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Nomenclature

a Wavelet scale

A Material constant for the ESD strain-life model [MPa]

Ak Amplitude of power spectral density

b Fatigue strength exponent

b’ Wavelet translation step

B Material constant for the ESD strain-life model

c Fatigue ductility component

C.F. Crest factor

C1 Percentage level for determining initial trigger level value in a wavelet
group [%]

c2 Percentage level for determining the trigger level decrement step [%]

D Fatigue damage parameter

D; Fatigue damage for one cycle

Dr Total fatigue damage per block

D1 Percentage difference in the root-mean-square value between the
original and mission signals [%]

D2 Percentage difference in the kurtosis value between the original and
mission signals [%]

E Modulus of elasticity [MPa]

fo Cyclic frequency [Hz]

fi The harmonic frequency [Hz]

G(f) r.m.s. value is the function of PSD of the input signal

H Material constant in the Ramberg-Osgood relationship [MPa]

H(f) Stress response function

J Number of point in time series

k Number of iteration in discrete Fourier transform

K Kurtosis

KD Percentage level of target acceptable range for kurtosis [%]

K Fatigue notch factor

K Stress concentration factor

Material constant for a stress decay process of the ESD model



Vii

maxg; Maximum amplitude in a wavelet group [microstrain]

n Number of data points

n’ Strain hardening exponent

N Number of samples in time series

N; Fatigue life [Number of cycles or blocks to failure]

N Number of constant amplitude cycles to failure

N, Number of applied cycles

Nr Number of blocks to failure

q Notch sensitivity factor

r.m.s. Root-mean-square [microstrain]

RD Percentage level of target acceptable range for root-mean-square [%]
S Skewness

S(f) Underlying PSD of the Gaussian signal

Sy Current opening stress [MPa]

SD Standard deviation [microstrain]

Se Fatigue limit or endurance limit of a material [MPa]
Se(notched) Fatigue limit or endurance limit of a notched material [MPa]
Se(smooth) Fatigue limit or endurance limit of a smooth material [MPa]
S; Intrinsic stress limit under VA loading [MPa]

Simax Maximum stress amplitude [MPa]

Soin Minimum stress amplitude [MPa]

Sop Crack opening stress [MPa]

Sss Steady-state opening stress [MPa]

Sy Ultimate strength of a material [MPa]

S, Yield strength of a material [MPa]

S, 0.2% static yield strength [MPa]

t Time [seconds]

T, Period [seconds]

W, (a. b") Wavelet coefficients for continuous wavelet transform

W, (m.n) Wavelet coefficients for discrete wavelet transform

R Mean value [mm, microstrain, etc.]
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Omax
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y(r)

v, ()

vili

Instantaneous value in time series [mm, microstrain, etc.]
Maximum instantaneous value in time series [mm, microstrain, etc.]
Instantaneous value at time {[mm, microstrain, etc.]

Amplitude of discrete Fourier transform

Amplitude

Amplitude of Fourier transform in frequency distribution

Material constant for steady state opening stress equation

Material constant having dimensions of length for notch sensitivity
equation

Material constant for steady state opening stress equation

Material constant having dimensions of length for notch sensitivity
equation

Frequency interval in frequency domain [Hz]

Net effective strain range for a closed hysteresis loop related to fatigue
crack growth

Effective strain range

Stress range [MPa]

Fatigue ductility coefficient
Total strain amplitude

Elastic strain amplitude

Intrinsic strain fatigue limit under VA loading
Crack opening strain

Plastic strain amplitude

Notch tip radius [mm)]

Stress [MPa]

Stress amplitude [MPa]

Fatigue strength coefficient and
Maximum stress [MPa]
Minimum stress [MPa]

Wavelets

Scaled wavelets



ARMA
ASTM
BS
BS1

BS2

BS3

BT
CA
CWT
DFT
DWT
ESD
FFT
HCF
IDFT
IFFT
LCF
LSB
LTC
MNMS
oL
OL/UL
owT
PSD
PV
SAE
SAEFDE

Complex conjugate of

Angular frequency [rad/s]

Autoregressive and Moving Average
American Society for Testing and Materials

British Standards

The original order sequence of the bump segments in a mission
signal

Bump segment sequences in a mission signal ordered from the highest
expected fatigue damage to the lowest

Bump segment sequences in a mission signal ordered from the lowest
expected fatigue damage to the highest

Linear summation of fatigue damage for all bump segments
Constant amplitude

Continuous wavelet transform

Discrete Fourier transform

Discrete wavelet transform

Effective Strain Damage

Fast Fourier transform

High-cycle-fatigue

Inverse Discrete Fourier transform

Inverse Fast Fourier transform
Low-cycle-fatigue

Log skidder bending

Leyland Technical Centre, United Kingdom
Mildly Nonstationary Mission Synthesis
Overload stress/strain

Overload followed by underload stress/strain
Orthogonal wavelet transform

Power spectral density

Peak-valley

Society of Automotive Engineers

Society of Automotive Engineers Fatigue Design and Evaluation



S-N
STFT
SWT
T4
T2
T3
T4

T5

T6
TCFD
TiBS]j

UL
VA
WBE

Stress-life

Short time Fourier transform
Smith-Watson-Topper

Sinusoidal synthetic test signal

Random synthetic test signal

Experimental test signal measured on public road

Experimental test signal measured on pavé test track having tensile
mean strain loading

Experimental test signal measured on pavé test track having
compressive mean strain loading

Experimental test signal measured on manoeuvre proving ground
Time Correlated Fatigue Damage

Mission signal with a particular bump segment sequences (i denotes
number of test signal, i = 1,2, ...,6; | denotes bump segment
sequences, j = 1,2,3)

Underload stress/strain
Variable amplitude

Wavelet Bump Extraction
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SUMMARY

In durability testing of automobiles, load histories collected for laboratory testing are
often lengthy in time. Therefore, a fatigue data editing technique is needed to
summarise the load history. A fatigue mission synthesis algorithm, called Wavelet
Bump Extraction (WBE) preserves the original load cycle sequences has been
developed. The basis of WBE is to identify the important features or bumps that cause
the majority of the fatigue damage. Bumps are identified in the frequency bands of the
load spectrum using an orthogonal wavelet transform. Bumps are then extracted and

combined to produce a mission signal with an equivalent fatigue damage as the original

signal.

The WBE validation was performed by analysing the cycle sequence effects in variable
amplitude (VA) loadings. The experimental fatigue lives of the shortened VA loadings
(Choi 2004) were compared to those predicted using strain-life fatigue damage models,
..e. Coffin-Manson, Morrow, Smith-Watson-Topper and Effective Strain Damage (ESD).
The smallest difference was found between the experiment and ESD model, suggesting
it is a suitable model for the use with WBE. Comparison between WBE and the time
domain fatigue data editing was also conducted in order to observe its effectiveness for
accelerated fatigue tests. Moreover, it is useful to evaluate the fatigue life of the original
and mission signals by means of fatigue damage preservation in the mission signal.
Finally, an analysis of the bump segments sequence effects was performed in order to

determine an appropriate mission signal for accelerated fatigue tests.

The WBE algorithm showed a substantial compression of the VA loadings could be
achieved whilst maintaining fatigue damage and the important load sequences. The
ability of the WBE algorithm to shorten fatigue loadings would be expected to prove
useful in accelerated fatigue testing of automobiles. Finally, the combination of WBE

and ESD provides a novel application of the wavelet-based fatigue data editing.



CHAPTER 1

1. Introduction

1.1 Fatigue Design

In engineering there is a type of failure which is caused by the repeated loading of
machine components and structures. Such loads cause cyclic stresses that can produce
microscopic physical damage to the components. Even at stresses below a given
material’s ultimate strength, this microscopic damage can accumulate with continued
cycling until it develops into a crack that leads to the failure of the component. Failure

due to this type of loading is called fatigue.

Fatigue is a highly localised phenomenon that depends on the stresses and strains
experienced in critical regions of a component or structure. Mechanical failures due to
fatigue have been the subject of durability research for more than 150 years (Mann
1967). Historically, an early fatigue study was performed by W.A.J. Albert in 1829 and
the term fatigue was first used in 1839 in a book by P.V. Poncelet of France. A well-
known study was performed by Wohler (1860) in which railway axles made of several
metals were tested under bending, torsion and axial loads. Wohler demonstrated that

fatigue failure was not only a consequence of cyclic loads, but was also affected by

mean stresses.
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Research has shown that about 50% of mechanical failures can be attributed to fatigue
(Fuchs and Stephens 1980). The economic costs of fracture and its prevention are
large, estimating 80% of these costs involve cyclic loading and fatigue failure situations
(Dowling 1999). Such statistics provide motivation for improvements in fatigue design,
and several guidelines are routinely considered during the design of mechanical

components or structures:

1. The elimination or reduction of stress raisers by streamlining the part to produce
smooth surfaces;

2. The avoidance of sharp surfaces that might result from punching, stamping,
shearing, or similar manufacturing processes:;

3. The prevention of the development of surface discontinuities during processing;

4. The reduction or elimination of tensile residual stresses that are caused by

manufacturing processes;

1.2 Durability Analysis

Automotive industries increasingly seek to reduce development times while
simultaneously achieving higher quality levels for their vehicles (Lin and Heyes 1999).
One of the essential elements to achieve these targets is durability analysis. By
definition, durability is the capacity of an item to survive its intended use for a suitably
long period of time. Therefore, good durability minimises the cost of maintaining and
replacing the item, the prevention of failures and the optimisation of automobile or

component design (Dowling 1999; Palma and Martins 2004).

Procedures used by the automobile industry for performing fatigue design are
continually evolving (Dabell 1997). The main task performed during durability analysis is
the fatigue life assessment of components such as engine parts, suspension parts and
body structures (Bignonnet 1999). Automotive manufacturers have made large

investments in this area so as to achieve products which meet a specified fatigue life

target (Smith 1999a).
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Figure 1.1 shows the relationship between the elements involved in the durability
analysis, as defined by Landgraf (1987). As shown in Figure 1.1, component geometry,

service loads and materials properties were identified as the inputs for performing a

durability analysis.

GEOMETRY SERVICE MATERIAL
LOADS PROPERTIES
\ 4
DURABILITY
ANALYSIS

Figure 1.1: Inputs to the durability analysis process (Adapted from Landgraf 1987).

The first required input is the geometry of the automobile component, which is needed
so that the component can be fabricated from a specific material and properly fixed to
the testing machine. The second type of input consists of the service loads, which are
measured on the automobile component while either a physical or numerical simulation
prototype automobile is driven over reference road surfaces. In this context, load or
loading is used as a generic term to indicate the parameters used in the fatigue data
measurement such as forces, movements, strains or stresses. The experimentally
measured service loads normally exhibit a variable amplitude pattern and are lengthy in
time. Such service loads are generally considered to constitute a variable amplitude
(VA) loading. A VA loading is defined as a cyclic load that oscillates between varying
maximum and minimum stress amplitudes and these amplitudes changed in an irregular
manner (Dowling 1999). Another loading type is constant amplitude (CA) loading, which
involves cycles which oscillates between fixed maximum and minimum stress
amplitudes (Dowling 1999). Most of the automobile service loads that have been

reported in the literature, however, have had the pattern of VA loadings (Fuchs and

Stephens 1980; Fatemi and Yang 1998).



Finally, material properties data are used together with the service loads and specimen
geometry in order to perform a damage analysis of the component (Landgraf 1987). In
the case of durability analysis performed by means of fatigue damage prediction. the
properties of a material can be obtained from tensile tests and cyclic tests. By
performing tensile tests (BS 10002-1 2001), several parameters can be obtained such
as the modulus of elasticity, the ultimate strength, the yield strength, the hardness of
material, etc. Such parameters are known as monotonic mechanical properties (Dowling
1999). Using cyclic tests (ASTM E739-91 1988), the mechanical properties which can
be determined include the fatigue strength coefficient, the fatigue strength exponent, the

fatigue ductility coefficient and the fatigue ductility exponent.

Using the three types of input data, several engineering activities are performed to
complete the durability analysis of an automobile. Figure 1.2 lists the three principal
activities as defined by Landgraf (1987). Computer modelling is performed using fatigue
analysis software codes which can estimate failure life based on component geometry,
loading and material properties (Lee et al. 1995). Laboratory testing of components is
also performed in order to determine the deformation and failure life under a given
service load. Road testing of prototype automobiles is also performed by driving them
over reference surfaces so as to obtain experimentally measured durability data. Finally,
the fatigue life resuits obtained by means of computer modelling and laboratory testing

can be compared.

DURABILITY
ANALYSIS
Computer Automobile testing (test
modelling track / proving grounds)
Laboratory
testing

Figure 1.2:  Durability analysis activities (Adapted from Landgraf 1987).



1.3 Fatigue Data Editing for Accelerated Fatigue Tests

Durability analysis requires knowledge of service loads since these loads are used for
the laboratory testing of the component (Ridder et al. 1993: Goswani 1997). The
required service loads have traditionally been obtained by testing a prototype
automobile, or at least a similar automobile, over reference road surfaces (either proving
ground surfaces or public roads). More recently it has also become possible to estimate

service loads for the component by means of multi-body dynamics analysis (Shabana

1998)

The objective of laboratory based accelerated testing is to expose the component or the
complete automobile to a test loading which is much shorter than the target loading, but
which has approximately the same damage potential. Three techniques are used to
accelerate laboratory fatigue testing (Frost et al. 1974): to increase the frequency of the
cyclic loading; to increase the load level; and to remove small amplitude cycles from the

time history.

Increasing the frequency of the cyclic loading is one of the alternative solutions for
achieving an accelerated fatigue test. For a simple component, changes in loading
frequency can be made on the basis that frequency has minimal effect on component
fatigue strength. This is often not the case, however, when testing complex structures
since the changes in frequency may lead to a resonance being excited (Frost et al.

1974).

