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Abstract

Individuals in nature frequently face decision problems where the information available to

them is uncertain and their reproductive success depends on the outcome of their decisions.

In these cases natural selection should be expected to favour individuals whose behavioural

strategies yield the best reproductive payoffs. It is accepted that decision-makers in nature

should evolve to behave as if they were Bayesian learners when making decisions on

uncertain information (Marshall et al., 2013a,b; McNamara et al., 2006; McNamara and

Houston, 1980; Tenenbaum et al., 2006). In this thesis different decision problems from

nature are modelled in order to determine the optimal strategies that should be expected

to evolve in response to different parameters of the environment, under the assumption

that decision-makers should also evolve to make decisions as if they were Bayesian.

One model is proposed to determine the conditions under which inducible defences,

a type of phenotypic plasticity, should be expected to evolve as a defensive mechanism

against predators. The model is used to predict when plasticity is the evolutionarily

optimal strategy, given the decision-maker’s inherited uncertainty regarding predation risk.

The model assumes that this inherited uncertainty has been shaped by natural selection

in prior generations of the decision-maker’s species to reflect the uncertainty exhibited by

the predation risk in the environment. It is shown that when this inherited uncertainty is

high enough (and thus when the uncertainty exhibited by the predation risk is also high

enough) then plasticity is the optimal strategy.

A second model is presented in order to test the hypothesis that decision-makers evolve

their Bayesian priors in response to variation in the environment. The results confirm

the assumption made in the model described above that the decision-maker’s inherited

assessment and uncertainty of the predation risk can be shaped by natural selection.

Finally, a third model is presented to determine when decision-makers should be ex-

pected to evolve self-deception biases in situations of conflict over resources, such as food,

against other decision-makers. This model tests the theory proposed by Trivers (2011),

which states that the most evolutionarily successful deceivers are those who self-deceive
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first. This is because self-deceiving deceivers do not have to pay the physiological costs

paid by deceivers who are aware of their deception. In the model presented in this thesis

it is shown that self-deception is more likely to be the optimal strategy as the information

the decision-maker has access to becomes more uncertain and as the contested resource

becomes more valuable.
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Chapter 1

Introduction

1.1 The evolution of behaviours as optimal solutions to decision-

making problems

By the process of natural selection certain traits become more or less common in a species

(Darwin, 1859). These traits can be morphological or behavioural, for instance. The

reproductive success of individuals in a species may depend on their solutions to decision-

making problems they encounter, given uncertain information from their environments.

In this case, natural selection is expected to favour behavioural mechanisms that find

the best solutions to these problems, on average (McNamara and Houston, 2009). A

behavioural mechanism refers to the set of internal processes (psychological, physiological,

molecular, etc) that lead to a behaviour (Fawcett et al., 2015). Optimal solutions may be

found analytically for these decision-making problems and individuals should be expected

to evolve the behavioural mechanisms that allow them to make decisions in response to

these problems as if aware of the analytical solutions. This is not to say that individuals

should be assumed capable of finding these analytical solutions but rather that their

evolved behaviours should simply approximate them, most likely through mechanisms,

such as “rules-of-thumb”, other than computing the solutions analytically (McNamara

et al., 2006; McNamara and Houston, 1980). Natural environments generally pose great

complexity, which makes it very difficult for a single evolved behaviour to be optimal in

all possible cases. Thus, behaviours favored by natural selection should be expected to be

optimal, on average, even if they are the result of behavioural mechanisms that are not

always optimal (McNamara and Houston, 2009).

In the study of evolutionarily-optimal animal behaviour, the solution to a decision-

making problem faced by an individual frequently depends on a variable of the environ-
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ment whose value is unknown to the individual. This variable is part of the state of the

environment and can be, for instance, the probability of finding food or encountering a

predator in a given location. Despite lacking knowledge about the state of the environ-

ment, the individual has access to cues which indicate the value of this variable with a

degree of uncertainty. The individual can reduce this uncertainty with repeated gathering

of these cues in order to estimate the variable and make an informed decision, thus the

evolutionary benefit of the decision depends on the quality of the estimate (Dall et al.,

2005). Analytically, it can be shown that using Bayes’ theorem, shown in Equation 1.1,

is the optimal method to produce these estimates from uncertain data (Marshall et al.,

2013b; McNamara et al., 2006; McNamara and Houston, 1980). Thus, it should be ex-

pected that individuals of a species evolve the behavioural mechanisms to make decisions

as if computing Bayesian estimates, which does not necessarily imply that individuals

evolve the means to compute these estimates (Marshall et al., 2013a; McNamara et al.,

2006; Tenenbaum et al., 2006). That is to say, the individual should evolve to act as

if having a prior estimate of the unknown variable of the environment and updating it

to a posterior estimate with each uncertain cue it gathers (McNamara et al., 2006). An

individual’s prior estimate represents the individual’s innate assessment of the environ-

ment variable. It has been hypothesised that this default ‘worldview’ of the individual is

shaped by natural selection and thus is a projection of the environment experienced by

the individual’s ancestors (McNamara et al., 2006). Often the variable of the environment

the individual must estimate is the probability of an event, A, such as the probability

of encountering a predator. Thus the individual should evolve to behave as if having a

prior estimate, denoted by P (A) in Equation 1.1, and updating it to a posterior esti-

mate, denoted by P (A|B), when the individual encounters new evidence in the form of

the observed occurence of a subsequent event B (e.g., a subsequent predator encounter or

non-encounter).

P (A|B) =
P (B|A)P (A)

P (B)
(1.1)

Foraging in food patches of uncertain quality is an example of a decision problem

where a decision-maker should be expected to behave as Bayesian learner (McNamara,

1982). In this scenario the environment consists of a set of food patches. Each type of

patch yields an expected reward (i.e., an expected amount of food) when the individual

explores it but the individual does not know in advance the magnitude of this expected

reward. The individual can spend any amount of time exploring a patch and, when doing

so, it has two possible choices: to continue exploring or to give up the current patch
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and move on to a different one. The individual can explore a patch without knowing

for certain that food will be found there and must choose the appropriate time when to

move on and explore a different one in order to maximise its food gain and minimise the

time invested. The individual can use the information learned from exploring the current

patch in order to make its decision. It is assumed that natural selection will favour the

foraging strategy that overall maximises the decision-maker’s food gain (Krebs et al.,

1983; McNamara, 1985; Pyke, 1984; Pyke et al., 1977). McNamara (1982) modeled the

scenario faced by an individual in an environment composed of food patches, where the

individual updates a prior assessment of each patch to a Bayesian posterior estimate after

a number of repeated observations. McNamara (1982) showed that the optimal policy is

to change patches when the estimated reward rate at the current patch is below or equal

to the reward rate of the whole environment. This relates to the marginal value theorem,

which predicts that individuals should generally stay longer in the current patch when

the resource richness is relatively high and costs of travel to a different patch are high

(Charnov, 1976). Thus, this is the behavioural strategy that should be expected to be

favoured by natural selection. This is an example of how a mathematical model can be

used to determine what behavioural strategy should be expected to evolve in response to

a decision problem in a natural environment, given the assumption that decision-makers

should be driven by natural selection to behave as if they were Bayesian.

This thesis presents three models to investigate different decision problems in nature.

The first model is proposed to investigate when an individual should exhibit phenotypic

plasticity in the form of inducible defences. The second model is presented to show how

Bayesian priors can be shaped by natural selection, which is a hypothesis made in the

literature of the evolution of animal behaviour. The third aims to show when self-deception

in a situation of conflict should be expected to evolve. More general details of these models

as well as the motivation for each one of these appear below.

1.2 A model of the evolution of plasticity

Phenotypic plasticity is the ability of a genotype to be expressed by different phenotypes,

depending on stimuli from the environment (DeWitt and Scheiner, 2004; Price et al., 2003;

Whitman and Agrawal, 2009). This is opposed to fixed phenotypic specialisation where the

phenotype develops independently from environmental stimuli. Chapter 2 investigates in-

ducible defences, which constitute a type of phenotypic plasticity observed in some species,

such as Daphnia pulex (Agrawal et al., 1999; Hammill et al., 2008; Tollrian, 1993). These

3



defences are costly but they improve survival when there is a predation risk. Efforts have

been made to predict when this type of plasticity should be expected to evolve instead of

specialisation, given the trade-off posed by these defences (Boeing et al., 2005; Hammill

et al., 2008; Riessen and Sprules, 1990). In Chapter 2 a model is presented to predict when

this type of plasticity should be expected to maximise an individual’s expectancy of reach-

ing adulthood when this trade-off is taken into account. The model simulates the lifetime

of an individual with inducible defences who must decide when to induce them, under

the assumption that the individual has evolved to estimate the predation risk through

repeated observations by behaving as a Bayesian learner in order to make its decision.

If the individual chooses induction before making any observation then the individual

is said to exhibit phenotypic specialisation, otherwise the individual is said to exhibit

phenotypic plasticity. The individual’s expectancy of reaching adulthood depends on

when the defences are induced since these entail physiological costs if induced when not

needed and failing to induce them when they are needed results in an increased death risk

by predation.

The model is used to predict, for each environment, whether the individual should

choose plasticity or specialisation in order to optimise its expectancy of reaching adult-

hood. It is shown that this choice depends on the standard deviation of the individual’s

prior. More specifically, it is shown that for any environment there is a threshold. If the

standard deviation of the individual’s prior is above or equal to this threshold then the

individual maximises its expectancy of reaching adulthood by exhibiting plasticity. Other-

wise the individual achieves this by exhibiting specialisation. The model assumes that the

individual’s prior is inherited and that its standard deviation has been previously shaped

by natural selection to reflect the uncertainty of the predation risk in the environment

(a hypothesis tested in Chapter 3). Given this assumption and the results obtained from

the model, it is concluded that inducible defences maximise the individual’s expectancy

of reaching adulthood only when the predation risk exhibits a level of uncertainty above

a certain minimum, which is consistent with the literature on plasticity. The model is

novel in that it takes into account the individual’s inherited prior in order to predict when

inducible defences should be expected to maximise the individual’s expectancy of reaching

adulthood.
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1.3 A model of the evolution of Bayesian priors

A model is presented in in Chapter 3 to investigate the hypothesis made in Chapter 2,

namely that Bayesian priors can be encoded genetically and shaped by natural selection.

In the model, which follows an approach similar to that followed by Hinton and Nowlan

(1987), each member of a population of Bayesian learners must make repeated obser-

vations from the environment in order to estimate the probability that an event occurs

(e.g., a predator encounter). This probability is referred to as the environment state and

each observation consists of a Bernoulli trial with a probability equal to the environment

state. Learners are born with a genetically-encoded prior estimate of the environment

state and use the evidence gained from each observation to update their prior estimate

to a Bayesian posterior estimate using Equation 1.1. The reproductive success of each

individual increases with the accuracy of the estimates made after a fixed number of

observations and learners pass on their encoded priors to their offspring but not the infor-

mation they have learned individually from the environment. The simulated evolution of

these individuals shows that their priors are shaped by the Baldwin effect (Baldwin, 1896)

to allow them to estimate accurately the environment state. Whenever the environment

state changes the population evolves priors that approximate the updated environment

state since these individuals are subject to a selective pressure to produce the most accu-

rate Bayesian posterior estimates. In addition to this, it is shown that individuals evolve

their priors to have high standard deviations when the distribution of environment states

also has a high standard deviation. The results obtained and presented in Chapter 3 sup-

port the hypothesis made in Chapter 2 that decision-makers can have their priors evolve

to have different means and standard deviations, and that the evolved standard deviations

reflect the uncertainty of the environment states.

1.4 A model of the evolution of self-deception

Self-deception is a tendency to ignore or deny truthful, objective information in order to

convince oneself of a false idea without any awareness of the deception. It is manifest in

the apparent biases in decision making observed in animals, including humans, in certain

situations. These seem to present an evolutionary puzzle, since one would expect deci-

sions based on biased (unrealistic) information to be suboptimal, unlike unbiased Bayesian

estimates. Despite this, self-deception biases are reported frequently in psychology liter-

ature (Alicke and Govorun, 2005; McCormick et al., 1986; Pallier et al., 2002; Sharot,
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2011a,b; Svenson, 1981) and Johnson and Fowler (2011) have proposed a model to explain

how these can evolve, which has received discussion and criticism (Johnson and Fowler,

2013; Marshall et al., 2013a,b). It has been proposed by Trivers (2011) that individuals

should evolve to self-deceive first in order to better deceive others. Although the the-

ory proposed by Trivers (2011) has been scrutinised extensively (Bandura, 2011) it has

not been formally modelled. Chapter 4 presents the first model designed to investigate

Trivers’ proposal and is an extension to the one proposed by Johnson and Fowler (2011).

In the model presented in Chapter 4 individuals make decisions by taking directly into

account the benefits and costs of each outcome and by choosing the course of action that

can be estimated as the best with the information available. It is shown that in certain

circumstances self-deceiving decision-makers are the most evolutionarily successful, even

when there is no deception between these. In a further extension of this model individ-

uals additionally exhibit deception biases and Trivers’ premise (that effective deception

is less physiologically costly with the aid of self-deception) is incorporated. It is shown

that under Trivers’ hypothesis natural selection favours individuals that self-deceive as

they deceive others. This model shows how a behavioural strategy can be evolutionarily

optimal despite being the result of a suboptimal behavioural mechanism (self-deception),

which is consistent with the literature on this topic (McNamara and Houston, 2009).

Finally, in Chapter 5 a concluding discussion of the results obtained is presented and

future directions to follow are proposed.
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Chapter 2

Optimal sampling-specialisation

balance in individuals with

inducible defences

2.1 Introduction

Some animals are able to induce changes in their phenotypes as a response to stimuli from

the environment. These changes can be morphological or behavioural and they result

from changes in the environment and not exclusively from the genetic code. Additionally,

these changes can be permanent or temporary. This ability to induce changes in pheno-

type in response to stimuli from the environment is called phenotypic plasticity (Price

et al., 2003; Scheiner, 1993) and is in contrast to fixed phenotypic specialisation, where

the phenotype develops independently from stimuli. Plasticity has been broadly defined

as “environment-dependent phenotype expression” (DeWitt and Scheiner, 2004) since dif-

ferent plastic individuals from the same species can exhibit different phenotypes if they

are exposed to different phenotype-inducing stimuli. If the environment exhibits varia-

tions that take place within the lifespan of an individual then these occur more frequently

that matching, optimal phenotypes can evolve and individuals face a selective pressure to

adjust their phenotypes to make them fit the current environment state (De Jong, 2005;

Forsman, 2014). When this occurs, it should be expected that a species evolves pheno-

typic plasticity, i.e., environment-dependent genotype expression. That is to say, when

there is enough instability in the environment, individuals who exhibit phenotypic plas-

ticity should have an evolutionary advantage over those who do not (Price et al., 2003).

Specialised strategies may evolve, depending on how environment changes occur. For in-
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stance, it has been shown that in spatially-variable environments non-plastic individuals

should evolve to ‘estimate’ favourable environments as more likely than they really are, a

form of ‘optimistic’ behaviour. On the other hand, in temporally-variable environments

non-plastic individuals should evolve to be ‘pessimistic’. That is to say, they should evolve

to ‘estimate’ favourable environments as less likely than they really are (McNamara et al.,

2011).

Phenotypic plasticity is commonly observed in nature, in animals and plants (Belsky

et al., 1991; Bradshaw, 1965; DeWitt and Scheiner, 2004; Ellis, 2004; Kuzawa, 2005; Nettle,

2011; Schlichting and Pigliucci, 1998; West-Eberhard, 2003). It is particularly beneficial

to plants given their motionless nature, unlike animals, who can more easily escape un-

hospitable environments (Schlichting, 1986; Sultan, 2000). In plants, phenotypic plasticity

commonly consists of changes in thickness and size of leaves and roots. For instance, in

soil with low concentration of nutrients roots grow to reach the most amount of nutrients

(Sultan, 2000). In animal species one example of phenotypic plasticity is that of inducible

defences. This is a type of plasticity that consists of morphologies that serve as defen-

sive mechanisms that are developed when a threat is detected. These are observed in

Daphnia pulex, a species of crustaceans commonly known as water fleas, whose phenotype

develops defences when environment cues indicate the presence of phantom midge larvae,

Chaoborus, who predate on the fleas (Agrawal et al., 1999; Hammill et al., 2008). Daphnia

pulex individuals detect the kairomone (i.e., a chemical substance) released by the larvae

and respond by developing neckteeth on their heads as a defensive mechanism (Parejko,

1991; Spitze, 1992; Tollrian, 1995), as illustrated in Figure 2.1. After being induced, the

defensive mechanism is kept until maturity, when the Daphnia pulex individual has grown

to the point that Chaoborus is no longer a threat (Walls and Ketola, 1989).

Plasticity has been studied in order to determine the specific conditions that must

be met for it to evolve in particular circumstances. Models have been proposed, where

plasticity is simulated as a process where a fixed-length period of time is invested by

each plastic individual in cue-gathering after which the phenotype develops accordingly

(Gabriel, 2006; Jablonka et al., 1995; Levins, 1968; Meyers and Bull, 2002; Moran, 1992;

Padilla and Adolph, 1996; Piersma and Drent, 2003) but it has also been modelled as an

incremental process in which phenotype development is cumulative, where the individual’s

development stage is composed of periods of specialisation and cue-detection (Frankenhuis

and Panchanathan, 2011). It has been shown how variables of the environment determine

the levels of plasticity and specialisation that evolve (Frankenhuis and Panchanathan,
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2011). One variable that has been observed to have an important impact in the evolvability

of plasticity or specialisation is the uncertainty with which the cues signal the environment

state, i.e., the reliability of these cues. It has been shown that an increase in the reliability

of environmental cues leads to individuals being more likely to evolve plasticity in order to

predict the environment state via cue-detection and adjust their phenotypes accordingly

(Frankenhuis and Panchanathan, 2011). If the cues are reliable then the plastic individual

becomes more evolutionarily successful because it manages to reduce the probability of

developing the wrong phenotype in the current environment (Nepomnaschy and Flinn,

2009). However, this environment-induced development normally requires time and other

resources, therefore a more evolutionarily stable strategy should be to have a phenotype

specialised for the local conditions of the environment before birth if these are unlikely

to change. There is a trade-off between having a specialised phenotype from an early

life stage and the risk of developing this early, specialised phenotype in a mismatching

environment, because this entails costs (Gluckman et al., 2005) that lead to decreased

fitness.

The development of inducible defences in Daphnia pulex results in a survival benefit

(Havel and Dodson, 1984; Krueger and Dodson, 1981; Parejko and Dodson, 1991) but

entails a demographic cost (i.e., a diminished reproductive rate due to a physiological cost)

to the species (Black and Dodson, 1990; Havel and Dodson, 1987; Riessen and Sprules,

1990; Walls et al., 1991; Walls and Ketola, 1989) , therefore they pose a trade-off (Riessen,

1992, 1999), and this creates a selective pressure on Daphnia pulex to refrain from inducing

the defences when they are not needed. If each Daphnia pulex individual could ‘know’ (no

conscious act being implied) in advance that predators are abundant in the environment

then this individual would maximise its survival by specialising as early as possible by

inducing its defences. On the other hand, if the individual could anticipate that predators

are absent, then it would maximise its survival by never inducing its defences and saving

physiological resources that could be invested in some other way. In nature, however, this

individual does not have this information in advance. The uncertainty in the information

the individual has access to in order to predict threats results in a trade-off between

learning from the environment (plasticity) and early specialisation.

The demographic benefits and costs of this type of defences have been measured by

Boeing et al. (2005) by comparing Daphnia pulex ’s population growth, denoted by r, when

these are exposed to different environments, with varying degrees of predator presence. In

their experiments, two Daphnia pulex clones are used. The first reacts to the presence of
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Chaoborus, by inducing its defences, and is referred to as ‘RC’. The other is non-reactive

and is referred to as ‘NRC’. These two clones are exposed to three environments. In the

first, denoted by ‘C’, no predators are present. In the second denoted by ‘P’, Chaoborus

swim freely and can predate on Daphnia. In the third, denoted by ‘K’, Chaoborus are

present but they are separated from Daphnia by a mesh tube; in this manner their presence

is known to Daphnia via Chaoborus’ kairomone but they do not represent a threat. The

demographic cost of Daphnia’s defences was measured as r(C,RC) − r(K,RC). That is to

say, as the difference in growth observed in populations of predator-responsive Daphnia

individuals when these do not have to induce their defences (i.e., when they live in a

predator-free environment) and when they do induce them without being affected by risk

of predation (i.e., when they live in an environment where the presence of predators

is manifest even though these pose no threats). The demographic benefit of Daphnia’s

defences was measured as r(P,RC) − r(P,NRC). That is to say, as the difference in growth

observed between a responsive population and and an unresponsive population when they

are exposed to environments with predation risk. In summarising their results, Boeing

et al. conclude that the cost paid by Daphnia for inducing its defences is manifest in a

decrease of 32.3% in population growth whereas the benefit is measured as an increase of

68.4% (Boeing et al., 2005). This is consistent with prior efforts to estimate these benefits

and costs (Riessen and Sprules, 1990) but no predictions are made about the level of

predation risk beyond which induction should be favoured by natural selection to occur

(Hammill et al., 2008).

Hammill et al. (2008) investigated how the benefits and costs of inducible defences

in Daphnia pulex individuals affects their fitness, in order to determine the threshold

predator risk at which an ‘undefended’ individual faces selection pressure to transition to

‘defended’. It should be expected that a defended individual’s fitness increases relative to

an undefended’s as the predation risk increases. The threshold for induction is given by the

point where the two fitness values intersect (Roff, 2002). Hammill et al. (2008) measured

an individual’s fitness as being directly proportional to the individual’s life expectancy and

lifetime reproductive success (LRS), which is measured as the overall number of offspring

of an individual. The individual’s life expectancy and LRS are increased and decreased by

induction of the defences, respectively. The life expectancy and LRS of two clones, Cyril

and Colin, were measured with and without defences. This was achieved by exposing

defended and undefended individuals of each clone to different levels of predation risk

and predation cues and measuring the resulting lifespan and number of offspring of each
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individual. These data were used to calculate the expected fitness of each individual,

defended and undefended, for different levels of predator risk. Using this theoretical

expected fitness, a theoretical (predator risk) threshold of induction was found for Cyril.

The theoretical induction threshold of Colin was found to be much higher than the predator

concentrations used experimentally. Hammill et al. (2008) explain that this is because,

in the case of Colin, the fitness of defended and undefended individuals is uniformly low

and the difference in fitness between the two is very small. Therefore the defences do not

offer a significant benefit in terms of fitness and Colin individuals should have evolved

low sensitivity to Chaoborus in order to avoid the costs incurred into when inducing the

defences. With their theoretical model, Hammill et al. (2008) are able to predict the level

of predator concentration that makes induction necessary to maximise fitness (in terms of

both survival and reproductive success). However this threshold is not in relation to any

individual’s inherited prior estimate of predation risk.

Frankenhuis and Panchanathan (2011) proposed an evolutionary model of the evolu-

tionary trade-off between plasticity and specialisation considering the individual’s prior.

In the model, a group of individuals live in an environment that can be in one of two per-

manent states: 0 or 1. An environment in state 1 can be thought of as one where predators

(which represent a death risk for the individuals modelled) are encountered with higher

probability than an environment in state 0. Similarly, the individuals’ phenotypes are

numerical and range between 0 and 1. The reproductive success of an individual depends

on how closely its phenotype matches the current environment state. At birth individuals

immediately fully disperse and settle, after which each individual is permanently located

in the same environment whereas the whole population can eventually become scattered

across different environments with different states. The lifetime of the individual is com-

posed of 20 discrete steps. In each step one of two mutually-exclusive actions is performed:

sampling or specialising. By choosing to specialise the individual shifts its phenotype in-

crementally towards the optimal phenotype that matches what the individual believes is

the environment state. Otherwise, by choosing to sample the individual receives a noisy

cue as to the environment state. The probability that a cue is truthful is called the cue

validity and is constant for all states. With each cue the individual updates its prior re-

garding the environment state using Bayes’ theorem. The individual has a prior estimate

of the environment state. The means of the priors considered in the model are 0.5, 0.1,

0.3, 0.7, and 0.9 (Frankenhuis and Panchanathan, 2011).

Frankenhuis and Panchanathan (2011) use dynamic programming to determine the
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optimal choice (either sample or specialise) an individual should make at every life step,

for different environment prior probabilities (i.e., the prior probability of the environment

being in one state or the other) and cue validities (i.e., the probability of receiving a correct

cue from the environment). The sequence of optimal choices at each life step comprises

the lifetime of an individual with the best fitness value and therefore this sequence is the

strategy that should be expected to be favoured by natural selection in an evolutionary

scenario. The results obtained show that plasticity generally decreases as one environment

becomes more likely than the other and increases with cue validity. Three categories of

cue validity are considered: low (0.55), intermediate (0.75), and high (0.95). Investment

on sampling is observed to be greatest when cue validity is intermediate (0.75) and it de-

creases as cue validity decreases and increases. This is because as cue validity increases, an

individual requires fewer observations to estimate correctly the environment state because

these are more reliable. On the other hand, when cues are less reliable an optimal indi-

vidual needs more sampling in order to produce an estimate of the same quality as with

reliable cues. However individuals who invest all their time sampling without specialising

do not increase their fitness. Results also show that reliance on sampling decreases as

one environment becomes increasingly more likely than the other. This is because if one

environment state is much more likely than the other then natural selection will simply

favour individuals who sample little or not at all and specialise early always matching the

environment state that is most probable.

When cue validity is low, individuals evolve to develop early, devote little time to

sampling and their belief (i.e., certainty) about the environment state is also low. In the

intermediate category, the most investment on sampling is observed. In addition to this,

increased learning paired with increased cue validity results in increased certainty about

the environment state. Finally, when cue validity is high, individuals spend less time

on sampling than with intermediate cue validities because then individuals require fewer

observations to estimate correctly the environment state before developing the optimal

phenotype. Certainty about the environment state is maximum when cue validity is high.

