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Abstract 
Uncertainty in model simulations arises due to the construction of the model (structural 

uncertainty), the representation of sub-grid scale processes (parameter uncertainty) or 

the input of model boundary conditions.  Perturbed physics ensembles (PPEs) produce an 

ensemble of simulations using a single climate model.  A PPE produces different 

representations of climate by altering the tuning of parameterisations representing 

processes occurring on sub-grid scales, such as clouds and radiation.  A PPE has been 

produced to investigate model parameter and boundary condition uncertainty for the mid-

Pliocene Warm Period (3.264 to 3.025 Ma BP).  Through the use of a PPE, 14 versions (13 

perturbed members and the Standard version) of the UK Met Office atmosphere-ocean 

general circulation model HadCM3 were created.  The full ensemble was re-run to assess 

the impact of simultaneously changing physical boundary conditions for orography, ice 

sheets and vegetation in combination with perturbed physics.  Finally the effect of the 

potential range in reconstructed mid-Pliocene CO2 was investigated through a sub-

ensemble of the PPE.   

Using data-model comparisons (DMCs), the ensemble members with higher than the 

Standard values of Charney sensitivity were better able to simulate the magnitude of high 

latitude mid-Pliocene warming.  The strongest performing ensemble members for the 

DMCs displayed Charney sensitivities of 4.54°C, 4.62°C and 5.40°C, above the upper bound 

of the IPCC likely range (1.5 to 4.5°C).  However, these warmer members with higher 

Charney sensitivities weakened the data-model comparison in the tropics.  Ensemble 

members with lower than Standard values of Charney sensitivity, close to the lower bound 

of the IPCC likely range, better resolved temperature reconstructions in the tropics, but 

were unable to resolve high latitude warming.  It is evident that the PPE is able to achieve 

the magnitude of mPWP warming but not the spatial distribution of the warming.   

The investigation into boundary condition uncertainty using the PPE reveals that the 

PRISM3D physical boundary conditions lead to improved simulations of the mPWP 

climate than the PRISM2 boundary conditions.  For the range of atmospheric CO2 

concentrations, the results from the sub-ensemble indicate that lower values of CO2 lead to 

reduced performance of the PPE members compared to the palaeo-data.  The conclusion is 

that concentrations of CO2 below 350 ppmv for the mPWP would make simulating high 

latitude climates very difficult for climate models.   
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Chapter 1: Introduction 
Evidence that humankind is affecting the climate system is now overwhelming (IPCC, 

2007). The only method for producing projections of future climate are dependant 

upon computer models of the climate system.  These projections are limited by an 

incomplete knowledge of the uncertainty in climate models.  Strategies for dealing with 

the uncertainty within the model simulations focus on creating ensembles of 

simulations producing a range of model results.  The ensembles are developed using 

the observational period bringing them up to the point where the model becomes 

predictive (Johns et al., 2003).  The ensemble members skill at reproducing the climate 

for the observational period is tested, and if the member is accurate, it can continue as a 

member of the ensemble and be run for the predictive simulations (IPCC, 2007).  The 

limitation of this method is that the ensemble has been tested on its skill of replicating 

the gradually warming climate from 1750 to the present day, (~0.75°C over this time 

period (IPCC, 2007)).  Whereas climate change is predicted to be most likely at least 2 

to 3°C warmer by 2100 (IPCC, 2007), a rate and magnitude of change far greater than 

anything experienced in the past 260 years.  Palaeoclimate modelling offers an 

alternative for testing model simulations and model ensembles and a method for 

quantifying model uncertainties.  By selecting an appropriate time period to study, it is 

possible to test the model skill at replicating radically different climate states.   

The thesis aims to investigate the role of parameter uncertainty on data-model 

mismatches for a warmer than modern climate from the geological record.  The aim 

will be achieved through the use of a perturbed physics ensemble (PPE).  The PPE will 

then be utilised for assessing the role of boundary condition uncertainty on data-model 

mismatches through adjusting both representations of the Earth’s surface and 

atmospheric greenhouse gas concentrations.  The thesis will outline the development of 

these investigations and the methods for modelling and analysing results generated 

during the course of the study.   

Chapter 1 introduces the Pliocene epoch in relation to the climate of the Cenozoic Era 

(the last 65 million years of the geological record) and outlines why the Pliocene is a 

useful epoch for palaeoclimate investigation.  It will then review the work on modelling 

the Pliocene, focusing mainly on the recent work undertaken in the last 10 to 15 years, 

but also includes a brief review of early Pliocene climate modelling.  The review will 

highlight the areas of uncertainty in Pliocene modelling to date which represents areas 

where this ensemble could improve Pliocene simulations.  It will also review the 

1 
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methods used to reconstruct the Pliocene through geology, geochemistry and 

micropalaeontology, focussing on the work of the Pliocene Research Interpretations 

and Synoptic Mapping (PRISM) group at the US Geological Survey over the last twenty 

years.  The other aspect to this review is modelling uncertainty, which occurs in a 

variety of forms.  The second section of Chapter 1 focusses on discussing the forms of 

model uncertainty and methodologies utilised to attempt to reduce or quantify the 

uncertainty.  The section will end with a discussion of previous PPEs and the different 

methodologies used to create the ensembles.  Finally there will be an outline for the 

rest of the thesis.   

1.1- Key Features of the Earth’s Climate System  

The Earth’s climate system represents the interaction of incoming energy with the 

atmosphere, ocean and land surface components of the Earth.  The dominant form of 

energy into the climate system is solar forcing - the energy from the sun (Beer et al., 

2000).  Two descriptions of the solar forcing are commonly used: total solar irradiance 

(TSI) and solar insolation (Kohler et al., 2010; Kopp & Lean, 2011).  TSI refers to the 

solar energy flux at the top of the atmosphere for a square metre orientated towards 

the sun at a distance of 1 AU (Beer et al., 2000).  Solar insolation refers to the solar 

energy flux received at the Earth’s surface and its magnitude is governed by the latitude 

of the site and the season during which it is measured (Beer et al., 2000).  Earth system 

components can all modify the climatic response to the solar forcing, a forcing that 

itself is modified on various timescales by changes in the magnitude of solar output and 

the Earth’s orbit around the Sun (Berger, 1978; Frohlich, 2006; Kohler et al., 2010).  

Solar insolation is strongly affected by the orbital parameters, whilst TSI is modified by 

changes in solar output and alterations in the eccentricity orbital component (the 

distance between the Earth and the Sun - Beer et al., 2000).  Even small variations in 

solar forcing are able to cause global and regional climate changes (Lean & Rind, 2009; 

Kopp & Lean, 2011).   

The magnitude of the forcing on the climate system is expressed as the radiative 

forcing, a perturbation to the energy budget of the Earth’s climate system from an 

external source (Collins, W.D. et al., 2006).  Radiative forcing is defined as the net 

change in TSI at the top of the atmosphere.  The net change is calculated as the total 

incoming shortwave radiation minus reflected shortwave radiation and outgoing 

longwave radiation.  It is expressed as a rate of change for a unit area, measured as 

Watts per metre squared (Wm-2 – IPCC, 2001; 2007).  The climate system responds to a 

change in radiative forcing through an alteration (such as warming) of earth system 
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components (such as surface temperature – Soden et al., 2008).  Radiative forcing is 

affected by variation in solar output, land surface changes (affecting planetary albedo), 

changes to atmospheric greenhouse gas concentrations and resulting feedbacks from 

within the climate system (Collins, W.D. et al., 2006; Kohler et al., 2010).  The changes 

in land surface conditions and greenhouse gases can be caused by natural or 

anthropogenic changes (Foley et al., 1994; Matthews et al., 2004).  In palaeoclimate 

studies, natural variations in greenhouse gas or land surface forcings are key drivers of 

modifications to radiative forcing, along with changes in the orbital forcing (Kutzbach & 

Liu, 1997; Petit et al., 1999).   

The response of global temperatures to changes in radiative forcing is determined by 

the sensitivity of the climate system, known as equilibrium climate sensitivity or 

Charney sensitivity.  Charney sensitivity is defined as the equilibrium (or steady state) 

temperature increase for a doubling of atmospheric CO2 (Charney, 1979; PALAEOSENS, 

2012).  This has been estimated by climate models to be equivalent to a radiative 

forcing increase of ~3.5 Wm-2 (Raper et al., 2002).  However, until the climate system 

reaches equilibrium, a smaller increase in surface temperatures is observed than that 

which would be expected for a given forcing (Gregory & Forster, 2008).  A significant 

reason for this is the role of the ocean in the climate response to changes in radiative 

forcing.  Of the warming caused by an increase in radiative forcing, 90% is stored in the 

oceans allowing only 10% of the warming to interact with the atmosphere and land 

surface components (IPCC, 2007; Loeb et al., 2012; Balmaseda et al., 2013).  Since the 

1960’s the oceans have accumulated 20 times the heat of the atmosphere (Levitus et al., 

2005; IPCC, 2007).  However, the ocean response to changes in radiative forcing is 

slow.  A 1m2 water column to 2500m depth in the ocean requires 300 years to be 

warmed by 1°C for a radiative forcing of 1 Wm-2.  The heat flux to the oceans is 

represented within climate models, and is modelled as increasing as Charney 

sensitivity increases (Raper et al., 2002). Whilst increased Charney sensitivity indicates 

higher equilibrium warming, the rate of that warming is tempered by the increased 

ocean heat flux.   

The transient climate response (TCR) was devised to estimate the magnitude of the 

response of the climate system to a forcing, before the system reaches equilibrium.  

TCR is the modelled response for a doubling of CO2, with CO2 increasing at 1% year 

(Gregory & Forster, 2008).  TCR is smaller than the Charney sensitivity because it does 

not allow for the effect of ocean warming on the climate (Knutti et al., 2006; IPCC, 

2007).  Additionally, TCR is easier to constrain at higher values than Charney 

sensitivity, owing to a non-linear relationship between TCR and Charney sensitivity 
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(Knutti et al., 2006).  Within the palaeoclimate community there is also the concept of 

Earth System Sensitivity (ESS - Lunt et al., 2010) and its relationship to Charney 

sensitivity.  Earth System Sensitivity includes the temperature related response of 

vegetation, ice sheet and oceans to changes in radiative forcing.  As an example, large 

ice sheets respond slowly to increases in global temperature, with estimates that it may 

take several millennia for ice sheets to respond to anthropogenic warming (Alley et al., 

2005).  On this timescale, the climate system will have reached radiative equilibrium 

with the change in forcing.  However, the longer term responses such as ice sheets will 

lead to further changes in the climate (Lunt et al., 2010).  ESS therefore represents the 

extended sensitivity of the climate system to any perturbation in radiative forcing.  ESS 

values are larger than the Charney sensitivity values by a factor of ~1.5 for models in 

the Pliocene Modelling Intercomparison Project (PlioMIP) multi-model ensemble 

(Haywood et al., 2013a).   

However, fully coupled atmosphere-ocean general circulation models (AOGCMs) do not 

explicitly state a Charney sensitivity, ESS or TCR setting to control the warming within 

the simulation.  The sensitivity of a simulation is the result of the parameterisations 

made within the model and the tuning of model parameters.  Climate models represent 

the transfer of energy through the various components using mathematical formulae 

on the grid scale and utilise parameterisations to represent them on sub-grid scales 

(Murphy et al., 2004).  These parameters, the methodology for choosing them and the 

tuning values selected, lead to uncertainty in climate model output.  The uncertainty 

that arises is discussed in Section 1.4 and represents they cornerstone of work 

contained within this thesis.   

 

1.2. The Pliocene Epoch of the Cenozoic Era. 

The Pliocene epoch (5.3 to 2.6 Ma BP) represents the last period of sustained warmth 

before the emergence of a cooler climate characterised by the onset of 

glacial/interglacial cycles during the Pleistocene (Brierley & Federov, 2010).  Based on 

The Geologic Time Scale 2012 (Gradstein et al., 2012), the Pliocene is the second and 

final epoch of the Neogene period, one of three periods of the Cenozoic era.   

1.2.1. The Cenozoic (65 Ma BP to Present) 

The Cenozoic is divided into three periods, the Paleogene (66.0 to 23.0 Ma BP) which 

contains the Paleocene, Eocene and Oligocene epochs, the Neogene (23.0 to 2.6 Ma BP) 
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containing the Miocene and Pliocene epochs and the Quarternary (2.6 Ma BP to 

present) containing the Pleistocene and Holocene epochs.  The Cenozoic saw six major 

climatic shifts including:  

• Periods of sudden warming or sustained warmth 

o Paleocene-Eocene Thermal Maximum (PETM - ~56.0 Ma BP - Zachos et 

al., 2001; 2005; Pagani et al., 2006a,b; Wiejers et al., 2007) 

o Early Eocene Climatic Optimum (EECO - 52 to 50 Ma BP - Lowenstein & 

Demicco, 2006, Sagoo et al., 2013)  

o Mid-Miocene Climatic Optimum (MMCO - 18 to 16 Ma BP - Flower & 

Kennett, 1994)  

• Periods of sudden cooling  

o Eocene-Oligocene Climate Transition (EOT - 33.7 Ma BP – Lear et al., 

2008; Liu et al., 2009)  

o Middle Miocene Climate Transition (MMCT - 14.8 to 12.9 Ma BP - 

Flower & Kennett, 1994; Zachos et al., 2001; Micheels et al., 2007).   

• Orbitally forced Glacial/Interglacial Cycles (Pleistocene 2.6 Ma to 10 Ka BP – 

Clark et al., 1999) 

These events are well represented in terms of magnitude and timing in the Zachos 

compilation curve of δ18O benthic oxygen isotopes (Zachos et al., 2001; 2008).   

The Paleogene world began free of permanent ice caps and global temperatures 

elevated by 8 to 12°C compared to the present day (Zachos et al., 2001; 2008).  It was 

punctuated with periods of rapid warming such as the PETM and more stable warm 

climate periods such as the EECO.  The warming at the PETM was mainly caused by the 

massive release over 10 Kyrs of greenhouse gases (3000 to 6800 Pg of carbon - 

Panchuck et al., 2008; Zeebe et al., 2009).  The source of which was most likely from 

methane hydrates (Zachos et al., 2001), indicated by a negative carbon isotope 

excursion in globally distributed records (Kennett & Stott, 1991; Bowen et al., 2004; 

Pagani et al., 2006a,b; Sluijs et al., 2007; Dunkley-Jones et al., 2010).   

At 33.7 Ma, a rapid large cooling transition took place at the EOT and the first evidence 

for a sustained ice sheet on East Antarctica is detected (Zachos et al., 1996; Lear et al., 

2000; 2008; DeConto & Pollard, 2003).  A possible driver was the opening of the Drake 

passage and Tasman ocean gateway at this time triggering the development of the 

Antarctic Circumpolar Current (ACC), which isolates Antarctica and the Southern Ocean 

from warmer sub-tropical waters, allowing the development of a cooler Antarctic 
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climate (Kennett, 1977; Katz et al., 2011).  Based on modelling studies supported by the 

data from a boron isotope record (Pearson et al., 2009), the cooling was also driven 

through atmospheric CO2 declining through a 750 ppmv threshold enabling Antarctic 

ice to grow (DeConto & Pollard, 2003; DeConto et al., 2008).   

The climate stabilised through the Oligocene and entering the Miocene epoch a period 

of warming occurred at the MMCO (approximately +6°C with a weakened equator to 

pole gradient - Flower & Kennett, 1994, Bruch et al., 2007) with a permanent but not 

extensive ice sheet on Antarctica (Flower & Kennett, 1994; Zachos et al., 2001).  The 

Miocene climate then cooled through the MMCT before stabilising in the Pliocene epoch 

which saw East Antarctic ice sheets at 50% of their modern size and the development 

of ice on Greenland (approximately 33% of present size - Dowsett et al., 1999; 2005).   

The causes of warming and cooling in the Miocene could be due to several Earth system 

drivers.  CO2 has been shown to be a driver of many warm climate changes (Shellito et 

al., 2003).  Kurschner et al. (2008) showed results from stomatal indices that indicated 

that Miocene climate and CO2 displayed long term coupling.  However it is not easily 

reconstructed in the Miocene with values from alkenones suggesting pre-industrial 

level concentrations throughout the Miocene for both the MMCO or MMCT (Pagani et 

al., 2005; LaRiviere et al., 2012).  The research indicates that temperature and CO2 was 

decoupled during the Miocene (Pearson & Palmer, 2000) and that the climate changes 

were driven by changes in ocean gateways or orography.  Gateways such as the Central 

American Seaway and the Tethys Ocean affect ocean heat flow (Flower & Kennett, 

1994; Bice et al., 2000; Von der Heydt & Djikstra, 2006; Herold et al., 2008; 2012) while 

orographic change through the dynamic uplift of the Himalayas & Tibetan Plateau 

(Currie et al., 2005), the central Andes (Gregory-Wodzicki, 2000) the Alps (Kuhlemann 

et al., 2006) or the North American cordillera (Foster et al., 2010) during the Miocene, 

caused changes to atmospheric circulation, heat distribution and precipitation (Quade 

et al., 1989; Spicer et al., 1990; Harrison & Yin, 2004; Harris, 2006; Jimenez-Moreno et 

al., 2008; Foster et al., 2010).   

These changes would have led to impacts on Miocene climate and vegetation (Dutton & 

Barron, 1997; Pound et al., 2011).  However, other CO2 reconstructions such as data 

collected from stomatal indices or pedogenic carbonate display much greater variation 

in Miocene CO2 (Kurschner et al., 1996; 2008; Ekart et al., 1999).  Modelling by You et 

al. (2009) and van de Wal et al. (2011) suggests that CO2 was 450 to 580 ppmv during 

the Miocene.  It is most likely that the Miocene climate was the response to a 

combination of changes: CO2, orography and ocean circulation along with feedbacks 
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from vegetation that in some regions may have been greater than the CO2 forcing 

(Henrot et al., 2010).  These variables mean that it is hard to ascertain the exact causes 

of climate change during the Miocene making it hard to investigate the climate system 

due to uncertainty in the drivers of the climate change.   

Figure 1.1. The Lisiecki-Raymo (LR04) stack of 57 benthic δ18O records over the last 5.2 
million years (Lisiecki & Raymo, 2005).  Benthic δ18O records represent changes in 
bottom water temperatures and global ice volume with larger values representing cooler 
temperatures and/or increased ice volume.  The transition from Pliocene warm climates 
to orbitally forced glacial/interglacial cycles is clearly displayed between 2.8 and 1.8 Ma 
BP.   

The Pliocene epoch is the period of geological time from 5.3 to 2.6 Ma BP (Gradstein & 

Ogg, 2009), prior to the Pleistocene epoch (Dowsett et al., 2005; Lawrence et al., 2006; 

Lunt et al., 2009).  A wide range of data and modelling studies have shown that the 

Pliocene had a climate approximately 3°C warmer than the present day (i.e. Dowsett et 

al., 1996; Sloan et al., 1996; Haywood et al., 2000a; 2009a; 2013a; Haywood & Valdes 

2004; Lunt et al., 2008a,b).  The warming was concentrated at higher latitudes with 

palaeo-data suggesting that Pliocene tropical oceans were a similar temperature to the 

present day.  Enhanced poleward heat transport was the proposed method for the 

distribution of heat to higher latitudes which were up to 14°C warmer than the present 
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day (Dowsett & Poore, 1991; Dowsett et al., 1992; 1994; Dowsett, 2007; Dowsett & 

Robinson, 2006).  The cause of this climate change was addressed through a novel 

modelling strategy to produce factorisations of the components of mPWP warming, 

which attributed most warming to CO2 (Lunt et al., 2012a) with elevated 

concentrations similar to the present day levels (i.e. Pagani et al., 2010; Seki et al., 

2010).   

The climate of the Pleistocene (2.6 Ma BP to 11,500 years BP) is dominated by orbital 

forcing.  The Pliocene-Pleistocene boundary was redrawn in 2009, as the emergence of 

climate dominated by these orbitally forced glacial cycles were detected beginning in 

late Pliocene climate reconstructions (Figure 1.1).  As a result the last 800 Kyrs (2.6 to 

1.8 Ma BP) were redefined from the Pliocene to the Pleistocene (Gradstein & Ogg, 

2009).  Pleistocene orbital forcing was initially dominated by the 41 Kyr cycle, but after 

the mid-Pleistocene Transition (MPT- 1.25 to 0.75 Ma BP), the 100 Kyr cycle began to 

force climate (Clark et al., 2006).  The last 800,000 years of Pleistocene climate are 

recorded in the ice cores such as Vostok & EPICA on Antarctica (Wolff et al., 2010).  

These cores hold information on the atmospheric composition, temperature, 

precipitation, aerosol deposition and the identity of the aerosol sources (volcanic, 

cosmogenic or anthropogenic – Petit et al., 1999).  Research into ice cores has shown a 

correlation between greenhouse gas concentration and temperature changes (Petit et 

al., 1999), with the glacial/inter-glacial events being triggered by changes in orbital 

forcing and amplified by the resulting climate feedbacks from greenhouse gases 

(Ruddiman, 2003).   

An important consideration for the changes at the Plio-Pleistocene boundary is the 

cause of the change in the influence of orbital forcing, which dominated the climate 

during the Pleistocene, which it had not done during the Pliocene despite evidence that 

the forcing was apparent (Lisiecki & Raymo, 2005 – Figure 1.1).  The suggested driver 

is a decrease in CO2 from ~400 ppmv to 280 ppmv allowed the formation of large 

Northern Hemisphere ice sheets and their resulting ability to amplify climate changes, 

causing the glacial/inter-glacial cycles (Lunt et al., 2008a,b).  It is suggested by 

Ruddiman (2003) that ice sheets should have begun to reform approximately 10,000 

years ago, but that early human CO2 and CH4 emissions stalled the growth and avoided 

a glacial climate.  The theory fits with the hypothesis that greenhouse gases act as 

threshold for ice sheet formation and orbital forcing driving of climate.   

Whether reconstructing palaeoclimate environments from modelling or data, there are 

several important considerations when choosing a time period to reconstruct.  Firstly, 
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changes to continental configurations can have a significant impact on the flow of 

atmospheric and oceanic currents which can radically affect the climate system (Foster 

et al., 2010; Hill et al., 2011).  As a result there are no analogues between the 

Palaeocene or Eocene and the anthropogenic warming of the present day (Haywood et 

al., 2011b).  Secondly, when reconstructing past environments, a vital tool for 

validating coupled atmosphere-ocean model simulations or for forcing atmosphere 

only simulations is palaeo-data.  The data is often produced from sediment cores, 

drilled from the ocean floor.  However, the older record is sparser, and the reduced 

amount of available data for periods such as the EECO, requires solutions such as 

producing “background” records from before the event to increase available testing of 

the model (Lunt et al., 2012b).  With a young Atlantic ocean and most of the Pacific 

below the calcium compensation depth (Palike et al., 2012), there are fewer Eocene 

sediments which contain calcite shelled organisms available for producing 

reconstructions of climate, leaving records with hiatuses (Coxall et al., 2005).  Where 

proxy data is available, there are considerations regarding any post-depositional 

processes with diagenesis potentially altering the signals produced from analysis of the 

proxies.  If unknown or not accounted for this could lead to a misleading reconstruction 

(Pearson et al., 2001; Williams et al., 2005; Lunt et al., 2008c).  Finally, any proxies 

which start from the early geological principle of uniformitarianism (Hutton, 1788; 

Lyell, 1830) using techniques to develop temperature data from species such as the 

modern analogue technique (MAT – Hutson, 1979; Dowsett et al., 1999), become 

harder in deeper time periods.  The older the sediments, the more likely a species is 

extinct or evolution has altered the habits of the species being analysed and therefore 

the inferred data on the climate preferences of the palaeo-species (Murray, 2001; Des 

Marias & Juenger, 2010).   

Ideally, a palaeoclimate modelling study requires a prolonged warmer than present 

climate with a near modern palaeogeography with access to extensive palaeo-data and 

where the cause of the warming is identified and well understood.  The only period of 

time which fits this requirement, is the Pliocene, and specifically a sub-section, the mid-

Pliocene Warm Period.   

1.2.2. mid-Pliocene Warm Period (mPWP) 

The mid-Pliocene Warm Period (mPWP) was the last climatically stable period directly 

prior to the cyclical Pleistocene glacial/interglacial climate and as such is of significant 

interest to palaeo-climatologists. Lasting from 3.264 to 3.025 Ma BP, it is a period of 

sustained global mean annual surface temperatures approximately 3°C above the pre-
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industrial levels with a very similar palaeo-geography to the present day (Haywood et 

al., 2000a; Haywood & Valdes, 2004; Haywood et al., 2009a; Dowsett et al., 2010b).  The 

mPWP is the most parsimonious warm climate epoch for investigating the possible 

effects of anthropogenically forced climate change in the 21st century (Haywood et al, 

2002b; 2009a,b; Haywood & Valdes, 2006; Dowsett, 2007; IPCC, 2007; Dowsett et al., 

2009b; Lunt et al., 2009).   

The Pliocene has other advantages that make it particularly suitable for study in this 

way.  Firstly there is an extensive palaeo-environmental dataset available for use in 

producing boundary conditions and datasets for model testing, made available by the 

United States Geological Survey (USGS) Pliocene Research Interpretation and Synoptic 

Mapping (PRISM) group.  Recently released in its 4th iteration (PRISM3D – Dowsett et 

al., 2005; 2009a; 2010a; Dowsett, 2007; Hill et al., 2007; Chandler et al., 2008; 

Salzmann et al., 2008), this dataset compiles the most comprehensive data 

reconstruction for sea surface temperatures (SSTs), deep ocean temperatures, sea level, 

vegetation, orography and ice sheets in a climate system as warm as that projected for 

the late 21st century.  Secondly the Pliocene’s relevance for study comes from it is level 

of atmospheric CO2, which was elevated compared to the pre-industrial and was the 

most likely reason for the temperature of the Pliocene.  Estimates of Pliocene 

atmospheric CO2 range from 300 to 425 ppmv (Raymo et al., 1996; Pagani et al., 2010; 

Seki et al., 2010), despite the uncertainty in the different proxy methods we can be 

confident that CO2 was higher in the Pliocene than during the pre-industrial (see 

Section 1.4.4).   

The combination of warmer climate and availability of palaeo-data, makes the mPWP a 

fascinating test bed for palaeoclimate modelling experiments with the potential for 

developing both models and palaeo-environmental reconstructions.   

1.3 – Modelling the Pliocene 

1.3.1. Why Model the Pliocene? 

The mPWP is also often described as an equilibrium climate (i.e. IPCC, 2007; Pagani et 

al., 2010), a time when the climate system has fully responded to the perturbations in 

radiative forcing, which within the mPWP reflects both the response to Charney and 

Earth System Sensitivities (see Section 1.1).  Therefore, the mPWP offers an 

opportunity to understand the response of the Earth’s climate system to a perturbation 

in its radiative forcing, akin to the impacts of present climate change (IPCC, 2007).   
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Within the mPWP the change in radiative forcing (compared to the pre-industrial) is 

largely the response to an increase in concentrations of atmospheric CO2, with some 

influences from changes in the land surface & orography (Haywood & Valdes, 2004; 

Lunt et al., 2012a).  Haywood & Valdes (2004), determined that for a Pliocene minus 

pre-industrial mean annual temperature anomaly of 3.1°C, that 1.9 Wm-2 radiative 

forcing change was caused by CO2 , with surface albedo changes (2.3 Wm-2) and cloud 

cover (1.8 Wm-2) the other causes of the radiative forcing change.  Lunt et al. (2012a), 

utilising increased computer power to run sensitivity studies, applied a factorisation 

approach, determined that Pliocene mean annual warming was dominated by was CO2 

(36 to 61%).  There were also strong contributions from orography (0 to 26%), 

vegetation (21 to 27%) and ice sheets (9 to 13%).   

Micropalaeontological studies (Dowsett & Poore, 1991) identified that in the North 

Atlantic, the Pliocene was significantly warmer than the modern day and the last 

interglacial period.  In conjunction with data produced by the PRISM groups early 

Northern Hemisphere reconstructions (Dowsett et al., 1994), Chandler et al. (1994) 

were able to run the NASA Goddard Institute for Space Studies (GISS) Atmosphere only 

General Circulation Model (AGCM) for the Pliocene.  They modelled anomalies to the 

present day control simulation of 8 to 12°C warmer in the Pliocene Arctic, while 

maintaining close to modern temperatures at the equator.  The work developed into 

the first global reconstruction from the PRISM group (see Section 1.3.3 for iterations 

and developments of this work), which was used to run the US National Center for 

Atmospheric Research (NCAR) GENESIS AGCM to produce the first global simulation 

for the Pliocene (Sloan et al., 1996).  The work reinforced the findings of early 

modelling and the PRISM groups early reconstructions, reconstructing the Pliocene 

world as approximately 3.6°C warmer than the present day control simulations.   

However, as shown in Section 1.2, the Cenozoic era provides many examples of periods 

of time that could be studied and modelled for understanding the climate system, with 

either warmer sustained stable climates or transient climate states which are closer in 

form to the effects of anthropogenic warming (Haywood et al., 2011b).  The Pliocene 

presents the 'best case' for modelling climates with the intention of improving our 

understanding of the future climate and climate models.  The other sustained stable 

warm climates such as the MMCO or EECO or transient climates such as the PETM are 

sufficiently further back in geological time for the effects of plate tectonics to have 

made noticeable changes to the orography and bathymetry.  The closure of the Central 

American Seaway through the Miocene into the early Pliocene caused the reduction in 

and the eventual ceasing of two way water flow between the Pacific and the Atlantic, 
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which aided the formation of North Atlantic Deep Water (NADW) and thermohaline 

circulation (THC – Lutz, 2011).  Therefore, periods of transient palaeoclimate change 

are lacking a representation of a key modern climatological feature.  Additionally, 

further back in time the spatial and temporal availability of data becomes increasingly 

sparse, which impedes both the creation of boundary conditions for models and data 

for testing the model against (Huber & Caballero, 2011; Lunt et al., 2012b).  While the 

glacial/interglacial cycles of the past 2.6 Myrs, and especially the last 800 Kyrs, have 

greater data coverage than the Pliocene and a transient climate, the climate change is 

not as extreme as the present anthropogenic events (Haywood et al., 2009a).   

The Pliocene is recent enough to have a near modern orography and land-sea mask, as 

well as having a climate warmer than the modern, similar to that which is predicted by 

the Intergovernmental Panel on Climate Change (IPCC) as being “very likely” by 2100 

(IPCC, 2007).  It also has the most extensive global data coverage through the PRISM 

palaeo-environmental reconstructions of any warm period in the geological record.   

1.3.2. Recent Pliocene Climate Modelling 

The development in the latest versions of non-flux adjusted fully coupled atmosphere 

ocean general circulation models (AOGCMs i.e. HadCM3, CCSM3) around the year 2000, 

coupled with increased certainty about the effects of greenhouse gases on the climate, 

saw an increase in palaeoclimate modelling and modelling of the mPWP.  The PRISM2 

boundary conditions, first in the AGCM HadAM3, then in the slab ocean version 

HadSM3 and the AOGCM HadCM3 were used to model the Pliocene climate.  Haywood 

et al. (2000a,b; 2001; 2002a,b,c) and Haywood & Valdes (2004; 2006) investigated 

global and regional climate changes during the mPWP and used AOGCM simulations to 

force an offline vegetation model (BIOME4).   

Developments followed this work such as Lunt et al. (2008a,b) coupling mPWP 

simulations in the HadCM3 AOGCM to an offline ice sheet model. Glimmer v1.04, was 

used to investigate Pliocene ice sheets and how different boundary condition changes 

(CO2, ocean gateways, orography) could affect the onset of Northern Hemisphere 

glaciation (NHG) at the Plio-Pleistocene boundary (Lunt et al., 2008a,b).  Climate 

models have also been used in conjunction with offline models such as BIOME4, or the 

British Antarctic Survey Ice Sheet Model (BASISM) to develop the PRISM dataset for ice 

sheets (Hill et al., 2007) and vegetation (Salzmann et al., 2008; 2009).  Work has also 

been undertaken studying known annual variability in the climate system such as the El 

Nino Southern Oscillation (ENSO – Haywood et al., 2007a; Bonham et al., 2009; 
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Scroxton et al., 2011), to investigate how such systems respond in a warmer world.  

Most recently, Lunt et al. (2010) investigated the relationship between Charney 

sensitivity and Earth System Sensitivity (ESS) during the Pliocene (Section 1.1).  Lunt et 

al. (2012), investigating the causes of Pliocene warmth produced factorisation analysis 

of Pliocene warming (Section 1.3.1) and also using an energy balance analysis, they 

determined the relative regional influence of greenhouse gas, orographic, vegetation 

and ice sheet changes.   

For example, Lunt et al., (2012) determined ice sheet changes were the dominant form 

of warming in the high southern latitudes, whilst orography and CO2 dominated 

Northern Hemisphere polar amplification.  There were also Pliocene changes in 

radiative forcing from the effect of changes in the orbital forcing.  Performing similar 

analyses on the PlioMIP MME, Hill et al. (2014) determined that the trends across the 

ensemble of models were consistent, but with varying degrees of influence.  Tropical 

warming in the mPWP was dominated by greenhouse gas forcings.  However, warming 

was enhanced by cloud influences on planetary albedo with varying degrees of impact 

across the ensemble members (Hill et al., 2014).  However, at higher latitudes, Pliocene 

warming, whilst still influenced by the range of energy balance components, the 

dominant forcing was from the clear sky albedo, although there was a slight offset of 

this warming from cloud albedo.  These forcings are strongly linked to the distribution 

of ice sheets and vegetation, boundary condition forcings, highlighting the importance 

of the specified boundary conditions.   

The majority of this work has been based on simulations conducted on a single model 

and the results from this one model simulation or set of simulations used to look at the 

climate impacts being investigated.  The Pliocene Model Intercomparison Project 

(PlioMIP), brings together 14 modelling groups worldwide to address this, running 

Pliocene simulations based on the same initial and boundary conditions (Haywood et 

al., 2010, 2011a).  The project allows the study of several aspects of the mPWP climate 

using a range of structurally different models in a multi-model ensemble (MME), 

similar to projects such as the Coupled Model Intercomparison Project (CMIP - Meehl et 

al., 2000) and the Palaeoclimate Model Intercomparison Project (PMIP - Braconnot et 

al., 2007).  A sub-study from the PlioMIP project, the Pliocene Ice Sheet Model 

Intercomparison Project (PlisMIP - Dolan et al. 2012) aims to investigate the responses 

of ice sheet models to reconstruct Pliocene ice sheets (see Section 1.3.3 iv).   

Finally, increases in computing power have allowed the early development of transient 

simulations through the Pliocene using Earth system models of intermediate 
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complexity (EMIC).  The CLIMBER-2 EMIC (Petoukhov et al., 2000; Ganopolski et al., 

2001) was used to investigate the change in Pliocene climate due to CO2 forcing and 

response changes in vegetation and ice sheets through transient simulations 

(Ganopolski et al., 2011; Willeit et al., 2013).  The results indicated that global mean 

annual Pliocene warming (compared to pre-industrial) varied between 1.9 and 2.8°C 

due to changes in orbital forcing and resulting feedbacks involving ice sheets and 

vegetation.  The 41 kyr (obliquity) Milankovitch orbital cycle is the dominant cycle 

within the mPWP palaeo-archives (i.e. the Lisiecki-Raymo stack, Figure 1.1), but the 

effects on solar insolation and resulting feedbacks on mPWP climate are non-trivial 

(Willeit et al., 2013).  The developing ability to reconstruct mPWP climate with orbital 

resolution and to also transiently model across orbital cycles has led to the 

development of the first Pliocene time slice (Haywood et al., 2013b).  The time slice 

represents a paradigm shift in the methodology for modelling the Pliocene in the future 

(see Section 1.3.3 vii).  By selecting a time slice, environmental factors that change on 

orbital timescales, such as ice sheets and vegetation, affects on the palaeo-data are 

reduced, allowing a better comparison between the palaeodata and the model 

simulations (Haywood et al., 2013b – see Section 1.3.3 vii).   

1.3.3. The Evolution of the PRISM Palaeo-Environmental Reconstruction 

i) PRISM Overview 

The PRISM project was created with two primary goals.  First to identify the causes and 

variability in the mPWP climate and the second was to create a dataset that could be 

used by climate modelling groups to investigate the mechanisms of the climate change 

(Dowsett et al., 1999).   

Following the modern day, Last Interglaciation (LIG) and Pliocene reconstruction in 

Dowsett & Poore (1991) the PRISM group was created and released a Northern 

Hemisphere only reconstruction on an 8° x 10° grid using marine and terrestrial 

proxies (PRISM0 - Dowsett et al., 1994).  A global reconstruction developed from this 

(PRISM1 - Dowsett et al., 1996) and was further developed in the PRISM2 dataset 

(Dowsett et al., 1999).  Both PRISM1 & PRISM2 were produced on 2° x 2° grids for use 

in climate models as boundary conditions.  The continuing improvement in computing 

power allowed climate models to include fully coupled atmosphere and oceans as 

standard.  Combined with developments in palaeo-proxy techniques, the PRISM3D 

reconstruction was developed.  PRISM3D has four major developments compared to 

previous PRISM reconstructions (Dowsett et al., 2010a): comprehensive vegetation 



 

(Salzmann et al., 2008) and ice sheet (Hill et al., 2007) reconstructions, both created with the aid of a data-model hybrid methodology and a deep ocean 

temperature reconstruction (Dowsett et al., 2009a; 2010a).  PRISM3D remained on the 2° x 2° grid  (with deep ocean temperatures on a 4° x 5° grid) 

with a sea surface temperature (SST) reconstruction using the same methodology as PRISM2 (Dowsett et al., 2009a).  It also included a Mean Annual Sea 

Surface Temperature (MASST) dataset for point by point comparison with outputs from climate models (Dowsett et al., 2010b).  A summary of the 

PRISM datasets and developments in number and type of localities is shown in Table 1.1.   

 

Table 1.1. The evolution of the key components of the PRISM palaeo-environmental reconstructions over the course of the project to date.  The references 
indicate the key papers for each reconstruction.  Deep ocean temperatures represent water depths of 1000 to 4500m.   

Version Resolution Coverage 
Sea Surface 

Temperatures 
Deep Ocean 

Temperature 
Vegetation Ice Sheets Key References 

PRISM 0 8° x 10° 
Northern 

Hemisphere 
24 sites -- 45 Sites Sea Level Estimates Dowsett et al., 1994 

PRISM 1 2° x 2° Global 64 Sites -- 74 Sites Sea Level Estimates 
Dowsett et al., 1996; Thompson & 

Fleming, 1996  

PRISM 2 2° x 2° Global 77 Sites -- 74 Sites 
Sea Level Estimates 

& Modelling 
Dowsett et al., 1999 

PRISM3D 2° x 2° Global 115 sites 
27 Sites 

4° x 5° Resolution 
202 Sites 

Data-Model Hybrid 
Approach. 

Dowsett, 2007; Dowsett  et al., 
2010a,b; 2012; Salzmann et al., 

2008; Hill et al., 2007 

15 
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ii) Sea Surface Temperature Reconstruction 

The PRISM project originated out of a North Atlantic SST reconstruction and SSTs have 

remained the flagship data of the project ever since.  Initially used to act as the SST 

boundary condition for use in AGCMs, the SST component of the PRISM reconstruction 

has continued to play a prominent role with the development of AOGCMs, becoming a 

key data-model comparisons (Dowsett et al., 2010b).  Primarily, SST data is generated 

from microfossils extracted from sediment cores obtained from the ocean floor by the 

Integrated Ocean Drilling Program (IODP) and its predecessors the Deep Sea Drilling 

Project (DSDP) and the Ocean Drilling Program (ODP).  These international projects 

drill cores throughout the global oceans and the data generated from the cruises is 

widely used in palaeoclimate reconstructions such as the Zachos compilation curve 

(Zachos et al., 2001) or in individual research projects using a single site such as Reed-

Sterrett et al. (2010 – ODP site 1022) as well as the PRISM project.  The PRISM team 

take a sediment core and identify the PRISM section, defined as 3.264 to 3.025 Ma BP 

using the transition of oxygen isotope stage boundaries M2/M1 to G21/20 (Lisiecki & 

Raymo, 2005; Dowsett et al., 2010a).  The period is also identified by other 

biostratigraphic and magnetostratigraphic markers (Dowsett et al., 2010a).  The length 

of the period and its boundaries allow for easy correlation between sections that 

originate from all over the globe (Dowsett & Poore, 1991).   

Once the PRISM section has been identified in a core, the first task is to identify the 

species in the section.  Faunal identification could be a source of error due to 

investigators having different opinions on a species, however this is negated in the 

PRISM dataset by having a principle investigator who re-identifies and cross checks all 

samples to ensure taxonomic consistency across every analysis (Dowsett, 2007; 

Dowsett et al., 2010a).  The PRISM team creates taxonomic grouping schemes, assumed 

to have similar environments across taxonomic categories (Dowsett, 2007).  The 

decisions made in the PRISM reconstruction have meant that if this assumption creates 

an error it will be an error that underestimates warming (Dowsett, 2007), as the 

warmer tolerance microfossils are more fragile and under go dissolution preferentially 

resulting in a cooler estimate of SSTs (Dowsett et al., 2012)  

Once the taxonomy is completed, the estimation of SSTs is undertaken using a variety 

of methods.  The transfer function technique is a series of equations that relates 

microfossil abundances in modern (or core-top) samples to the oceanographic factors 

such as SST and salinity (Dowsett, 2007).  Created by Imbrie and Kipp (1971), this 

technique has been extensively used in palaeoclimate research in projects such as 
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CLIMAP (1981; 1984), LIG studies (i.e. Briskin & Berggren, 1975; Ruddiman et al., 

1986) and initial work on Pliocene-Miocene samples (Poore, 1981).  The PRISM group 

developed these initial studies into 18 counting categories of modern and Pliocene taxa, 

to apply the technique to the mPWP (Dowsett & Poore, 1990; Dowsett, 1991; 2007; 

Dowsett et al., 1996; 1999).  The equations are then used to generate a temperature 

reconstruction and the equations can be tested to produce an estimate of the standard 

error and seasonal sensitivity of the transfer functions (Dowsett & Poore, 1990; 

Dowsett, 2007).  Another method is the modern analogue technique (MAT – Hutson, 

1979; Dowsett & Robinson, 1998), where a relationship can be shown statistically 

between a Pliocene species and its modern relation enabling Pliocene SSTs to be 

reconstructed (Dowsett et al., 1999; Dowsett, 2007).  For the mPWP some species are 

now extinct, requiring modern species to be grouped to allow comparison with 

Pliocene taxa (Dowsett & Poore, 1990; Dowsett, 1991; Dowsett & Robinson, 1998).  

Despite this potential weakness, MAT has been shown to compare well to PRISM and 

modelling estimates of Pliocene SSTs (Marques De Silva et al., 2010).   

Once the samples have been calibrated and used to produce estimates of SST, then the 

data that is representative of the 300kyr PRISM time slab must be chosen (Dowsett et 

al., 1999; Dowsett, 2007).  The PRISM team decided to focus on a reconstruction of 

mPWP mean interglacial conditions to minimise potential errors from correlating 

peaks and troughs between different sample sites widely separated geographically 

(Dowsett et al., 1994; 1996; 1999; Haywood et al., 2002a; Dowsett, 2007).  Termed the 

“Peak Averaging Method” (Dowsett & Poore, 1990), it targets the warm peaks in an SST 

time series through a core (where a warm peak is a sample warmer than those directly 

above or below it in the core - Dowsett & Poore, 1991; Dowsett et al., 2005; Dowsett & 

Robinson, 2006; Dowsett, 2007).  All the values that are considered to be valid 

estimates are averaged to produce the warm peak average for that core site (Dowsett, 

2007).  The validity comes from a test of the communality of the data.  Communality is a 

function of the explanation of the variance in the data by the factor model and ranges 

from 0 to 1 (Dowsett et al., 2005; Dowsett, 2007).  An acceptable communality 

threshold is used by the PRISM team of 0.7, equating to a minimum of 84% of the 

variance being explained by the factor model (Dowsett, 2007), values failing to achieve 

that level are not included in the reconstruction (Dowsett & Robinson, 1998; Dowsett 

et al., 2005; Dowsett, 2007).  From the warm peaks the ‘August’ (summer) and 

‘February’ (winter) temperatures are produced (Dowsett, 2007).   

These two peak averages are combined with other proxy techniques for estimating SST 

such as magnesium/calcium palaeothemometry (Mg/Ca) and alkenones (Dowsett, 
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2007; Dowsett et al., 2010a,b).  Mg/Ca is a method which uses the ratio of the observed 

increase in biogenic calcite as temperature increases, a process observed in laboratory 

culture experiments and in the analysis of Quaternary foraminifera (Lear et al., 2000; 

Lear, 2007).  Magnesium substitutes for calcium in the carbonate lattice of a calcite 

shelled organism such as foraminifera as the temperatures increase (Lear et al., 2000; 

Lear, 2007).  Mg/Ca is biased by the ratio of Mg/Ca in seawater, which can not be 

completely resolved for palaeo-oceans.  The uncertainty from this is is accounted for in 

the Mg/Ca calibration curves, but is also reduced because of the long residence time of 

both ions in the ocean (Lear, 2007).   

Alkenone unsaturation index palaethemometry is based on long chained organic 

compounds (lipids) which are created by some species of haptophyte algae (Lawrence 

et al., 2007; Pagani et al., 2010).  These lipids come in different lengths of carbon chains 

(C37, C38 & C39) and a different number of carbon double bonds.  While C38 and C39 lipids 

are also temperature sensitive, the C37 lipid is analytically easiest to calculate a 

temperature relationship ratio from.  Using C37 (which has between two and four 

double bonds), a ratio (Uk37) is calculated by the number of two double bond lipids to 

the sum of two and three double bond lipids.  As the Uk37 ratio increases, the alkenone 

unsaturation decreases (there are fewer double bonds) and this is shown to relate to an 

increase in near surface ocean temperatures (Lawrence et al., 2007).  The alkenones 

are considered ‘near surface’ temperature proxies as the algae live in the photic zone, 

but at a depth which is hard to determine as it is based upon the nitrate supply to the 

surface waters from deep waters (Oukouchi et al., 1999).  At high and low latitudes, 

alkenones are formed near the surface, but at mid-latitudes they are closer to the 

thermocline (Oukouchi et al., 1999).  Both these proxies lack seasonality and where 

faunal data exists, are considered supplementary information to strengthen confidence 

in the reconstruction (Dowsett et al., 2010b).  However, for some sites in the dataset, 

there is insufficient faunal data, resulting in these proxies being used.  Where Mg/Ca or 

alkenones have been used, the MASST reconstruction accepts a potential error of +/- 

1.2°C for Mg/Ca and +/- 1.3°C for alkenones (Dowsett et al., 2010b).   
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Figure 1.2. The geographical location of the PRISM3D MASST sites reproduced from 
Dowsett et al. (2012).  The shape of each site indicates which ocean basin each site 
originates from (Circles = Atlantic; Squares = Pacific; Triangles = Indian).  The colour of 
the shape reflects the confidence rating assigned to each site by the PRISM team.   

The data for each site is collated and although no one proxy is considered to be better 

than another, the PRISM3D MASST dataset ideally uses the February and August values 

and a derived faunal mean SST value, which is supplemented by Mg/Ca and/or 

alkenone proxies that fall between the February and August values (Dowsett et al., 

2010b).  At a few sites, the alkenone or Mg/Ca proxies do not fall between the February 

and August values.  In those cases, each sites mean annual value was determined using 

expert judgement on a case by case basis assessing the constituent proxies and the 

possible factors that could have affected their value in the water column or during post 

processing.  Details on these sites and how the final analysis was derived can be found 

in Dowsett et al. (2010b).   

The strength of the PRISM3D MASST reconstruction is the variety and flexibility of 

techniques and species used while adhering to methods to minimise potential errors.  

Different analytical techniques perform better in certain oceans, i.e. MAT in the Pacific 

Ocean (Dowsett & Robinson, 1998; Dowsett, 2007) with transfer functions used 

extensively in the Atlantic Ocean (Dowsett & Poore, 1990; Dowsett et al., 1994; 1996; 

Dowsett, 2007).  The inclusion of additional proxies ensures that no single 

environmental variable can affect the mean annual estimate for the site (Dowsett et al., 

2010b).  The confidence of the PRISM team in the MASST data points has been assessed 

based upon the quality of the dating, the quantity and preservation of the micro-fossils 
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and the techniques used (Dowsett et al., 2012).  The MASST data, a mean annual value, 

means that sites excluded from the initial PRISM3D global climate reconstruction 

(Dowsett et al., 2010a) as they do not provide seasonal information are included in the 

MASST dataset as they do include mean annual data.  The MASST dataset therefore has 

increased geographical coverage shown in Figure 1.2 (Dowsett et al., 2010b).   

The PRISM3D MASST dataset is required for data-model comparisons with AOGCMs, as 

climate model output is generally assessed through creating mean annual averages for 

variables over an averaging period (usually the last 30 years of simulation).  The 

traditional seasonal PRISM reconstruction, important for understanding the Pliocene 

oceans and as a boundary condition for AGCMs, is not used as frequently for 

comparison with AOGCMs.  As well as in this thesis, the MASST dataset is being used for 

data-model comparisons in other Pliocene modelling studies (Dowsett et al., 2012; 

Haywood et al., 2013a).   

iii) Deep Ocean Temperatures 

The deep ocean temperature reconstruction is presently being developed by the PRISM 

team as part of work to develop our understanding of palaeo-ocean circulation, salinity 

and temperatures (Dowsett et al., 2010a).  Initial work on 27 DSDP and ODP sites 

covering water depths from 1000m to 4500m was done using Mg/Ca analysis of a 

bottom water ostracode genus Krithe (Cronin et al., 1996; 2005).  Early work using 

deep sea temperatures in the model initialisation (Dowsett et al., 2006) has reproduced 

conditions of increased North Atlantic Deep Water formation and SSTs seen in the 

PRISM data reconstructions for deep water masses and SSTs (Dowsett, 2007).   

iv) Ice Volume & Sea Level 

A range of geological evidence indicates that mPWP sea level was different to the 

present day, with reduced ice sheet volume contributing the majority of the sea level 

rise.  mPWP sea level estimates (Table 1.2) fall into a bracket of 20 to 30m above mean 

sea level (AMSL) for the mPWP, with PRISM reconstructions since PRISM2 using an 

mPWP sea level of +25m (+/- 17m) AMSL (Dowsett et al., 1999; 2010a; Dowsett, 2007; 

Haywood et al., 2010; 2011a).   
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Sea Level Reconstruction 

(Above Mean Sea Level - 

AMSL) 

Locality Used Reference 

35m +/- 18m Orangeburg Scarp Dowsett & Cronin, 1990 

20m to 25m Eneetak Atoll Wardlaw & Quinn, 1991 

25m Atlantic Coastal Plain & 

Benthic δ18O 
Krantz, 1991 

30m LR04 Benthic δ18O Stack Raymo et al., 2009 

15m to 30m IODP Sites 925 & 926 Dwyer & Chandler, 2009 

30m Sediments in Wangauni 

Basin, New Zealand 

Collated in Dowsett et al., 

2010a 

22m Statistical Reanalysis of 

Previous Estimates 
Miller et al., 2012 

Table 1.2. Sea level estimate for the mid-Pliocene Warm Period and the locality the 
estimate is based upon.   

Using the estimate for sea level, the next phase of the reconstruction focuses on global 

ice volumes.  A variety of proxies are used to determine the ice volume and extent 

involving coastal geomorphology, climatological reconstruction with ice sheet 

modelling, oxygen isotope analysis and analogue comparison (Dowsett, 2007; Hill et al., 

2007).  In PRISM2, the Greenland Ice Sheet (GrIS) was reduced by 50% (compared to 

modern) giving 4m of sea level rise (Sohl et al., 2009; Haywood et al., 2010).  The West 

Antarctic Ice Sheet (WAIS) is removed completely giving a 6m sea level rise and the 

East Antarctic Ice Sheet (EAIS) is reduced and redistributed to account for the 

remaining 15m of sea level rise (Pollard & DeConto; 2009; Sohl et al., 2009; Haywood et 

al., 2010; 2011a).  Some subtle changes have been made between PRISM2 and 

PRISM3D.  Hill et al. (2007) modelled the Pliocene climate and then coupled this to the 

British Antarctic Survey Ice Sheet Model (BASISM) to generate reconstructions of the 

ice sheet sizes and topographies.  The result was that GrIS contributes an extra 1.6m of 

sea level rise (now 5.6m – Hill, 2009) in PRISM3D.  The EAIS is flattened and extended 

covering a wider area (in comparison with PRISM2), however the ice sheet has a 

smaller volume than in PRISM2.  The result with the maintained total absence of the 
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WAIS is 22m of sea level rise from ice sheet loss in PRISM3D (Dowsett et al., 2010a).  

While considered fixed in the PRISM boundary conditions, it has been shown that the 

ice sheets would have been susceptible to orbital variability and would have waxed and 

waned during the mPWP as the orbital conditions changed (Dolan et al., 2011).  The 

PRISM ice sheet reconstruction as with all elements of the dataset produces an average 

representation of interglacial conditions during the mPWP (Haywood et al., 2010, 

2011a).   

v) Land-Sea Mask & Orographic-Bathymetric Reconstruction 

The land-sea mask in the PRISM3D reconstruction has been developed from the 

PRISM2 reconstruction in which grid boxes were either land or sea.  The areas that are 

100% continental or ocean remain labelled in this way as in PRISM2, but the marginal 

coastal regions have been changed (Haywood et al., 2010).  In PRISM2, the ETOPO5 ‘five 

minute topographic grid’ (Edwards, 1992; Dowsett et al., 1999) was used.  If the 

majority of points in a PRISM grid box (2° x 2°) were above the PRISM +25m AMSL 

estimate then the grid square was determined as ‘land’ and vice versa (Dowsett et al., 

1999).  The shape of coastlines and the appearance of the continents is altered, in a 

similar way to the land-sea mask in a climate model, representing the best estimate for 

a land-sea mask at the time.   

The PRISM team developed this for PRISM3D with the marginal grid boxes becoming 

fractional.  The 100% land or ocean boxes remain the same, but now instead of 

marginal boxes being determined as ocean or land based on analysis of the grids main 

constituent, they are designated as marginal and a fraction of land and sea in the box is 

determined (Haywood et al., 2010, 2011a).  In PRISM3D, continental areas are given 

vegetation data, ice data (where applicable) and elevation with oceanic areas given SST, 

bottom water temperatures and (where applicable) sea ice and the marginal areas 

receive all the relevant data required (both ocean and land data).   

The orography for the land-sea mask is another important element of the 

reconstruction.  The orography of the PRISM3D land-sea mask was changed with the 

Rockies and the Andes raised towards their present day height an increase of 1,500 to 

2,000m (Markwick, 2007; Sohl et al., 2009; Haywood et al., 2010).  The PRISM2 

orography had reconstructed the Rockies as being 50% of their present day height.  

The adjustment was made as a result of research showing that there had been minimal 

change since before the Pliocene (McMillan et al., 2006; Moucha et al., 2008).  The 

surface orography plays an important role in enhancing the warmer climate of the 
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Pliocene caused by the elevated levels of CO2 in the atmosphere, but a lower height of 

the Rockies affects northward heat flow in climate models (Hill et al., 2011).  Modelling 

studies with reduced Rocky Mountains compared to modern have displayed warmer 

and wetter American winters (Kutzbach et al., 1989; Seager et al., 2002; Foster et al., 

2010).  The higher mountains prevent zonal air flow deflecting the jet stream south 

which cools the north east of North America compared to if there was a reduced height 

for the Rocky mountains (Foster et al., 2010).  The contribution of changes in 

orography between the PRISM2 and PRISM3D reconstructions can be tested by altering 

the orographic boundary condition in the model simulations for the Pliocene and a Pre-

industrial control.  For example, Hill et al. (2011) showed that changes in the orography 

of the Rocky Mountains affected the location and the intensity of the North Atlantic 

Oscillation in the model simulations.   

Oceanic bathymetry is also an important boundary condition, controlling the 

development of key water masses in the deep oceans.  The key boundaries in the 

Pliocene ocean are the Central American Seaway (CAS), the Greenland-Scotland ridge, 

the Indonesian Passages and the Bering Strait.  The CAS closure through the gradual 

tectonic uplift of the Isthmus of Panama prevented the mixing of Pacific and Atlantic 

waters driving the formation of the thermohaline circulation and the transport of heat 

to higher latitudes (Lutz, 2011).  It had been proposed that this occurred later in the 

Pliocene (~2.6 Ma) leading to the formation of Northern Hemisphere glaciation 

(Saranthein et al., 2009).  Lunt et al. (2008a,b) shows that this was not likely based on 

modelling results, similarly most data supports the early Pliocene (~5 Ma) effective full 

closure of the CAS.   

Work by Karas et al. (2009; 2010) used DSDP and IODP sites: 214, 709, 757, 758, 763 & 

806 to investigate the timing of the changes in Indonesian Through Flow (ITF) of the 

Indonesian Passages during the Pliocene using analysis of Mg/Ca ratios in planktonic 

foraminifera.  They found that the timing of this change was during the later stages of 

the mPWP and into the late Pliocene.  The shoaling of the Indonesian Passages changed 

the composition of the water forming the ITF from warm salty South Pacific waters to 

cooler fresher North Pacific waters into the Indian Ocean.  Krebs et al. (2011) found 

that the shoaling of the Indonesian Passages from the Pliocene into the modern led to a 

reduced ITF causing the aridification of the Australian continent as SSTs cooled in the 

passages and continental regions warmed up.  SSTs warmed in the Equatorial Pacific 

warm pool and this led to a modelled increase in precipitation over the warm pool 

region (Krebs et al., 2011).  The change is consistent with the PRISM3D vegetation data, 

which has regions of tropical forest and tropical grassland in Pliocene Australia 
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compared to modern arid outback vegetation (Salzmann et al., 2008).  However with 

models using a modern land-sea mask this makes it hard to reproduce the required 

precipitation over Australia.   

The Greenland-Scotland ridge (GSR) has been investigated as a potential barrier to heat 

from the North Atlantic penetrating into the Arctic in Pliocene modelling, an area of key 

data-model discrepancy.  The PRISM data has always indicated SSTs in the Arctic that 

AOGCMs are unable to replicate (Haywood & Valdes, 2004; Robinson, 2009; Robinson 

et al., 2011; Dowsett et al., 2012).  The height of the GSR is controlled by the mantle 

hotspot beneath Iceland and its activity affects the bathymetry of the ridge system, with 

less vigorous (than modern) activity in the Pliocene resulting in the ridge being ~300m 

deeper (Jones et al., 2002; Robinson et al., 2011).  Robinson et al. (2011) investigated 

the effects of altering different ridge section heights and the response of the model 

looking at both SSTs and deepwater production.  They found that the deepening of the 

ridges increased deepwater production and Arctic SSTs.  Although it did not fully 

remove the data-model mismatch in the high latitudes, it could be a way of tackling the 

issue in future modelling studies (Robinson et al., 2011).   

