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ABSTRACT 

Knowledge of the soil profile is necessary for ground engineering projects and 

piezocones are widely used in situ test devices that can supply some of this knowledge. 

This thesis describes an investigation of the performance of a specific piezocone when 

used in thinly layered soil. 

A miniature piezocone, with a cross sectional area of 1 cm2, was driven at a speed 

of 20mm/sec into artificial layered soil samples that were constructed in the laboratory 

and consolidated under a vertical pressure in a 254mm diameter test cell. The layered 

samples contained alternating layers of pre-consolidated Speswhite kaolin clay about 
20mm thick and layers of more permeable, silty or sandy soil about 2mm thick. The 

pore pressure filter of the piezocone was located either at the cone tip or cone shoulder. 
During driving, the cone resistance and pore pressure responses were recorded at a rate 

of at least 200 readings/sec. Once the piezocone was stopped, in a clay layer, the 

dissipation of excess pore water pressure was monitored. 
In terms of the pore pressure response, though not the cone resistance, the 

piezocone was able to detect the more permeable layers located between the clay layers. 

Both dilation and localised drainage in the more permeable layers, deformed during 

penetration, could have significantly influenced the pore pressure responses. Despite the 

proximity of permeable layers, values of the coefficient of consolidation obtained from 

pore pressure dissipation at the piezocone tip agreed fairly well with values obtained 
independently during unloading or reloading of the clay in one-dimensional 

consolidation tests. At the cone shoulder, the permeable layers had some influence and 
larger values were obtained. 

The layered soil samples used for piezocone testing were also used for 

investigating the effects of soil disturbance, or "smear", caused by vertical penetration of 

objects with different sectional shapes in the context of permeability measurement and 

soil drainage. A mandrel carrying a vertical drain, either circular (23.5mm diameter) or 

rectangular (50x6.5mm) in section, was driven into the centre of the soil sample at a 

speed of 5mm/sec. The effects of smear were evaluated by performing radial flow 

permeability tests in which pressure distributions across sample were recorded. 
The effect of smear increased substantially as the permeability of the more 

permeable layers increased, but only when it exceeded the permeability of the clay by a 

factor of about 100. For a given layer combination, the rectangular drain always 

produced a significantly smaller smear effect than the circular drain. 
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Introduction and Research Methods 

CHAPTER 1 

INTRODUCTION AND RESEARCH METHODS 

1.1 Background 

Natural soils in many parts of the world are layered or laminated. Most 

commonly this is due to differential rates of settling of soil particles, with different 

grain sizes, after transportation by wind or water. Layering can produce a variation 

(i. e. anisotropy) in values of certain properties, e. g. shear strength and permeability. 

The arrangement of layers having different particle sizes is part of the soil "fabric". 

The term fabric is used to describe the arrangement of the layers along with other 

structural features. 

It is important to record soil fabric during soil exploration. Rowe (1972) 

stated that the fabric must be described because classification by index tests and 

grading alone is not indicative of the engineering performance of natural deposits in 

situ. Rowe also highlighted the significance of layered fabric to engineering, e. g. its 

influence on the consolidation rate of soil beneath foundations and embankments, the 

rate of swelling and effective stress change in soil around excavations, retaining 

walls and cast in situ piles. 

Steenhuis et al. (1990) stated that the way soil is layered affects how water 

and solutes leaking from landfills flow down to the ground water. In open 

excavations, water-bearing sandy or silty soils are particularly troublesome when 

interbedded with layers of clay (Tomlinson, 1995). The silt or sand eroding from the 

face can cause undermining and collapse of more stable clay layers. Ladd (1990) 

suggested that most normally consolidated soils exhibit significant anisotropy of 

undrained shear strength which generally becomes more important in lean clays. 

Varved clays could present unusually low strengths on horizontal shear planes. 

Soil profiling information is generally obtained by making shallow 

excavations (trial pits) in the field or drilling boreholes to collect samples using tube 

I 



Introduction and Research Methods 

samplers. The physical description of soils in trial pits or tube samples and the 

determination of their engineering properties are both necessary for ground 

engineering projects. However, a major problem of testing soil samples collected 

from the field is the disturbance caused by sampling, transportation and setting up 

the sample in laboratory. Furthermore, these procedures can also be time-consuming 

and expensive. Therefore, in-situ testing has been developed for ground exploration 

and there is now a wide range of such tests. 

The piezocone, a cone penetrometer with measurement of pore water 

pressure, is one of the most widely used in-situ test devices. With an ability to 

measure soil resistance and pore water pressure, normally at the cone tip (ul) or 

shoulder (u2), simultaneously during penetration, the piezocone provides a profile of 

soil type and soil shear strength. From dissipation tests when penetration is halted, 

consolidation properties of the soils can be determined. However, generally, the 

piezocone is used to explore stratigraphy or macroscopic features of the ground. 

Determining fabric detail, in the form of thin layers or lenses, using the piezocone is 

not prevalent. 

Soil fabric does not only influence the behaviour of natural soil in situ but 

also causes difficulties and uncertainties in soil property determination, both in the 

laboratory and in the field. In laboratory tests, small samples collected from the 

same region with variations of fabric can have very different performances in terms 

of shear resistance and consolidation. In in-situ tests, installation of the in-situ 

testing devices generally disturbs the soil to a degree. As reported by Tavenas et al. 

(1986) and DeGroot & Lutenegger (1994), for in-situ permeability determination 

conducted by installing a piezometer, the disturbed soil surrounding the piezometer, 

known as the "smear zone", can reduce the measured permeability of layered soil 

significantly. During the penetration of a piezocone, disturbance, or smearing, of the 

soil potentially affects the pore water pressure response, especially when the 

measurement is taken at the cone shoulder where the surrounding soil is disturbed 

more that at the cone tip. Disturbance of the soil could also affect dissipation test 

results. 
The smear zone does not only cause problems during in-situ tests but also 

during ground improvement using vertical drains. For construction on soft soils, 

consolidation time is an important design issue and vertical drains are often installed 
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into the ground to speed up the consolidation of the soil. Once the ground is 

subjected to load, the pore water flows horizontally to the vertical drains. This is 

encouraged by soil layering which naturally causes the overall horizontal 

permeability to be greater than the overall vertical permeability. In the vertical 

drains, the water is then directed upwards to the ground surface and led away. 

However, the smear zone surrounding the drains, caused by installation, can reduce 

their effectiveness. 

Despite the common occurrence of smear in layered soils, relatively little is 

known about its effects in quantitative terms. One of the first systematic studies was 

conducted by Moseley (1998) at the University of Sheffield and this provided a 

platform for further research described in this thesis. 

1.2 Research Aims 

Building on previous work, Moseley (1998), the present research aims to: 

a) investigate the performance of a miniature piezocone in detecting thin soil 

layers with different permeabilities within clay deposits. 

b) investigate the influence of more permeable layers on the measurement of 

the coefficient of consolidation in clay layers using the piezocone . 
c) investigate the influence on smear of the relative permeabilities of the 

clay layers and the more permeable layers. 

d) investigate the effects of the sectional shape of the penetrating object on 

smear in layered soils. 

The last of these aims was in recognition of the fact that many vertical drains 

are rectangular rather than circular in shape, and that the mandrels used to install 

them vary similarly. Only circular penetrating objects were used by Moseley (1998). 
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1.3 Research Methods 

To achieve the research aims, artificial layered soil samples, containing layers 

of consolidated Speswhite kaolin clay and more permeable soil, were constructed in 

the laboratory. Three types of soil, with different gradings and hence different 

permeabilities, were used to make the more permeable layers, though only one type 

of permeable layer was used in each layered sample. The more permeable layers and 

the clay layers were placed in a 254mm diameter test cell alternately in order to form 

a layered sample. Before any test was carried out, the layered soil sample was 

consolidated vertically to an effective stress of 250kPa. 

To investigate the effects of the sectional shape of a penetrating object on 

smear in layered soils, a mandrel carrying a vertical drain, either circular or 

rectangular in section, was vertically driven into the centre of the soil sample at a 

speed of 5mm/sec. After a sheath protecting the drain had been removed, pore water 

pressure probes were installed in the sample at various radii. The effects of smear 

due to the central drain installation were investigated by allowing water to flow 

inwards from the sample periphery to the drain. The permeability of the sample was 

determined from the measured flow rate, while the variation of pressure across the 

sample was measured by differential pressure transducers attached to the pore 

pressure probes. The effects of smear were evaluated by comparing the measured 

permeability with the theoretical permeability of the undisturbed sample and also by 

determining the head loss across the smear zone using the information from the pore 

pressure probes. The influence of the permeability of the more permeable layers on 

the degree of smear was observed by comparing tests on different layered samples. 

After the flow tests, a mini-piezocone with pore water pressure measurement 

at either the tip or shoulder was driven into the layered sample at a rate of 20mm/sec. 

During the piezocone driving, the cone resistance and pore water pressures were 

recorded. At a predetermined driving distance, chosen so that the pore pressure was 

being measured in the middle of a clay layer, the piezocone was stopped and 

dissipation of the excess pore water pressure was monitored. A coefficient of 

consolidation was obtained from this dissipation test and compared with 

independently measured values for the clay. Performances of the piezocone in the 

various layered samples were compared. 
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After all the tests on a given sample had been performed, the sample was 

dissected. Deformations of the soil fabric due to drain installation were visually 

observed to assist the understanding of smear. 

1.4 Thesis structure 

The following chapter, Chapter 2, reviews literature relating to the 

permeability characteristics of sedimentary soils and some in-situ geotechnical 

devices, including vertical drains, whose efficiency could be affected by smear. In 

Chapter 3, sample building materials, experimental equipment, calibration of the 

instrumentation and calibration errors are described. Chapter 4 describes the 

methods and procedures used in the permeability tests in layered soil, the mini- 

piezocone tests and supplementary tests to determine soil properties. Experimental 

results obtained during the research are presented in Chapter 5. In Chapter 6, the 

experimental results are discussed and compared with previous experimental or 

theoretical work in order to draw conclusions. Chapter 7 summaries the main 

findings of the research. Recommendations for the further work are also given in 

this last chapter. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

As described in the Chapter 1, one of the aims of the present research is to 

study effects of smear due to vertical penetration in layered soils. Sedimentary soils 

are generally layered and therefore, this chapter reviews literature relating to the 

formation and permeability characteristics of sedimentary soils, concentrating mainly 

on the anisotropy of permeability. 

Also in the first chapter, piezocones, piezometers and vertical drains were 

indentified as in-situ geotechnical devices whose test results or working efficiency 

could possibly be affected by the disturbance of the penetrated soil. Literature 

relating to these devices is reviewed in this chapter. 

In the last section of this chapter, an overview leading to the present research 

is presented. 

2.2 Permeability Characteristics of Sedimentary Soil 

A natural soil may be residual or sedimentary. A residual soil is formed in 

place by the weathering of rock. The rate of rock weathering, involving both physical 
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and chemical processes, is influenced by climate, time, type of source rock, 

vegetation, drainage, animal activity and bacterial activity. 

In sedimentary soil, the individual particles originate in one place but are 

transported and deposited in another place by wind or water. Of course, particles can 

be transported by ice and gravity too, to form glacial soils and colluvium. 

Transportation may alter particle shape, size and texture by abrasion, grinding or 

impacting. Transportation may also sort the particles. 

Lambe & Whitman (1979) described the degree of soil particle sorting 

occurring during transportation by air (very considerable sorting), water 

(considerable sorting), ice (very little sorting) and gravity (no sorting). The mode of 

transportation and deposition, especially in water and air, are obviously influenced 

by fluctuation of climatic conditions. For this reason, most sedimentary soils found 

extensively throughout the world consist of irregularly alternating layers of fine- 

grained soil and coarse-grained soil. The alternating soil layers have different 

engineering properties such as permeability, compressibility and shear strength and 

therefore the layered soil presents overall anisotropic behaviour. 

The permeability anisotropy of the layered soil is normally expressed as the 

ratio (rk) of the coefficient of permeability for flow in the direction parallel to the soil 

layers (kh) to the coefficient of permeability for flow in the direction perpendicular to 

the soil layers (ky). Holtz et al (1991) estimated rk as I to 1.5 for clays with no 

macrofabric or only slightly developed macrofabric or homogeneous deposits, 2 to 4 

for clays with fairly well to well-developed macrofabric, e. g. sedimentary clays with 

discontinuous lenses and layers of more permeable material, 2 to 3 for varved clays 

and 3 to 15 for other deposits containing embedded and more or less continuous 

permeable layers. 

Kenney (1963) stated that in a repeatedly layered sediment, the materials in 

individual layers are not necessarily homogeneous and their properties will probably 

vary to some degree across each layer. The permeability ratio for the layered soil as 

a whole is dependent on the limits between which the permeability coefficients of the 

individual layers vary and the manner of the variation across the layers. It was 
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concluded that the average permeability ratio of the deposit could vary from 3 to 300 

when the ratio of the two limiting permeability values is 1000. 

Kenney & Chan (1973) conducted a laboratory investigation of the 

permeability ratio of New Liskeard varved soil. Cubic test specimens with 

dimensions of 64 x 64 x 64 mm were cut from 114mm diameter tube samples by a 

vibrating-wire cutting tool. Then, for a given specimen, kh and k, were 

independently measured. The results indicated that the permeability ratio, rk, was 

less than 4. The authors attributed the small value of rk to the fact that the 

permeability of the constituent soils within the varves varied by a factor of less than 

6. By making eight additional cut surfaces in some test specimens and evaluating 

their influence, the authors also reported that the decrease in kh due to one cut surface 

at right angles to the layers was approximately 1.5 %. The authors also investigated 

rk of the soil in the field by using a "pressure-pattern" method. In this method, the 

pressure pattern (pore pressure distribution) for a steady flow within the studied area 

was determined by using piezometers. Then, using the three dimensional steady state 

flow equation (Taylor, 1948), the measured pressure on the boundaries and an 

assumed value of rk, the pore water pressure pattern within the boundaries was 

determined analytically. By trial and error, comparing the measured and computed 

water-pressure patterns, the most appropriate value of rk was determined. It was 

reported that the maximum value of rk was less than 5. 

Little et al. (1992) performed some laboratory measurements of the 

permeability of Bothkennar clay. In a first set of tests, the vertical and horizontal 

permeabilities of the soil were determined indirectly using results from consolidation 

tests. The samples used for the consolidation tests were collected by a 100mm 

diameter piston sampler. Then they were extruded and oriented before specimens 

were recovered in stainless steel oedometer rings so that vertical and horizontal 

drainage during consolidation could be achieved. Furthermore, a remoulded sample 

was also tested to find its permeability. By using an X-ray densimeter (Edge & 

Sills, 1989) to investigate the fabric of the soil, silt laminations with a thickness of 

0.8-2mm and a spacing of 4.5-25mm were observed. By using the consolidation test 

results and making the assumption that the silt and clay layers were isotropic in terms 
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of permeability, the individual permeabilities of the silt and clay were calculated as 

2.36x10'8 m/s and 2.25x10'9 m/s respectively. For the overall permeabilities, it was 

found that k,, was 2.47x 10'9 m/s and kh was 3.99x 10"9 m/s (rk = 1.62). 

In a second set of tests, Rowe cells of 75mm and 150mm diameter were used. 

The soil samples were consolidated with vertical or horizontal drainage. For vertical 

consolidation, drainage was allowed at the top and bottom of the sample and, for 

horizontal consolidation, drainage was allowed at the periphery and at a central drain 

made of a porous plastic tube with a perforated brass rod as a core. Vertical flow 

tests and horizontal flow tests were then performed on the samples. It was found that 

at shallow depths, where the clay was described as rather homogeneous (Paul et al., 

1992), there was a small degree of anisotropy of permeability (rk=2.5). At 8m depth, 

where the clay was recorded as laminated with significant silt and fine sand laminae, 

there was a much higher degree of permeability anisotropy (rk=8). The clay 

described as mottled at 10-15m depth showed a modest degree of anisotropy (rk=3). 

Rowe (1972) intensively reported the relevance of soil fabric to site 

investigation practice. Influences of soil fabric on test data and the performance of 

several sites were reviewed. It was reported, for example, that permeable fabric 

increases the rate of swelling of "unloaded" soil, e. g. slope cuts, and allows rapid 

softening of the soils leading to failure and that fabric causes uncertainties of results 

obtained from determination of soil properties e. g. the coefficient of consolidation in 

laboratory especially when small samples are used. Minimum sizes of undisturbed 

samples of non-fissured, fissured and jointed clay were suggested for the 

determination in the laboratory of the coefficient of consolidation, coefficient of 

compressibility and shear strength. Concerning fabric description, Rowe 

recommended that a comprehensive soils report should contain photographs 

(including x30 magnifications) of the fabric of the principal strata. 

9 



Literature Review 

2.3 The Piezocone 

Cone penetrometers have been widely used in soil investigation and cone 

penetration tests (CPT) have been performed since 1934 (Meigh, 1987). In the CPT, 

as the penetrometer is pushed into the ground, the resistance at the penetrometer apex 

and the drag on the side of the penetrometer body (friction sleeve) are measured and 

used for soil identification. Early measurements were made by mechanical methods 

but electrical transducers were later introduced. 

After Janbu & Senneset (1974), Schmertmann (1974), Tortensson (1975) and 

Wissa et al. (1975) had reported pore water pressure responses as piezometer probes 

were driven into soil, Baligh et al. (1980) suggested that a combination of pore water 

pressure data and cone penetration (CPT) data could provide a promising method for 

soil identification and an estimate of overconsolidation in clay deposits. Roy et al. 

(1980) showed the first combination of pore water pressure and cone resistance 

results from the same probe during driving. 

A present day electric piezocone (CPTU) is composed of the cone body 

incorporating the friction sleeve, the tip with a resistance sensor, and the pore water 

pressure transducers which are connected to one or several filters located either at the 

cone tip or along the cone body. Now, due to several advantages such as time and 

cost effectiveness, good repeatability, suitability for use on a large range of sites 

(including offshore), the piezocone is widely used in soil investigation. 

The cone resistance (q, ) is gained by dividing the total force acting on the 

conical part of the instrument during driving by the projected area of the cone (A, ), 

while dividing the force acting on the friction sleeve by the sleeve surface area gives 

the sleeve friction (fs). Several types of piezocone with different pore water pressure 

filter positions have been developed and used in soil investigation (Figure 2.1). 
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2.3.1 Piezocone calibration 

Before the piezocone can be used the cone resistance, sleeve friction, and 

pore water pressure transducers must be calibrated 

In ISSMGE (1999), it was recommended that, during cone resistance 

calibration, the cone should be subjected to loading and unloading axially and the 

calibration should be carried out for loading ranges which are relevant to the 

forthcoming tests. For a new probe, the sensors should be subjected to 15-20 

repeated loading cycles up to the maximum load before the calibration. For the 

calibration of the pore water pressure measuring system, it was recommended that the 

cone should be calibrated in a pressure chamber in which an incrementally increasing 

pressure could be applied to the enclosed part of the probe. 

Schaap & Zuidberg (1982) stated that during penetration testing the 

calibration factors can change either due to ingress of soil into the penetrometer 

grooves or due to a change of the modulus of the penetrometer material with time. 

The authors also stated that, in the load cell calibration, the accuracy of a 

penetrometer tip cannot simply be expressed by a single number or percentage. 

Several terms relating to accuracy were presented, (Figure 2.2). From inspection of 

penetrometers used in regular soil investigation, it was shown that the soil ingress 

contributes the major part of the calibration error, which could be limited to 0.4% if a 

standard procedure of maintenance is followed. Furthermore, it was suggested that 

hysteresis (the maximum difference between load cell output readings for the same 

load) and non-linearity (the maximum deviation of the calibration curve from a 

straight line drawn between no-load and full scale outputs) will be important when a 

load cell is to be used in a practical loading range which is different from the 

calibration range. Outputs at zero load before and after a test were recommended to 

be compared. The zero load error may have several causes such as output instability, 

temperature induced apparent load, soil ingress, internal friction and hidden loading 

during zero setting. The authors suggested that the zero load error should not exceed 

I to 2% of the full scale output of the penetrometer. 
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Lunne et al. (1997) suggested that the piezocone should be regularly 

calibrated, by using high quality reference load cells and pressure transducers, under 

exactly the same environment as applies in the real situation (i. e. when measurements 

are made). All the same cables and data acquisition systems used in the real test 

should be used during calibration and all the transducers should be calibrated 

accurately over the real test load range. 

2.3.2 Piezocone saturation 

De-airing the piezocone is a critical step of the necessary preparation before 

driving. When the piezocone is driven into the ground, changes in pore water 

pressure will be transmitted by the incompressible fluid saturating the transducer 

inside the cone. Effects of poor saturation have been reported by a number of 

researchers (e. g. Lunne et al, 1997; Campanella & Robertson, 1988). Lack of 

saturation could seriously affect the measured maximum pore water pressure 

pressures during penetration tests and the dissipation times which are normally used 

to determine the consolidation properties of the soils. 

Several saturation fluids have been used in previous research and practice. 

(i) Glycerol Due to its high viscosity, glycerol can develop a high air entry 

tension which can prevent loss of saturation when the piezocone is driven through the 

soil above ground water table or unsaturated soils. Nevertheless, Campanella & 

Robertson (1988) suggested that penetration through unsaturated clays can generate 

very large suctions and saturation of porous element may not be maintained. 

(ii) De-aired water Kurup (1993) used de-aired water to saturate the filter 

and the transducer cavity. However, Lunne et al. (1997) suggested two difficulties of 

using de-aired water as the saturation fluid, namely that saturation could not be 

maintained while the cone is above the ground water table and that the water has too 

high a freezing point to be used as a saturation fluid for a piezocone test in cold 

climates. 
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(iii) Silicon oil With a viscosity higher than water, silicon oil can provide a 

high air entry value. Lunne et al. (1997) stated that if silicon oil is used as a 

saturation fluid, because it is immiscible with water, surface tension between the oil 

and the water in the soil could yield small errors in measuring the pore water 

pressure. 