In the model proposed by Frankenhuis and Panchanathan (2011), phenotype devel-

opment is an incremental process and the results achieved coincide with other models of

adaptive development by concluding that the evolvability of phenotypic plasticity depends

mainly on two variables. The first one is the individuals’ priors. As these becomes less

informative (i.e., more uncertain or closer to 1
2) plasticity becomes more likely to evolve.

The second variable is the cues’ validity. The evolvability of plasticity occurs mainly when
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cue validity is intermediate.

In Section 2.2 a model is proposed to simulate the phenotypic development of an in-

dividual analogous to Daphnia pulex fleas. The individual possesses inducible defences

that improve its probability of survival against a predator but these imply costs to the

individual when these are induced when they are not needed. In this model these costs

are in terms of decreased survival. The individual’s lifetime consists of a sequence of

predator encounters and non-encounters and the probability of surviving each one of these

with and without defences is a parameter of the environment state. The individual accu-

mulates the information from past encounters and non-encounters in order to update its

prior estimate of predator risk to a Bayesian posterior, which is used by the individual in

order to decide whether to induce the defences or postpone them until more evidence is

collected. As in the model proposed by Frankenhuis and Panchanathan (2011), there is

no fixed period of time devoted to cue-gathering. Instead, the individual can accumulate

cues from the environment and induce its defences after it estimates that the predation

risk is high. The purpose of the model is to determine when the individual should opti-

mally choose to induce the defences, given the accumulated evidence of predation risk, in

order to maximise its expectancy of reaching adulthood. This is used to determine the

conditions under which the individual should be expected to exhibit plasticity or early

specialisation. A dynamic programming algorithm is provided along with the model, in

order to determine the optimal choice the individual must make at any given moment

of its lifetime, given the environment state, the evidence collected by the individual and

the individual’s prior. Repeated experimentation with this algorithm shows that there

are two types of thresholds. One is a threshold on the standard deviation of the individ-

ual’s prior that determines whether the individual should use plasticity or specialisation

in order to maximise expectancy of reaching adulthood. When plasticity yields the maxi-

mum survival expectancy then the algorithm finds the threshold evidence (i.e., number of

observed predator encounters and non-encounters) upon which the individual should opti-

mally choose to induce the defences. That is to say, the thresholds found by the algorithm

are not in terms of predator concentration, as in the model proposed by Hammill et al.

(2008), but in terms of the individual’s prior and the evidence (number of past predator

encounters and non-encounters) accumulated until a given moment. It is shown that in

realistic environments, the individual maximises its expectancy of reaching adulthood by

exhibiting plasticity when the standard deviation of its inherited prior is above or equal

to the threshold, which depends on the environment state. Otherwise, it is shown that
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(a) Without neckteeth (b) With neckteeth

Figure 2.1: Difference in head shape between undefended (2.1a) and defended (2.1b)
Daphnia pulex. Photos reproduced from Tollrian (1993).

the individual maximises its expectancy of reaching adulthood by specialising as early as

possible.

The model assumes that the individual’s prior has been inherited and shaped by nat-

ural selection in previous generations of the individual’s species to reflect the uncertainty

in the predation risk (a hypothesis tested in Chapter 3). Given this assumption and the

results obtained, it is concluded that inducible defences maximise the individual’s ex-

pectancy of reaching adulthood when the predation risk has been historically uncertain

(i.e., when the predation risk has not been constant but has exhibited great variability) in

the evolutionary history of the individual’s species. This is consistent with the literature

on phenotypic plasticity described earlier. However, the model is novel in that it predicts

when inducible defences maximise the individual’s expectancy of reaching adulthood by

taking into account the individual’s inherited prior in order to make these predictions.

2.2 The model

The model simulates a scenario similar to that faced by Daphnia pulex, described in

Section 2.1. Namely, the phenotypic development of an individual with inducible defences

who must decide when to induce them, depending on the individual’s estimated probability

of encountering a predator, given that these defences are costly if induced when they

are not needed. The individual’s lifetime consists of a sequence of independent, discrete

life steps. At any life step t one predator encounter occurs as a Bernoulli event. The

probability of such predator encounter is unknown to the individual and non-variable

over time. At each step the individual has the choice to induce the defences before the
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encounter or non-encounter has taken place. The individual holds a beta prior, encoded

with hyperparameters α and β, that represents its default estimate of the probability of

encountering a predator. The beta prior belongs to a type of distributions called conjugate

distributions.1 These have the property that application of Bayes’ theorem (given in

Equation 1.1) to update a conjugate prior results in a posterior of the same family of

distributions. That is to say, if the prior is beta-distributed the posterior will also be

a beta-distributed. Additionally the calculation will require little mathematical effort.

The mean of this prior is the individual’s prior estimate of predation risk, denoted by µ

and given by Equation 2.1. The individual updates it to a Bayesian posterior with each

observation (i.e., with each encounter or non-encounter). The mean of the posterior, after

s encounters and f non-encounters, is referred to as the posterior estimate of predation

risk and denoted by φs,f and given by Equation 2.2.

µ =
α

α+ β
(2.1)

φs,f =
s+ α

s+ f + α+ β
(2.2)

The individual’s prior is assumed to have been inherited and shaped by natural se-

lection in previous generations to allow members of the individual’s species to estimate

accurately the predation risk. This assumption is examined in more detail in Chapter 3.

As stated above, the individual’s default estimate of predation risk is denoted by µ and

given by the mean of the individual’s inherited prior. The uncertainty the individual has

on this default estimate increases as the standard deviation of the prior increases. This

uncertainty (the standard deviation of the individual’s inherited prior) is denoted by σ

and given by Equation 2.3, where α and β are the hyperparameters of the individual’s

prior.

σ =

√
αβ

(α+ β)2(α+ β + 1)
(2.3)

An individual’s prior with mean µ and a high standard deviation is assumed to have

evolved to reflect that in previous evolutionary generations the predation risk is, on aver-

age, µ with high variation. On the other hand, an individual’s prior with mean µ and a low

standard deviation is assumed to have evolved to reflect that in the previous evolutionary

history of the individual’s species the predation risk is, on average, µ with low variation.

It should be expected that the individual’s certainty on its own inherited prior estimate

1A prior distribution and its Bayesian posterior distribution are called conjugate distributions if they
belong to the same family. In this case the prior is known as a conjugate prior.
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Without defence With defence

No predator encountered p0,0 p0,1
Predator encountered p1,0 p1,1

Table 2.1: Payoff matrix listing the probability that an individual in the model survives
each life step, depending on whether a predator is encountered and whether the individual’s
phenotypic defences have already been developed.

of predation risk should have an influence on the decisions made by the individual. This

will be confirmed later in Section 2.4.

The probability that the individual survives at time t and makes it to t + 1 depends

on whether a predator is encountered and whether defences have been developed or not.

The notation pp,d is used to denote the probability that the individual survives each life

step t, where p (predator) and d (defences) are binary (0 or 1). The former indicates

whether a predator is encountered and the latter indicates whether the defences have

already been developed. By default, an individual has no defences and survives each t

with probability p0,0 if no predator is encountered, otherwise the individual survives with

probability p1,0. If the individual has developed defences prior to t then it survives with

probability p0,1 if a predator is not encountered, and with probability p1,1 otherwise. The

sequence of life steps continues indefinitely until the individual gets killed by a predator

or until it dies from other causes. That is to say, when encountering a predator on a given

life step, the individual dies with probability 1 − p1,0 if no defences have been induced

and with probability 1 − p1,1 otherwise. If a predator is not encountered at any life

step, the individual dies with probability 1− p0,0, if no defences have been induced, with

probability 1 − p0,1 otherwise. The four variables p0,0, p0,1, p1,0, p1,1 are referred to as

the survival probabilities. The environment state, denoted by S, is given by the 4-tuple

S = (p0,0, p0,1, p1,0, p1,1).

An environment state is considered to be realistic if it satisfies the following three

conditions. The first is that p1,1 > p1,0, because in the presence of a predator, survival

must be more probable when defences have been developed. The second is that p0,0 > p0,1,

because development of defences is costly and in the absence of threats it must become

a waste of resources that reduces survival. The third is that p0,0 > p1,0 because the

probability of survival without defences must be lower in the presence of predators than

in the absence of these. In other words, any environment state S = (p0,0, p0,1, p1,0, p1,1)

is considered to be realistic as long as p0,0, p0,1, p1,0, p1,1 ∈ (0, 1) and p0,0 > p1,0, p0,1 and

p1,1 > p1,0. The individual’s survival at any life step is given by the payoff matrix shown

in Table 2.1.
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The model assumes that the individual’s interest is to survive its early developmental

stages and to reach adulthood. The notation T is used to refer to the life step where the

individual reaches adulthood, hence the individual’s interest is to maximise its expectancy

of surviving until life step T . That is to say, the individual needs to maximise its expectancy

of reaching adulthood. Thus the optimal decision to be made at life step t, when s predator

encounters and f non-encounters have occurred in previous life steps (i.e., when t − 1 =

s+f), is the one that maximises the individual’s future expectancy of reaching adulthood

in environment state S, given s and f . The optimal strategy is comprised by the sequence of

optimal decisions given a sequence of observations (i.e., encounters and/or non-encounters)

made by the individual. The problem is to determine the optimal strategy to be followed

by an individual with a beta-distributed prior, encoded as two beta parameters α and β,

in an environment state S = (p0,0, p0,1, p1,0, p1,1). A solution is proposed in Section 2.3.

2.3 The optimal strategy as the solution to a one-armed

bandit problem

The problem of deciding the optimal strategy for an individual (i.e., when to induce

defences) in the model introduced in Section 2.2 can be formulated as a one-armed bandit

problem (Gittins et al., 2011) as follows. In each life step the choice of inducing defences

or postponing them is represented as ‘arms’ A1 and A0, respectively. Prior to any life step

t the individual has observed s predator encounters and f non-encounters, and therefore

t−1 = s+f . Then at time t, before making its decision, the individual’s updated posterior

estimated probability of encountering a predator is given by Equation 2.2.

At life step t, the individual chooses whether to induce its defences (by ‘pulling’ arm

A1) or not (by ‘pulling’ arm A0) and each choice yields a reward consisting of future

survival time. The individual’s future survival time after inducing the defences when s

predator encounters and f non-encounters have occurred is a random variable denoted by

Vs,f . Similarly, the future survival time after postponing the defences is denoted by Us,f .

The individual’s estimated survival probability after postponing the defences is denoted by

σUs,f and the estimated survival probability after inducing them is denoted by σVs,f . These

two estimated probabilities are given by Equation 2.4 and Equation 2.5, respectively.

σUs,f = (1− φs,f )p00 + φs,fp10 (2.4)

σVs,f = (1− φs,f ) p01 + φs,f p11 (2.5)
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The individual’s future survival time after induction of the defences, denoted by Vs,f , is

a negative-binomially distributed variable. Using Bernoulli terminology, Vs,f is the number

of ‘successes’ (i.e., the number of life steps the individual survives), each of which with

probability σVs,f , before one ‘failure’ occurs (i.e., before the life step where the individual

dies). That is to say, Vs,f ∼ NB(1, σVs,f ). 2 The individual’s expectancy of reaching

adulthood after inducing the defences is thus given by the mean value of Vs,f , shown in

Equation 2.6.

E[Vs,f ] =
σVs,f

1− σVs,f
(2.6)

The notation Rs,f is used to refer to the individual’s highest expectancy of reaching

adulthood at life step t, after s predator encounters and f non-encounters in previous steps

(with t− 1 = s+ f). Rs,f is given by Equation 2.7, where I[s, f ] denotes the individual’s

optimal decision, in such a way that I[s, f ] = 1 if the individual’s optimal decision is to

induce the defences at time t and I[s, f ] = 0 otherwise. If I[s, f ] = 1 then the highest

expectancy of reaching adulthood is given by E[Vs,f ]. If I[s, f ] = 0 then the highest

expectancy of reaching adulthood is given by σUs,f (1 + R∗t+1), where R∗t+1 denotes the

the highest expectancy of reaching adulthood in the next life step (t+ 1) and is given by

Equation 2.8.

Rs,f = I[s, f ] E[Vs,f ] + (1− I[s, f ]) σUs,f (1 +R∗t+1) (2.7)

R∗t+1 = φs,f Rs+1,f + (1− φs,f ) Rs,f+1 (2.8)

The individual’s optimal strategy is given by matrix I, where I[s, f ] denotes the indi-

vidual’s optimal decision when s predator encounters and f non-encounters have occurred,

as described above. Matrix I can be found with dynamic programming by calculating

first the highest expectancy of reaching adulthood at future life step T as the base case

of the recurrence depicted in Equation 2.7. This expectancy of reaching adulthood can

be approximated by assuming that in the base case the choice of not inducing defences is

permanent. That is to say, by assuming that if defences are not induced at T then they

cannot be induced in the future. Under this assumption, the individual’s future survival

time after postponing the defences at time T , after sT predator encounters and fT non-

encounters (with T−1 = sT +fT ), is a negative-binomially distributed variable denoted by

UsT ,fT . Using Bernoulli terminology, UsT ,fT is the number of ‘successes’ (i.e., the number

of life steps the individual survives), each of which with probability σUsT ,fT (defined in

2The notation X ∼ NB(r, p) is used to express that random variable X follows a negative binomial
distribution and represents the number of Bernoulli ‘successes’ that occur until r ‘failures’ have occurred,
when the probability of each ‘success’ is p.
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Equation 2.4), before one ‘failure’ occurs (i.e., before the life step where the individual

dies). That is to say, UsT ,fT ∼ NB(1, σUsT ,fT ). The expectancy of reaching adulthood of

the individual after not inducing the defences at time T is thus given by the mean value

of UsT ,fT , shown in Equation 2.9.

E[UsT ,fT ] =
σUsT ,fT

1− σUsT ,fT
(2.9)

Since at time T either decision is permanent, this terminal time serves as a way to

model the time where the individual is no longer able to undergo phenotypic development,

i.e., the time where the individual reaches full maturity and is no longer able to induce

its defences. Thus T is the maximum possible developmental time of the individual in the

model. This limit is similar to that in the model of Frankenhuis and Panchanathan (2011),

where development takes place over the course of 20 life steps. In the model presented in

this chapter, different values of T can be used and thus different developmental periods

can be considered.

Algorithm 1 solves the multi-armed bandit problem described above and finds the

decision-maker’s optimal strategy, denoted by I. The algorithm receives the environment

state S = (p00, p01, p10, p11) and the individual’s prior estimate of predation risk as input

(as a beta prior with parameters α and β), which is assumed to have been inherited by

the individual and shaped by natural selection, a hypothesis examined in Chapter 3. The

algorithm also receives an integer T representing the time until the individual’s maturation

and after which the defences are assumed not to be able to be induced. This value is used

as the base case of the recurrence introduced in Equation 2.7. The highest expectancy of

reaching adulthood when defences are not induced in the base case is calculated as shown

in Equation 2.9.

The results returned by the algorithm were observed to vary understandably as a

function of its arguments. Since there are several of these, a formal prediction of the results

is difficult. However, important conclusions were reached after repeated experimentation

with different parameters to the algorithm. Algorithm 1 was used to determine the optimal

strategy of an individual in environment states S1 = (p00 = 0.99, p01 = 0.2, p10 = 0.1, p11 =

0.5), S2 = (p00 = 0.95, p01 = 0.2, p10 = 0.1, p11 = 0.7), S3 = (p00 = 0.99, p01 = 0.5, p10 =

0.1, p11 = 0.35), and S4 = (p00 = 0.95, p01 = 0.7, p10 = 0.1, p11 = 0.4). These environment

states comply with the restrictions between survival probabilities described in Section 2.2

and thus are realistic. Individuals with different prior estimates in the interval [0, 1]
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were tested. A terminal time T = 1, 000 was used. The results obtained are presented

in Section 2.4. Even though these results are restricted to experimentation with these

environments, it can be hypothesised that similar results should be obtained with other

realistic environments.

Algorithm 1

procedure FindOptimalStrategy(α, β, p00, p01, p10, p11, T )
I ← matrix-of-zeros[T, T ]
for each s, f ∈ Z+ ∪ {0} such that s+ f = T − 1 do

φs,f ← s+α
s+f+α+β

σUsT ,fT ← (1− φs,f )p00 + φs,fp10

RU ←
σUsT ,fT

1−σUsT ,fT
σVs,f ← (1− φs,f )p01 + φs,fp11

RV ←
σVs,f

1−σVs,f
if RV > RU then

I[s, f ]← 1
Rs,f ← RV

else
I[s, f ]← 0
Rs,f ← RU

end if
end for
for t = T − 1→ 1 do

for each s, f ∈ Z+ ∪ {0} such that s+ f = t− 1 do
φs,f ← s+α

s+f+α+β
σUs,f ← (1− φs,f )p00 + φs,fp10
RU ← σUs,f (1 + φs,fRs+1,f + (1− φs,f )Rs,f+1)
σVs,f ← (1− φs,f )p01 + φs,fp11

RV ←
σVs,f

1−σVs,f
if RV > RU then

I[s, f ]← 1
Rs,f ← RV

else
I[s, f ]← 0
Rs,f ← RU

end if
end for

end for
return I

end procedure

2.4 Results

Two broad types of optimal strategies were found. One is plasticity, i.e., postponing

induction of the defences until evidence of predation risk is found. The other is to induce

the defences at time t = 1, i.e., before any evidence is collected. This strategy can be

referred to as earliest specialisation and is opposed to plasticity, since it consists of ignoring
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all information from the environment and deciding to specialise as soon as possible.

Repeated experimentation with Algorithm 1 indicates that the optimal strategy de-

pends on the mean and standard deviation of the individual’s prior. In Section 2.2 it is

explained that the standard deviation of the individual’s inherited prior is a measure of

the individual’s uncertainty on its inherited default estimate of the predation risk. From

the experimental tests carried out with Algorithm 1 it was conjectured that for any prior

estimate µ (the mean of the individual’s inherited beta prior), plasticity is the optimal

strategy if and only if the standard deviation of the individual’s prior is above or equal to

a threshold that depends on the environment state. This threshold is referred to as the

inherited uncertainty threshold. The notation δSµ is used to refer to the inherited uncer-

tainty threshold in environment state S of an individual whose prior estimate of predation

risk is µ. The experiments show that the optimal strategy of any individual in an en-

vironment state S is plasticity if and only if σ ≥ δSµ , where µ and σ denote the mean

and standard deviation, respectively, of the individual’s inherited prior. This conjecture

was arrived at after a purely empirical method consisting of repeated experimentation

with Algorithm 1 (a method described further below) and a formal demonstration is diffi-

cult. The values of δSµ for different environment states S and individual priors were found

through repeated experimentation. However the predictions made have been observed to

be consistent throughout the experiments carried out, the results of which are described

as follows.

Experimentation with S1 has showed, for instance, that δS1
0.67 ≈ 0.104. Thus plasticity

is the optimal strategy in S1 of an individual whose prior estimate is µ = 0.67 if and only

if σ ≥ δS1
0.67, where σ is the standard deviation of the individual’s inherited prior. This is

illustrated in Figure 2.2a and Figure 2.2b which show graphically the optimal strategy of

two individuals whose prior estimates of predation risk are equal to 0.67.3 The optimal

decision, given any s (number of predator encounters) and f (number of non-encounters),

is given by the colour of the area where the (s, f) coordinate is located. Black means

that the optimal decision is to postpone inducing the defences and continue sampling.

Grey means the optimal decision is to induce them. Only the individual whose strategy is

depicted in Figure 2.2a satisfies the condition that makes plasticity the optimal strategy.

The two figures show the same general pattern except for the (0, 0) coordinate, and this

shows the optimal strategy depicted in Figure 2.2a is plasticity whereas the one depicted

in Figure 2.2b is specialisation.

3Details on how the plots in Figure 2.2 were produced appear in in Section B.2.
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In order to estimate empirically that δS1
0.67 ≈ 0.104 the following method was used.

Given S1 and µ = 0.67, individual priors with different beta hyperparameters α and β in

the interval [0.01, 1, 000] such that µ = α
α+β were tested. Thus, in all of these priors it

holds that α = β if and only if µ = 0.5. Additionally it holds that α > β when µ > 0.5

and that α < β when µ < 0.5. Each combination of these hyperparameters results in

a different beta distribution with mean µ but with different standard deviation. It was

observed that plasticity was always the optimal strategy in the cases where this standard

deviation was above or equal to 0.104 (approximately) whereas earliest specialisation was

always the optimal strategy when this standard deviation was below 0.104. The two plots

shown in Figure 2.2 illustrate the results obtained with only two of the beta priors (with

mean µ = 0.67) considered. The reason for showing only these two is to illustrate the

existence of the inherited uncertainty threshold δS1
0.67 and how the standard deviation of

the individual’s prior determines the optimal strategy when the mean is µ = 0.67. This

empirical method was used with other values of µ in both S1 and S2.

Results analogous to the above are shown in Figure 2.3 where S2 is tested instead.4

The two plots in Figure 2.3 illustrate that δS2
0.67 ≈ 0.342 and that therefore plasticity is the

optimal strategy in S2 of an individual whose prior estimate is µ = 0.67 if and only if the

standard deviation of the individual’s prior is above or equal to 0.342. The thresholds δS1
0.67

and δS2
0.67 differ even though they refer to the same prior mean (0.67) and this indicates they

depend on the environment state. Additional tests with different values of µ were carried

out and the results were consistent with the conjecture stated earlier that plasticity is the

optimal strategy only when the standard deviation of the individual’s prior is above the

inherited uncertainty threshold. Additional, analogous results can be found in Figure 2.45

and Figure 2.56 where S3 and S4 are tested, respectively.

The conjecture stated earlier indicates that a critical variable that determines whether

plasticity is the optimal strategy or not is the individual’s inherited uncertainty regarding

predation risk (i.e., the standard deviation of the individual’s prior). More specifically, the

results indicate that plasticity is more likely to be the optimal strategy when the individual

holds greater uncertainty regarding its inherited prior estimate of predation risk. On the

other hand, earliest specialisation is more likely to be the optimal strategy when the

individual holds lower uncertainty regarding its inherited prior estimate of predation risk.

As explained in Section 2.2, this model assumes that the individual’s prior is inherited

4Details on how the plots in Figure 2.3 were produced appear in in Section B.3.
5Details on how the plots in Figure 2.4 were produced appear in in Section B.4.
6Details on how the plots in Figure 2.5 were produced appear in in Section B.5.
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and has been shaped by natural selection in previous generations of the individual’s species,

an assumption that is explored in more detail in Chapter 3. It can be hypothesised that an

individual’s inherited prior has evolved to have a high standard deviation to reflect the fact

that in previous generations of the individual’s species the predation rate has exhibited

high variation and, thus, high uncertainty. Under this assumption (tested in Chapter 3),

the results described earlier indicate that plasticity should be more likely to the be the

optimal strategy when the predation risk has been historically uncertain. On the other

hand, when the predation risk has been historically certain (i.e., predictable and/or with

little variation) in previous generations of the individual’s species, the optimal strategy

should be more likely to be earliest specialisation. In other words, plasticity becomes

more likely to be the optimal strategy as the individual’s evolved prior reflects more

uncertainty (manifest in a high standard deviation), which in turn is hypothesised to occur

when predation risk has been highly uncertain in the previous evolutionary generations

of the individual’s species (this hypothesis is tested in Chapter 3). A formal prediction

of the uncertainty threshold is difficult, given the complexity of Algorithm 1. However

the empirical finding of this threshold is in agreement with the literature, which states

that plasticity should be beneficial (and favoured by natural selection) when there is high

variability in the environment (De Jong, 2005; DeWitt and Scheiner, 2004; Forsman, 2014;

Price et al., 2003; Scheiner, 1993). This is because an inherited (and evolved) prior with

a standard deviation high enough to be above the threshold should be indicative of an

environment with high variability (a hypothesis shown to be true in Chapter 3) and only

in such environment should plasticity be optimal, in agreement with the literature (De

Jong, 2005; DeWitt and Scheiner, 2004; Forsman, 2014; Price et al., 2003; Scheiner, 1993).

The conjecture stated earlier was tested with different individual prior means and en-

vironment states and the results were always consistent. These experimental tests showed

that δS1
µ = 0 when µ < 0.67 and that δS1

µ = +∞ when µ > 0.94. In other words, when the

mean of the individual’s inherited prior is below 0.67 the optimal strategy in S1 is plastic-

ity, regardless of the standard deviation (which is always above zero in beta distributions).

Similarly, when the mean of the individual’s inherited prior estimate of predation risk is

above 0.94 the optimal strategy in S1 is earliest specialisation, independently of how low

or high the standard deviation is. That is to say, the interval [0.67, 0.94] is where the stan-

dard deviation of the individual’s prior has been observed experimentally to determine the

individual’s optimal strategy in environment state S1. This interval can be referred to as

the critical interval of the environment state. The notation ΛS is used to denote the crit-
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ical interval of environment state S. Therefore the experiments carried out indicate that

ΛS1 ≈ [0.67, 0.94]. In the same manner, the experiments with S2, S3, and S4 have shown

that ΛS2 ≈ [0.56, 0.81], ΛS3 ≈ [0.67, 0.96], and ΛS4 ≈ [0.46, 0.87], respectively. These find-

ings indicate that each critical interval is specific to each environment state. Thus it can

be hypothesised that tests on other environments should reveal different critical intervals.

