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Abstract

The motivation behind the research is to show that evolutionary algorithms can exploit

properties of materials to solve various computational problems without requiring a

detailed understanding of such properties. This approach is referred to as evolution-in-

materio. In this research, it has been shown that using a purpose-built hardware platform

called Mecobo, it is possible to evolve voltages and signals applied to physical materials

to solve a number of computational problems. Here it has been demonstrated for the

first time that the evolution-in-materio method can be applied to function optimisation,

machine learning classification, frequency classification, even parity and bin packing

problems. This evolution-in-materio method has also been applied here to discriminate

tones and control robots. The physical material used in each of these experiments is a

mixture of single-walled carbon nanotubes and a polymer. This is the first time that

such material has been used to solve computational problems. The results of all of these

experiments indicate that evolution-in-materio has promise and further investigations

would be fruitful. Other than the solutions regarding these computational problems, this

thesis has also devised and investigated suitable input-output mappings and input signals

that allow various computational problems to be solved using the Mecobo platform and

the experimental material.
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3.0 and Mecobo 3.5) on 9 benchmark optimisation functions using experiments

B and C. Experiment B used Mecobo 3.0 and experiment C used Mecobo 3.5.

The first column indicates the benchmark function number associated with the

function optimisation problem. In the case of experiments B and C, the number

of generations was 1000 and the number of runs was 20. The ‘Res. of Mec. 3.5’

column shows whether the results of Mecobo 3.5 are equal to optimum or not

and ‘Res. of Mec. 3.0’ column shows whether the results of Mecobo 3.0 are

equal to optimum or not. The first results of these columns show the compar-

isons between the best results of the experimental material and the optimum,

and the second results show the comparisons between the average results of the

experimental material and the optimum. ‘X’ in these columns indicates the re-

sult is equal to optimum and ‘X’ indicates the result is not equal to optimum.

The ‘Co. res.’ column shows the comparisons of the best and average results of

Mecobo 3.5 with Mecobo 3.0. The ‘=’ in this column indicates that the results

of both hardware platforms are equal, ‘+’ indicates the result with Mecobo 3.5

is better than the result of Mecobo 3.0 and ‘-’ indicates the result with Mecobo

3.5 is worse. The first result of this column shows the comparison of the best

results and the second result of this column shows the comparison of the average

results. ‘U-t’, ‘KS-t’ and ‘E. s.’ (effect size) (L = large, M = medium, S = small)

columns show results of statistical significance tests. The statistical significance

tests have been performed over the results of all 20 runs of all 9 functions. ‘X’ in

‘U-t’ and ‘KS-t’ columns indicates that the difference between the two datasets

is statistically significant and ‘X’ indicates that the difference is statistically not

significant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

xviii



List of Tables

6.9 Comparative performance results of the split genotype technique (experiment

C) versus the performance without using the split genotype technique (experi-

ment D). The first column indicates the benchmark function number associated

with the function optimisation problem. The comparisons are performed using

material sample 1 and Mecobo 3.5 on 4 benchmark optimisation functions. In

the case of experiments C and D, the number of generations was 1000 and the

number of runs was 20. The ‘Res. of set C’ column shows whether the results

of set C (experiments with the split genotype technique) are equal to optimum

or not and ‘Res. of set D’ column shows whether the results of set D (experi-

ments without the split genotype technique) are equal to optimum or not. The

first results of these columns show the comparisons between the best results of

the experimental material and the optimum and the second results show the

comparisons between the average results of the experimental material and the

optimum. ‘X’ in these columns indicates the result is equal to optimum and

‘X’ indicates the result is not equal to optimum. The ‘Co. res.’ column shows

the comparisons of the best and average results of sets C and D. The ‘=’ in

this column indicates that the results of both sets are equal, ‘+’ indicates the

result of set C is better than the result of set D and ‘-’ indicates the result of

set C is worse. The first result of this column shows the comparison of the best

results and the second result of this column shows the comparison of the average

results. ‘U-t’, ‘KS-t’ and ‘E. s.’ (effect size) (L = large, M = medium, S = small)

columns show results of statistical significance tests. The statistical significance

tests have been performed over the results of all 20 runs of all 4 functions. ‘X’ in

‘U-t’ and ‘KS-t’ columns indicates that the difference between the two datasets

is statistically significant and ‘X’ indicates that the difference is statistically not

significant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.10 The experimental settings of all sets of bin packing experiments. The ‘Bench-

mark’ column shows the bin packing benchmark used in the experiments. The

‘No. of gen’ and ‘No. of run’ columns show the number of generations and

number of runs of the experiments respectively. The ‘No. of out.’, ‘No. of conf.’

and ‘Mut. rate’ columns show the number of outputs, number of configuration

inputs and mutation rate respectively. The mutation rate (mn) is defined to

be the number of discrete mutations made in the entire collection of chromo-

somes. It should be noted that the experiments of all sets used Mecobo 3.0,

material sample 4 (according to Table 4.3), 12 electrodes of the electrode array,

128 milliseconds for the input-output timing and 25 KHz for the output sampling

frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.11 The motives for performing the bin packing experiments. The first column shows

the sets of experiments. The second column shows the motive. . . . . . . . . . 135

6.12 Description of the genes for bin packing experiments. . . . . . . . . . . . . . . 137

6.13 Description of the genotype for bin packing experiments. The ‘No. of gen. in

each elec.’ column shows the number of genes associated with each electrode.

The ‘Gen. ass. with each elec.’ column shows the genes that are associated with

each electrode. The ‘Total no. of genes’ column shows the total number of genes

in each chromosome of a genotype. The ‘Representation of the ith chromosome’

column shows the representation of the ith chromosome of a genotype. The

‘Representation of a genotype’ column shows the representation of a genotype.

The ‘Exp.’ column shows the set(s) of experiments. The ‘Genes related to

outputs’ column shows the gene values of a chromosome, which are related to

outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

xix



List of Tables

6.14 Comparative results of different electrode combinations associated with chro-

mosomes (sets A-E). The experiments were performed using the bin packing

benchmark HARD0 [Scholl and Klein (2003)] and in each of the experiments,

a single mutation was used to generate a child. The first column shows the set

of experiments. In the second column, py,z denotes the electrode combination,

where y is the number of electrodes used as outputs and z is the number of

electrodes used as configuration inputs. The third column indicates the average

result of 20 runs. The fourth column indicates the best result of all 20 runs.

‘Overflow’ is used where at least one bin was filled beyond its capacity. . . . . . 141

6.15 Comparative results of two different mutation rates (mn) applied in experiments

B and F. Here, mn is defined to be the number of discrete mutations made in

the entire collection of chromosomes. The experiments have been performed

using the bin packing benchmark HARD0 [Scholl and Klein (2003)]. The first

column shows the set of experiments. The second column shows the mutation

rate. The third column shows the average result of 20 runs. The fourth column

indicates the best result of all 20 runs. The electrode combination used for all

the experiments mentioned in this table is 2 electrodes as outputs and 10 as

configuration inputs as this electrode combination gave the best result according

to Table 6.14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.16 The experimental results on twelve bin packing benchmark problems (sets B,

G-Q). In all of these experiments, the number of generations was 5000 and the

number of runs was 20. Two electrodes were used as outputs and ten were

supplied with configuration inputs. A single mutation was used to generate

a child in the evolutionary algorithm (mn = 1). The first column shows the

set of experiments. The second column shows the benchmark of bin packing

problem on which experiments were performed. The third column shows the

optimum result (expected result) of the bin packing problem. The fourth column

indicates the difficulty class to which the benchmark data belongs to (according

to [Scholl and Klein (2003)]). The fifth column shows the number of items of bin

packing problem. The sixth column indicates the average result of all runs. The

seventh column indicates the best result of all runs. ‘Overflow’ is used where at

least one bin overflowed. The ‘Result’ column shows whether the results of the

experimental material are within 15% of the optimum or not. The first result of

this column shows the comparison between the average result of the experimental

material and the optimum and the second result shows the comparison between

the best result of the experimental material and the optimum. ‘X’ in this column

indicates the result is within 15% of the optimum and ‘X’ indicates the result is

not within 15% of the optimum. . . . . . . . . . . . . . . . . . . . . . . . . . 143

xx



List of Tables

7.1 The experimental settings of all sets of simulated robot experiments. The ‘Task’
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Introduction

Contents

1.1 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Thesis Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
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1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

‘In conventional design the vast majority of interactions that could possibly contribute

to the problem are deliberately excluded’ [Conrad (1988)]

Conrad’s statement is both intriguing and paradoxical. Why are these interactions

excluded? The answer is that designers are unaware of such interactions. However,

artificial evolution is a technique that can be used to utilise these. Indeed, one of its

potential advantages is that it can exploit physical effects that are either unknown or too

complex to understand. In the 1990s, Thompson discovered that he was able to utilise

the physical properties of a silicon chip called a field programmable gate array (FPGA)

to solve computational problems by demonstrating unconstrained evolution on the chip

[Thompson (1998)]. From his experiment in unconstrained evolution, the concept of

evolution-in-materio emerged. Evolution-in-materio is the manipulation of a physical

system by computer controlled evolution to solve computational problems [Miller and

Downing (2002); Miller et al. (2014); Massey et al. (2015a)]. In evolution-in-materio,

a material operates as a computational device. A number of input signals are sent to

the material and the recorded response is interpreted as a computation based on a pre-

specified scheme (e.g. input-output mapping, fitness calculation method). There are
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two categories of input signals: the data input, which is defined by the computational

task; and the configuration inputs that are evolved to bring the material to the desired

computation-inducing state. Evolutionary algorithms are used to search over the space of

possible configuration inputs. Evolutionary algorithms are fitting as they are computer

algorithms that utilise the forces of natural evolution and self-adaptation [Greenwood

and Tyrrell (2006)].

For evolution-in-materio, three components are necessary:

• A physical material;

• A hardware platform that generates input signals, sends the signals to the material

and reads the output signals from the material;

• A computer that controls the evolution using an evolutionary algorithm and the

hardware platform.

Evolution-in-materio has been applied before to a few problems using a liquid crys-

tal display (LCD): building logic gates, tone discrimination and controlling a simulated

robot [Harding and Miller (2004a, 2005); Harding (2006); Harding and Miller (2007)]. In

this thesis the range of computational problems, to which evolution-in-materio has been

applied, has been considerably extended. Such problems are: machine learning classi-

fication, frequency classifier, even parity, function optimisation, bin packing problems

and control of both simulated and real robots. In addition, the experimental apparatus

and computational material are different to past work. Electronic signals are applied

to electrode arrays containing mixtures of single-walled carbon nanotubes and a poly-

mer. Single-walled carbon nanotubes are the conducting or semi-conducting materials

in the mixture and the role of the polymer is to introduce insulating regions within

the nanotube network, to create non-linear current versus voltage characteristics. An-

other benefit of the polymer is to help with the dispersion of the nanotubes in solution.

The polymer used in the mixture is polymethyl methacrylate (PMMA) or poly butyl

methacrylate (PBMA). A variety of mixtures of these materials have been used in the

experiments of this thesis.

This research is part of an EU-funded research project named NASCENCE (nanoscale

engineering for novel computation using evolution) [Broersma et al. (2012)]. The objec-

tive of this project is to understand, model and exploit the properties of nanosystems

2



Chapter 1

using evolution. The long-term goal of this project is to develop both theoretical and

technological foundations of a new type of information processing technology using natu-

ral evolution and the advancement of nanotechnology. Four universities and one research

institute are involved in this project. These are: the University of York, Durham Univer-

sity1, the Norwegian University of Science and Technology2, the University of Twente3,

the Dalle Molle Institute for Artificial Intelligence (IDSIA)4. The equipment involved

in this research (the physical material, the hardware platform and the computer that

controls the evolution-in-materio) has also been produced by this project.

1.1 Hypothesis

It is possible to solve function optimisation, machine learning classification, bin packing,

tone discriminator, frequency classification, even parity and robot controlling problems

by using computer controlled evolution of signals applied to electrode arrays containing

a mixture of single-walled carbon nanotubes and a polymer.

1.2 Thesis Layout

This thesis is organised into nine chapters.

Chapters 2 and 3 deal with the motivations that lie behind this research and former

published research that provides the foundations of this thesis. Chapter 2 defines and

describes evolutionary algorithms along with different components of evolutionary al-

gorithms. Cartesian genetic programming is a well-known software-based evolution-

ary approach. The experimental results of some of the problems have been compared

with the results of Cartesian genetic programming to evaluate the effectiveness of the

evolution-in-materio method for solving such problems.

Chapter 3 discusses relevant aspects of published work on evolvable hardware, evolvable

motherboard and physical computation. Evolution-in-materio, with which the topic of

this thesis is mainly related, is described in this chapter with a conceptual overview

1https://www.dur.ac.uk
2http://www.ntnu.edu
3http://www.utwente.nl/en
4http://www.idsia.ch
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and discussion of past related work. Evolution-in-materio research carried out by the

members of the NASCENCE project is also described in Chapter 3, providing a clear

overview of the work of this European project and how it relates to the thesis.

Chapter 4 describes the equipment used in this research. The equipment consists of the

interface hardware named Mecobo, the interface software and the experimental material.

Chapters 5, 6, 7 and 8 discuss and analyse the experiments performed in this research.

Chapters 5 and 7 describe those experiments which require few outputs. Of these,

Chapter 5 describes classification-based experiments which were used to find solutions

to machine learning classification, tone discriminator, frequency classifier and even parity

problems. Chapter 7 describes the experiments that use evolution-in-materio to control

robots. Both simulated and real robots have been used in these experiments.

Chapter 6 describes two experiments which require many outputs. The problems are

complex multi-modal optimisation functions and the NP-hard bin packing problems.

Both of these experiments used a technique to handle many outputs, which is called

the split genotype technique. The technique and the problems which are suitable for its

application are also discussed.

Chapter 8 mainly focuses on the analysis regarding the choices of the computational

problems, the experiments and the outcomes obtained in the experiments to solve the

computational problems of this research. This chapter also deals with some other in-

vestigations, such as the stability test on the experimental material, investigations on

the input-output mappings and on the experimental settings controlled by the hardware

platform to set up input and output signals. Nothing is smooth in this world, so the

experiments of this research also faced a number of problems which are described in

Chapter 8. Recognising these issues helps to draw a guideline for future work.

Finally, Chapter 9 concludes the thesis with a detailed discussion about future work in

the area of evolution-in-materio.

1.3 Contributions

The novel and original contributions of this thesis are:

For the first time, it has been possible to
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• show configurations of single-walled carbon nanotubes and polymers can be evolved

to solve computational problems;

• devise and investigate suitable input-output mappings and input signals that allow

various computational problems to be able to be solved using electrode arrays;

• show that it is possible to use evolution-in-materio to solve well-established and

difficult computational problems (function optimisation, machine learning classi-

fication, frequency classification, bin packing, even parity and robot controlling

problems).

1.4 Publications

Some of the work incorporated in this thesis has been presented in previous publications,

through conference and workshop proceedings and journal papers. Six papers were

submitted for publication in conference and workshops. Of these, four papers have

already been published and two have been reviewed and accepted. Two papers have

been accepted for publication in two journals. The frequency classification experiments

of Chapter 5 and the bin packing experiments of Chapter 6 were published in [Mohid et

al. (2014a)] and [Mohid et al. (2014b)] respectively. The work of function optimisation

experiments of Chapter 6 was demonstrated and published in [Mohid et al. (2014c)] and

has been accepted for publication in journal [Mohid et al. (2015)]. The work on tone

discriminator described in Chapter 5 has also been accepted by the same journal, i.e.

in [Mohid et al. (2015)]. The machine learning classification experiments of Chapter

5 were published in [Mohid et al. (2014d)] and have been reviewed and accepted for

publication in journal [Mohid and Miller (2015b)]. Some pieces of work performed with

a simulated robot of Chapter 7 have also been accepted in the same journal, i.e. in

[Mohid and Miller (2015b)] for publication. The rest of the work performed with the

simulated robot and the experiments of the real robot of Chapter 7 have been reviewed

and accepted for publication in [Mohid and Miller (2015a)]. The work of even parity

experiments of Chapter 5 has been reviewed and accepted for publication in [Mohid and

Miller (2015c)].
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Chapter 2

Evolutionary Algorithms
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In a biological context, ‘evolution’ is the mechanism which allows organisms to adapt to

their environment by changing their characteristics over time [Darwin (1859)]. In engi-

neering, the word ‘evolution’ refers to a process whereby products or processes change

over time. This is not to be confused with evolution in a Darwinian sense.

In artificial intelligence, evolution is performed using an evolutionary algorithm. An evo-

lutionary algorithm is a form of non-deterministic search, which is inspired by biological

evolution and involves processes such as selection, reproduction, recombination and mu-

tation. It is used in engineering, biology, economics, art, genetics, physics, robotics,

chemistry and many other fields.

Evolutionary algorithms were first described by biologists in 1950, who were trying to

simulate evolution [Barricelli (1954); Fraser (1957); Friedman (1956, 1959); Campbell

(1956a,b, 1960)]. The uses of evolutionary algorithms did not become more widespread
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and evolutionary algorithms were not used as a technique to solve problems until the

1960s and 1970s. Four types of evolutionary algorithm became more prominent. These

are evolutionary programming [Fogel (1998)], evolutionary strategies [Rechenberg (1971);

Schwefel (1974)], genetic algorithms [Holland (1992)] and genetic programming [Koza

(1992)]. Genetic programming is a search technique which is inspired by Darwinian

evolution and is able to produce programs to solve problems. In the year 1997, a form of

genetic programming called Cartesian genetic programming was added, which is based

on an encoding of graphs [Miller et al. (1997)].

2.1 Components of Evolutionary Algorithms

There are a number of components, operators, or procedures that must be specified to

define an evolutionary algorithm. These components are described in following sections

[Michalewicz (1996); Mitchell (1998); Greenwood and Tyrrell (2006); Eiben and Smith

(2015)]:

2.1.1 Representation

The representation is a data structure which encodes the information required to solve a

specific problem. In evolutionary algorithms, a gene is an encoded problem parameter.

The genotype is the complete set of all genetically encoded information required in order

to solve a computational problem. The data structure used for the genetic representation

can be represented as a binary bit string, a collection of integers, real numbers, graphs

and a mixture of binary, integer and real numbers. Consider an example in circuit design.

If the gates used are chosen from the set {NOT, OR, AND, NAND, NOR, XOR}, any

circuit configuration using two gates can be encoded with a 7-bit binary string: the first

three bits select the first gate (000 for NOT, 001 for OR and so on); next three bits

select the second gate; one bit indicates if the two gates are in series (logic 0) or parallel

(logic 1). Then 0010110 means OR and NAND gates are connected serially together.

Genetic algorithms use strings of binary values or integers or real numbers for repre-

senting genotypes [Holland (1992); Davis (1991); Eshelman and Schaffer (1992)].
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Usually, a genetic programming uses tree structures for representation. However, in

linear genetic programming, the programs are constrained to linear sequences of in-

structions (operations and inputs) [Poli et al. (2008)]. Cartesian genetic programming

uses graph-based representation [Miller (2011)]. An example of genetic programming

tree is shown in Figure 2.1.

Figure 2.1: An example of genetic programming tree.

2.1.2 Population

The population is a set of solutions that evolve in the evolutionary run. Population

size is the number of genotypes in each generation. Usually, the initial population is

generated randomly. However, sometimes the initial population is generated by hand to

have a good starting position at the beginning of an evolutionary run.

2.1.3 Variation Operators

Variation operators are used to create new individuals from old ones. Two types of

variation operators are used: recombination and mutation.
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2.1.3.1 Recombination

Recombination is the process where new genotypes are created by combining two or

more genotypes of the previous generation. The genotypes of the new generation are

called children and genotypes of the previous generation are called parents. The point, at

which two parents are divided and combined to generate children, is called the crossover

point. When two parents are divided at one point, it is called one-point crossover.

When parents are divided in more than one point (n number of points), it is called n-

point crossover. An example of crossover is shown in Figure 2.2. The percent crossover

determines the number of children to be produced in each generation.

Figure 2.2: An example of one-point crossover [Greenwood and Tyrrell (2006)]. Two
parents are shown in the left and two children are shown in the right. The crossover
point is indicated by the line in the parents. The bits after the crossover point are
swapped in the children.

In the case of genetic algorithms, the crossover operator is the main operator [Holland

(1992)]. It is considered that if partial solutions occur in parents, at the time of crossover,

it can unite the partial solutions in children to create a solution.

Crossover in genetic programming tree selects two function nodes from two genetic pro-

gramming trees randomly and then exchanges two sub-trees under those two function

nodes between each other [Poli et al. (2008)]. An example of crossover of genetic pro-

gramming tree is shown in Figure 2.3.

2.1.3.2 Mutation

Mutation is the process where a child is produced by altering one or more genes of a

parent. Mutation can be done in many ways: swapping two genes, mutation by inversion.

An example of mutation is shown in Figure 2.4.

Different types of user-chosen parameter are used for mutation. Mutation rate is used

to define how many times the part of the chromosome will be mutated. In the case of
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Figure 2.3: An example of crossover of genetic programming tree.

Figure 2.4: An example of mutation by swapping two genes.

mutation by probability, a small probability is used to choose each gene and a num-

ber is generated randomly for each gene. Depending on that random number and the

probability, a gene is chosen and mutated.

The mutation is the secondary operator in traditional genetic algorithms [Holland (1992)].

In genetic algorithms, the mutation is applied after crossover. Mutation is used to pre-

vent early convergence on sub-optima.

In evolutionary programming, it is the only variation operator, which is solely responsible

for the generation of new individuals.

Mutation in genetic programming happens after recombination [Poli et al. (2008)]. In

mutation, randomly nodes are selected, and then the sub-trees under those function
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nodes are substituted by randomly generated sub-trees by mutation. An example of

mutation of genetic programming tree is shown in Figure 2.5.

Figure 2.5: An example of mutation of genetic programming tree.

2.1.4 Evaluation

After mutation and crossover, an evaluation process is used to evaluate newly created

children to promote to the next generation. In this process, normally a numeric score is

assigned to each genotype using a fitness function. The score is called the fitness score.

The children are promoted to the next generation depending on the fitness scores of

their genotypes.

2.1.5 Selection

After the evaluation, a selection process is used to select genotypes of the new generation.

There are many selection methods:

• Fitness proportional selection: In fitness proportional selection, individuals are

selected according to their absolute fitness scores. The probability of selecting

any individual uses its absolute fitness score. If the population size is N and the

fitness of ith individual is fi, the probability of ith individual is Prob(i) which can

be calculated using Equation 2.1.
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Prob(i) =
fi∑N
j=1 fj

(2.1)

• Fitness ranking selection: In fitness ranking selection, individuals are selected

according to their rankings, which are done using relative fitness scores. The

probability of selecting any individual uses ranking instead of its fitness score.

• Truncation selection: In this selection method, µ parents are used to get λ children

in each generation. Then (µ + λ) individuals are sorted according to their fitness

scores. From these, the best µ individuals are used as parents in next generation.

• Tournament selection: In tournament selection, random uniform samples of q

(q>1) individuals are taken from the population, and then the best-fit individual

is selected for crossover.

In (µ + λ)-evolutionary algorithm, the population size is (µ + λ), where λ children

are generated from µ parents, and the µ individuals having the best fitness values are

selected to be the parents in the new population [Rechenberg (1971)].

In (µ , λ)-evolutionary algorithm, λ children are generated from the µ parents, where

only the λ children form the new population. The µ individuals having the best fitness

values from the λ individuals are selected to be the parents in the new population.

2.1.6 Termination Criteria

The evolutionary run terminates when it meets the termination criteria. Three types of

criteria can be used to terminate evolutionary runs:

• A fixed number of generations or evaluations can be used.

• The solution has converged, i.e. no improvement is found in the last fixed number

of generations.

• The output is not optimum but good enough to be considered.

The general scheme of an evolutionary algorithm as a flowchart is shown in Figure 2.6.
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Figure 2.6: The general scheme of an evolutionary algorithm as a flowchart.

2.2 Cartesian Genetic Programming

Cartesian genetic programming grew out from the work of evolving digital circuit, which

was developed by Miller et al. in the year 1997 [Miller et al. (1997)]. The term ‘Carte-

sian genetic programming’ first appeared in the year 1999 [Miller (1999)], and then it

was proposed as a general form of genetic programming in the year 2000 [Miller and

Thompson (2000)].

Cartesian genetic programming uses directed acyclic graphs [Miller (2011)]. The graphs

of Cartesian genetic programming are represented by two-dimensional grids of compu-

tational nodes, that is why the algorithm is called Cartesian genetic programming. An

example of the Cartesian genetic programming graph is shown in Figure 2.7. The genes

of the genotype of Cartesian genetic programming are integers. These genes represent

where a node gets its data, the operation of the node to be performed on the data

and from where the output will be obtained. This means, the genes of the genotype of

Cartesian genetic programming can be divided into three categories: function gene, con-

nection gene and output gene. An example of Cartesian genetic programming genotype

is shown in Figure 2.7.

• Function gene: Each node of the graph of Cartesian genetic programming repre-

sents a function. The types of computational node functions are listed in a look-up

table and are decided by the user. The gene of a node, which is the address of

computational node function in function look-up table, is called function gene.

The function genes are shown in Figure 2.7.

16



Chapter 2

• Connection gene: The node gets its inputs in a feed-forward manner from either

the program inputs or from the outputs of nodes of previous columns. The genes of

the node, which specify from where the node gets its inputs, are called connection

genes. The connection genes represent addresses in a data structure (usually an

array). These are integers that take values between 0 and the address of the node

located at the bottom of the previous column of nodes. The maximum number of

inputs, that any function of the function look-up table has, is called the arity. The

number of connection genes of a node is chosen to be its arity. The connection

genes are shown in Figure 2.7.

• Output gene: The genes, which specify from where the outputs are taken, are

called output genes. The output genes are shown in Figure 2.7.

The user has to set three parameters while running Cartesian genetic programming, these

are: number of rows (nr), number of columns (nc) and levels-back (l). The number of

rows is the number of rows the graph should have, the number of columns is the number

of columns the graph should have. If levels-back, l=nc, a function node can take its

inputs from the outputs of any functional nodes of immediate left nc number of columns

or from primary inputs.

At the time of decoding of genotypes, sometimes some nodes are ignored. The ignored

nodes and their genes are called ‘non-coding’. This happens when the node outputs are

not used in the calculation of output data. The nodes, whose outputs are used in the

calculation of output data, are called ‘active’ nodes.

Decoding of Cartesian genetic programming proceeds from the right-hand end, at the

output genes. That means, at first output genes are identified, then active functional

nodes are identified, from where output genes are obtained; then connection genes are

identified, with which previously identified functional nodes are connected. After these

connection genes, other active functional nodes are identified, with which these connec-

tion genes are connected. In this way, it proceeds by traversing the graph backward. In

the decoding process, non-coding nodes are not processed. The decoding process can

be implemented in different ways. One is the recursive decoding process, another way

is to determine active nodes in recursive way, record them for future use and then only

process them.
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Figure 2.7: General form of Cartesian genetic programming [Miller (2011)]. It is a
grid of nodes whose functions are chosen from a set of primitive functions. The number
of program inputs is ni. The grid has nc number of columns and nr number of rows.
The number of program outputs is no. Each node is assumed to take as many inputs
as the maximum function arity, a. The data input or node output is labeled sequen-
tially (starting from index 0), which represents a unique data address that specifies
from where the input data or output value can be accessed. Here function genes are
F0F1 . . . F(c+1)r−1, connection genes are C0,0 . . . C0,a . . . C(c+1)r−1,a and output genes
are O0O1 . . . Om.

An example of a Cartesian genetic programming genotype with the corresponding phe-

notype for a two-bit multiplier is shown in Figure 2.8. An example of decoding procedure

of a Cartesian genetic programming genotype (shown in Figure 2.8) for a two-bit mul-

tiplier is shown in Figure 2.9.

Usually, recombination is not used in Cartesian genetic programming. Crossover showed

a detrimental effect on the performance of Cartesian genetic programming. Point mu-

tation is used in Cartesian genetic programming. In point mutation, the value at a

randomly chosen gene location is altered to another valid value, and the valid value is

chosen randomly. If the gene is a function gene, the valid value is the address of any

function of the function set. If it is a connection gene, the valid value is the address of

output of any previous node in the genotype or the address of any program input. In
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Figure 2.8: An example of a Cartesian genetic programming genotype and corre-
sponding phenotype for a two-bit multiplier circuit [Miller (2011)]. Both in the geno-
type and phenotype, the addresses are shown underneath the program inputs and nodes.
The underlined genes in the genotype encode the functions of the nodes. According to
the function look-up table, AND is 0, AND with one input inverted is 1, XOR is 2 and
OR is 3. The inactive areas of the genotype and phenotype are shown in grey dashes
(here node 6 and 10 are two inactive nodes).

the case of an output gene, the valid value is the address of output of any node in the

genotype or the address of any program input. The number of genes of the genotype

to be mutated is determined by a user-chosen parameter. The parameter is normally

a percentage of total number of genes in a genotype, which is referred to as mutation

rate. Sometimes different mutation rates are used for function genes, connection genes

and output genes.

In Cartesian genetic programming, (1+4)-evolutionary algorithm is widely used. A child

is always chosen if it is equally as fit or has better fitness than the parent. An example

of (1+4)-evolutionary algorithm is shown in Figure 2.10.

Cartesian genetic programming has been applied in solving many problems from many

areas, such as function optimisation, classification, electronic circuit design, financial

prediction, medical diagnostics, evolutionary art and music, image processing, symbolic
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Figure 2.9: An example of the decoding procedure of a Cartesian genetic programming
genotype for a two-bit multiplier problem [Miller (2011)]. (a) Output A (OA) connects
to the output of node 4. (b) If node 4 is observed, node 4 connects to the program
inputs 0 and 2, therefore the output A is decoded. (c) If output B (OB) is observed,
output B connects to the output of node 9. (d) If node 9 is observed, node 9 connects
to the outputs of nodes 5 and 7. (e) If nodes 5 and 7 are observed, nodes 5 and 7
connect to the program inputs 0, 3, 1 and 2, therefore output B is decoded. The same
procedure continues until outputs C (OC) and D (OD) are decoded (steps (f)-(h) for
output C and steps (i)-(j) for output D). When all the four outputs are decoded, the
genotype is fully decoded.

Figure 2.10: An example of (1+4)-evolutionary algorithm.
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regression, digital adder, travelling salesman problem and so on. Cartesian genetic pro-

gramming was applied before on some of the computational problems that have been

solved in this research, such as machine learning classification, function optimisation,

bin packing, even parity and robot controlling problems. Here in this thesis, the re-

sults obtained by applying Cartesian genetic programming on some of these problems

(machine learning classification, even parity and function optimisation problems) were

compared with the results of the experimental material to evaluate the effectiveness of

the evolution-in-materio for solving these problems. Dr. Julian F. Miller is the super-

visor of this thesis, who is the developer of Cartesian genetic programming. Thus, the

Cartesian genetic programming software is available for comparing its results with the

results of the experimental material using the same techniques (input-output mappings,

fitness calculation methods) and parameters (number of generations, number of runs) in

both of these cases (experimental material and Cartesian genetic programming). Carte-

sian genetic programming is a standard evolutionary search algorithm, which has been

proved to be efficient in solving many problems already.

2.3 Summary

An introduction to evolutionary algorithms and the descriptions of their components

have been given in this chapter. Cartesian genetic programming has been described

in detail here. In the case of three experiments, the results of evolution-in-materio

were compared with the results of Cartesian genetic programming. The advantage of

using Cartesian genetic programming for comparison is the availability of Cartesian

genetic programming software. These experiments along with the results are discussed

in Chapters 5 - 8 of this thesis.
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Artificial Evolution of Physical

Systems
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Hardware evolution or evolvable hardware is a method which uses evolutionary tech-

niques to design and synthesise hardware. The evolution in evolvable hardware is per-

formed intrinsically or extrinsically. Extrinsic evolution uses simulators or circuit models

to evaluate circuit configurations and in the case of intrinsic evolution, every chromosome

is downloaded in the hardware and physical testing measures fitness [Greenwood and

Tyrrell (2006)]. An evolvable motherboard is a reconfigurable circuit used for intrinsic

evolution, where the evolved circuit can be inspected. Some previous work on evolvable

hardware and evolvable motherboard is described here, this inspired the evolution-in-

materio experiments of this thesis. The evolution-in-materio experiments of this thesis

have also used an evolvable motherboard named Mecobo which is described in next

chapter.
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This thesis has solved many computational problems using physical materials, thus much

of the work relates to the broader field of physical computation. A survey of related work

performed on physical computation by many researchers is described in this chapter.

A conceptual overview of evolution-in-materio is given in this chapter. In addition, a

survey and discussion of past work in evolution-in-materio are also given here so that

the work of this thesis can be placed in the context of related published work concerned

with evolution-in-materio.

3.1 Evolvable Hardware

In 1990, research was performed by applying an evolutionary algorithm on a computer

chip to change hardware functionality and connections of the circuit dynamically [Had-

dow and Tyrrell (2011)]. The combination of the evolutionary algorithm with pro-

grammable electronics, such as FPGAs and field programmable analogue arrays, started

a new field in the evolutionary community. It is called ‘evolvable hardware’.

Thompson performed many experiments on evolvable hardware using a Xilinx 6216

FPGA (shown in Figure 3.1) [Thompson (1998)].

A Xilinx 6216 FPGA has a two-dimensional array of 64 X 64 reconfigurable logical

cells. Each cell contains a function unit which can be configured to perform multiplexer

functions of three inputs or Boolean functions of two inputs. Each cell can be connected

with four neighbouring cells: north, east, west, south (NEWS). The three inputs (all

inputs are not necessary) of a function unit can be sourced by any of the four NEWS

neighbours. The output of a cell in each of the NEWS directions can be driven by

the signal arriving at any one of the other three NEWS directions or by the output

‘F’ (output ‘F’ is shown in Figure 3.1) of its corresponding function unit. A computer

controls the FPGA using a software, which determines a circuit design using a string of

bits. The string of bits can be changed using the software. The circuit designed by one

string is different from the circuit of another string. Though the software determines

the circuit design using a string of bits, the circuit is physically instantiated on the chip.

The FPGA configuration was evolved using a genetic algorithm, but the fitness was

evaluated using the real circuit generated genetically.
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Figure 3.1: A simplified view of Xilinx 6216 FPGA [Thompson (1998)].

In one experiment, he evolved oscillators. He used a genetic algorithm with population

size 50. He used a 10 X 10 array of cells in chip and 1800 bits of string to configure.

He ran up to 40 generations with target frequencies 10 Hz, 1 KHz, 100 KHz, 1 MHz. It

was found that the evolved individual obtained the desired behaviour over a period of

two seconds.

He also evolved a robot with wall avoidance behaviour using the FPGA. His robot had

two sensors (one pointing to the left and another pointing to the right), two motors and

a RAM chip that implemented a dynamic state machine. The contents of RAM chip

were generated by evolution. The input address lines of RAM chip were connected with

sonar outputs, and the outputs of the RAM chip were connected directly to the motors.
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Two clocks were used to transfer the output of the state machine to the inputs of the

state machine and to control the motor speeds. The evolution defined the operating

frequencies of those clocks. A genetic algorithm was used in the experiment. The

population size was 30. The fitness score was calculated using Equation 3.1. If the

distances from centre of the room to the x and y directions are cx(t) and cy(t) respectively

at time t, then after an evaluation for T seconds, the fitness score can be defined as

fitness =
1

T

∫ T

0
(e−kxcx(t)2 + e−kycy(t)2 − s(t)) (3.1)

Here s(t) = 1 when robot is stationary, otherwise 0. kx and ky were chosen in a way so

that their respective Gaussian terms would have values in a range [0.1, 1.0]. The values

were 1.0 when the robot was in the centre of the room and 0.1 when the robot hit a wall

in their respective directions. Each individual was evaluated for four trials of 30 seconds

each. Each time the starting position and orientation were different. The worst of the

four scores was taken as the fitness. In the final few generations, the evaluations were

extended to 90 seconds.

Figure 3.2: Thompson’s robot [Thompson (1998)].

At first, the experiment was not performed in the real world. The sensor readings were

given by the computer. Some noise was included to simulate a realistic environment.

The movement of the robot was calculated using motor speeds. Later on, the robot was

moved into the real world after evolving up to 35 generations. The sonar readings were

measured from real sensors. The robot used in this experiment is shown in Figure 3.2.

The behaviour of the robot is shown in Figure 3.3.
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Figure 3.3: (a)-(c) Wall avoidance behaviour of robot in virtual reality [Thompson
(1998)]. (d) Wall avoidance behaviour of robot in the real world.

In another somewhat famous experiment, he evolved a tone discriminator using the

FPGA, where he tried to discriminate two frequencies: 1 KHz and 10 KHz. He tried

to obtain an output of +5V for one input frequency and 0V for another. He used a

genetic algorithm, and the population size was 50. He used a 10 X 10 array of cells,

which required 1800 bits to configure. He used inputs with five 500 milliseconds bursts

of the 1 KHz square wave and five of the 10 KHz square wave. Those ten test tones were

shuffled randomly and changed every time. There was no gap between those test tones.

The fitness function used in this experiment is shown in Equation 3.2, where the output

at the end of test tone t is it, S1 is the set of five 1 KHz test tones and S10 is the set of

five 10 KHz test tones. After generation 3500, almost perfect behaviour was observed.

However, there were some infrequent spikes in the output. At generation 4100, those

were eliminated. The genetic algorithm was let to run for another 1000 generations.

Finally, at generation 5000, a desired output was observed by eye on the oscilloscope.

fitness =
1

5

∣∣∣∣∣∣
k1

∑
t∈S1

it

−
k2

∑
t∈S10

it

∣∣∣∣∣∣ (3.2)

where k1, k2 ≈ 3.3e-5.
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Later on, the artificial evolution of this tone discriminator experiment was analysed.

The same solution did not work in different temperatures and also in different chips.

It was discovered that the physical properties of the chip had been utilised [Thompson

and Layzell (1999)]. The concept of evolution-in-materio grew out from this observation

result of this tone discriminator experiment.

Tyrrell et al. evolved intrinsically an FPGA-based controller for a mobile robot [Tyrrell

et al. (2004)]. The controller was made up of look up tables which mapped sensor data

to an actuator to give commands to the robot’s motors. The evolution was performed

using a genetic algorithm. A continuous evolutionary process was used, which was not

stopped when any member was chosen for implementation. This continuous evolutionary

process was helpful for coping with environment changes and faults. The fitness value

might drop at the time of injecting a fault but later on recovered to an acceptable level.

They used a robot with 8 sensors and 2 wheels.

In the experiment, they used different types of mutations: fixed mutation, adaptive

mutation. In adaptive mutation, the mutation rate was decided using the fitness value.

Individuals having higher fitness values would have lower mutation rates, and individuals

having lower fitness values would have higher mutation rates. The evolutionary algo-

rithm used a population which used a collection of parents and clones. At first, parents

were cloned µ times, then those clones were mutated and evaluated. The parents and

mutated clones were sorted using fitness values in descending order. Then from that

collection, the best-fit individuals were selected for parents for next generation. The

fitness was calculated using the elapsed time and the distance of the robot had travelled

before it hit an obstacle. A time limit was imposed. An individual would be killed when

it reached the time limit or got stuck anywhere without improving distance. Two nearby

sensor values were used to decide how close the robot was to the obstacle, and then a

time was provided to the robot to escape from the dead zone where the last individual

was killed. Only one individual was allowed to run at a time

It was found from their experimental results that the adaptive mutation rate performed

better than the fixed mutation rate and the high mutation rate gave unstable results.

They performed two further different types of experiments. In one type, a fault (fault

in one of the sensors) was introduced before the evolution, and in the other, the fault

was introduced in the middle of the evolution. It was found from the results of their
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fault tolerance robot controlling experiment that the evolutionary algorithm is suitable

for evolving robot controllers when a sensor fault is injected before it is evolved. It was

also found that data of some sensors are not important at all, however the data of some

sensors are very important to control a robot. This work has inspired some of the robot

control experiments performed in this thesis in which a number of tasks were performed

by a simulated robot, where one of the tasks was to cope with an injected fault.

The drawback of FPGA-based evolution is that evolved circuits cannot be inspected.

However, sometimes it is necessary to access and inspect the circuit as much as possible.

If the evolved circuit only functions by exploiting the non-obvious parts of the FPGA,

when it is rebuilt, it might not work or might behave differently than was observed at the

time of evolution, which inspired Layzell to design an evolvable motherboard [Layzell

(1998, 2001)]. An evolvable motherboard is a circuit which can be used to investigate

intrinsic evolution. The evolvable motherboard makes a circuit able to be rewired under

computer control.

Figure 3.4: Layzell’s evolvable motherboard [Layzell (1998)].

In his evolvable motherboard, there are some vertical and horizontal wires. There is an

array of crosspoint switches in the motherboard. If one switch is closed, one vertical

wire is connected with a horizontal wire. The switches are controlled by a computer via

external components such as transistors and capacitors. Every external connection can

be connected with every external connection by arranging the switches as a triangular

fashion. His evolvable motherboard is shown in Figure 3.4.
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His first experiment was to evolve a NOT gate (inverter). One oscilloscope was connected

to observe the result. After 25,000 generations, the NOT gate was obtained. However,

when the oscilloscope was removed, the NOT gate stopped working. His next experiment

was to evolve an oscillator. It was noticed that the output frequency was changed when

transistors of the functioning solutions were substituted with nominally identical ones.

This means that the evolution depended on the specific electrical characteristics of the

components. It was also observed that some of the evolved solutions exploited the

features of the environment. Some of the oscillators did not work when a soldering

iron was disconnected from the mains, which was located several metres away from

the evolvable motherboard. Some other solutions of this oscillator experiment evolved

radio receivers which picked up oscillations at the correct frequency. Evolution used the

copper tracks and other components of the circuit to form aerials. This is how the signals

were connected with the output. The influences of these features of the environment on

the solutions of the experiments were unwanted and also possibly would not have been

considered and used by any human. However, these observations and outcomes of these

oscillator experiments proved that the physical properties of a system could be exploited

via evolution, which inspired the work of evolution-in-materio.

Harding designed a liquid crystal evolvable motherboard for evolving liquid crystal,

which is discussed in Section 3.3.1.

3.2 Physical Computation

Evolution-in-materio is a new concept or idea, but research related to it has been being

performed since 1940. Although it is not directly related to evolution-in-materio, there

are many similarities between this research and evolution-in-materio. This research is

described in this section before moving to the discussion regarding evolution-in-materio

research performed so far. It should be noted that the evolution-in-materio research

performed in this thesis is described in Chapters 5-8, and this chapter only contains the

evolution-in-materio research which was performed by other researchers.

In the late 1940s, Ashby demonstrated his homeostat machine which was a mixed (dig-

ital and analogue) signal machine [Ashby (1960)]. There were a number of intercon-

nected electromechanical units in that machine, which communicated with each other
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and showed collective adaptive behaviour.

In the late 1950, Pask constructed electrochemical devices, where he used various aque-

ous solutions of ferrous sulphate as the chemical material through which he passed

current [Cariani (1993)]. He wanted to make an analogue control system. His control

system could construct its own sensors.

Figure 3.5: Pask’s experiment [Cariani (1993)].