(iv) Alcohol With a freezing point well below -100°C, alcohol is used for 

filter saturation when tests are performed in very cold conditions, e. g. Wissa et al. 

(1982) used alcohol as a saturation fluid for a test at a temperature of-34°C. 

Procedures to assemble the cone have been reported by Robertson and 

Campanella (1988), Larsson (1992), Kurup (1993) and Lunne et al. (1997). As 

reported, the best results are obtained by assembling the piezocone under the 

saturation fluid. The saturated filters are kept in airtight containers filled with 

saturation fluid at all times before being assembled. During assembly, a plastic 

syringe and hypodermic needle are used to flush the cavities between the filters and 

the pressure transducers. Before testing, the piezocone filters are sealed with a 

protective rubber membrane so that saturation is maintained. 

2.3.3 Interpretation of cone load and pore water pressure responses 

According to ISSMFE (1989) the rate of penetration for a CPT should be 

20 ±5 mm/s. While the piezocone is driven into the ground, all the transducer 

readings are recorded by the data acquisition system. The resistances, at the cone 

tip and the cone sleeve, and the excess pore water pressure depend on characteristics 

of the soils such as their type, state of stress and stress history. 

Different locations of pore water pressure filter produce different excess pore 

water pressure results during piezocone penetration. Effects of pore water pressure 

element location have been studied and reported by many researchers as follows. 

Lunne et al. (1997) described how, when the piezocone is driven into the 

ground, the zone beneath the cone is subjected to a maximum compressive stress 
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which always yields a positive pore pressure in saturated soils. They also described 

that the pore water pressure response immediately behind the cone on the cone shaft 

is dominated by large shear stresses which may induce either positive or negative 

pore pressure changes depending on the dilatancy properties and stress history of the 

soil. 

Due to the geometry of a cone penetrometer the pore water pressure can act 

on the shoulder area behind the cone. The pore water pressure measured behind the 

cone can be used to correct the total cone resistance, qc, which is influenced by the 

"unequal area effect". The corrected total cone resistance is given by the equation 

qý=q,: +uz (1- a) ----------------- (2.1) 

where qt corrected cone resistance 

9ý measured cone resistance 

U2 = pore pressure measured at cone shoulder 

a= cone area ratio 

The cone area ratio can be determined by geometry or by calibration. By 

geometry, it is the ratio of the area of the central stem of the cone probe to the overall 

cross-section area (Figure 2.3). By calibration, as described by Nyirenda & Sills 

(1988) and Lunne at al. (1997), when the cone is put in a calibration chamber filled 

with saturating fluid and subjected to a uniform pressure, the value (1-a) is the 

correction factor that makes the tip load cell response equal to the pressure in the 

chamber. Nyirenda & Sills (1988) described that, when the cone is subjected to a 

fluid pressure, an upward force will be transmitted to the cone stem by the o-ring seal 

between the cone stem and the friction sleeve so the downward force acting on the 

cone shoulder is reduced by the upward force on the cone stem. This reduction is 

ignored in the geometric calculation of the correction factor. For this reason, it was 

suggested that the cone area calibration factor should be obtained by the calibration 

method and not by the geometric calculation method. 

For clays, theoretical studies of the excess pore water pressure distribution 

around the tip and shaft of the piezocone have been carried out by Lavadoux & 
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Baligh (1980), Teh (1987) and Whittle & Aubeny (1991). Figure 2.4 illustrates some 

theoretical pore water pressure distributions. 

Sills et al. (1988) used a 5cm2 piezocone with four filter elements (at the cone 

face, at the cone shoulder and at 92mm and 157mm from the cone tip) to investigate 

the excess pore water pressure distribution while the cone was driven into soft clay 

with different over consolidation ratios (OCR) of 1,1.3,1.9 and 5. The test results 

were plotted against the theoretical excess pore water distributions proposed by 

Lavadoux & Baligh (1980) and Teh (1987), Figure 2.4 (a). It was shown that the 

experimental values fell closer to Teh's prediction on the shoulder but to Levadoux & 

Baligh's prediction on the friction sleeve. It was recommended that the pore water 

pressure used for cone load correction should be directly measured by positioning a 

pore water pressure filter element at the cone shoulder. Determination of the initial 

excess pore water pressure distribution could be improved by using a piezocone with 

pore pressure elements at three or four different positions but the interpretation could 

be difficult if the tested soil is not uniform. 

Jacobs & Coutts (1992) studied the effects of filter locations and materials on 

the test results at Bothkennar, Scotland. Standard Fugro-McClelland piezocones 

with cross section areas of 10cm2 and 15cm2 were used. The location of the filter 

was either on the cone face or the cone shoulder. The types of filter material used 

were high density polyethylene plastic (HDPE), ceramic, sintered stainless steel and 

sintered bronze. The thickness of the shoulder filter was either 6mm or 3mm. The 

filter on the cone face was either sandwiched as an annulus between two metal 

sections of the cone tip or embedded in holes on the cone face. It was reported that, 

at both the cone face and cone shoulder, the different filter materials had little or no 

influence on the measured pore water pressure. It was stated that, for the clay with 

more detailed fabric, the thickness of the filter element in relation to the thickness of 

the soil bedding may be significant. Furthermore, pore water pressures measured at 

the cone face with the sandwiched filter were higher than those at the cone face with 

embedded filters. It was postulated that the difference may be because of 

compression of the sandwich type filter. 
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Senneset & Janbu (1985) defined a factor By which relates cone resistance 

and pore water pressure. The proposed factor is used in soil classification. 

U, - uo Bý _- --------------- (2.2) 
aý -° ýo 

where Bq 

Up 

6vo 

pore pressure coefficient 

hydro static pore pressure 

total overburden stress 

Sills et al. (1989) carried a comprehensive investigation of the correlation of 

three parameters with OCR. These parameters were Bq, P (May, 1987) and Q 

(Wroth, 1988) 

where R 

Ucf = pore water pressure measured at cone face 

Q- qt -a -o (2.4) ---------- 
Q, a -uo 

U2 - U° 
(2.3) and 

Ucf - U° 

The cone penetration tests were performed at three different sites by using a 

5cm2 piezocone with four filter elements, as mentioned before. The results showed 

that the variation of ß with OCR was more consistent than the variation of Bq and Q 

with OCR. It was considered that the inconsistency of Bq and Q occurred because 

the term q, in these two parameters tends to be dependent on ah,, which could vary 

up to 50% for a given OCR and ß, o. However, it was suggested that consistent 

correlation of ß with OCR could be achieved only when the two pore water pressure 

values used in the calculation (u2 and ucf) are gained by direct measurement. 

Robertson (1990) proposed soil classification charts, Figure 2.5, gained by 

combining three parameters: the pore water pressure coefficient (Bq) the normalised 

cone resistance (Q) and the ratio of resistance at friction sleeve to cone resistance 

(Fr) 
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When a piezocone is driven into the ground, the reaction at the cone tip 

directly indicates the bearing capacity of the penetrated soil. For clay soils, the 

undrained shear strength, s,,, can be calculated as 

suIýo)- -------- (2.5 ) ------- ý=N 
kt 

where NkL is an empirical cone factor. As reported by Lunne (1997), ranges 

of Nkt have been proposed as, for example, 8-16 (Aas et al., 1986), 11-18 (La 

Rochelle et al., 1988) or 6-15 (Karlsrud et al., 1996). 

Lacasse & Lunne (1982) performed piezocone tests in two soft Norwegian 

marine clays, Ons4y clay and Drammen clay. Using the steady penetration theory of 

I3aligh (1975), the undrained shear strength (s�) of the clay was predicted and 

compared the earlier field vane test results. It was reported that the predicted s,, 

values fell within 10% of the field vane results. 

Meigh (1987) stated that, for a conventional CPT, a thin layer of sand within 

a clay stratum may not be detected if it is less than about 100mm thick while the 

CPTU can detect a sand layer as thin as 30 to 50mm. By continuous monitoring of 

pore pressure during cone penetration, Lunne et al. (1997) reported that the response 

time of a fully saturated piezocone is usually sufficiently fast to observe pore 

pressure change for very thin layers (<5mm) and that the pore pressure measured on 

the face of the cone provides the best stratigraphic detail. 

Moseley (1998) drove a mini-piezocone with a cross section area of 1 cm2 into 

layered soil samples which were made by combining layers of consolidated 

Speswhite kaolin clay and silty sand in the laboratory. The permeability ratio of the 

constituent soils and the consolidation stress were controlled. The rate of the data 

logging during the piezocone penetration was at least 350 data/second or one reading 

every 0.057mm of penetration. With this fast logging rate, better layer detection 

could be achieved. By varying the constituent soil layer thicknesses, the capability of 

the piezocone to detect the soil layers could be systematically investigated. It was 

shown that, using the pore water pressure response, the piezocone could detect sand 
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layers as thin as 2mm. The filter element used in the research was made from porous 

steel and was located at the cone tip. 

Van den Berg (1994) , by using a 30mm diameter piezocone (area = 7.1cm2) 

with a pore water pressure element at the cone shoulder, performed tests with a 

driving rate of 20mm/s in a two layer sample made from 500mm of consolidated 

kaolin and 500mm of sand. In order to visually investigate the penetration behaviour, 

a cone cut in half lengthwise was pushed downwards alongside a flat clear wall of the 

sample container. Two test series were carried out. In the first series a clay layer was 

placed on top of a sand layer (clay on sand) while the opposite order (sand on clay) 

was employed for the second series. For the test in the clay on sand sample, in terms 

of the cone resistance, the cone started to sense the stiff sand layer when the junction 

was about 15mm ahead of the cone tip. As the cone penetrated the sand, the pore 

water pressure sharply reduced from a steady state value of 80kPa to -50kPa over a 
distance of 20mm. It was discussed that, when the piezocone started penetrating the 

sand, a stress relief occurred just above the cone shoulder. Due to dilatancy effects, a 

small negative pore water pressure was observed as the cone was penetrating the sand 
layer. For the test in sand on clay sample, it was found that, as the cone approached 

the junction, the cone sensed the soft clay layer at a distance of about 150mm from 

the junction. In terms of pore water pressure, a steady state response of about 100- 

I20kPa was reached when the cone tip had penetrated into the clay layer a distance of 

100-150mm. 

2.3.4 Interpretation of dissipation tests 

As described in Section 1.3, a dissipation test can be performed immediately 

after the piezocone penetration is stopped. A number of researchers have developed 

solutions to determine the coefficient of consolidation of the soil from dissipation test 

data (e. g. Torstensson, 1975; Senneset et al., 1982; Levadoux & Baligh, 1985; Teh & 

Houlsby, 1991). 
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Based on cylindrical and spherical cavity expansion theory, Torstensson 

(1975) suggested that the horizontal coefficient of consolidation, Ch, could be 

computed by using the equation 

T50 , 
-r, ----------------- (2.6) 
t so 

where T. 0 is the theoretical time factor at 50% dissipation, to is the time at 

50% dissipation and rc is the piezocone radius. Tso is theoretically predicted based 

on the E�/s� value where E� is the undrained Young's modulus of the clay. 

Levadoux & Baligh (1986), based on the strain path method (Baligh, 1985) 

and Terzaghi-Rendulic uncoupled consolidation theory, proposed excess pore water 

pressure dissipation curves for cones with tip angles of 18° and 600. The predicted 

normalized excess pore water pressure distributions were compared with extensive 

field measurements in Boston Blue Clay (BBC). It was reported that excellent 

agreement between the theoretical predictions and the measurements for both the 18° 

and 60° cones was achieved in BBC with OCR<_ 3. Furthermore, it was concluded 

that the cone tip angle had a minor effect on the prediction, while coupling between 

total stresses and pore water pressures could have significant effects at the cone tip 

especially during the early consolidation stages. The coefficient of consolidation 

obtained from the dissipation tests were compared with those obtained from 

laboratory measurements and field performance data. It was found that the ch 

(piezocone) of BBC below 18m was virtually identical to the field vertical coefficient 

of consolidation, c, during unloading and slightly higher (by a factor of 2) than the c� 

obtained from laboratory consolidation tests during the unloading stages. 

A more recent theoretical solution, again based on the strain path method, 

was proposed by Teh & Houlsby (1991). In this method the size of the zone in which 

the excess pore water pressure develops due to the cone penetration is dependent on 

the rigidity index of the soil, Jr = G/s,,, where G is shear modulus of the soil. They 

proposed a modified time factor, T*, as 

Cht 

z ------------------(2.7) T= 
rc Iý 
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Teh & Houlsby (1991) also showed that the modified time factor can unify 

the dissipation curves for all values of I, from 25 to 500, Figure 2.6. Lacasse & 

Lunne (1982) performed CPTU dissipation tests in Ons4y clay and Drammen clay 

and reported that the horizontal coefficient of consolidation values (Ch) estimated by 

using Baligh & Levadoux (1980) agreed very well with those obtained from the re- 

consolidation stages of oedometer tests. 

Robertson et al. (1992) presented a summary of comparisons between the 

experimental reference values of coefficient of consolidation with the values 

estimated from CPTU dissipation tests. In making the comparisons, for a particular 

test site, c, values obtained from the oedometer tests were converted to ch values by 

using the vertical and horizontal permeability ratio given by Baligh & Levadoux 

(1980). The obtained Ch and the corresponding t50 for a piezocone test performed at 

the site were then plotted on the chart for evaluation of Ch provided by Teh & 

Houlsby (1991). It was concluded that the theoretical solution given by Teh & 

Houlsby (1991) provided a reasonable estimate of Ch and that the pore pressure 

measured using the filter element at the cone shoulder gave the most consistent 

dissipation test results. The estimated Ch value fell within plus or minus half an order 

of magnitude of the directly measured value, whereas for the tip position this 

increased to a full order of magnitude. 

Schnaid et al. (1997) conducted comprehensive piezocone dissipation tests to 

evaluate the Houlsby & Teh (1988) solutions. In the research a 5cm2 piezocone, with 

four filter elements at the cone face, the cone shoulder, and at 92mm and 157mm 

from the cone tip and a 10cm2 cone with a filter element at the cone shoulder were 

used. To quantify the similarity between a given experimental curve and the 

theoretical one, assuming that the rigidity index (I, ) was constant, Ch values obtained 

by matching at different degrees of dissipation were compared with the Ch value at 

50% dissipation in terms of the ratio ch(u%/ch(so%). It was concluded that the Ch 

values derived from the pore water pressure element located at the cone shoulder 

were almost insensitive to the degree of dissipation. For the pore water pressure 

element at cone tip, the Ch values at initial stages of dissipation were significantly 

higher than those at 50% dissipation. A continuous reduction of the ratio 

20 



Literature Review 

Ch(U%VCh(50%) was found for values derived from the pore water pressure elements 

located on the cone shaft. 

Some authors (Teh, 1987; Powell & Quatermann, 1997 and Lunne et al., 

1997) have discussed the interpretation of consolidation data from short dissipation 

tests or from tests in which the initial excess pore pressure is not clearly defined. 

This may be due to the local redistribution of excess pore water pressure or a lack of 

saturation of the filter elements causing a delayed response. 

2.4 Piezometers 

A piezometer is a device that is sealed within the ground so that it responds 

only to the ground water pressure around itself and not to groundwater pressure at 

other elevations (Dunnicliff, 1988). Applications of piezometers include, for 

example, monitoring subsurface water pressure during well-pumping permeability 

tests, monitoring up lift pressures below concrete dams and investigating pore water 

pressure along a potential failure plane behind a cut slope. They may be also be used 

for the determination of the permeability of soil in the field by performing constant 

head or falling head permeability tests. 

Based on the installation method, the two main types of piezometer are the 

pre-drilled piezometer (non-displacement installation method) and the push-in 

piezometer (full displacement installation method). For the first type, to install the 

piezometer, a hole is drilled to the depth at which the pore water pressure 

measurement needs to be performed. The piezometer is then embedded in a sand 

pocket and the top of the sand pocket is sealed with a low permeability material such 

as bentonite. For the second type, the piezometer is simply pushed into the ground, 

from the ground surface or from the bottom of a pre-drilled hole, to the required 

depth. 
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For certain types of measurement, such as monitoring of effective stress gains 

during stage-construction of embankment or fluctuations of pore pressure in the 

ground near tidal water, the response time of the piezometer is very important. The 

approximate response times for various types of piezometer have been presented by 

Terzaghi & Peck (1967). It was shown that pre-drilled piezometers have much 

shorter response times than those of push-in piezometers. This could mainly be 

attributed to the effect of the smear zone surrounding the piezometer, caused by 

installation. 

For in situ permeability testing in piezometers, due to the simplicity of the 

equipment required, falling head tests are commonly used. A major difficulty in 

performing permeability tests in a pre-drilled piezometer is the definition and control 

of the shape of the cavity from which the permeant is injected into the soil, since the 

cavity shape depends on details of the borehole preparation and the installation of the 

piezometer (Tavenas et al., 1986). This problem is eliminated by using a push-in 

piezometer (permeameter) where the geometry of the porous element is known. 

However, this installation method leads to displacement and remoulding of the soil 

surrounding the piezometer. To minimise the soil disturbance during installation, a 

self-boring permeameter (Baguelin et al., 1974) was developed. 

Tavenas et al. (1986) compared permeability test results gained from falling 

head and constant head tests using both a push-in permeameter (piezometer) and a 

self-boring permeameter on various test sites. It was found that the permeability 

values gained from the push-in permeameter were always lower than those from the 

self-boring permeameter. The ratio of the permeabilities measured by these two 

methods was 1.1 at Saint-Polycarpe, where the soil was described as "very 

homogeneous", and 9.1 at Saint-Alban, where the soil was more stratified. The 

authors concluded that the driven permeameter was subject to clogging and caused 

remoulding and a reduction in permeability of the soils tested. The self-boring 

permeameter was recommended. 

DeGroot & Lutenegger (1994) compared field and laboratory measurements 

of permeability in a varved clay by using a flexible-wall laboratory permeameter and 

four types of in-situ testing device: a drilled piezometer, a push-in piezometer, a 
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piezocone and a dilatometer, Figure 2.7. It was shown that the pre-drilled 

piezometer gave the highest kh values while the push-in piezometer gave the lowest 

values. The cone peneteration test and the dilatometer gave values in between those 

of the pre-drilled and push-in piezometers. In order to evaluate the scale effect on the 

piezometer test results, the variation of the k value with the ratio of the slot screen 

length to the diameter of the piezometer (L/D) was investigated. A piezometer with a 

larger L/D provided larger k values due to the influence of soil fabric until a limit 

was reached. It was concluded that the push-in piezometer gave very low values of 

hydraulic conductivity because of remoulding of the surrounding clay. 

Leroueil et al. (1992) compared in-situ permeability test results with those 

obtained from laboratory tests on the estuarine silty clay at Bothkennar. The in-situ 

permeability test devices used were : (a) a push-in Geonor M-206 open standpipe 

piezometer with a porous element of 32mm diameter and 277mm length, (b) a self- 

boring permeameter with a perforated porous element of 73mm diameter and 146 and 

292mm length, and (c) a push-in BAT permeameter (Torstensson, 1984; Torstensson 

& Petsonk, 1986) which can perform either outflow or inflow in-situ permeability 

tests. The laboratory equipment used was: (a) a 51 mm diameter oedometer cell in 

which the samples were trimmed and oriented so that consolidation with vertical or 

horizontal drainage could be performed, (b) a triaxial cell used for constant head 

permeability tests on specimens with 101mm diameter and 116mm height and (c) a 

radial flow cell (Leroueil et al., 1990) with a 50mm diameter central injection hole. 

In terms of vertical permeability, the values obtained from triaxial tests were slightly 

higher than those obtained from oedometer tests because the larger triaxial specimens 

contained more silt and sand laminae or lenses than the oedometer specimens. In 

terms of horizontal permeability, again, the values obtained from oedometer tests 

were smaller than those obtained from radial flow cell tests, by one-third on average. 

Comparing all the results gained from the field and laboratory showed that the results 

from the self-boring permeameter and radial flow cell agreed very well and gave the 

most representative profiles of horizontal permeability of the soil. However, it was 

found that the in situ values were smaller than the laboratory values by 30% on 

average. It was explained that in the radial flow cell the sand or silt lenses are often 
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connected either to the central injection hole or to the peripheral drain or to both, but 

in situ the lenses may be discontinuous and have less influence on the measured 

permeability. It was also explained that the oedometer tests underestimated the 

horizontal permeability because the specimens were small and did not have silt or 

fine sand inclusions as existed in the field. Due to effects of their installation, the 

push-in piezometer, as well as the BAT system, also underestimated the permeability. 

It was finally concluded that the permeability anisotropy (rk) was about 1.5-2 
. 

2.5 Vertical Drains 

As described in Section 1.1, for construction on thick deposits of soft soils, 

consolidation time is an important design issue. To speed up the consolidation of the 

soil, vertical drains are used to reduce the drainage path length. 