The Bering Strait has acted as an occasional gateway for flow between the Pacific and 

Arctic oceans, with the opening of the gateway controlled by tectonic activity in the 

region and global sea level changes (Matthiesson et al., 2009).  The opening of the 

gateway allows the flow of water between the North Pacific and North Atlantic, which 

reduces the development of NADW reducing the intensity of THC (Shaffer & Bendtsen, 

1994).  In glacial periods, increased ice cover reduces sea level closing the gateway 

(Shaffer & Bendtsen, 1994; Goosse et al., 1997; Hasumi, 2002), but during the Pliocene, 

sea level was ~25m AMSL, making the gateway tectonically controlled.  The age of an 

open Bering Strait comes from analysis of shallow marine fauna.  When the strait is 

closed, North Pacific and Arctic fauna have different compositions compared to when 

the Strait is opened, with the Arctic record becoming dominated by North Pacific fauna 

(Marincovich & Gladenkov, 1999).  However, the age for the opening event ranges from 

the late Miocene (~6 Ma) to the Late Pliocene (~3 Ma - Marincovich & Gladenkov, 

1999; Gladenkov et al., 2002).  The uncertainty has an important effect on the 

reconstruction of Pliocene oceanography and modelling results (Robinson et al., 2011).   

Topography and bathymetry are currently evolving sections of the PRISM dataset with 

ongoing work from modelling, geophysics and geology to create stronger 

reconstructions for the mPWP boundary conditions.   
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vi) Vegetation, Lakes & Soils 

PRISM1 & PRISM2 used the data from fossil pollens and plant macro-fossils from the 75 

terrestrial sites available in the dataset created by Thompson & Fleming (1996), these 

sites where dated using a mixture of radiometric dating, tephrochronology and 

biostratigraphy (Dowsett et al., 1999).  The data was arranged into seven land cover 

categories (desert, tundra, grassland, deciduous forest, coniferous forest, rainforest and 

land ice - Dowsett et al., 1999) based on the 22 categories used by Matthews (1985) 

and pollen from the sites was assigned based on qualitative estimates of the change in 

the temperature and precipitation for that area compared to the modern and how this 

would affect the likely biome (Dowsett et al., 1999).   

PRISM3D uses a 202 site terrestrial and marine reconstruction with 28 biome classes 

(Salzmann et al., 2008).  A Tertiary Environmental & Vegetation Information System 

(TEVIS) database of fossil pollens, leaves, wood and palaeosol carbonates was created 

from the PRISM2 database locations and from literature of other studies on Pliocene 

vegetation (Salzmann et al., 2008).  The interpretation by the original authors of the 

research included in the database was maintained and the data was collated into a 

consistent form using the 28 biomes which are found in the BIOME4 offline equilibrium 

vegetation model (See Chapter 2, Section 2.2.2 for BIOME4 description).   

If the information available for a site suggested two types of biome, the climatically 

warmer biome type was selected (Salzmann et al., 2008).  The TEVIS database also 

stored information on the dating technique used, type of sample and preservation 

(Salzmann et al., 2008).  As many of the terrestrial sites come from short sequences 

with few dating points (Dowsett, 2007), many of these sites have poor temporal 

resolution and chronological dating.  The 202 site PRISM3D vegetation reconstruction 

is a likely reconstruction for the Piacenzian age (3.6 to 2.6 Ma BP) of which the mPWP 

is a sub-section of time used by the PRISM group (Salzmann et al., 2008, Dowsett et al., 

2010a).   

The 202 site reconstruction was used to create a global reconstruction of the mPWP 

vegetation by coupling the HadAM3 model (with SSTs from the PRISM3D 

reconstruction) with the BIOME4 model.  The vegetation model was then compared to 

the database of results from the 202 sites using ArcGIS (Salzmann et al., 2008).  The 

final vegetation reconstruction for the Pliocene for the PRISM3D dataset was produced 

using a synthesis of information from the data and models (Salzmann et al., 2008; 

Dowsett et al., 2010a).   
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Figure 1.3. The PRISM3D vegetation biome data-model hybrid reconstruction from 
Salzmann et al. (2008) which serves two purposes as a mid-Pliocene dataset for use in 
data-model comparisons and as a model boundary condition.  Each circle represents one 
of the 202 data sites which are categorised into biomes using the biomes programmed 
into the BIOME4 model.  The base colours are produced using the strongest performing 
versions of the HadAM3/Biome4 models in comparison with the data.  Biome number 28 
(Barren) is not listed in the figure key above.   

The TEVIS database has been refined to produce a vegetation dataset that can be 

utilised for quantitative terrestrial SAT data-model comparisons (Salzmann et al., 

2013).  The refining of the TEVIS dataset saw sites from Russia, Canada, Mexico, France, 

Turkey, Germany and Portugal added.  Sites were removed from Iceland and Antarctica 

(due to dating uncertainty) along with sites above 1000m AMSL or from sediment 

cores further than 250 Km offshore (Salzmann et al., 2013).  The changes reduced the 

size of the dataset to 45 sites which could be used to produce a quantitative SAT value.  

Where published the temperature value assigned by the authors was applied, these 

SATs were calculated using a range of methods including CLAMP (Climate Leaf Analysis 

Multivariate Program – Wolfe, 1993), Coexistence Approach (Mosbrugger & Utescher, 

1997), modern analogue vegetation distribution (semi-quantitative) & multi-proxy 

approaches using these and other proxy methods (Salzmann et al., 2013).  Where the 

authors had not published a temperature estimate, the Coexistence Approach was 

applied (Salzmann et al., 2013).  A qualitative estimate of confidence in the 
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reconstructed SAT value was applied to each site based on the dating, preservation and 

temperature estimate methods used 

 

Figure 1.4. Geographical coverage and location of the 45 sites in the vegetation SAT 
reconstruction of Salzmann et al. (2013).   

Data for the vegetation SATs is spatially limited to the Northern Hemisphere, with the 

exception of four Australian sites.  There are two equatorial sites, including the only 

African site, with most of the sites being in the mid-high latitudes of North America and 

Eurasia.   

To date, all simulations (including this projects) undertaken for the mPWP have used 

modern reconstructions and values for soils and lakes.  Studies of Holocene climate 

utilising Holocene specific data for soils and lakes have displayed significant regional 

impacts on precipitation (Krinner et al., 2012; Pound et al., 2013).  A number of mPWP 

studies have shown weaknesses in reproducing precipitation in tropical and sub-

tropical regions and this could be a reflection of the use of modern soils and lakes 

(Pound et al., 2013).   

To create a mPWP soils and lakes database, available data was collected into a database 

(similar to the TEVIS database used for the vegetation reconstruction – Salzmann et al., 

2008; Pound et al., 2013).  Age, geographical distribution and dating methods used for 

the site, for the soils a soil type was also documented (Pound et al., 2013).  The 

coverage of the soils data was not global (54 sites in total), for inclusion as a climate 

model boundary condition, it was combined with the biome reconstruction and from 

this global soils for the mPWP were generated (Pound et al., 2013).  The rationale for 

this methodology is based on the relationship between soils and biomes produced 
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(Pound et al., 2013).  For the lake reconstructions, the percentage of model grid cell 

(3.75° x 2.5°) that was lake was estimated for two scenarios designed to bracket the 

uncertainty in the size of mPWP lakes, creating a wet and dry reconstruction (Pound et 

al., 2013).  Initial modelling studies were undertaken to investigate the impact of these 

new boundary conditions which suggest that while these changes do not exert a large 

global impact on climate, however generated some important regional feedbacks, with 

increased precipitation through North Africa and North America (Pound et al., 2013).  

Contoux et al. (2013) modelled the forcing of Megalake Chad in the mPWP, finding 

regional seasonal impacts on winds and precipitation distribution, but no significant 

impact upon biome distribution.  These developments will be included in the next 

iteration of the PRISM dataset, PRISM 4.   

vii) The PRISM Time Slice 

The first PRISM time slice is centred on 3.205 Ma BP (with a range from 3.207 to 3.204 

Ma BP) a warm interval in the LR04 Benthic stack (Lisiecki & Raymo, 2005) indicated 

by a negative oxygen isotope excursion of 0.21 to 0.23‰ (Haywood et al., 2013b).  The 

interval is already part of the PRISM time slab, a logical decision as this period already 

has the most extensive data available for it and the closest to modern topographic 

reconstruction (Haywood et al., 2013b).  The size of the excursion is important as it 

improves the signal to uncertainty ratio, reducing the impact of natural variability in 

the climate reconstruction (Haywood et al., 2013b).  Reconstructions of orbital forcings 

using calculations of the Milankovitch cycles from Laskar et al. (2004) can be used to 

determine the top of the atmosphere insolation forcing for the entire length of the 

PRISM interval.  The selected time interval has an insolation forcing which is very 

similar to modern determined by seasonal and regional analysis.  The advantage of this 

choice is that it reduces the impact of a potential cause of the Pliocene warmth (Willeit 

et al., 2013) and an attributing elements which cause the warming simulated by 

AOGCMs (Lunt et al., 2012a).  Finally allowing easier interpretation of mPWP results in 

the context of Charney and Earth system sensitivity studies (Haywood et al., 2013b).   

Sea level is estimated for the period as being 22m +/- 10m higher than present day 

(Haywood et al., 2013b), equivalent to the near complete loss of the Greenland and 

West Antarctic Ice Sheets (Naish et al., 2009; Pollard & DeConto, 2009; Dolan et al., 

2011).  The interval is now suitable to be used for palaeo-environmental 

reconstructions by the PRISM team (and other groups) to generate palaeo-proxy 

reconstructions for the time slice.  The advantage of this time slice is that it is easily 

found in core sections due to its location relative to major magnetostratigraphic 
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boundaries and isotopic marker boundaries (Haywood et al., 2013b).  Additionally the 

climate of the slice allows for a degree of error (a ‘zone of tolerance’ - Haywood et al., 

2013b) in finding the slice when analysing cores.  The main weakness of moving to a 

time slice is that the geographical coverage of the proxy data, and the number of 

available sites will be reduced (Haywood et al., 2013b) as not all sites will contain data 

that is robust enough to make it to the final data compilation.  The long term aim is to 

create a series of time slices which investigate the variability in Pliocene climate due to 

various changing conditions such as orbital forcing, greenhouse gases or in glacial 

climates within the Pliocene (Haywood et al., 2013b).  Along with lakes and soils data, 

the PRISM Time Slice will from the basis of the PRISM4 reconstruction, the next 

iteration of the PRISM palaeo-environmental reconstruction for the mPWP.   

viii) Data Uncertainty 

As Sections ii & vi indicate, there is an inherent uncertainty on the palaeo-data 

produced for the mPWP.  The uncertainty will affect the size of the mismatch between 

models and data and therefore quantification of the data uncertainty is an important 

part of the reconstruction.  Recent work has been undertaken to provide a quantified 

uncertainty on the palaeo-data for SSTs (Dowsett et al., 2013) and the SATs (Salzmann 

et al., 2013).  For the SSTs uncertainty was calculated based on the standard deviation 

of each sites warm peak estimate throughout the PRISM time slab.  The warm peak 

averaging method is outlined in Section ii.   

SAT uncertainty arises from the temporal and bioclimatic range on the data (Salzmann 

et al., 2013).  Bioclimatic uncertainty represents the range of potential climates that the 

identified species could survive in, while temporal range reflects the climate change in 

the region over the period of time dated and uncertainty in the dating of the fossil 

record at each site (Salzmann et al., 2013).  Bioclimatic uncertainty came from analysis 

of the temperature estimates used at each site (e.g. CLAMP, Coexistence Approach & 

modern analogues – Section vi).  The reconstructed fossil assemblages at each site 

represent a group of flora that would have grown in a window of climatic tolerance, 

outside of which the assemblage could not have grown.  The bioclimatic range 

represents the uncertainty that this window produces on the mean temperature for 

that site (Salzmann et al., 2013).  The final SAT estimates (Section vi) included the full 

climatic range for each site including (where available) bioclimatic and temporal 

uncertainty combined into one uncertainty value for each site (Salzmann et al., 2013).   
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The uncertainty estimates produced and discussed for both the SSTs and SATs are a 

quantitative number and unrelated to the confidence in a site, which is calculated based 

on the analysis of dating, preservation and the temperature estimate methodology 

(Salzmann et al., 2013).  For the data-model comparisons the uncertainty range can be 

applied as a window to see whether models can achieve the range in the data for a site.  

For sites where the model is still unable to achieve the window, the nearest boundary 

of the window to the data can be used to calculate the mismatch.   

1.3.4. mPWP Data-Model Mismatches 

Initial mPWP modelling studies on AGCMs used PRISM SSTs as a boundary condition in 

the simulation to create a Pliocene model (i.e. Sloan et al., 1996; Haywood et al., 2000a).  

Simulations using AOGCMs, do not require prescribed SSTs, which allows a fuller 

investigation of the climate, however the simulation lacks the ground truthing from 

prescribed SSTs.  Therefore to determine the validity of a mPWP AOGCM simulation, 

data-model comparisons (DMCs) to palaeo-environmental datasets are undertaken 

(Dowsett et al., 2012).  For the mPWP these datasets include: PRISM3D MASST dataset 

(Dowsett et al., 2010b), SATs based on vegetation (Salzmann et al., 2013) and a 

vegetation biome dataset (Salzmann et al., 2008).  These methods have been used 

extensively throughout the mPWP to test model simulations (Haywood et al., 2004; 

2009b; 2013a; Pope et al., 2011; Dowsett et al., 2012).   

 

Figure 1.5. mPWP data-model comparison using a multi-model mean from four climate 
models in the PlioMIP project (CCSM4, HadCM3, GISS-ER and MIROC4m) and the PRISM3D 
SST data.  The DMC is presented as the multi-model mean (mPWP minus pre-industrial) 
minus the PRISM3D SST (mPWP minus pre-industrial).  The figure is reproduced from 
Dowsett et al. (2012).  The figure highlights the existing sea surface temperature 
mismatch between mPWP simulations and the palaeo-data.   
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From the variety of Pliocene work published over a range of different climate models, 

an inability to effectively model the magnitude of warming reconstructed at high 

latitudes in comparison with the data reconstructions is evident (Figure 1.5).  The 

mismatch is especially prevalent in the North Atlantic, where a series of data sites, 

considered to be of high or very high confidence by the PRISM group (Dowsett et al., 

2012 & Figure 1.2), are the source of the greatest mismatch with the model, increases 

progressing northwards.  In the tropics there is little or no data-model mismatch.   

 

Figure 1.6. mPWP data-model comparison using a multi-model mean from the PlioMIP 
project (Haywood et al., 2013a) and the vegetation SAT data (Salzmann et al., 2013).  The 
DMC is presented as the multi-model mean (mPWP minus pre-industrial) minus the SAT 
data (mPWP minus pre-industrial).  The figure is reproduced from Salzmann et al. 
(2013).  The figure highlights the existing terrestrial surface temperature mismatch 
between mPWP simulations and the palaeo-data.   

The high latitude data-model mismatch observed in the SSTs is replicated in the SATs 

(Figure 1.6), however a paucity of suitable data through the tropics means that the 

small observed mismatch in tropical SSTs can not be analysed in the vegetation data.  

Mid-latitude sites in Europe and the USA indicate that the mismatch decreases moving 

towards the equator, which is inline with the SST DMC.   

The challenge for future mPWP modelling is to understand the existing mismatch 

between data and models.  To investigate this mismatch there are potential 

experimental designs that can be applied.  These experimental designs can be used to 

understand the causes of the mismatch: due the uncertainty in the models through 

ensembles (i.e. PlioMIP – Haywood et al., 2010; 2011a and this PPE), uncertainty in the 

boundary conditions (Hill et al., 2011; Robinson et al., 2011), uncertainty due to 

variability in orbital forcings over the PRISM time-slab (time slice – Haywood et al., 

2013b) or through uncertainty in the palaeo-data used (i.e. Salzmann et al., 2013).   
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By designing modelling experiments which can address the model based causes of the 

data-model mismatch, it may be possible to reduce the mismatch and isolate the 

uncertainty.  Through tackling the uncertainty in mPWP simulations, the understanding 

of the climate system and its response to changes in forcings can be better understood.   

1.4 – Uncertainty in Modelling Climate 

Understanding the form, size and impact of uncertainty in climate modelling is vital to 

understanding both past changes in the Earths climate system and changes due to 

increases in greenhouse gas concentrations over the coming centuries (Hawkins & 

Sutton, 2009; 2011).  There are four main types of uncertainty in models: 

• Natural variability 

• Model uncertainty (parameter and structural) 

• Scenario uncertainty 

• Boundary condition uncertainty 

Natural variability, scenario uncertainty and boundary condition uncertainty affect 

climate model simulations in different proportions.  In palaeoclimates, the scenario is 

not a cause of uncertainty, but boundary conditions are, whereas for a future climate 

projection, natural variability and scenario uncertainty are important uncertainties 

(see Section 1.4.1).  Model uncertainty affects all modelling simulations and is an 

important uncertainty to quantify.   

Rougier & Crucifix (2012) in an essay on uncertainty in climate science and climate 

policy described the uncertainty in climate change as “epistemic uncertainty”, an 

uncertainty that arises from “limitations in our knowledge and resources”, and an 

uncertainty that can be reduced with further investigation.   

The purpose of their essay was to question: 1) what is the uncertainty, 2) what is its 

form and 3) are the climate science community tackling this uncertainty in the correct 

way? (Rougier & Crucifix, 2012).  Climate modelling is affected by a variety of causes of 

uncertainty.  It is important to identify these uncertainties, ways of tackling them and 

also identifying the uncertainties that can not be quantified or reduced.  Increasing our 

understanding of the climate system through quantifying uncertainty leads to 

increased confidence in projections of climate change due to anthropogenic warming.  

Equally important is communicating the uncertainty to policy makers as it is only 

through communication that appropriate decisions can be made on future climate 

change policy (Murphy et al., 2009a; Yokohata et al., 2012).  To achieve this, it is 
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important to understand the main types of uncertainty in climate models and the 

impact of these uncertainties.   

1.4.1. Origins of Key Model Uncertainties 

The climate system is a highly complex series of interactions (Tebaldi & Knutti, 2007).  

Uncertainty arises in model simulations because we do not fully understand the system 

we are modelling (Sexton et al., 2012a).  Quantification of uncertainty is important for 

people working on adaptation and mitigation to climate change, as it impacts upon 

adaptation and mitigation strategies.  Adaptation planners often use offline models 

forced by climate model outputs i.e. New et al. (2007) who assessed water resources 

under changing climates.  However, the volume of model output data produced by an 

ensemble of simulations covering a range of future scenarios and Charney sensitivities 

is too great for use in offline models.  To fully assess the possible impacts of climate 

change and determine the appropriate adaptation strategy requires too much data to 

easily disseminate (Sexton et al., 2012a).  Therefore, probabilistic estimates for the 

projection from the ensemble and its uncertainty allows these groups to produce an 

adaptation strategy for a ‘most likely’ climate change scenario with a confidence range 

that can be quantified (Sexton et al., 2012a).   

The first form of uncertainty is natural (also called internal) variability, which is 

inherent within the climate system and also in climate models (Murphy et al., 2009a) as 

the climate system is an example of a chaotic system.  It was hypothesised in the early 

20th century that with the correct equations and the ability to calculate them, weather 

forecasts could be made.  These equations were calculated and with computer power it 

has been shown that it was possible to make accurate weather forecasts a short time (1 

or 2 days) ahead (Shukla, 1998).  It was also discovered that any small uncertainties in 

the initial conditions quickly led to ever increasing errors and degrading the accuracy 

of the forecast (Shukla, 1998).  These errors, the response of the mathematical 

equations representing a nonlinear dynamic system, led to the definition of the climate 

system as a chaotic system.  A chaotic system meaning a system that was sensitive to 

interior changes in the initial conditions of the system (Lorenz, 1963; Shukla, 1998).  

Averaging periods are used to minimise the effect of natural variability in model 

simulations (Murphy et al., 2009a).  The length of the averaging period plays an 

important role in mitigating the size of the internal variability in a simulations climate 

metrics (Rowell, 2012).  For transient simulations (such as investigating future climate 

change), an averaging period is not possible, however Hawkins & Sutton (2011) 

determined that internal variability was constant over the length of a simulation.  When 
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averaging periods can be used, typically the last 30 years of a simulation are averaged, 

producing a climatological mean reduces the impact of the internal variability.  

However, it is not possible to fully remove this uncertainty from the simulations, or to 

effectively quantify it, so it has to be left as a ‘known unknown’ in modelling projects 

(Murphy et al., 2009a).   

The second form of uncertainty is model uncertainty, which breaks down into two key 

uncertainties: structural and parameter uncertainty.  Structural uncertainty is related 

to the choices made during the construction of the model (such as grid resolution) and 

the way that climate processes are represented within the model components (Collins, 

2007).  The way that climate processes are represented can have extreme results, such 

as the example of clouds and radiation.  Clear sky shortwave feedbacks result in a 

warming effect in some models and a cooling in others (Murphy et al., 2009a).  The 

differences in the creation of the model are the structural uncertainties that are 

sampled by multi-model ensembles (MMEs).  Parameter uncertainty is the uncertainty 

that arises from the choices regarding the representation of sub-grid scale processes.  

Once the resolution of a climate model has been set, there are then a series of processes 

that will occur on a scale smaller than the size of a grid box, called sub-grid scale 

processes.  These are parameterised in the model as a numerical value (Murphy et al., 

2004), assigned during the ‘tuning’ of the climate model.  Tuning refers to the initial 

creation of the model, when parameters are adjusted to a potential value (the tuning) 

and the resulting model version tested against climate metrics (Randall & Wielicki, 

1997; Mauritsen et al., 2012).  The tuning process starts with short runs, leading to 

longer runs altering different parameters using the standard baseline simulation 

usually a pre-industrial simulation (Mauritsen et al., 2012).  The tuning process focuses 

on the decisions made by the model development team often focused on key sub-grid 

scale processes that have inherent uncertainty within them, such as cloud processes 

(Mauritsen et al., 2012).   

The parameterisation of cloud processes has proven to be exceedingly difficult in GCMs, 

with complexities arising from the spatial scale and range of processes involved in 

forming clouds (Xie et al., 2002).  Climate models calculate the amount of cloud at each 

layer of the atmosphere in each grid box column (i.e. 19 layers in HadCM3) using the 

values for temperature and water vapour to calculate the cloud type and size.  The 

types and sizes of clouds are based on information collected by research flights (e.g. 

Abel & Shipway, 2007) and other measurements of clouds (such as satellite images - 

Oreopoulos & Khairoutdinov, 2003).  Observations are combined with modelling 

results from single column models (SCMs) and cloud resolving models (CRMs) to create 
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the parameterisations in the grid box to calculate cloud types for that climatology (Xu 

et al., 2000; Xie et al., 2002).  For example, warm rain convection in HadCM3 was 

parameterised by driving a high resolution cloud resolving model (CRM) with data 

collected from research flights in the ‘Rain in Cumulous over Ocean’ (RICO) project 

(Abel & Shipway, 2007).  The results from these studies can be used to determine the 

style of and values for parameterisations in climate models (Abel & Shipway, 2007).  

However, data does not cover the entire globe leading to some parameterisations being 

globally uniform when they are not in reality (Curry et al., 1996).  At high latitudes 

there are noticeably different boundary layer clouds compared to the rest of the globe 

(Curry et al., 1996).  Combined with the unique effects of high latitude radiation, sea 

ice/ice sheet and cloud interactions, the high latitudes are characterised by a 

significantly different cloud regime to the rest of the world (Curry et al., 1996).  

Additionally there are not exact values for the data collected and so the parameters 

have a range that creates the uncertainty (Twohy et al., 1997).   

The example above is replicated throughout the climate model.  As a result a range of 

parameters can be identified which display an  uncertainty, and from these the 

parameters are chosen for perturbing in the ‘Quantifying Uncertainty in Model 

Predictions’ (QUMP) ensembles (Murphy et al., 2004; Collins et al., 2006).  Within 

climate models, a range of sensible potential values for each parameterisation exists.  

The final combination which produces the model are tested to ensure they produce an 

acceptable version of the model (tested against datasets for key metrics such as 

temperature and precipitation).  However, there is the possibility that the final 

combination is right for the wrong reasons and this creates the uncertainty in model 

projections (Collins et al., 2006).  Knowledge of the performance of models relies on a 

good understanding of parameter and structural uncertainty.  To quantify the effect of 

structural and parameter uncertainty on climate projections, ensembles of models are 

created.   

Climate model design trends towards increasing the resolution of the model, which can 

reduce the required number of parameterisations within the model (as smaller grid 

boxes leave fewer unresolved sub-grid scale processes to be estimated).  However, 

climate models are also being developed to include more components, moving from 

AOGCMs towards Earth System Models (ESMs).  These include the carbon cycle, aerosol 

transport, dynamic vegetation and ice sheets.  The inclusion of more components 

increases the uncertainty from parameterisations as more unresolved parameters are 

added to the model, which interact with other already uncertain parameters which 

could reduce model performance (Rougier & Crucifix, 2012).   
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The third type of uncertainty is scenario uncertainty.  In work looking at future climate 

projections, uncertainty originates from the changes to greenhouse gas concentrations 

in the future.  The actual values can not be predicted as a number of variables exist 

which will affect global emissions (IPCC, 2000).  As a result, detailed emission scenarios 

were created to generate a range of predicted concentrations to aid the creation of the 

climate projections (SRES scenarios - IPCC, 2000; RCPs - Moss et al., 2010).  The 

different scenarios allow simulations to be run investigating future climate change, but 

by design, represents a source of uncertainty as it is impossible to be certain, which (if 

any) of the scenarios will be most representative of the future.  Hawkins & Sutton 

(2009; 2011) determined the contribution of scenario uncertainty to future climate 

change projections.  For temperature, scenario uncertainty is the dominant form of 

uncertainty by 2100, but for precipitation the dominant form of uncertainty is model 

uncertainty.  The challenges of ascertaining future greenhouse gas emissions do not 

apply to work in palaeoclimate, but boundary condition uncertainty replaces scenario 

uncertainty.  In addition to scenario uncertainty is initial condition uncertainty.  

Primarily a feature of meteorological forecasting model simulations, initial condition 

uncertainty refers to the point a model simulation is started from, which can influence 

the final results (Tebaldi & Knutti, 2007), even up to decadal timescales.  Decadal cycle 

internal variability features such as the AMOC influence the simulated climate, based on 

when in a cycle the simulation starts (Bryan et al., 2006).  In shorter length simulations, 

a suite of different starting points are used to analyse the initial condition uncertainty 

in an ensemble (Tebaldi & Knutti, 2007).   

The final type of uncertainty is boundary condition uncertainty.  Boundary conditions 

are the representation of non-calculated processes that are important to the 

representation of the climate system in the model.  Boundary conditions are prescribed 

within a climate model and remain static throughout the duration of the run.  These 

include: continental configuration, orography, bathymetry, ice sheets, vegetation and 

atmospheric composition (Haywood et al., 2011a).  Boundary condition uncertainty 

also occurs due to the representation of known boundary conditions in the model.  An 

example of this uncertainty is the Atlantic and the Mediterranean, which in reality are 

joined by a narrow seaway, but grid box representation in HadCM3 joins Africa and 

Spain closing the seaway, which is represented as a diffusive pipe (Johns et al., 2003; 

Ivanovic et al., 2013).  Changing the representation from a pipe to an open seaway 

causes a shoaling of the Mediterranean outflow (from 1500m to 1000m), leading to a 

deeper penetration of warmer Mediterranean waters further into the North Atlantic 

(Ivanovic et al., 2013).  The increased outflow (seaway compared to pipe) leads to 
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reduced temperatures in the Labrador Sea (~3°C cooling), and hotspots of ~3°C 

warming in the North Atlantic and in the Barents Sea (Ivanovic et al., 2013).  The pipe 

and how it represents Mediterranean outflow has been demonstrated to have an effect 

on Northern Hemisphere climates. The uncertainty surrounding its most accurate 

representation is a boundary condition uncertainty in the model.  The main forms of 

uncertainty for the ensemble, as with any palaeoclimate modelling study are model 

(structural and parameter) and boundary condition uncertainty.  Investigations have 

been undertaken in both of these forms of uncertainty and this research is now 

outlined.   

1.4.2. Tackling Structural Uncertainty: Multi Model Ensembles (MME) 

Structural uncertainty is tackled through the creation of a multi-model ensemble (MME 

– i.e. Tebaldi & Knutti, 2007), such as Coupled Model Intercomparison Project (CMIP - 

Meehl et al., 2000) and Palaeoclimate Model Intercomparison Project (PMIP - 

Braconnot et al., 2007).  MMEs are generated by running a series of model simulations 

using structurally different models with the same forcings (Stott & Forest, 2007; 

Tebaldi & Knutti, 2007).  MMEs are not stronger compared to a single diagnostic than 

any single ensemble member.  It is when the MME is tested against a range of model 

diagnostics and metrics that the MME out performs its individual members, which gives 

the best result for the climate simulations (Lambert & Boer, 2001; IPCC, 2007; Tebaldi 

& Knutti, 2007).   

The advantage of a MME is that it is an ensemble of different models.  MMEs cover a 

wide range of models with different structural configurations (how the climate system 

is represented and interpreted), a model ‘gene pool’ (Collins et al., 2011).  The sampling 

of structurally different models when averaged reduces biases and errors in individual 

simulations.  The result is a climatological mean that has less uncertainty than an 

individual model simulation, due to the impact of structural choices upon feedbacks 

and forcings within the models being reduced.  MMEs also ensure that each ensemble 

member has been rigorously tested to make sure it performs well as a climate model 

and generates a plausible and stable control simulation when it is run (IPCC, 2007).  

The weaknesses of the MME are around its conception.  A MME is by requirement an 

‘ensemble of opportunity’ (Tebaldi & Knutti, 2007), an ‘ad-hoc’ ensemble (Rougier & 

Crucifix, 2012), where the sampled models are not chosen but are volunteered by 

institutes that have run the required simulations.  The result is a limit on the potential 

size of the ensemble (the gene pool) with the number of samples at most in the order of 

a dozen simulations.  Even then, the gene pool is not guaranteed to contain that number 
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of fully independent models, with many similarities (shared components) between 

models, that cause replication of similar systematic errors (Knutti, 2010; Collins et al., 

2011).  Additionally, within an MME, there are models that may contain some common 

components which reduces the probing of the structural uncertainty because the 

replication bias’ the analysis towards the replicated components (Masson & Knutti, 

2011; Knutti et al., 2013).  For example, the NorESM model shares atmosphere, sea ice 

and land surface components with the CESM model and utilises the same model 

coupler (Zhang et al., 2012).   

1.4.3. Tackling Parameter Uncertainty: Perturbed Physics Ensembles 

A perturbed physics ensemble (PPE) explores the impact of potential alternative 

parameter values in the parameter space on the uncertainty in a climate projection.  

Investigating the uncertainty in parameterisations in a climate model assumes that the 

standard version of the model is not the best possible representation of the climate 

system for that models design.  Therefore, altering the parameters could produce a 

model with a better representation of the climate (Murphy et al., 2004; Collins et al., 

2006, 2011; Sexton et al., 2012a) assuming that the basis for the physics is solid 

(Ingram, 2012).  The largest PPEs have been conducted by the UK Met Office 

Quantifying Uncertainty in Model Predictions (QUMP) Project and the 

climateprediction.net (CPDN) project, using different members of the third generation 

of UK climate models, HadAM3 (AGCM), HadSM3 (50m slab ocean) and HadCM3 

(AOGCM).  These PPEs have been created and run on a range of different modelling 

platforms. 

1.4.3.1 – The QUMP and climateprediction.net Ensembles 

The QUMP and climateprediction.net projects have been undertaken in the last decade 

using the HadCM3 family of models.  They have focussed on perturbing parameters in 

the atmospheric component of the model, using expert judgement (Murphy et al., 2004; 

Collins et al., 2006) to select the parameters to be perturbed and have over time 

created more detailed methods for generating large ensembles.  More recent studies 

have also started perturbing parameters in other components in the model such as the 

oceans, carbon or sulphur cycles (Ackerley et al., 2009; Brierley et al., 2010; Booth et 

al., 2012) and decadal prediction (Sexton et al., 2012b).  Ideally, the selection of 

parameters to be perturbed would be independent of the expert judgement presently 

used, however at present, it is not possible to avoid the subjective decision making 

(Shiogama et al., 2012).   
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Table 1.3. Summary table of key perturbed  physics ensembles.  The model and 
methodology for creating the PPE is outlined along with the number of ensemble 
members and the key reference for each ensemble.   

 

The QUMP project started at the UK Met Office working on HadAM3 and was developed 

to include HadSM3 and HadCM3 (Table 1.3).  One key expert assumption has been used 

in the QUMP ensemble creation, which is the decision to not perturb some parameters.  

It has been assumed that this would not exert a significant change to the climate 

Model Model 
Version 

Perturbed 
Component PPE Methodology No. of Members Reference 

UK Met HadAM3 Atmosphere QUMP 53 Murphy et al., 2004 

Office HadSM3 Atmosphere QUMP 128 Collins et al., 2006; 
Webb et al., 2006 

 
HadSM3 Atmosphere UKCP09 280 Muprhy et al., 2009a 

 
HadSM3 Atmosphere climateprediction.net 2,578 Piani et al., 2005; 

Stainforth et al., 2005 

 
HadSM3 Atmosphere QUMP 

224  

(128 + 96 new) 
Clark et al., 2010 

 
HadCM3 Atmosphere QUMP 17 Collins et al., 2006; 

2011 

 HadCM3 Ocean QUMP 7 Collins et al., 2007; 
Brierley et al., 2010 

 HadCM3 Atmosphere UKCP09 17 Murphy et al., 2009a; 
Sexton et al., 2012a 

 HadCM3 Atmosphere THC-QUMP/Latin 
Hypercube 22 Vellinga & Wu, 2008; 

Hodson et al., 2013 

 
HadSM3 Sulphur Cycle QUMP 243 Ackerley et al., 2009 

 
HadCM3C Carbon Cycle QUMP 17 Booth et al., 2012 

 
HadCM3 Atmosphere & 

Sulphur climateprediction.net ~9,000 Rowlands et al. 2012 

 
HadCM3 Atmosphere & Ocean Latin Hypercube 200 Irvine et al., 2013 

 
HadCM3L Atmosphere climateprediction.net 160 Frame et al., 2009 

 
FAMOUS Atmosphere & Ocean Latin Hypercube 100 Gregoire et al., 2011 

NCAR CAM3.1 Atmosphere Bayesian Framework 518 Jackson et al., 2008 

 
CAM4.0 Atmosphere Bayesian Framework 3000 Covey et al., 2011 

 
CAM3.5 
(Slab) Atmosphere CAMCUBE 81 Sanderson, 2011 

 
CCSM3.5 Land Surface CAMCUBE 108 Fischer et al., 2010 

MPI ECHAM5 Cloud/Radiation Expert Solicitation 50 Klocke et al., 2011 

 
EGMAM Cloud Parameters Expert Solicitation 32 Nierhorster & Collins, 

2009 

ICTP AGCM Atmosphere Precipitation Tuning 10 Neelin et al., 2010 

JUMP MIROC3.2 Atmosphere Ensemble Kalman 
Filter 32 Yokohata et al., 2010 

 
MIROC5 Atmosphere Ensemble Kalman 

Filter 42 Shiogama et al., 2012 

 
MIROC5 Atmosphere Multi-Physics 

Ensemble 8 Watanabe et al., 2012 
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produced in the ensemble (Murphy et al., 2009a).  The early experiments were 

followed up by a series of ensembles and elements of the climate system looking at 

changes to extreme event frequency (Barnett et al., 2006) and global and local feedback 

mechanisms (Webb et al., 2006).   

The UK Climate Projections 2009 project (UKCP09 – Murphy et al., 2009a) utilised 

HadSM3 and HadCM3 ensembles within the QUMP framework and a regional climate 

model to look at the impacts of both forcing and model physics uncertainty on 

projections of future anthropogenic climate change on the British Isles.  UKCP09 is 

publically available in the UK for developing adaptation plans for the potential impacts 

of climate change.  It forms a resource that explains how the projections are created 

and how to use them for creating adaptation plans for climate change.  The data 

available covers climatological parameters (temperature, precipitation, air pressure, 

humidity and cloud cover), observed climatological trends and also projections for sea 

level rise, storm surge frequency, currents and salinity (Murphy et al., 2009a).  UKCP09 

dealt with three of the four main types of modelling uncertainty with an averaging 

period used to reduce the impact of natural variability.  Three emissions scenarios 

were used to look at the impact of scenario uncertainty and the use of probabilistic 

projections using the QUMP ensemble to account for modelling uncertainty.  By 

creating the ‘grand ensemble’ of parameter and scenario condition uncertainties, 

UKCP09 was able to increase the scope of the modelling uncertainty investigated.  The 

results produced which they considered the strongest model projections for the 21st 

century, were packaged for use in adaptation planning.  UKCP09 included a 

‘discrepancy’ term (Sexton et al., 2012a) a measure of the extent of parameterisations, 

the way they had been approximated in the model and how this affected the ability of a 

model to reproduce the real world climate system.  A model output was represented as 

a function of its parameters and settings plus the model discrepancy (Sexton et al., 

2012a).  The discrepancy term was applied to the UKCP09 probabilistic projections 

resulting in a narrowed probability distribution of Charney sensitivity for global 

reconstructions and UK climates (Sexton et al., 2012b).  Data from UKCP09 has been 

used by studies looking at climate impacts on building design (Eames et al., 2011; 

Watkins et al., 2011), species distribution (Buckley et al., 2011) and extreme event 

hazard management (Blenkinsop et al., 2012) amongst many potential impacts from 

climate change.   
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Paper Model 
Charney 

Minimum 
Value 

Charney 
Maximum 

Value 

Stainforth et al., 2005 climateprediction.net HadSM3 1.7 9.9 

Sanderson, 2011 CAM3.5 2.2 3.2 

Shiogama et al., 2012 MIROC5 2.2 3.2 

Piani et al., 2005 CPDN HadSM3 2.2 6.8 

QUMP HadCM3 Ensemble HadCM3 QUMP 2.2 7.1 

QUMP HadSM3 Ensemble HadSM3 QUMP 2.2 6.9 

Watanabe et al., 2012 MIROC MPE 2.3 5.9 

Jackson et al., 2008 CAM3.1 2.4 3 

QUMP HadAM3 Ensemble HadAM3 QUMP 2.4 5.4 

Yokohata et al., 2010 MIROC3.2 4.5 9.6 

 
Average of PPEs 2.43 6.1 

 
CMIP3 2.1 4.4 

 
CMIP5 2.1 4.7 

Table 1.4. The maximum and minimum Charney sensitivities for perturbed physics ensembles 
were available.  For comparison of the range in each PPE, the minimum and maximum Charney 
sensitivities for the CMIP3 and CMIP5 multi-model ensembles is displayed as well as the average 
for these available PPEs.  The HadAM3, HadSM3 and HadCM3 QUMP estimates represent the 
Charney sensitivities declared for the ensemble members.   

The climateprediction.net project (Allen, 1999; Allen & Stainforth, 2002) outsourced its 

computing requirements by getting members of the public to download versions of the 

HadAM3 and HadSM3 models with 6 parameters for large scale cloud processes 

perturbed simultaneously.  By using home computing power (a Public Resource 

Distributed Computing (PRDC) approach - Rougier et al., 2009) CPDN were able to run 

many more ensemble members than would be computationally feasible on a single 

super computer (Piani et al., 2005; Stainforth et al., 2005).  Initial work investigated 

quantifying uncertainty in Charney sensitivity from the ensembles (Piani et al., 2005; 

Stainforth et al., 2005) with later work looking at the response of the climate in these 

ensemble members to rising greenhouse gases and also looking at the feedback effects 

(Sanderson et al., 2008a,b).  climateprediction.net found a wide range for Charney 

sensitivity (1.7 to 9.9°C – Table 1.4), which was attributed to clear-sky longwave 

feedback in the entrainment rate parameter, compared to other models (Sanderson et 

al., 2008a,b; Sanderson 2011).   
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Output from the QUMP and climateprediction.net projects were combined for 

comparing the two PPE experiments for HadSM3 (Rougier et al., 2009).  The aim was to 

analyse the different results for Charney sensitivity from both experiments and to also 

see if statistical tools could identify the most important parameters that were being 

perturbed.  Firstly, owing to simplifications in the climateprediction.net study required 

to get the project onto home computers, it was not possible to combine the two 

ensembles for direct comparison (Rougier et al., 2009).  An emulator for QUMP 

sensitivity was created across the range of parameters perturbed in the QUMP 

methodology, enabling a detailed sensitivity analysis to be developed on the ensemble 

members.  The results showed that QUMP has a marginally greater Charney sensitivity 

than the climateprediction.net methodology, but also a greater uncertainty in the 

Charney sensitivity (at a confidence interval of 95%) than climateprediction.net 

(Sanderson et al., 2008a; Rougier et al., 2009).  Hodson et al. (2013) assessed structural 

and parameter uncertainty in the Arctic using the CMIP3 MME and a HadCM3 PPE 

perturbing the QUMP parameters.  However, the parameterisations were chosen using 

Latin Hypercube Sampling.  As with Vellinga & Wu (2008), no flux adjustments were 

applied to the ensemble, named ‘THC-QUMP’ (Table 1.3).  Hodson et al. (2013) noted 

that a lack of observations especially involving the ocean heat transport and sea ice 

extent were the main source of uncertainty in the models.  Between the ensembles, 

ocean heat transport was found to be a structural uncertainty (as it played little role in 

the THC-QUMP ensemble) while the sea ice albedo parameterisations were a significant 

parameter uncertainty (Hodson et al., 2013).   

The projects described above have focussed on the perturbation of atmospheric 

parameterisations, where the bulk of the QUMP PPE research has been undertaken.  

More recently work has begun to investigate parameters outside the atmospheric 

component of HadCM3.  Collins et al. (2007), undertook an oceanic perturbation and 

did not discover significant results over the timescale of the 21st century (compared to 

atmospheric components – Murphy et al., 2009a).  Brierley et al. (2010) detected 

vertical heat flows that when perturbed had a significant affect in comparison with 

natural variation, although the changes are smaller than those related to atmospheric 

perturbations.  However, in a data-model comparison with SSTs over the longer 

timescales of palaeo-experiments, oceanic perturbations could become a stronger 

influence on the simulated climate.  The sulphur cycle was investigated (Ackerley et al., 

2009) showing that the uncertainty within the model, due to parameterisations of the 

aerosol processes was similar in magnitude to scenario uncertainty.  Booth et al. (2012, 

see also Booth & Jones, 2011) investigated the sensitivity of the climate response to 
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global warming from perturbations in terrestrial carbon cycle processes in HadCM3.  

By perturbing parameters linked to leaf processes affecting temperature, nutrient 

(including CO2) fixation and water on photosynthesis and two soil process parameters 

affecting soil respiration and water content, they discovered a greater plausible range 

in CO2 emissions from carbon-climate feedbacks in one scenario (SRES A1B) than the 

emissions range covering the full range of SRES scenarios.  The largest uncertainty 

came from the metabolism of photosynthesis as it responds to temperature.  The main 

implications of this work are that a poor understanding of carbon cycle feedbacks is 

weakening our understanding of the impacts from future climate change (Booth et al., 

2012).   

Jackson et al. (2012) used the HadSM3 and THC-QUMP HadCM3 ensembles for future 

climate change experiments under constant, doubling and quadrupling CO2 simulations.  

The key difference in this study compared to most HadCM3 PPEs (including this 

ensemble) is that no flux adjustments were applied to the PPE.  The study was able to 

investigate the sensitivity of meridional overturning circulation (MOC) to the 

uncertainty in climate models under different greenhouse forcing scenarios.  Although 

no modelled shutdown of MOC occurs, there was a reduction in the strength of MOC 

showing a negative relationship to global mean temperature that is not usually seen in 

a MME (Jackson et al., 2012).  Clark et al. (2010) used an updated set of simulations for 

the HadSM3 PPE (Table 1.3) to investigate whether the heat wave risk was limited by 

global warming targets (i.e. warming not in excess of 2°C by 2100 – May et al., 2008).  

They found that some ensemble members still showed a chance of extreme heatwaves 

despite having achieved the global warming targets, indicating that global averages 

may not fully prevent some extreme events on regional scales, an important 

consideration for setting targets for mitigation, frequently discussed as global means.   

The extensive database of simulations produced by the QUMP project has led to many 

global and regional experiments.  Work has been conducted in recent years 

investigating effects on rainfall patterns and water management in the UK.  Changes in 

UK extreme precipitation response to climate changes were dependent on season.  

With changes to winter extremes in an A1B scenario (compared to a 1920s control 

simulation) detectable by 2010, but summer extreme precipitation changes were not 

detectable until the 2080s (Fowler et al., 2010).  Using the PPE data combined with 

water resource models, Lopez et al. (2009) evaluated the ensemble against data and 

also tested the climate data under changing demand scenarios.  Repeating the results 

with CMIP3 data, Lopez et al. (2009) determined that the PPE investigated a broader 

range of modelling uncertainty than the MME and was therefore of greater use in 
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investigating adaptation strategies.  Although using PPEs requires more expertise, it is 

rewarded by more robust planning decisions (Lopez et al., In Prep).   

Frame et al. (2009) combined some of these different component ensembles to create a 

PPE where multiple components have been perturbed to investigate the relationship 

between different component uncertainties.  50,000 simulations were produced, with 

analysis of this data still underway.  Rowlands et al. (2012) took ~9,000 simulations 

with atmospheric and sulphur cycle perturbations and analysed the response of the 

climate in these ensemble members for climate change under an SRES A1B scenario to 

2050.  They found their results were consistent with the IPCC projections (IPCC, 2007) 

for this time period, but that they were to the higher end of the results expected from a 

MME.   

Rowell (2012) investigated four ensembles, HadSM3, HadCM3 and HadCM3C QUMP 

ensembles along with the CMIP3 MME (Meehl et al., 2000; 2007) with the aim of 

understanding sources of uncertainty for regional precipitation under future climate 

change.  Uncertainty in atmospheric parameters was found to play a large role in 

precipitation patterns over tropical land and mid-latitude continental regions during 

the summer months.  The same is true from uncertain sea ice processes in polar regions 

and it is concluded that over these regions, better understanding of the representation 

of these processes could improve models.  However in arid regions, internal variability 

is the dominant form of uncertainty and there is no methodology for model 

improvement to be found for it (Rowell, 2012).   

The projects that have been run using the QUMP methodology have shown that the 

impacts of the changes to the version of the model in each PPE member has had a 

‘coherent’ response on the climate system (Sexton et al., 2012a).  The results give 

confidence for people to test using a PPE experiment based on the QUMP framework to 

get sensible modelling results for the climate they are testing.   

1.4.3.2. Other Perturbed Physics Ensembles 

Some studies have been undertaken using versions of the HadCM3 model, based upon 

but not strictly adhering to the QUMP methodology.  Joshi et al. (2008) returned to 

single parameter perturbations for 7 selected parameters to create a PPE to investigate 

land/sea contrasts in the simulation of future climate change based on the Murphy et 

al. (2004) HadAM3 ensemble, generating a sensitivity test using the end member values 

for these parameters.  Large land/sea contrasts were noted in ensemble members 

where a perturbed parameter increased the land cloud cover compared to the ocean 



Introduction                                                                                                                              Chapter 1 
 

45 

(Joshi et al., 2008).  Outside of future climate change projections, there has been some 

palaeoclimate work, using PPEs based on the QUMP framework, looking at the LGM 

with the PalaeoQUMP project and some work in the mid-Holocene (Brown et al., 2008).  

Two PPEs have been produced using the low resolution version of HadCM3 known as 

FAMOUS (Jones et al., 2005) for the LGM (Gregoire et al., 2011) and the early Eocene 

(Sagoo et al., 2013).   

Gregoire et al. (2011) produced a tuned version of FAMOUS using eight parameters in 

the atmospheric component and two parameters from the ocean component of the 

model.  A Latin Hypercube Sampling approach was used to select parameter sets that 

explored the full range of model parameter space (Gregoire et al., 2011).  A 100 

member ensemble was run for the present day and the LGM, with ensemble members 

tested using the Arcsin Mielke Score (Watterson, 1996) against model development 

climate metrics and LGM SSTs from the MARGO dataset (Gregoire et al., 2011).  

Ensemble members were ranked from these tests and a final selection of ‘good’ 

ensemble members were chosen.  Selecting a single ‘optimal’ version of the model, may 

lead to processes that represent key climatological processes being poorly represented 

in that version and a resulting weakness in the application of that version to different 

climates from the tuning period.  For that reason, Gregoire et al. (2011) concluded that 

an ensemble of ‘good’ model versions should be used as the final versions.  Sagoo et al. 

(2013) produced a PPE for the early Eocene (55 to 48 Ma BP), utilising the methods of 

Gregoire et al. (2011).  Simulations were run for 6000 years, with selected simulations 

extended to 10,000 years to allow the climate to reach equilibrium within the model.  

17 simulations made the final ensemble, with 82 simulations failing to run, and a 

further 4 determined as being unstable (Sagoo et al., 2013).  The final ensemble 

covered a range of potential temperatures and was compared to data from the Eocene.  

The ensemble member that was judged as being ‘best’ was also the strongest member 

of the Gregoire et al. (2011) ensemble.  A tuning of FAMOUS that can represent the 

warmest and coldest climates of the last 65 million years can be presumed to be a 

strong version of FAMOUS for recreating the impacts of future climate change.  It also 

indicates that parameterisations influencing model climates affect the representation of 

warming and cooling.   

The NCAR Community Atmospheric Model (CAM – AGCM with prescribed SSTs or slab 

ocean modes – Neale et al., 2013) and the Community Climate System Model (CCSM – 

AOGCM – Gent et al., 2011) have been used in PPE studies across several model 

versions.  Jackson et al. (2008) used CAM3.1 (with prescribed SSTs) to investigate the 

response of optimised parameters selected using a Bayesian framework to study the 



Introduction                                                                                                                              Chapter 1 
 

46 

response of climate to a doubling of CO2.  The parameters were chosen from the 

representation of clouds and convection, and the optimisation was achieved by using 

Bayesian inference combined with a stochastic sampling strategy to produce sensitivity 

tests and generate PDFs.  From the PDFs, new parameter values were selected to 

produce the ensemble (Jackson et al., 2008).  Results indicate Charney sensitivity 

nearer 3°C rather than the CAM Standard value of 2.4°C (Table 1.4), but this was not an 

exhaustive selection.  Covey et al. (2011) used CAM versions 3.6 & 4.0 (the latest 

iteration of the model) with prescribed SSTs in a PPE to study the response of historical 

measures of model performance to changes in the parameterisations.  Sanderson 

(2011) used CAM3.5 (in slab mode) using methodology based upon 

climateprediction.net to create a PPE where the selected parameters were studied for 

their regional and global scale impacts on climate change.  These results were then 

compared to climateprediction.net results.  Charney sensitivity for the CAM ensemble 

ranged from 2.2 to 3.2°C, which is more tightly constrained than the 

climateprediction.net ensemble, due to differences in the clear sky cloud feedbacks in 

HadSM3 compared to CAM.   

Perturbing land surface parameters in the Community Land Model (CLM – Lawrence et 

al., 2012) component of CCSM3.5, Fischer et al. (2010) investigated uncertainties in the 

projection of extreme events using a 108 member ensemble perturbing five 

parameters.  The perturbed parameters investigated snow albedo, vegetation albedo, 

maximum rate of carboxylation, water depth and subsurface run off and roughness 

length.  Although they found that there was a smaller range in the response to the 

perturbations compared to an atmospheric parameters PPE using the same model, 

there was a change in both the mean and seasonal responses of the model to the 

perturbations.  Regionally this change was greater than displayed by the CMIP3 MME.  

The result comparing the land surface PPE to the atmospheric PPE is similar to the 

results from QUMP ensembles investigating other components with range in responses 

smaller than the atmospheric component, but still a notable effect (Murphy et al., 

2011).   

The ECHAM (AGCM – Roeckner et al., 2006) and the EGMAM (AOGCM – Huebener et al., 

2007) models from the Max Plank Institute have also created PPEs.  Using EGMAM, 

Niehorster & Collins (2009) investigated a sub-set of parameters focussing on 

entrainment rate and cloud formation (such as droplet size and ice fall speed).  The 

parameters chosen were those that were the same between the two models (with the 

perturbed values based on the HadSM3 QUMP ensemble (Collins et al., 2006; Webb et 

al., 2006).  They found that impacts on surface air temperatures were similar to 
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corresponding perturbations to HadSM3.  HadSM3 had a greater magnitude of change 

due to structural differences in cloud feedback between the models (Section 1.4.3.1).  

Overall it was suggested that a collection of PPEs performed on different models 

alongside MMEs would produce the best results for evaluating and understanding 

climate model uncertainties (Niehorster & Collins, 2009).   

Haerter et al. (2009) investigated the impacts on aerosol radiative forcing from the 

uncertainty in cloud parameters.  Two experiments were run, one producing single 

perturbations of the selected parameters, across a range of ten values bracketing the 

expected parameter range.  A second multi-perturbed parameter ensemble was created 

using Latin Hypercube sampling to create a 100 member ensemble.  The ensembles 

investigated seven cloud parameters chosen for their uncertainty and relation to cloud 

optical properties which are strongly influenced by aerosols (Haerter et al., 2009).  The 

largest uncertainty in IPCC published calculations of radiative forcing arises from 

aerosol radiative forcing (-1.8 to -0.3 Wm2).  Uncertainty in model aerosol parameters 

can account for 1.5 Wm2 of forcing in the ECHAM5 model (Haerter et al., 2009).  

Lohmann & Ferrachat (2010) conducted a similar PPE, but with fewer perturbed 

parameters.  They found that the parameter uncertainty was less than the structural 

uncertainty for the total anthropogenic aerosol effect.  Klocke et al. (2011) ran the 

ECHAM5 model creating a 50 member PPE, focusing on the relationship between 

Charney sensitivity and cloud & radiation errors within the model with results 

compared to the CMIP3 MME.  A tight range of parameter values for twelve 

parameterisations such as entrainment rate and cloud water to rain conversion was 

assigned with parameter sets determined by Latin Hypercube sampling.  They found it 

was possible to get the range of Charney sensitivity in a MME from a PPE perturbing 

just a single parameter, especially the entrainment rate coefficient in agreement with 

QUMP ensemble analysis (Rougier et al., 2009; Joshi et al., 2010).   

Neelin et al. (2010) used the International Centre for Theoretical Physics (ICTP) AGCM 

(Molteni, 2003) coupled to a slab ocean to investigate the disagreement between 

models in seasonal and regional precipitation and to guide the choices when choosing 

the best parameter sets for climate models.  Four parameters (minimum wind speed, 

relative humidity, cloud albedo and a viscosity parameterisation) were perturbed, with 

parameter sets chosen through the application of a statistical method, the quadratic 

metamodel fit (Neelin et al., 2010).  They found that using their method for choosing 

the optimal parameterisations tended towards the limits of the feasible parameter 

range.  The results are relatively unique with parameterisations used in other PPEs 

coming from across the range of feasible values.   
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The Japan Uncertainty Modelling Project (JUMP) use versions of the MIROC AOGCM (K-

1 Model Developers, 2004) to create PPEs.  Yokohata et al. (2010) created a 32 member 

ensemble for MIROC3.2 using an ensemble Kalman filter (Annan et al., 2005a,b) to 

select the combinations of 13 perturbed parameters that best recreated key observed 

climate variables and compared it to the equivalent ensemble from the QUMP project 

for HadSM3.  They found similar responses between the two models for the 

parameterisations applied, but that structural differences played an important role in 

the variations, concluding that both parameter and structural differences are important 

for understanding uncertainty in models.  Yoshimori et al. (2011) used the MIROC3.2 

ensemble, but ran it for the LGM.  They found that the range of Charney sensitivities in 

the LGM experiment was reduced (compared to a 2xCO2 experiment), but the response 

of ensemble members in both experiments gave strong support to using LGM 

experiments to support future climate change experiments.  Using MIROC5, Shiogama 

et al. (2012) created an ensemble which would not require flux adjustments unlike 

most AOGCM PPE experiments (i.e. Collins et al., 2006; 2011) using Latin Hypercube 

sampling of cloud parameterisations of phase and turbulence.  Ocean metrics can be 

investigated because the ocean is not being adjusted to reduce drift from imbalances in 

the top of the atmosphere radiation budget.  An ensemble mean Charney sensitivity of 

2.2 to 3.2°C was found, similar to results from the CAM model (Sanderson, 2011 – Table 

1.4).  Watanabe et al. (2012) developed a multi-physics ensemble (MPE), which is a 

hybrid ensemble, investigating structural differences and parameter differences 

between models.  It is most useful when comparing similar models with differences in 

the targeted area of model uncertainty, such as shortwave cloud feedbacks (Watanabe 

et al., 2012).  The parameterisations for cumulus convection, large scale condensation, 

cloud microphysics and turbulence from MIROC3.2 were inserted into MIROC5 

individually and as a group.  The results indicated that no one parameter scheme 

controlled the differences between MIROC3.2 and MIROC5, but that the coupling of 

parameter schemes did affect the model results (Watanabe et al., 2012).   

Across the variety of PPEs, there have been a number of methods and parameters 

investigated.  The original QUMP ensembles investigated the widest set of atmospheric 

parameters, but sampled a much more tightly constrained range for these parameters, 

with the parameter values selected by expert opinion.  The majority of other PPEs have 

used a smaller set of parameters (7 – 12 parameters), but used Latin Hypercube 

sampling to fully investigate the parameter space for these sets of parameters.  Only the 

CCSM and HadCM3 models have had PPEs designed to investigate the uncertainty in 

other components of the model.  Consistently across the various PPEs the response of 
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temperature varies across the ensemble, with some members displaying a greater 

range in features than MMEs where comparisons have been undertaken.  However, are 

the PPEs that are being used actually creating realistic versions of the models used?  

The QUMP method fixed on the target of producing realistic versions of the model that 

could have been the final release version, however, ensembles generated through more 

thorough sampling of the parameter space, may not replicate this.  Therefore, can it be 

assumed that these ensembles are valid for use? 

The reliability of MMEs and PPEs was investigated by Yokohata et al. (2012), using two 

MMEs: CMIP3 AOGCM and AGCM with slab ocean ensembles and four PPEs: HadSM3, 

HadCM3 QUMP, MIROC3.2 AGCM and CAM 3.1 ensembles.  Further development 

included the CMIP5 archive and added the MIROC5-AOGCM and MIROC5 MPE.  The 

reliability of each ensemble was investigated using a rank histogram based on whether 

observations can be considered to have been sampled from within the ensemble 

members.  The methodology was based upon the investigation into the CMIP3 

ensemble in Annan & Hargreaves (2010) which had determined that the CMIP3 MME 

was a reliable ensemble to generate probabilistic projections for climate change.  The 

histograms should be level, but rarely are, with a dome distribution for ensembles that 

are over-dispersed (the ensemble data fully encompasses the observational data – 

Figure 1.7a) and a ‘U’ shape for ensembles that are under-dispersed (Figure 1.7b; 

Yokohata et al., 2012; 2013).  Under-dispersion indicates that the ensemble either 

underestimate (the lowest rank member of the histogram) or overestimate (the highest 

rank) the observational data, meaning the ensemble does not represent the data fully.   