In the second approach, automobile manufacturers tend to increase load levels by
scaling up the service load by a constant value. Using this approach, the fatigue limit of
the edited loading can be found at shorter fatigue life compared to the original loading
fatigue limit (Frost et al. 1974). Therefore, the test of automobile components can be
accelerated using the edited loading that has shorter fatigue life. By definition, the

fatigue limit is the limiting value of the fatigue strength as fatigue life becomes very



large, for example at approximately 10° cycles for steel (Dowling 1999). Fatigue strength
is a stress value that is determined at a particular fatigue life as determined from stress-
life diagram. Finally, the fatigue life is defined as the number of cycles of stress or strain

that a given specimen sustains before failure (Fuchs and Stephens 1980).

The final approach for performing the accelerated fatigue testing is to apply a method to
the input VA fatigue loading by removing small amplitude cycles (Frost et al. 1974).
Such a technique is known as fatigue data editing, which is defined as a method for
omitting the small amplitude cycles which provide a minimal contribution to the overall
fatigue damage, whilst retaining the high amplitude cycles which are the most damaging
sections. In automotive applications, this concept is today often applied for the purpose
of achieving accelerated fatigue tests which shorten the total test time required (Rotem
1981; Leese and Mullin 1991). Without editing the service load before performing the

tests, test time and cost can become prohibitive.

Using the fatigue data editing approach, large amplitude cycles that cause the majority
of the damage are retained and a shortened loading consisting of large amplitude cycles
is produced (Conle and Topper 1979; Conle et al. 1997). The concept of accelerating a
test by removing non-damaging events is distinctly different from the previous two
approaches (Leese and Mullin 1991). Using both the previous approaches, the original
VA loading is not compressed, so that the edited loading will have the same time length
as the original loading. The last approach achieves test acceleration by considering less
than the complete set of VA loadings since only a subset of the loading is required to

produce the same amount of damage.

Early fatigue data editing research was performed by Conle and Topper (1979) with the
small cycle omission procedure using strain loading. In this method, the local strain
approach and the linear damage rule were used to select the omission levels. There
were three criteria of strain ranges to select the edit levels: the sequential strain ranges
with the application of peak-valley (PV) and damage histogram ranges; the rainflow

counted strain ranges; and the mean stress parameters. For defining the term of peak-



valley, a peak is a change in the slope from positive to negative, and a valley is a

change in the slope from negative to positive (Pompetzki 1993). Evaluation of the
criteria was carried out by estimating the amount of fatigue damage generated by each
amplitude level of the original history, selecting several strain range levels for history
editing and then comparing the amount of damage reduction predicted by each criterion
with actual fatigue test results. However, it is apparent that when high overall strain
levels are encountered in the total record of the VA loading, great care should be taken
to eliminate smaller cycles. A similar technique was performed by Conle and Topper
(1980) to edit VA loading but using lower overall strain levels in order to omit smaller
cycles. The fatigue damage results obtained from this study indicate the presence of an

overstrain effect is much larger than the previous work by Conle and Topper (1997).

A study by Heuler and Seeger (1986) using the aircraft service loading showed the
small cycles were omitted from the original loading according to the fatigue limit criteria.
In this study, any small cycles with the stress below 50% of the materials CA fatigue
limit were found to be allowable levels to be omitted. This omission levels was
applicable in the fatigue tests using smooth steel and notched aluminium specimens.
Using this approach, the total life for smooth specimen (steel) and for notched specimen
(aluminium) was increased by 10-30% and 30-70%, respectively. The omission level,
which is 50% of the CA fatigue limit, was chosen as a fraction of the maximum load
range because of simplicity and convenience. For producing an accurate fatigue
damage result, however, this fatigue data editing method is not appropriate for VA

fatigue loadings.

Other fatigue data editing analysis involving the concept of PV reversals conducted by
Gunger and Stephens (1995) and Stephens et al. (1997). In these studies, the Society
of Automotive Engineers Fatigue Design and Evaluation (SAEFDE) committee log
skidder bending (LSB) loading was selected due to a large number of small cycles in the
total record length. The combination of strain amplitude and mean obtained from the
formulation of the Smith-Watson-Topper (SWT) strain-life model was used in order to

produce an omission level to remove the small cycles. Using this approach, the PV



domain was used to edit the PV service history where all SWT parameter cycles less
than the omission level were removed. This PV editing method showed that aimost 90°-

of the fatigue damage was retained in the edited signal while 89% of the history length

was removed.

Research by El-Ratal et al. (2002) discussed the application of time correlated damage
analysis for time domain fatigue data editing by using the nSoft® software package.
Using this approach, the analysed VA loading that was measured from automobile
suspension was divided into many small windows and the fatigue damage for each
window was calculated. Sections with significant fatigue damage that contained high
amplitude cycles were retained. On the other hand, sections with minimal fatigue
damage that contained small amplitude cycles were removed. High amplitude sections
were then assembled using the available windows joining function of the software. In
order to validate the fatigue data editing approach, the authors performed laboratory
fatigue tests using a full automobile suspension system. By applying several VA
loadings (obtained from a ‘potholes and bumps’ test surface) to this suspension system,

the test was accelerated from eleven days to two days.

The application of the wavelet transform was rarely used for the fatigue data editing
technique. The wavelet transform is defined as the mathematical transformation in the
time-scale domain and it is a significant tool for presenting local features of a signal. in
this type of transform, the data is moved from a space to a scale domain by using
wavelets as a basic function in order to provide the localised features of the original
signal. This approach was initially performed by Oh (2001) with the application using a
VA loading measured on a light railway train component. The author used the wavelet
transform for the spike removal and de-noising a contaminated signal in order to
compress the light railway VA fatigue loading. In this case approximately 80% of the

fatigue damage was retained in the edited signal while 71% reduction in the record

length.



Another wavelet-based approach in data editing is the Mildly Nonstationary Mission
Synthesis (MNMS) algorithm which was developed by Giacomin et al. (1999; 2000;
2001) tor performing mission synthesis of vibration of stimuli in comfort applications. The
application of MNMS for the fatigue data editing (Abdullah et al. 2004) produced
statistically accurate fatigue missions when the original signal was substantially
shortened. Using this approach, the VA loading was compressed by up to 10 times to
produce the edited loading. In terms of fatigue damage potential, however, the edited

VA loadings did not have similar fatigue damage as the unedited loading.

For all the fatigue data editing techniques discussed in this section, different VA
loadings were used for different techniques. There seem to be no generally agreed rules
that clarify which method is the best, or what amplitude should be chosen for load
omission (Wang and Chen 1999; Yan et al. 2001). Practically, any fatigue data editing

technique must reduce the testing period and be technically valid.

1.4 Research Objectives

1.4.1 The Research Topic

Road vehicle manufacturers go to great lengths to measure loadings under a variety of
driving conditions. Accelerated fatigue testing is often accomplished by correlating the
damage produced by specific test tracks with the damage produced by public roads.
Severe, short duration, test tracks are used instead of longer public roads. Testing is
often further accelerated by use of a fatigue data editing technique which retains the
high amplitude cycles that produce the majority of damage. The need to reduce
development time while simultaneously improving confidence in the durability analysis
means that it is of interest to investigate the issue of fatigue loading compression. Such
a method to summarise VA loadings measured on the automobile component whilst

preserving the local load-time cycle sequences is the subject of this thesis.
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A new fatigue data editing technique and algorithm, based on a wavelet-based
approach has been developed. The algorithm was designed to identify and extract
fatigue damaging events, or high amplitude segments, from a VA loading of the type
commonly encountered when designing automobile components. The extracted
segments are combined to produce a shortened signal which is calied a mission signal.
The mission signal is a complete signal with shorter time length, but it has equivalent
global signal statistics and fatigue damage as the original signal. This algorithm was
developed based on the MNMS algorithm that was previously applied for the vibrational

comfort studies by Giacomin et al. (1999; 2000; 2001), Grainger (2001) and Steinwolf et
al. (2002).

The research described in this thesis was motivated by the author’s belief that the
wavelet transform is a suitable method for use in fatigue data editing. Since VA fatigue
loadings normally exhibit nonstationary signal behaviour, wavelet time-scale analysis
would be expected to be a natural choice of analysis method. With this approach the
fatigue loading sections that produce the majority of damage can be identified based on
the concept of time-frequency localisation. According to the author’s readings and
knowledge, no fatigue data editing technique uses the wavelet transform for the

identification and extraction of fatigue damaging events.

1.4.2 The Specific Research Objectives

Based on the related background and research overview, the main objective of the
Ph.D. research is to develop a fatigue data editing technique involving a wavelet-based

approach. In order to achieve this objective, several secondary objectives had to be

accomplished:

e Perform a literature review in order to find the available fatigue data editing

techniques in various domains;
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Find a suitable strain-life fatigue damage model for VA loadings which considers

cycle sequence effects;

e Validate the accuracy of the chosen strain-life model by means of laboratory fatigue

tests;

e Evaluate the suitability for purposes of fatigue data editing of a mission synthesis
algorithm, first developed for use in the area of human vibrational comfort, known

as Mildly Nonstationary Mission Synthesis (MNMS);

e Develop a new wavelet-based fatigue data editing algorithm which would be able to

identify and extract the damaging sections from the original fatigue loading;

. Evaluate the effectiveness of the algorithm at shortening several VA fatigue

loadings, and quantify the retained damage by means of computational analysis;

e Validate the effectiveness of the fatigue data editing algorithm by means of

laboratory fatigue tests.
Some of the questions which the research sought to answer were the following:
e What is the suitable fatigue damage model to calculate the fatigue life of a

component under VA loadings?

e What is the most appropriate method to edit VA fatigue loadings for the purpose of

accelerated fatigue tests?

e Can a new algorithm be developed to improve the accuracy of fatigue data editing

with respect to existing techniques?

e« What are the main factors that influence the identification of fatigue damaging

events in the new algorithm?
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How important are the sequence effects of fatigue cycles and fatigue damaging

events to the fatigue life prediction”?

¢ Are the mission signals produced by the new fatigue data editing algorithm suitable

for accelerated fatigue testing of vehicle components?

The author hopes that this thesis clarifies some of the above listed questions and that it

accurately describes the wavelet-based fatigue data editing algorithm that was

developed.



CHAPTER 2

2. Review of Concepts and Approaches

Since in automotive applications the road load data sets are typically nonstationary in
their statistics, discussion is dedicated to the definition of the possible signal types and
to the influence of signal type on the choice of signal processing method. In addition, the

theoretical background behind fatigue life prediction is aiso presented in this section.
2.1 Signal Analysis

A signal is a series of numbers that come from measurement, typically obtained using
some recording method as a function of time (Meyer 1993). In the case of fatigue
analysis, the signal consists of a measurement of the cyclic loads, i.e. force, strain and
stress against time. A time series typically consists of a set of observations of a variable
taken at equally spaced intervals of time (Harvey 1981). Today, most experimental
measurements, or data samples, are performed digitally. A signal is normally measured
using an analogue-to-digital converter, so as to produce an experimental signal at a
series of regularly spaced times as shown in Figure 2.1. This form of time history is
known as a discrete time series, which is formed as a function of time. The objective of
time series analysis is to determine the statistical characteristics of the original tunction

by manipulating the series of discrete numbers (Newland 1993).
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Figure 2.1:  Sampling a continuous function of time at regular intervals

(Reproduced from Newland 1993).

A signal can also be related to a probability distribution, and one example of the signal
distribution is Gaussian or normal. It is an interesting fact of life that many naturally
occurring random vibrations have the Gaussian distribution or the well known bell-
shaped distribution as illustrated in Figure 2.2 (Newland 1993). The mathematical

equation of the Gaussian distribution is given by

, 1 ~(x=x)2/2(SD)?
(x) =—eX (=1
b N2 (SD) b

where p(x) is probability density function of Gaussian Distribution, SD is the standard

deviation value, x is the instantaneous value and x is the mean value. The function is
symmetric about the mean, it gains its maximum value at the mean and the minimum

value is at plus and minus infinity.
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Figure 2.2:  The Gaussian distribution.



2.1.1 Signal Types

Signals can be divided into two main categories as shown in Figure 2.3: deterministic

and nondeterministic.

Signal
Deterministic Nondeterministic / Random
Periodic Nonperiodic Stationary Nonstationary
| Sinusoidal Almost-periodic | Ergodic | Mildly
nonstationary
el Cor-npl.ex Transient L{ Nonergodic Heavily
periodic nonstationary

Figure 2.3:  Classification of signals (Modified version of Bendat and Piersol 1986).

A deterministic signal can be described by a mathematical relationship between the
value of the function and the value of time. It can be further characterised as being
periodic or nonperiodic (Bendat and Piersol 1986). Periodic signals can further be
divided into the categories of sinusoidal and complex periodic signals. A nonperiodic

signal can be further categorised into almost-periodic and transient.

Sinusoidal signals are mathematically defined by the sinusoidal time-varying function:
x(t) = X sin 271 ,t (2.2)
where X is the amplitude, f,is the cyclic frequency and x(t) is the instantaneous value at
time t. A complex periodic signal is defined by a time-varying function whose waveform
exactly repeats itself in a regular manner, i.e.
x(t) = x(t+nT,) n=123,.. (2.3)
where n is number of discrete point and T, is the period. A combination of two or more

sine waves produces a signal which is mathematically defined as
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x(t):ixn sin(27f,¢ + 6 ) n=123,... (2.4)

where f, is the cyclic frequency and 6, is the phase angles. When all frequencies £, are
integer multiples of a single base frequency, the signal is defined as periodic. When
some frequency components produce /f» which are not rational numbers (m=1,23,
..., and n # m), thus the signal is defined as almost-periodic. A transient signal is defined

(Bendat and Piersol 1986) as a nonperiodic signal with a finite time range. Example of

the transient signal is an impulse loading.