The first use of vertical drains, so-called sand drains, was proposed by Moran 

(1925). Later, Kjellman (1948) published the details of the ' Kjellman wick drain' 

which was the first prototype of a prefabricated drain and was made entirely of 

cardboard. Over the years since then, properties and installation techniques of 

vertical drains have been improved and they have been used in many ground 

improvement projects throughout the world. It is accepted that, in practice, vertical 

drain installation disturbs and changes the properties of the surrounding soil to a 

degree, depending on the soil sensitivity and macrofabric (Rowe, 1968). The soil in 

the smear zone normally has a lower coefficient of permeability than that of the 

undisturbed soil and this leads to lower efficiency of vertical drains in accelerating 

the consolidation of the ground. A number of researchers have been investigating, 

theoretically and experimentally, the effects of smear around vertical drains due to 

installation in both layered and homogeneous soils. 
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2.5.1 Studies of vertical drains in homogeneous soils 

a) Analytical and numerical studies 

Figure 2.8 shows the general configuration of a circular unit soil model (unit 

cell) used in several analytical and numerical studies of a vertical drain in 

homogeneous soil. This is composed of a circular drain with a radius rw at the 

centre, a smear zone with a radius rs surrounding the drain and an outer undisturbed 

zone with a radius re. 

A theoretical solution for the consolidation of soft soil around a vertical drain 

was first derived by Kjellman (1937) by assuming pure radial drainage and equal 

vertical strain boundary conditions (the surface displacement is assumed to be 

uniform and the resulting vertical stresses are not uniform). 

Barron (1948) presented theoretical solutions for both free vertical strain 

boundary conditions (the stress at the surface is assumed to be uniform and the 

resulting vertical displacement at the surface is non-uniform) and equal vertical strain 

boundary conditions with only radial flow in the soil and showed that the average 

consolidation obtained from the two solutions is nearly the same. For the case of 

equal strain analysis, Barron also presented solutions including the effects of smear 

caused by drain installation and the well-resistance of the drain. 

Hansbo (1981) proposed a simplified solution as an alternative to Barron's 

solution. The equal strain boundary condition was assumed and the effects of smear 

and well resistance were taken into consideration. He also gave a solution for 

consolidation around a band shaped drain by transforming the drain into an 

equivalent circular one with equivalent diameter, d, given by 

dw 2(b+t)/n -------------------------(2.8) 

where b and t are the width and thickness of the drain respectively. 

The simplified solution for equal strain boundary conditions without 

considering the smear effect is 
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Au = 
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excess pore pressure 

initial excess pore pressure 

radius of equivalent soil cylinder 

0.565 x drain spacing (square pattern) 

0.525 x drain spacing (triangular pattern) 

-8Th/F(n) , Th - 4r, 2 

n= the drain spacing ratio= (re /rH, ) 

t= consolidation time 

F(n) n' 1n(n) - 
(3n' -1) 

--------------------(2.10) (n' -1) 4n 2 

The average degree of consolidation with respect to radial flow is 

Uh =1- exp - 8Th 
----------------- F(n) 

For the case in which the effect of smear was considered, by assuming an 

annulus of smeared soil with radius rs and horizontal permeability ks around the 

drain, Hansbo (1981) proposed a simplified factor F(n) as 

FS (n) = In n IS k 
-0.75+ h- In(S) ---------------------(2.12) ks 

where S= normalised smear zone diameter (r, /r,,, ) and kh = horizontal 

permeability of the undisturbed zone 

Lancellotta et al. (1981) theoretically investigated the effects on the rate of 

consolidation of smear zones with different ratios of the horizontal permeability of 

the undisturbed zone to that of the smeared zone, rl = kh/ks, and normalised smear 

zone diameters, Figure 2.9. 
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Onoue (1988) derived a rigorous solution for equal strain consolidation by 

vertical drains taking well resistance and smear into consideration. Two soil types 

considered in the solution were soil whose compressibility increases due to 

disturbance and soil whose permeability decreases due to disturbance. For the first 

soil type, it was concluded that the influence of smear caused by installation of a 

vertical drain on the consolidation rate is small. For the later type of soil, Onoue 

showed that Barron's and Hansbo's approximate solutions give a sufficiently high 

degree of accuracy for practical applications. 

Madhav et al. (1993) used a finite difference method to model and study 

smear zones around band shaped drains. Three distinct zones, an inner smear zone, a 

transition zone and an undisturbed zone were considered in the analysis. The 

permeability of the transition zone was an average of the permeability values of the 

smear and undisturbed zones. Various sizes of rectangular and square smear zone 

were considered in the analysis. It was found that even a very small smear zone of 

low permeability can significantly delay the consolidation process and the 

permeability of the soil close to the drain strongly influences the overall 

consolidation process. It was also suggested that, with the degree of disturbance 

being the same, the installation of drains at closer spacing may not necessarily lead to 

more efficient consolidation of the soil. Changing the shape of the drain from a strip 

to a circle or an ellipse and reducing the mandrel size were recommended. 

Hird et al. (1992) developed an equivalent plane-strain analysis considering a 

unit cell by matching the average degree of consolidation under axisymmetric and 

plane strain. conditions. The developed methodology was introduced for use in finite 

element analysis of embankment construction on ground which incorporates vertical 

drains. They also pointed out that, with the proposed matching procedure, the excess 

pore pressure variation in the horizontal direction for plane-strain conditions was 

quite different from that in the axisymmetric case. 

Chai et al. (1997) proposed a new solution derived by considering the 

permeability in the smear zone varying linearly or bi-linearly with radial distance. It 

was shown that the solution can yield a smooth excess pore pressure distribution in 
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the smear zone and a more uniform settlement within a unit cell, and that using the 

average value of permeability in the smear zone will under-estimate the smear effect. 

b) Laboratory experimental studies 

Singh & Hattab (1979) conducted a laboratory study of the efficiency of sand 

drains in relation to methods of installation. The ratio of the soil sample diameter to 

the diameter of the drains used in the research was approximately 10. They reported 

the ranking (starting with the most successful) of the methods of installation 

according to the rate of consolidation as (i) closed mandrel (cross-shape), (ii) jetted 

drains (Dutch method), (iii) jetted mandrel, (iv) auger, (v) closed mandrel (circular), 

(vi) closed mandrel (star-shape) and (vii) open mandrel. 

Ali (1990) investigated the effects of vertical drain deformation caused by 

settlement of the surrounding soil on the longitudinal flow behaviour of the drains. 

It was found that the decrease in discharge capacity due to the drain deformation is 

related to the bending rigidity and the geometrical structure of the drain core and also 

the stiffness of the filter jacket. The discharge capacity of a vertical drain cannot be 

based only on results of tests on straight drain samples, especially for sites where a 

large settlement is expected. 

Ali (1991) reported the influence of the filter jacket and core geometry on the 

longitudinal permeability of a prefabricated drain. In the research, the performances 

of three types of drain core wrapped by five types of geotextile were investigated. It 

was found that the discharge capacity of a band-shaped drain depends on the duration 

of loading as a result of creep deformation of the plastic core and creep of the filter 

fabric into the flow channels. The tensile strength of the filter must be high enough 

to overcome the tensile stress induced in the filter and to prevent blocking of flow 

channels in the core. 

Onoue et al (1991) investigated the permeability of the disturbed zone around 

circular vertical drains. The drains were driven into Boston Blue Clay samples, 305 

mm in diameter and 140 mm in height, with OCR=4. Then horizontal flow tests with 
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measurements of pore water pressure across the sample were performed. The test 

results were compared with theoretical curves computed using a two-zone model 

(e. g. Barron, 1948; Hansbo, 1981). It was reported that, using values of S=1.6 and 

i1 =3 provided satisfactory predictions for the pore water pressure distribution. 

Long & Covo (1995) used an electrical analogue field plotter to determine the 

equivalent diameter of oblong drains and reported that 

d,, = 0.5b + 0.7t -------------------(2.13) 

The results were then compared with a list (Rixner et al., 1986) of equations 

that might be used in computing the equivalent diameter of a prefabricated vertical 

drain. The results were comparable to those obtained using the following similar 

equation. 

d= (b + t)/2 ----------------- (2.14) 

However, the values were smaller than those calculated by Eq. 2.8 (Hansbo, 

1979; 1981) by 30% on average. 

2.5.2 Studies of vertical drains in layered and laminated soils 

a) Analytical and numerical studies 

Horne (1964) introduced an approximate solution for the problem of 

consolidation of a regularly layered soil surrounding a vertical drain. The soil 

comprised two different layer types with thicknesses Hi and H2, vertical 

permeabilities kv1 and kv2 and horizontal permeabilities khl and kh2 where H2 « H,, 

kv1 « kv2 and khi « kh2. The solution becomes more involved when the soil exists 

in a series of horizontal strata because, during the consolidation, drainage first tends 

to follow vertical routes to the more permeable layers and then drainage takes place 

preferentially towards the vertical drains. 

Onoue (1988) predicted the consolidation of multi-layered anisotropic soils 

served by vertical drains with well resistance by using a finite difference method. He 
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also proposed two simple calculation procedures for the consolidation of multi- 

layered soils. The first procedure is to assume the multi-layered soil to be 

homogeneous, by averaging the soil constants using layer thickness weighting. It 

was concluded that this method yields reasonable results only when the degree of 

heterogeneity of the soil is small. In the second procedure, for a multi-layered soil 

where the total thickness is H, it is assumed that each single layer has a homogeneous 

thickness of H. Then, for a certain load and time, the degree of consolidation of each 

layer is calculated separately. The water pressure distribution of the layered soil is 

determined by extracting the excess pore water pressure of the homogeneous soil at 

the same depth. The layer thickness weighted mean of each consolidation degree was 

taken as the overall average degree of consolidation. 

b) Laboratory experimental studies 

Kim et al. (1997) used model mandrels of various shapes (circular, diamond, 

rectangular and cross shape) to study effect of shape on smear caused by installation. 

The clay samples used in the experiment were obtained from Busan in Korea and 

were preconsolidated under a pressure of 49 kPa in a cylindrical mould with an inner 

diameter of 250mm. Then the soil sample was horizontally cut at 30mm intervals. 

As the soil sample was reassembled, strips of soup noodles were laid horizontally on 

the surface of every layer. After sample preparation, a model mandrel was driven 

into the sample with a speed of 1.5 mm/sec. Then the soil sample was carefully cut 

vertically and the deformed shapes of the lines of noodles were sketched. It was 

found that rectangular and diamond shape mandrels are more efficient for reducing 

the smear effect. 

Bergado et al. (1991) studied smear effects due to the installation of 

prefabricated vertical drains in the laboratory using a large specially designed 

consolidation test cell with 45.5cm diameter and 92cm height. Remoulded soft 

Bangkok clay was placed inside the cylinder and consolidated by a vertical pressure 

of 10.2kPa. At about 90% consolidation, an Alidrain with plan dimensions of 

40x6mm was installed using a 60x6Omm mandrel. Soil specimens for permeability 

tests were taken from the undisturbed zone near the periphery and from the smear 
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zone near the center of the test cell. Then the soil specimens were consolidated under 

a vertical confining pressure of 48kPa. Permeability tests on the soil specimens 

showed that ratio between the vertical permeability of the undisturbed zone and 

horizontal permeability of the smeared zone (k, /k, ) was close to unity. Furthermore, 

the ratio of the horizontal permeability of the undisturbed zone to that of the smeared 

zone (r1) ranged between 1.5 and 2.0 with an average value of 1.75. From the large- 

scale consolidation test, the horizontal coefficient of consolidation (Ch) was back- 

calculated by using Asaoka's (1978) solution and compared to the value of Ch 

obtained from oedometer tests. It was found that, with the assumption that r1= 1.75 

and S=3, the Ch values obtained from back-calculation were comparable to those 

obtained from the oedometer tests. With the hypothesis that the friction between the 

soil and the consolidation cell possibly delayed the consolidation and caused a higher 

value of S to be inferred, the authors suggested that S=2 was more realistic. 

Moseley (1998) and Hird & Moseley (2000) investigated the effects of smear 

during vertical penetration of laminated soils. The layered soil model was achieved 

by combining layers of consolidated Speswhite kaolin clay and silty sand in a model. 

The sheathed circular vertical drain with diameter of 25mm was driven into the soil 

model to form the central vertical drain. After drain installation, radial flow 

permeability tests were performed. Pore water pressure distributions across the 

sample during the flow tests were investigated by using pore water pressure probes 

installed at various radii. The influence of lamination geometry, penetrator geometry 

and penetration rate on smear was investigated by performing parametric variations 

of clay layer thickness (10,20,40mm), sand layer thickness (1,2,4mm), mandrel tip 

angle (20°, 60°, 180°) and mandrel driving rate (0.5,5,15mm/sec). It was found that 

the smear increased as the clay layer thickness, the sand layer thickness, or the 

driving rate reduced. The mandrel tip angle did not appear to be an influential factor. 
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2.5.3 Field study of vertical drains 

Davies & Humpheson (1981) compared the performance of two types of 

vertical drain, sand drains and Alidrains, beneath a trial embankment in Belfast. The 

Alidrains were installed to the depth of about 10m with an Alimak drain stitcher 

assembly mounted on a Hy-mac Excavator, while the sand drains were installed 

using traditional shell and auger techniques. It was found that the sand drains 

appeared to be more efficient than the Alidrains. It was thought that since the sand 

drains * were installed by a non-displacement method the effect of smear due to 

remoulding was not as great as for the Alidrains, which were installed by a 

displacement method. 

Bergado et al. (1991) studied smear effects due to the installation of 

prefabricated vertical drains using a full-scale load test. A test embankment was 

constructed on soft Bangkok clay at the Asian Institute of Technology test site. 

Alidrains with cross-sectional dimensions of 100x6mm were installed to a depth of 

8m in a square pattern with 1.2m centre to centre spacing by using two different sizes 

of mandrel (45x150mm and l50xl5Omm). Pore water pressure changes under the 

embankment and settlement of the ground were investigated by using piezometers 

and subsurface settlement plates. After construction of the embankment, a faster 

settlement rate and higher compression were observed in the small mandrel area than 

in the large mandrel area. It was concluded that, during vertical drain installation, the 

smear zone caused by the small mandrel was smaller that that caused by the large 

mandrel. 
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2.6 Overview 

2.6.1 Piezocone 

In the studies concerning the piezocone test (CPTU), much attention has been 

devoted to: (a) the pore water pressure distribution around the cone body and cone tip 

during penetration, (b) variation of cone resistance and pore water pressure during 

penetration with soil type and stress history and (c) relationships between dissipation 

behaviour of excess pore water pressure after penetration and the coefficient of 

consolidation of the soil. 

Several theoretical solutions, in which homogeneity of the soil is one of the 

most important assumptions, have been developed to predict the pore water pressure 

distribution around the cone during penetration and during dissipation for a particular 

filter position on the cone. Many CPTU tests have been performed in the laboratory 

and the field to evaluate the proposed solutions. 

In practice, the piezocone is not only used for soil classification and 

determination of soil properties but also for profiling the soil fabric (layering) which 

has been highlighted as essential information for soil engineering works. The 

performance of the piezocone in determining soil layering has been investigated by 

some researchers. It was reported that, compared to the cone resistance, the pore 

water pressure response during penetration is a better indicator of layered fabric in 

the soil. However, more intensive investigation is needed of the influence of soil 

layer permeabilities, cone filter locations and smear due to penetration on the layer 

detection ability and dissipation behaviour of the piezocone. Such investigation 

forms part of the present research. 
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2.6.2 Smear during, vertical penetration 

For in-situ permeability tests, it has been shown by past research that the 

degree of smear affecting the test results depends on the method of installation 

(displacement or non-displacement) and the physical properties of the soil, e. g. 

permeability anisotropy, and its fabric. 

For vertical drains, the size and shape of the mandrel used for the drain 

installation have been reported as important factors affecting the degree of smear. 

The size of the smear zone and permeability in the smear zone have been predicted 

and reported by many researchers. Furthermore, some analytical studies have been 

carried out to investigate the effects of smear on the rate of consolidation of the soil 

around vertical drains. 

Although it has been recognised that installation by a push-in method for 

permeameters or vertical drains can disturb the soil to a high degree, due to its 

convenience and economy, this method of installation is still commonly used. 

The effects of smear due to installing a push-in permeameter have been 

generally investigated by comparing the associated permeability values with those 

obtained by laboratory tests on undisturbed samples collected from the field or from 

pre-drilled or self-boring permeameters. The soil fabric was investigated but could 

not be controlled. Moseley (1998), for the first time, systematically investigated the 

correlation between the degree of smear caused by vertical penetration of a circular 

object and, layer configuration (thickness and spacing) in layered soil samples 

constructed in laboratory. Influences of penetrating object sectional shape and the 

permeabilities of the layering materials on the degree of smear are investigated in the 

present research. 
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Figure 2.1 Various types of piezocone (Lunne et al.. 1989) 
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Figure 2.9 The effect of smear on consolidation rates 
(Lancellotta et al., 1981) 
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CHAPTER 3 

EXPERIMENTAL MATERIALS AND EQUIPMENT 

3.1 Introduction 

As reported in Chapter 2, previous research concerning the effects of smear 

during vertical penetration of layered soil was carried at the University of Sheffield 

by Moseley (1998). To construct the soil sample, clay layers were prepared by 

consolidating Speswhite kaolin slurry one-dimensionally and the consolidated cake 

was then extruded and wire cut horizontally. Sand layers were prepared by freezing 

saturated fine silty sand in moulds. Alternate layers of sand and clay were placed in a 

test cell to form a layered sample. The layered soil sample was then consolidated to 

an effective stress of 250kPa before the circular vertical drain was driven into the 

sample and the horizontal permeability of the sample was measured. The sample was 

further consolidated to an effective stress of 450kPa and the piezocone was then 

driven into the sample. 

In the present research, in order to obtain comparable results and investigate 

the effects of smear caused by mandrels with different shapes, the same materials as 

used by Moseley (1998) were used for making the clay and sand layers. In order to 

quantify the effect of the permeability ratio of the layers on the degree of disturbance 

caused by mandrel installation, the permeability ratio of the layers was varied, test by 

test, by adding ground flint (a silt size material) to the sand or replacing all the sand 

with flint. 
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The testing equipment was originally designed by Moseley (1998) to 

investigate smear effects when a circular drain was used as the penetrating object. 

The circular drains used in the previous research were sheathed and unsheathed 

drains with diameter of 23.5mm. In the present research some parts of the 

equipment such as the cell base were redesigned to permit tests on a band drain with 

plan dimensions of 50x6.5mm. 

The first part of this chapter describes the sample building materials used in 

the research, namely Speswhite kaolin powder, sand and flint. The second part 

describes the experimental equipment and calibration of the instrumentation. The 

third part deals with calibration errors and their effect on measurements. 

3.2 Experimental Materials 

3.2.1 Speswhite kaolin 

The speswhite kaolin powder used in the research was supplied by ECC 

International Ltd. The manufacturers of the clay quote a value of 2.60 for the particle 

density of the clay which is the same as that reported by Moseley (1998). Moseley 

(1998) also reported that the liquid limit of the kaolin was 61% using the cone 

penetrometer method (BS 1377: Part2: 1990). Plastic limit (PL) and liquid limit (LL) 

of kaolin have been reported by many researchers e. g. Al-Tabbaa (1994) LL=69%, 

PL=38%, Anderson et al. (1991) LL=72%, PL=36%, Rossato et al. (1992) LL=63%, 

PL=33%, Brown (personal communication) LL=61 %, PL=31%. Figure 3.1 

illustrates the particle size distribution of the kaolin obtained from the manufacturers 

(ECC International Ltd, 1991). The coefficient of volume compressibility, m, of the 

kaolin was determined in the course of the present research during the slurry 

consolidation in two 152mm diameter Rowe cells (Section 4.2.3) and layered sample 

consolidation (Section 4.3.7). The values varied with effective vertical stress and are 
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listed in Tables 5.2 and 5.3. The vertical and horizontal permeability of the kaolin 

were indirectly determined from consolidation data obtained from the 152mm 

diameter Rowe cells. The test results were compared with those predicted by 

correlations (Al-Tabbaa & Wood; 1987) between void ratio and both horizontal 

permeability (kh) and vertical permeability (k�) and these comparisons are presented 

in Chapter 5. 

3.2.2 Sand 

Moseley (1998) performed two sieve analysis tests, two sedimentation tests 

(hydrometer method B. S. 1377, part 2, (1990)) and an oedometer test on samples of 

the fine silty sand. The oedometer test was carried out to investigate the 

compressibility of the sand under various effective stresses. From the test, the 

coefficient of volume compressibility, m,,, was found to be below 0.05 m2/MN. A 

value of 2.65 was used for the particle density of the (silica) sand. Figure 3.1 

presents the sieve analysis and sedimentation test results. 

Before conducting any tests, the sand from two large bags was oven-dried and 

mixed together in a large rotary mixer for about 20 minutes in order to ensure 

uniformity. In order to determine the permeability of the sand, which was critical for 

quantifying the effects of smear, falling head permeability tests (Section 4.2.1) and 

horizontal permeability tests (Section 4.2.4) were performed. 

3.2.3 Flint 

The flint used in the research was supplied by Potterycrafts Ltd. (London). 

The material was composed of 100% silica flour and, therefore, the specific gravity 

of the flint was assumed to be 2.65. Using the consolidation data obtained during the 

horizontal permeability test in a 254mm Rowe cell (Section 4.2.4), it was found that, 

for an effective stress change from 200kPa to 250kPa, the m� value of the flint was 
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0.043 m2/MN. To determine the permeability of the flint, falling head permeability 

tests (Section 4.2.1) and horizontal permeability tests (Section 4.2.4) were performed. 