The Annan & Hargreaves (2010) MME result was upheld for both the CMIP3 and CMIP5 

ensembles (Yokohata et al., 2012; 2013).  The consistency of the rank histograms 

between the previous analyses indicates that the method and the results for CMIP 

MMEs are robust (Yokohata et al., 2013).  The PPEs and the MPE sampled all displayed 

the ‘U’ shaped rank histogram indicating the ensemble was not reliable (Yokohata et al., 

2012; 2013).   
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Figure 1.7. Rank histograms for reliability reproduced from Figures 1 & 2 of Yokohata et 
al. (2013) for A) CMIP5 all metrics, B) HadCM3 PPE all metrics, C) CMIP5 by metric and D) 
HadCM3 PPE by metric.  Metrics represented include: SAT (red), SAT trend (Red dashed), 
precipitation (blue), MSLP (green), shortwave radiation (yellow) and longwave radiation 
(light blue) measured as net radiation (solid), cloud feedback (dotted) and clear sky 
(dashed).   

Yokohata et al. (2013) showed that the HadCM3 QUMP ensembles are very close to the 

threshold of reliability.  Breaking the rankings down into individual metrics 

determined that for variables such as surface air temperature and precipitation the 

climate means of the PPEs investigated were also reliable (close to dome shape Figure 

1.7d; Yokohata et al., 2012; 2013).  However there was not a wide enough sampling 

range for variables such as mean sea level pressure (MSLP) or radiation and cloud 

forcings in PPEs.  Yokohata et al. (2012) were unable to determine if this was a feature 

of the models or the methodology to select the parameterisations.  It was found to be 

more of a problem for ensemble members with higher Charney sensitivity values, 

generally outside of the IPCC range for expected Charney sensitivity.  The result is 

supported by work from Joshi et al. (2010) which found for HadSM3 the highest 

Charney sensitivity ensemble member had a potentially unrealistic value for 

entrainment rate, which had been found to exert the greatest influence on HadSM3 

Charney sensitivity by Rougier et al. (2009).  Both ensemble methods are important for 

reducing uncertainty in climate projections, but careful experimental design is required 

to ensure that the PPEs are reliable (Rougier et al., 2009; Joshi et al., 2010; Yokohata et 

al., 2012).   
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1.4.3.3. Summary of PPEs 

Perturbed Physics Ensembles (PPEs) have been run on different members of the CMIP3 

MME family looking at a range of causes of parameter uncertainty in these models.  The 

most thoroughly investigated is the HadCM3 family of models, with parameterisations 

involving atmospheric, ocean, carbon cycle and sulphur cycle components perturbed 

(Table 1.3).  As with other PPEs, the key parameterisations involve the representation 

of radiation and cloud processes (Webb et al., 2006; Niehorster & Collins, 2009; 

Sanderson, 2011; Watanabe et al., 2012)).  In all models that have undergone PPE 

investigation there has been a wide range of variation once parameters are perturbed, 

with some models displaying different responses to the perturbations.  However it is 

consistent that atmospheric parameters are the most important component of GCMs 

for future climate projections.  PPEs for the HadCM3 models have been shown to 

investigate a range of Charney sensitivities similar to or greater than MMEs (Table 1.4), 

however, this is not uniform across all models used for PPEs (Collins et al., 2011; 

Klocke et al., 2011; Sanderson, 2011; Shiogama et al., 2012).  The widest variation in 

PPE Charney sensitivity in comparison amongst PPEs and to MMEs comes in the 

maximum estimate, with consistently similar lower bound estimates of Charney 

sensitivity around 2.2°C (Table 1.4).   

Results from PPEs have been compared to the CMIP3 & CMIP5 MMEs to assess their 

reliability.  PPEs have been found to perform reliably and within expected ranges for 

key variables such as temperature and precipitation with less reliability for mean sea 

level pressure or clear sky shortwave radiation (Yokohata et al., 2012; 2013).  The 

cause of the unreliability is due to under dispersion of the model results compared to 

the observations, resulting in an over-estimation or under-estimation of model results 

by the ensemble members compared to observations.  The authors suggest that this is a 

result of the initial PPE methodology, targeting Charney sensitivity at the cost of the 

representation of dynamical processes, leading to a narrow representation of the 

variables within the ensemble (Yokohata et al., 2012).  While this could be deemed a 

weakness of a PPE over an MME, the PPE does perform well against key climate 

variables for understanding future and past changes in climate and also provide the 

best solution for investigating model parameter space (Yokohata et al., 2012).  Of the 

PPEs tested in the Yokohata et al. studies, HadCM3 is close to the reliability threshold, 

giving confidence in its use for investigating parameter uncertainty.   
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1.4.4. Boundary Condition Uncertainty 

In palaeoclimate reconstructions the uncertainty in the boundary conditions stems 

from uncertainties due to the spatial and temporal limits of data reconstructions.  This 

leads to uncertainty arising from: 

• Palaeo-environmental data reconstructions (SSTs, vegetation) 

• Topography and bathymetry 

• Ice sheets and sea level 

• Greenhouse gas concentrations 

Early modelling of past climates used AGCMs (i.e. Chandler et al., 1994; Haywood et al., 

2000a) which required prescribed SSTs which were provided from reconstructions for 

the time period to be modelled.  Uncertainty in AGCM simulations arises from 

uncertainties in the methods used to create the SST reconstruction.   

To generate a dataset with the required global coverage to reproduce a warm period of 

palaeoclimate interest, often requires data covering time scales of hundreds of 

thousands to even millions of years (Lunt et al., 2012b; Haywood et al., 2013b; Sagoo et 

al., 2013).  Within these timescales orbital variations affect the drivers of climate 

change.  While these datasets produce good ‘average’ conditions for a time period, they 

are unable to aid a development of a full understanding into the drivers of the change.  

The low temporal or spatial availability of data sometimes required the use of data 

from unfavourable regions, such as areas of upwelling.  Brierley et al. (2009) applied a 

correction to their early Pliocene data for sites that were located in regions of 

upwelling, based on core top data.  This correction is a huge uncertainty for a 

reconstruction in a model, as it requires trust that conditions have remained consistent 

in the strength of the upwelling, which may not be a realistic assumption (Etourneau et 

al., 2009; Filippelli & Flores, 2009).   

There is also uncertainty in the technique applied to a site to calculate the SST 

reconstructions, which comes from the analytical techniques used to create the 

reconstruction. As discussed in Section 1.3.3 ii Mg/Ca analysis requires assumptions 

about the ratio of magnesium to calcium in the palaeo-ocean (Lear, 2007).  Additionally, 

while alkenones are assumed to be “near surface”, their water depth of formation is 

dependent upon latitude (Oukouchi et al., 1999).  Reconstructions based on faunal 

analysis require assumptions about the environments of modern and palaeo taxa 

(Dowsett & Robinson, 1998).  A number of palaeo-environmental reconstructions will 

utilise multi-proxy reconstructions across the sites.  Uncertainty can be created when 
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two proxy techniques have a large mismatch, such as the comparison of SSTs from 

Mg/Ca and alkenones from ODP site 847 (Dekens et al., 2008).  There is the possibility 

that both proxies are recording the temperature, with different results as each method 

reconstructs different parts of the water column or temperatures from different 

seasons (Dowsett & Robinson, 2006; Haywood et al., 2013b).  Uncertainty can also arise 

during the development of a new proxy.  TEX86 is a new proxy and the relationship to 

temperature is calibrated to core top samples, but this may not represent the palaeo 

SSTs at all sites (Schouten et al., 2002).  Hollis et al. (2012) showed strong correlation 

between the SSTs from TEX86 and the inorganic proxies at some sites, but for other sites 

there was a proxy-proxy mismatch of ~5°C for Palaeogene SSTs.  The mismatch, 

focussed in the Southwest Pacific, was largely due to the TEX86 calibration used, with 

TEX86-Low being a better calibration than previous calibrations (Hollis et al., 2012).  The 

final uncertainty comes from the method for extrapolating from a few sites to a global 

reconstruction.  AGCMs take values from these reconstructions and then extrapolate to 

create a global reconstruction using modern SST maps (i.e. PRISM SSTs – Dowsett, 

2007) or fitting a constructed zonal mean temperature to the global oceans by applying 

empirical calculations (Brierley et al., 2009).   

Figure 1.8. The 202 data sites for the Salzmann et al. (2008) vegetation biome 
reconstruction (see Figure 1.3) updated to indicate sites which have either a warm or a 
cold climate biome interpretation.  Sites in squares identify potential changes to the 
biome reconstructed and the two potential biomes are displayed together.   
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AOGCMs, which simulate their own ocean temperatures, do not require the input SSTs 

removing the occurrence of this uncertainty.  However, most AOGCMs still require 

prescribed vegetation which remains fixed throughout a simulation.  Palaeo-vegetation 

reconstructions are often temporally limited due to poor age control in the samples 

(Salzmann et al., 2008), leaving subjective choices to be made by the investigator.  As a 

result, the PRISM3D vegetation reconstruction (Salzmann et al., 2008) is a 

reconstruction for the Piacenzian age (3.6 to 2.6. Ma BP), compared to the 300 Kyr 

PRISM interval (3.264 to 3.025 Ma BP).  Uncertainty in the reconstruction can affect the 

model results, as the land surface scheme interacts with the atmosphere component of 

the model.  Figure 1.8 highlights where there are potential deviations from the 

PRISM3D biome reconstruction when allowing for variability due to changes in orbital 

forcing or greenhouse gas concentrations.  Examples of vegetation uncertainty between 

the two reconstructions exists in the USA, between the reconstruction of open conifer 

woodland or temperate xerophytic shrubland or in central Russia where conifer forest 

changes from temperate to cool.  The changes in vegetation affect surface albedo and 

regional precipitation, and changes in the type of vegetation are very important over 

high latitudes due to interactions with snow and winter albedo (Betts & Ball, 1997).  

Sensitivity studies have shown that running mPWP simulations with pre-industrial 

vegetation can reduce mean annual temperatures by 0.6°C (Hill et al., 2011), making 

vegetation uncertainty an important factor to consider in any reconstruction of the 

mPWP climate.  Recent work (Pound et al., 2013) has shown the importance on 

regional scales of using a more accurate mPWP lakes and soils reconstruction.   

The topography and bathymetry of a geological period is vital to palaeoclimate 

modelling studies forming the land-sea mask within the model.  Key features for 

uncertainty in the reconstructions arise from the elevation of mountain ranges which 

affect atmospheric flows (Foster et al., 2010; Hill et al., 2011) and oceanic gateways 

(Krebs et al., 2011; Hill et al., 2011; Robinson et al., 2011).  The reconstructions are 

based on a variety of evidence, from rock exposures, geophysical modelling of mantle 

plumes, palaeontology and geochemistry.  Changes to these features are considered to 

have been major drivers of climates in various periods, such as the Eocene-Oligocene 

Transition, where the opening of the Drake Passage is proposed as being a driver of the 

development of an EAIS and rapid global cooling (Kennet, 1977; Katz et al., 2011).  

Similarly the closure of the Central American Seaway was proposed as the trigger for 

Northern Hemisphere glaciation (Saranthein et al., 2009), although modelling studies 

suggest this was not the cause (Lunt et al., 2008a).  Miocene climate transitions have 

been proposed to have been controlled by orographic changes such as the uplift of the 
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Rockies or Himalayas (Currie et al., 2005; Foster et al., 2010) and not by changes in 

greenhouse gas concentrations.  Throughout this work, the main uncertainties centre 

on the timing of the events, a change in the PRISM3D compared to the PRISM2 

boundary conditions arose because of a change in the timing of the uplift of the Rockies 

from late Pliocene to Miocene (McMillan et al., 2006; Moucha et al., 2008).   

Ice sheet and sea level reconstructions are important as ice sheets exert an influence 

upon the global climate through albedo (Clark et al., 1999; Weaver et al., 1999) and 

regional climate as a topographic feature (Gregory et al., 2012).  Ice sheets are 

reconstructed through a number of approaches (e.g. Hill et al., 2007).  The methods 

used include: geomorphological reconstruction of ice sheets (Kleman & Borgstrom, 

1996), sea level reconstruction (Dowsett & Cronin, 1990), benthic δ18O isotopes 

(Zachos et al., 1997; Naish et al., 2001), palynology (Willard, 1996) and data-model 

hybrid approaches (Hill et al., 2007; Hill, 2009).  The hybrid approach uses climate 

models to force offline ice sheet models to reconstruct ice sheet development (DeConto 

& Pollard, 2003) or as a fixed element of a palaeo-environmental reconstruction (Hill et 

al., 2007).  Changes in sea level affect the flow of water through key gateways, such as 

the Bering Strait, which can be opened or closed by changes in sea level (Shaffer & 

Bendtsen, 1994; Goosse et al., 1997; Hasumi, 2002).   

Study Analytical Method CO2 Value 
(ppmv) 

Kurschner et al., 1996 Stomatal Indices 360 to 380 

Raymo et al., 1996 δ13C Marine Particulate Organic Matter 329 to 435 

Pearson & Palmer, 2000 Boron Isotopes 280 

Tripati et al., 2009 Boron/Calcium 280 to 300 

Pagani et al., 2010 Alkenones 280 to 400 

Seki et al., 2010 Alkenones 370 to 400 

Seki et al., 2010 Boron Isotopes 400 

Bartoli et al., 2011 Boron Isotopes 300 to 400 

Stults et al., 2011 Stomatal Indices 351 

Table 1.5. Estimates of mid-Pliocene atmospheric CO2 and the analytical methodology 
used to calculate the estimate.   

Greenhouse gas concentrations especially atmospheric carbon dioxide (CO2), are 

generally a poorly constrained boundary condition for many palaeo-modelling studies.  

Unlike the last 800 Kyrs were the atmospheric concentration can be extracted from the 

ice core record producing a well constrained value for the gases (Luthi et al., 2008), 

deeper time reconstructions require estimates of CO2 from a range of sources.  Sources 
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include: alkenones, leaf stomata, pedogenic carbonates, boron isotopes and 

boron/calcium ratios (Table 1.5).  There is no perfect proxy for CO2 with many caveats 

being required for all the processes, which adds to the uncertainty generated.  The 

effect can be seen in several studies, either applying the same method to different sites 

(Pagani et al., 2010) or applying the same methods as other work and getting different 

results (Seki et al., 2010).  The variation between methods and locations is attributed to 

several factors.  Pagani et al. (2010) analysed 6 sites spread across the globe, covering 

both the Atlantic and Pacific oceans.  A potential bias for the alkenone CO2 proxy is the 

concentration of phosphate in the near surface ocean and Pagani et al. (2010) had to 

make assumptions on oceanic phosphate concentrations over the last 5 million years.  

Although all the records display the same trend over the time period of a decreasing 

CO2 level from 5 Ma to the present day, it creates a situation where there is uncertainty 

in the actual values for CO2 (Table 1.5).   

Seki et al. (2010) used boron isotopes and alkenones to investigate CO2 with a multi-

proxy approach at two sites.  They found a good multi-proxy agreement at both sites 

and were able to produce an estimate for Pliocene CO2 using both alkenones and boron 

isotopes.  While the alkenones compared favourably with similar sites produced by 

Pagani et al. (2010), the boron data was very different to the data produced by Pearson 

& Palmer (2000).  Seki et al. (2010) attribute this to analytical issues in the Pearson 

study (see Foster, 2008), preservation of material and the choice of species used 

between the two studies.  Lower quality preservation for the Pearson & Palmer (2000) 

data would have altered the value for the boron isotopes and this would create this 

discrepancy.  The multi-proxy nature of the ‘Seki et al.’ study gives a greater confidence 

in their estimates of CO2 at 370 to 400 ppmv compared to the 280 ppmv of the Pearson 

study.   

1.4.5. Uncertainty Summary 

The four types of uncertainty (natural variability, scenario, model and boundary 

condition uncertainty) in modelling climates arises from our level of knowledge and 

understanding of what is being modelled (Murphy et al., 2009a).  Quantifying and 

understanding the model uncertainties is achieved through creating ensembles, either 

to investigate the structural uncertainty through MMEs or the parameter uncertainty in 

PPEs.  Versions of these ensembles for future climate projection and for a range of 

palaeoclimate reconstructions are and/or have been undertaken.  Boundary condition 

uncertainty for palaeoclimate simulations is less thoroughly investigated, due to 

uncertainty in the palaeo-environmental reconstructions creating a wide range for 
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some variables such as greenhouse gases.  While crucially important for future climate 

projections, scenario uncertainty is not an issue for palaeoclimate modelling studies, 

replaced by boundary condition uncertainty.  By using experimental designs to reduce 

or quantify these uncertainties, it is possible to improve the robustness of model 

reconstructions and projections of climate, as well as our understanding of the causes 

of uncertainty in models.   

1.5 Project Rationale 

Evidence that humankind is affecting the climate system is now overwhelming (IPCC, 

2007).  However, projections of the magnitude of possible future changes are limited by 

an incomplete knowledge of the skill of models for making these projections.  Models 

are tested on their ability to reconstruct the observational period (Braconnot et al., 

2012), however the magnitude of climate change in this period is relatively small 

(~0.75°C - IPCC, 2007).  Palaeoclimate offers a solution to this with time periods that 

display a range of changes to global temperatures that can be reconstructed from 

palaeo-data enabling the dynamics of warmer world climates to be investigated 

(Haywood et al., 2009a; Braconnot et al., 2012).  Although no perfect analogue from the 

geological record exists for the likely projections of 21st century climate change 

(Haywood et al., 2011b), the Pliocene, specifically the mid-Pliocene Warm Period 

(mPWP) is the most parsimonious epoch to study in this regard.  It has a similar to 

modern continental configuration, elevated atmospheric CO2 levels and warmer global 

mean temperatures compared to modern.  The mPWP also has the largest global 

palaeo-environmental reconstruction for a warmer than modern climate enabling 

models to be more thoroughly tested than any other time in the geological record.  As a 

result, the mPWP is an important geological period to study with models and palaeo-

data to understand the climate system of a warmer than modern world.   

The George Box axiom, “All models are wrong, but some models are useful” (Box & 

Draper, 1987) is ably demonstrated by mPWP modelling studies.  The majority of 

mPWP climate model based studies have utilised a single climate model (Section 1.3.2) 

and have compared the results from the simulations to the PRISM palaeo-data.  Data-

model comparisons from these single models have highlighted strengths and 

weaknesses of individual climate models and enabled the identification of regions 

where a climate model is unable to reproduce the data (Section 1.3.4), but are unable to 

explain why.  However, no account of the inherent uncertainty in climate model 

simulations has been accounted for in this previous work.  A range of climate projection 
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studies investigating structural and parameter uncertainty have displayed the scale of 

the uncertainty on results produced by a climate models (Section 1.4.2 & 1.4.3).   

Two initiatives have been undertaken to tackle this weakness in mPWP climate 

modelling.  The first, is the Pliocene Model Intercomparison Project (PlioMIP – 

Haywood et al., 2010; 2011a; 2013a), which has produced a multi-model ensemble 

tackling the structural uncertainty in Pliocene climate modelling bringing together 

modelling groups from across the globe.  The second is the subject of this thesis, the 

perturbed physics ensembles, designed to investigate parameter uncertainty in mPWP 

climate simulations.  Although unconnected, the two are complementary, focussed on 

increasing our understanding in the mismatches between model and data 

reconstructions of the mPWP.  The main component of the data-model mismatch for 

the mPWP focusses around the inability of fully coupled atmosphere-ocean general 

circulation models (AOGCMs) to simulate the high latitude warming of the mPWP 

climate, especially through the North Atlantic (Section 1.3.4).   

Existing PPEs have focussed on future climate change projections (i.e. Collins et al., 

2006; 2011), with work underway to investigate PPEs at the Last Glacial Maximum 

(Gregoire et al., 2011) and the Eocene (Sagoo et al., 2013).  The Pliocene PPE presented 

here represents the first investigation of parameter and boundary condition 

uncertainty in a warmer than modern climate with similar continental configuration.  It 

is the first palaeo-PPE to be tested against SST, SAT and vegetation biome data, using 

these three datasets to produce a combined ranking of the ensemble members.   

1.5.1. Aims and Objectives 

The thesis will investigate the contribution of parameter uncertainty and boundary 

condition uncertainty on the simulation  of mPWP climate.  Parameter and boundary 

condition uncertainty represent two of the three areas of model uncertainty relevant to 

palaeoclimate (see Section 1.4.1) forming vertices of the “PMIP Triangle” (Haywood et 

al., 2013a).  The ensembles will be assessed in comparison with palaeoclimate data.  

The focus of these data-model comparisons will be to determine  how the ensemble 

members vary in  comparisons to individual palaeo-datasets and also across the 

combined range of palaeo-datasets available for use.  The variation in ensemble 

member performance will enable the assessment of the ensemble and the impact of the 

two forms of uncertainty upon the simulation of the mPWP climate within HadCM3.   

The aim of the thesis is to identify the ensemble members which reduce the existing 

data-model mismatch and which ensemble member performs best across the whole 
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range of palaeo-data utilised in this thesis.  By utilising both sets of boundary 

conditions used in previous mPWP simulations, our PPE can also identify which 

boundary conditions produce the best data-model comparisons across the different 

palaeo-datasets used and in the combined rankings.  The PRISM3D boundary 

conditions represent an improved understanding of the mPWP, but it is important to 

test whether they produce a stronger representation of the mPWP climate than PRISM2 

boundary conditions.  Similarly, the potential range of values of mPWP atmospheric 

CO2 will be included within the assessment of ensemble member performance, allowing 

for uncertainty in this boundary condition.   

The goals of the investigation are: 

1. To investigate the mPWP global and regional climate responses to the 

parameter perturbations, including the effect on these responses from the 

potential range for mPWP atmospheric CO2 concentrations.   

2. To investigate the effect of changing the physical boundary conditions within 

the model, from PRISM2 to PRISM3D and the interaction between the boundary 

condition changes and the parameter perturbations 

3. To investigate the effect parameter perturbations and boundary condition 

changes have on data-model comparisons to vegetation derived surface air 

temperature, sea surface temperature and vegetation biome data.   

The perturbed physics ensemble presented here represents a thorough investigation of 

the uncertainty in mPWP climate simulations with AOGCMs due to the representation 

of sub-grid scale parameterisations and the physical boundary conditions.  It is unlikely 

that any single ensemble member will provide a perfect reconstruction of the mPWP 

climate, however the range of performance across the ensembles and DMCs will 

provide useful information in where mPWP modelling can be improved.  All models are 

wrong, but some members of our PPE are useful for reducing data-model mismatches.   

1.6. Thesis Outline 

The thesis will illustrate the progression of our PPE from conception, through the initial 

results to the full ensembles investigating parameter and boundary condition 

uncertainty and the ranking of these ensemble members with respect to palaeo-data.   

i) Chapter 1 – Introduction 

Chapter 1 has introduced the Pliocene as a geological epoch in the context of the 

Cenozoic and described the modelling and palaeo-data produced for the mid-Pliocene 
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Warm Period (mPWP).  The existing data-model mismatch was discussed and the 

challenges to simulating mPWP climates that the mismatch poses.  It also discussed 

sources of uncertainty in climate models and presents methods for tackling and 

quantifying uncertainty.   

ii) Chapter 2 - Methodology 

Chapter 2 will outline the methods to be used throughout the thesis.  The HadCM3 and 

BIOME4 models are described along with the methods for creating Pliocene and 

modern simulations.  The process for creating and running the perturbed physics 

ensemble members, including applying the flux adjustments and changes to the model 

ancillary files (where required) will be described.  The two sets of physical boundary 

conditions, the PRISM2 and PRISM3D reconstructions, are described with differences 

between the two highlighted.  The CO2 sub-ensemble is introduced with the values for 

CO2 used in the sub-ensembles outlined and the methodology for choosing the sub-

ensemble members discussed.  There is also a discussion about the methodological 

decisions made in the creation of these ensembles and why the QUMP method was 

followed to generate the ensemble members.  Finally the palaeo-data and the 

methodologies for testing the performance of each ensemble member is outlined.   

iii) Chapter 3 - Initial Results 

Chapter 3 discusses an initial ensemble of the HadCM3 Standard and the two ensemble 

end members (in terms of their Charney sensitivity) that were run.  The purpose of the 

initial ensemble was to test the feasibility of the PPE members and the methods to be 

used for testing the members, to determine their suitability for use in the investigation.  

The chapter is based on work published in Pope et al. (2011), but for this thesis 

additional metrics were produced to enhance the analysis.  It finishes with an analysis 

of the developments that were made to the initial results methodology and were 

incorporated into the methodology in Chapter 2.   

iv) Chapter 4 – Intra-Model Assessment of mid-Pliocene Climate: Can Geological 

Data and Climate Models be Reconciled? 

Chapter 4 investigates the impact of the parameter uncertainty upon the simulation of 

the mPWP with HadCM3 across our ensemble members.  Intra-model comparisons will 

highlight differences between the ensemble members and key climate features will be 

picked out, such as Polar Amplification within the ensemble.  The importance of the 

potential range in mPWP atmospheric CO2 will also be assessed through the CO2 sub-
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ensemble.  Data-model comparisons will assess the performance of the ensemble 

members to the palaeo-data.  From this, a conclusion as to the performance of the 

ensemble members in terms of the simulation of the mPWP will be drawn.  The chapter 

will aim to answer three main questions: 

1. Is it possible to discriminate the model ensemble members using geological proxy 

data? 

2.  Are there implications for model estimates of Charney sensitivity? 

3.  Can models be reconciled with mPWP Proxy-data? 

4.  Which Methodology Produces the Best Comparison of Model and Data? 

v) Chapter 5 – On The Importance of Accurate Boundary Conditions for Modelling 

the mid-Pliocene Warm Period 

Chapter 5 presents the results from the comparison between the PRISM3D and PRISM2 

boundary condition ensembles, with the aim being to determine which set of boundary 

conditions represent the best basis for modelling the mPWP.  The chapter will test the 

assumption that the improvements and refinements in the PRISM3D boundary 

conditions, compared to PRISM2, will be represented through improved model 

simulations.  The same format of intra-model comparisons and data-model 

comparisons used in Chapter 4 will be utilised here to assess the performance of the 

boundary condition ensembles.  The Chapter will aim to answer three research 

questions: 

1. Which boundary condition set produces the strongest mPWP simulations? 

2. What are the implications of this result for Modelling the mPWP? 

3. What is the role of boundary condition uncertainty in mPWP data-model 

mismatches? 

vi) Chapter 6 – Conclusions 

Chapter 6 reviews and concludes the results from Chapters 4 & 5 within the context of 

the research aims for the thesis and outlines potential future uses of perturbed physics 

ensembles.  A key conclusion will focus on how the simulations develop our 

understanding of AOGCM simulations of mPWP climate and the use of data-model 

comparisons to assess their performance.  The chapter will finish with suggestions of 

future development for the work, drawing on the full range of work undertaken in the 

course of the thesis.   
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Chapter 2: Methodology 
2.1 Introduction  

The work undertaken for this thesis involves creating, running and testing a perturbed 

physics ensemble (PPE) based on the methodology of the UK Met Office ‘Quantifying 

Uncertainty in Model Predictions’ (QUMP) project.  The perturbed physics ensembles 

utilise a fully coupled atmosphere-ocean general circulation model (AOGCM) set up for 

simulating the Pliocene.  The investigation requires the application a variety of different 

models, modelling methods and analysis techniques.  The climate modelling will be 

undertaken using the UK Met Office AOGCM, HadCM3.  The PPE is created using the 

methodology of Collins et al. (2006; 2011) developed from the work of Murphy et al. 

(2004).  The HadCM3 model is set up for simulating the Pliocene by inputting Pliocene 

specific physical boundary conditions, work which has been described for HadCM3 in 

several Pliocene modelling simulations (i.e. Haywood et al., 2000a; 2011a; Haywood & 

Valdes 2004; Lunt et al., 2008a,b).  The model boundary conditions were produced by the 

US Geological Survey (USGS) Pliocene Research Interpretation and Synoptic Mapping 

(PRISM) group (Dowsett et al., 2010a; Haywood et al., 2010).  An offline equilibrium 

vegetation model, (BIOME4 – Kaplan, 2001) will be used to model potential vegetation 

cover driven by the model outputs from the PPE members.   

Results from the ensemble members will be analysed for changes in climate responses due 

to the parameterisations through intra-model comparisons, which will focus on the 

differences between an ensemble member and the HadCM3 Standard simulation for a 

variety of climate metrics.  The performance of the ensemble members will be ranked 

using data-model comparisons to sea surface temperature (SST) data, surface air 

temperature (SAT) data and a vegetation biome reconstruction.  Root mean square errors 

will be used to rank the temperature data and Cohen’s Kappa statistic (Cohen, 1960) will 

be used for ranking the simulated biomes.  These methods have previously been applied 

individually to assess the performance of Pliocene model simulations (SSTs - Haywood et 

al., 2004; Dowsett et al., 2012; SATs – Salzmann et al., 2013; vegetation biome  - Haywood 

et al., 2009b), however Pope et al. (2011, Chapter 3) was the first use of combined 

(temperature and vegetation biome palaeo-data) methods to assess and rank Pliocene 

simulations.   

Chapter 2 outlines the description of the models used, the datasets used to create the 

Pliocene boundary conditions for the model, and then the methods for analysing the 
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results (including statistical tests used) through intra-model comparisons, data-model 

comparisons and exploring the uncertainty.  There will also be a discussion regarding the 

QUMP methodology, specifically the advantages and disadvantages of the decision to 

follow it.   

2.2 Experimental Design 

The aim of this thesis is to investigate parameter and boundary condition uncertainty in 

the HadCM3 model in a warmer world from the geological past using a perturbed physics 

ensemble.  These aims will be achieved through three main components, the perturbed 

physics ensembles (PPEs) that will be created and the intra-model comparisons (IMCs) 

and data-model comparisons (DMCs) that will be used to assess the impact of parameter 

and boundary condition perturbations on climate simulations of the mPWP.   

i) Perturbed Physics Ensembles 

The perturbed physics ensembles have all been created using the basis of the UK Met 

Office QUMP project.  The perturbed parameters utilised in this thesis to create the PPE 

was based on the AO-PPE-A ensemble from Collins et al. (2011), designed as part of the 

QUMP project.  In total, 6 ensembles have been created and run, these were: 

• Initial results ensemble – 6 members (3 PRISM2 boundary conditions, 3 Modern) 

• Modern ensemble – 16 members and the Standard 

• Pliocene ensemble (PRISM2 boundary conditions) – 16 members and the Standard 

• Pliocene ensemble (PRISM3D boundary conditions) – 16 members and the 

Standard 

• 300 ppmv Pliocene ensemble (PRISM3D Boundary Conditions) – 4 members and 

the Standard 

• 350 ppmv Pliocene ensemble (PRISM3D Boundary Conditions) – 4 members and 

the Standard 

All, but the initial results ensemble were run on the ARC1 high performance computing 

(HPC) resource at the University of Leeds.  The initial results ensemble was run at the UK 

Met Office and results from this ensemble were only used in Chapter 3 (published in Pope 

et al., 2011).  The perturbed physics ensemble used and the methodology for creating the 

PPE is discussed in Section 2.4.3.  The impact on the perturbed physics ensembles of the 

change in HPC resources is discussed in Section 2.6.1.   

Each ensemble was created by spinning up the Standard (unperturbed version of 

HadCM3) on the HPC platform being used (Met Office or ARC1).  For both the Modern, 
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Pliocene PRISM2 and Pliocene PRISM3D Standards an existing control simulation was 

used to initialise the Standard simulation.  These existing control simulations have been 

now been run for several thousand years.  The Standards were run for a further 500 years 

in line with the PlioMIP experimental design (Haywood et al., 2011a) to establish the 

simulations on the HPC platform (differences between these resources such as compilers 

can cause minor influences on simulation climate means – Lunt et al., 2012a).  Once the 

Standard had achieved 500 years, it was used to initialise each ensemble member, which 

was then run for the experimental phase, a further 300 years (Figure 2.1).  Of this 300 year 

period, the final 30 years (years 271 to 300) were used to produce climatological averages 

for analysis in both intra-model and data-model comparisons.   

 

Figure 2.1. Graphical outline of the experimental design regarding the simulations produced 

for the investigation of Pliocene climate through perturbed physics ensembles.   

The 300 year experimental phase represents a compromise between achieving 

computational efficiency and achieving an equilibrium climate state.  It is not enough time 

for the simulated deep ocean to have reached equilibrium with the forcing changes 

imposed on the simulations.  However, by running the simulations for 300 years, an 

approximate (or quasi) equilibrium can be reached with the atmosphere, land surface, sea 

surface and ocean mixed layers (Hewitt et al., 2002).   
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Figure 2.2. Global average time series plots for surface air temperature (K) for ensemble 
members: B (red), M (green) and the Standard (black) for the final 200 years of the 
simulations.   

The ensemble members are judged as having achieved the state of approximate 

equilibrium if the residual change in forcing from the parameterisations in the surface air 

temperatures displays minimal trend.  For ensemble member M, there are no perceptible 

trends in the temperature over the final century.  For member B, there is a slight trend for 

a decrease in temperatures (0.2°C).  However, this is not present in the final 50 years of 

the simulation.  A similar trend occurs through the Standard.  With the simulations 

reaching the quasi-equilibrium for the surface metrics, it is possible to take the averaging 

period as representative of the final climate of the simulation.  All ensemble members 

were checked for these criteria prior to including them in the final analysis.  Three 

ensemble members, A, C & R failed to meet these criteria and as a result these ensemble 

members were not included in the final analysis.  The impact of this is further discussed in 

section 2.6.1.   

Two full Pliocene ensembles have been run, labelled the PRISM2 and PRISM3D ensembles.  

These ensembles represent variations in the physical model boundary conditions available 

to be applied for modelling the mPWP.  Both sets of boundary conditions were produced 

based on a palaeo-environmental reconstruction by the US Geological Survey PRISM team.  

However, the PRISM3D reconstruction (Dowsett et al., 2005; 2010a) represents an 

updated palaeo-environmental reconstruction compared to the PRISM2 (Dowsett et al., 
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1999) reconstruction.  The PRISM2 full ensemble is discussed in Section 2.4.1 and the 

PRISM3D full ensemble in 2.4.4. i.   

Two sub-ensembles using different concentrations of atmospheric CO2 were also 

produced.  The full Pliocene ensembles were run with atmospheric CO2 concentrations of 

400 ppmv, however palaeo-data exists which suggest it could have been a lower value.  

The sub-ensembles use atmospheric CO2 concentrations of 300 ppmv and 350 ppmv to 

investigate the potential range of atmospheric CO2.  These sub-ensembles are discussed 

further in Section 2.4.4. ii.   

ii) Intra-Model Comparisons (IMCs) 

Ensemble members will be compared to each other through intra-model comparisons to 

investigate large scale features and regional responses to the perturbed parameters 

compared to the Standard simulation.  A range of model metrics will be used covering key 

climatological features such as temperature and precipitation.  The methodology applied 

for creating and assessing the IMCs is outlined in Section 2.5.2.   

iii) Data-Model Comparisons (DMCs) 

The ranking of ensemble member performance will be achieved through data-model 

comparisons using three types of palaeo-data: a sea surface temperature (SST) dataset, 

surface air temperature (SAT) dataset and a terrestrial vegetation biome reconstruction.  

Root mean square error and Cohen’s Kappa statistic will be used to determine the 

rankings for each ensemble member.  By utilising these three palaeo-datasets, the final 

ranking of the ensemble members will not be biased towards an individual metric, but be 

based upon a member’s ability to reconstruct mPWP climate across the terrestrial and 

oceanic realms.   

The full details of the application of each DMC method used is outlined in Sections 2.5.3 

(SSTs), 2.5.4 (SATs) & 2.5.5 (vegetation biomes).  A methodological decision to use the 

modern Standard simulation to create the anomalies to the ensemble members for the 

DMCs could be seen as biased towards the ensemble Standard simulation.  The rationale 

for this decision is outlined in Section 2.6.4.   
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2.3. Models 

2.3.1. HadCM3 

The PPE will be undertaken using the UK Met Office fully coupled atmosphere-ocean 

general circulation model (AOGCM) HadCM3, which contains atmosphere, ocean, 

vegetation and sea ice components (Gordon et al., 2000).  HadCM3 was used to produce 

the perturbed physics ensembles for three principle reasons.  Firstly, the most extensively 

tested PPEs have been produced for the HadCM3 models (see Chapter 1, Section 1.3.3.1). 

Secondly HadCM3 has been extensively used in palaeo-climate simulations because its 

ratio of model years to wall clock time is high allowing long simulations to be undertaken.  

Lunt et al. (2012) highlighted the weaknesses for palaeoclimate studies resulting from 

model simulations taking many months limiting the scope of the results.  Finally, HadCM3 

has been utilised in MMEs such as PlioMIP (Bragg et al., 2012; Haywood et al., 2013a), 

therefore utilising HadCM3 for the perturbed physics ensembles allows broad 

comparisons with other uncertainty work for the mPWP.   

The atmosphere is comprised of 19 vertical levels with grid dimensions of 2.5° x 3.75° on a 

latitude-longitude grid (Gordon et al., 2000), which equates to a grid box at the equator of 

278 Km latitude by 417 Km longitude.  The model contains many features that are 

developments from its predecessor HadCM2 (see Johns et al., 1997) including a radiation 

scheme covering 6 additional spectral bands in the shortwave and 8 additional bands in 

the longwave.  The model explicitly represents the radiative effects of all greenhouse gases 

not just CO2, O3 and H2O (Edwards & Slingo, 1996; Gordon et al., 2000; Johns et al., 2003).  

Background aerosols in the model have been parameterised to include their effects on the 

climatology (Cusack et al., 1998; Johns et al., 2003).  The penetrative convection scheme of 

Gregory & Rowntree (1990) has been developed to include a parameterisation of the 

impacts of momentum on convection and the downdraft of convection in the model 

(Gordon et al., 2000; Johns et al., 2003).  HadCM3 employs the use of MOSES1 (Met Office 

Surface Exchange Scheme version 1– Cox et al., 1999) with developments in soil moisture 

responses to temperature (freezing/melting) and on the effect of CO2 and stomatal 

resistance on evapotranspiration (Williams et al., 2001).  Several parameterisations in the 

model are linked to features in cloud representation and cloud development.  These are 

especially crucial surrounding the partitioning of mixed phase clouds and cloud formation 

such as the radius of cloud droplets and droplet numbers in clouds.  Further details of 

these parameterisations are found in Gordon et al. (2000).  There have also been several 

minor changes to the atmospheric component (compared to HadAM2 - Johns, 1996) and 

these are detailed in Pope et al. (2000).   
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The ocean is based on a Bryan-Cox type model (Roberts & Wood, 1997) comprised of 20 

levels with a rigid lid on a 1.25° x 1.25° latitude-longitude grid (Johns et al., 1997; Gordon 

et al., 2000) which represents an equatorial grid box of 139 Km by 139 Km.  The rigid lid 

results in no volumetric change in the ocean regardless of evaporation from the ocean or 

riverine inputs (Gordon et al., 2000).  There are 6 ocean grid boxes for every atmospheric 

grid box in the coupling of the model.  A key feature of the ocean component is the 

interaction with sea ice, and every high latitude grid box in HadCM3 has the ability to have 

sea ice cover (Gordon et al., 2000).  Changes in sea ice albedo due to temperature change 

are represented using a linear response.  A maximum sea ice albedo of 0.8 occurs at a 

temperature of -10°C and decreases linearly to 0.5 at the minimum sea ice temperature of 

0°C (Crossley & Roberts, 1995; Gordon et al., 2000).  The relationship represents the 

changes in sea ice albedo as warming occurs, reducing snow cover and increasing the 

number of melt ponds (Gordon et al., 2000).  In places, ocean basin topographies had to be 

edited due to grid scale, this was found to have an especially sensitive response in the 

North Atlantic around Greenland-Iceland-Faeroes-Scotland ridge and in the Denmark 

Strait.  Topographies were smoothed in places and channels set at certain depths in the 

model (Roberts & Wood, 1997; Gordon et al., 2000), this is an important consideration 

with respect to boundary condition uncertainty as both Pliocene and modern simulations 

use the same land sea mask.   

Several parameterisations exist in the ocean fluxes and mixing ratios and the absorption of 

shortwave radiation in the surface waters, further details of which can be found in Gordon 

et al. (2000).  Freshwater fluxes are calculated using the balance of precipitation and 

evaporation over land including a term for run off from land ice and allowing for sea ice 

formation (Pardaens et al., 2003).  Freshwater is delivered to the coasts based on the 

configuration of river catchments and estuaries (Ivanovic et al., 2013).  An important 

parameterisation in the ocean component is Mediterranean outflow to the Atlantic Ocean.  

In the ocean, this is a crucial flow and has an important impact on Atlantic waters masses 

by venting warm, salty water into the cooler North Atlantic off Spain.  However, in the 

HadCM3 land-sea mask, the Strait of Gibraltar is closed, therefore a parameter (in the form 

of a diffusive pipe) exists to represent outflow of waters through the strait (Johns et al., 

2003; Ivanovic et al., 2013).   

The model runs with a time step of 30 model minutes for all processes and the atmosphere 

and ocean are coupled at the end of each model day (Gordon et al., 2000).  The HadCM3 

model has been widely utilised in climate modelling projections, palaeoclimate studies and 

in MMEs including the CMIP3 (Meehl et al., 2007); PMIP2, PMIP3 (Braconnot et al., 2007; 

2012) and PlioMIP (Bragg et al., 2012; Haywood et al., 2013a).  HadCM3 has been shown 
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to perform consistently strongly in tests against other AOGCMs as well as reproducing the 

main features of climate (Lambert & Boer, 2001; IPCC, 2007; Bragg et al., 2012).   

2.3.2. BIOME4 

BIOME4 (Kaplan, 2001) is a mechanistic equilibrium vegetation model which can be run 

off-line from the HadCM3 AOGCM and is used in these experiments to interpret the effects 

of the climates of ensemble members upon simulated biomes of the mPWP.  BIOME4 has 

been previously used in palaeoclimate studies to assess the effects on vegetation of 

changes in climates (i.e. Haywood et al., 2002c; Krebs et al., 2011), and in producing the 

PRISM3D vegetation distribution through a data-model hybrid approach (Salzmann et al., 

2008).  BIOME4 is used in this thesis to produce predicted biomes based on the output of 

ensemble members which can be tested against the PRISM3D reconstruction using 

Cohen’s Kappa statistic (Cohen, 1960).   

It is driven by a year of monthly outputs from the ensemble member’s climatological 

averaging period for surface temperature (at 1.5m), precipitation, cloudiness and absolute 

minimum temperature combined with inputs of soil moisture, soil depth and CO2.  BIOME4 

is programmed with 28 biome classifications, which are determined based on the 

combination of dominant and sub-dominant plant functional types (PFT).  There are 12 

PFTs which cover distinct categories of flora from Arctic to tropical environments (e.g. 

tropical grassland or cool conifer woodland (Salzmann et al., 2009)).  Using the climate 

inputs and the CO2 concentration, BIOME4 calculates whether the growth of each PFT 

could occur within those climatic conditions through the calculation of net primary 

productivity (NPP).  Parameters such as photosynthetic pathway and seasonal fluxes in 

temperature and precipitation are used along with semi-empirical rules related to 

balances between forest and grass taxa to determine the potential PFTs at each grid point; 

the combination of potential PFTs then determines the final biome (Kaplan, 2001).  

BIOME4 was run at the atmospheric grid resolution of HadCM3, enabling the required 

fields to be taken directly from the HadCM3 outputs without adjusting the resolution and 

interpolating inputs.   

BIOME4 can be run using either absolute or anomaly climate inputs.  Absolute climate 

forcing is the input method used for the BIOME4 plots produced and used in Chapter 3 

(and Pope et al., 2011).  To create the inputs for the absolute method, the 30 years of the 

simulation used for the climate averaging are taken and separated into constituent 

months.  The 30 monthly means for each month are averaged for the required inputs 

(1.5m temperature, precipitation and cloudiness) and then a whole year of average 
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months is created and then used to drive the BIOME4 model (i.e. taking the 30 Januarys in 

the averaging period, averaging these to produce an average January, repeating for every 

month).  The averaging method maintains the seasonal variations throughout the year 

compared to taking the annual means for the fields required, which would remove the 

seasonal variation.  The absolute minimum temperature field is created by taking the 

average coldest monthly temperature for each hemisphere from the 30 year period of 

climatological averaging.   

To run BIOME4 in anomaly mode, the anomaly inputs are created through producing a 

climate anomaly, for example ‘Pliocene minus modern’ for an average year.  The anomaly 

inputs are combined with a set of standardised climate inputs taken from an observations 

run produced at the Bristol Institute for Global Dynamic Environments (BRIDGE) at the 

University of Bristol.  For the 1.5m temperature, cloudiness and absolute minimum 

temperature, the BIOME4 anomaly is created by adding the anomaly climate inputs to the 

observed climate: 

I = (P-m) + O        (Eq. 2.1) 

Where ‘I’ represents the input for the BIOME4 model, ‘P’ represents the climate metric 

from the Pliocene simulation, ‘m’ represents the modern simulation climate metric and ‘O’ 

represents the observations.   

For precipitation & cloudiness the BIOME4 anomaly is created by multiplying the 

observed climate by the anomaly climate inputs  

I = (P/m) * O        (Eq. 2.2) 

Soil parameters (soil water holding capacity & soil water percolation index) are also added 

as an input to the model along with the climatological variables.  There are two methods 

for adding the soil parameters, either a globally constant variable or with geographic 

variation based on present day data (known as the ‘alternative soil parameters’).  The 

initial results (Chapter 3) used the geographically constant soil inputs while the full 

ensembles (Chapter 5) used the alternative soils.  The changes in methodology between 

Chapter 3 and Chapter 5 were the result of discussions that arose as a result of the initial 

results paper (Pope et al., 2011) and the limitations in that methodology.  The result of the 

discussions was the use of anomaly climate inputs and geographically varying soils.  The 

final input variable to BIOME4 is CO2, which is set (manually) to the value used in the 

primary simulation, for ‘Pliocene minus modern’ comparisons, CO2 is at set at Pliocene 

levels of 400 ppmv.   
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2.4. Creating the Perturbed Physics Ensemble 

2.4.1. Creating a Pliocene Model Simulation 

The HadCM3 model is set up to simulate the Pliocene epoch and the mPWP specifically by 

adjusting the model boundary conditions.  PRISM’s second global palaeo-environmental 

reconstruction, the PRISM2 dataset (Dowsett et al., 1999) was used to create the Pliocene 

boundary conditions for the initial results and the PRISM2 full ensemble.  These were the 

standard boundary conditions that have been used extensively in Pliocene climate 

modelling simulations such as Haywood et al. (2000a,b); Haywood & Valdes (2004); Lunt 

et al. (2008a,b) and in a data-model comparison study (Dowsett et al., 2011).   

Figure 2.3. The PRISM2 physical boundary conditions used to set up the model to run a 
mPWP simulation: A) vegetation & ice sheets & B) topography.  The figure is reproduced 
from Dowsett et al. (1999).   

A 

B 
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The boundary conditions consist of using a modern land-sea mask (including a fully closed 

Central American Seaway (CAS)), with changes to the orography: the Rocky Mountains 

were reduced 50% from modern height, and the East African plain was raised by 500m 

(Figure 2.3b).  It has been suggested (Saranthein et al., 2009) that the CAS could have been 

open during the Pliocene.  However for the mPWP, there is no evidence that it was open 

enough to have influenced mPWP simulations (Lunt et al., 2008a).  The vegetation scheme 

is based on the PRISM2 megabiome reconstruction using 7 biome types (desert, rainforest, 

grassland, deciduous forest, evergreen forest, tundra and ice) reconstructed from 74 

terrestrial data points.  The land ice mask includes a 50% reduction in the volume of the 

Greenland Ice Sheet and 33% in the volume of the Antarctic Ice Sheet, equivalent to a rise 

in sea level of 25m.  The PRISM2 vegetation and ice sheet reconstruction is shown in 

Figure 2.3a, soils, lakes and rivers are all set as modern throughout the ensemble 

members.  With the exception of sea ice (initially set by the PRISM2 reconstruction, but a 

dynamic feature in HadCM3), all of these boundary conditions are fixed for the duration of 

the model simulation.  The PRISM2 reconstruction also included a sea surface temperature 

reconstruction based on 77 marine locations, but this boundary condition is not required 

in a fully coupled AOGCM simulation.  The PRISM2 boundary conditions make a total of 23 

alterations to variables compared to the modern ancillary files used, changing features 

such as soil heat and moisture capacity (Lunt et al., 2012a).  

The model is forced with an atmospheric CO2 concentration of 400 ppmv, which is within 

the range of values suggested for the Pliocene from a variety of data sources and 

methodologies (Raymo et al., 1996; Pagani et al., 2010; Seki et al., 2010).  All other trace 

gases were set at pre-industrial levels as per the experimental design for the PlioMIP 

project (Haywood et al2011a).   

As discussed in Chapter 1 (Section 1.2.3 v), the use of the PRISM2 orography in the land-

sea mask could impact upon northwards heat transfer (Hill et al., 2011) and a change in 

the climate of North America (Seager et al., 2002, Foster et al., 2010).  Additionally changes 

to the vegetation patterns could impact on the results due to changes in the 

parameterisations to the land surface vegetation.  For consistency with previous studies 

on the mPWP using the HadCM3 model, the PRISM2 boundary conditions were preferred 

to the PRISM3D boundary conditions for the first full ensemble.  However to investigate 

the effect of this decision, a boundary condition ensemble using the PRISM3D boundary 

conditions will also be undertaken (Section 2.4.4).   

  



Methodology                                                                                                                                   Chapter 2 
 

74 

2.4.2. Creating a Modern Model Simulation 

For producing 'Pliocene minus modern' comparisons a modern simulation for each 

ensemble member was required.  The PRISM dataset generates its core top values from 

the work of Reynolds & Smith (1995), which represents an average of the climate through 

the late 1950s to the early 1980s.  Average values for greenhouse gases (CO2 – 334 ppmv, 

CH4 -  1602 ppb, N2O – 281 ppb) were calculated for this period using data from the Mauna 

Loa observatory (as documented in Keeling et al., 2005) and the US National Climate Data 

Center (NCDC) and used to generate the forcings for this modern HadCM3 simulation.  

These greenhouse gas values were held constant for the duration of the spin up and 

experimental periods.  Boundary conditions for ice sheets, orography and vegetation are 

also set to the modern.  The modern simulation is designed to represent the averaging 

period used by Reynolds & Smith (1995) to create the model equivalent of the core top 

data in the PRISM dataset.  The modern simulations in Chapter 3 came from averaging the 

transient QUMP simulations between 1950 to 1985 for the three simulations produced for 

the initial results.   

2.4.3 Creating the Perturbed Physics Ensemble 

All the perturbed parameters in these ensembles are specific to the atmospheric 

component of the HadCM3 model.  These parameters and their values have been chosen 

through work on the QUMP project.  The initial work using the atmosphere only model, 

HadAM3, identified 100 parameters that could be potentially perturbed and individually 

perturbed the 32 parameters seen as having the largest impact on uncertainty (Murphy et 

al., 2004).  The QUMP work developed to target the effects of multi-perturbed parameter 

combinations, with the 32 parameters perturbed simultaneously (Collins et al., 2006; 

Webb et al., 2006).  However the potential size of a multi-parameter PPE is beyond the 

bounds of computing power, running to millions of potential members.  The ensemble 

members were selected using a Bayesian statistical framework to select the ‘best’ 

ensemble members (Collins et al., 2006), where the likelihood of each ensemble member 

to achieve a set series of assessment metrics, determined whether it would be considered 

as a potential ensemble member.   

The 53 single perturbed parameter experiments of Murphy et al. (2004) were used to infer 

the effect of multiple perturbed parameters based on the linear output from these 53 

simulations (Collins et al., 2006; Webb et al., 2006).  The parameter ranges came from a 

uniform distribution between the maximum and minimum of the potential ranges for the 

parameters based on expert judgement or experimental data (Murphy et al., 2004; Collins 
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et al., 2006).  3.6 million potential members of the ensemble were produced (all the 

combinations of the 32 perturbed values for the parameters).  The members were split 

into 64 groupings of resulting model Charney sensitivity (Collins et al., 2006; Webb et al., 

2006).  The 'Climate Prediction Index' (CPI – Murphy et al., 2004) a scoring method which 

utilises root mean square error for climate metrics where there are suitable observations 

or re-analysis data was used to rank the potential members.  The assessment metrics used 

to create the CPI were those used in the initial testing of the Standard released version of 

HadCM3 and ensured that the ensemble member was a valid climate model (Murphy et al., 

2004).  The best 20 runs from each of the 64 groupings, were selected (the determination 

of the strength of the run from the Bayesian framework), creating a subset of 1280 

potential model parameter sets.  The best scoring simulation using the CPI (i.e. the model 

with greatest skill) was selected from each Charney sensitivity bin.  A second simulation 

was also chosen from each bin, using the highest ranked ensemble member that samples a 

different region of parameter space (Webb et al., 2006).  The method ensured that two 

similar simulations were not selected from each bin, allowing the maximum exploration of 

parameter space using skilful models within the bounds of the available computer 

resources.  For HadSM3, this process was refined to the best 128 perturbed members 

(added to the Standard to create a 129 member ensemble - Collins et al., 2006; Webb et al., 

2006).  For HadCM3 it was iterated down to the best 16 perturbed members along with 

the Standard version to create the 17 member ensemble by examining the table of 

sensitivities and parameters from the 128 perturbed members of the HadSM3 ensemble.  

The ensemble members were chosen by selecting the ensemble members that covered the 

best range of Charney sensitivities and perturbed parameters (Collins et al., 2011).   

The Bayesian framework is used because it can be applied to any complexity of model, 

although changes are required to the assumptions and final implementation of the 

framework (Collins et al., 2012).   

c = M(p, R)        (Eq. 2.3) 

Where ‘c’ represents the model outputs, ‘M’ represents a climate model (HadCM3 for the 

perturbed physics ensembles) which is controlled by the parameterisations ‘p’ and the 

initial forcings ‘R’ (based on Collins et al., 2006; 2012).   

P(c|o) ∝ P(c)P(o|c)       (Eq. 2.4) 

Bayes theorem calculates the probability (P) of a result ‘c’ given the data ‘o’.  However 

there is uncertainty in the data, so the formula includes a term which is the “probability of 

the data given c”, essentially a measure of the fit of the model and data (the use of ‘|’ 
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denotes ‘conditional on’ - Rougier, 2007).  A crucial problem for the application of this 

theorem to the climate modelling problem is that the ideal data (o) for this application in 

climate modelling is the same as the end result hoping to be achieved (i.e. temperature 

response to forcing over the 21st century).  As a result, a surrogate set of data is required, 

that the model can be tested against allowing the validation of the model to project future 

climate.  The surrogate data comes from utilising key model test metrics and datasets of 

observations over the 20th century.  The data allows model ‘faux’ predictions of these past 

events in terms of mean climate reconstruction, response to large volcanic eruptions or 

the variability in climate over the period.  A final term assumes the probability of ‘c’ being 

accurate before any inclusion of the data (Collins et al., 2006).   

 

Figure 2.4. A graphical representation of the production of perturbed parameter 
combinations for the PPE (which originate from the QUMP project) in three variations of the 
model, 1) the parameter space of the model ‘M’, 2) the climate projection for model ‘M’ for 
future climate and 3) the climate projection for model ‘M’ for historical/observed climate.  
Reproduced from Collins et al. (2012).   

In Figure 2.4, the grey circles represent (1) parameter space (p) of model (M) and the 

climate projections produced by that model M for future climate change scenarios (2) and 

the historical or observed climate (3).  The target (for the QUMP project) was to select 

realistic parameter combinations for producing a future climate reconstruction (2), but 

this must be inferred based on the performance of the model for reproducing the past 

climate variables.  Parameter combinations p1 and p2 represent potential ensemble 
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members and when they are run in the model (M) with the same forcing (Rh) to produce a 

result for the historical/observed climate (Collins et al., 2006; 2012).   

Where these model results (c) are in a light grey box this represents a region were the 

parameterisations reproduce a historical/observed climate that is within observational 

error.  The dark grey regions of the parameter space represent parameters that produce a 

historical/observed climate which is less likely to be consistent with the observations.  A 

parameter combination that produces an acceptable historical/observed climate is 

inferred to produce an acceptable future climate projection (Collins et al., 2006; 2012).  

The resulting combinations can be used to produce a Bayesian weighting on the 

probability distribution of climate response for the future, which can be used in 

conjunction with other metrics (such as the CPI) to rank potential parameter 

combinations and therefore choose ensemble members (Collins et al., 2012).   

The parameters that have been perturbed, the values used and where in the model this 

change is affected is shown in Table 2.1a,b.  Using results from previous QUMP and 

climateprediction.net experiments Rougier et al. (2009) determined the most influential 

parameters were numbers 1 to 4, 7 & 18 (from Table 2.1a,b).  The colours have been 

added to the boxes to highlight how parameters change in comparison with the Standard 

through the ensemble members.   
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Label Sub-

group Identifier/Properties Area of Influence 

- CS  Charney Sensitivity  

1 VF1  Ice Fall Speed (ms-1) Large Scale Cloud 

2 CT  Cloud Droplet to Rain Conversion rate (S-1) Large Scale Cloud 

3 RHCrit  Threshold of Relative Humidity for Cloud Formation Large Scale Cloud 

4a CW Land Cloud Droplet to Rain Conversion Rate (kg m-3) Large Scale Cloud 

4b  Sea Cloud Droplet to Rain Conversion Rate (kg m-3) Large Scale Cloud 

5 MinSIA  Minimum Sea Ice Albedo - Dependence of SIA on Temperature Sea Ice 

6 ice_tr  Sea Ice Minimum Temperature Sea Ice 

7 Ent  Entrainment Rate Coefficient Convection 

8 Icesize  Ice Particle Size (μm) Radiation 

9 Cape  CAPE Closure - Intensity of Convective Mass Flux Convection 

10 flux_g0  Boundary Layer Flux Profile Boundary Layer 

11 Charnoc  Charnock Constant - Roughness Lengths & Surface Fluxes Over Sea Boundary Layer 

12 soillev  Number of Soil Levels Accessed for Evapotranspiration Land Surface 

13 lambda  Asymptotic Neutral Mixing Length Parameter Boundary Layer 

14 cnv_rl  Free Convective Roughness Over Sea Boundary Layer 

15 oi_diff  Ocean Ice Diffusion Sea Ice 

16 dyndel  Order of diffusion Operator Dynamics 

17 dyndiff  Diffusion e-folding Time Dynamics 

18 eacfbl  Cloud Fraction  at Saturation Boundary Layer Large Scale Cloud 

19 eacftrp  Cloud Fraction at Saturation Free Troposphere Value Large Scale Cloud 

20 k_gwd  Surface Gravity Wavelength Dynamics 

21 k_lee  Trapped Lee Wave Constant Dynamics 

22 gw_lev  Starting Level for Gravity Wave Drag Dynamics 

23a s_sph sw Non-spherical Ice Particles Shortwave Radiation Properties Radiation 

23b  lw Non-spherical Ice Particles Longwave Radiation Properties Radiation 

24a c_sph sw Non-spherical Ice Particles Shortwave Radiation Properties Radiation 

24b  lw Non-spherical Ice Particles Longwave Radiation Properties Radiation 

25 rhparam  Flow Dependant RHcrit Large Scale Cloud 

26 vertcld  Vertical Gradient of Cloud Water Large Scale Cloud 

27 canopy  Surface Canopy Energy Exchange Land Surface 

28 cnv_upd  Convective Anvils Updraft Factor Convection 

29 anvil  Convective Anvils Shape Factor: Radiative properties of convective 
cloud. 