Many signals in nature exhibit random or nondeterministic characteristics which provide
a challenge to analysis using signal processing techniques (Tacer and Loughlin 1998).
A signal representing a random physical phenomenon cannot be described in a point by
point manner by means of a deterministic mathematical equation. A signal representing

a random phenomenon can be characterised as either stationary or nonstationary.

A stationary signal is characterised by values of the global signal statistical parameters,
such as the mean, variance and root-mean-square (refer to Section 2.1.2 for definition),
which are unchanged across the signal length. Stationary random processes can further
be categorised as being ergodic or nonergodic. If the random process is stationary, and
the mean value and the autocorrelation function do not differ when computed over

different sample segments measured for the process, the random process is defined as

ergodic. For this case, the mean value i (k)can be calculated as

U (k) =1m(T — o) x, (1dt (2.5)

N —
© Cey ™

and the autocorrelation function Ry(7,k) for the K" sample function is defined as

T

R (7,.k)=lm(T — oo)%Jxk (t)x, (t+7)dt (2.6)

0
where 7 is the time displacement and T is the period. In practice, random data
representing stationary physical phenomena are generally ergodic, therefore, the

properties of this type of signal can be measured easily (Bendat and Piersol 1986).



In the case of nonstationary signals the global signal statistical values are dependent on
the time of measurement (Bendat and Piersol 1986). Nonstationary signals can be
divided into two categories: mildly nonstationary and heavily nonstationary. A mildly
nonstationary signal is defined as a random process with a stable mean, variance and
root-mean-square values for most of the record, but with short periods of changed signal
statistics due to the presence of transient behaviour (Giacomin et al. 1999). A heavily
nonstationary signal is defined as being similar to a mildly nonstationary signal, but with
the presence of transient events over a large interval of the time history (Giacomin et al.

1999). Examples of loadings exhibiting stationary and nonstationary characteristics are

presented in Figure 2.4.

WA
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Time [s]

(a) Highway surface: kurtosis = 3.00, crest factor = 4.2

Acceleration

0 5 10 15 20 25 30 35 40 45 50

Time [s]

(b) Good road surface: kurtosis = 3.57, crest factor = 5.5

W AR

0 5 10 15 20 25 30 35 40 45 50

Acceleration

Time [s]

(c) Good road surface with a climb

Figure 2.4: Examples of stationary and nonstationary acceleration time histories

measured on an automobile seat rail (Reproduced from Giacomin et al.
2000): (a) Stationary Gaussian, (b) Mildly nonstationary, (c) Heavily

nonstationary.
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Since nonstationary loadings are common in the case of fatigue analysis, signal
modelling has often been used in the time domain due to its simplicity and efficiency for
the purpose of loading simulation. Several studies which have used the time-varying
signal analysis of fatigue damage can be found in the literature, such as in Matsuishi

and Endo (1968), Ermer and Notohardjono (1984), Leser (1993), Raath and Van
Waveren (1998) and others.

2.1.2 Signal Statistics

Global signal statistics are frequently used to classify random signals. The most
commonly used statistical parameters are the mean value, the standard deviation value,
the root-mean-square (r.m.s.) value, the skewness, the kurtosis and the crest factor

(Hinton 1995). For a signal with a number n of data points in the sampled sequence n,

the mean value x, is given by

;c:—l—ij (2.7)
n j=1

The standard deviation (SD) is mathematically defined as

12
SD:{—I—Z(xj—; } (2.8)

n j=1

for the samples more than 30. If the samples less than 30, the standard deviation is

defined as (Hinton 1995)

12
SDz{ 1 z(xj—}} (2.9)

I’l—l j=1

The standard deviation value measures the spread of the data about the mean value.
The r.m.s. value, which is the 2" statistical moment, is used to quantify the overall

energy content of the signal. For discrete data sets the r.m.s. value is defined as

12
&

r.nz.s.z{-z,\‘] } (2.10)
n j=1
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For a zero-mean signal the r.m.s. value is equal to the SD value. The skewness, which
is the signal 3" statistical moment, is a measure of the symmetry of the distribution of

the data points about the mean value. The skewness of a signal is given by

1 < -
s=—1 ¥ -3 (2.11)

n(rms.)” 5

The skewness for a symmetrical distribution such as a sinusoid or a Gaussian random
signal is zero. Negative skewness values indicate probability distributions that are

skewed to the left, while a positive skewness values indicate probability distributions that

are skewed to the right, with respect to the mean value.

Kurtosis, which is the signal 4" statistical moment, is a global signal statistic which is

highly sensitive to the spikiness of the data. For discrete data sets the kurtosis value is

defined as

K=— 1 3(x,-%f (2.12)

n(rm.s.)” 5

For a Gaussian distribution the kurtosis value is approximately 3.0. Higher kurtosis
values indicate the presence of more extreme values than should be found in a
Gaussian distribution. Kurtosis is used in engineering for detection of fault symptoms

because of its sensitivity to high amplitude events (Qu and He 1986).

The crest factor, which is commonly encountered in engineering applications, is defined

as the ratio between the maximum value in the time history and the r.m.s. value:

xjmax

CF = (2.13)

r.n.s.

The crest factor value for sinusoidal time histories is 1.41 and the value approaches

4.00 in the case of a Gaussian random signal of infinite length.
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2.2 Frequency Analysis
2.2.1 Fourier Transform

Frequency analysis is performed in order to convert a time domain signal into the
frequency domain. The results of a frequency analysis are most commonly presented by
means of graph having frequency on the x-axis and amplitude on the y-axis. The
algorithm that is used to split the time history into its constituent sinusoidal components
is the Fourier transform. This transform was first defined by the French mathematician
and engineer Jean Baptiste Joseph Fourier who postulated that any periodic function
could be expressed as the summation of sinusoidal waves of varying frequency,
amplitude and phase. Smith (1999b) defines spectral analysis as understanding a signal
by examining the amplitude, frequency and phase of its component sinusoids. For a
periodic time function, x(t), frequency analysis can be performed using the classical

Fourier transform defined by the mathematical definition:
1= —iax
X(@)==[ x(ne™dr (2.14)
27T I

where X(w) is the amplitude of Fourier transform in frequency distribution, w is the

angular frequency and i =+-1.

A commonly used form of Fourier transformation is the discrete Fourier transform (DFT).
This algorithm transforms a time-domain sample sequence into a frequency-domain

sequence which describes the spectral content of the signal (Stearns and David 1993).

The DFT is defined as

N-1
X, :LE\,J_e_mm/m j k=0,1,2,3, ..., (N-1) (2.15)
N t=0

The frequency information obtained from the DFT can be reverted back into the time
domain using the inverse discrete Fourier transform (IDFT) which is defined as
N-

X, = Exke'“’”“”"" k=0 1,23, ..., (N-1) (2.16)

—

bl
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The most common algorithm used for the Fourier transform is the fast Fourier transform
(FFT) algorithm which was introduced in order to have a faster DFT calculation of the
time series (Smith 1999b). Various FFT algorithms were developed. The algorithm
introduced by Cooley and Tukey (1965) is the most commonly used because of its
simplicity and fast computing time (Smith 1999b). This algorithm produced the N
frequency spectra corresponding to the N data points of a time domain signal which is
calculated using the log format or log,N. For example, a 16-point signal (2°) requires 4
stages, a 512-point signal (2'°) requires 10 stages and a-4096 point signal (2'%) requires
12 stages. The frequency information obtained from the FFT can also be reverted back

into the time domain using the inverse fast Fourier transform (IFFT), which is a similar

concept as the IDFT.

Many frequency analysis applications can be found in the literature and one of them Is
the generation of a power spectral density (PSD). A PSD is a normalised density plot
describing the mean square amplitude of each sinusoidal wave with respect to its
frequency. The PSD presents the vibrational energy distribution of the signal across the
frequency domain as shown in Figure 2.5. Each frequency step value of the PSD is

characterised by an amplitude, A, defined as

A, =24 - S(f) (2.17)

where S(f.) is the underlying PSD of the signal and fi is the harmonic frequency.

PSD (m2/33)

Amplitude

=

0.02]
)
J ( U
-8 0.01 'M.\ S et
)\ifl Mo A ) e | PP,
20 a0 80 100
=

Time (s)
(a) (b)
Figure 2.5: (a)A variable amplitude loading, (b) Its PSD distribution.
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The PSD can be as an input for generating a time-varying signal by performing the IDFT
or IFFT. However, the time series which was generated from IFFT is not as accurate as
the original signal, the PSD does not contain the original signal phase information. The
assumptions of the signal phase content can be made in order to regenerate a
statistically equivalent time history. For example, if the time history is taken from an
ergodic stationary for Gaussian and random process, the phase is purely random

between -n and +r radians (Halfpenny 1999: Li et al. 2001).

Following are several case examples of frequency domain analysis or the PSD
approach in the field of fatigue study. The background of the fatigue analysis using PSD
can be found in Halfpenny and Bishop (1997) and Halfpenny (1999).

Bishop and Sherratt (1989; 1990; 2000), Bishop and Cesario (1998) discussed the
analysis of the offshore or oil rig structures, by converting the measured PSD caused by
ocean wave and wind into the time domain fatigue stress. The signals were then used to

predict fatigue damage of the structures.

In another application, Bishop et al. (1995) used the PSDs as the input information to
predict the fatigue damage in automotive design by measuring the PSD at critical
locations on the automotive component. The PSD was then converted into a time

domain signal so as to predict fatigue damage.

In automotive research by Hu (1995), a PSD of a signal was used to predict the fatigue
life using the r.m.s. value, suggesting material failure occurs at the largest r.m.s. value.
Accordingly, r.m.s. is a function of the PSD of the input signal G(f) and the stress

response function H(f), which is given as

FS. = \/ojiG(f)Hz (fdf (2.18)
0

In this study, the loading is Gaussian and the PSD of fatigue loading was distributed

from 4.5 Hz to 250 Hz, as shown in Figure 2.6. The natural frequencies of the structure
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were found to be at 62.1 Hz and 150.2 Hz. With this concept, the fatigue damage was

subjectively measured across the frequency distribution with respect to the r.m.s. value.

PSD of Stress (MPa”2/Hz)

Frequency (Hz)

Figure 2.6:  PSD distributed from 4.5 Hz to 250 Hz (Reproduced from Hu 1995).

2.2.2 Short-Time Fourier Transform (STFT)

Using the Fourier transform the frequency components of an entire signal can be
analysed, but it is not possible to locate at what point in time that a frequency
component occurred or its duration. This is not problematic when a stationary signal is
analysed. However, Fourier analysis is not suitable for non-stationary signals. If there is
a time localisation due to a particular feature in a signal such as impulse, this will only
contribute to the overall mean valued frequency distribution and feature location on the
time axis is lost (Newland 1993). To overcome this problem, the short-time Fourier

transform (STFT) was developed.

STFT is a method of time-frequency analysis which aims to produce frequency
information which has a localisation in time. It provides information about when and at
what frequencies a signal event occurs (Matlab User's Guide 1998). The STFT
approach assumes that if a time-varying signal is divided into several segments, each

can be assumed stationary for analysis purposes. The Fourier transform is applied to
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each of the segments using a window function, which is typically nonzero in the
analysed segment and is set to zero outside (Patsias 2000). The most important

parameter in the analysis is the window length, which is chosen SO as to isolate the

signal in time without any distortions.

The STFT was developed from the Fourier transform, and it is mathematically defined

as
STFT = X (1, @) = j ot = T)e ™™ x(t)dt (2.19)

where the Fourier transform of the windowed signal is x(H)e ™, wis the frequency and r

is the time position of the window (Chui 1991). The result of this transformation is a

number of spectra, each localised in a windowed segment.

The time-frequency resolution depends on the seiection of the window length. The time
window length is defined as At and the frequency bandwidth is Aw. The ’area’ of the
segment is given by the product 4w and A4t. Considering the relationship between time

and frequency, i.e.
—1 = .
Aw = /A o or AwmAr=1 (2.20)

it can be seen that a good time localisation (when At is small) or frequency localisation
(when Aw is small) can be obtained, but not both simultaneously. Therefore the time
window length At and the frequency bandwidth Aw are interrelated. The time-frequency

resolution and its frequency bandwidth are shown in Figure 2.7.

While a useful tool, the STFT has a resolution problem, i.e. short windows provide good
time resolution but poor frequency resolution. On the other hand, long windows provide
good frequency resolution, but poor time resolution. The wavelet transform, which is

described in the next section, is one of the most recent solutions to overcome the

shortcomings of STFT (Grossman and Morlet 1984).
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Figure 2.7:  Short-time frequency transform concept: (a) Time-frequency cell

structure, (b) Bandwidth (Reproduced from Patsias 2000).

2.3 Time-Frequency Analysis

2.3.1 Introduction to Wavelet Analysis

A wavelet is a small wave with a signal energy concentrated in time (Burrus et al. 1998),
on the condition of admissibility condition. An example is illustrated in Figure 2.8
alongside a sinusoidal wave of fixed amplitude. The wavelet transform is defined in the
time-scale domain and is a significant tool for analysing time-localised features of a
signal. It represents a windowing technique with variable-sized region. The harmonic

form of the wavelet transform can be derived from the Fourier transform in the phase

form, i.e.

oo

X (@) = jxa)sin(zzgfr—q)(f))dz (2.21)

—o0

Defining a = 1/(2xf) and b’ = ¢¢/(2xf), then Eq. (2.20) can be rewritten as

a

X(w) = j.\'(r)sin[’_b’}ir (2.22)

—o0
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sinusoidal wave wavelet

Figure 2.8: A sinusoidal wave and a wavelet (Reproduced from Burrus 1998).

where a is a scale parameter which controls the frequency by dilating or scaling the time
t. The parameter b’ translates the basic sine wave up and down the time axis and it is
known as the translation parameter. By replacing the sine-wave with a localised

oscillatory function, or wavelet i, the wavelet transform is obtained as

W, (a,b") = J‘x(t)y/[t_b’}dt (2.23)

a

—oo

A wavelet transform can be classified as either a continuous wavelet transform (CWT)
or a discrete wavelet transform (DWT) depending on the discretisation of the scale
parameter of the analysing wavelet y(t). The wavelet method solves the resolution
problem because the window length is long for low frequencies and short for high
frequencies. Therefore, the frequency resolution is good for low frequencies (at high
scales) and the time resolution is good at high frequencies (at low scales). The time-
frequency resolution of the wavelet transform is illustrated in Figure 2.9a and its
frequency bandwidth is shown in Figure 2.9b. One of the earliest practical applications
of wavelets came from the analysis of earthquake records by Goupillaud et al. (1984).