3.3 Experimental Equipment and Calibrations 

The following sections describe the various items of testing equipment, their 

functions and, where appropriate their calibrations. The accuracy of the calibration 

equipment is also reported. The following general points regarding calibration 

should be noted. 

a) Most transducers were calibrated twice during the research. However, the 

piezocone transducers were calibrated more often. 

b) Relationships between the applied loads, pressures or displacements and 

the output voltages from the transducers were assumed to be linear. 

c) To check repeatability, at least two cycles were performed during 

calibration of any transducer. The calibration factors were generally 

calculated from a linear regression analysis performed on all the 

calibration data. For the piezocone load cell, calibration factors were 

determined from the regression analysis of the data points from the first 

half cycle. 

d) The power sources and data logging system used in the calibrations were 

the same as those used in the experiments. 
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3.3.1 Slurry consolidation cell 

Two slurry consolidation cells were used to consolidate kaolin slurry to an 

effective stress of 200kPa before the kaolin cakes were extruded and wire-cut to form 

a layered sample. Each slurry consolidation cell consisted of two Rowe cell bodies 

bolted together to form a single cell with 252mm internal height and 254mm internal 

diameter. The inside walls of the Rowe cells were lined with 1 mm thick PTFE sheet 

to reduce friction during consolidation. Acrylic discs were used as the loading plates 

during the consolidation process. Consolidation pressure was applied to the 

consolidation cells using two large air-water interfaces and controlled using Moore 

Model 40-100 Nullmatic pressure regulators. Two 1200kPa pressure gauges 

manufactured by Budenberg Co. Ltd. (Altrincham) were used to measure the 

consolidation pressures. During consolidation, drainage was allowed at top and 

bottom of the cells. Slurry consolidation procedures will be described in Section 

4.3.2. 

3.3.2 Layered sample test cell 

A cell with the same dimensions as the slurry consolidation cells, again 

formed by bolting together two Rowe cells, was used for the layered sample 

consolidation (Section 4.3.7), "head" and permeability tests (Section 4.3.10) and 

mini-piezocone tests (Section 4.3.11). In the cell wall near the base two drainage 

valves were located diagonally opposite each other. A1 mm square peripheral groove 

was cut in the cell wall to connect these two valves. The inside wall of the cell was 

lined with aI mm thick porous plastic sheet to allow radial drainage during the 

consolidation and permeability tests. Before use, the porous plastic was grooved 

vertically with a spacing of about 10mm (shown schematically in Figure 3.2 a). To 

make these grooves, the porous plastic sheet was placed on a table and a steel ruler 

was used as a guide while a screw driver was gently dragged along the plastic sheet. 
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The grooves on the porous plastic were intended to ensure that excessive head losses 

did not occur in the peripheral drain during permeability tests. 

The cell base used in the previous research was designed by Moseley (1998) 

for circular vertical drain tests and there were three positions for piezocone testing. 

For the present research, the cell base, Figures 3.2 (a) and (b), was redesigned so that 

a vertical drain with either a band shape or a circular shape and pore water pressure 

probes could be inserted into the soil sample in the cell. Adapters for a circular drain 

and a rectangular drain were designed so that they could be alternatively mounted on 

the cell base. Four inclined holes and eight vertical holes were drilled in the cell base 

for the pore pressure probe installation. All the pore water pressure probe 

connections on the cell base were redesigned to avoid any leaking of water, as 

reported by Moseley (1998), when a high back pressure was applied. 

Two aluminium circular discs with a thickness of 25mm were used as loading 

plates for layered sample consolidation. The loading plates, one with a 30mm 

diameter circular recess and the other with a 20x66mm rectangular recess, were used 

for tests with the circular drain and band drain respectively. Before use, the recesses 

on the loading plates were filled with Plasticene. After the drain installation (Section 

4.3.8), the tip of the vertical drain was embedded in the recess (Figure 3.10). 

3.3.3 Sand and flint layer mould 

Four acrylic moulds were used to make sand or flint layers. Each mould 

consisted of a base plate, a body and a lid, Figure 3.3. The base of the mould was 

lined with aI mm thick PTFE sheet. An acrylic ring was greased and bolted to the 

base plate to form the mould body. The underside of the mould lid was also lined 

with 1mm thick PTFE sheet. The moulds were originally designed by 

Moseley(1998) for sand layer preparation (Section 4.3.3). With the original design, 

after sand was sprinkled through deaired deionised water and levelled in the mould, 

the mould lid was placed into the mould until it touched the top of the sand inside the 

mould. The mould was then placed in a freezer. During layered sample preparation 
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(Section 4.3.6) in which layers of sand and clay were alternately placed in the test 

cell, it was found that the sand layers prepared by this method, having been frozen, 

melted very quickly in the test cell while the next clay layer was placed. Hence 

placing the clay layers could easily disturb the melted sand layers. 

In the present research, it was considered that a protective ice layer could 

slow down the melting rate of the sand or flint layers and so reduce the degree of 

disturbance caused by placing the clay layers. To make the protective ice layer, the 

mould lids were redesigned by placing four adjustable screws on the rim of each lid, 

which could then be adjusted up or down by turning the screws against the mould 

body. By this method, the distance from the underside of the mould lid to the top of 

the material inside the mould could be controlled and an approximately 3mm thick 

ice layer could be formed on top of the material. 

3.3.4 Volume change units 

Two Imperial College 100ml volume change units were used to monitor 

flows into and out of the layered sample during various stages of the tests. The 

volume change units operate by measuring the movement of a piston within a 

cylinder caused by the flow of water. The movement of the piston was monitored by 

a 25mm linear variable displacement transducer, manufactured by MPE Transducers 

Ltd. and mounted on the outside of the cylinder. 

Figure 3.4 shows volume change unit calibration set up. The volume change 

units were calibrated under the same back pressure as used in the samples. To 

calibrate the volume change units, a 10ml graduated glass burette, readable to 0.02 

ml and mounted in an acrylic outer tube, was used. By alternately filling and then 

bleeding the burette, the full range of the transducers was calibrated in about 10ml 

increments. 
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3.3.5 Displacement transducer 

To monitor the height of the layered sample, a 10mm linear variable 

displacement transducer (Model No. HS10/7042) manufactured by Apex Ltd. 

(Wimborne) was used. To calibrate the transducer, a Mitutoyo digital output 

micrometer, readable to 0.001 mm was used. The full range of the transducer was 

calibrated in 0.5mm increments. 

3.3.6 Pressure transducers and pressure gauges 

One 500kPa and one 800kPa standard test gauge manufactured by Budenberg 

Gauge Co. Ltd. (Altrincham) and two 700kPa diaphragm type pressure transducers 

manufactured by Druck Ltd. (Leicester) were used to monitor and record back 

pressure and confining pressure (Section 3.3.12) during the layered sample tests. The 

pressure transducers and the standard test gauges were calibrated by using a 

Budenberg oil dead weight tester. Calibrations of these transducers and gauges were 

performed with 100kPa increments. 

3.3.7 Differential pressure transducers 

A total of eight 35kPa differential pressure transducers (Model No. PDCR 

2110) manufactured by Druck Ltd. were used to measure the pore water pressure at 

various points in the soil sample as well as the pressure difference applied across the 

sample. 

To calibrate the differential pressure transducers, all the transducers were 

fixed vertically on a wooden board and placed on a table, as shown in Figure 3.5. 

Two 10 ml graduated glass burettes were used as pressure sources to the transducers. 

One of the burettes was attached to the high pressure side and another burette was 
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attached to the low pressure side of the transducers. An air-water interface tank was 

filled with de-aired water and connected to the burettes by using plastic tubes. Zero 

readings of the transducers were recorded while the pressure from only one burette 

was applied to the high and low pressure sides of the transducers at the same time. To 

apply a differential pressure to the transducers, a rack system was used to mount the 

burettes at various heights and by controlling pressure in the air-water interface tank, 

the water levels in the burettes could be adjusted. By attaching a tape measure, 

readable to I mm, to the outside of the burettes, the difference in head applied to the 

transducers could be recorded. The differential pressure applied to the transducers 

was varied between 0 and 20kPa and the output voltages were recorded. 

3.3.8 Pore water pressure probes 

The needle-type probes, Figure 3.6, used for pore water pressure 

measurement inside the sample were made from stainless steel hypodermic tubes 

with an outside diameter of 2.5mm and an inside diameter of 1.7mm. A piece of 

porous plastic was placed in the end of the hypodermic tube to prevent soil particle 

migration into the probe. To reduce the volume of water within the probe, a 1.5mm 

diameter piece of brass wire was placed inside the hypodermic tube. 

At the other end of the stainless steel tube, a plastic tube was fitted over the 

stainless steel tube and then a brass olive was tightly fitted at the middle of the plastic 

tube. A screw fitting bearing on the olive was used to make a sealed connection 

between the probe and the connector to the differential pressure transducers. The 

seal ensured that pore water pressure around the porous plastic tip was transferred 

directly to the differential pressure transducer. 

The pore water pressure probe arrangement and installation procedures will 

be described in Section 4.3.9. 
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3.3.9 Draw wire transducer 

The displacement of the drain mandrel and the mini-piezocone during 

insertion into the soil sample was monitored by a 600mm draw wire transducer 

(Model No. 0.2VD) manufactured by RDP Ltd. (Wolverhampton). The transducer 

body was fixed at a static point on the test frame. The end of the draw wire was 

attached to a metal plate which, in turn, was attached to the central drive rod of the 

driving system (Section 3.3.10). A Mitutoyo 300mm digital calliper, readable to 0.01 

mm, was used to calibrate the draw wire transducer. In the calibration, the draw wire 

transducer and the calliper were fixed horizontally on a wooden board. The wire of 

the transducer was attached to the moveable arm of the calliper. Over the driving 

range of the vertical drain and the piezocone, the calliper was adjusted to produce a 

displacement increment of 25mm and the output voltage from the transducer was 

recorded. 

3.3.10 Driving system 

An existing driving system designed by Moseley (1998) was used for drain 

installation and mini-piezocone driving. The system included a 600mm long, 35mm 

diameter central threaded drive rod with a 15mm diameter hole drilled through its 

entire length and two vertical movement limit switches. This was connected to a 

permanent magnet DC electric motor controlled by a potentiometer. Power from the 

motor was transferred to the drive rod by two pulleys that were connected by a timing 

belt. A maximum motor speed of 1200 RPM was used for the piezocone driving. 

This rotating speed produced a 20mm/sec vertical movement of the central drive rod. 

A digital meter was connected to the drive motor so that its rotational speed could be 

visually monitored. 
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3.3.11 Circular and band drains 

Circular shape drains with an diameter of 23.5mm and rectangular shape 

drains with plan dimensions of 50x6.5 mm, Figure 3.7, were used in the research to 

quantify the effects of smear caused by installation. 

The circular drain, which was designed by Moseley (1998) had a core 

(mandrel), a filter tube and a sheath, Figure 3.8. The circular drain core was a brass 

column with longitudinal grooves of 1 mm width and 0.5mm depth cut on the sides 

at roughly 5mm centres. The drain core was surrounded by aI mm thick porous 

plastic tube supplied by Porvair Technology Ltd. and a thin brass sleeve. An O-ring 

seal was placed at the end of the core to provide a seal with the sleeve so that 

saturation could be retained during handling and driving (Section 4.3.8). A new 

porous plastic tube was used for every test. A 2mm hole was drilled through the 

centre of the core and two diagonal 1 mm holes were drilled near the base in order to 

connect the outer porous plastic tube hydraulically to the central hole and reduce any 

head loss within the mandrel. 

The band drain was composed of an acrylic core, 3x 48mm, wrapped by a 

porous plastic filter and a protective brass sheath, Figure 3.9. The acrylic core had 20 

parallel rectangular grooves 3mm wide and 1mm deep. To make the porous plastic 

filter, aI mm thick porous plastic sheet was cut to dimensions which would allow it 

to fit closely around the drain core. At the position of the core corners, the porous 

plastic was scored by a knife and then folded. At the last corner the end of the plastic 

sheet was carefully melted in order to fuse it to the other end. Then two screws 

(2.1 mm diameter) were used to fix the bottom end of the porous plastic sheath to the 

drain core. This was to ensure that the porous plastic was kept in place during 

removal of the brass sheath. Then another pair of screws were used to fix the plastic 

core to the brass drain base. Deairing and installation of the band drain will be 

described in Section 4.3.8. 

To make a comparison between the results gained from the circular drain and 

band drain tests, the equivalent diameter (Section 2.5.1) of the band drain used in the 
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research was kept reasonably similar to the diameter of the circular drain. Many 

equivalent diameter calculations were considered during the preliminary design of 

the band drain. The internal dimensions of the manufactured sheath for the band 

drain were 50.0 x 6.5 mm. The sheath fitted the band drain closely so that the 

collapse of soil surrounding the drain was minimised. With the size of 50.0mm x 

6.5mm, the equivalent diameters of the prefabricated band drain computed by 

Equations 2.8,2.13 and 2.14 were 36mm, 29.6mm and 28.3mm respectively. 

3.3.12 Test system configuration 

Figure 3.10 shows a schematic diagram of the test system. A vertical 

confining pressure and a back pressure were applied to the sample. The back 

pressure was applied from two air-water interface tanks. The first tank, referred to as 

the "high" tank, was connected to a volume change unit and then to two valves at the 

side of the cell. The second tank, the "low" tank, was connected to the top of the 

drain cover, a second volume change unit and the low pressure side of the 

differential pressure transducers. 

A head difference between these two tanks permitted a flow from the high 

air-water interface tank to the first volume change unit and then to the test cell via the 

valves connected to the peripheral drain near the cell base. The water pressure could 

distribute all around the sample via the square groove on the cell wall (Section 3.3.2) 

and the peripheral porous plastic. The water then flowed through the soil sample, in 

which the pore water pressure probes were installed (Section 4.3.9), to the drain at 

the centre of the sample, along the drain to the drain cover, through the second 

volume change unit and finally into the low air-water interface tank. The differences 

between the pressure at the drain and at various positions across the sample were 

recorded by the differential pressure transducers. The total applied pressure 

difference was measured by a separate differential pressure transducer. 

To control the pressure in the two air-water interface tanks, two Moore 

Nullmatic Pressure Regulators (Model 40-100 and 40-30), connected together in 

54 



Experimental Materials and Equipment 

series, were used. As suggested by Moseley (1998), using two regulators in series 

minimised the pressure fluctuations in the main air pressure supply. The pressures in 

each tank were visually monitored by using a 500kPa standard pressure gauge 

(Section 3.3.6) and a pressure transducer was used to record the back pressure at the 

peripheral drain inside the test cell. This transducer was connected to the cell at the 

mid-height of the sample. 

The vertical confining pressure was applied to the test cell membrane from a 

large air-water interface. Again, two Moore Nullmatic Pressure Regulators (Model 

40-100), connected together in series, and a 800kPa standard pressure gauge were 

used to control and visually monitor the supplied pressure. A pressure transducer 

was connected to the cell pressure pipe to record the applied pressure. 

3.3.13 Miniature piezocone 

A mini-piezocone provided by Fugro Engineers B. V. of Holland was used in 

the research. The mini-piezocone has a cross sectional area of 1 cm2 and contains a 

pore water pressure transducer, a cone load cell, a sleeve load cell and a slope sensor, 

Figure 3.11. However, only the cone resistance and pore water pressure were 

monitored during the experiments. 

a) Filters 

The two filter locations used in the research were the tip and the shoulder of 

the cone, Figure 3.12 . The tip filter originally provided by Fugro Engineers was a 

sintered stainless steel filter with a 60° tip and this had been used by Moseley (1998). 

Moseley reported that, after some tests had been performed, the porous tip became 

clogged with clay. To remove any clay that had been trapped in the filter, it was 

placed in an ultra-sonic bath filled with deaired and deionised water. Then the ultra- 

sonic bath was operated for at least one and a half hours. 
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In the early stages of the present research, after a test had been performed, the 

same tip filter cleaning procedures were adopted. However, a satisfactory response 

to changes of pressure during deairing (Section 4.3.11) was not generally achieved. 

It was considered that the ultra-sonic bath could not remove all the trapped clay, so 

every time the tip filter was used clay was present in the filter. To solve this clogging 

problem, sintered glass tip filters with roughly 30% effective porosity were 

manufactured and used, instead of the sintered stainless steel filter. 

To make the sintered glass filter, the required amount of glass beads, with 

diameters of 46-90 µm, was placed in a ceramic mould with dimensions of 

25x90mm. To make the surface of the glass beads flat, the mould was gently tapped 

and then it was placed in a high temperature oven. The temperature in the oven was 

increased at a rate of 2 °C per minute and kept constant (dwelling) at 680 T. Then 

the temperature was decreased at a rate of 1 °C per minute until room temperature 

was achieved. The dwelling time was varied, as summarised in Table 5.1, to achieve 

a material that was machinable and not too brittle to make tip filters. It was found 

that a dwelling time of 20 minutes was suitable. After removal from the mould, the 

filter material was machined to form a small circular rod with a diameter of 2.1 mm 

and a length of approximately 15mm. Then the circular filter rod was glued into the 

metal cone body. Finally, it was shaped to form a 60° tip. The glass filter was 

changed for every piezocone drive to make sure that the best response to changes of 

excess pore water pressure could be gained. 

The shoulder filter was made of porous plastic and, again, a fresh filter was 

used for every drive. These filters were provided by Fugro Engineers. 

b) Assembly and de-airing 

The cone tip, with the filter either at the tip or the shoulder, was assembled to 

the cone body in a funnel of silicone oil to make sure that the pore pressure 

measuring system was fully saturated (Figure 3.13a). First, the cone body was turned 

over and clamped to a support. A funnel was fixed on the cone body with a rubber 

seal at the bottom. The cone tip was taken apart and all the components were cleaned 
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with cotton wool. Silicone oil was poured into the funnel and a syringe was used to 

flush the cone body. One of two brass spacers was pushed into the cone body. When 

the filter was at the cone tip, the oil flushed through the center of the brass 

spacer(item no. 2, Figure 3.11 a) but, when the filter was at the cone shoulder, the oil 

flushed through two holes at the side of the spacer (item no. 5, Figure 3.11 b). The 

spacer was moved up and down a few times to make sure that the oil properly flowed 

through the spacer holes and all entrapped air was flushed out. 

The filter was deaired under silicon oil with a vacuum of -100 kPa for at least 

3 hours and transferred into the funnel. The o-ring (item no. 10, Figure 3.11 a and b) 

and the filter were put into position under the silicon oil. Then the cone body was 

clamped and the cone tip was screwed onto the body. After assembly of the 

piezocone, the oil in the funnel was transferred to a container. Then the cone was 

turned upside down and quickly put into a vacuum bottle filled with silicon oil 

(Figure 3.13b). The level of the silicon oil in the bottle was above the cone filter. 

Then a rubber seal was applied between the cone body and the bottle neck, the 

vacuum pump was operated and vacuum of about -90 kPa was applied to the bottle. 

The piezocone was deaired in the vacuum bottle for at least 6 hours and its response 

was recorded by the computer logging system. The vacuum was then released and 

the cone was left under atmospheric pressure for at least 6 hours before testing or 

calibration. Checking of the piezocone response to pressure change will be described 

in Section 4.3.11. 

c) Calibration 

To calibrate the cone resistance, firstly the piezocone was clamped to a stand 

without any load applied to the cone tip. At this stage the zero reading was recorded 

and the clamps on the stand were released to loosely hold the piezocone in a vertical 
direction. Then the tip of the cone was rested on a balance readable to 0.1 g which 

was placed underneath. Next, weights were applied to the clamp on the cone body as 

shown in Figure 3.14. The increment of load applied to the cone was roughly 

190kPa. For each loading increment, at least 10 output voltage values were logged 
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within 20 seconds. The load applied to the cone was varied from about l90kPa to 

1200kPa. 

To calibrate the piezocone pore water pressure transducer, a special pressure 

tank with a hole in the middle of the top plate was manufactured. Before calibration, 

the pressure tank was filled with deaired and deionised water and connected to an air- 

water interface tank. A 700kPa pressure transducer was attached to the pressure tank 

to measure the water pressure in the tank. The piezocone was prepared for 

calibration using the assembly and de-airing procedures described above and the zero 

reading was recorded. After that, the piezocone was slowly inserted into the pressure 

tank until the tip of the piezocone was roughly at the middle of the tank. During 

insertion, the top valve of the pressure tank was open to allow some water to drain 

out. Calibration was started by increasing the pressure in the air-water interface tank 

from lOOkPa to 600kPa in increments of 100kPa. For each increment, the output 

voltages from the pore water pressure transducer and the cone resistance transducer 

were recorded by the computer logging system. Calibration factors for the pore water 

pressure transducer and the cone area ratio (Section 2.3.3) were calculated from the 

data gained. The average area ratio value was 0.63. Moseley (1998) reported the 

same area ratio value. 

3.3.14 Computerised logging system 

During the various stages of the layered sample tests (sample consolidation, 

vertical drain installation, pore water pressure probe installation, permeability testing 

and mini-piezocone testing, Sections 4.3.7-4.3.11) all test data were collected by a 

computerised logging system. The computer used for data acquisition was a Viglen 

486 PCI operating with MS-DOS version 6.22. The software used was Quick LogPC 

Version 1.0.5 by Strawberry Tree Incorporated. 

A total of fifteen channels on two interface boxes manufactured by RS 

Components Ltd. were used to transfer the output voltages from the transducers to 

the computer logging system. 10 volts of DC power were supplied to every channel, 
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except those for the draw wire transducer and the piezocone, by using a 18V5C 

voltage regulator manufactured by Kingshill Electronic Products Ltd. 15 volts of DC 

power were separately supplied from an identical source to the channels for the draw 

wire transducer and the piezocone. The software was able to convert the voltages 

from the transducers to engineering units using the known calibration factors. 

The data logging rate was varied to suit the type of testing. For example, in 

the sample consolidation tests, the logging interval was set to 2 seconds for the first 

minute, then to 5 seconds for the next five minutes, then to 20 seconds for the next 

half hour and finally to 500 seconds until the consolidation finished. During 

piezocone driving, logging occurred every 2msec (205 readings/sec) and this was the 

fastest rate which gave acceptable data. It was found that logging at a faster rate 

introduced errors and resulted in scattering of the data. 