Convection 

30 sto_res  Dependence of Stomatal Conductance on CO2 Land Surface 

31 f_rough  Forest Roughness Lengths Land Surface 

32 sw_absn  Shortwave Water Vapour Continuum Absorption Radiation 

Table 2.1a. The name and short label for each parameter perturbed in the full ensemble.  
The area of influence within the model climate is also indicated.  Identifiers in Table 2.1a 
apply to values in Table 2.1b.   



 

 Label Standard B D F H I J K L M N O P Q 
- CS 3.3 2.42 2.87 3.75 3.43 4.39 3.9 4.44 4.88 4.54 4.62 4.8 5.4 7.11 
1 VF1 1 1.0413 1.12286 1.37049 1.42575 0.65138 0.50546 0.53499 0.52716 0.87884 0.57054 0.99225 0.64807 0.54306 
2 CT 1.00E-04 6.10E-05 1.10E-04 3.92E-04 3.80E-04 9.90E-05 3.29E-04 2.44E-04 1.97E-04 3.76E-04 2.50E-04 2.36E-04 3.08E-04 3.50E-04 
3 RHCrit 0.7 0.71434 0.72846 0.7 0.7 0.79788 0.82018 0.67225 0.7 0.7 0.68958 0.7 0.87689 0.7 

4a CW_land 2.00E-04 2.76E-04 1.95E-04 2.72E-04 6.78E-04 2.70E-04 1.72E-03 1.04E-03 1.11E-04 1.67E-04 1.49E-04 1.91E-04 3.23E-04 1.41E-04 
4b CW_Sea 5.00E-05 6.90E-05 4.85E-05 6.80E-05 1.69E-04 6.75E-05 4.30E-04 2.60E-04 2.33E-05 4.01E-05 3.47E-05 4.73E-05 8.07E-05 3.23E-05 
5 MinSIA 0.5 0.50429 0.52653 0.5095 0.52116 0.62855 0.63406 0.63533 0.53872 0.58108 0.58361 0.64619 0.64455 0.60104 
6 ice_tr 10 9.69 8.105 9.3214 8.4886 2.8044 2.5977 2.5501 7.2343 4.5845 4.4896 2.1429 2.2044 3.836 
7 Ent 3 3.49381 2.78167 4.29985 4.85597 2.4295 2.98215 2.16414 3.75359 3.83715 3.1626 3.61375 4.51062 2.37726 
8 Icesize 30 34.675 30.023 29.606 28.07 27.276 29.069 38.293 31.774 30.326 32.906 27.214 32.485 28.099 
9 Cape Off Off 1.97 1.54 Off 1.39 1.4 Off Off 2.43 Off Off 1.28 Off 

10 flux_g0 10 8.2498 17.8212 8.5368 15.5547 5.083 8.6838 8.0411 6.5362 5.2381 8.5441 9.8194 12.0714 6.9039 
11 Charnoc 1.20E-02 0.0185 0.0192 0.0128 0.0155 0.0141 0.0157 0.0153 0.0132 0.0123 0.0132 0.0123 0.0173 0.0134 
12 soillev 4 2 2 2 4 4 2 3 4 4 4 4 4 4 
13 lambda 0.15 0.2163 0.3419 0.30901 0.15263 0.15956 0.48694 0.14737 0.10945 0.17026 0.41642 0.13059 0.35284 0.135 
14 cnv_rl 1.30E-03 3.44E-03 2.95E-03 3.81E-03 3.54E-03 1.81E-03 9.95E-04 4.47E-04 9.36E-04 4.18E-03 1.14E-03 2.43E-03 1.82E-03 1.67E-03 
15 oi_diff 3.75E-04 3.72E-04 3.63E-04 3.71E-04 3.44E-04 3.54E-04 3.59E-04 3.74E-04 3.62E-04 3.45E-04 3.59E-04 3.53E-04 3.71E-04 3.73E-04 
16 dyndel 6 4 4 4 6 6 6 6 6 6 4 6 4 6 
17 dyndiff 12 9.948 16.41 8.569 11.075 9.593 13.096 11.414 8.795 15.535 7.832 19.842 12.222 8.5 
18 eacfbl 0.5 0.67342 0.67577 0.73237 0.59233 0.50408 0.73756 0.54746 0.50077 0.56161 0.62522 0.51981 0.51606 0.51262 
19 eacftrp 0.5 0.58671 0.58789 0.61619 0.54616 0.50204 0.61878 0.52373 0.50038 0.5308 0.56261 0.50991 0.50803 0.50631 
20 k_gwd 2.00E+04 1.46E+04 1.44E+04 1.16E+04 1.65E+04 1.99E+04 1.18E+04 1.17E+04 1.98E+04 1.55E+04 1.62E+04 1.20E+04 1.95E+04 1.67E+04 
21 k_lee 3.00E+05 2.19E+05 2.16E+05 1.74E+05 2.48E+05 2.98E+05 1.77E+05 1.76E+05 2.97E+05 2.32E+05 2.43E+05 1.80E+05 2.92E+05 2.50E+05 
22 gw_lev 3 3 3 3 3 5 3 5 5 5 5 5 5 3 

23a s_sph_sw 2 2 2 7 2 2 2 7 2 2 2 2 2 7 
23b s_sph_lw 1 3 3 7 3 3 3 7 3 3 3 3 3 7 
24a c_sph_sw 3 1 1 7 1 1 1 7 1 1 1 1 1 7 
24b c_sph_lw 1 1 1 7 1 1 1 7 1 1 1 1 1 7 
25 rhparam 0 0 0 1 1 0 0 0 1 1 0 1 0 1 
26 vertcld 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
27 canopy 0 1 0 0 0 0 0 0 1 0 1 0 0 1 
28 cnv_upd Off Off Off 0.81295 0.14225 Off Off Off Off 0.84813 Off 0.92694 0.80149 Off 
29 anvil Off Off Off 1.06076 2.51386 Off Off Off Off 1.50822 Off 2.78748 1.39652 Off 
30 sto_res 1 1 1 0 0 0 0 1 1 1 1 1 0 1 
31 f_rough 0 0 0 0 3 3 0 3 3 3 3 0 0 3 
32 sw_absn 0 0 1 0 0 0 0 0 1 0 0 1 0 0 

Table 2.1b. The labels and values for the parameters perturbed for each ensemble member in the full ensemble.  The colour of the box indicates whether 
value is: greater (yellow), smaller (blue) or same (white) as Standard.  The information included in Tables 2.1a & b is obtained from in Collins et al. (2006) 
& Rougier et al. (2009).   
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The process of creating a PPE, which in essence, detunes the model to apply a new tuning, 

causes model drift creating an imbalance in the top of the atmosphere (TOA) radiation 

budget (Collins et al., 2011).  The imbalance is usually removed during the construction 

and tuning of the model.  Flux adjustments are used to reduce regional errors and 

increasing the reliability of QUMP experiments for use in regional climate change.  They 

also allow the full effects of the perturbed parameters to be explored without the need to 

ensure that a balanced TOA radiation budget is strictly adhered to (Murphy et al., 2007).  

The flux adjustments were applied through performing a multi-decade simulation for each 

member.  Values for the seasonal and spatial distribution of sea surface temperature and 

sea surface salinity values were relaxed through a Haney Forcing (Haney, 1971 - using a 

relaxation coefficient of 30 days for temperature and 120 days for salinity as in Tziperman 

et al., 1994).  The forcing is applied until the model reached a minimal forcing effect from 

this change (TOA approximately less than 0.2 Wm-2).  Once this has happened the 

seasonally-varying flux adjustment input file was created and this allows the model to run 

with a stable climate in both standard and ensemble member simulations.   

In Collins et al. (2006) the use of flux adjustments was shown to have an impact on the 

model causing a slowing of Atlantic Meridional Overturning Circulation (AMOC), and a 

cooling of North Atlantic SSTs.  However, the use of a different relaxation time constant for 

temperature and salinity (i.e. less vigorous forcing) improves the performance of the flux 

adjustment.  The improvement occurs through reducing significantly the biases to 

Northern Hemisphere SSTs and sea ice that occurred in previous PPE studies.  The result 

was confirmed in comparison work completed in Collins et al. (2011) between the control 

(no flux adjustments) HadCM3 model, the flux adjusted HadCM3 used in Collins et al., 

(2006; shorter relaxation constant) and the flux adjusted HadCM3 used in Collins et al., 

(2011; longer relaxation constant).  The perturbed physics ensemble members were 

initiated with the improved flux adjustments (of Murphy et al., 2007; Collins et al., 2011).   

HadCM3 was the first UK Met Office model to not require flux adjustments as standard in 

the model simulations.  The removal of flux adjustments was an improvement in model 

performance and it is a weakness of the QUMP framework that this correction is required 

in the model.  However, it does not create a statistically weaker version of the Standard 

simulation compared to non-flux adjusted versions of the HadCM3 model (Collins et al., 

2011).   

The flux adjustments are applied through a modification file in the ocean component of 

HadCM3.  The flux adjustment files are linked to the perturbations made to the model, so 

the same file was used in the Pliocene and modern simulations for each ensemble member 
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and the Standard simulation.  The Standard simulation was spun up with its flux 

adjustment file and then each ensemble member started from this spin up, with each 

ensemble member was started with its flux adjustment file.  The majority of the individual 

parameter perturbations were applied using a Unix shell script which hand edited the 

relevant sections of the model code after the processing of the job in the Unified Model 

User Interface (UMUI) on the Providing Unified Model Access (PUMA) service so that the 

values for each ensemble member could be set to the prescribed setting (see Table 2.1b).  

Ensemble members H, I, K, L, M, N & Q included an adjusted parameterisation of surface 

roughness for forest vegetation.  The change was implemented across these ensemble 

members by creating a new vegetation ancillary file.  The surface roughness parameter 

perturbation was applied through using the PRISM biome numbers as a template to then 

change the values of surface roughness.  The file could then be recompiled into a new 

ancillary file and applied to the simulations.  A new vegetation ancillary file was created 

for both PRISM2 and PRISM3D boundary conditions.   

2.4.4 Creating Boundary Condition Ensembles 

i) PRISM3D Boundary Conditions Ensemble 

As discussed in Chapter 1, the changes to the PRISM2 model boundary conditions to create 

the PRISM3D model boundary conditions, have the potential to alter the climate simulated 

by climate models in some key areas.  The raising of the Rockies towards modern height 

from the half modern height used in the PRISM2 reconstruction affects atmospheric 

circulation impacting on both continental North America and the Arctic increasing 

northward heat flow and MSLP (Hill et al., 2011).  The change from a 7 classification 

megabiome to a 28 classification biome vegetation boundary condition creates a more 

realistic land surface scheme affecting regional responses to climate forcing, however 

modern soils, lake and river reconstructions were still used.  Recent work (Pound et al., 

2013) has reconstructed mPWP soils and lakes.  They found some improvements to the 

simulations of the mPWP and the importance of these recent developments in the context 

of my modelling are discussed in Chapter 5.  Finally, adjustments to the ice sheets for 

PRISM3D could have albedo and elevation impacts on the climate.  As with PRISM2 

boundary conditions, the PRISM3D boundary conditions will remain fixed for the duration 

of the model simulations.   



Methodology                                                                                                                                   Chapter 2 
 

82 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5. The PRISM3D physical boundary conditions used to set up the model to run a 
mPWP simulation: A) topography & B) vegetation & ice sheets.  Figure created from figures 
in Dowsett et al. (2010a).   

The PRISM3D boundary conditions were applied in the same way as the PRISM2 boundary 

conditions, with changes to the required ancillary file inputs (for applying PRISM3D 

boundary conditions in HadCM3 - see Bragg et al., 2012).  The physical changes were a 

returning of the Rockies to near modern elevation, a 28 biome vegetation scheme and 

changes to the elevation and spatial distribution of Greenland and Antarctic ice sheets.  

The PRISM3D ensemble will be used to investigate the effects of changes to the physical 

model boundary conditions and how they interact with the perturbed parameters.  The 

changes between PRISM2 and PRISM3D boundary conditions represents an uncertainty in 
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the reconstruction of the mPWP climate and it is important that both boundary conditions 

are used to assess the effect of physical boundary condition uncertainty.   

ii) Pliocene Atmospheric CO2  Concentration Boundary Condition Sub-Ensemble 

Variation in mPWP CO2 was discussed in Chapter 1 (Section 1.3.4), with CO2 in the 

Pliocene likely to have ranged from 300 to 425 ppmv (i.e. Pearson & Palmer, 2000; Pagani 

et al., 2010; Seki et al., 2010).  To investigate the full range of potential CO2 in the mPWP, a 

sub-selection of ensemble members were selected to be run with CO2 values of 300, 350 

and 400 ppmv (the full PPE CO2 standard).   

The sub-ensembles were run for 300 and 350 ppmv CO2 values for the PRISM3D boundary 

conditions.  Ensemble members were selected to represent the spread of full ensemble 

results and include the highest ranked simulation.  For the CO2 sub-ensembles CO2  was set 

to either 300 and 350 ppmv and then the Pliocene Standard simulations were spun up for 

500 years as per the full ensembles.  The length of this spin up will not be enough to bring 

the model into full equilibrium (specifically the deep ocean, which takes many centuries to 

achieve (Huber & Sloan, 2001)); however the atmosphere and surface oceans will have 

reached a quasi-equilibrium (Section 2.2 i discusses the spin up of Pliocene simulations).  

Time constraints on producing the sub-ensemble enforce the inability to fully spin up the 

deep ocean.  The sub-ensemble members and Standards were then run for a further 300 

years.  The sub-ensemble will investigate the relationship between CO2 and the PPE 

members, to investigate if an ensemble member performs better using an alternative yet 

plausible value for mPWP CO2, as a combination of CO2 changes and parameter changes 

could produce a more skillful mPWP simulation.   

2.5. Testing the Ensemble Members 

Testing the perturbed physics ensembles has two main objectives: intra-model 

comparisons (IMCs) and data-model comparisons (DMCs).  The IMCs focus on the 

differences between the ensemble members due to differences in boundary conditions or 

differences due to the perturbed parameters.  DMCs provide the tests that rank the 

ensemble members through analysis of data-model mismatches using two techniques and 

three datasets.  Section 2.5 outlines the ensemble comparisons produced along with the 

IMC and DMC methods that will be used.   

2.5.1. Comparing Ensemble Simulations 

To compare differences between ensemble simulations and for creating the data-model 

comparisons, five types of ‘model minus model’ comparison are created: 
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• “Pliocene minus modern ensemble member” – The modern ensemble member is 

subtracted from its Pliocene equivalent.  There are no differences between the 

parameterisations themselves, only in the interaction of parameters and the 

different boundary conditions between the Pliocene and modern ensembles.   

• “PRISM3D minus PRISM2 ensemble member” – The PRISM2 (old boundary 

conditions) ensemble member is subtracted from its corresponding PRISM3D 

(new boundary conditions) ensemble member to display differences between the 

Pliocene boundary conditions used in the perturbed physics  ensembles and other 

mPWP modelling work.  The output aids the investigation of differences caused by 

the interactions between the perturbed parameters and the boundary condition 

changes.   

• “Ensemble member minus Standard” – The Standard version for the ensemble is 

subtracted from each ensemble member (both PRISM2 and PRISM3D ensembles).  

The results display the differences due to the parameterisations with boundary 

conditions maintained between the simulations.   

•  “PRISM3D/PRISM2 ensemble member minus modern Standard” – The modern 

Standard is subtracted from each Pliocene ensemble member (for both PRISM2 

and PRISM3D ensembles).  It enables the differences between the ensemble 

members due to the parameterisations to be incorporated alongside the changes 

between Pliocene and modern boundary conditions.  The output will be used in the 

DMCs to SSTs and SATs which are released as ‘Pliocene minus modern’ datasets 

which is necessary to reduce bias’ that occur due the effect of latitude on SSTs 

(Dowsett et al., 2011).  The comparison will also be used to create the BIOME4 

climate inputs.  The decision to use this anomaly for the DMCs is discussed in 

Section 2.6.4.   

Through these, the effects of boundary condition and parameter changes on ensemble 

members can be thoroughly explored in the IMCs and the ensemble members ranked in 

comparison to palaeo-data in the DMCs.  Only the “Pliocene ensemble member minus 

modern Standard” comparison will be used in the DMCs, for the SST, SAT and biome DMCs.   

2.5.2. Intra-Model Comparisons 

Intra-model comparisons (IMCs) refer to the climate metrics tested within the ensemble 

members.  No mPWP palaeo-data will be used for these comparisons, meaning they can 

not determine the relative performance of each ensemble member as a mPWP simulation.  

However, IMCs indicate how the ensemble members are performing and aid the 

interpretation of the data-model comparisons results.  The perturbed parameterisations 
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can affect a range of features of the simulated climate, requiring metrics that investigate 

across this range.  Some metrics (surface temperature, sea surface temperature and 

precipitation) are key constituents of the DMCs and the IMCs for these metrics will offer 

initial indication of the relative strength of an ensemble member for reducing data-model 

mismatches.  The IMCs will be used to investigate large scale and regional features in the 

ensemble results that indicate that an ensemble member may improve (or weaken) the 

data-model mismatches.   

The statistical significance of IMCs (differences between ensemble members and the 

Standard) will be tested using Student’s T-test, a widely used statistical method of testing 

the significance of a null hypothesis between two datasets (Student, 1908; Chervin & 

Schneider, 1976).  Using a null hypothesis that any variation between simulations (i.e. 

“ensemble member minus Standard”) is due to natural variability between model 

simulations, significant changes in the model anomalies can be identified as being the 

result of the perturbation made to an ensemble member.  A two sample T-test was applied 

to the 30 year average climatologies with all the results being tested at a confidence level 

of 95%.  The Student’s T-test will be applied to model metrics produced from the 

climatological means for surface air temperature (SAT), and sea surface temperature 

(SST) metrics as these are the metrics utilised in direct comparison to palaeo-data.  The 

Student’s T-test results will be overlaid on the plot for the metric being assessed for each 

simulation with insignificant regions being stippled, indicating clearly which changes are 

significant while allowing the climate metric results to be clearly displayed.   

A major advantage of the T-test is that it an easy to apply and widely recognised test that 

gives a useful indication of the significance of anomalies between model simulations.  

However, the test requires an assumed Gaussian (normal) distribution for the variable 

being tested, and while this is possible for a majority of climate metrics, it is not possible 

for precipitation (which has a Poisson distribution (Bardsley, 1984)).  The result is that 

the metric can not test the significance of anomalies involving precipitation for the intra-

model comparisons (Pope et al., 2011).  The t-test is applied as a sequence of grid box by 

grid box comparisons which are then combined to plot the significance of the change in a 

simulated climate metric in comparison to the ensemble or modern Standard.  The use of 

this is well established (i.e. Chervin & Schnieder, 1976), and each of these local grid box 

significances are easily tested.  However, as each grid box is affected by the spatial 

interactions within the model outputs, the issue surrounding field significance arises 

(Livezey & Chen, 1983; Wigley & Santer, 1990).  Based on work by Knutson et al. (1999) 

using AOGCMs it can be assumed that should the t-test return greater than 77% of the 

comparison as significant that the overall result represents a globally significant result 
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across the chosen field (Knutson et al., 2006).  While this represents an approximation, it 

gives a broad indication as to whether the global differences being observed in the IMCs 

are representative of changes in the model parameters compared to the Standard or the 

result of natural/internal variability within the ensemble members.   

2.5.3. Data-Model Comparisons: Sea Surface Temperature (SST) 

The PRISM3D MASST dataset (Dowsett et al., 2010b) will be compared to the model 

outputs through a ‘model minus data’ site by site global comparison and root mean square 

error (RMSE) calculation (Hyndman & Koehler, 2006).  The 30 year annual mean model 

SST for each MASST data point will be compared with the MASST value for that location.  

The RMSE for each model simulation can then be calculated.  While anomaly plots of data-

model comparisons (e.g. Dowsett et al., 2011; Pope et al., 2011; Robinson et al., 2011) 

provide a visual indication of the data-model comparison, the RMSE value will give a 

statistically significant ranking of which ensemble member has provided the best data-

model comparison with the lowest RMSE indicating the best ensemble member.   

The root mean square error (RMSE) is the statistical test used to rank the each ensemble 

member for the SST and SAT data-model comparisons.  The RMSE is a commonly used 

scale dependant accuracy measure which means it has a non-normalised scale (controlled 

by the scale of the data – Hyndman & Koehler, 2006).  These statistical tests are useful for 

comparing data which have the same scales.  An RMSE score of 0 represents perfect 

agreement between model and data (Moriasi et al., 2007), with RMSE scores less than half 

of the standard deviation being considered as low (Singh et al., 2004; Moriasi et al., 2007).  

Weaknesses of the RMSE include: its sensitivity to outliers in data leading to results 

becoming biased to large events, that it can not be used to compare data with different 

scales (Hyndman & Koehler, 2006) and its susceptibility to spatial dependence of errors 

(Goodchild et al., 1992).   

For the purposes of this investigation, these weaknesses do not cause much concern as the 

RMSE is only used to compare temperatures from models and data, both in the same scale.  

The sensitivity to outliers would normally be considered a weakness, but the treatment of 

DMC outliers is vital to determining which ensemble member is strongest.  By squaring all 

errors, the RMSE is not biased by an ensemble member which reduces negative 

mismatches in the data-model comparison (model colder than data), but produces large 

positive mismatches (model warmer than data), which potentially cancel out negative 

mismatches.  The squaring of all errors removes the negative element and so all the errors 

add together to make an overall error which can be calculated.  The RMSE will be utilised 
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in ranking the performance of ensemble members in comparison to each other and the 

Standard.  However, it is important to determine whether variations in the RMSE 

represent a significant change in the performance of the ensemble member compared to 

the Standard in relation to the palaeo-data.  Part of this assessment will involve utilising 

the translation of RMSE scores into percentage changes and also through replicating the 

RMSE analysis using a different climate averaging period.  The inclusion of the additional 

averaging period is to determine whether the RMSE is assessing the differences between 

ensemble members and palaeo-data due to the perturbed parameters or the impact of the 

internal variability within the model simulations.  The ensemble members will be 

extended for 30 years (years 301 to 330) to create new climatological averages for 

assessing the influence of the change in averaging period on the RMSE score for the DMC.  

For Chapter 4, the difference between ensemble members RMSE scores compared to the 

Standard will be generated and for Chapter 5 the difference in RMSE scores between 

equivalent ensemble members across the two sets of boundary conditions.  For 

simulations were the difference in RMSE due to the change in averaging period exceeds 

the difference due to the intra-ensemble or boundary condition comparisons will not be 

considered a robust result.   

The MASST dataset contains 100 marine sites (Figure 2.6) drilled as part of the Deep Sea 

Drilling Project (DSDP) and it is successors, the Ocean Drilling Program (ODP) and the 

Integrated Ocean Drilling Program (IODP).  The PRISM team analysed planktonic 

foraminifera using a variety of techniques including faunal and floral assemblage 

palaeothermometry (utilising transfer functions and modern analogue techniques), 

magnesium/calcium (Mg/Ca) palaeothermometry and alkenone palaeothermometry.  The 

techniques used at each site, the locations of each site and the final derived temperatures 

(as anomalies to modern) can be found in Dowsett et al. (2010b).  Modern anomalies were 

produced by deriving a core top estimate from the work on modern SSTs by Reynolds & 

Smith (1995) which was produced using ship and buoy records and later satellite 

observations for SSTs.  The MASST data is available as both Pliocene absolutes and 

‘Pliocene minus modern’ anomalies.   
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Figure 2.6. The geographical location of each data point in the PRISM3D MASST 
reconstruction and the reconstructed “Pliocene minus Modern” proxy temperature anomaly 
for each data site.  Figure reproduced from Dowsett et al. (2010b). 

 

2.5.4. Data-Model Comparisons: Surface Air Temperature 

Surface air temperatures (SATs) were produced using an updated version of the Salzmann 

et al. (2008) TEVIS database (see Section 2.5.5).  Of the 202 sites from the TEVIS database, 

~50 included information on temperature.  Sites in Iceland and Antarctica were removed 

along with any sites with an altitude greater than 1000m above sea level or from a marine 

core further than 250 km offshore (Salzmann et al., 2013).  Sites in Canada, Russia, Turkey 

and Europe added (Salzmann et al., 2013).  These qualifications reduced the size of the 

dataset to 45 sites for use in data-model comparison.  As with the original database 

(Salzmann et al., 2008), the initial authors interpretation and SAT estimate was used for all 

sites.  If temperature data was not published originally, the Coexistence Approach 

(Mosbrugger & Utescher, 1997) was used where possible (Salzmann et al., 2013).  As with 

the PRISM3D MASST dataset, the ranking will be determined using the RMSE scores for 

each ensemble member.   
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2.5.5. Data-Model Comparisons: Vegetation Biome Reconstruction 

The outputs of the BIOME4 model (Section 2.3.2) are compared to the palaeo-vegetation 

biome reconstruction of Salzmann et al. (2008) using Cohen’s Kappa statistic (Cohen, 

1960).  Cohen’s Kappa statistic quantitatively assesses the agreement between two sets of 

categorisations, whilst taking into account chance agreements.  The Kappa statistic (k) is 

calculated by subtracting the proportion of expected agreement (Pe) from the proportion 

of observed agreement (Po) and this result is normalised through dividing it by the 

maximum possible difference (1-Pe) to generate the Kappa statistic: 

k = (Pe-Po)/(1-Pe)       (Eq.2.5) 

The Pe value includes the expectation that an element of agreement by chance exists and 

this is allowed for in the Kappa Statistic (Cohen, 1960; Prentice et al., 1992).  The values 

for the test range from 0 (no agreement/agreement by chance) to 1 (perfect fit) (Cohen, 

1960; Jenness & Wynne, 2005).  By allowing for agreement by chance in the statistical test, 

even the smallest difference in the results between the different simulations is indicating 

an agreement that is beyond chance within the DMCs for each simulation.  Weaknesses of 

the Kappa statistic include that the cause of the difference is not specified, it could be one 

site or several sites causing the change in the result.  It is only possible to state that the 

closer to 1 (perfect fit) the Kappa statistic is, the smaller the data-model mismatch.  The 

Kappa statistic does not make any allowance for how large an individual site mismatch is.  

Being a very close biome reconstruction or a complete opposite biome reconstruction 

does not alter the end value, the test simply views two sites which do not match the data.  

The results of the application of Kappa statistics are rarely comparable across studies 

(Salzmann et al., 2013).  The vegetation dataset was released in Salzmann et al. (2008) and 

consists of 202 marine and terrestrial sites (Figure 2.5b).  These were used to create a 

Tertiary Environment and Vegetation Information System (TEVIS) database of vegetation 

types for the Piacenzian age (3.6 to 2.6 Ma BP) for input into ArcGIS software (Salzmann et 

al., 2008).  The database compiled data derived from the sites from fossil pollen, leaves, 

wood and palaeosol carbonate (Salzmann et al., 2008) into a classification scheme that 

allowed the production of biomes that matched those programmed into the BIOME4 

model (Salzmann et al., 2008).   
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2.6. Methodological Decisions 

2.6.1. Impact of Changing the HPC Resources Used. 

As discussed in Section 2.2 i, the initial results ensemble was run on the supercomputers 

at the UK Met Office, however the modern, PRISM2 and PRISM3D full ensembles along 

with the CO2 sub ensembles were run on the ARC1 high performance computing (HPC) 

facilities at the University of Leeds.  The change in computing resources had two direct 

effects upon the project.  There were issues that arose from the transfer of the project 

from the Met Office to Leeds with respect to the technical challenges that arose and the 

impact, scientifically of changing HPC machines.   

The process of moving from the Met Office to ARC1 produced a number of technical issues, 

primarily converting Met Office HadCM3 model set ups to run on non-Met Office machines.  

A number of changes are made to model setup, specifically around the reconfiguration 

procedures and the submission of jobs.  However, these changes were unlikely to have 

caused science changes to the output from the simulations as the changes mainly 

influenced the processes of submitting the jobs to the HPC facility.  The ARC1 facility 

required additional steps for submitting the initial model simulation and a manual 

resubmitting of jobs when the ARC1 time limit elapsed.  The ARC1 HPC facility fixes a 

maximum 48 hour run length, so model runs were run in 50 year segments (about 45 

hours wall clock time), with resubmission required to restart the job using the finishing 

dump file.  Analysis of the model time series of surface air temperatures (i.e. Figure 2.2) 

indicated that there was no noticeable effect of the regular resubmission on ensemble 

member output.   

The process of porting the model files from the Met Office led to the corruption of three of 

the flux correction files, for ensemble members A, C & R.  The flux adjustments are 

required to prevent drift in the ensemble members due to the top of atmosphere 

imbalance created by the perturbed parameters (Section 2.4.3).  For members A, C & R the 

flux adjustments have not corrected the imbalance as intended and the simulations have 

decadal changes in global annual mean surface air temperature of +/- 1°C.  As a result, 

these ensemble members failed to achieve an acceptable model state and were removed 

from the final ensemble.  The loss of ensemble member R, was the most significant to the 

project, as R was the ensemble member that was used as the Low Sensitivity member in 

the initial results ensemble (Chapter 3).  Comparison to this would have been useful for 

assessing intra-ensemble patterns in the initial and full ensembles between the ensemble 

end members.  The final ensemble size is 14 members, including the HadCM3 Standard 
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simulation instead of the intended 17 member ensemble (Figure 2.1).  However, the 

perturbed physics ensemble is larger than the PlioMIP MME (Haywood et al., 2013a) and 

comparable in size to the only other PPE conducted in a warmer than modern 

palaeoclimate, the Sagoo et al. (2013) Eocene PPE run using FAMOUS, the low resolution 

version of HadCM3.   

The change in HPC resources also created a disconnect between the initial results of 

Chapter 3 (run at the Met Office) and the full ensembles and CO2 sub-ensembles completed 

on the ARC1 resources (Chapters 4 & 5).  Owing to the change in HPC resource, it is not 

possible to directly compare the simulations run at the Met Office with those run on ARC1.  

The change between different HPC architectures, hardware and the compilers can lead to a 

change in the climate means of the same model simulation (Lunt et al., 2012a).  This has 

been attributed to non-standard programming practises, such as the use of multiple data 

statements in model subroutines (Steenman-Clark, 2009; Lunt et al., 2012a).   

The inability to directly compare between the initial ensemble and the full ensembles was 

a disappointment scientifically, however the technical issues around developing the 

ensemble set up for the ARC1 HPC resources and the loss of three ensemble members 

from the full ensemble had a greater impact, both in terms of lost time from the project 

and scientifically by losing ensemble members.  Whilst members A, C & R represent 

members with lower Charney sensitivity that were unlikely to influence the rankings of 

ensemble members with respect to being the strongest members, they would have been 

useful for assessing the performance of members with lower Charney sensitivities.   

Overall, the change of HPC platform had very little effect on the experimental design for 

the thesis, only the loss of three members making a noticeable change.  However, the 

movement away from the Met Office HPC resources removed the opportunity for 

comparisons between mPWP, transient 21st century QUMP and Palaeo-QUMP (Last Glacial 

Maximum and mid-Holocene) PPEs with comparable ensemble members.   

2.6.2. Why Follow the QUMP Methodology? 

The methodology used to select the QUMP ensemble members is not the only method for 

sampling model parameter space to select PPE members.  Other methodologies for 

selecting ensemble members include: emulation (Sanderson et al., 2008b; Rougier & 

Sexton, 2007; Rougier et al., 2009), Ensemble Kalman Filters (Annan et al., 2005a,b; 

Hargreaves & Annan, 2009), Latin Hypercube Sampling (Gregoire et al., 2011; Sagoo et al., 

2013) and Monte Carlo sampling (Sanderson et al., 2008b).  Ensembles created using these 

methods are discussed in Chapter 1 (Section 1.3.3.2).  Unlike these techniques the QUMP 
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methodology does not sample the full parameter space of the model, sampling only what 

was considered “uncertain parameters” through expert solicitation (Murphy et al., 2004; 

Barnett et al., 2006).  32 parameters (out of over 100) were considered to be uncertain 

and were perturbed in the atmospheric component of HadCM3.  All QUMP work, including 

the work here, has focussed on this particular region of the parameter space known to be 

uncertain.  The space was sampled thoroughly (whittling ~4 million potential ensemble 

members down to the best 16 for HadCM3 – Section 2.4.3).  However, it has not 

investigated any other regions of the parameter space within the atmospheric component 

of HadCM3.  The result is confidence in the quality of each ensemble member as a viable 

version of the HadCM3 model.  However, the ensemble could be missing equally valid or 

better versions of the model that are in the un-sampled parameter space, which another 

selection method could have chosen.   

An assumption being made by following the QUMP methodology is that the parameters 

that are perturbed in the modern are the “correct parameters” to be perturbing in the 

Pliocene.  The assumption is that there have not been significant changes in the Earth 

system that would mean the perturbed physics ensembles would have been better suited 

to investigating a different parameter set rejected for the modern.  It is not possible to 

observationally study the key features and processes driving the Pliocene climate system, 

however there is little evidence from palaeo-data that would suggest the mPWP climate 

was significantly different to the present day.  It is unlikely that processes such as cloud 

microphysics have changed between the Pliocene and the modern day.  The main debate 

for a different climate structure is centred on the existence of a permanent El Niño state in 

the Pacific.  Some research has suggested that a permanent El Niño state existed in the 

Pliocene Pacific Ocean and the resulting teleconnections would affect global climate (i.e. 

Federov et al., 2010; 2013).  However, proxy reconstructions and other modelling studies 

(i.e. Bonham et al., 2009; Scroxton et al., 2011) suggest that a more enhanced ENSO but not 

permanent conditions existed.  Bonham et al. (2009) indicated that this enhanced ENSO 

was a feature that was modelled in HadCM3 and therefore would be included within the 

PPE.  Similarities such as the continental configuration, suggest that the mPWP also shared 

crucial climatic features with the current climate such as a modern like thermohaline 

circulation.  These features indicate that there are apparent similarities between the mid-

Pliocene and late 21st Century climates.  As a result, the mPWP has become an important 

focus of palaeoclimate research with possible indications of the impact of anthropogenic 

climate change (IPCC, 2007; Haywood et al., 2009a).   

The perturbed physics ensembles, in line with most early QUMP work, has focussed on 

perturbing parameters in the atmospheric component of HadCM3.  Primarily, QUMP 
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projects focussed on climate change projections for the 21st century and initially used 

atmosphere and slab ocean versions of HadCM3.  With the development of the HadCM3 

QUMP PPE, other QUMP variants have perturbed parameters in the oceanic component 

(Collins et al., 2007, Brierley et al., 2010), sulphur cycle (Ackerley et al., 2009) and the 

carbon cycle (Booth et al., 2012).  Choosing to focus on the atmospheric parameters in 

HadCM3, the ensembles could be ignoring uncertainties in the other model components, 

especially in the ocean.  Oceanic components do not exert a large forcing on climate in 21st 

century climate projections (Collins et al., 2007).  However, in palaeoclimate simulations 

with longer simulation length, these perturbations could exert a stronger influence on 

climate model simulations.  For sulphur and carbon cycle parameterisations, a concern is 

the understanding of key boundary conditions, especially vegetation.  While atmospheric 

parameters are influenced by uncertainty in the vegetation reconstruction, the impact of 

this uncertainty will be greater for carbon cycle parameter sets.  For the perturbed physics 

ensembles, maintaining a focus on atmospheric perturbations allows a thorough 

investigation of the uncertainty in one region of model parameter uncertainty.   

The motivation for choosing the QUMP ensemble methodology, compared to other 

methods for selecting parameters for a PPE was the strong development of the method 

through the QUMP and climateprediction.net projects (i.e. Murphy et al., 2004; Stainforth 

et al., 2005; Collins et al., 2006; 2011).  The mid-Pliocene represents the most 

parsimonious palaeoclimate period in comparison with the climate predicted for the late 

21st century.  The QUMP project has produced ensembles focussing on the climate of the 

21st century, therefore testing the QUMP parameter choices in the closest palaeoclimate is 

a logical modelling strategy.  Additionally, the use of the QUMP parameters allowed 

validation of the methods and checks to ensure the parameter perturbations and flux 

adjustments had been applied properly.  These decisions to remain within the original 

QUMP framework are why no other parameters were perturbed, specifically ocean 

parameters.  Perturbing parameterisations in other components is a potential 

development of the perturbed physics ensembles.   

Work undertaken as part of the Japan Uncertainty Modelling Project (JUMP) has tested the 

reliability of single model ensembles (a.k.a perturbed physics ensembles) and multi-

physics ensembles (MPEs).  Yokohata et al. (2012) analysed two MMEs and four PPEs, 

with the analysis later extended to four MMEs, four PPEs and one MPE (Yokohata et al., 

2013).  Rank histograms were produced for the ensembles, which indicate how reliable an 

ensemble performs relative to the observational data being used.  The processes involved 

and the ensembles used are discussed in more detail in Chapter 1 (Section 1.4.3.2).  The 

results indicated that a PPE is less reliable than an MME across a range of variables, 
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however for SAT and precipitation, PPEs can be considered reliable.  As a result, a PPE is 

still a useful tool to investigate model uncertainty.  However, it is important to test the 

reliability of the PPE being used (Yokohata et al., 2012).  The HadCM3 QUMP ensemble 

was analysed in the Yokohata et al. (2012) study and determined it was close to the 

threshold of reliability.  The result indicates it is a suitable PPE to use based on the 

conclusions of their work.   

The perturbed physics ensembles do not fully investigate the parameter space in the 

atmospheric component of HadCM3 nor seek to investigate the ocean, carbon cycle or 

sulphur cycle parameter space.  However, it represents the most comprehensive sampling 

of both parameter and boundary condition uncertainty yet undertaken in a warmer than 

modern palaeoclimate.  The aim of the perturbed physics ensembles is to facilitate 

investigating the uncertainty in mPWP modelling simulations caused by parameter 

uncertainty.  By utilising a thoroughly investigated parameter perturbation methodology 

in the form of the QUMP ensemble, it is possible to understand the parametric uncertainty 

and the response of these parameterisations to reproducing warm climates.  The 

ensembles will also encompass boundary condition uncertainty between two potential 

boundary conditions for the mPWP.  The outputs from the ensemble can be tested against 

palaeo-data to determine the skill of each ensemble member for modelling the mPWP and 

tackling the existing data-model mismatch.  These PPEs will produce the most detailed 

investigation of model parameter and boundary condition uncertainty in a warmer than 

modern palaeoclimate.   

2.6.3. Use of Pliocene Community Practises 

Some elements of the experimental design within this thesis represent existing Pliocene 

community practises.  These practises include: 

• Using 400 ppmv as the default Pliocene CO2 value 

• Using pre-industrial concentrations for all other greenhouse gases 

• Using a modern orbital configuration to represent the mPWP time slab 

• Using site-by-site data-model comparisons as the primary analysis of ensemble 

member performance.   

The chosen greenhouse gas concentrations and the selected orbits influence the radiative 

forcing exerted upon the model for the mPWP simulations.  However, are these 

appropriate choices for modelling the climate of the mPWP?  To ensure the simulations 

generated by the perturbed physics ensembles were comparable with existing mPWP 

modelling studies, these existing practises were utilised.  They have been formally 
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outlined within the PlioMIP Experimental Design (Haywood et al., 2010; 2011a) and 

subsequent publications analysing the results (Dowsett et al., 2012; 2013; Salzmann et al., 

2013).  However, it is important to assess whether any of these Pliocene community 

practises are potential weaknesses with the experimental design for the perturbed physics 

ensembles and therefore this thesis.   

i) Greenhouse Gas Concentrations 

Section 1.3.4 (Chapter 1) discussed the published range of mPWP atmospheric CO2 

concentrations (Table 1.5, Chapter 1).  The range, from 280 ppmv to 435 ppmv is broad 

and provides a significant challenge to modelling the mPWP.  Using the equations for 

calculating radiative forcing from the IPCC TAR (IPCC, 2001 – RF = 5.35*ln(435/280)), the 

change from 280 to 435 ppmv represents a change in radiative forcing of 2.36 Wm-2 

between these two potential end members of mPWP CO2.   

However, the majority of the mPWP atmospheric CO2 concentrations focus around 360-

400 ppmv (Table 1.5, Chapter 1).  400 ppmv is used as the standard value despite being 

the top end estimate, because of the unavailability of a reliable proxy for other greenhouse 

gases and aerosols.  With no estimate available other greenhouse gases, they are set to 

pre-industrial values in model simulations.  However, in line with the links between CO2 

and CH4 in Quaternary ice cores, the top end estimate is used to allow for an increase in 

the other greenhouse gases (Haywood et al., 2010).  The choice represents a significant 

decision in the experimental design.  However, without the ability to determine other 

greenhouse gases, the use of a CO2 value from towards the top end of the estimate enables 

the PPE to account for this boundary condition uncertainty.  As compensation for this 

choice in the experimental design for the full ensembles, the decision was taken to include 

other values for atmospheric CO2.  As indicated in Figure 2.1, the experimental design of 

these perturbed physics ensembles allows for the possible impact of this community 

practise.  Through running sub-ensembles at 300 ppmv and 350 ppmv, encompassing the 

possible range of mPWP atmospheric CO2 concentrations the impact of the choice of CO2 

value is included within the experimental design, tackling a forcing boundary condition 

uncertainty and assessing its impact on the PPE.   

ii) Orbital Configuration and the time slab 

To date, mPWP modelling either using AGCMs or AOGCMs has used the SST 

reconstructions of the PRISM group either for data-model comparisons with AOGCM 

output, or to provide prescribed SSTs for the AGCM experiments.  These SSTs are created 

as part of the PRISM palaeo-environmental reconstruction, which along with the 
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vegetation and orographic reconstructions provide both the mPWP physical boundary 

conditions for models and datasets for testing their performance.  The PRISM data has 

been reconstructed as a 300 Kyr time slab, primarily through the SST data which was 

constructed as an average of representative warm peaks (see Chapter 1, Section 1.2.3 ii).  

However each of these peaks represents a different orbital configuration throughout the 

mPWP (Haywood et al., 2013b).  When modelling the time slab, a modern orbital 

configuration has been used traditionally as at 65°N it represents the average summer 

mPWP orbital forcing (Haywood et al., 2010).  The 65°N orbital forcing is used, as it is 

considered an important latitude for determining the global response to orbital forcing 

(Haywood et al., 2010).   

Recent work investigating the first Pliocene Time Slice (Haywood et al., 2013b) which 

developed from work by Dolan et al. (2011), focuses on the effect of different orbits during 

the mPWP 300 Kyr time slab.  During the time slab, it is well established that there were 

changes in the orbit (i.e. Lasker et al., 2004) and the climate (i.e. Haywood et al., 2013b) 

and ice sheets (i.e. Dolan et al., 2011).  Work underway (Prescott et al., 2014), has shown 

the impact of different orbital configurations on the simulated mPWP climate, and the 

importance of using a single warm peak within the mPWP to understand the climate of the 

period instead of an average of these peaks.  The time slice represents a significant change 

in the methodology of modelling the mPWP, and the methodology for creating the palaeo-

datasets used to assess the model performance.  It will result in changes to the 

experimental design of phase 2 of the PlioMIP project and future mPWP modelling studies.   

However, while this change represents an improvement to the methodology, it is 

developing too late for the perturbed physics ensembles (and phase 1 of the PlioMIP 

project).  The presently available palaeo-data uses the time slab approach and therefore 

the ensemble members must utilise this data.  The impact of this choice on the perturbed 

physics ensembles comes from two perspectives, the effect of the chosen orbit on the 

simulated climate and the use of warm peak averaged palaeo-data.  The first Pliocene time 

slice (Haywood et al., 2013b) has selected a broad warm peak within the mPWP record 

with a near modern orbital configuration, which is similar to the orbit used by the 

perturbed physics ensembles.  Comparing a PRISM3D time slab HadCM3 simulation and a 

time slice simulation, Haywood et al. (2013b), showed minimal differences between mean 

annual SATs.  Therefore, it is possible to be confident that the use of the modern orbital 

configuration will ensure the results from the perturbed physics ensembles remain 

relevant as the time slice work develops.  The second possible effect on the experimental 

design, is the use of the time slab derived palaeo-data, particularly the SST data.  The 

warm peak averaging technique used by the PRISM team, means that different orbital 
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configurations could be driving the warmth at different sites.  Therefore, by using the time 

slab approach, it may be impossible for ensemble members to resolve neighbouring data 

sites.  When analysis of the SST results is undertaken as data-model comparisons, this 

potential impact should be accounted for in the analysis.  However, as the weakness 

applies to all ensemble members it will not cause a bias in the results for the perturbed 

physics ensembles.  The orbital forcing represents another forcing boundary condition 

uncertainty within the PPEs produced.  The comparison of the results from the PPE to 

orbital time slices is another potential avenue for future development of the work using 

Pliocene PPEs.   

iii) Site-By-Site Data-Model Comparisons 

Site-by-site data-model comparisons have been used extensively, either plotted as site 

anomalies on global maps (i.e. Pope et al., 2011; Dowsett et al., 2012) or as x/y plots (i.e. 

Haywood & Valdes 2004), with root mean square error used to rank the performance of 

models at these comparisons.  However, it could be suggested that testing a climate model 

simulation on its ability to reproduce relatively sparse site-by-site palaeo-data is not a 

realistic test.  Site-by-site DMCs represent the comparison with a signal localised to a small 

region of the land surface or water column within a model (e.g. HadCM3) grid box with an 

area of ~20,000 km2 (ocean) and ~100,000 km2 (land) at the equator.  The methodology 

to create the DMC takes the value from the nearest grid box to the co-ordinates of the data 

site. When a site falls on a grid box boundary, the script interpolates using these nearest 

boxes.  The result is that for a marine site, potentially 80,000 km2 of simulated climate is 

influencing the DMC at a single locality.  Another approach to undertaking data-model 

comparisons is through the creation of zonal annual mean temperature reconstructions.  

By producing and assessing both DMC methodologies using the PPE we are able to gain an 

understanding of the relative strengths and weaknesses of each approach.   

The zonal mean is created by averaging the global SST field over all longitudes to create 

the zonal mean SST for each member of the ensemble.  A regional analysis, using only SSTs 

for the North Atlantic is also created.  To create the palaeo-data input for the zonal annual 

mean data-model comparison, SSTs from PlioMIP Experiment 1 (Atmosphere only GCMs – 

Haywood et al., 2010) were used to produced a zonal mean representation of the PRISM 

SST data.  The Experiment 1 SST field was created using the February and August 

PRISM3D SST reconstructions which are then fitted with a sinusoidal curve to create 12 

months for each site (Dowsett, 2007; Haywood et al., 2010).  The reconstruction was made 

global by fitting the PRISM SSTs to modern SST contours based on the assumption that 

surface current systems have not changed greatly between the Pliocene and present day 
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(Dowsett et al., 1999).  The method used represents an oversimplification of the seasonal 

pattern in SSTs (Dowsett et al., 2011) based on analysis of the seasonal trends in the 

Reynolds & Smith (1995) dataset.  The palaeo-data SST field is treated the same as 

ensemble SST output to create a zonal annual mean palaeo-data for the DMCs for both 

North Atlantic and global comparisons.   

The use of the zonal mean annual plots for data-model comparisons attempts to address 

this issue, investigating whether the site-by-site approach is biasing the way models.  To 

date, zonal mean annual plots for both model simulations and palaeo-data have not been 

used in mPWP data-model comparison studies.  Within Chapter 4 a comparison of these 

two methods for conducting DMCs is undertaken with discussion of any differences they 

indicate in the performance of ensemble members, and assess the impact of this 

methodological decision.   

2.6.4. Use of the Modern Standard in Data-Model Comparisons 

Pliocene palaeo-data and models are compared using their anomalies to modern.  Palaeo-

data is routinely produced as an anomaly to the modern to reduce differences inherent in 

calibrating proxy datasets using multiple proxies (Dowsett et al., 2010b).  For the 

ensembles created for this project, there are two possible ways of creating this anomaly: 

• Pliocene minus modern ensemble member 

• Pliocene ensemble member minus modern Standard 

These two methods are defined in Section 2.5.1.  The project has made use of the second 

option, “Pliocene ensemble member minus modern Standard”, however this could be 

interpreted as privileging the Standard configuration of HadCM3.  The rationale for 

choosing this method is that the data-model comparisons will include both the effects of 

the perturbed parameters as well as boundary condition changes within the ensemble 

members.  If the “Pliocene minus modern ensemble member” comparison is used, the 

anomaly between Pliocene and modern for each ensemble member is dominated by the 

differences between the boundary conditions from Pliocene to modern.  This is 

highlighted by Table 2.2.   
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Ensemble 
Member Charney Sensitivity 

Pliocene Minus 
Modern Ensemble 

Member 

Pliocene Ensemble Member 
Minus Modern Standard 

B 2.42 2.348 1.908 
D 2.88 2.687 2.069 
F 3.75 2.724 2.205 
H 3.44 2.465 1.938 
I 4.4 2.641 3.031 
J 3.9 3.054 2.253 
K 4.44 2.427 2.855 
L 4.88 2.848 3.223 

M 4.54 2.748 3.256 
N 4.62 2.605 3.055 
O 4.79 2.637 2.872 
P 5.4 2.893 3.528 
Q 7.11 2.976 4.318 

STD 3.3 2.532 2.532 

Table 2.2. Comparison of global mean annual surface air temperatures (SAT – C) for 

“Pliocene minus modern ensemble member” and “Pliocene ensemble member minus 

Modern Standard” for results from the PRISM2 full ensemble.   

Table 2.2 shows the changes in global mean annual SATs for both types of Pliocene minus 

modern anomaly.  While Table 2.2 indicates there is some perturbed parameter induced 

variation around the Standard comparison for the “Pliocene minus modern ensemble 

member” comparison, it is relatively small.  The indication is that the dominant forcing on 

the SAT anomaly is the boundary condition changes and not the perturbed parameters.  

Compared to the “Pliocene ensemble member minus modern Standard” comparison, 

which includes both the influence of the boundary condition changes from Pliocene to 

modern, there is much greater variation around the Standard value, indicating the 

influence of the perturbed parameters on the model anomaly.  The variation caused by the 

perturbed parameters is the focus of the investigation within this thesis, therefore for that 

reason, the “Pliocene ensemble member minus modern Standard” was used for the data-

model comparisons.   
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Chapter 3: Initial Results 

3.1. Background 

As discussed in Chapter 1, a number of studies have been conducted using the various 

evolutions of the Quantifying Uncertainty in Model Predictions (QUMP) methodology for 

creating Perturbed Physics Ensembles (PPE) for the HadCM3 family of models.  However, 

the Plio-QUMP ensembles were the first use of a QUMP ensemble in a climate warmer than 

the present day.  For this reason, it was decided to undertake a test sub-ensemble to 

investigate how the PPE was likely to perform in the Pliocene.  The sub-ensemble also 

enabled the data-model comparison methods to be tested to see if any developments 

would be required for the full ensemble.  The temperature, precipitation and 'evaporation 

minus precipitation' intra-model comparisons and both data-model comparisons 

represented in this chapter were published in: 

Pope, J.O., Collins, M., Haywood, A.M., Dowsett, H.J., Hunter, S.J., Lunt, D.J., Pickering, S.J. & 

Pound, M.J. 2011. Quantifying Uncertainty in Model Predictions for the Pliocene (Plio-

QUMP): Initial Results. Palaeogeography, Palaeoclimatology, Palaeoecology. 309. 128-140. 

Additionally, metrics for soil moisture content (SMC), mean sea level pressure (MSLP), sea 

ice depth and sea ice fraction were added for this chapter to develop the investigation into 

the initial results.  The format of the data-model comparisons has changed for Chapter 3 

compared to the Pope et al. (2011) publication, with data-model comparisons now 

calculated as “model output minus palaeo-data” to minimise the visual confusion of 

discussing a model being too cold, with the figure showing the site as a red colour.   

3.2. Ensemble Member Specifics 

The initial ensemble members used here are the Standard version of HadCM3 and two 

ensemble members.  All three ensemble members were run at the UK Met Office on the 

IBM supercomputer between November 2009 and October 2010.  The Low Sensitivity 

member was chosen as it has the lowest Charney sensitivity (temperature response for a 

doubling of CO2) of the QUMP ensemble members (2.19°C), the High Sensitivity member 

was chosen as it had the highest Charney sensitivity (7.11°C – HadCM3 Standard has a 

Charney sensitivity of 3.3°C).  The parameters adjusted are shown in Table 3.1 (a sub-table 

of Table 2.2 from Chapter 2).  The High Sensitivity member refers to member Q from the 

full ensemble and the Low Sensitivity member refers to member R.   
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Label Identifier/Properties 

Low 
Sensitivity 

Standard 
High 

Sensitivity 

 
 Charney Sensitivity 2.19 3.3 7.11 

1 VF1 Ice Fall Speed (ms-1) 0.93976 1 0.54306 

2 CT Cloud Droplet to Rain Conversion Rate (S-1) 1.63E-04 1.00E-04 3.50E-04 

3 RHCrit Threshold of Relative Humidity for Cloud Formation 0.84077 0.7 0.7 

4a CWland Cloud Droplet to Rain Conversion Rate (kg m-3) 1.75E-04 2.00E-04 1.41E-04 

4b CWsea Cloud Droplet to Rain Conversion Rate (kg m-3) 4.25E-05 5.00E-05 3.23E-05 

5 MinSIA 
Minimum Sea Ice Albedo - Dependence of SIA on 

Temperature 
0.50666 0.5 0.60104 

6 ice_tr Sea Ice Minimum Temperature 9.5243 10 3.836 

7 Ent Entrainment Rate Coefficient 2.89934 3 2.37726 

8 Icesize Ice Particle Size (μm) 30.761 30 28.099 

9 Cape CAPE Closure - Intensity of Convective Mass Flux Off Off Off 

10 flux_g0 Boundary Layer Flux Profile 16.9231 10 6.9039 

11 Charnoc 
Charnock Constant - Roughness Lengths & Surface Fluxes 

Over Sea 
0.0128 1.20E-02 0.0134 

12 soillev Number of Soil Levels Accessed for Evapotranspiration 2 4 4 

13 lambda Asymptotic Neutral Mixing Length Parameter 0.3356 0.15 0.135 

14 cnv_rl Free Convective Roughness Over Sea 4.14E-03 1.30E-03 1.67E-03 

15 oi_diff Ocean Ice Diffusion 3.67E-04 3.75E-04 3.73E-04 

16 dyndel Order of Diffusion Operator 4 6 6 

17 dyndiff Diffusion e-folding Time 8.513 12 8.5 

18 eacfbl Cloud Fraction at Saturation Boundary Layer 0.79598 0.5 0.51262 

19 eacftrp Cloud Fraction at Saturation Free Troposphere Value 0.64799 0.5 0.50631 

20 k_gwd Surface Gravity Wavelength 1.98E+04 2.00E+04 1.67E+04 

21 k_lee Trapped Lee Wave Constant 2.97E+05 3.00E+05 2.50E+05 

22 gw_lev Starting Level for Gravity Wave Drag 3 3 3 

23a s_sph-sw Non-spherical Ice Particles Shortwave Radiation Properties 2 2 7 

23b s_sph-lw Non-spherical Ice Particles Longwave Radiation Properties 1 1 7 

24a c_sph-sw Non-spherical Ice Particles Shortwave Radiation Properties 3 3 7 

24b c_sph-lw Non-spherical Ice Particles Longwave Radiation Properties 1 1 7 

25 rhparam Flow Dependant RHcrit 0 0 1 

26 vertcld Vertical Gradient of Cloud Water 1 0 0 

27 canopy Surface Canopy Energy Exchange 0 0 1 

28 cnv_upd Convective Anvils Updraft Factor 0.51016 Off Off 

29 anvil 
Convective Anvils Shape Factor: Radiative Properties of 

Convective Cloud 
2.59138 Off 

 

30 sto_res Dependence of Stomatal Conductance on CO2 0 1 1 

31 f_rough Forest Roughness Lengths 0 0 3 

32 sw_absn Shortwave Water Vapour Continuum Absorption 1 0 0 

Table 3.1. The perturbed parameter labels, identifiers and values in the three simulations 

(High Sensitivity, Standard simulation and Low Sensitivity).  Parameter names and 

identifiers are as in Table 2.1a.   
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The methodology for modelling and testing the ensemble members is the same as that set 

out in Chapter 2 with the exceptions of: 

 Data-model comparisons using the PRISM3D MASST dataset were calculated using 

absolute climate data (Pliocene Model minus Pliocene Data).   

 The vegetation derived surface air temperature data (Salzmann et al., 2013) was 

not used.   

 BIOME4 was run in the absolute climate mode with geographically constant soils.   

The altered methods described in Chapter 2 are the result of discussions driven by the 

initial results paper and recent developments in the palaeo-data.   

3.3. Intra-Model Comparisons 

3.3.1. Pliocene Minus Modern 

The Standard Pliocene simulation was compared to a modern transient simulation (run at 

the UK Met Office as part of the QUMP project) with the period 1950 to 1985 averaged to 

create the modern results.  The period corresponds with the time period of Reynolds & 

Smith (1995), whose data was used to produce the core top estimates of the Pliocene 

Research Interpretations and Synoptic Mapping (PRISM) 3D Mean Annual Sea Surface 

Temperature (MASST – Dowsett et al., 2010b) dataset.   