He used an array of platinum electrodes through which he passed current to ferrous sul-

phate medium. He found some dendritic metallic threads grew in the chemical medium.

The growth of threads was controlled by choosing electrodes and the current flowing

through them.

Later on, he made an ‘ear’, which worked as a tone discriminator, i.e. it could discrim-

inate two frequencies, one was the order of 50 cycles/second and another one was the

order of 100 cycles/second. The training procedure took half a day and then finally

the ear could recognise and discriminate sounds. Actually, it was a gap in the thread

structure, in which there were fibrils, which could resonate at the exciting frequency.

His experiment is shown in Figure 3.5.

Walter made three-wheeled tortoise robots [Walter (1953)]. Those robots could turn

their front wheels. A light sensor and some vacuum tubes (or two neurons) were used

in the controller. That means, a physical system interacted with the environment via

those robots.
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Beer tried to make an adaptive biological computer, which was based on ecosystem, i.e.

a tank holding fishes [Beer (1962)]. The fishes were fed iron particles and interacted

using electromagnetism and light.

Stewart pointed out some properties of evolution-in-materio, such as the system cannot

be inspected and opened, a ‘bulk’ production process might be needed [Stewart (1969)].

He performed a similar experiment to Pask’s experiment, which was named as linear

field trainable experiment. He proposed a machine similar to modern programmable

chips. His device was a high pressure (100-2000 psi) container containing nitric acid in

which gold or iron particles were placed. It was designed to work as a pattern recognition

system. However, the target of the experiment was to produce a number of different

behaviours such as threshold functions.

An analogue computer is a system which makes a model of the solution of a problem

by using continuously changeable aspects of physical phenomena, such as mechanical,

electrical quantities. Mills constructed a version of analogue computer named Kirchhoff-

Lukasiewicz machine, which uses physical material for computation. It is made of logical

function units that are connected to conductive sheets (usually polymer sheets) [Mills

(1995b,c,a); Mills et al. (2006, 1990)]. Different computational applications could be

addressed using this system, such as models of biological systems, robot controlling,

radiosity-based image rendering, and control of a cyclotron beam. This device is much

faster in solving partial differential equations than the conventional computer, but the

speed depends on the physical materials used and the interfacing to them. The archi-

tecture of this system consists of a conductive sheet, a number of arrays of fuzzy logic

function units, inputs, outputs, current sources and current sinks. These are connected

by a reconfigurable array of wires. Inputs are obtained from digital-to-analog converters

(DAC), potentiometers or sensors and outputs are measured directly, or via analog-to-

digital converters (ADC). Different versions of this system have been developed. Of

these, three different versions have been developed using unconventional non-silicon de-

signs. In networked version of this analogue computer, a socket was used, which permits

different components to be connected to the analogue computer. A VLSI chip and Jell-

O R© brand gelatin were used. Organic semiconductors, cultured neural tissue, and other

materials could be used instead. A prototype 3D analog computer was built with a

mixture of unflavored Jell-O R© brand gelatin and sodium chloride. The mixture had a 3

X 3 X 3 grid of electrodes on non-conductive plastic rods molded into it. A number of
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different experiments were performed using this system. The 3D analogue computer is

shown in Figure 3.6. The USB-networked analogue computer was designed in the year

2004, where the configurations of the system were evolved using genetic algorithms.

Though a number of efficient configurations were obtained just after a few trials, the

obtained results were limited to connections manually placed in advance.

Figure 3.6: The prototype 3D analogue computer [Mills et al. (2006)].

Reaction-diffusion computer is another example of an analogue computer [Adamatzky

(2009)] which uses physical material for computation. Adamatzky explored this sys-

tem. This reaction-diffusion system defines mathematical models using the changes of

spatially distributed concentrations of chemicals with the influences of reaction and dif-

fusion of the local chemical. This computer can solve many problems, such as large scale

Voronoi diagram construction, which is an NP-complete problem. This system can also

be controlled by electric fields.

Though all these experiments (stated above) of in-materio and physical computation did

not use any evolution in solving problems, still these experiments have similarities with

evolution-in-materio. Evolution-in-materio exploits physical systems to solve problems

and these experiments also solved problems by exploiting physical systems. In work on

physical computation in the past there was a system that was manipulated by a person.

It is reasonably straightforward to adapt such systems for evolutionary control. Thus

they could potentially be accessible to evolution-in-materio.
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3.3 Evolution-In-Materio

Natural evolution can be interpreted as an algorithm which exploits the physical prop-

erties of materials. Evolution-in-materio has the aim to mimic this by manipulating

physical systems via computer controlled evolution. That means, evolution-in-materio

is a method which uses artificial evolution to exploit properties of materials in order to

solve computational problems without having a detailed understanding of such prop-

erties. When properties of a material (such as liquid crystal, carbon nanotubes) are

unknown and very difficult to exploit by human to solve problems, evolution-in-materio

becomes a suitable way to exploit such properties.

Evolution-in-materio uses a hybrid system involving both a digital computer and a

physical material [Miller and Downing (2002); Miller et al. (2014)]. In the physical

domain, there is a material to which physical signals can be applied or measured. These

signals are input signals, output signals and configuration inputs. A computer controls

the application of physical inputs to the material, the reading of physical signals from

the material and the application to the material of other physical inputs known as

configuration inputs. The input data is transformed into physical inputs and applied to

the material. A genotype of numerical data is held on the computer and is transformed

into configuration inputs. The genotypes are subject to an evolutionary algorithm.

Physical signals (output signals) are read from the material and converted to output

data in the computer. A fitness value is calculated from the output data and supplied

as a fitness of a genotype to the evolutionary algorithm. The conceptual overview of

evolution-in-materio is shown in Figure 3.7.

The interesting feature of evolution-in-materio is that the used evolutionary algorithm

may increase evolvability by exploiting the unknown physical variables in a material.

Natural evolution operates in the physical world and exploits the physical properties of

materials (mainly proteins). Banzhaf et al. discussed the importance of physicality and

embodiment [Banzhaf et al. (2006)]. In spite of this, very few attempts have been taken

to date to include materials in the evolutionary process. The few previous attempts are

described in Sections 3.3.1 and 3.3.2.
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Figure 3.7: Concept of evolution-in-materio [Miller et al. (2014)].

3.3.1 Past Research in Evolution-In-Materio

In the year 2002, Miller and Downing suggested a configurable analogue processor as

an evolutionary exploitable device [Miller and Downing (2002)]. It is a physical device,

whose configuration data is supplied by a computer in many formats such as analogue

signals (voltages, magnetic fields, mechanical displacements). The incident signal is mod-

ified using configuration data. The incident signals and modified signals can be voltages,

radiations, vibration, sound, airflow. The modified signal is tested and depending on

the response, fitness is calculated and depending on the fitness score, configuration data

is decided. The diagram of a configurable analogue processor is shown in Figure 3.8.

They also suggested a device called field programmable matter array in which applied

voltages may cause physical changes to a material. These changes interact with other
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Figure 3.8: The configurable analogue processor [Miller and Downing (2002)].

voltage-induced configurations in a physical substrate in unexpected ways. The field

programmable matter array is shown in Figure 3.9. Thompson’s FPGA or field pro-

grammable matter array is a form of configurable analogue processor. There are many

difficulties regarding configurable analogue processor, such as sensitivity to the proper-

ties of the material (each configurable analogue processor will require separate training),

evolutionary algorithms may exploit any physical properties of the part of the training

setup.

Figure 3.9: The field programmable matter array [Miller and Downing (2002)].

Not all materials may be suitable for evolution-in-materio. Miller et al. suggested some

guidelines for choosing materials [Miller and Downing (2002); Miller et al. (2014)]. The

material needs to be reconfigurable, i.e. it can be evolved over many configurations to

obtain desired response. It is important for a physical material to be able to be ‘reset’

in some way before applying new input signals to it, otherwise it might preserve some
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memory from the past behaviour and might give fitness scores that are dependent on the

memory. It is preferable that the material should be physically configured using small

voltages and can be manipulable at a molecular level. They suggested liquid crystal,

especially LCD as a good candidate.

Mahdavi and Bentley investigated smart materials for their robotic hardware in a project

called MOBIUS [Mahdavi and Bentley (2003)]. Nitinol wire is an alloy which is made

up of nickel and titanium. The wires were used as the muscle hardware for a robotic

snake. An evolutionary algorithm was applied to evolve the activations for those wires

to control the snake-like movement of the robot. When one wire broke in the middle of

the experiment, it could adapt to the failure. Nitinol alloys are super elastic, which have

shape memory. It can have two forms at different temperatures. If temperature changes,

it causes phase transformation. Both the evolutionary algorithm and the properties of

Nitinol alloy are suitable for snake-like robots. This combination is also suitable for

making devices that need to change their morphology with environment changes.

Oltean suggested a switchable glass (smart windows) as a suitable material [Oltean

(2006)]. This switchable glass controls transmission of light through windows by apply-

ing different voltages. He suggested liquid crystal, electrochromic devices and suspended

particle devices. Rods suspended in a fluid can be an example of suspended particle de-

vices. In the case of electrochromic devices, the translucency of the glass might be

controlled by applying different voltages. In the case of suspended particle devices, the

rods align to an electric field and variations of voltages control the amount of light

transmitted.

Harding and Miller performed many experiments with LCD using evolution-in-materio

[Harding and Miller (2004b,a, 2005); Harding (2006); Harding and Miller (2007)]. They

used liquid crystal evolvable motherboard to exploit the properties of the liquid crystal.

The motherboard is shown in Figure 3.10

The liquid crystal evolvable motherboard is a circuit which uses four cross-switch matrix

devices to dynamically configure circuits connecting to the LCD. In this motherboard,

there is an LCD in the middle of the board. Eight external connections and four 8 X

16 analogue switch arrays are used in this motherboard, where the switches are used

to wire one of the 8 external connections to 64 connections (32 per side) on the LCD,

i.e. each external connection can be connected with any of the connections of the
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Figure 3.10: The liquid crystal evolvable motherboard [Harding and Miller (2004b)].

LCD. The connections are used to provide incident signals, configuration inputs, an

electric ground and signals output from the LCD. The external connectors connect the

motherboard to the computer. The incident signals and configuration inputs are passed

from the computer to LCD and the output signals obtained from LCD are passed to

the computer. The board is programmed from the computer by controlling each of the

programming lines on the switch arrays using digital values. It takes ≈ 1 second to

program all four switch arrays.

Their first experiment was to obtain the non-linear behaviour of liquid crystal. They

applied a sequence of input voltages and measured the output voltages. Sometimes they

found a non-linear step change in the observed response. Their second experiment was

to evolve a transistor. They tried to find a point at which the sudden output change

occurred (i.e. switching behaviour). They tried to obtain the output changes when the

input voltage was 2V. Evolution showed that although no step changes occurred exactly

at 2V, step changes were possible near to 2V.

Their third experiment was to evolve a tone discriminator using LCD, where they tried

to identify 100 Hz and 5 KHz square waves, having high output for one and low for

other. Each signal oscillated between 0V and 5V, equal timing for low and high states.
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The tones were used in 250 milliseconds bursts and there was no gap between two tones.

The target was output < 0.1V for low frequency (100 Hz) and output > 0.1V for high

frequency (5 KHz). The fitness was calculated using Equation 3.3.

fitness =

∑
L
i=1x(i)

L
(3.3)

Here,

x(i) =


1, S[i] ≤ t and O[i] = HIGH

1, S[i] ≥ t and O[i] = LOW

0, Otherwise

(3.4)

where S is the vector containing the samples obtained from the LCD and L is the

length of S. The ith element of S is S[i]. O is a vector containing the frequencies (to

be discriminated by the LCD) at a given time. The frequency can be either LOW or

HIGH. The ith element of O is O[i]. t is the threshold (< 0.1V).

The success rate for this evolutionary experiment was 10% of all evolutionary runs. The

output was not stable, but in most cases, output was high for high frequency and low

for low frequency. Many other pairs of frequencies were also tried between 100 Hz and

4500 Hz randomly for the tone discriminator experiments. Five evolutionary runs were

carried out for each pair of frequencies. The results of liquid crystal tone discriminator

experiments are shown in Figure 3.11.

Their next and fourth experiment was to control a robot using liquid crystal. They

used 2 input connections for 2 sonars, 2 outputs for 2 motors, 1 ground connection and

3 for configuration inputs which were evolved using a genetic algorithm. They used a

simulated robot for this experiment. The readings of sonars were converted to signals

and sent to the liquid crystal evolvable motherboard. Control signals were passed to

motors using this motherboard. The liquid crystal processed signals and controlled the

robot. Each distance sensor value was mapped with square wave frequency proportional

to the distance between the sensor and the obstacle with a range between 1 Hz (for the

near object) to 5000 Hz (for the far object). No artificial noise was used, but the process

of making square waves via computer added some noises and timing problems. Fifty

milliseconds delay might be expected between a distance measure and the frequency
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Figure 3.11: The results of liquid crystal tone discriminator experiments [Harding
(2006)].

change. Two sonars were connected, 30 degrees separated from each other. Two motors

were connected in two sides of the robot. The motors were driven by the output voltage

values obtained from the liquid crystal. A motor was switched on when the corresponding

output voltage value was high (above 3.0V) and the motor was in low speed when the

corresponding output was low. When two outputs were high, the robot moved forward

and when both were off, the robot was stationary. If only one motor was enabled, the

robot turned. The liquid crystal robot controller is shown in Figure 3.12. They built a

fitness map to obtain fitness scores for their robot controlling experiment, where each

area of the map was assigned an absolute measure of the difficulty in reaching that area.

The value of each area of the fitness map was calculated by modelling chemical diffusion

within the environment.

Two maps were used in this experiment. For the first map, a good solution was obtained

in generation 62 on average and the lowest number of generations required to obtain a

good solution was 22. The success rate was 36%. The evolved robot was then tested in

the second map and 35% of evolved solutions could explore the second map. Two maps

of the robot controlling experiment are shown in Figure 3.13.

They also evolved liquid crystal to obtain digital circuits. They tried to obtain NOT,
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Figure 3.12: Liquid crystal robot controller [Harding and Miller (2005)]

Figure 3.13: Maps used in robot controlling experiment by evolution-in-materio using
an LCD [Harding and Miller (2005)]

AND NAND, OR, NOR and XOR gates. They used two input voltages: +1V for Boolean

1 and 0V for Boolean 0. They used 0.1V as output threshold, i.e. if the output was

greater than +0.1V, they defined it as Boolean 1, otherwise Boolean 0. As they used two

voltages, each gate had four combinations of inputs in the truth table. They evaluated

fitness by using each row of the table three times. So, in total 12 fitness evaluations

were performed for each gate. Any fitness >=10 was considered as a good result, which

showed that each row of the table was true at least once. A perfect one had score 12.

XOR was the hardest of all. For all gates, solutions were found within 40 generations

on average.

Harding performed some stability tests on LCD to find out how stable and reliable

the solutions were [Harding (2006)]. He used the same configurations as the robot

controlling experiment, where the absolute fitness values were used for the measurement

of the tests. In the first experiment, he evaluated the same individual 10 times and

observed the fitness scores when they acquired high values. In the second experiment,

he loaded other intermediate individuals (modified the configurations of liquid crystal)
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in between two evaluations of the same individual. In both of these cases, the fitness

values were found to be degraded, which showed the poor performance of stability tests

of liquid crystal.

Other than the logic gate experiments of Harding and Miller, Toth et al. also used evo-

lutionary algorithms to implement collision-based two-input logic gates, such as AND,

NAND by controlling chemical wave fragments in light sensitive Belousov-Zhabotinsky

(BZ) reaction [Toth et al. (2008, 2011)]. Bull et al. also controlled chemical-wave frag-

ments in light-sensitive BZ reactions using an accuracy-based learning classifier system

[Bull et al. (2008)]. They also showed that a learning classifier system is able to con-

trol the electrical stimulation of cultured neuronal networks so that they can display

elementary learning. They used multi-electrode arrays with pyramidal electrodes (40 X

40 X 70 µm, spaced on 200 µm) to record electrical activity of the hen embryo brain

spheroids. The image of the electrode array of this experiment is shown in Figure 3.14.

The recording from the spheroids was performed with a 60-channel data acquisition

system and the output sampling frequency of each channel was 25 KHz. The results of

this experiment showed that the learned stimulation protocols could identify seemingly

fundamental properties of in vitro neuronal networks.

Figure 3.14: Composite picture of phase contrast microscopy images taken at various
optical magnifications and focal planes of aggregate cell cultures on multi-electrode
array dish [Bull et al. (2008)].

Roselló-Merino et al. also implemented two-input logic gates (AND, OR, NAND, NOR,

XOR) using various radio-frequency pulse parameters such as pulse amplitude, fre-

quency, duration, phase [Roselló-Merino et al. (2010)]. In one methodology, pulsed
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gradient spin echo sequences were used. In this case, the first input was decided us-

ing the characteristic as to whether the starting pulse was supplied with the resonance

(characteristic frequency) or not. If resonance was on, it was considered as 0, otherwise

1. The second input was the delay of reading the radio frequency response, which was

recognised as data acquisition delay. If data acquisition started immediately when the

first input was 0, second input was considered as 0. If some time was taken for data

acquisition when the first input was 0, second input was 1. If the first input was 1 and

data acquisition was 0, second input was 0, otherwise second input was 1. In another

method, the integral of spectral intensity was used to determine output. If the total

integral was 0, output was considered as 0, otherwise 1.

Bechmann et al. used real-valued numbers (values between 0 and 1) for inputs and

outputs for implementing ‘continuous logic operation’ using continuous spin dynamics

[Bechmann et al. (2010)]. They defined some simple continuous gates such as sin/ sin,

sin/ sinc. Cartesian genetic programming was used to evolve circuits that were made of

these simple continuous gates.

Other than the logic operations, Theis et al. performed experiments on how a genetic

algorithm could improve the functionality of an amphiphilic chemical system [Theis

et al. (2006)]. After preparing a number of amphiphilic chemicals, those were mixed

with sucrose solution. For each genotype, three identical mixtures were prepared. The

turbidity was measured for each mixture. Amphiphiles form vesicles in an appropriate

solvent. The fitness score of each genotype was calculated from the difference between the

mean turbidity and the standard deviation over the three mixtures. In the experiment,

the population size was 30 and the number of generations was 5. After the experiment,

it was found that it generated 180 recipes. In this experiment, it was possible to learn

about the interactions of the chemicals by analysing which recipes obtained the highest

fitness scores.

The past work of evolution-in-materio has established the theoretical framework and

methodological focus of the experiments of this thesis. Most of the problems attempted

in this thesis were not attempted by any researcher using evolution-in-materio method.

Different physical materials have been attempted so far, but this is the first time that

mixtures of single-walled carbon nanotubes and polymers have been used in this thesis

to solve problems. The previous work of evolution-in-materio of other researchers helps
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to identify the problems and physical materials, which were not attempted before. The

tone discriminator problem which was solved by Harding and Miller in their evolution-

in-materio experiment using LCD has been solved in this thesis using mixtures of single-

walled carbon nanotubes and polymers. The results of tone discriminator experiments

of this thesis were then compared with their results. The comparison is shown in Section

5.3. Some work has been performed using mixtures of single-walled carbon nanotubes

and polymers by other researchers of this NASCENCE project. This is described in

following section to give a clear overview of the work of this project.

3.3.2 Evolution-In-Materio Research in NASCENCE

Much research has been undertaken in the NASCENCE project regarding the develop-

ment of evolvable hardware, the investigation on the behaviour of physical materials,

the solutions of different types of computational problems using evolution-in-materio.

Lykkebø et al. developed the hardware platform named Mecobo and the driver software

(the description of Mecobo hardware and driver software are given in Chapter 4), which

have been used in this research [Lykkebøet al. (2014)]. They solved logic gates (AND,

OR, NAND, NOR, XOR) using Mecobo (version 3.0) and a mixture of single-walled

carbon nanotubes and PMMA, where they used 2 electrodes as inputs, 1 electrode as

output and 9 electrodes for configuration inputs. They used two approaches to solving

logic gates. In both of the approaches, they used static digital voltages for inputs,

where the amplitude of the input signal was used for input mapping (input voltage 3.5V

was Boolean 1 and input voltage 0V was Boolean 0). They determined the Boolean

output value with a threshold by observing the digital values of the buffer of the output

electrode. In the case of first approach, they found, by exhaustive search, all types of logic

gates (AND, OR, NAND, NOR, XOR) and used digital static signals for configuration

inputs. In the case of second approach, they evolved an XOR gate using digital square

wave signals for configuration inputs having a frequency in a range [40 Hz, 25 MHz]. In

this case, they used a genetic algorithm with 25 individuals, two crossover points and

tournament selection having 5 individuals as elite, where almost perfect XOR gate was

found after 150 generations.

Massey et al. and Volpati et al. investigated the behaviours of physical materials,

where they used single-walled carbon nanotubes and liquid crystal as physical materials
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[Massey et al. (2015b,a); Volpati et al. (2015)]. Kotsialos et al. solved simple threshold

logic gates and more complicated circuits using single-walled carbon nanotubes and

PMMA with static analogue voltages [Kotsialos et al. (2014)]. The training of solving

those logic gates and circuits was formulated as an optimisation problem with binary

and continuous constraints and was solved by two derivative-free algorithms such as the

Nelder-Mead and the differential evolution (DE) algorithms. They evolved AND, OR

and XOR gates using a mixture of 0.23% single-walled carbon nanotubes with PMMA,

where they used four configuration inputs. They used single threshold for determining

outputs of AND and OR gates (the threshold of OR gate was smaller than the threshold

of AND gate) and two thresholds for the output of XOR gate. Other than the AND, OR

and XOR gates, they evolved half adder, full adder, (AB, A+B) and (AB+BC) circuits

using two mixtures of physical materials and these were 0.23% single-walled carbon

nanotubes with PMMA and 0.53% single-walled carbon nanotubes with PMMA. In the

case of (AB, A+B) circuit, they used three configuration inputs, two inputs (A and B)

and two outputs containing results of AB and (A+B). In this circuit, they used a single

threshold for both outputs (i.e the same threshold for both outputs). In the case of half

adder, they used two inputs, two outputs and three configuration inputs. The half adder,

which was made of AND gate and XOR gate, used one output threshold for AND gate

and two output thresholds for XOR gate. In the case of (AB+BC) circuit, they used

three configuration inputs, three inputs (A, B and C) and one single output deriving

from equation (AB+BC). In this circuit, they used only one threshold for output. In

the case of full adder, they used two configuration inputs, three inputs and two outputs.

One output (the carry output) was determined by only one threshold, where the other

one (the output containing the sum) was determined by three thresholds. The hardware

platform that they used in all of their experiments was an mbed microcontroller (NXP

LPC1768 system) together with some additional electronics (ADC, DAC, operational

amplifier).

Other than the logic gates and circuits, Clegg et al. solved travelling salesman problems

with 9, 10 and 11 cities using static analogue voltages by evolution-in-materio [Clegg et

al. (2014b)]. They used 0.1% single-walled carbon nanotubes with PMMA for solving

these problems. They performed many experiments with different numbers of configu-

ration inputs to obtain the best result. They used (1+4)-evolutionary algorithm. The
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evolutionary run was carried out up to 1500 generations. They found that 3 configura-

tion inputs for 9 city and 4 configuration inputs for 10 city travelling salesman problem

obtained the lowest value for the average number of generations for successful runs,

where 11 city travelling salesman problem could not be tried with more than 4 configu-

ration inputs due to the limitations of the equipment. They used a data acquisition card

as the hardware platform for the evolution-in-materio. A 4x4 electrode array (contain-

ing the physical material) was connected with a 16x16 analogue crosspoint switch that

controlled connections from the physical material to data acquisition card. This allowed

the configuration inputs to be placed anywhere in the array. They also tried to solve

machine learning classification problems using the same hardware platform [Clegg et al.

(2014a)]. They used two datasets for the classification problem and these were Banknote

and Iris [Lichman (2013)]. They used two different physical materials for their classifica-

tion experiments and these were 0.1% single-walled carbon nanotubes with PBMA and

0.53% single-walled carbon nanotubes with PMMA. They performed many experiments

with the datasets. In all experiments, they used (1+4)-evolutionary algorithm. The

evolutionary run was carried out for up to 150-300 generations. In the case of Banknote

dataset, they used 4 electrodes as inputs, 2 as outputs and 4 as configuration inputs. In

the case of Iris dataset, they used 3 outputs, 4 inputs and 4 configuration inputs with a

range ±2V. In the case of Banknote dataset, they used Matthews correlation coefficient

(MCC) [Baldi et al. (2000)] for fitness calculation, but they did not use three way confu-

sion matrix or MCC for fitness calculation in the case of Iris dataset as Iris dataset was

evenly distributed over three output classes. It has been found from the results of the

experiments using 0.53% single-walled carbon nanotubes with PMMA that the average

training accuracy was ≈ 69% (averaged over 10 runs) in the case of Iris dataset and ≈

73% (averaged over 6 runs) in the case of Banknote dataset. In the case of classifica-

tion experiments using Banknote dataset and 0.1% single-walled carbon nanotubes with

PBMA, the average training accuracy was ≈ 95% (averaged over 5 runs).

3.4 Summary

In past work in evolvable hardware and evolution-in-materio, the most common search

algorithm used has been a form of evolutionary algorithm. Also, researchers have tended

to use a variety of evolutionary algorithms. Consequently, so that the work of the thesis
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can be compared with past work, evolutionary algorithms have also been employed. In

this thesis, a simple form of evolutionary algorithm (1+4-evolutionary algorithm) has

been used. This was chosen partly because due to the slowness of fitness calculation, it

is necessary to use an evolutionary algorithm that is recommended when the number of

fitness evaluations is very restricted [Bäck et al. (1997)].

Past work in evolution-in-materio has investigated solving a limited set of computational

problems such as robot control, tone discrimination, oscillators and logic gates. However,

in engineering and computer science, there are many computational problems that are

very well studied and whose complexity classes are well understood. In order to assess

properly the potential of evolution-in-materio, one needs to examine how to solve such

problems. Consequently, the thesis has in addition to tone discrimination and robot

control investigated solving some of these well understood problems such as function

optimisation, machine learning classification, bin packing, and even parity.

The experiments along with the experimental system of this thesis are described in next

chapters.
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The Experimental System
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The experimental system used in this research has been developed within the NASCENCE

project [Broersma et al. (2012)]. The evolutionary algorithm and the interface software

run on a host computer which communicates with the interface hardware over a USB

connection. The genotype data from an evolutionary algorithm is mapped to commands

that are sent to the interface. The hardware translates the received commands to elec-

trical stimuli to send to the material. The response from the material is sampled and

returned to the evolutionary algorithm by the interface software.

The full experimental system is shown as a stack in Figure 4.1, where the material is

at the lowest level and the computational problem targeted by the evolutionary search

algorithm is at the topmost level. The computational problem can be seen only as

a specification of input data and the targeted output response at the topmost level.

The next level down, the evolutionary algorithm maps the problem description to a

goal function (fitness) and defines the representation of candidate solutions, i.e. genetic

information. The choice of evolutionary algorithm is flexible. To solve a computational

problem, one can use a number of evolutionary algorithm types (e.g. genetic algorithm,

evolutionary strategy). The interface software, interface hardware and the experimental
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material are three basic components in the experiments in this thesis. The research

in this thesis is concerned with devising experiments using evolutionary algorithms to

solve a number of computational problems. This involves devising input and output

mappings, methodologies of solving problems using the three basic components, some

investigations and analysis of results. These are discussed in detail in following chapters.

Figure 4.1: A view of full experimental system as a stack.

4.1 Mecobo: an Evolution-In-Materio Hardware Platform

The interface hardware, Mecobo [Lykkebøet al. (2014)], has been designed and built

by Odd Rune Lykkebø and Gunnar Tufte in the Norwegian University of Science and

Technology. Mecobo is designed to interface to a large variety of materials. The hard-

ware allows the possibility to map input, output and configuration terminals, signal

properties and output monitoring capabilities in arbitrary ways. The platform’s soft-

ware components, i.e. evolutionary algorithm and software stack, are as important as

the hardware. Mecobo includes a flexible software platform including hardware drivers.

Support of multiple programming languages and a possibility to connect to the hard-

ware over the internet make Mecobo a highly flexible platform for evolution-in-materio

experimentation.
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It is important to appreciate that in evolution-in-materio, the computational substrate

is a piece of material for which the appropriate physical variables to be manipulated

by evolution may be poorly understood (Figure 3.7). This means that the selection

of signal types, i.e. inputs, outputs and configuration inputs, assignment to I/O ports

could not easily be defined in advance. Thus, interactions with the materials should be

as unconstrained as possible. This means that any I/O port should be allowed by the

hardware to accept any signal type. In addition, the signal properties, such as voltage

or current levels, AC, DC, pulse or frequency, should be allowed to be chosen during

evolution. The Mecobo platform enables the selection of the I/O port (via which signals

are applied to or read from the material), signal types, the characteristics of signals

possible during evolution by interface software.

Two versions of Mecobo hardware have been used in the experiments of this thesis:

Mecobo 3.0 and Mecobo 3.5.

Mecobo 3.0 hardware allows only two types of inputs to the material, which are digital.

The input is either a static voltage (0V or 3.5V) or a square wave signal. In the case

of Mecobo 3.5, a static analogue voltage is possible other than the digital square wave

signal as an input. It has analogue input in a range [-5V, 5V]. The amplitude of the

input signal determines the voltage level. The interface software of Mecobo 3.5 supports

amplitude values of input signals in a range [0, 255], where voltage level -5V corresponds

to value 0 and voltage level 5V corresponds to value 255.

Different characteristics or input parameters associated with the inputs of Mecobo 3.0

and Mecobo 3.5 can be chosen. These input parameters are described in Table 4.1.

The start time and end time of each input signal determine how long an input is applied.

Mecobo 3.0 only samples using digital voltage thresholds, hence the material output is

interpreted as high or low (i.e. 1 or 0 respectively). Mecobo 3.5 supports analogue

output in a range [-5V, 5V]. Mecobo 3.5 interprets linearly the output value read from

the material in a range [-4096, 4096], where output voltage -5V corresponds to -4096

and value 5V corresponds to 4096.

The output is recorded in a buffer. Three output parameters, i.e. a user-defined output

sampling frequency, the start time and end time of reading output electrode determine

the buffer size of output samples. If the output sampling frequency is Fout, start time is
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Table 4.1: Adjustable Mecobo input parameters.

Parameter Description Note
name
Amplitude 0V or 3.5V corresponding to Wave signal amplitude

0 or 1 (Mecobo 3.0), must be 1
Range [-5V, 5V] corresponding
to [0, 255] (Mecobo 3.5)

Frequency Frequency of square wave Irrelevant if static
signal voltage input

Mark-space Percentage of the period for Irrelevant if static
ratio which square wave signal is 1 voltage input

(examples are shown in
Figure 4.2)

Phase Phase of square wave signal Irrelevant if static
voltage input

Start time Start time of applying input Measured in milliseconds
signal to an electrode

End time End time of applying input Measured in milliseconds
signal to an electrode

Figure 4.2: Examples of mark-space ratio (a) mark-space ratio is 50%, (b) mark-space
ratio is 70%, (c) mark-space ratio is 25%.

Timestart (start time of reading electrode) and end time is Timeend (end time of reading

electrode), then the buffer size, Bufsize is given by:

Bufsize = Fout(Timeend − Timestart)/1000 (4.1)

Here Timestart and Timeend are measured in milliseconds.
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However, in practice due to pin latency, the real buffer size is generally smaller. Pin

latency means the wasted time while commands are being sent to a pin. The output

parameters are described in Table 4.2.

Table 4.2: Adjustable Mecobo output parameters.

Parameter Description Note
name
Output sampling frequency The frequency of reading

output in a buffer
Start time Start time of reading output Measured in milliseconds

from an electrode
End time End time of reading output Measured in milliseconds

from an electrode

It should be noted that in all experiments of this thesis, inputs are applied for a number

of milliseconds and the outputs are accumulated in a buffer for the same number of

milliseconds. This has been referred to as input-output timing.

Figure 4.3 shows an overview of the interface hardware. In this figure, an example set up

is shown in the dotted box. The example genotype defines pin 2 as the output terminal,

pin 1 as the data input and pins 3 - 12 as configuration inputs. The architecture is

controlled by a scheduler controlling the following modules. Digital I/O can sample

responses and output digital signals. The DAC module can produce analogue output

signals. The DAC can be configured to output any arbitrary time-dependent waveform

or static voltages. The ADC module performs the sampling of analogue waveforms

from the material. The pulse width modulation (PWM) module produces digital square

wave signals. The system’s scheduler can set up the system to sample and apply signals

statically or produce time scheduled configurations of response or stimuli. The scheduler

accepts a sequence of commands from the user software. Each of these sequence items

consists of parameters which describe the state of the pin at a specific point in time. In

Figure 4.3, pin 2 is set as a ‘recording’ pin from time 0, pin 1 is set to output a PWM

version having mark-space ratio value 33, pins 3, 4 and 11 are set to output the analogue

voltages.

The recorder stores samples, time-dependent bit strings, digital discrete values, sam-

pled analogue discrete values or time-dependent analogue waveforms. The recorder can

include any combination of these signals. The choices of configuration terminals and

data I/O can be put under evolutionary control. Pin routing is placed between the
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sampling buffer and the signal generator modules, which make it possible to configure

any terminal of a material to be input, output or configuration input.

PWM ADC DAC

Scheduler

Time Pin Function
0        2    RECORD
3        1    PWM: 33
4        3    DAC: 837 
19      4    DAC: 255
...
...
2        11   DAC: 42

address

data
Recorder

Digital I/O

Pin routing

Material

Figure 4.3: Overview of the complete system of interface hardware [Lykkebøet al.
(2014)].

The material signal interface shown in Figure 4.3 is very flexible. It not only allows the

possibility to evolve the I/O terminal placement but also a large variety of configuration

inputs are available to support materials with different sensitivity, from static signals to

time-dependent digital functions. The response from materials can be sampled as digital

pulse trains, static digital signals, or analogue signals. The scheduler can schedule time

slots for different stimuli when the physical material needs time to settle before a reliable

computation can be observed.

The interface hardware is constructed around three main components1:

• The microcontroller: A microcontroller is responsible for the communication over

USB and runs the system software of the interface. It receives commands and data

to set up experiments and returns data to a host computer. The microcontroller

issues commands and receives data from the FPGA. The scheduling unit is im-

plemented in the microcontroller. The software interface sends commands to the

scheduling unit.

• The FPGA: An FPGA stands as the physical and logical bridge communicating

with materials. The FPGA holds the logic that interprets the commands and

1The contents of the description of different components of interface hardware are provided from
NASCENCE project reports.
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set-up data from the evolutionary algorithm to stimulus used to configure the

materials. It samples the responses from the materials.

• Connectors to materials and daughter boards: The interface hardware is connected

directly to material samples or interfaced to daughter boards via the connectors.

It should be noted that all analogue components are placed on a daughter board,

such as analogue-digital converters and crossbar switches. This split enables the

redesign of the analogue part of the system and makes it possible to modify the

analogue specification without changing the digital part of the motherboard.

Figure 4.4(a) shows an illustration of the block diagram of the interface hardware. Fig-

ure 4.4(b) shows the motherboard with the Xilinx LX45 FPGA, Silicon Labs ARM-based

EFM32GG990 microcontroller connected to a 12 terminal material sample. The moth-

erboard is able to control 80 digital I/O signals. These signals can be sent to or received

from the material or can be used to control resources of the daughterboard.

FPGA

uC

Digital I/O pin headers

USB 

SRAM

Motherboard

Daughterboard

AD AD AD AD DAC DAC DAC

Material

Xbar Xbar

(a) Mecobo block diagram. (b) Picture of Mecobo.

Figure 4.4: Hardware interface implementation overview [Lykkebøet al. (2014)].

To provide several platforms with equal operating conditions, a physical implementation

including a standard box, power supply and connectors are used with Mecobo. The

physical box with a connected host computer is shown in Figure 4.5.

A detailed description of different components of Mecobo hardware, i.e. the mother-

board, the FPGA, the mixed signal daughterboard and the cross switch PCB is given

in Appendix A.
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Figure 4.5: The interface stand-alone box shown with host computer

4.2 The interface Software

The interface software [Lykkebøet al. (2014)] has been developed by Simon Harding of

the University of York (UK). He developed a system inspired by the track-based model

of music or video editing applications. An example of this is shown in Figure 4.6. Each

track corresponds to an output pin of the FPGA, and on each output pin an action (or

a set of actions) is scheduled. Once the output pins are configured onto the FPGA, the

sequence is ‘played’ back. A ‘recording’ is the data read from an input pin of the FPGA,

which can be scheduled as well. The data can be read from more than one input pin

of the FPGA. It should be noted that the output from the FPGA is the input to the

material and the input to the FPGA is the output from the material.

An application programming interface (API) allows the users to communicate with the

hardware. The API makes the functionality of the evolvable motherboard consistent

and easier to use. Additional APIs help to collect and process the data.

The client application is the software which performs the evolution using evolutionary

algorithms. Control software connects the client application with the evolvable mother-

board. The control software is the software that is used to communicate at a low level to

the evolvable motherboard. It translates the track-based model into the FPGA’s inter-

nal model. The communication between the client application and the control software
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Figure 4.6: An example of the track-based model [Lykkebøet al. (2014)]. Here each
row defines either an input or an output of the FPGA. The horizontal axis is time.

is through shared memory if both are in the same PC and through TCP if these are in

different PCs. This means, there is no necessity to operate all the components on the

same computer. The platform can be operated over the internet.

A detailed description of the interface software is given in Appendix B.

4.3 The Physical Computational Material

The experimental material consists of single-walled carbon nanotubes mixed with a

polymer (PMMA or PBMA) and dissolved in anisole (methoxybenzene) [Massey et al.

(2015b,a); Volpati et al. (2015); Kotsialos et al. (2014)]. The sample is baked causing the

anisole to evaporate. This results in a material which is a mixture of single-walled carbon

nanotubes and a polymer. Single-walled carbon nanotubes and PMMA/PBMA mixtures

form electrically complex films having non-linear current versus voltage characteristics

due to the conduction of single-walled carbon nanotubes and the dielectric properties of

the PMMA/PBMA. Mark K. Massey and Michael C. Petty of Durham University (UK)

prepared the materials used as substrates and the electrode masks for the experiments.

Single-walled carbon nanotubes are nanometer-diameter cylinders consisting of a single

graphene sheet wrapped up to form a tube [McEuen et al. (2002)]. Theory and ex-

periments showed that these tubes can be either metals or semiconductors. Metallic

tubes have conductivities and current densities that meet the characteristics of the best

metals, and semiconducting tubes have mobilities and transconductances that meet the

characteristics of the best semiconductors. Individual single-walled carbon nanotube has
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remarkable room-temperature properties and mobilities more than ten times larger than

silicon [Kang et al. (2007)]. It has current-carrying capacities as high as 109 A cm−2

and ideal sub-threshold characteristics in single-tube transistors. These behaviours of

individual single-walled carbon nanotube could be significant for many applications in

electronics, opto-electronics, sensing and many other areas. Kang et al. showed the

dense, perfectly aligned arrays of long, perfectly linear single-walled carbon nanotube to

be an effective thin-film semiconductor, which is suitable for integration into transistors,

logic gates and other classes of electronic devices. These behaviours of single-walled car-

bon nanotubes have motivated the application of evolution-in-materio to solve a number

of computational problems using single-walled carbon nanotubes in this research. Single-

walled carbon nanotube network’s electrical conductivity is the physical property, which

is exploited and controlled here to bring the material to a state that performs some com-

putational tasks effectively [Massey et al. (2015b,a); Volpati et al. (2015); Kotsialos et

al. (2014)]. Different concentrations of single-walled carbon nanotube mixture (different

weight ratios of single-walled carbon nanotubes in polymer) were used in the experi-

ments. In all concentrations, the current increases monotonically with voltage. The

material contains a mixture of metallic and semiconducting varieties. So, at higher con-

centrations, there are likely to be more metallic percolating pathways, thus yielding the

significantly higher current. That means, the conductance varies with the concentrations

of single-walled carbon nanotubes in the polymer. Polymers help with the dispersion of

the nanotubes in solution and thus help to prepare different mixtures having different

concentrations of single-walled carbon nanotubes. Polymers act as an insulating layer

meaning that the material is a random mixture of conducting and insulating regions.

The electrode arrays were fabricated in gold, on slide glass substrates. These were

prepared using conventional etch-back lithographic techniques. The arrays were designed

with small electrode separations (22 µm) so that high strength electric fields (5 X 10−5

V/m) could be applied even with the modest voltages (10.8 V). A detailed view of

the area in contact with the material is shown in Figure 4.7(a). A scanning electron

microscope image of the electrodes is shown in Figure 4.7(b). An optical micrograph

of the single-walled carbon nanotubes material deposited on the electrodes is shown in

Figure 4.7(c).

Two different arrangements of electrode array in slides have been used in the experiments

of this thesis. In one arrangement, a single electrode array is placed on the slide. This
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Figure 4.7: (a) A detailed view of the area in contact with the material [Kotsialos
et al. (2014)]. (b) A scanning electron microscope image of the electrodes [Kotsialos et
al. (2014)]. (c) An optical micrograph of the single-walled carbon nanotubes material
deposited on the electrodes [Kotsialos et al. (2014)]. (d) An electrode array connected
with wires [Lykkebøet al. (2014)].

Figure 4.8: Slide with one electrode array and one sample. The electrode array has
12 electrodes.

is prepared by placing one drop of the experimental material in the middle of the slide.

Twelve gold electrodes arranged on one side are connected directly with the drop. This

electrode arrangement is shown in Figure 4.8. In another arrangement, two electrode

arrays are placed in each slide. One drop of experimental material is placed in the

middle of each electrode array. Sixteen gold electrodes (eight electrodes on each side) are

connected directly with each sample on the electrode array. This electrode arrangement

is shown in Figure 4.9. The electrode array is wired directly with the Mecobo board via

a suitable connector. An electrode array connected with wires is shown in Figure 4.7

(d).
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Figure 4.9: Slide with two electrode arrays and two samples. Each electrode array
has 16 electrodes.

The materials that have been used in the experiments of this thesis are listed in Table

4.3.

Table 4.3: Description of materials used in experiments.

Material Arrangement of electrodes Mixture of material (weight% fraction of single-
sample walled carbon nanotubes in PMMA or PBMA)
number

Sample 1 8 electrodes in each side, 1.0% single-walled carbon nanotubes in PBMA
in total 16 electrodes

Sample 2 12 electrodes in 1 side 1.0% single-walled carbon nanotubes in PBMA
Sample 3 12 electrodes in 1 side 1.0% single-walled carbon nanotubes in PMMA
Sample 4 12 electrodes in 1 side 0.71% single-walled carbon nanotubes in PMMA
Sample 5 12 electrodes in 1 side 0.50% single-walled carbon nanotubes in PMMA
Sample 6 12 electrodes in 1 side 0.10% single-walled carbon nanotubes in PMMA
Sample 7 12 electrodes in 1 side 0.05% single-walled carbon nanotubes in PMMA
Sample 8 12 electrodes in 1 side 0.02% single-walled carbon nanotubes in PMMA
Sample 9 12 electrodes in 1 side 0.01% single-walled carbon nanotubes in PMMA
Sample 10 12 electrodes in 1 side Only PMMA

The preparation of different samples (Table 4.3) of material is given as follows:

• Making of sample 1:

– ≈20 µL of material are dispensed onto the electrode array;

– This is dried at ≈ 85o C for ≈30 min to leave a ‘thick film’;

– To prevent stress built up in the material, this is allowed to cool to room

temperature on the hotplate for ≈1.5 h.