Since then, wavelet analysis has been used in many applications in science and

engineering.
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Figure 2.9:  The wavelet transform concept: (a) Time-frequency cell structure,

(b) Bandwidth (Reproduced from Patsias 2000).

2.3.2 Continuous Wavelet Transform (CWT)

Referring to Eqg. (2.23), wavelets are analytical functions y(t) which are used to

decompose a signal x(t) into scaled wavelet coefficients, W,(a,b’). When the signal is

infinite, and using %/_ as energy normalisation constant to produce equal energy at all
a

time scales, the mathematical definition of the wavelet transform becomes

=& )dr (2.24)

W (ab)—\/—jx(r)w(

which gives the expression for the continuous wavelet transform (CWT) and y~ is the

complex conjugate of y. The basis mother wavelet y(t) can be any of a number of
functions which satisfy a set of admissibility conditions. The admissibility conditions is

mathematically defined as

j\‘*’ (o) A=t o (2.25)
)

where W¥(w) is the Fourier transform of the mother wavelet. This condition is used for

the inversion process of the wavelet transform. One of the families in the CWT category

is the Morlet wavelet.
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For an application example, a research performed by Staszewski (1 998a) demonstrated
the use of CWT to analyse the impact vibration response in a composite panel, as
shown in Figure 2.10. It showed a two-dimensional contour plot of the CWT as well as
the classical time and frequency domain representations. In this figure, an impulse was
detected at the particular time interval from 0.7 seconds to 0.8 seconds and frequency

interval from 0.6 Hz to 10.1 Hz (or from scale 2.9 to 4.2).

Wavelet analysis
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Figure 2.10: Wavelet analysis of a nonstationary signal using the CWT

(Reproduced from Staszewski 1998a)

An example of the use of the CWT for the purpose of fatigue damage detection in the
study of a gearbox system was performed by Boulahbal et al. (1999). In this study, the
CWT wavelet function was used to analyse the cracking of a gear tooth that was caused
by fatigue failure. Using the technique, the transient events that caused the damage of
the geared system were detected and extracted from the acceleration input signal.
Referring to the CWT wavelet map presented in Figure 2.11, the transient event was

detected at the particular angular position (i.e. at interval from 80 to 180) of the shaft,

suggesting the efficiency of the CWT for detecting high amplitude events.
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Figure 2.11: The map of CWT showing a transient affect caused by an impulse

(Reproduced from Boulahbal et al. 1999).

2.3.3 Discrete Wavelet Transform (DWT)

Another wavelet transform approach is the discrete wavelet transform (DWT). With

reference to Eq. (2.24), an extension of continuous analysis is the discretisation of time
b’and scale a according to a=a,", b’=na,"b, where m and n are integers, b, #0 is

the translation step. This implies the construction of a time-scale grid defined as (Chui

1991)

o0

-mf2_. * I— b '”\
Ww(m,n)=JX(f)ao Py &Jdr (2.26)

m

a,

—o0

The discrete grid on the time-scale plane corresponds to a discrete set of continuous
wavelet functions. When the wavelets v, ,(t) form a set of orthonormal functions, there
is high efficiency because of the elimination of redundancy in the analysis. The DWT

based on such wavelet functions is called the orthogonal wavelet transform (OWT).

Orthogonal wavelet transforms are normally applied for the compression and feature
selection of signals. Wavelet types used in OWT analysis include the Haar wavelet
which is the simplest type of wavelet (Walker 1999), and the Daubechies wavelet

(Daubechies 1992) which is a more complex wavelet (Walker 1999; Graps 1995). The
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Daubechies wavelet, which was developed by Ingrid Daubechies (Daubechies 1992)
has orthogonal basis functions based on iteration procedure. Daubechies wavelets are
commonly used for damage detection (Staszewski 1998a; 1998b; Li et a/. 1999: Lin and

Zuo 2003) and fatigue damage analysis (Oh 2001; Abdullah et a/. 2004).

When performing the Daubechies wavelet decomposition process, an appropriate
wavelet order needs to be determined. The order is defined as a scalar value that
specifies the order number for the wavelet. Lower orders of Daubechies wavelet are
suitable for more compactly supported, or less smooth wavelet functions. Compactly
supported wavelet is defined that a wavelet function is vanished outside of a finite
interval (Graps 1995). Therefore, these wavelet functions are suitable for analysing
nonstationary signals with discontinuities. Higher orders of Daubechies wavelet are
used when analysing less compactly supported, or more smooth wavelet functions. For
this case, higher orders Daubechies wavelet functions are suitable to be used in

analysing stationary signals (Daubechies 1992; Staszewski 1998b)

A case study comparing lower and higher orders of Daubechies wavelet functions was
performed by Staszewski (1998b). For this case, a 4™ and 20" order Daubechies
wavelet and FFT were used to analyse three types of signal, i.e. periodic or stationary
data, nonstationary data and transient data. The Daubechies wavelet functions and FFT
were then compared by means of the normalised Mean Square Error (MSE) value,
defined as the average mean squared deviation of the estimator from the true value
(Kay 1993). The results of this analysis are presented in Figure 2.12. For the periodic or
the stationary signals (Figure 2.12a), the MSE values of the FFT give the smaller error
compared to wavelet functions. This suggests the suitability of the FFT method for
analysing stationary signals. The MSE values of 20" order Daubechies wavelet are
relatively smaller than 4" order Daubechies wavelet, suggesting the suitability of the 20"
order Daubechies wavelet for periodic or stationary signals. in Figure 2.12b, the 4"
order Daubechies wavelet produced the smallest error, suggesting the suitability of this
wavelet function for nonstationary signals. Finally, in Figure 2.12c for a transient signal,

both the 4™ and 20" order Daubechies wavelet produced similar results. Figure 2.13



31

shows the irregular pattern of both orders of Daubechies wavelet. From this analysis, it

was concluded that nonstationary signals are best analysed using lower orders of

Daubechies wavelet functions.
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Figure 2.12: The Mean Square Error comparison to determine the performance
analysis between 4" and 20" order Daubechies wavelets and FFT
using (Reproduced from Staszewski 1998b): (a) Periodic or stationary

data, (b) Nonstationary data, (c) Transient data.
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Figure 2.13: Examples of Daubechies wavelet functions: (a) 4" order, (b) 20" order.
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The discrete wavelet transform allows the decomposition of an input signal into
frequency bands. The decomposed parts of the signal can also be reconstructed in
order to reform the original signal. The schematic diagram of decomposition-
reconstruction process is shown in Figure 2.14. In the left-hand side of this figure, the
original signal is decomposed into the wavelet levels. For the reconstruction analysis,

shown on the right-hand side of Figure 2.14, the information of each frequency band is

added together for producing a signal which has the same data points as the original

signal.
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Figure 2.14: Schematic representation of the multi-step wavelet transform

decomposition-reconstruction process.

In order to illustrate the Daubechies wavelet decomposition procedure, Figure 2.15a
shows the decomposition of a signal into its constitutive components (Staszewski
1998b). This acceleration signal was measured on an automotive gearbox and it was
decomposed into eight wavelet components. Each component is called a wavelet level,
which is a part of the signal which is in a specific frequency band. When the wavelet
levels are added together, the original signal is regained. Figure 2.15b shows the power
spectra associated with the respective wavelet levels. The number of discrete points (N)

in the signal sequence determines how many wavelet levels there are. When N = 2
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there are n + 1 generated wavelet levels are generated. A detailed of the wavelet

decomposition process can be found in Newland (1993) and in Staszewski (1998b)
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Figure 2.15: Example of the wavelet decomposition of a gearbox acceleration signal
(Reproduced from Staszewski 1998b):
(a) Series of wavelet coefficients,

(b) Corresponding power spectral densities.

Among the many applications of the wavelet transform, Lin and Zuo (2003) analysed a

gearbox which had a fatigue crack on one gear tooth. In this study, a nonstationary
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signal (Figure 2.16a) was decomposed into six wavelet levels using 4" order of
Daubechies wavelets in order to detect the impulse which caused the fatigue crack on
the gear tooth. Impulses were not clearly observed in the original signal, but were
detected in a wavelet level at particular time interval of 0.1—0.2 seconds, 0.3-0.4
seconds and 0.6-0.7 seconds. In Figure 2.16b, the presence of high amplitude impulses
are observed in the time interval of 0.1-0.2 seconds and 0.6-0.7 seconds of the levels 22
and 2. This study demonstrated the suitability of 4™ order of Daubechies wavelets for

analysing random vibration signals which caused the fatigue cracks.
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Figure 2.16: Example of a wavelet decomposition to detect vibration impulses:
(a) Original signal, (b) Wavelet levels

(Reproduced from Lin and Zuo 2003)

Another application of the orthogonal wavelet transform in the field of fatigue research
was performed by Oh (2001) for the case of fatigue data editing. In this study, Oh (2001)
applied Daubechies’ wavelets to de-noise a noisy signal and to remove spikes. Recent
fatigue damage research using the Daubechies wavelet was performed by Abdullah et
al. (2004), who applied the MNMS algorithm to the analysis of the variable amplitude

(VA) fatigue loadings of an automobile component.
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2.4 Types of Fatigue Loadings

2.4.1 Constant Amplitude (CA) Loading

Two types of loading are traditionally defined in the fatigue analysis literature. The first is
called a constant amplitude (CA) loading. It is a cyclic load which oscillates between
fixed minimum and maximum stress amplitudes (Dowling 1999). In practice, CA loading
fatigue tests are performed in order to determine the cyclic mechanical properties of the
test materials. An example of a CA loading is a sinusoidal wave as shown in Figure
2.17a. Figure 2.17b shows the peak-valley (PV) reversals that are used to determine the
minimum and maximum stress levels. A peak is defined to be associated with change in
the slope from positive to negative, while a valley is associated with a change in the
slope from negative to positive. In this figure, the notation used is o, for the stress
amplitude, opax for the maximum stress, o, for the minimum stress and 4o for the
stress range. Another parameter is the mean stress o, which is zero for the signal in

Figure 2.17, but which is generally defined as

—+ ’
o, = e 5 i (2.27)

while the stress amplitude, o, is defined as

o = max min (228)
a 2
: peak
amplitude
A
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Figure 2.17: Constant amplitude loadings: (a) time history, (b) peak-valley reversals.



36

2.4.2 Variable Amplitude (VA) Loading

The second type of fatigue loading is the variable amplitude (VA) loading. VA loadings
are more complex because the stress or strain values are not constant, but vary instead
across the data set. Although CA loadings are commonly used to determine the fatigue
life properties of materials, many structures and components will actually experience VA
loadings in practice. The simplest type of VA loading is the occurrence of a small

number of high peak loads in the background of what would otherwise be considered a

CA loading, as shown in Figure 2.18.

Overload (OL) Overload (OL)

amplitude amplitude
ﬂk A

U U - v V V‘”“‘

Underload (UL) Underload (UL)

Figure 2.18: Variable amplitude loading: (a) time history, (b) peak-valley reversals.

Three types of load sequence can occur in a VA loading: tensile overload (OL),
compressive underload (UL) and overload followed by underload (OL/UL). The
interaction between OL, UL and OL/UL make VA loadings more complex than CA
loadings (Taheri et al. 2003). Therefore, the fatigue life obtained from a VA loading is
difficult to predict (Fatemi and Yang 1998). A section from a complete VA loading is
known as a block loading, and each block is often called a mission or a duty cycle
(Bolotin 1999). A block corresponds to a multiply repeated stage in the service of a
structure or machine. An example of a fatigue loading for an aircraft structure is shown
in Figure 2.19 (Fowler and Watanabe 1989). An aircraft loading normally includes duty

cycles produced by ground motions, take-off, landing, climb, cruise and flight (Waisman
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1959). Figure 2.20 shows a compound peak-valley reversal that has a repetitive block

loading based on the repetition of one duty cycle.

% 100 200 300 400 500 600 700
Number of Cycles
Figure 2.19: Component loading measured during one flight of an aircraft

(Reproduced from Fowler and Watanabe 1989).

Amplitude

3" Block

Figure 2.20: Example of a variable amplitude history obtained by multiple repetitions

of a single duty cycle.

2.5 Fatigue Life Prediction

2.5.1 Fatigue Life Behaviour of Materials

In engineering practice the service loads measured on the components of machines,
vehicles, and structures are analysed for fatigue life using crack growth approaches.
This approach is suitable for high capital value machines such as large aircraft, the
space shuttle, pressure vessels and oil rigs. The ability to inspect for cracks and monitor
their growth until a maximum allowable defect size is reached enables the useful life to

be extended beyond the original design safe life. However, it is not generally feasible to
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apply the crack inspection process for inexpensive components that are made in large
numbers. Performing periodic inspections on these components would generally
increase the cost of the item. Examples of components which fall into this category are
automobile engine, steering and suspension parts. For these components it is important
to predict crack initiation in order to avoid fatigue failure by removing the part from
service at the appropriate time. A fatigue life estimate determined by means of the

stress-life approach and the strain-life approach is usually used in these cases (Dowling

1999).