Simulation 
Global Mean Annual 

Temperature Anomaly 
Global Mean Annual 

Precipitation Anomaly 

‘Pliocene Minus Modern’ 
(High Sensitivity) 

3.3°C 0.15 mm/day 

‘Pliocene Minus Modern’ 
(Standard simulation) 

2.5°C 0.18 mm/day 

‘Pliocene Minus Modern’  
(Low Sensitivity) 

2.4°C 0.12 mm/day 

‘Pliocene High Sensitivity 
Minus Standard’ 

1.5°C -0.18 mm/day 

‘Pliocene Low Sensitivity  
Minus Standard’ 

-0.1°C -0.06 mm/day 

Table 3.2. – The mean annual temperature and precipitation values for ‘Pliocene minus 

modern' for the High Sensitivity, Low Sensitivity and Standard simulations and for the 

Pliocene ‘High Sensitivity minus Standard’ and Pliocene ‘Low Sensitivity minus Standard’ 

simulations.  
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Two comparisons were plotted, with the Standard simulations for the temperature and 

precipitation fields.  Global mean values were calculated for all three ensemble members 

and the results are shown in Table 3.2.   

Figure 3.1. Global annual mean Pliocene minus modern plots for the Standard simulation for 

A) temperature and B) precipitation.   

The Pliocene is modelled as being warmer than modern.  Figure 3.1a shows this is 

predominantly through warming in the high latitudes and polar regions (the area of 

intense warming on East Antarctica is caused by differences in the Pliocene and the 

modern land ice mask).  Temperatures in the tropics are only marginally warmer than the 

modern values, which fits with the pattern in the PRISM data of an reduced equator to pole 

temperature gradient in the Pliocene compared to the modern (Dowsett et al., 2010a).  

PRISM3D MASST data compared to Reynolds & Smith (1995) core top data for sites ODP 

911 (80°N) and ODP 847 (0.18°N) shows a temperature gradient of 24.1°C in the modern 

compared to 14.9°C in the Pliocene.  Figure 3.1b shows that changes in precipitation 

between the Pliocene and the modern simulations are subtle, with a few areas exhibiting 

large increases in precipitation (e.g. eastern Pacific), and some areas of large decreases in 

precipitation (e.g. Amazonia and Indonesia).   

Table 3.2 reinforces the global plots shown in Figure 3.1 with the global mean averages for 

the Pliocene temperature shown to be 2.5 to 3.3°C warmer than the modern simulations 

and marginally wetter by 0.12 to 0.18 mm/day across the ensemble members.  These 

differences are driven by the difference in boundary conditions - i.e. orography (Rocky 

Mountains 50% lower than modern) and CO2 values as the modern simulations are the 

corresponding PPE member.  The interaction between the difference in the Pliocene and 

modern boundary conditions will have caused the variation in global means (Table 3.2) 

and regional differences (Figure 3.1) displayed between the three simulations.   
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3.3.2. Perturbed Physics Simulations (“Ensemble Member Minus Standard”) 

i) Surface Temperature 

As shown in Table 3.1, the High Sensitivity simulation has a Charney Sensitivity of 7.11°C 

compared to the 3.3°C of the Standard simulation and the 2.19°C of the Low Sensitivity 

simulation.  In terms of the effect on model temperatures for the simulations, this leads to 

the expected conclusions that for the vast majority of the Earth’s surface the ‘High minus 

Standard’ comparison (Figure 3.2a) shows a warm anomaly.  The largest warm anomaly is 

seen in the higher latitudes and over continental North America and Asian subtropics.  The 

‘Low minus Standard’ plot (Figure 3.2b) shows a cooling anomaly over oceanic regions 

and high latitudes with some areas of warm anomaly on continental areas.   

Figure 3.2. Global annual mean temperature plots for A) ‘High Sensitivity minus Standard’ 

and B) ‘Low Sensitivity minus Standard’ in °C.  Student’s T-test was applied to the 

comparisons and the insignificant regions, are plotted in grey and overlain over the (C) ‘High 

minus Standard’ and (D) ‘Low minus Standard’ plots.   

The Student’s T-test shows that the changes in ‘High minus Standard’ anomaly are 

significant (at a 95% confidence level) except for a region in the mid-latitude North Pacific 

and the east coasts of China and Japan (Figure 3.2c), which are the two large cool 

anomalies on the plot (Figure 3.2a).  For the ‘Low minus Standard’ anomaly there are 

slightly more areas where the anomaly was not significant (Figure 3.2d), but not in areas 

containing sites for data-model comparison (both SST and vegetation).   
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The ‘High minus Standard’ plot shows up to 14C warming anomaly over the high latitude 

oceans while only showing minimal warming in the tropics (Figure 3.2a).  This is 

important as the tropics have been identified as showing no clear data-model mismatch in 

previous Pliocene studies, with the weakness in the models being at the higher latitudes in 

the data-model comparisons (Figure 3.8a).  In continental areas, the model predicts a 

warm anomaly in Australia of 2 to 4C and in continental USA, of 3 to 4C.  The tropical 

rainforest belt through South America, central Africa and Southeast Asia displays very 

little change with a warm anomaly in the range of 0.5 to 1C, which is the smallest 

significant change in continental temperatures.   

ii) Precipitation 

The precipitation patterns in the two plots display a greater range in the ‘High minus 

Standard’ (Figure 3.3a) than in the ‘Low minus Standard’ anomaly (Figure 3.3b).  In both 

experiments there is little change in global average precipitation (Table 3.2), although 

there may be a significant change regionally.  The overall pattern in the ‘High minus 

Standard’ anomaly plot is that higher latitudes increase their precipitation while tropical 

and extra-tropical areas see a decrease in precipitation.  In the ‘Low minus Standard’ plot 

the general trend is for a slight reduction in precipitation, but there are fewer and weaker 

areas of major reduction.   

Figure 3.3. – Global annual mean precipitation plots for A) ‘High Sensitivity minus Standard’ 

and B) ‘Low Sensitivity minus Standard’ in mm/day.   

The ‘High minus Standard’ precipitation shows an important reduction in the daily 

average rainfall for the continental USA and Australia in regions that have some of the 

largest continental warming anomalies (Figure 3.2).  The reduction in Australia is 

approximately 0.25 mm/day, but the reduction in continental USA is approximately 1 

mm/day.  Likewise, the temperature plots for this anomaly show a much reduced level of 

warming in the tropical rainforest belt, and this is mirrored in the precipitation plots with 



Initial Results                                                                                                                                 Chapter 3 
 

107 

increases of approximately 2 mm/day through northern South America, central Africa and 

Indonesia.   

iii) Evaporation Minus Precipitation 

For the most part, the Evaporation-Precipitation (E-P) plots show a more positive 

moisture budget which could be due to a net increase in precipitation over most 

continental areas and high latitudes oceans with a net increase in evaporation from 

tropical oceans.  The patterns for both the ‘High minus Standard’ (Figure 3.4a) and ‘Low 

minus Standard’ anomaly (Figure 3.4b) are very similar.  The ‘High minus Standard’ has 

greater areas of net evaporation over land than the ‘Low minus Standard’, but at the same 

time has more intense areas of net precipitation in tropical forest regions.   

Figure 3.4. Global annual mean evaporation-precipitation plots for A) ‘High Sensitivity 

minus Standard’ and B) ‘Low Sensitivity minus Standard’ in mm/day with negative numbers 

indicating that there has been net precipitation and positive numbers indicating that there 

has been net evaporation.  These anomalies were calculated using ‘high minus (negative 

Standard)’ and ‘low minus (negative Standard)’.   

iv) Soil Moisture Content (SMC) 

In the ‘High minus Standard’ (Figure 3.5a), the overall trend is for little change in the soil 

moisture anomaly, with anomalies in most areas less than 30 kg/m3.  There is a pattern of 

a reduction in soil moisture over lower latitudes with a slight increase at high latitudes.  

The only difference to this is an area of increasing SMC in north-east South America.  There 

is also a pocket of drying on the east coast of the USA and also in southern Europe.   
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Figure 3.5. Global annual mean soil moisture content (SMC) plots for A) ‘High Sensitivity 

minus Standard’ and B) ‘Low Sensitivity minus Standard’ in kg/m2.  Student’s T-test was 

applied to the comparisons and the insignificant regions, are plotted in grey and overlain 

over the (C) ‘High minus Standard’ and the (D) ‘Low minus Standard’ plots.   

In the ‘Low minus Standard’ (Figure 3.5b), there are no areas of increased SMC, with 

intense areas of reduced soil moisture in tropical areas and at high latitudes.  There is a 

particularly intensive band of reduced soil moisture laterally across northern and Eastern 

Europe and Russia, at about 60°N.  The ‘High minus Standard’ has more areas of 

insignificant data, but the main areas of intensive change in both plots are significant.   

v) Mean Sea Level Pressure (MSLP) 

At polar latitudes the mean sea level pressure (MSLP) patterns are at opposites between 

the ‘High minus Standard’ (Figure 3.6a) which shows a reduction in pressure at both poles 

and the high latitudes and ‘Low minus Standard’ (Figure 3.6b) which shows an increase at 

the high latitudes compared to the standard.  Both anomalies show more intensive change 

over Antarctica than at the Arctic.  The only other noticeable feature in the MSLP plots, is a 

region of intense increased pressure anomaly in the South Pacific in the ‘High minus 

Standard’ plot, that is mirrored in the North Pacific albeit with a less intense anomaly.  
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Continentally, the trend is for a slight decrease in pressure between both ensemble 

members compared to the standard.   

Figure 3.6. Global annual mean plots of mean sea level pressure (MSLP) for A) ‘High 

Sensitivity minus Standard’ and B) ‘Low Sensitivity minus Standard’ in Pascal’s (Pa).  

Student’s T-test was applied to the anomaly plots and the insignificant regions, which are 

plotted in grey and overlain over the (C) ‘High minus Standard’ anomaly and the (D) ‘Low 

minus Standard’ anomaly.   

The strong changes compared to the standard in both simulations over the Antarctic and 

the strong regions of increased pressure in the ‘High minus Standard’ plot are significant, 

as is the reduced MSLP in the North Atlantic ‘Low minus Standard’ plot.  However the 

reduced pressure in the North Atlantic in the ‘High minus Standard’ plot was shown as 

being insignificant.   

vi) Sea Ice 

Sea ice responds as expected to the different forcings between the ensemble members, the 

effects of which are highlighted by the SATs (Figure 3.2).  In the Arctic for the ‘High minus 

Standard’, the fraction (Figure 3.7a) and depth anomalies (Figure 3.7c) for sea ice are all 

greatly reduced.  For the ‘Low minus Standard’ in the Arctic, the fraction (Figure 3.7b) and 

depth anomalies (Figure 3.7d) show generally increased sea ice.  Compared to the 

Standard, this is consistent with the temperature plots which shows a significant warming 
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in the ‘High minus Standard’ comparison (Figure 3.2a) and cooling for the ‘Low minus 

Standard’ (Figure 3.2b).  This indicates that in the High Sensitivity simulation, less sea ice 

covers each grid box than in the Standard simulation and the sea ice that exists is thinner.  

The implication is that the model simulates widespread summer melting, ensuring that 

mainly young thin sea ice is all that is able to form (Stroeve et al., 2012), with the opposite 

applying for the Low Sensitivity simulation.   

 

Figure 3.7. Global annual mean Arctic sea ice cover fraction plots for A) ‘High Sensitivity 

minus Standard’ and B) ‘Low Sensitivity minus Standard’ and sea ice thickness (in metres) 

for (C) ‘High Sensitivity minus Standard’ and (D) ‘Low Sensitivity minus Standard’.   
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3.4 Data-Model Comparison 

3.4.1 Data-Model Comparison – Sea Surface Temperature (SST) 

Figure 3.8a displays the present areas of reduced skill in the data-model comparison with 

the PRISM3D MASST dataset.  These areas are focussed in the higher latitudes and range 

from 4 to 14°C in the North Atlantic and Arctic Ocean in areas where the anomalies were 

shown to be statistically significant.  The reduced skill is best characterised in the North 

Atlantic where the high concentration of data points (DSDP/IODP sites: 410, 552, 606, 

607, 608, 609, 610, 907, 909, 911 – Dowsett et al., 2007 for more details) highlights the 

progressive reduction in skill of the data-model comparison moving northwards.  This has 

been a significant area of data-model mismatch for mPWP climate HadCM3 simulations 

(Robinson, 2009).  Away from the high concentration of data points in the North Atlantic, 

other key areas of ocean through-flow to be noted are oceanic gateways and upwelling 

regions and the tropical Pacific.   

The High Sensitivity simulation (Figure 3.8b) provides the closest fit to the PRISM data of 

the three simulations.  This simulation decreases the discrepancy between the data and 

the model by 3 to 6°C, with the largest increases in the highest latitude data sites.  This 

result is to be expected with the temperature data produced by the model and the 

warming at the surface being driven by the perturbed parameters creating the high 

Charney sensitivity of 7.1°C.  The general pattern observed in Figure 3.2a is repeated in 

this data-model comparison, with the warm anomaly of the High Sensitivity simulation 

mainly at higher latitudes compared to the tropical regions.   

The Low Sensitivity simulation fails to improve the data-model comparison, but despite 

the cooler ocean surface temperatures shown in Figure 3.2b (for ‘Low minus Standard’ 

anomaly), the data-model comparison is not significantly poorer between the Low and the 

Standard simulations.  There is one small area of improvement north of Iceland where the 

data-model comparison at one site is improved by about 1 to 2°C, to within the uncertainty 

in the data values.   
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Figure 3.8. Data-model comparison using the PRISM3D Mean Annual Sea Surface 

Temperature (MASST) dataset.  A) Standard simulation minus PRISM3D MASST, B) High 

Sensitivity simulation minus PRISM3D MASST and (C) Low Sensitivity simulation minus 

PRISM3D MASST in °C.  Root mean square errors (RMSE) were calculated for each 

comparison as A) 4.37°C, B) 3.25°C and (C) 4.38°C.   

In areas away from the North Atlantic, all three simulations perform very similarly in the 

data-model comparison.  The Standard simulation data-model comparison shows that the 

model over-estimates warming in the tropical regions, causing a negative data-model 

mismatch, but one that is within the analytical error of the data (approximately +/- 1.5°C; 

Dowsett et al., 2010b).  There is a slight increase in this negative in the High Sensitivity 

simulation, of about a further 1°C, with no change in the Low Sensitivity simulation.  This 

causes a unilateral cooling anomaly across the equatorial Pacific region where there are 

data points for comparison.  There is no noticeable change in the data-model comparison 

between the High and Standard simulations in the areas of upwelling with data points (off 

western Africa and South America), and while the Low Sensitivity simulation is marginally 

weaker than the Standard simulation in this area, the change is negligible.  A similar lack of 

change in the comparison for all three simulations occurs near the Indonesian gateway.   
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In terms of the comparison between the PRISM3D MASST data and the ensemble 

members, the High Sensitivity simulation is the most skillful ensemble member at 

recreating the conditions of the mPWP based on the Root Mean Square Errors (RMSE).  

These were 3.25°C for the High Sensitivity simulation compared to 4.37°C for the Standard 

simulation and 4.38°C for the Low Sensitivity simulation.   

3.4.2. Data-Model Comparison – Vegetation Biome Reconstruction 

The outputs from the BIOME4 model were compared with the Piacenzian age 

palaeobotanical database of Salzmann et al. (2008) using Cohen’s Kappa statistic (Cohen, 

1960 - Chapter 2, Section 2.5.5).  The results of this data-model comparison show that the 

Standard version of HadCM3 in this ensemble produces the best agreement between the 

data and the model.  The Standard simulation produced a Kappa score of 0.220 for the full 

Biome classification and 0.338 for the Megabiome (see Section 2.5.5, Chapter 2) 

classification (Figure 3.9a), with scores of 0.216 (full) and 0.303 (mega) for the High 

Sensitivity simulation (Figure 3.9b) and scores of 0.183 (full) and 0.297 (mega) for the 

Low Sensitivity simulation (Figure 3.9c).  These results indicate that the High Sensitivity 

simulation was better than the Low Sensitivity ensemble member in comparison to the 

palaeobotanical data.  The vast majority of the regions of poor data-model comparability 

reflect the model simulating less precipitation than is required for the reconstruction of 

the palaeo-data.  In tropical regions this leads to a loss of forest and its replacement with 

savanna, probably as a result of poor representation of the total rainfall.  In higher 

latitudes the weaker vegetation reconstructions are probably related to the seasonal 

cycles in the rainfall in the model, compared to the palaeo-data.  This is reflected in the 

reduced amount of extreme errors in the higher latitudes, with patterns being similar but 

slightly different to tropical latitudes which see large changes in the vegetation type.   
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Figure 3.9. BIOME4 outputs for A) the Standard simulation, (B) High Sensitivity simulation 

and (C) the Low Sensitivity simulation.  The Kappa statistics for each simulation where 

Standard full Biome classification 0.201 and for the megabiome 0.229, High Sensitivity 0.186 

(full) and 0.172 (Mega) and for the Low Sensitivity simulation 0.120 (Full) and 0.162 (Mega).   
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Regional comparisons between the model-predicted biomes and the palaeobotanical data 

shows that all three simulations have areas of real difficulty.  There is no agreement over 

Australia in any of the comparisons of model output with the data.  Over Australia the 

model output is too dry leading to the prediction of desert and xerophytic tropical 

shrubland biomes, whereas palaeobotanical data shows that Australia was dominated by 

tropical forest biomes in the northeast, tropical savanna across the northwest and centre 

and temperate to warm-temperate forest and woodland biomes in the southwest and 

southeast.   

In northern South America, the model simulations correctly predict tropical forest except 

in the northeast.  Data from Chile indicates the presence of tropical savanna, whereas the 

model predicts warm-temperate to temperate forest. In southern South America the data 

again disagrees with model output.  Palaeobotanical data from Argentina show the 

presence of temperate deciduous broadleaved savanna and temperate grassland during 

the mid-Pliocene. The Standard and Low Sensitivity simulations predict temperate needle-

leaf forests and temperate sclerophyll woodland for this region, whereas the High 

Sensitivity simulation predicts tropical xerophytic shrubland and desert.  South America is 

one of the areas that are unavoidably weak for climatological data from palaeobotany with 

some information coming from vertebrate palaeontology (Salzmann et al., 2008).  

However, it is unlikely this is the cause of the poor relationship between the model and the 

data in this region.   

Data for the Arabian Peninsula suggests xerophytic tropical shrubland with temperate 

grassland towards the Mediterranean coast.  The Standard and High Sensitivity 

simulations predict extensive desert coverage for this region.  The Low Sensitivity 

simulation produced an expanse of xerophytic tropical shrubland, as shown in the data.   

In Asia, the Standard simulation agrees with the aridity of the Tibetan plateau and the 

warm temperate evergreen mixed forest around Southeast Asia.  The rest of Asia is poorly 

modelled in comparison with the data.  The High and Low Sensitivity simulations show 

less agreement in Asia than the Standard.   

All three simulations produce a very similar Antarctica, with a prediction of tundra on the 

coast of the continent and through the West Antarctic Peninsula (the ice mask was fixed in 

BIOME4, so vegetation can only occur where there was no ice sheet).  This prediction 

matches the palaeobotanical evidence from the Dry Valleys region of the Transantarctic 

Mountains. However, the dating of this site is controversial and recent work suggests it 

may be Miocene in age, not mid-Pliocene (Ackert & Kurz, 2004; Ashworth et al., 2007).   
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At the highest latitudes of North America, the High Sensitivity simulation shows better 

agreement with the data than the Standard and Low Sensitivity simulations around 

Ellesmere and Meighen Islands. However, it is less skillful than the Standard in its 

predictions for Alaska.  All three simulations produce good data-model agreement for 

Greenland.  The west and Gulf coasts of America are poor in all the simulations, being too 

warm, with the High Sensitivity simulation also becoming too dry.  The east coast of North 

America is consistently comparable to data points below 40°N.  Above this latitude the 

single datum and model predictions have no agreement.   

Central America is predicted in all three simulations to have a vegetation of xerophytic 

tropical shrubland whereas the palaeo-data shows it to have been warm-temperate 

evergreen broadleaf and mixed forest to tropical evergreen broadleaf forest. 

For the Iberian Peninsula, the BIOME4 outputs all suggest a tropical dry to temperate dry 

climate whereas the data indicates only a temperate dry climate dominant during the mid-

Pliocene, with minor areas of warm-temperate evergreen mixed forest.  This is most likely 

caused by the difference between model and palaeoclimatic total annual rainfall and 

seasonality.  There may also be an issue here (and elsewhere) surrounding the resolution 

of the model, as the Iberian Peninsula is covered by only six model grid boxes.   

Scandinavia is well modelled by the Standard and High Sensitivity simulations, with 

agreement for the taiga forest shown by the palaeo-data.  The Low Sensitivity simulation is 

poorer here as it predicts tundra.  Western Europe shows good agreement between the 

model and the data in all the simulations, with the predicted warm temperate evergreen 

broadleaf and mixed forest matching well with the majority of the data points.  Around the 

eastern Mediterranean coast, the model simulations (especially the High Sensitivity 

simulation) predict temperate sclerophyll woodland and shrubland, whereas the data 

displays warm temperate mixed forest.  This is probably due to differences in data and 

model predictions for annual precipitation and seasonality.  In Eastern Europe, the Low 

Sensitivity simulation is less skillful than the High Sensitivity simulation which performs 

well in this area, matching some of the data with its prediction of warm temperate mixed 

forest.  However, the area it predicts this for extends further than the data, which shows a 

change to cooler, drier, more open biomes to the east of the Black Sea.   

In Africa, the most noticeable result in any of the simulations is the lack of a Sahara Desert 

in North Africa, which has been replaced by a xerophytic tropical shrubland in the Low 

Sensitivity simulation.  The Standard and High Sensitivity simulations do predict the 

Sahara Desert, and a more extensive tropical rainforest than the Low Sensitivity 

simulation.  Beyond that, all three simulations show a common error when compared with 
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the fossil data.  This is the transition from desert/shrubland to savanna and tropical 

grassland. This occurs a grid square further south than the most northern data occurrence.  

Southern Africa is particularly poorly modelled, with tropical deciduous broadleaf 

woodland modelled instead of the tropical savanna, and xerophytic tropical shrubland 

instead of temperate sclerophyll woodland.  The regional comparison highlights that the 

reduced skill in the model relates to a number of areas where seasonality is strong and 

where precipitation is high.  A number of areas have been highlighted as being too dry and 

as a result, generating a drier biome than that which the data indicate existed at the time.   

3.5. Discussion 

Palaeoclimate data affords a means of testing climate model experiments in a way that is 

not possible with future climate projections.  The SST data produced by the PRISM group 

was initially used to drive atmosphere only climate models (i.e. Haywood et al., 2000a) 

and later for data-model comparisons with fully coupled AOGCMs (Dowsett et al., 2011).  

While the dataset has developed into an ever more detailed palaeoenvironmental 

reconstruction for the mPWP, with the addition of a detailed vegetation biome 

reconstruction (Salzmann et al., 2008), the SST dataset is the only globally extensive 

quantitative temperature reconstruction for the period.  This has led to a situation where 

the aim of improving mPWP modelling studies is to generate model simulations which 

increase the warmth in the higher latitude oceans, so as to tackle the weakness in the 

model when compared to the data while not weakening the areas of good data-model 

agreement.  The results from the ‘PRISM3D MASST minus High Sensitivity simulation’ 

data-model comparison (Figure 3.8b), show that a simulation with a higher Charney 

sensitivity (than the Standard version) could increase the model skill in comparison with 

this dataset.  However, when the High Sensitivity simulation was used to force the BIOME4 

model, it produced a vegetation prediction that had less agreement with the 

palaeobotanical dataset than with the Standard simulation.  Primarily, this was over land 

areas such as North America where the High Sensitivity simulation was shown in anomaly 

plots with the Standard simulation (Figures 3.2a, 3.3a & 3.4a) to produce a warmer, drier 

climate.  The warm anomaly which improved the skill of the model in comparison with the 

PRISM3D MASST dataset reduced its skill in comparisons with the vegetation biome 

dataset.  There is an insufficient amount of rainfall for the vegetation patterns in many 

regions to match the palaeo-data, leading to a prediction of drier climate vegetation 

compared to the palaeo-data.  Additionally a model output independent of the BIOME4 

inputs, the soil moisture content ‘High minus Standard’ anomaly (Figure 3.5a) supports 
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this drying of North America, with it's main area of decreasing SMC anomaly being in the 

continental USA.   

A feature of the HadCM3 model has been the drying out of tropical forest regions (i.e. the 

Amazon - Cox et al., 2004).  Yet despite increasing the Charney sensitivity in the High 

Sensitivity version of the model, the HadCM3 model simulated a small (<1°C) warming 

anomaly (to the Standard version (Figure 3.2a)) and increased precipitation (Figure 3.3a) 

and E-P (Figure 3.4a) anomalies to the Standard.  One change for this ensemble member 

was the increasing of surface roughness length which has been shown (Betts et al., 1997, 

2004) to increase precipitation and reduce the temperature effects in the Amazon region.  

It will be useful to look at whether this effect is replicated throughout the rest of the QUMP 

ensemble members which make this change, as such an effect would be useful for 

decreasing the data-model mismatch in the high latitude SST comparisons, while not 

increasing the mismatch to terrestrial vegetation.   

The response of sea ice to the parameterisations can be measured both as an response to 

the changes in the climatology, but also to changes in the parameterisations.  Sea ice is one 

of the most dynamic features of the model, responding quickly to forcing changes and 

exerting its own forcing change on the simulated climate.  The changes to the Low 

Sensitivity version compared to the Standard simulation are relatively minor, however the 

changes in the High Sensitivity simulation could have aided the response of the sea ice to 

the warmer climate.  The changes to the sea ice parameters are focussed on: minimum sea 

ice albedo (MinSIA), temperature of maximum albedo for sea ice (ice_tr), and the ocean-ice 

heat diffusion coefficient (oi_diff), parameters 5, 6 & 15 respectively in Table 3.1.  The 

relationship in the sea ice model component between temperature and albedo was 

described in Chapter 2 (Section 2.3.1).  The parameter changes in the High Sensitivity 

simulation to ‘MinSIA’ and ‘ice_tr’ do not seem to lead to a significant change in the sea ice 

response due to these specific parameters.  It causes only a sharper response from the 

maximum to minimum albedo due to temperature due to a warmer maximum sea ice 

albedo temperature.  This would largely indicate the changes in sea ice and the high 

latitude warming are a response (in the High Sensitivity simulation) to other warming 

factors and not due to parameter sets in the sea ice component that promote melting of 

sea ice.  Similarly the High Sensitivity settings for ‘oi_diff’ are a marginal change from the 

Standard settings towards reducing ice melt as the coefficient of heat diffusion from ocean 

to ice has been slightly reduced.  The cause(s) of high latitude warming in the ensemble is 

important for understanding the improvements that could be made to the existing data-

model mismatch.   
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The improvement of mPWP model skill is not going to be found through increased 

temperatures alone.  Despite its all-round reduced skill compared to the Standard and 

High Sensitivity simulations, the Low Sensitivity simulation may indicate a way forward.  

The simulation showed an interesting contrast between the land and the ocean (Figure 

3.2b).  Ocean areas tended to be less sensitive, yet land areas showed general greater 

sensitivity to the changes in the parameterisations (except at the highest latitudes), 

causing a warm anomaly on continental areas.  A reversal of this pattern with warm 

anomaly oceans and little change to the terrestrial areas (in comparison with a mPWP 

Standard simulation) could improve the skill of mPWP models.  This would also hopefully 

reduce the SMC drying anomaly which is very apparent in the ‘Low minus Standard’ 

anomaly in a number of key locations (i.e. tropical forest belts, northern Europe).  This fits 

with the BIOME4 output for the Low Sensitivity simulation, which performed weakest on 

the Kappa statistical test.  The moisture budgets are the key weak link for many of the 

regions of poor data-model comparison.   

Whether or not this combination is possible is not known at present.  The full ensemble of 

17 members (the three shown here, plus 14 further variations as described in Collins et al., 

2011), is the next stage for this investigation.  The usefulness of using two different 

proxies (SST and vegetation) to test the skill of the modelling simulations has been 

displayed in these initial results.  It does not allow a focus on one aspect of data-model 

comparison defining whether an ensemble member has improved the comparison.  

Although the 17 member ensemble is not likely to include a perfect mPWP model, it will 

generate a range of models that enables us to quantify the uncertainty in the model 

predictions and to illustrate (with constraints for skill areas) where the climate model is 

performing skillfully in comparison with the available proxy data and where it is failing.   

The data-model comparison of Figure 3.8b illustrates that the High Sensitivity simulation 

was unable to achieve all the necessary warmth in the higher latitudes to align data and 

model results.  It modelled a large reduction in the fraction and thickness of sea ice (Figure 

3.7a,c) and continental areas that were too warm and dry for the palaeo-vegetation to 

have existed.  Also, all three members of the ensemble showed little variation around 

ocean gateways, in the tropical Pacific and in areas of upwelling.  All these areas showed 

an over-estimation of warmth by the model in comparison with the proxy data that are 

available in these regions.  These are issues relating to uncertainty in the boundary 

conditions of the model.   

Boundary condition uncertainty in the mPWP modelling studies could be an explanation 

for why the High Sensitivity simulation was still unable to generate enough warmth in the 
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North Atlantic to match that indicated by the data.  There are three key boundary 

conditions that could have affected this.  The height of the Rocky Mountains was set at 

50% of their modern height in the PRISM2 reconstruction, but this value may not be 

realistic.  If they were high, the Rocky Mountains would have affected atmospheric 

circulation around the North Atlantic, which could exert a higher latitude warming 

influence (Hill et al., 2011).  Like topography, ocean bathymetry could be controlling the 

flows of heat into the Arctic Ocean.  There has been detailed research into the bathymetry 

of the mid-Pliocene ocean, focussing on key tropical gateways such as Indonesia and the 

Central American Seaway.  Recent work has shown that the Central American Seaway was 

closed during the mPWP (Lunt et al., 2008a) and that the Indonesian gateway was in a 

modern configuration by this period in the Pliocene (Karas et al., 2009; 2010).  One 

recently investigated region where bathymetry could affect the modelling results is the 

Greenland-Scotland ridge (Robinson et al., 2011).  The work has shown that it is 

reasonable, on geological grounds, to adjust the height of the ridge for modelling purposes, 

and that when these changes are included in models there is an increase in high latitude 

North Atlantic SSTs.  The final boundary condition that could affect the results is the 

greenhouse gas concentrations in the model.  For Pliocene modelling this focuses on CO2, 

as there is no proxy for any other greenhouse gas, so they are assumed to be at pre-

industrial levels.  CO2 has been shown to range between 300 and 425 ppmv during the 

mPWP (see Chapter 1, Section 1.3.4), and a combination of a lower CO2 value with higher 

sensitivity simulation may produce a better data-model fit than using 400 ppmv in the 

model.  Combining this work with the work of these ensembles could further reduce 

mismatches in the data-model comparison involving the MASST dataset, without causing 

too much warming on land for the vegetation reconstruction to be degraded.   

All published work on QUMP projects to date has been on predictive climate change over 

the next century, so these initial results represent the first data-model comparison for a 

PPE in a warmer than modern palaeoclimate.  The two end members used in this 

simulation have been shown to be statistically valid versions of the HadCM3 model 

(Collins et al., 2011).  They both perform within the range of validation tests that were 

undertaken by Collins et al. (2011) and for that reason they were considered acceptable 

simulations for use in this work.  It will not be until the full ensemble is completed and 

analysed that a full understanding of the performance of these end members will be 

realised.  It is important for both predictive QUMP experiments and for the quantifying of 

mPWP uncertainty that the full ensemble is produced.  Only once it has been completed 

will the full range of potential model results be known.  While these end members are the 

extremes of Charney sensitivity for the HadCM3 QUMP ensemble members, there is no 
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certainty that these represent the end members in range of changes to vegetation and 

SSTs in the data-model comparisons.  It must be noted though that these experiments lack 

the interaction of earth system feedbacks, such as climatically driven changes in 

vegetation, which could play a prominent role in the changes in climate between ensemble 

members.   

The use of Student’s T-test were inconclusive in the initial results, with it producing 

regions of insignificance for temperature, soil moisture content and mean sea level 

pressure anomaly plots.  The range in the temperature difference between the ‘High minus 

Standard’ anomaly compared to the ‘Low minus Standard’ anomaly is associated with the 

slightly greater statistical significance of the ‘High minus Standard’ anomaly compared to 

the ‘Low minus Standard’ anomaly temperature plots.  This pattern of plots with more 

areas of larger anomalies being found to be more statistically significant was repeated 

across all the successfully T-tested intra-model comparison metrics.  The variation in the 

Charney sensitivity values for the three simulations ensured that the effects of the high 

simulation in comparison with the Standard were greater and far more likely to override 

any anomalies due to natural variability in the models.   

3.6. Conclusions & Development 

3.6.1. Conclusions 

The initial results show that PPEs offer a tremendous opportunity to address the 

mismatches in the skill of different model simulations of the mid-Pliocene Warm Period 

(mPWP; 3.3 to 3.0 Ma BP) through data-model comparisons and to use this work to 

quantify uncertainty in model predictions.  The initial results were important indicators as 

to the direction of the thesis as they highlighted that it will require a measured and 

balanced approach to dealing with the weaknesses in previous Pliocene HadCM3 

simulations.  The High Sensitivity simulation produced an improved data-model 

comparison with the Pliocene Research Interpretation and Synoptic Mapping (PRISM) 3D 

Mean Annual Sea Surface Temperature (MASST) dataset (Dowsett et al., 2010b), especially 

in the North Atlantic and Arctic Oceans.  However, it was less skillful in comparison with 

the palaeobotanical reconstruction than the mPWP Standard simulation.  The Low 

Sensitivity simulation was less skillful in both data-model comparisons than the High 

Sensitivity simulation and the Standard simulations.   

The High Sensitivity simulation performed less skillfully in the vegetation biome data-

model comparison because it warmed both areas over ocean and land by large amounts.  

While this improved the PRISM3D MASST comparison, it caused a drying out of areas such 
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as Australia and North America in BIOME4, which reduced the agreement with the 

palaeobotanical data in some continental regions, a conclusion supported by the soil 

moisture content data.   

Both the High and Low Sensitivity simulations yielded positives and negatives in the data-

model comparisons.  It will be a combination of elements from both runs that will form an 

ensemble member (or members) giving the best results.  It is important to consider the 

possibility that a couple of simulations will produce improved data-model comparisons 

bracketing the palaeo-data and that these will be used to quantify the uncertainty.  The 

‘Low minus Standard’ simulation (Figure 3.2b) displayed a contrasting temperature 

pattern between the ocean and land.  Unlike the final full PPE, the initial three-experiment 

ensemble is not sufficiently large to investigate the parameters that cause this contrast.  

The thesis will also investigate which parameters are exerting the strongest climatological 

effects on the model.  This is important for understanding the impacts that are made when 

we perturb the model physics and is vital for understanding and quantifying the 

uncertainty.   

It is evident that while the atmospheric parameter PPEs are a good starting point for this 

investigation, the work will not be complete without analysis (where possible) of other 

causes of uncertainty, such as perturbed ocean parameters, or from analysing the 

uncertainty created by key boundary conditions such as topography or greenhouse gas 

concentrations.  Part of the development of this work will be to determine whether it is 

oceanic parameters or boundary conditions that are investigated in experiments beyond 

those that make up the full ensemble.  While the oceanic parameters would investigate 

fully uncertainty in key components of HadCM3, these experiments would require long 

integrations which may not be feasible within the time-frame of the investigation, whereas 

boundary condition ensemble experiments could be performed in a similar time scale to 

the ensembles of atmospheric parameterisations.   

3.6.2. Developments Arising from the Initial Results 

The initial results indicated that there was a use for a PPE in the Pliocene for working on 

reducing the data-model mismatch and potential for quantifying the uncertainty in the 

Pliocene.  The initial results displayed the need for a larger ensemble for understanding 

the effects of parameterisations (such as the cause of high latitude warming).  From the 

tests used here, developments to the data-model comparisons will include the use of the 

anomaly mode for BIOME4 and for the MASST data-model comparison to be undertaken 

using ‘Pliocene minus modern’ anomalies.  The use of anomalies increases the robustness 
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of the results as it removes any biases in the model output either due to the model 

configuration or the parameter perturbations.  It is aimed that these developments on the 

initial results will lead to better analysis of the results with greater statistical strength in 

the tests used to determine the value of an ensemble member.   
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Chapter 4: Intra-Model Assessment of 
mid-Pliocene Climate: Can Geological Data 
and Climate Models be Reconciled? 
4.1. Introduction 

Chapter 3 outlined the first application of and the initial results from a perturbed 

physics ensemble (PPE) for the mid-Pliocene Warm Period (mPWP), a warmer than 

modern climate.  These results were generated from a sub-ensemble consisting of the 

Standard version of HadCM3 and the full ensemble outliers, the High Sensitivity and 

Low Sensitivity simulations.  The sub-ensemble was used to check the validity of using 

a PPE in the mPWP and testing the methods for the data-model comparisons which led 

to further development and improvement to the methods.   

Chapter 4 presents the intra-model comparisons from ensembles using both the full 

perturbed physics ensemble and the CO2 sub-ensemble forced with the PRISM3D 

boundary conditions.  These ensembles will be used to produce an assessment of 

whether it is possible to reconcile mid-Pliocene geological data with climate model 

simulations of the mPWP.  Chapter 4 will only assess the intra-model variation of 

ensembles forced by the PRISM3D boundary conditions.  Analysis of the results from 

both the PRISM2 and PRISM3D ensembles highlighted that there was a similar intra-

model comparison for both ensembles.  As the PRISM3D ensemble represents the latest 

boundary conditions, which will be used in future mid-Pliocene modelling studies, 

these results have been presented here.  The performance of the PRISM3D boundary 

conditions in comparison to the PRISM2 boundary conditions will be assessed in 

Chapter 5.  The goal of Chapter 4 is to answer questions about the perturbed physics 

ensembles and the reconciliation of data and models and what the impact of this will be 

on future modelling studies of the mPWP.   

4.2. Large-Scale Features of the Perturbed Physics Ensemble 

4.2.1. Pliocene Standard Minus Modern Standard 

The Standard simulation highlights the main difference between the simulated Pliocene 

and modern climates.  Pliocene global mean annual warming is 2.94°C (Table 4.1), 

which can be attributed to a combination of physical boundary condition and CO2 

changes.   



 

 

 

  CO2 400 ppmv   CO2 350 ppmv CO2 300 ppmv 
Ensemble Member Charney Sensitivity Surface Air Temperature Sea Surface Temperature Precipitation Surface Air Temperature Surface Air Temperature 

B 2.42 1.87 0.548 0.064 1.16 0.58 
D 2.88 2.10 0.69 0.03 -- -- 
F 3.75 2.65 0.97 0.11 -- -- 
H 3.44 2.62 1.08 0.19 -- -- 
I 4.40 4.06 1.70 0.13 -- -- 
J 3.90 2.30 0.67 -0.07 -- -- 
K 4.44 3.68 1.59 -0.10 -- -- 
L 4.88 4.05 1.65 0.06 -- -- 

M 4.54 4.02 1.70 0.22 2.95 2.05 
N 4.62 3.84 1.51 0.13 -- -- 
O 4.79 3.84 1.70 0.13 -- -- 
P 5.40 4.46 1.94 0.18 3.33 2.54 
Q 7.11 5.27 2.30 0.05 4.04 3.16 

Standard 3.30 2.94 1.25 0.18 2.10 1.43 
 B to Q SAT Range 3.40 1.75  2.88 2.58 

Table 1. Global mean annual values of “Pliocene ensemble member minus modern Standard” for surface air temperature (SAT - °C), sea surface temperature 
(SST - °C), Precipitation (mm/day) for the full perturbed physics ensemble run with atmospheric CO2 at 400 ppmv.  Additionally, the SATs for the CO2 sub-
ensemble members (B, M, P, Q & the Standard) are displayed.  For reference the Charney sensitivity of each ensemble member is shown as calculated in 
Collins et al. (2006).   

As discussed in Chapter 2 (Section 2.4) there are differences in the physical model boundary conditions between the Pliocene and modern that include 

changes in the land surface cover, ice sheets and topography that are required for the model simulations.  Reductions in the extent of the Greenland Ice 

Sheet (GrIS) and East Antarctic Ice Sheet (EAIS) lead to consistent high latitude warming across all ensemble members of 7 to 10°C (Figure 4.1), in line 

with previous Pliocene modelling studies (Bragg et al., 2012).  There is warming of 0.5 to 1.5°C across the majority of the global oceans with exceptions 

through the North Atlantic, Arctic Ocean and Weddell Sea (Figure 4.1, Appendices A1 & A2).  North Atlantic warming reaches 4 to 5°C, whilst across 
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the Arctic Ocean and the high northern continental latitudes warming is enhanced 

compared to the equatorial and tropical latitudes with warming of 3 to 5°C.  The 

Weddell Sea displays warming of 6 to 7°C.   

Figure 4.1. Global annual mean plots for “Pliocene ensemble member minus modern 
Standard” for surface air temperature (SAT - °C) for ensemble members B, M, P, Q & the 
Standard.  The remaining ensemble members are displayed in Appendix A1.  The plots for 
Sea Surface Temperatures (SST- °C) are displayed in Appendix A2.   

Global mean precipitation is increased (0.175 mm/day – Table 4.1) in the Pliocene 

compared to the modern.  Precipitation increases over the GrIS and reduces over the 

EAIS by 0.25 to 1 mm/day (Figure 4.2).  Globally, precipitation rates reduce (1 to 2 

mm/day) over the northeast coast of South America, and in the tropical South Pacific 

and South Atlantic (0.5 to 1.5 mm/day).  There is also a small reduction in precipitation 

over continental USA (0.25 mm/day).  Precipitation increases over Indonesia (1 to 2 

mm/day), Western Europe (0.5 to 1.5 mm/day), and along the equator (0.5 to 1 

mm/day).  In other areas there is minimal change between the Pliocene and modern 

precipitation.   
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Figure 4.2. Global annual mean plots for “Pliocene ensemble member minus modern 
Standard” for precipitation (mm/day) for ensemble members B, M, P, Q & the Standard.  
The remaining ensemble members are displayed in Appendix A3.   

Overall, the Pliocene is simulated as a warmer and wetter climate than the present day, 

which is in keeping with the palaeo-environmental reconstructions produced from 

proxy data (Dowsett et al., 2010a; Salzmann et al., 2008).  

4.2.2. Pliocene Ensemble Member Minus Modern Standard 

The climatic response within the PPE displays the influence of perturbing parameters 

on the simulated Pliocene climate.  By utilising the modern Standard, it is possible to 

observe the impact of changing the parameters on the Pliocene simulations.  The 

response will include interactions between boundary condition changes from Pliocene 

and modern.  These responses are limited across the Pliocene ice sheets which displays 

a consistent response across the ensemble members.  Perturbed parameters do 

interact with the changes in vegetation and CO2 to generate a range of ensemble results 

for the Pliocene compared to the modern Standard.   
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The Pliocene ensemble warming ranges from 1.87 to 5.27°C (Table 4.1).  The ‘Pliocene 

minus modern’ SAT warming range for the PPE is greater than the range displayed by 

the PlioMIP MME (1.84 to 3.60°C – Haywood et al., 2013a).  Table 4.1 highlights two 

distinct temperature groupings amongst the ensemble, ‘colder than Standard’ members 

(B, D, F, H & J - Appendix A1) and ‘warmer than Standard’ members (I, K, L, M, N, O, P & 

Q –Appendix A1).  Across the ensemble, all members display enhanced high latitude 

warming compared to the tropics (Figure 4.1 & Appendix A1).  However, the ‘warmer 

than Standard’ members display a greater degree of high latitude warming than both 

the Standard and ‘colder than Standard’ members.  The warming is primarily across the 

Arctic and is most pronounced (7 to 10°C) in members L, M, N, P & Q.   

  



 

 

 PRISM3D   300 ppm   350 ppm   
Ensemble Member Polar SAT Global SAT Polar Amplification Polar SAT Global SAT Polar Amplification Polar SAT Global SAT Polar Amplification 

B 4.37 1.87 2.33 2.55 0.58 4.40 3.75 1.16 3.23 
D 5.58 2.10 2.66 -- -- -- -- -- -- 
F 6.48 2.65 2.45 -- -- -- -- -- -- 
H 6.95 2.62 2.65 -- -- -- -- -- -- 
I 9.76 4.06 2.40 -- -- -- -- -- -- 
J 5.85 2.30 2.54 -- -- -- -- -- -- 
K 7.90 3.68 2.15 -- -- -- -- -- -- 
L 10.86 4.05 2.68 -- -- -- -- -- -- 

M 10.31 4.02 2.56 6.03 2.05 2.94 8.19 2.95 2.78 
N 10.18 3.84 2.65 -- -- -- -- -- -- 
O 9.08 3.84 2.36 -- -- -- -- -- -- 
P 11.82 4.46 2.65 7.45 2.54 2.93 9.44 3.33 2.83 
Q 12.98 5.27 2.46 8.72 3.16 2.76 10.60 4.04 2.62 

Standard 7.31 2.94 2.49 4.38 1.43 3.06 5.91 2.10 2.81 

Table 4.2. Global mean annual surface air temperatures (SAT - °C), polar SATs (°C) and polar amplification ratios (Polar SAT/Global SAT) for the full 
perturbed physics ensemble run with atmospheric CO2 at 400 ppmv and the members of both the 300 ppmv and 350 ppmv CO2 sub-ensemble members (B, 
M, P, Q & the Standard) 

The pattern of polar amplification displayed across the ensemble is important in the context of previous mPWP DMCs, which have highlighted a lack of 

high latitude warming in models (Chapter 1, Section 1.3.4).  Across the PPE, polar amplification ratios range from 2.15 to 2.68 (Table 4.2), with 

ensemble members D, H, L, N & P has the highest ratios (2.65 to 2.68).  Ensemble member K has the lowest ratio (2.15) and the Standard a ratio of 2.49.  

Within the CMIP5 MME, polar amplification ranges from 1.45 to 2.67 (IPCC, 2013).  The polar amplification in the PPE falls within the upper estimates of 

the CMIP5 ensemble, and all but members B, K & O display a ratio greater than the CMIP5 multi-model mean (2.24 to 2.36).   
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Parameterisations within the ensemble members will be driving this increased ratio of 

polar to global warming.  Analysis of the sea ice parameterisations (Tables 2.1a,b, 

Chapter 2 & Howell et al., 2014) indicates that they are designed to make the melting of 

sea ice harder than in the HadCM3 Standard.  If sea ice is harder to melt in the 

parameter sets created, it would indicate that these parameter sets are designed to 

make polar amplification less likely.  The sea ice parameterisations act as a brake on 

the simulations, constraining the polar amplification to the top end of the CMIP5 range.  

Without the analysis of individual parameter perturbations it is not possible to 

ascertain the driving parameters, but it is likely to be parameters affecting high latitude 

clouds that will be driving the increased polar amplification ratios.   

There is a strong terrestrial warming signal (5 to 7°C) across North America and 

Western Europe in the ‘colder than Standard’ members, with other terrestrial warming 

ranging from 0 to 2.5°C.  Terrestrial warming in the ‘warmer than Standard’ members 

is more consistent ranging from 4 to 6°C across most continental regions with high 

northern latitudes in excess of 8°C.  Terrestrial warming is weakest across Southern 

Siberia, China, India and tropical Africa in all ensemble members (between 0.5 to 2.5°C 

less than continental USA or Western Europe).   

Global mean annual precipitation ranges from -0.099 to 0.216 mm/day (Table 4.1) with 

all but two members (J & K) displaying an increase in precipitation compared to the 

modern Standard.  Across the ensemble, higher latitudes tend to display increased 

precipitation compared to the modern Standard (1.5 to 3 mm/day), with the tropics 

displaying decreased precipitation (0.25 to 2 mm/day - Figure 4.2 & Appendix A3).  

Precipitation is reduced across Amazonia (0.5 to 2 mm/day).  The smallest decrease in 

precipitation is observed in members I, L & P and the greatest in B, D, J & K.  An 

increase in precipitation is observed across southern South America (1 to 2 mm/day) 

in most ensemble members.  Members J & K display no increase in precipitation over 

this region.  However, members M, N & O show the largest area of increased southern 

South American precipitation.  However, the magnitude is consistent with the rest of 

the ensemble members displaying a change.   

Decreased precipitation (0.5 to 1.5 mm/day) is observed in members B, D, F, J, K, M & O 

across southern Africa, with the rest of the ensemble displaying minimal change in 

precipitation over the region.  Members H, I, L, N, P & Q display an increase in 

precipitation (1 to 2 mm/day) across equatorial and northern Africa.  The remaining 

ensemble members display a thin band of equatorial increased precipitation (1 

mm/day), with no expansion into northern Africa.  The thin band of precipitation 
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represents a response to a physical boundary condition change of reduced extent of the 

Sahara desert in the Pliocene compared to the modern (Salzmann et al., 2008).  The 

desert is replaced by tropical savannah and enhances precipitation over this region.  

East of the Rockies, North America shows decreased precipitation across the ensemble 

of 0.25 to 2 mm/day. The decrease is strongest (2 mm/day) in the ‘cooler than 

Standard’ ensemble members and decreases to minimal decrease in ‘warmer than 

Standard’ members.   

Overall, the ensemble members maintain the trend observed in the ensemble Standard 

of simulating a Pliocene climate that is warmer and wetter than the present day.  Two 

members (J & K), simulate a warmer and marginally drier climate.  The ensemble 

members display a higher polar amplification ratio than the CMIP5 MME and a broader 

Pliocene minus modern temperature range than the PlioMIP MME, particularly at the 

upper boundary of the SAT range.  Therefore, it is possible from these ensemble 

members that improvements will be made to the existing data-model mismatch.   

4.2.3 Large-Scale Features of the CO2 Sub-ensembles 

Two sub-ensembles were produced comprising three ‘warmer than Standard’ 

ensemble members (M, P & Q), the coolest ensemble member (B) and the ensemble 

Standard.  The purpose of these sub-ensembles was to investigate the influence of CO2 

uncertainty on the DMCs (e.g. Pagani et al., 2010; Raymo et al., 1996; Seki et al., 2010).  

The sub-ensembles were run at two additional CO2 concentrations, 300 ppmv and 350 

ppmv (the full ensemble was run at 400 ppmv) and compared to the modern Standard.   
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Figure 4.3. Global annual mean plots for “Pliocene CO2 sub-ensemble member minus 
modern Standard” for surface air temperature (SAT - °C) for the 300 ppmv and 350 ppmv 
CO2 sub-ensembles which comprise ensemble members B, M, P, Q & the Standard.   

As expected, lower concentrations of atmospheric CO2 result in reduced global mean 

annual temperature anomalies between Pliocene and modern compared to the 

equivalent full ensemble members (Table 4.1).  Despite the reduced CO2, the 

temperature responses between mPWP and modern physical boundary conditions 

(Section 4.2.1) still exert warming on the mPWP climate in all sub-ensemble members, 
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consistent with previous mPWP sensitivity studies (i.e. Hill et al., 2011).  The 

temperature responses due to changes in physical boundary conditions are consistent 

with respect to the magnitude and spatial distribution between members of both sub-

ensembles and the full ensemble, for example over the GrIS and EAIS (Figure 4.3).   

Areas of warming linked to the perturbed parameters in the full ensemble are apparent 

in the sub-ensembles.  However, the magnitude of warming from these features is 

reduced.  Members M, P & Q in both the 300 and 350 ppmv sub-ensembles display a 

polar amplification trend.  Polar amplification is observed in the full ensemble with a 

range of 2.14 to 2.68.  For the 300 ppmv sub-ensemble the ratio ranges from 2.93 to 

4.40 and 2.62 to 3.23 for the 350 ppmv sub-ensemble (Table 4.2).  Despite decreases in 

the polar temperatures in both sub-ensembles in comparison to their full ensemble 

equivalents, these decreases are less than the reductions in global mean temperatures.  

As a result, both sub-ensembles display enhanced polar amplification ratios compared 

to the full ensemble.  The polar warming to global warming in the sub-ensemble 

members can be observed in Figure 4.3.   

The temperature range between the coldest ensemble member (B) and the warmest 

member (Q) is slightly reduced in each sub-ensemble (300 ppmv range: 2.58°C, 350 

ppmv range: 2.88°C) compared to the full ensemble (3.40°C - Table 4.1).  

Unsurprisingly increasing Charney sensitivity results in a greater sensitivity to changes 

in CO2.  Most of the reduced temperature range originates from the greater decrease in 

mean annual temperature for member Q compared to member B in both the 350 and 

300 ppmv sub-ensembles.  Member Q has the highest Charney sensitivity of the PPE 

and for member Q the SAT difference reduced from 5.27°C (full ensemble) to 3.16°C 

(300 ppmv sub-ensemble).  In comparison member B, with the lowest Charney 

sensitivity has an SAT decrease of 1.87°C to 0.58°C.   

In summary, the PPE and physical boundary condition features observed within the full 

ensemble are observed within the sub-ensembles.  Boundary condition related 

changes, such as the distribution of ice sheets results in a similar magnitude of SAT 

difference between Pliocene and modern as in the full ensemble.  Polar amplification 

ratios are increased in both sub-ensembles compared to the full ensemble.  Despite 

decreases in polar temperature in both sub-ensembles, global mean annual 

temperatures decrease by a greater amount.  It has been hypothesised that increased 

polar amplification ratios will lead to improved data-model comparisons.  However, 

despite higher polar amplification ratios the sub ensembles have reduced polar SATs.  

The CO2 sub-ensembles will provide a good assessment of this hypothesis, offering 
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ensemble members able to determine whether polar SATs or increased polar 

amplification ratios produce the strongest DMCs.  Owing to the uncertainty in the 

greenhouse gas concentrations during the mPWP, the CO2 sub-ensembles are also 

important for understanding the impact of lower greenhouse gas concentrations on 

future mPWP modelling studies, should the estimates be revised downwards.   

4.3. Zonal Annual Mean Data-Model Comparison 

As discussed in Chapter 2 (Section 2.6.3 iii) traditional DMCs for palaeoclimate studies 

of the mPWP have used a “site-by-site” comparison for SST and SAT reconstructions 

(e.g. Haywood et al., 2013a; Salzmann et al., 2013) and are presented here (Section 4.4).  

The model skill in comparison to the data is assessed using metrics such as the root 

mean square error (RMSE) based on the scale of the mismatch between the palaeo-data 

locality and the corresponding model grid box.  However, it could be suggested that 

testing a climate model simulation on its ability to reproduce relatively sparse site-by-

site palaeo-data is not a realistic test.  An alternative DMC approach, using a zonal mean 

DMC is produced (Section 2.6.3, Chapter 2) to avoid comparing localised sites with 

large grid box areas.  Both “site-by-site” and zonal DMCs are produced and assessing 

both DMC methodologies using the PPE to gain an understanding of the relative 

strengths and weaknesses of each approach and the impact this has on the standard 

methodology for mPWP data-model studies.   
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Figure 4.4. Global zonal annual mean “Pliocene ensemble member minus modern 
Standard” sea surface temperatures for A) all ensemble members and palaeo-data and B) 
a subset of ensemble members B, M, P, Q, the Standard and the palaeo-data.   

The global zonal annual mean DMC (Figure 4.4) highlights the existing SST data-model 

mismatch (Chapter 1, Section 1.3.4) noted through the tropical and high northern 

latitudes.  In the southern high latitudes, most ensemble members are warmer than the 

palaeo-data, a feature of warming induced by Antarctic boundary condition changes 

(Figure 4.1 & Appendices A1 & A2).  Through the tropics no ensemble member can 

replicate the near zero anomaly shown by the SST data with member B (the coolest 

ensemble member) coming closest.  Through the Northern Hemisphere, ensemble 

members are all warmer than the data through the tropics, whilst into the mid-
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latitudes, the ‘warmer than Standard’ members remain warmer than the data despite a 

slight dip in SSTs around 45 to 50°N.  The palaeo-data peaks at 70°N, whilst the 

ensemble members peak at 65°N.  The difference in the latitude of the temperature 

peak leads to a significant high latitude data-model mismatch.  In the ‘cooler than 

Standard’ ensemble members, the slight dip in SSTs observed at around 45 to 50°N is 

more pronounced resulting in a colder than data mismatch of 2 to 2.5°C.   

Figure 4.5. North Atlantic zonal annual mean “Pliocene ensemble member minus modern 
Standard” sea surface temperatures for A) All ensemble members and palaeo-data and B) 
A subset of ensemble members B, M, P, Q, the Standard and the palaeo-data.   
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Previous work (i.e. Dowsett et al., 2012) has highlighted the North Atlantic as a region 

of particular difficulty for climate models to reproduce palaeo-SST.  Signals in other 

high latitude regions such as the North Pacific show much smaller data-model 

mismatches than the North Atlantic (Dowsett et al., 2012; 2013; Haywood et al., 

2013a).  Through the North Atlantic (Figure 4.5), the ensemble members display the 

same latitudinal peak as in the global zonal mean (Figure 4.4) at 45°N and 60°N.  The 

cause of these two peaks is likely related to the representation of ocean currents and 

the Greenland ice sheet boundary condition change.  Zhang et al. (2013), investigating 

Atlantic meridional overturning circulation (AMOC) in the PlioMIP MME, concluded 

that AMOC causes a peak temperature at 45°N in HadCM3, which is observed in the 

zonal mean SSTs for the ensemble members as the lower latitude (smaller magnitude) 

peak.  The influence of warming from changes in the GrIS (Figure 4.1, Appendices A1 & 

A2) causes the peak in SSTs at 60°N.  However, in the ‘cooler than Standard’ members, 

this peak is reduced.  Through the North Atlantic the palaeo data peaks later at 80°N 

(Figure 4.5) compared to 70°N in the global comparison (Figure 4.4).  The ensemble 

members SST profile through the North Atlantic does not change as significantly as the 

palaeo-data profile and results in an increased data-model mismatch through the North 

Atlantic compared to the global zonal mean comparison.   
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Figure 4.6. Zonal annual mean “Pliocene ensemble member minus modern Standard” sea 
surface temperatures for the 300 ppm CO2 ensemble for A) global ocean and B) North 
Atlantic ocean only.  The dashed line represents the full ensemble (400 ppmv) Pliocene 
Standard and the thick red line the palaeo-data.   

The CO2 sub-ensembles of 300 ppmv (Figure 4.6) and 350 ppmv (Figure 4.7) improve 

the tropical match between ensemble members and proxy data.  The 300 ppmv sub-

ensemble members display zonal means that are cooler than the full ensemble (400 

ppmv) Standard.  In both the global and North Atlantic zonal means, the sub-ensemble 

range brackets all the tropical palaeo-data.  At high latitudes there is an increase in the 

mismatch between the sub-ensemble members and palaeo-data.  Through the North 

Atlantic, the sub-ensemble members are weaker than the full ensemble Standard.   
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Figure 4.7. Zonal annual mean “Pliocene ensemble member minus modern Standard” sea 
surface temperatures for the 350 ppm CO2 ensemble for A) global ocean and B) North 
Atlantic ocean only.  The dashed line represents the full ensemble (400 ppmv) Pliocene 
Standard and the thick red line the palaeo-data.   