3.4 Calibration Errors 

3.4.1 Transducers 

For each data set from a transducer calibration (except the piezocone), a trend 

line produced by linear regression was drawn on a graph of the calibration quantity 

(e. g. displacement, pressure) versus the output voltage of the transducer. The scatter 

of the calibration data around the trend line was expressed in terms of a standard 

deviation calculated by the following equation. 

SD = 
ý(x - xe5l) 

n n ------------ (3.1) 

where SD = standard deviation in engineering units 

x= calibration quantity in engineering units for a 

given transducer output voltage 
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xest = an estimated value on the trend line at the same 

output voltage 

n= number of calibration data points 

Each transducer was calibrated two times. Dates and standard deviations of 

the calibrations are presented in Table 3.1. Results from the first and second 

calibrations were compared in terms of zero reading drifts and calibration factor 

changes, Table 3.2. The zero reading drifts (only calculated for pressure transducers) 

were the differences of the output voltages of the transducers at "no load" stages of 

the first and the second calibrations. The zero drifts in terms of engineering units 

were then calculated by substituting the output voltage at the "no load" stage of the 

second calibration into the first calibration equation. The slopes of the lines obtained 

by linear regression from the first and second calibrations were compared and these 

are presented as calibration factor changes. 

3.4.2 Piezocone 

Errors in the piezocone calibrations were evaluated in terms of hystersis and 

non-linearity, Schaap & Zuidberg (1982). During the load cell calibrations, Figure 

3.15, the maximum hystersis and non-linearity were recorded in calibration no. 3. The 

values were 7% and 4.3% respectively. These errors were equivalent to 80kPa and 

50kPa. It should be noted that these values were obtained from a full load-reload 

cycle. From the piezocone test results (Figure 5.21-5.30), it can be seen that large 

variations of cone resistance were not observed after a drive had been started, i. e. the 

load acting on the piezocone during driving was principally a monotonic loading. 

Therefore, with a calibration factor obtained from the regression analysis of the data 

points from only the first half cycle during calibration (see Section 3.3), smaller 

errors than those mentioned above were expected in a test. 

Zero drifts between each load cell calibration are presented in Table 3.3 (a) 

(column 2). Comparing all the load cell calibration results shows that the zero drift 

of the piezocone varied over a wide range. On the other hand, it was found that the 
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calibration factors were reasonably consistent. During the testing period, the 

maximum change of the calibration factor between calibrations was 6.4%, Table 3.3 

(a) (column 4). 

Pore water pressure transducer calibrations are shown in Figure 3.16, for the 

two pore water pressure transducers that were used in the piezocone. The first 

transducer was calibrated under a maximum pressure of 200kPa. The second 

transducer was calibrated under higher pressures that were approximately the same as 

those in the tests. Comparing all the calibrations showed that the calibration factors 

were very consistent with a maximum change of 2.9%, Table 3.3 (b) (column 4). For 

every calibration, hystersis and non-linearity were negligible. Therefore, although 

the first pore water pressure transducer was calibrated with pressures lower than 

those in the tests, the calibration factor gained was considered to be reliable. The 

maximum zero drift between calibrations was 37kPa, Table 3.3 (b) (column3). 

In the piezocone data analysis, Section 5.4.1, an independent datum for the 

excess pore water pressure and cone resistance was recorded before each penetration 

test. The datum readings at the beginning of a test were investigated for at least four 

hours to ensure that they were constant. Therefore, zero drifting of the cone load and 

pore water pressure transducers between calibrations should have been automatically 

taken into account. Only the calibration factors were used in the data analysis. 
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Dates Standard deviation 
Transducer from E q. 3.1 units 

cal no. 1 cal no. 2 cal no. 1 cal no. 2 

Displacement transducer 01-Jun-98 01-Mar-01 003 0 0 025 mm (DS) . . 
Consolidation pressure 20-May-98 29-Sep-00 0.117 0.367 kPa transducer (CP) 

Back pressure 20-May-98 29-Sep-00 0.059 0.254 kPa transducer BP 
Draw wire transducer 12-Dec-98 27-Sep-00 0.231 0.141 mm (DW) 
Volume change unit 28-May-98 11-Apr-01 0.063 0.062 MI (high) (Vh) 
Volume change unit 29-May-98 12-Apr-01 0.051 0.052 ml (low) (VI) 

differential pressure 11-Jun-98 13-Jun-99 0 068 047 0 kPa transducers 1 (DT1) . . 

DT2 12-Jun-98 14-Jun-99 0.090 0.046 kPa 

DT3 13-Jun-98 15-Jun-99 0.087 0.046 kPa 

DT4 14-Jun-98 16-Jun-99 0.074 0.045 kPa 

DT5 15-Jun-98 17-Jun-99 0.082 0.046 kPa 

DT6 16-Jun-98 18-Jun-99 0.080 0.046 kPa 

DT7 17-Jun-98 19-Jun-99 0.075 0.046 kPa 

DT8 18-Jun-98 20-Jun-99 0 085 0.046 kPa 

Table 3.1 Calibration errors of the transducers 
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Transducer Zero reading drift 
(V) 

Equivalent zero drift 
(kPa) 

Calibration factor change 

DS - - 0.34 
CP 5.40E-04 3.69 0.60 
BP -1.52E-03 10.66 -0.01 
DW - - -0.50 
Vh - - 0.83 
VI - - 1.06 

DT1 3.57E-05 -0.131 1.00 
DT2 2.65E-05 -0.010 0.16 
DT3 5.51 E-05 -0.070 0.29 
DT4 2.64E-05 -0.036 0.60 
DT5 1.32E-04 -0.172 0.54 
DT6 2.77E-05 -0.018 0.60 
DT7 2.88E-05 -0.022 0.07 
DT8 9.29E-05 -0.080 -0.09 

Table 3.2 Zero reading drifts and calibration factor changes of transducers 

a) Cone load calibration 

Calibration number Zero reading drift 
V 

Equivalent zero drift 
(kPa) 

Calibration factor change 

Fugro" cal no. 1 1.99E-04 -4.62 1.73 
cal no. 1 to cal no. 2 -2.29E-03 155.44 -0.23 
cal no. 2 to cal no. 3 -5.83E-03 400.55 -0.38 
cal no. 3 to cal no. 4 -3.64E-03 270.86 3.53 
cal no. 4 to cal no 5 8.13E-03 -518.21 -6.36 

b) Cone pore water pressure calibration 

Calibration number Zero reading drift 
V 

Equivalent zero drift 
(kPa) 

Calibration factor change 

Fugro* cal no. 1 5.29E-03 -33.53 2.93 
cal no. 1 to cal no. 2 pore pressure transducer change 

cal no. 2 to cal no. 3 -1.85E-03 4.57 0.43 
cal no. 3 to cal no. 4 -1.33E-02 37.42 -0.19 

* Calibration at Fugro laboratory 

Table 3.3 Zero reading drifts and calibration factor changes of piezocone 
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Unit in mm 
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Inclined 
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a) Cell base for circular drain 

Unit in mm 
Not true scale 

Puzocone 

Inclined 
probe 

Band drain 

Inclined 
probe 

b) Cell base for band drain 

Figure 3.2 Cell bases 
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Figure 3.6 Differential pressure transducer and 
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Figure 3.7 Band and Circular drains 
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(a) Sintered glass tip filter 

(b) Porous plastic shoulder filter 

Figure 3.12 Piezocone filters 
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Figure 3.13 Piezocone assembling and de-airing 
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CHAPTER 4 

EXPERIMENTAL PROCEDURES 

4.1 Introduction 

This chapter is divided into two main parts. The first part concerns 

supplementary testing which includes falling head permeability tests, oedometer 

tests, horizontal permeability tests and Rowe cell consolidation tests on the materials 

used in the research. The second part concerns the main experimental work, namely 

the layered sample testing. This second part describes the methods and procedures 

used for clay slurry preparation, the preparation of the more permeable layers, the 

construction of the layered sample, the circular and band drain installation, the 

permeability testing and the miniature piezocone testing. 

4.2 Supplementary testing 

4.2.1 Falling head permeability tests 

To determine approximately the permeability of the sand and silt materials 

used in the layered samples, falling head permeability tests were conducted. The 

materials were pure sand, as used by Moseley (1998), pure flint and mixtures of flint 

and sand. The mixtures had ratios by weight of flint to sand of 5%, 10%, 17%, 

30%, and 50%. 
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Samples for the falling head permeability tests were taken from the prepared 

batch of oven dried silty sand (Section 3.2.2). The flint was also oven-dried for at 

least 24 hours and sieved to break up the clods before use. Then the required amount 

of sand and flint was placed in a small rotary mixer which was operated continuously 

for at least 20 minutes. 

To prepare the falling head test sample, about 500m1 of deaired and deionised 

water was placed in the outer container of the falling head permeability apparatus. 

The perforated base was first placed in the container, then a saturated porous plastic 

disc and an O-ring seal were put on top of the perforated base. After that, the 

cylindrical permeameter body was placed on top of the O-ring seal. The water level 

was kept about 10 mm above the porous plastic disc. Then a teaspoon was used to 

sprinkle the test material into the permeameter. The water level was kept about 

10mm above the sample surface all the time by syphoning. These processes were 

continued until the permeameter was full of material. By using a vernier calliper, the 

heights of the material were determined at three different positions around the mould 

and at the centre of the mould. The top of the permeameter was assembled and 

tightly clamped before the permeability tests. Then a large amount of deaired and 

deionised water was placed into the header tank which was approximately 2m above 

the permeameter. All the connecting tubes were attached between the header tank, 

the stand-pipe and the permeameter. 

Falling head permeability tests were conducted on each material at three 

different dry densities. The dry density of the material was varied by tapping the 

mould and compacting the initially loose material in the mould. The falling head 

tests were performed by allowing water in a stand pipe with a diameter of 5mm to 

flow down through the sample and, for each test, the flowing time for a given change 

of level in the stand pipe was recorded. A total of three tests was performed for each 

dry density. The sample heights were then averaged and used to calculate the volume 

of the material. By assuming the material was fully saturated and knowing the 

volume and the mass of the material in the mould, the dry density and void ratio 

could be calculated. 
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4.2.2 Oedometer tests 

Two oedometer tests were performed to determine the mass of the flint 

required to make layers of a given thickness under the effective stress applied to the 

layered samples. The flint was oven-dried, mixed to a slurry with de-aired and de- 

ionised water and put into the oedometer cell. A spirit level was used to level the cell 

and then a porous plastic disc was placed on top of the flint slurry. The height of the 

slurry in the cell was carefully measured with a vernier calliper. The cell loading 

plate was very gently placed on top of the slurry. Then the oedometer cell was placed 

in the standard test frame. 

The pressures applied to the cell were 12.5,25,50,100 and 250kPa. The 

whole test process was repeated using another cell. The final height of the material at 
250kPa effective stress and the dry weight of the material in the cell were used to 

calculate the mass of flint required for a flint layer (Section 4.3.4) with a nominal 

thickness of 2mm. 

4.2.3 Rowe cell consolidation tests 

In order to determine the vertical and horizontal coefficients of consolidation 

of the kaolin, four Rowe cell consolidation tests were performed. The kaolin slurry 

was prepared by mixing the kaolin powder with de-aired and de-ionised water at 

twice the liquid limit in a rotary mixer. The slurry was then subjected to a vacuum of 

-IOOkPa for three hours before use. 

Two Rowe cells with 152mm internal diameter were used for the 

consolidation tests. The inside walls of the Rowe cells were lined with I mm thick 

PTFE sheet to reduce friction during consolidation. After being vacuumed, the 

required amount of slurry was scooped into the cells. A previously saturated circular 

porous plastic sheet, a perforated metal loading plate and another porous plastic sheet 

were placed on top of the slurry respectively. The cell lids, each with a pressure 
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membrane, were then assembled to the cells. For the first two tests, the consolidation 

pressures were 12.5,25,50,100,200,400,200 and 100kPa, each being applied for at 

least 24 hours. Drainage during consolidation was allowed from the top of the 

sample only. The results from these two first consolidation tests were used to 

determine the vertical coefficient of consolidation of the kaolin during consolidation 

and swelling stages. For the other two tests, after the pressures of 12.5,25,50 and 

100kPa were applied, the cell pressure was reduced to zero and a peripheral porous 

plastic drain was installed around the sample. To do this, the cell lid was removed 

and the cell body was also removed by sliding it upwards. The PTFE at the side of 

the sample and the porous plastic disc at the top were then gently removed. Porous 

plastic, previously saturated, was then installed at the periphery of the sample and the 

cell was re-assembled. Consolidation pressures of 50,100,200,400,200,100,200, 

400,200,100,200,400,200 and I OOkPa were applied to the sample. With data from 

these loading and unloading cycles, the horizontal coefficient of consolidation of the 

kaolin was determined. It should be noted that all the interpretation for the 

coefficient of consolidation was based on changes in the height of the samples. 

4.2.4 Horizontal permeability tests 

In order to determine the horizontal permeability of the sand and silt materials 

horizontal permeability tests were performed on three types of material: pure sand, 

pure flint and a mixture of flint (10% by weight of sand) with sand or "l0%f-s". 

These were performed in a 254mm diameter Rowe cell with a circular vertical drain 

at the centre, under an effective stress of 25OkPa, and so conditions were similar to 

those in the layered sample tests. Preparation of the materials was exactly the same 

as for the layered sample testing (Sections 4.3.3-4.3.5). For three separate tests, eight 

sand layers, twelve flint layers and twelve 10%f-s layers, all with 2mm nominal 

thickness, were prepared. However a different technique was used for the vertical 

drain installation. 
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To install the drain, after the sample had been saturated and consolidated as 

described in Section 4.3.7, the back pressure was removed, the Rowe cell was turned 

over and the central cell base plug was removed. A thin-walled circular brass tube 

was driven into the soil sample. The end of the sheath was embedded in Plasticine in 

the circular recess on the loading plate. Then the material inside the tube was 

removed using a syringe and de-aired water to flush out the soil particles, Figure 4.1 

(a). A porous plastic tube was inserted into the brass tube, Figure 4.1 (b). Two 

pieces of thick rubber were pushed down inside the plastic tube to seal its bottom 

end. The plastic tube was then filled with medium size gravel to form the drain. The 

brass tube was removed and a circular aluminium ring was placed in the gap between 

the drain and the cell base to seal the gap and prevent piping failure during the 

permeability test, Figure 4.1 (c). The drain cover was placed in position. The pore 

water pressure probes were installed and then permeability measurements were 

performed as described in Sections 4.3.9 and 4.3.10. 

4.3 Layered Sample Tests 

4.3.1 Slurry preparation 

Clay slurry was prepared by mixing kaolin powder with de-aired and de- 

ionised water at twice its liquid limit in a rotary drum mixer. Before mixing, the 

kaolin powder was placed in an oven at 105 °C for 2 days to avoid the effects of 

biological activity as recommended by Moseley(1998). The drum mixer was 

carefully cleaned before use and then a total mass of 20kg of deaired and deionised 

water was transferred into the mixer. After that, the kaolin powder (16.66kg in total) 

was slowly scooped into the water and the mixer was operated continuously for I 

hour. After mixing, the slurry was transferred into two air tight buckets. Then the 

weight of the two buckets was recorded so that the total amount of kaolin slurry used 
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could be determined later. Before the slurry was transferred into the consolidation 

cells (Section 3.3.1) samples were taken from the top of both buckets to find the 

water content of the slurry. Samples of slurry were also taken from the bottom of the 

two buckets after most of the slurry had been scooped into the consolidation cells. 

4.3.2 Clay slum consolidation 

Before slurry was placed in the consolidation cells, the cells were lined with I 

mm thick PTFE sheets to reduce friction between the side of the cell and the slurry 

during consolidation and extrusion. Then a saturated 2mm thick circular porous 

plastic disc was put into each cell to allow drainage from the bottom during slurry 

consolidation. Although the porous plastic discs were re-used, they were properly 

cleaned every time by flushing water through them and boiling them. If any porous 

disc was noticed to be partially blocked by kaolin, it was replaced by a new disc. 

Kaolin slurry was scooped into the two consolidation cells in four layers of about 

50mm thickness. After each layer was placed, the vacuum lids were assembled and a 

vacuum of about -I OOkPa was applied for 30 minutes to remove any air entrapped in 

the slurry. 

Once the required amount of slurry was in the consolidation cells, the buckets 

were weighed again so that the weight of slurry scooped into the cells could be 

determined. A porous plastic disc was placed on top of the slurry in each cell 

followed by a 12mm thick circular perforated acrylic disc to encourage an equal 

strain consolidation condition. Then another porous plastic disc was placed on the 

top of the acrylic disc. To get rid of any air in the consolidation cells, about 500m1 of 

deaired and deionised water was put into the cell before the cell lid was assembled 

and the piston length measured so that the height of the slurry in the cell could be 

determined. Knowledge of the height of the slurry in the cell, the water content of 

the slurry and the weight of slurry in the cell permitted the initial void ratio and 

degree of saturation of the slurry to be calculated. 
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To initiate consolidation, a cell pressure of 12.5kPa was applied to the slurry 

and consolidation allowed to take place for 36 hours. For the next two pressures of 

25 and 50kPa, consolidation took at least 48 hours to complete. To avoid over 

stretching of the Rowe cell membranes, once the slurry had been consolidated to 

50kPa, two more acrylic discs, 15mm thick, and another porous plastic disc were 

placed on top of the other discs above the clay by reducing the cell pressure to zero 

and opening the cell lid. During this process, swelling of the clay was allowed. For 

the continuation of consolidation, cell pressures of 50,100 and 200kPa were applied, 

each for at least 48 hours. Settlement readings were taken until the end of primary 

consolidation for every loading stage. 

4.3.3 Sand layer preparation 

The sand layers were formed by sprinkling dry sand through deaired and 

deionised water in a circular mould (Section 3.3.3) and then freezing the sand layer in 

the mould. To prepare a sand layer, silicon grease was placed on the outside part of 

the rim of the mould and then the mould was assembled. The mould was placed on a 

flat table and a spirit level was used to check the levelling. About 500m1 of deaired 

and deionised water were then placed into the mould. The mould was divided into 

four quadrants by placing two pieces of wire on top of the mould. The required 

weight of sand, 165g for a nominal 2mm thick layer, was divided into four parts and 

put in four glass dishes. A sand layer was made by sprinkling sand from each glass 

dish into one of the four quadrants of the mould. Then a wide toothed comb was 

used to level the top of the sand. Two central cross dragging operations were 

performed first, followed by two full circular dragging operations. The details of this 

procedure were reported by Moseley (1998). After that, the side of mould was 

tapped gently so that the ridges formed by combing the sand were levelled. Then the 

mould lid was placed on the top of the mould. Initially, during placement, the lid 

was slightly inclined so that any entrapped air could be removed. A spirit level was 
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placed on top of the lid while the lid was finally being pushed down to contact the 

sand. Then the mould was placed in a freezer for 24 hours. 

A total of four sand layers was prepared at one time. If more than four layers 

of sand were required, the moulds were removed from the freezer, the sand layers 

were removed from the moulds and wrapped in cling film before being put back into 

the freezer. After that, the moulds were cleaned and used again. 

4.3.4 Flint layer preparation 

To vary the permeability of the more permeable layers (Section 3.1), flint 

was used in some layered samples instead of sand. It was found that, under zero 

effective stress conditions, the flint was more easily disturbed than the sand. To 

prevent disturbance, especially during model building, a protective ice layer was 

formed on top of each flint layer. 

Firstly, after 24 hours of oven drying, 150g of flint was weighed out. This 

amount eventually produced a layer of 2mm nominal thickness. The flint was put 

into a 500m1 beaker and mixed with 85g of de-aired and de-ionised water. A 

magnetic spinner was put into the beaker and the beaker was put into a glass vessel. 

Then the vessel was placed on a spinning magnetic field generator while a vacuum 

was applied. In this way, the flint slurry was mixed by the spinning magnet in the 

beaker and de-aired by the applied vacuum at the same time. The de-airing process 

was carried. out until no more air came out from the flint slurry. Then the flint slurry 

was slowly poured into the mould on a flat table. Once the slurry was in the mould, a 

spirit level and comb were used to level it with the same procedures as used for sand 

layer preparation. By using adjustable screws on the rim of the lid, Figure 3.3, the 

mould lid was placed so as to just about touch the surface but not to put load on the 

flint. After that, the slurry was left in the mould and the flint was allowed to settle 

and form a stiffer layer before the next stage. After about 3 hours, the lid was 

removed and 500ml of de-aired and de-ionised water was slowly added into the 

86 



Experimental Procedures 

mould and the lid was placed on top of the mould leaving a gap which gave a depth 

of free water above the flint surface of about 3mm. Then the mould was placed in a 

freezer for 24 hours. By this method, an ice layer about 3mm thick was formed on 

top of the flint. 

4.3.5 Mixed flint and sand layer preparation 

A mixture of flint and sand was used to form higher permeability layers in 

some layered samples. It was expected that the mixture would give a permeability 

value in between those of pure flint and pure sand. In the falling head permeability 

tests (Section 4.2.1) the percentage of flint mixed with the sand was varied in order to 

identify a suitable mixture with the desired permeability. Finally, a mixture with 

10% flint by weight of sand (referred to as 10%f-s) was selected. 

The flint and sand were oven-dried for 24 hours before mixing. The required 

amounts of the materials were put in a small rotary mixer. The mixer was operated 

for 20 minutes. For such a mixture, sprinkling through water could have caused 

segregation and non-uniformity of the permeability in the layers. To avoid this 

problem, the mixture of dry materials was mixed with an amount of de-aired and de- 

ionised water, 176g of dry material with 94g of water, using the same method as for 

the pure flint layers. The amount of water was seen from trials to be the minimum 

amount that allowed the spinning magnet to work properly. After mixing and de- 

airing, the mixture was carefully transferred into the mould and levelled before the 

top cap was immediately placed on top. Then the mould was placed in a freezer for 

24 hours. 