Figure 2.6 plots the inherited uncertainty threshold for each µ in the critical interval of

each one of the four environments tested. That is to say, Figure 2.6a shows the values of

δS1
µ for all values of µ in ΛS1 and the other three subplots in Figure 2.6 display analogous

information regarding environments S2, S3, and S4.
7 For each individual prior’s mean µ on

the horizontal axis, the values on the vertical axis above the curve (i.e., the values y in the

points (µ, y) above the curve) in Figure 2.6a are the individual prior’s standard deviations

with which plasticity is the optimal strategy in environment S1. The other three subplots

in Figure 2.6 show analogous information regarding the other three realistic environments

considered. The four curves shown in Figure 2.6 are noticeably different and this is most

likely because the four environments differ. The curve in Figure 2.6a is very similar to the

one depicted in Figure 2.6c, although the latter exhibits a faster decrease with values of µ

above 0.90. This difference is probably due to the fact that in S1 the survival probability

of an defended individual when predators are absent (i.e., p01) is higher than the survival

probability of a defended individual when predators are present (i.e., p11), whereas the

opposite happens in S3. That is to say, in environment S1 it holds that p01 < p11 whereas

in S3 it holds that p01 > p11. Then it can be hypothesised that the faster decrease of

the curve observed in Figure 2.6c occurs as the value of p01 increases relative to that of

p11. The same occurs with Figure 2.6b and Figure 2.6d. Both bear a resemblance but the

latter decreases faster as µ increases above 0.80, and in environment S2 the environment

probabilities are such that p01 < p11 whereas in S4 it holds that p01 > p11. Hence it can

be conjectured that the accelerated decrease of the curves in Figure 2.6c and Figure 2.6d

compared to the curves in Figure 2.6a and Figure 2.6b, respectively, occurs as p01 increases

relative to p11. This conjecture is purely experimental, but it could be addressed formally

in future work. Additionally, the curve in Figure 2.6a appears to decrease more steeply

than that in Figure 2.6b as µ increases. A reasoning similar to the one presented earlier

can be followed to reach a conjecture regarding the difference between these curves. The

survival probability in the absence of predators and defences (i.e., p00) is higher in S1

whereas the survival probability in the presence of predators when defences have been in-

7Details on how the four subplots in Figure 2.6 were produced appear in in Section B.6.

24



(a) µ1 ≈ 0.67, σ1 ≈ 0.104 (b) µ2 ≈ 0.67, σ2 ≈ 0.103

Figure 2.2: Optimal decision I[s, f ] in an environment state S1 = (p00 = 0.99, p01 =
0.2, p10 = 0.1, p11 = 0.5) with two different individual priors. Figure 2.2a shows the
optimal decision when the individual’s prior has a mean µ1 and standard deviation σ1 and
Figure 2.2b shows the optimal decision when the individual’s prior has a mean µ2 and
standard deviation σ2. This optimal decision is given by the colour of the area where the
(s, f) coordinate is located. Black means that the optimal decision is to postpone inducing
the defences and continue sampling. Grey means the optimal decision is to induce them.
The priors have the same mean but in Figure 2.2a the standard deviation is higher than
in Figure 2.2b. Experimentally it has been determined that δS1

0.67 ≈ 0.104. Plasticity is
the optimal strategy in Figure 2.2a (as indicated by the black colour at coordinate (0, 0))
because σ1 ≥ δS1

0.67 and earliest specialisation is the optimal strategy in Figure 2.2b (as
indicated by the grey colour at coordinate (0, 0)) because σ2 < δS1

0.67. Details on how to
produce these plots appear in Section B.2.

duced (i.e., p11) is higher in S2. It could be hypothesised that a simultaneous decrease and

increase of p00 and p11, respectively (as in a transition from S1 to S2), should result in a

less rapidly decreasing curve. Figure 2.6c and Figure 2.6d exhibit a similar difference and

the same hypothesis applies to these figures. As stated earlier, a formal prediction of the

results obtained with Algorithm 1 is difficult and so is a formal proof of these conjectures.

However, these hypotheses could be explored in more detail in the future, to show how

tweaking these parameters could possibly change the size of the space of individual priors’

standard deviations with which plasticity is optimal, thus making this strategy more or

less likely to be optimal.

2.5 Conclusions

The model presented in Section 2.2 recreates the phenotypic development of an individual

similar to Daphnia pulex and Algorithm 1 determines when this individual should induce

its defences in order to maximise its expectancy of reaching adulthood. The time when

induction should optimally occur depends on the survival costs of inducing or not, given the
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(a) µ1 ≈ 0.67, σ1 ≈ 0.342 (b) µ2 ≈ 0.67, σ2 ≈ 0.329

Figure 2.3: Optimal decision I[s, f ] in an environment state S2 = (p00 = 0.95, p01 =
0.2, p10 = 0.1, p11 = 0.7) with two different individual priors. Figure 2.3a shows the
optimal decision when the individual’s prior has a mean µ1 and standard deviation σ1 and
Figure 2.3b shows the optimal decision when the individual’s prior has a mean µ2 and
standard deviation σ2. This optimal decision is given by the colour of the area where the
(s, f) coordinate is located. Black means that the optimal decision is to postpone inducing
the defences and continue sampling. Grey means the optimal decision is to induce them.
The priors have the same mean but in Figure 2.3a the standard deviation is higher than
in Figure 2.3b. Experimentally it has been determined that δS2

0.67 ≈ 0.342. Plasticity is
the optimal strategy in Figure 2.3a (as indicated by the black colour at coordinate (0, 0))
because σ1 ≥ δS2

0.67 and earliest specialisation is the optimal strategy in Figure 2.3b (as
indicated by the grey colour at coordinate (0, 0)) because σ2 < δS2

0.67. Details on how to
produce these plots appear in Section B.3.
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(a) µ1 ≈ 0.67, σ1 ≈ 0.115 (b) µ2 ≈ 0.67, σ2 ≈ 0.114

Figure 2.4: Optimal decision I[s, f ] in an environment state S3 = (p00 = 0.99, p01 =
0.5, p10 = 0.1, p11 = 0.35) with two different individual priors. Figure 2.4a shows the
optimal decision when the individual’s prior has a mean µ1 and standard deviation σ1 and
Figure 2.4b shows the optimal decision when the individual’s prior has a mean µ2 and
standard deviation σ2. This optimal decision is given by the colour of the area where the
(s, f) coordinate is located. Black means that the optimal decision is to postpone inducing
the defences and continue sampling. Grey means the optimal decision is to induce them.
The priors have the same mean but in Figure 2.4a the standard deviation is higher than
in Figure 2.4b. Experimentally it has been determined that δS3

0.67 ≈ 0.115. Plasticity is
the optimal strategy in Figure 2.4a (as indicated by the black colour at coordinate (0, 0))
because σ1 ≥ δS3

0.67 and earliest specialisation is the optimal strategy in Figure 2.4b (as
indicated by the grey colour at coordinate (0, 0)) because σ2 < δS3

0.67. Details on how to
produce these plots appear in Section B.4.
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(a) µ1 ≈ 0.67, σ1 ≈ 0.342 (b) µ2 ≈ 0.67, σ2 ≈ 0.299

Figure 2.5: Optimal decision I[s, f ] in an environment state S4 = (p00 = 0.95, p01 =
0.7, p10 = 0.1, p11 = 0.4) with two different individual priors. Figure 2.5a shows the
optimal decision when the individual’s prior has a mean µ1 and standard deviation σ1 and
Figure 2.5b shows the optimal decision when the individual’s prior has a mean µ2 and
standard deviation σ2. This optimal decision is given by the colour of the area where the
(s, f) coordinate is located. Black means that the optimal decision is to postpone inducing
the defences and continue sampling. Grey means the optimal decision is to induce them.
The priors have the same mean but in Figure 2.5a the standard deviation is higher than
in Figure 2.5b. Experimentally it has been determined that δS4

0.67 ≈ 0.342. Plasticity is
the optimal strategy in Figure 2.5a (as indicated by the black colour at coordinate (0, 0))
because σ1 ≥ δS4

0.67 and earliest specialisation is the optimal strategy in Figure 2.5b (as
indicated by the grey colour at coordinate (0, 0)) because σ2 < δS4

0.67. Details on how to
produce these plots appear in Section B.5.

28



0.70 0.80 0.900.
10

0.
15

0.
20

0.
25

0.
30

µ

δ µS
1

(a) δS1
µ for all µ ∈ ΛS1

0.55 0.60 0.65 0.70 0.75 0.80

0.
10

0.
20

0.
30

µ
δ µS

2

(b) δS2
µ for all µ ∈ ΛS2

0.70 0.80 0.90

0.
15

0.
20

0.
25

0.
30

µ

δ µS
3

(c) δS3
µ for all µ ∈ ΛS3

0.5 0.6 0.7 0.8

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

µ

δ µS
4

(d) δS4
µ for all µ ∈ ΛS4

Figure 2.6: The inherited uncertainty threshold plotted against the individual prior’s mean
µ in the critical interval of environments S1, S2, S3, and S4. That is to say, Figure 2.6a
shows the values of δS1

µ for all values of µ in ΛS1 and the other three subplots in Figure 2.6
display analogous information regarding environments S2, S3, and S4. Details on how to
produce these plots appear in Section B.6.
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environment state, and on the number of past predator encounters and non-encounters

experienced by the individual, which comprise the evidence accumulated up to a given

moment. The individual uses this evidence to update its prior estimate of predation

threat to a Bayesian posterior. The probability that an individual survives each predator

encounter or non-encounter with or without defences is given by the environment state.

For any given amount of evidence and environment state, the optimal decision (induce

the defences or postpone them) is the one that maximises the individual’s expectancy of

reaching adulthood. The optimal strategy is the sequence of optimal decisions to be made

in response to each piece of sequential evidence. Algorithm 1 uses dynamic programming

in order to find the optimal strategy for any environment state and individual prior. This

algorithm is used to find the optimal strategy of individuals with different priors in realistic

environment states, i.e., the optimal strategy under realistic assumptions about survival

probabilities.

The results presented in Section 2.4 show that the algorithm normally finds two types

of optimal strategies. The first is earliest specialisation, which consists of inducing the

defences before making any observations from the environment. The second is plasticity,

which consist of postponing induction of the defences until the predation risk assessed by

the individual makes induction adaptive.

The results obtained after repeated experimentation with Algorithm 1 indicate that

the standard deviation of the individual’s inherited prior plays an important role when

determining the optimal strategy. As described in Section 2.2, the standard deviation of

the individual’s inherited prior measures the individual’s inherited uncertainty regarding

predation risk. More specifically, it was determined that given any environment state S and

prior estimate of predation risk µ (which is the mean of the individual’s inherited prior),

the optimal strategy is plasticity if and only if the standard deviation of the inherited prior

is above or equal to a threshold that depends on S and µ, denoted by δS1
µ and referred

to as the inherited uncertainty threshold. In other words, if the standard deviation of

the individual’s inherited prior is below the threshold, then the optimal strategy is earliest

specialisation, otherwise the optimal strategy is plasticity. In the latter case, the algorithm

shows the optimal decision to make at any point in the life history of the individual,

given the amount of accumulated evidence (i.e., number of past predator encounters and

non-encounters) until then. This is illustrated in Section 2.4 with repeated tests in two

realistic environment states. In each case, δS1
µ is determined empirically and it is shown

that an individual whose prior estimate of predation risk is µ maximises its expectancy
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of reaching adulthood in environment state S by exhibiting plasticity if and only if the

standard deviation of its inherited prior is above or equal to δS1
µ .

It is accepted that natural selection should favour individuals who behave as if com-

puting Bayesian estimates (Marshall et al., 2013b; McNamara et al., 2006; McNamara

and Houston, 1980) and therefore it should be expected that individuals evolve priors that

allow them to make these estimates more accurately. This is not to say that adapted

individuals in nature carry out Bayesian computations when processing uncertain data

but rather that the cognitive machinery they use should approximate the same behaviour

of an optimal Bayesian decision-maker (Marshall et al., 2013a; McNamara et al., 2006;

Tenenbaum et al., 2006). In Chapter 3 it is shown how these Bayesian priors can be inher-

ited and shaped by natural selection. It can be hypothesised that the fact that plasiticity

maximises the expectancy of reaching adulthood only when the standard deviation of

an individual’s inherited (and previously evolved) prior is above an inherited uncertainty

threshold indicates that plasticity is the optimal strategy only when the predation risk

has been subject to great uncertainty in the past evolutionary history of the individual’s

species. If the predation risk is uncertain and unpredictable, then it should be expected

that individuals evolve priors with high standard deviations in order to reflect the uncer-

tainty of the predation risk (a hypothesis examined in more detail in Chapter 3). When

this uncertainty is high enough and as a result the standard deviation of the evolved

prior exceeds the inherited uncertainty threshold, plasticity yields the best expectancy of

reaching adulthood. On the other hand, if the predation risk is certain and predictable,

then it should be expected that individuals evolve priors with low standard deviations in

order to reflect the low uncertainty of the predation risk (a hypothesis examined in more

detail in Chapter 3). When this uncertainty is low enough and as a result the standard

deviation of the evolved prior fails to exceed the inherited uncertainty threshold, earliest

specialisation yields the best expectancy of reaching adulthood. This observed correlation

between the uncertainty of the environment state and the survival benefit provided by the

inducible defences in the model is consistent with the literature on plasticity cited in Sec-

tion 2.1. One key assumption in this model, is that as the uncertainty in the environment

increases then the individual’s inherited prior should have a higher standard deviation, as

evolved by the individual’s ancestors to reflect the environmental uncertainty (an assump-

tion shown to be true in Chapter 3). Therefore the model shows analytically that as the

environment becomes uncertain then plasticity becomes more adaptive, as a consequence

of the individual’s inherited prior, shaped by natural selection in previous generations of
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the individual’s species to have a higher standard deviation. This result complements the

literature on plasticity cited in Section 2.1 and recent research on the prediction of plas-

ticity as a consequence of inherited priors (Frankenhuis and Panchanathan, 2011; Stamps

and Krishnan, 2014a,b).

One difference between the model presented in Section 2.2 and that of Frankenhuis

and Panchanathan (2011) is that in the former cues have maximum validity, i.e., they are

always truthful. In the model proposed by Frankenhuis and Panchanathan (2011), each

observation is an indicator of predator presence that can have varying degrees of certainty

(called ‘cue validity’) whereas in the model presented in Section 2.2 each observation con-

sists of an actual predator encounter or non-encounter that has a direct effect on the

individual’s survival, although an encounter does not necessarily result in the individual’s

death. Since the cues are valid in the model presented in Section 2.2 then individuals are

expected to rely on these in order to develop the phenotype that maximises their expected

survival; this in accordance to the predictions made by Frankenhuis and Panchanathan

(2011) and Nepomnaschy and Flinn (2009). In addition to this, in the model proposed

by Frankenhuis and Panchanathan (2011) the developmental stage of an individual is

modelled as 20 time periods, whereas in the model presented in Section 2.2 the develop-

mental history of the individual is limited by the terminal time T . Any terminal time

T can be used as a parameter to Algorithm 1, although in the experiments carried out

in Section 2.4 this parameter is set to 1, 000. The model presented in Section 2.2 differs

from that of Hammill et al. (2008) in what is optimised. The former is concerned with

optimising expectancy of reaching adulthood (which may not be the only fitness factor)

whereas the latter optimises fitness, which is directly proportional to both the individual’s

expectancy of reaching adulthood (which is increased by the defences) and the individ-

ual’s reproductive rate (which is decreased by the defences). In addition to this, Hammill

et al. (2008) determine an induction threshold in terms of predator concentration whereas

Algorithm 1 determines two thresholds. The first is a threshold on the standard deviation

of the individual’s inherited prior that depends directly on the environment state and

determines whether the optimal strategy is plasticity or earliest specialisation. Thus the

model presented in Section 2.2 associates the optimality of plasticity to the individual’s

prior, which can be inherited and shaped by natural selection, a hypothesis examined in

Chapter 3. When plasticity is found to be the optimal strategy, the second threshold is the

number of accumulated past predator encounters and non-encounters that make induction

the optimal decision.

32



The results obtained in Section 2.4 are purely theoretical but provide an insight into

the conditions that must be met for plasticity to evolve in nature. In the model presented

in Section 2.3 these conditions are defined by the individual’s probability of surviving

each predator encounter or non-encounter, with and without defences. If the parallels of

these four survival probabilites in nature could be measured in a species with permanent,

inducible defences, (Daphnia pulex for instance) in a way similar to the work of Hammill

et al. (2008), then the threshold observed experimentally in this species should be con-

sistent with the results presented in Section 2.4. It would of of interest to examine this

hypothesis in the future using realistic information from nature.
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Chapter 3

Can natural selection encode

Bayesian priors?

3.1 Introduction

Animals normally exhibit behaviours that allow them to survive and reproduce. These

may entail a level of risk, given that the individuals can not always control or predict

the outcome of their actions. For instance, foraging may imply exposure to predators but

should nonetheless evolve if the benefit of finding food outweighs on average the long-term

cost of taking the risk (Frankenhuis and Del Giudice, 2012). Some behaviours are pheno-

typic expressions under purely genetic control, therefore they are inherited, not acquired,

and that is why they can evolve. These inherited behaviours evolve as adaptations that

overall should be expected to enhance the chances of survival and reproduction of the

individual (Williams, 1966). In addition to this, the evolutionary advantage provided by

an animal’s behaviour depends partially on the environment the animal occupies. In a hy-

pothetically unchanging environment, it should be expected that natural selection favours

individuals with behaviours that optimise their chances of survival in such a habitat. If

these behaviours are optimal only in a specific configuration of the environment and if this

configuration changes then new optimal behaviours are likely to evolve in order to reflect

this variation. If each one of these changes occurs more frequently than a new matching

optimal behaviour can evolve natural selection is likely to favour a learning ability that al-

lows individuals to infer the configuration of the environment and adjust their behaviours

accordingly instead of having these encoded genetically. The environment may provide

cues that indicate its current state and these may be accompanied by some degree of un-

certainty. An individual with this ability gathers these cues (Baldwin, 1896; Dall et al.,
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2005; DonaldsonMatasci et al., 2010; Levins, 1968; Meyers and Bull, 2002; Piersma and

Drent, 2003) in order to anticipate the conditions of the environment and implement a

strategy that maximises its chances of reaching a goal, such as finding food or avoiding a

predator, for instance. The individual reduces uncertainty by collecting more information

and the accuracy of the predictions made by the individual increases with the time spent

gathering data from the environment. With a learning ability the individual may be able

to infer the environment state but the information learned by the individual during its

lifetime is not communicated to the genotype. However the learning ability itself may be

passed on to offspring. In this case those who are more efficient at learning (i.e., those who

require less training to learn or those who do so more precisely) have an advantage and

should be favoured by natural selection. This phenomenon was originally known as the

Baldwin effect (Baldwin, 1896), which is a particular case of phenotypic plasticity (Brad-

shaw, 1965; DeWitt and Scheiner, 2004; Schlichting and Pigliucci, 1998; West-Eberhard,

2003), described in Chapter 2. The Baldwin effect occurs when an individual is able to

search locally the space of phenotypic strategies in order to find the one that yields the

best reproductive rate. Thus individuals with an inherited ability to perform this search

faster will have an evolutionary advantage (Dennett, 2003). As a result of this, the ability

to gain or learn information at the phenotypic level eventually has an evolutionary reper-

cussion at the genetic level even though information learned from the environment is not

transferred to the genetic code nor passed on to offspring through genetic inheritance. In

addition to this, a possible, though not necessary, consequence of the Baldwin effect is

that individuals later evolve the adaptations learned as fixed traits rather than acquiring

them through learning (Scheiner, 2014). Even though the Baldwin effect results in an

apparently advantageous phenotypic flexibility, it also implies costs because in order to

learn the individual must invest time and other resources that would otherwise be used to

satisfy other physiological requirements.

The Baldwin effect was modelled by Hinton and Nowlan (1987) in order to show how

selection for a learning ability allows evolution to reach a space of alternatives that would

not normally be reachable in practice by a traditional evolutionary search. The model

simulates the evolution within a group of learning individuals, each one of these with a

genome that encodes a neural network in such a way that each gene expresses whether

a connection in the network is present or not. In the initial population each genome is

initialised with a random genome of size 20 and alleles 0 (connection absent), 1 (connection

present), and ‘?’ (connection undecided). A set of connections is arbitrarily chosen as the
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‘correct’ one. Thereafter every individual undergoes a ‘learning’ process consisting of

replacing the ‘?’ genes by either 0 or 1 in random trials until the correct set of connections

is produced or until a limit of 1, 000 trials has been exceeded. An individual who never

manages to learn the correct network receives minimum fitness whereas another one who

does receives a fitness score that increases with the number of unused trials. The fittest

individuals are selected to reproduce through one-point crossover and the offspring of

these form a new population that replaces the previous one. After enough generations the

population becomes dominated by individuals who require the fewest trials to learn the

good network. Even though these individuals may not have inherited by chance the correct

set of connections their genomes are in enough proximity to the objective network so that

they can learn the remaining connections with little training. In similar simulations run

without learning, the evolutionary search cannot find the correct network.

It has been shown that learners should be optimised by natural selection to behave

as if they are computing Bayes-optimal estimates when trying to infer information from

uncertain data (Marshall et al., 2013b; McNamara et al., 2006; McNamara and Houston,

1980). Even though real animals are unlikely to perform Bayesian computations, natural

selection should favour individuals whose behaviour resembles that of Bayesian learners.

This refers to cases where an individual is frequently faced with a decision problem whose

solution depends on a variable of the environment unknown to the individual. This vari-

able can be, for instance, the predation risk and/or the probability of finding food in an

unfamiliar location. The individual faces a selective pressure to make the decision that

maximises its survival and reproductive rate (e.g., avoiding danger when the predation

risk is too high or foraging in a different place if the probability of finding food in the

currrent location is low). Despite lacking access to the actual state of the environment,

the individual may have access to noisy cues that reveal this variable with some degree

of error. Populations of individuals facing repeatedly these situations should evolve to

behave as if having a prior and updating it to a Bayesian posterior with each noisy cue

collected from the environment.

Trimmer et al. (2011) illustrate this by considering the scenario where an individual

must decide whether to perform an action or not. If the individual acts it can succeed

or fail. In the former case the individual receives a benefit, b, and in the latter it pays a

penalty cost, c. The benefit has a positive impact on the individual’s fitness by increasing

it whereas the cost decreases it. The event where the individual succeeds is denoted

by A and the success probability is pA = P (A). Trimmer et al. (2011) show formally
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that the individual maximises its gain in the long term by choosing to act if and only if

pA >
c
b+c . In other words, if the individual finds itself facing the same decision in repeated

ocassions, its overall payoff in the long term will be positive if and only if it chooses to

act only when the inequality holds true. It is assumed that the value of the benefit and

the cost involved are known to the individual at the moment of making the decision but

not pA. However, the individual can estimate this probability through repeated trials or

experimental observations of A. Two types of learners are considered: frequentists and

Bayesians. A frequentist learner estimates pA as k
n after observing k occurrences of A

(i.e., k successes) during n trials. On the other hand a Bayesian learner starts off with

a default estimate of an underlying distribution of the possible values of pA = P (A),

called the prior estimate, before making any observation. The prior is the Bayesian

learner’s default belief about pA. When new evidence becomes available in the form of an

observation of an event B (e.g., a subsequent observation trial) then the Bayesian learner

updates its belief to a posterior estimate of pA given that B has occurred. By Bayes’

theorem this updated estimate is given by Equation 1.1. That is to say, at any moment

the current estimate is a distribution of the possible values of pA, and this estimate is

updated with each repeated observation. If the original prior is a uniform distribution

then it is called an uninformative prior, meaning that the Bayesian learner starts with an

unbiased default belief. The updated posterior becomes more accurate as the number of

observations increases.

Since decision makers are face a selective pressure to behave as Bayesians when esti-

mating an uncertain variable of the environment, a decision maker’s prior represents its

default belief regarding this variable. In other words, the individual’s prior represents its

default ‘worldview’ and it has been hypothesised that this prior is inherited and subject

to natural selection (McNamara et al., 2006). In other words, it has been hypothesised

that populations of decision makers should evolve different priors in response to different

environments. The main objective of this chapter is to show how priors can effectively

be inherited and shaped by natural selection. Section 3.2 introduces an evolutionary

model where a population of Bayesian learners face the scenario presented by Trimmer

et al. (2011). Every individual must estimate the probability pA of an event A and has

a genetically-encoded beta prior that serves as its default estimate of pA. Every learner

makes repeated independent observation trials in order to update its estimate of pA with

the evidence gained. Fitness is measured in terms of the ability to quickly produce an

estimate that approximates accurately the real probability, therefore accurate learners
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are selected for even though the information gained by them through observation trials

is not passed on to their offspring. Results show how Bayesian populations experience

the Baldwin effect as individuals whose priors are closer to pA are favoured by natural

selection and therefore the value of pA drives the evolution of these. With any change

in the value of pA the population’s priors change as natural selection favours individuals

who can learn and estimate the new value faster. When pA values are beta-distributed

with hyperparameters α and β, the Bayesian population is shown to evolve genomes that

reflect these parameters as if these were being estimated by Bayesian learners. The model

is extended in Section 3.8 to incorporate frequentist learners and have these compete with

Bayesians in order to determine the circumstances in which one group is more evolution-

arily successful than the other. Repeated competition between Bayesians and frequentists

shows that the former are favoured by natural selection when the environment poses the

most uncertainty whereas the latter are more evolutionarily successful when the environ-

ment poses the least, a result that is in agreement with previous literature on optimal

decision-making (Marshall et al., 2013b; McNamara et al., 2006; McNamara and Houston,

1980).

3.2 The Bayesian-Baldwin model

The model simulates the evolution of a population of 100 individuals who are required

to estimate the probability, pA, of an event A. The probability pA is a parameter of the

environment unknown to the population and is referred to as the environment state. Every

population member makes n repeated observations of a Bernoulli trial with probability

pA, denoted by ΘpA , in order to estimate the environment state based on the number

of occurences and non-occurences of A. Every individual has a beta-distributed prior

estimate of pA encoded as a binary genome [α, β]. The mean of the prior of any individual

with genome [α, β] is denoted by µα,β and given by Equation 3.1. The individual uses the

information accumulated from the repeated Bernoulli trials in order to update its prior

to a Bayesian posterior. The individual’s posterior estimate of pA is denoted by φα,β(pA)

and is given by Equation 3.2, where k is the number of observed occurrences of A after

the n repetitions of ΘpA . The number of observations n is also a parameter of the model

called the learning length and is constant for all individuals. The genes α and β are

always restricted to the semi-closed interval (0, 100] and in the initial population they are

normally-distributed with mean 1.0 and variance 0.01. This is done to ensure that all the
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individual’s priors are around 1
2 , by Equation 3.1, and therefore uninformative.