For the 350 ppmv sub-ensemble, the members display zonal means that are warmer 

than the full ensemble Standard.  However, unlike the full ensemble, only member Q of 

the 350 ppmv sub-ensemble has sufficient warming to resemble the palaeo-data.  Up to 

~60°N, the 350 ppmv sub-ensemble brackets the palaeo-data for the global DMC 

(Figure 4.7a) and (with the exception of a small tropical mismatch), also achieves this 

in the North Atlantic.  At high latitudes, the performance of the 350 ppmv sub-ensemble 

is enhanced compared to the 300 ppmv sub-ensemble.  However, performance is little 

better than the full ensemble Standard.  The AMOC related zonal mean SST peak at 
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~45°N observed in the full ensemble is apparent in both sub-ensembles.  However, the 

60°N peak observed in the full ensemble due to the GrIS changes is less pronounced in 

the sub-ensemble members.  Based on the zonal DMCs, the reduction in polar 

temperatures in the sub-ensemble members compared to their full ensemble 

equivalents has resulted in a weaker data-model comparison.   

In summary, maximum warming across the full ensemble indicates a peak in the model 

SSTs to the south of the palaeo-data localities.  This feature is clearest in the North 

Atlantic (Figure 4.5).  The peak in member Q is warmer than the palaeo-data peak by 

~1°C, and north of this the ensemble members underestimate SSTs compared to the 

palaeo-data.  The PPE is able to simulate the magnitude of Pliocene warming, but is 

unable to simulate the spatial distribution of this warming.  Both sub-ensembles 

achieve little additional reconciliation with the palaeo-data.  If Pliocene CO2 was 

determined to be below 350 ppmv (with other greenhouse gases kept at pre-industrial 

levels), it would be even more difficult to reconcile models and data.   

4.4. Site-by-Site Data-Model Comparisons 

Site-by-site DMCs represent the more traditional comparison of palaeo-data and 

climate models.  Two site-by-site DMCs are presented here, utilising the SST and SAT 

palaeo-data, the RMSE scores for each DMC for all ensemble members are shown in 

Table 4.3.  For the SST DMC, ensemble member N has the lowest RMSE score along with 

members L & M.  Nine ensemble members (F, H, I, K, L, M, N, O & P) are an 

improvement on the HadCM3 Standard DMC (Table 4.3).   
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Sea Surface 
Temperatures 

  

Surface Air 
Temperatures 

  Ensemble 
Member PRISM3D 

300 
ppmv 

350 
ppmv PRISM3D 

300 
ppmv 

350 
ppmv 

B 2.70 3.29 3.04 5.73 6.26 5.72 

D 2.67 -- -- 5.33 -- -- 

F 2.39 -- -- 5.05 -- -- 

H 2.41 -- -- 5.04 -- -- 

I 2.39 -- -- 4.03 -- -- 

J 2.54 -- -- 5.41 -- -- 

K 2.38 -- -- 4.66 -- -- 

L 2.27 -- -- 3.95 -- -- 

M 2.36 2.60 2.40 3.92 4.91 4.19 

N 2.25 -- -- 3.75 -- -- 

O 2.38 -- -- 4.23 -- -- 

P 2.39 2.41 2.42 3.70 4.38 3.91 

Q 2.71 2.31 2.42 3.79 4.28 3.85 

Standard 2.42 2.80 2.59 4.64 5.53 5.03 

Table 4.3. Root mean square error (RMSE) scores for the site-by-site data-model 
comparisons to the sea surface temperature (SST) and surface air temperature (SAT) 
DMCs for full perturbed physics ensemble run with atmospheric CO2 at 400 ppmv and the 
members of both the 300 ppmv and 350 ppmv CO2 sub-ensemble members (B, M, P, Q & 
the Standard).   

Figure 4.8, shows ensemble members B, N & Q and the Standard, with the rest of the 

ensemble members displayed in Appendix A4.  Member N was the best member, with B 

and Q for different reasons the weakest members.  Member N has the lowest RMSE 

score, reducing the high latitude data-model mismatch in comparison with the 

Standard by up to 3°C.  Member Q achieves greater reductions than member N in high 

latitude sites compared to the Standard.  However, compared to both N and the 

Standard, member Q increases warming mismatches through the tropics.   
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Figure 4.8. Site-by-site “Pliocene ensemble member minus modern Standard” sea surface 
temperature data-model comparisons for ensemble members B, N, Q & the Standard.  The 
remaining ensemble members are displayed in Appendix A4.   

These warming mismatches eliminate the improvements observed in the high latitudes 

and lead to a weakened RMSE score for Q.  In comparison, member B which has a 

similar RMSE to member Q, produces a strong tropical DMC with many sites indicating 

minimal difference between the model and data.  However, high latitude mismatches 

are in excess of 8 to 10°C.  As observed in the zonal mean DMCs, ensemble members 

that produced strong simulations of high latitude SSTs, struggled to not simulate too 

much tropical warming.  Members B & Q highlight that the ensemble members 

producing the best DMC in one region (i.e. tropics or high latitudes) weaken the overall 

DMC by producing the worst comparison in another region.  Member N (and other high 

ranking members such as L & M), produce a DMC that is not best in a region, but simply 

achieves a balance between warming high latitudes and maintaining tropical 

temperatures as close to the modern as possible.   
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Figure 4.9. Site-by-site “Pliocene ensemble member minus modern Standard” surface air 
temperature data-model comparisons for ensemble members B, N, P & the Standard.  The 
remaining ensemble members are displayed in Appendix A5.   

For the SATs, member P produces the strongest RMSE with members N & Q.  Member B 

ranks lowest whilst seven ensemble members (I, L, M, N, O, P & Q) outperform the 

Standard (Table 4.3).  Figure 4.9 (and Appendix A5) highlights the differences from 

these rankings across the sites.  Member B (the weakest performing member), P (the 

strongest), N and the Standard are shown to highlight the performance across the 

ensemble.  Member P reduces the data-model mismatches throughout Western Europe 

and Alaska compared to the Standard, removing the mismatch completely in some 

regions whereas the Standard indicates a 2 to 5°C mismatch.  Small improvements are 

also made throughout Siberia and eastern Eurasia.  Member P displays a similar 

performance to the Standard across other sites in the USA, Africa and Australia.  

Member N shows a similar performance to member P, however it displays reduced 

improvement (by 0.5 to 1°C) across the Western Europe sites compared to member P.  

As a result it performs well for this DMC, but not as strongly as member P.  Member B 

produces the best representation of sites in the USA displaying minimal mismatch in 



Intra-Model Assessment                                                                                                     Chapter 4 
 

145 

these sites.  However, in comparison to the Standard mismatches across Alaska, Siberia 

and Eurasia are increased by 3 to 4°C, with a smaller increase (~1°C) in Western 

Europe mismatches.  These mismatches combine to produce a much weaker RMSE 

score than the Standard.   
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Figure 4.10. Site-by-site “Pliocene ensemble member minus modern Standard” sea surface 
temperature data-model comparisons for both CO2 sub-ensembles. 
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Both CO2 sub-ensembles struggle to improve the zonal DMC to the SST data at high 

latitudes, despite the elevated polar amplification ratios across all sub-ensemble 

members compared to the full ensemble.  A similar result is returned for the site-by-

site DMCs, with the RMSE scores for both the 300 ppmv and 350 ppmv sub-ensembles 

generally performing worse than their full ensemble equivalents (Table 4.3).  The only 

exceptions are the SST DMC for member Q in both sub-ensembles which show an 

improved RMSE score and the SAT for member B in the 350 ppmv sub-ensemble which 

performs the same as its 400 ppmv equivalent (Table 4.3).  For the SSTs, the 

improvement in member Q in both sub-ensembles is based around the representation 

of tropical sites.  Member Q from the full ensemble achieves the greatest reduction in 

the high North Atlantic sites, but at the cost of the weakening the performance of the 

model in comparison to the tropical data sites (Figure 4.8).  Member Q from both sub-

ensembles does not achieve the high latitude improvements of its full ensemble 

equivalent, but simply improves the data-model mismatch through the tropics (Figure 

4.10).  In the SATs, slight improvements in the 350 ppmv member B in tropical sites 

compared to its 400 ppmv equivalent are matched by a reduced performance in 

Western Europe resulting in the same RMSE score for both ensemble members (Figure 

4.11).  In summary both the site-by-site and zonal DMCs indicate that despite the 

increased polar amplification ratios, both sub-ensembles do not improve data-model 

comparisons, because they are unable to simulate the required polar temperatures.  

Any improvements observed in these DMCs are more a reflection of improved tropical 

comparisons rather than the effect of increased polar amplification ratios.   
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Figure 4.11. Site-by-site “Pliocene ensemble member minus modern Standard” surface air 
temperature data-model comparisons for both CO2 sub-ensembles.   
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4.5. Discussion 

4.5.1 Discrimination of the Model Ensemble Using Geological Proxy Data 

The zonal annual mean palaeo-data both globally and for the North Atlantic (Figures 

4.4 & 4.5), and site-by-site DMCs to both SSTs and SATs (Figures 4.8 & 4.9), indicates a 

high latitude temperature pattern that is irreconcilable with the Standard version of 

HadCM3, a well established data-model mismatch in mPWP studies.  However, nine 

PPE members for the SSTs and seven members for the SATs rank higher than the 

Standard in these DMCs, improving the data-model comparison.  Generally, these 

members are from the ‘warmer than Standard’ members which have higher than 

Standard Charney sensitivities.  These members are able simulate warmer high latitude 

temperatures and therefore are able to better replicate the magnitude of high latitude 

mPWP warming in the SSTs (Figures 4.4, 4.5 & 4.8) and SATs (Figure 4.9).   

However, there is a limit to viability of generating simulations with greater high 

latitude warming.  The largest reduction in the high latitude SST data-model mismatch 

occurs in member Q (Figure 4.8), yet the SST RMSE score for member Q is the lowest 

within the ensemble (Table 4.3).  Member B, which has a similar SST RMSE score as 

member Q produces a strong DMC at the tropical latitudes, but is unable to simulate the 

requisite high latitude temperatures.  These trends can be observed in the zonal mean 

DMCs (Figure 4.4 & 4.5) as well as the site-by-site comparison (Figure 4.8).  Both 

highlight that ensemble members reducing high latitude data-model mismatches 

generate a tropical data-model mismatch where the model is warmer than the data.  

For the SST DMC, it is the ensemble members that produce the best balance between 

high latitude warming with minimal tropical warming that produce the strongest 

performance compared to the data.  For the SSTs, member N produces the best fit.  

Similarly through the site-by-site SAT DMC, ensemble member P outperforms member 

Q through achieving the balance of reducing high latitude mismatches without 

incurring too much tropical warming.   

The CO2 sub-ensembles do not contribute stronger performing members to this 

analysis.  Whilst they display enhanced polar amplification ratios compared to the full 

ensemble, they lack the high latitude warming to improve the data-model comparison.  

Similar to member B in the full ensemble, they produce strong representations of the 

tropical mPWP palaeo-data, but very poor comparisons to the high latitude data 

(Figures 4.6, 4.7 & 4.10).  Table 4.3 highlights that it is the combination of polar 

amplification ratio and polar warming that ensures that an ensemble member performs 

well in comparison with the SST data.  Members M (2.56), N (2.65) and P (2.65) all have 



Intra-Model Assessment                                                                                                     Chapter 4 
 

150 

high polar amplification ratios and also have high polar temperatures, indicating it 

requires both elements to ensure a strong DMC.  Based on the RMSE scores, it can be 

determined that members M (Charney sensitivity = 4.54°C), N (4.62°C) and P (5.40°C) 

run with 400 ppmv atmospheric CO2 produces the strongest combined DMC for both 

SSTs and SATs (Table 4.3).   

Overall, the full ensemble zonal means indicate that the temperature range across the 

model versions produced by the PPE replicates the palaeo-data with the exception of a 

region in the Northern Hemisphere tropics and the high northern latitudes.  The results 

suggest that the PPE is able to replicate the magnitude of the high latitude warming in 

the palaeo-data, but can not reproduce the spatial distribution of the warming.  The 

weakness in the distribution is specifically linked to the exact location of peak Northern 

Hemisphere zonal SSTs, with the ensemble members unable to generate it far enough 

north to match the palaeo-data.  The site-by-site DMCs highlight the data sites where 

the PPE is still unable to achieve the required warming primarily through the North 

Atlantic.  Some of these sites are at latitudes where there zonal DMCs indicate that the 

model can simulate the magnitude of the palaeo-data.  The disparity that arises 

highlights the importance of the specific regional location of the model warming with 

respect to the palaeo-data, and the methodology utilised for comparing model and data.   

Salzmann et al. (2013) highlighted the impact of taking into account different types of 

uncertainty (associated with both the model ensemble used and the proxy-derived SAT 

data) when performing DMCs.  Using one approach, they considered which model 

within the PlioMIP ensemble produced the minimal data-model mismatch for each data 

point, in order to determine whether the PlioMIP ensemble enveloped the range of 

proxy-derived SAT estimates or whether a data-model discrepancy remained for each 

site.  Such an analysis has been repeated here, with data uncertainty included based on 

estimates from Dowsett et al. (2013 - SSTs) and Salzmann et al. (2013 - SATs).  The 

analysis creates an “idealised DMC” as it is not a DMC composed of a single model or 

multi-model mean, but selects the ensemble member giving the best (most ideal) DMC 

result at each individual site, which are then compiled into a single data-model 

comparison.   
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Figure 4.12. Distribution of the site-by-site data-model mismatches for the “PRISM3D 
ensemble member minus modern Standard” selecting across the ensemble members to 
choose the best (smallest) data-model mismatch for each site A) idealised sea surface 
temperatures including data uncertainty and B) idealised surface air temperatures 
including data uncertainty.  The strongest performing individual ensemble members 
(based on an RMSE ranking) for C) SSTs (member N) and D) SATs (member P) are also 
displayed as a comparison to the idealised DMCs.   

In the idealised SST DMC, data-model mismatches less than 1°C (as per Salzmann et al., 

2013) are removed for all sites in the SST dataset leaving only twelve sites (Figure 

4.12a).  Of the sites that have mismatches greater than 1°C, three are in upwelling 

zones, two in coastal regions and two are in regions of strong oceanic currents and 

gradients in temperature.  Five remaining sites are in a region where models are known 

to be poor at reproducing the data, the North Atlantic.  The site-by-site RMSE scores 

indicated that ensemble member displaying strong simulation of one regional climate 

were weaker in another region, a conclusion supported by the zonal mean DMCs.  The 

zonal mean DMCs highlighted that the ensemble members were unable to replicate the 

spatial distribution of the Pliocene warming, either failing to match the warming at the 

tropics or the high northern latitudes.  The idealised DMC is able to avoid this problem 
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through sampling the smallest mismatches from across the ensemble members at both 

the high latitudes and the tropics.  The advantages of the idealised DMC (Figure 4.12a) 

are highlighted when they are compared to the strongest performing ensemble 

member, N (Figure 4.12c).  Member N performs comparably with the idealised DMC 

through the North Atlantic, but is unable to resolve the tropical temperatures, with a 

number of sites displaying a warming mismatch of greater than 1°C.  Member N has an 

RMSE score of 2.25 (Table 4.3), but the idealised DMC reduces this to an RMSE of 0.88.  

The ability of the idealised DMC to sample the strongest performing ensemble member 

at each data locality and include the range of palaeo-data uncertainty makes a massive 

improvement to the DMC score.   

Figure 4.12b displays the idealised SAT DMC which indicates that the main data-model 

mismatch remains through the sites in southern Siberia, with up to 10°C mismatch 

remaining at some sites.  However, in comparison to the strongest ensemble member, P 

(Figure 4.12d), the idealised DMC sees the mismatch at sites through Western Europe 

and across North America reduced to less than 1°C, whereas for member P there is a 

slight (1 to 2°C) mismatch.  However, over Siberian sites the performance of member P 

is similar to the idealised DMC.  For both idealised DMCs, large discrepancies (>5°C) 

remain between the model and data showing that the perturbed parameters within this 

ensemble are not able to fully reproduce the palaeo-data.  The idealised SAT DMC has 

an RMSE score of 2.14 compared to 3.70 for member P (Table 4.3).   

The combination of zonal mean, site-by-site and idealised DMCs highlights three key 

elements of the PPE through data-model comparison: 

1.  The PPE is able to simulate the magnitude of required mPWP high latitude 

warming but without the appropriate spatial distribution.   

2. The strongest performing ensemble members achieve a balance between 

increasing high latitude warming and minimising changes at the tropics.   

3. The existing data-model mismatch is irreconcilable with the HadCM3 Standard 

and this PPE even under the most favourable conditions.   

These findings are in common with analysis of the PlioMIP MME (Dowsett et al., 2013; 

Haywood et al., 2013a; Salzmann et al., 2013) 

4.5.2 Are There Implications for Model Estimates of Charney Sensitivity?  

The ensemble represents a range of potential versions of HadCM3, with a range of 

Charney sensitivities (2.4 to 7.1°C, Standard = 3.3°C).  A key consideration of these 

ensembles is whether changes in the model Charney sensitivity leads to a better 
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representation of the mPWP climate?   

Sections 4.3 & 4.4 discussed the performance of the ensemble members in comparison 

with the palaeo-data.  The PPE was able to simulate mPWP climates that reduced the 

data-model mismatch at high latitudes in the site-by-site DMCs.  Meanwhile zonal DMCs 

suggested that members of the PPE are able to simulate the required magnitude of high 

latitude warming observed in the proxy derived SSTs.  However, the ensemble 

members were unable to replicate the spatial distribution of the Pliocene warming.  

Specifically ensemble members that could simulate appropriate high latitude warming 

were unable to simulate the minimal warming through the tropics.  As a result, the 

strongest performing ensemble members in the RMSE scores from the site-by-site 

DMCs were ensemble members that achieved a balance between high latitude warming 

and minimal tropical warming.  The balance of warming in the high latitudes was 

observed in ensemble members from the ‘warmer than Standard’ grouping, a trend 

observed in both the zonal mean and site-by-site DMCs.  Section 4.4 showed that 

overall the highest ranking ensemble members for the combination of DMCs were 

members M, N & P, with Charney sensitivities of 4.54°C, 4.62°C & 5.40°C respectively.   

The IPCC defines a likely range with high confidence for Charney sensitivity of 1.5 to 

4.5°C (IPCC, 2013), therefore the strongest performing Pliocene PPE members are just 

above the likely top end estimate for Charney sensitivity.  These results suggest that to 

best simulate the warming of the mPWP with an atmospheric CO2 concentration of 400 

ppmv requires models with a higher value of Charney sensitivity.  However, it is 

evident from the zonal means, site-by-site and idealised DMCs, that it is not just 

generating the magnitude of warming, but the spatial distribution of this warming that 

is crucial to being able to reconcile models and data for the mPWP.  The DMCs indicate 

that the PPE can simulate the requisite warming in the Pliocene climate at high 

latitudes.  However, the weakness of these data-model comparisons for the members 

simulating the required high latitude warming are that too much warmth is simulated 

in the tropical latitudes.  Overall, it is not that the PPE is unable to simulate the warmth 

of the mPWP, but that it is unable to adequately simulate the Earth system and 

therefore the spatial distribution of mPWP warming.  From the DMCs it can be 

confidently determined that a value for Charney sensitivity cooler than the present 

HadCM3 Standard is highly unlikely to produce a stronger simulation of the mPWP 

climate.  However, it can also be determined that increasing the value for Charney 

sensitivity much above the upper end of the IPCC estimate will not generate an 

improved representation of mPWP climate.  The idealised DMC along with the site-by-

site and zonal DMCs displays that it is not the magnitude of the warming, but the spatial 
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profile of this warming that the ensemble is unable to simulate.  The profile is not a 

feature of the Charney sensitivity but more a limitation elsewhere within the HadCM3 

model, the ensemble design, experimental design or uncertainty within the palaeo-data 

reconstruction.  These results indicate that the Pliocene PPE offers no conclusive 

evidence to suggest that models with Charney sensitivities in excess of the upper bound 

of the IPCC likely range will result in improved modelling of warmer world climates.   

4.5.3 Can The Model Be Reconciled With mPWP Proxy-Data? 

Based on the analysis discussed in this chapter, the main issue of comparing models to 

palaeo-data is that HadCM3 is unable to simulate the global climate profile as 

reconstructed from the palaeo-data.  However, this is not solely a feature of the 

Charney sensitivity of the model and resulting warming response.  The zonal means 

indicate that the magnitude of the warming can be reproduced in ensemble members 

with higher Charney sensitivities.  However, the spatial distribution of this warming is 

not compatible with the palaeo-data (Figures 4.4 & 4.5).  These results would indicate 

that the solution to resolving data-model mismatches for the mPWP lie not with the 

sensitivity of the model, but within the realm of the model design, the design of this 

ensemble and uncertainty from orbital forcing boundary conditions and the palaeo-

data.  Potential factors include: 

• The parameter space is not fully sampled 

• Structural uncertainty is not included 

• Poorly constrained or misrepresented boundary conditions 

• Unaccounted for data uncertainty 

The QUMP methodology utilised in this work produces parameter sets that sample a 

small number of points in a high dimensional parameter space (Williamson et al., 

2013), focussing on parameterisations known to be uncertain (Collins et al., 2006; 

Murphy et al., 2004).  However, it is possible that a more complete sampling of the 

parameter space using alternative sampling methods (e.g. Latin Hypercube) would 

generate ensemble members which could produce a better representation of the mPWP 

climate. The 100 member Latin Hypercube ensemble design of Gregoire et al. (2011) 

for FAMOUS, the low resolution version of HadCM3 used was later applied to the Early 

Eocene (56 to 47.8 Ma) by Sagoo et al. (2013).  Across the Sagoo et al. ensemble, the 

spatial distribution of Eocene zonal mean SATs and SSTs displays a similar pattern 

despite a large offsets across the ensemble.  The offset is caused by the ensemble 

members with higher tropical temperatures also having elevated polar temperatures 
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and results in equator to pole gradients being broadly similar across the ensemble 

members (Sagoo et al., 2013).  As a result, the Eocene ensemble displays similar 

difficulties to the mPWP ensemble, being unable to reproduce high latitude warming 

without increasing tropical data-model mismatches.   

Other QUMP ensembles, focussing on perturbing parameters in the ocean (Brierley et 

al., 2010; Collins et al., 2007), sulphur (Ackerley et al., 2009) and carbon cycles (Booth 

et al., 2012) have also been created.  If these parameter perturbations were included in 

future ensembles generated to simulate the mPWP they might have the potential to 

improve the data-model mismatch.  For example, non-flux adjusted PPEs, are able to 

investigate ocean currents such as AMOC such as those by Hodson et al. (2013), 

Vellinga & Wu (2008) and Williamson et al. (2013) might include parameter sets which 

improve the representation of the North Atlantic sites for the mPWP.   

The data-model mismatch through the North Atlantic sites (Figure 4.8 & 4.12a) may 

represent an inability of HadCM3 to suitably enhance ocean heat transport.  Hodson et 

al. (2013) identified ocean heat transport as a structural variable, which does not 

change between HadCM3 PPE members.  Williamson et al., (2013) found systematically 

different behaviour in AMOC when comparing PPEs sampling an observationally 

constrained parameter space compared to the unconstrained parameter space.  AMOC 

was shown to have a greater average reduction within the constrained parameter space 

as a result of increased CO2 forcing.  Both the work of Hodson et al. (2013) and 

Williamson et al. (2013) could not be represented in this PPE.  For sites in the North 

Atlantic, it is possible that enhanced ocean heat transport and other structural 

variables could result in a closer approximation for some of these sites.  Within the 

PlioMIP ensemble, the COSMOS, MIROC or NorESM simulations display enhanced 

warming through this region (Haywood et al., 2013a).  However Zhang et al. (2013) 

investigated AMOC and ocean heat transport in the PlioMIP ensemble finding that there 

was insignificant change compared to the present day.  Therefore, the cause of high 

latitude warming in these members is from another element of their model 

construction (Zhang et al., 2013).  Finally with respect to the modelling, limitations in 

the physical representation of the boundary conditions in the model could be resulting 

in the inability of the model to reproduce the palaeo-data.  Ivanovic et al. (2013; 2014) 

showed how modifying the representation of Mediterranean outflow in HadCM3 affects 

North Atlantic SSTs, Arctic Ocean SSTs and AMOC.  Other uncertainties in boundary 

conditions such as vegetation, topography or ice sheets have been shown in previous 

work (Hill et al., 2011; Robinson et al., 2011) to exert a strong effect on the climates 
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simulated by the ensemble in such a way that could improve data-model mismatches 

through the North Atlantic sites.   

Another boundary condition uncertainty arises from the time slab approach (Haywood 

et al., 2013b).  Presently the PRISM palaeo-data is produced as a ~300 Kyr average 

mPWP climate. The climate is modelled using snapshot simulations with fixed physical 

boundary conditions and radiative forcing from greenhouse gases and orbital 

configuration.  However, the palaeo-data records climate signals affected by changes to 

these forcings, therefore adjacent sites may be dominated by samples influenced by 

climate signals thousands of years apart.  These sites represent a warm climate, which 

is close to the average for the mPWP using the PRISM warm peak averaging 

methodology (Dowsett, 2007; Dowsett & Poore, 1990).  However, the timing of each 

sites warm peak is not necessarily coeval, and therefore the palaeo-data time slab is not 

necessarily physically possible within the climate system, specifically due to the 

influence of orbital forcing. Modelling work presently investigating the mPWP time 

slice (Haywood et al., 2013b) indicates that at the simulated regional climates are 

highly sensitive to changes to orbital forcing across a 40 Kyr period.  Prescott et al. 

(2014), highlighted this variability using snap shot simulations 20,000 years either side 

of the selected mPWP interglacial time slice (3.205 Ma).  Regions such as the North 

Atlantic displayed significant variability in the timing of their peak warming across this 

40 Kyr period.  In essence, the palaeo-data utilised within the DMCs are susceptible to 

variations in orbital forcing (e.g. Lawrence et al., 2009), but the ensemble members run 

with a fixed orbital configuration are not.  Limitations of the boundary conditions and 

the temporal scale of the target for the DMCs could be hampering the ability of the 

ensemble to reproduce the mPWP palaeo-data reconstructions.  The orbital forcings 

applied at the start of these ensembles may be as much a source of error as the 

parameters perturbed or the physical boundary conditions applied.   

Finally, there is unaccounted for data uncertainty.  The cause of the mismatch could be 

due to data uncertainty from analytical issues (Salzmann et al., 2013).  Uncertainties in 

pre-Quaternary proxy data based temperature reconstructions are primarily caused by 

non-modern analogue environments, evolutionary changes of ecological tolerance and 

methodological problems (Prescott et al., 2014).  Without a full appreciation of the 

uncertainty on palaeo-data reconstructions, it is not possible to reliably evaluate the 

model error as the reconstructed signal may not be robust or the stated uncertainty in 

that signal may be too small, or both.  With respect to CO2, there is confluence of two of 

these sources of uncertainty.  CO2 represents a forcing boundary condition for the 

model, but the CO2 value is analytically calculated from proxy data.  There are a range 
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of estimates for mPWP CO2 from pre-industrial CO2 at 280 ppmv (lower bound estimate 

of Tripati et al., 2009) to 435 ppmv (upper bound estimate of Raymo et al., 1996) with a 

congregation between 350 and 400 ppmv based on a range of techniques.  Additionally 

at some sites different analytical techniques have produced different estimates (Seki et 

al., 2010).  Therefore, the CO2 value used in modelling the mPWP represents a 

boundary condition uncertainty, which itself is a product of data uncertainty.  Figures 

4.6 & 4.7 indicate that high latitude DMCs for the 300 and 350 ppmv sub-ensemble 

members are much weaker in comparison to the 400 ppmv Standard.  If mPWP 

simulations were undertaken with atmospheric CO2 below 350 ppmv, it would be 

highly unlikely that even other boundary condition factors such as orbital forcings 

would enable models to minimise the high latitude data-model mismatches.   

Overall, uncertainty in the proxy-data are as important as uncertainty in the model and 

the PPE.  Work underway to address some of these weaknesses may lead to improved 

representations of the mPWP based on data-model comparisons.   

4.5.4. Which Methodology Produces the Best Comparison of Model and Data? 

Through analysing the PPE presented here, zonal annual DMCs and site-by-site DMCs 

have been utilised.  It is important to assess the role of each of these methodologies in 

producing these DMCs and judgements on ensemble member performance.  Both DMCs 

have advantages and weaknesses.  The site-by-site DMC reflects the influence of a large 

area of modelled climate upon a single data locality, which is unlikely to a realistic 

representation of the proxy temperature recorded.  However, site-by-site DMCs allow 

for an easy to asses metric of model performance through the RMSE score, which has 

been used in this work to rank the ensemble members.  The zonal DMC avoids the 

issues of scale around a site-by-site comparison, it is reliant on the palaeo-data being 

extrapolated from point localities to cover full ocean basins.  This extrapolation, based 

on the assumption that SST patterns have not changed between the mPWP and the 

present day (Dowsett et al., 1999; Haywood et al., 2010) does add an element of 

uncertainty to the zonal mean palaeo-data.  However, this assumption has been used in 

a number of mPWP modelling studies using the atmosphere only version of climate 

models (Haywood et al., 2000; 2013a).  Additionally, the development of uncertainty 

estimates for the site-by-site data (Dowsett et al., 2012; Salzmann et al., 2013) offer a 

developing dimension to assessing model performance whilst allowing for data 

uncertainty.  At present, it is not possible to provide an RMSE ranking or data 

uncertainty estimate on the zonal mean DMCs.   

Overall, both DMCs are complimentary, the zonal mean DMCs highlighted that the 
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ensemble members are able to fully bracket the magnitude in the palaeo-data (Figure 

4.4).  Similarly, the site-by-site DMCs and RMSE scores highlighted that the strongest 

performing member through the high latitudes was producing a poorer simulation of 

mPWP climate due to its large tropical data-model mismatch evident in both types of 

DMC.  Neither DMC methodology is perfect, however in combination they produce the 

best way to assess the performance of a climate model ensemble to palaeo-data.  The 

results within this address the importance of the “PMIP Triangle” (Haywood et al., 

2013a) that data-model mismatches are a feature of modelling, boundary condition and 

palaeo-data uncertainty.   

4.6 Conclusions 

Chapter 4 has presented data-model comparisons (DMCs) for the mid-Pliocene Warm 

Period (mPWP) comparing the results from a 14 member perturbed physics ensemble 

(PPE) with two types of palaeo-data: sea surface temperature (Dowsett et al., 2010b) 

and vegetation derived surface air temperature (Salzmann et al., 2013).  Pliocene 

modelling studies either using single model simulations or multi-model ensembles 

(MMEs) have consistently shown a data-model mismatch with models able to replicate 

the tropical data sites but unable to reproduce high latitude sites, especially through 

the North Atlantic (Dowsett et al., 2012; Haywood & Valdes, 2004; Haywood et al., 

2013a).  The aim was to investigate the role of parameter uncertainty in these data-

model mismatches, to see if model and data can be reconciled.   

The PPE has demonstrated that it is possible to reproduce the magnitude of mPWP 

warming with ensemble members with Charney sensitivities close to and above the 

upper bound of the IPCC likely range.  However, the strongest performing ensemble 

members were not the simulations generating the greatest high latitude warming, but 

those achieving the balance between high latitude warming with minimal change at the 

tropics.  Ensemble members M (4.54°C), N (4.62°C) and P (5.40°C) simulate the 

strongest DMCs based on the combination of SST and SAT data, fitting this requirement.  

Ensemble member Q, the member with the greatest warming, produced the lowest 

ranking SST ensemble member due to its inability to blend high latitude warming 

without tropical warming.  Ensemble members with Charney sensitivities near the 

lower end of the IPCC likely range are unable to simulate the required high latitude 

warming but did simulate a stronger representation of mPWP tropical climate.  The 

sub-ensemble members with lower values of atmospheric CO2 improve the tropical 

DMC (with respect to their full ensemble equivalents), however weakened the high 

latitude DMC, especially in the 300 ppmv sub-ensemble.   
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Improved polar amplification ratios were important in ensemble members improving 

the DMC compared to the HadCM3 Standard.  However, the sub-ensemble members, 

despite the largest polar amplification ratios of the ensemble were unable to improve 

the high latitude mismatch owing to a lack of high latitude warming.  The polar 

amplification ratio can not alone improve the data-model mismatch.   

Overall, while the PPE has shown it is possible to achieve the magnitude of mPWP high 

latitude warming, it is at present not possible to achieve the spatial distribution of this 

warming.  The results indicate that it is unlikely that mPWP data-model mismatches 

can be reduced purely through investigating Charney sensitivity, but require 

exploration of all three vertices of the “PMIP Triangle” boundary condition, model and 

data uncertainties.   
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Chapter 5: On The Importance of Accurate 
Boundary Conditions for Modelling the 
mid-Pliocene Warm Period 
5.1 Introduction 

Chapter 4 discussed the whether it was possible to reconcile the palaeo-data and the 

perturbed physics ensemble (PPE), concluding that the PPE is able to reproduce the 

magnitude of warming that has been observed in the palaeo-data at high latitudes.  

However, the ensemble members were unable to represent the spatial distribution of 

this warming.  Ensemble members that generated the appropriate amount of high 

latitude warming, were unable to avoid overheating tropical latitudes, and vice versa in 

comparison with the palaeo-data.  The sub-ensemble investigating the CO2 boundary 

condition within the ensemble, indicated that while this sub-ensemble improved 

tropical data-model mismatches, the sub-ensemble performed weaker in the high 

latitudes than the full ensemble members.  Discussion of other potential causes of the 

mismatch and the poor spatial distribution of the warming suggested that the 

mismatch could be explained using the “PMIP Triangle” (Haywood et al., 2013a), a 

confluence of model, boundary condition and palaeo-data uncertainties that results in 

weaknesses in the data-model comparisons (DMCs).  A forcing boundary condition 

uncertainty was investigated with the CO2 sub-ensemble, however the main form of 

boundary condition uncertainty in the mid-Pliocene is the physical boundary 

conditions (ice sheets, vegetation and topography), with two sets of reconstructions, 

the PRISM2 and PRISM3D boundary condition sets.   

Chapter 5 presents the comparison of the PRISM3D and PRISM2 ensembles, primarily 

investigating the impacts of the changes in the boundary conditions in combination 

with the parameter perturbations.  The analysis will utilise both the intra-model 

comparisons between the two boundary condition ensembles and then use the data-

model comparisons to ascertain the performance of each boundary condition 

ensemble.  The changes between the PRISM3D and PRISM2 physical boundary 

conditions have been discussed in Chapters 1 and 2 (Sections 1.2.3 & 2.4.4), however, it 

is important to consider how these changes are observed by the model.  Figures 5.1 and 

5.2 highlight the changes to the model caused by the alterations to the physical 

boundary conditions.   
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The main difference between the PRISM3D and PRISM2 orography is seen in the raising 

of the Rockies in PRISM3D to a near modern elevation.  Additionally changes in the 

elevation of the ice sheets are observed.  Figure 5.1 illustrates both the changes in 

comparison to the modern (which will influence the data-model comparisons, 

performed as ‘Pliocene minus modern’), but also the differences between PRISM3D and 

PRISM2.  This comparison is especially useful to illustrate the changes in the West 

Antarctic (WAIS), East Antarctic (EAIS) and Greenland Ice Sheets (GrIS) between each 

set of boundary conditions.   

 

Figure 5.1. Global distribution of A) ‘PRISM2 minus modern’ B) ‘PRISM3D minus modern’ 
and C) ‘PRISM3D minus PRISM2’ orographic changes.  For the model ancillary files, the 
orography includes the height of ice sheets, changes in the elevation of ice sheets 
between boundary conditions are displayed as well as changes to mountains.   

Both ensembles contain vegetation inputs based on palaeo-data that are associated 

with a warmer and wetter than modern climate (Dowsett et al., 2010a).  However, the 

PRISM3D reconstruction utilises a 28 biome model-data hybrid approach, compared to 

the 7 mega-biome PRISM2 approach.  The result is between the PRISm3D and PRISM2 

ensembles, the main differences in vegetation include significant reductions to high 

latitude tundra coverage, replaced with forest which extends throughout mid and 

eastern Europe.  Additionally, desert and grassland coverage is reduced across Africa 

and Australia replaced with tropical savannah and tropical woodland while tropical 

forest extent is maintained (Dowsett et al., 2010a).   
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Vegetation is not represented directly in HadCM3 in the form of biomes, instead biomes 

are translated into inputs for MOSES (Met Office Surface Exchange Scheme – Cox et al., 

1999).  The biomes are represented as the physical characteristics of plants (such as 

root depth and roughness length) using look up tables to represent the mPWP 

vegetation data (Haywood et al., 2010a; Bragg et al., 2012).  These characteristics are 

the physical boundary condition changes within the model that can interact with the 

parameterisations.  The differences in the features representing vegetation between 

PRISM3D and PRISM2 are shown in Figure 5.2.   

Vegetation feedbacks on climate are driven by fire/biomass burning or through 

changes to moisture, energy, momentum and carbon fluxes (Notaro et al., 2006).  For 

these ensembles carbon fluxes and fire/biomass burning are not applicable as they are 

not modelled in the used version of MOSES.  Moisture availability from vegetation will 

vary between boundary conditions as the vegetation type changes (Bonan, 2002). 

Forests have a greater surface roughness than grasslands and this forcing can be 

modulated by parameterisations of surface roughness and cloud formation.  Changes to 

the surface roughness (either due to the boundary conditions or parameterisations) 

affects the boundary layer influencing low level cloud formation (through water vapour 

transport and momentum changes) and wind flows (Sud et al., 1988; Buermann, 2002).  

The stomatal resistance which influences regional moisture availability (Pollard & 

Thompson, 1995; Royer, 2001) is controlled by temperature, precipitation and CO2 and 

is parameterised within the model, a parameter that is switched off in some ensemble 

members.  Increasing high latitude forest cover exerts a change in albedo between 

boundary conditions (Betts & Ball, 1997), particularly influencing the snow free albedo 

within the model.   

The physical changes to the land surface scheme (the way the model interprets the 

changes to the vegetation boundary conditions) will influence ensemble responses 

comparing PRISM2 and PRISM3D without the influence of the perturbed parameters.  

Some of the perturbed parameters will directly affect the physical changes (such as 

changes to surface roughness) and finally the physical changes to the land surface will 

affect how parameters for cloud formation, surface evaporation and convection 

respond.  The differences caused by these three interactions will be represented across 

the different ensembles in regions where there is a change to the vegetation boundary 

condition.   
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Figure 5.2. Global distribution of ‘PRISM3D minus PRISM2’ vegetation boundary 
condition changes for A) root depth; B) snow free albedo; C) surface resistance to 
evaporation; D) roughness length (prior to any perturbation); E) surface capacity; F) 
vegetation fraction and G) deep snow surface albedo.  

The goal of the chapter is assess which boundary condition type produces the best 

representation of the mPWP climate, judged on performance of ensemble members in 

data-model comparisons.  It will then assess, what impact, if any this has on future 

mPWP modelling, before finally assessing the role of boundary condition uncertainty in 

mPWP data-model mismatches.  The goal will be achieved using both intra-model and 
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data-model comparisons.  The IMCs will first assess the changes between the two 

Standard simulations, to illustrate the impact of the differences between the PRISM3D 

and PRISM2 boundary conditions on simulating the mPWP.  The IMCs will then expand 

to include the PPE members, to assess how the perturbed physics and the boundary 

conditions affect each other.  The IMCs will also investigate the role of the differences 

between both Pliocene boundary condition sets and the modern Standard simulation, 

which is used in the DMCs.  The DMCs will then be used to rank the performance of 

each boundary condition ensemble and assess the impact of the boundary condition 

changes on modelling of the mid-Pliocene.   

5.2. Intra-Model Comparisons 

5.2.1. PRISM3D Standard minus PRISM2 Standard 

The differences between the PRISM3D and PRISM2 physical boundary conditions on 

GCM modelling has never been detailed as a direct comparison between the boundary 

condition sets.  Table 5.1 indicates that the PRISM3D Standard is warmer (0.41°C) & 

wetter (0.024 mm/day) than the PRISM2 Standard, an increase of ~16% for both 

metrics.  However, despite these global mean increases, there are a number of 

noticeable regional variations (Figure 5.3), which may lead to important influences on 

the data-model comparisons which will be used to assess the model performance. 

 

  



 

Table 5.1 – Global mean annual values for surface air temperature (SAT - °C), sea surface temperature (SST - °C) and precipitation (mm/day) PRISM2 and 
PRISM3D ensemble member minus modern Standard and the difference between PRISM2 and PRISM3D ensemble members.   

Figure 5.3a highlights the effect of the changes in boundary conditions between PRISM2 and PRISM3D.  Key features of the change from PRISM3D to 

PRISM2 are: 

• Impacts of changes in orography of mountains and ice sheets 

• Regions of cooling over the Arctic Ocean, Eurasia & sub-Saharan Africa  

• Southern Hemisphere warming, particularly over South America, Australia and the Southern Ocean.   

  
  

Surface Air 
Temperatures       

Sea Surface 
Temperatures       Precipitation     

Ensemble 
Member 

Charney 
Sensitivity PRISM2 PRISM3D Difference Percent PRISM2 PRISM3D Difference Percent PRISM2 PRISM3D Difference Percent 

B 2.42 1.98 1.87 -0.11 -5.56 0.37 0.55 0.17 46.72 0.063 0.064 0.001 2.19 

D 2.88 2.07 2.10 0.03 1.50 0.50 0.69 0.20 39.32 0.024 0.032 0.008 35.54 

F 3.75 2.21 2.65 0.45 20.18 0.54 0.97 0.43 80.40 0.062 0.113 0.051 80.89 

H 3.44 1.94 2.62 0.68 35.19 0.55 1.08 0.53 96.41 0.136 0.192 0.056 41.18 

I 4.4 3.03 4.06 1.03 33.95 1.02 1.70 0.68 66.80 0.082 0.127 0.045 55.18 

J 3.9 2.25 2.30 0.05 2.09 0.44 0.67 0.23 51.67 -0.079 -0.071 0.008 -10.13 

K 4.44 2.86 3.68 0.83 28.90 0.97 1.59 0.62 63.87 -0.147 -0.099 0.048 -32.65 

L 4.88 3.22 4.05 0.83 25.66 1.03 1.65 0.63 60.98 0.006 0.056 0.050 810.57 

M 4.54 3.26 4.02 0.76 23.46 1.11 1.70 0.60 53.85 0.154 0.216 0.062 39.93 

N 4.62 3.06 3.84 0.79 25.70 0.92 1.51 0.59 63.30 0.008 0.126 0.118 1405.48 

O 4.79 2.87 3.84 0.97 33.70 1.00 1.70 0.70 70.82 0.050 0.132 0.082 166.61 

P 5.4 3.53 4.46 0.93 26.42 1.24 1.94 0.70 56.20 0.116 0.175 0.059 50.86 

Q 7.11 4.32 5.27 0.95 22.05 1.63 2.30 0.67 41.45 0.003 0.051 0.048 1395.49 

Standard 3.3 2.53 2.94 0.41 16.11 1.21 1.25 0.04 2.97 0.151 0.175 0.024 15.59 
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Figure 5.3 – Global mean annual intra-model comparisons for the Ensemble Standard for 
PRISM3D minus PRISM2 -  a) surface air temperature (SAT - °C) & b) Precipitation 
(mm/day), PRISM2 minus modern Standard c) SAT & d) Precipitation and PRISM3D 
minus modern Standard e) SAT & f) Precipitation.   

The temperature and precipitation changes between PRISM3D and PRISM2 Standards 

are shown in Figures 5.3a and 5.3b respectively.  Orographic changes result in both 

patterns of warming and cooling.  The raising of the Rockies causes a cooling of 2.5 to 

3.5°C, and adjustments to the East Antarctic Ice Sheet (EAIS), which increases its 

eastern extent in the PRISM3D reconstruction compared to PRISM2 (Figure 5.1) results 

in up to 5°C cooling.  Likewise reduction in the western portion of the EAIS results in 

warming of 2 to 4.5°C around the West Antarctic peninsula.  Changes to the Greenland 

Ice Sheet, result in cooling (3°C) across Northern Greenland were the GrIS is elevated in 

PRISM3D compared to PRISM2 (Figure 5.1) and warming (5°C) were the GrIS is 

reduced.  The changes in the distribution of the Antarctic ice sheets leads to small 

regional changes in precipitation around the Antarctic coasts (Figure 5.3b).  These 

changes are primarily a decrease (0.25 mm/day) over East Antarctica on the boundary 



Boundary Condition Comparisons                                                                                     Chapter 5 
 

168 

of the increased EAIS elevation, whilst coastal East Antarctica and over the West 

Antarctic peninsula displays an increase in precipitation (0.25 mm/day).  Over the GrIS, 

the change in elevation and resulting influence on SATs also has a corresponding effect 

on precipitation with changes of 0.25 mm/day increase or decrease for regions of 

warming or cooling respectively.  Similarly a decrease in precipitation over the 

increased elevation of the Rockies (0.5 mm/day) is observed.   

Across sub-Saharan Africa, there is a decrease in SATs (2.5°C) and an increase in 

precipitation (0.5 to 1 mm/day), although the temperature decrease covers a greater 

spatial area than the precipitation increase.  The driver for this feature is the change in 

vegetation across the region.  The PRISM3D vegetation increases the vegetation 

fraction in sub-Saharan Africa resulting in increased root depth and surface roughness 

(Figure 5.2) representing a change from desert to savannah (Salzmann et al., 2008).  

The PRISM2 Standard is warmer over the Arctic Ocean and eastern Eurasia than the 

PRISM3D Standard, resulting in extensive cooling of 1.5 to 3°C, with small regions of 

4.5°C cooling such as the Barents Sea (Figure 5.3a).  There is a corresponding decrease 

in terrestrial precipitation of 0.5 mm/day over eastern Eurasia.  The Eurasian feature is 

a result of the alteration in the orography of the Rockies.  Modelling sensitivity studies 

adjusting the height of the Rockies have indicated that by raising the Rockies, Northern 

Hemisphere westerly winds are deflected (Seager et al., 2002; Foster et al., 2010).  The 

deflection removes zonal wind structures (as seen in the Southern Ocean around 

Antarctica) and replaces them with Rossby Wave structures, which shifts the jet stream 

flow (Seager et al., 2002; Foster et al., 2010).  These waves continue around the 

Northern Hemisphere contributing to North Atlantic warming and establishing the 

colder conditions over Eurasia.  The pattern of the Northern Hemisphere winds 

influences storm tracks and the loss of a zonal pattern leads to reduced precipitation 

over continental interiors, as observed across Eurasia (Figure 5.3b & Broccoli & 

Manabe, 1992; 1997; Foster et al., 2010).  The same processes influencing Eurasian 

climate, reduces northwards heat transport leading to the cooling observed in the 

Arctic Ocean.  Previous work comparing PRISM2 orography to modern day orography 

(Hill et al., 2011) has shown that raising the Rockies reduces northward heat flow 

increasing the equator to pole temperature gradient.   

The most spatially extensive region of warming in the PRISM3D Standard compared to 

PRISM2 is across the Southern Hemisphere with warming between 1 and 2.5°C (Figure 

5.3a).  The warming, concentrated in the South Atlantic, appears to be a confluence of 

effects of boundary condition changes around the orography in West Antarctica (Figure 

5.1) and vegetation changes in southern South America (Figure 5.2).  Lowered 
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elevation of the WAIS, near its boundary with the EAIS results in warming around the 

West Antarctic peninsula and the Weddell Sea (Figure 5.3a).  The vegetation changes 

across South America increase root depth, surface roughness and reduce albedo, which 

lead to an increase in SATs (Figure 5.3a).  The warming protrudes off South America 

into the Atlantic sector of the Southern Ocean where it combines with warming from 

the changes to the WAIS to enhance the Southern Hemisphere warming.   

5.2.2. Pliocene Standards minus Modern Standard 

The comparison of “PRISM3D Standard minus PRISM2 Standard” is not utilised in the 

data-model comparisons, but instead the comparison of each ensemble member to the 

modern Standard is used.  This section describes the key differences between PRISM3D 

and PRISM2 Standards to the modern Standard.  Table 5.1 highlights the comparison of 

the PRISM2 and PRISM3D Standard simulations to the modern Standard.  The PRISM3D 

Standard is warmer and wetter than the PRISM2 Standard compared to the modern, as 

expected based on the comparison between the two Standards.  Spatial variation within 

these comparisons is displayed in Figures 5.3c & 5.3e showing the comparison for both 

ensemble Standards to the modern Standard.  The PRISM3D Standard with near 

modern orography over the Rockies displays minimal orographic response, whilst the 

PRISM2 Standard displays 5°C warming.  The orographic warming between PRISM2 

and modern is the same as observed between PRISM2 and PRISM3D.  For both PRISM2 

and PRISM3D ensembles, the GrIS, WAIS and EAIS are adjusted compared to modern 

(Figure 5.1a & b).  The adjustments in the ice sheets, which is primarily represented 

through a change in orography, show consistent variations between both ensemble 

Standards.  Warming of 9 to 10°C is observed over regions where these ice sheets are 

reduced in comparison to the modern.  The differences between the two ensembles are 

displayed through the reduced extent of EAIS in PRISM2 compared to PRISM3D, 

leading to a smaller area of warming in the PRISM3D comparison to modern.  However, 

there is greater warming over the WAIS in PRISM3D than observed in PRISM2.  Over 

the GrIS, the PRISM2 comparison displays uniform warming of 8 to 10°C across 

Greenland compared to the modern.  The PRISM3D Standard displays more intense 

warming 9 to 10°C over most of Greenland, but a small region where warming is 

approximately 5°C.  The difference is a result of the changes in different distributions of 

the GrIS between PRISM2 and PRISM3D (Figure 5.1).  Whilst there are spatial 

differences between the PRISM3D and PRISM2 ice sheets, where there are changes 

compared to modern these differences are consistent in terms of magnitude.   
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Over the Arctic Ocean and Eurasia, the PRISM3D Standard is cooler than the PRISM2 

Standard and this cooling is also observed as reduced Pliocene warming over this 

region in the comparisons to the modern Standard.  Warming over the Arctic and 

Eurasia is 2 to 6°C in the PRISM3D Standard and 3 to 7°C in the PRISM2 Standard.  The 

main differences in precipitation in the comparison with the modern Standard is that 

the PRISM2 Standard is drier over Amazonia (2 to 2.5 mm/day decrease) compared to 

PRISM3D (0.5 to 1.5 mm/day increase) with respect to the modern Standard.  The 

PRISM2 Standard is wetter over Eurasia (0.25 to 1 mm/day), with the PRISM3D 

Standard showing little change in precipitation between the Pliocene and modern.  In 

general, the trends observed in the comparison between the PRISM3D and PRISM2 

Standards can be translated over to the comparisons between PRISM3D and PRISM2 to 

modern.   

5.2.3. Impact of Parameter Uncertainty on Boundary Condition Changes 

a) PRISM3D minus PRISM2 Ensemble Member 

The differences between the PRISM3D and PRISM2 boundary conditions have been 

described using the comparison of the ensemble Standard forced with each boundary 

condition set.  However, while the analysis of the Standard reveals important changes 

to the simulated mPWP climate by adopting the PRISM3D boundary conditions, as 

discussed previously parameter uncertainty results in a range of potential simulated 

mPWP climates (Pope et al., 2011 & Chapter 4).  Through this section, the result of the 

confluence of parameter and boundary condition changes between PRISm3D and 

PRISM2 will be outlined.   

PRISM3D ensemble members are warmer and wetter than their PRISM2 ensemble 

equivalents (Table 5.1) with the exception of ensemble member B.  The greatest mean 

annual warming is in ensemble members with higher Charney sensitivities than the 

ensemble Standard.  Analysis of the Pliocene PPE in Chapter 4 (Section 4.2.1), 

highlighted that the ensemble forced with PRISM3D boundary conditions included two 

broad groupings, the ‘colder than Standard’ members (B, D, F, H & J) and the ‘warmer 

than Standard’ members (I, K, L, M, N, O, P & Q).  The same groupings exist in the 

PRISM2 ensemble (Table 5.1), and the increase in temperature is generally split into 

these two groups.  The ‘warmer than Standard’ members show a 0.8 to 1.0°C increase, 

whilst the ‘colder than Standard’ members show a -0.1 to 0.7°C increase from PRISM2 

to PRISM3D (Table 5.1).  Surface air temperature trends are replicated in the sea 

surface temperatures across the ensemble members (Table 5.1).   
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The comparison of the ensemble Standards forced with the two sets of boundary 

conditions highlighted a number of climate responses to the changes.  Through utilising 

the PPE members it reveals more detail about these boundary condition responses.  

Across the ensemble members it is evident that the boundary condition changes result 

in two main types of response, direct and indirect.  Direct features represent the 

responses that occur at the location of a boundary condition change.  Across the 

ensemble they display consistent magnitude and spatial distribution.  Indirect features 

represent responses that occur downstream of a boundary condition change, and have 

been modified by the interaction with other boundary conditions or perturbed model 

parameters.  Indirect features display variation in magnitude and/or spatial 

distribution across the ensemble.  The differentiation of these two response types is 

important as the variation across the ensemble could influence the performance of 

ensemble members in the DMCs.   

Direct responses to the boundary condition changes are evident at regions where the 

orography has been adjusted such as the Rockies and the elevation of the ice sheets 

(Figure 5.4).  Across the ensemble members, the SAT decrease of 2.5 to 3.5°C is 

consistent with those observed in the ensemble Standard (Figure 5.3c,e).  Similarly, a 

0.5 mm/day decrease in the precipitation response over the elevated Rockies is 

observed in all ensemble members (Figure 5.5) and the Standard.   
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Figure 5.4 – Global mean annual intra-model comparisons for PRISM3D minus PRISM2 
ensemble member surface air temperature (SAT - °C) for ensemble members B, J, L, M, P 
& Q.  The remaining ensemble members are displayed in Appendix B1.   

However some of these direct features, while consistent across the ensemble members 

display indirect features evident in this ensemble.  The other SAT and precipitation 

responses observed between the two boundary condition sets in the Standards 

represent indirect features.  The variation in the Arctic and Eurasian temperature 

response is pronounced across the ensemble and is representative of indirect features 

with variation in the magnitude and spatial dimensions of the response.  In the ‘cooler 

than Standard’ members, there are extensive areas of cooling in the Arctic Ocean and 

over Eurasia, of 1.5 to 3°C.  However, in the ‘warmer than Standard’ members the Arctic 

cooling dissipates and is replaced by warming or regions of no SAT difference.   
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Figure 5.5 – Global mean annual intra-model comparisons for PRISM3D minus PRISM2 
ensemble member precipitation (mm/day) for ensemble members B, J, L, M, P & Q.  The 
remaining ensemble members are displayed in Appendix B2.   
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Figure 5.6 – Global mean annual intra-model comparisons for PRISM3D minus PRISM2 
ensemble member sea surface temperature (SST - °C) for ensemble members B, J, L, M, P 
& Q.  The remaining ensemble members are displayed in Appendix B3.   

There is distinct Southern Hemisphere warming across the ensemble members, with 

the warming increasing through the ‘warmer than Standard’ members.  The SAT 

increase is greater in ensemble members with higher Charney sensitivity.  The 

warming is also observed in the SSTs (Figure 5.6).  These two warming features 

combine to generate increased warming through the South Atlantic which propagates 

across the Southern Oceans with a range of 1.5 to 3°C (Figures 5.4 & 5.6).  The 

components of this warming were observed in the comparison of the ensemble 

Standards (Figure 5.3).   

There is a band of cooling and increased precipitation throughout sub-Saharan Africa in 

all ensemble members.  Whilst the temperature changes vary across the ensemble, the 

increased precipitation (0.5 to 1 mm/day) is consistent across all the members (Figure 

5.7).  The reduction in temperature ranges between 2 to 3°C across the ensemble and 
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the spatial extent varies across the ensemble, reducing in scale through the ‘warmer 

than Standard’ ensemble members.  The cause of the temperature and precipitation 

patterns, is the representation of the change in vegetation boundary conditions, 

represented as an increased vegetation fraction and resulting increases in root depth 

and surface roughness as a result of the change from desert to savannah (Figure 5.2).   

Each ensemble member has been forced by the same changes to the boundary 

conditions, however there is not a linear response across the ensemble with respect to 

the mean annual temperature and precipitation values (Table 5.1).  The comparison 

between the PRISM3D and PRISM2 Standards shows a temperature difference of 

0.41°C, the warming a result of the change in the physical boundary conditions.  Across 

the ensemble, the general trend is that ‘warmer than Standard’ members show the 

greater increases in SATs between the ensembles based on comparisons between 

equivalent members.  However there is variation between the ensemble members.  The 

warmest member with warmest SATs in both ensembles is member Q, which has the 

highest Charney sensitivity (7.11°C) of any ensemble member (Table 5.1).  However, 

the largest increase in SATs between the PRISM2 and PRISM3D ensembles is member I 

with 1.03°C.  Member I has a Charney sensitivity (4.44°C) which while greater than the 

Standard, is in the middle of the ensemble range (2.42 to 7.11°C).  Elsewhere there are 

changes in the rankings for some ensemble members between each ensemble.  To 

assess the effect of the boundary condition changes it is important to determine 

whether the response of the ensemble members is due to the boundary condition 

changes or the interaction of the perturbed physics and the boundary condition 

changes.   

  



 

 

 
Table 5.2 – The calculation of the differences between the PRISM3D and PRISM2 ensemble members for temperature and precipitation for the changing of 
the boundary conditions.  The calculations used are explained in equations 5.1 to 5.6.   
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We can break down the impact of the boundary condition and perturbed parameters on 

the differences between ensembles using analysis of the SATs.  Firstly, to allow for the 

impact of the perturbed parameters on the ensemble member responses displayed 

between PRISM3D and PRISM2 we assessed the changes through comparison of each 

ensemble member to its ensemble Standard (Eqs. 5.1 & 5.2).   

Difference_PRISM3DEnsMem = PRISM3DEnsMem – PRISM3DStd    (Eq 5.1) 

Difference_PRISM2EnsMem = PRISM2EnsMem – PRISM2Std     (Eq 5.2) 

Differences between PRISM3D and PRISM2 boundary conditions can be assessed 

through the temperature changes between the equivalent ensemble members.  To 

calculate this, we use the difference within the ensemble which reflects the impact of 

the perturbed parameters (Eq. 5.1) and calculate the changes between these from 

PRISM3D to PRISM2 (Eq. 5.3).  We then utilise the difference due to the boundary 

conditions, which is calculated using identical ensemble members and was originally 

shown in Table 5.1 (Eq. 5.4).  Finally we subtract these to calculate the response for 

each ensemble member from the change in boundary conditions (Eq. 5.5) 

Difference_IMCEnsMem = Difference_PRISM3DEnsMem – Difference_PRISM2EnsMem  (Eq. 5.3) 

Difference_BCEnsMem = PRISM3DEnsMem – PRISM2EnsMem     (Eq. 5.4) 

Boundary_Condition_Change = Difference_BCEnsMem – Difference_IMCEnsMem  (Eq. 5.5) 

From equations 5.3 through 5.5, we can determine that a warming of 0.41°C occurs in 

each ensemble member as a result of the physical boundary condition changes between 

PRISM3D and PRISM2 (Table 5.2).  However, whilst the influence of the changes in the 

boundary conditions is constant across the ensemble, the effects from perturbing 

parameters varies between equivalent ensemble members.   