• Making of samples 2, 3, 5, 8, 9 and 10:

– 20 µL of material are dispensed onto the electrode array;

– This is dried at 85o C for 30 min to leave a ‘thick film’;

– The hotplate is turned off and the substrates are allowed to cool slowly over

a period of ≈2 h to room temperature.

• Making of sample 4:
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– An M3-sized nylon washer is glued on the electrode array to contain the

material whilst drying;

– 20 µL of material are dispensed into the washer;

– This is dried at ≈ 100o C for ≈1 h to leave a ‘thick film’.

• Making of samples 6 and 7:

– 20 µL of material are dispensed onto the electrode array;

– This is dried at ≈ 100o C for ≈30 min to leave a ‘thick film’.

4.4 Summary

The interface hardware, interface software and the experimental material have been de-

scribed in this chapter in detail. These three are basic and necessary components of

the experimental system and are essential for carrying out the experiments. The experi-

ments along with the evolutionary algorithms, which have solved different computational

problems, are described in following chapters.
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This chapter and Chapters 6 and 7 describe the experiments of this research in detail.

The experiments can be divided into two categories:

• Computational problems requiring few outputs;

• Computational problems with many outputs;

This chapter and Chapter 7 describe the experiments requiring few outputs, where the

number of inputs, outputs and configuration inputs of a problem is not more than the

total number of electrodes of an electrode array. However, this chapter mainly focuses

on classification-based problems and Chapter 7 deals with robot behaviour.

Machine learning classification, tone discriminator, frequency classifier and Boolean even

parity are problems that can be solved with a limited number of electrodes. Many

machine learning classification datasets have too many attributes and classes to be solved

using a single electrode array with 12 or 16 electrodes (it was mentioned in Chapter 4

that the electrode arrays used have either 12 or 16 electrodes). Two datasets have been

chosen here for the classification experiments, which have few attributes and classes.

Also, 3 and 4-even parity problems are investigated here. It is feasible to attempt to

evolve solutions to these problems because they have few inputs. Even parity problems

with more inputs have more test cases, thus require longer time to run. Also, even parity

problems with more inputs need electrode arrays with more electrodes.
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The tone discriminator problem consists of trying to decide which of two different fre-

quency square waves has the higher frequency. It was first described in the work of

Thompson [Thompson (1998)] and was later studied by Harding and Miller [Harding

and Miller (2004a); Harding (2006)]. In this chapter, a related problem is also de-

scribed, that of classifying whether a square wave has a frequency above or below a

particular threshold. This is referred to as the frequency classification problem.

5.1 Statistical Significance Tests

Statistical significance tests were performed for comparing the experimental results in

this thesis using the non-parametric two-sided Mann-Whitney U-test and the two-sample

Kolmogorov-Smirnov (KS) test [Hollander and Wolfe (1973)]. The effect size [Vargha

and Delaney (2000)] statistic has also been computed. In this thesis, a U-or KS test p-

value < 0.05 indicates that the difference between two datasets is statistically significant.

If p ≥ 0.05, the differences are statistically not significant. The effect size, A value shows

the importance of this difference considering the spread of the data; with values A < 0.56

showing small importance, 0.56 <= A < 0.64 medium importance and A >= 0.64 large

importance. It is a simple way of quantifying the difference between two groups. If a

comparison between results is shown to be statistically significant with a medium or

large effect size, then it can be said reasonably that any difference is not due to under

sampling.

5.2 Classifying Data

Classification is an important class of problems in machine learning. The objective is to

correctly classify data instances.

An important issue about machine learning classification is how the data is used. The

dataset can be divided into a training set and a test set. The training set is a subset of a

dataset, which is used to ‘tune’ the settings of the system, i.e. train the system [Michie

et al. (1994)]. The test set is used to test or assess the final solution produced by the

system which is trained on the training set. It is important to assess the generality of
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the solution by testing using the test set. If the solution obtained using the training set

performs well on the test set, it implies that a general solution has been obtained.

In this research, the evolution-in-materio approach has been evaluated on two classifica-

tion problems: Contact lens and Iris [Lichman (2013)]. Many researchers worked with

these two datasets. First Fisher worked with Iris dataset [Fisher (1936)] and Cendrowska

worked with Contact lens dataset [Cendrowska (1987)].

Both of these datasets have four attributes which are classified into one of the three

classes. The Contact lens dataset consists of 24 instances with integer attributes. The

integers are categorical in nature taking the values 1, 2 or 3. The first 16 instances were

used as training data and the last 8 as test data. The Iris dataset contains 150 instances

with real-valued attributes. The first fifty instances are class 1, the second fifty class two

and the third set of 50 are class 3. The dataset was divided into two groups (training

and test set) of 75 instances each. Each set contained exactly 25 instances of each class.

5.2.1 Methodology

Thirteen different sets (sets A-M) of experiments were performed. The experimental

settings of all sets of classification experiments are described in Table 5.1 and the motives

for performing the classification experiments are described in Table 5.2.

All of these experiments were performed with electrode arrays having 12 electrodes.

However, in the case of material sample 1, one electrode array was used, where only

12 electrodes were used from the 16 electrodes of that electrode array and these were

the middle 6 electrodes from each side of one sample. For both of these datasets, four

electrodes were used as inputs (i.e. are instance-related), 3 electrodes were used as

outputs (i.e. defining the class) and 5 electrodes were used as configuration inputs.

Each output electrode was used for each output class. Each chromosome defined which

electrodes were outputs, inputs (received square waves) or received the configuration

inputs (square waves or static voltages). Examples of electrode arrangements used in

classification experiments are shown in Figure 5.1.

In these experiments, once the evolutionary algorithm completed, the configurations of

electrodes having the best fitness were tested with unseen test data to determine their

ability to predict correctly such data.
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Table 5.1: The experimental settings of all sets of classification experiments. The
‘No. of gen.’ and ‘No. of run’ columns show the number of generations and number
of runs of the experiments respectively. The ‘Mat. sam.’ and ‘Mecobo vers.’ columns
show the material sample number (according to Table 4.3) and version of Mecobo
hardware respectively. The ‘In. sig.’, ‘Out. sig.’ and ’Conf. volt.’ columns show
the types of input signals (AS=analogue static voltages, DW=digital square waves),
output signals (A=analogue, D=digital) and configuration inputs (AS=analogue static
voltages, MD=mixtures of digital square waves and digital static voltages, M=mixtures
of digital square waves and analogue static voltages) respectively. The ‘In. map.’ and
‘Out. map.’ columns show the input mapping (A=amplitude mapping, F=frequency
mapping) and output mapping (SB=average of sample values in the output buffer,
TG=average transition gap) respectively. The last column shows the input-output
timing (measured in milliseconds) used in the experiments. It should be noted that
all sets of experiments used 12 electrodes of the electrode array and a 25 KHz output
sampling frequency.

Set Data No. No. Mat. Mecobo In. Out. Conf. In. Out. Time
set of of sam. vers. sig. sig. volt. map. map.

gen. run

A Iris 50 10 1 3.5 AS A M A SB 32
B Iris 50 20 1 3.5 AS A AS A SB 32
C Iris 50 20 1 3.0 DW D MD F TG 32
D Iris 50 10 1 3.0 DW D MD F TG 128
E Iris 500 10 1 3.0 DW D MD F TG 128
F Iris 500 10 2 3.0 DW D MD F TG 128
G Iris 500 10 3 3.0 DW D MD F TG 128
H Iris 500 20 4 3.0 DW D MD F TG 128
I Iris 500 10 5 3.0 DW D MD F TG 128
J Iris 500 10 6 3.0 DW D MD F TG 128
K Iris 500 10 7 3.0 DW D MD F TG 128
L Iris 500 10 8 3.0 DW D MD F TG 128
M Cont. 500 30 4 3.0 DW D MD F TG 128

lens

In the case of Iris dataset, the number of evolutionary runs was either 10 or 20. In the

case of Contact lens dataset, the number of runs was 30. The smaller number of runs

(10 or 20) for the Iris was due to the large time required for each experiment as Iris has

more instances than the Contact lens. It should be noted that in the case of Iris dataset,

the number of runs was 20 only in those experiments that dealt with the comparisons

with Cartesian genetic programming and the two Mecobo platforms. In the case of other

experiments, the number of runs was 10 as many sets of experiments were needed to

perform all the many different types of investigations.
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Table 5.2: The motives for performing the classification experiments. The first column
shows the sets of experiments. The second column shows the motive.

Experiments Motive

Sets A, B Comparison of the performance of using all static analogue voltages
against the performance of using mixtures of static analogue
voltages and digital square waves using Mecobo 3.5.

Sets B, C Comparison of the performance of using all analogue inputs, outputs
and configuration inputs against the performance of using all digital
inputs, outputs and configuration inputs (comparison of the
performances of two Mecobo platforms).

Sets C, D Comparison of results using different input-output timings
(32 milliseconds and 128 milliseconds).

Sets E, F Comparison of results using different organisations of electrodes
(the same mixture of material, but organisations of electrodes are
different)

Sets F, G Comparison of results using different polymers (the same percentage
of single-walled carbon nanotubes, but in different polymers).

Sets G-L Comparisons of results using different percentages of single-walled
carbon nanotubes in PMMA.

Set B Comparison of experimental results against the results of Cartesian
genetic programming.

Set H Comparison of experimental results against the results of Cartesian
genetic programming.

Set M Comparison of experimental results against the results of Cartesian
genetic programming.

Figure 5.1: Examples of electrode arrangements used in classification experiments
using two different material samples having different organisations of electrodes. Green
arrows are used to indicate reading outputs from the output electrodes, yellow arrows
are used to show inputs being sent to input electrodes and blue arrows are used to show
configuration inputs being sent to 5 electrodes.
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5.2.2 Genotype Representation

Each chromosome used ne = 12 electrodes at a time. The values that genes could take

are shown in Table 5.3. i takes values 0, 1, . . . 11. The description of the genotype for

the experiments is shown in Table 5.4.

Table 5.3: Description of the genes for classification experiments

Gene symbol Signal applied to, or read from the Allowed values
ith electrode

pi Which electrode is used 0, 1, 2 . . . 11
si Type (Irrelevant for set: B) 0 (static), 1(square wave)
ai Amplitude 0 , 1 (for sets: C-M)

1, 2 . . . 254 (for sets: A, B)
fi Frequency (Irrelevant for set: B) 500 ,501 . . . 10K
phi Phase (Irrelevant for set: B) 1, 2 . . . 10
ci Mark-space ratio (Irrelevant for set: B) 0, 1, 2 . . . 100

Table 5.4: Description of the genotype for classification experiments. The ‘Exp.’
column shows the set(s) of experiments. The ‘No. of gen. in each elec.’ column
shows the number of genes associated with each electrode. The ‘Gen. ass. with each
elec.’ column shows the genes that are associated with each electrode. The ‘Total no.
of genes’ column shows the total number of genes in each genotype. The ‘Genotype
representation’ column shows the representation of a genotype. The ‘Genes related
to inputs’ column shows the gene values of a genotype, which are related to inputs.
The ‘Genes related to outputs’ column shows the gene values of a genotype, which are
related to outputs.

Exp. No. Gen. Total Genotype Genes related Genes related
of ass. no. representation to inputs to outputs
gen. with of
in each genes
each elec.
elec.

Sets 6 pi, si, 12X6 p0s0a0f0ph0c0 . . . First 24 genes: Last 18 genes:
A, ai, fi, =72 p11s11a11f11ph11c11 p0s0a0f0ph0c0 p9s9a9f9ph9c9
C-M phi, ci . . . . . .

p3s3a3f3ph3c3 p11s11a11f11ph11c11
Set 2 pi, ai 12X2 p0a0 . . . p11a11 First 8 genes: Last 6 genes:
B =24 p0a0 . . . p3a3 p9a9p10a10p11a11

In these experiments, mutated children were created from a parent genotype by mutating

a single gene (i.e. one gene of 72 in the case of sets A, C-M and one gene in 24 in the

case of set B). In the input and output genes, only the first pi (here the value of i is

0-3 and 9-11) has any effect, others do not have any effect. The gene pi decides which

electrode will be used for the input or output of the device. Thus, mutations in this

gene can choose a different electrode to be used as an input or output.
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5.2.3 Input Mapping

In experiments C-M, each of the inputs to the electrode array was a square wave signal of

a particular frequency. The frequency was determined by a linear mapping of attribute

data. In experiments A and B, each of the inputs to the electrode array was a static

voltage of a particular amplitude. The amplitude was determined by a linear mapping

of attribute data. The input mappings of these experiments are described as follows:

Denote the ith attribute in a dataset by Ii, where i takes values {1, 2, 3, 4}. Denote the

maximum value and minimum value taken by this attribute in the whole dataset by Iimax

and Iimin respectively. Then the linear input mappings of the classification experiments

are shown in Table 5.5.

5.2.4 Output Mapping

The class that an instance belongs to was determined by examining the output buffers

which contain samples taken from the output electrodes. Mecobo 3.0 can only recog-

nise binary values, so the output buffers contain bitstrings. In experiments C-M, the

transitions from 0 to 1 in the output buffers were used to calculate the class that an

instance belongs to. For each output buffer, the positions of transitions were recorded

and the gaps between consecutive transitions were measured and an average calculated.

A transition-based mapping was used as it is frequency related. Since instance data

affects frequencies of applied signals, it seemed natural to use the method of reading

output buffer bitstrings, which is itself frequency related. An example of average gap

calculation for an output electrode is shown in Figure 5.2

The output class was determined by the output buffer with the largest average transition

gap. If two or more buffers had the same average gap, then the class was determined

by the first such buffer encountered (in precedence order: 1, 2, 3). For instance, if the

second output buffer had the highest average gap, the output class would be predicted

to be class 2.

Mecobo 3.5 supports analogue outputs. So, in the case of experiments A and B, the

average values of output buffers were used to calculate the class that an instance belongs

to. The output class was determined by the output buffer with the largest average value.
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Table 5.5: Input mappings for classification experiments. The ‘Exp.’ column shows
the set(s) of experiments. The ‘Equation’ column shows the equation used for input
mapping in the experiments. The ‘Variable’ column describes the variables that are
used in the input mapping equation. The ‘Other parameters of input signals’ column
describes those parameters (gene values) of input signals, which are not used in the
input mapping equation.

Exp. Equation Variables Other parameters
of input signals

Sets Fi = aiIi + bi (5.1) Ii is mapped to a square Mark-space ratio

C-M Here, wave frequency Fi, where =50%,

ai =
(Fmax − Fmin)

(Iimax
− Iimin

)
(5.2) the maximum allowed amplitude=1 and

bi =
(FminIimax

− FmaxIimin
)

(Iimax
− Iimin

)
(5.3)

frequency is Fmax and phase=1

the minimum allowed
frequency is Fmin. Here
Fmax=10KHz and
Fmin=500Hz

Sets Ai = aiIi + bi (5.4) Ii is mapped to a static

A, B Here, analogue voltage with

ai =
(Amax −Amin)

(Iimax
− Iimin

)
(5.5) amplitude Ai, where

bi =
(AminIimax

−AmaxIimin
)

(Iimax − Iimin)
(5.6)

the maximum allowed

amplitude is Amax and
the minimum amplitude
is Amin. Here
Amax=254 and Amin=1

If two or more buffers had the same average value, then the class was determined by the

first such buffer encountered (in precedence order: 1, 2, 3). This mapping was used as

it seems more closely related to amplitude.

5.2.5 Fitness Score

The fitness calculation required counts to be made of the number of true positives TP ,

true negatives TN , false positives, FP and false negatives, FN . For an instance, having

a class c, according to the dataset and a predicted class p, the TP , TN , FP , and FN

can be calculated using Equation 5.7. The explanation of this is as follows:

73



Chapter 5

Figure 5.2: An example of average transition gap calculation for an output electrode

If the predicted p is correct, then it is a true positive, so TP should be incremented by

one. It is also a true negative for the other two classes, hence TN should be incremented

by two. If the predicted class is incorrect, then it is a false positive for the class predicted,

so FP should be incremented. It is also a false negative for the actual class of the

instance, so FN should be incremented. Finally, the remaining class is a true negative,

so TN should be incremented.

if p = c then TP = TP + 1; TN = TN + 2

if p 6= c then FP = FP + 1; FN = FN + 1; TN = TN + 1

(5.7)

Once all instances have been classified, the fitness of a genotype can be calculated using

Equation 5.8 [Akbarzadeh et al. (2008)].

fitness =
TP.TN

(TP + FP )(TN + FN)
(5.8)

Thus, if all instances are correctly predicted, the fitness is 1 since in this case, FP = 0

and FN = 0. In the case that all instances are incorrectly predicted, TP = 0 and
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TN = 0, so fitness is zero.

5.2.6 The Experimental Details

In the case of all sets of experiments, a (1 + 4)-evolutionary algorithm was used. It took

more than 12 hours (one evolutionary run) to run 500 generations on the Iris training

set with input-output timing 128 milliseconds.

To evaluate the effectiveness of the evolution-in-materio method for solving classification

problems, the results of experiments B, H and M were compared with Cartesian genetic

programming using the same (1 + 4)-evolutionary algorithm over the same number of

generations and the same number of runs. In the case of all experiments of the exper-

imental material and Cartesian genetic programming, a child replaced the parent if its

fitness was greater than or equal to the parent. The fitness function of Cartesian genetic

programming was the same as the fitness function used by the evolution-in-materio.

Also, the number of outputs, nO of Cartesian genetic programming was chosen to be

equal to the number of classes in the dataset and the class of a data instance was defined

as the class indicated by the maximum numerical output.

The function set chosen was defined over the real-valued interval [0.0, 1.0] and consisted

of the following primitive functions. The functions were assumed to have three inputs,

z0, z1, z2 (but some are ignored):

(z0 + z1)/2; (z0 − z1)/2; z0z1;

if |z1| < 10−10 then 1 else if |z1| > |z0| then z0/z1 else z1/z0;

if z0 > z1 then z2/2 else 1− z2/2.

Three mutation parameters were used:

• A percentage for mutating connections, µc;

• A percentage for mutating functions, µf ;

• Mutation of outputs, µo was done probabilistically.
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In all experiments, µc = 3%, µf = 3%, and µo = 0.5. The output mutation probability

was set as 0.5 because there are only as many outputs as there are classes. A linear

Cartesian genetic programming geometry was chosen by setting the number of rows,

nr = 1 and the number of columns, nc = 100 with nodes being allowed to connect to

any previous node. It should be noted that Cartesian genetic programming was applied

to classification problems before. Völk et al. applied Cartesian genetic programming

to classify mammograms [Völk et al. (2009)]. Harding et al. presented a version of

Cartesian genetic programming that could handle multiple data types and then applied

it to find solutions to multiple classification tasks [Harding et al. (2012)].

5.2.6.1 The Results

The experimental results (sets H and M) of material and the results of Cartesian genetic

programming are shown in Table 5.6.

Table 5.6: Comparative results of experimental material (experiments of sets H and
M) with Cartesian genetic programming on machine learning classification problems
using two datasets: Iris and Contact lens. The experiments H and M were performed
using material sample 4 and Mecobo 3.0 (the input-output timing was 128 milliseconds).
In the case of Iris dataset, the number of runs was 20. In the case of Contact lens dataset,
the number of runs was 30. In all of the cases, the number of generations was 500. The
first column shows the set of experiments. The second column shows the dataset on
which the experiments were performed. The third, fourth and fifth columns show
average training accuracy, average test accuracy and best accuracy of experimental
material respectively. The sixth, seventh and eighth columns show average training
accuracy, average test accuracy and best accuracy of Cartesian genetic programming
respectively. Accuracy is the percentage of the training or test set correctly predicted.
‘U-t (tr)’, ‘KS-t (tr)’ and ‘Ef. sz. (tr)’ (L = large, M = medium, S = small) columns
show results of statistical significance tests using training dataset. These statistical
significance tests have been performed using the total number of correct instances on
the training set over all runs. ‘U-t (ts)’, ‘KS-t (ts)’ and ‘Ef. sz. (ts)’ (L = large,
M = medium, S = small) columns show results of statistical significance tests using
testing dataset. These statistical significance tests have been performed using the total
number of correct instances on the test set over all runs. ‘X’ in ‘U-t (tr)’, ‘KS-t
(tr)’, ‘U-t (ts)’ and ‘KS-t (ts)’ columns indicates that the difference between the two
results is statistically significant and ‘X’ indicates that the difference is statistically not
significant.

Set Data Avg. Avg. Best Avg. Avg. Best U- KS- Ef. U- KS- Ef.
set train. test acc. train. test acc. t t sz. t t sz.

acc. acc. of acc. acc. of (tr) (tr) (tr) (ts) (ts) (ts)
of of exp. of of Car.
exp. exp. mat. Car. Car. gen.
mat. mat. gen. gen. prog.

prog. prog.

H Iris 84.7% 77.1% 96.7% 97.7% 93.6% 98.0% X X L X X L
M Con. 91.7% 66.7% 95.8% 93.8% 68.3% 95.8% X X S X X S

Lens

76



Chapter 5

It has been found from the experiments that in the case of the Contact lens dataset,

the training and test accuracies of the experimental material are within 2.5% of the

corresponding Cartesian genetic programming accuracies, and the best accuracy of the

experimental material is equal to the best accuracy of Cartesian genetic programming. In

the case of the Iris dataset, the training and test accuracies of the experimental material

are within 18% of the corresponding Cartesian genetic programming accuracies, but the

best accuracy is within 1.5% of the Cartesian genetic programming accuracy.

The results of the experiments H, M and the results of Cartesian genetic programming

have been compared using the U-test and KS-test [Hollander and Wolfe (1973)]. The

effect size statistic [Vargha and Delaney (2000)] has also been computed. The results of

the statistical significance tests are also shown in Table 5.6.

Experiments A and B were performed using Mecobo 3.5 and the Iris dataset with ma-

terial sample 1. Mecobo 3.5 is located in Norway and the experiments were performed

via the internet by connecting with Norway Mecobo board. Usually, it takes some extra

time to communicate and then takes more time to perform the experiment. That is why

the input-output timing was decreased to 32 milliseconds and also the number of gen-

erations was 50. Mecobo 3.5 supports static analogue input, digital square wave input

and analogue output. No more than 8 static analogue inputs (inputs and configuration

inputs) can be sent via Mecobo 3.5. It should be noted that Mecobo 3.5 stops working

if more than 8 static analogue inputs are used. If more than 8 static analogue inputs

are required, this is done by sending 8 static analogue inputs and making the remaining

inputs undefined by the program. If any electrode is connected with the material and

left undefined by the program, Mecobo 3.5 connects static voltage of -2.3V using that

electrode by default. This means that if more than 8 static analogue inputs are needed

to be sent to the material, the remaining inputs are set to static -2.3V by default by

Mecobo 3.5. In experiment B, 4 static analogue inputs and 5 static analogue configu-

ration inputs were used, i.e. in total 9 static analogue inputs were needed to be sent

to the material via Mecobo 3.5, the remaining 1 configuration input was set to static

-2.3V by Mecobo 3.5 irrespective of the voltage level set by the genotype for that con-

figuration input. In experiment A, no more than 4 configuration inputs were allowed

to have static analogue voltages, i.e. at least 1 configuration input must be a digital

square wave signal. The results of experiments A and B were compared over ten runs

as experiment A was performed for up to 10 runs. It should be noted that the results
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of first ten runs from the twenty runs of experiment B were used in this comparison.

The detailed comparison results and the statistical significance test results are shown in

Table 5.7.

After analysis of the results of experiments A and B, it was found that in the case of

classification experiments using Iris dataset, the input signals (inputs and configuration

inputs) having only static analogue voltages showed better results than the results ob-

tained using mixtures of static analogue voltages and digital square waves for inputs and

configuration inputs.

Table 5.7: Comparative results for different input signal combinations (static ana-
logue voltages against mixtures of static analogue voltages and digital square waves)
of Mecobo 3.5. Both of these experiments were performed using Iris dataset with ma-
terial sample 1. In both of these experiments, the number of generations was 50 and
the input-output timing was 32 milliseconds. The comparison was performed over ten
evolutionary runs. It should be noted that the results of first ten runs from the twenty
runs of experiment B were used in this comparison. Accuracy is the percentage of the
training or test set correctly predicted. ‘U-test’, ‘KS-test’ and ‘Effect size’ (L = large,
M = medium, S = small) columns show results of statistical significance tests. The
first results of these columns show the test results using the training set and the second
results of these columns show the test results using the test set. These statistical sig-
nificance tests have been performed using the total number of correct instances of all
runs. ‘X’ in ‘U-test’ and ‘KS-test’ columns indicates that the difference between the
two results is statistically significant and ‘X’ indicates that the difference is statistically
not significant.

Accuracy Static analogue voltages Mixtures of static U-test KS-test Effect
analogue voltages size

(set B) and digital square
waves (set A)

Training 93.3% 82.8% X X L
Test 87.9% 73.2% X X L

The results of experiments B and C show the comparison of the performance of Mecobo

3.5 against the performance of Mecobo 3.0, i.e. the comparison of the performance

of using analogue inputs, outputs and configuration inputs against the performance of

using digital inputs, outputs and configuration inputs. The detailed comparison results

and the statistical significance test results are shown in Table 5.8. After analysis of the

results of experiments B and C, it was found that in the case of classification experiments

using Iris dataset, the performance of using analogue inputs, outputs and configuration

inputs was better than the performance of using digital inputs, outputs and configuration

inputs, i.e. the performance of Mecobo 3.5 was better than the performance of Mecobo

3.0.
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Table 5.8: Comparative results for experiments using Mecobo 3.5 and Mecobo 3.0.
Both of these were performed using Iris dataset with material sample 1. In both of the
experiments, the number of generations was 50, the number of runs was 20 and the
input-output timing was 32 milliseconds. Accuracy is the percentage of the training
or test set correctly predicted. ‘U-test’, ‘KS-test’ and ‘Effect size’ (L = large, M =
medium, S = small) columns show results of statistical significance tests. The first
results of these columns show the test results using the training set and the second
results of these columns show the test results using the test set. These statistical
significance tests have been performed using the total number of correct instances of
all runs. ‘X’ in ‘U-test’ and ‘KS-test’ columns indicates that the difference between the
two results is statistically significant and ‘X’ indicates that the difference is statistically
not significant.

Accuracy Mecobo 3.5 Mecobo 3.0 U-test KS-test Effect
(analogue inputs, (digital inputs, size
outputs and outputs and
configuration inputs) configuration inputs)
(set B) (set C)

Training 91.3% 66.9% X X L
Test 86.6% 60.7% X X L

It was investigated whether different input-output timings show any significant difference

in results or not. Experiments C and D were used for this comparison. The detailed

comparison results and the statistical significance test results are shown in Table 5.9.

It has been found from the results that the difference is statistically not significant

according to U-test and KS-test in the case of both training and test datasets.

Table 5.9: Comparative results for experiments C and D having different input-output
timings (32 milliseconds and 128 milliseconds respectively). Both of these experiments
were performed using Iris dataset with material sample 1. In both of these experiments,
the number of generations was 50. The comparison was performed over ten evolutionary
runs. It should be noted that the results of first ten runs from the twenty runs of
experiment C were used in this comparison. Accuracy is the percentage of the training
or test set correctly predicted. ‘U-test’, ‘KS-test’ and ‘Effect size’ (L = large, M =
medium, S = small) columns show results of statistical significance tests. The first
results of these columns show the test results using the training set and the second
results of these columns show the test results using the test set. Statistical significance
tests have been performed using the total number of correct instances of all runs.
‘X’ in ‘U-test’ and ‘KS-test’ columns indicates that the difference between the two
results is statistically significant and ‘X’ indicates that the difference is statistically not
significant.

Accuracy Input-output timing Input-output timing U-test KS-test Effect
32 milliseconds 128 milliseconds size
(set C) (set D)

Training 65.9% 68.4% X X M
Test 61.2% 63.6% X X M

Experiments E and F used the same material mixture (material sample 1 and material

sample 2 respectively), but different organisations of electrodes (Table 4.3). The results
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of these two experiments were compared to investigate whether different organisations of

electrodes matter or not. The detailed comparison results and the statistical significance

test results are shown in Table 5.10. The statistical significance tests have shown that

the difference of results is statistically not significant according to U-test and KS-test in

the case of both training and test datasets.

Table 5.10: Comparative results for experiments E and F using different material
samples (sample 1 and sample 2 respectively) having different organisations of elec-
trodes. Both of these experiments were performed using Iris dataset by Mecobo 3.0. In
both of these experiments, the number of generations was 500 (the input-output timing
was 128 milliseconds) and the number of runs was 10. Accuracy is the percentage of
the training or test set correctly predicted. ‘U-test’, ‘KS-test’ and ‘Effect size’ (L =
large, M = medium, S = small) columns show results of statistical significance tests.
The first results of these columns show the test results using the training set and the
second results of these columns show the test results using the test set. These statistical
significance tests have been performed using the total number of correct instances of
all runs. ‘X’ in ‘U-test’ and ‘KS-test’ columns indicates that the difference between the
two results is statistically significant and ‘X’ indicates that the difference is statistically
not significant.

Accuracy Material sample 1 Material sample 2 U-test KS-test Effect
(set E) (set F) size

Training 84.8% 84.4% X X S
Test 72.1% 78.3% X X S

The same percentage (1.0%) of single-walled carbon nanotubes was used in the different

polymers (PBMA and PMMA) in material sample 2 and material sample 3 (Table

4.3). Material sample 2 (contains PBMA) and material sample 3 (contains PMMA)

were used in experiments F and G respectively. The results of these two sets were

compared to investigate whether the choice of polymer in material mixture plays any role

in computation or not. The detailed comparison results and the statistical significance

test results are shown in Table 5.11. The statistical significance tests have shown that

the difference of results is statistically not significant according to U-test and KS-test in

the case of both training and test datasets.

Different percentages of single-walled carbon nanotubes in PMMA were used in material

samples 3-8 (Table 4.3) and investigated in experiments G-L respectively. The compar-

ison results of these experiments (sets G-L) are shown in Table 5.12. It should be noted

that results of the first ten runs from the twenty runs of experiment H were used in

these comparisons.
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Table 5.11: Comparative results for experiments F and G using different material
samples (sample 2 and sample 3 respectively) having the same percentage (1.0%) of
single-walled carbon nanotubes in the different polymers (PBMA and PMMA respec-
tively). Both of these experiments were performed using Iris dataset by Mecobo 3.0. In
both of these experiments, the number of generations was 500 (the input-output timing
was 128 milliseconds) and the number of runs was 10. Accuracy is the percentage of
the training or test set correctly predicted. ‘U-test’, ‘KS-test’ and ‘Effect size’ (L =
large, M = medium, S = small) columns show results of statistical significance tests.
The first results of these columns show the test results using the training set and the
second results of these columns show the test results using the test set. These statistical
significance tests have been performed using the total number of correct instances of
all runs. ‘X’ in ‘U-test’ and ‘KS-test’ columns indicates that the difference between the
two results is statistically significant and ‘X’ indicates that the difference is statistically
not significant.

Accuracy Single-walled Single-walled U-test KS-test Effect
carbon nanotubes carbon nanotubes size
in PBMA (set F) in PMMA (set G)

Training 84.4% 82.1% X X M
Test 78.3% 72.3% X X M

Table 5.12: Comparative results for different percentages of single-walled carbon nan-
otubes in PMMA. All of these experiments were performed using Iris dataset by Mecobo
3.0. In all of these experiments, the number of generations was 10 and the input-output
timing was 128 milliseconds. The comparisons were performed over ten evolutionary
runs. The first column shows the set of experiments. The second column shows the
material sample number (Table 4.3). The third column shows the weight percent frac-
tion of single-walled carbon nanotubes in PMMA. The fourth and fifth columns show
the average training accuracy and average test accuracy of the experimental material.
Accuracy is the percentage of the training or test set correctly predicted.

Set Material Single-walled carbon Average Average
sample nanotubes in PMMA training test
no. accuracy accuracy

G 3 1.0% 82.1% 72.3%
H 4 0.71% 80.7% 71.1%
I 5 0.50% 81.5% 68.7%
J 6 0.10% 81.7% 71.6%
K 7 0.05% 85.1% 72.3%
L 8 0.02% 80.9% 69.5%

It has been found from the results of Table 5.12 that material sample 7 (0.05% single-

walled carbon nanotubes in PMMA) showed the best result. Statistical significance tests

have also been performed using the results of each of the pairs of the material samples

3-8. It has been found that the difference of the results of each of the pairs of material

samples 3-8 (sets G-L respectively) is statistically not significant according to U-test and

KS-test in the case of both training and test datasets.

If all the results of all sets of experiments are considered, it has been found that the
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results of experiment B were the best since they acquired the highest accuracies in the

case of both training and test data. However, in the case of experiment B, the number

of generations was 50. As the results of experiment B were the best, the results were

compared with the results of the well-known Cartesian genetic programming, where the

number of generations of Cartesian genetic programming was also 50. The parameters

of Cartesian genetic programming were the same as the parameters (Cartesian genetic

programming parameters have been described at the beginning of the Section 5.2.6)

used in Cartesian genetic programming experiments comparing results with experiment

H. It has been found that the average results (accuracies) of experiment B were better

than the average results (accuracies) of Cartesian genetic programming in the case of

both training and test data. The best accuracy of the experimental material was also

better than that of Cartesian genetic programming. The experiment B used Mecobo 3.5,

which used analogue signals for inputs, outputs and configuration inputs. The detailed

comparisons and the statistical significance test results are shown in Table 5.13

Table 5.13: Comparative results of experimental material (experiments of set B)
with Cartesian genetic programming on machine learning classification problem using
Iris dataset. The experiment B was performed using material sample 1 and Mecobo
3.5 (the input-output timing was 32 milliseconds). In both of these cases, the number
of generations was 50 and the number of runs was 20. The first column shows the set
of experiments and second column shows the dataset on which the experiments were
performed. The third, fourth and fifth columns show the average training accuracy,
average test accuracy and best accuracy of experimental material respectively. The
sixth, seventh and eighth columns show the average training accuracy, average test
accuracy and best accuracy of Cartesian genetic programming respectively. Accuracy
is the percentage of the training or test set correctly predicted. ‘U-t (tr)’, ‘KS-t (tr)’
and ‘Ef. sz. (tr)’ (L = large, M = medium, S = small) columns show results of
statistical significance tests using the training dataset. These statistical significance
tests have been performed using the total number of correct instances on the training
set over all runs. ‘U-t (ts)’, ‘KS-t (ts)’ and ‘Ef. sz. (ts)’ (L = large, M = medium,
S = small) columns show results of statistical significance tests using the test dataset.
These statistical significance tests have been performed using the total number of correct
instances on the test set over all runs. ‘X’ in ‘U-ts (tr)’, ‘KS-ts (tr)’, ‘U-t (ts)’ and
‘KS-t (ts)’ columns indicates that the difference between the two results is statistically
significant and ‘X’ indicates that the difference is statistically not significant.

Set Data Avg. Avg. Best Avg. Avg. Best U- KS- Ef. U- KS- Ef.
set train. test acc. train. test acc. t t sz. t t sz.

acc. acc. of acc. acc. of (tr) (tr) (tr) (ts) (ts) (ts)
of of exp. of of Car.
exp. exp. mat. Car. Car. gen.
mat. mat. gen. gen. prog.

prog. prog.

B Iris 91.3% 86.6% 97.3% 87.2% 84.4% 96.7% X X L X X L

Kester et al. also used a mixture of single-walled carbon nanotubes and PMMA to

classify data instances of Iris dataset by evolution-in-materio [Clegg et al. (2014a)].

82



Chapter 5

Their research is also under the project NASCENCE. They used a mixture of 0.53%

single-walled carbon nanotubes in PMMA. The number of generations was 150 and the

number of runs was 10. They applied the input signals and read the response for 0.1

seconds. The output sampling frequency was 2 KHz. This gave an output buffer having

200 samples. They used the mean of the values of final 150 samples as the output value.

They used four inputs, three outputs and four configuration inputs in their experiment.

They used the largest output value to determine the output class, just like the output

class was determined in the classification experiments of this research (Section 5.2.4).

They used static analogue voltages for inputs and configuration inputs. Each of the

inputs to the electrode array was a static voltage of a particular voltage level in a

range [-5V, 5V]. The voltage level of each of the input signals was determined by a

linear mapping of attribute data. The voltage level of the configuration inputs was in a

range [-2V, 2V]. They used (1+4)-evolutionary algorithm. Two types of mutation were

performed to generate children: mutation on electrode number and mutation on voltage

level. They divided the training and test datasets randomly into 3 groups of 25 instances

of each class. The order of these was randomised before testing on the material sample.

They used the number of correct instances as the fitness score. They found that the

average (averaged over 10 runs) training accuracy was ≈ 69% and the best test accuracy

was 95.04%.

A summary of outcomes from the classification experiments of this thesis is given as

follows:

• In the case of classification experiments using Contact lens dataset, it has been

found that the training and test accuracies of the experimental material (material

sample 4) are within 2.5% of the corresponding Cartesian genetic programming

accuracies. The number of generations was 500. Mecobo 3.0 was used in these

experiments.

• In the case of classification experiments using Iris dataset, it has been found that

the training and test accuracies of the experimental material (material sample 4)

are within 18% of the corresponding Cartesian genetic programming accuracies.

The number of generations was 500. Digital inputs, outputs and configuration

inputs were used in these experiments using Mecobo 3.0.
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• In the case of classification experiments using Iris dataset, it has been found that

the results of the experimental material (material sample 1) were better than

the results of Cartesian genetic programming when analogue inputs, outputs and

configuration inputs were used by Mecobo 3.5. The number of generations was 50.

• In the case of classification experiments using Iris dataset and material sample 1,

it was found that the performance of using analogue inputs, outputs and configu-

ration inputs was better than the performance of using digital inputs, outputs and

configuration inputs according to comparison results of Mecobo 3.5 and Mecobo

3.0.

• In the case of classification experiments using Iris dataset and Mecobo 3.5, it was

found that the input signals (inputs and configuration inputs) having only static

analogue voltages showed better results than the results obtained by mixtures

of static analogue voltages and digital square waves for inputs and configuration

inputs. These experiments were performed using material sample 1.

• Two sets of classification experiments were performed using Iris dataset to inves-

tigate whether different organisations of electrodes matter or not. These exper-

iments used the same mixture of material (1.0% single-walled carbon nanotubes

in PBMA), but the organisations of electrodes were different. These experiments

were performed using Mecobo 3.0. The statistical significance tests have shown

that the difference of results is statistically not significant according to U-test and

KS-test in the case of both training and test datasets.

• Two sets of experiments were performed using Iris dataset to investigate whether

the choice of polymer in material mixture plays any role in computation or not.

These experiments used the same percentage (1.0%) of single-walled carbon nan-

otubes, but the polymers (PBMA or PMMA) were different. These experiments

were performed using Mecobo 3.0 and Iris dataset. The statistical significance tests

have shown that the difference of results is statistically not significant according

to U-test and KS-test in the case of both training and test datasets.

• An experimental investigation examined which weight percentage of single-walled

carbon nanotubes in PMMA appeared to be the most effective for classification

using Iris dataset. It appeared that the best results were obtained with 0.05%
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single-walled carbon nanotubes. However, the differences of the results with var-

ious mixtures appeared to be statistically not significant according to U-test and

KS-test.

It should be noted that for comparing solutions of classification problems using different

mixtures of materials, different hardware platforms, different electrode organisations,

different signals (wave, static, digital, analogue), the Iris dataset has been selected over

the Contact lens dataset for various reasons:

• The Iris dataset has much higher number of instances than the Contact lens

dataset;

• The Iris is a balanced dataset, i.e. an equal number of instances for each of the

output classes;

• The Iris dataset can be divided into training and test sets having equal number of

instances in each set, and also both training and test sets contain the same number

of instances for each of the output classes.

5.3 Discriminating Tones

The tone discriminator is a device which takes two different (different frequencies) sig-

nals as inputs and returns a different response for each of the input signals. It was first

described in the work of Thompson [Thompson (1998)] (Section 3.1), and later on Hard-

ing and Miller applied evolution-in-materio to solve tone discriminator problems using

an LCD by many pairs of frequencies [Harding and Miller (2004a); Harding (2006)] (Sec-

tion 3.3.1). The same pairs of input frequencies have been used here to compare with

the results of Harding’s tone discriminator experiments.

5.3.1 Methodology

Nine different sets (sets A-I) of tone discriminator experiments have been performed.

All of these experiments were performed using Mecobo 3.0. In the first set of tone

discriminator experiments (A), the same pairs of frequencies as in [Harding (2006)] were

investigated using material sample 4 (according to Table 4.3). Mecobo does not support
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Table 5.14: The experimental settings for all sets of tone discriminator experiments.
All of these experiments were performed using Mecobo 3.0. The second column shows
the number of pairs of frequencies on which the experiments were performed. The third
column shows the material sample number (according to Table 4.3). All of these exper-
iments used 12 electrodes of the electrode array, a 25 KHz output sampling frequency
and 250 milliseconds for the input-output timing. The number of runs was 5 and the
number of generations was 500. However, the evolutionary run was terminated if fitness
score gave 100% correct result.

Set Number of pairs Material sample
of frequencies

A 119 4
B 45 1
C 45 2
D 45 3
E 45 5
F 45 6
G 45 7
H 45 8
I 1 1

frequencies lower than 500 Hz, so no frequency lower than 500 Hz was tried in any of

the tone discriminator experiments here. Harding tried 114 pairs of frequencies ranging

from 500 Hz to 4500 Hz. The experiments of set A used 119 pairs of frequencies, of these

114 pairs are the same as his 114 pairs of frequencies of tone discriminator experiments.

However, in experiments B-H, only 45 pairs have been used in order to reduce the

number of experiments. The 45 pairs were selected in a way so that they cover most of

the parts of the full distribution of 119 pairs. All experiments were performed using the

evolutionary process except the set I which used a random process. This experiment

(set I) used only one pair of frequencies. All the populations of all generations were

selected randomly in this experiment.

The experiments of set A were performed to compare the performance of a mixture

of single-walled carbon nanotubes and a polymer against the performance of an LCD,

i.e. the experimental results of set A were compared with the results of Harding’s

experiments using 114 pairs of frequencies. In tone discriminator experiments using

LCD, the number of runs was 5 and each input signal was sent to the material for 250

milliseconds, so to compare the performances, the number of runs in each of the tone

discriminator experiments was 5 and the input-output timing was 250 milliseconds. The

experimental settings of all sets of tone discriminator experiments are described in Table

5.14 and the motives for performing the tone discriminator experiments are described

in Table 5.15.
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Table 5.15: The motives for performing the tone discriminator experiments. The first
column shows the sets of experiments. The second column shows the motive.

Experiments Motive

Set A Comparison of results using a mixture of single-walled carbon
nanotubes with a polymer against the results using an LCD.

Sets B, C Comparison of results using different organisations of electrodes (the
same mixture of material, but organisations of electrodes are different)

Sets C, D Comparison of results using different polymers (the same percentage
of single-walled carbon nanotubes, but in different polymers).

