0.0495 -28.0 0.0000 0.01
TranWalk -0.0215 -17.2 -0.0215 -17.2 0.0000 0.00

APDist -0.0253 -35.9 -0.0253 -35.9 0.0000 0.02
WalkDist -0.5318 -54.3 -0.5318 -54.3 0.0000 0.00

Destination terms
CBDDest -0.1467 -6.3 -0.1466 -6.3 0.0001 0.00

CBDLT 0.8734 23.7 0.8734 23.7 0.0001 0.00
Mode constants

AP -3.4282 -41.3 -3.4277 -41.3 0.0006 0.00
LT 0.8530 18.8 0.8532 18.8 0.0002 0.00

Wk 0.8154 10.5 0.8158 10.5 0.0004 0.00
Attraction term

TotEmp 1.0000 n/a 1.0000 n/a 0.0000 n/a
Car availability

AD2pVeh 1.5528 47.3 1.5532 47.3 0.0005 0.01
AP1Veh 1.4324 22.4 1.4317 22.4 -0.0006 -0.01

AP2pVeh 1.8485 27.7 1.8483 27.7 -0.0003 0.00
Socio economics

ADAge1617 -3.011 -5.7 -3.008 -5.7 0.0030 0.00
ADAge1825 -1.342 -32.1 -1.341 -32.1 0.0006 0.01
ADAge2630 -0.343 -8.3 -0.343 -8.3 -0.0001 0.00

ADMale 0.869 33.6 0.868 33.6 -0.0002 -0.01
WkMale 0.108 1.9 0.108 1.9 -0.0002 0.00

RMS: 0.06%
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