For the stress-life approach, methods for characterising fatigue life are based on work
performed by Wohler (1860). In order to determine the fatigue life parameters of the
stress-life approach, smooth specimens with cylindrical gauge length were normally
tested under CA loading conditions with in-plane bending, rotational bending, uniaxial
compression-tension or tension-tension cyclic loading. The results of the cyclic tests,
which were performed at various stress levels, were plotted to obtain a stress-life curve
known as the S-N curve (S denotes stress amplitude while N denotes the number of
cycles to failure), as shown in Figure 2.21. The S-N curve exhibits a plateau level after
10° cycles. This plateau stress amplitude is known as the fatigue limit or endurance limit

(S.). The fatigue limit for a smooth specimen of a material is defined as (Suresh 1991):
S, =0.58, (2.29)

where S, is the ultimate strength.

In general, the fatigue limit for a notched specimen is lower than the fatigue limit of a
smooth specimen, as illustrated in Figure 2.22. For notched specimens, the fatigue life

can be expressed in terms of the fatigue notch factor K; by the expression

S

S _ e(smooth) (230)
e(notched)
K,

where the fatigue notch factor K; is determined from the stress concentration factor K;
and the notch sensitivity g.

K, =1+q(K, =1 (2.31)
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Figure 2.21: A S-N curve for a smooth specimen of a steel (Reproduced from

nSoft® User Manual 2001).
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Figure 2.22: Effect of a notch on the rotational bending S-N curve of an aluminium

alloy (Reproduced from Dowling 1999).

The value of K, is determined based on specimen geometry and the location of the
notch on the specimen. The material constant g is determined using a graph or
empirical equation (Peterson 1959; 1974; Neuber 1958). Peterson (1959; 1974)

proposed that the g value can be obtained using the expression

‘ (2.32)

1+@/
/p

g =
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where o’ is a material constant having dimensions of length, and p is the notch tip

radius. Neuber (1958) has proposed another expression for calculating the g value

q=——— (2.33)

where [’ is the material constant, which is different from «’. Detail of the derivation of

the two expressions can be found in Dowling (1999). In the case of a notch that is
relatively deep and sharp, it can be assumed that the notch is aiready cracked and the
fatigue life can be predicted using the fracture mechanics approach (Taylor and Wang

2000; Ciavarella and Meneghetti 2004).

When no experimental data is available to produce an S-N curve, estimates of the
fatigue limit can be made by estimating the entire S-N curve. The curve estimation is
influenced by various factors such as specimen surface, specimen geometry, type of
load applied and the presence or absence of notches on the specimen. One commonly
used estimation method was introduced by Juvinall and Marshek (1991) for use with a
variety of engineering metals. A similar approach for use with only steel was introduced
by Shigley and Mischke (1989). Of the two approaches, the Juvinall’s approach has

been found to be more accurate, as it incorporates nonferrous metals (Dowling 1999).

The strain-life approach considers the plastic deformation that occurs in the localised
region where fatigue cracks begin under the influence of a mean stress. This approach
is often used for ductile materials at relatively short fatigue lives. This approach is also
used where there is little plasticity at long fatigue lives. Therefore, this is a
comprehensive approach that can be used in place of the stress-based approach.
Consequently, it is common that the service loadings caused by machines and vehicles
is evaluated using a strain-life fatigue damage approach (Tucker and Bussa 1977

Downing and Socie 1982; Conle and Landgraf 1983; Conle and Chu 1997, Chu 1998;

Dowling 1999).
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Completely reversed CA loading fatigue tests are used to provide information for
developing a strain-life curve. Completely reversed CA is defined as the loading with
zero mean amplitude, for which the ratio of the minimum and the maximum amplitude of
this loading is —1. The procedure to construct strain-life curves can be found in ASTM
E739-91 (1998) and in Williams et al. (2003). The procedure involves testing smooth
specimens under uniaxial loading at different strain amplitudes for a particular number of
cycles to failure or N. The results from the test are used to produce strain-life curves,

such as the one shown in Figure 2.23.
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Figure 2.23: Strain-life curve (Reproduced from nSoft® User Manual 2001).

According to the strain-life plot in Figure 2.23, the total strain amplitude, ¢, is produced

by the combination of elastic and plastic amplitudes

8” == g(’ll + 8 (2-34)

pa

where ¢,, is the elastic strain amplitude and ¢, is the plastic strain amplitude. The

elastic strain amplitude is defined by

=&:£ y 235
£y == (2n,) (2.35)

while the plastic strain amplitude is given as

e =¢,2N,) (2.36)

pa
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where g, is the stress amplitude, N is the number of cycles to failure, o%is the fatigue

strength coefficient, b is the fatigue strength exponent, ¢} is the fatigue ductility
coefficient, ¢ is the fatigue ductility component and E is the modulus of elasticity. A
combination of Eq. (2.35) and Eq.(2.36) gives the Coffin-Manson relationship, which is
the foundation of the strain-life approach. The relationship arose from the works by
Coffin (1954) and Manson (1965) and it is mathematically defined as

’

£, = %‘—(wf ) e lon, ) (2.37)
For situations producing long operating lives, the elastic strain is dominant and the
plastic strains are relatively small. This situation is called High-Cycle-Fatigue (HCF)
region, as shown in Figure 2.23. The inverse is true for short lives, where plastic strains
are large compared to the elastic strains. This is called Low-Cycle-Fatigue (LCF) region,
as again shown in Figure 2.23. At intermediate lives, there is a point where the elastic

and plastic strains have similar strain amplitude.

2.5.2 Mean Stress Effects

The majority of material fatigue data is collected in the laboratory by means of testing
procedures which employ fully reversed loadings. However, some of the realistic service
situations involve non-zero mean stresses. Therefore, it is extremely important to know
the influence of the mean stress, so that the fully reversed laboratory data can be
usefully employed in the assessment of real situations. Two mean stress effect models

are commonly used, i.e. the Morrow and Smith-Watson-Topper (SWT) strain-life

models.

Morrow (1968) was the first to propose a modification to the base-line strain-life curve
which accounted for the effect of the mean stress by modifying the elastic part of the

strain-life curve. Mathematically, the Morrow model is defined by
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o
= / _ O-m ’ c
£, = [1 - }21\5 f+e 2n,) (2.38)
The SWT strain-life model, which was developed by Smith et al. (1970), is defined
instead by
= (G/ )2 ( \2b L +c
sy = 2N, " +oe (2N, ) (2.39)

For the SWT model, the damage parameter is taken to be the product of the maximum

stress and the strain amplitude of a cycle.

For loading sequences that are predominantly tensile, the SWT approach is more
conservative and therefore recommended. In a case of the loading being predominantly
compressive, particularly for wholly compressive cycles, the Morrow model provides

more realistic life estimates (nSoft® User Manual 2001: Dowling 1999).

2.5.3 Cycle Counting Methods

Cycle counting is performed in order to reduce a random service history into a simpler
form of discrete events. Cycle counted data is used in many strain-life prediction models
(Suresh 1991). Detailed descriptions of various cycle counting methods can be found in
Dowling (1972) and Fuchs and Stephens (1980). Several cycle counting methods have
been introduced for the purpose of fatigue life prediction (ASTM E1049-85 1997), such
as the level crossing method, the peak counting method, the simple-range counting

method and the rainflow counting method.

The level crossing counting method, illustrated in Figure 2.24, is considered the simplest
approach. It involves counting the number of positive slope crossings at specific levels
above the mean, and counting the negative slope crossings below the mean. Despite its

simplicity, it is not recommended for the fatigue damage analysis as it does not maintain

the original history sequence (Conle 1974).
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Figure 2.24: The level crossing counting method.

The peak counting method, illustrated in Figure 2.25, identifies the occurrence of a
relative maximum or minimum load. The number of peaks above the reference load
level are counted, as are the number of valleys below the reference load. To eliminate
small amplitude loadings, mean-crossing peak counting is often used. Instead of
counting all peaks and valleys, only the largest peak or valley between two successive
mean crossings is counted (ASTM E1049-85 1997). This method is not recommended

as it does not relate peaks to their corresponding valleys (Pompetzki 1993).
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Figure 2.25: The peak counting method.

The simple-range method, illustrated in Figure 2.26, is defined as a difference between
two successive reversals. The range is positive when a valley is followed by a peak, and
negative when a valley follows a peak. If only positive and negative ranges are counted,
then each is counted as one cycle. If both positive and negative ranges are counted,

then each is counted as one-half cycle. This method is not recommended as it may omit

large overall cycles (Fuchs et al. 1977).
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Figure 2.26: The simple range cycle counting method.

The most commonly used cycle-counting method is the rainflow counting method, which
was developed by Matsuishi and Endo (1968). This method is regarded as the best
procedure to identify fatigue cycles in a VA loading (Fuchs and Stephens 1980; Anthes
1997). The rainflow counting method is based on the counting of the ranges and the
means of the closed hysteresis loops present in the loading. A closed hysteresis loop is
defined as one cycle of the corresponding CA loading. An example of a hysteresis loop
can be seen in Figure 2.27 for a particular section of peak-valley reversals. In this figure,
the local stress-strain response to the nominal strain time record shows a signal with
four amplitude cycles, i.e. B-C-B, E-F-E, G-H-G and A-D-A. The main idea of this

method is to treat small cycles as interruptions to larger cycles.
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Figure 2.27: lllustration of the rainflow cycle counting.

Figure 2.28 presents an example of the rainflow counting performed for a loading
history. In order to apply this counting method for the whole time history, the load must

be rearranged from the maximum peak (minimum valley) as the beginning of the history
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and to the maximum peak (minimum valley) as the end of the history, as illustrated in
Figure 2.28b. Small cycles (Figure 2.28c¢,d) are extracted in the beginning of the rainflow
counting process, leaving larger cycles (Figure 2.28e,f) to be extracted at the end of the
process. In practice, several algorithms are available to perform this type of rainflow
cycle counting which require the entire uniaxial load history be known before the
counting process begins (Wetzel 1971; Downing et al. 1977; Socie 1977; Downing and
Socie 1982; Hong 1991; Anthes 1997).

+5

NN

Load Units
(o]

rryl i

Load Units
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E-F 4.0 1.0
A-B 3.0 -0.5
H-C 7.0 0.5
D-G 9.0 0.5

Figure 2.28: Schematic diagram of the rainflow cycle counting method

(Reproduced from Dowling 1999).

As an improvement to the earliest rainflow algorithms which operated only complete
load histories, several optimised algorithms have been developed for use in real-time
cycle counting. Two different algorithms were developed (Downing and Socie 1982;
Clormann and Seeger 1986) for the purpose of analysing short uniaxial load histories. In
the paper by Downing and Socie (1982), two simple rainflow counting algorithms for

processing field data were discussed. One required the complete time history while the

other was appropriate for on-board real-time cycle counting. Both methods produced

identical results, but real-time cycle counting was found to offer the advantage that
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counting can begin before the entire history is known. Another real-time rainflow

counting algorithm was developed by Glinka and Kam (1987) for the use in the case of

long uniaxial stress histories.

While rainflow counting has been widely and successfully applied to uniaxial loadings,
no commonly accepted approach has been found to describe multiaxial loadings. This is
because closed hysteresis loops are not readily defined for multiaxial loadings. For an
example of applying the cycle counting using these loadings, Wang and Brown (1993;
1996) introduced a counting method to estimate the damage of a planar structure. This
method counts cycles of relative equivalent strain, whereby a cycle is defined by a zero-

to-maximum increase in the relative equivalent strain.

A detailed explanation of the cycle counting procedure and its schematic diagram can
be found in most of the fatigue cycle counting documents and textbooks, including
Fuchs and Stephens (1980), Downing and Socie (1982), ASTM E1049-85 (1997) and
Dowling (1999).

2.5.4 The Palmgren-Miner Linear Damage Rule

With respect to the relationship between damage and cycle, the damage for one cycle,

D, can be calculated as

D =— (2.40)

where N; is the number of constant amplitude cycles to failure. To calculate the fatigue
damage for a block of VA loading, a linear cumulative damage approach has been
defined by Palmgren (1927) and Miner (1945). The technique, known as the Palmgren-
Miner (PM) linear damage rule, is defined as

S (2.41)
Dz}_"JV—:

i=1
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where nis the number of loading biocks, N is the number of applied cycles and Nj; is the
number of constant amplitude cycles to failure. Using this equation, component failure
occurs when D = 1. Figure 2.29 presents the notation used in the application of the
Palmgren-Miner linear damage rule. The damage calculation using the load in Figure
2.29 can be performed using Eq. (2.42). For three loading blocks, the values of Nii Ni

and Ny are determined from the corresponding stress-life curve at the respective stress

of oy, o, and o;.

(2.42)

Several limitations are found while implementing the Paimgren-Miner linear damage
rule. The fatigue damage is accurately calculated for CA loadings, but it may lead to the
erroneous prediction for VA loadings. This is because the Palmgren-Miner linear
damage rule does not consider load sequence effects and lacks load interaction
accountability. In order to prove this, two-step loading tests were performed by Bilir
(1991) who showed that the damage accumulation values were less than unity when the
load changed from low cycle fatigue to high cycle fatigue. The change of loading from
high cycle fatigue to low cycle fatigue gave damage greater than unity. An example of

the diagram used for this loading sequence is shown in Figure 2.30.
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Figure 2.29: Block loading sequences for the Palmgren-Miner rule application.

In spite of the weaknesses of the Palmgren-Miner linear damage rule, it is widely used
for the purpose of fatigue life prediction (Kliman 1985; Zheng 2001; Oh 2001; Memon et

al. 2002). Often, the analytical fatigue life determined using the rule is found to be



49

acceptable compared to the experimental outcomes (Fatemi and Yang 1998). The
majority of fatigue life predictions performed using commercial software packages today

use material data obtained from CA loadings and the Palmgren-Miner rule.
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Figure 2.30: Different loading sequences: (a) low-high order, (b) high-low order.

2.5.5 Influence of the Sequence Effects

The situation where the order of loading affects the fatigue life is called a sequence
effect. Sequence effects exist both in the early stage (crack initiation) and in the later

stage (crack propagation) of fatigue.