µα,β =
α

α+ β
(3.1)

φα,β(pA) =
k + α

n+ α+ β
(3.2)

The fitness of every individual is measured in terms of how accurately this indi-

vidual estimates a non-empty multiset of m beta-distributed environment states, S =

{p1, p2, p3, ..., pm}, called the environment. The beta distribution the m values in an

environment S originate from is called the environment distribution. The environment

hyperparameters are denoted by αS and βS . The fitness of an individual with genome

[α, β] in environment S is denoted by fS(α, β) and given by Equation 3.3.

fS(α, β) =
1

1 +
∑

pi∈S [pi − φα,β(pi)]2
(3.3)

A new population is created by performing 100 matings with arithmetic crossover

between members of the previous population. The parents in each mating are selected

randomly from the previous population and each parent’s probability of being selected is

proportional to its fitness. The offspring are mutated by adding Gaussian-noise, with mean

and variance equal to 0.00 and 0.01 respectively. The mutation rate is set to 0.01 in order

to facilitate convergence, given that the population size is 100. Higher rates were found to

produce less stability of the evolved genomes. The offspring make up a new population,

which in turn replaces the previous one. Evolution runs for 10, 000 generations. The

evolutionary model is briefly summarised in Figure 3.1.

Two types of evolutionary simulations are considered. In the first the environment

S is replaced every 1, 000 generations with a new one containing the same number of

beta-distributed environment states, with hyperparameters αS and βS . In the second,

environment changes occur every 2, 000 generations. It can be expected that if the en-

vironment changes periodically then it is harder for individuals to keep up with these

changes with evolved priors. An environment is more stable than another if the former

changes less frequently than the latter.

The model, as described above, simulates a situation in which an individual needs to

estimate the probability of an event before taking any action. For instance, A could refer

to the event a predator is nearby, and the indivividuals would need to determine (not

necessarily as a conscious act) how probable this event is in order to follow an appropriate
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A population of 100 individuals 
are initialised. Each one has 
a genome [α,β] that encodes 

a beta prior. 

The environment is set as 
S = {p1, p2, p3, ..., pm}. 

Every individual estimates 
every pi by running n trials 

of Θ. 

The fitness of each individual 
is calculated in terms of the 
accuracy of the estimation 

of each pi. 

Completed 10,000 
generations? 

Individuals are selected for 
reproduction with a probability 

proportional to their fitness. 

The offspring of the 
selected individuals form 

a new population that 
replaces the previous one. 

The selected individuals 
reproduce through crossover 
and mutation with Gaussian 

noise. 

End. 

Yes No 

Figure 3.1: Summary of the Baldwinian evolution model of Bayesian learners.

course of action, such as developing defences (Agrawal et al., 1999; Hammill et al., 2008),

as discussed in Chapter 2. The individual is more likely to use its resources efficiently if it

makes the right decisions and this is more likely to occur with accurate estimates of pA.

A learner in nature would normally use the information gained from the environment in

order to make a decision or take an action, such as Daphnia pulex individuals developing

defences when chemical cues indicate the presence of predators, and this decision would

likely have a repercussion in the survival or reproductive success of the decision-maker. For

instance, if predators are frequent and a Daphnia pulex individual accurately deduces this

then it will grow the defences required and this investment will be beneficial. Otherwise,

if the individual fails to predict the presence of predators, its survival and reproduction

will be compromised. In the model described in this section, however, every individuals

assesses pA but the decision this individual would make using this information is not

simulated and neither are the consequences of the actions that would be taken by the

learner. Instead fitness is calculated directly in terms of the accuracy of the estimates

produced. This simplification is reasonable because in a real-world scenario it should be

expected that the survival and reproductive success of the decision-maker is associated

directly to the accuracy of its assessments.
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3.3 The learning length as a selective pressure

Given an environment S, the default error of an individual x, with genome [αx, βx], is

a measure of the discrepancy between x’s prior and the environment states in S. It is

denoted by δS(x) and given by Equation 3.4. On the other hand, x’s posterior error is

a measure of the inaccuracy of the estimations made by x. It is denoted by ∆S(x) and

given by Equation 3.5, where ki is the number of occurrences of A observed by x after n

repetitions of Θpi , for each pi ∈ S.

δS(x) =
1

m

∑
pi∈S

∣∣∣∣ αx
αx + βx

− pi
∣∣∣∣ (3.4)

∆S(x) =
1

m

∑
pi∈S

∣∣∣∣ ki + αx
n+ αx + βx

− pi
∣∣∣∣ (3.5)

The accuracy of an individual x when estimating S is inversely proportional to the

posterior error of x in this environment, therefore an individual with the minimum pos-

terior error in a population of Bayesians should have the maximum accuracy, relative to

that of other members of the population. Every time x runs an observation trial of Θpi

the discrepancy between pi and this individual’s updated posterior estimate is likely to be

reduced. For this reason the x’s accuracy should be expected to increase with the learn-

ing length (i.e., the number of allowed observation trials of Θpi per individual), which is

denoted by n. Therefore the fitness score of the learner should also increase with n, which

is to be expected since with each observation the individual reduces the uncertainty about

the environment state and its estimate approaches the correct value.

If an environment state is irrational then the minimum posterior error by any Bayesian

in the genetic pool is understandably limited by n and the individual’s estimate may

never match the actual objective value. For instance, if pi = π
10 then a Bayesian can

only approximate this value and the accuracy of such estimate will improve with higher

values of n without ever reaching the actual probability. But if the environment state

is rational then a Bayesian might be able to estimate it with perfect accuracy after n

observations of Θpi if this individual’s prior is close enough to pi. For instance, if pi = 0.3

then a Bayesian x with genome [αx = 27, βx = 63] could estimate this value with perfect

accuracy after n = 10 trials of Θpi during which k = 3 occurrences of A are observed. In

any case, the minimum posterior error achievable in the population is limited by n and

individuals who achieve it are the ones who receive the maximum fitness relative to others’

and should be the ones most likely to reproduce. As n increases, selective pressure over
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Bayesians is reduced because then more of these individuals are likely to estimate pi with

the maximum achievable accuracy. On the other hand, with lower values of n selective

pressure is stronger and it should be expected that an increasingly limited number of

Bayesians reproduce, whereas with higher values of n the selective presion is weaker and

individuals with greater posterior errors should also be able to reproduce and pass on

their genetically-encoded priors. In the evolutionary simulation presented in later sections

(Section 3.5, Section 3.6, and Section 3.7) the learning length is set to n = 2, for speed

and simplicity, in order to test a high selective pressure, and it can be predicted that a

higher value would result simply in less selective pressure and less exclusivity of the priors

evolved.

3.4 Types of environments

The uncertainty of the Bernoulli trial Θpi increases with its variance and is maximum

when pi = 0.5 because then Θpi is equivalent to the flipping of a fair coin. Similarly,

the certainty posed by an environment S increases with the standard deviation of the

environment distribution because then the environment states in S should be expected to

spread more evenly in [0, 1]. An environment whose values tend to be concentrated in a

small subinterval of [0, 1] is said to be less uncertain than another one whose values are

more evenly spread over this interval. Different choices of environment hyperparameters αS

and βS should result in certain values pi appearing more frequently in S than others from

interval [0, 1], thus different environment hyperparameters should result in environments

with varying degrees of uncertainty. Four types of environment distributions are considered

in the model and the probability density functions of these are plotted in Figure 3.2.

An environment S with beta hyperparameters αS and βS such that αS , βS > 1 can be

of one of three types, depending on the size of αS relative to βS . If αS > βS then S is said

to be of Type I. On the other hand, S is said to be of Type II if αS < βS . Otherwise, if

αS = βS , then S is said to be of Type III. The density functions of these three types of beta

distributions are plotted in Figure 3.2 in blue, black, and green, respectively. With any of

these three environment distributions, the fitness of any Bayesian learner x increases with

its inherited prior’s proximity to the mean of the environment distribution because then

its default and posterior errors decrease.

If the hyperparameters αS and β are such that αS , βS < 1 and αS = βS then the

environment distribution is said to be of Type IV and has a mean equal to 1
2 and two

modes, one equal to 0 and another one equal to 1, as illustrated in Figure 3.2 in red. Thus
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Figure 3.2: Shape of the density functions of the four types of environment distributions
considered in the model. Each one of these is a beta distribution with hyperparameters
αS and βS . An environment S is said to be of Type I when αS , βS > 1 and αS > βS ; of
type II when αS , βS > 1 and αS < βS ; of type III when αS , βS > 0 and αS = βS ; and of
type IV when αS , βS < 1 and αS = βS .

environment states in S should be expected to be either very high (near 1.0) or low (near

0.0). Thus in the same environment S it should be expected that some environment states

pi make A occur very frequently and others make A occur very rarely. If a Bayesian learner

x has a prior near the mean of the environment distribution (i.e., near 0.5) its default

error will still tend to be large when estimating every pi. As the type IV hyperparameters

decrease the environment states in S should be expected to be closer to either 0.0 or 1.0.

On the other hand, as the type IV hyperparameters increase the environment states in S

become more uniformly distributed in the interval [0, 1]. Given the above, the uncertainty

posed by an environments of type IV is greater than that any of the other three types and

it increases as αS and βS increase.

3.5 Evolutionary simulations to illustrate the selective pres-

sure to estimate the environment state

Four evolutionary simulations were run with a population of Bayesians in an environment

S of size 1 with hyperparameters αS = 50 and βS = 50 (i.e., an environment of type I) that
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changes every 2, 000 generations. The priors of the individuals as these evolve in the four

simulations are plotted in Figure 3.3 as red dots whereas horizontal lines display the single

environment state p1 ∈ S as it changes periodically.1 The plots show that the population

becomes rapidly dominated by learners whose priors are closer to the environment state

p1 (whose values are displayed as horizontal black lines) each generation. As evolution

progresses and S changes every 2, 000 generations, the priors of the population change

accordingly moving towards the current environment state becoming increasingly closer

to p1 in later generations. The Baldwin effect drives the evolution of the Bayesian learners

because natural selection favours those who have the ability to ‘learn’ the correct p1 by

updating their genetically-encoded priors to a posterior that approximates the environment

state with only n = 2 observations. Every individual’s ability to learn is directly associated

to its default error. Given any two individuals, x and y, if the former’s default error is

smaller than the latter’s then y requires more training (i.e., a greater learning length n)

in order to estimate p1 with the same accuracy as x.

The individuals that are favoured by natural selection in the simulations depicted in

Figure 3.3 are those whose priors are close enough to p1 in order for them to be able to

estimate this environment state with the best accuracy in the whole population with only

two observations of Θp1 . Even though these individuals eventually learn (i.e., estimate

approximately) the actual value of p1, this ‘knowledge’ is not communicated to their

offspring via genetic inheritance. In subsequent generations, these offspring must learn

the environment state by themselves but they will be likely to have inherited from their

parents the ability to learn and estimate the environment accurately with little training

(i.e., a prior that results in a default error that permits the estimation of p1 with only

two observations of Θp1) and they are likely to pass on this ability to their own offspring.

On the other hand, individuals whose priors are too far from the actual p1 require more

training in order to estimate the environment state and therefore are selected against until

becoming extinct. As n increases, the selective pressure becomes weaker and individuals

with priors further away from the environment state (i.e., individuals with higher default

errors) should be able to survive and reproduce.

1Technical details in Section C.3.
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Figure 3.3: The learners’ evolved Bayesian priors plotted as red dots each generation in an
environment S of size 1 with hyperparameters αS = 50 and βS = 50, as the environment
state p1 ∈ S (horizontal black lines) changes periodically. Technical details in Section C.3.
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3.6 Evolutionary simulations to illustrate the selective pres-

sure to estimate the environment hyperparameters

Four evolutionary simulations were run with a Bayesian population in an environment S

of size 1 with hyperparameters αS = 25 and βS = 75 (i.e., an environment of type II)

that changes every 1, 000 generations. The αx and βx genes of every individual x in the

population are plotted in Figure 3.4 as red and blue dots, respectively.2 Each plot shows

that from early generations the population evolves in such a manner that every learner

x has a genome [αx, βx] such that the αx < βx. This shows that natural selection drives

the population to reflect the parameters of the environment distribution, which in this

case are αS = 25 and βS = 75. The genomes in the population do not necessarily match

accurately these parameters but they do reflect the inequality relationship between αS

and βS , i.e., natural selection drives the population to estimate that αS < βS . That is

to say, the evolutionary search is able to discover that the environment distribution is of

type II.

Analogous results are observed when equivalent sets of four simulations are run with

environment hyperparameters [αS = 95, βS = 15] (type I), and [αS = 75, βS = 75] (type

III), as shown in Figure 3.5, and Figure 3.6, respectively.3 The plots show that natural

selection favours individuals x whose genomes [αx, βx] exhibit the same equality or inequal-

ity relationship as the environment hyperparameters αS and βS . That is to say, when the

environment hyperparameters satisfy αS > βS natural selection favours individual x if its

genome is such that αx > βx. Analogously, the same relationship between environment

hyperparameters and evolved genomes is observed when αS < βS and when αS = βS .

The results described above occur because the expected value of any pi ∈ S is given

by pi = αS
αS+βS

and the default error of any individual x with genome [αx, βx] tends to

decrease as βx approaches
(
1−pi
pi

)
αx because then the individual’s prior approaches pi

and the default error is smaller. More generally it can be predicted that:

1. When αS
αS+βS

> 0.5 (i.e., when the environment is of type I) natural selection should

favour every individual x whose genome [αx, βx] is such that αx > βx.

2. When αS
αS+βS

< 0.5 (i.e., when the environment is of type II) natural selection should

favour every individual x whose genome [αx, βx] is such that αx < βx.

2Technical details in Section C.4.
3Technical details to produce Figure 3.5 and Figure 3.6 appear in Section C.5 and Section C.6, respec-

tively.
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3. When αS
αS+βS

= 0.5 (i.e., when the environment is of type III) natural selection

should favour every individual x whose genome [αx, βx] is such that αx ≈ βx.

Four separate populations of Bayesians were evolved in a environment S of size 1

with hyperparameters αS = 0.001 and βS = 0.001 (i.e., an environment of type IV)

that changes every 1, 000 generations. The priors of the learners as these evolve are

plotted in Figure 3.7.4 Figure 3.8 plots the α and β genes of the population as red

and red blue, respectively.5 The genomes in the population reflect the changes in the

environment as they occur every 1, 000 generations. When the environment state p1 ∈ S

is temporarily near 1.0 then the population becomes dominated with genomes [αx, βx]

such that αx > βx whereas when the environment state is near 0.0 then the genomes of

most individuals are such that αx < βx. The individuals that are favoured by natural

selection are those whose default error allows them to estimate the environment state p1

with only two observations of Θp1 . When p1 changes from being near 1.0 to being near

0.0 and vice versa new individuals with appropriate priors and default errors are selected.

No single prior or genome type is observed to be prevalent over the course of the whole

simulation because of the instability of the environment. Individuals are evolutionarily

fit only for very specific and temporary environment states. In Section 3.7, evolutionary

simulations are run with type IV environments of size greater than 1. It is shown that

in these simulations natural selection favours individuals whose genomes reflect, to some

extent, the environment hyperparameters.

3.7 Evolutionary simulations to illustrate the selective pres-

sure to estimate the hyperparameters of a type IV en-

vironment

Four evolutionary simulations were run with a population of Bayesians in a type IV en-

vironment of size 10 with environment hyperparameters αS = 0.25 and βS = 0.25 that

changes every generation, i.e., the set of ten beta-distributed environment states each

learner must estimate is different every generation. This simulates a scenario where a

variable of the environment may exhibit some variability observed by an individual dur-

ing its lifetime, as it may occur in a natural scenario, e.g., foraging in different food

patches of variable quality (McNamara, 1982). Figure 3.9 shows the population genomes

4Technical details to produce Figure 3.7 appear in Section C.7.
5Technical details to produce Figure 3.8 appear in Section C.7
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(a) (b)

(c) (d)

Figure 3.4: Evolved α (red dots) and β (blue dots) genes of a population of N = 100
Bayesian learners evolving over the course of 10, 000 generations in an environment S of
size 1 with hyperparameter αS = 25 and βS = 75 when the environment state p1 ∈ S
changes once every 1, 000 generations. Details in Section C.4.
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(a) (b)

(c) (d)

Figure 3.5: Evolved α (red dots) and β (blue dots) genes of a population of N = 100
Bayesian learners evolving over the course of 10, 000 generations in an environment S of
size 1 with hyperparameters αS = 95 and βS = 15 when the environment state p1 ∈ S
changes once every 1, 000 generations. Details in Section C.5.
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(a) (b)

(c) (d)

Figure 3.6: Evolved α (red dots) and β (blue dots) genes of a population of N = 100
Bayesian learners evolving over the course of 10, 000 generations in an environment S of
size 1 with hyperparameters αS = 75 and βS = 75 when the environment state p1 ∈ S
changes once every 1, 000 generations. Details in Section C.6.
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(a) (b)

(c) (d)

Figure 3.7: Evolved priors of a population of N = 100 Bayesian learners over the course
of 10, 000 generations in an environment S of size 1 with hyperparameters αS = 0.001
and βS = 0.001 when the environment state p1 ∈ S changes once every 1, 000 generations.
The environment state is displayed as black lines. Details in Section C.7.
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(a) (b)

(c) (d)

Figure 3.8: Evolved α and β genes in the population for the same four runs of the experi-
ment displayed in Figure 3.7. These values appear to switch when p changes temporarily
from values near 0.0 to 1.0 and vice versa. Distribution of the α (red dots) and β (blue
dots) genes in the same four simulations displayed in Figure 3.7. Details in Section C.7.
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over the course of 10, 000 generations.6 Figure 3.10 and Figure 3.11 show analogous re-

sults from simulations with environment hyperparameters [αS = 0.25, βS = 0.75] and

[αS = 0.75, βS = 0.25], respectively.7 The evolutionary history of Bayesians is not neces-

sarily the same in any two simulations with the same environment but a common pattern

can be identified. These results show experimentally that the components α and β of the

population’s genomes generally evolve to be below 1.0, or at least not far above 1.0. In

this regard the evolved Bayesian genomes agree with the parameters of the environment

distribution. The genes of the population do not necessarily match the actual parameters

of the environment distribution but they do not drift indefinitely toward values increas-

ingly greater than 1.0, as in the simulations run in the previous section with environments

of types other than IV. This is because the selective pressure imposed by the learning

length (n) makes individuals evolve genomes with the least default errors in the average

case. In addition to this, by evolving lower hyperparameters α and β, the individuals are

also evolving priors with higher standard deviations that match more closely the standard

deviation (i.e., the uncertainty) of the environment distribution, which is higher in type

IV environments. The results of the four evolutionary searches indicate that the minimal

default error in the average case is obtained by a Bayesian x if this individual’s genome

resembles the parameters of a type IV environment distribution. Therefore, through an

evolutionary search for individuals who are able to learn a set of objective environment

states, natural selection ends up favouring genomes that resemble the environment pa-

rameters, although with a degree of error.

The results described above occur because the standard deviation (and thus the un-

certainty) of an environment of type IV is higher than that of any of the other types of

environments considered in the model, as explained in Section 3.4. In the evolutionary sim-

ulations described above decision-makers evolve their beta hyperparameters to be below

1.0, and in many cases very near zero, because in this manner the resulting high standard

deviations of their evolved priors reflect more closely the high uncertainty (i.e., the high

standard deviation) of the type IV environment. The evolutionary simulations show that

by doing this the individuals are more capable to estimate accurately, on average, all the

environment states. This result supports the hypothesis made in Chapter 2, that Bayesian

decision-makers evolve their priors to have high standard deviations to match the uncer-

tainty or unpredictability of the environment, i.e., to match the high standard deviation

6Technical details in Section C.8.
7Technical details to produce Figure 3.10 and Figure 3.11 appear in Section C.9 and Section C.10,

respectively.
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(a) (b)

(c) (d)

Figure 3.9: Evolved α (red dots) and β (blue dots) genes of a population of N = 100
Bayesian learners evolving over the course of 10, 000 generations in an environment S of
size 10 with hyperparameter αS = 0.25 and βS = 0.25 when the environment S changes
every generation. Technical details in Section C.8.

of the observations (predation risk in this case) these decision-makers must estimate.

3.8 The Bayesian-Baldwin model with Bayesian and fre-

quentist learners

In this section the model introduced in Section 3.2 is extended to include frequentist

learners. The fitness of every Bayesian x is evaluated as shown in Equation 3.3. On the

other hand, a frequentist y estimates each pi ∈ S as shown in Equation 3.6, where s is

the number of ocurrences of A observed by the frequentist after n repetitions of Θpi . Its

fitness is calculated as shown in Equation 3.7.

φy(pi) =
s

n
(3.6)
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(a) (b)

(c) (d)

Figure 3.10: Evolved α (red dots) and β (blue dots) genes of a population of N = 100
Bayesian learners evolving over the course of 10, 000 generations in an environment S of
size 10 with hyperparameter αS = 0.25 and βS = 0.75 when the environment S changes
every generation. Technical details in Section C.9.
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(a) (b)

(c) (d)

Figure 3.11: Evolved α (red dots) and β (blue dots) genes of a population of N = 100
Bayesian learners evolving over the course of 10, 000 generations in an environment S of
size 10 with hyperparameter αS = 0.75 and βS = 0.25 when the environment S changes
every generation. Technical details in Section C.10.
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fS(y) =
1

1 +
∑

pi∈S [pi − φy(pi)]2
(3.7)

Selection, reproduction and other details of the evolutionary simulation are as described

in Section 3.2. In this version of the model, each individual carries a third gene indicating

whether the individual is Bayesian or frequentist. Thus, individuals of both types are

mixed at reproduction and, as a consequence of this, crossover and mutation can sometimes

result in Bayesian parents producing frequentist offspring and vice versa. A population is

said to be balanced if it contains even proportions of individuals belonging to each group,

Bayesians or frequentists. Otherwise it is said to be unbalanced.

Evolutionary simulations were run with different environment hyperparameters in or-

der to determine in which of these environments Bayesians peform better or worse than

frequentists. However, it was observed that in two or more evolutionary competitions run

independently with the same environment the populations may not evolve in the same

manner. For instance in two different runs it can occur that up to the 1, 000-th generation

the population is balanced whereas in other repetitions of the same simulation one group is

outnumbering the other. Therefore one single run of a simulation is insufficient evidence to

reach a decisive conclusion about the evolutionary advantage or disadvantage of Bayesians

against frequentists with a given environment. In order to gather enough statistics to reach

a compelling conjecture regarding the likelihood that the Bayesian group outperforms its

frequentist counterpart, each simulation with each environment was repeated a total of

R = 100 times in order to perform a statistical test. The average Bayesian population

in the r-th simulation run (1 ≤ r ≤ R) with environment S is denoted by br(S) and

calculated as shown in Equation 3.8, where bg(S) is the number of Bayesian individuals in

the population at the g-th generation with environment S and G = 1, 000 is the number

of generations per run.

br(S) =
1

G

G∑
g=1

bg(S) (3.8)

Bayesians are said to have dominated the r-th run with environment S if br(S) > 1
2N ,

where N = 100 is the population size. The value br(S) is an acceptable measure for

comparison of evolutionary success because the total population size is kept constant

at N = 100.8 After the R = 100 runs of the evolutionary competition are completed,

8Another possible statistic to take from each simulation would have been the final proportion of
Bayesians and frequentists at the 1, 000-th generation in each run. This idea was rejected because it
neglects Bayesian population figures that could have occurred in previous generations. In some cases, for
example, it was observed that even though one group had had the largest population most generations,
a sudden (perhaps temporary) change would take place towards the end of the simulation (relatively few
generations before the 1, 000-th) switching the relative amounts of both groups even by a small margin.
In such cases merely a measure of the final proportions would not have been very descriptive of the events
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the experimental Bayesian population with each environment S is denoted by BS and

calculated as shown in Equation 3.9.

BS =
1

R

R∑
r=1

br(S) (3.9)

Since the total population size is kept constant at N = 100 in every run then it follows

that BS ∈ [0, N ], for any environment S. The experimental Bayesian population BS serves

as a measure of performance of Bayesians against frequentist in any environment S. If BS

is observed to be near N then it can be concluded that Bayesians are more evolutionarily

successful than frequentists when both groups compete in environment S. On the other

hand, if BS is observed to be near zero then it can be concluded that Bayesians are at a

disadvantage against frequentists in environment S. Finally, if BS ≈ 1
2N then it can be

concluded that neither group outperforms the other in environment S.

Section 3.9 presents the evolutionary simulations with competition between Bayesians

and frequentists with different environments and the results show in which of these envi-

ronments Bayesians dominate.

3.9 Competition between frequentist and Bayesians in a

type IV environment

Repeated evolutionary competitions between Bayesians and frequentists were simulated

in type IV environments of size 10 that change every generation. Bayesians were observed

to have dominated in 74 of 100 runs with environment hyperparameters [αS = 0.99, βS =

0.99] and frequentists were observed to dominate in the remaining 26 runs. A binomial test

was used to assess the statistical significance of this result by first assuming no prevalence of

either Bayesians of frequentists as the default hypothesis, i.e., by assuming the probability

of each simulation resulting in Bayesian dominance is p0 = 1
2 . Tests were performed with

a significance level of 5%. Let X be the binomially-distributed variable representing the

number of simulations dominated by Bayesians after R = 100 runs in an environment S

of size 10 with hyperparameters [αS = 0.99, βS = 0.99], when S changes every generation.