Difference_PPEEnsMem = Difference_IMCEnsMem – Difference_BCEnsMem  (Eq. 5.6) 

As previously outlined, a range of responses exists between ensemble members.  

Removing the boundary condition warming (Eq. 5.6), the PRISM3D ensemble members 

range between -0.52°C to 0.62°C compared to PRISM2.  The range observed here is the 

result of the perturbed parameters interacting with the adjusted boundary conditions.  

For the ‘warmer than Standard’ ensemble members this interaction results in enhanced 

warming but for the ‘colder than Standard’ members it results in a cooling.  With the 

multi-perturbed parameters utilised within this study, it is not possible to identify the 

particular parameters that are influencing the temperature responses observed within 
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the ensemble members.  One parameterisation, the forest roughness length, directly 

interacts with the changes to the vegetation, a parameter applied to members H, I, K, L, 

M, N & Q (Tables 2.1a,b in Chapter 2).  However, these members all show a wide 

variation of parameter based warming, therefore it is unlikely that this 

parameterisation is influencing the results observed here.   

Applying the same equations to the precipitation values from the ensemble we can 

determine that the precipitation response to the boundary condition change results in 

the PRISM3D ensemble being wetter by 0.024 mm/day compared to its PRISM2 

equivalent.  When the boundary condition ensemble effect is removed, precipaition in 

the ensemble ranges from -0.023 mm/day to 0.094 mm/day, with only members B (-

0.023 mm/day), D (-0.016 mm/day) & J (-0.016 mm/day - Table 5.2) drier than their 

PRISM2 equivalents prior to the boundary condition effect.  In both the precipitation 

and SAT analysis the ensemble members simulating a warmer climate with the 

exclusion of the boundary condition effect also simulate a wetter climate.  However, the 

magnitude of the warming in an ensemble member is not related to the magnitude of 

its precipitation increases.  Therefore the parameters that control the warming due to 

boundary condition changes in the ensemble members are not the same as those 

influencing the change in precipitation in these ensemble members.   

b) PRISM3D/PRISM2 Ensemble Member minus Modern Standard 

The comparison of the PRISM3D Standard and PRISM2 Standard to the modern 

Standard highlighted that the IMC differences noticed between the ensemble members 

were observed in the comparison to the modern Standard.  The purpose of this section 

is to highlight the difference between the boundary condition ensembles and how these 

differences will potentially affect the DMCs.  As in the previous comparisons, two types 

of response have been observed, direct and indirect responses.  Direct responses, such 

as the changes in orography either over mountains or ice sheets are consistent across 

all ensemble members.  Indirect responses represent the downstream effects of 

interactions between the perturbed physics and the changes in boundary conditions.   
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Figure 5.7 – Global mean annual intra-model comparisons for “PRISM2 ensemble 
member minus modern Standard” & for “PRISM3D ensemble member minus modern 
Standard” surface air temperature (SAT - °C) for ensemble members B, M, P & Q.  The 
remaining PRISM2 ensemble members are displayed in Appendix B4 and PRISM3D 
members in Appendix B5.   

Differences in the distribution of orography and ice sheets between PRISM3D and 

PRISM2 (Figure 5.1) are represented in the two comparisons to the modern Standard 

(Figures 5.7 & 5.8).  In the comparisons between PRISM3D and PRISM2 ensemble 

members, temperature variation was observed across the Arctic Ocean and Eurasia.  

The cause of this variation is attributed to the indirect response between changes in 

PRISM3D orography and the perturbed parameters.  The ‘cooler than Standard’ 
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ensemble members displayed cooling through this region compared to their PRISM2 

equivalents (Figure 5.4), and this can be observed in the comparisons to modern.  

PRISM3D ‘cooler than Standard’ ensemble members display Arctic and Eurasian 

temperatures of 0 to 4°C compared to 5 to 7°C in the PRISM2 equivalents (Figure 5.7).  

The ‘warmer than Standard’ ensemble members displayed similar or warmer 

temperatures through Eurasia and the Arctic compared to their PRISM2 equivalents 

(Figure 5.4).   

Figure 5.8 – Global mean annual intra-model comparisons for “PRISM2 ensemble 
member minus modern Standard” & for “PRISM3D ensemble member minus modern 
Standard” precipitation for ensemble members B, M, P & Q.  The remaining PRISM2 
ensemble members are displayed in Appendix B6 and PRISM3D members in Appendix 
B7.   
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The trend is replicated in the comparison to the modern Standard, with members I, K, L 

& O displaying comparable warming across this region to their PRISM2 equivalents, 

whilst members M, N, P & Q are warmer through this region than their PRISM2 

equivalents by 1 to 2°C (Figure 5.7).  Similarly PRISM2 ensemble members are 

predominantly slightly wetter by 0.25 mm/day over Eurasia compared to the PRISM3D 

members (Figure 5.8).  As with temperature, this response is reduced through the 

‘warmer than Standard’ ensemble members.   

The band of cooling and increased precipitation observed across sub-Saharan Africa 

can be observed in the comparisons to the modern Standard.  As observed in the IMCs 

the differences in cooling is greatest in the ‘cooler than Standard’ members than in the 

‘warmer than Standard’ members (Figure 5.4), a feature also observed for the increase 

in precipitation (Figure 5.5).  For both the precipitation and temperatures, the 

magnitude of the change is equivalent to that observed in the IMCs for each ensemble 

member (Figures 5.7 & 5.8).  The same pattern of response is also observed for the 

Southern Hemisphere warming, with PRISM3D members warmer than the modern 

Standard through the Southern Hemisphere by 2 to 3°C with the warming greatest in 

the warmer ensemble members (M, N, O, P & Q).   

c) Polar Amplification across the Ensemble  

An important feature observed in analysis of the PRISM3D ensemble (Chapter 4) was 

the magnitude of polar warming and polar amplification ratios.  Elevated polar 

warming and a high polar amplification ratio was observed as being able to reduce 

data-model mismatches at high latitudes whilst minimising the warming through 

tropical latitudes.   

  

  



 

 

  
PRISM2 

  
PRISM3D 

  Ensemble 
Member 

Charney 
Sensitivity 

Polar 
Temperature 

Global Mean 
Tempeature 

Polar Amplification 
Ratio 

Polar 
Temperature 

Global Mean 
Tempeature 

Polar Amplification 
Ratio 

B 2.42 6.11 1.98 3.09 4.37 1.87 2.33 

D 2.88 6.38 2.07 3.08 5.58 2.10 2.66 

F 3.75 6.95 2.21 3.15 6.48 2.65 2.45 

H 3.44 7.08 1.94 3.65 6.95 2.62 2.65 

I 4.4 8.41 3.03 2.77 9.76 4.06 2.40 

J 3.9 7.59 2.25 3.37 5.85 2.30 2.54 

K 4.44 7.02 2.86 2.46 7.90 3.68 2.15 

L 4.88 10.18 3.22 3.16 10.86 4.05 2.68 

M 4.54 10.33 3.26 3.17 10.31 4.02 2.56 

N 4.62 9.48 3.06 3.10 10.18 3.84 2.65 

O 4.79 8.51 2.87 2.96 9.08 3.84 2.36 

P 5.4 10.70 3.53 3.03 11.82 4.46 2.65 

Q 7.11 12.15 4.32 2.81 12.98 5.27 2.46 

Standard 3.3 7.47 2.53 2.95 7.31 2.94 2.49 

Table 5.3 – Global and polar mean annual surface air temperatures (SATs - °C) and polar amplification ratios for the PRISM2 and PRISM3D ensemble 
members. The polar amplification ratio is calculated as being the ratio of the polar average temperature (67.5 to 90°N) to the global mean annual 
temperature.   

Table 5.3 displays the polar amplification ratios for the PRISM2 and PRISM3D ensembles.  The polar amplification ratios for the PRISM2 ensemble are 

greater than their equivalent PRISM3D ensemble members (Table 5.3), with a greater range in the PRISM2 ensemble (PRISM2: 2.45 to 3.65, PRISM3D: 

2.14 to 2.68).  For members B, D, F, H, J, M & the Standard, the PRISM3D global mean SATs are increased compared to PRISM2, however the polar SATs 

are decreased in comparison to or are the same as in PRISM2.  As a result the polar amplification ratio is decreased in these PRISM3D members 

compared to their PRISM2 equivalents.  For members I, K, L, N, O, P & Q, both global mean and polar SATs increase in the PRISM3D members  
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compared to PRISM2.  However, the increase in polar SATs is smaller than the increase 

in global mean SATs for these members.  Again, this results in a smaller polar 

amplification ratio for the PRISM3D ensemble than the PRISM2 ensemble members.   

The reduced polar amplification ratios in the PRISM3D ensemble members could result 

in a weakened DMC compared to the PRISM2 ensemble.  The importance of the balance 

between polar and tropical warming has been previously discussed with respect to this 

PPE (Pope et al., 2011 & Chapter 4).  In that analysis, ensemble members with high 

polar warming also displayed increased tropical temperatures.  For member Q, this 

resulted in a weakened data-model comparison compared to the other ‘warmer than 

Standard’ members from that ensemble.  However, analysis of ensemble members run 

with lower concentrations (300 & 350 ppmv) of atmospheric CO2, which displayed a 

higher polar amplification ratio than the full ensemble members (run at 400 ppmv CO2) 

had lower polar SATs.  These ensemble members produced weaker data-model 

comparisons than their full ensemble equivalents, indicating that a balance was needed 

between increased polar and tropical SATs (Chapter 4).  The differences in polar 

amplification ratios, polar SATs and global SATs between the PRISM3D and PRISM2 

ensemble members could influence the DMCs.  The balance between these three factors 

will determine which boundary condition ensemble performs strongest on the data-

model comparisons, specifically to the SSTs.   
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5.3. Data-Model Comparisons 

5.3.1. Site-by-Site Data-Model Comparisons 

The existing data-model mismatch across a range of mPWP modelling studies (i.e. 

Haywood & Valdes, 2004; Dowsett et al., 2012; Haywood et al., 2013a) highlights that 

model simulations display a strong representation of mPWP tropical SSTs but perform 

poorly at high latitudes, particularly through the North Atlantic.  Similar trends exist 

through the data-model comparisons to the recently developed vegetation derived 

terrestrial SAT data (Salzmann et al., 2013).  The performance of Pliocene PPE 

members compared to the existing SST data-model mismatch is discussed in Chapter 4.  

The conclusion from Chapter 4 was that the ensemble was able to achieve the 

magnitude of the mPWP proxy temperatures, but was unable to replicate the spatial 

distribution of these temperatures, particularly through the high North Atlantic in all 

members and the tropics in ‘warmer than Standard’ members.   

a) Data-Model Comparisons for the Ensemble Standards 

The RMSE scores for the PRISM3D Standard indicate that this simulation (rather than 

the PRISM2 Standard) has produced an improved representation of the mPWP climate 

in comparison with to SST palaeo-data (Table 5.4).   

Compared to the PRISM2 Standard, the PRISM3D Standard represents a 13.9% 

improvement in the RMSE score, from 2.80 to 2.42 (Table 5.4).  For the terrestrial 

vegetation derived SATs, a similar improvement is observed between PRISM3D and 

PRISM2 Standards as observed in the SST DMCs.  The PRISM3D Standard RMSE (4.64) 

is 10.2% improved on the PRISM2 Standard (5.17).  The PRISM3D Standard improves 

the DMC to the vegetation biomes compared to the PRISM2 Standard, with the Kappa 

score increasing from 0.22 in PRISM2 to 0.26 in PRISM3D an 18% improvement.   
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Sea Surface Temperatures     
Ensemble Member PRISM2 PRISM3D Difference Percentage Change 

B 3.33 2.70 -0.63 -19.0 

D 2.95 2.67 -0.28 -9.5 

F 2.83 2.39 -0.44 -15.5 

H 2.88 2.41 -0.46 -16.1 

I 2.60 2.39 -0.21 -8.2 

J 2.93 2.54 -0.40 -13.5 

K 2.61 2.38 -0.23 -8.7 

L 2.60 2.27 -0.33 -12.8 

M 2.47 2.36 -0.11 -4.5 

N 2.54 2.25 -0.29 -11.3 

O 2.60 2.38 -0.22 -8.6 

P 2.44 2.39 -0.05 -1.9 

Q 2.47 2.71 0.24 9.9 

Standard 2.80 2.42 -0.38 -13.7 
Surface Air Temperatures    

B 5.83 5.73 -0.10 -1.7 

D 5.51 5.33 -0.18 -3.3 

F 5.45 5.05 -0.40 -7.3 

H 5.74 5.04 -0.70 -12.2 

I 4.75 4.03 -0.72 -15.2 

J 5.32 5.41 0.09 1.6 

K 5.35 4.66 -0.69 -12.9 

L 4.40 3.95 -0.45 -10.3 

M 4.23 3.92 -0.31 -7.4 

N 4.31 3.75 -0.56 -13.0 

O 4.82 4.23 -0.59 -12.2 

P 4.15 3.70 -0.45 -10.9 

Q 3.79 3.79 0.00 0.0 

Standard 5.17 4.64 -0.53 -10.2 
Kappa Scores     

B 0.17 0.16 -0.01 -5.9 

D 0.15 0.15 0.00 0.0 

F 0.17 0.17 0.00 0.0 

H 0.18 0.23 0.05 27.8 

I 0.20 0.20 0.00 0.0 

J 0.14 0.11 -0.03 -21.4 

K 0.14 0.14 0.00 0.0 

L 0.22 0.22 0.00 0.0 

M 0.23 0.26 0.03 13.0 

N 0.20 0.21 0.01 5.0 

O 0.23 0.21 -0.02 -8.7 

P 0.22 0.20 -0.02 -9.1 

Q 0.18 0.15 -0.03 -16.7 

Standard 0.22 0.26 0.04 18.2 

Table 5.4 – Root mean square errors (RMSE) for the sea surface temperature (SST - °C ) and surface 
air temperature (SAT °C ) data-model comparisons and the Kappa statistic for the vegetation biome 
data-model comparison.   



Boundary Condition Comparisons                                                                                     Chapter 5 
 

186 

 
Figure 5.9 – Global distribution of site-by-site sea surface temperature (SST - °C) data-
model comparisons for ensemble members B, M, Q & Standard for the PRISM2 and 
PRISM3D ensembles.  The remaining PRISM2 members are shown in Appendix B8 and 
PRISM3D members in Appendix A4. 
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The site-by-site SST DMC performance between the PRISM2 and PRISM3D Standards 

(Figure 5.9) indicates where the improvements occur in the DMC between the two 

boundary condition sets.  The improvements (in PRISM3D compared to PRISM2) are 

primarily at sites with existing large data-model mismatches, with minimal change 

through the tropics and Southern Hemisphere sites in both comparisons.  The 

improvements are through the north west Pacific sites south of Siberia (1 to 2°C 

improvement), the sites off the California coast (2 to 3°C improvement) and the 

corridor of sites through the North Atlantic (2 to 4°C improvement).  However, even 

with the improvements in these sites, the Standard version of HadCM3 is still 

displaying up to 7°C mismatch at the very high latitude sites and the 3 to 6°C through 

the North Atlantic.   

As with the SSTs, the SAT DMC indicates improvements (in PRISM3D compared to 

PRISM2) are observed in high latitude sites, particularly across Eurasia, with some sites 

displaying a 4 to 7°C improvement.  In contrast to the SSTs, where primarily the 

minimal tropical data-model mismatch was consistent when comparing both boundary 

condition sets, sites in the tropics show a weakened data-model comparison in the 

PRISM3D ensemble to the PRISM2 ensemble, a site in Florida displays an 8°C increase 

in the PRISM3D ensemble, however a number of small (~1°C) improvements in the 

DMCs across Western Europe across the region with the highest concentration of sites, 

aid the overall improvement observed in the PRISM3D Standard compared to the 

PRISM2.   

The PRISM3D Standard displays increases in SATs and precipitation compared to 

PRISM2 (Table 5.1) and these combine to improve the overall representation of 

vegetation biomes.  Improvements are mainly increased high latitude forest extent, 

increased tropical forest cover and reduced extent of the Sahara desert, in line with the 

palaeo-data.  Overall, the data-model comparisons indicate that the PRISM3D Standard 

has produced an improved simulation of the mPWP compared to the PRISM2 Standard.  

The improvement has been seen in the representation of high latitude sites in both the 

temperature based DMCs (using SSTs and SATs) and improved vegetation 

reconstructions through high northern latitudes which aid the biome comparison.  

Primarily the improvements in vegetation between PRISM2 and PRISM3D are through 

increased high latitude forest extent and decreased extent of the Sahara desert.   

b) Ensemble Member Data-Model Comparisons 

The intra-model comparisons comparing the boundary condition ensembles to each 

other and the modern Standard highlighted two types of response.  Whilst the direct 
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responses are consistent in terms of spatial distribution and magnitude, the indirect 

responses vary in both respects across the ensemble.  The variation observed could 

have an impact on the DMCs and therefore assessing the performance of each ensemble 

member is required to determine the full range of effects of changing boundary 

conditions.   

For the SST DMC, based on the RMSE scores (Table 5.4) each member of the PRISM3D 

ensemble performs better than its PRISM2 equivalent, with the exception of member Q.  

Improvements in the RMSE scores vary across the ensemble from a 19% improvement 

(member B) to just a 1.9% improvement in member P.  Generally, the ‘colder than 

Standard’ members show a greater improvement (13.5% to 19% improvement) than 

the ‘warmer than Standard’ members (1.9% to 12.8% improvement).  The PRISM3D 

member Q has a 9.9% deterioration in its DMC compared to the PRISM2 ensemble.  As 

with the SST DMC, the SAT DMC generally indicates that PRISM3D ensemble members 

perform stronger than their PRISM2 equivalents with improvements from 1.7 to 13%.  

Member J performs worse in the PRISM3D ensemble showing a 1.6% decrease in its 

RMSE score, whilst member Q indicates no difference in performance between the 

boundary condition sets.  To test the robustness of these RMSE scores, the comparisons 

were replicated using a change in the averaging period (Chapter 2, Section 2.5.3).  The 

change in averaging period led to small changes in the RMSE comparisons between 

PRISM3D and PRISM2 across the ensemble, ranging from 0.114 to 0.169.  Only 

members M (0.11) & P (0.05) display differences between PRISM3D and PRISM2 RMSE 

scores that are smaller than the impact of the using a new averaging period for the 

same comparison.  A similar difference range exists for the SATs (0.18 to 0.30), 

meaning that all ensemble members bar B (-0.1), D (-0.18), J (0.09) & Q (0.0) are robust.  

As the majority of the ensemble members are not affected by the change in averaging 

period, we can be confident that the RMSE rankings represent changes in the 

performance of the ensemble members SST and SAT data-model comparisons and 

therefore using them for the ranking of ensemble members and the assessment of the 

two boundary condition types is acceptable.   

For the vegetation DMC, the Kappa scores are more mixed than the temperature based 

DMCs.  Only members H. M & N show an improvement in PRISM3D compared to 

PRISM2 with members D, F, I, K & L indicating no change between the PRISM3D and 

PRISM2 ensembles from the Kappa scores.  Members B, J, O, P & Q indicate that the 

PRISM2 ensemble members are stronger than the PRISM3D members.  The vegetation 

biomes DMC is the only DMC were the Standard performs strongly within each 
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ensemble, with the PRISM3D Standard is joint top of the PRISM3D ensemble biome 

rankings with member M (Table 5.4).   

For the SST DMC, the improvement is due to warming in the SSTs (Figure 5.6) 

throughout the PRISM3D ensemble, particularly in the ‘warmer than Standard’ 

members.  The existing data-model mismatch (i.e. Dowsett et al., 2012) is concentrated 

at the high latitudes, with minimal mismatch at the tropics.  The increased 

temperatures in the PRISM3D ensemble compared to the PRISM2 ensemble (Table 5.1, 

Figures 5.3, 5.4 & 5.6) causes a greater reduction in the large high latitude data-model 

mismatches across the PRISM3D ensemble members.  The largest reductions being 

observed in members P & Q.  However, the warming in member Q causes an increase in 

tropical data-model mismatches which weakens the DMC RMSE score for this member.  

Analysis of the polar amplification between PRISM2 and PRISM3D ensemble members, 

highlighted that the polar amplification ratio was reduced in the PRISM3D ensemble 

(Table 5.3).  The increased high latitude warmth through ‘warmer than Standard’ 

members improves the DMC through the North Atlantic sites across the ensemble 

members in the PRISM3D ensemble.  However the resulting increase in the mean 

annual temperatures, primarily through tropical latitudes results in a weakening of the 

DMC in the ‘warmer than Standard’ members.  For member Q, despite the high latitude 

North Atlantic sites being reduced by 1 to 4°C compared to the PRISM2 member Q, the 

warming throughout the tropics weakens the DMC overall for PRISM3D member Q.  

These results highlight the importance of both the polar amplification ratio and the 

magnitude of polar warming.  For the majority of the PRISM3D ensemble members, the 

greater polar warming, despite the lower polar amplification ratios compared to the 

PRISM2 ensemble results in a stronger data-model comparison to the SSTs.  Only 

member Q in the PRISM3D ensemble goes against this trend.  The conclusion from this 

result, is that for the mPWP SST data-model mismatch it is more important to generate 

higher latitude warming as opposed to a higher ratio of polar to global mean warming.  

However, the results also indicate that there is a balance to be struck with ensuring that 

tropical temperatures do not increase too much.   
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Figure 5.10 – Global distribution of site-by-site surface air temperature (SAT - °C) data-
model comparisons for ensemble members B, M, Q & Standard for the PRISM2 and 
PRISM3D ensembles.  The remaining PRISM2 members are shown in Appendix B9 and 
PRISM3D members in Appendix A5. 
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As with the SST DMC, high latitude sites in the SAT DMC show the greatest 

improvement through the ‘warmer than Standard’ members of the PRISM3D ensemble.  

For the SATs this is through reductions in the mismatches over sites in western Europe 

and eastern Siberia (Figure 5.10).  Despite these improvements a number of Eurasian 

sites still display mismatches greater than 10°C (Figure 5.10).  In the IMCs between 

PRISM2 and PRISM3D ensemble member SATs (Figure 5.4), a noticeable affect of the 

boundary condition changes was cooling over the Arctic Ocean and Eurasia.  The 

location of the data points is along the southern extent of the terrestrial cooling and 

this location reduces the impact of the cooling in the PRISM3D ensemble relative to the 

PRISM2 ensemble for the DMC.  However evidence of the SAT trends observed over 

Eurasia is observed in some of the DMCs.  PRISM3D ensemble member J displays a 

weaker RMSE score than its PRISM2 equivalent with intense Arctic and Siberian 

cooling (Figure 5.4) resulting in a far weaker performance in the PRISM3D ensemble 

across the Eurasian sites (Figure 5.10).  Meanwhile ‘warmer than Standard’ members, 

with Eurasian SATs comparable or warmer than their PRISM2 equivalents, reduce the 

mismatch over Eurasia and this improves their RMSE score for the PRISM3D compared 

to the PRISM2 ensemble.  PRISM3D member Q performs has the same RMSE score as its 

PRISM2 equivalent.  Member Q in the SATs much as in the SSTs, demonstrates a much 

stronger reconstruction of the high latitude sites compared to its PRISM2 equivalent.  

However, mid and lower latitude sites show larger mismatches due to the warming in 

the PRISM3D ensemble members.  The high latitude improvements compared to its 

PRISM2 equivalent are cancelled out in the RMSE score by the weakening of tropical 

mismatches and results in an RMSE score that is the same for both.   

For the vegetation biome DMC, the PRISM3D Standard outperforms both its PRISM2 

equivalent and all but member M of the PRISM3D ensemble.  As discussed in analysis of 

the Standards, the PRISM3D Standard increases high latitude forest biomes and 

reduces the extent of the Sahara desert compared to PRISM2.   
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Figure 5.11 – Global distribution of simulated biomes for ensemble members B, M & the 
Standard for the PRISM2 and PRISM3D ensembles.   

For the ensemble members also performing stronger than their PRISM2 equivalent (H, 

M & N), improvements are again focussed on the extent of high latitude forest in 

Siberia, the representation of Canadian shrub and grasslands and extended extent of 

tropical forest biomes in Amazonia and central Africa.  The ensemble members 

showing no change between PRISM2 and PRISM3D (D, F, I, K & L) maintain the high 

latitude improvements observed in members H, M & N, but produce weaker 

comparisons through the tropical latitudes than their PRISM2 equivalent.  Members H, 
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M & N in comparison with the modern Standard, are wetter in the PRISM3D ensemble 

through the tropical latitudes whereas members D, F, I, K & L display similar patterns of 

precipitation between PRISM2 and PRISM3D (Figures 5.5 & 5.8).  Through the tropical 

latitudes the increased temperatures in the PRISM3D ensemble members (Figures 5.4 

& 5.7) results in the drier biomes observed in D, F, I, K & L as the climate is warmer but 

not wetter.  H, M & N display a better warmer and wetter climate balance and as a 

result simulate a stronger vegetation for the DMC in PRISM3D over PRISM2 (Figure 

5.11).  Through the high latitudes the similar or slightly cooler temperatures in the 

PRISM3D ensemble compared to the PRISM2 ensemble with similar precipitation 

results in enhanced simulated forest distribution for the PRISM3D ensemble members 

and improved high latitude DMC.  These changes combine to result in the ensemble 

members improving the DMC in PRISM3D (H, M & N) or showing no change (D, F, I, K & 

L).  The members displaying a weakened DMC in the PRISM3D ensemble compared to 

PRISM2 (B, J, O, P & Q) achieve a similar performance to the no change members 

through the mid-latitudes.  Increased SATs and similar or decreased precipitation 

through the tropics compared to PRISM2 result in smaller extent of tropical forest 

biomes and expansion of xerophytic shrubland and desert biomes.  At high latitudes 

there is reduced extent of high latitude forest biomes across Siberia and a reduction in 

forest through Western Europe.  The forest is replaced by grass and shrubland, drier 

biomes reflecting reduced precipitation.  Variation across these members in high 

latitude SATs influences the type of grassland, however for the Kappa statistic, the 

simulated biome is either right or wrong.   

5.3.2. Zonal Mean Annual Data-Model Comparisons  

Zonal mean annual SST DMCs have been produced for members B, M & Q and the 

Standard for both PRISM2 and PRISM3D boundary condition ensembles.  B & Q 

represent end members within the ensemble with respect to temperature performance, 

B having the coldest mean annual temperature and Q the warmest (Table 5.1), whilst 

member M is a consistently high ranking member in the site-by-site DMCs.  Two DMCs 

are plotted, one a global mean annual SST across all ocean basins and a North Atlantic 

basin only comparison.  Versions of these DMCs were discussed in Chapter 4 (Section 

4.4), which concluded that the PRISM3D ensemble members were able to achieve the 

magnitude of warming observed in the palaeo-data, but were unable to replicate the 

spatial distribution of this warming, especially through northern high latitudes and 

particularly in the North Atlantic only comparison.   
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Figure 5.12 – Zonal annual mean sea surface temperatures for a) global oceans and b) 
North Atlantic ocean for ensemble members B, M, Q and the Standard for the PRISM2 
(solid line) and PRISM3D (dashed line).  The thick red line represents the palaeo-data.   

The PRISM3D ensemble members are warmer than their PRISM2 equivalents in the 

Southern Ocean (Figure 5.12), the warming results in the PRISM3D Standard SST being 

comparable to the palaeo-data.  The PRISM2 members M & Q are also comparable to 

the palaeo-data in the Southern Ocean, bracketing the palaeo-data, but the warming in 

the PRISM3D ensemble results in a 1 to 2°C mismatch for both members M & Q.  

Moving towards the equator, both ensembles are unable to replicate the trend of the 

palaeo-data.  Differences between the two ensembles are minimal for member B and 
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the Standard, but quite pronounced for members M & Q.  The large mismatch through 

the tropics, especially in member Q highlights the reason the PRISM2 member Q was 

stronger than its PRISM3D equivalent in the SST RMSE scores.  Despite stronger high 

latitude performance in the PRISM3D member Q, the increased tropical mismatch 

weakens the DMC both to other PRISM3D ensemble members and its PRISM2 

equivalent.  Member M also shows a warming in the PRISM3D member compared to 

the PRISM2 member, but it is less pronounced than in member Q.  Through the 

Northern Hemisphere, for both the global and North Atlantic comparisons, the 

ensemble members continue to remain warmer than the data till around 60°N, from 

where the data becomes much warmer than all the ensemble members.  However, both 

M & Q for both ensembles along with the PRISM3D Standard are able to match the 

magnitude of the peak warming in the data.  In both the global and North Atlantic 

comparisons, the PRISM3D ensemble members peak further north than the PRISM2 

members, which is more in line with the palaeo-data reconstruction.  The PRISM2 

ensemble weakens the spatial distribution of warming in the zonal means compared to 

the PRISM3D ensemble.   

The zonal mean DMCs reinforce the results of the site-by-site DMC, PRISM3D members 

perform stronger at high latitudes than their PRISM2 equivalents.  PRISM3D members 

are also warmer through the tropics, but with the exception of member Q, the 

improvement in North Atlantic data-model mismatches results in stronger performing 

ensemble members based on the RMSE scores for PRISM3D over PRISM2 ensembles.   

5.4. Discussion 

5.4.1. Which boundary condition set produces the strongest mPWP simulations? 

The PRISM3D palaeo-environmental reconstruction represents the most sophisticated 

integrated geological realisation of the mid-Pliocene Warm Period, a period of past 

global warmth (Dowsett et al., 2010a).  However, it is trivial to assume that improving 

the physical boundary conditions will improve model simulations of mPWP climate.  

Changes to the physical boundary conditions such as the topography, vegetation and 

ice sheets will interact with the model components and parameters.  However, these 

interactions are not guaranteed to result in improved model simulations of the mPWP 

solely because the boundary conditions are more geologically accurate.  To date, no 

work has been done to investigate the differences between the two sets of boundary 

conditions with respect to simulating the mPWP.  The climatological differences 

between the two boundary condition sets, for both the ensemble Standard and the PPE 
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were assessed using intra-model comparisons (IMCs - Figures 5.3 to 5.8, Tables 5.1 to 

5.3).  Additionally, through running a suite of data-model comparisons (DMCs - Figures 

5.9 to 5.12, Table 5.4) enables an investigation of the impact of the changes on the 

performance of the model for simulating the climate of the mPWP.  The HadCM3 

Standard IMCs indicate that the PRISM3D boundary conditions generated a globally 

warmer and wetter representation of the mPWP climate than the PRISM2 boundary 

conditions.  In each of the three site-by-site DMCs, the PRISM3D Standard ranks above 

the PRISM2 Standard (Table 5.5).  The greatest improvement is in the vegetation 

reconstruction (18% improvement), followed by the SST (14%) and SAT 

reconstructions (10%).  Based on the ensemble Standards, the PRISM3D boundary 

conditions represent an improvement in the modelling of the mPWP.   
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Table 5.5 – The combined rankings of all the ensemble members for the three data-model 
comparisons (SATs, SSTs and Kappa scores).  Each ensemble member is given a ranking 
for individual DMCs and then the combined ranking is produced based on each ensemble 
members performance in these three comparisons.   

Member SST 
Rank Member SAT 

Rank Member Kappa 
Rank Member Total 

Ranking 
Average 
Ranking 

N_PRISM3D 1 P_PRISM3D 1 M_PRISM3D 1 M_PRISM3D 9 3.00 

L_PRISM3D 2 N_PRISM3D 2 Standard_ 
PRISM3D 1 N_PRISM3D 13 4.33 

M_PRISM3D 3 Q_PRISM2 3 H_PRISM3D 3 L_PRISM3D 14 4.67 

K_PRISM3D 4 Q_PRISM3D 3 M_PRISM2 3 P_PRISM3D 19 6.33 

O_PRISM3D 4 M_PRISM3D 5 O_PRISM2 3 O_PRISM3D 23 7.67 

F_PRISM3D 6 L_PRISM3D 6 L_PRISM2 6 M_PRISM2 24 8.00 

I_PRISM3D 6 I_PRISM3D 7 L_PRISM3D 6 Standard_ 
PRISM3D 24 8.00 

P_PRISM3D 6 P_PRISM2 8 P_PRISM2 6 I_PRISM3D 25 8.33 

H_PRISM3D 9 M_PRISM2 9 Standard_ 
PRISM2 6 P_PRISM2 25 8.33 

Standard_ 
PRISM3D 10 O_PRISM3D 9 N_PRISM3D 10 H_PRISM3D 29 9.67 

P_PRISM2 11 N_PRISM2 11 O_PRISM3D 10 Q_PRISM2 31 10.33 

M_PRISM2 12 L_PRISM2 12 I_PRISM2 12 L_PRISM2 34 11.33 

Q_PRISM2 12 
Standard_ 

PRISM3D 
13 I_PRISM3D 12 O_PRISM2 35 11.67 

J_PRISM3D 14 K_PRISM3D 14 N_PRISM2 12 N_PRISM2 37 12.33 

N_PRISM2 14 I_PRISM2 15 P_PRISM3D 12 F_PRISM3D 42 14.00 

I_PRISM2 16 O_PRISM2 16 H_PRISM2 16 I_PRISM2 43 14.33 

L_PRISM2 16 H_PRISM3D 17 Q_PRISM2 16 K_PRISM3D 43 14.33 

O_PRISM2 16 F_PRISM3D 18 B_PRISM2 18 Q_PRISM3D 47 15.67 

K_PRISM2 19 Standard_ 
PRISM2 19 F_PRISM2 18 Standard_ 

PRISM2 48 16.00 

D_PRISM3D 20 J_PRISM2 20 F_PRISM3D 18 D_PRISM3D 63 21.00 

B_PRISM3D 21 D_PRISM3D 21 B_PRISM3D 21 J_PRISM3D 65 21.67 

Q_PRISM3D 22 K_PRISM2 22 D_PRISM2 22 F_PRISM2 66 22.00 

Standard_ 
PRISM2 23 J_PRISM3D 23 D_PRISM3D 22 K_PRISM2 66 22.00 

F_PRISM2 24 F_PRISM2 24 Q_PRISM3D 22 B_PRISM3D 68 22.67 

H_PRISM2 25 D_PRISM2 25 J_PRISM2 25 H_PRISM2 68 22.67 

J_PRISM2 26 B_PRISM3D 26 K_PRISM2 25 J_PRISM2 71 23.67 

D_PRISM2 27 H_PRISM2 27 K_PRISM3D 25 B_PRISM2 74 24.67 

B_PRISM2 28 B_PRISM2 28 J_PRISM3D 28 D_PRISM2 74 24.67 
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Based on the IMCs and DMCs, is it possible to determine whether the PRISM3D 

boundary conditions aid a climate model to produce improved simulations of the 

mPWP?  Certainly, based on the ensemble Standards, that is correct, across all three 

DMC metrics produced here the PRISM3D Standard is an improvement on the PRISM2 

Standard.  However, is the performance of this one version of the model acceptable?  

Chapter 4 (Section 4.4) determined that ensemble members I, L, M, N, O & P 

represented better simulations of the mPWP than the ensemble Standard based on 

their combined RMSE rankings.  Additionally, as well as direct responses to the changes 

in boundary conditions, a number of indirect features were observed and these vary 

across the ensemble, as a result of interactions with ensemble members and the 

parameterisations within them.  The impact of changing from PRISM2 to PRISM3D 

boundary conditions was the same across each ensemble member (0.41°C and 0.024 

mm/day).  However the effect of the perturbed parameters interacting with the 

boundary condition changes displayed a range of -0.52 to 0.62°C and -0.023 to 0.094 

mm/day (Table 5.2).  These indirect responses represent the confluence of boundary 

condition and parameter uncertainty within these studies.  As a result, nearly all 

PRISM3D ensemble members improved their DMC scores with respect to the PRISM2 

equivalent (Table 5.4).  Across the SST and SAT DMCs the comparison between the two 

boundary condition types is relatively simple, with only PRISM3D members Q (SSTs) 

and J (SATs) performing worse than their PRISM2 equivalents.  Based on the results of 

using a different averaging period, it is possible to be confident that differences 

between PRISM3D and PRISM2 RMSE scores are significant, with only the intra-

ensemble differences between M & P for the SSTs and B, J & Q for the SATs showing less 

variation than that observed for changing the averaging period used.  For the 

vegetation biome DMC, it is a less clear picture, with PRISM3D members B, J, O, P & Q 

performed worse than their PRISM2 equivalents with the rest of the PRISM3D 

ensemble matching their PRISM2 equivalent, bar members H, M, N & the Standard 

which improve the DMC.  Two of the DMCs would strongly indicate that the PRISM3D 

boundary conditions are an improvement, but one comparison suggests they are a 

small change.   

Therefore, based on the investigation of the parameter uncertainty and model 

performance, it is vital to ascertain whether the PRISM3D boundary conditions are 

definitely leading to improved representations of the mPWP through assessment of 

their performance across the ensemble.  For each of the site-by-site DMCs a ranking 

across both ensembles was created.  The ranking was generated for each individual 

DMC, and then the combined unweighted ranking was generated from the cumulative 
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ranking score.  It was not possible to base this final ranking on the RMSE or Kappa 

scores as this would give too much weighting to one DMC over another.  At present 

there is no quantified weighting on the relative performance of each of these three 

metrics (SST, SAT and vegetation biomes) which would allow this comparison to be 

achieved.  These rankings of the 28 simulations can be used to assess the performance 

of both boundary condition sets.  The ranking also highlights the strongest performing 

ensemble member when considering both of parameter and boundary condition 

uncertainties.   

Table 5.5 indicates that the PRISM3D boundary conditions produce stronger model 

versions for the mPWP in comparison to the available palaeo-data.  With the exception 

of PRISM3D member Q, every ensemble member and the Standard ranks higher than 

their PRISM2 equivalent when the three DMC rankings are combined.  Ensemble 

member M from the PRISM3D ensemble is the strongest performing member when the 

ranking scores for each DMC are combined (Table 5.5).  Five ensemble members (L, M, 

N, O & P) outperform the PRISM3D Standard and the rest of the ensemble.  Consistent 

with Chapter 4, these ensemble members had previously been determined to represent 

an improved simulation of the mPWP.  Based on these results, it is possible to 

confidently conclude that the PRISM3D boundary conditions lead to improved 

simulations of the mPWP.   

5.4.2. What are the Implications of this Result for mPWP Modelling? 

The results from the investigation of the two physical boundary condition sets indicate 

that the PRISM3D boundary conditions produce a stronger representation of mPWP 

climate.  For this reason it is recommended that future mPWP modelling studies only 

use the PRISM3D boundary conditions.  To date, the majority of mPWP modelling has 

used the PRISM2 physical boundary conditions (i.e. Haywood & Valdes 2004; Lunt et 

al., 2008; 2010).  The PlioMIP experimental designs (Haywood et al., 2010; 2011a) 

decided that the PlioMIP project would use the PRISM3D physical boundary conditions, 

leading to a transitional period with mPWP modelling papers using both the PRISM2 

boundary conditions (i.e. Dolan et al., 2011; Pope et al., 2011; Lunt et al., 2012a) and 

the PRISM3D conditions (i.e. Bragg et al., 2012; Haywood et al., 2013a; Howell et al., 

2014).  As stated, the results indicate that to produce the best simulations of the mPWP 

climate, all modelling studies should use the PRISM3D boundary conditions.  However, 

Lunt et al. (2012a) outlined some advantages for remaining with the PRISM2 boundary 

conditions, primarily: 

• Consistency with previous mPWP modelling studies 
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• More developed model simulations with longer spin up times (> 1000 years).   

Whilst the move to PRISM3D boundary conditions creates a break between earlier 

work using PRISM2 boundary conditions, the evidence that using PRISM3D produces 

stronger, more realistic simulations of mPWP climate, means that this break is an 

important change to make, the best tools should be used simulating the mPWP climate.  

Additionally, the developing research into the importance of the orbital forcing for 

representing mPWP climate, and the especially on the palaeo-data reconstructions, will 

see a movement towards using set orbital configurations for time slices with in the 

mPWP instead of the existing time slab (Haywood et al., 2013b; Prescott et al., 2014).  

Whilst the change from PRISM2 to PRISM3D boundary conditions creates the break 

between previous mPWP and future work with PRISM3D, the changes to orbital 

parameters also creates a break from the previous mPWP modelling.  Therefore, it is 

the logical time to fully switch from modelling with PRISM2 to PRISM3D boundary 

conditions.   

Further changes to boundary conditions are in development such as the reconstruction 

of mPWP soils and lakes (Pound et al., 2013).  Refinements on techniques to develop 

understanding of mPWP ice sheets, sea level and other boundary conditions are future 

developments to the mPWP boundary conditions which will likely exert an influence on 

the simulated mPWP climate.  Whilst work to date has revealed regional impacts due to 

changes in mPWP lakes (Contoux et al., 2013; Pound et al., 2013), the work undertaken 

here demonstrates the importance of assessing the influence of changes in boundary 

conditions on model performance.  It is recommended that future changes to boundary 

conditions for the mPWP are tested using a range of models.  Whilst the change from 

PRISM2 to PRISM3D boundary conditions had a uniform warming (0.41°C) and 

precipitation increase (0.024 mm/day) their was a wide range of variation across the 

ensemble members as a result of the boundary condition change interacting with the 

different parameter sets (Table 5.2).  The variation represents the confluence of 

boundary condition and modelling uncertainty and it is vital to fully understand the 

range of impacts from changing boundary conditions on simulations of the mPWP 

climate.  For some ensemble members, the change to PRISM3D boundary conditions 

resulted in a cooler and drier simulation of the mPWP when the boundary condition 

constant response was eliminated, whilst other ensemble members showed warmer 

and wetter climates that were dominated by the response of the perturbed parameters.   

Therefore, to ensure that the impacts of boundary condition changes on simulating the 

mPWP, the assessment of new boundary conditions should utilise modelling 
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ensembles.  As has been shown in this PPE, there are two effects from changing 

boundary conditions.  Whilst a single model assessment will include direct effects of the 

changes, the indirect effects (which for this ensemble were sometimes in excess of 

twice the direct effects) will vary depending on model architecture.  It is only through 

assessing the changes to boundary conditions across an ensemble of models that the 

full range of effects from these changes can be observed and assessed.  For both PPEs 

and MMEs the response of a model to the change in the boundary conditions will vary 

and therefore future boundary conditions need to use a suite of models to assess the 

changes they cause.   

5.4.3. What is the role of boundary condition uncertainty in mPWP data-model 

mismatches? 

As discussed above, the changes in the physical boundary conditions between PRISM2 

and PRISM3D have exerted an influence both through direct effects and indirect effects 

on the simulated climate of the mPWP.  As a result these changes have led to 

improvements in the data-model comparisons to three sets of palaeo-data.  The “PMIP 

Triangle” (Haywood et al.,. 2013a) outlines the three main causes of data-model 

mismatches in palaeoclimate studies, modelling, boundary condition and data 

uncertainties.  The change from PRISM2 to PRISM3D and the improvements that have 

resulted reflect the importance of reducing boundary condition uncertainty.  These 

physical boundary condition changes have played a noticeable role in improving the 

modelling of the mPWP.  However, a range of other boundary condition uncertainties 

exist with respect to the mPWP.  Other potential physical boundary condition 

uncertainty the recent developments to the reconstruction of Pliocene soils and lakes 

(Contoux et al., 2013; Pound et al., 2013) and future developments in reconstructing ice 

sheets and sea level.  Similarly, as discussed in Chapter 4, forcing boundary conditions 

such as the greenhouse gases and orbital forcings (Haywood et al., 2013b; Prescott et 

al., 2014) could influence the performance of mPWP simulations.   

The development of an mPWP soil map and lake distribution acts as one of the future 

developments to the PRISM3D physical boundary conditions.  Pound et al. (2013) 

highlighted however that primarily these developments had regional influences, a 

conclusion supported by work from Contoux et al. (2013) looking at megalake Chad for 

the mPWP and the Holocene.  However, the location of these changes led to some 

important changes to the simulation of the mPWP such as along the southern border of 

the Sahara desert or through western North America, regions presently simulated as 

too dry compared to the palaeo-data.   
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The development of the Pliocene time slices (Haywood et al., 2013b; Prescott et al., 

2014) has shown that the selection of orbital parameters can exert strong forcing upon 

the simulation of high latitude temperatures greater than any changes observed in 

mean annual temperatures.  Both ensembles produced for this investigation have 

utilised a modern orbital forcing solution.  Haywood et al. (2013b) investigating the 

role of orbital forcing on the modelling of the mPWP highlighted that choosing specific 

orbits from within the mPWP had an impact on the regional responses of the model.  

Choosing orbital conditions with a top of atmosphere radiative forcing the same as 

modern, but with modification of the orbital parameters (obliquity, eccentricity, and 

precession) could result in regional changes such as 2 to 4°C warming through the 

North Atlantic.  The investigations into the orbital boundary conditions are indicating 

that they will also improve the reconciliation of data and models for the mPWP.   

However, reducing the boundary condition uncertainty through improved 

representation of the physical characteristics or forcing characteristics of the mPWP is 

not synonymous with improvements in the modelling.  Simulations across the range of 

potential values for atmospheric CO2 through the mPWP using the ensemble (Chapter 

4) have show that values less than 400 ppmv lead to weaker data-model comparisons, 

with data-model mismatches increased through high latitudes.  The simulations forced 

with lower concentrations of CO2 are unable to generate the high latitude warming 

compared to the standard value of 400 ppmv.   

In summary, the improved representation of the physical boundary conditions from 

PRISM2 to PRISM3D has resulted in stronger simulations of the mPWP.  Additionally, 

future improvements in the boundary conditions such as the inclusion of soils and lakes 

and the development of specific orbital time slices through the mPWP are displaying 

the potential to lead to further beneficial changes in the mPWP simulations.  However, 

should improvements in proxies for atmospheric CO2 indicate a lower than 400 ppmv 

value for mPWP CO2 then the ensemble has indicated that this would reduce the 

strength of mPWP simulations.  Should atmospheric CO2 be lower than 350 ppmv, it 

will be increasingly hard to generate enough high latitude warming to further improve 

data-model mismatches in the North Atlantic.  It is evident that boundary condition 

uncertainties have and will continue to impact on the data-model mismatches for the 

mPWP.  Reducing the uncertainty around ice sheets, orography and vegetation in the 

change from PRISM2 to PRISM3D boundary conditions has resulted in improved 

simulation of the mPWP and DMC rankings for this PPE.   
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In circumstances with improved boundary conditions weakening the simulation of the 

mPWP, the community is left with the decision of whether to include these boundary 

conditions or not.  If the aim of a modelling study is to reduce the uncertainty in data-

model mismatches, then it is vital that the experimental design includes the best 

boundary conditions, even if this leads to weakened simulations with respect to the 

palaeo-data.  To not minimise one region of uncertainty reduces the ability of a study to 

investigate other regions of uncertainty.  By reducing boundary condition uncertainties, 

potential causes of data-model mismatches can be eliminated and the results highlight 

regions which require further work and development.  Continuing to reduce boundary 

condition uncertainty, surrounding orbital forcing, greenhouse gases, ice sheets and the 

land surface will reduce the role of boundary condition uncertainty within the PMIP 

Triangle and increase the understanding of simulating warmer than modern climates, 

even if the change results in a weaker simulation in comparison to the palaeo-data.  It is 

unlikely that boundary condition uncertainties can be used to resolve all data-model 

mismatches for the mPWP, however they offer potential to reduce the role that they 

play in future data-model comparisons for the mPWP.   

5.5. Conclusions 

A large number of changes have occurred between the PRISM2 (Dowsett et al., 1999) 

and PRISM3D (Dowsett 2007; Dowsett et al., 2010a) palaeo-environmental 

reconstructions.  However, prior to this work, no assessment of the performance of 

climate models forced with these new physical boundary condition changes has been 

undertaken.   

The change to the PRISM3D boundary conditions from PRISM2 resulted in both direct 

and indirect effects on the simulations of the mPWP.  Every member of the ensemble 

responded with an increase in temperature of 0.42°C and increase in precipitation of 

0.024 mm/day.  However, the interaction between the perturbed parameters within 

the ensemble members resulted in a range of temperatures (-0.53 to 0.62°C) and 

precipitation (-0.023 to 0.094 mm/day) across the ensemble.  As a result the PRISM3D 

ensemble members were warmer than their PRISM2 equivalents (except member B) 

and wetter (except members J & K).  For the data-model comparisons the warmer 

climate in the PRISM3D ensemble members resulted in improved high latitude data-

model comparisons.  However, the PRISM3D members were also warmer through 

tropical latitudes weakening the DMC through this region compared to the PRISM2 

ensemble.  Overall, the high latitude improvements outweighed the weakening in the 

tropics and PRISM3D members ranked higher that their PRISM2 equivalents for the 
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SST and SAT DMCs.  For the vegetation biomes, the PRISM3D ensemble members 

improved high latitude DMCs with increased forest biomes compared to PRISM2 

members.  However, the impact of warmer and drier tropical climates across most of 

the PRISM3D members compared to PRISM2 resulted in the PRISM3D members 

performing poorer or the same as their PRISM2 equivalents.  Only members H, M, N & 

the Standard improved the vegetation biome DMC compared to their PRISM2 

equivalents.   

Overall, it has been possible to determine that the PRISM3D boundary conditions result 

in an improvement in the simulation of the mPWP.  Despite some good arguments to 

the contrary, it is evident that mPWP modelling studies should switch to using the 

PRISM3D boundary conditions.  However, analysis of the results has indicated that it is 

important to assess future developments in boundary conditions using ensembles of 

models, to fully analyse the magnitude and distribution of both direct and indirect 

effects from these changes.  Finally, to fully understand the role of boundary condition 

uncertainty on data-model mismatches, it is important that when new developments to 

boundary conditions are developed, they are included, regardless of whether the 

improve the data-model mismatches or not.  It is only through reducing boundary 

condition uncertainties that an assessment of where uncertainties in models and 

palaeo-data are influencing the understanding and simulation of the mid-Pliocene 

Warm Period.   
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Chapter 6: Conclusions 

The preceding chapters have undertaken the testing of a perturbed physics ensemble to 

investigate parameter and boundary condition uncertainty in model simulations of the 

mid-Pliocene Warm Period (mPWP: 3.264 to 3.025 Ma BP).  Two full ensembles were 

undertaken each forced with different physical boundary conditions, based on palaeo-

environmental reconstructions by the US Geological Survey as part of the Pliocene 

Research Interpretations and Synoptic Mapping (PRISM) project.  Additionally a sub-

ensemble was created from the main ensemble to assess the impact of changing the 

concentration of atmospheric CO2 from 400 ppmv to either 300 or 350 ppmv.  The 

ensembles were compared to palaeo-data (data-model comparisons – DMCs) in the form 

of the PRISM3D Mean Annual Sea Surface Temperature (MASST) dataset (Dowsett et al., 

2010b, 2012), a terrestrial surface air temperature dataset (Salzmann et al., 2013) and a 

reconstruction of Piacenzian vegetation biomes (Salzmann et al., 2008).  Rankings were 

produced based the use of Root Mean Square Error (RMSE) and Cohen’s Kappa Statistic 

(Cohen, 1960) for the DMCs.  A final DMC was undertaken using zonal mean annual SSTs 

for the ensemble members and the palaeo-data to provide an alternative comparison to 

the site-by-site comparisons used previously.   

6.1. Significance of this Research 

The research described represents a detailed investigation of the effect of parameter and 

boundary condition uncertainty on model simulations for the mPWP.  The perturbed 

physics ensembles presented are the first investigation of these two forms of uncertainty 

in a warmer than modern palaeoclimate setting with a close to modern continental 

configuration.  It is also the first PPE to be tested against a range of palaeo-data covering 

sea surface temperatures, terrestrial surface air temperatures and vegetation biome 

reconstructions.  The work represents a thorough investigation of the impact of parameter 

uncertainty on existing data-model mismatches for the mPWP.   

6.2. Summary of Main Findings 

The aim of the thesis has been to use the PPE to investigate the roles of model parameter 

and boundary condition uncertainty in modelling simulations of the mPWP.  Initial results 

based on an initial ensemble using end members of the full ensemble identified that the 

ensemble member with higher Charney sensitivitys than the Standard version of HadCM3 

improved the comparison to the PRISM SST data, although the Standard version produced 
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a better representation of the mPWP vegetation biome data (Chapter 3 & Pope et al., 

2011).   

From these initial results, Chapters 4 & 5 were written based on the full PPEs.  Chapter 4 

assessed the intra-model performance of the ensemble members, with the final aim of 

determining whether any members of the ensemble produced a better representation of 

the mPWP climate than the Standard.  Chapter 5 utilised the PPE to assess the impact on 

mPWP modelling studies due to the developments in the physical boundary conditions 

used to simulate the mPWP.   

The existing data-model mismatch for the mPWP indicates that in both SST and SAT data-

model comparisons, model simulations generate appropriate warming in the tropics, but 

struggle to replicate the warming observed in the high latitudes, especially through the 

North Atlantic.  Ensemble members with Charney sensitivities lower than the Standard 

simulation, improved tropical data-model comparisons, but weakened the high latitude 

DMCs.  In the ensemble members with Charney sensitivities higher than the Standard, 

these ensemble members reduced the high latitude data-model mismatch, but weakened 

the tropical data-model comparison.  The results in Chapter 4 highlighted that for the PPE 

members, the balance between increasing high latitude warming without overheating the 

tropical temperatures was crucial to improving the DMCs.  Three members of the full PPE 

produced a better simulation of the mPWP climate based on both the SST and SAT data-

model comparisons.  These members, M (4.54°C), N (4.62°C) & P (5.40°C) had Charney 

sensitivities higher than the Standard version, and also at or slightly above the upper 

boundary of the IPCC likely range (1.5 to 4.5°C – IPCC, 2013).  However, the ensemble 

member with the highest Charney sensitivity, member Q (7.11°C) simulated a weaker 

mPWP climate.  Member Q produced the largest reduction in the high latitude data-model 

mismatch, but unlike members M, N & P, generated a large mismatch through the tropics, 

which results in a larger RMSE score and a simulation judged to be weaker.  The benefits 

at high latitudes of the warming in member Q were undone by the weakening of the 

tropical DMC.  An idealised data-model comparison, which combined the best site-by-site 

DMC value from across the ensemble and included uncertainty estimates on the palaeo-

data still failed to fully resolve the data-model mismatch.   

Zonal mean data-model comparisons produced in Chapter 4 highlighted these weaknesses, 

but also indicated that the ensemble range brackets the warming seen in the mid-Pliocene.  

However, none of the ensemble members were able to replicate the spatial distribution of 

the warming.  The inability of the PPE to simulate this pattern of warming, could be down 

to a number of variables linked to the experimental design, structural uncertainty, poorly 
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constrained boundary conditions or unaccounted for data uncertainty.  However, at 

present it is not possible to determine the roles of each of these possible factors.   

Finally, Chapter 4 used a sub-ensemble to investigate the uncertainty range in mPWP CO2.  

The full ensembles are forced with a value of 400 ppmv, which is towards the top end of 

the range of values for the mPWP.  Based on the results from the sub-ensembles, it would 

be significantly harder to resolve high latitude data-model mismatches should 

improvements in the palaeo-proxies for CO2 indicate that mPWP concentrations were 

lower than 350 ppmv.   

The results in Chapter 5 indicated that the PRISM3D boundary conditions represented an 

improved set of model boundary conditions compared to PRISM2.  The result held across a 

range of ensemble members and for the ensemble Standard.  The effect of the boundary 

condition changes was both direct and indirect, with effects that occurred across all 

ensemble members with equal magnitude and others that varied as a result of interactions 

with the model parameters.  For the change from PRISM2 to PRISM3D boundary 

conditions, there was a warming of 0.42°C and an increase in precipitation of 0.024 

mm/day as direct effects.  However, there was then indirect effects ranging from -0.53°C 

to 0.62°C additional warming (or cooling) and changes in precipitation by -0.023 to 0.094 

mm/day.  As a result, all PRISM3D ensemble members were warmer (bar ensemble 

member B) and wetter (bar members J & K) than their PRISM2 equivalents.   

Across the SST and SAT DMCs this warmer and wetter climate improved the PRISM3D 

data-model comparisons compared to their PRISM2 equivalents, with the exception of 

member Q in the SSTs, which, due to increased tropical warming in the PRISM3D 

ensemble weakened its DMC.  For the vegetation biome DMC, the balance of warming and 

precipitation changes was very important, with a less clear signal in the patterns observed 

between the two ensembles.  Only members, H, M, N & the Standard improved the 

vegetation biome DMC in PRISM3D compared to PRISM2.  For a number of ensemble 

members, improved high latitude biomes, were weakened by simulating a greater extent 

of dry biomes in the tropics, with tropical shrublands replacing tropical grasslands and 

forests.  However, despite this, the PRISM3D ensemble members outperformed their 

PRISM2 equivalents when all three DMCs were combined to produce a final ranking, 

resulting in the conclusion that the PRISM3D boundary conditions represent an improved 

set of boundary conditions.   

Owing to the importance of boundary condition uncertainty within the PMIP Triangle 

(Haywood et al., 2013a), combined with upcoming changes to the way the mPWP is 

simulated and the palaeo-data is produced (focussing on the Pliocene time slices – 
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Haywood et al., 2013b; Prescott et al., 2014), it was concluded that based on these results, 

it is important to recommend that the Pliocene modelling community move away from 

mPWP simulations using the PRISM2 boundary conditions.  It was also concluded, that to 

offer the best chance to further reduce the role of boundary condition uncertainty in data-

model mismatches, it is crucial to integrate any improvement to the geological boundary 

conditions, even if it weakens the DMCs.  To not exclude one region of modelling 

uncertainty (say by using less accurate boundary conditions) would make it far harder to 

reduce other regions of uncertainty in resolving data-model mismatches.   

 

6.3. Developments & Future Work 

The key developments to the work in this thesis revolve around two of the four possible 

explanations given in Chapter 4 for the ensemble to be able to generate the magnitude but 

not the spatial distribution of Pliocene warming: 

 The parameter space is not fully sampled 

 Poorly constrained or misrepresented boundary conditions 

Chapter 4 discussed these different factors and how they could be involved in the data-

model mismatch.  The issue of structural uncertainty has been removed as it is addressed 

through other projects such as the Pliocene Modelling Intercomparison Project (PlioMIP).  