An example of a cycle sequence effect is shown in Figure 2.31 (Mitchell 1996). Both
load histories seem to have cycles with the same strain range, but in a different order.
The first history (Figure 2.31a) has tensile leading edge as an initial transient, and the
second history (Figure 2.31b) has a compressive leading edge as an initial transient. In
the hysteresis loops of History A, the small cycles have the tensile mean, while in
hysteresis loops of History B the small cycles have a compressive mean. In this case

History A produces more damage than History B.

Sequence effects can also occur in cases involving overloads (OL) and underloads
(UL). For example, when tensile or compressive OLs are inserted into a small cycle
history, or below the material fatigue limit, the small cycles following the OL events
contribute significantly to the damage accumulation. Extensive studies of the effect of

OL and UL on the fatigue of the metal components have been performed by Pompetzki
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et al. (1990a; 1990b), Jurcevic et al. (1990), DuQuesnay et al. (1993), Changqging et al.
(1996), Hawkyard et al. (1996) and Bonnen and Topper (1999).
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Figure 2.31: Two loading histories having similar strain ranges but different leading

edge loadings (Reproduced from Mitchell 1996).

Considering the importance of sequence effects, and limitations of the Palmgren-Miner
linear damage rule when handling VA loadings, a suitable approach needs to be defines
for calculating the fatigue damage caused by these loadings. The approach should be
capable to solve fatigue life predictions using various VA loadings. The next section

describes one such approach.

2.5.6 Fatigue Damage Model for Variable Amplitude Loadings

The problem of performing fatigue life predictions for uniaxial and multiaxial VA fatigue
loadings has been discussed by Fatemi and Yang (1998) and Banvillet et al. (2004),
respectively. Previously, the fatigue strength of metals has conventionally been
measured using CA fatigue tests for determining the strain-life or the stress-life curve of
the material. However, it has been noted that the experimental fatigue lives of
components subjected to VA loadings can be well below the fatigue life predicted using

CA fatigue tests (Heuler and Seeger 1986; Dowling 1988; Yan et al. 1992). The reason
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for these fatigue life differences is that a VA loading contains a mixture of large and
small amplitude cycles which contribute to the cycle sequence effects. In addition, the
large load cycles in a VA loading affect the increment of the effective stress for the
subsequent smaller cycles. Hence, the crack growth rate for the smaller cycles iIs
increased, and even small cycles below the CA fatigue limit can cause a significant

amount of fatigue damage (Vormwald and Seeger 1991; DuQuesnay et al. 1995:

Topper and Lam 1997).

Several investigators have proposed methods for improving the fatigue life prediction for
components subjected to VA loadings. Models have been derived using random
vibration theory (Liou et al. 1999), using non-linear damage summation (Marco and
Starkey 1954; Plumtree and Shen 1990: Shang and Yao 1999), and by adopting a
fracture mechanics approach (Wheeler 1972: Willenborg et al. 1971; Veers et al. 1989:
Taheri et al. 2003). Methods of modifying the stress-life and strain-life approaches have
been suggested in order to predict the fatigue life of the metal structures and automobile
components exposed to VA loadings (Conle and Topper 1980; Yan et al. 1992).
However, fatigue life prediction using these methods is generally specific to a specific

material.

Although such models have provided improved fatigue life predictions under VA
loadings compared to the CA linear damage methods under specific conditions, they
have proved difficult to incorporate in fatigue life prediction programmes for general use
(DuQuesnay et al. 1993). Considering the limitations observed in the fatigue life
predictions determined for VA loadings, the use of a simple linear damage model such
as the Palmgren-Miner rule has been found to be unsuitable. Therefore, a fatigue
damage model for use with VA strain loadings was developed by DuQuesnay et al.
(1993), called the Effective Strain Damage (ESD) strain-life model. This model is based
on crack growth and crack closure mechanisms. It has been shown to work well for a
wide range of materials, load spectra, component geometries, strain magnitudes and

mean-strain effects (DuQuesnay et al. 1992a; 1992b; 1993; Topper and Lam 1997,

DuQuesnay 2002).
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The ESD strain-life model was developed for the purpose of life to crack detection
which is based on the use of the effective strain range as the damage parameter. Using
this model, the fatigue damage can be analysed based on the assumption of short crack
growth, since the crack length at failure is usually less than a few millimetres. The ESD

strain-life model is defined as

L B
EAe =A(N,) (2.43)

where E is the elastic modulus of the material, A¢” is the net effective strain range for a
closed hysteresis loop which is related to fatigue crack growth, A and B are material
constants, and N; is the number of cycles to failure. The study by DuQuesnay et al.

(1993) determined the curves shown in Figure 2.32 of ESD strain-life for SAE 1045 steel

and aluminium alloy.
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Figure 2.32: Curve of effective strain range (EA€™) versus number of cycles to failure
(N)) for: (a) SAE 1045 steel, (b) 2024-T351 aluminium alloy.

(Reproduced from DuQuesnay et al. 1993).

The magnitude of EAe for a given cycle is a function of the crack-opening stress (Sy)
and is dependant on the prior stress and strain magnitudes in the loading history.
Studies by Topper et al. 1991 and DuQuesnay et al. 1992 have shown that the

parameter EAe sufficiently accounts for the mean stress effect of the CA loading. The

left side of Eq. (2.43) can be expanded to the form

EA€" = E(&,, —€,,) —E€ (2.44)



where

max ~ €op (2.45)

In both equations, &,. and &, are the maximum strain and the crack-opening strain of
the particular cycle, respectively. If Ep IS smaller than the minimum strain (Emin) for a
particular cycle, then ¢, is equal to ¢,;,. Another parameter is g, which is the intrinsic
fatigue limit strain range under the VA loading. The difference of Emax AN &, iS known

as the effective strain range (de.). It is the strain range which opens a fatigue crack.

The measurement of steady crack opening levels, or Sops I8 difficult, time consuming and
requires equipment which is not available in many laboratories (Topper and Lam 1997).
As a result, several analytical and experimental studies have been performed to

determine the crack opening stress, S, which leads to the crack opening strain, ¢,

In order to consider the cycle sequence effects in the fatigue life calculation, a decay
parameter is used to define the change in a crack-opening stress between two adjacent
cycles (Dabayeh and Topper 1995; Khalil et al. 2002, Khalil and Topper 2003). The
formula of the change in crack opening or AS,, was first proposed by Vormwald and
Seeger (1991) i.e.

AS,, =m(S,—S,) (2.46)
where m is a material constant, S, is the current opening stress and S, is the steady-
state opening stress. The m value is determined by means of a curve fitting method
performed using a graph of crack opening stress versus number of cycles to failure (see
Figure 2.33 for the SAE 1045 steel). The graph in Figure 2.33 shows a value of 0.002

gave a good fit for the measured crack opening stress using SAE 1045 steel (Khalil and

Topper 2003).
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Figure 2.33: Curve fitting for the crack-opening stress build-up data for SAE 1045
steel (Reproduced from Khalil and Topper 2003).

In Eq. (2.46), the current opening stress, Sc,, is determined from the previous value of
crack opening stress or S,,. The value of steady-state opening stress S, is calculated

using the following expression

S
Ss.\' = aSmax 1 - Smﬂx + ﬁSmin (247)

cy

where « and 3 are material constants which are obtained from a curve fitting procedure
performed using a graph of the measured crack opening stress versus the maximum
stress (DuQuesnay et al. 1992a; 1992b: Topper and Lam 1997) as shown in Figure
2.34. S, is the maximum stress of the previous largest cycle in the time history, Spmin IS

the minimum stress of the previous largest cycle and S, is the cyclic yield stress.

For the application of the ESD model, the loading spectrum needs to be rainflow
counted (Matsuishi and Endo 1968) to determine the fatigue life for each cycle. This

fatigue life can be determined from Eq. (2.41), which can be rearranged to the form

* 1/B
N, =(Eae’/A) (2.48)
Using the ESD model to predict the fatigue life of metal components has been shown to

provide better results than the Palmgren-Miner linear damage rule.
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Figure 2.34: Curve fitting of the experimental data using Eq. (2.47) in order to find the

aand fvalues, performed by Topper and Lam (1997).

Research by DuQuesnay et al. (1993) and by Topper and Lam (1997), for which the
results are presented in Figure 2.35, showed the comparison between the fatigue lives
predicted using the ESD model and Smith-Watson-Topper (SWT) model, and the
experimentally determined fatigue lives. Smooth specimens of the SAE 1045 steel and
2024-T351 aluminium alloys were used under two types of VA fatigue loadings. In this
figure for steel and aluminium alloy, the ESD model produced the fatigue life predictions
that follow the trend of the experimental data. However, the predictions using CA strain-
life data by means of the SWT model significantly overestimate the fatigue lives when
comparing to the experimental data. The main finding of the study DuQuesnay et al.
(1993) and by Topper and Lam (1997) confirmed that the accuracy of the ESD model in

predicting fatigue lives of VA loadings for different types of materials.

In a study by Choi (2004), uniaxial fatigue tests using eleven VA loadings were
performed using smooth specimens of BS 080A42 steel. The loadings were measured
from the lower suspension arm of a road vehicle travelling over a pave test track
surface. The experimental fatigue damage were compared to the prediction results
obtained using four strain-life models, i.e. Coffin-Manson, Morrow, SWT and ESD.
Referring to Figure 2.36, the ESD model produced the closest correspondence between

prediction and experiment, with an average difference of only 5%. From this study (Choi
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2004), it is concluded that the ESD model is a suitable approach for predicting fatigue

lives or fatigue damage using metal components.
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Figure 2.35: Comparison between the experimental and predicted fatigue lives for:
(a) SAE 1045 steel tested using the grapple-skidder history,
(b) 2024-T351 aluminium alloy using the log-skidder history.
(Reproduced from Topper and Lam 1997)
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Figure 2.36: Fatigue damage correlation between the prediction and experiment for

BS 080A42 steel (Choi 2004): (a) The Coffin-Manson, Morrow and SWT

strain-life models, (b) The ESD strain-life model.
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2.6 Fatigue Data Editing Techniques

Fatigue data editing is a technique to remove small amplitude cycles that lead to
minimal fatigue damage (Frost et al, 1974). In this approach, large amplitude events
which produced the majority of damage are retained, so as to produce a shortened

loading for accelerated fatigue tests (Conle and Topper 1979: Conle et al. 1997).

Section 2.6.1 to Section 2.6.4 contain overview of the currently available fatigue data
editing techniques which are used for summarising long records of variable amplitude
fatigue loadings. Section 2.6.5 discusses instead the application of the wavelet

transform as an approach for performing fatigue data editing.

2.6.1 Editing in the Time Domain

Time series data is the most general format data, containing all the information of
relevance to fatigue analysis. Time domain editing techniques have been developed to
remove time segments, for an example, using the method called Time Correlated
Fatigue Damage (TCFD) analysis. TCFD, as implemented in the nSoft’ software
package, is used to remove non-damaging sections of the time history on the basis of

time correlated fatigue damage windows of the input signal.

Using the time domain editing approach, the damage signal is divided into a number of
time segments. Fatigue damage is then calculated for each time-window containing a
short segment of time history. Windows having minimal damage are removed, so as to
retain the windows containing the majority of the fatigue damage. These windows are
assembled together in order to produce a shortened signal for the purpose of the
durability analysis. Using this approach, both the percentages of damage retention and
the required acceleration factors, or one of them, could be set as editing targets (nSoft

User Manual 2001). This technique is recommended as it maintains the phase and

amplitude of the original signal (El-Ratal et al. 2002).
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2.6.2 Editing in the Frequency Domain

In the frequency domain, fatigue loading time histories are often low-pass filtered in
order to reduce small amplitudes located in the high frequency region of PSD
distribution (Morrow and Vold 1997). The idea behind the method is that small amplitude
events do not cause much fatigue damage. Unfortunately, the low pass filter does not
reduce the length of the signal, but almost certainly reduces the fatigue damage.
Therefore, the frequency domain editing technique is not recommended, as the time

series regenerated from a frequency spectrum does not produce the same fatigue life.

2.6.3 Editing in the Peak-Valley Domain

The peak-valley (PV) editing technique reduces the number of points of the original
loading. This technique can be used when the signal frequency content is not important
for the fatigue damage analysis. However, the time information of the original time
history is lost when using this fatigue data editing technique. An example of the PV
editing technique is presented in Figure 2.37, showing the removal of small PV pairs

using a range omission (Mercer et al. 2003).

—» —»
GL
GL
Original signal After Peak Valley Extraction After removing small cycles
(Step 1) under Gate Level (G.L.)

(Step 2)
Figure 2.37: Peak-Valley extraction procedure.
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2.6.4 Editing in the Cycle Domain

The rainflow cycle counting method (Matsuishi and Endo 1968) is used as the basis for
the cycle domain fatigue data editing technique. A time history is rainflow cycle counted
in order to extract the fatigue cycles and also to produce a range-mean histogram. An
example of the range-mean histogram produced from a variable amplitude fatigue
loading measured from a road vehicle lower suspension arm is presented in Figure
2.38. From this histogram, the identified small cycles having minimal damage are

removed, and the damaging cycles are retained in the edited loading.

Time (s)

Figure 2.38: Example of a variable amplitude fatigue loading time history and its

fatigue range-mean histogram.
2.6.5 Editing in the Time-Frequency Domain

For editing in the time-frequency domain by means of the wavelet-based fatigue data
editing, only two research studies have been found in literature. They are a study
conducted by Oh (2001) using a VA loading measured on light railway train component
and by Abdullah et al. (2004) using a VA loading measured on automobile component.
The wavelet-based fatigue data editing using the vibration and comfort mission

synthesis algorithm, which was performed by Abdullah et al. (2004), is discussed In

Section 2.7.
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In a research by Oh (2001), the wavelet transform was identified as an approach for
editing VA fatigue loadings. A 30" order Daubechies wavelet at the decomposition level
3 was used to perform the fatigue data editing by means of denoising, spike removal
and signal compression. The wavelet order and level were chosen based on a
correlation coefficient which was calculated between the original signal and the
denoised signal. A VA loading measured from a light railway train component travelling
over a test rail at the maximum speed of 80 km/h, having 103,700 data points (28,390
PV reversals), was used for the analysis. Using the 30" order Daubechies wavelet
function at decomposition level 3, the background noise and spikes of the original signal
were removed. As a result, the original signal was compressed into 8,349 PV reversals.
At this shortened signal length, approximately 80% of the original loading fatigue
damage was retained with the reduction of 71% in the original record length. In this
case, the fatigue damage was calculated using the Palmgren-Miner linear damage rule
with the SWT mean stress correction effect which does not account for load sequence

effects.