The probability that X ≥ 74 after R = 100 simulations is given by P (X ≥ 74|p0 = 1
2) =

P (X ≤ 26|p0 = 1
2) = 8.33× 10−7. It can be concluded that there is strong evidence that

Bayesians exhibit an evolutionary advantage over frequentists in environment S because

8.33× 10−7 < 0.05.

that actually took place up to that point.
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More generally speaking, whenR = 100 simulations are run, the results are statistically-

significant at the 5% level if X ≥ 59 or X ≤ 41, given that P (X ≥ 59|p0 = 1
2) = P (X ≤

41|p0 = 1
2) ≈ 0.04. When simulation were repeated R = 100 times in environments

with hyperparameters [α = 0.90, β = 0.90], [α = 0.80, β = 0.80], [α = 0.70, β = 0.70] and

[α = 0.60, β = 0.60], Bayesian dominance in the G = 1, 000 generations was observed in 79,

70, 68 and 60 runs, respectively. Since these observations comply with the criteria for sta-

tistical significance mentioned above it can be concluded that there is strong evidence that

with these environments Bayesians are more likely to overpopulate than their frequentist

competitors. On the other hand, when simulations were run in environments with hyper-

parameters [αS = 0.30, βS = 0.30], [αS = 0.20, βS = 0.20], and [αS = 0.10, βS = 0.10] it

was observed that X < 41. Therefore it can be generally expected that Bayesians outnum-

ber frequentists when the environment is of type IV and the hyperparameters are above

0.60. On the other hand frequentists outnumber Bayesians when the hyperparameters are

below 0.30.

Figure 3.12 plots BS in repeated simulations run with different environment hyperpa-

rameters αS and βS in the interval (0, 1], when the environment is of size 10 and changes

every generation and every individual makes n = 2 observations when estimating each

environment state.9 The darker red areas in Figure 3.12 correspond to simulations where

the environment is most uncertain, as described in Section 3.4. It is precisely in these

environments where Bayesians are observed to have an advantage over frequentists as the

experimental Bayesian population is above half the total population size. On the other

side, the darker blue areas in Figure 3.12 correspond to simulations with environments

that exhibit the least uncertainty, as described in Section 3.4. It is in these environments

where frequentists are observed to have an advantage over Bayesians as the experimental

Bayesian population is below half the total population size.

Figure 3.13 shows analogous results when αS , βS ∈ [10, 100] (i.e., in environments

I, II, and III).10 The darker red areas in the plot pinpoint the regions where Bayesian

superiority is greatest and these coincide with environments that exhibit the greatest

uncertainty, as described in Section 3.4. On the other hand, the darker blue areas in

the plot indicate regions where frequentists are more successful and these coincide with

environments that exhibit the least uncertainty, as described in Section 3.4. This is in

agreement with the known result that Bayesian learners should be favoured by natural

selection when information is uncertain (Marshall et al., 2013b; McNamara et al., 2006;

9Technical details in Section C.11.
10Technical details in Section C.12.
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McNamara and Houston, 1980).

The advantage Bayesians have over frequentists, as shown in Figure 3.12 and Fig-

ure 3.13, is partially due to the limited number of observations (n = 2) each individual is

allowed to make when estimating each pi in the environment. Any frequentist would be

likely to infer each pi with better accuracy if it were allowed to make a high enough num-

ber of observations of Θpi . For instance, n = 1, 000 tosses of a coin should yield enough

information to make an approximate estimation of the probability of the coin landing

heads. But even in this case a Bayesian is likely to have the advantage if its prior is close

enough to pi (which is likely to occur if the prior approximates the expected value of the

environment distribution, when the environment is of type I, II, or III) because then the

default error of this individual will tend to be small and its estimate of every pi after the

same number of observations should generally be more accurate than that computed by

the frequentist. If natural selection favours accuracy in the estimates made by learners

then for any number of allowed observations it should be expected that at some point a

Bayesian would emerge (through mutation, for instance) with a prior close enough to pi

and who could compute pi with better accuracy than a frequentist would. This is likely

to occur with Bayesians whose priors are near the expected value of the environment

distribution and these would be favoured by natural selection over frequentists.

Figure 3.1411 and Figure 3.1512 plot BS in simulations with 10-sized environments S

where individuals make n = 5 observations of Θpi when estimating each pi ∈ S. Fig-

ure 3.14 and Figure 3.15 show a pattern of relative Bayesian dominance that resembles

that displayed in Figure 3.12 and Figure 3.13. That is to say, from both plots it can be

appreciated that Bayesians generally see their evolutionary performance increased as the

environment parameters approach each other and the environment becomes more uncer-

tain. Conversely, Bayesians display a relatively lower performance as the distance between

the environment parameters increases and the environment becomes less uncertain. How-

ever, the increased number of allowed observations reduces the selective pressure against

frequentists because then frequentist estimates approach Bayesian estimates, thus the evo-

lutionary search in the simulations depicted in Figure 3.14 and Figure 3.15 is unable to

find Bayesians with better accuracy than in the simulations depicted in Figure 3.12 and

Figure 3.13. This results in an increase in frequentist population figures between the two

simulations, even though both are run with the same environments. For this reason, the

experimental Bayesian populations (BS) observed in Figure 3.14 and Figure 3.15 are lower

11Technical details in Section C.13.
12Technical details in Section C.14.
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than those in Figure 3.12 and Figure 3.13. It can then be generally expected that a higher

number of allowed observations results in reduced selective pressure against frequentists

but also that the overall pattern remains, namely that Bayesians exhibit an increased

advantage as the parameters of the environment distribution increase and and approach

each other. This is further confirmed in Figure 3.1613 and Figure 3.1714, which plots BS

in simulations where individuals make n = 10 observations of Θpi when estimating each

pi ∈ S. In the two plots it can be observed that the experimental Bayesian populations are

lower than those in Figure 3.14 and Figure 3.15, even though the same pattern depicted

in the previous plots remains, namely that Bayesian population figures are higher in the

environments that pose the most uncertainty.

The performance of a Bayesian individual relative to that of a frequentist when esti-

mating an environment state pi depends on how far the former’s inherited prior estimate

is from pi. If the Bayesian’s prior estimate and pi are approximately equal or differ little

then this individual is likely to estimate pi accurately since the prior estimate acts as a

head start. In this case, the prior provides an advantage the frequentist individual lacks.

On the other hand, if the Bayesian’s prior estimate and pi differ greatly then the Bayesian

may not succeed in updating this prior estimate to a posterior estimate matching the

accuracy a frequentist would achieve in the same number of observations (n = 2). For

this reason, the accuracy of the Bayesian individual increases as the difference between

the prior estimate and pi decreases. Since greater fitness is awarded to individuals that

achieve greater accuracy then it should be expected that a Bayesian is at an advantage

over frequentist opponents if the environment states these individuals face tend to differ

little from the Bayesian’s prior estimate. More generally, it should be expected that the

fitness of a Bayesian individual increases relative to that of a frequentist opponent as the

difference between the Bayesian’s prior estimate and the expected value of the environment

distribution decreases.

Figure 3.12 and Figure 3.13 show that the evolutionary performance of Bayesians

against frequentists increases as the environment hyperparameters converge and decreases

as these diverge. It can be theorised that one contributing factor to this result is the

difference between the Bayesians’ prior estimates at the beginning of each simulation and

the mean of the environment distribution, since this results in decreased performance for

Bayesians, as explained above. At the beginning of each simulation, Bayesians are approx-

imately unbiased, i.e., their prior estimates are equal to or very near 0.5, since the priors

13Technical details in Section C.15.
14Technical details in Section C.16.
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are set to be uninformative. Greater convergence of the environment hyperparameters re-

sults in an environment distribution with a mean closer to 0.5 whereas greater divergence

results in an environment distribution with a mean farther from 0.5. Because of this and

the reasons explained above, at the beginning of each simulation Bayesians should be ex-

pected to perform worse when the environment hyperparameters diverge than when these

hyperparameters converge. It is likely that the initial Bayesian underperformance occurred

when hyperparameters diverge can create an early advantage to frequentists that persists

until the end of the simulation, which is what is observed in Figure 3.12 and Figure 3.13.

In addition to the above, a Bayesian individual x’s genome components are always

positive (i.e., αx, βx > 0) therefore x’s inherited prior estimate can never be zero or

one. This is because x’s prior estimate, given by αx
αx+βx

, is always restricted to the inter-

val (0, 1) when αx, βx > 0. Therefore, a Bayesian individual is likely to have a default

error when the environment states pi tend to be always very near zero or always very

near one, which occurs when there is great divergence between the environment hyperpa-

rameters. When there is great divergence between the environment hyperparameters, the

environment poses minimum uncertainty because the Bernoulli events Θpi observed by the

individuals are very predictable since they almost always result in Bernoulli ‘failures’ or

almost always result Bernoulli ‘successes’. A frequentist that observes only Bernoulli ‘fail-

ures’ or only Bernoulli ‘successes’ estimates pi as 0 and 1, respectively. On the other hand,

a Bayesian that observes only ‘failures’ or only ‘successes’ uses this information to steer

its non-zero and non-one prior towards a posterior that approximates 0 or 1, respectively,

while never matching any of these values. As the divergence between the environment

hyperparameters increases, pi should generally approach either 0 or 1 more closely and

in these cases a frequentist estimate equal to 0 or 1, respectively, becomes more accurate

than a Bayesian estimate. In other words, as the divergence between the environment hy-

perparameters increases, the precision of frequentist estimates should increase compared

to that of Bayesian estimates. It can be hypothesised that this phenomenon contributes to

the increase in the evolutionary performance of frequentists when there is great divergence

between the environment hyperparameters, in detriment of the performance of Bayesians,

as shown in Figure 3.12 and Figure 3.13. In general, the results obtained indicate that

two variables that impact the evolutionary dominance of Bayesians or frequentists are the

environment uncertainty (i.e., the unpredictability of environment states) and the learning

length (i.e., n, the number of observations made by each individual).
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Figure 3.12: Experimental Bayesian populations observed in evolutionary competitions
against frequentists in environments of size 10 with different hyperparameters αS , βS ∈
(0, 1] when the environment changes every generation. Every individual makes n = 2
observations when estimating each environment state. The axes indicate the environment
parameters αS and βS and the colour indicates the experimental Bayesian population, BS
(where R = 100 is the number of runs with each environment and G = 10, 000 is the
number of generations in each run), in evolutionary equlibrium in the environment with
hyperparameters αS and βS . The evolutionary advantage of Bayesians against frequentists
is expressed by the experimental Bayesian population in equlibrium. If this measure is
above half the population size then Bayesians are more evolutionarily successful. In envi-
ronments where this value is below Bayesians are outperformed by frequentists. Technical
details in Section C.11.
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Figure 3.13: Experimental Bayesian populations observed in evolutionary competitions
against frequentists in environments of size 10 with different hyperparameters αS , βS ∈
[10, 100] when the environment changes every generation. Every individual makes n = 2
observations when estimating each environment state. The axes indicate the environment
parameters αS and βS and the colour indicates the experimental Bayesian population, BS
(where R = 100 is the number of runs with each environment and G = 10, 000 is the
number of generations in each run), in evolutionary equlibrium in the environment with
hyperparameters αS and βS . The evolutionary advantage of Bayesians against frequentists
is expressed by the experimental Bayesian population in equlibrium. If this measure is
above half the population size then Bayesians are more evolutionarily successful. In envi-
ronments where this value is below, Bayesians are outperformed by frequentists. Details
in Section C.12.
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Figure 3.14: Experimental Bayesian populations observed in evolutionary competitions
against frequentists in environments of size 10 with different hyperparameters αS , βS ∈
(0, 1] when the environment changes every generation. Every individual makes n = 5
observations when estimating each environment state. The axes indicate the environment
parameters αS and βS and the colour indicates the experimental Bayesian population, BS
(where R = 100 is the number of runs with each environment and G = 10, 000 is the
number of generations in each run), in evolutionary equlibrium in the environment with
hyperparameters αS and βS . The evolutionary advantage of Bayesians against frequentists
is expressed by the experimental Bayesian population in equlibrium. If this measure is
above half the population size then Bayesians are more evolutionarily successful. In envi-
ronments where this value is below, Bayesians are outperformed by frequentists. Technical
details in Section C.13.
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Figure 3.15: Experimental Bayesian populations observed in evolutionary competitions
against frequentists in environments of size 10 with different hyperparameters αS , βS ∈
[10, 100] when the environment changes every generation. Every individual makes n = 5
observations when estimating each environment state. The axes indicate the environment
parameters αS and βS and the colour indicates the experimental Bayesian population, BS
(where R = 100 is the number of runs with each environment and G = 10, 000 is the
number of generations in each run), in evolutionary equlibrium in the environment with
hyperparameters αS and βS . The evolutionary advantage of Bayesians against frequentists
is expressed by the experimental Bayesian population in equlibrium. If this measure is
above half the population size then Bayesians are more evolutionarily successful. In envi-
ronments where this value is below, Bayesians are outperformed by frequentists. Details
in Section C.14.
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Figure 3.16: Experimental Bayesian populations observed in evolutionary competitions
against frequentists in environments of size 10 with different hyperparameters αS , βS ∈
(0, 1] when the environment changes every generation. Every individual makes n = 10
observations when estimating each environment state. The axes indicate the environment
parameters αS and βS and the colour indicates the experimental Bayesian population, BS
(where R = 100 is the number of runs with each environment and G = 10, 000 is the
number of generations in each run), in evolutionary equlibrium in the environment with
hyperparameters αS and βS . The evolutionary advantage of Bayesians against frequentists
is expressed by the experimental Bayesian population in equlibrium. If this measure is
above half the population size then Bayesians are more evolutionarily successful. In envi-
ronments where this value is below, Bayesians are outperformed by frequentists. Details
in Section C.15.
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Figure 3.17: Experimental Bayesian populations observed in evolutionary competitions
against frequentists in environments of size 10 with different hyperparameters αS , βS ∈
[10, 100] when the environment changes every generation. Every individual makes n = 10
observations when estimating each environment state. The axes indicate the environment
parameters αS and βS and the colour indicates the experimental Bayesian population, BS
(where R = 100 is the number of runs with each environment and G = 10, 000 is the
number of generations in each run), in evolutionary equlibrium in the environment with
hyperparameters αS and βS . The evolutionary advantage of Bayesians against frequentists
is expressed by the experimental Bayesian population in equlibrium. If this measure is
above half the population size then Bayesians are more evolutionarily successful. In envi-
ronments where this value is below, Bayesians are outperformed by frequentists. Details
in Section C.16.
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3.10 Distribution of Bayesian populations in evolutionary

equilibrium against frequentists

Evolutionary competitions between Bayesians and frequentists were repeated indepen-

dently with different environments S of size 10 that change every generation. Each in-

dividual makes n = 2 observations of each environment state. Different environment

hyperparameters αS and βS such that αS = βS were considered since these provide the

environments with the highest uncertainty, as explained in Section 3.4. That is to say,

environments with these hyperparameters should be expected to exhibit the greatest vari-

ability and thus should be less predictable by the individuals. With each pair of the

environment hyperparameters considered, a total of R = 50, 000 simulations were run

independently. Each run was set to last G = 10, 000 generations. The average Bayesian

population measured at the end of each run, denoted by br(S) (1 ≤ r ≤ R), was calcu-

lated and the frequency of each observation was plotted. Figure 3.18 shows the plotted

frequencies when environment hyperparameters are below 1.0 and Figure 3.19 shows these

data when the environment hyperparameters are above or equal to 1.0.

The subplots on Figure 3.18 and Figure 3.19 overall show that Bayesian dominance

increases with the environment hyperparameters when these are equal. That is to say, if

αS = βS then Bayesians become more evolutionarily successful than frequentists as αS and

βS increase. This means that in environments of maximum uncertainty, Bayesian dom-

inance increases as the uncertainty of the environment increases, i.e., Bayesians become

more evolutionarily successful than frequentists as the environment states become less

predictable. These results are in agreement to those presented in Section 3.9, specifically

those depicted in Figure 3.12. In Figure 3.18a most observations of the average Bayesian

population gather just above 40, which is the approximate value shown in Figure 3.12

when αS = βS = 0.25. The other subplots in Figure 3.18 and Figure 3.19 show that

this mode increases with higher environment parameters, which is in agreement with the

overall pattern observed in Figure 3.12 and Figure 3.13.

Evolutionary stability at the end of each simulation run was approximate only, since

oscillation in the number of evolved Bayesians and frequentists was still observed towards

the end of the G = 10, 000 generations. However, this oscillation did not affect the overall

dominance of one group over the other. This is shown graphically in Figure 3.2015 and

Figure 3.21.16 These figures plot the number of evolved Bayesians and frequentists over

15Technical details in Section C.19.
16Technical details in Section C.20.
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the course of G = 10, 000 generations with different environment paramaters αS and βS .

The number of Bayesian and frequentist individuals observed each generation are plot-

ted in red and blue, respectively. Each plot depicts the population figures observed in

only one run with each hyperparameter pair, but repeated runs exhibited similar results.

Figure 3.20 plots the results using the same environment hyperparameters used in Fig-

ure 3.18 and Figure 3.21 plots the results using the same environment hyperparameters

used in Figure 3.19.

Figure 3.20a shows that generally frequentists evolve to be more numerous than Bayesians

when αS = βS = 0.25. Oscillation is observed in the population figures of both individ-

uals, however, frequentist dominance is observable. From the subplot it can be seen that

Bayesian population figures oscillate around 40, which is in agreement with the results

presented in Figure 3.18a. The subsequent subplots in Figure 3.20 and in Figure 3.21

show that the number of Bayesians increases as higher environment hyperparameters are

used, despite the oscillation exhibited by these evolved population figures.

It was observed that this oscillation occurred even with longer simulation runs (i.e.,

with more than G = 10, 000 generations). The evolutionary stability of the Bayesian pop-

ulation after G = 10, 000 generations was measured as follows. During the last 2, 000 gen-

erations of each simulation with the hyperparameters used in Figure 3.18 and Figure 3.19

the number of evolved Bayesians was measured each generation in order to calculate the

average of these observations and their standard deviation.17 This process was repeated

ten times with each pair of environment hyperparameters. With each pair of environment

hyperparameters the average number of evolved Bayesians was found to be approximately

equal to the mode depicted graphically in the corresponding subplot in Figure 3.18 and

Figure 3.19. That is to say, when αS = βS = 0.25 the average Bayesian population during

the last 2, 000 generations of each simulation was around 45 and the minimum observed of

all the observations made. This average approximately agrees with the mode depicted in

Figure 3.18a. On the other hand, When αS = βS = 4 the average was around 72 and the

maximum observed. This average approximately agrees with the mode depicted in Fig-

ure 3.19d. The standard deviation of these observations was observed to decrease as the

environment hyperparameters increased. When αS = βS = 0.25 this standard deviation

was around 11 and the maximum observed. On the other hand, when αS = βS = 4 this

standard deviation was around 5 and the minimum observed. These measurements show

that even though oscillation in the number of evolved Bayesians always occurs, the over-

17Technical details in Section C.21.
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all pattern described earlier is always observed. Bayesian dominance increases with the

environment hyperparameters when these are equal. With smaller hyperparameters fre-

quentists gain advantage and the Bayesian population figures in the last 2, 000 generations

of each run exhibit less stability. With higher hyperparameters this stability increases and

Bayesians become increasingly more dominant. Since a pattern of dominance by one group

or the other was generally observable despite oscillating figures, the maximum number of

generations was set to G = 10, 000 in order to simplify the computation required to obtain

the results presented in Section 3.9, as well as those shown in Figure 3.18 and Figure 3.19.

These results complement those presented in Section 3.9, that evolutionary equilibrium

becomes more frequent with Bayesian dominance as the environment hyperparameters and

the uncertainty posed by the environment grow. The results are also in agreement with

the accepted proposal that natural selection should favour decision-makers that behave

as if they were using Bayesian inference when information is uncertain (Marshall et al.,

2013b; McNamara et al., 2006; McNamara and Houston, 1980).

3.11 Conclusions

The evolutionary model presented in Section 3.2 is proposed to show how Bayesian priors

can be shaped by natural selection. In the model, individuals with genetically-encoded

priors undergo a training process consisting of repeated Bernoulli observations in order to

estimate the probability of an event. This probability is called the environment state. Each

individual’s genome is binary and consists of the hyperparameters of a beta distribution

whose mean is the individual’s prior estimate of the environment state. Every individual

updates its prior to a posterior with each Bernoulli observation and fitness is measured

in terms of the accuracy of the individual’s posterior estimate after a limited number of

observations. Evolutionary simulations are run where individuals in the initial population

have unbiased priors and environment states are beta-distributed. These simulations show

that the individuals evolve to have priors that approximate the environment state. This

occurs because with these priors they can estimate the environment state with the best

accuracy in the number of observations allowed. The individuals achieve this by evolving

genomes whose two hyperparameters exhibit the same ratio as that of the environment

hyperparameters. The Baldwin effect (Baldwin, 1896) occurs when the priors evolve as

adaptations to the environment. The results presented in Section 3.5 and Section 3.6

support the hypothesis made in Chapter 2, that a decision-maker’s prior can be shaped

by natural selection to have any mean and standard deviation in response to the certainty
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(a) αS = 0.25, βS = 0.25
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(b) αS = 0.50, βS = 0.50
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(c) αS = 0.80, βS = 0.80
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(d) αS = 0.95, βS = 0.95

Figure 3.18: Frequency of observed values of the average Bayesian population, denoted
by br(S), with four pairs of environment hyperparameters αS and βS such that αS = βS
and 0 < αS , βS < 1. With each hyperparameter pair a total of R = 50, 000 evolutionary
competitions between Bayesians and frequentists are run independently. Each simulation
runs for G = 10, 000 generations. The environment S is of size 10 and changes every
generation. Each individual makes n = 2 observations of each environment state. In
each competition the total population size (including Bayesians and frequentists) is kept
constant at 100. The four subplots show that Bayesian dominance becomes more frequent
as the environment hyperparameters increase. Technical details appear in Section C.17.
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(a) αS = 1, βS = 1
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(b) αS = 2, βS = 2
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(c) αS = 3, βS = 3

0 20 40 60 80 100 120
0

500

1000

1500

2000

2500

3000

3500

Bayesian population

F
re

qu
en

cy

(d) αS = 4, βS = 4

Figure 3.19: Frequency of observed values of the average Bayesian population, denoted
by br(S), with four pairs of environment hyperparameters αS and βS such that αS = βS
and αS , βS ≥ 1. With each hyperparameter pair a total of R = 50, 000 evolutionary
competitions between Bayesians and frequentists are run independently. Each simulation
runs for G = 10, 000 generations. The environment S is of size 10 and changes every
generation. Each individual makes n = 2 observations of each environment state. In
each competition the total population size (including Bayesians and frequentists) is kept
constant at 100. The four subplots show that Bayesian dominance becomes more frequent
as the environment hyperparameters increase. Technical details appear in Section C.18.
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(a) αS = 0.25, βS = 0.25 (b) αS = 0.50, βS = 0.50

(c) αS = 0.80, βS = 0.80 (d) αS = 0.95, βS = 0.95

Figure 3.20: Number of Bayesians (red) and frequentists (blue) in evolutionary competi-
tions between the two groups with different environment parameters αS and βS such that
αS = βS and 0 < αS , βS < 1. Each simulation runs for G = 10, 000 generations. The
environment S is of size 10 and changes every generation. Each individual makes n = 2
observations of each environment state. In each competition the total population size
(including Bayesians and frequentists) is kept constant at 100. Technical details appear
in Section C.19.
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(a) αS = 1, βS = 1 (b) αS = 2, βS = 2

(c) αS = 3, βS = 3 (d) αS = 4, βS = 4

Figure 3.21: Number of Bayesians (red) and frequentists (blue) in evolutionary compe-
titions between the two groups with different environment parameters αS and βS such
that αS = βS and αS , βS ≥ 1. Each simulation runs for G = 10, 000 generations. The
environment S is of size 10 and changes every generation. Each individual makes n = 2
observations of each environment state. In each competition the total population size
(including Bayesians and frequentists) is kept constant at 100. Technical details appear
in Section C.20.
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of the environment.

The model presented in Section 3.8 extends the one introduced in Section 3.2 by

including frequentist learners in the population and allowing an evolutionary competition

between these and Bayesians learners when environment states are beta-distributed. For

any environment state pi, any Bayesian whose inherited prior is in close enough proximity

to pi may produce an estimate that is more accurate than the one a frequentist can produce

in the number of Bernoulli observations all individuals are allowed to make, whatever this

number is set to be. This close proximity between the prior and the objective pi serves

as a learning advantage that can be inherited because then the Bayesian will be able to

make an accurate enough estimate with limited training. The Bayesian individual will

therefore be more likely to reproduce than the frequentist and will also be likely to pass

on its successful prior to its offspring. Since frequentists lack this advantage, they should

tend to perform worse than Bayesians, especially if training is limited.

Evolutionary competitions between Bayesians and frequentists show that the former

indeed perform better on average when the number of Bernoulli observations is limited

and uncertainty is high, whereas the latter are more evolutionarily successful when uncer-

tainty is minimal. In Section 3.4 it is shown that the uncertainty posed by the environ-

ment is given by the beta distribution of the environment states and increases as these

become more evenly spread over the interval [0, 1]. Figure 3.12 and Figure 3.13 show that

Bayesians outnumber frequentists when uncertainty is highest. These figures also show

that frequentists are favoured by natural selection when uncertainty is minimal.

Scientific literature shows that decision-makers should evolve to behave in the same

manner as Bayesian decision-makers if information is uncertain (Marshall et al., 2013b;

McNamara et al., 2006; McNamara and Houston, 1980). This does not necessarily imply

that individuals favoured by natural selection in nature are truly computing Bayesian

estimates (Marshall et al., 2013a; McNamara et al., 2006; Tenenbaum et al., 2006) but

rather that their decision-making machinery should lead them to make the same decisions

as those made by a theoretical Bayesian. The results presented in this chapter provide

evidence supporting this literature. In the evolutionary simulations, each individual’s

default ‘worldview’ (McNamara et al., 2006) is given by its inherited prior, and thus

is a reflection of the environment experienced by its ancestors. The model shows how

estimating the environment simply by being (or by behaving as) a Bayesian (i.e., by

updating a prior to a posterior) may not be enough to be evolutionarily successful if there

is a selective pressure to produce accurate estimates efficiently (i.e., with little training).
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The model shows that in this case evolutionary success depends on how accurately the

Bayesian individual’s inherited ‘worldview’ reflects the environment. Competition between

Bayesians and frequentists shows how Bayesians can use their evolved priors to outperform

frequentists in an evolutionary race, as they are expected to when information is uncertain

(Marshall et al., 2013b; McNamara et al., 2006; McNamara and Houston, 1980). This

is evidence that the unpredictability of the environment should determine the decision-

making strategy of an individual in nature, since both animals and humans are sensitive

to the variability (i.e., the unpredictability) of each known choice when making decisions

(Hayden and Platt, 2009; Kacelnik and Bateson, 1996).