Sets A, D-H Comparisons of results using different percentages of single-walled carbon
nanotubes in PMMA.

Sets B, I Comparison of the performance of using the evolutionary process
against the performance of using a random process

All of these experiments were performed with electrode arrays having 12 electrodes.

However, in the case of material sample 1, one electrode array was used, where only 12

electrodes were used from the 16 electrodes of that electrode array and these were the

middle 6 electrodes from each side of one sample. Examples of electrode arrangements

used in tone discriminator experiments are shown in Figure 5.3.

Figure 5.3: Examples of electrode arrangements used in tone discriminator experi-
ments using two different material samples having different organisations of electrodes.
Green arrows are used to indicate reading outputs from the output electrodes, a yellow
arrow is used to show input being sent to an input electrode and blue arrows are used
to show configuration inputs being sent to 9 electrodes.

For all experiments, one electrode was used for inputting the signal to be discriminated,

two electrodes were used as outputs and nine electrodes were used as configuration in-

puts. Each chromosome defined which electrodes were outputs, inputs (received square

waves) or received the configuration inputs (square waves or static voltages). The fre-

quency applied to the input electrode was the input frequency to be discriminated. The
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mark-space ratio of input square wave signal was set to 50% and its amplitude was set

to one (i.e. 3.5 V).

5.3.2 Genotype Representation

Each chromosome used ne = 12 electrodes at a time. The values that genes could take

are shown in Table 5.16, where i takes values 0, 1, . . . 11. The description of the genotype

for the experiments is shown in Table 5.17.

Table 5.16: Description of the genes for tone discriminator experiments.

Gene Signal applied to, or Allowed
symbol read from the ith values

electrode

pi Which electrode 0, 1, 2 . . . 11
is used

si Type 0 (static) or
1(square wave)

ai Amplitude 0 , 1
fi Frequency 500 ,501 . . . 10K
ci Mark-space ratio 0, 1, . . . 100

Mutated children were created from a parent genotype by mutating a single gene (i.e.

one gene of 60). In the input and output genes, only the pi (here the values of i are 0,

10, 11) has any effect, others do not have any effect. The gene pi decides which electrode

will be used for the inputs and outputs of the device. Thus, mutations in these genes

can choose a different electrode to be used as an input or output.

Table 5.17: Description of the genotype for tone discriminator experiments. The
‘No. of gen. in each elec.’ column shows the number of genes associated with each
electrode. The ‘Gen. ass. with each elec.’ column shows the genes that are associated
with each electrode. The ‘Total no. of genes’ column shows the total number of genes
in each genotype. The ‘Genotype representation’ column shows the representation of a
genotype. The ‘Genes related to inputs’ column shows the gene values of a genotype,
which are related to inputs. The ‘Genes related to outputs’ column shows the gene
values of a genotype, which are related to outputs.

No. Gen. Total Genotype Genes related Genes related
of ass. no. representation to inputs to outputs
gen. with of
in each genes
each elec.
elec.

5 pi, si, ai, 12X5 p0s0a0f0c0 . . . First 5 genes: Last 10 genes:
fi, ci =60 p11s11a11f11c11 p0s0a0f0c0 p10s10a10f10c10

p11s11a11f11c11
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5.3.3 Output Mapping

The output was determined using the average transition gap by examining the output

buffers of output electrodes. This is the same as the average transition gap calculation

of classification experiments and was described in Section 5.2.4.

The tone discriminator problem was interpreted as two-class problem. Each output was

associated with a particular class. The class associated with an output electrode was

determined by the output buffer with the lower average transition gap. If the contents

of the buffer from the first output electrode had the lower average transition gap, it

was designated to be class one, otherwise it was designated to be class two. So, the

buffer contents from the first output electrode were expected to have the lower average

transition gap only if the input frequency was low frequency.

Thus, if the tone discriminator works as desired, it would have class one when the first

electrode buffer has the lower average transition gap whenever the input frequency is

low. It would have class two when the first electrode buffer has the higher average

transition gap at the time when input frequency is high.

It should be noted that the output was decided to be class one in the case that both

output buffers had the same average transition gap.

5.3.4 Fitness Score

The fitness score was measured here using the similar method used by Harding and

Miller in their evolution-in-materio experiments to solve tone discriminator problems

[Harding and Miller (2004a); Harding (2006)]. Their fitness calculation method was

described in Section 3.3.1. The fitness calculation for tone discriminator experiments of

this thesis is described as follows:

Let, S is the vector containing the input sample and L is the length of S. The elements

of the two-component vector, O decides the output class at a given time. The value of

S can be either HIGH or LOW. The ith element of the input sample is S[i] and output

vector is O[i]. The elements of the two component vector, x can be decided by the

Equation 5.9.
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x(i) =


1, S[i] = LOW and O[i] = 1

1, S[i] = HIGH and O[i] = 2

0, Otherwise

(5.9)

The fitness value is calculated using Equation 5.10.

fitness = 100

∑
L
i=1x(i)

L
(5.10)

In the experiment, L=2, i.e. one input signal is low and another input signal is high.

Two examples of calculating fitness score are shown in Figure 5.4.

Figure 5.4: Examples of calculating fitness score. (a) Both tones are classified cor-
rectly and fitness score is 100. (b) Only one tone (high-frequency tone) is classified
correctly and fitness score is 50.

5.3.5 The Experiments and the Results

For each of the experiments, a (1+4)-evolutionary algorithm was used. In experiments,

a child replaced the parent if its fitness was greater than or equal to the parent. The

total time required for all 5 runs of 119 pairs of frequencies took almost 1 day.

An image is drawn for the first experiment in Figure 5.5 showing average number of

generations to find solutions for 114 pairs of frequencies. The experiment A was per-

formed with material sample 4, i.e. 0.71% single-walled carbon nanotubes with PMMA.

The image is then compared with the results of Harding’s experiments with an LCD.
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Figure 5.5: Graph showing a comparison of results using a mixture of single-walled
carbon nanotubes with PMMA against the results using an LCD (a) The experimental
results with a mixture of single-walled carbon nanotubes and PMMA. (b) Harding’s
experimental results using an LCD [Harding (2006)].

Different shades have been used to show average number of generations to find solutions

(100% correct result). The shades are from black to red. Black is used for generation

number 10 (and less than 10) and red is used for generation number 100 (and more than

100).

A tone discriminator experiment was performed with material sample 10, i.e. material

with only PMMA (0% single-walled carbon nanotubes) using one pair of input fre-

quencies to investigate whether the single-walled carbon nanotubes are required in the

material mixture for computation or not. It has been observed that no evolution took

place with this material sample. The measured results from the output electrodes were

always zero, and this result was observed over all 100 generations for one run. In further

investigations, the results of tone discriminator experiments with the same percentage

of single-walled carbon nanotubes (1.0%) (material sample 2 and material sample 3) in

PBMA and in PMMA have also been compared to discover whether the type of polymer

plays any role in computation or not using the results of experiments C and D. Statistical

significance tests have been performed for the comparison using the U-test and KS-test

[Hollander and Wolfe (1973)]. The effect size statistic [Vargha and Delaney (2000)] has

also been computed. The statistical significance tests have been performed over all pairs

of frequencies using the average (averaged over 5 runs) number of generations to find
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100% correct result for each of the pairs of frequencies. According to U-test and KS-test,

the difference of the results is statistically not significant.

As experiments of 0% single-walled carbon nanotubes showed that no evolution hap-

pened without the single-walled carbon nanotubes, further investigations were performed

using material sample 8 and material sample 9 (with 0.02% and 0.01% single-walled car-

bon nanotubes in PMMA respectively). It has been found from the investigations that

no evolution took place when material sample 9 (0.01% single-walled carbon nanotubes

in PMMA) was tried and the output buffers were full of zeroes always (this experiment

was carried out with one pair of frequencies, the number of generations was 100 and

the number of runs was 1). When an experiment was started with material sample 8

(i.e. with 0.02% single-walled carbon nanotubes in PMMA), evolution happened with

mixtures of 0 and 1 in the output buffers. All of these investigation results showed that

single-walled carbon nanotubes are required in the material mixture for computation.

Experiments A, D-H were used to compare results obtained by different percentages of

single-walled carbon nanotubes in PMMA. Statistical significance tests (U-test, KS-test

and effect size) have been performed for comparing the results. The comparison results

of tone discriminator experiments with different percentages of single-walled carbon

nanotubes in PMMA (material samples 3-8 according to Table 4.3) are shown in Table

5.18. The best mixture of single-walled carbon nanotubes in PMMA was material sample

5 (0.50% single-walled carbon nanotubes in PMMA), was decided using the average

number of generations to find 100% correct results in all 5 runs in the case of all 45

pairs of frequencies (material sample 5 took the least number of generations on average

of obtaining 100% correct results, and the value is 26.16). An image is shown for tone

discriminator experiments with material sample 5 in Figure 5.6 showing the average

number of generations (averaged over 5 runs) to find solutions for 45 pairs of frequencies.

Further investigations were carried out to see whether different organisations of elec-

trodes with the same mixture of material (1.0% single-walled carbon nanotubes in

PBMA) (material sample 1 and material sample 2) play any role in computation or

not using experiments B and C. According to U-test and KS-test, the difference of the

results is statistically not significant. The statistical significance tests have been per-

formed over the average number of generations required to give 100% correct results in

all 5 runs for 45 pairs of frequencies.
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Table 5.18: Statistical significance tests on results of tone discriminator experiments
with different percentages of single-walled carbon nanotubes in PMMA (material sam-
ples 3-8 according to Table 4.3). The first column shows the pair of material samples
(material sample numbers are according to Table 4.3). ‘U-test’, ‘KS-test’ and ‘Effect
size’ columns show results of the statistical significance tests. The statistical signifi-
cance tests have been performed over the average number of generations required to
give 100% correct results in all 5 runs for 45 pairs of frequencies. ‘X’ in ‘U-test’, ‘KS-
test’ columns indicates that the difference between the two data samples is statistically
significant and ‘X’ indicates that the difference is statistically not significant. It should
be noted that the average number of generations required to give 100% correct results
in all 5 runs for 45 pairs of frequencies are 31.19, 34.56, 26.16, 28.80, 43.16 and 57.57
in the case of material samples 3, 4, 5, 6, 7 and 8 respectively.

Pair of material U-test KS-test Effect
samples size

Sample 3-Sample 4 X X Small
Sample 3-Sample 5 X X Small
Sample 3-Sample 6 X X Small
Sample 3-Sample 7 X X Large
Sample 3-Sample 8 X X Large
Sample 4-Sample 5 X X Medium
Sample 4-Sample 6 X X Medium
Sample 4-Sample 7 X X Medium
Sample 4-Sample 8 X X Large
Sample 5-Sample 6 X X Small
Sample 5-Sample 7 X X Large
Sample 5-Sample 8 X X Large
Sample 6-Sample 7 X X Large
Sample 6-Sample 8 X X Large
Sample 7-Sample 8 X X Medium

An investigation was carried out to compare the evolutionary process with a random

process using experiments B and I. This comparison was performed using one pair of

frequencies (500Hz-900Hz). In the case of both of these experiments, the number of runs

was 5 and the number of generations was 500, however the run was terminated if fitness

score gave 100% correct result. The experimental results and the comparison results are

shown in Table 5.19.

It should be noted that in the case of all of these experiments, the results acquired 100%

success in all runs. Furthermore, the average number of generations to find solutions is

no more than 100.

A summary of outcomes from these tone discriminator experiments is given as follows:

• In the case of all pairs of frequencies in all tone discriminator experiments, the

results acquired 100% success in all runs.
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Figure 5.6: Graph showing tone discriminator results for 45 pairs of frequencies with
material sample 5.

Table 5.19: Comparative results of the evolutionary process (set B) with a random
process (set I). The comparison was performed using one pair of frequencies (500Hz-
900Hz) with material sample 1 and Mecobo 3.0. The ‘Average number of generations
using evolutionary process’ column shows the average number of generations required to
give 100% correct results in all 5 runs for this pair of frequencies using the evolutionary
process. The ‘Average number of generations using random process’ column shows the
average number of generations required to give 100% correct results in all 5 runs for
this pair of frequencies using the random process. The ‘U-test’ and ‘Effect size’ columns
show results of the statistical significance tests. The statistical significance tests have
been performed over the number of generations required to give 100% correct results
in all 5 runs for this pair of frequencies. ‘X’ in ‘U-test’ column indicates that the
difference between the two data samples is statistically significant and ‘X’ indicates
that the difference is statistically not significant. It should be noted that the KS-test
could not be performed due to the small sample size.

Average Average U-test Effect
number of number of size
generations generations
using using
evolutionary random
process process

17.8 19.6 X Small
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• The average number of generations to find solutions is no more than 100 in the

case of all pairs of frequencies in all sets of tone discriminator experiments.

• Two sets of tone discriminator experiments were performed to investigate whether

different organisations of electrodes matter or not. These experiments used the

same mixture of material (1.0% single-walled carbon nanotubes in PBMA), but

the organisations of electrodes were different. These experiments were performed

by Mecobo 3.0 using 45 pairs of frequencies. The statistical significance tests have

shown that the difference of results is statistically not significant according to

U-test and KS-test.

• Two sets of tone discriminator experiments were performed to investigate whether

the choice of polymer in material mixture plays any role in computation or not.

These experiments used the same percentage (1.0%) of single-walled carbon nan-

otubes, but the polymers (PBMA or PMMA) were different. These experiments

were performed by Mecobo 3.0 using 45 pairs of frequencies. The statistical signif-

icance tests have shown that the difference of results is statistically not significant

according to U-test and KS-test.

• No evolution is possible with a material having 0% single-walled carbon nanotubes

(only PMMA), where the output buffers are always full of zeroes, which shows that

single-walled carbon nanotubes are required in the material mixture for computa-

tion.

• It has been found from an investigation (this experiment was carried out with one

pair of frequencies of tone discriminator problem, the number of generations was

100 and the number of runs was 1) that no evolution took place when a mixture

containing 0.01% single-walled carbon nanotubes with PMMA was tried and the

output buffers were full of zeroes always. When an experiment was started with a

mixture containing 0.02% single-walled carbon nanotubes with PMMA, evolution

happened with mixtures of 0 and 1 in the output buffers.

• An experimental investigation examined which weight percentage of single-walled

carbon nanotubes in PMMA appeared to be the most effective for tone discrimi-

nator problems. It appeared that the best result was obtained with 0.50% single-

walled carbon nanotubes, this was decided using the average number of generations

to find 100% correct results in all 5 runs in the case of all 45 pairs of frequencies.
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5.4 Classifying Frequency

The frequency classifier problem is an extended version of tone discriminator problem,

where a sequence of frequencies are used as input signals instead of only two tones and

the output is decided using a threshold value. That means, the idea of a frequency

classifier problem is to classify whether an applied frequency is above or below a user-

defined threshold. Thus, all frequencies lower than or equal to the threshold belong to

one class and frequencies higher belong to the other class.

5.4.1 Methodology

All of the experiments were performed with an electrode array having 12 electrodes with

material sample 4 (Table 4.3) and Mecobo 3.0. One electrode was used for inputting the

signal to be classified, 2 electrodes were used as outputs and 9 electrodes were used as

configuration inputs. An example of electrode arrangement used in the frequency classi-

fication experiment is shown in Figure 5.7. Each chromosome defined which electrodes

were outputs, inputs (received square waves) or received the configuration inputs (square

waves or static voltages). The frequency of the signal applied to the input electrode was

the input frequency to be classified. The mark-space ratio of input electrode was set to

50% and its amplitude was 1 (3.5 V). The input-output timing was 128 milliseconds and

the output sampling frequency was 25 KHz.

Figure 5.7: An example of electrode arrangement used in the frequency classification
experiment. Green arrows are used to indicate reading outputs from the output elec-
trodes, a yellow arrow is used to show input being sent to an input electrode and blue
arrows are used to show configuration inputs being sent to 9 electrodes.

The frequency classification problem was interpreted as two-class problem. Each output

was associated with a particular class.
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Table 5.20: Description of the genes for frequency classification experiments.

Gene Signal applied to, or Allowed
symbol read from the ith values

electrode

pi Which electrode 0, 1, 2 . . . 11
is used

si Type 0 (static) or
1(square wave)

ai Amplitude 0 , 1
fi Frequency 500 ,501 . . . 10K
phi Phase 1, 2 . . . 10
ci Mark-space ratio 0, 1, . . . 100

In the evaluation of each chromosome, ten input frequencies were used: 1 KHz-10 KHz

in 1 KHz intervals. At the end of each evolutionary run, the final evolved configurations

of electrodes were tested using 10 different input frequencies: 0.5 KHz - 9.5 KHz in 1

KHz intervals. In each evolutionary run and test run, a fixed input threshold was used.

Seven different sets (A-G) of experiments were performed with seven different thresholds

and these were: 1.375 KHz, 2.750 KHz, 4.125 KHz, 5.500 KHz, 6.875 KHz, 8.250 KHz,

9.625 KHz respectively.

5.4.2 Genotype Representation

Each chromosome used ne = 12 electrodes at a time. The values that genes could take

are shown in Table 5.20, where i takes values 0, 1, . . . 11. The description of the genotype

for the experiments is shown in Table 5.21.

Mutated children were created from a parent genotype by mutating a single gene (i.e.

one gene of 72). In the input and output genes, only the pi (here the values of i are 0,

10, 11) has any effect, others do not have any effect. The gene pi decides which electrode

will be used for the inputs and outputs of the device. Thus, mutations in these genes

can choose a different electrode to be used as an input or output.

5.4.3 Output Mapping

The output was determined using the average transition gap by examining the output

buffers of output electrodes. This is the same as the average transition gap calculation

of tone discriminator and classification experiments and was described in Section 5.2.4.
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Table 5.21: Description of the genotype for frequency classification experiments. The
‘No. of gen. in each elec.’ column shows the number of genes associated with each
electrode. The ‘Gen. ass. with each elec.’ column shows the genes that are associated
with each electrode. The ‘Total no. of genes’ column shows the total number of genes
in each genotype. The ‘Genotype representation’ column shows the representation of a
genotype. The ‘Genes related to inputs’ column shows the gene values of a genotype,
which are related to inputs. The ‘Genes related to outputs’ column shows the gene
values of a genotype, which are related to outputs.

No. Gen. Total Genotype Genes related Genes related
of ass. no. representation to inputs to outputs
gen. with of
in each genes
each elec.
elec.

6 pi, si, ai, 12X6 p0s0a0f0ph0c0 . . . First 6 genes: Last 12 genes:
fi, phici =72 p11s11a11f11ph11c11 p0s0a0f0ph0c0 p10s10a10f10ph10c10

p11s11a11f11ph11c11

The class associated with an output electrode was determined by the output buffer with

the lower average transition gap. If the contents of the buffer from the first output elec-

trode had the lower average transition gap, it was designated to be class one, otherwise

it was designated to be class two. So, the buffer contents from the first output electrode

were expected to have the lower average transition gap only if the input frequency was

less than or equal to the threshold.

Thus, if the frequency classifier works as desired, it would have class one when the first

electrode buffer has the lower average transition gap whenever the input frequency is

less than or equal to the threshold. It would have class two when the first electrode

buffer has the higher average transition gap at the time when the input frequency is

higher than the threshold.

It should be noted that the output was decided to be class one in the case that both

output buffers had the same average transition gap.

5.4.4 Fitness Score

The fitness calculation required counts to be made of the number of true positives TP ,

true negatives TN , false positives, FP and false negatives, FN . There are four possible

cases which are described in Table 5.22.

98



Chapter 5

Table 5.22: The four possible cases for the fitness calculation of frequency classifica-
tion experiments. The first row shows the condition related to input frequency. The
first column shows the condition related to outputs obtained from output electrode
buffers. The second and third columns of all rows except the first row show the actions.

The input frequency is The input frequency is
less than or equal to more than the threshold

the threshold

The first electrode buffer has TP = TP + 1; FP = FP + 1;
the lower average transition gap TN = TN + 1; FN = FN + 1;
The second electrode buffer has FP = FP + 1; TP = TP + 1;
the lower average transition gap FN = FN + 1; TN = TN + 1;

In frequency classification problems, the set of value TP , TN , FP , FN accumulated over

all instance data (in the case of experiments, different applied frequencies) defines the so-

called confusion matrix. To obtain the fitness value, the Matthews correlation coefficient

(MCC) was used. The MCC is recognised as one of the best single number measures

of the quality of a classification algorithm based on the confusion matrix [Baldi et al.

(2000)]. It can be applied to balanced or unbalanced datasets. The MCC is calculated

using Equation 5.11 and was the fitness function adopted in the experiments.

MCC =
TP.TN − FP.FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(5.11)

If all results are correct, the fitness is 1 since in this case, FP = 0 and FN = 0. In the

case that all results are incorrect, TP = 0 and TN = 0, so fitness is -1.

It can be shown that TN has the same value as TP since when frequencies are correctly

classified, both TP and TN are incremented by the same amount (it is shown at the

beginning of this section). Similarly, FN has the same value as FP as when frequencies

are incorrectly classified, both FP and FN are incremented by the same amount. If

TN is replaced by TP and FN by FP in Equation 5.11, it can be found that

MCC =
TP − FP
TP + FP

(5.12)

As either the device has the correct response to a square wave of a particular frequency

or not, in each case, either TP has been incremented by one or FP has been incremented

by one. The sum must be equal to the number of frequencies applied. This is ten in

both training and test situations. Thus, the Equation 5.13 is:
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TP + FP = 10 (5.13)

Solving Equations 5.12 and 5.13,

TP = 5(MCC + 1) (5.14)

The number of correctly classified frequencies, Nc is the same as the value of TP , thus

Nc = 5(MCC + 1), so for instance, if MCC = 0.8, nine out of ten input frequencies are

correctly classified.

5.4.5 The Experiments and the Results

To evaluate each chromosome, ten input frequencies were applied and the responses were

measured. The evolutionary runs were carried out using seven different thresholds in

experiments A-G.

For each of these experiments, a (1+4)-evolutionary algorithm was used. In experiments,

a child replaced the parent if its fitness was greater than or equal to the parent. The

evolutionary algorithm was run for a maximum of 5000 generations. However, the

evolutionary run was terminated if fitness score reached at value 1.0 (when all the input

frequencies were correctly classified).

In all of the experiments of sets A-G, the number of runs was 20. The total time required

for all 20 runs of all experiments was almost 4 days.

The experiments show that in the case of all of these 7 sets of experiments, the average

result of all evolutionary runs has accuracy 100% in training. However, the average test

accuracy of all 20 runs is not 100%, but the best test accuracy of all 20 runs is 100% in

the case of 7 sets of experiments. The detailed results are shown in Table 5.23.

Figure 5.8 shows the change in fitness values in different generations for five evolutionary

runs using a threshold 2.750 KHz (set B).

Inspections were carried out on all the final gene values of configuration inputs of one

frequency classifier problem to see if there was a common pattern, however none was
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Table 5.23: Experimental results with different input thresholds. The first column
shows the set of experiments and the second column shows the input threshold used in
experiments. The third column shows average Matthews correlation coefficient (MCC)
for test data over all 20 runs.

Set Input threshold Average test result
(MCC)

A 1375 Hz 0.79
B 2750 Hz 0.79
C 4125 Hz 0.61
D 5500 Hz 0.53
E 6875 Hz 0.66
F 8250 Hz 0.62
G 9625 Hz 0.85

Figure 5.8: Fitness value vs. number of generations for five evolutionary runs using
a threshold of 2.750 KHz (set B).

found. The data of one run of frequency classifier experiments of set D (having threshold

5500 Hz, and both training and test accuracies are 100%) is shown in Table 5.24.

The frequency classifier experiment of set C (using a threshold 4125 Hz) was repeated

for a single evolutionary run of 100 generations using an electrode array containing no

material. It was found that no evolution happened with this electrode array. The fitness

value of any configurations was found to be the same after 100 generations.

A summary of outcomes from these experiments is given as follows:

• The experiments show that in the case of all sets of experiments, the average result

of all evolutionary runs has accuracy 100% in training. The average test accuracy

of all runs is not 100%, but the best test accuracy of all runs is 100% in the case

of all sets of experiments.
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Table 5.24: Final gene values of configuration inputs in one run of frequency classifier
problem using threshold 5500 Hz (set D). This run achieved training and test accuracies
of 100%. ‘Not applicable’ is used when mark-space ratio, frequency and phase values
are not applicable, i.e. for static voltages.

Configuration Electrode Signal Amplitude Frequency Mark-space Phase
input no. type (Hz) ratio

1 3 Wave 0 4755 85 7
2 9 Static 1 Not Not Not

applicable applicable applicable
3 8 Wave 0 4528 16 9
4 1 Wave 1 7026 34 7
5 11 Static 0 Not Not Not

applicable applicable applicable
6 10 Static 1 Not Not Not

applicable applicable applicable
7 0 Wave 1 3112 77 2
8 2 Wave 1 2422 31 8
9 6 Static 0 Not Not Not

applicable applicable applicable

• No evolution happened using an electrode array containing no material.

• Inspections were carried out on all the final gene values of configuration inputs of

one frequency classification experiment (obtained 100% correct result on average

in both training and test set) to see if there was a common pattern, however none

was found.

5.5 Solving Even Parity Problems

The n-bit parity function has n binary inputs and a single binary output. In the case

of even parity problem, the output is one if there are an even number of ones in the

input stream. The problem gets harder as the value of n increases, i.e. the number of

inputs increases. The even parity functions with a given number of variables are very

difficult functions to find solutions when carrying out a random search of all GP trees

with function set {AND, OR, NAND, NOR} [Koza (1992)].

Even parity-3 and 4 have been investigated here using a mixture of single-walled carbon

nanotubes with a polymer, where no logic gates have been used at all. This is the first

time that a material has been used to solve these even parity problems.
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Table 5.25: The experimental settings of all sets of even parity experiments. The ‘In.
sig.’ and ‘Conf. volt.’ columns show the input signals (SW=square waves, S=static
voltages) and configuration inputs (SW=square waves, S=static voltages, M=mixtures
of static voltages and square waves) of the experiments respectively. The ‘No. of in.’,
‘No. of out.’ and ‘No. of conf.’ columns show the number of inputs, number of
outputs and number of configuration inputs respectively. The ‘In. map.’ and ‘Out.
map.’ columns show the input mapping (C=mark-space ratio mapping, F=frequency
mapping, A=amplitude mapping) and output determination method (PO=percentage
of ones, TG=average transition gap) respectively. The experiments of all sets were
performed using Mecobo 3.0 and material sample 1 (according to Table 4.3). Sixteen
electrodes were used in total. The input-output timing was 25 milliseconds, and the
output sampling frequency was 25 KHz.

Set Problem In. Conf. No. No. No. In. Out.
sig. volt. of of. of map. map.

in. out. conf.

A Even Parity-3 SW M 3 2 11 F AT
B Even Parity-3 SW M 3 2 11 C PO
C Even Parity-3 S M 3 2 11 A PO
D Even Parity-3 S S 3 2 11 A PO
E Even Parity-3 S S 3 1 12 A PO
F Even Parity-3 SW SW 3 2 11 C PO
G Even Parity-4 SW M 4 2 10 F AT
H Even Parity-4 S S 4 2 10 A PO

5.5.1 Methodology

Eight sets (A-H) of experiments were performed. The experimental settings of all sets

of even parity experiments are described in Table 5.25 and the motives for performing

the even parity experiments are described in Table 5.26.

Each chromosome defined which electrodes were outputs, inputs (received square waves

or static voltages) or received the configuration inputs (square waves or static voltages).

In the evaluation of each chromosome, 8 test cases were used in the case of even parity-3

problem and 16 test cases were used in the case of even parity-4 problem.

5.5.2 Genotype Representation

In the case of all experiments, each chromosome used ne = 16 electrodes at a time. The

values that genes could take are shown in Table 5.27. i takes values 0, 1, . . . 15. The

description of the genotype for the experiments is shown in Table 5.28.

In all experiments, the mutated children were created from a parent genotype by mutat-

ing a single gene (i.e. one gene of 80 in experiments A-C, G; one gene of 64 in experiment
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Table 5.26: The motives for performing the even parity experiments. The first column
shows the sets of experiments. The second column shows the motive.

Experiments Motive

Sets A, B, C Comparisons of the performances of different input mappings
and output determination methods (frequency, mark-space ratio
and amplitude for input mapping; average transition gap and
percentage of ones for output determination method).

Sets C, D Comparison of the performances of different types (static
voltages against mixtures of static voltages and square waves)
of configuration inputs.

Sets B, F Comparison of the performances of different types (square waves
against mixtures of static voltages and square waves) of
configuration inputs.

Sets D, E Comparison of the performances of using different numbers of
output electrode(s).

Sets G, H Comparison of the performances of solving even parity-4 problem.
Set A Comparison of experimental results against the results

of Cartesian genetic programming.
Set G Comparison of experimental results against the results

of Cartesian genetic programming.

Table 5.27: Description of the genes for even parity experiments.

Gene symbol Signal applied to, or read from Allowed values
the ith electrode

pi Which electrode is used 0, 1, 2 . . . 15
si Type (Irrelevant for sets: D-F, H) 0 (static), 1(square wave)
ai Amplitude 0 , 1
fi Frequency (Irrelevant for sets: D, E, H) 500 ,501 . . . 10K
ci Mark-space ratio 0, 1, 2 . . . 100

(Irrelevant for sets: D, E, H)

F; one gene of 32 in experiments D, E, H). In these input and output genes, only the

first pi has any effect, others do not have any effect. The gene pi decides which electrode

will be used for the input or output of the device. Thus, mutations in this gene can

choose a different electrode to be used as an input or output.

Examples of electrode arrangements of even parity-3 and even parity-4 experiments are

shown in Figures 5.9 and 5.10 respectively.

5.5.3 Input Mapping

In experiments A and G, each of the inputs to the electrode array was a square wave of

a particular frequency. The frequency was determined by a linear mapping of attribute

data. In experiments B and F, each of the inputs to the electrode array was a square
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Figure 5.9: Two examples of electrode arrangements used in the even parity-3 exper-
iments. (a) This type of electrode arrangement is used in sets A-D and F. Green arrows
are used to indicate reading outputs from output electrodes, yellow arrows are used to
show inputs being sent to input electrodes and blue arrows are used to show configura-
tion inputs being sent to 11 electrodes. (b) This type of electrode arrangement is used
in set E. A green arrow is used to indicate reading output from an output electrode,
yellow arrows are used to show inputs being sent to input electrodes and blue arrows
are used to show configuration inputs being sent to 12 electrodes.

Figure 5.10: An example of electrode arrangement used in even parity-4 experiments.
This type of electrode arrangement is used in sets G and H. Green arrows are used to
indicate reading outputs from output electrodes, yellow arrows are used to show inputs
being sent to input electrodes and blue arrows are used to show configuration inputs
being sent to 10 electrodes.
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Table 5.28: Description of the genotype for even parity experiments. The ‘Exp.’
column shows the set(s) of experiments. The ‘No. of gen. in each elec.’ column
shows the number of genes associated with each electrode. The ‘Gen. ass. with each
elec.’ column shows the genes that are associated with each electrode. The ‘Total no.
of genes’ column shows the total number of genes in each genotype. The ‘Genotype
representation’ column shows the representation of a genotype. The ‘Genes related
to inputs’ column shows the gene values of a genotype, which are related to inputs.
The ‘Genes related to outputs’ column shows the gene values of a genotype, which are
related to outputs.

Exp. No. Gen. Total Genotype Genes related Genes related
of ass. no. representation to inputs to outputs
gen. with of
in each genes
each elec.
elec.

Sets 5 pi, si, 16X5 p0s0a0f0c0 . . . First 15 genes: Last 10 genes:
A-C ai, fi, =80 p15s15a15f15c15 p0s0a0f0c0 p14s14a14f14c14

ci . . . . . .
p2s2a2f2c2 p15s15a15f15c15

Set 2 pi, ai, 16X2 p0a0 . . . First 6 genes: Last 4 genes:
D =32 p15a15 p0a0 p14a14

. . . . . .
p2a2 p15a15

Set 2 pi, ai, 16X2 p0a0 . . . First 6 genes: Last 2 genes:
E =32 p15a15 p0a0 p15a15

. . .
p2a2

Set 4 pi, ai 16X4 p0a0f0c0 . . . First 12 genes: Last 8 genes:
F fi, ci =64 p15a15f15c15 p0a0f0c0 p14a14f14c14

. . . . . .
p2a2f2c2 p15a15f15c15

Set 5 pi, si, 16X5 p0s0a0f0c0 . . . First 20 genes: Last 10 genes:
G ai, fi, =80 p15s15a15f15c15 p0s0a0f0c0 p14s14a14f14c14

ci . . . . . .
p3s3a3f3c3 p15s15a15f15c15

Set 2 pi, ai, 16X2 p0a0 . . . First 8 genes: Last 4 genes:
H =32 p15a15 p0a0 p14a14

. . . . . .
p3a3 p15a15

wave of a particular mark-space ratio. The mark-space ratio was determined by a linear

mapping of attribute data. In experiments C-E and H, each of the inputs to the electrode

array was a static voltage of a particular amplitude. The amplitude was determined by a

linear mapping of attribute data. The input mappings of these experiments are described

as follows:

Denote the ith attribute in a dataset by Ii, where i takes values {1, 2, 3} in the case

of sets A-F and {1, 2, 3, 4} in the case of sets G and H. Denote the maximum value

and minimum value taken by this attribute in the whole dataset by Iimax and Iimin
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Table 5.29: Input mappings of even parity experiments

Exp. Equation Variables Other parameters
of input signals

Sets Fi = aiIi + bi (5.15) Ii is mapped to a square Mark-space ratio

A, G Here, wave frequency Fi, where =50% and

ai =
(Fmax − Fmin)

(Iimax
− Iimin

)
(5.16) the maximum allowed amplitude=1

bi =
(FminIimax − FmaxIimin)

(Iimax
− Iimin

)
(5.17)

frequency is Fmax and

the minimum allowed
frequency is Fmin. Here
Fmax=10KHz and
Fmin=500Hz

Sets Mi = aiIi + bi (5.18) Ii is mapped to a mark- Frequency

B, F Here, space ratio Mi, where =5KHz and

ai =
(Mmax −Mmin)

(Iimax
− Iimin

)
(5.19) the maximum allowed amplitude=1

bi =
(MminIimax

−MmaxIimin
)

(Iimax
− Iimin

)
(5.20)

mark-space ratio is

Mmax and the minimum
allowed mark-space ratio
is Mmin. Here Mmax

=75% and Mmin=25%

Sets Ai = aiIi + bi (5.21) Ii is mapped to a static

C-E, Here, digital voltage with

H ai =
(Amax −Amin)

(Iimax
− Iimin

)
(5.22) amplitude Ai, where

bi =
(AminIimax

−AmaxIimin
)

(Iimax − Iimin)
(5.23)

the maximum allowed

amplitude is Amax and
the minimum amplitude
is Amin. Here
Amax=1 and Amin=0

respectively. Then the linear input mappings of the even parity experiments are shown

in Table 5.29.
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5.5.4 Output Mapping

In experiments A and G, the output was determined using the average transition gap

by examining the output buffers of output electrodes. This is the same as the average

transition gap calculation of tone discriminator, frequency classification and machine

learning classification experiments and was described in Section 5.2.4. The thinking

behind using the average transition gap is that it may be useful as it is frequency

related.

However, in experiments B-F and H, percentage of ones in an output buffer was used

for determining output classes. The thinking behind using a percentage of ones is that

it may be useful as it is mark-space ratio and amplitude related.

The even parity problem (both even parity-3 and even parity-4) was interpreted as two-

class problem. If the output value of even parity problem is 0, it was interpreted to be

class 1, otherwise it was class 2.

In the case of all experiments except the E, two electrodes were used for outputs. The

class associated with an output electrode was determined by the output buffer with the

lower value (average transition gap or percentage of ones). If the contents of the buffer

from the first output electrode had the lower value, it was designated to be class one,

otherwise it was designated to be class two. So, the buffer contents from the first output

electrode were expected to have the lower value only if the output class was 1. Thus,

if the solution works as desired, it would have class one when the first electrode buffer

has the lower value whenever the output value of the even parity problem is 0. It would

have class two when the first electrode buffer has the higher value at the time when the

output value of the problem is 1. It should be noted that the output was decided to be

class one in the case that both output buffers had the same value.

In experiment E, only one electrode was used for output. Percentage of ones in an

output buffer was used in this case. The class associated with the output electrode was

determined by a threshold value, which was set to 50. If the output electrode buffer had

a value of the percentage of ones less than or equal to 50, it was designated to be class

one, otherwise it was designated to be class two. So, the output electrode buffer was

expected to have a value of the percentage of ones less than or equal to 50 only if the

output class was one. Thus, if the solution works as desired, it would have class one,
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Table 5.30: The four possible cases for the fitness calculation of even parity exper-
iments. The first column shows the set(s) of experiments. The first row shows the
condition related to output (Boolean value) of the problem. The second column shows
the condition related to output obtained from output electrode buffer(s). The third
and fourth columns of all rows except the first row show the action.

The output of The output of
the problem is 0 the problem is 1

Sets A, G

The first electrode TN = TN + 1; FN = FN + 1;
buffer has the lower
average transition gap
The second electrode FP = FP + 1; TP = TP + 1;
buffer has the lower
average transition gap

Sets B-D, F, H

The first electrode TN = TN + 1; FN = FN + 1;
buffer has the lower
percentage of ones
The second electrode FP = FP + 1; TP = TP + 1;
buffer has the lower
percentage of ones

Set E

The output electrode TN = TN + 1; FN = FN + 1;
buffer has a percentage
of ones less than or
equal to 50
The output electrode FP = FP + 1; TP = TP + 1;
buffer has a percentage
of ones more than 50

when the output electrode buffer has a value (percentage of ones) less than or equal to

50 whenever the output value of the even parity problem is 0. It would have class two

when the output electrode buffer has a value more than 50 at the time when the output

value of the problem is 1.

5.5.5 Fitness Score

In the case of all experiments, the fitness calculation required counts to be made of the

number of true positives TP , true negatives TN , false positives, FP and false negatives,

FN . There are four possible cases which are described in Table 5.30.

In even parity problems, the set of value TP , TN , FP , FN accumulated over all instance

data (test cases) defines the so-called confusion matrix. To obtain the fitness value, the

Matthews correlation coefficient (MCC) [Baldi et al. (2000)] was used. The MCC is

calculated using Equation 5.24 and was the fitness function adopted in the experiments

of all sets.
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MCC =
TP.TN − FP.FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(5.24)

If all results are correct, the fitness is 1 since in this case, FP = 0 and FN = 0. In the

case that all results are incorrect, TP = 0 and TN = 0, so fitness is -1. It should be

noted that MCC was used in the frequency classification experiments (Section 5.4) to

calculate fitness score.

In addition to the fitness calculation, the number of classes (test cases), which were

predicted correctly, were recorded by summing up the values of TP and TN .

5.5.6 The Experimental Details

For each of these experiments, a (1+4)-evolutionary algorithm was used. The total

time required for each of the runs, where the number of generations was 5000 (i.e.

the evolutionary run was not stopped before completing 5000 generations due to not

obtaining fitness value 1.0), was more than 5 hours in the case of experiments B, C, E-F

and more than 9 hours in the case of experiments G and H. The later took a longer

time due to the fact that the experiments G and H solved even parity-4 problem, and

the even parity-4 problem has twice as many test cases as the even parity-3 problem.

It should be noted that none of the experiments of sets A and D was carried out for

up to 5000 generations due to obtaining 100% correct result before completing the full

evolutionary run.

To evaluate the effectiveness of the evolution-in-materio method for solving even parity-

3 and 4 problems, the results of experimental material were compared with the results

of Cartesian genetic programming using the same (1 + 4)-evolutionary algorithm over

the same number of generations (5000) and the same number of runs (20), but the evo-

lutionary run was terminated when accuracy reached 100%. The comparison results of

experimental material and Cartesian genetic programming are shown in detail in Section

5.5.6.1. In Cartesian genetic programming, the maximum number of nodes was 200, and

the mutation rate was 2.00%, i.e. 12 genes per chromosome were mutated. In the case

of all experiments of the experimental material and Cartesian genetic programming, a

child replaced the parent if its fitness was greater than or equal to the parent. The
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function set chosen for this study was {AND, OR, NAND, NOR}. Evolving even par-

ity problems using a function set {AND, OR, NAND, NOR} is a standard benchmark

problem in genetic programming [Koza (1992)].

Cartesian genetic programming was applied on even parity problems before. Miller

solved even parity-3,4 and 5 successfully with Cartesian genetic programming with

function set {AND, OR, NAND, NOR}. He showed that extremely low populations

are most effective. (1+λ)-evolutionary algorithm (probabilistic hillclimber) was proved

to be more efficient than genetic programming and evolutionary programming [Miller

(1999)]. However, Cartesian genetic programming did not evolve any general solution

in that experiment.

Harding et al. used self-modifying Cartesian genetic programming for the first time

on even parity problems (with function set {AND, OR, NAND, NOR}), where parity

circuits were evolved with up to 8 inputs [Harding et al. (2007)]. Self-modifying Carte-

sian genetic programming is a form of Cartesian genetic programming, which includes

primitive functions that modify the program. Later on, Harding et al. showed that

using self-modifying Cartesian genetic programming it is easier to solve difficult parity

problems than using either Cartesian genetic programming or modular Cartesian ge-

netic programming with function set {AND, OR, NAND, NOR}, where the efficiencies

of solutions grow with problem sizes. Most importantly, they showed that it is possible

to evolve general solutions to arbitrary-sized even parity problems using self-modifying

Cartesian genetic programming [Harding et al. (2009)].

5.5.6.1 The Results

The average accuracies of all sets of experiments are shown in Table 5.31. Accuracy is

the percentage of the test cases correctly predicted.

The results of experiments A-C were used to compare the performances of different input

mappings and output determination methods. It has been found from the comparisons

that the result of experiment A was the best of all. That means, it has been found that

in the case of even parity-3 experiments, using frequency for input mapping and average

transition gap for classifying outputs performed the best of all types of mappings. The

result of experiment C was better than the result of experiment B, i.e. in the case
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Table 5.31: Experimental results of all sets of even parity experiments. The second
column shows the accuracy averaged over 20 runs. Accuracy is the percentage of the
test cases correctly predicted.

Set Average accuracy

A 100%
B 97.5%
C 99.38%
D 100%
E 78.75%
F 99.38%
G 94.38%
H 87.5%

Table 5.32: The statistical significance test on results of even parity experiments of
sets A-C. The first column shows the pair of sets on which the comparison is performed.
‘U-test’, ‘KS-test’ and ‘Effect size’ columns show results of the statistical significance
tests. The statistical significance tests have been performed using the number of correct
instances of all runs. ‘X’ in ‘U-test’ and ‘KS-test’ columns indicates that the difference
between the two data samples is statistically significant, and ‘X’ indicates that the
difference is statistically not significant.

Pair of sets U-test KS-test Effect size

Set A - Set B X X Medium
Set B - Set C X X Medium
Set A - Set C X X Small

of even parity-3 experiments, the performance of using amplitude was better than the

performance of using mark-space ratio for input mapping.

The results of each pair of sets A-C have been compared using the U-test and KS-test

[Hollander and Wolfe (1973)]. The effect size statistic [Vargha and Delaney (2000)] has

also been computed. It should be noted that the statistical significance tests have been

performed using the number of correct instances of all runs. The statistical significance

test results comparing experiments A-C are shown in Table 5.32.