2.7 Mildly Nonstationary Mission Synthesis (MNMS) Algorithm

2.7.1 The MNMS Method

The Mildly Nonstationary Mission Synthesis (MNMS) algorithm was initially developed
by Giacomin et al. (1999) for defining vibration mission signals for vehicle components.
MNMS represents a method of summarising mildly non-stationary vibration records to
obtain short mission signals that can be used for experimentation or numerical testing.
MNMS was conceived by recognising that mildly non-stationary behaviour could be
simulated by inserting the characteristic high peaks from a road record into a

synthesised background signal equivalent to the underlying random Gaussian vibration

of the original process. It is based on signal processing algorithms (Discrete Fourier

transform and orthogonal wavelet transform) and the use of simple peak selection

techniques. The output mission signals replicate the vibration characteristics of the input
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data in terms of the global statistical values of root-mean-square, skewness, kurtosis,

crest factor and power spectral density (PSD). Three main stages were found in MNMS:

e Application of the discrete Fourier transform to the original signal to determine the

background power spectral density of the input signal;

e Application of the orthogonal wavelet transform to the original signal for the purpose
of subdividing the signal into frequency bands (wavelet groups);

e Identification of bumps in the wavelet groups, and the reinsertion of these bumps

into the artificial background signal so as to ‘correct’ it. In MNMS, a bump Is defined

as an oscillatory transient characterised by a monotonic decay envelope either side

of the peak value.

In MNMS a reinsertion procedure is used to reinsert bumps into the Fourier background
signal. Two bump reinsertion procedures are defined. In proportional reinsertion bumps
are chosen by moving down the list of sorted bumps in descending steps equal to the
compression ratio. In maximal reinsertion, all the bumps that can be fit into the Fourier
signal are reinserted starting from the first event and continuing until there is no further

space in the signal.

When reinserting bump events coming from different wavelet groups, three
synchronisation procedures are, i.e. Nonsynchronised (Figure 2.39a), Synchronisation 1

(Figure 2.39b) and Synchronisation 2 (Figure 2.39c).

The nonsynchronised procedure treats each wavelet group independently, assuming
that a bump which occurs in one wavelet group has no relation to bumps in any other

wavelet group. The bumps were reinserted independently into the respective wavelet

groups of the Fourier signal.

The synchronisation 1 procedure reinserts group of bumps from different wavelet groups
which occur simultaneously in time. The wavelet group associated with the lowest

frequency band is used as the basis for the synchronisation check. All bumps from
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Wavelet Groups 2 and above which were found to occur at the same time of a bump in
Wavelet Group 1 were clustered together. The clustered bumps were reinserted into
Wavelet Group 1 of the Fourier signal. Then, the remaining independent bumps were

fitted in the remaining unoccupied space in each of the Fourier wavelet groups.

Synchronisation 2 involves reinserting whole segments of the original loading into the
Fourier signal. If a bump is found in any of the wavelet groups, a block of data covering
the time extent of the bump is taken from the original data set and substituted into the
Fourier signal. This is the most conservative of the bump reinsertion strategies since it

retains all of the original amplitude and phase relationships of the original signal.

Detailed descriptions of the MNMS algorithm for performing vibrational comfort mission
synthesis are found in Giacomin et al. (1999; 2000; 2001), Grainger (2001) and
Steinwolf et al. (2002).

2.7.2 MNMS as the Fatigue Data Editing Technique

MNMS was customised for the purpose of performing fatigue mission synthesis by
Abdullah et al. (2004). The aim of the research described in the paper was to investigate
the effectiveness of the MNMS algorithm in the fatigue analysis application and to
develop new modules based on the fatigue damage properties of the individual bump
events. Several experimental road load data sets were used to analyse the fatigue life
properties of vehicle components under transient loadings such as potholes and curb
strikes. Using MNMS, the extraction and reinsertion of these bumps retains important
information which is often lost by conventional strain-life fatigue analysis tools which
ignore the load cycle sequence. Consideration of the fatigue damage potential of each

individual bump during the operations leading to the shortened mission signal was

expected to produce shorter and more accurate sequences.
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Figure 2.39: Operational diagrams of the MNMS bump reinsertion processes:
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(a) Nonsynchronised, (b) Synchronisation 1, (c) Synchronisation 2.



In order to develop and validate the needed procedures, a fatigue analysis case study
was performed using two sets of experimental data measured on the lower suspension
arm of a vehicle travelling over a pavé surface at 34 km/h. These VA loadings, as shown
in Figure 2.40, have different amplitudes of mean strain, i.e. a loading with tensile
(above zero strain level) mean strain and a loading with compressive (below zero strain
level) mean strain. Using the MNMS algorithm, mission signals were produced by
shortening the originals by a factor of up to 10. The fatigue damage of these signals was

then calculated using the Palmgren-Miner linear damage rule, adopting both the Morrow

and SWT mean stress correction models.
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Figure 2.40: Variable amplitude fatigue loading used for the purpose of fatigue data
editing by means of the MNMS algorithm (Reproduced from Abdullah et
al. 2004):
(a) A loading having tensile mean strain,

(b) A loading having compressive mean strain.

Figure 2.41 presents one of the results presented in Abdullah et al. (2004). The values
of fatigue damage obtained for the tensile mean strain loading using the Palmgren-
Miner linear damage rule with the Morrow and SWT mean stress correction effects are
shown plotted against the compression ratio of the mission signal with respect to the
original data. In this figure, target is defined as the fatigue damage level that should be
achieved by the mission signals at all compression ratios. For the case of maximum
reinsertion (Figure 2.41a), the target damage of the original signal is a straight line at all
In an ideal scenario the concept of maximum reinsertion might

compression ratios.

permit the damage to remain constant when most of the bumps are reinserted into the
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synthetic Fourier signal. For all three synchronisation procedures, however, the fatigue
damage at all compression ratios decreased as the compression ratio increased. For
the case of proportional reinsertion (Figure 2.41b), the fatigue damage values at all

synchronisation procedures and the fatigue damage target line decreased in proportion

to the compression ratio.

Maximum reinsertion and fatigue damage predicted
using the Morrow model

Maximum reinsertion and fatigue damage predicted
using the SWT model
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Figure 2.41: Example of the fatigue damage results at different compression ratio
values using the VA loading having tensile mean strain loading for:

(a) Maximum reinsertion, (b) Proportional reinsertion.

From the results in Figure o 41, the decrement of fatigue damage using all

synchronisation procedures when the compression ratio values increased, was due 10

not all the fatigue damaging events being reinserted into the Fourier signal. This is the
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main disadvantage of the MNMS algorithm when used for fatigue data editing. In an
ideal approach to fatigue data editing, high amplitude events must be retained to
produce a shortened signal with equivalent fatigue damage to the original signal.
Comparing the fatigue damage values for both reinsertion processes, the
Synchronisation 2 procedure produced higher fatigue damage compared to other
synchronisation procedures, as the mission signals preserved the original phase and
amplitude relationships. Finally, the results obtained by Abdullah et al. (2004) also

suggested that the trigger level values are important parameters requiring further

investigation.
2.8 Summary

This chapter has discussed the concepts and approaches which form the basis of the
research. Relevant signal analysis, signal processing, fatigue life prediction and fatigue
data editing techniques have all been defined. Many experimental signals exhibit time-
varying, or nonstationary characteristics, which provide a challenge in signal analysis.
Using the Fourier transform the frequency components of an entire signal can be
analysed, but it is not possible to locate at what point in time that a frequency
component occurred or its duration. To overcome this problem, the wavelet is a
significant tool for analysing time-localised features of a signal, and it is defined in the
time-scale domain. Thus, wavelet transform gives a separation of components of a
signal that overlap in both time and frequency and it gives a more accurate local

description of the signal characteristics.

Several aspects have been discussed in the field of fatigue background such as tatigue
loadings, fatigue life behaviour, fatigue life prediction and fatigue data editing technique.
It is common that the service loads measured on relatively small components of
machines, vehicles, and structures are analysed for fatigue life using crack growth
approaches. For these components, it is important to predict crack initiation in order to

avoid fatigue failure by removing the part from service at the appropriate time. A fatigue
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life estimate based on the strain-life approach is usually used in these cases. The strain-
life fatigue model relates the plastic deformation that occurs at a localised region where

fatigue cracks begin to the durability of the structure.

In current practice, the fatigue damage calculations are based on the Palmgren-Miner
linear damage rule, but this rule has limitations in analysing VA loadings since it does
not account for load interaction or cycle sequence effects. Considering these limitations,
the use of a fatigue damage model which was developed by DuQuesnay et al. (1993) is
suitable for VA strain loadings. This model is called Effective Strain Damage (ESD). This
model is based on crack growth and crack closure mechanisms and works well for a
wide range of materials, load spectra, component geometries, strain magnitudes and
mean-strain effects (DuQuesnay et al. 1992a; 1993; Topper and Lam 1997; DuQuesnay
2002).

Background of available fatigue data editing techniques was also discussed, including a
wavelet-based technique, known as the MNMS algorithm. The evaluation of MNMS for
fatigue data editing was performed by Abdullah et al. (2004), exposing the limitations in
shortening fatigue signals for the purpose of accelerated fatigue tests. Apart from
MNMS, only one study used the wavelet transform for fatigue data editing has been
found in literature. This study which was performed by Oh (2001) with the signal
denoising process and spike removal as the stages implemented in fatigue data editing
method of a signal measured on a light railway component. Realising that the wavelet
transform is new to the fatigue research of the road vehicles and its suitability to analyse

nonstationary signals, therefore, it has been chosen as a method for developing a new

fatigue data editing algorithm.
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CHAPTER 3

3. Development of the Wavelet-Based

Fatigue Data Editing Algorithm

Referring to Chapter 1 and Chapter 2, three keywords were identified for the new
wavelet-based fatigue data editing algorithm. These are wavelet (a signal processing
element to analyse nonstationary signals), bump (a high amplitude which causes the
majority of the fatigue damage) and extraction (a procedure to extract fatigue damaging
events from original loading). The combination of these three keywords was expected to
produce a highly effective fatigue data editing algorithm, and is thus the main subject of
this thesis. The algorithm, called Wavelet Bump Extraction (WBE), is a computational
method which was developed in the Fortran programming language by means of the

Salford ClearWin+® compiler.

3.1 Flowchart of the Wavelet Bump Extraction (WBE)

Algorithm

A flowchart describing the Wavelet Bump Extraction (WBE) processing is shown in

Figure 3.1 and Figure 3.2. Three main stages can be observed: application of the
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orthogonal wavelet transform (OWT); identification of fatigue damaging events: and

production of a shortened or mission signal.
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The first stage of the WBE algorithm, being the application of the OWT, was adapted
from the methodologies applied in the MNMS algorithm (Giacomin et al. 1999 2000:
2001). On the other hand, the second and third stages have been developed in this

thesis specifically to identify and extract fatigue damaging events from the original time

history.

3.2 Application of the Orthogonal Wavelet Transform
3.2.1 Wavelet Decomposition

In the WBE algorithm the orthogonal wavelet transform (OWT) is used to decompose
the original time history into wavelet levels. For this purpose, the Daubechies wavelet
function was selected since it has been proven useful in many engineering applications,
especially in the field of signal reconstruction such as in the mechanical damage
detection research (Staszewski 1998a; 1998b; Li et al. 1999; Lin and Zuo 2003) and
fatigue damage analysis (Oh 2001; Abdullah et al. 2004). For Daubechies wavelet it has
been suggested that lower order, such as 4™ order, are suitable for nonstationary
signals, while higher order, such as 20™ order, are suitable for stationary signals. For
some nonstationary signals which contains transient events, however, both 4" and 20"
order of Daubechies wavelet have been shown to provide similar results (Staszewski

1998b).

For the algorithm development, the 12" order of Daubechies wavelet was chosen due to
its successful application in several previous studies involving automotive road data
(Giacomin et al. 1999; 2000; 2001: Grainger 2001; Steinwolf et al. 2002; Abdullah et al.

\‘,V

2004). Since Daubechies wavelets of order N provides — vanishing moments

—

(Daubechies 1992; Burrus et al. 1998), a 12" order of Daubechies wavelet can be

considered adequate for the WBE application, since greater than two vanishing

moments are rarely required when compressing complex signals, such as speech or
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video (Hubbard 1996). A vanishing moment is defined as the wavelets ability to
represent polynomial behaviour of a signal. For example, 2™ order Daubechies wavelet
which has one moment encodes polynomials of one coefficient, i.e. constant signal
components. 4" order Daubechies wavelet encodes polynomials of two coefficients, i.e.

constant and linear signal components (Matlab User's Guide 1998).

In the WBE algorithm the wavelet decomposition is used to produce a series of wavelet
level time histories that cover subbands of the frequency domain. This is equivalent to
using the wavelet transform as a multiple band-pass filter bank, dividing the vibrational
energy of the original signal amongst the wavelet levels. For VA fatigue loadings
exhibiting nonstationary characteristics such as the example of Figure 3.3, most bump
events are not immediately obvious. This is one of the difficuities observed in the bump
identification process. Therefore, it is useful to manually separate the signal into a
number of components, each of which is related to certain physical phenomenon that
occur during vehicle motion, e.g. the rigid-body resonance of the vehicle, the torsional
and flexural flexible-body resonances of the vehicle, the tire resonances, etc. When this
has been done and each of the constituent vibration components is considered
separately, bumps caused by one physical phenomenon will not be covered by

background vibration related to another.