4.3.6 Layered sample preparation 

Layered samples were constructed by combining relatively thick layers of 

consolidated Speswhite kaolin clay and relatively thin more permeable layers. 
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The layered sample test cell (Section 3.3.2) was carefully assembled. All the 

joints and connections were cleaned and properly reconnected to avoid leakage. The 

I mm thick porous plastic peripheral drain was grooved and de-aired before being 

placed in the cell. Some de-aired and de-ionized water was put in the cell prior to 

sample formation. The water was kept about 5mm above the cell base. 

The Speswhite kaolin slurry, which had been pre-consolidated in the two 

consolidation cells, was extruded from one consolidation cell to obtain an extruded 

thickness of kaolin cake of 20mm. A vernier calliper was used to measure the exact 

thickness of the clay layer. The cake was then wire-cut and put in the test cell using a 

suction pad to carry it, Figure 4.2. The kaolin layer was slightly inclined when it 

was placed into the cell so that any entrapped air could be flushed out from the 

underside. After all the air had been expelled, the suction pad was detached from the 

top of the clay layer by blowing down the plastic tube and gently rocking the handle 

of the suction pad. After putting the first clay layer into the cell, tissue paper was 

used to remove any kaolin smeared on the porous plastic lining. The next clay layer 

was extruded from the cell, wire cut and lifted up by the suction pad so that it could 

be placed into the cell immediately after placing the first more permeable layer. 

Before the first sand layer (or flint, or 10%f-s) was placed, water on top of the 

clay layer which had became contaminated with suspended clay particles was 

siphoned out in order to prevent entrapping of the clay particles in the next sand 

layer. Then fresh cool water was added to the cell and a sand layer was carefully 

taken out from a mould and placed on top of the first clay layer. The sand layer was 

slightly inclined while it was put into the cell to expel the air bubbles from between 

the base of the sand layer and the top of the clay layer, Figure 4.3. During this stage, 

a hard pushing force could break the fragile sand layer and damage the sample so it 

had to be ensured that the rim of the frozen sand layer was smooth without excessive 

ice crystals that could produce high friction between the layer and the porous plastic. 

Once the sand had been properly placed on top of the clay, the next clay layer was 

put into the cell. By performing this process quickly, the sand was still frozen while 

the next clay layer was pushed into contact. 
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By repeating all the above processes and placing frozen sand layers 

alternately between clay layers, a layered sample was constructed. 

4.3.7 Layered sample consolidation and saturation 

Once the layered sample had been prepared, the cell was lifted up to the test 

frame and the loading plate (Section 3.3.2) was placed on top of the sample. For 

tests with a vertical band drain, placement of the loading plate had to be done with 

the correct orientation of the recess. 

After the cell lid was assembled, the piston position was measured so that the 

height of the layered sample in the cell could be determined. Cell pressures of 12.5, 

25,50 and lOOkPa were successively applied to the sample. The volume of water 

flowing out of the sample under each pressure was measured. Once water stopped 

flowing from the sample at the cell pressure of 100kPa, the peripheral drain was 

flushed with a large amount of de-aired and de-ionised water in order to expel any 

trapped air. The differential pressure used to flush the drain was about 5-10kPa. 

Flushing continued until no more visible air came out. 

After flushing, a back pressure of 200kPa was applied to the layered sample 

in two steps. First, the cell pressure was increased from 100 to 200kPa and the back 

pressure was increased from zero to 100kPa. Second, the cell pressure was increased 

from 200 to 300 kPa and the back pressure was increased from 100 to 200kPa. Then 

the sample was left at least 6 hours to allow any trapped air to dissolve into the pore 

water. 

After saturation, the layered soil sample was consolidated to an effective 

vertical stress of 250kPa in two increments, 100 to 200kPa and 200 to 250kPa, before 

the vertical drain was driven into the model. For each increment, the sample was left 

for at least 36 hours. The height of the layered sample in the cell was calculated by 

measuring the position of the piston before consolidation and recording the change of 
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the height (piston movement) using a displacement transducer with the computer 

logging system. 

4.3.8 Vertical drain installation 

After the layered sample had been consolidated, a mandrel carrying a 

sheathed vertical drain was driven into the model. In order to quantify the effects of 

smear caused by different shapes of vertical drain, a circular drain and a rectangular 

drain (Section 3.3.11) were used in the research. 

To saturate the vertical drain, it was deaired under water for about eight hours 

in a vacuum chamber with a pressure of about -100kPa. Before driving, the 200kPa 

back pressure was removed from the sample. The effective stress of 250kPa was 

kept constant while the back pressure was removed. Then the test cell was inverted, 

the cell base plug was removed and the sheathed drain was attached to the driving 

system (Section 3.3.10). It had to be ensured that the water level was always kept 

above the drain inside the sheath. For the circular drain, an O-ring seal at the bottom 

prevented leakage. For the band drain, instead of using an O-ring seal, Plasticine was 

applied to the joint between the sheath and the drain bottom to keep the water inside 

the drain. When attaching the drain to the driving system, Figure 4.4 (a), positioning 

was very important to ensure that the drain was driven exactly at the centre of the 

sample. Otherwise, it could touch the side of the access hole in the cell base. This 

could generate high friction and lead to strong vibration during the driving. 

The vertical drains were driven into the sample at a rate of 5mm/sec. During 

driving, drainage from the sample was allowed. The flow due to driving, the change 

of sample height, the water pressure in the peripheral drain and the driving distance 

were recorded by the data logging computer. After the vertical drain was driven into 

the sample, a steel reaction rod was inserted into the hole at the centre of the central 

drive rod (Section 3.3.10). The end of the reaction rod was placed inside the sheath, 
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Figure 4.4 (b), to hold the vertical drain in place when the sheath was removed 

vertically at a rate of 5mm/s. Then the drain cover was assembled on the cell base. 

4.3.9 Pore water pressure probe installation 

The pore water pressure probes were prepared shortly prior to placing them in 

the layered sample. As described in Section 3.3.8, the probes were made from 

hypodermic steel tube. A 5mm thick porous plastic sheet was boiled and vacuumed 

before being used for the probe tip filters by embedding the sharpened end of the 

hypodermic tube 4 mm into the plastic sheet. The tube was then pushed through the 

sheet leaving 1 mm of rough sided porous plastic protruding from the end of the tube. 

The protruding porous plastic was trimmed with a knife to a smooth shape. The 

brass wires were placed inside the hypodermic tubes to reduce the volume of the 

water in the tube and decrease the response time. Then the probes were left 

overnight under de-aired and de-ionised water in a vacuum chamber with a pressure 

of -100kPa. 

Once the drain had been driven into the sample, a large container was filled 

with de-aired and de-ionised water and a measuring cylinder was used to transfer the 

probes to the large container. A differential pressure transducer and a connector were 

placed into the large container. The water level in the container was kept just above 

the transducer so that the electric cable was still dry. The bleed valve screw, Figure 

3.6, was removed from the connector and air was flushed from the high pressure end 

of the transducer using a hypodermic syringe and needle. Then the pore water 

pressure probe was connected to the transducer under water and the bleed valve 

screw replaced. The assembly was then moved to the layered sample cell. During 

this time, the probe tip was kept under water in a small beaker. Before insertion of a 

probe, the access hole plug was removed from the cell base and the syringe, filled 

with de-aired and de-ionised water, was used to flush the hole. Then the probe was 

slowly inserted through the hole into the cell. During insertion, the pore water 

pressure was recorded by the computer logging system and kept under 100kPa so that 
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the transducer would not be damaged. Seven differential pore water pressure probes 

were inserted into the soil sample at various radii so that the variation of pressure 

head due to water flowing across the sample could be investigated (see Section 

4.3.10). Figure 3.2 shows the general arrangement of the probes for the tests with a 

circular drain and a band drain. 

After all the probes had been inserted into the soil model, plastic tubes were 

attached to the low pressure side of the transducers and to the drain cover (Section 

3.3.12). After that, a pressure of about 5kPa was applied to the low pressure air- 

water interface tank. All the plastic tubes and connections connected to the low 

pressure supply were flushed with water from the tank by temporarily disconnecting 

the tubes from the low pressure side of the transducers one by one. Before 

reconnecting the tubes to the transducers, the syringe filled with de-aired and de- 

ionised water was used to flush the low pressure side of each transducer. A flushing 

process was also carried out for the high pressure connection to the sample so that all 

tubes in the system were flushed out and saturated with water. 

After all the plastic tubes and transducers had been flushed and connected, 

Figure 4.5, the soil sample was saturated by increasing the back pressure to 200kPa 

while keeping the effective vertical stress at I00kPa. The back pressure was raised in 

four 50kPa increments so that the differential pressure transducers would not be 

damaged. Increments of pressure were applied through the high pressure air-water 

interface tank. The probe bypass, Figure 3.10, valve and the valve to the low 

pressure air-water interface tank were closed. For each increment of cell pressure, 

initially drainage was not allowed so that the pore pressure response to the increase 

of cell pressure could be recorded. Then the pressure in the high pressure air-water 

interface tank was raised by 50kPa and the drainage valve was opened. The whole 

process was repeated until the back pressure reached 200kPa. The sample was left 

for at least 8 hours to ensure full saturation of the system before the tests described in 

the following section. 
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4.3.10 Head distribution test and permeability test 

The head distribution test, or "head test", and permeability test were 

performed by applying differential water pressure across the soil sample. The head 

test was performed by allowing water to flow across the sample without measuring 

the rate of flow. However, the pressure head distribution was measured throughout 

the test. The purpose of head test was to avoid the effect of head losses in the 

volume change units on the head readings and to create a reasonably constant head 

difference across the sample. As reported by Moseley (1998), the deflections of the 

rolling membranes (belloframs) within the volume change units produced a variation 

in the pressure across the sample during permeability tests. 

Before starting the head test, the air-water interface tanks were placed on the 

adjustable rack on the wall. The levels of the two tanks were arranged to produce 

about l OkPa of pressure difference across the sample. The probe bypass, Figure 3.10, 

valve and the valve to the low pressure air-water interface tank were closed. Only the 

valve to the high pressure air-water interface tank was opened. Thus the pressure 

differences read by all the differential pressure transducers were expected to be very 

close to zero. If the reading was not close to zero at this stage, it was possible that 

the flushing process had not been done properly so that some air bubbles were still in 

the system. Before the head test started, the "zero readings" were recorded by the 

computer logging system until all the values were constant over a period of about 20 

minutes. It should be noted that if any transducer gave a zero reading higher than 

0.5kPa or lower than -0.5kPa, its data were neglected during the subsequent test. 

After the zero readings were taken, the head test was started by closing all the valves 

in the system and then opening the two volume change unit by-passes, opening the 

valve to the high pressure air-water interface tank and opening the valve to the low 

pressure air-water interface tank. The head test took several hours. After the test had 

finished, zero readings of the differential pressure transducers were taken again. 

The permeability test was conducted in the same way as the head test but the 

volume change units were used to measure the inflow and outflow rates. To start the 
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permeability test, the same procedures described above for the head test were used 

except that, instead of opening the volume change unit by-passes, the reversing 

valves of the volume change units were opened. It was found that turning the 

reversing valve of the volume change units could produce a very high pressure in the 

system. To avoid damage to the differential pressure transducers, the reversing 

valves had to be turned while the connections to the high pressure air-water interface 

tank and to low pressure air-water interface tank were closed. In the permeability 

test, about 60ml of water was allowed to flow through the sample. 

4.3.11 Miniature piezocone penetration testing, 

After the permeability test had been carried, the mini-piezocone (Section 

3.3.13) was driven into the layered sample at a rate of 20mm/sec. 

As described in Section 3.3.13, after the de-airing processes had been 

completed, the cone was left under atmospheric pressure for at least 6 hours. This 

gave time for the silicon oil to flow into the cone and fill any voids caused by 

deairing (discussed in Section 6.3.4). After that, the vacuum was applied to the cone 

again and then it was released immediately to check the cone response. This was 

done 2-3 times and the response of the cone was visually observed on the monitor of 

the computer logging system (Section 3.3.14). If a sharp response was not shown, 

the filter was removed and replaced by a new one. Then all the de-airing processes 

were repeated. 

The piezocone was taken out from the de-airing apparatus and a medical 

fingercot filled with silicon oil was immediately placed on the end of the piezocone. 

The level of the silicon oil in the fingercot had to be kept higher than the cone filter 

so that the filter was kept saturated. Then the piezocone was transferred to the 

driving frame, Figure 4.6. The upper clamp was fastened first. The lower clamp was 

clamped loosely and then a plumb line was used to ensure that the piezocone axis 

was vertical. 
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Before the piezocone was driven into the soil sample, the "zero readings" of 

cone resistance and pore pressure were recorded by the computer logging system for 

approximately ten minutes. The back pressure in the cell was reduced from 200kPa to 

zero in the same way as it had been increased (Section 4.3.9) while the effective stress 

was kept constant at 250kPa. Then one of the access holes in the cell base, Figure 3.2, 

was opened and the cone was slowly driven into the sample to a depth of about l0mm. 

During driving of the cone tip into the sample, the lower clamp remained loose so that 

the cone position was slightly adjustable. 

Once the cone tip was in the right position in the soil sample, the lower clamp 

was tightened up properly. The cell pressure was increased to 350kPa, but drainage was 

not allowed. This was so the cone pore water pressure response to the increase of cell 

pressure could be investigated. Then the valve connecting the cell to the high pressure 

air-water interface tank with a back pressure of IOOkPa was opened. This process was 

repeated for a cell pressure of 450kPa and a back pressure of 200kPa. After that, the 

cone was left for at least 6 hours. This gave time for any entrapped air in the model to 

be dissolved in the pore water. During this time, the volume of water flowing into the 

sample was recorded by the logging system. 

After six hours, the data logging routine was switched to the routine used for 

piezocone driving. This logging routine was set to the fast logging mode to collect data 

every 0.005 second. The driving distance was measured in order that the cone could be 

stopped at a planned position. Normally, it was intended that the cone filter should stop 

approximately at the middle of a clay layer towards the lower end of sample. Once 

everything was ready, the logging system was operated and immediately the driving 

system was operated to drive the cone into the sample at the desired speed of 20 

mm/sec. During the driving, drainage was allowed from the sample. The driving was 

stopped manually by switching off the power to the driving system once the required 

distance was reached, the cone was left in the soil sample and the dissipation of the 

excess pore water pressure was monitored. Approximately 10 seconds after the cone 

stopped, the logging rate was reduced to collect data every 1 second for a minute, every 

5 seconds for 5 minutes and every 50 seconds for 1 hour. After about 1 hour of the 

dissipation test, the cone response to a cell pressure increment was investigated again 

and then the back pressure was reduced to zero in two steps while the effective stress 
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was kept at 250kPa. The piezocone was then withdrawn from the sample at a rate of 

about 1 mm/sec. 

After the cone had been taken out of the sample, the data logging computer was 

still operated for few hours in order to ensure that the load cell and pore pressure 

transducers were working properly. Then the cone was transferred to the support for 

replacing the filter. 

4.3.12 Sample dissection and photo raphy 

After the tests on the sample had been completed, the cell pressure and back 

pressure were removed from the sample. Swelling was not allowed during this stage. 

The cell lid, the drain cover and the bolts at the cell base were removed. The cell body 

was then vertically lifted from the soil sample sitting on the cell base and the peripheral 

porous plastic was removed from the sides of the sample. To take clay specimens for 

moisture content determination, stiff spatulas were used to cut from the periphery to the 

central drain and remove a wedge shaped portion of the sample. The remaining part of 

the sample was then wrapped with cling film and stored for photography. Using a knife, 

two sets of small clay specimens were then taken from the wedge shaped portion. The 

first set of specimens was taken across the sample at distances of 5,25,50,75 and 

100mm from the drain. The second set was taken 52mm from the central drain in every 

clay layer. 

Prior to the photography, the wrapped samples were placed in a freezer for 48 

hours. Each sample was then cut vertically by a mechanical band saw with the cut 

passing through the middle of the drain at the centre of the sample. For the samples with 

a band drain, the cutting surface was perpendicular to the long side of the drain. After 

the sample was cut, two pieces of wood were placed on top and under the sample and 

clamped by two G-clamps so that the sample could be transferred to a table prepared for 

photography. Before the photography, any clay smearing across more permeable layers 

due to cutting was scraped away with a knife and a scale readable to 1 mm was placed on 

the sample. The sample photographs were then taken by using a digital camera 

(Olympus Camedia C-2500L). 
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Figure 4.2 Clay layer handling using the suction pad 

Figure 4.3 Permeable layer placement into 

the layered sample test cell 
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Figure 4.5 Test cell set up for head distribution and 
permeability tests 
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CHAPTER 5 

EXPERIMENTAL RESULTS AND ANALYSIS 

5.1 Introduction 

This chapter presents the experimental results gained during the research. 

Four main groups of test results are presented: 

a) the results obtained from consolidation tests during pre-consolidation of 

the kaolin slurry and during layered sample consolidation, 
b) the smear effect investigation results including the results obtained from 

instrumentation during both constant head distribution tests and 

permeability tests, 

c) the piezocone test results gained during cone driving and during the 

dissipation tests, 

d) the results from sample dissection. 

For some classes of result, such as data from slurry consolidation, vertical 

drain installation and pore water pressure probe installation, only typical data will be 

presented. Typical test results were taken from Test 7 and Test 8. The main tests 

(Test 1-10) are summarised in Table 5.1. 
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5.2 Consolidation Results 

5.2.1 Slurry consolidation 

Consolidation of kaolin slurry was performed using two different sizes of 

consolidation cell. 254mm diameter cells were used for clay cake preparation to 

make layered samples (Section 4.3.2) and 152mm diameter cells were used for the 

determination of the coefficient of consolidation (Section 4.2.3). 

During the consolidation process, the change in height of the sample and the 

consolidation time were recorded for each loading increment. The void ratio of the 

soil at each stage was calculated from the final water content and the height of the 

consolidated kaolin slurry by assuming that the mixed and de-aired slurry was fully 

saturated. Therefore 

ef=w GS ------------ (5.1) 

where of 

W 

final void ratio of the kaolin, 

the water content at the end of the test 

the specific gravity of the kaolin particles 

(assumed to be 2.60, Section 3.2.1) 

Gs = 

and 

De =1 Hef 
OH (5.2) 

r 

where De = change of void ratio between a given test stage 

and the end of the test 

Hf = final sample height 

OH = change of sample height between a given test 

stage and the end of the test 
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Figures 5.1 and 5.2 present typical results of kaolin consolidation performed 

in 254mm Rowe cells. In Figure 5.3 the void ratio results are compared with the 

results reported by Eid (1978), Al-Tabbaa (1987) and Moseley (1998). Figure 5.4 

presents the void ratio results obtained from slurry consolidation performed in 

152mm Rowe cells. It was found that at stresses of more than 50kPa the results of 

the present research were comparable with those reported by Moseley (1998) and 

plotted in between those reported by Al-Tabbaa (1987) and Eid (1978). Comparison 

of Figures 5.3 and 5.4 shows that the average void ratio results from the 254mm 

Rowe cells were comparable with those from 152mm Rowe cells performing 

horizontal consolidation. Both void ratio results were slightly lower (at a given 

stress) than those obtained from 152mm Rowe cells performing only vertical 

consolidation. This reduction of void ratio is almost certainly due to unloading and 

reloading to put the additional loading plates into the 254mm Rowe cells (Section 

4.3.2) and to install the peripheral drains in the 152mm Rowe cells (Section 4.2.3). 

The results gained from the consolidation tests performed in the 152mm 

Rowe cells were used to determine the vertical coefficient of consolidation, c,,, and 

the horizontal coefficient of consolidation, Ch, of the kaolin. To determine the 

coefficient of consolidation, the sample deformation was plotted against the square 

root of time and the logarithm of time and the traditional graphical methods of Taylor 

(1942) and Casagrande & Fadum (1940) were applied. The averages of the c� and Ch 

values gained from these two graphical methods are summarised in Tables 5.2 (a) 

and 5.2 (b) (columns 6 and 12). 

The permeability of the kaolin was then calculated by using the conventional 

consolidation theory (Terzaghi, 1943) as follows: 

k, = c, m, ., v -- ---------------- (5.3) 

k ni = eh «m ., ' YW -------------------- (5.4) 

where k,,; and kh; = vertical and horizontal permeability from indirect 

measurement respectively 
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m, = coefficient of one-dimensional volume compressibility 

The results were then compared with permeabilities obtained from empirical 

relationships (Al-Tabbaa & Wood, 1987) based on direct measurement. 

k�d = 0.53e3.16 x 10-6 mm/sec ----------- (5.5) 

khd = 1.49e2 °3 x 10"6 mm/sec ------------(5.6) 

where kvd and khd = vertical and horizontal permeability based on direct 

measurement respectively 

e= void ratio 

Columns 7 and 13 in Tables 5.2(a) and 5.2(b) present the permeabilities 

calculated by using Equations 5.3 and 5.4 while, columns 9 and 15 in the same tables 

present the permeabilities estimated by using Equations 5.5 and 5.6. Graphical 

comparisons are made in Figures 5.5 and 5.6. It can be seen that some of the data 

obtained during swelling and re-consolidation stages are more scattered than those 

obtained during virgin compression stages. This could be because, during swelling 

and re-consolidation stages, changes of sample height were very small and happened 

in very short time. Therefore, larger errors could have been generated during the 

manual recording of these data. However, at a given void ratio, the vertical and 

horizontal permeability results obtained from Rowe cell consolidation were generally 

within ± 25% of the values predicted using empirical method (Al-Tabbaa & Wood, 

1987). It was considered that the empirical method gives reasonable accuracy in 

predicting the permeability of kaolin at a given void ratio. 