The results of experiments C and D were used to compare the performances of different

types of configuration inputs, where experiment D used only static voltages and exper-

iment C used mixtures of static voltages and square waves for configuration inputs. In

both of these cases, the input signals were static voltages. It has been found that in

the case of even parity-3 experiments, the performance of using only static voltages was

better than the performance of using mixtures of static voltages and square waves for

configuration inputs. Statistical significance tests have also been performed, and it has

been found that the difference is statistically not significant according to U-test and
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KS-test. The same type of comparison (performances of different types of configura-

tion inputs) was performed using experiments B and F, where experiment F used only

square waves and experiment B used mixtures of static voltages and square waves for

configuration inputs. In both of these cases, the input signals were square waves. It has

been found that in the case of even parity-3 experiments, the performance of using only

square waves was better than the performance of using mixtures of static voltages and

square waves for configuration inputs. Statistical significance tests have also been per-

formed, and it has been found that the difference is statistically not significant according

to U-test and KS-test.

Comparing the results of experiment C with D and experiment B with F, it has been

found that in the case of even parity-3 experiments, for configuration inputs, the perfor-

mance of using only static voltages was better than the performance of using mixtures

of square waves and static voltages when input signals were static voltages. Further-

more, the performance of using only square waves was better than the performance of

using mixtures of square waves and static voltages for configuration inputs when input

signals were square waves. Thus, it appears that the performances of different types of

configuration inputs may be influenced by the input signals. If the input signals and

configuration inputs are combined together and defined as input signals, then it is found

that in the case of even parity-3 experiments, for input signals, the performance of using

either all static voltages or all square waves was better than the performance of using

mixtures of static voltages and square waves. However, the difference of the results is

statistically not significant according to U-test and KS-test, i.e very little difference.

This little difference might be due to the influences of some other factors such as in-

put mappings, output determination methods and types (digital or analogue) of input

signals. This requires further investigation.

The results of experiments D and E were used to compare the performances of using

different numbers of output electrode(s) to classify Boolean output values of even parity-

3 problem, where experiment D used two output electrodes and experiment E used only

one output electrode. It has been found that in the case of even parity-3 experiments,

the performance of using two output electrodes was better than the performance of using

one output electrode. Statistical significance tests have also been performed, and it has

been found that the difference is statistically significant according to U-test and KS-test,

and also the effect size is large.
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After analysis of the results of all sets (A-F) of even parity-3 experiments, it has been

found that both experiments A and D acquired 100% accuracy on average, i.e. all the

experiments of sets A and D predicted all the 8 test cases correctly. In the case of ex-

periment A, the 100% correct result was obtained on average within 275.75 generations

(averaged over 20 runs) and the lowest number of generations to obtain 100% correct

result was 27. In the case of experiment D, the 100% correct result was obtained on

average within 899.9 generations (averaged over 20 runs) and the lowest number of gen-

erations to obtain 100% correct result was 43. If the average number of generations or

the lowest number of generations to obtain 100% correct result is considered, it can be

said that the performance of experiment A was better than the performance of experi-

ment D. That means, in the case of even parity-3 experiments, the performance of using

frequency for input mapping, average transition gap for output mapping, square waves

for input signals, mixtures of static voltages and square waves for configuration inputs

was better than the performance of using amplitude for input mapping, percentage of

ones for output mapping, static voltages for input signals and configuration inputs. The

same outcome has been obtained in the case of experiments G and H, where experi-

ment G acquired 94.38% accuracy on average, 100% accuracy in the case of 6 out of 20

runs and experiment H acquired 87.5% accuracy on average, but none of the 20 runs of

experiment H acquired 100% accuracy.

The experimental settings of sets G and H were exactly the same as the experimental

settings of sets A and D respectively. Only those sets of experiments of even parity-3

problem were applied on the even parity-4 problem, which acquired 100% accuracy on

average.

It has been found from the results that the performance of experiment G was not as

good as the performance of experiment A and the performance of experiment H was not

as good as the performance of experiment D. This might be due to the fact that the

experiments G and H might need more generations to obtain 100% accurate result than

the experiments A and D because of the higher number of test cases. If experiments G

and H would be run for more generations, better results could be obtained.

The performance of experiment A was the best of all of the even parity-3 experiments

and the performance of experiment G was better than the other (set H) even parity-4

experiment. That is why the results of experiments A and G were compared with the
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Table 5.33: Comparative results of experimental material (sets A and G) with Carte-
sian genetic programming on even parity-3 and 4 problems. The experiments A and
G were performed using material sample 1 and Mecobo 3.0. In all of these cases, the
number of runs was 20 and the number of generations was 5000. However, in both of
these cases, the evolutionary run was terminated when the accuracy reached 100%. The
input-output timing of each experiment was 25 milliseconds. The first column shows
the set of experiments. The second column shows the problem (even parity-3 or even
parity-4) on which the experiments were performed. The third and fourth columns show
the average accuracy of the experimental material and Cartesian genetic programming
respectively. Accuracy is the percentage of the test cases correctly predicted. ‘U-test’,
‘KS-test’ and ‘Effect size’ columns show results of the statistical significance tests. The
statistical significance tests have been performed using the number of correct instances
of all runs. ‘X’ in ‘U-test’ and ‘KS-test’ columns indicates that the difference between
the two results is statistically significant, and ‘X’ indicates that the difference is statis-
tically not significant.

Set Problem Average Average U-test KS-test Effect
accuracy accuracy size
of of
experimental Cartesian
material genetic

programming

A Even Parity-3 100% 100% X X Small
G Even Parity-4 94.38% 97.19% X X Large

results of Cartesian genetic programming. The comparison results are shown in Table

5.33. It should be noted that both of these experiments (A and G) used frequency for

input mapping, average transition gap for classifying outputs, square waves for input

signals and mixtures of static voltages and square waves for configuration inputs.

It has been found that in the case of even parity-3 problem, both Cartesian genetic

programming and experimental material acquired accuracy 100% on average. In the case

of experimental material, the 100% correct result was obtained on average within 275.75

generations (averaged over 20 runs) and the lowest number of generations to obtain 100%

correct result was 27. In the case of Cartesian genetic programming, the 100% correct

result was obtained on average within 845 generations (averaged over 20 runs) and

the lowest number of generations to obtain 100% correct result was 142. If the average

number of generations or the lowest number of generations to obtain 100% correct result

is considered, it can be said that in the case of even parity-3 problem, the experimental

material performed better than Cartesian genetic programming. It has been observed

from the comparison results of the Table 5.33 that in the case of even parity-4 problem,

Cartesian genetic programming performed better than the experimental material.

A summary of outcomes from these experiments is given as follows:
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• In the case of even parity-3 problem, using frequency for input mapping and av-

erage transition gap for classifying outputs performed the best of all types of

mappings. It should be noted that this outcome was obtained using digital inputs,

outputs and configuration inputs (i.e using Mecobo 3.0).

• In the case of even parity-3 problem, the performance of using amplitude was

better than the performance of using mark-space ratio for input mapping. It

should be noted that this outcome was obtained using digital inputs, outputs and

configuration inputs (i.e using Mecobo 3.0).

• In the case of even parity-3 problem, for configuration inputs, the performance of

using only static voltages was better than the performance of using mixtures of

square waves and static voltages when input signals were static voltages. Further-

more, the performance of using only square waves was better than the performance

of using mixtures of square waves and static voltages for configuration inputs when

input signals were square waves. Thus, it appears that the performances of dif-

ferent types of configuration inputs may be influenced by the input signals. If

the input signals and configuration inputs are combined together and defined as

input signals, then it is found that for input signals, the performance of using

either all static voltages or all square waves was better than the performance of

using mixtures of static voltages and square waves. However, the difference of

the results is statistically not significant according to U-test and KS-test, i.e very

little difference. This little difference might be due to the influences of some other

factors such as input mappings, output determination methods and types (digital

or analogue) of input signals. This requires further investigation.

• The results of even parity-4 experiments were not as good as the results of even

parity-3 experiments. This might be due to the fact that the experiments of the

even parity-4 problem need more generations to get 100% accurate result than the

even parity-3 problem because of a higher number of test cases. If experiments of

even parity-4 problem would be run for more generations, better results could be

obtained.

• In the case of even parity-3 problem, the performance of using two output elec-

trodes was better than the performance of using one output electrode.
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• It has been found that in the case of even parity-3 problem, both Cartesian ge-

netic programming and experimental material acquired 100% accuracy on average.

However, if the average number of generations or the lowest number of generations

to obtain 100% correct result is considered, it can be said that in the case of even

parity-3 problem, the experimental material performed better than Cartesian ge-

netic programming.

• It has been found that Cartesian genetic programming performed better than the

experimental material in the case of even parity-4 problem.

5.6 Summary

Four experiments have been described in detail in this chapter: machine learning classi-

fication, tone discriminator, frequency classification and even parity experiments. This

is the first time that machine learning classification, frequency classification and even

parity problems have been attempted by the manipulation of physical materials. It

cannot be said that solving classification problems using evolution-in-materio is very

efficient, but these are the initial experiments. More investigations are required to be

performed in future, which might make evolution-in-materio as a useful and efficient

technique to solve these problems. Also, the physical material plays a very important

role in this regard. This is the first time that mixtures of single-walled carbon nanotubes

and polymers have been used to solve classification problems.

The tone discriminator experiments obtained 100% accuracy on average in all of the

cases. The tone discriminator problem has been extended here to the more general

problem of frequency classification. This is a more difficult problem than the tone dis-

criminator since more than two tones have to be classified. In addition, in the frequency

classification experiments, ten unseen test frequencies have been used to test the gen-

erality of evolved solutions. These experiments obtained 100% accuracy in most cases.

The even parity-3 experiments also obtained 100% accuracy on average in two cases.

Both tone discriminator and frequency classifier problems have advantages to solve us-

ing Mecobo as no input mapping is required for these two problems. Square waves with

specific frequency can be used as input directly in the case of these two problems.
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Different mixtures of material and different organisations of electrodes were used in

machine learning classification (using Iris dataset) and tone discriminator experiments

to find the best mixture of material and the best organisation of electrodes. Different

hardware platforms (Mecobo 3.0 and Mecobo 3.5) were also used in classification exper-

iments using Iris dataset, which showed that the performance of Mecobo 3.5 was better

than the performance of Mecobo 3.0.

An investigation using a frequency classifier problem has shown that no evolution can

be possible using an electrode array containing no material. The tone discriminator

problem has shown that single-walled carbon nanotubes are required in the material

mixture for solving computational problems.

The next chapter describes those experiments which require many outputs, where the

number of outputs of a problem is more than the total number of electrodes of an

electrode array.
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Chapter 5 described experiments requiring few outputs, where the number of inputs,

outputs and configuration inputs of a problem is less than the total number of electrodes
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of an electrode array. This chapter describes the experiments having many outputs,

where the number of outputs of a problem is more than the total number of electrodes

of an electrode array. As mentioned in Chapter 4, the electrode arrays used have either

12 or 16 electrodes. Function optimisation and bin packing problems typically have

many dimensions, thus requiring many outputs to define a solution. The technique used

in these experiments to solve problems having more outputs is called split genotype

technique. The description of this technique and the characteristics of the problems,

which are suitable for the application of the split genotype technique, are discussed in

this chapter.

6.1 Split Genotype Technique

In the split genotype technique, a genotype consisting of multiple chromosomes is used,

each of which is applied to a number of electrodes. On each application of a chromosome,

the configuration inputs are applied to a number of electrodes of an electrode array and

the values are read from the output buffer(s) of samples from the remaining electrode(s)

of that electrode array. This means, each chromosome defines which electrode(s) will be

read and which electrodes will receive the input signals or configuration inputs (square

waves or static voltages). The final fitness is calculated from all the outputs of all

chromosomes of the genotype. In this technique, each of the chromosomes of a genotype

(genotype of each individual of the population) is applied in turn. This is referred

to as an iteration. An iteration means applying the evolved configuration inputs to

an electrode array, applying inputs and reading outputs. This is repeated for each

evolved chromosome. For instance, for a 30 variable function optimisation problem, 30

chromosomes have been used in the genotype, where each chromosome defines which

electrode will be read and which electrodes will be used as configuration inputs (as no

input signal was needed).

6.2 Optimising Functions

Benchmark function optimisation problems are functions, f(xi) of a number (n) of real-

valued variables, where i = 1, 2, . . . n. The goal is to obtain the values of xi, which
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make f(xi) to be a minimum. In evolutionary computation, many complex, multi-

modal functions have been designed, whose minima are known, but these are challenging

functions to minimise using search algorithms. An example of such a function is given

in Equation 6.1 [Vesterstrom and Thomsen (2004)], and the two-dimensional version is

illustrated in Figure 6.1. In general, these functions have many dimensions (typically

30).

f8(x) =
d∑

i=1

−xi sin(
√
|xi|) (6.1)

Figure 6.1: Function optimisation problem f8(x1, x2).

Optimisation functions are typically defined over a variety of ranges for each variable,

xi. For instance, f8 is defined over −500 ≤ xi ≤ 500 and has a global minimum given

by min(f8(x)) = f8(420.9687, ..., 420.9687) = −12, 569.5 [Vesterstrom and Thomsen

(2004)].

Here in these experiments, 17 out of 23 benchmark functions (functions 1, 3 - 11, 14 - 16,

18, 21 - 23) have been chosen from [Vesterstrom and Thomsen (2004)] and 6 out of 23

functions (functions 2, 12 - 13, 17, 19, 20) from [Yao and Liu (1996)]. These benchmark

functions are defined in Appendix C.

6.2.1 Methodology

Four different sets (A-D) of experiments were performed with function optimisation

problems. The experimental settings of all sets of function optimisation experiments are
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Table 6.1: The experimental settings of all sets of function optimisation experiments.
The ‘Fun. set’ column shows the benchmark function numbers on which the experiments
were performed. The ‘No. of gen.’ and ‘No. of run’ columns show the number of
generations and number of runs respectively. The ‘Mat. sam.’ and ‘No. of el.’ columns
show the material sample number (according to Table 4.3) and number of electrodes
used in the experiments respectively. The ‘SG’ column shows whether the split genotype
technique has been used or not. ‘X’ in this column indicates that the split genotype
technique has been used and ‘X’ indicates that the split genotype technique has not
been used. The ‘Mec. ver.’ column shows the version of Mecobo. The ‘Out. sig.’,
‘Con. vol.’ and ‘Out. map.’ columns show the types of output signals (A=analogue,
D=digital), configuration inputs (AS=analogue static voltages, M=mixtures of digital
square waves and digital static voltages) and output mapping (AB=average of absolute
values of output buffer, PO=percentage of ones) respectively. The ‘In. pop.’ column
shows the information of initial population (R=random, F=fixed) of the evolutionary
run. In the case of fixed initial population, the population was seeded based on some
initial investigations (the detailed description is given in Section 6.2.3). The last column
shows the input-output timing used in the experiments (measured in milliseconds). In
all sets of experiments, a 25 KHz output sampling frequency was used. It should be
noted that in the case of set A, some initial investigations were performed, which showed
that no more than 40% ones can be obtained in output buffer with input-output timing
128 milliseconds, that is why the value 2.5 was multiplied with the value of percentage
of ones in an output buffer in this case (the detailed description is given in Section
6.2.3). The outcomes of the same initial investigations were used to seed the initial
populations of the experiments of set A.

Set Fun. No. No. Mat. No. SG Mec. Out. Con. Out. In. Time
set of. of sam. of ver. sig. vol. map. pop.

gen. run el.

A 1-23 5000 10 4 12 X 3.0 D M PO F 128
B 14-19, 1000 20 1 16 X 3.0 D M PO R 50

21-23
C 14-19, 1000 20 1 16 X 3.5 A AS AB R 50

21-23
D 14-17 1000 20 1 16 X 3.5 A AS AB R 50

described in Table 6.1. The motives for performing the function optimisation experi-

ments are described in Table 6.2.

A series of output values (these are digital in the case of Mecobo 3.0 and analogue

in the case of Mecobo 3.5) were read from a buffer of samples taken from a single

electrode. These values were used to define the value of a variable ‘xi’ in the function

optimisation problem. As the optimisation functions have more than one dimension,

more than one output from the device was needed. In these cases, the split genotype

technique was used, where one electrode of an electrode array was used as an output

and the remaining electrodes of that electrode array were used as configuration inputs.

However, the experiments of set D did not use the split genotype technique as these

experiments were applied on four functions that require few outputs. The fitness function
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Table 6.2: The motives for performing the function optimisation experiments. The
first column shows the sets of experiments. The second column shows the motive.

Experiments Motive

Set A Comparison of experimental results against the results
of Cartesian genetic programming

Sets B, C Comparison of the performance of using all analogue
configuration inputs and outputs against the performance
of using all digital configuration inputs and outputs
(comparison of the performances of two Mecobo platforms)

Sets C, D Comparison of the performance of using the split genotype technique
against the performance without using the split genotype technique.

of a function optimisation benchmark was the mathematical function defined in the

benchmark. The process of generating outputs in function optimisation experiments

using the split genotype technique is shown in Figure 6.5.

Figure 6.2: The process of generating outputs in function optimisation experiments
using the split genotype technique.

It should be noted that no more than 8 static analogue input signals (inputs and con-

figuration inputs) can be sent via Mecobo 3.5. If more than 8 static analogue signals

are needed to be sent to the material, the remaining input signals are set to static -2.3V

by default by Mecobo 3.5. As 15 configuration inputs were used in the experiments

of set C, the remaining 7 configuration inputs were set to static -2.3V by Mecobo 3.5

irrespective of the voltage levels set by the genotype for these configuration inputs.

In the case of functions 14, 16 and 17 of set D, two electrodes were used as outputs
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Table 6.3: Description of the genes for function optimisation experiments.

Gene Signal applied to, or Allowed
symbol read from the ith values

chromosome and the
jth electrode

pi,j Which electrode 0, 1, 2 . . . 11 (for set: A)
is used 0, 1, 2 . . . 15 (for sets: B-D)

si,j Type (Irrelevant for sets: C, D) 0 (static) or
1(square wave)

ai,j Amplitude 0 , 1 (for sets: A, B)
1, 2 . . . 254 (for sets: C, D)

fi,j Frequency (Irrelevant for sets: C, D) 500 ,501 . . . 10K
phi,j Phase (Irrelevant for sets: B-D) 1, 2 . . . 10
ci,j Mark-space ratio 0, 1, . . . 100

(Irrelevant for sets: C, D)

and the remaining 14 electrodes were used as configuration inputs. As 14 configuration

inputs were used in the experiments, the remaining 6 configuration inputs were set to

static -2.3V by Mecobo 3.5 irrespective of the voltage levels set by the genotype for

these configuration inputs. In the case of function 15 of set D, four electrodes were used

as outputs and 12 electrodes were used as configuration inputs. As 12 configuration

inputs were used in the experiments, the remaining 4 configuration inputs were set to

static -2.3V by Mecobo 3.5 irrespective of the voltage levels set by the genotype for these

configuration inputs.

6.2.2 Genotype Representation

In experiment A, each chromosome used ne = 12 electrodes at a time. In experiments

B-D, each chromosome used ne = 16 electrodes at a time.

The values that genes could take are shown in Table 6.3. The electrode index, j takes

values 0, 1, . . . ne − 1. The chromosome index, i takes values 0, 1, . . . d − 1 for experi-

ments A-C, where d is the number of dimensions of the function optimisation problem.

However, in experiment D, the value of i is always 0. The description of the genotype

for the experiments is shown in Table 6.4.

In the case of all sets of experiments, the mutated children were created from a parent

genotype by mutating a single gene. For example, in experiment A, one gene of 2106 was

mutated in the case of the genotype which had 30 chromosomes. In the output genes,

only the first pi,j has any effect, others do not have any effect. The gene pi,j decides
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Table 6.4: Description of the genotype for function optimisation experiments. The
‘Exp.’ column shows the set(s) of experiments. The ‘No. of gen. in each elec.’ column
shows the number of genes associated with each electrode. The ‘Gen. ass. with each
elec.’ column shows the genes that are associated with each electrode. The ‘Total no.
of genes’ column shows the total number of genes in each chromosome of a genotype.
The ‘Representation of the ith chromosome’ column shows the representation of the
ith chromosome of a genotype. The ‘Representation of a genotype’ column shows the
representation of a genotype. The ‘Genes related to outputs’ column shows the gene
values of a chromosome, which are related to outputs.

Ex. No. Gen. Total Representation Representation Genes related
of ass. no. of the ith of a genotype to output(s)
gen. with of chromosome
in each genes (Ci)
each elec.
elec.

Set 6 pi,j , si,j , 12X6 pi,0si,0ai,0fi,0 C0C1 . . . Cd−1 Last 6 genes
A ai,j , fi,j , =72 phi,0ci,0 . . . of ith chromosome:

phi,j , ci,j pi,11si,11ai,11f11 pi,11si,11ai,11fi,11
phi,11ci,11 phi,11ci,11

Set 5 pi,j , si,j , 16X5 pi,0si,0ai,0 C0C1 . . . Cd−1 Last 5 genes
B ai,j , fi,j , =80 fi,0ci,0 . . . of ith chromosome:

ci,j pi,15si,15ai,15 pi,15si,15ai,15
f15ci,15 fi,15ci,15

Set 2 pi,j , ai,j 16X2 pi,0ai,0 . . . pi,15ai,15 C0C1 . . . Cd−1 Last 2 genes
C =32 of ith chromosome:

pi,15ai,15

Set 2 pi,j , ai,j 16X2 pi,0ai,0 . . . pi,15ai,15 C0 Last 4 genes for
D =32 (i is always 0) functions 14,16,17:

pi,14ai,14pi,15ai,15
Last 8 genes for
function 15:
pi,12ai,12 . . .
pi,15ai,15

which electrode will be used for the output of the device. Thus, mutations in this gene

can choose a different electrode to be used as an output.

Two examples of electrode arrangements associated with chromosomes used in function

optimisation experiments with the split genotype technique are shown in Figure 6.3.

Two examples of electrode arrangements associated with chromosomes used in function

optimisation experiments without the split genotype technique are shown in Figure 6.4.

6.2.3 Output Mapping

As Mecobo 3.0 supports only digital outputs, to determine a real-valued output from

a collection of ones in an output buffer, it was decided to use the fraction of ones in
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Figure 6.3: Two examples of electrode arrangements associated with chromosomes
used in function optimisation experiments with the split genotype technique. (a) This
type of electrode arrangement is used in set A. The green arrow is used to indicate
reading output from the output electrode and blue arrows are used to show configuration
inputs being sent to 11 electrodes. (b) This type of electrode arrangement is used in sets
B and C. The green arrow is used to indicate reading output from the output electrode
and blue arrows are used to show configuration inputs being sent to 15 electrodes.

Figure 6.4: Two examples of electrode arrangements associated with chromosomes
used in function optimisation experiments without the split genotype technique. (a)
This type of electrode arrangement is used in set D for functions 14, 16 and 17. The
green arrows are used to indicate reading outputs from the output electrodes and blue
arrows are used to show configuration inputs being sent to 14 electrodes. (b) This type
of electrode arrangement is used in set D for function 15. The green arrows are used to
indicate reading outputs from the output electrodes and blue arrows are used to show
configuration inputs being sent to 12 electrodes.
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experiments A and B.

In experiment A, the input-output timing was 128 milliseconds. Initial findings revealed

that the output buffer with an input-output timing of 128 milliseconds never contains

more than 40% ones. As a result, before running the function optimisation experiments

of set A, an initial evolutionary investigation was performed to discover the typical

contents of an output buffer under various conditions. The fraction of ones in the

output buffer was calculated to obtain the values of the variables required to optimise

functions. However, because the buffer contains a maximum of 40% ones in the case of

the input-output timing 128 milliseconds, the fraction of ones was multiplied by 2.5 so

that a real-valued output would take values between 0 and 1.

In the initial investigation in experiment A, evolutionary runs were carried out to find

the electrode configurations (which electrode is used as an output or configuration input,

signal type, amplitude, phase, mark-space ratio, frequency of configuration inputs) that

gave different percentages of ones in the output buffer. The different percentages were

0%, 10%, 20%, 30% and 40%. The evolved electrode configurations that gave these

percentages were used to seed the initial populations for the evolutionary runs for the

function optimisation problems. This was done to ensure a diversity of values in the

initial population. No initial investigation was performed for experiments B-D as it is

time-consuming and these sets of experiments were performed to compare results with

each other. The initial population was selected randomly in these experiments.

The real values (percentage of ones or average of absolute values of samples) determined

from the output buffers were linearly mapped to the range of values variables were

allowed to take in various optimisation functions. This was done as follows:

Let, maxi be the maximum value and mini be the minimum value allowed for a variable,

xi in a function optimisation problem. Then the equations used for calculating the

linearly mapped output value, xi for these experiments are shown in Table 6.5.

6.2.4 The Experimental Details

The results of experiment A were compared with Cartesian genetic programming using

a (1+4)-evolutionary algorithm over the same number of generations with the same

number of runs. It should be noted that in all experiments using both the experimental
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Table 6.5: Output mappings of function optimisation experiments. The ‘Exp.’ col-
umn shows the set of experiments. The ‘Equation’ column shows the equation used
for calculating output value. The ‘Variable’ column defines the variables used in the
output mapping equation.

Exp. Equation Variables

Set xi = mini + 2.5(maxi −mini)q
(6.2)

q is the value of the fraction

A of ones in the output buffer

Set xi = mini + (maxi −mini)q
(6.3)

q is the value of the fraction

B of ones in the output buffer

Set xi = mini +
(maxi −mini)r

4096
(6.4)

r is the average of the absolute

C values of samples in the output buffer
(the maximum output value in an output
buffer is 4096 (Section 4.1))

Set xi = mini +
(maxi −mini)ri

4096
(6.5)

ri is the average of absolute values of

D samples in the ith output buffer
(the maximum output value in an output
buffer is 4096 (Section 4.1))

material and Cartesian genetic programming, a child replaced the parent if its fitness

was greater than or equal to the parent.

In experiments of set A, twenty-three benchmark functions of function optimisation

problem were investigated. The input-output timing was 128 milliseconds, the number

of generations was 5000 and the number of runs was 10 in the case of each benchmark

function. Only 10 runs were undertaken as it took over 7 days for these experiments.

Different functions took different times due to different numbers of dimensions. Elapsed

time increased with the number of dimensions.

In Cartesian genetic programming function optimisation experiments, five constant in-

puts (terminals) were generated randomly in the interval [-1, 1] at the start of each

evolutionary run. The function set chosen for the study was defined over the real-valued

interval [-1.0, 1.0]. The number of outputs was no = d, where d is the dimensionality

of the optimisation problem. Since the terminals and functions all returned numbers in

the interval [-1, 1], the program outputs, qi also had values defined in this range. How-

ever, as the optimisation functions are defined over a variety of intervals, the program
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Table 6.6: Node function gene values and their definition.

Value Definition

0
√
|z0|

1 z0
2

2 z0
3

3 (2exp(z0 + 1)− e2 − 1)/(e2 − 1)
4 sin(z0)
5 cos(z0)

6 |z0||z1|

7
√

(z0
2 + z1

2)/2
8 (z0 + z1)/2
9 (z0 − z1)/2
10 z0z1

11 if |z1| < 10−10 then 1
else if |z1| > |z0| then z0/z1

else z1/z0

12 if z0 > z1 then z2/2
else 1− z2/2

outputs, qi, were needed to be mapped to the intervals (mini and maxi) defined in the

optimisation problem for a variable, xi. Equation 6.6 gives the mapping.

xi =
maxi −mini

2
qi +

maxi +mini
2

. (6.6)

Three mutation parameters (defined in percentages) were used in the case of all function

optimisation experiments of Cartesian genetic programming: a probability of mutating

connections, µc, functions, µf and outputs, µo. In all experiments, µc = 0.01, µf = 0.03,

µo = 0.04, the number of rows, nr = 1 and the number of columns, nc = 100 with nodes

being allowed to connect to any previous node. The function set chosen for the function

optimisation experiments of Cartesian genetic programming is shown in Table 6.6.

It should be noted that Cartesian genetic programming was applied to 20 function opti-

misation problems [Vesterstrom and Thomsen (2004)] before, and the results were com-

pared1 with differential evolution (DE) [Storn and Price (1997); Price et al. (2005)], par-

ticle swarm optimisation (PSO) [Kennedy and Eberhart (1995); Eberhart et al. (2001)]

and an evolutionary algorithm (SEA) [Miller and Mohid (2013)]. In comparison results,

it was found that in 15 out of 20 benchmarks, Cartesian genetic programming is the

1Based on average results over 30 independent runs and 5,00,000 evaluations for each run
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same or better than DE and in 19 out of 20 cases, Cartesian genetic programming is the

same or better than PSO or SEA.

6.2.4.1 The Results

The results of experiment A and the results of Cartesian genetic programming were

compared using the U-test and KS-test [Hollander and Wolfe (1973)]. The effect size

[Vargha and Delaney (2000)] statistic was also computed.

The experiments of set A show that in 15 out of 23 functions, the best results with

the experimental material are within 8% of the optimum. Of these, in 7 cases, the

best results with the experimental material are equal to optimum results. In 13 out of

23 functions, the average results with the experimental material are within 8% of the

optimum. Of these, in 5 cases, the average results with the experimental material are

equal to optimum results. In 10 out of 23 functions, the best results of experimental

material are better than or equal to the best results of Cartesian genetic programming.

In the case of 12 out of 23 functions, the average results of experimental material are

better than or at least equal to the average results of Cartesian genetic programming.

The detailed results and the statistical significance tests are shown in Table 6.7.

To compare the performances of two hardware platforms (Mecobo 3.0 and Mecobo 3.5),

the results of experiments B and C have been used. Statistical significance (U-test,

KS-test and effect size) tests have been performed to compare the results. The detailed

results and the statistical significance tests are shown in Table 6.8. It has been found

from the results that no average result of Mecobo 3.5 is equal to optimum in the case

of any of these nine functions, the average result of Mecobo 3.0 is equal to optimum

in function 16. The best results of Mecobo 3.5 are equal to optimum in the case of 5

out of 9 functions (functions 14, 16, 17, 18, 21) and the best results of Mecobo 3.0 are

equal to optimum in the case of 6 out of 9 functions (functions 14, 16, 17, 18, 19, 22).

If the average results are compared, the performance of Mecobo 3.5 is better than the

performance of Mecobo 3.0 as the average results with Mecobo 3.5 are better than the

average results with Mecobo 3.0 for 5 out of 9 functions (functions 14, 17, 18, 21, 23).

However, if the best results are compared, Mecobo 3.0 performs better than Mecobo 3.5

as the best results of Mecobo 3.0 are better than the best results of Mecobo 3.5 in the

130



Chapter 6

Table 6.7: Comparative results of the experimental material (experiments of set A)
with Cartesian genetic programming on 23 benchmark optimisation functions. The
evolution-in-materio experiments were performed using material sample 4 and Mecobo
3.0. The first column indicates the benchmark function number associated with the
function optimisation problem. In the case of experimental material and Cartesian
genetic programming, the number of generations was 5000 and the number of runs was
10. The ‘Res.’ column shows whether the results of the experimental material are
within 8% of the optimum or not. The first result of this column shows the comparison
between the best result of the experimental material and the optimum, and the second
result shows the comparison between the average result of the experimental material
and the optimum. ‘X’ in this column indicates the result is within 8% of the optimum
and ‘X’ indicates the result is not within 8% of the optimum. The ‘Co. res.’ column
shows the comparisons of the best and average results of the experimental material
with Cartesian genetic programming. The ‘=’ in this column indicates the result with
the material is equal to the result of Cartesian genetic programming, ‘+’ indicates the
result with the material is better than the result of Cartesian genetic programming,
and ‘-’ indicates the result with the experimental material is worse than the result of
Cartesian genetic programming. The first result of this column shows the comparison
of the best results and the second result of this column shows the comparison of the
average results. ‘U-t’, ‘KS-t’ and ‘E. s.’ (effect size) (L = large, M = medium, S =
small) columns show results of statistical significance tests. The statistical significance
tests have been performed over the results of all 10 runs of all 23 functions. ‘X’ in ‘U-t’
and ‘KS-t’ columns indicates that the difference between the two datasets is statistically
significant and ‘X’ indicates that the difference is statistically not significant.

F. Expected Best Average Best Average Res. Co. U- KS- E.
n. output result result result result res. t t s.

of of of of
exp. exp. Cartesian Cartesian
material material genetic genetic

prog. prog.

1 0 1.548E-05 3.262E-05 0 0 X X - - X X L
2 0 1.014E-02 2.372E-02 0 0 X X - - X X L
3 0 127.902 1614.87 3.938 3.065E+03 X X - + X X L
4 0 2.038E-01 5.600E-01 0 0 X X - - X X L
5 0 1.137E-01 3.871E-01 27.690461 37.668384 X X + + X X L
6 0 0 0 0 0 X X = = X X S
7 0 3.813E-03 1.071E-02 1.399E-03 1.083E-02 X X - + X X S
8 -12569.487 -12451.028 -12255.608 -12569.450 -12569.330 X X - - X X L
9 0 2.992018 5.634806 0 0 X X - - X X L
10 0 1.166E-02 3.491E-02 1.440E-16 1.440E-16 X X - - X X L
11 0 3.395E-03 8.345E-02 0 0 X X - - X X L
12 0 1.047E-01 1.151E-01 3.072E-01 6.514E-01 X X + + X X L
13 0 4.336E-05 1.587E-04 7.416E-06 1.176E-03 X X - + X X S
14 0.9980038 0.9980038 0.9980038 0.9980038 0.9980038 X X = = X X S
15 0.0003075 3.085E-04 3.431E-04 4.437E-04 1.059E-03 X X + + X X L
16 -1.0316 -1.0316 -1.0316 -1.0316 -1.0308 X X = + X X M
17 0.397887 0.397887 0.397916 0.397887 0.397994 X X = + X X M
18 3.0 3.0 21.906419 3.0 3.0 X X = - X X L
19 -3.86 -3.86 -3.86 -3.86 -3.86 X X = = X X S
20 -3.32 -3.32 -3.32 -3.32 -3.29 X X = + X X L
21 -10.15 -5.10 -5.10 -10.15 -8.64 X X - - X X L
22 -10.40 -5.13 -5.13 -10.40 -8.82 X X - - X X L
23 -10.54 -5.18 -5.18 -10.54 -9.46 X X - - X X L
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Table 6.8: Comparative results of material sample 1 on different hardware platforms
(Mecobo 3.0 and Mecobo 3.5) on 9 benchmark optimisation functions using experiments
B and C. Experiment B used Mecobo 3.0 and experiment C used Mecobo 3.5. The
first column indicates the benchmark function number associated with the function
optimisation problem. In the case of experiments B and C, the number of generations
was 1000 and the number of runs was 20. The ‘Res. of Mec. 3.5’ column shows whether
the results of Mecobo 3.5 are equal to optimum or not and ‘Res. of Mec. 3.0’ column
shows whether the results of Mecobo 3.0 are equal to optimum or not. The first results
of these columns show the comparisons between the best results of the experimental
material and the optimum, and the second results show the comparisons between the
average results of the experimental material and the optimum. ‘X’ in these columns
indicates the result is equal to optimum and ‘X’ indicates the result is not equal to
optimum. The ‘Co. res.’ column shows the comparisons of the best and average results
of Mecobo 3.5 with Mecobo 3.0. The ‘=’ in this column indicates that the results of
both hardware platforms are equal, ‘+’ indicates the result with Mecobo 3.5 is better
than the result of Mecobo 3.0 and ‘-’ indicates the result with Mecobo 3.5 is worse.
The first result of this column shows the comparison of the best results and the second
result of this column shows the comparison of the average results. ‘U-t’, ‘KS-t’ and
‘E. s.’ (effect size) (L = large, M = medium, S = small) columns show results of
statistical significance tests. The statistical significance tests have been performed over
the results of all 20 runs of all 9 functions. ‘X’ in ‘U-t’ and ‘KS-t’ columns indicates
that the difference between the two datasets is statistically significant and ‘X’ indicates
that the difference is statistically not significant.

F. Expected Best Average Best Average Res. Res. Co. U- KS- E.
n. output result result result result of of res. t t s.

of of of of Mec. Mec.
Mecobo Mecobo Mecobo Mecobo 3.5 3.0
3.5 3.5 3.0 3.0

14 0.9980038 0.9980038 1.1465161 0.9980038 26.24430 X X X X = + X X S
15 0.0003075 0.0014874 0.0721622 0.0012233 0.0180017 X X X X - - X X L
16 -1.0316 -1.0316 -0.91 -1.0316 -1.0316 X X X X = - X X L
17 0.397887 0.397887 0.492799 0.397887 1.135623 X X X X = + X X M
18 3.0 3.0 149.5 3.0 769.9 X X X X = + X X S
19 -3.86 -1.00 -1.00 -3.86 -1.25 X X X X - - X X M
21 -10.15 -10.15 -5.31 -5.06 -3.80 X X X X + + X X L
22 -10.40 -5.09 -5.09 -10.40 -5.34 X X X X - - X X L
23 -10.54 -5.13 -4.93 -5.13 -4.78 X X X X = + X X L

case of functions 15, 19 and 22 and the best results are equal in the case of functions

14, 16, 17, 18 and 23.

To compare the performance of using the split genotype technique against the perfor-

mance without using the split genotype technique, the results of experiments C and

D were used. Statistical significance (U-test, KS-test and effect size) tests have been

performed to compare the results. The detailed results are shown in Table 6.9. It has

been found from the results that no average result of any of these experiments is equal

to optimum in the case of any of these four functions. The best results of experiments

C and D are equal to optimum in the case of 3 out of 4 functions (functions 14, 16, 17).

If the average results are compared, the performance of experiment C (with the split

genotype technique) is better than the performance of experiment D (without using the
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Table 6.9: Comparative performance results of the split genotype technique (experi-
ment C) versus the performance without using the split genotype technique (experiment
D). The first column indicates the benchmark function number associated with the func-
tion optimisation problem. The comparisons are performed using material sample 1 and
Mecobo 3.5 on 4 benchmark optimisation functions. In the case of experiments C and
D, the number of generations was 1000 and the number of runs was 20. The ‘Res. of
set C’ column shows whether the results of set C (experiments with the split genotype
technique) are equal to optimum or not and ‘Res. of set D’ column shows whether
the results of set D (experiments without the split genotype technique) are equal to
optimum or not. The first results of these columns show the comparisons between the
best results of the experimental material and the optimum and the second results show
the comparisons between the average results of the experimental material and the op-
timum. ‘X’ in these columns indicates the result is equal to optimum and ‘X’ indicates
the result is not equal to optimum. The ‘Co. res.’ column shows the comparisons of
the best and average results of sets C and D. The ‘=’ in this column indicates that the
results of both sets are equal, ‘+’ indicates the result of set C is better than the result
of set D and ‘-’ indicates the result of set C is worse. The first result of this column
shows the comparison of the best results and the second result of this column shows
the comparison of the average results. ‘U-t’, ‘KS-t’ and ‘E. s.’ (effect size) (L = large,
M = medium, S = small) columns show results of statistical significance tests. The
statistical significance tests have been performed over the results of all 20 runs of all 4
functions. ‘X’ in ‘U-t’ and ‘KS-t’ columns indicates that the difference between the two
datasets is statistically significant and ‘X’ indicates that the difference is statistically
not significant.

F. Expected Best Average Best Average Res. Res. Co. U- KS- E.
n. output result result result result of of res. t t s.

of of of of set set
set C set C set D set D C D

14 0.9980038 0.9980038 1.1465161 0.9980038 1.5051768 X X X X = + X X L
15 0.0003075 0.0014874 0.0721622 0.0004352 0.1115308 X X X X - + X X S
16 -1.0316 -1.0316 -0.91 -1.0316 -0.7789 X X X X = + X X L
17 0.397887 0.397887 0.492799 0.397887 0.410195 X X X X = - X X L

split genotype technique) as experiment C obtained better results than the results of

experiment D in 3 out of 4 functions (functions 14-16). However, if the best results are

compared, the performance of experiment D is better than the performance of experi-

ment C as the best result of experiment D is better than the result of experiment C in

the case of function 15 and the best results of both experiments are equal in the case of

other three functions.

A summary of outcomes from these experiments is given as follows:

• The comparison results of experimental material (material sample 4 according to

Table 4.3) and Cartesian genetic programming show that in 10 out of 23 functions,

the best results of experimental material are better than or equal to the best results

of Cartesian genetic programming. In the case of 12 out of 23 functions, the average
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results of experimental material are better than or equal to the average results of

Cartesian genetic programming.

• In the case of 15 out of 23 functions, the best results of experimental material

(material sample 4) are within 8% of the optimum and in the case of 13 out of 23

functions, the average results of the experimental material are within 8% of the

optimum.

• According to the experiments of function optimisation problems (functions 14-19,

21-23), if the average results are compared, the performance of Mecobo 3.5 is better

than the performance of Mecobo 3.0. However, if the best results are compared,

the performance of Mecobo 3.0 is better than the performance of Mecobo 3.5.

• According to the experiments of function optimisation problems (functions 14-17)

using Mecobo 3.5, if the average results are compared, the performance of using

the split genotype technique is better than the performance without using the split

genotype technique. However, if the best results are compared, the performance

without using the split genotype technique is better than the performance of using

the split genotype technique.

6.3 Solving Bin Packing Problems

Bin packing is a well-studied NP-hard problem [Coffman et al. (1997)]. In the bin

packing problem, each item, i with weight wi from a total number of items, nt, has to

be placed in a bin. Each bin, however has a maximum weight capacity, c. The objective

is to place all the items in the least number of bins such that no bin has its weight limit

exceeded [Horowitz et al. (2007)].

Scholl and Klein have collated bin packing benchmarks [Scholl and Klein (2003)]. The

datasets are divided into three classes according to difficulty. The best result for each

dataset has been obtained by Scholl et al. [Scholl et al. (1997)] using an algorithm

called BISON which combines a successful heuristic meta-strategy tabu search and a

branch and bound procedure. Many pieces of work were carried out using these bin

packing benchmarks by many researchers [Schwerin and Wäscher (1997); Fleszar and

Hindi (2002); Alvim et al. (2002); Schoenfield (2002)]. For the experiment used here,

four instances from each difficulty class have been chosen.
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Table 6.10: The experimental settings of all sets of bin packing experiments. The
‘Benchmark’ column shows the bin packing benchmark used in the experiments. The
‘No. of gen’ and ‘No. of run’ columns show the number of generations and number of
runs of the experiments respectively. The ‘No. of out.’, ‘No. of conf.’ and ‘Mut. rate’
columns show the number of outputs, number of configuration inputs and mutation rate
respectively. The mutation rate (mn) is defined to be the number of discrete mutations
made in the entire collection of chromosomes. It should be noted that the experiments
of all sets used Mecobo 3.0, material sample 4 (according to Table 4.3), 12 electrodes
of the electrode array, 128 milliseconds for the input-output timing and 25 KHz for the
output sampling frequency.

Set Benchmark No. No. No. No. Mut.
of of of of rate
gen. run out. conf.