Bumps

Strain (uE)

Time (s)

Figure 3.3: A fatigue road load time history indicating several clear bumps.

For the WBE algorithm the important choice was made to use wavelet decomposition

rather than more traditional techniques such as digital filtering. Frequency separation is
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often performed by means of band-pass digital filters, but since every point in the filtered
output is influenced by its neighbours, the filtering process affects the time history by
smoothing the peaks. If a number of band-pass outputs from the same input process are
summarised, the result will not exactly duplicate the original time history. The rigorous
signal reconstruction achievable by means of the orthogonal wavelet transform and

Daubechies wavelets was considered necessary to maintain accuracy in WBE.

3.2.2 Wavelet Grouping

A wavelet grouping procedure is used to group wavelet levels into a specific frequency
intervals. Each wavelet group is defined by the user so as to cover specific frequency
regions, such as high energy peaks caused by a subsystem resonance. The joining of
the wavelet levels into wavelet groups permits analysis to be performed for each
frequency region of interest. Wavelet group time histories are then formed by the
summation of their constituent wavelet level time histories. A schematic diagram of the
wavelet decomposition and wavelet grouping procedures is shown in Figure 3.4. The
programme code for these operations was first developed for use in the MNMS
(Giacomin et al. 1999; 2000; 2001), and was later implemented for the same purposes

in the WBE algorithm.

As an example, Figure 3.5 presents the case of an acceleration signal measured in the
vertical direction at the rail of the driver’s seat. In this case, an automobile was driven
over a smooth asphalt road surface. The frequency range up to 3 Hz contains the rigid
body resonances of the chassis on the suspensions (Giacomin et al. 1999; 2000).
Similarly, higher frequency bands containing predominantly suspension modes, chassis
modes or tyre modes can be defined by grouping those wavelet levels covering the
relevant resonant frequencies. The procedure of grouping wavelet levels into specific
bands in this way is helpful, as it becomes less likely that vibrational energy from one

subsystem resonance conceals the energy of other subsystem resonances.
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Figure 3.4:  Schematic diagram of the wavelet decomposition and grouping
procedures, where WL and WG denoted as wavelet level and

wavelet group, respectively (Reproduced from Giacomin et al.

2000).

In Figure 3.5, six clear peaks can be observed in the PSD plot, having centre

frequencies of 1.5, 10, 18, 25, 37 and 53 Hz. The meaning of these peaks and the
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vibrational energy which spread within the peaks are described as follows (Giacomin et

al. 2000; Grainger 2001):

» The lowest frequency peak occupying the region from 0.5 to 3 Hz (Wavelet Group
1) is associated with the rigid body dynamics of the car;

o The second peak, spreading across the range from 6 to 13 Hz (Wavelet Group 2)
is related to the resonant frequencies of the suspension and the rigid body motion
of the engine/gearbox;

e The third peak, distributed within the region between 14 and 21 Hz (Wavelet Group
3) mainly reflects the first flexible body resonance of the chassis:

o Finally, two smaller peaks and a larger peak are found in the frequency range 23 to
57 Hz (Wavelet Group 4 and Wavelet Group 5). These are higher chassis

resonances and resonant frequencies of the tyres.

Each of the wavelet levels correspond to a certain frequency range which contains time
domain features such as transient events. In WBE, the wavelet levels are grouped in
such a way that each group isolates a single, physiological, frequency band of the whole
PSD. Following this logic, some groups will combine several wavelet levels while others

may consist of only one individual wavelet level.

The usefulness of wavelet decomposition and grouping for the identification of bump
events is illustrated in Figure 3.6. A bump event is observed in the higher frequency
wavelet group (Figure 3.6a). At the same time there are no bump events present in the
low frequency wavelet group (Figure 3.6b). In Figure 3.6c¢, the bump is concealed in the
overall road signal. This would not have been apparent without first decomposing the

overall signal and assembling wavelet groups.
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Figure 3.5: Overall power spectral density of the vertical direction seat rail

acceleration and the individual wavelet groups into which the signal

was divided (Reproduced from Giacomin et al. 2000): (a) PSD of

the original signal, (b) PSD of Wavelet Group 1, (c) PSD of

Wavelet Group 2, (d) PSD of Wavelet Group 3, (e) PSD of Wavelet

Group 4, (f) PSD of Wavelet Group 5.
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Example of a time history where a bump event is concealed in the overall

background of the signal:

(a) Higher frequency wavelet group: bump presents,

(b) Lower frequency wavelet groups: no bumps,

(c) Complete road signal: bump is concealed.

Bump Identification in Wavelet Groups

After the wavelet grouping process, the peak of each wavelet group time history is

determined

by the algorithm. The peak is used to determine the initial trigger level for

the bump identification process. Bump identification is achieved in each wavelet group

time history by means of an automatic trigger level value specific to the wavelet group.
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At the program launch, the user is asked to specify initial trigger level values for each
wavelet group. Trigger level determination is performed by specifying the percentage
value of the peak for the wavelet group, which is denoted as C7. The user is also asked
to specify the trigger step, which is denoted as C2, which is a percentage value which
can be applied to the peak of each wavelet group. In addition, the user is asked to
specify an acceptable percentage difference between the r.m.s. and the kurtosis of the
mission signal and the original signal (denoted as RD and KD, respectively). Both
statistical parameters are used in order to retain a certain amount of the signal
vibrational energy and range characteristics, leading to the retention of the original

fatigue damage (Hu 1995; Qu and He 1986) in the mission signal.

The trigger level for each wavelet group is automatically determined to achieve the
requested statistics (simultaneous analysis for both RD and KD) for each wavelet group.
Referring to the flowchart of Figure 3.2, other parameters used in the WBE algorithm are
D1 and D2. Both parameters are defined as the calculated difference of r.m.s. (for D7)
and kurtosis (for D2) between a current iteration of the mission signal and the original
signal. For this case, the approach of producing the final mission signal, which is
discussed in Section 3.4 and 3.5, is used to produce the current iteration of the mission

signal at specific trigger level values.

In the algorithm computational analysis to determine the trigger level value for each
wavelet group, the simultaneous comparison between the values of D7 with RD and the
values of D2 with KD are required. If the values of D7 and D2 are not to be found in the
ranges of +RD (or -RD < D1 < +AD) and KD (or -KD < D2 < +KD), respectively, then
the algorithm will compute the trigger level step (C2) for a new trigger level value. This
process is iterated until D7 and D2 meet the user-defined value of both RD and KD, thus

the final trigger levels can then be finalised.

Since the WBE algorithm tends to retain signal energy and signal amplitude range, the
use of +10% difference in r.m.s. and kurtosis of the mission and the original signal is

suitable for analysing experimental road load data sets. The percentage value of +10%
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is chosen for the bump determination process of the WBE algorithm in order to produce
a shortened mission signal which has close global statistical parameter (PSD, r.m.s. and
kurtosis) values to those of the original signal. Related studies of the difference in the
global signal statistical values between the mission and the original signals can be
found in Giacomin et al. (2001), Grainger (2001) and Abdullah et a/. (2004), with the

application of the MNMS algorithm using various road load data sets.

Figure 3.7 presents a set of possible trigger levels for an individual wavelet group to
determine a bump labelled as -4 to 4. Once a bump exceeding a specified trigger level
has been identified, its time duration must be defined. In WBE, bumps were defined to
be rapid transients that oscillated for two or more cycles before becoming lost in
background vibration. The determination of the bump temporal time extent was
performed by means of searching the points at which the signal envelope inverts from a
decaying shape. The schematic definition of the bump time extent defined for use in

WBE is shown in Figure 3.8.
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Figure 3.7: Bump identification using trigger levels.
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Figure 3.8.  Determination of the time extent of a bump in WBE.

3.4  Extraction of Bump Segments from the Original Signal

After all bumps are identified in each wavelet group, a search of the time extent of the
bump is performed, as shown in Figure 3.9. If a bump event is found in any of the
wavelet groups, a block of data covering the time frame of the bump is taken from the
original time history. The blocks are then compared, and any temporally overlapping

sections are eliminated so as to avoid redundancy in the final mission signal.
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Figure 3.9:  Bump extraction and section elimination processes of the WBE algorithm.

This extraction strategy retains the amplitude and phase relationships of the original

signal. Using this strategy to identify bump segments, the load sequence of VA fatigue



81

loadings can be retained within the bump segments. Therefore, the extracted bump

segments can be used in the study of cycle sequence effects.

3.5 Construction of the WBE Mission Signal

Once all bump segments have been identified from the input fatigue time history, they
are sorted based on the severity of the expected fatigue damage. The parameters
obtained from four strain-life fatigue damage model can be used to determine the
sorting criteria. They are the Coffin-Manson relationship (Eq. (2.37)), the Morrow (Eq.
(2.38)) and Smith-Watson-Topper (Eq. (2.39)) mean stress correction model, consisting
of mainly the constants at the left hand side of their respective equations. Another
strain-life model is the Effective Strain Damage (Eq. (2.43)), which consists of

experimental variables to determine the parameters in the equation.

However, by using the Smith-Watson-Topper (SWT) fatigue damage model the left hand
side of Eq. (2.39) can be seen to consist of more constants compared to the fatigue
damage models of Eq. (2.37) and Eq. (2.38), thus suggesting that the relative expected
fatigue damage of the bump segment can be quantified in the WBE algorithm by means

of the product of the modulus of elasticity of the material E, maximum strain o, and the

strain amplitude &,, as in the following expressions

o € = Eg_ € (3.1)

£ — &
Ee € :Eem(u] (3.2)

where €., and &m, is the maximum and the minimum strain of a particular bump

segment extracted from WBE.

In its current form, the WBE algorithm provides three bump segment sequences: the
original order sequence of the bump segments; from the highest expected fatigue

damage to the lowest and from the lowest expected fatigue damage to the highest.
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Figure 3.10 presents an example of the process of mission signal generation in which

the highest-to-lowest ordering is used.

Segment 1 Segment 2 Segment 3 Segment 4
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Figure 3.10: Mission definition using the highest-to-lowest damage sequence

ordering.

3.6 Summary

This chapter has discussed the Wavelet Bump Extraction (WBE) algorithm which was
developed as a part of the Ph.D. research described in this thesis. WBE was developed
in the Fortran programming language using the Salford ClearWin+® compiler. The
algorithm is able to identify and extract fatigue damaging events from variable amplitude
fatigue loadings, so as to produce a shortened mission signal which preserves the
original load sequences. The WBE algorithm is the first fatigue data editing technique
that has been developed using the orthogonal wavelet transform. In this research, the
12" order Daubechies wavelet was chosen due to its successful application in previous

studies involving automotive road data.

The key concept adopted in WBE is that a fatigue damaging event, or bump, is defined
as an oscillatory transient which has a monotonic decay envelope either side of the
peak value. Bumps are identified based on an automatic trigger level specific to each

wavelet group into which the signal is decomposed. The trigger level of each wavelet
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group is automatically determined to achieve the user defined global signal statistical
parameters (r.m.s. and kurtosis) difference, with the comparison of the calculated values
of r.m.s. and kurtosis of the mission and original signals. If the comparison values are
within the range of the user defined global signal statistics differences, the final trigger
level values for the particular road load data set are finally determined. Then, a method
of searching the bump start and finish points from the original time history was
developed in order to produce the bump data segments. By saving only the bump data

segments most small amplitude events which produce minimal fatigue damage are

removed.

The bump segments are assembled in order to produce a mission signal that has a
shorter time length compared to the original signal. The mission signal contains the
original load sequences, amplitude and phase relationships, thus is suitable for the
simulation or experimental testing of any structures or materials where cycle sequence
effects may play a prominent role in the overall fatigue life. WBE is thus also an
appropriate algorithm for use when accelerated (time shortened) fatigue tests are

desired.
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CHAPTER 4

4. Application of the Wavelet-Based Fatigue
Data Editing Algorithm

4.1 Signals for the Validation of the Wavelet Bump Extraction

(WBE) Algorithm

The main objective of developing the Wavelet Bump Extraction (WBE) algorithm was to
provide a procedure for summarising variable amplitude (VA) fatigue loadings, whilst
retaining the original load sequences. In order to verify the ability of WBE to compress
VA fatigue signals, six test signals containing a range of possible behaviours were
created. These signals are divided into two categories: Synthetic Signals (T1 and T2)
and Experimental Signals (T3 — T6). The signal time histories and vibrational energy
distribution (in PSD) are shown in Figure 4.1 for the Synthetic Signals and in Figure 4.2

for the Experimental Signals.
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4.1.1 Synthetic Signals

The first category consists of two artificial signals which were defined so as to test
several possible failure modes of the WBE algorithm. The basic statistical properties of
these two signals are summarised in Table 4.1, while the time history and the power

spectral density (PSD) plots are shown in Figure 4.1.

Table 4.1: Statistical properties of the Synthetic Signals.

Global Statistical Parameters o
Signal | No. of data | Signal Mean r.m.s. Skewness Kurtosis Crest
Name points length [s] Lué] [ué] factor
T 16,000 40.0 0.0 1.5 0.1 7.4 ™ 3.9
T2 16,000 40.0 0.4 2.9 0.0 4.4 71
L

The T1 signal, as illustrated in Figure 4.1a, was defined to have 16,000 data points
which are sampled at 400 Hz. The logic of producing T1 was to verify the WBE ability in
dealing with any signal containing large transients in an otherwise small amplitude
background. T1 consists of a combination of sinusoidal and random segments of
different amplitude or frequency. The signal was intentionally defined to be a mixture of

both high amplitude bump events and low amplitude harmonic backgrounds.

T2, as illustrated in Figure 4.1b, was defined to hav<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>