In the model, individuals estimate the environment state, however, the model does not

take into account what decision is made by the individual with the information learned,

nor its consequences, and only awards fitness in terms of the accuracy of the computed

estimate. However, in a natural scenario, an individual would normally make a choice

or an assumption based on this information and its survival and/or reproduction rate

would depend on the outcome of the choice/assumption made. For instance, successful

foraging in patches could depend on the individual being able to infer the quality of

the current patch (McNamara, 1982) and successful development into adulthood could

depend on the individual being able to estimate the predation risk (e.g., an individual

facing a scenario similar to that of Daphnia pulex, described in Chapter 2). The results

presented in this chapter show how a Bayesian individual should, in theory, evolve its

biases in these situations and it should be expected that in an identical natural scenario

decision-makers should evolve to make decisions as if they were using the same priors.

Nonetheless, the model could be extended in the future to make more realistic assumptions

by simulating full environment conditions and awarding fitness to individuals based on the

actual outcome of the decisions made using the information learned.
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Chapter 4

Self-deception can evolve under

appropriate costs

This chapter has been published on Current Zoology, issue 61(2), pages 382 – 396.

4.1 Introduction

Deception in animals (no conscious intention being implied) refers to the signaling of false

information from one individual to another and is normally beneficial to the signaller and

detrimental to the receiver (Semple and McComb, 1996). For this reason some animals

are observed to evolve strategies to deceive others, although natural selection is expected

to also favour individuals who are able to ‘see’ through the deception. In addition to

this, signaling may also be costly in order to be considered reliable, for example in mating

situations (Zahavi, 1975). Arms races may occur between deceivers (no conscious inten-

tion being implied) and deception-uncovering species, with each group under selection to

outsmart the other. Unlike deception, self-deception can be sensibly hypothesised not to

be evolutionarily stable by itself, because animals who make decisions on false information

seem more likely to make bad choices that could lead to negative consequences, such as

injury and death. Especially in situations where conflict is likely it is sensible to expect

that self-deceiving individuals tend to make suboptimal decisions, for instance risking in-

jury through fighting a stronger opponent, and that in the long term they end up being

less evolutionarily successful than others who use truthful information (Marshall et al.,

2013b). Despite this, self-deception biases are claimed to occur frequently. For instance,

animals and humans sometimes behave as if their subjective confidence in their skills in

a given moment is above the objective measure of such attributes (Alicke and Govorun,
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2005; McCormick et al., 1986; Pallier et al., 2002; Svenson, 1981). Surveys have shown

most drivers rate their own skills as above average (McCormick et al., 1986; Svenson,

1981) and most students regard themselves as above-average leaders (Alicke and Govorun,

2005). It has also been documented that people who are unskilled for a task often fail to

recognise their lack of competence, a phenomenon known as the Dunning—Kruger effect

(Kruger and Dunning, 1999). Psychological tests have also shown that people tend to

overestimate the probability of positive events (e.g., career success) and to underestimate

the probability of negative events (e.g., onset of a serious illness) (Sharot, 2011b). Addi-

tional studies have shown that these optimistic expectations are not necessarily deterred

by knowledge of past, realistic information. For instance, newly married couples tend

to overestimate the likelihood of having long marriages despite reported divorce rates of

around 50% (Sharot, 2011a). Some stroke patients, who are aware of their condition, have

been observed to deceive themselves into thinking that their paralysis is due to factors

other than their illness (Ramachandran, 1996). Similar studies have found that surveyed

students also rate others as above average (Klar and Giladi, 1997). These results appear

to show that individuals are generally unable to estimate correctly the average capability

in a group (Brooks and Swann, 2011; Chambers and Windschitl, 2004) and that they have

a tendency to overestimate the skills of others.

Self-deception has been defined as a misrepresentation of reality (Trivers, 2000). At its

simplest, this would correspond to using a biased estimate of the probability of an event

in decision-making. It generally comes in the form of a bias, which is a tendency to act

prejudicedly or behave in a way that apparently does not conform to rationality. Biases

can be of one of two types: cognitive biases, which are perceptual biases in the subjective

experience of an individual, and behavioural biases, which are manifest in behaviours that

depart from the optimal fitness-maximizing strategy (Marshall et al., 2013b). Behavioural

biases can be diagnosed ignoring the internal decision-making machinery of the individual

(McKay and Efferson, 2010). Cognitive biases, on the other hand, are generally hard

to diagnose, and attempts to classify or explain them are often controversial (Dougherty

et al., 1999; Marshall et al., 2013b). The apparent overconfidence exhibited by students

and drivers in the surveys mentioned above are usually diagnosed by psychologists as an

example of a cognitive bias (Alicke and Govorun, 2005; McCormick et al., 1986; Pallier

et al., 2002; Svenson, 1981). Even though a bias may result in seemingly unreasonable

behaviour it could evolve if, for instance, the bias is part or the by-product of a larger

behavioural trait that overall proves to be individually advantageous. Thus cognitive biases
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may evolve given appropriate decision machinery, whereas behavioural biases should be

expected not to.

It has been proposed by Trivers (Trivers, 2011; von Hippel and Trivers, 2011b) that the

most evolutionarily successful deceivers in nature are those that self-deceive first. That

is to say, unconscious deceivers (i.e., those who unwittingly ‘lie’ to themselves just as

they lie to others) are favoured by natural selection over conscious deceivers (i.e., those

who intentionally attempt to be deceitful while acting on truthful information). Trivers

hypothesises that this is because conscious deceivers have to pay a considerable cognitive

cost in order to avoid exhibiting involuntary responses that would allow others to see

through the deception. Studies have shown, for instance, that humans tend to decrease

their movement (in feet, legs, or hands) (Davis and Hadiks, 1995; DePaulo, 1992; Ekman,

1989; Ekman et al., 1991; Vrij, 1995) and to exhibit slow or confused speech as well as

a higher pitched voice (DePaulo et al., 1985; Zuckerman et al., 1981, 1985) when lying

consciously. Humans who act as conscious deceivers exhibit these involuntary responses,

however, studies have shown that in some cases it is the opposite reactions (e.g., increased

movement in hands) that are often perceived as signs of deception (Vrij and Semin, 1996;

Vrij et al., 1996). Trivers’ hypothesis is that unconscious deceivers do not exhibit the

same involuntary responses, since they believe the lie, and thus tend to be more successful

cheaters and do not have to pay the same cognitive cost as conscious deceivers. Deceivers

are likely to be penalised if their deception is discovered (Moller, 1987; Rohwer, 1977;

Rohwer and Rohwer, 1978; Trivers, 1991), thus deceivers who hide the involuntary signs

that reveal their deception should be more successful than those who do not. According

to Trivers’ theory a tendency towards self-deception evolves as a supportive by-product

of the ability to deceive others, and the cost of lying to oneself is outweighed by the

benefit brought by the ability to lie convincingly to adversaries. The theory proposed

by Trivers has received extensive discussion from different commentators (Bandura, 2011)

and Trivers has addressed these criticisms (von Hippel and Trivers, 2011a). One point that

has been raised is that in situations of conflict, a deceiver may succeed in discouraging

competitors from fighting (e.g., by feigning a strength higher than the actual one) but

it is likely that at some point the deception may be uncovered by others and that then

the deceiver will face serious consequences, such as injury or death, as pointed out earlier

(Frey and Voland, 2011; Funder, 2011; Marshall et al., 2013b). In such case the eventual

cost of being discovered may be higher than the advantage posed by deceiving others, and

self-deception should not evolve. This point has not been addressed by Trivers (Marshall
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et al., 2013b).

Section 4.2 introduces an extension to the model of the evolution of overconfidence

proposed by Johnson and Fowler (2011) in order to investigate the evolution of self-

deception given statistically-optimal behavioural machinery. With this it is shown an-

alytically and computationally that under certain circumstances overconfidence evolves

even when decision-makers use a theoretically optimal decision rule as suggested by Mar-

shall et al. (Marshall et al., 2013b). In this case overconfidence or underconfidence are

cognitive biases assuming a particular decision machinery, since they lead to optimal be-

haviour, rather than a sub-optimal behavioural bias (Marshall et al., 2013b). The new

model is extended in Section 4.3 to incorporate deception biases in order to test Trivers’

theory (Trivers, 2011) by showing that deception is favoured by natural selection when

self-deception reduces cognitive or other costs. These self-deception biases are shown to

be evolutionarily stable in a situation of conflict, one scenario not addressed by Trivers

when replying to their critics (Marshall et al., 2013b; von Hippel and Trivers, 2011a).

In the model presented in Section 4.2 individuals do not attempt to deceive others

because the purpose is to compare the self-deception biases with (model in Section 4.3)

and without (model in Section 4.2) deception between individuals. Analysis and results

of the models introduced in Section 4.2 and Section 4.3 are presented in Section 4.4 and

Section 4.5, respectively. Supplementary information is presented in Appendix A.

4.2 A simplified owner-challenger model with internal bi-

ases

This section introduces an extension to Johnson and Fowler (J&F)’s model (Johnson and

Fowler, 2011) of the evolution of overconfidence. In the extension, individuals self-deceive

but do not deceive others. This extension, called the simplified owner-challenger model, is

further extended in Section 4.3 to allow individuals to both self-deceive and deceive. The

purpose of having the two models is to compare the level of self-deception that evolves

in the absence of selective pressure to deceive others (in the simplified model presented

in this section), and compare it with the level of self-deception that evolves when this

selective pressure is present (in the generalised model presented in Section 4.3).

The definition of the simplified owner-challenger model is similar to that proposed

by Johnson and Fowler (2011) and can be formulated as follows. Each individual has a

fighting capability, denoted by θ. Given any two individuals, i and j, with capabilities
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θi and θj respectively, the former would defeat the latter if θi > θj should a conflict

between them occur. The capability advantage i has over j is defined as A = θi − θj

and i defeats j if A > 0. As in the model originally proposed by Johnson and Fowler

(2011), A is modelled as a standard normal random variable (i.e., A ∼ N (0, 1)). This

is achieved by making individual capabilities (θi and θj) normally distributed with mean

zero and standard deviation
√

1
2 .1 The marginal probability that i defeats j is given by

pW = P (A > 0) = 1
2 .

Every individual i also has an internal bias (i.e., a self-deception bias), denoted by ki,

that distorts its perception of its own capability in such a manner that i always acts as

if its capability is θi + ki. In addition to this, i’s perception of j’s capability, denoted by

θ̂j , is normally-distributed with mean θj and standard deviation σε (i.e., θ̂j ∼ N (θj , σε)).

The perception error size, σε, is a non-negative parameter of the model. In this manner

the model simulates perception errors as they occur in nature, which are due in part

to environmental factors beyond the control of each individual, as well as being due to

sensory noise. In this manner the advantage i perceives it has over an opponent j is given

by Â = θi + ki − θ̂j .

A conflict between two individuals over a resource occurs in an owner-challenger en-

counter as shown in Figure 4.1, where r is the value of the contested resource and c is a

cost both individuals pay if they fight. The encounter involves the owner of the resource,

who arrives at it first, and a challenger, who arrives subsequently and decides whether

to claim the resource. If the challenger claims the owner decides whether to fight for the

resource or abandon it to the challenger. Both r and c are constant and positive, and each

individual decides in sequence whether to fight or not.

In a more realistic scenario, r, c, and σε would likely vary from individual to individual

and from encounter to encounter. For instance, an individual who has collected many

resources will value a newly encountered resource less than an individual who has collected

none. Similarly, the cost of a fight will probably be higher for an individual who has been

injured badly from previously lost fights than for an individual who has lost none. In

addition to this, in a natural scenario perceptual capabilities as well as conditions of the

local environment (e.g., low visibility that affects the ability to visualise the opponent)

would be likely to vary from encounter to encounter, resulting in different perception errors

between individuals. However, r, c, and σε have been kept constant among all individuals

for simplicity because in this manner the formal analysis of the model (Section 4.3) and

1If X and Y are normally distributed random variables, i.e., X ∼ N (µX , σX) and Y ∼ N (µY , σY ),
then Z = X + Y is also normally distributed with mean µX + µY and standard deviation

√
σX2 + σY 2.
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a further extension (Section 4.4) of it are much more manageable and by doing so it is

easier to identify the minimal conditions that are sufficient for the evolution of the biases

of interest.

There are two differences between the owner-challenger model and the one proposed

by J&F (Johnson and Fowler, 2011). The first is that in J&F’s model the two competing

individuals decide synchronously whether to fight or not whereas in the owner-challenger

model the two decisions are made asynchronously and in sequence. The second is that in

J&F’s model individuals make their decisions based only on their perceived advantage over

their respective opponents while ignoring the benefits (r) and costs (c) of each decision,

whereas in the owner-challenger model these variables are taken into account by each

individual. In this manner, the owner-challenger model addresses two main criticisms

of J&F’s (Johnson and Fowler, 2013; Marshall et al., 2013a,b). The first one is that

since in J&F’s model contests over resources are synchronous they can lead to valuable

resources remaining unclaimed if no individual chooses to contest them, while the second

is that in J&F’s model individuals use an arbitrary and unrealistic decision rule in deciding

whether to contest (Marshall et al., 2013a,b). The first criticism is addressed by allowing

individuals to use whether they arrived at a resource first or second to determine their

strategy, thereby creating a uncorrelated asymmetry (Maynard Smith, 1982) and allowing

low value resources to be claimed by one individual. The second criticism is addressed by

enabling individuals to use the estimated payoffs associated with different outcomes, and

an estimate of the probability of winning, to determine whether to contest a resource.

A realistic scenario in the owner-challenger model is that where both individuals use

all the relevant information when making their respective decisions. However the mathe-

matical analysis of the model becomes difficult when both decision-makers behave in this

manner. For this reason a simplified version of the model is analysed first, where the

decision of the challenger j is always to claim the resource and fight whereas the owner i

makes its decision (after having been challenged by j) by using the following reasoning;

first i estimates its own probability of winning as p̂W = P (θ̂j < θi + ki). Then i estimates

its expected payoff from the hypothetical fight as F̂ = p̂W (r−c)+(1− p̂W )(−c) = p̂W r−c.

This individual then decides to defend the resource if and only if this estimated payoff is

higher than zero. This in turn occurs if and only if p̂W > c
r (Marshall et al., 2013b). This

decision rule is rational from the perspective of an owner because it uses all the relevant

information available to estimate the expected payoff from a fight and the final decision

is made if and only if the evidence suggests that this estimate is positive. In the long run
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An individual is the 'owner' 
of a resource of value r and 

a 'challenger' wants the resource. 

The 'challenger' 
claims the resource? 

The 'owner' keeps r. 
The 'challenger' receives zero. 

The 'owner' defends 
the resource? 

The 'owner' receives zero. 
The 'challenger' receives r. 

The 'owner' defeats 
the 'challenger'? 

The 'owner' receives -c. 
The 'challenger' receives r-c. 

The 'owner' receives r-c. 
The 'challenger' receives -c. 

Yes No 

No 

No 

Yes 

Yes 

Figure 4.1: An owner-challenger encounter occurs when one individual is the owner of a
resource and then a challenger arrives with the intention of claiming the resource. Both
parties decide asynchronously whether to fight over the resource or surrender it to the other
individual. If both fight then both pay a cost −c but the winner additionally receives the
resource value r. The strongest individual wins the fight. If both have the same capability
then the winner is decided randomly with each individual having equal probability of
winning.

this rule should yield a positive payoff to an owner on average after repeated encounters

with random challengers.

The estimate F̂ does not include the weighted payoff received by an individual when

the opponent withdraws from conflict, therefore every owner works under the assumption

that the opponent is always intent to fight. This assumption is clearly correct from the

perspective of the owner because its decision-making takes place only after having been

challenged. However a rational challenger should not always claim, since this ignores the

probability that the owner will defend the resource rather than abandon it uncontested.

Therefore a challenger that always claims should be expected to perform worse in the

long term (i.e., after repeated encounters against random owners) than an owner. The

simplified model is proposed in this manner, with always-aggressive challengers, in order to

determine analytically what values of r, c, and σε make internal biases necessary for owners

to receive the highest long-term payoffs, even when these individuals use the rational

decision rule stated above and when no deception between individuals is present. The

analysis of this model and the results are presented in Section 4.4.
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4.3 The generalised owner-challenger model with role-dependent

internal and external biases

This section introduces a generalised version of the simplified model presented in Sec-

tion 4.2 in order to simulate the scenario where every decision-maker additionally has an

external bias (i.e., a deception bias) that alters the capability this individual signals to

any opponent. The larger the external bias the greater the baseline capability signalled

to competitors. Given any two individuals, x and y, what x perceives is y’s projected

capability, distorted first by y’s external bias and then by x’s own perception error. The

actual attribute remains unchanged but y may be able to deceive x into thinking that y’s

capability is greater (or lower) than it actually is, thus making x less (or more) willing to

fight. The model aims to test the theory proposed by Trivers (2011). By incorporating the

premises of the theory (namely costs paid for conscious deception of others) computational

simulations are run to determine in what circumstances, if any, self-deception evolves in

order to facilitate the deception of opponents.

An individual with a non-zero external bias exerts a form of deception, or dishonest

signaling. The use of a positive external bias is similar to deimatic behaviour, in which an

animal, feeling in danger, makes a physical display, possibly involving changes in shape,

position, and/or colour, in order to appear threatening (probably more than the animal

actually is) and to dissuade an opponent from attacking. Examples of deimatic individ-

uals include some species of frog, who, in the presence of a threat, inflate themselves

with air and raise their hind legs in order to appear larger (Martins, 1989). The dishon-

est signal sent by an individual with a positive external bias could also be compared to

Batesian mimicry, where a harmless individual imitates the signals of a harmful one, in

order to discourage attacks from predators. Examples of Batesian species include Lampro-

peltis elapsoides, a nonvenomous snake who exhibits the colour pattern of the venomous

Micrurus fulvius (Kikuchi and Pfennig, 2010).

In the generalised model each decision-maker has two types of bias. An internal bias,

denoted by k, that influences the perception the individual has of itself (as in the simplified

model of the previous section), and an external bias, denoted by s, that distorts the

capability it displays to opponents. Both biases comprise together a deception pair denoted

by [k, s]. Any individual x with internal bias kx and external bias sx believes that its own

capability is θx + kx and attempts to deceive any potential opponent y into believing that

x’s capability is θx + sx. Then what y perceives is a normal deviate of the projected
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capability with standard deviation σε, the perception error size.

Each decision-maker in the model holds two deception pairs, [ko, so] and [kc, sc]. The

first one of these is expressed when the individual is playing the role of an owner and

the second one when the individual is a challenger. The first pair can be referred to as

the individual’s owner biases and the latter as the challenger biases. Alternatively the

first pair can be referred to as the owner strategy of the individual while the second pair

is the challenger strategy. A strategy is symmetrically biased if its internal and external

biases are equal otherwise it is asymmetrically biased. Asymmetrically-biased individuals

represent organisms in nature that exercise ‘conscious’ deception because they attempt to

project an image of themselves that differs from their true self-perception. On the other

hand, symmetrically-biased individuals represent organisms that do not deceive or deceive

‘unconsciously’, because if they spread false information it is only because they ‘believe’

it as well.

In each encounter every individual expresses only the pair of biases that match the

role (owner or challenger) the individual is playing at that moment. Given an owner x

and a challenger y, x estimates its probability of winning as p̂W,x = P (θ̂y < θx + ko,x),

where θ̂y ∼ N (θy + sc,y, σε), given that in the encounter this individual estimates its

capability as θx + ko,x (with x’s internal owner bias) and that of y as a normal deviate

of θy + sc,y (with y’s external challenger bias) with perception error size σε. On the

other hand, y estimates its probability of winning as p̂W,y = P (θ̂x < θy + kc,y), where

θ̂x ∼ N (θx + so,x, σε), given that in the encounter this individual estimates its capability

as θy+kc,y (with y’s internal challenger bias) and that of x as a normal deviate of θx+so,x

(with x’s external owner bias) with perception error size σε. The owner x estimates its

expected payoff as F̂x = p̂W,x(r − c) + (1 − p̂W,x)(−c) = p̂W,xr − c and fights if and only

if this estimate is positive. Similarly, the challenger y estimates its expected payoff as

F̂y = p̂W,yr− c and decides to fight if and only if F̂y > 0. As explained in Section 4.2, this

decision rule (i.e., fighting if and only if the estimated payoff is positive) is rational from

the perspective of an owner but not necessarily so from the perspective of a challenger.

This is because for the challenger a rationally estimated payoff would necessarily include

an estimate of the probability of the owner contesting the resource. However the model

becomes difficult to analyse if the challenger is set to estimate this probability. For this

reason the model considers the simplified scenario where both challengers and owners use

the same rule because the former can be realistically assumed to be conservative when

forced to work with imperfect information. In this manner the challenger only challenges
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when it estimates that it can win the resource even if the owner fights back. Despite not

being rigourously rational this challenger behaviour is sensible and realistic.

Trivers’ premise that deception is more costly in the absence of self-deception (Trivers,

2011) is incorporated into the model by having each individual pay a conscious deception

cost that penalizes asymmetrical strategies, regardless of whether a fight actually takes

place or not. The cost paid by an individual is proportional to the discrepancy between

the internal and the external biases in the strategy exercised by this individual in the

encounter, with a proportionality constant λ ∈ [0, 1]. That is to say, the cost paid by the

owner x increases with the difference between this individual’s owner biases and is given

by λ|ko,x − so,x|, whereas the cost paid by the challenger y increases with the difference

between this individual’s challenger biases and is given by λ|kc,y − sc,y|.

Dishonest signaling may serve as a way to avoid the cost derived from a physical

conflict by discouraging an opponent from fighting (an individual with a high external

bias may dissuade an opponent from fighting); however, in nature such signaling is also

costly, even though the cost paid in exchange for the ability to cheat opponents (e.g.,

through having to invest in ornamentation) may be less than the one paid for taking

part in a fight (e.g., through sustaining an injury) (Backwell et al., 2000; Zahavi, 1975).

This premise is incorporated into the model by having each individual pay a dishonest

signaling cost proportional to the square of the external bias in the strategy played by the

individual in an encounter against an opponent. The proportionality constant is denoted

ω ∈ [0, 1] and the cost paid by an owner x is thus given by ωso,x
2 whereas the cost paid a

challenger y is given by ωsc,y
2. The conscious deception cost and the dishonest signaling

cost paid by an individual are subtracted from the payoff received by this decision-maker

from the encounter. For instance, if an owner x wins a fight against a challenger y then

x’s final payoff is Fx = r − c − λ|ko,x − so,x| − ωso,x2 whereas y’s is Fy = −c − λ|kc,y −

sc,y| − ωsc,y2. Clearly positive factors λ and ω together impose a selective pressure on

decision-makers driving them towards becoming less deceptive and more symmetrically

biased. It can be hypothesised that without the former parameter individuals should

evolve to be asymmetrically biased whereas without the latter individuals should evolve

to be maximally deceptive. Given any two individuals, x and y, y’s internal bias can

evolve so that y disregards the uninformative signal originated from x’s external bias. In

the absence of the dishonest signaling cost this would escalate. For this reason, this cost

was set to be proportional to the square of the external bias in order to prevent signallers’

external biases and receivers’ internal biases from increasing indefinitely in an evolutionary
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arms race.

A set of evolutionary simulations were run with the role-dependent owner-challenger

model under Triver’s premise (i.e., with large enough values of λ and ω) as follows. Firstly

a population of decision-makers is initialised randomly with standard normal biases, then

each generation every individual x is paired at random with exactly one adversary y in the

population. The fitness of x is calculated as the average of its payoff when playing owner

and challenger against y, and it increases with the resources (each one of these with value r)

x manages to protect (as an owner) and/or usurp from y (as a challenger) and decreases

with the number of fights x involves itself in (because each fight comes with a cost c).

The fitness of x depends on the decisions this individual makes and how advantageously

it influences the decisions of y, who is also trying to maximise its own gain. Fitness

proportional selection (Baker, 1987) is used to determine which individuals reproduce,

with normally-distributed mutations. Evolution runs until no considerable changes are

observed and the population is assumed to be in equilibrium. Full details of the model

are presented in Section A.3. Results from the model are presented in Section 4.5.

4.4 Results with the simplified owner-challenger model with

internal biases

The expected payoff F (k) of an owner with internal bias k depends on the value of the

resources contested (i.e., r), the cost of each fight (i.e., c), and the error made when

estimating the capability of an opponent (i.e., σε). This is approximated with a numerical

method described in Section A.1. The expected payoffs for different values of r
c and k

when σε = 1 are plotted in Figure 4.2a. The plot shows that the highest payoff is obtained

by owners with biases near zero when r
c = 2. But as this ratio increases it is owners

with negative biases who receive the highest expected payoffs. Therefore owners that

underestimate their own strength are the ones that in the long term perform the best

against always-aggressive challengers when σε = 1 and the value of the contested resource

(r) outweighs the cost of a confrontation (c). In Section A.2 it is formally shown that

when r
c ∈ (0, 1] owners never retaliate against always-aggressive challengers and end up

receiving the same payoff (zero), regardless of owners’ bias; this is because the value of the

resource is offset by the cost of the inevitable fight. Therefore it can be concluded that as

long as r
c ≤ 1 no owner should perform better than the other and no bias can be considered

optimal. On the other hand, the biases that maximise F (k) when r
c ∈ (1,+∞) were found

88



−2 −1 0 1 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5  

Bias (k)

 

r/
c

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(a)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

1.0 1.5 2.0 2.5 3.0 3.5

−
0.