A HARD0 5000 20 1 11 1
B HARD0 5000 20 2 10 1
C HARD0 5000 20 4 8 1
D HARD0 5000 20 5 7 1
E HARD0 5000 20 10 2 1
F HARD0 5000 20 2 10 2
G N1C1W1 A 5000 20 2 10 1
H N2C2W2 B 5000 20 2 10 1
I N3C3W4 R 5000 20 2 10 1
J N4C2W1 M 5000 20 2 10 1
K N1W1B1R0 5000 20 2 10 1
L N3W1B2R3 5000 20 2 10 1
M N4W2B3R5 5000 20 2 10 1
N N2W3B1R9 5000 20 2 10 1
O HARD3 5000 20 2 10 1
P HARD4 5000 20 2 10 1
Q HARD9 5000 20 2 10 1
R N4W2B3R5 25000 10 2 10 1

Table 6.11: The motives for performing the bin packing experiments. The first column
shows the sets of experiments. The second column shows the motive.

Experiments Motive

Sets A-E To find out the best combination (combination of the number of outputs
and configuration inputs) of electrodes, which gives the best result.

Sets B, F To find out the best mutation rate, which gives the best result.
Sets B, G-Q To investigate the performances of evolution-in-materio on different

bin packing benchmarks.
Set R To investigate the performance of evolution-in-materio on bin packing

problem with more generations.

6.3.1 Methodology

Eighteen different sets (A-R) of experiments were performed. The experimental settings

of all sets of bin packing experiments are described in Table 6.10. The motives for

performing the bin packing experiments are described in Table 6.11.
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All of the experiments were performed with an electrode array having twelve electrodes

with material sample 4 (according to Table 4.3) and Mecobo 3.0. Bin packing problems

require no inputs. The total number of outputs must equal the number of items that

need to be packed into bins. Since bin packing problems typically have 50 or more items,

multiple chromosomes must be used, where each chromosome defines a number of config-

uration inputs to the electrode array and the remaining outputs supply recorded values

in output buffers. This means, the split genotype technique (Section 6.1) is required to

be used. In bin packing problems, the number of chromosomes required is given by the

number of items to be packed into bins divided by the number of outputs chosen per

chromosome. For instance, for a problem with 50 items, if two outputs are chosen, the

genotype requires 25 chromosomes. In this case, there will be 10 configuration inputs

applied for each chromosome processed.

In all sets of experiments, a series of output values (0 or 1) were read from buffer(s) of

samples taken from output electrode(s). The output values read from the electrode(s)

were linearly mapped between values -1.0 to 1.0. These values were then used to define

the index of the bin (bini) in which the item i of the bin packing problem would be

placed. So, the total number of outputs must be equal to the total number of items

(nt). The electrode array that was used in the experiments has only twelve electrodes,

and the split genotype technique was used to obtain the required number of outputs

from the device so that the number of required values defined by the computational

problem (bin packing problem) could be handled. The process of generating bin indexes

in bin packing experiments using the split genotype technique is shown in Figure 6.5.

6.3.2 Genotype Representation

In the case of all experiments, each chromosome used ne = 12 electrodes at a time. The

values that genes could take are shown in Table 6.12. The electrode index, j takes values

0, 1, . . . ne − 1. The chromosome index, i takes values 0, 1, . . . d− 1. If the total number

of outputs (number of items) of bin packing problem is nt and the number of outputs

in each chromosome is no, then d = nt/no.

The description of the genotype for the experiments is shown in Table 6.13.
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Figure 6.5: The process of generating bin indexes in bin packing experiments using
the split genotype technique.

Table 6.12: Description of the genes for bin packing experiments.

Gene Signal applied to, or Allowed
symbol read from the ith values

chromosome and the
jth electrode

pi,j Which electrode is used 0, 1, 2 . . . 11
si,j Type 0 (static) or

1(square wave)
ai,j Amplitude 0 , 1
fi,j Frequency 500 ,501 . . . 10K
phi,j Phase 1, 2 . . . 10
ci,j Mark-space ratio 0, 1, . . . 100

In the output genes, only the pi,j has any effect, others do not have any effect. The gene

pi,j decides which electrode will be used for an output of the device. Thus, mutations

in these genes can choose a different electrode to be used as an output.

Five examples of electrode arrangements associated with chromosomes used in bin pack-

ing experiments are shown in Figure 6.6.

6.3.3 Output Mapping

In the case of all experiments, to determine a real-valued output from a collection of

ones in an output buffer, it was decided to use the fraction of ones. This was chosen
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Table 6.13: Description of the genotype for bin packing experiments. The ‘No. of
gen. in each elec.’ column shows the number of genes associated with each electrode.
The ‘Gen. ass. with each elec.’ column shows the genes that are associated with
each electrode. The ‘Total no. of genes’ column shows the total number of genes in
each chromosome of a genotype. The ‘Representation of the ith chromosome’ column
shows the representation of the ith chromosome of a genotype. The ‘Representation of
a genotype’ column shows the representation of a genotype. The ‘Exp.’ column shows
the set(s) of experiments. The ‘Genes related to outputs’ column shows the gene values
of a chromosome, which are related to outputs.

No. Gen. Total Representation Representation Ex. Genes related
of ass. no. of the ith of a genotype to output(s)
gen. with of chromosome
in each genes (Ci)
each elec.
elec.

6 pi,j , si,j , 12X6 pi,0si,0ai,0fi,0 C0C1 . . . Cd−1

Set Last 6 genes

ai,j , fi,j , =72 phi,0ci,0 . . .

A of ith chromosome:

phi,j , ci,j pi,11si,11ai,11f11

pi,11si,11ai,11fi,11

phi,11ci,11

phi,11ci,11
Set Last 12 genes
B, of ith chromosome:
F-R pi,10si,10ai,10fi,10

phi,10ci,10
pi,11si,11ai,11fi,11
phi,11ci,11

Set Last 24 genes
C of ith chromosome:

pi,8si,8ai,8fi,8
phi,8ci,8 . . .
pi,11si,11ai,11fi,11
phi,11ci,11

Set Last 30 genes
D of ith chromosome:

pi,7si,7ai,7fi,7
phi,7ci,7 . . .
pi,11si,11ai,11fi,11
phi,11ci,11

Set Last 60 genes
E of ith chromosome:

pi,2si,2ai,2fi,2
phi,2ci,2 . . .
pi,11si,11ai,11fi,11
phi,11ci,11
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Figure 6.6: Five examples of electrode arrangements associated with chromosomes
used in bin packing experiments (a) This type of electrode arrangement is used in set
A. The green arrow is used to indicate reading output from the output electrode and
blue arrows are used to show configuration inputs being sent to 11 electrodes. (b)
This type of electrode arrangement is used in sets B and F-R. The green arrows are
used to indicate reading outputs from the output electrodes and blue arrows are used
to show configuration inputs being sent to 10 electrodes. (c) This type of electrode
arrangement is used in set C. The green arrows are used to indicate reading outputs
from the output electrodes and blue arrows are used to show configuration inputs being
sent to 8 electrodes. (d) This type of electrode arrangement is used in set D. The
green arrows are used to indicate reading outputs from the output electrodes and blue
arrows are used to show configuration inputs being sent to 7 electrodes. (e) This type of
electrode arrangement is used in set E. The green arrows are used to indicate reading
outputs from the output electrodes and blue arrows are used to show configuration
inputs being sent to 2 electrodes.

purely for simplicity and it is possible that other mappings of bits of the buffer to a real

number could have worked better. As initial findings revealed that the output buffer

with an input-output timing of 128 milliseconds never contains more than 40% ones,

the fraction of ones was multiplied by 2.5 so that a real-valued output would take values

between 0 and 1. This value is denoted for the buffer, bufi by qi.

The value, qi was linearly mapped to value, xi in the interval [-1.0, 1.0] using Equation

6.7.
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xi = −1.0 + 2.0qi (6.7)

The linearly mapped output value, xi corresponding to each chromosome was used to

decide the bin index, bini which denotes which bin item, i will be placed in. Assuming

the total number of items is nt, the bin index is given by Equation 6.8.

bini = bnt
(xi + 1.0)

2 + ε
c (6.8)

The floor function, bzc returns the nearest integer less than or equal to its argument, z.

epsilon is a very small positive quantity. Essentially, Equation 6.8 divides the interval

[-1, 1] into nt equal intervals corresponding to bins, so that the mapped output value

decides which bin an item will be placed in.

For instance, assuming the number of items, nt = 50, if xi is -1.0, bini is 0, and if xi is

1.0, bini is 49.

6.3.4 Fitness Calculation

The fitness calculation for bin packing experiments is described as follows:

Let, c is the bin capacity of each bin, bj is total weight of jth overflowing bin, i.e. the

summation of weights of all items placed in that bin, nob is the number of bins that have

exceeded their capacity, nub is the number of unused bins. The fitness is calculated by

the Equation 6.9.

fitness =


nub, If there is no bin overflowing

j=nob∑
j=1

(c− bj), Otherwise

(6.9)

Thus, a fitness less than zero indicates at least one bin is over capacity. If all bins are

used and no bin overflows, then the fitness is zero. If no bin overflows and some bins are

unused, then the fitness is a positive value equal to the number of unused bins. Thus,
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Table 6.14: Comparative results of different electrode combinations associated with
chromosomes (sets A-E). The experiments were performed using the bin packing bench-
mark HARD0 [Scholl and Klein (2003)] and in each of the experiments, a single mu-
tation was used to generate a child. The first column shows the set of experiments.
In the second column, py,z denotes the electrode combination, where y is the number
of electrodes used as outputs and z is the number of electrodes used as configuration
inputs. The third column indicates the average result of 20 runs. The fourth column
indicates the best result of all 20 runs. ‘Overflow’ is used where at least one bin was
filled beyond its capacity.

Set Pin Average minimum Best minimum
configuration number used bins number used bins

A p1,11 Overflow 69
B p2,10 70.75 68
C p4,8 Overflow 72
D p5,7 Overflow 73
E p10,2 Overflow 71

maximisation of fitness drives genotypes towards representing the smallest number of

non-overflowing bins.

6.3.5 The Experiments and the Results

In all sets of experiments, a (1+4)-evolutionary algorithm was used and a child replaced

the parent if its fitness was greater than or equal to the parent.

Twelve benchmarks of bin packing problems were used in the experiments (four from

each difficulty class). The benchmark HARD0 (the first benchmark in the hardest

category) was used to determine how many outputs to use in each chromosome and

the best mutation rate to use in the later experiments. It should be noted that the

mutation rate, mn, is defined to be the number of discrete mutations made in the entire

collection of chromosomes. Five different sets (sets A-E) of experiments were performed

with HARD0 to determine the best number of outputs per chromosome. For all of the

experiments of sets A-E, a single mutation (mn=1) was chosen. The results are shown

in Table 6.14.

Investigations were performed using HARD0 with two different values of mn to see which

gave the best result using experiments B and F. The mutation rate used was either one

or two (mn = 1 or mn = 2). The results are shown in Table 6.15.

It has been found that the best mutation rate is one (mn=1) and the best electrode

combination is to use two electrodes as outputs and ten as configuration inputs. These
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Table 6.15: Comparative results of two different mutation rates (mn) applied in
experiments B and F. Here, mn is defined to be the number of discrete mutations made
in the entire collection of chromosomes. The experiments have been performed using
the bin packing benchmark HARD0 [Scholl and Klein (2003)]. The first column shows
the set of experiments. The second column shows the mutation rate. The third column
shows the average result of 20 runs. The fourth column indicates the best result of all
20 runs. The electrode combination used for all the experiments mentioned in this table
is 2 electrodes as outputs and 10 as configuration inputs as this electrode combination
gave the best result according to Table 6.14.

Set Mutation Average Minimum Best minimum
rate number used bins number used bins

B 1 70.75 68
F 2 73.3 71

parameter settings were used in all other sets (G-R) of experiments. In the case of

experiments A-Q, the number of generations was 5000 and the number of runs was

20. Experiments B and G-Q were used to investigate the performances of evolution-in-

materio on different bin packing benchmarks. The results are shown in Table 6.16. It

should be noted that 20 evolutionary runs (5000 generations each) on each benchmark

problem took more than 2 days.

The experiments show that on 3 out of 12 benchmarks, the average and best results of

experimental material are within 15% of the optimum. In two cases, the results of all

runs were unable to find a solution in which all bins were within capacity. In one set

of evolutionary runs, some of the runs could not find solutions in which all bins were

within capacity but other did.

In further experiments, one of the difficult benchmark problems (N4W2B3R5) was in-

vestigated over longer evolutionary runs. In experiment R, ten runs of 25000 generations

were performed with the N4W2B3R5 benchmark. The average result of 10 runs was 128

and best result in 10 runs was 125, where the optimum is 101.

The final gene values of configuration inputs were examined for one single bin packing

problem and no recognisable pattern was found. This is not surprising as the number

of gene values is very large. For example, for 50 item bin packing problem with 10

configuration inputs and 2 outputs, requires 25 chromosomes and 25*72=1800 genes

(per genotype).

In addition, it was also examined whether the material was an essential part of the

experiment by attempting to evolve solutions using an electrode array containing no
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Table 6.16: The experimental results on twelve bin packing benchmark problems
(sets B, G-Q). In all of these experiments, the number of generations was 5000 and the
number of runs was 20. Two electrodes were used as outputs and ten were supplied
with configuration inputs. A single mutation was used to generate a child in the evo-
lutionary algorithm (mn = 1). The first column shows the set of experiments. The
second column shows the benchmark of bin packing problem on which experiments were
performed. The third column shows the optimum result (expected result) of the bin
packing problem. The fourth column indicates the difficulty class to which the bench-
mark data belongs to (according to [Scholl and Klein (2003)]). The fifth column shows
the number of items of bin packing problem. The sixth column indicates the average
result of all runs. The seventh column indicates the best result of all runs. ‘Overflow’ is
used where at least one bin overflowed. The ‘Result’ column shows whether the results
of the experimental material are within 15% of the optimum or not. The first result
of this column shows the comparison between the average result of the experimental
material and the optimum and the second result shows the comparison between the
best result of the experimental material and the optimum. ‘X’ in this column indicates
the result is within 15% of the optimum and ‘X’ indicates the result is not within 15%
of the optimum.

Set Benchmark Optimum Class Total Minimum Minimum Result
result number number of number of

of items used bins used bins
(average) (best)

G N1C1W1 A 25 1 50 27.4 27 X X
H N2C2W2 B 56 1 100 63 60 X X
I N3C3W4 R 87 1 200 Overflow 103 X X
J N4C2W1 M 217 1 500 Overflow Overflow X X
K N1W1B1R0 18 2 50 20.2 20 X X
L N3W1B2R3 65 2 200 81.7 78 X X
M N4W2B3R5 101 2 500 Overflow Overflow X X
N N2W3B1R9 15 2 100 20.45 19 X X
B HARD0 56 3 200 70.75 68 X X
O HARD3 55 3 200 71.15 68 X X
P HARD4 57 3 200 70.05 69 X X
Q HARD9 56 3 200 72.4 70 X X

material. One of the bin packing benchmarks (dataset N1C1W1 A) was chosen. For

this experiment, two electrodes were used as outputs and ten as configuration inputs.

A single evolutionary run was carried out for up to 1000 generations using a single

mutation to create each child. It has been found that no evolution happened in this

case. The fitness value in the first generation is the same as the fitness value of the

1000th generation. The fitness value indicates that all items went into the same bin.

Output buffers of samples were also investigated and it was found that the buffers were

always full of zeroes.

Another experiment was performed using the same bin packing benchmark problem

(dataset N1C1W1 A) to see whether single-walled carbon nanotubes are required in the

material mixture for computation or not. Material sample 10 (according to Table 4.3)
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Figure 6.7: Fitness value vs. number of generations for five evolutionary runs using
experiment G (benchmark N1C1W1 A).

has been used in this experiment, where the material contains only polymer (0% single-

walled carbon nanotubes in PMMA). For this experiment, two electrodes were used as

outputs and ten as configuration inputs. A single evolutionary run was carried out for

up to 1000 generations using a single mutation to create each child. It has been found

that no evolution happened in this case. The fitness value in the first generation was

the same as the fitness value of the 1000th generation. Output buffers of samples were

also investigated and it was found that the buffers were always full of zeroes.

Investigations were performed using material sample 8 and material sample 9 (with

0.02% and 0.01% single-walled carbon nanotubes in PMMA respectively). These inves-

tigations were carried out for up to 1000 generations for one run with dataset N1C1W1 A

(2 electrodes as outputs and 10 as configuration inputs). A single mutation was used

to create a child in these investigations. It was found that no evolution took place

with 0.01% single-walled carbon nanotubes (material sample 9) and the values of out-

put buffers were always zero. When an experiment was started with material sample 8

(i.e. with 0.02% single-walled carbon nanotubes), evolution happened with mixtures of

0 and 1 in the output buffers. All of these investigation results showed that single-walled

carbon nanotubes are required in the material mixture for computation.

Figure 6.7, 6.8, 6.9, 6.10 and 6.11 show the changes in fitness values in different genera-

tions for five evolutionary runs using experiments G, I, K, M and O.
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Figure 6.8: Fitness value vs. number of generations for five evolutionary runs using
experiment I (benchmark N3C3W4 R).

Figure 6.9: Fitness value vs. number of generations for five evolutionary runs using
experiment K (benchmark N1W1B1R0).
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Figure 6.10: Fitness value vs. number of generations for five evolutionary runs using
experiment M (benchmark N4W2B3R5).

Figure 6.11: Fitness value vs. number of generations for five evolutionary runs using
experiment O (benchmark HARD3).

A summary of outcomes from these experiments is given as follows:

• In the case of bin packing experiments using benchmark HARD0, it has been found

that using two electrodes for outputs and ten for configuration inputs performed

the best of all combinations of electrodes.

• In the case of bin packing experiments using benchmark HARD0, it has been

found that the performance of using mutation on only one gene in the genotype

was better than the performance of using mutation on two genes.
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• No evolution happened using an electrode array containing no material, where the

output buffers were always full of zeroes.

• No evolution was possible with a material having 0% single-walled carbon nan-

otubes (only PMMA), where the output buffers were always full of zeroes, which

shows that single-walled carbon nanotubes are required in the material mixture

for computation.

• Investigations were performed using material sample 8 and material sample 9 (with

0.02% and 0.01% single-walled carbon nanotubes in PMMA respectively). These

investigations were carried out for up to 1000 generations for one run with dataset

N1C1W1 A (2 electrodes as outputs and 10 as configuration inputs). A single

mutation was used to create a child in these investigations. It was found that no

evolution took place with 0.01% single-walled carbon nanotubes (material sample

9) and the values of output buffers were always zero. When an experiment was

started with material sample 8 (i.e. with 0.02% single-walled carbon nanotubes),

evolution happened with mixtures of 0 and 1 in the output buffers.

6.4 When the Split Genotype Technique is Applicable

The split genotype technique has been used previously in two computational problems

(function optimisation and bin packing) having many outputs. However, this technique

cannot be applied to all computational problems with many outputs. The problems must

have some characteristics or properties that need to be suitable for applying the split

genotype technique. The split genotype technique can be used in following situations:

• When there is no input, outputs obtained from one chromosome should be inde-

pendent from outputs of another chromosome. The configuration inputs of one

chromosome are independent from configuration inputs of another chromosome,

and the configuration inputs of each chromosome control the outputs of that chro-

mosome only. Function optimisation problem and bin packing problem fall in this

category.
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• When there are one or more inputs, outputs obtained from one chromosome using

some inputs should be independent from inputs and outputs of another chro-

mosome and the configuration inputs of one chromosome are independent from

configuration inputs of another chromosome. The inputs and configuration inputs

of each chromosome control the outputs of that chromosome only.

6.5 Summary

In this chapter, two computational problems, i.e. function optimisation and bin packing

problems have been investigated using evolution-in-materio. This is the first time it has

been shown that such an approach can be used to solve well-known benchmark function

optimisation and bin packing problems.

Function optimisation problems were used to compare the effectiveness of evolution-in-

materio against the well-known search technique named Cartesian genetic programming.

These problems were also used to compare the performances of two hardware platforms.

In function optimisation problems, one electrode was used as an output and the re-

maining electrodes were used as configuration inputs. There can be many other ways

of using the electrodes. Two electrodes could have been read and evolved configuration

inputs could have been applied to the remaining electrodes and other choices could be

possible. Examining other choices remains for future work. However, in the case of bin

packing problem, various numbers of outputs and configuration inputs were investigated

using one of the hard bin packing benchmarks. Two different mutation rates were also

investigated.

The bin packing problem was also applied to see whether single-walled carbon nan-

otubes are required in the material mixture for computation or not and the test result

showed that without single-walled carbon nanotubes, no evolution can be possible, this

is the same result obtained from the tone discriminator experiment (Section 5.3) with a

material having no single-walled carbon nanotubes (only polymer).

The next chapter describes experiments that deal with applying evolution-in-materio to

robot control to obtain desired behaviours. Both simulated and real robots have been

used in these experiments.
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The Evolution-In-Materio

Controlled Robot
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Controlling an obstacle avoiding robot is a well-known problem, which has been tried

and solved by many researchers using hardware evolution, evolutionary algorithms and

even using evolution-in-materio with an LCD by Harding and Miller [Harding and Miller

(2005)]. The robot controlling experiments, that are described in this chapter, had a

total number of inputs, outputs and configuration inputs of not more than 16, so a split

genotype technique was not needed. Often the task for the robot is to travel around a

closed environment avoiding the obstacles and walls and to cover as much floor space

as possible within a limited number of time steps. Here this task has been modified or
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extended, where the robot has to cope with faults and environmental changes and to

reach a specific location in a map from a specific starting position. The control system

is able to use the distance sensors on the robot and use this information in the control of

the motion of the robot using motors. Both the simulated Khepera robot and a real Pi-

Swarm robot have been used in these experiments. These experiments were performed

using material sample 1 (Table 4.3) and Mecobo 3.0. The Khepera robotic platform has

eight short range infra red sensors and two motors. The Pi-Swarm robot has also eight

short range infra red sensors and two motors like Khepera robot. The positions of the

sensors and motors of the Pi-Swarm robot are also exactly the same as the Khepera

robot.

7.1 The Khepera Simulator

A Khepera robot simulator (version 2.0), that has been adapted in this research, was

written by Marcin Pilat1. Pilat rewrote a Unix-based Khepera written by Olivier Michel

[Michel (1996)]. The simulated robot has a diameter of 55 nominal units, and obstacles

or walls are made from small bricks having width and height 20 units. The map is 1000

X 1000 unit2.

The Khepera simulated robot together with the placement of sensors (S0-S7) and motors

(M1-M2), which has been used in the experiments, is illustrated in Figure 7.1. The sensor

distance value is calculated as a function of the presence (or the absence) of obstacles1.

The sensor distance value has a range [0, 1023], where 0 means no object is found and

1023 means an object is in the nearest position. Random noise of ±10% is added to the

amplitude of the distance value of a sensor. In experiments, the distance values of sensors

have been used as inputs to the material. The robot moves according to the speeds (in

a range [-10, 10]) of the motors. Random noise of ±10% is also added to the amplitude

of the speed of a motor while random noise of ±5% is added to the direction resulting

from the difference of the speeds of two motors. The motor speeds are decided by the

outputs of the experimental material (a mixture of single-walled carbon nanotubes and

a polymer).

1http://www.pilat.org/khepgpsim/
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Figure 7.1: Schematic view of the Khepera robot with the positions of the IR prox-
imity sensors (S0-S7) and motors (M1, M2).

7.2 The Pi-Swarm Robot

A Pi-Swarm robot [Hilder et al. (2014)] has been used in real robot experiments in this

thesis. The Pi-Swarm robot has been built in the University of York. The Pi-Swarm

robot is designed as part of the Pi-Swarm System, which itself is an extension for the

Pololu 3-Pi robot2 which enables the Pi-Swarm robot to feature as part of a fully au-

tonomous swarm [Hilder (2014)]. An mbed LPC1768 rapid-prototyping microcontroller

board is one of the main parts of the system of the robot. This allows code to be easily

created on any system with a USB-port and web-browser without the need for any dedi-

cated driver or software. The 3-Pi robot, which is manufactured by Pololu2, is a circular

mobile platform featuring five IR reflectance sensors, two micro metal gear motors, an

8x2 character LCD display, three user push buttons and a buzzer. It is powered by four

AAA batteries. The actuators and peripherals are all connected to a programmable AT-

mega328 microcontroller, which features 2KB of RAM, 32KB of flash program memory

and 1KB of persistent EEPROM memory and operates at a 20 MHz clock-speed. The

platform can be programmed using the GNU C/C++ compiler. The Atmel Studio can

be used as a development environment. Generic firmware is used with the Pi-Swarm

system in typical use. This handles messages sent over a serial-bus from the mbed board

in order to operate all core functions of the robot.

The mbed LPC1768 is a small PCB, which is designed to allow rapid prototyping for

general microcontroller applications. It is based around the NXP1768, a 32-bit ARM

2http://www.pololu.com
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Figure 7.2: The Pi-Swarm robot (a) Top view of Pololu 3-Pi robot [Hilder (2014)].
(b) Bottom view of Pololu 3-Pi robot [Hilder (2014)]. (c) Top view of Pi-Swarm robot
after adding the top cover and mbed. (d) Side view of Pi-Swarm robot.

Cortex-M3 microcontroller that includes 32KB RAM and at least 512KB FLASH mem-

ory (on newer boards, it is 1MB) and operates with a 96 MHz clock. The FLASH

memory appears as a USB-FLASH drive when the mbed is connected to a computer.

The mbed microcontroller has an online compiler3. This compiler provides the tool

chain and libraries to create C++ programs that can be compiled and installed onto the

mbed. After reset, the most recent binary file, which has been saved onto the FLASH

memory, is loaded by the bootstrap loader on the mbed board.

The Pi-Swarm extension board connects to the 3-Pi base using the 14-pin peripheral

connector. There are two additional 2-pin connectors that allow the duplication of the

recharging pins and the reset switch. The top of the board contains a socket to attach

the mbed, a number of actuators and sensors. On the underside of the board, eight

3at http://www.mbed.org
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IR optocouplers are arranged around the edge. These act as proximity detectors and

are spaced with sensors at ±15o, ±45o, ±90o and ±144o. The sensors and the two

motors are organised in the same way as the Khepera robot (Figure 7.1). The robot’s

built-in library has a function that can calculate distances between objects and the 8

IR proximity detectors. The distance value has a range [0.0, 100.0], where 100.0 means

no object is found and 0 means an object is in the nearest position. The built-in library

has a function that accepts motor speed values to drive two motors. The robot moves

according to the speed (in a range [-1.0, 1.0]) of the motor.

A socket is present at the front, which allows the connection of a separate ultrasonic

range detector. Ten RGB LEDs are arranged in a ring around the edge of the board. An

additional high-power RGB LED (facing up) is also connected in the middle of the board.

Other than these IR proximity detectors and LEDs, a MEMS 3-axis accelerometer, a

MEMS yaw gyroscope, a MEMS 3-axis magnetometer, a 433 MHz RF transceiver, a 64

kilobit EEPROM, a digital temperature and ambient light sensor are connected with the

robot. A set of 5-DIL switches is also connected with the robot, which is used to set ID

of the robot within the swarm. A 5-way directional switch is used to trigger interrupt

and control the robot. The Pi-Swarm robot is shown in Figure 7.2.

7.3 Methodology

Ten sets (A-J) of experiments were performed with the simulated robot. The experi-

mental settings of all sets of simulated robot experiments are described in Table 7.1.

In experiments A-I, the maps shown in Figure 7.3 were used. The robot’s starting

positions in experiments varied. In maps (a) and (c) shown in Figure 7.3, the starting

position was the centre of the map and for map (b), the starting position of the robot

was the upper left corner of the map. However, in the case of experiment C, the starting

position of the robot was chosen randomly.

The complexity of electronic circuits and hardware is increasing day by day. As com-

plexity in hardware is increasing, the chances of error and faults are also increasing.

Faults can cause serious problems and can lead to damage. So, fault tolerance has

become an important characteristic for an electronic circuit. Tyrrell et al. performed

robot controlling experiments, where a continuous evolutionary process was used to help
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Table 7.1: The experimental settings of all sets of simulated robot experiments. The
‘Task’ column shows the task (WA=exploring areas of maps by obstacle avoidance
behaviour, FT=fault tolerance behaviour, IE=incremental evolution, MS=maze solving
task) of the robot. The ‘Map’ column shows the map (the reference to the figure
number) where the robot was allowed to move. The ‘St. pos’ column shows the starting
position (CN=centre, UL=upper left corner, R=random, M= marked in the map) of
the robot in the map. The ‘No. of gen.’ and ‘No. of run’ columns show the number of
generations and number of runs respectively. The ‘No. of el.’, ‘No. of in.’ and ‘No. of
con.’ columns show the total number of electrodes, the number of inputs and number
of configuration inputs respectively. In all experiments, 2 electrodes were used for
outputs. The ‘In. map.’ and ‘Out. map.’ columns show the input mapping (C=mark-
space ratio, F=frequency) and output mapping (PO=percentage of ones, TG=average
transition gap) respectively. The last column shows the input-output timing (measured
in milliseconds) for the experiments. In all sets of experiments, a 25 KHz output
sampling frequency was used.

Set Task Map St. No. No. No. No. No. In. Out. Time
pos. of of of of. of map. map.

gen. run el. in. con.

A WA 7.3 (a) CN 100 10 12 6 4 C PO 20
B WA 7.3 (b) UL 100 10 12 6 4 C PO 20
C WA 7.3 (b) R 100 10 12 6 4 C PO 20
D WA 7.3 (b) UL 100 10 12 6 4 C TG 20
E WA 7.3 (a) CN 100 10 12 6 4 F TG 20
F WA 7.3 (b) UL 100 10 16 8 6 C PO 25
G FT 7.3 (a) CN 200 5 16 8 6 C PO 32
H WA 7.3 (c) CN 300 5 12 6 4 C PO 20
I IE 7.3 (c) CN 300 5 12 6 4 C PO 20
J MS 7.4 M 300 5 16 8 6 C PO 25

(a)-(f)

cope with environment changes or faults [Tyrrell et al. (2004)]. This was described in

Section 3.1. Experiments G and I were performed to evolve robot controllers that could

cope with faults and environment changes. In experiment G, each of five evolutionary

runs of 100 generations was carried out before a fault was introduced in the robot by

switching off one sensor (S1). This was done by setting the corresponding mark-space

ratio to zero. Then each evolutionary algorithm was run for another 100 generations.

In the incremental evolution experiments (set I), the number of generations was 300.

Other than the 4 side walls, there are 7 obstacles in the middle of the map, which are

distributed all over the map. These 7 obstacles were not placed at the same time. They

were placed one by one in intervals of 30 generations, starting with the 20th generation.

No obstacle was added during the last 100 generations.

The tenth set (J) of experiments was concerned with maze solving task and six different

maps were used in these experiments. The fitness of the robot controller in experiment

J was gathered in three stages using three maze maps. The maps in the sequence
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Figure 7.3: Task environments used in simulated robot experiments A-I. In (a)-(c),
the obstacles or the walls are shown in red and the white area of the map is the area
where the robot is allowed to move.

increased in complexity. The complexity has been judged using the number of turns

required for a robot to move from its starting position to the goal. The simplest map

has the least number of turns and the hardest map has the highest number of turns. The

evolutionary run started from the simplest map (Figure 7.4 (a)). After an individual in

the population was found, which could successfully solve the maze, the population was

immediately evaluated on the next more complex maze map (Figure 7.4 (b)) for further

evolution. Once a population member could solve the second maze, the full population

was evaluated on the third maze map (Figure 7.4 (c)). Once the period of evolution that

used the third maze map was completed, the final population of the robot controller was

tested on three previously unseen other maze maps (Figure 7.4 (d), (e) and (f)) to test

the generality of the evolved controller.

In all sets of experiments except the F, G and J, only 12 electrodes from the 16 electrodes

were used (the middle 6 electrodes from each side of one sample). In these experiments,

the number of inputs was 6. These inputs were provided by sensors S0, S2, S3, S5, S6

and S7 (Figure 7.1). In F, G and J, all 16 electrodes were used, where 8 electrodes (all

8 sensors) were used as inputs.

For all sets of experiments, each chromosome defined which electrodes were outputs,

inputs (received square waves) or received the configuration inputs (square waves or

static voltages).

The input-output timing for experiments F, G and J was higher due to using a greater

number of electrodes. Sampling over longer times is necessary as the scheduling in

Mecobo is serial. This means that several sequences of actions (i.e. sending inputs,

configuration inputs, reading outputs) do not take place at the same instant. Mecobo
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Figure 7.4: Task environments used in maze solving experiment (J). In (a)-(f), the
obstacles or the walls are shown in red and the white area of the map is the area where
the robot is allowed to move. The starting position of the robot is marked with a cross
and the goal is marked with an oval.

maintains a schedule. Thus, it takes some time for Mecobo to circulate signal to each

electrode.

In experiments A-F, the number of runs was 10 and in experiments G-J, the number of

runs was 5. The experiments G-J were performed over a lower number of runs as these

experiments were performed over a higher number of generations. The experiments G-J

required more generations to obtain better results. This was due to the fact that the ex-

periments G and I were designed to investigate fault tolerance and incremental evolution

(environmental changes) respectively, both the experiments H and I were performed on

a more complex map and experiment J was performed to solve mazes.

7.4 Genotype Representation

In experiments A-E, H and I, each chromosome used ne = 12 electrodes at a time. In

experiments F, G and J, each chromosome used ne = 16 electrodes. The values that

genes could take are shown in Table 7.2, where i takes values 0, 1, . . . 11 for experiments

A-E, H, I and values 0, 1, . . . 15 for experiments F, G, J. The description of the genotype

for the experiments is shown in Table 7.3.
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Table 7.2: Description of the genes for robot controlling experiments.

Gene Signal applied to, or Allowed
symbol read from the ith values

electrode

pi Which electrode 0, 1, 2 . . . 11 (for sets: A-E, H, I)
is used 0, 1, 2 . . . 15 (for sets: F, G, J)

si Type 0 (static) or
1(square wave)

ai Amplitude 0 , 1

fi Frequency 500 ,501 . . . 10K

ci Mark-space ratio 0, 1, . . . 100

Table 7.3: Description of the genotype for robot controlling experiments. The ‘Exp.’
column shows the set(s) of experiments. The ‘No. of gen. in each elec.’ column
shows the number of genes associated with each electrode. The ‘Gen. ass. with each
elec.’ column shows the genes that are associated with each electrode. The ‘Total no.
of genes’ column shows the total number of genes in each genotype. The ‘Genotype
representation’ column shows the representation of a genotype. The ‘Genes related
to inputs’ column shows the gene values of a genotype, which are related to inputs.
The ‘Genes related to outputs’ column shows the gene values of a genotype, which are
related to outputs.

Exp. No. Gen. Total Genotype Genes related Genes related
of ass. no. representation to inputs to outputs
gen. with of
in each genes
each elec.
elec.

Sets 5 pi, si, 12X5 p0s0a0f0c0 . . . First 30 genes: Last 10 genes:
A-E, ai, fi, =60 p11s11a11f11c11 p0s0a0f0c0 p10s10a10f10c10
H, I ci . . . . . .

p5s5a5f5c5 p11s11a11f11c11
Sets 5 pi, si, 16X5 p0s0a0f0c0 . . . First 40 genes: Last 10 genes:
F, G, ai, fi, =80 p15s15a15f15c15 p0s0a0f0c0 p14s14a14f14c14
J ci . . . . . .

p7s7a7f7c7 p15s15a15f15c15

In all experiments, mutated children were created from a parent genotype by mutating a

single gene (i.e. one gene of 60 in the case of sets A-E, H and I and one gene in 80 in the

case of sets F, G and J). In these input and output genes, only the pi (here the values

of i are 0-5 and 10-11 for solutions with 12 electrodes and values of i are 0-7 and 14-15

for solutions with 16 electrodes) has any effect, others do not have any effect. The gene

pi decides which electrode will be used for the input and output of the device. Thus,

mutations in this gene can choose a different electrode to be used as an input or output.

The examples of electrode arrangements of robot controlling experiments are shown in

Figures 7.5.
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Figure 7.5: Two examples of electrode arrangements used in robot controlling exper-
iments. (a) This type of electrode arrangement is used in sets A-E, H and I. Green
arrows are used to indicate reading outputs from output electrodes, yellow arrows are
used to show inputs being sent to input electrodes and blue arrows are used to show
configuration inputs being sent to 4 electrodes. (b) This type of electrode arrangement
is used in sets F, G and J. Green arrows are used to indicate reading outputs from
output electrodes, yellow arrows are used to show inputs being sent to input electrodes
and blue arrows are used to show configuration inputs being sent to 6 electrodes.

7.5 Input Mapping

In the experiments A-D, F-J, each of the inputs to the electrode array was a square

wave with a fixed mark-space ratio. The mark-space ratio (the examples of mark-space

ratio are shown in Figure 4.2) was determined by a linear mapping of the distance value

of the sensor. The examples of mark-space ratio mapping for the experiments A-D, F-J

are shown in Figure 7.6. In experiment E, each of the inputs to the electrode array

was a square wave with a fixed frequency. The frequency was determined by a linear

mapping of the distance value of the sensor. The input mappings for these experiments

are described as follows:

Denote the distance value of the ith sensor by Ii, where i takes integer values in a range

0-5 (corresponding to six sensors) in experiments A-D, H, I and 0-7 (corresponding to

8 sensors) in experiments F, G, J. Denote the maximum distance value and minimum

distance value of any sensor by Iimax and Iimin respectively. Then the linear input

mappings of the robot controlling experiments are shown in Table 7.4.
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Table 7.4: Input mappings for robot controlling experiments

Exp. Equation Variables Other parameters
of input signals

Sets Mi = aiIi + bi (7.1) Ii is mapped to a mark- Frequency

A-D, Here, space ratio Mi, where =5KHz and

F-J ai =
(Mmax −Mmin)

(Iimax − Iimin)
(7.2) the maximum allowed amplitude=1

bi =
(MminIimax

−MmaxIimin
)

(Iimax − Iimin)
(7.3)

mark-space ratio is

Mmax and the minimum
allowed mark-space ratio
is Mmin. Here Mmax

=100%, Mmin=0%,
Iimin=0 and
Iimax=1023

Set Fi = aiIi + bi (7.4) Ii is mapped to a square Mark-space ratio

E Here, wave frequency Fi, where =50% and

ai =
(Fmax − Fmin)

(Iimax
− Iimin

)
(7.5) the maximum allowed amplitude=1

bi =
(FminIimax

− FmaxIimin
)

(Iimax − Iimin)
(7.6)

frequency is Fmax and

the minimum allowed
frequency is Fmin. Here
Fmax=10KHz,
Fmin=500Hz,
Iimin=0 and
Iimax=1023

Real Mi = aiIi + bi (7.7) Ii is mapped to a mark- Frequency

Robot Here, space ratio Mi, where =5KHz and

Exp. ai =
(Mmax −Mmin)

(Iimax
− Iimin

)
(7.8) the maximum allowed amplitude=1

bi =
(MminIimax

−MmaxIimin
)

(Iimax
− Iimin

)
(7.9)

mark-space ratio is

Mmax and the minimum
allowed mark-space ratio
is Mmin. Here Mmax

=100%, Mmin=0%,
Iimin=0 and
Iimax

=100
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Figure 7.6: Three examples of mark-space ratio mappings for the experiments A-D,
F-J. (a) If the distance value of the sensor is 255, the mark-space ratio of the input
signal is 25%.(b) If the distance value of the sensor is 510, the mark-space ratio of
the input signal is 50%. (c) If the obstacle is in the nearest position of the robot, the
distance value of the sensor is 1023 and the mark-space ratio of the input signal is
100%.

It should be noted that the distance value of IR detector was subtracted from value 100.0

to maintain the similarity with the input mapping used in simulated robot experiments.

In simulated robot experiments, the lowest distance value (according to the range [0,

1023]) of IR sensor was used when there was no object and the highest value was used

when an object was right next to the IR sensor. In the Pi-Swarm experiments, a value

0 was used when no object was found and 100.0 when an object was in the nearest

position.

7.6 Output Mapping

The output was determined by examining the output buffers containing samples taken

from the output electrodes. Since the Mecobo 3.0 platform can only recognise binary

values, the output buffers contain bitstrings. In all experiments except the D and E, the

fraction of ones was used to obtain output values. This mapping was used as it seems

more closely related to mark-space ratio. In the experiments D and E, a different output
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Table 7.5: Output mappings of robot controlling experiments. The ‘Exp.’ column
shows the set of experiments. The ‘Equation’ column shows the equation used for
calculating motor speed value. The ‘Variable’ column defines the variables used in the
output mapping equation.

Exp. Equation Variables

Sets oi = Mmin+(Mmax−Mmin)numi/bufi
(7.10)

numi is the number of ones

A-C, in the ith output buffer.
F-J Here, Mmax=10 and Mmin=-10.

Sets oi = −10 + 20avgi/(bufi − 2)
(7.11)

avgi is the average transition

D,E gap in the ith output buffer.
Here, Mmax=10 and Mmin=-10.

Real oi = Mmin+(Mmax−Mmin)numi/bufi
(7.12)

numi is the number of ones

Robot in the ith output buffer.
Exp. Here, Mmax=1.0 and Mmin=-1.0

mapping was used corresponding to the transitions from 0 to 1 in the output buffers.

This was done so that the relative merits of the two mappings could be ascertained. In

the transition-based mapping, the transitions in each output buffer were recorded and

the gaps between consecutive transitions were measured and an average calculated. The

thinking behind using a transition-based mapping is that it may be useful as it is mark-

space ratio and frequency related. An example of average transition gap calculation for

an output electrode is shown in Figure 5.2. The output mappings of these experiments

are described as follows:

Let, bufi is the total number of samples of the ith output buffer, where i takes values 0,

1 (corresponding to two motors). Mmax is the maximum motor speed and Mmin is the

minimum motor speed. Then the equations used for calculating the linearly mapped ith

motor speed of the robot, oi for these experiments are shown in Table 7.5.