The horizontal coefficient of consolidation, ch, obtained from the tests was 

compared with that obtained from the piezocone tests as described in Section 5.4.2. 
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5.2.2 Layered sample consolidation 

After the layered samples or pure clay samples had been made, they were 

consolidated to an effective vertical stress of 250kPa in two stages, 100 to 200kPa 

and 200 to 250kPa (Section 4.3.7). Figure 5.7 presents a typical layered sample 

consolidation result from one of these stages. 

To determine the void ratio of the kaolin in the layered samples, the more 

permeable layering materials (flint, 10%f-s and sand) were assumed to be 

incompressible. The thickness of each more permeable layer was determined during 

the horizontal permeability tests, Section 4.2.4. At an effective stress of 250kPa, the 

layer thicknesses of the flint, 10%f-s and sand were 2.14mm (e = 0.85), 2.15mm 

(e = 0.61) and 2.10mm (e = 0.67) respectively. These were the constant values 

assumed to apply in the layered samples. 

The initial void ratio, e0, of the clay was calculated from the water content 

determined after slurry consolidation (Section 4.3.2). The initial clay thickness was 

measured during the layered sample preparation (Section 4.3.6). With knowledge of 

the subsequent changes in clay layer thickness, the void ratios at different effective 

stresses were then calculated. Figure 5.8 presents the void ratios of the clay layers in 

the layered samples plotted against consolidation stress. 

For the layered samples with pure sand, it could be assumed that the sand 

layers acted as perfect drains. However, the difference of the drainage path length of 

the top and bottom clay layers (approximately 18mm) and the clay layers in between 

(approximately 9mm) caused some difficulties in determining the coefficient of 

consolidation. At a given consolidation time, the degrees of consolidation of the clay 

layers with different drainage path lengths were different. To determine the vertical 

coefficient of consolidation of the clay, c, the following procedure was applied. 

a) With a trial c,, value and a given time `t', the time factors, T,,, and Tv2 

were calculated for the clay layers with total thicknesses of h, 

(top&bottom layers), and h2 (other layers) respectively. 

b) With the calculated time factors, T, and TO the degree of 
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consolidation of the layers, Ui and U2, were calculated. 

c) The overall degree of consolidation, U, was calculated as 

uh, U, +h, U, 
h, +h, 

d) The overall degree of consolidation at time t, U, was then compared 

with that observed from the testing, U,. 

e) The c, value was then changed until U and U, agreed. 

Table 5.3 summarises the consolidation results for the kaolin in the layered 

samples. 

5.3 Effects of Smear on Vertical Drain Performance 

Effects of smear caused by vertical drain installation were investigated by 

performing constant head distribution tests and permeability tests (Section 4.3.10) on 

the soil samples with the vertical drain, of either a circular shape or a band shape, 

installed in the middle. 

5.3.1 Results from instrumentation 

After consolidation had finished, a mandrel carrying a vertical drain was 

driven into the layered sample (Section 4.3.8). Figure 5.9 illustrates typical data 

obtained during the vertical drain installation. In this drive, after the drain (with a 

volume of 71.6cm3) had been completely installed and the drainage had stopped, the 

measured outflow and volume change of sample were 87.3cm3 and 15.7cm3 

respectively. It can be seen that summation of the volume of the drain and sample 

volume change due to consolidation after drain installation (71.6+15.7 = 87.3) agreed 

well with the total outflow. 
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5.3.2 Zero readings prior to the head distribution test 

Before the head distribution test, zero readings of the differential pressure 

transducers attached to the pore pressure probes (Section 4.3.9) were investigated. 

Because there was only one pressure source supplying pressure to the probes in the 

cell and the lines on the other side of the transducers, the differential pressures 

recorded should have been zero. In practice, it was found that the zero readings of 

the transducers were affected by the temperature fluctuation (±0.5 degree) caused by 

the laboratory air conditioning system. In order to avoid the problem, the test cell 

was protected from the vigorous air currents by using a cardboard shield every time 

the head distribution test and the permeability test were performed. Figure 5.10 

shows typical zero readings recorded continuously for approximately eight hours 

before the head distribution test. In this case, the readings of every transducer were 

within the range of ± 0.5 kPa, which was deemed acceptable. The differential of the 

pressures at this stage could exist because of surface tension of tiny air bubbles 

entrapped in the more permeable layers during the sample preparation (Section 4.3.3- 

4.3.6) or in the filters at the end of the pore pressure probes during the installation 

processes. The reading taken across the sample (DTI) was always very close to zero 

because both sides of the transducer were directly connected to only one pressure 

source (Section 4.3.10) and were not affected by the above factors. 

5.3.3 Head distribution test 

The head distribution tests (Section 4.3.10) were performed by applying 

differential water pressure across the soil sample without attempting to measure the 

flow rate. During the test, as the water flowed from the peripheral drain to the central 

drain, the responses of the differential pressure transducers at different radii were 

recorded. All data were plotted against time and then a "window" was taken at a 

time of approximately 30 minutes when the pressure responses were observed to be 

most constant. The pressure of each probe was determined by averaging the response 

of the probe during the snapshot. Figure 5.11 shows a typical snapshot of the pore 
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water pressure responses recorded during a constant head distribution test. 

In considering the pressure distribution across the sample, there were two 

problems: the initial zero readings of particular transducers before the test and the 

head loss across the peripheral drain. In order to achieve consistency in the rejection 

of the data points for analysis, the following schemes were applied. 

a) As mentioned in Section 4.3.10, a reading obtained from a differential 

pressure transducer with a zero reading higher than 0.5kPa or lower than 

-0.5kPa was ignored. 

b) The measured pressure difference across the sample was ignored if it was 

found that the head loss across the peripheral drain was higher than 

0.5kPa. 

c) The reading obtained from a pressure probe within 6mm of the drain was 

ignored because the pressure at this point could have been affected by 

disturbance of the soil surrounding the drain. 

This data rejection scheme was applied to the data from all the constant head 

distribution tests and also from all the permeability tests (Section 5.3.4). 

For the samples with a circular drain, the differential pressures measured at 

different radii during the head distribution tests were plotted against the natural 

logarithm of the radius. Then a straight line was drawn through each set of points 

remaining after the rejection scheme. The differential pressure applied between the 

central and peripheral drains was determined by extrapolating this straight line to the 

radial distance at which the peripheral drain was located. The pressure at this 

distance was then used to normalise the measured differential pressures across the 

sample. 

Figure 5.12 compares the normalised pore water pressure distributions 

obtained from the constant head tests which were performed on samples with 

different layering materials. In the figure, the normalised head loss due to smear, h5, 

can be determined by extrapolating the straight line drawn through each set of outer 

points in the unsmeared zone to intercept the normalised pressure axis. The 
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magnitude of hs can be used to indicate the effect of smear due to drain installation in 

each soil sample as discussed in Section 6.2.2. 

For a constant head distribution test on a sample with a band drain installed in 

the middle, the pressure distribution across the unsmeared zone in the outer part of 

the sample is not linear on the logarithmic radius scale. In order to interpret the 

pressure distribution in the unsmeared zone, finite element computer modelling using 

OASYS SEEP (steady state seepage analysis) software was carried out. Because of 

symmetry, the finite element mesh, based on the work of Ong (1998), was prepared 

to analyse only one-quarter of the soil sample with the band drain in the middle, 

Figure 5.13. Due to a limitation of the software in dimensioning very small 

elements, the size of the soil model and the drain in the computer modelling was 

hundred times larger than that in the laboratory. 

The flow in the computer modelling was simulated by setting the piezometric 

heads at the central and perimeter drains as Om and 12.5m respectively. The pore 

pressure distribution across the model was then normalised by the pressure at the 

circumference of the model and plotted against the normalised distances obtained by 

dividing distances from the centre line by the radius of soil model, as shown in 

Figure 5.14. It should be noted that the effect of smear was not considered in the 

computer modelling. Fitting the curve shown in Figure 5.14 by using the trend line 

function in Microsoft Excel 97, provided a polynomial equation as follows. 

y= -0.8296x4 + 2.5689x3 - 3.3407x2 + 2.6664x - 0.0651------ (5.7) 

where x and y are defined in Figure 5.14 

Substituting x in the above equation by numbers (distance/rsa, npie) 
between 0.024 (at the drain side) and I provided a suitably transformed distance axis. 

When plotted against this axis the normalised pore water distribution was linear. 

Figure 5.15 shows results gained from the computer modelling performed by 

Ong (1998) re-plotted against the transformed distance axis. In Ong's simulation, a 

smear zone with a horizontal permeability reduction factor of 50 was assumed. The 

width of the smear zone was assumed to be 1.5,2 or 3 times the half-thickness of the 
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band drain. From this figure, a linear variation of the pore water pressure distribution 

outside the smear zone can again be seen. 

The transformed axis was then used for plotting the normalised pore water 

pressure gained from the laboratory tests on samples with a band drain. Figure 5.16 

compares the normalised pore water pressure distributions obtained from the head 

distribution tests which were performed on the samples with different layering 

materials. It should be noted that the procedures used to reject data and determine 

the normalising pressure were the same as those used for the tests with a circular 

drain. 

After the data points were selected and plotted, a straight line was drawn 

through the outer points in the unsmeared zone and extrapolated to intercept the 

normalised head axis (see Figure 5.16). Then hs was determined and used in 

evaluating the effects of smear caused by band drain installation. 

5.3.4 Permeability test 

a) Measured sample permeability 

The procedures used to perform the permeability tests were described in 

Section 4.3.10. In the layered sample permeability determination, it was assumed 

that that the proportion of the flow taking place in the clay was negligible. Based on 

the known permeability ratio, kr, of layering material (Section 5.3.5), the errors 

associated with this assumption would not have been more than 0.2%, 0.7% and 

11.7% for samples with pure sand, 10%f-s and pure flint layers respectively. The 

measured horizontal permeability (km), including effects of smear, could be obtained 

from the following equation. 

=q"y,,, " Ln(R/rW ) k -------------------- (5.8) 
"' 2; rD-Op 

where 

q= the flow rate across the sample 

R= radius of soil sample 
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rW = radius of circular drain 

or equivalent diameter of band drain 

D= thickness of the more permeable layers 

(or height of pure clay sample) 

Op = pressure applied across the sample 

Using the computer modelling for a band drain mentioned in Section 5.3.3 

and Equation 5.8, the equivalent diameter of the band drain was determined with k, � 

= the assumed permeability of clay, q= the flow rate calculated by OASYS SEEP 

(ignoring smear) and Op = pressure difference across the model. The ratio of radius 

of the soil model (R) to the equivalent radius of the band drain (r") was 8.59. This 

value is slightly less than that of the circular drain (10.72). 

As mentioned in Section 4.3.10, head losses in the volume change units 

produced variations in the pressure across the sample (Op) with time (e. g. see Figure 

5.17). However, during the permeability tests, the inflow and outflow were 

separately measured by two volume change units and were similar at all times. This 

implied that no significant consolidation or swelling of the sample occurred during 

the test and, therefore, pseudo steady state flow existed. As in the analysis of the 

head distribution data (Section 5.3.3), all the data gained during the permeability tests 

were plotted against time and then a window was taken when the pressure, Op, was 

observed to be most constant. To calculate the permeability, the flow rates from the 

two volume change units and the pressure across the sample during the snapshot 

were averaged and substituted into Equation 5.8. Although the flow rate and 

pressure difference across the sample varied throughout the test, wherever the 

snapshot was taken the calculated permeability was almost constant, Figure 5.17. 

b) Permeability of undisturbed materials based on probe readings 

For the tests with a circular drain, with the knowledge of the flow rate and 

the pore water pressure distribution across the sample at a particular time, the 
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horizontal permeability (kh) of the more permeable layers in the layered soil samples 

(or the permeability of kaolin in a pure clay sample) could be estimated by 

substituting the gradient, S, of the straight line drawn through the points of the pore 

water pressure distribution in the unsmeared zone, plotted on a logarithmic radius 

scale, into Equation 5.9. 

_ 
9YW (5.9) - ----------- n 2"; c"D"S 

Again, for layered samples it was assumed that the proportion of the flow 

taking place in the clay was negligible. 

The estimated permeability was then compared, Figure 5.18, with the values 

gained from direct measurement in horizontal permeability tests (Section 4.2.4) and 

falling head permeability tests (Section 4.2.1). Void ratios of the more permeable 
layers in the layered sample under 250kPa effective vertical stress were assumed to 

be equal to the values measured in the horizontal permeability test at the same 

effective stress. 

5.3.5 Smear effect due to drain installation 

Two independent parameters calculated to quantify the smear effect were the 

normalised head loss, hS, determined from the pore water pressure readings in the 

head distribution tests (Section 5.3.3) and the reduction of permeability of the 

sample, rs. 

r5 
k 

=1-- ' ------------------- (5.10) 
k h 

where kh estimated material permeability of 

permeable layers (or pure clay) 

To present the effects of smear in the flow tests, relationships between these 
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two parameters and the permeability ratio of the layering materials are presented in 

Figures 5.19 and 5.20 for the circular drain and band drain tests respectively. In 

these figures, the permeability ratio (kr) is the ratio of estimated horizontal 

permeability of materials (pure clay, flint, 10%f-s and pure sand) to the estimated 

horizontal permeability of pure clay. For a pure clay sample the ratio is, of course, 

unity. 

From test 9, the horizontal permeability of pure clay was estimated based on 

pore pressure probe readings (Section 5.3.4) as 1.91x10"9 m/sec. The horizontal 

permeability of the kaolin in every sample was estimated from the void ratio at an 

effective vertical stress of 250kPa, Table 5.3, using an empirical relationship (Al- 

Tabbaa and Wood, 1987). The average horizontal permeability estimated in this way 

was 1.83x10"9 m/sec. In calculating kr, the average of these two numbers (i. e. average 

of 1.91x10"9 and 1.83x10"9= 1.87x10"9 m/sec) was used as the horizontal permeability 

of the kaolin at 250kPa effective stress. Hird & Moseley (1999) reported a value of 

1.90x10"9 m/sec for the horizontal permeability of the same kaolin under the same 

stress 

Ranges of horizontal permeability of the more permeable layers were 

estimated by considering results, Figure 5.18, from falling head permeability tests 

(Section 4.2.1), horizontal permeability tests (Section 4.2.4) and pore pressure probes 
in layered samples (Section 5.3.4). For flint, 10%f-s and pure sand, the selected 

horizontal permeability ranges were 1.5x10-7 to 2.0x10-7 m/sec, 2.5x10 to 3. Ox10-6 

m/sec and 1.5x10-5 to 2.0x10'5 m/sec respectively. These ranges led to a range of kr 

values being calculated for each layered sample test, as indicated in Figures 5.19 and 

5.20. A summary of the test results for the effect of smear is presented in Table 5.4. 

5.4 Piezocone Test Results 

After the permeability tests had been carried out, a mini-piezocone (Section 

3.3.13) was driven into the pure clay or layered samples. A pore pressure dissipation 

test was then performed with the cone stationary. The details of the piezocone test 
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procedures were described in Section 4.3.11. 

As described in Section 4.3.11, before the piezocone was fully driven into the 

soil sample, the cone filter, either at the tip or shoulder position, was embedded a 

distance of 10mm into the sample and a back pressure of 200kPa was applied while 

the effective stress was kept constant. This procedure was to ensure that the sample 

was fully saturated before the testing. 

5.4.1 Pore water pressure and cone resistance during cone driving 

All the pore water pressure and cone load responses during piezocone driving 

were plotted against driving distance as shown in Figures 5.21 to 5.30. The cone 

resistances are presented by plotting the cone tip position on the vertical distance 

scale while the pore water pressure responses are presented by plotting the location of 

the filter, either at the cone tip or at the cone shoulder (12mm from the tip). 

The pore water pressure responses are presented in terms of excess pore water 

pressure. The datum pressure (ud) used to calculate excess pore water pressure was 

the pressure recorded immediately before the piezocone was fully driven into the soil 

sample. 

For the cone resistances, before each test, the datum was taken while the 

piezocone was outside the sample. It is recommended (ISSMGE, 1999) that, due to 

the unequal area effect, the pore water pressure measured behind the cone should be 

used to correct the total cone resistance (Section 2.3.3). In the present research, the 

piezocone was mainly driven into layered soil samples and the pore pressure behind 

the cone was measured only in some tests (i. e. when a shoulder filter was used rather 

than a tip filter). Due to the difficulties of obtaining the proper cone resistance 

correction, it has been decided that all the cone resistance results gained from the 

cone driving should be presented in an uncorrected form. The uncorrected cone 

resistance was obtained by dividing the measured cone resistance force by the 

projected area of the cone. Nevertheless, in the next chapter (Section 6.3.3), a 

comparison of the corrected and uncorrected resistance will be made for discussion 

purposes. 
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5.4.2 Dissipation Tests 

A dissipation test was performed in a clay layer once the cone penetration 

stopped. The dissipation test results were presented by plotting the normalised 

excess pore water pressure against the logarithm of time and square root of time. The 

normalised excess pore pressure, Au,,, was calculated as. 

Dun =t-o (5.11) ------------- U 
max -U 0 

where Ut = measured pore water pressure at time t 

Umax = maximum measured pore water pressure at the 

start of the dissipation test 

uo = final measured pore water pressure 

at equilibrium 

In practice, as described by Levadoux & Baligh (1986), the values u0 are 

normally estimated because allowing for full dissipation of excess pore water 

pressure can cause significant delays to the test program. Steps to estimate uo were 

described by Rust & Clayton (1999). In the present research, the pore water pressure 

caused by cone penetration could be allowed to dissipate fully and uo was measured. 

It should be noted that uo and the datum pressure (Ud) generally agreed well and fell 

within approximately ±1 OkPa of the back pressure. 

To determine Umax, excess pore water pressures observed from just before the 

end of driving until dissipation had clearly started were inspected and the maximum 

excess pore water pressure was identified (Figure 6.7). It was assumed that 

dissipation started (t = 0) at this point. 

Figures 5.31-5.34 show dissipation test results gained with the pore water 

pressure filter, either at the cone tip position or at the cone shoulder position, in 

samples with the three different permeable layer materials. Figures 5.35 and 5.36 

shows corresponding results from pure clay samples. Values of the horizontal 

coefficient of consolidation, Ch, were determined from the above plots using 
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theoretical solutions. 

For dissipation test results plotted against the logarithm of time c,, /I 

values were determined by substituting t5o (time for 50% dissipation), T*50 (modified 

theoretical time factor at 50% dissipation = 0.069 for tip filter and 0.245 for shoulder 

filter) and the cone shaft radius (re) into Equation 2.7. 

For the dissipation test results plotted against the square root of time the 

following equation (Teh, 1987) was applied. 

C_ (m/M)Z - r, 
z 

---------------- (5.12) F 

where M= 

m 

initial theoretical gradient of the dissipation curve 

1.3 for cone with filter at tip 

1.15 for cone with filter at shoulder 

measured initial gradient of the dissipation curve 

A further method of interpretation was developed in which experimental and 

theoretical curves plotted using the logarithm of time were compared by a least 

squares method over a range of the degree of consolidation (U) from 20% to 80%. A 

Visual Basic based program was developed for this purpose. In the analysis, the 

following procedures were applied. 

a) A trial value of Ch /I was assumed. 

b) From the dissipation test data, data points that were uniformly distributed 

on a logarithmic time scale were selected. 

c) T* was calculated for each selected time using Equation 2.7. 

d) For each calculated T*, the theoretical degree of consolidation, U,, was 

determined by interpolation from the dissipation curve, Figure 2.6 (a), 

proposed by Teh and Houlsby (1991). 

e) (Ui-Uiab)2 was calculated for each selected time where Ujab = degree of 

consolidation at that time from the piezocone test. 
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f) The values of (U, -Ulab)2 for the assumed Ch/I, value were summed. 

g) ch IV-11 was varied and steps a to f were repeated. 

h) The value of Ch/I, was plotted against E(Ui-Ulab)2 and the value 

selected that gave the lowest value of E(U; -Ulab)2" 

A summary of the Ch /J values gained from all three determination 

methods described above is presented in Table 5.5. If the rigidity index (I, ) is known 

(or can be estimated), Ch can be determined by multiplying the values of Ch I VI, in 

Table 5.5 by I,. 

The ch value of the kaolin was also determined independently by performing 

horizontal consolidation tests in a 152mm Rowe cell (Sections 4.2.3). The results are 

presented in columns 6 and 12 of Table 5.2 (b). The results from these two columns 

were averaged and plotted on charts on which derived values of Ch (for a range of 1, 

between 50 and 500) based on the solution proposed by Teh & Houlsby (1991) were 

also shown. The comparisons were based on the measured times for 50% dissipation 

(summarised in Table 5.6). Separate charts were drawn for the two filter element 

positions and also for the pure clay and layered soils, Figures 5.37-5.40. For a given 

Ch from the Rowe cell tests, the spread of the plotted points (due to differences in tso) 

during piezocone dissipation tests defines a range of kaolin rigidity index in the 

piezocone tests. It can be seen that different values of ch, depending on the 

consolidation stress history (Section 4.2.3) gave different rigidity index ranges, as 

further discussion in the next chapter (Section 6.3.2) 

5.5 Results from Sample Dissection 

After all tests had been performed, the soil samples were dissected for the 

water content determination and photography (Section 4.3.12) 

The water contents of the clay layers (i. e. a single layer from each sample) 

118 



Experimental Results and Analysis 

were plotted against distance from the side of the central vertical drain as shown in 

Figures 5.41 and 5.42. By assuming that all the clay was fully saturated and knowing 

the clay particle density, the void ratios of the clay in the pure clay sample with a 

circular drain (Test 9) were compared with the test results reported by Onoue et al. 