5
0.

0
0.

5
1.

0
1.

5

Benefit/cost ratio (r/c)

O
pt

im
al

 in
te

rn
al

 b
ia

s 
(k

)

●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●●

●
●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●

●
●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●●●●●●●●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

error size = 0
error size = 0.25
error size = 0.75
error size = 1

(b)

Figure 4.2: Figure 4.2a shows the owner’s expected payoff (F ) in the simplified model
against random always-aggressive challengers as a function of confidence biases (k) and
benefit cost ratios ( rc ) when σε = 1. Figure 4.2b shows the self-deception biases (k)
that yield the highest payoffs to an owner in the long term when facing random always-
aggressive challengers along different benefit/cost ratios ( rc ) and perception error sizes
(σε). Details on how to produce these plots appear in Section D.2.

numerically and plotted in Figure 4.2b.2 In Section A.2 it is shown that any owner i’s

fighting probability is given by pF = P (A > z − ki), where z is an advantage threshold

for conflict that depends on r
c and σε. It is also shown that if i is an optimal-decision

maker then pF = 1
2 . Therefore after a large enough number of repeated encounters with

random challengers an optimal owner should fight back in half of these encounters, because

P (A > 0) = 1
2 . This means that given any r

c and σε, only owners with biases equal to

z may be optimal decision-makers because only these have fighting probabilities equal to

1
2 . This is confirmed by the numerical results displayed in Figure 4.2b. If σε = 0 then

z = 0 (Technical details in Section A.2) and the highest payoffs are received by owners

with approximately zero bias. Unbiased individuals also get the best payoffs when σε > 0

and r
c = 2 because then z = 0. If σε > 0 then z decreases below zero as r

c increases above 2

and therefore negative owner biases yield the highest payoffs. Additionally if σε > 0 then

z increases above zero as r
c decreases below 2 and owners achieve the maximum gain with

positive biases. It can be concluded that owners require biases to optimise their payoffs if

and only if the perception error is present (i.e., if σε > 0). That is to say, internal biases

serve as a means to compensate for information noise, given the assumed decision rule.

2Details on how to produce the plots in Figure 4.2 appear in Section D.2.
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4.5 Results with the generalised owner-challenger model

with role-dependent biases

The difference between deception and self-deception biases were measured when popula-

tions were in evolutionary equilibrium in different simulations with different values of r
c

and σε. If these biases tend to evolve to have the same value when it is costly to have

them differ, then this would support the theory proposed by Trivers (Trivers, 2011). Fig-

ure 4.3 shows the average owner bias differences (|ko − so|) and the average challenger bias

differences (|kc − sc|) when the population is in evolutionary equilibrium in simulations

run with parameters r
c ∈ [1, 5], σε ∈ [0, 4], λ ∈ {0, 0.5, 1} and ω = 1.3 That is to say, Fig-

ure 4.3 shows the level of symmetry of owner and challenger strategies in equilibrium with

(λ = 0.5 and λ = 1) and without (λ = 0) Trivers’ premise that deception is more costly

to the deceiver when it is unconscious. The plots show that when λ > 0 the symmetry in

owner and challenger strategies generally increases as r
c and σε increase together. With

high enough values of these two parameters the internal and external biases evolve to be

approximately equal, which is consistent with Trivers’ theory because as the parameters

increase, natural selection increasingly favours individuals that self-deceive just as much

as they deceive others because they avoid the cognitive cost of conscious deception, and

the effects of acting based on false information are more than offset by the effects of ma-

nipulating others’ perceptions. Figure 4.3 also shows that asymmetry can be stable as the

perception error decreases and r
c increases. That is to say, as higher costs are paid for

the ability of being consciously deceitful, it pays off more to be an unconscious deceiver,

unless the perception errors are low (allowing the owner to make decisions on more certain

information) and the value of the contested resource greatly outweighs the costs of a fight.

Figure 4.3a shows that if λ = 0 then owner bias differences are generally lowest when

r
c ∈ [2, 2.5] and they increase as r

c increases and decreases away from this interval. That

is to say, if r
c ∈ [2, 2.5] then evolutionary equilibrium generally occurs when the pop-

ulation exercise owner strategies that are symmetrically biased (i.e., when owners are

unconscious deceivers), otherwise equilibrium generally occurs when the population ex-

ercise owner strategies that are symmetrically unbiased (i.e., when owners are conscious

deceivers). The figure also shows that owner bias differences increase and decrease with

σε. This means that as the information available becomes noisier then it pays off more

to be an asymmetrically-biased owner (i.e., a consciously-deceiving owner). A similar

3Details on how to produce these plots appear in Section D.3.
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pattern occurs in challenger strategies, as shown in Figure 4.3b, although the bias dif-

ferences observed in these strategies when the population is in evolutionary equilibrium

are generally higher. That is to say, differences in challenger strategies increase with σε

and as r
c increases and decreases away from [2, 3.5]. All the above is similar to what is

observed in Figure 4.2b where the magnitude of optimal internal bias exhibit a similar

relationship with r
c and σε, i.e., higher magnitudes as r

c increases and decreases from 2

and as σε increases. It is reasonable to assume that this similarity is due to the same

causes (i.e., information noise) although a formal demonstration of this (such as the one

provided for the simplified model in Section 4.4) is difficult in the generalised model with

role-dependent biases.

Additional evolutionary simulations were run with the same parameters with external

biases absent. The purpose of this was to compare the evolved internal biases in owner

and challenger strategies in the absence and presence of external biases. The difference

in magnitude of internal biases in equilibrium when these evolve in the presence and ab-

sence of external biases was measured by running separate evolutionary simulations with

(so, sc 6= 0) and then without (so, sc = 0) deception biases. Individuals pay a conscious

deception cost (λ = 1) and a dishonest signaling cost (ω = 1) only in simulations where

external biases are present. The average internal bias in owner strategies when the pop-

ulation is in evolutionary equilibrium in simulations with external biases is denoted by

kdo |λ=1 and the average internal bias in challenger strategies is denoted by kdc |λ=1. The

average internal bias in owner strategies when individuals are in evolutionary equilibrium

in simulations without external biases is denoted by kndo |λ=0 and the average internal bias

in challenger strategies is denoted by kndc |λ=0. The difference between evolved internal

biases with and without external biases (kdo |λ=1 − kndo |λ=0 and kdc |λ=1 − kndc |λ=0) for each

choice of r
c and σε are plotted in Figure 4.4.4 The two plots show that there are values

of r
c and σε for which these differences are generally positive and that these differences

tend to increase as r
c and σε increase. This implies that with high enough values of r

c

and σε the magnitude of the evolved internal biases increases in the presence of external

biases, which means that the ability to deceive others requires an increase in self-deception

in order to be evolutionarily stable. It can be hypothesised that the internal biases that

evolve without external biases do so for a reason similar to the one explained in Section 4.4

for the simplified model with always-aggressive challengers (i.e., noise in the information

available), although a formal demonstration of this is harder in the generalised model with

4Details on how to produce these plots appear in Section D.4.
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role-dependent biases.

In evolutionary simulations with both internal and external biases where individuals are

forced to pay a cost for the ability of conscious deception (i.e., for exercising asymmetrical

strategies) there is a difference in the magnitude of the internal biases that evolve compared

to the internal biases evolved in the absence of this cost, as shown in Figure 4.5.5 The

average internal bias in the equilibrium population is measured when individuals evolve

with (λ = 1) and without (λ = 0) paying a cost for conscious deception and then the

differences between these averages is calculated for each choice of r
c and σε. The two plots

in Figure 4.5 show that these differences tend to increase with r
c and σε and that they

are generally above zero with high enough values of these two parameters. This implies

that the magnitude of the self-deception that evolves under the influence of the conscious-

deception cost tends to become larger than the self-deception that evolves without this cost

as r
c and σε increase. That is to say, with high enough values of r

c and σε, self-deception

is effectively higher under Trivers’ premise that conscious deception is costly (Trivers,

2011). In addition to this, self-deception evolved under Trivers’ premise increases as the

information decision-makers use becomes noisier (i.e., as σε increases) and as the value of

the contested resource grows relative to the cost of a fight (i.e., as r
c increases).

4.6 Conclusions

The owner-challenger model extends the one proposed by Johnson and Fowler (2011) and

offers two improvements over the original model. The first is that resources are never

left unclaimed and the second is that individuals use a rational decision rule by taking

into account the costs and benefits of each decision. Two versions of the model are

considered: (1) the model with internal biases, introduced in Section 4.2, and (2) the

model with role-dependent internal and external biases, introduced in Section 4.3. The

model with internal biases aims to determine the evolvability of self-deceptive cognitive

biases, given that decision-makers use a rational decision rule. The model with role-

dependent internal and external biases introduces dishonest signaling and aims to test the

theory proposed by Trivers, which states that self-deception should evolve if individuals

face a selective pressure to deceive each other and that self-deceiving deceivers have an

evolutionary advantage over other deceitful individuals because the former do not have to

pay the cognitive costs of concealing a lie consciously.

The baseline results with the owner-challenger model with internal biases introduced

5Details on how to produce these plots appear in Section D.5.
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(a) |ko − so|, λ = 0.
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(b) |kc − sc|, λ = 0.
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(c) |ko − so|, λ = 0.5.
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(d) |kc − sc|, λ = 0.5.
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(e) |ko − so|, λ = 1.
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(f) |kc − sc|, λ = 1.

Figure 4.3: Differences between internal (self-deception) and external (deception) biases
evolved with different benefit/cost ratios ( rc ), perception errors (σε), with fixed conscious
deception costs (λ) and a fixed dishonest signaling cost (ω = 1). With each combination
of these parameters, evolutionary simulations are run with populations composed of in-
dividuals with role-dependent biases. When equilibrium is reached the average difference
of owner biases (|ko − so|) and the average difference of challenger biases (|kc − sc|) in the
population are calculated and plotted. These plots show values of r

c and σε with which
symmetrical (darker blue) and asymmetrical (darker red) strategies are stable. As con-
scious deception costs increase differences between internal and external biases tend to
decrease towards zero. Details on how to produce these plots appear in Section D.3.
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(a) kdo |λ=1 − kndo |λ=0
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(b) kdc |λ=1 − kndc |λ=0

Figure 4.4: Difference between internal (self-deception) biases evolved in the presence and
absence of external biases. When external biases are present, individuals pay a conscious
deception cost (λ = 1) and a dishonest signaling cost (ω = 1). The notations kndo |λ=0 and

kndc |λ=0 are used to refer to the average internal bias in owner and challenger strategies,
respectively, in populations in evolutionary equilibrium when individuals evolve with no
external biases (i.e., when so,x, sc,x = 0 for every individual x). The notations kdo |λ=1

and kdc |λ=1 are used to refer to the average internal bias in owner and challenger strate-
gies, respectively, in populations in evolutionary equilibrium when individuals evolve with
external biases. Figure 4.4a shows the owner difference kdo |λ=1− kndo |λ=0 for different ben-
efit/cost ratios ( rc ) and perception errors (σε), whereas Figure 4.4b shows the challenger

difference kdc |λ=1 − kndc |λ=0. The plots show that these differences tend to increase with
r
c and σε. This implies that as these parameters increase, an increase in the ability to
deceive others (from zero external bias to nonzero external bias) requires an increase in
the magnitude of self-deception in order to be stable. Details on how to produce these
plots appear in Section D.4.
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(a) kdo |λ=1 − kdo |λ=0
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(b) kdc |λ=1 − kdc |λ=0

Figure 4.5: Differences in the magnitude of internal biases evolved with (λ = 1) and
without (λ = 0) conscious deception costs. In both plots the dishonest signaling cost is
ω = 1. The average owner internal bias evolved in the presence of external biases when
λ = 1 is denoted by kdo |λ=1 and the same average when λ = 0 is denoted by kdo |λ=0. The
average challenger internal bias evolved in the presence of external biases when λ = 1 is
denoted by kdc |λ=1 and the same average when λ = 0 is denoted by kdc |λ=0. The plots show

that the differences kdo |λ=1−kdo |λ=0 and kdc |λ=1−kdc |λ=0 are generally nonzero and that they
increase with r

c and σε. This implies that internal biases evolved with conscious deception
costs (i.e., with λ = 1) tend to become larger than internal biases evolved without this
assumption (i.e., when λ = 0) as r

c and σε increase. Details on how to produce these plots
appear in Section D.5.
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in Section 4.2 show that, given an assumed optimal decision rule taking proper account

of probabilities costs and benefits of outcomes, suggested by Marshall et al. (Marshall

et al., 2013b), biases provide a way for owners in the model to compensate for perception

errors when their opponents are certain to fight. This is illustrated in Figure 4.2b, where

it is shown that if there are perception errors (σε > 0) then optimal behaviour requires

non-zero biases, the sole exception being when r
c = 2. If errors are not present (σε = 0)

then owners do not require any biases to behave optimally. But if errors are present then

self-deception biases are required to gain the best payoffs in the long term. These results

provided a baseline optimal level of self-deception to compare the extended model against.

The extended owner-challenger model with role-dependent internal and external biases

was introduced in Section 4.3 with the purpose of examining the evolution of self-deception

as a supporting mechanism of deception. Symmetrically-biased individuals are those who

self-deceive just as much as they attempt to deceive others, and can be considered to be

‘unconscious’ deceivers. On the other hand asymmetrically-biased individuals are those

who project an image of themselves that differs from their self-perception, and are anal-

ogous to ‘conscious’ deceivers. The premise of Trivers’ theory was incorporated into the

model by having each decision-maker pay a dishonest signaling cost (for having the ability

to deceive others through external biases) and a conscious deception cost (for exercising

asymmetrically-biased strategies, i.e., for being consciously deceitful), emulating the phys-

iological costs that deceivers in nature have to pay, according to Trivers’ proposal (Trivers,

2011). Evolutionary simulations with the model show that when these costs are present

then symmetrically-biased, self-deceiving individuals are more evolutionarily successful

than those who attempt to deceive others while attempting to act on truthful informa-

tion, when the benefit/cost ratio and the perception error are high enough (Figure 4.3). In

other words, self-deceiving deceivers are more likely to evolve as the benefit/cost ratio and

the perception error increase, when the conscious deception and dishonest signaling costs

are present. The internal biases evolved when individuals attempt to deceive others gen-

erally exceed those that are evolved when individuals cannot deceive others (Figure 4.4),

as information becomes noisier (i.e., as σε increases) and the benefit/cost ratio becomes

larger. That is to say, in order to be evolutionarily stable, an increase in deceitful be-

haviour requires an increase in self-deceiving behaviour when there are physiological costs

for exercising deception and for doing so consciously. Further simulations show that in-

ternal biases are also generally higher when there is a conscious deception cost (i.e., when

λ = 1) than when this cost is absent (i.e., when λ = 0), and also that the difference
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between the internal biases evolved with and without this cost generally increases with r
c

and σε (Figure 4.5). From these numerical experiments it can be concluded that Trivers’

theory generally holds true in situations of conflict if two conditions are met. First, the

value of the contested resource must sufficiently exceed the cost of the fight required to

claim the resource. Second, there must be a high enough degree of uncertainty in the

information the decision-maker uses to assess its chances of winning the fight. As the

value of the resource and the uncertainty increase, from the perspective of an individual

it tends to payoff more in the long term to self-deceive as much as to attempt to deceive

others, when conscious deception and dishonest signaling are physiologically costly. Then

it should be expected that when these conditions are met, self-deceiving fighters evolve,

as predicted by Trivers’ theory (Marshall et al., 2013b; von Hippel and Trivers, 2011a).

The theory by Trivers has received considerable discussion, and it is possible that

it will continue to be debated whether this theory correctly explains the apparent self-

deception biases observed in humans, such as the ones presented in Section 4.1. The

model presented in this article aims to test this theory in the particular case of a situation

of conflict. The motivation for proposing this model is the point raised by commentators

that the risk of injury faced by a self-deceiving, deceitful fighter is likely to be higher

than the benefit received from discouraging an opponent from fighting by means of a

deceitful exhibition of strength, and that therefore self-deceiving deceivers should not

evolve. The model presented in this article simulates a situation of conflict where it is

shown that, under the premises of the theory, self-deceiving, deceitful fighters do evolve.

Given this, the generalised model proposed in this chapter serves as a first attempt to

formally address the evolution of self-deception in situations of conflict, and the results

obtained complement Trivers’ proposal (Marshall et al., 2013b; von Hippel and Trivers,

2011a). The model could be extended in the future. For instance, it would be of interest

to examine how biases evolve when the two opponents share the contested resource if both

estimate that their capabilities are approximately equal. It would also be interesting to

determine the impact of more biologically-realistic assumptions on the results presented

in this chapter, such as population variation in perception errors, costs of conflict and so

on.
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Chapter 5

Conclusions

This thesis presents different mathematical models that recreate decision problems in

natural scenarios in order to determine the behavioural strategy that should be expected to

evolve in response to these problems. These models are based on the accepted hypothesis

that decision-makers in nature are compelled by natural selection to exhibit the same

behaviour that should be expected to be displayed by Bayesian decision-makers when

facing the same problem with uncertain information (Marshall et al., 2013b; McNamara

et al., 2006; McNamara and Houston, 1980). In each model the optimal behavioural

strategy is found analytically or using evolutionary simulations. The model presented in

Chapter 2 investigates when individuals in nature should display phenotypic plasticity in

the form of inducible defences and Chapter 4 investigates when individuals should self-

deceive in situations of conflict. In the model presented in Chapter 2 it is assumed that

decision-makers can evolve the machinery to behave as if having priors of different means

and standard deviations. This assumption is tested in Chapter 3 and found to be true.

The results obtained with these models can be summarised as follows.

The model presented in Chapter 2 simulates the developmental history of an individual

with inducible defences. These pose a trade-off to the individual since they are costly

and only beneficial when there is a predation risk. During its lifetime the individual

measures the predation risk by making repeated observations of the environment, each

time updating its inherited prior estimate of the predation risk to a Bayesian posterior

estimate, using Bayes’ theorem, given in Equation 1.1. In each observation, a predator

encounter occurs as a Bernoulli trial. The environment state consists of the probability

that the individual survives each predator encounter or non-encounter with and without

defences. The individual may induce the defences at any point, when any amount of

evidence of predation risk has been collected.
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Given any amount of evidence, the optimal decision (induce or postpone) is the one

that should be expected to maximise the individual’s future expectancy of reaching adult-

hood. The optimal strategy is the sequence of optimal decisions to make in response to

a sequence of observations. A dynamic programming algorithm is used to determine the

optimal decision the individual should make, given the individual’s prior, the amount of

accumulated evidence of predation risk and the environment state. Realistic environments

were tested and two types of optimal strategies were found. The first is earliest special-

isation, which consists of inducing the defences prior to making any observation, thus

discarding any evidence of predation risk that may be collected. The second is plastic-

ity, which consists of inducing the defences only after accumulating evidence of predation

risk. The results obtained and described in Chapter 2 show that there is a threshold on

the standard deviation of the individual’s prior that determines the individual’s optimal

strategy. The optimal strategy is earliest specialisation when the standard deviation of

the individual’s prior is below this threshold whereas plasticity is the optimal strategy

when the individual’s prior is above or equal. When plasticity is the optimal strategy, the

algorithm determines the amount of accumulated evidence (i.e., number of past predator

encounters and non-encounters) that makes induction the optimal decision. It should be

expected that the the standard deviation of the individual’s inherited prior evolves to

reflect the uncertainty of the predation risk (a hypothesis confirmed in Chapter 3), thus a

high standard deviation should be indicative of high uncertainty. Therefore an individual

in the model maximises its expectancy of reaching adulthood by exhibiting plasticity only

when the predation risk in the environment exhibits great uncertainty. This is in agree-

ment with previous literature that states that plasticity should be expected to provide an

evolutionary benefit only when the environment poses a high enough instability (Fischer

et al., 2014; Ord et al., 2010; Price et al., 2003; Scheiner, 1993; Stephens, 1991). The

model presented in Chapter 2 provides an analytical demonstration of this, taking into

account the individual’s inherited prior in order to predict when plasticity maximises the

individual’s expectancy of reaching adulthood.

Given the above, the model presented in Chapter 2 serves as a theoretical complement

to the work of Hammill et al. (2008), which has been carried out with a similar purpose.

However the predictions made by the model presented in Chapter 2 are made in terms of

the individual’s prior and refer to the individual’s expectancy of reaching adulthood, not

to its fitness as in the model of Hammill et al. (2008). The model could be improved in

the future by modelling the individual’s reproductive rate in order to estimate its fitness.
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This could be done in order to predict properly the conditions (e.g., environment state,

individual’s prior, etc) that must be met for inducible defences to be favoured by natural

selection. This would offer a full theoretical complement to the work of Hammill et al.

(2008). With survival probabilities (described in Chapter 2) measured experimentally this

theoretical model should return results in agreement with the predictions made by Hammill

et al. (2008). In addition to this, it may be possible to demonstrate formally the empirical

conclusions achieved with the model in Chapter 2. This chapter was chronologically the

last one of this thesis to be written and, due to time restrictions, attempts to produce

a more formal explanation of the experimental observations described in Section 2.4 can

only be suggested as future work.

Chapter 3 introduces a model to show how Bayesian priors can be encoded genetically

and shaped by natural selection. This is in support of the assumption made in the model

introduced in Chapter 2, that individuals can inherit different priors and that depending

on these the individual should maximise its expectancy of reaching adulthood by exhibit-

ing plasticity or specialisation. The model presented in Chapter 3 simulates a group of

individuals whose evolutionary fitness depends on their ability to estimate accurately the

probability of an event, referred to as the environment state. Each individual achieves this

by making repeated Bernoulli trials that occur with a probability equal to the environment

state. The individual has an inherited beta prior and updates it to a Bayesian posterior

with each Bernoulli observation. The mean of the posterior after a certain number of

observations is the individual’s estimate of the environment state. Individuals that pro-

duce the most accurate estimates are the most likely to reproduce. During reproduction

individuals pass on their inherited priors, with mutation, to their offspring but not the

information learned from the observations made.

Evolutionary simulations are run where the environment state changes periodically

and it is shown that the individuals’ priors evolve to be within a range of each updated

environment state after enough generations. That is to say, individuals evolve their priors

to approximate the current environment state, whatever this may be. It is also shown that

when the environment states are beta-distributed, the individuals evolve the hyperparam-

eters of their priors to resemble the hyperparameters of the environment beta distribution.

By doing this the Bayesian individuals evolve their priors to reflect the standard deviation

of the environment distribution and thus the uncertainty of the environment.

The model is extended to include frequentist individuals, i.e., those who use frequentist

inference when estimating the environment state. Evolutionary simulations with competi-
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tion between Bayesians and frequentists are run. The results show that Bayesians become

more evolutionarily stable than frequentists as the environment states become more un-

certain. This is consistent with the accepted proposal that natural selection should favour

individuals that behave as if Bayesian learners when processing uncertain information

(Marshall et al., 2013b; McNamara et al., 2006; McNamara and Houston, 1980). Thus

the results show that Bayesian individuals evolve their priors in order to be able to esti-

mate the environment state accurately and that they outperform frequentists, as they are

expected to, when both types of learners are faced with uncertain information.

Chapter 4 addresses the theory of the evolution of self-deception proposed by Trivers

(2011) and aims to test it in the particular case of a situation of conflict, a scenario raised

by commentators of the proposal (Frey and Voland, 2011; Funder, 2011; Marshall et al.,

2013b) and not addressed by Trivers (Marshall et al., 2013b). In order to do this, a situa-

tion of conflict for resources between two individuals is modelled. Each individual faces a

selective pressure to maximise its gains, in terms of collected resources, and minimise its

losses, derived from engaging in fights. In order to achieve this, each individual is able to

measure the fighting capability of the opponent in order to decide whether or not to fight.

Each individual may ‘deceive’ its opponent (by feigning greater or lower capability than

the actual one) and ‘self-deceive’ (by over- or underestimating its capability advantage

over the opponent). The individual pays a cost proportional to the difference between the

level of deception and self-deception it exercises. This is done in order to incorporate the

hypothesis stated by Trivers (2011) that deception is more costly to the deceiver if this

individual is aware of the deception. The results show that self-deception does evolve in

situations of conflict under the premises of Trivers (2011) when two conditions are met.

The first is that the cost of each fight must be sufficiently exceeded by the value of the

resource in contest. The second is that each individual must face a high enough level of

uncertainty when assessing its own capability and that of the opponent. The results show

that, given the conditions stated, a suboptimal behavioural mechanism (self-deception)

can lead to an evolutionarily optimal behaviour, which is consistent with the literature

(McNamara and Houston, 2009). These results support the theory proposed by Trivers

(2011) by showing how the predictions made by the proposal apply in situations of con-

flict. The model presented in Chapter 4 is the first to achieve this and address the point

raised by commentators of the proposal that self-deception should not evolve in situations

of conflict (Bandura, 2011). For simplicity, numerous assumptions are made in model.

Improvements can be made by replacing these assumptions with more realistic ones. This

100



could be achieved by having each individual assess the value of the contested resouce

and the cost of the potential fight depending on their individual previous histories. For

instance, given any two individuals, the same resource should appear more appealing to

the one individual who has previously gained the least amount of resources. Similarly,

the individual who has recently lost the most fights should be more inclined to avoid a

conflict in order to prevent further injury. In addition to this, perception errors could vary

from individual to individual and, possibly, from encounter to encounter, depending on

environmental conditions.

In general, individuals in nature should reasonably be hypothesised to evolve the ma-

chinery to process optimally the information they use when making crucial decisions (e.g.,

when deciding whether or not to compete over a valuable resource, as in the model pre-

sented in Chapter 4). In this regard, the existence of biases may appear counterintuitive

for this purpose, since these simply distort this information processing. For instance,

even though the literature indicates that individuals should behave as Bayesians (Mar-

shall et al., 2013a,b; McNamara et al., 2006; McNamara and Houston, 1980; Tenenbaum

et al., 2006), people are reported to be overconfident regarding the outcome of future

events despite known evidence to the contrary (Sharot, 2011a,b). However, the theory

proposed by Trivers and the results presented in Chapter 4 show that a bias can be part

of a behavioral mechanism that overall is beneficial, even though in other circumstances

the bias alone could lead to detrimental behaviour. Then it could be sensibly hypothesised

that the biases reported in the literature (Alicke and Govorun, 2005; McCormick et al.,

1986; Pallier et al., 2002; Sharot, 2011a,b; Svenson, 1981) could potentially have similar

explanations.