In experiments D and E, the highest average transition gap is (bufi − 2) when the first

transition happens at index 0 (output value 0 at index 0 and value 1 at index 1) in

the output buffer and the last transition happens at index (bufi − 2) (output value 0

at index (bufi − 2) and value 1 at index (bufi − 1)) and no other transition happens in

between.
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7.7 Fitness Calculation

To calculate a fitness of an evolved robot controller, each individual of the population

is executed for a number of time steps. Experiments A-I used 5000 time steps and

experiment J (maze solving) used 10,000 time steps. In most cases, if the robot collides

with an obstacle, it is stopped immediately, resulting in a lower fitness value. However,

in the case of maze solving experiment, the robot, which moves near to the goal, is

allowed to run after a collision for up to 1000 collisions. If a robot rotates in the same

place for 1000 consecutive moves, it is also stopped. The latter is assessed using the

x and y coordinates of robot’s position over all time steps in the past. However, the

previous (immediate) 50 positions of the robot are not used to prevent a slowly moving

robot being penalized. If the differences between the old and new x and y coordinates

are ≤ 30 units (approximately half the diameter of the robot), it is assumed that the

robot visits the same place as before, otherwise it is assumed that the robot is exploring

a new area of the map. If the robot rotates in the same place for 1000 consecutive

moves, it is stopped immediately and its overall fitness is assessed. However, in the

case of experiment J (maze solving), a robot is not stopped when it rotates in the same

place for 1000 consecutive moves if there is no obstacle between robot’s position and the

goal. If a robot has not been stopped early and it is exploring a new area of the map,

the distance between the previous position and the new position is added to the fitness

score. The distance is calculated using Euclidean distance with x and y coordinates of

the previous and new positions. The better individuals are decided by higher fitness

values. In the case of maze solving experiment (J), robots are rewarded for reaching

points nearer to the goal. This is done by measuring the Euclidean distance between

the position of the robot and the goal. This Euclidean distance is subtracted from the

value 1415 ≈ 1414.214 so that the value becomes higher as the robot reaches closer to

its goal. It should be noted here that the largest distance between any two points on the

map is 1414.214 corresponding to the points (0, 0) and (1000, 1000). The obtained value

is multiplied by a constant and then added to the fitness value. The constant value is

chosen to be 10. It has been found that if 10 is multiplied by the Euclidean distance and

added to the fitness value, the obtained fitness value becomes high enough to reward

the robot to survive in next generation, i.e. the obtained fitness value becomes higher

than any other fitness values of the robots that have explored all the areas of the map

without collision and this was done by observing the fitness values of experiments A-I.
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Figure 7.7: The flow chart of fitness calculation for simulated robot experiments A-I.
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Figure 7.8: The flow chart of fitness calculation for simulated robot experiment J
(maze solving).
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Figure 7.9: The flow chart of the function that decides whether the robot is rotating
in the same place for 1000 consecutive moves or not.
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Table 7.6: The elapsed time of experiments A-I. The ‘No. of gen.’ column shows the
number of generations of the evolutionary run. The ‘Able to exp. the map’ column
shows the average time taken by those robots that could explore the full map without
colliding with obstacles. ‘Not applicable’ of this column indicates that none of the
robots could explore the full map. The ‘Unable to exp. the map’ column shows the
average time taken by those robots that could not explore the full map due to colliding
with obstacles or rotating in the same place for 1000 consecutive moves within the given
number of generations.

Set No. of gen. Able to exp. the map Unable to exp. the map

A 100 9 hours More than 5 hours
B 100 More than 14 hours 8 hours
C 100 4 hours 1 hour
D 100 Not applicable Less than 1 hour
E 100 Not applicable More than 3 hours
F 100 More than 8 hours More than 4 hours
G 200 Not applicable More than 20 hours
H 300 More than 13 hours More than 10 hours
I 300 Not applicable 30 hours

The flow charts of fitness calculation of simulated robot experiments A-I and J are shown

in Figures 7.7 and 7.8 respectively, and Figure 7.9 shows the flow chart of the function

that decides whether the robot is rotating in the same place for 1000 consecutive moves

or not.

There can be many ways to decide whether the robot reaches close to its goal or not.

The Euclidean distance between robot’s current position and the goal can be used, but

it has a drawback, especially if there is any obstacle between these two positions, in that

case, there is no direct path for the robot to reach the goal, thus the robot might need

to move a significant amount to reach the goal. So, merely calculating the Euclidean

distance between robot’s current position and the goal is not always a good measure. In

the experiment, this has been taken into account by analysing the positions of all the

obstacles. If there is no obstacle between the robot’s current position and the goal, the

robot is judged to be near to its goal.

In the case of experiments A-I, the elapsed time of an evolutionary run varied according

to the length of time that a robot could survive without colliding with an obstacle.

Individuals of a population would take longer to run if they did not rotate in the same

place or collide with obstacles. The elapsed times of experiments A-I are shown in Table

7.6.
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It has been found that the time was higher in experiments involving incremental evolu-

tion (experiment I). In the maze experiment (set J), robots were evolved that solved the

simplest map in an average of 2 hours, while to evolve robots to solve the second map

took a further 6 hours, but a robot was evolved that could solve the hardest map in a

further 45 minutes.

7.8 The Simulated Robot Experiments and the Results

For each of the experiments, a (1+4)-evolutionary algorithm was used. In experiments,

a child replaced the parent if its fitness was greater than or equal to the parent.

The results of experiments A-I are described in Table 7.7. The paths of the robot ex-

ploring the full map without colliding with obstacles are shown in Figure 7.10 using

three results from experiments A-I on three different maps (Figure 7.3 (a)-(c)). The

movements of the robot that could not explore the full map due to colliding with obsta-

cles are shown in Figure 7.11 using three results from experiments A-I on three different

maps (Figure 7.3 (a)-(c)).

After comparing the results of experiments B and C (the experimental settings of B

and C were the same, but the starting position of the robot was upper left corner in

experiment B and random in experiment C), it can be noted that an upper left corner

starting position of the robot was suitable for robots to explore the full map in the case

of map (b) (Figure 7.3) as the results of experiment B are better than the results of

experiment C. It has been found from the records of robot’s movement that in the case

of experiment C, only three robots could explore the full map, these started from the

upper left corner of the map.

The experimental results of D and E have shown that an output mapping based on

average transition gap did not provide good results. It should be noted that experiments

D and E used average transition gaps for output mappings and other experiments used

percentages of ones.

It has been found that the results of experiment F with 6 configuration inputs were not

as good as the results of experiment B with 4 configuration inputs. It should be noted

that the experiments B and F used the same experimental settings, but experiment B
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Table 7.7: The results of experiments A-I. The ‘No. of run’ column shows the number
of runs. The ‘Total number of robots exploring the full map’ column shows the total
number of robots that explored the full map (with or without colliding with obstacles)
and the ‘Number of robots exploring the full map without colliding’ column shows the
number of robots that explored the full map without colliding with obstacles. The
‘Min. gen.’ column shows the minimum number of generations required to explore the
full map without colliding with an obstacle. ‘Not applicable’ of this column indicates
that none of the robots could explore the full map without colliding. The last column
shows some additional results.

Set No. Total number Number of robots Min. Note
of of robots exploring the full gen.
run exploring the map without

full map colliding

A 10 5 4 21 3 robots could not escape from
the middle zone of the map due to
collision and 2 robots explored
almost half of the map.

B 10 7 3 33 1 robot could explore the 4/5 of
the map but was stopped due to
rotating in the same place for
1000 consecutive moves.

C 10 3 2 47 The starting positions of the best
3 robots were the upped left corner
of the map.

D 10 0 0 Not The highest moves that the robot
applicable could continue without colliding

with obstacles was 247.
E 10 0 0 Not The highest moves that the robot

applicable could continue without colliding
with obstacles was 91.

F 10 4 2 32 1 robot could explore the 4/5 of
the map but was stopped due to
rotating in the same place for
1000 consecutive moves.

G 5 1 (before and after 1 (after the fault) Not 1 robot did not collide with
the fault injection) injection) applicable an obstacle but could not
and 1 (after the explore the full map (before
fault injection) and after the fault injection).

In 3 runs, the fitness value
that was obtained prior to the
fault injection was recovered
or even exceeded in an average
within 42 generations.

H 5 2 2 198 1 robot explored the 8/9
of the map.

I 5 3 0 Not 2 robots explored the 7/9
applicable of the map.

used 12 electrodes (6 as inputs, 4 as configuration inputs) and experiment F used 16

electrodes (8 as inputs, 6 as configuration inputs).

After the first nine sets of experiments, four generalization experiments were performed.

The target was to find the robots that could explore all of the three maps (Figure 7.3)

without colliding with obstacles. In these generalization experiments, the successful

robots of experiments A, B, C and H were transferred to other two maps of Figure 7.3,

where the corresponding robots did not move at the time of the evolution. This means,

in the evolutionary run, maps (a) and (c) (Figure 7.3) were used in experiments A and H
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respectively and map (b) was used in experiments B and C. In the generalisation exper-

iments, robots of experiment A were tested on maps (b) and (c), robots of experiment

H were tested on maps (a) and (b), and robots of experiments B and C were tested

on maps (a) and (c). The successful robots are the robots which could explore the full

map without colliding with obstacles in the evolutionary run. The four generalization

experiments are described as follows:

• In total four robots of experiment A were successful. In the case of the first

generalization experiment, these four robots were run on the second (Figure 7.3

(b)) and third maps (Figure 7.3 (c)). Of these, only one robot could explore

the second map without colliding with an obstacle. The other three robots of

experiment A could not explore any of the two maps due to colliding with obstacles.

• In total three robots of experiment B were successful. In the case of the second

generalization experiment, these were run on the first (Figure 7.3 (a)) and third

(Figure 7.3 (c)) maps. Of these, none of the robots could explore any of the two

maps due to colliding with obstacles.

• In total two robots of experiment C were successful. In the third generalization

experiment, these were run on the first and third maps. Of these, one robot did

not collide with an obstacle when transferred to the first map but could not explore

the full map within 5000 time steps. The same robot could not explore the third

map due to rotating in the same place for 1000 consecutive moves. The other

robot of experiment C collided with an obstacle in the case of both maps.

• In total two robots of experiment H were successful. In the fourth generalization

experiment, these were run on the first and second maps. In this experiment, both

of the robots collided with obstacles in the first map, and these robots could not

explore the second map due to rotating in the same place for 1000 consecutive

moves.

As before, in the four generalization experiments, the robots were allowed to move up to

5000 time steps, however they were stopped as soon as they collided with obstacles or

if they rotated in the same place for 1000 consecutive moves (Section 7.7). It has been

found from the generalization experiments that none of the robots could explore all the

three maps (Figure 7.3) due to colliding with obstacles or rotating in the same place for
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Table 7.8: The results of experiment J (maze solving). The ‘Map’ column shows the
maze (according to Figure 7.4) used in the experiment. The ‘Use of the map’ column
shows the use (training or test) of the map. The ‘No. of individuals’ column shows the
number of individuals solved the maze. The ‘No. of runs’ column shows the number
of runs in which the maze was solved. The ‘Average no. of generations’ column shows
the average number of generations to solve the maze. ‘Not applicable’ of this column
indicates that the result corresponding to this column is not applicable for the maze.
The value of the column is not applicable in the case of last three mazes, which were
used for testing.

Map Use of No. of No. of Average no.
the map individuals runs of generations

a Training At least 1 in each run 5 20.6
b Training At least 1 in each run 5 56.8
c Training At least 1 in each run 5 6.6
d Test 7 (2 individuals in the 4 Not applicable

first, second and fifth
runs; 1 individual in the
third run)

e Test 4 (2 individuals in the 2 Not applicable
second and fourth runs)

f Test 6 (3 individuals in the 3 Not applicable
first run; 2 individuals in
the second run; 1 individual
in the fifth run)

1000 consecutive moves. However, only one robot (one successful robot of experiment

A) could explore two maps (Figure 7.3 (a) and (b)). It should be noted that the starting

position of the robot in the first, second and fourth generalization experiments was the

centre of the map in the case of the first and third maps and upper left corner in the

case of the second map, but the starting position was selected randomly in the case of

the third generalization experiment.

Experiment J was concerned with maze solving. The results of experiment J are de-

scribed in Table 7.8. The paths of the robot solving the mazes are shown in Figure 7.12

using the results of experiment J on six mazes (Figure 7.4 (a)-(f)).

From these results it can be concluded that the maze (d) was solved by more robots

than the other two mazes ((e) and (f)), this is due to the fact that it is the simplest

maze. Although the maze (f) was the hardest, it was still solved by 6 robots, which was

more than the number of robots that solved the maze (e).
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Figure 7.10: Paths of robots exploring the full map without colliding with obstacles.
(a) The Path of the robot in the case of one run of experiment A. (b) The Path of the
robot in the case of one run of experiment B. (c) The Path of the robot in the case
of one run of experiment H. In (a)-(c), obstacles are shown in red, the robot’s current
position is shown using a black circle and the path through which the robot has already
visited the map is shown in grey.

Figure 7.11: Paths of robots colliding with obstacles. (a) The Path of the robot in
the case of one run of experiment A. (b) The Path of the robot in the case of one run
of experiment D. (c) The Path of the robot in the case of one run of experiment H. In
(a)-(c), obstacles are shown in red, the robot’s current position is shown using a black
circle, the path through which the robot has already visited the map is shown in grey
and the place where the robot has collided is shown as a yellow star.

7.9 The Real Robot Experiments and the Results

The mbed microcontroller can communicate with a host PC through a ‘USB Virtual Se-

rial Port’ over the same USB cable which is used for programming. In experiments,

the Pi-Swarm robot was run by establishing communication between the Pi-Swarm

robot (through mbed) and the computer program which communicates with material

via Mecobo. The mbed sent distance values from 8 IR proximity detectors on the robot

to the computer which sent the two motor speed values back to the robot. The mbed

ran the robot using the motor speed values for 10 milliseconds and then stopped the

robot. Then mbed sent 8 distance values to the computer again and another cycle be-

gins. This sequence of operations was performed 5000 times. It should be noted that
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Figure 7.12: Paths of robots solving mazes. In (a)-(f), obstacles are shown in red, the
robot’s current position is shown using a black circle, the path through which the robot
has already visited the map is shown in grey, the place where the robot has collided is
shown as a yellow star, the starting position of the robot is marked with a cross and
the goal is marked with an oval.

the robot was not stopped if it collided with an obstacle or rotated in the same place

for 1000 consecutive moves, unlike the simulated robot. This means that the robot was

given the chance to free itself if it was stuck. The robot was halted every 10 milliseconds

so that the robot waited to allow Mecobo to finish sending input signals and reading

outputs. This was done to make sure that after sending sensor values, the robot would

not have moved to a different position when the new motor speeds were obtained. Prior

investigation was performed to arrive at the timing of 10 milliseconds. Times larger

than 10 milliseconds allowed the robot too much time to move resulting in the harder

control and more collisions. Using times smaller than 10 milliseconds meant the robot

moved very slowly.

The final solutions of experiments A-C, F and H were tested on a real Pi-Swarm robot

to investigate whether solutions evolved with a simulator perform exactly the same or

not. Only successful solutions of simulated robot experiments were used in real robot

experiments, i.e. only those solutions were used which explored the full map without

colliding with obstacles. The real robot experiments focused on observing the behaviour

of the robot to explore the full map. This is why solutions obtained in experiments G and
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I of simulated robot experiments were not used on the real robot as these experiments

were designed to test the robot’s ability to cope with a simulated sensor fault and

environmental changes. The experiment J was concerned with maze solving problem

and this was not used in the Pi-Swarm experiment either. As none of the robots of

experiments D and E could explore the full map, none of the solutions of these two sets

was used in real robot experiments. Only the successful final solutions of the remaining

five sets (sets A-C, F and H) of simulated robot experiments were tested on the real

Pi-Swarm robot, in total 13 solutions were tested from these five sets, i.e. in total 13

solutions were successful from these five sets, and these comprised four solutions from

set A, three solutions from set B, two from set C, two from set F and two solutions from

set H.

It should be noted that the environmental settings of each real robot experiment were

arranged to try and make a similar set of environmental settings as the corresponding

simulated robot experiment (same map, same starting position of the robot, same input-

output timing, same input and output mapping).

The results are discussed as follows:

• Four solutions were successful in experiment A. These four solutions were tested

on the real Pi-Swarm robot. None of the robots could escape from collisions. As

the robot was not stopped if it collided and it was left to run for up to 5000

moves, one of the four robots did explore half of the map. However, the robot

collided several times but did manage to escape. In the case of the other three

solutions, the robots collided very soon after starting their journey and could not

free themselves within these 5000 moves.

• The three successful solutions in experiment B were tested on the real Pi-Swarm

robot. None of the robots could escape from collisions. Only one robot could

explore half of the map in spite of colliding several times with obstacles and then

escaping. In the case of the other two solutions, the robots collided very soon after

starting their journey and could not escape within these 5000 moves.

• Two solutions were successful in experiment C. One robot explored half of the

map after colliding several times with obstacles and then escaping. The other
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robot collided very soon after starting its journey and could not extricate itself

within the full life period (within 5000 moves).

• Two solutions were successful in experiment F. In the case of both solutions, the

robot collided very soon after starting its journey and could not make an escape

within the 5000 moves.

• Two solutions were successful in experiment H. As the robot was not stopped if it

collided, only one robot explored half of the map. The robot collided several times

but could escape. The other robot collided very soon after starting its journey and

could not free itself within its life period (within 5000 moves).

The analysis showed that the real robot did not perform as well as the simulated robot.

This was due to the fact that the simulator was written for Khepera robot and the real

robot was performed with the Pi-Swarm robot. A common problem in evolutionary

robotics is that if the solution obtained by simulation is transferred in the real world,

the behaviour of the solution might not be exactly the same as the behaviour obtained

during the simulated evolution. This is called reality gap. The other reasons for the

worse performance of the Pi-Swarm robot than the simulated robot were the reality

gap, presence of noise and also the extra disturbance caused by having a wire connected

to the on-board mbed robot controller and the computer while the robot was running.

Wireless communication can be possible, but the sent and received messages have a

limitation on sizes (limited number of bytes). This limitation meant the robot would

communicate with the computer program too infrequently. Although it was attempted

to make the settings of simulated and real robot experiments as similar as possible, the

organisation of a map along with obstacles, the size of a map, the proportion of the

size of the robot in a map, the distance traversed by the robot by different motor speed

values in a map were not exactly the same as those in the simulated robot experiments.

These dissimilarities have also affected the performance of Pi-Swarm robot. Figure 7.13

shows an image of real robot (Pi-Swarm) experiment.

7.10 Summary

A summary of outcomes from these experiments is given as follows:
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Figure 7.13: The Pi-Swarm robot moving within a map. The image was taken in the
middle of one experiment.

• It has been found from the simulated robot experiments that an output mapping

based on average transition gap did not provide good results.

• In the case of simulated robot experiments, the results with 6 configuration inputs

were not as good as the results with 4 configuration inputs.

• After the four generalization experiments, none of the robots could explore all of

the three maps (Figure 7.3 (a)-(c)) without colliding with an obstacle. However,

one robot could explore two maps ((a) and (b)).

• None of the robots could explore the full map without colliding with an obstacle

in simulated robot experiments of incremental evolution.

• In the fault tolerant simulated robot experiments, one robot collided with an obsta-

cle and could not explore the full map before adding the fault, but after adding the

fault, it could explore the full map without colliding with an obstacle. However,

none of the robots could explore the full map without colliding with an obstacle

before adding the fault.

• In maze solving simulated robot experiments, in training, the third maze (Figure

7.4 (c)) was solved with the lowest number of generations on average than the

other two mazes and it took the highest number of generations to solve the second

maze (Figure 7.4 (b)) on average. In testing, the maze (d) (Figure 7.4) was solved

by more robots than the other two mazes (Figure 7.4 (e), (f)) and the maze (f)

was solved by more robots than the maze (e).

• In the case of real robot experiments, none of the robots could explore the full map

within its life period. However, in total four robots (out of 13 successful robots of

sets A-C, F and H) could explore half of the map in spite of colliding several times

with obstacles. The real robot did not perform as well as the simulated robot.
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This chapter shows that using purpose-built hardware it is possible to evolve voltages

and signals applied to a physical material to control robots, both simulated (Khepera)

and real (Pi-Swarm). This is the first time that a mixture of single-walled carbon

nanotubes and a polymer has controlled a robot. In some cases, it was found that the

robot could explore an environment without colliding with an obstacle or solve all six

mazes. Robot control problems using a simulated robot were investigated in the past

using evolution-in-materio, where the computational material was liquid crystal [Harding

and Miller (2005)]. However, the number of sensors used was two. The simulated robot

experiments have been performed here with at least six sensors. Further, the task of the

robot has been extended compared to the task performed by the evolution-in-materio

controlled robot using an LCD.

The next chapter deals with investigation and analyses regarding the stability of ma-

terials, useful characteristics of input signals that are effective for computation, the

solutions obtained for various computational problems and the computational problems

unsuitable for solving using evolution-in-materio.
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Analysis of Results and Further

Investigations
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This chapter contains investigations and analysis regarding the solutions obtained for

the computational problems described in Chapters 5, 6 and 7. Previous chapters de-

scribed solutions of many computational problems, but these solutions cannot be said

to be reliable or repeatable unless the used materials are proved to be stable. Some

stability tests have been performed using mixtures of single-walled carbon nanotubes

and polymers. These stability tests are described in detail in this chapter.
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Different input parameters (Table 4.1) were used to generate different types of input

signals with the Mecobo hardware platform, which were evolved to get final solutions

of the computational problems. Investigations have been performed on these input

parameters to see which are effective and which are redundant. Other than the input

parameters, different output parameters (Table 4.2) were also used to read outputs from

an electrode using Mecobo. These have also been investigated. The investigations and

the results are described here.

An analysis has been done on the results of the experiments performed in this thesis on

various types of computational problems. This chapter discusses in detail the analysis

and the outcomes of the analysis. The outcomes of the analysis along with the problems

faced in this research reveal some guidelines on choosing computational problems for

future work, which are also discussed in this chapter.

8.1 The Stability Test

In the case of evolution-in-materio, when a number of signals are applied to the material,

it cannot be measured whether the molecules go back to exactly the same state that

they were in before applying the signals. However, it is important for a physical material

to be able to be ‘reset’ in some way before applying new input signals on it, otherwise it

might preserve some memory and might give fitness scores and solutions of the problem,

that are dependent on the past behaviour. Thus, it is important in evolution-in-materio

to investigate the stability of the material so that if an evolved configuration is applied

again, it will give the same output. If the material does not give the same output for

the same problem using the same inputs and configuration inputs, the solution obtained

during the evolutionary run will not be applicable again. Thus, it cannot be reliably

said that the material can give the same solutions always for the same problem under

the same condition.

Harding performed some stability tests on the LCD used in his evolution-in-materio

experiments [Harding (2006)], which were described in Section 3.3.1. Some stability tests

have been performed here to find out whether the results obtained using the mixture of

single-walled carbon nanotubes and a polymer are repeatable.
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To investigate whether the behaviour of the experimental material is stable and reliable,

the final evolved configurations of electrodes from one run of one tone discriminator ex-

periment were re-applied under different circumstances and the responses of the material

were measured. The configurations of electrodes for configuration inputs used in that

tone discriminator experiment are shown in Table 8.1. The configurations of electrodes

for inputs and the average transition gap in an output electrode buffer are shown in Ta-

ble 8.2. This average transition gap was recorded at the time of the tone discriminator

experiment.

The circumstances that are used in the stability tests are described as follows:

• Signals were applied to the electrodes, then Mecobo was stopped and started again

(by switching it off and on again), and then subsequently the same signals were

re-applied to the same electrodes.

• Signals were applied to the electrodes, then Mecobo was left idle for 1 day, and

then subsequently the same signals were re-applied to the same electrodes.

• Signals were applied to the electrodes, then different signals using different con-

figurations of electrodes were applied, and then subsequently the original signals

were re-applied to the same electrodes.

• Signals were applied to the electrodes twice one after the other.

In these investigations, the final evolved configurations of electrodes were re-applied

under each of these circumstances five times, i.e. in total 20 responses were recorded. It

has been observed that in 18 cases, the average transition gap in that output buffer was

14 and in 2 cases, it was 13. It should be noted that these tests were performed after

intervals of nine months from the original tone discriminator experiment. The mixture

used in these tests was material sample 6 (Table 4.3).

To further investigate stability, other type of output measurement was also examined.

In this case, the percentage of ones in an output buffer was measured using a single

output electrode. The configurations of electrodes, which were used to seed one of the

individuals of the initial population of function optimisation experiment A (Section 6.2),

were used in this stability test. An initial evolutionary investigation was performed to

discover the typical contents of an output buffer before function optimisation experiment
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Table 8.1: Final configurations of electrodes for configuration inputs in one run of tone
discriminator experiment using pair of frequencies 500Hz-900Hz. In this experiment,
the input-output timing was 250 milliseconds. ‘Not applicable’ is used when mark-space
ratio and frequency are not applicable, i.e. for static voltages.

Configuration Electrode Signal Amplitude Frequency Mark-space
input no. type (Hz) ratio

1 5 Wave 1 2886 6
2 11 Static 0 Not Not

applicable applicable
3 7 Wave 1 8748 22
4 0 Static 1 Not Not

applicable applicable
5 3 Static 0 Not Not

applicable applicable
6 9 Wave 1 8485 19
7 6 Wave 1 6584 46
8 4 Wave 1 4987 75
9 2 Wave 1 3738 62

Table 8.2: The configurations of electrodes for inputs and the average transition gap
in an output electrode buffer in one run of tone discriminator experiment using pair
of frequencies 500Hz-900Hz. This average transition gap was recorded at the time of
the tone discriminator experiment. In this experiment, the input-output timing was
250 milliseconds. ‘Not applicable’ is used when mark-space ratio and frequency are not
applicable, i.e. for static voltages.

Input Output
Electrode Signal Amplitude Frequency Mark-space Electrode Average

no. type (Hz) ratio no. transition gap

10 Wave 1 900 50 1 14

A to seed the initial population of that experiment. In the initial investigation in ex-

periment A, evolutionary runs were carried out to find the electrode configurations that

gave different percentages of ones in the output buffer. The different percentages were

0%, 10%, 20%, 30% and 40%. The configurations of electrodes, which gave 40% ones in

that investigation, were used in this stability test. The configurations of electrodes used

for configuration inputs are shown in Table 8.3. The 9th electrode (electrode number:

8) was used for measuring the percentage of ones. After intervals of three months, the

configurations of electrodes were re-applied and varied the environments as before (each

of the circumstances for five times and in total 20 responses). It was observed that in

19 out of 20 cases, the percentage of ones was 40% and in one case, it was 39%. The

mixture used in these tests was material sample 4 (Table 4.3).

From these stability tests, it has been found that in most cases, the evolved behaviours
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Table 8.3: The configurations of electrodes for configuration inputs used to obtain
40% ones in the output buffer of the 9th electrode (electrode no.: 8) of the electrode
array of material sample 4 (Table 4.3). In this experiment, the input-output timing
was 128 milliseconds. ‘Not applicable’ is used when mark-space ratio, frequency and
phase values are not applicable, i.e. for static voltages.

Configuration Electrode Signal Amplitude Frequency Mark-space Phase
input no. type (Hz) ratio

1 9 Wave 1 3797 92 2
2 2 Static 0 Not Not Not

applicable applicable applicable
3 4 Wave 1 1090 64 9
4 0 Wave 0 4887 55 4
5 10 Wave 0 1810 69 5
6 5 Wave 1 2161 65 1
7 6 Static 1 Not Not Not

applicable applicable applicable
8 3 Wave 0 2635 53 4
9 11 Wave 1 2562 54 8
10 7 Wave 1 2815 83 6
11 1 Static 0 Not Not Not

applicable applicable applicable

are stable. However, in some cases, variations were observed. Further experiments would

be needed to investigate the reasons for these variations.

8.2 Investigations On Input and Output Parameters

There are two types of input signals that can be sent using Mecobo: static signals and

square wave signals. Many input parameters are used to generate input signals with

many variations, which were described in Table 4.1. Of these, some input parameters

cause changes in measured outputs and some do not. So, there should be an investigation

to find out which input parameters have effects on outputs and which do not have any

effect at all. The input parameters that were used in these experiments are electrode

number, signal type, amplitude, frequency, mark-space ratio, phase, start time and end

time.

Five different sets of investigations were performed on these input parameters. These

investigations and the outcomes of the investigations are described as follows:

• In the first (A) set, the electrode number was chosen as the input parameter on

which an investigation was performed. Records of the electrode configurations of
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Table 8.4: The electrode configurations of configuration inputs before the mutation
happened on an electrode number. In this experiment, the input-output timing was 50
milliseconds. The output electrode number was 7. All the configuration inputs were
static analogue voltages. Electrodes of the 3rd and the 13th configuration inputs were
swapped.

Configuration input Electrode no. Amplitude

1 6 121
2 3 178

3 15 25

4 8 59
5 13 20
6 10 192
7 4 189
8 14 52
9 11 136
10 5 25
11 9 61
12 12 62

13 0 172

14 2 243
15 1 3

the best-fit individual in each generation for each run were kept in all experiments.

After investigation of the records, it was found that electrode number has an effect

on outputs. It was found that the average of absolute values in an output buffer

of previous generation was increased in the next generation when only a single

mutation happened on an electrode number of the full genotype, which swapped

an electrode of an configuration input with an electrode of another configuration

input. The average of absolute values in the output buffer was 698 before the mu-

tation and 1639 after the mutation. One of the function optimisation experiments

(set C) using the Mecobo 3.5 and material sample 1 (Table 4.3) was used in this

investigation. The electrode configurations of configuration inputs are shown in

Table 8.4.

• In the second (B) set, the phase was chosen as the input parameter on which an

investigation was performed. After investigation, it was found that phase does not

have any effect on outputs. For this investigation an experiment was performed

using 14 inputs and one output. The inputs were a mixture of digital square

waves and digital static voltages. In this experiment, at first, a sequence of inputs

(a mixture of square waves and static voltages) were sent to the material and the

percentage of ones in an output buffer was measured. The phase value of all square

182



Chapter 8

Table 8.5: The electrode configurations of 14 inputs before the modification on the
phase values. In this experiment, the input-output timing was 25 milliseconds. The
output electrode number was 15. ‘Not applicable’ is used when mark-space ratio, phase
and frequency values are not applicable, i.e. for static voltages. The phases of all square
wave inputs were modified to the value 10.

Input Electrode Signal Amplitude Frequency Mark-space Phase
no. type (Hz) ratio

1 2 Static 0 Not Not Not
applicable applicable applicable

2 0 Wave 1 3186 10 1
3 4 Wave 1 4077 10 1
4 5 Static 0 Not Not Not

applicable applicable applicable
5 7 Static 0 Not Not Not

applicable applicable applicable
6 10 Wave 1 3203 10 1
7 11 Static 0 Not Not Not

applicable applicable applicable
8 3 Wave 1 2210 10 1
9 8 Wave 1 3552 10 1
10 1 Static 0 Not Not Not

applicable applicable applicable
11 9 Static 0 Not Not Not

applicable applicable applicable
12 6 Static 0 Not Not Not

applicable applicable applicable
13 12 Wave 1 1000 10 1
14 13 Static 0 Not Not Not

applicable applicable applicable

wave inputs was 1. Then phases of all square wave inputs were modified to the

value 10 leaving other static inputs the same as before, the inputs are sent to the

material and then subsequently the percentage of ones in the same output buffer

was measured again. It was found that the percentage of ones in the output buffer

of the 16th electrode (electrode number: 15) was the same before and after the

modification of the phase values and the percentage of ones was 0.11%. Mecobo 3.0

and material sample 1 (Table 4.3) were used in this investigation. The electrode

configurations of 14 inputs are shown in Table 8.5.

• In the third (C) set, the mark-space ratio was chosen as the input parameter

on which an investigation was performed. After investigation, it was found that

mark-space ratio has an effect on outputs. For this investigation an experiment

was performed using 14 inputs and one output. The inputs were a mixture of

digital square waves and digital static voltages. In this experiment, at first, a

sequence of inputs (a mixture of square waves and static voltages) were sent to
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Table 8.6: The electrode configurations for 14 inputs before the modification on the
mark-space ratio value. In this experiment, the input-output timing was 25 millisec-
onds. The output electrode number was 12. ‘Not applicable’ is used when mark-space
ratio and frequency values are not applicable, i.e. for static voltages. The mark-space
ratio of the 8th input (electrode number: 1) was modified from 41% to 31%.

Input Electrode Signal Amplitude Frequency Mark-space
no. type (Hz) ratio

1 15 Wave 1 6778 90
2 6 Static 0 Not Not

applicable applicable
3 7 Static 0 Not Not

applicable applicable
4 14 Wave 1 5683 56
5 3 Wave 1 829 66
6 2 Static 0 Not Not

applicable applicable
7 11 Static 0 Not Not

applicable applicable

8 1 Wave 1 8691 41

9 10 Wave 1 9810 49
10 5 Static 0 Not Not

applicable applicable

11 0 Static 0 Not Not
applicable applicable

12 9 Wave 0 3225 20
13 13 Static 0 Not Not

applicable applicable

14 4 Wave 1 10000 50

the material and average transition gap in an output buffer was measured. Then

the mark-space ratio of a square wave input was modified leaving other inputs

the same as before, the inputs are sent to the material and then subsequently the

average transition gap in the same output buffer was measured again. It was found

that the average transition gap in the output buffer of the 13th electrode (electrode

number: 12) was increased when a modification happened on a mark-space ratio

value of one input. The mark-space ratio of the 2nd electrode (electrode number:

1) was modified from 41% to 31% and consequently the average transition gap in

the buffer of the 13th electrode (electrode number: 12) was modified from 23 to

32. Mecobo 3.0 and material sample 1 (Table 4.3) were used in this investigation.

The electrode configurations for 14 inputs are shown in Table 8.6.

• In the fourth (D) set, the amplitude was chosen as the input parameter on which

an investigation was performed. After investigation, it was found that amplitude
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Table 8.7: The electrode configurations for configuration inputs before the mutation
happened on an amplitude value. In this experiment, the input-output timing was 250
milliseconds. The output electrode number was 1. ‘Not applicable’ is used when mark-
space ratio and frequency are not applicable, i.e. for static voltages. The amplitude of
the last configuration input was mutated from the value 1 to 0 (i.e. from 3.5V to 0V).
The electrode number of the input was 2. The input was a square wave signal having
frequency 2500Hz, amplitude value 1 and mark-space ratio 50%.

Configuration Electrode Signal Amplitude Frequency Mark-space
input no. type (Hz) ratio

1 3 Static 1 Not Not
applicable applicable

2 7 Static 1 Not Not
applicable applicable

3 10 Wave 1 1537 20
4 8 Static 0 Not Not

applicable applicable
5 5 Static 1 Not Not

applicable applicable
6 6 Static 0 Not Not

applicable applicable
7 4 Static 0 Not Not

applicable applicable
8 9 Wave 0 2317 60

9 0 Static 1 Not Not
applicable applicable

has an effect on outputs. It was found that the average transition gap in the out-

put buffer of the second electrode (electrode number: 1) of previous generation

was increased in the next generation when only a single mutation happened on an

amplitude of the full genotype, which changed the amplitude value of a configura-

tion input from 1 to 0 (i.e. from 3.5V to 0V). The average transition gap values in

the output buffer were 4 before the mutation and 36 after the mutation. One of

the tone discriminator experiments (pair of frequencies was 500Hz-2500Hz) using

the Mecobo 3.0 and material sample 6 (Table 4.3) was used in this investigation.

The electrode configurations for configuration inputs are shown in Table 8.7.

• In the fifth (E) set, the frequency was chosen as the input parameter on which

an investigation was performed. After investigation, it was found that frequency

has an effect on outputs. It was found that the average transition gap in the

output buffer of the 7th electrode (electrode number: 6) of previous generation

was increased in the next generation when only a single mutation happened on

a frequency of the full genotype, which changed the frequency of a configuration

input from 3753Hz to 952Hz. The average transition gap values in the output
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Table 8.8: The electrode configurations for configuration inputs before the mutation
happened on a frequency value. In this experiment, the input-output timing was 250
milliseconds. The output electrode number was 6. ‘Not applicable’ is used when mark-
space ratio and frequency are not applicable, i.e. for static voltages. The frequency of
the 7th configuration input was mutated from 3753Hz to 952Hz. The electrode number
of the input was 3. The input was a square wave signal having frequency 900Hz,
amplitude value 1 and mark-space ratio 50%.

Configuration Electrode Signal Amplitude Frequency Mark-space
input no. type (Hz) ratio

1 10 Static 0 Not Not
applicable applicable

2 9 Static 1 Not Not
applicable applicable

3 4 Static 0 Not Not
applicable applicable

4 7 Static 1 Not Not
applicable applicable

5 1 Static 0 Not Not
applicable applicable

6 5 Static 0 Not Not
applicable applicable

7 8 Wave 1 3753 25

8 2 Static 1 Not Not
applicable applicable

9 11 Static 0 Not Not
applicable applicable

buffer were 71 before the mutation and 77 after the mutation. One of the tone

discriminator experiments (pair of frequencies was 500Hz-900Hz) using the Mecobo

3.0 and material sample 4 (Table 4.3) was used in this investigation. The electrode

configurations for configuration inputs are shown in Table 8.8.

After the five sets of investigations, it has been found that the phase of the square

wave input signal does not have any effect on outputs. Other characteristics (electrode

number, amplitude, mark-space ratio, frequency) of the input signal have an effect on

outputs.

Some experiments were performed prior to these investigations of input parameters and

some experiments were performed afterward. The experiments, which were performed

before these investigations, used phases as genes in the genotypes and others did not.

Set A of function optimisation experiment, sets A, C-M of classification experiments,

all frequency classification experiments and all bin packing experiments used phases as

genes in the genotypes.
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Using the Mecobo platform the time (using start time and end time), by which a signal

is applied to the material (Table 4.1), can be controlled. The number of samples stored

in the output buffer can be controlled by the start time, end time and the sampling

frequency of the output electrode. Inputs are applied here for a number of milliseconds

and the outputs are accumulated in a buffer for the same number of milliseconds. This

has been referred to as input-output timing in all of the experiments in this research.

Some investigations were performed on the input-output timing and output sampling

frequency using Mecobo 3.0.

From the investigations, it has been found that if input-output timing is less than 16

milliseconds, no more than 10 samples can be obtained in an output buffer regardless

of the output sampling frequency and in the case of input-output timing less than 14

milliseconds, the buffer size is 0 regardless of the output sampling frequency. It should

be noted that the number of electrodes used in these investigations was 12. It was also

found that if the input-output timing was 16 milliseconds, the buffer contained no less

than 150 samples for an output sampling frequency 10KHz. The scheduling in Mecobo

(versions 3.0 and 3.5) is serial. This means that sequenced actions do not take place at

the same instant of time. It maintains a schedule. It happens even if the same start

times and end times are used for all inputs, configuration inputs and output(s). It takes

some time for Mecobo to circulate a signal to each electrode, which is ≈ 1 millisecond.

Usually, it is more than 1 millisecond, but the actual time was not measured. That is

why according to observation, for 12 electrodes, it took 16 milliseconds to get a buffer

containing no less than 150 samples for an output sampling frequency 10KHz. Less than

this input-output timing (16 milliseconds), the buffer contains no more than 10 samples

and less than 14 milliseconds input-output timing, the buffer size becomes 0 regardless

of the output sampling frequency.

The time taken by Mecobo to circulate inputs to electrodes and read output buffer(s)

from electrode(s) has been referred to as response time of Mecobo (both versions of 3.0

and 3.5) in this thesis. The greater the number of electrodes, the longer the response

time of Mecobo (both versions of 3.0 and 3.5).
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8.3 The Problems

Some problems have been faced in this research while undertaking experiments. Both

Mecobo platforms (Mecobo 3.0 and Mecobo 3.5) sometimes stopped working due to some

loose connections in wires or for some other reason. This meant it had to be restarted

manually or by using the software. It has been observed that the Mecobo stopped work-

ing frequently if experiments were running consecutively for ≈ 7 days. This restricted

experiments to a duration of less than ≈ 7 days. Due to the 16 milliseconds response time

of Mecobo, each individual was evaluated no less than 16 milliseconds in the experiments.

For these reasons, the number of possible generations was restricted in the experiments.

This has resulted in poor results in some of these experiments. Better results could be

obtained if experiments could be run for more generations. These problems restricted

the size of the datasets that were feasible in machine learning classification problems.

The even parity problems were tried only with 3 and 4 inputs, more inputs (i.e. more

test cases) need more generations to find better results.

Mecobo 3.5 does not support more than 8 analogue input signals (inputs and configura-

tion inputs). This has caused many problems. Due to this structure, some configuration

inputs were forced to have static -2.3V (set B of classification experiments and sets C and

D of function optimisation experiments). This means, some mutations were redundant

if mutations happened on the genes that dealt with the voltage levels (amplitudes) of

those configuration inputs. As a limited number of analogue inputs (inputs and configu-

ration inputs) are allowed in the case of the Mecobo 3.5, many computational problems

could not be investigated using Mecobo 3.5, such as classification problems with a higher

number of attributes, even parity problems with many inputs, where the number of in-

puts is more than 8. Even, the computational problems having the number of inputs less

than 8, could not be investigated as these would leave very few configuration inputs that

could be used in the evolutionary process by having a freedom to choose any voltage

level in a range [-5V, 5V]. However, in these cases, square wave input signals could be

used.

The Mecobo 3.5 that was used in the experiments was located in Norway. It was possible

to run Mecobo 3.5 over internet, but it caused some extra time for the program to

communicate with Mecobo 3.5. The long response time of Mecobo along with this

extra time of communication caused a delay, which made experiments slow. That is
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why the experiments could not be run for more generations. For example, classification

experiments were run for only 50 generations, and function optimisation experiments

were run only for 1000 generations.

Other than the problems of the hardware platform, the number of electrodes of the

electrode array in the material slide was limited to 16. This meant many computational

problems could not be investigated. For function optimisation and bin packing problems,

a split genotype technique was required, which made the experiments longer to complete.

Machine learning classification with a large number of attributes or classes could not be

investigated due to the limited number of electrodes.

8.4 Analysis of Experiments

This section describes different factors relating to experiments, such as the reasons for

choosing the computational problems that were tried in this research, analysis of results

obtained in different computational problems and the factors affecting these results. The

factors that were found to have effects on results are different types of input mappings,

output determination methods, input signals and configuration inputs. A detailed anal-

ysis has been performed here on input mappings and output determination methods.

Other than the mappings, the types (digital or analogue, static voltages or square waves)

of inputs (both input signals and configuration inputs) sent to the materials have also

an important role on the measured output. A detailed analysis has been performed

here on the input signals based on the comparisons of the results obtained in different

experiments.

8.4.1 Choices of Computational Problems

Many computational problems have been investigated using evolution-in-materio with

mixtures of single-walled carbon nanotubes and a polymer. These computational prob-

lems have been chosen from different perspectives. The reasons behind the choices of

these computational problems are described in Table 8.9.

Each of the computational problems which have been solved using evolution-in-materio

in this research is different from each other. These different types of problems were
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Table 8.9: The choices of computational problems. The ‘Problem’ column shows the
name of the computational problem. The ‘Reason for choice’ column shows the reason
behind the choice of the computational problem.

Problem Reason for choice

Machine Learning To assess the use of evolution-in-materio in the field of
Classification artificial intelligence.
Tone To compare the results of an LCD [Harding (2006)] against
Discriminator the results of a mixture of single-walled carbon nanotubes

and a polymer.
Frequency To evaluate the evolution-in-materio on
Classifier an extended tone discriminator problem.
Even Parity- To assess the application of evolution-in-materio
3 and 4 on Boolean problems.
Function To evaluate the effectiveness of the application
Optimisation of evolution-in-materio on function optimisation

problems by comparing the experimental results
with the results of a famous algorithm
(Cartesian genetic programming).

Bin Packing To assess the application of evolution-in-materio
on NP-hard problem.

Robot Controlling To observe the behaviours of robots (simulated
and real) in performing various tasks.

attempted here with a motive of identifying those problems that can be solved using

a mixture of single-walled carbon nanotubes and a polymer. Of course, not all com-

putational problems were found to be suitable. It is quite difficult to define the set of

problems that is suitable to be solved using evolution-in-materio unless various types of

problems are investigated.