Similarly, unaccounted for palaeo-data uncertainty, whilst a potential major source of 

data-model mismatch, will be investigated and estimated independent of modelling 

studies.  Any developments to this PPE should focus primarily on further reducing the 

parameter component of modelling uncertainty in the PMIP Triangle.  This could be 

achieved through the use of other PPEs such as those based around ocean parameters or 

the carbon cycle, but it is likely the greatest gains will be made by focussing on other 

methods to design the atmospheric PPE.  For improved analysis of the impact of the 

perturbed parameters, it is best to focus on smaller parameter sets, targeting specific 

regions of model weakness.  By perturbed 32 parameters simultaneously, it has not been 

possible to assign the impact of individual or groups of perturbations to model results.  In 

summary, this thesis investigated one section of parameter uncertainty, which has 

produced interesting and novel results for Pliocene modelling.  However, the results have 

also posed further questions about parameter uncertainty which the PPE can not answer 

in its present configuration.  Alternative PPE designs offer another method for further 

investigating the uncertainty and building on the results presented here.   
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The other noted reason for the remaining data-model mismatch is due to the boundary 

condition uncertainty.  Poorly constrained boundary conditions are a focus in many 

palaeo-climate studies at present, with work investigating soils, lakes, rivers, greenhouse 

gases and orbital forcings (i.e. Contoux et al., 2013; Pound et al., 2013; Prescott et al., 

2014) during a range of palaeoclimate periods, particularly the Pliocene.  As discussed in 

Chapter 5, it is important to assess the effect of both direct and indirect impacts of 

boundary condition changes.  Whilst this can also be achieved by utilising a multi-model 

ensemble, the ability to run a PPE “in house” makes it a simple and effective way to 

investigate changes in boundary conditions across a range of Charney sensitivities.  

Additionally, the technical challenges of translating new boundary conditions onto model 

grids is limited to only one grid configuration, unlike an MME which will feature a range of 

different grid configurations.  The results in this thesis highlighted that some ensemble 

members may be weakened in comparison to palaeo-data as a response to changes in 

boundary conditions.   

With respect to improving the data-model mismatch, then the combination of these PPE 

results with the new lakes and soils boundary conditions could result in a useful 

improvement particularly to vegetation biome DMCs.  These changes could benefit the 

members of the PPE that simulated too dry a climate at tropical latitudes as these 

boundary condition changes have been shown to increase precipitation, such as around 

tropical mega-lakes like Lake Chad (Contoux et al., 2013; Pound et al., 2013).  In summary, 

the PPE provides a simple platform to produce an ensemble of variable sensitivity model 

simulations to test the impact of boundary condition changes.  As a PPE can be undertaken 

in one institution without having to initiate a large scale project, it makes a PPE used in 

this thesis the strongest tool for future Pliocene modelling of new boundary conditions.  

Meanwhile, boundary condition changes could result in improvements to some data-

model mismatches, especially with respect to members of this ensemble and tropical 

biome DMCs through changes to soils and lakes.   
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Appendix A 

 

 

A1: Global annual mean plots for “Pliocene ensemble member minus modern Standard” for 

surface air temperature (SAT - °C) for all 13 ensemble members and the Standard.  The 

coloured outlines represent which grouping the ensemble member belongs to either 

‘colder than Standard’ (blue) or ‘warmer than Standard’ (red).   
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A2: Global annual mean plots for “Pliocene ensemble member minus modern Standard” for 

sea surface temperature (SST - °C) for all 13 ensemble members and the Standard.  The 

coloured outlines represent which grouping the ensemble member belongs to either 

‘colder than Standard’ (blue) or ‘warmer than Standard’ (red).   
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A3: Global annual mean plots for “Pliocene ensemble member minus modern Standard” for 

precipitation (mm/day) for all 13 ensemble members and the Standard.  The coloured 

outlines represent which grouping the ensemble member belongs to either ‘colder than 

Standard’ (blue) or ‘warmer than Standard’ (red).   
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A4: Site-by-site “Pliocene ensemble member minus modern Standard” sea surface 

temperature data-model comparisons for all 13 ensemble members and the Standard 
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A5: Site-by-site “Pliocene ensemble member minus modern Standard” surface air 

temperature data-model comparisons for all 13 ensemble members and the Standard 
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Appendix B 

B1 - Global mean annual intra-model comparisons for “PRISM3D minus PRISM2 ensemble 
member” surface air temperature (SAT - °C) for all 13 members and the Standard 
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B2 - Global mean annual intra-model comparisons for “PRISM3D minus PRISM2 ensemble 
member” precipitation (mm/day) for all 13 ensemble members and the Standard 
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B3 - Global mean annual intra-model comparisons for “PRISM3D minus PRISM2 ensemble 
member” sea surface temperature (SST - °C) for all 13 ensemble members and the 
Standard 
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B4 - Global mean annual intra-model comparisons for “PRISM2 ensemble member minus 
modern Standard” surface air temperature (SAT - °C) for all 13 members and the 
Standard 
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B5 - Global mean annual intra-model comparisons for “PRISM3D ensemble member 
minus modern Standard” surface air temperature (SAT - °C) for all 13 members and the 
Standard 
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B6 - Global mean annual intra-model comparisons for “PRISM2 ensemble member minus 
modern Standard” precipitation (mm/day) for all 13 members and the Standard 



Appendix B 

 

259 

B7 - Global mean annual intra-model comparisons for “PRISM3D ensemble member 
minus modern Standard” precipitation (mm/day) for all 13 members and the Standard 
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B8 - Global distribution of the PRISM2 site-by-site sea surface temperature (SST - °C) 
data-model comparisons for all 13 ensemble members and the Standard 
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B9 - Global distribution of the PRISM2 site-by-site surface air temperature (SAT - °C) 
data-model comparisons for all 13 ensemble members and the Standard 
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1. Introduction

Evidence that humankind is affecting the climate system is now
overwhelming (IPCC, 2007). However, predictions of the magnitude
of future climate change are limited by an incomplete knowledge of
the uncertainty in climate model predictions. Uncertainty in climate
models comes from four sources, firstly the ability of the model to
simulate the present global climate system (known as ‘model skill’),
secondly the ‘Charney Sensitivity’ (the global annual mean temper-
ature response to a doubling of carbon dioxide (CO2) (Charney,
1979 — the ability of the model to simulate the transient changes in
climate), thirdly the initial conditions for the simulation, and fourthly
the boundary conditions used within the model. Boundary conditions
in a fully coupled atmosphere–ocean climate model include the
concentrations of trace gases, the land-sea and ice masks, vegetation
cover, orography and any changes to orbital parameters. To run a
climate model simulation, the model must be initially spun up into
equilibrium with the specified boundary conditions. In predictive
climate modelling, this is achieved by running the model using
observational data sets of trace gases to drive the model which has
modern settings for orography, ice and land–sea masks. The model is
then run for the length of the observational period bringing it up to
the point where the model becomes predictive (Johns et al., 2003).
The model skill at reconstructing the climate for the observational
period is tested, and if the model is accurate, it can continue to run the
predictive simulations (IPCC, 2007). The limitation of this method is
that the model has been tested on its skill of replicating the gradually
warming climate from 1750 to the present day, (~0.75 °C over this
time period (IPCC, 2007)). Climate change is predicted to be most
likely at least 2 to 3 °C warmer by 2100 (IPCC, 2007), a rate and

http://dx.doi.org/10.1016/j.palaeo.2011.05.004
mailto:eejop@leeds.ac.uk
http://dx.doi.org/10.1016/j.palaeo.2011.05.004
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magnitude of change far greater than anything experienced in the
past 260 years. Coupled with uncertainty over the future trace gas
emissions (a boundary condition uncertainty), the models show that
the world will get warmer over the coming century, with predictions
for global temperature change ranging from +1.6 to +6.4 °C (IPCC,
2007), and with even greater uncertainty in the regional effects of
these levels of climate change.

Palaeoclimate modelling offers a method for quantifying and
reducing some of these uncertainties. By selecting an appropriate time
period to study, it is possible to test the model skill at replicating
radically different climate states. The mid-Pliocene Warm Period
(mPWP, ~3.3 to 3.0 Ma BP) provides an excellent opportunity to test
model skill at reconstructing a warmer world as it was globally 2 to
3 °C warmer than the pre-industrial era (e.g. Haywood et al. 2000;
Haywood and Valdes, 2004; Haywood et al. 2009a; Dowsett et al.,
2010b). Elevated concentrations of CO2 in the atmosphere (estimates
ranging from 360 to 425 ppm) are seen as at least a contributing factor
in the warming (Raymo et al., 1996; Pagani et al., 2010, Seki et al.,
2010), with another potential cause of warming being the palaeogeo-
graphy, which in the mPWP was very similar to the present day. Most
importantly a detailed and comprehensive dataset of palaeoenviron-
mental conditions is available to initially constrain or evaluate model
predictions (Dowsett, 2007; Haywood et al., 2009b). Whilst there are
other intervals in geological time with warmer conditions (e.g. the
Eocene) or a greater abundance of high resolution data (the Last
Glacial Maximum), the mPWP represents an excellent balance
between higher temperatures and supply of robust proxy data for
use in a test of climate model skill (Dowsett et al., 1996, Raymo et al.,
2009; Dowsett et al., 2010a, 2010b;).

In the past, the exploration of uncertainty in climate model
predictions has been tackled by the creation of model ensembles,
initially through Multi-Model Ensembles (MMEs), where a series of
structurally different climate models, with different climate sensi-
tivities (ranging from, 1.5 °C to 4.5 °C; Hegerl et al., 2006) are run
from the same set of initial conditions and prescribed emissions
scenarios (e.g. Stott & Forest, 2007; Tebaldi & Knutti, 2007). These
ensembles have dominated the recent IPCC Assessment Reports
(IPCC, 2001; 2007) and major projects such as the Climate Model
Intercomparison Project (CMIP; Meehl et al., 2000), and the
Palaeoclimate Model Intercomparison Project (PMIP; Braconnot
et al., 2007]. The Quantifying Uncertainty in Model Predictions
(QUMP) (Murphy et al., 2004; Collins et al., 2006; Murphy et al.,
2007; Collins et al., 2010) and climateprediction.net projects
(Stainforth et al., 2005; Sanderson et al., 2008a,b) have developed
an alternative method to MMEs for creating ensemble predictions of
future climate change, achieved through a Perturbed Physics
Ensemble (PPE). PPEs use only one model structure, but by
perturbing physical parameters in the model generate a large
ensemble of different representations of the climate system with
different climate sensitivities (Piani et al., 2005; Collins et al., 2010).
Most climate models have a fixed resolution, measured in degrees of
longitude and latitude that define a grid box for the atmospheric or
oceanic component. Inside this grid box will be elements of the
physical properties of the climate system that have to be para-
meterised because they are sub-grid scale. Some of these parameters
have a range of plausible values and during the development of the
model a value for each of these parameters is selected based onmodel
performance and physical understanding (Murphy et al., 2004; Piani
et al., 2005; Stainforth et al., 2005; Collins et al., 2006; 2010). The PPE
is created by changing the values of a selection of these parameters in
the settings of the climate model (Murphy et al., 2004).

QUMP has focussed on both idealised scenarios and climate
projections for the 21st century (e.g. Murphy et al., 2004), with
some work looking at the mid-Holocene (Brown et al., 2008) and
the Last Glacial Maximum (the PalaeoQUMP project). This paper
introduces the initial phase of the Quantifying Uncertainty in
Model Predictions for the Pliocene (Plio-QUMP) project, a first
experiment in applying PPE to a past warmer world with higher
CO2. The paper presents the results from the first three members of
the coupled model ensemble using the UK Met Office coupled
climate model (HadCM3) including key model diagnostics (those
that can be compared to proxy datasets) and the impacts on data/
model comparisons.
2. Methods

2.1. Experimental design

This paper presents the initial three PPE experiments of the Plio-
QUMP Project. For each ensemble member, a spin up phase of several
hundred years is performed to compute the stabilising flux adjust-
ments. After spin up, the simulations are used to initialise the three
member HadCM3 coupled PPE (see Sections 2.2.1 and 2.3). The three
member ensembles are then integrated for further 300 simulated
years. The ensemble consists of a standard-parameter simulation, a
high sensitivity simulation, and a low sensitivity simulation (see
Section 2.3). The standard simulation (which includes flux correc-
tions) was verified against previous non-flux-adjusted standard
simulations used in mPWP studies and was found to display an
acceptable simulation of key metrics. Therefore, the members of this
ensemble are valid for comparison against previous models of the
mPWP. However in this paper only the standard for this simulation
was used and referred to in the comparisons with the high and low
sensitivity simulations. The reasons for the use of flux corrections in
these experiments compared to other mPWP modelling experiments
are outlined in Section 2.3.

The simulations were tested using different forms of data/model
comparison. Model surface temperatures were tested against proxy
SST estimates derived from the US Geological Survey Pliocene
Research Interpretation and Synoptic Mapping (PRISM) PRISM3D
Mean Annual Sea Surface Temperature (MASST) dataset (Dowsett
et al., 2010b; see Section 2.4). The climatological outputs were also
used to force the BIOME4 vegetation model (see Section 2.2.2) with
the simulated biomes being compared to the Pliocene vegetation
dataset of Salzmann et al. (2008) (Section 2.4). The use of the climate
data in both a direct data/model comparison with the SST data and
then to drive the vegetation model makes this a two step approach, as
errors in the comparison with the SST data will be inherited by the
vegetation model inputs.

MPWP conditions are replicated through the creation of a series of
boundary conditions within the model. The boundary conditions used
in this study are the same as in a majority of mPWPmodelling studies
including Haywood & Valdes (2004), Haywood et al. (2007), Lunt
et al. (2008a, 2008b), Haywood et al. (2009b), and Lunt et al. (2009,
2010). We used a modern land–sea mask (including a fully closed
Central American Seaway), a mid-Pliocene land–ice mask and an
atmospheric CO2 concentration of 400 ppmv which is within the
range of values presented by the data (Raymo et al., 1996, Pagani et al.,
2010, Seki et al., 2010). The simulation was initialised with prescribed
vegetation from the PRISM2 reconstruction, a mega-biome recon-
struction with seven biomes (Matthews, 1985; Dowsett et al., 1999).
The land ice mask is adjusted from the modern through reducing the
Greenland Ice Sheet by 50% and the Antarctic Ice Sheet by 33% volume
(Dowsett et al., 1999; Haywood and Valdes, 2004). During the model
simulations, the vegetation type and land ice volume and area are
held constant. A sea ice model is part of the HadCM3 (Gordon et al.,
2000) and was initialised by the PRISM2 sea ice reconstruction
(Dowsett et al., 1996). BIOME4 also used the same land–sea mask as
the HadCM3 simulations. CO2 was set in the BIOME4 offline
calculations to the same value as was used in all the climate model
simulations.
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2.2. Model descriptions

2.2.1. HadCM3
This study used the UKMet Office fully coupled atmosphere–ocean

general circulation model (AOGCM) HadCM3, which contains atmo-
sphere, ocean, fixed vegetation and sea ice components (Gordon et al.,
2000). The atmosphere is composed of 19 vertical levels with a
horizontal grid resolution of 2.5° latitude by 3.75° longitude (Gordon
et al., 2000), which equates to a grid box at the equator of 278 km
latitude by 417 km longitude. The model contains a number of
features that are developments from the predecessor HadCM2 (see
Johns et al., 1997). This includes a radiation scheme covering six
additional spectral bands in the shortwave and eight additional bands
in the long wave and explicitly representing the radiative effects of all
greenhouse gases not just CO2, O3 and H2O (Edwards & Slingo, 1996;
Gordon et al., 2000; Johns et al., 2003). Background aerosols in the
model are determined using prescribed pre-industrial emissions
input files. The penetrative convection scheme of Gregory & Rowntree
(1990) has been developed to include a parameterisation of the
impacts of convection on momentum and the downdraft of
convection (Gordon et al., 2000; Johns et al., 2003). HadCM3 employs
the use of MOSES (Met Office Surface Exchange Scheme) including
soil moisture response to temperature and on the effect of CO2 and
stomatal resistance on evapo-transpiration (Williams et al., 2001). A
number of other parameterisations in the model are linked to features
in cloud representation, and cloud development details of these
parameterisations are found in Gordon et al. (2000). Details of the
atmospheric component are in Pope et al. (2000).

The ocean component comprises 20 levels with a rigid lid on a
1.25°×1.25° latitude–longitude grid (Gordon et al., 2000; Brierley
et al., 2010) which represents a grid box of 139 km by 139 km at the
equator. There are 6 ocean grid boxes for every atmospheric grid box
in the coupling of the model. A key component of the ocean model is
the interaction with sea ice, and every high latitude ocean grid box in
HadCM3 can have sea ice cover (Gordon et al., 2000). A number of
ocean basin topographies had to be edited due to grid scale and this
was found to have an especially sensitive response in the North
Atlantic around the Iceland–Faeroes–Scotland ridge and in the
Denmark Strait. Topographies were smoothed in places and channels
set at certain depths in the model (Roberts & Wood., 1997; Gordon
et al., 2000). A number of parameterisations exist in the ocean
component to represent fluxes and mixing processes in the ocean,
details of which are found in Gordon et al. (2000). The final key
parameterisation in the ocean component is Mediterranean outflow
to the Atlantic. In the ocean this is a crucial flow and has wide ranging
impacts on Atlantic waters by venting warm, salty water into the
cooler North Atlantic off Spain. However, in the HadCM3 land/sea
mask, the Strait of Gibraltar is closed, so a parameterisation represents
outflow of waters through the strait (Johns et al., 2003).

2.2.2. BIOME4
BIOME4 is an equilibrium vegetation model driven offline (i.e.

unconnected) with climate model outputs and is used here to
interpret the effects of the climate of the initial ensemble members
upon likely biomes of the mPWP. A climatologically averaged year
composed of 1.5 m temperature, precipitation and cloudiness are
input into the model along with data on soil depth, soil texture
properties, the absolute minimum temperature and atmospheric CO2,
from which a biome is classified for each grid point (Kaplan, 2001;
Salzmann et al., 2008). BIOME4 is programmed with 28 biome
classifications, which are determined based on the combination of
dominant and sub-dominant plant functional types (PFT). The 12
PFT's cover distinct categories of flora from Arctic to tropical
environments (e.g. tropical grassland or cool conifer woodland
(Salzmann et al., 2009)). Using the climate inputs and the CO2 level,
themodel calculateswhether the growthof each PFT could occurwithin
those climatic parameters through the calculation of net primary
productivity (NPP). Parameters such as photosynthetic pathway and
seasonal fluxes in temperature and precipitation are used along with
semi-empirical rules related to balances between forest and grass taxa
to determine the potential PFTs at each grid point; the combination of
potential PFTs then determines the final biome (Kaplan, 2001). BIOME4
was run at the resolution of HadCM3, enabling the required fields to be
taken directly from the HadCM3 outputs without adjusting the
resolution. The climatological fields used are averaged for 30 years,
the standard for analysing the data from palaeoclimate modelling
studies (PMIP2; Braconnot et al., 2007). Then each average month is
used to construct a BIOME4 year of 12 months January–December. The
absolute annual minimum temperature field has no time dimension in
the model and was created by taking the average February (northern
hemisphere coldmonth) and the average August (southern hemisphere
cold month) temperature and merging these to create the annual
coldest temperature for the BIOME4 year.
2.3. The Perturbed Physics Ensemble

HadCM3 contains over 100 parameters in the atmospheric
component, of which 31 have been identified as potentially having a
noticeable effect on climate when they are perturbed (Murphy et al.,
2004; Collins et al., 2006; 2010). Initially, these parameters were
perturbed individually (Murphy et al., 2004). The approach was
developed by perturbing multi-parameter sets to create more
ensemble members (Collins et al., 2006, 2010). With two or three
potential settings per parameter this offers the opportunity to create
an ensemble with millions of members. However, restrictions in
computing power reduced this to the most skilful 129 members for
the UK Met Office coupled atmosphere–slab ocean model (HadSM3)
and the most skilful 17 for the coupled model (Collins et al., 2006;
Webb et al., 2006; Collins et al., 2010). The rationale methodology for
reducing the massive million-member ensemble down to a compu-
tationally manageable size is discussed in Collins et al. (2010).

The QUMP project has used a flux corrected version of the HadCM3
model to correct for a top of the atmosphere (TOA) radiation
imbalance created by the perturbed physics simulations. During
standard model construction the model parameters are adjusted to
ensure that the incoming and outgoing radiations are equal. Since the
parameter perturbations cause a TOA imbalance, a flux adjustment is
required. The flux adjustments were applied through performing a
multi-decade simulation for each member and relaxing values for the
seasonal and spatial distribution of sea surface temperature and sea
surface salinity values, called a Haney Forcing (using a relaxation
coefficient of 30 days for temperature and 120 days for salinity as in
Tziperman et al. (1994)). This was applied until the model reached a
minimal forcing effect from this change (TOA approximately less than
0.2 Wm−2). Once this happened the seasonally-varying flux adjust-
ment input file was created and this allows the model to run with a
stable climate in both a normal run and PPE experiments. In Collins
et al. (2006) the use of flux adjustments was shown to have an impact
on the model, causing a slowing of Atlantic Meridional Overturning
Circulation (MOC), and a cooling of North Atlantic SST's. However, the
use of a different relaxation time constant for temperature and salinity
(i.e. less vigorous forcing) improves the performance of the flux
adjustment through reducing significantly the biases to northern
hemisphere SST and sea ice that occurred in previous PPE studies. This
has been shown in comparisonwork completed in Collins et al. (2010)
between the standard (no flux adjustments) HadCM3 model, the flux
adjusted HadCM3 used in Collins et al. (2006; shorter relaxation
constant) and the flux adjusted HadCM3 used in Collins et al. (2010;
longer relaxation constant). The Plio-QUMP project including this
experiment initiated the model simulations with the improved flux
corrections of Murphy et al. (2007) and Collins et al. (2010).
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We created a three member PPE, which consisted of an un-
perturbed standard simulation and two perturbed simulations named
high and low sensitivity. The ‘high sensitivity’ simulation had the
parameters perturbed into a combination that created the highest
Charney sensitivity of the PPE settings used in the HadCM3 QUMP
experiments, with the ‘low sensitivity’ having the lowest Charney
sensitivity whilst maintaining an acceptable simulation of modern
climate. Table 1 shows the parameters changed, their area of influence
in the model construction and the values used in each simulation in
the ensemble. The final Charney sensitivities of the simulations were
7.1 °C for the high sensitivity, 2.1 °C for the low sensitivity and 3.3 °C
for the standard simulation (values obtained from equivalent HadSM3
experiments). The Charney Sensitivity values are used to distinguish
the differences between the simulations and are not seen as the
defining factor for the Plio-QUMP experiments. Other members of the
full ensemble have similar (andmoremoderate) Charney Sensitivities
to each other and display different climatic effects as the parameters
interact with the boundary conditions (Collins et al., 2010). The
extreme outlier nature of the high and low sensitivity simulation
enabled the best chance of obtaining a wide range of results.

In addition to the PPE simulations that use Pliocene boundary
conditions, we also make use of experiments forced with both
anthropogenic and natural forcing factors from 1860 to 2000 (Collins
et al., 2010). This allows us tomake comparisons and detect anomalies
betweenmPWP simulations and simulations relevant to the historical
period where modern-day observations have been made.

Analysis of the experiments fromtheQUMPandclimateprediction.net
PPEs in Rougier et al. (2009) identified which parameters drove the
largest changes in HadSM3 which was mainly large scale cloud process
Table 1
The perturbed parameter labels, identifiers, values and areas of influence in the three simu

Label Sub-group Identifier/properties

Climate sensitivity (°C)

1 VF1 – Icefall speed (ms−1)
2 CT – Cloud droplet to rain conversion rate (×10−4 s−1)
3 RHCrit – Threshold of relative humidity for cloud formation
4 CW Land Cloud droplet to rain conversion rate (×10−4 kg m−3)

Sea Cloud droplet to rain conversion rate (×10−4 kg m−3)
5 MinSIA – Minimum sea ice albedo — dependence of SIA on temp
6 ice_tr – Sea ice minimum temperature
7 Ent – Entrainment rate coefficient
8 Icesize – Ice particle size (μm)
9 Cape – CAPE closure — intensity of convective mass flux
10 flux_g0 – Boundary layer flux profile
11 Charnoc – Charnock constant— roughness lengths and surface fluxes
12 soillev – Number of soil levels accessed for evapotranspiration
13 lambda – Asymptotic neutral mixing length parameter
14 cnv_rl – Free convective roughness over sea
15 oi_diff – Ocean ice diffusion
16 dyndel – Order of diffusion operator
17 dyndiff – Diffusion e-folding time
18 eacfbl – Cloud fraction at saturation boundary layer
19 eacftrp – Cloud fraction at saturation free troposphere value
20 k_gwd – Surface gravity wavelength
21 k_lee – Trapped lee wave constant
22 gw_lev – Starting level for gravity wave drag
23 s_sph sw Non-spherical ice particles shortwave radiation propert

lw Non-spherical ice particles shortwave radiation propert
24 c_sph sw Non-spherical ice particles longwave radiation properti

lw Non-spherical ice particles longwave radiation properti
25 rhparam – Flow dependant RHcrit
26 vertcld – Vertical gradient of cloud water
27 canopy – Surface canopy energy exchange
28 cnv_upd – Convective anvils updraft factor
29 anvil – Convective anvils shape factor: radiative properties of conve
30 sto_res – Dependence of stomatal conductance on CO2
31 f_rough – Forest roughness lengths
32 sw_absn – Shortwave water vapour continuum absorption
parameters, with parameters 1–4, 7 and 18 in Table 1 showing the
greatest influence. Parameter 7 (the entrainment rate co-efficient)
exerted the strongest influence on the model when it was perturbed
(Rougier et al., 2009).
2.4. Data

The palaeoclimate modelling results were evaluated against two
different types of dataset, a multi-proxy SST dataset and a terrestrial
vegetation dataset. Both come from the PRISM3D palaeoenviron-
mental reconstruction of themPWP (Dowsett et al., 2010a). PRISM3D,
the 4th version of the dataset (PRISM0 through to 3D (Dowsett et al.,
1994; 1996; 1999, 2005, 2010a, 2010b)) comprises 86marine and 202
terrestrial data points, reconstructed sea surface temperatures, deep
water temperatures, sea ice, land ice and vegetation. The PRISM
reconstruction is a comprehensive dataset created with palaeoclimate
modelling in mind, so the reconstruction does not create a time series
for a proxy record (or stack of proxy records) as in Lisiecki & Raymo
(2005) but a slab record covering an approximately ~300 kyr interval.
The PRISM3D Mean Annual Sea Surface Temperature data (PRISM3D
MASST) is the latest release from the PRISM group, specifically aimed
at assisting in the data/model comparison of projects such as Plio-
QUMP (Dowsett et al., 2010b).

The vegetation data comprises 202 terrestrial sites originally
presented in Salzmann et al. (2008), whichwere incorporated into the
PRISM3D dataset. The biome of an area is a reflection of the general
climate, and as such a vegetation data comparison with the results
from a vegetation model forced with the climate model outputs adds
lations (high sensitivity, standard simulation and low sensitivity).

Low sensitivity Control High sensitivity Area of influence

2.19 3.3 7.11

0.93976 1 0.54306 Large scale cloud
1.63E-04 1.00E-04 3.50E-04 Large scale cloud
0.84077 0.7 0.7 Large scale cloud
1.75E-04 2.00E-04 1.41E-04 Large scale cloud
4.25E-05 5.00E-05 3.23E-05 Large scale cloud

erature 0.50666 0.5 0.60104 Sea ice
9.5243 10 3.836 Sea ice
2.89934 3 2.37726 Convection
30.761 30 28.099 Radiation
Off Off Off Convection
16.9231 10 6.9039 Boundary layer

over sea 0.0128 1.20E-02 0.0134 Boundary layer
2 4 4 Land surface
0.3356 0.15 0.135 Boundary layer
4.14E-03 1.30E-03 1.67E-03 Boundary layer
3.67E-04 3.75E-04 3.73E-04 Sea ice
4 6 6 Dynamics
8.513 12 8.5 Dynamics
0.79598 0.5 0.51262 Large scale cloud
0.64799 0.5 0.50631 Large scale cloud
1.98E+04 2.00E+04 1.67E+04 Dynamics
2.97E+05 3.00E+05 2.50E+05 Dynamics
3 3 3 Dynamics

ies 2 2 7 Radiation
ies 1 1 7 Radiation
es 3 3 7 Radiation
es 1 1 7 Radiation

0 0 1 Large scale cloud
1 0 0 Large scale cloud
0 0 1 Land surface
0.51016 Off Off Convection

ctive cloud 2.59138 Off – Convection
0 1 1 Land surface
0 0 3 Land surface
1 0 0 Radiation



Table 2
The temperature and precipitation values for ‘Pliocene minus modern' anomalies for
the high sensitivity, low sensitivity and standard simulations and for the Pliocene ‘high
sensitivity minus standard’ and Pliocene ‘low sensitivity minus standard’ simulations.
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another dimension to testing the model results. The data/model
comparison is achieved through the use of a Kappa statistic test (see
Section 2.5.2.) to look for areas of agreement between the data set and
the BIOME4 model outputs.
Simulation Global mean annual
temperature anomaly

Global mean annual
precipitation anomaly

Pliocene minus modern
(high sensitivity)

3.3 °C 0.15 mm/day

Pliocene minus modern
(standard simulation)

2.5 °C 0.18 mm/day

Pliocene minus modern
(low sensitivity)

2.4 °C 0.12 mm/day

Pliocene high sensitivity
minus standard

1.5 °C −0.18 mm/day

Pliocene low sensitivity
minus standard

−0.1 °C −0.06 mm/day
2.5. Statistics

2.5.1. Student's t-test
Student's t-test is a method of testing the null hypothesis between

two datasets. Using a null hypothesis that any variation between the
model data (i.e. ‘high minus standard’) is due to natural variability
between model simulations, significant changes in the model results
can be identified. The t-test was applied to the 30 year average
climatologies with all the results being tested to a confidence level of
95%. Any areas where the anomaly between the model simulations
was significant indicated that the change was due to more than just
the model variability in the two simulations.
Temperature (°C): Pliocene Minus Modern

Precipitation (mm/day): Pliocene Minus Modern

a

b

Fig. 1. Pliocene minus modern anomalies for the standard simulations for temperature
(1a) and precipitation (1b).
2.5.2. Cohen's Kappa Statistic
Cohen's Kappa Statistic (Cohen, 1960) quantitatively assesses the

agreement between two sets of categorisations, whilst taking into
account chance agreements. The Kappa Statistic (k) is calculated by
subtracting the proportion of expected agreement (Pe) from the
proportion of observed agreement (Po) and this result is normalised
through dividing it by the maximum possible difference (1−Pe) to
generate the Kappa Statistic:

k = Pe−Poð Þ= 1−Peð Þ:

The Pe value includes the expectation that an element of
agreement by chance exists and this is allowed for in the Kappa
Statistic (Cohen, 1960; Prentice et al., 1992).

The values for the test range from 0 (agreement by chance) to 1
(perfect fit) (Cohen, 1960; Jenness & Wynne, 2005). By allowing for
agreement by chance in the statistical test, even the smallest difference
in the results between the different simulations is indicating a statisti-
cally significant difference between the data/model comparisons for
each simulation. Weaknesses of the Kappa Statistic include that the
cause of the difference is not specified; it could be one site or a number
of sites causing the change in the result. It is only possible to state that
the closer to 1 (perfect fit) the Kappa Statistic is, the better the data/
model comparison. The Kappa Statistic does not make any allowance
for how wrong a site mismatch is, so being a very close biome
reconstruction or a complete opposite biome reconstruction does not
alter the end value, the test simply views two siteswhich do notmatch
the data. Two forms of the statistic have been applied to the Plio-QUMP
simulations, the full 28 biome classification and an 8 megabiome
classification following Harrison and Prentice (2003) and Salzmann
et al. (2009). The reason for using themegabiome classification, aswell
as a full biome classification, is the increased confidence in the
statistical test applied since having a large number of categories with a
low sample in each is less robust than having fewer categories with
more samples in each. Ideally a minimum of 50 samples per category
should be used, and 75–100 samples for more than 12 categories
(Congalton and Green, 1999; Jenness and Wynne, 2005). This is
difficult for palaeobotanical studies where sample sizes are restricted
by many factors such as deposition, taphonomy, preservation and
limited exposure. This makes the megabiome classification's Kappa
scores more statistically robust than that for the full biome clas-
sification. The Kappa Statistic test has been used successfully in
previous palaeoclimate vegetation data/model studies (Salzmann
et al., 2008; 2009; Salzmann et al., 2009; Haywood et al., 2009b;
Pound et al., 2011).
3. Results

3.1. Climate metrics

3.1.1. Pliocene minus modern anomalies
The standard Pliocene simulation was compared to a ‘modern’

simulation covering the period 1950–1985, the time period of
Reynolds & Smith (1995), whose data was used to produce the core
top estimates of the PRISM3DMASST dataset by the PRISM group. Two
comparisons were plotted, with the standard simulations for the
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temperature and precipitation fields. Global mean values were
calculated for all three ensemble members and the results are
shown in Table 2.

The Pliocene is modelled as being warmer than modern. Fig. 1a
shows this is predominantly through warming in the high latitudes
and polar regions (the area of intense warming on East Antarctica is
caused by differences in the Pliocene and the modern land ice
mask). Temperatures in the tropics are only marginally warmer
than the modern values, which fits with the pattern in the PRISM
data of an enhanced equator to pole temperature gradient in the
Pliocene compared to the modern (Dowsett et al., 2010a). Fig. 1b
shows that changes in precipitation between the Pliocene and the
modern simulations are subtle, with a few areas exhibiting large
increases in precipitation (e.g. eastern Pacific), and some areas of
large decreases in the precipitation anomaly (e.g. Amazonia and
Indonesia).

Table 2 reinforces the global plots shown in Fig. 1 with the global
mean averages for Pliocene temperature shown to be 2.5 to 3.3 °C
warmer than the modern simulations and marginally wetter by 0.12
to 0.18 mm/day. These differences will be driven by the difference in
boundary conditions — i.e. orography (Rocky Mountains 50% lower
than modern) and CO2 values (Pliocene 400 ppmv and modern
~320 ppmv) as the modern simulations are the corresponding PPE
member. The interaction between the difference in the Pliocene and
modern boundary will have caused the variation in global means
(Table 2) and regional differences (Fig. 1) displayed between the
three simulations.
Temperature (°C): High Sensitivity Minus Standard

Insignificant Regions In Grey

a b

c d

Fig. 2.Mean annual temperature anomalies for ‘high sensitivity minus standard’ (2a) and ‘low
and the insignificant regions, which are plotted in grey and overlain over the ‘high minus s
3.1.2. Perturbed physics simulations
As shown in Table 1, the high sensitivity simulation has a Charney

Sensitivity of 7.1 °C compared to the 3.3 °C of the standard simulation
and the 2.1 °C of the low sensitivity simulation. In terms of the effect
on model temperatures for the simulations, this leads to the expected
conclusions that for the vast majority of the Earth's surface the
anomaly plot for ‘high minus standard’ (Fig. 2a) shows a warm
anomaly. The largest warm anomaly is seen in the higher latitudes
and over continental North America and Asian subtropics. The ‘low
minus standard’ anomaly plot (Fig. 2b) shows a cooling anomaly over
oceanic regions and high latitudes with some areas of warm anomaly
on continental areas.

The Student's t-test shows that the changes in ‘high minus
standard’ anomaly are significant (at a 95% confidence level) except
for a region in the mid-latitude North Pacific and the east coasts of
China and Japan (Fig. 2c), which are the two large cool anomalies on
the plot (Fig. 2a). For the ‘low minus standard’ anomaly there are
slightly more areas where the anomaly was not significant (Fig. 2d),
but not in areas containing sites for data/model comparison (both SST
and vegetation).

The ‘high minus standard’ plot shows up to 14 °C warming
anomaly over the high latitude oceans whilst only showing minimal
warming in the tropics (Fig. 2a). This is important as the tropics have
been identified as showing no clear data/model mismatch in previous
Pliocene studies, with the weakness in the models being at the higher
latitudes in the data/model comparisons (Fig. 5). In continental areas,
the model predicts a warm anomaly in Australia of 2 to 4 °C and in
Temperature (°C): Low Sensitivity Minus Standard

Insignificant Regions In Grey

sensitivity minus standard’ (2b) in °C. Student's t-test was applied to the anomaly plots
tandard’ anomaly (2c) and the ‘low minus standard’ anomaly (2d).



Precipitation (mm/day): High Sensitivity Minus Standard

Precipitation (mm/day): Low Sensitivity Minus Standard

a

b

Fig. 3. Precipitation anomalies for ‘high sensitivity minus standard’ (3a) and ‘low
sensitivity minus standard’ (3b) in mm/day.

Evaporation - Precipitation (mm/day): 
High Sensitivity MinusStandard

Evaporation - Precipitation (mm/day): 
Low Sensitivity MinusStandard

a

b

Fig. 4. Evaporation–precipitation anomalies for ‘high sensitivity minus standard’ (4a)
and ‘low sensitivity minus standard’ (4b) in mm/day of precipitation with negative
numbers indicating that there has been net precipitation and positive numbers
indicating that there has been net evaporation. These anomalies were calculated using
[Evaporation (high/low) minus Precipitation (high/low)]+[Evaporation (standard)
minus Precipitation (standard)].
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continental USA, of 3 to 4 °C. The tropical rainforest belt through
South America, central Africa and Southeast Asia displays very little
change with a warm anomaly in the range of 0.5 to 1 °C, which is the
smallest significant change in continental temperatures.

The precipitation patterns in the two anomaly plots display a
greater range in the ‘high minus standard’ anomaly (Fig. 3a) than in
the ‘lowminus standard’ anomaly (Fig. 3b). In both experiments there
is little change in global average precipitation, although there may be
a significant change regionally. The overall pattern in the ‘high minus
standard’ anomaly plot is that higher latitudes increase their
precipitation anomaly whilst tropical and extra-tropical areas see a
decrease in the precipitation anomaly. In the ‘low minus standard’
anomaly plot the general trend is for a slight reduction in the
precipitation anomaly, but there are fewer and weaker areas of major
reduction.

The ‘high minus standard’ precipitation anomaly shows an
important reduction in the daily average rainfall for the continental
USA and Australia. The reduction in Australia is approximately
0.25 mm/day, but the reduction in continental USA is approximately
1 mm/day. Likewise, the temperature plots for this anomaly show a
much reduced level of warming in the tropical rainforest belt, and this
is mirrored in the precipitation anomaly plots with increases of
approximately 2 mm/day through northern South America, central
Africa and Indonesia.

For the most part, the Evaporation–Precipitation (E–P) plots show
a more positive moisture budget which could be due to a net increase
in the precipitation anomaly over most continental areas and high
latitudes oceans with a net increase in the evaporation anomaly from
tropical oceans. The patterns for both the ‘high minus standard’
anomaly (Fig. 4a) and ‘lowminus standard’ anomaly (Fig. 4b) are very
similar. The ‘high minus standard’ anomaly has greater areas of net
evaporation over land than the ‘low minus standard’ anomaly, but at
the same time has more intense areas of net precipitation in tropical
forest regions. The patterns displayed highlight the net drying
anomaly for continental areas in the ‘highminus standard’ simulation,
which have the potential to change the vegetation types between the
high and standard simulations, in turn causing a change in the skill of
the data/model comparison between the BIOME4 model and the
palaeobotanical data (Section 3.3).

The range in the temperature difference between the ‘high minus
standard’ anomaly compared to the ‘low minus standard’ anomaly is
associated with the slightly greater statistical significance of the ‘high
minus standard’ anomaly compared to the ‘low minus standard’
anomaly temperature plots. The variation in the climate sensitivity
values for the three simulations ensured that the effects of the high
simulation in comparison with the standard were greater and far
more likely to override any anomalies due to natural variability in the
models. The Student's t-test failed to find anymodel grid points where
the precipitation data or the E–P data are insignificant for either the
‘high minus standard’ or the ‘low minus standard’ anomalies. This is
probably due to a weakness in the choice of test, but as these data



PRISM3D MASST Minus Standard
Temperature (°C)

PRISM3D MASST Minus High Sensitivity
Temperature (°C)

PRISM3D MASST Minus Low Sensitivity
Temperature (°C)
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Fig. 5. Data/model comparison using the PRISM3D Mean Annual Sea Surface
Temperature (MASST) dataset. PRISM3D MASST minus standard (5a), PRISM3D
MASST minus high sensitivity simulation (5b) and PRISM3D MASST minus low
sensitivity simulation (5c) in °C. Root mean square errors (RMSE) were calculated for
each comparison as (a) 4.37, (b) 3.25 and (c) 4.38.
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types are not being compared to a proxy directly, the weakness is not
a serious concern for this paper, but will be addressed in future
developments of the Plio-QUMP project.

3.2. Data/model comparison — SSTs

Fig. 5a displays the present areas of reduced skill in the data/model
comparison with the PRISM3D MASST dataset. These areas are
focussed in the higher latitudes and range from 4 to 14 °C in the
North Atlantic and Arctic Ocean in areas where the anomalies were
shown to be statistically significant. The reduced skill is best
characterised in the North Atlantic where the high concentration of
data points (DSDP/IODP sites 410, 552, 606, 607, 608, 609, 610, 907,
909, 911— Dowsett, 2007 for more details) highlights the progressive
reduction in skill of the data/model comparison moving northwards.
This has been a significant area of data/model difference for mPWP
climate HadCM3 simulations (Robinson, 2009). Away from the high
concentration of data points in the North Atlantic, other key areas of
ocean through-flow to be noted are oceanic gateways and upwelling
regions and the tropical Pacific.

The high sensitivity simulation (Fig. 5b) provides the closest fit to
the PRISM data of the three simulations. This simulation decreases the
discrepancy between the data and the model by 3 to 6 °C, with the
largest increases in the highest latitude data sites. This result is to be
expected with the temperature data produced by the model and the
warming at the surface being driven by the perturbed parameters
creating the high climate sensitivity of 7.1 °C. The general pattern
observed in Fig. 2a is repeated in this data/model comparison, with
the warm anomaly of the high sensitivity simulation mainly at higher
latitudes compared to the tropical regions.

The low sensitivity simulation fails to improve the data/model
comparison, but despite the cooler ocean surface temperatures shown
in Fig. 2b (for ‘low minus standard’ anomaly), the data/model
comparison is not significantly poorer between the low and the
standard simulations. There is one small area of improvement north of
Iceland where the data/model comparison at one site is improved by
about 1 to 2 °C, to within the uncertainty in the data values.

In areas away from the North Atlantic, all three simulations
perform very similarly in the data/model comparison. The standard
simulation data/model comparison shows that the model over-
estimates warming in the tropical regions, causing a negative data/
model anomaly, but one that is within the analytical error of the data
(approximately +/−1.5 °C; Dowsett et al., 2010b). There is a slight
increase in this negative anomaly in the high sensitivity simulation, of
about a further 1 °C, with no change in the low sensitivity simulation.
This causes a unilateral cooling anomaly across the equatorial Pacific
region where there are data points for comparison. There is no
noticeable change in the data/model comparison between the high
and standard simulations in the areas of upwelling with data points
(off western Africa and South America), and whilst the low sensitivity
simulation is marginally weaker than the standard simulation in this
area, the change is negligible. A similar lack of change in the
comparison for all three simulations occurs near the Indonesian
gateway.

In terms of the comparison between the PRISM3DMASST data and
the ensemble members, the high sensitivity simulation is the most
skilful of the three shown in this ensemble for recreating the
conditions of the mPWP based on the RMS errors (3.25 for the high
sensitivity compared to 4.37 (Standard) and 4.38 (low sensitivity).

3.3. Data/model comparison — Biomes

The outputs from the BIOME4 model were compared with the
Piacenzian Stage palaeobotanical database of Salzmann et al. (2008)
using Kappa Statistics (Section 2.5.2). The results of this data/model
comparison show that the standard version of HadCM3 in this
ensemble produces the best agreement between the data and the
model. The standard simulation produced a Kappa score of 0.201 for
the full Biome classification and 0.229 for the Megabiome classifica-
tion (Fig. 6a), with scores of 0.186 (full) and 0.172 (mega) for the high
sensitivity simulation (Fig. 6b) and scores of 0.120 (full) and 0.162
(mega) for the low sensitivity simulation (Fig. 6c). These results
indicate that the high sensitivity simulation was better than the low
sensitivity ensemble member in comparison to the palaeobotanical



Fig. 6. BIOME4 outputs for the standard simulation (6A), high sensitivity simulation (6B) and the low sensitivity simulation (6C).
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data. The vast majority of the regions of poor data/model compara-
bility reflect the model simulating less precipitation than is required
for the reconstruction of the palaeo-data. In tropical regions this leads
to a loss of forest and its replacement with savanna, probably as a
result of poor representation of the total rainfall. In higher latitudes
the weaker vegetation reconstructions are probably related to the
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seasonal cycles in the rainfall in the model, compared to the palaeo-
data. This is reflected in the reduced amount of extreme errors in the
higher latitudes, with patterns being similar but slightly different to
tropical latitudes which see large changes in the vegetation type.

Regional comparison between the model-predicted biomes and
the palaeobotanical data shows that all three simulations have areas
of real difficulty. There is no agreement over Australia in any of the
comparisons of model output with the data. Over Australia the model
output is too dry leading to the prediction of desert and xerophytic
tropical shrubland biomes, whereas the palaeobotanical data show
that Australia was dominated by tropical forest biomes in the
northeast, tropical savanna across the northwest and centre and
temperate to warm-temperate forest and woodland biomes in the
southwest and southeast.

In northern South America, the model simulations correctly
predict tropical forest except in the northeast. Data from Chile show
the presence of tropical savanna, whereas the model predicts warm-
temperate to temperate forest. In southern South America the data
again disagree with model output. Palaeobotanical data from
Argentina show the presence of temperate deciduous broadleaved
savanna and temperate grassland during the mid-Pliocene. The
standard and low simulations predict temperate needle-leaf forests
and temperate sclerophyll woodland for this region, whereas the high
simulation predicts tropical xerophytic shrubland and desert. South
America is one of the areas that is unavoidably weak for climatological
data from palaeobotany with some information coming from
vertebrate palaeontology (Salzmann et al., 2008). However, it is
unlikely this is the cause of the poor relationship between the model
and the data in this region.

Data for the Arabian Peninsula suggests xerophytic tropical
shrubland with temperate grassland towards the Mediterranean
coast. The standard and high sensitivity simulations predict extensive
desert coverage for this region. The low sensitivity simulation
produced an expanse of xerophytic tropical shrubland, as shown in
the data.

In Asia the standard simulation agrees with the aridity of the
Tibetan plateau and the warm temperate evergreen mixed forest
around Southeast Asia. The rest of Asia is poorly modelled in
comparison with the data. The high and low sensitivity simulations
show less agreement in Asia than the standard.

All three simulations produce a very similar Antarctica, with a
prediction of tundra on the coast of the continent and through the
West Antarctic Peninsula (the ice mask was fixed in BIOME4, so
vegetation can only occur where there was no ice sheet). This
predictionmatches the palaeobotanical evidence from the Dry Valleys
region of the Transantarctic Mountains. However, the dating of this
site is controversial and recent work suggests it may be Miocene in
age, not mid-Pliocene (Ackert & Kurz, 2004; Ashworth et al., 2007).

At the highest latitudes of North America, the high sensitivity
simulation shows better agreement with the data than the standard
and low sensitivity simulations around Ellesmere and Meighen
Islands. However, it is less skilful than the standard in its predictions
for Alaska. All three simulations produce good data/model agreement
for Greenland. The west and Gulf coasts of America are poor in all the
simulations, being too warm, with the high sensitivity simulation also
becoming too dry. The east coast of North America is consistently
comparable to data points below 40°N. Above this latitude the single
datum and model predictions have no agreement.

Central America is predicted in all three simulations to have a
vegetation of xerophytic tropical shrubland whereas the palaeo-data
shows it to have been warm-temperate evergreen broadleaf and
mixed forest to tropical evergreen broadleaf forest.

For the Iberian Peninsula, the BIOME4 outputs all suggest a tropical
dry to temperate dry climate whereas the data indicate only a
temperate dry climate dominant during the mid-Pliocene, with minor
areas of warm-temperate evergreen mixed forest. This is most likely
caused by the difference between model and palaeoclimatic total
annual rainfall and seasonality. There may also be an issue here (and
elsewhere) surrounding the resolution of the model, as the Iberian
Peninsula is covered by only six model grid boxes.

Scandinavia is well modelled by the standard and high sensitivity
simulations, with agreement with the taiga forest shown by the
palaeo-data. The low sensitivity simulation is poorer here as it
predicts tundra. Western Europe shows good agreement between the
model and the data in all the simulations, with the predicted warm
temperate evergreen broadleaf and mixed forest matching well with
the majority of the data points. Around the eastern Mediterranean
coast, the model simulations (especially the high sensitivity simula-
tion) predict temperate sclerophyll woodland and shrubland, where-
as the data show warm temperate mixed forest. This is probably due
to differences in data and model predictions for annual precipitation
and seasonality. In Eastern Europe, the low sensitivity simulation is
less skilful than the high sensitivity simulationwhich performswell in
this area, matching some of the data with its prediction of warm
temperate mixed forest. However, the area it predicts this for extends
farther, than the data which shows a change to cooler, drier, more
open biomes to the east of the Black Sea.

In Africa, the most noticeable result in any of the simulations is the
lack of a Sahara Desert in North Africa, which has been replaced by a
xerophytic tropical shrubland in the low sensitivity simulation. The
standard and high sensitivity simulations do predict the Sahara
Desert, and a more extensive tropical rainforest than the low
sensitivity simulation. Beyond that, all three simulations show a
common error when compared with the fossil data. This is the
transition from desert/shrubland to savanna and tropical grassland.
This occurs a grid square further south than the most northern data
occurrence. Southern Africa is particularly poorly modelled, with
tropical deciduous broadleaf woodland modelled instead of the
tropical savanna, and xerophytic tropical shrubland instead of
temperate sclerophyll woodland.

The regional comparison highlights that the reduced skill in the
model relates to a number of areas where seasonality is strong and
where precipitation is high. A number of areas have been highlighted
as being too dry and as a result, generate a drier biome than that
which the data indicate existed at the time.

4. Discussion

Palaeoclimate data affords a means of testing climate model
experiments in a way that is not possible with future climate
projections. The SST data produced by the PRISM group was initially
used to drive atmosphere only climate models (i.e. Haywood et al.,
2000) and later for data/model comparisons with fully coupled
AOGCMs (Dowsett et al., 2011-this issue). Whilst the dataset has
developed into an ever more detailed palaeoenvironmental recon-
struction for the mPWP, with a detailed vegetation reconstruction
added (Salzmann et al., 2008), the SST dataset is the only quantitative
temperature reconstruction for the period. This has led to a situation
where the aim of improving mPWP modelling studies is to generate
model simulations which increase the warmth in the higher latitude
oceans, so as to tackle the weakness in the model when compared to
the data whilst not weakening the areas of good data/model
agreement. The results from the ‘PRISM3D MASST minus high
sensitivity simulation’ data/model comparison (Fig. 5b), show that
a simulation with a higher Charney sensitivity could increase the
model skill in comparison with this dataset. However, when the high
sensitivity simulation was used to force the BIOME4 model, it
produced a vegetation prediction that had less agreement with the
palaeobotanical dataset than with the standard simulation. Primar-
ily, this was over land areas such as North America where the high
sensitivity simulation was shown in anomaly plots with the standard
simulation (Figs. 2a, 3a and 4a) to produce a warmer, drier climate.
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The warm anomaly which improved the skill of the model in
comparison with the PRISM3D MASST dataset reduced its skill in
comparisons with the vegetation dataset. There is an insufficient
amount of rainfall for the vegetation patterns in many regions to
match the palaeo-data, leading to a prediction of drier climate
vegetation compared to the palaeo-data.

The improvement of mPWP model skill is not going to be found
through increased temperatures alone. Despite its all-round reduced
skill compared to the standard and high sensitivity simulations, the
low sensitivity simulation may indicate a way forward. The low
sensitivity simulation showed an interesting contrast between the
land and the ocean (Fig. 2b). Ocean areas tended to be less sensitive,
yet land areas showed general greater sensitivity to the changes in the
parameterisations (except at the highest latitudes), causing a warm
anomaly. A reversal of this pattern with warm anomaly oceans and
little change to the terrestrial areas (in comparison with a mPWP
standard simulation) could improve the skill of mPWP models.

Whether or not this combination is possible is not known at
present. The full ensemble of 17 members (the three shown here, plus
14 further variations as described in Collins et al., 2010), is the next
stage for the Plio-QUMP Project. The usefulness of using two different
proxies (SST and vegetation) to test the skill of the modelling
simulations has been displayed in these initial results. Although the 17
member ensemble is not likely to include a perfect mPWP model, it
will generate a range of models that enables us to quantify the
uncertainty in the model predictions and to illustrate (with
constraints for skill areas) where the climate model is performing
skilfully in comparison with the available proxy data and where it is
failing to perform with good skill.

These initial experiments have produced interesting results
generating new ideas about both the types of parameters that have
been perturbed and the importance of boundary condition uncer-
tainty. The initial ensemble, as with the full ensemble to follow, is only
perturbing parameters in the atmospheric component of the HadCM3
model. QUMP projects aim to look at predictive climate change over
the coming century, and atmospheric parameters are the only ones
that act on such a timescale — Collins et al. (2007), undertook an
oceanic perturbation and failed to find significant results over the
timescale of the next century. However, in a data/model comparison
with SSTs, and over the longer timescales of palaeo-experiments,
these oceanic perturbations could become a stronger influence on the
climate model simulation.

The data/model comparison of Fig. 5b illustrates that the high
sensitivity simulation was unable to achieve all the necessary warmth
in the higher latitudes to align data and model results, even as it
modelled continental areas that were too warm for the palaeo-
vegetation to have existed. Also, all three members of the ensemble
showed little variation around ocean gateways, in the tropical Pacific
and in areas of upwelling. All these areas showed an over-estimation
of warmth by the model in comparison with the proxy data that are
available in these regions. These are issues relating to uncertainty in
the boundary conditions of the model. Boundary condition uncer-
tainty in the mPWP modelling studies could be an explanation for
why the high sensitivity simulation was still unable to generate
enough warmth in the North Atlantic to match that indicated by the
data. There are two key boundary conditions that could have affected
this. The height of the RockyMountainswas set at 50% of theirmodern
height in the PRISM2 reconstruction, but this value may not be
realistic. If they were high the Rocky Mountains would have affected
atmospheric circulation around the North Atlantic, which could exert
a higher latitude influence (Hill et al., 2011-this issue). The other
boundary condition is the ocean bathymetry. There has been detailed
research into the bathymetry of the mid-Pliocene ocean, focussing on
key tropical gateways such as Indonesia and the Central American
Seaway. Recent work has shown that the Central American Seaway
was closed during the mPWP (Lunt et al., 2008a) and that the
Indonesian gateway was in a modern configuration by this period in
the Pliocene (Karas et al., 2009, 2010). One recently investigated
region where bathymetry could affect the modelling results is the
Greenland–Scotland ridge (Robinson et al., 2011-this issue). The
recent work has shown that it is reasonable, on geological grounds, to
adjust the height of the ridge for modelling purposes, and that when
these changes are included in models there is an increase in high
latitude North Atlantic SSTs. Combining this work with the work of
the Plio-QUMP ensemble could further reduce errors in the data/
model comparison involving the MASST dataset, without causing too
much warming on land for the vegetation reconstruction to be
degraded.

All published work on QUMP projects to date has been on
predictive climate change over the next century, so this study
represents the first data/model comparison for a PPE in a warmer
than modern palaeoclimate. The two end members used in this
simulation have been shown to be statistically valid versions of the
HadCM3 model (Collins et al., 2010). They both perform within the
range of validation tests that were undertaken by Collins et al. (2010)
and for that reason they were considered acceptable simulations for
use in the Plio-QUMP Project. It will not be until the full ensemble is
completed and analysed that a full understanding of the performance
of these end members will be realised. It is important for both
predictive QUMP experiments and for the quantifying of mPWP
uncertainty that the full ensemble is produced. Only once it has been
completed will the full range of potential model shall the results be
known. Whilst these end members are the extremes of Charney
sensitivity for the HadCM3 QUMP ensemble members, there is no
certainty that these represent the endmembers in range of changes to
vegetation and SSTs in the data/model comparisons. It must be noted
though that these experiments lack the interaction of earth system
feedbacks, such as climatically driven changes in vegetation, which
could play a prominent role in the changes in climate between
ensemble members.

5. Conclusions

The Quantifying Uncertainty in Model Predictions for the Pliocene
(Plio-QUMP) Project offers a tremendous opportunity to address the
differences in the skill of different model simulations of the mid-
Pliocene Warm Period (mPWP; 3.3 to 3.0 Ma BP) through data/model
comparisons and to use this work to quantify uncertainty in model
predictions.

The initial results were important indicators as to the direction of
the project as they highlighted that it will require a measured and
balanced approach to dealing with the weaknesses in previous
Pliocene HadCM3 simulations. The high sensitivity simulation
produced an improved data/model comparison with the PRISM3D
Mean Annual Sea Surface Temperature (MASST) dataset, especially in
the North Atlantic and Arctic Oceans. However, it was less skilful in
comparison with the palaeobotanical reconstruction than the mPWP
standard simulation. The low sensitivity simulation was less skilful in
both data/model comparisons than the high sensitivity simulation
and the standard simulations.

The high sensitivity simulation performed less skilfully in the
vegetation data/model comparison because it warmed both areas
over ocean and land by large amounts. Whilst this improved the
Pliocene Research Interpretation and Synoptic Mapping (PRISM) 3D
MASST comparison, it caused a drying out of areas such as Australia
and North America in BIOME4, which reduced the agreement with the
palaeobotanical data in some continental regions.

Both the high and low sensitivity simulations yielded positives
and negatives in the data/model comparisons. It will be a combina-
tion of elements from both runs that will form an ensemble member
(or members) giving the best results. It is important to consider the
possibility that a couple of simulations will produce improved data/
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model comparisons bracketing the palaeo-data and that these will be
used to quantify the uncertainty.

Next, the Plio-QUMP Project will initiate the full 17 member
perturbed physics ensemble (PPE) to create the full ensemble of
simulations to be compared with data from the PRISM3D MASST
dataset and the palaeobotanical vegetation dataset of Salzmann et al.
(2008).

It is evident that whilst the atmospheric parameter PPEs are a good
starting point for the Plio-QUMP Project, the project will not be
complete without analysis of other causes of uncertainty, both from
perturbing ocean parameters and from analysing the uncertainty
created by key boundary conditions on land and in the oceans.

The ‘low minus standard’ simulation (Fig. 2b) displayed a
contrasting temperature pattern between the ocean and land. Unlike
our final full PPE, our initial three-experiment ensemble is not
sufficiently large to investigate the parameters that cause this
contrast. The Plio-QUMP Project will also investigate which param-
eters are exerting the strongest climatological effects on the model.
This is important for understanding the impacts that are made when
we perturb the model physics and is vital for understanding and
quantifying the uncertainty.
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