The models presented in this thesis and summarised above are purely theoretical and

make no use of experimental data collected from nature. However the variables that are

taken into account are realistic and thus the predictions made by the models should be

consistent with equivalent scenarios in nature. This is exemplified, for instance, in the

model introduced in Chapter 3 where Bayesian learners are shown to win an evolutionary

race against frequentists exactly as they should be expected to in nature. The models pre-

sented in this thesis make some assumptions in order to make each problem more tractable.

However, it is reasonable to hypothesise that these assumptions do not compromise greatly

the generality of the results obtained. Nonetheless the models could be improved in the

future by incorporating more realistic assumptions, such as variable resource values and

perception errors in the model introduced in Chapter 4 and experimental data in the
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model introduced in Chapter 2.
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Appendix A

Supplementary information for

Chapter 4

A.1 Expected payoff of an owner in the simplified model

presented in Section 4.2

The expected payoff of any owner with internal bias k is calculated as a function of k, as

shown in Equation A.1.

F (k) =
∑
A∈SA

P (A)I[p̂W (A, k) >
c

r
][I(A > 0)r − c] (A.1)

This function approximates the owner’s payoff as a summation of the weighted partial

payoffs the owner receives in simulated encounters with challengers in a set SA of uniformly

sampled values of A. The weighting factor is the probability of each A, denoted by P (A).

Each partial payoff in the summation is expressed in terms of an auxiliary identity function

of the form I(Cx), which returns unity if the condition represented by Cx holds true and

zero otherwise. The expression p̂W (A, k) denotes the individual’s estimated probability of

winning, given A and k.1 Partial payoffs are added in the calculation of expected payoff if

and only if p̂W (A, k) > r
c , i.e., if the owner decides to fight back. The partial payoff is r−c

if the owner is stronger than its opponent in the simulated owner-challenger encounter and

−c otherwise.

1The estimate p̂W (A, k) is given by P (θ̂j < θi + k) = P (θ̂j − θi − k < 0). Since θ̂j is normally

distributed with mean θj and standard deviation σε then the sum θ̂j − θi − k is normally distributed with

mean θj − θi − k and standard deviation σε. Therefore P (θ̂j − θi − k < 0) can be restated as P (Θ < 0),
where Θ ∼ N (−A− k, σε).
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A.2 Optimal owner behaviour in the simplified model pre-

sented in Section 4.2

In the model introduced in Section 4.2 it holds that if an owner i accepts an opponent j’s

challenge then the marginal probability that i defeats j is given by pW = P (θi > θj) =

P (A > 0) = 1
2 and therefore an owner’s expected payoff from a single fight is 1

2r − c. An

unsophisticated owner that ignores relevant information and fights randomly each time

with fighting probability pF is then expected to receive a mean payoff Fmin = pF (12r − c)

after repeated encounters with random challengers. Owners in this model, however, choose

to fight only when their estimated expected payoff is positive, therefore their payoffs in

the long term should be higher than Fmin. Theorem A.1 shows that an owner may fight

only if r
c is in the interval (1,∞). In addition to this, Theorem A.2 shows that for each r

c

there is a capability superiority threshold for conflict, denoted by z, and that every owner

i decides to repel a challenger if and only if A > z − ki. Thus the fighting probability of

an owner with bias ki is given by pF = P (A > z−ki) and it increases as r
c and ki increase

and as z and c
r decrease.

Theorem A.1
When r

c ∈ (0, 1] an owner never fights back.
Proof: If r

c ∈ (0, 1] then c
r ∈ [1,∞) and p̂W can never be above c

r . Therefore the owner’s
decision rule (i.e., “fight back if and only if p̂W > c

r”) is never satisfied.

Theorem A.2
Every owner i fights j if and only if θi + ki > θj + z where z, the capability superiority
threshold for conflict, is the solution to the equation

∫ z
−∞Φ′(x)dx = c

r and Φ′(x) is the
density function of a normal distribution with mean zero and standard deviation σε.
Proof: From the fact that p̂W = P (θ̂j < θi + ki) and θ̂j ∼ N (θj , σε) it follows that

p̂W =
∫ θi+ki
−∞ Φ(x)dx, where Φ(x) is the density function of the normally-distributed θ̂j .

Let v be the solution to equation
∫ v
−∞Φ(x)dx = c

r and let z = v − θj . Therefore p̂W > c
r

(i.e., the owner fights back) if and only if θi+ki > v = θj+z, where z satisfies the equation
c
r =

∫ v
−∞Φ(x)dx =

∫ θj+z
−∞ Φ(x)dx =

∫ z
−∞Φ′(x)dx and Φ′(x) is the density function of a

normal distribution with mean zero and standard deviation σε.

Marshall et al. (2013b) show that an optimally-behaving individual in the model pro-

posed by Johnson and Fowler (2011) whose opponent is known to fight necessarily retal-

iates if its marginal probability of winning satisfies the inequality pW > c
r . An optimal

owner in the owner-challenger model presented in Section 4.2 should exhibit exactly the

same behaviour because its decision is made only in the knowledge that its opponent is

determined to fight. If every owner had access to perfect information it would be able to

compute accurately its probability of winning and follow the decision rule “fight if and

only if pW > c
r” (Marshall et al., 2013b). However, each owner only has access to its own
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estimated probability of winning (p̂W ), which is likely to deviate from the actual value

(pW ) due to the individual’s perception error (σε) and internal bias (k). The individual

uses this information to make a rational decision but due to the uncertainty present it is

possible that at some point the individual makes the wrong choice.

Given any randomly selected owner i and challenger j, then by definition i’s marginal

probability of winning is pW = P (A > 0) = 1
2 and this means i is objectively expected

to be stronger than half the opponents it encounters. Therefore an optimal owner i that

hypothetically takes part in repeated encounters with random challengers should decide to

fight in approximately half of those encounters, otherwise i would be missing opportunities

to defeat and increase its fitness; or it would risk itself in fights that are bound to be lost,

which would in turn have a detrimental effect on its long term fitness. Then it can be

predicted that the owners with the highest long-term payoffs must have internal biases that

make pF equal to 1
2 . That is to say, optimal behaviour is a sufficient (but not necessary)

condition for pF = 1
2 . Similarly, a fighting probability pF = 1

2 is a necessary (but not

sufficient) condition of optimality.

A.3 Details of the evolutionary model presented in Sec-

tion 4.3

The evolutionary model used in Section 4.3 is as follows. A population of 500 individuals

with role-dependent biases is initialized with random standard normal biases. Every gen-

eration the population is assorted in such a way that every individual x is paired at random

with exactly one adversary y in the population. The capability difference between x and

y (denoted by A) is a randomly-chosen standard normal value. Two encounters between

x and y are simulated. In the first encounter x plays owner and y plays challenger. In the

second encounter the roles are inverted. In each encounter each individual expresses only

the biases corresponding to the role played by the individual. That is to say, when x plays

the role of an owner it estimates its own capability as θx + ko,x and attempts to deceive y

into believing that x’s capability is θx + so,x. On the other hand, when x plays the role of

a challenger it estimates its own capability as θx + kc,x and attempts to project onto y a

capability equal to θx + sc,x. The biases of y are expressed analogously. The fitness of x is

calculated as the average of the payoff received by this individual in the two encounters.

The fitness of y is calculated in the same manner.

One half of the population are selected through stochastic universal sampling (Baker,
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1987). A new population is formed consisting of the selected individuals. Those that

fail to be selected are replaced by randomly-chosen copies of the selected ones to com-

plete the new population. Approximately 1% of the new population members have their

genetically-encoded biases mutated with Gaussian noise. Evolution runs until the 5, 000-

th generation, when no considerable changes are observed and the population is assumed

to be in equilibrium.
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Appendix B

Technical details of the model in

Chapter 2

B.1 Source files

The source code that implements the model presented in Chapter 2 can be found in the

compressed file Chapter2.zip downloadable from http://goo.gl/fdRBy5. These sources

were written in C++ (compiled with g++ version 4.9.1) and Matlab (version 8.1.0.604).

The operating system used was Scientific Linux release 6.5 (Carbon).

The C++ sources must be compiled using the makefile provided.

B.2 Figure 2.2

The subplots in Figure 2.2 are generated by compiling all the C++ sources, as described in

Section B.1, and then running script Run1.sh.

B.3 Figure 2.3

The subplots in Figure 2.3 are generated by compiling all the C++ sources, as described in

Section B.1, and then running script Run2.sh.

B.4 Figure 2.4

The subplots in Figure 2.4 are generated by compiling all the C++ sources, as described in

Section B.1, and then running script Run3.sh.
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B.5 Figure 2.5

The subplots in Figure 2.5 are generated by compiling all the C++ sources, as described in

Section B.1, and then running script Run4.sh.

B.6 Figure 2.6

The subplots in Figure 2.6 are generated by compiling all the C++ sources, as described in

Section B.1, and then running script Run5.sh.
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Appendix C

Technical details of the model in

Chapter 3

C.1 Source files

The source code that implements the model presented in Chapter 3 can be found in

folder Chapter3/Sources inside the compressed file Chapter3.zip downloadable from

http://goo.gl/usFGkO. These sources were written in C++ (compiled with g++ version

4.9.1), R (version 3.0.2) and Matlab (version 8.1.0.604). The operating system used

was Scientific Linux release 6.5 (Carbon).

Folder Chapter3/Data inside the compressed file Chapter3.zip contains the data pro-

duced with the source code and can be reused to generate the plots in Chapter 3 without

having to rerun the code, since some of the programs may take a long time to finish.

Details on how to reuse these data appear further below.

C.2 C++ sources

The C++ sources must be compiled using the makefile provided. The source code uses

libraries Boost (Version 1.53.0) and GAlib (Version 2.4.7). In order to compile the

C++ sources these libraries must be downloaded and installed by following their respec-

tive sets of instructions. Once installed, the variables BOOST DIR and GALIB DIR in the

makefile must be updated to point to the installation folders of the Boost and GAlib

libraries. After doing this, compilation of all the C++ sources is done by calling the make

command in Linux.
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C.3 Figure 3.3

Each subplot in Figure 3.3 is generated by compiling all the C++ sources, as described in

Section C.2, and then running script Run1.sh. Doing this will run four new evolutionary

simulations with the same parameters as those illustrated in Figure 3.3. Different runs are

likely to result in different evolutionary histories thus the newly generated subplots will

probably be different from the ones depicted in the current figure.

C.4 Figure 3.4

Each subplot in Figure 3.4 is generated by compiling all the C++ sources, as described in

Section C.2, and then running script Run2.sh. Doing this will run four new evolutionary

simulations with the same parameters as those illustrated in Figure 3.4. Different runs are

likely to result in different evolutionary histories thus the newly generated subplots will

probably be different from the ones depicted in the current figure.

C.5 Figure 3.5

Each subplot in Figure 3.5 is generated by compiling all the C++ sources, as described in

Section C.2, and then running script Run3.sh. Doing this will run four new evolutionary

simulations with the same parameters as those illustrated in Figure 3.5. Different runs are

likely to result in different evolutionary histories thus the newly generated subplots will

probably be different from the ones depicted in the current figure.

C.6 Figure 3.6

Each subplot in Figure 3.6 is generated by compiling all the C++ sources, as described in

Section C.2, and then running script Run4.sh. Doing this will run four new evolutionary

simulations with the same parameters as those illustrated in Figure 3.6. Different runs are

likely to result in different evolutionary histories thus the newly generated subplots will

probably be different from the ones depicted in the current figure.

C.7 Figure 3.7

Each subplot in Figure 3.7, and its corresponding subfigure in Figure 3.8, is generated by

compiling all the C++ sources, as described in Section C.2, and then running script Run5.sh.
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Doing this will run four new evolutionary simulations with the same parameters as those

illustrated in Figure 3.7. Different runs are likely to result in different evolutionary histories

thus the newly generated subplots will probably be different from the ones depicted in the

current figure.

C.8 Figure 3.9

Each subplot in Figure 3.9 is generated by compiling all the C++ sources, as described in

Section C.2, and then running script Run7.sh. Doing this will run four new evolutionary

simulations with the same parameters as those illustrated in Figure 3.9. Different runs are

likely to result in different evolutionary histories thus the newly generated subplots will

probably be different from the ones depicted in the current figure.

C.9 Figure 3.10

Each subplot in Figure 3.10 is generated by compiling all the C++ sources, as described in

Section C.2, and then running script Run8.sh. Doing this will run four new evolutionary

simulations with the same parameters as those illustrated in Figure 3.10. Different runs

are likely to result in different evolutionary histories thus the newly generated subplots

will probably be different from the ones depicted in the current figure.

C.10 Figure 3.11

Each subplot in Figure 3.11 is generated by compiling all the C++ sources, as described in

Section C.2, and then running script Run9.sh. Doing this will run four new evolutionary

simulations with the same parameters as those illustrated in Figure 3.11. Different runs

are likely to result in different evolutionary histories thus the newly generated subplots

will probably be different from the ones depicted in the current figure.

C.11 Figure 3.12

Figure 3.12 is generated by compiling the C++ code, as described in Section C.2, and

then running Run11.sh. This script calls a C++ program to simulate the evolutionary

computation between Bayesians and frequentists with each combination of environment

hyperparameters. The average number of Bayesians is output to a .CSV file. Then the

script calls a Matlab program to read the .CSV file and plot the data.
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The evolutionary simulations can take long. The .CSV file generated by Run11.sh is

stored in compressed file Run11.zip. This file can be used to generate the plot more easily

by calling only the Matlab program.

C.12 Figure 3.13

Figure 3.13 is generated by compiling the C++ code, as described in Section C.2, and

then running Run12.sh. This script calls a C++ program to simulate the evolutionary

computation between Bayesians and frequentists with each combination of environment

hyperparameters. The average number of Bayesians is output to a .CSV file. Then the

script calls a Matlab program to read the .CSV file and plot the data.

The evolutionary simulations can take long. The .CSV file generated by Run12.sh is

stored in compressed file Run12.zip. This file can be used to generate the plot more easily

by calling only the Matlab program.

C.13 Figure 3.14

Figure 3.14 is generated by compiling the C++ code, as described in Section C.2, and

then running Run21.sh. This script calls a C++ program to simulate the evolutionary

computation between Bayesians and frequentists with each combination of environment

hyperparameters. The average number of Bayesians is output to a .CSV file. Then the

script calls a Matlab program to read the .CSV file and plot the data.

The evolutionary simulations can take long. The .CSV file generated by Run21.sh is

stored in compressed file Run21.zip. This file can be used to generate the plot more easily

by calling only the Matlab program.

C.14 Figure 3.15

Figure 3.15 is generated by compiling the C++ code, as described in Section C.2, and

then running Run22.sh. This script calls a C++ program to simulate the evolutionary

computation between Bayesians and frequentists with each combination of environment

hyperparameters. The average number of Bayesians is output to a .CSV file. Then the

script calls a Matlab program to read the .CSV file and plot the data.

The evolutionary simulations can take long. The .CSV file generated by Run22.sh is

stored in compressed file Run22.zip. This file can be used to generate the plot more easily

by calling only the Matlab program.
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C.15 Figure 3.16

Figure 3.16 is generated by compiling the C++ code, as described in Section C.2, and

then running Run23.sh. This script calls a C++ program to simulate the evolutionary

computation between Bayesians and frequentists with each combination of environment

hyperparameters. The average number of Bayesians is output to a .CSV file. Then the

script calls a Matlab program to read the .CSV file and plot the data.

The evolutionary simulations can take long. The .CSV file generated by Run23.sh is

stored in compressed file Run23.zip. This file can be used to generate the plot more easily

by calling only the Matlab program.

C.16 Figure 3.17

Figure 3.17 is generated by compiling the C++ code, as described in Section C.2, and

then running Run24.sh. This script calls a C++ program to simulate the evolutionary

computation between Bayesians and frequentists with each combination of environment

hyperparameters. The average number of Bayesians is output to a .CSV file. Then the

script calls a Matlab program to read the .CSV file and plot the data.

The evolutionary simulations can take long. The .CSV file generated by Run24.sh is

stored in compressed file Run24.zip. This file can be used to generate the plot more easily

by calling only the Matlab program.

C.17 Figure 3.18

In order to generate the four subplots in Figure 3.18 the C++ code must be compiled first,

as described in Section C.2.

Figure 3.18a is generated by running Run13.sh. This script calls a C++ program to

simulate the evolutionary computation between Bayesians and frequentists with each com-

bination of environment hyperparameters and generate two .CSV files with the Bayesian

population numbers per environment. Then the script calls a Matlab program to read the

.CSV files and plot the data.

The evolutionary simulations can take long. The .CSV files generated by Run13.sh

are stored in compressed file Run13.zip. These files can be used to generate each subplot

more easily by calling only the Matlab program using the instruction in Run13.sh.

Figure 3.18b is generated by running Run14.sh. This script calls a C++ program to

simulate the evolutionary computation between Bayesians and frequentists with each com-
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bination of environment hyperparameters and generate two .CSV files with the Bayesian

population numbers per environment. Then the script calls a Matlab program to read the

.CSV files and plot the data.

The evolutionary simulations can take long. The .CSV files generated by Run14.sh

are stored in compressed file Run14.zip. These files can be used to generate each subplot

more easily by calling only the Matlab program using the instruction in Run14.sh.

Figure 3.18c is generated by running Run15.sh. This script calls a C++ program to

simulate the evolutionary computation between Bayesians and frequentists with each com-

bination of environment hyperparameters and generate two .CSV files with the Bayesian

population numbers per environment. Then the script calls a Matlab program to read the

.CSV files and plot the data.

The evolutionary simulations can take long. The .CSV files generated by Run15.sh

are stored in compressed file Run15.zip. These files can be used to generate each subplot

more easily by calling only the Matlab program using the instruction in Run15.sh.

Figure 3.18d is generated by running Run16.sh. This script calls a C++ program to

simulate the evolutionary computation between Bayesians and frequentists with each com-

bination of environment hyperparameters and generate two .CSV files with the Bayesian

population numbers per environment. Then the script calls a Matlab program to read the

.CSV files and plot the data.

The evolutionary simulations can take long. The .CSV files generated by Run16.sh

are stored in compressed file Run16.zip. These files can be used to generate each subplot

more easily by calling only the Matlab program using the instruction in Run16.sh.

C.18 Figure 3.19

In order to generate the four subplots in Figure 3.19 the C++ code must be compiled first,

as described in Section C.2.

Figure 3.19a is generated by running Run17.sh. This script calls a C++ program to

simulate the evolutionary computation between Bayesians and frequentists with each com-

bination of environment hyperparameters and generate two .CSV files with the Bayesian

population numbers per environment. Then the script calls a Matlab program to read the

.CSV files and plot the data.

The evolutionary simulations can take long. The .CSV files generated by Run17.sh

are stored in compressed file Run17.zip. These files can be used to generate each subplot

more easily by calling only the Matlab program using the instruction in Run17.sh.
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Figure 3.19b is generated by running Run18.sh. This script calls a C++ program to

simulate the evolutionary computation between Bayesians and frequentists with each com-

bination of environment hyperparameters and generate two .CSV files with the Bayesian

population numbers per environment. Then the script calls a Matlab program to read the

.CSV files and plot the data.

The evolutionary simulations can take long. The .CSV files generated by Run18.sh

are stored in compressed file Run18.zip. These files can be used to generate each subplot

more easily by calling only the Matlab program using the instruction in Run18.sh.

Figure 3.19c is generated by running Run19.sh. This script calls a C++ program to

simulate the evolutionary computation between Bayesians and frequentists with each com-

bination of environment hyperparameters and generate two .CSV files with the Bayesian

population numbers per environment. Then the script calls a Matlab program to read the

.CSV files and plot the data.

The evolutionary simulations can take long. The .CSV files generated by Run19.sh

are stored in compressed file Run19.zip. These files can be used to generate each subplot

more easily by calling only the Matlab program using the instruction in Run19.sh.

Figure 3.19d is generated by running Run20.sh. This script calls a C++ program to

simulate the evolutionary computation between Bayesians and frequentists with each com-

bination of environment hyperparameters and generate two .CSV files with the Bayesian

population numbers per environment. Then the script calls a Matlab program to read the

.CSV files and plot the data.

The evolutionary simulations can take long. The .CSV files generated by Run20.sh

are stored in compressed file Run20.zip. These files can be used to generate each subplot

more easily by calling only the Matlab program using the instruction in Run20.sh.

C.19 Figure 3.20

In order to generate the four subplots in Figure 3.20 the C++ code must be compiled first,

as described in Section C.2. Then the figures are produced by running Run25.sh.

C.20 Figure 3.21

In order to generate the four subplots in Figure 3.21 the C++ code must be compiled first,

as described in Section C.2. Then the figures are produced by running Run26.sh.
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C.21 Tests of evolutionary stability

The tests of evolutionary stability used in Section 3.10 are run by compiling the C++ code

first, as described in Section C.2, and then by running Run27.sh.
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Appendix D

Technical details of the model in

Chapter 4

D.1 Source files

The source code that implements the model presented in Section 4.2 and the generalized

model presented in Section 4.3 can be found in the compressed file Chapter4.zip down-

loadable from http://goo.gl/vkyy3U. These sources were written in the R programming

language (version 3.0.2) and Matlab (version 8.1.0.604). The operating system used

was Scientific Linux release 6.5 (Carbon).

The simplified model with only internal biases and always-aggressive challengers de-

scribed in Section 4.2 and the numerical analysis described in Section 4.4 are implemented

in source file Model 1.R whereas the generalized model with role-dependent internal and

external biases described in Section 4.3 and the simulations and numerical analyses de-

scribed in Section 4.5 are implemented in source file Model 2.R. These sources are adap-

tations from the R code by Johnson and Fowler (2011).

The Matlab source files SurfacePlot.m, SurfacePlot2.m and SurfacePlot3.m are

used for producing Figures 4.2, 4.3, 4.4 and 4.5 from data generated by the R source code.

The instructions for doing this appear in the following sections.

D.2 Figure 4.2

Figure 4.2a is produced following the steps below.

1. Executing function Model 1 1() in the R source file Model 1.R, which outputs the

data file Expected payoffs.csv.
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2. Executing function SurfacePlot() in Matlab source file SurfacePlot.m in the same

directory as Expected payoffs.csv. The plot is output in the same directory as a

file named Expected payoffs.pdf.

Figure 4.2b is produced by running function Model 1 2() in the R source file Model 1.R.

The plot is output in the same directory as a file named optimal owner biases.pdf.

D.3 Figure 4.3

Figure 4.3a and Figure 4.3b are produced following the steps below.

1. Running Model 2 1() in the R source file Model 2.R, which outputs a folder named

Model 2 1 containing two .csv files named 1 owners.csv and 2 challengers.csv.

In order to generate these two files, the program needs to output several auxiliary

files into this folder first. While the program is running the size of the folder can reach

over 300 MB, but these auxiliary files are deleted by the program upon completion.

2. Running the Matlab source file SurfacePlot2.m in the same directory as 1 owners.csv

and 2 challengers.csv (these two files can copied from folder Model 2 1). This

program reads the two .csv files and produces the plots. The plots are output in the

same directory as two files named owners sf plot.pdf and challengers sf plot.pdf.

Figure 4.3c and Figure 4.3d are produced following the steps below.

1. Running Model 2 2() in the R source file Model 2.R, which outputs a folder named

Model 2 2 containing two .csv files named 1 owners.csv and 2 challengers.csv.

In order to generate these two files, the program needs to output several auxiliary

files into this folder first. While the program is running the size of the folder can reach

over 100 MB, but these auxiliary files are deleted by the program upon completion.

2. Running the Matlab source file SurfacePlot2.m in the same directory as 1 owners.csv

and 2 challengers.csv (these two files can copied from folder Model 2 2). This

program reads the two .csv files and produces the plots. The plots are output in the

same directory as two files named owners sf plot.pdf and challengers sf plot.pdf.

Figure 4.3e and Figure 4.3f are produced following the steps below.

1. Running Model 2 3() in the R source file Model 2.R, which outputs a folder named

Model 2 3 containing two .csv files named 1 owners.csv and 2 challengers.csv.

In order to generate these two files, the program needs to output several auxiliary
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files into this folder first. While the program is running the size of the folder can reach

over 100 MB, but these auxiliary files are deleted by the program upon completion.

2. Running the Matlab source file SurfacePlot2.m in the same directory as 1 owners.csv

and 2 challengers.csv (these two files can copied from folder Model 2 3). This

program reads the two .csv files and produces the plots. The plots are output in the

same directory as two files named owners sf plot.pdf and challengers sf plot.pdf.

D.4 Figure 4.4

Figure 4.4a and Figure 4.4b are produced following the steps below.

1. Running Model 2 4() in the R source file Model 2.R, which outputs a folder named

Model 2 4 containing two .csv files named 1 owners.csv and 2 challengers.csv.

2. Running the Matlab source file SurfacePlot3.m in the same directory as 1 owners.csv

and 2 challengers.csv. This program reads the two .csv files and produces the

plots. The plots are output in the same directory as two files named owners sf plot.pdf

and challengers sf plot.pdf.

D.5 Figure 4.5

Figure 4.5a and Figure 4.5b are produced following the steps below.

1. Running Model 2 5() in the R source file Model 2.R, which outputs a folder named

Model 2 5 containing two .csv files named 1 owners.csv and 2 challengers.csv.

2. Running the Matlab source file SurfacePlot3.m in the same directory as 1 owners.csv

and 2 challengers.csv. This program reads the two .csv files and produces the

plots. The plots are output in the same directory as two files named owners sf plot.pdf

and challengers sf plot.pdf.
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