8.4.2 Analysis of Experimental Results

In the evolutionary experiments reported in this thesis, it was found that the fitness

improved with increasing number of generations and that initial random populations

always gave bad results. Evidence was given in Figures 5.8, 6.7-6.11 (frequency clas-

sification and bin packing). Many sets of experiments were performed on each of the

computational problems. The best experimental result(s) of each of these computational

problems is described in Table 8.10.
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Table 8.10: The analysis of results of the experiments of this thesis. The ‘Problem’
column shows the name of the computational problem. The ‘Result’ column shows the
best experimental result(s) of each of these computational problems. The experimen-
tal results are described in detail in Chapters 5-7. The optimum results of function
optimisation and bin packing problems are given in Chapter 6.

Problem Result

Machine Learning Results using analogue signals by Mecobo 3.5
Classification obtained accuracy 91.3% in training and 86.6%

in testing in the case of Iris dataset. These
results were better than the results obtained
by Cartesian genetic programming.

Tone 100% accuracy in all runs in all experiments.
Discriminator
Frequency 100% accuracy in all runs in training and the best
Classifier (the best of all runs) accuracy 100% in testing

in all experiments.
Even Parity- 100% accuracy in all runs in 2 sets of even
3 and 4 parity-3 experiments and the best (best of all)

runs) accuracy 100% in 1 set of even parity-4
experiment.

Function In 7 out of 23 cases, the best results were equal
Optimisation to the optimum results and in 5 cases, the average

results were equal to the optimum results. In 10
cases, the best results of the experimental material
were better than or equal to the best results of
Cartesian genetic programming and in 12 cases, the
average results of the experimental material were
better than or equal to the average results of
Cartesian genetic programming.

Bin Packing In 3 out of 12 benchmarks, the average and best
results of the experimental material are within
15% of the optimum.

Robot Controlling The results of the robot controlling problems
were found to be dependent on choices of tasks,
complexities of maps and also on input and output
mappings. Detailed results of simulated robot
experiments are described in Tables 7.7 and
7.8. The performance of the real robot experiments
were worse than the performance of the simulated
robot experiments.

8.4.3 Analysis of Input and Output Mappings

Other than different types of computational problems, different types of input and output

mappings were used and their suitabilities were assessed. Frequencies were used for input

mappings in most experiments, especially classification-based problems (all experiments

of tone discriminator and frequency classifier problems, sets C-M of machine learning

classification experiments and sets A, G of even parity experiments). Average transition

gaps were used for classifying outputs in those classification-based problems which used
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frequencies for input mappings. This is due to the fact that a transition-based output

is frequency related. Other than the classification-based problems, frequency mappings

were used for inputs in robot controlling experiments, but in those experiments, none

of the robots could explore the full map without colliding with obstacles (set E of robot

controlling experiments of Chapter 7) and this might be due to the fact that average

transition gaps were used for output mappings. Computing the average transition gap

proved to be a better method for determining output classes by comparison (according to

sets A, B and C of even parity experiments), but this was not effective for linear mapping

to get output values within a specific range (according to sets D and E of robot controlling

experiments). In that case, the percentage of ones was better, i.e. the percentage of

ones performed better for linear output mapping, which was used for output mapping in

function optimisation (sets A and B), bin packing (all experiments) and robot controlling

(all sets except the sets D and E) experiments. However, the percentage of ones was

effective for classifying outputs other than the average transition gap, especially when

mark-space ratio or amplitude was used for input mapping (according to sets B-D, F and

H of even parity experiments). The percentage of ones was used in these experiments

as it is mark-space ratio and amplitude related.

In the set E of even parity-3 experiments, output class was determined by observing

values obtained from the buffer of one output electrode. This was achieved by fixing a

threshold, below which the output was decided to be one class, otherwise it was decided

to be another class. The result was worse than the result obtained by using two output

electrodes in the set D of even parity-3 experiments. In experiment D, the problem

instances were classified by comparing the output values obtained from these output

electrode buffers. So, experiments D and E showed that in the case of even parity-

3 problem, it was better to use as many output electrodes as the number of output

classes.

Other than the frequencies, mark-space ratios (used in sets A-D, F-J of robot control

experiments and sets B, F of even parity experiments) and amplitudes (used in sets C-E

and H of even parity experiments) were used for input mappings. Based on comparison

results of sets A, B and C of even parity-3 experiments, frequency was the best of all

types of input mappings, and the performance of using amplitude was better than the

performance of using mark-space ratio for input mapping. The amplitude input mapping

has a drawback in the case of Mecobo 3.0. As Mecobo 3.0 supports only two values for
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amplitude, amplitude input mapping can only be used in those computational problems,

where inputs can have no more than two values, such as Boolean problems.

The input mappings and output determination methods discussed previously are related

to the Mecobo 3.0. The experiments of Mecobo 3.5 used amplitudes for input mappings

and the average values of output buffers for classifying outputs in machine learning

classification experiments using Iris dataset. This proved to be efficient as the results

obtained by Mecobo 3.5 were better than the results of Mecobo 3.0.

8.4.4 Analysis of Inputs, Outputs and Configuration Inputs

An analysis has been performed on different types of inputs, outputs and configura-

tion inputs, which has compared different types of configuration inputs, analogue with

digital signals and digital square waves with digital static voltages for inputs. These

comparisons are described in following sections.

8.4.4.1 Comparison Between Analogue and Digital Signals

As noted in Section 8.4.3, the results obtained by Mecobo 3.5 were better than the results

of Mecobo 3.0, which showed that in the case of classification experiments using Iris

dataset, the performance of using analogue inputs, output(s) and configuration inputs

was better than the performance of using digital inputs, output(s) and configuration

inputs (according to comparison results of sets B and C of machine learning classification

experiments). It should be noted that Mecobo 3.0 used digital square waves and Mecobo

3.5 used static analogue voltages as input signals in the classification experiments that

compared the performances of two Mecobo platforms. By comparing the results of

Mecobo 3.0 and Mecobo 3.5, in the case of input signals, static analogue voltages were

more effective than digital square waves. However, no strong conclusion can be made

regarding input signals using this comparison as configuration inputs, input and output

mappings were different in these experiments of Mecobo 3.0 and Mecobo 3.5, and this

might have a strong effect on the result.
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8.4.4.2 Comparisons Between Digital Static Voltages and Digital Square

Waves for Inputs

Two comparisons were performed between the static voltages and square waves as input

signals in even parity experiments using Mecobo 3.0, where both the static voltages

and the square waves were digital. In the first comparison, the results obtained by

square wave inputs were better than the results using static input signals (according

to the comparison of sets A and C of even parity experiments). In this comparison,

frequencies and amplitudes were used for input mappings in the case of square wave

inputs and static input signals respectively. In another comparison, the results obtained

by static input signals were better than the results using square wave inputs (according

to the comparison of sets B and C of even parity experiments). In this comparison,

mark-space ratios and amplitudes were used for input mappings in the case of square

wave inputs and static input signals respectively. It should be noted that in all of these

even parity experiments (sets A-C), mixtures of digital square waves and digital static

voltages were used for configuration inputs. So, comparisons between digital square

waves and digital static voltages for inputs cannot draw any conclusion. Other than the

input signals, choices of configuration inputs also influence the results of experiments,

these are discussed in following section.

8.4.4.3 Comparisons of Different Types of Configuration Inputs

Machine learning classification experiments using Iris dataset showed that the perfor-

mance of using static analogue voltages was better than the performance of using mix-

tures of static analogue voltages and digital square waves for configuration inputs (ac-

cording to sets A and B). These experiments were performed using Mecobo 3.5. A

similar outcome was obtained in the case of Mecobo 3.0 using even parity-3 experiments

(sets C and D), which showed that the performance of using digital static voltages was

better than the performance of using mixtures of digital square waves and digital static

voltages for configuration inputs. It should be noted that in the case of the comparison

of these even parity-3 experiments, the difference of the results is statistically not signif-

icant. In addition, in the case of both of these outcomes regarding configuration inputs

of Mecobo 3.0 and Mecobo 3.5, the experiments used static voltages (digital in the case

of Mecobo 3.0 and analogue in the case of Mecobo 3.5) for inputs.
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Another analysis was performed using the results from the even parity-3 experiments

(sets B and F) with Mecobo 3.0, where digital square waves were used for inputs instead

of digital static voltages, which showed that the performance of using digital square

waves was better than the performance of using mixtures of digital square waves and

digital static voltages for configuration inputs. However, the difference of the results is

statistically not significant. After analysis of the outcomes of Mecobo 3.0 and Mecobo

3.5 regarding configuration inputs, it can be said that the performance of using only

static voltages was better than the performance of using mixtures of square waves and

static voltages when input signals were static voltages. Furthermore, the performance

of using only square waves was better than the performance of using mixtures of square

waves and static voltages for configuration inputs when input signals were square waves.

Thus, the performances of different types of configuration inputs may be influenced by

the input signals. If the input signals and configuration inputs are combined together and

defined as input signals, the performance of using either all static voltages or all square

waves was better than the performance of using mixtures of static voltages and square

waves. However, the difference in the results is statistically not significant in the case of

Mecobo 3.0. This requires further investigation. This outcome might be influenced by

some other factors such as input mappings, output determination methods and types

(digital or analogue) of input signals.

8.4.5 Analysis of the Influences of Material Samples

Machine learning classification (with Iris dataset) and tone discriminator experiments

compared the performances of different mixtures of materials (different percentages of

single-walled carbon nanotubes in PMMA, same percentage of single-walled carbon nan-

otubes in different types of polymers) and different organisations of electrodes, however it

was not possible to draw any strong conclusion from these experiments. Tone discrim-

inator experiments and machine learning classification experiments using Iris dataset

were performed to investigate whether different organisations of electrodes matter or

not. These experiments used the same mixture of material (1.0% single-walled carbon

nanotubes in PBMA), but the organisations of electrodes were different. These experi-

ments were performed using Mecobo 3.0. In the case of both of these experiments, the

statistical significance tests have shown that the difference of results is statistically not

significant according to U-test and KS-test.
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Tone discriminator experiments and machine learning classification experiments using

Iris dataset were performed to investigate whether the choice of polymer in material

mixture matters or not. These experiments used the same percentage (1.0%) of single-

walled carbon nanotubes, but the polymers (PBMA or PMMA) were different. Both

of these experiments were performed using Mecobo 3.0. In the case of both of these

experiments, the statistical significance tests have shown that the difference of results is

statistically not significant according to U-test and KS-test.

No evolution happened using an electrode array containing no material (Sections 6.3

and 5.4), where the output buffers were always full of zeroes. No evolution is possible

with a material having 0% single-walled carbon nanotubes (only PMMA), where the

output buffers are always full of zeroes (Sections 6.3 and 5.3). This shows that single-

walled carbon nanotubes are required in material mixture for computation using the

configuration reported in this thesis.

The bin packing and tone discriminator experiments found that no evolution took place

when a mixture containing 0.01% single-walled carbon nanotubes with PMMA was used

and the output buffers were always full of zeroes. When experiments were started

with a mixture containing 0.02% single-walled carbon nanotubes with PMMA, evolution

happened with mixtures of 0 and 1 in the output buffers.

8.4.6 Summary of Outcomes Obtained by Analysis of Experiments

Section 8.4 shows different types of analyses regarding the experiments performed in

this research. The outcomes of all these analyses are summarised as follows:

• The computational problems solved in this research were chosen from different

perspectives so that the applications of evolution-in-materio can be assessed on

various types of problems. The reasons behind the choices of these computational

problems are described in Table 8.9. The best experimental result(s) of each of

these computational problems is described in Table 8.10.

• In the case of even parity-3 experiments using Mecobo 3.0, frequency was the best

of all types of input mappings and the performance of using amplitude was better

than the performance of using mark-space ratio for input mapping.
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• In the case of Mecobo 3.0, amplitudes can be used for input mappings only in

those computational problems, where inputs can have no more than two values.

• In the case of classification experiments using Iris dataset and Mecobo 3.5, am-

plitude for input mapping and average of output values of buffers for classifying

outputs were very effective.

• In the case of even parity-3 experiments using Mecobo 3.0, the performance of

using two output electrodes was better than the performance of using one output

electrode.

• In the case of classification experiments using Iris dataset, the performance of

using analogue inputs, output(s) and configuration inputs was better than the

performance of using digital inputs, output(s) and configuration inputs according

to comparison results of Mecobo 3.5 and Mecobo 3.0.

• In the case of classification experiments using Iris dataset and Mecobo 3.5 and even

parity-3 experiments using Mecobo 3.0, for configuration inputs, the performance

of using only static voltages was better than the performance with mixtures of

square waves and static voltages when input signals were static voltages. Further-

more, the performance of using only square waves was better than the performance

of using mixtures of square waves and static voltages for configuration inputs when

input signals were square waves. Thus, the performances of different types of con-

figuration inputs may be influenced by the input signals. If the input signals and

configuration inputs are combined together and defined as input signals, the per-

formance of using either all static voltages or all square waves was better than the

performance of using mixtures of static voltages and square waves.

• Tone discriminator experiments and machine learning classification experiments

using Iris dataset were performed to investigate whether different organisations of

electrodes matter or not. These experiments used the same mixture of material

(1.0% single-walled carbon nanotubes in PBMA), but the organisations of elec-

trodes were different. These experiments were performed using Mecobo 3.0. In

the case of both of these experiments, the statistical significance tests have shown

that the difference of results is statistically not significant according to U-test and

KS-test.
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• Tone discriminator experiments and machine learning classification experiments

using Iris dataset were performed to investigate whether the choice of polymer in

material mixture matters or not. These experiments used the same percentage

(1.0%) of single-walled carbon nanotubes, but the polymers (PBMA or PMMA)

were different. Both of these experiments were performed using Mecobo 3.0. In

the case of both of these experiments, the statistical significance tests have shown

that the difference of results is statistically not significant according to U-test and

KS-test.

• No evolution happened with an electrode array containing no material, where the

output buffers were always full of zeroes.

• No evolution is possible with a material having 0% single-walled carbon nanotubes

(only PMMA), where the output buffers are always full of zeroes. This shows that

single-walled carbon nanotubes are required in material mixture for computation

using the configuration reported in this thesis.

• The bin packing and tone discriminator experiments found that no evolution

took place when a mixture containing 0.01% single-walled carbon nanotubes with

PMMA was used and the output buffers were always full of zeroes. When exper-

iments were started with a mixture containing 0.02% single-walled carbon nan-

otubes with PMMA, evolution happened with mixtures of 0 and 1 in the output

buffers.

8.5 Guidelines of Choosing Future Computational Prob-

lems

After the analysis of the experiments and the discussion regarding problems faced, some

guidelines can be given in choosing computational problems suitable for future work:

• Those classification-based problems, which have a large number of test cases, are

not suitable for solving with a hardware whose response time is large, such as

machine learning classification problems with many instances, n-bit even parity

problems with large values of n (number of test cases increases with the value of

n), image filtering problem. The problem, which has a large number of test cases,
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will need a long time for the evaluation of each individual in the case of each

generation and then finally will need a long time to complete the evolutionary run.

For instance, in the case of image filtering problem, evaluation is performed on

each of the pixels of the image in the case of each individual in each generation,

which then takes a long time to complete each evolutionary run.

• It is better if the electrode array used in the evolution has a significant number

of electrodes. After using a number of electrodes for inputs and outputs by the

experiments, there should be reasonable number of configuration inputs for the

evolution, otherwise evolution will stagnate after a certain generation and better

results might not be obtained.

• For solving problems having many outputs, especially when the number of out-

puts is more than the number of electrodes of an electrode array, split genotype

technique will be required. Solving a problem using the split genotype technique

may need more generations to find a better solution, and more generations will

require more time to complete the evolutionary process. In this case, bin packing

problem is a good example, which has been addressed in this thesis.

• Those computational problems, which need a very small response time, cannot be

performed using a hardware whose response time is higher than the response time

required for the problem, such as solving pole balancing problem, especially if a

real pole is used, which needs a very small response time.

8.6 Summary

This chapter focuses on the issues relating to all the experiments of this research, rather

than any particular experiment in solving a computational problem. These issues are

generated by the analysis of the results of experiments, by the problems faced in solving

computational problems and other investigations relating to experiments. This discus-

sion will assist in drawing up guidelines for future work.

The next chapter draws some conclusions of this thesis and gives some ideas for future

work.
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Conclusions and Future Work

Contents

9.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

This thesis has shown that it is possible to solve a number of computational problems us-

ing mixtures of single-walled carbon nanotubes and polymers using evolution-in-materio.

The problems examined are: machine learning classification, tone discriminator, fre-

quency classification, even parity, function optimisation, bin packing and robot control.

The first part (Chapters 2 and 3) of this thesis laid the foundations for this research,

describing a variety of techniques and aspects that motivated the work of the thesis.

These were evolutionary algorithms, evolution-in-materio, former published research on

evolvable hardware, evolvable motherboards, and physical computation.

Chapter 4 described the experimental system of this thesis. This includes the description

of the hardware platform, the interface software and the experimental material used in

the experiments of this thesis.

Chapters 5-7 described the experiments for solving machine learning classification, tone

discriminator, frequency classification, even parity, function optimisation, bin packing

and robot controlling problems. The experimental mixtures used in the experiments of

this thesis are the mixtures of single-walled carbon nanotubes and polymers. This is the

first time that these mixtures have been used to solve such problems using evolution-in-

materio.
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The hypothesis that was presented in Chapter 1 has been robustly supported as solu-

tions to machine learning classification, tone discriminator, frequency classification, even

parity, function optimisation, bin packing and robot controlling problems, which have

been obtained using computer controlled evolution of signals applied to electrode arrays

containing a mixture of single-walled carbon nanotubes and a polymer. Also, the work

of this thesis has been presented in some publications through conference and workshop

proceedings or journal papers. Of these, four papers have already been published, and

four papers have been reviewed and accepted.

Chapter 8 discussed the analysis of the results obtained in the experiments concerning

these computational problems. Other than the analysis of the experimental results,

Chapter 8 analysed the input-output mappings and input-output signals used in the

experiments, revealing some analytical results about the suitable mappings and sig-

nals. These analytical results have demonstrated that this research has devised and

investigated suitable input signals and input-output mappings which allow various com-

putational problems to be solved using electrode arrays. Summaries of outcomes from

these experiments have also been presented. In this chapter, the possibilities for future

work are discussed.

9.1 Future Work

Although the experimental results obtained here using evolution-in-materio and a mix-

ture of single-walled carbon nanotubes and a polymer are promising, it is unlikely that

this can be applied on any serious application. Subsequently, there is a vast field of

research ahead in evolution-in-materio. Chapter 8 described the problems faced in these

evolution-in-materio experiments and has drawn some guidelines for choosing future

computational problems. The analysis of the experiments, the problems and the guide-

lines of choosing future problems have revealed some future work which is listed as

follows:

• There are a vast number of other materials that could be used in evolution-in-

materio experiments to solve various types of computational problems, and one or

more of these may lead to useful systems.
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• There can be many other properties of mixtures of single-walled carbon nanotubes

and polymers, which have not been exploited here. So, future evolution-in-materio

experiments may exploit those properties and may solve various computational

problems efficiently.

• There should be more investigations on the features of the physical materials re-

quired for evolution-in-materio experiments, which then help to identify the set of

materials that can be exploited to solve problems.

• It is still unknown what types of computational problems are most suitable to

be solved by the evolution-in-materio method using a suitable physical material.

There should be more investigations to identify those computational problems and

features (e.g. how complex a problem can be) of the problems which are most

suitable to be investigated using evolution-in-materio.

• The computational problems solved in this thesis can be repeated with some vari-

ations. The robot controlling experiments for example can be repeated with more

maps, different starting positions and various tasks, and the machine learning

classification experiments can be performed with different datasets. Here in the

experiments, the successful solutions of simulated robot experiments were tested

on the real robot. In future, the evolutionary experiment can be performed directly

using the real robot.

• The factors (different robots used in the case of simulated and real robot experi-

ments, dissimilarities of experimental settings of simulated and real robot experi-

ments, disturbance caused by the wire) that were responsible for the worse (worse

than the performance of the simulated robot) performance of the real robot can

be overcome in future and then the real robot experiments can be repeated again.

The factors can be overcome by making the experimental settings of the real robot

experiments much closer to the experimental settings of the simulated robot ex-

periments, using a wireless communication. Even the real robot experiments can

be repeated using a different robot such as Khepera or e-puck.

• Here evolution-in-materio has largely solved single instances of problems. For

example, even parity-3 or a single bin packing problem. However, evolution-in-

materio should be able to solve any instance of a problem. There should be an

investigation on the issue as to whether evolution-in-materio can be applied to
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any instance of these solved problems (in other words, can evolution-in-materio be

used to develop algorithms?)

• So far, only 12 or 16 electrodes have been used as no electrode array contains more

than 16 electrodes. More electrode arrays can be provided with a large number

of electrodes (such as 50, 100, more than 100 electrodes), which then can be used

to solve those problems that consist of a large number of inputs and outputs.

For example, machine learning classification problems having a large number of

attributes and even parity problems with many inputs.

• It has never been investigated as to how much material is required for computation

or whether the amount of material matters or not. There should be an investigation

on this issue.

• So far, digital square waves, static digital voltages and static analogue voltages

have been used as input signals with various amplitudes, frequencies and mark-

space ratios. There should be more investigations on the characteristics of the

input signals which allow better results to be obtained. The investigation on the

ranges of amplitudes of analogue voltages and the ranges of frequencies or mark-

space ratios of square waves can be further examined.

Different combinations of inputs and configuration inputs have been used and

their performances have been compared here. However, some combinations have

not been investigated yet, such as static digital voltages for inputs and square

waves for configuration inputs; square waves for inputs and static digital voltages

for configuration inputs; static analogue voltages for inputs and square waves for

configuration inputs; square waves for inputs and static analogue voltages for con-

figuration inputs. These combinations can be used in future experiments which

then compare their performances.

• The square waves that have been applied as inputs in these experiments using

both Mecobo 3.0 and Mecobo 3.5 are digital (with amplitudes 0V and 3.5V). The

future interface hardware should provide the option of using analogue square wave

input signals which will support various amplitudes instead of only two values.

• It would be helpful to see if the final gene values of configuration inputs of the

evolutionary experiments generate a common pattern, which may help to under-

stand and exploit the physical properties of the material to solve problems. On
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this matter, an investigation was performed in this thesis using one of the fre-

quency classification experiments, which was unable to find any common pattern,

but more investigations should be performed in future.

• The computation performed here to solve problems required a physical material.

An investigation can be performed without the Mecobo board and the PC to see

whether the material can give the same solutions that have been obtained in this

research in various computational problems. This could be achieved by building

a standalone system (i.e. no PC or Mecobo board) that uses some interfacing

electronics and the experimental material with an electrode array.

• The standalone device (i.e. no PC, or Mecobo board) that has been mentioned

above can be built to transfer the solution of frequency classifier problem to fre-

quency filter using some interfacing electronics and the experimental material with

an electrode array.

• Also, an n-bit even parity standalone device with an input and output module can

be built using the solutions obtained here in the even parity problems. The objec-

tive would be to make the same standalone device for n-bit even parity problem

with the same input and output module for various values of n. The input module

will handle the input mappings and output module will handle the output map-

pings. The standalone device will not include any PC or Mecobo hardware. It will

include some electronic circuitry having a common input module (supports differ-

ent numbers of inputs), a common output module and the experimental material

with an electrode array.

However, it cannot be decided at this stage whether building the n-bin even parity

standalone device is worthwhile as no even parity problem has been solved with

a higher number of inputs (more than 4) here. In future, there should be more

experiments that will attempt to solve more even parity problems with a higher

number of inputs. Also, there should be some investigations in future as to how

efficiently even parity problems can be solved using the standalone device and how

complex the solutions can be.

• The experiments performed here can be repeated with more generations using

new hardware platforms that have shorter response times. In this way, better
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results might be obtained with a faster evolutionary run. Even new computational

problems can be tried.

• It has never been investigated as to how fast the material (a mixture of single-

walled carbon nanotubes with a polymer) computes, i.e. the response time of the

material. If a standalone device will be built or any new fast (low response time)

interface hardware will be used to perform experiments with the material in future,

the response time of the material could be measured.

• Two investigations have been performed here to find out the best mixture of ma-

terial (single-walled carbon nanotubes with PMMA) using the machine learning

classification and tone discriminator experiments. However, no conclusion can be

drawn regarding the best mixture. There should be more investigations to find

out the best mixture of single-walled carbon nanotubes in a polymer.

• The stability test proved the material to be stable in most cases, however some-

times a little variation was observed in two results with the same configurations

of electrodes. This requires more investigations as to how much variation occurs

between results achieved under the same circumstances, the possible reasons why

the results differ and so on. Also, as mentioned before that the stability of the

material was examined by re-applying evolved configurations after intervals of 3

or 9 months, but it should be investigated the stability of the material by using

a longer time period. Also the sensitivity of the material to other environmental

conditions could be investigated (e.g. temperature).

• Different methods of evolutionary algorithm for recombination, mutation, evalua-

tion, selection, termination criteria can be tried in future on the same computa-

tional problems that were solved here (or on different computational problems).

These include (1, λ)-evolutionary algorithm, (µ + λ)-evolutionary algorithm with

various values of µ and λ, experiments with various population sizes, experiments

using recombination (crossover), mutation by probability having different proba-

bilities of mutation and so on.

• Different input and output mappings can be tried in future on the same compu-

tational problems that were solved here (or on different computational problems).
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The Components of Mecobo

Hardware

The contents of the description of different components of interface hardware are pro-

vided from NASCENCE project reports.

A.1 The Motherboard

The main top level block diagram of the motherboard is shown in Figure A.1. The block

diagram shows the main components and communication buses. The USB interface is

the external communication port. The microcontroller runs the system software of the

interface hardware communicating with the FPGA on the internal bus of the board

and the host computer over the USB bus; maintains queue and schedule stimuli to

the material. If the motherboard is to be used without any daughter board, the input

and output signals between the FPGA and the material are in principle a 110 channel

crossbar matrix allowing any connection to the material to act as a configurable input or

output port. The FPGA provides a reconfigurable interface to materials and daughter

boards. Mecobo is equipped with debug interfaces if the motherboard is to be used

without any daughter boards, in this case material samples are connected directly to

the connection headers. The pins of header N and header W can be configured as inputs

or outputs. Two debug interfaces are used to ease debugging of the system software

of the microcontroller and to add a possibility to use on-chip debugging tools on the
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FPGA, i.e. chip scope. The same headers, i.e. header N and header W are used to

communicate with daughterboards. The use of an FPGA enables the users to adapt

the logical interface to daughter boards without redesigning the basic interface. Several

daughter boards can be stacked on top of each other. The limit for maximum number

of daughterboards is set by the available pins on header N and header W.

Figure A.1: Block diagram of the top level of the interface motherboard

Photo of motherboard is shown in figure A.2. The main components are labeled in this

figure.

The main components used in the design:

• FPGA: XC6SLX25-2CSG324I in a 324 pin BGA package from Xilinx.

• Microcontroller: EFM32GG990F1024 in a 112 pin BGA package from Silicon

LABS.

• SRAM: CY7C1061DV33 in a 48 pin BGA package (2 chips 32Mbit total) from

Cypress Semiconductor.

• DDR2 DRAM: MT47H128M8CF-25E in a 60 pin BGA package (1Gbit) from Mi-

cron Technology.

• Headers: standard 2.54 mm double row 60 pins header.
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Figure A.2: The motherboard of Mecobo.

.

A.2 The FPGA

The block diagram of the functional units of FPGA is shown in figure A.3.

The description of different components of FPGA is given as follows:

• Communication: The communication module handles all communications with the

microcontroller.

• Control: The control block decodes commands and outputs control signals on the

control bus to set up executing units to handle data correctly. Control also watches

other units to carry on their operations correctly.

• Memory (gene): Memory stores genetic information.

• Memory (buffer): Buffer stores data, such as response from material, waveforms.

The sample buffer is filled with samples. The sampling rate is configurable and

specified by software commands.

• Signal generator: Components applying signals to the material. Each pin has a sig-

nal generator. It generates waveform sequences internally or generates waveforms

from samples in memory.
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Figure A.3: Block diagram of the functional units of the FPGA

• Response: The response data from the material will be stored in this module. It

handles all signals that are defined as output from the material. It is possible to

include experiment specific extra logic for post processing in this unit.

• Feedback function(s): The module supports the use of responses from the material

to influence on the operation of the signal generators, or opens for defining feedback

loops including material and signal generator(s).

• Pin controller: It is a switch matrix. Any pin can go to any signal generator or

to other modules connected to the pin controller. The functionality of the pin

controller is partly defined in the interface software. The software ensures that the

pin mapping is valid.

• CTRL port: Pins connected to the CTRL port can be used to steer external

equipment and open for the use of external triggers.
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• Buses: The USB bus is the interface to the microcontroller. Control bus is the

internal bus used for the configuration and status of all units in the FPGA. The in-

ternal data bus is used to transfer data internally between units. The two external

buses, one of which connects the FPGA pins to headers (connector external) and

another connects to some special connection points that are connected to AD/DA

I/O.

The PCB for the interface includes a power supply providing 1.2V for the FPGA core. A

1.8V supply voltage is used to power the DDR2 module. The microcontroller is powered

by a 3.5V supply voltage. The 1.8V and 3.5V are also used to provide power to the

FPGA I/O banks. A quartz oscillator is used to clock the microcontroller. The FPGA

is clocked by an active clock generator.

A.3 The Mixed Signal Daughterboard

The mixed signal daughter board is designed to expand the experimental system to

include dedicated analogue signals. These analogue signals are produced by DA/AD

converters instead of the pulse width modulated (PWM) channels supported by a stand-

alone Mecobo.

Figure A.4 shows the block diagram of a single daughter board connected to a Mecobo

motherboard. One mixed signal daughter board has 8 digital to analogue channels, 8

analogue to digital channels and 16 digital I/O channels. The configurable crossbar

enables any combination of AD, DA or digital I/O signal to be connected to any (from

one to all) of the 16 I/O pins (on the right of the figure). All communications between

the daughter board and Mecobo are done by synchronous serial interfaces (SSIs) and 16

configurable digital I/O lines. The number of available lines depends on the number of

pins dedicated to daughter boards.

The mixed signal daughter board is designed to add new features to the experimental

system of Mecobo 3.0. That is, from a user perspective all of the previous principles

regarding applying or sampling data and configuration signals are kept as before (such

as digital inputs and outputs, square wave inputs). The user can now use any pin

connected to the material in the same way as with previous versions (Mecobo 3.0) of the
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Figure A.4: Block diagram of mixed signal daughter board connected to the Mecobo
motherboard

system. The added features are analogue inputs and outputs that can be defined and

passed on to the material using interface software. The motherboard with the mixed

signal daughterboard is named as Mecobo 3.5. Figure A.5 shows a photo of a mixed

signal daughter board piggybacked on the Mecobo. The material sample is plugged in

to the daughter board’s sample holder.

Figure A.5: Mixed signal daughter board

.
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A.4 The Cross Switch PCB

The cross switch PCB is designed to expand the experimental hardware by adding a

possibility to connect any device to provide signals, i.e. data and configuration. The

PCB enables the users to look at parallelism. The PCB gives a possibility to let a pair of

material samples to be connected and communicate. The cross switch PCB can be used

with the Mecobo interface or as an interface card to other equipment. The cross switch

PCB can hold up to four material samples, i.e. the board enables multiple material

samples (up to four) to operate in parallel. The parallel operation can be configured by

setting the cross switch array, i.e. data inputs can be split over several materials or the

output of all used materials can be interpreted as a single output result. Block diagram

of cross switch PCB is shown in figure A.6.

Figure A.6: Block diagram of cross switch PCB
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The Interface Software

The interface software [Lykkebøet al. (2014)] works with a client application and a con-

trol software. The control software implements the application programming interface

(API) as a Thrift server1. Thrift is a technology maintained by Apache which is designed

to allow applications written in different programming languages, running on different

operating systems and on different computers to communicate with each other. Thrift

provides a language that is used to define the functionality used by the server. This

language is then compiled by the Thrift compiler into skeleton code which contains all

the functionality needed for a server and accepting connections, but the functional com-

ponents remain missing. Afterward those functional components are added to complete

the server implementation.

On the client side, the interface is compiled by Thrift into a library which exposes

all the methods in the API. Thrift is able to generate the client and server codes in

many programming languages, such as C++, C#, Java and so on. The client library

is then connected to server through shared memory if the client and server are both

in the same PC and through TCP if the client and server are in different PCs. Client

applications only need to implement their functionality. As the communication between

the Thrift server and client applications can be based on TCP, it is not necessary for all

components to run on the same computer, they can operate over internet. The API and

Thrift language are object-oriented, with the objects behaving the same for each client.

This object is designed to store signals that are applied to or recorded from the material

1https://thrift.apache.org/
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under evolution. Functionality is exposed for basic signal processing and statistical

measures. Data logging API is intended to provide consistent logging of information.

Figure B.1 shows the complete software architecture of the system. Although only one

evolvable motherboard is shown in this figure, but it is possible to add more. Client

applications can connect to multiple servers (and Mecobos), and hence can handle a

number of systems in parallel.

Figure B.1: Overview of the complete software architecture. Here, Mecobo hardware
is on the left, the client application is on the right, the main API components are in
the middle. Here, the evolutionary algorithm, i.e. user application runs on a client
PC, communicating over TCP/IP to the evolvable motherboard host PC. The Mecobo
platform is connected to and communicates with the host PC over USB. The log servers
communicate with the client PC.

Some sample commands of interface software have been given in following section. Some

commands (specially setting up electrodes, i.e. defining signals) are different for Mecobo

3.0 and for Mecobo 3.5. Both types of commands have been given here.
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B.1 Commands of Interface Software

Here, an example session of accessing evolvable motherboard through the NASCENCE

API is shown using pseudo code2. At first the code (after connecting to the Thrift server)

pings the board to check whether the connection is alive and resets it. Then, three signals

are defined. The signals are defined according to Mecobo 3.0 and Mecobo 3.5 separately.

The first one, that stimulates the material with a square wave of amplitude value 1 (3.5

V), frequency 100 Hz, generates 1024 samples to be assigned to Mecobo’s first pin. The

second one, that stimulates the material with a static voltage (the voltage level is 3.5V

for Mecobo 3.0 and the voltage level is 5V for Mecobo 3.5), generates 1024 samples to

be assigned to Mecobo’s second pin. The third is the signal to be recorded for 1024

samples, and is being recorded from the third pin. The recorded signal is filtered and a

fitness is calculated as a sum of squared differences of the filtered recording and a target

signal.

//Check the board exists

int pingResponse = emEvolvableMotherboard.ping();

//Make it nice and clean

emEvolvableMotherboard.reset();

//Wait until the board is ready

emEvolvableMotherboard.waitUntilReady();

//Get its name

string motherboardID = emEvolvableMotherboard.getMotherboardID();

print Connected to + motherboardID;

//Definition of three signals: According to Mecobo 3.0

//Define a square wave signal to output

emSequenceItem output0 = new emSequenceItem();

output0.operationType = emSequenceOperationType.PREDEFINED;

output0.pin = 1;

output0.startTime = 0;

output0.endTime = 1024;

output0.frequency = 100;

2The pseudo code is provided from the NASCENCE project report
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output0.amplitude = 1;

output0.waveFormType = emWaveFormType.PWM;

//Define a static digital signal to output

emSequenceItem output1 = new emSequenceItem();

output1.operationType = emSequenceOperationType.CONSTANT;

output1.pin = 2;

output1.startTime = 0;

output1.endTime = 1024;

output1.amplitude = 1;

//Define recording a signal

emSequenceItem input0 = new emSequenceItem();

input0.operationType = emSequenceOperationType.RECORD;

input0.pin = 3;

input0.startTime = 0;

input0.endTime = 1024;

//Definition of three signals: According to Mecobo 3.5

//Define a square wave signal to output

emSequenceItem output0 = new emSequenceItem();

output0.operationType = emSequenceOperationType.DIGITAL;

output0.pin = new List<int>();

output0.pin.add(1);

output0.startTime = 0;

output0.endTime = 1024;

output0.frequency = 100;

output0.amplitude = 1;

output0.waveFormType = emWaveFormType.PWM;

//Define a static analogue signal to output

emSequenceItem output1 = new emSequenceItem();

output1.operationType = emSequenceOperationType.CONSTANT;

output1.pin = new List<int>();
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output1.pin.add(2);

output1.startTime = 0;

output1.endTime = 1024;

output1.amplitude = 255;

//Define recording a signal

emSequenceItem input0 = new emSequenceItem();

input0.operationType = emSequenceOperationType.RECORD;

input0.pin = new List<int>();

input0.pin.add(3);

input0.startTime = 0;

input0.endTime = 1024;

//Next download the instructions

emEvolvableMotherboard.clearSequences();

emEvolvableMotherboard.appendSequenceAction(output0);

emEvolvableMotherboard.appendSequenceAction(output1);

emEvolvableMotherboard.appendSequenceAction(input0);

//Run the instructions

emEvolvableMotherboard.runSequences();

//Wait until they are finished

emEvolvableMotherboard.joinSequence();

//Retrieve the sample data for analysis

emWaveForm rawdata = emEvolvableMotherboard.getRecording(input0.pin);

//Push the data to the data processing API

string emOutputData = emDataApi.setBuffer(rawdata);

//Load a waveform to compare

string expectedData = emDataApi.loadBuffer(target.values);

//Do some signal processing to remove noise

emOutputData = emDataApi.medianFilter(emOutputData, 5);

//Compare the target to the actual data

double error = emDataApi.sumSquaredDifference(emOutputData, exepectedData);

//Use this score for fitness

print Fitness score = + error;
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Function Optimisation

Benchmarks

The function optimisation benchmarks that were used in this thesis are listed below.

The dimensions, d and the intervals over which the benchmark optimization functions

are defined are presented in Table C.1. It should be noted that the optima of these

benchmarks are given in Table 6.7 of Chapter 6.

f1(x) =
∑d
i=1 xi

2

f2(x) =
∑d
i=1 |xi|+

∏d
i=1 |xi|

f3(x) =
∑d
i=1(

∑i
j=1 xj)

2

f4(x) = maxi{|xi|, 1 ≤ i < d}

f5(x) =
∑d−1
i=1 [100(xi+1 − x2i )2 + (xi − 1)2]

f6(x) =
∑d
i=1(bxi + 0.5c)2

f7(x) =
∑d
i=1 ix

4
i + random[0, 1)

f8(x) =
∑d
i=1−xi sin(

√
|xi|)

f9(x) =
∑d
i=1[x2i − 10 cos(2πxi) + 10]

f10(x) = −20 exp(−0.2
√

1
d

∑d
i=1 x

2
i )− exp( 1

d

∑d
i=1 cos(2πxi)) + 20 + e

f11(x) = 1
4000

∑d
i=1 x

2
i +

∏d
i=1 cos( xi√

i
) + 1

f12(x) = π
d

{
10 sin2(πyi) +

∑d−1
i=1 (yi − 1)2[1 + 10 sin2(πyi+1)]

}
+π
d

{
(yd − 1)2

}
+
∑d
i=1 u(xi, 10, 100, 4) ; yi = 1 + 1

4 (xi + 1)

u(xi, a, k,m) =


k(xi − a)m, xi > a

0, −a ≤ xi ≤ a

k(−xi − a)m, xi < −a
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f13(x) = 1
10

{
sin2(3πxi) +

∑d−1
i=1 (xi − 1)2[1 + sin2(3πxi+1)]

}
+ 1

10 (xd − 1)[1 + sin2(3πxd)] +
∑d
i=1 u(xi, 5, 100, 4)

u(xi, a, k,m) =


k(xi − a)m, xi > a

0, −a ≤ xi ≤ a

k(−xi − a)m, xi < −a

f14(x) =
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]−1
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where,

ai =(0.1957, 0.1947, 0.1735, 0.16, 0.0844, 0.0627,

0.0456, 0.0342, 0.0323, 0.0235, 0.0246)

bi =(1/0.25, 1/0.5, 1, 1/2, 1/4, 1/6, 1/8, 1/10, 1/12, 1/14, 1/16)

f16(x) = 4x21 − 2.1x41 + 1
3x

6
1 + x1x2 − 4x22 + 4x42

f17(x) =
(
x2 − 5.1

4π2x
2
1 − 5

πx1 − 6
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+ 10(1− 1
8π ) cosx1 + 10

f18(x) =[
1 + (x1 + x2 + 1)2(19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22)

]
×[

30 + (2x1 − 3x2)2(18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22)
]

f19(x) = −
∑4
i=1 ciexp

[
−
∑d
j=1 aij (xj − pij)

]

with aij =


3.0 10.0 30.0

0.1 10.0 35.0

3.0 10.0 30.0

0.1 10.0 35.0


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pij =


0.3689 0.1170 0.2673

0.4699 0.4387 0.7470

0.1091 0.8732 0.5547

0.03815 0.5743 0.8828


ci =

(
1.0 1.2 3.0 3.2

)

f20(x) = −
∑4
i=1 ciexp

[
−
∑d
j=1 aij (xj − pij)

]

with aij =


10.0 3.0 17.0 3.5 1.7 8.0

0.05 10.0 17.0 0.1 8.0 14.0

3.0 3.5 1.7 10.0 17.0 8.0

17.0 8.0 0.05 10.0 0.1 14.0



pij =


0.1312 0.1696 0.5569 0.0124 0.8283 0.5886

0.2329 0.4135 0.8307 0.3736 0.1004 0.9991

0.2348 0.1415 0.3522 0.2883 0.3047 0.6650

0.4047 0.8828 0.8732 0.5743 0.1091 0.0381


ci =

(
1.0 1.2 3.0 3.2

)

f21(x), f22(x), f23(x) = −
∑m
i=1

[
(x− ai)(x− ai)T + ci

]−1
with m =5,7,10 for f21, f22 and f23, respectively, and,

ci =
(

0.1 0.2 0.2 0.4 0.4 0.6 0.3 0.7 0.5 0.5
)

aij =



4 4 4 4

1 1 1 1

8 8 8 8

6 6 6 6

3 7 3 7

2 9 2 9

5 5 3 3

8 1 8 1

6 2 6 2

7 3.6 7 3.6


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Appendix C. Function Optimisation Benchmarks

Table C.1: Benchmark optimization functions: dimensions and intervals.

fi Interval fi Interval fi Interval fi Interval

1 [-5.12,5.12]30 2 [-10,10]30 3 [-100,100]30 4 [-100,100]30

5 [-30,30]30 6 [-100,100]30 7 [-1.28,1.28]30 8 [-500,500]30

9 [-5.12,5.12]30 10 [-32,32]30 11 [-600,600]30 12 [-50,50]30

13 [-50.0,50.0]30 14 [-65.536,65.536]2 15 [-5,5]4 16 [-5,5]2

17 [-5,15]2 18 [-2,2]2 19 [0.0,1.0]3 20 [0.0,1.0]6

21 [0,10]4 22 [0,10]4 23 [0,10]4
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Abbreviations

ADC Analogue-to-Digital Converter

API Application Programming Interface

BZ Belousov-Zhabotinsky

DAC Digital-to-Analogue Converter

DE Differential Evolution

FPGA Field Programmable Gate Array

KS Kolmogorov-Smirnov

LCD Liquid Crystal Display

MCC Matthews Correlation Coefficient

NASCENCE NAnoSCale Engineering for Novel Computation using Evolution

NEWS North, East, West, South

PBMA Poly Butyl Methacrylate

PMMA Polymethyl Methacrylate

PSO Particle Swarm Optimisation

PWM Pulse Width Modulation
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