(1991) who performed tests on Boston Blue Clay (BBC) and Moseley (1998), Figure 

5.43. 

Examples of the sample photographs are shown in Figures 5.44 and 5.45. The 

digital pictures were loaded onto a personal computer and analysed using the 

UTHSCSA Image Tool for Windows (version 2.0). This software provided tools to 

measure distance, angle and area in a picture with a known scale. 

The geometry of the more permeable layers was measured using the 

following procedures. 

a) Three permeable layers in the middle of the samples were selected as 

being representative in each layered sample. 

b) For each of these layers, the intersection of the vertical centre line of the 

drain and a horizontal line drawn to pass through the undisturbed part of 

the layer was determined and used as a reference point. 

c) Co-ordinates on the digital photograph were converted to distances based 

on the known distance of the scale with 1 mm divisions in the photograph. 

d) Within 5mm from the drain surface, co-ordinates of the more permeable 

layers were recorded at radial intervals of approximately 2mm. Further 

away from the drain the records were made at radial intervals of about 

4mm. 

To compare the permeable layer geometies after penetration with those 

predicted by the strain path method (Baligh, 1985), co-ordinates of the layers were 

normalised by the radius of the circular drain or the half-thickness of the band drain. 

The strain path solutions, provided by Hird (2001) predict the deformation of the soil 

penetrated by a "simple pile" (axisymmetric or two-dimensional) at a distance behind 

the tip of approximately three times the pile diameter (axisymmetric) or three times 

the pile thickness (two-dimensional). The experimental and predicted results are 
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presented in Figures 5.46-5.47. 

Using the computer software, the thicknesses of the more permeable layers 

were measured on the digital photographs. Distances on the digital photographs were 

calibrated using a scale on each photograph while the picture was magnified on the 

computer screen to be about four times larger than the original object. Then the 

thickness of each layer was measured at six different positions on the straight 

(virtually undisturbed) portion of the layer while the photograph was magnified to be 

about twice the size of the original object. The results of layer thicknesses are 

presented in Figure 5.48. 
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Experimental Results and Analysis 

Test No consolidation e mý (m2/kN) kh (m/sec) c� (cm2/sec) 

pressure (kPa) (AI-TaDEaa E Wood, 1987) t90 tgp 

100 1.156 2.00E-09 
1 100-200 1.100 2.60E-04 1.81 E-09 2.80E-03 2.85E-03 

200-250 1.074 2.51 E-04 1 72E-09 1.10E-03 1.30E-03 

100 1.178 2.08E-09 

2 100-200 1.137 1.85E-04 1.94E-09 2.87E-03 2.39E-03 
200-250 1.116 2.04E-04 1.86E-09 1.94E-03 1.47 E-03 

100 1.272 2.43E-09 
3 100-200 1.196 3.33E-04 2.14E-09 

200-250 1.161 3.23E-04 2.02E-09 

100 1.211 2.20E-09 
4 100-200 1.145 3.01 E-04 1.96E-09 

200-250 1.121 2.24E-04 1.88E-09 

100 1.156 2.00E-09 
5 100-200 1.083 3.35E-04 1.75E-09 

200-250 1.056 2.59E-04 1.67E-09 

100 1.172 2.06E-09 
6 100-200 1.109 2.93E-04 1.84E-09 

200-250 1.075 3.15E-04 1.73E-09 

100 1.204 2.17E-09 
7 100-200 1.147 2.57E-04 1.97E-09 

200-250 1.123 2.28E-04 1.89E-09 

100 1.194 2.14E-09 
8 100-200 1.135 2.69E-04 1.93E-09 

200-250 1.109 2.49E-04 1.84E-09 

100 1.202 2.17E-09 

9 100-200 1.127 3.43E-04 1.90E-09 
200-250 1.099 2.57E-04 1.81 E-09 

100 1.203 2.17E-09 
10 100-200 1.137 2.98E-04 1.93E-09 

200-250 1.113 2.27E-04 1.85E-09 

Table 5.3 Summary of layered sample consolidation results 

123 



Experimental Results and Analysis 

ON r O O O O 
LO CO O ) 

N( 
O CO V 

vN C) U) i- N - (O Co M CO 
MO O O O O O O O O O 

'O 

u-) M 
O c» U') 

00 
xt 
le 

N 
141 

Ö ý 
r-_ 
N 

O> U) -e r-4 Co M M N 
m O C'7 Ö Ö Ö ö ö ö ö 

ýL 

m OC 

E" 
E 

ti 
ý 

N 
CO O 

CS) 
O 

' 

Q) 
ý 

N 

lM 

CO 

00 

ti 

Cý7 

C]) 

(i 

0 

Cý7 

ýý 

a' 
ý O 0 O 0 O O O O 0 

E a 
N (0 00 M 

ý 
'ct T- ý 'V 

M 
O 

N M ý 

O Ö O O Ö O O O O 

O 
Z, 

O 

tA v') 
NO 

IO ý 
)ý 

c0 
9 W 

ý 

(0 
9 
W 

O) 

CA 

9 
W 
(O 

Co 

9 
W 

ONO 

r-- 
9 
W 
CD 

r- 
9 
_W 

CO 

9 W 
ý 

O) 

9 W 
(0 

r` 
9 W 
N 

C1 

O 

cYp 

ý 

3 E 

E 

C) 

Ö 
UD 

O) 

U) 
O 
(0 
Ö 

O 
° 
T- 

O) 

Ui 
cm 
CD 

to 
O 
(O 
0 

U) 
O 
(O 
O 

Co 
N 
st C) 

Co 
N 
ýt CD 

O 
O 
ý 

to 
O 

O 

Cß Y 

(L) E 

a 

E 
Z 
E 
E 

CA 
M 

e- 

Ö 
CO 

O 
M 

00 
Ö 

O 
O 

- ' 

Q) 
('r) 
e- 
c4 

CO 
Ö 

N 

Co 
O 

N 

000 

O 

00 
M 

ý 

O 
O 
0O 

in 
s- 

O 
O 

ý 

e- 

QOO 

ü 
a) 

OY 
` 

ýN 

N 

In 

E 
ý 

Ln 
O 
W 

O 
N 

Lo 
O 
W 

O 
N 

m 
O 
W 

CO 
ý 

O 
W 

O 
N 

P- 
CI 
W 

O 
N 

C 
W 
O 
N 

O 
W 

O 
r) 

O 
W 

O 
c-i 

O 
W 

CO 
ý 

O 
W 

O 
N 

'Q N N 
Ü 

N 
CO 

Wý 

E O O 
W 

119 

O 
W 

ttý 

O 
W 

C 
CD 

O 
W 
CD 
ll 

O 
W 

UO) 

O 
W 

C 

O 
W 

0ý 0 

O 
W 

UO) 

ý 

O) 
C1 

` 

c: 
v 
r- 
Cß 
m 

1 
m 
Ü 

Ü 

v 
CO 
m 

0 
Ü 

Ü 

v 
(0 
0 

A 

C3) 
C) 

CO 
0 

(Y) le CC) CO ý Co m 
F- 

v 
v'i 
aý 

ý ý 
ý H 

124 



Experimental Results and Analysis 

U Cl) M M M mm M Cl) M MMM (M M M tn O O O O O OO O O OOO O O O 
ý W W W W W WW W W WWW W W W a O 00 (O O r, rý O) v O 01 co O O co (ß O M sf r- sf 00 N O st .-n co (D O 

Ü 4% co co (D (O (D (O r\ O O co IT e- Cl) N 
N 

` 
N N CM M M M M MM M M Cl) M Cl) CM M Cl) 

E 
0 

W 
O 

W 
O 

W 
O 

W 
O 

W 
OO 

L W 
O 

L 
O 

d 
OOO O O O 

F L6 L I i www W ui W ( - 
v to f` _ M N O O O) O CO NO N ýf 

` Q -: O O) ý N nO O O NNM co Co N 

- 
W (O (o V (n O ui rý O In (C) r) N N 

19 ;ý 
:3 

L 

V M M M M M MM CO) M MMM M (M M M ý O O O O O OO O O aaO 9 O O O 

U) N W LL W LL W WW W W WwW W W W W 
a. M N O O 0) N O O CO N (") 0 O 

W CO Ci O O O) O M O t` 00 0 M 40 C') O) 
O r` O O O (o rl O O O MIt to ý CM r- 

N Cl) - N (" ) q, N Cl) e- MN M 
() 0) 0) 0) a) 0) 0) 0) 0) N 0) 0 ) C) 

N 
0) Z 

.> > ,> .> .> .> .> > > >>> ? > > > 
= '- Z4 V N V« w so 12 L2 (D O M (2 0 

4) U) in en (q m U) co ul - V) N u! tl) tl) �i 1n 

LT M M M M M MMM M M Cl) (n O O O O 4 000 O C? G? 

U) W w W W W WWW W w W n °r N M n °° Ö 
" 

°' r- ( D 0 
Ü 

ý 

_ N M M M 
( 
f7 

- ( ) 
(-) NN (M 

n 
ý 

( 0 

N 
N N cl) M c1 M cM M Cl) 

T" O C? O O OOO 
O E uj W w ' .. _ .. v T V 

N Ö vMÖ 
= U N N N (3) (7) N to 

W r. ý (o ao to ui vi 
~ V 

ý M M Cl) M C9 (M MM Cl) M M O O O O O OOO O O O 
N W W w w W www w W W 
ý fý f" N O Mý O _ O) 

W 00 T R O) st O O) M O) (") (O 
N N M M M (7 NN M N . - 

ý > > > > >> > (D 
Z 7 

> 
> 

'0 9 9 'O 'C; V 10 10 *0 'D '0 N n 
' 

^ 00 OD (O M Of of 
ý y . - y . .. N . . 
a + 

ý 

. 
ý.. 

N N« Y N « N 

ý a) C C C (0 
C N 
E 
m 
U' C) 

Q CL 

... 

O 

O 
U 
O 
N 

ý O 

4. 
r-. r 

U 
4r 
O 

C/ý 

ttl 

aý 
CIS 

125 



Experimental Results and Analysis 

sample Tip filter Shoulder filter 

test No. t50 (sec) test No. t50 (sec) 

pure sand test4 drivel 7.63 testt drive2 9.03 

test4 drive3 7.40 testl dnve3 10.65 

test2 drivel 14.06 

test2 drive2 14 04 

test2 drive3 13.02 
test2 drive4 12.94 

test4 drive2 10.52 
10% flint test7 drive2 6.43 test7 drive3 14.57 

test7 drive4 5.62 test8 drivel 15.57 

test8 drive4 6.37 

pure flint test5 drive2 7.29 test5 drivel 13.67 
test5 drive4 7.50 test5 drive3 20.10 

test6 drivel 9.23 test6 drive2 15.86 
testlO drive3 14.63 

pure clay test3 drive4 5.50 test3 drivel 43.15 

test9 drive3 9.50 test3 drive3 23.60 

te4t9 drive4 12.96 test9 drivel 39.97 

Table 5.6 Summary of t50 obtained from piezocone dissipation test 
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Figure 5.1 Typical slurry consolidation results from 254mm Rowe cell (Test7) 
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Figure 5.3 Slurry consolidation void ratio against consolidation stress (254mm cells) 
comparison with Moseley (1998), Al-Tabbaa(1987) and Eid (1978) 

effective stress (kPa) 

Figure 5.4 Slurry consolidation void ratio against consolidation 
stress (152mm cells) for kaolin 
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Materials test no. average 
thickness (mm) 

standard 
deviation 

pure sand 1 2.03 0.56 
pure sand 2 2.33 0.54 
pure flint 5 1.81 0.78 
pure flint 6 2.11 0.64 
pure flint 10 2.07 0.59 
10%f-s 7 1.98 0.44 
10%f-s 8 1.89 0.40 
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CHAPTER 6 

DISCUSSION 

6.1 Introduction 

This chapter discusses the experimental results presented in Chapter 5. The 

discussion is in two main parts: the effects of smear due to vertical drain installation 

are discussed in Section 6.2, and the results of the miniature piezocone tests are 

discussed in Section 6.3. 

In each part, there is discussion of the following: 

" explanation the overall physical phenomena, 

" practical implications, 

" quality of test results, 

" problems and limitations 

Comparisons with previous experimental or theoretical work are also made, 

where appropriate, in order to demonstrate the improvements or contributions of the 

present research. 

6.2 Effects of Smear due to Vertical Drain Installation 

6.2.1 Physical effects of vertical drain penetration in soils 

To quantify the effects of smear caused by installing vertical drains with 

different shapes into soil, band and circular drains were used as the penetrating 

objects (Section 3.3.11) and, to investigate the effects of the permeability ratio of the 
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layering materials on the degree of disturbance, materials with different 

permeabilities were used in constructing the soil samples. 

The effects of smear were not only observed by performing the constant head 

distribution tests and permeability tests (Section 4.3.10) but also by visually 

investigating the deformation of the soil fabric after dissection of the sample (Section 

4.3.12). 

Figures 6.1 and 6.2 show close up photographs of horizontal sections through 

more permeable layers and clay layers penetrated by a circular drain and a band 

drain. The horizontal cut was made where the more permeable layer was curved 

down due to drain installation (i. e. approximately 6mm and 4mm below the original 

base of the permeable layer for the tests with the circular drain and the band drain 

respectively). 

For the circular drain case (Figure 6.1), it can be seen that the more 

permeable layer curved down around the vertical drain is not continuous. Due to this 

non-uniformity (lack of symmetry), the more permeable layers do not all deform 

downwards to the same extent in the cross section (Figure 5.46). Moseley (1998) 

investigated the effects of smear due to the installation of a circular vertical drain in 

layered soil samples composed of clay and sand layers and also reported this 

phenomenon. He commented that the failure of the penetrated sand layers appeared 

similar to the so called "petalling" of metal plates penetrated by a rigid penetrator, as 

originally described by Backman and Goldsmith (1978). In this failure mode, as 

penetration proceeds, the plate bulges until its tensile strength is exceeded and star- 

shaped cracks develop. Then the individual sectors of the "star" are pushed back by 

the continuing motion of the penetrator to form the "petals". It should be noted, 

however, that this description is for penetration into a metal plate of which the 

material properties are very different from those of a sand layer. 

For the band drain case (Figure 6.2), the more permeable material around the 

vertical drain is quite symmetrical and continuous. However, the more permeable 

layers still do not all deform downwards to the same extent in the cross section 

(Figure 5.47). This could be due to localised variation of the friction on the drain 

sheath and the thickness of the permeable layer (Section 6.2.4) in the area penetrated 

by the drain. 
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As reviewed in Chapter 2, several researchers have reported the effects of the 

shape of penetrating objects on the degree of disturbance of the soil. In the present 

research, the deflection of the thin sand layers in the layered sample was compared 

with the strain path solution (Baligh, 1985), for the deformations of uniform soil 

caused by deep penetration of a simple pile. Figures 5.46-5.47 show that the strain 

path solution underestimates the soil deformations. As pointed out by Baligh (1985), 

the surface roughness of the pile and viscosity of material surrounding the pile have 

been neglected in the analysis. The difference between the theoretical prediction and 

the experimental results was more obvious in the case of the band drain. This 

implies that the significance of friction effects for the overall deformation of the soil 

depends on the shape of the penetrating object. Deformation due to the displacement 

of the drain, in comparison with that due to frictional down-dragging, is more 

significant for the circular drain than for the band drain. 

In Figure 6.3, using the trend line function provided in Microsoft Excel 97, 

lines were fitted to two sets of data points. The data points in each set represent the 

locations of three more permeable layers penetrated by a circular drain or a band 

drain. It can be seen that, although the equivalent diameter of the band drain 

(Sections 3.3.11 and 5.3.4) is comparable with the diameter of the circular drain, the 

overall magnitude of soil fabric deformation caused by installing the circular drain is 

more than that caused by installing the band drain. Consequently smaller smear 

effects were observed in the latter case. 

Upon dissecting the sample and removing the porous plastic of the drain, it 

was found that a thin clay film covered almost the entire sample area contacted by 

the drain as. illustrated for the circular drain in Figure 6.4. In the case of the band 

drain, when the drain was removed, parts of the clay film stuck to the drain and 

therefore the film could not be photographed. This phenomenon will be called "the 

smearing film" and can be attributed to the effect of friction between the drain sheath 

and the soil during the driving of the drain and the removal of the sheath. 

Thus the smear zone in the soil surrounding the penetrating object consists of 

two major parts. The outer part is the deflected fabric zone caused by displacement 

of the soil. In this part, the degree of disturbance would be expected to be a 

maximum at the point closest to the drain and then decrease with distance. The inner 
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part is the smearing film caused by friction between the drain sheath and the soil. 

Figure 6.3 shows that the overall degree of smearing in the outer part depends on the 

shape of the drain. On the other hand, the smearing film may not be influenced by 

the drain shape but possibly depends on amount of friction between the soil and the 

drain. Effects of the smearing film are discussed below in Section 6.2.2. 

6.2.2 Practical implications 

The degree of smear due to drain installation in the soil sample was 

experimentally measured in terms of the change of permeability of the soil (Section 

5.3.4) and the head loss in the smear zone, based on the pore water pressure 

distribution across the sample (Section 5.3.3). 

Two independent parameters, hs and rs, were calculated to quantify the smear 

effect (Section 5.3.5). Theoretically, the values of both hs and rs should be the same 

providing the smear is consistent throughout the sample. A difference between hs and 

rs was possible because, to determine hs, the pore water pressures were taken from 

only one permeable layer and differences in the degree of smear in each permeable 

layer could produce a variation in hs. 

Figures 5.19 and 5.20 show that at a given permeability ratio, the values of hs 

and rs of the band drain are lower than those of the circular drain. Therefore, the 

band drain does not only produce more uniform punching behaviour but also causes 

less disturbance to the penetrated soils. For both the band drain and the circular 

drain, it was shown in Figures 5.19 and 5.20 that hs and rs increased as the 

permeability ratio increased. Tentative curves expressing the relationships have been 

drawn in these two figures. Head losses due to the drain installation do not vary 

much where the permeability ratios (k, ) are between 1 and 100. Then they vary 

significantly with permeability ratios between 100 and 10000. At high permeability 

ratios a levelling off is observed, especially in the case of the circular drain. 

For a layered sample, with known ranges of kh of materials (Table 5.4) and 

assuming that for each material (the more permeable material and the clay) k� is 

equal to kh, the permeability anisotropy ratio of soil mass, rk, (Section 2.2) can be 

estimated. The estimated rk of samples with pure sand, 10%f-s and pure flint layers 
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are 673 to 897,113 to 135 and 7.6 to 9.8 respectively. It can be seen that the realistic 

ranges of rk of varved clays or laminated soils, as reviewed in Chapter 2, are 

comparable to that of the samples with pure flint layers but less that those of samples 

with sand and 10%f-s layers. As illustrated in Figures 5.19 and 5.20, the degree of 

smear due to drain installation is not much different in pure clay and flint layers. 

This implies that, for natural soils containing pure clay or thin permeable layers for 

which k, is less than 100, the head loss due to smear in in-situ permeability tests 

should be in a range of 35%-45% for a circular piezometer with a comparable size to 

the laboratory device. If the soil contains thin more permeable layers producing a 

higher k,, i. e. pure sand layers, the head loss due to smear could be much higher. 

However, in this case, Hird & Moseley (2000) reported that the thicknesses of the 

more permeable layer and clay layer could influence degree of smear. 

For pure clay samples, in which there were no effects of differential smear of 

permeable layers, in the circular drain case, hs is about 11 % lower than rs. For the 

band drain, rs is about 44% lower than hs. However, in the band drain case, it was 

found that this difference would reduce to 10% if the R/rr (Section 5.3.4) of the band 

drain was reduced by 15% (i. e. from 8.59 to 7.30). 

As described in Section 6.2.1, the smear zone in the soil surrounding the 

penetrating object consists of two major parts, the deflected fabric zone and the 

smearing film. It is difficult to define the effect of these two parts on hs and rs 

separately, because the permeability and size of each part could not be easily 

determined. 

However, the head loss due to a smearing film in the sample can be investigated 

by assuming its permeability and thickness and calculating the head loss generated 

while the water is flowing through it with a given flow rate. Figure 6.5 presents the 

effect of a smearing film in the layered soil samples. In the analysis, the horizontal 

permeability of the smearing film is assumed to be 1x 10"9 m/sec (approximately half 

of the horizontal permeability of the undisturbed kaolin). The flow rates measured in 

typical permeability tests on soil samples with different layering materials were used 

in the simulation. With a given flow rate, the head loss across the smearing film was 

calculated and then normalised by the corresponding applied head difference. The 

thickness of the film was varied to make the head loss vary between approximately 
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50% and 90% of the applied head difference. Figure 6.5 shows that, with the 

assumed permeability, a very thin film could by itself have produced the head losses 

observed in the tests. It should be noted that, in reality, the horizontal permeability 

of the film could be different from the assumed value because, during drain 

installation, kaolin around the drain may be mixed with the material of the more 

permeable layers. 

With a given size of drain or piezometer, it is considered likely that the effects of 

a smearing film will be less as the penetrated more permeable layers become thicker. 

This is consistent with the trend reported by Hird & Moseley (2000). 

6.2.3 Repeatability of test results 

In order to check the repeatability of the test results, four tests in the present 

research and results from three tests carried out by Moseley (1998) and reported by 

Hird & Moseley (2000) were compared. Furthermore, in each soil sample, the 

permeability test was repeated at least four times with different applied heads across 

sample. It was found that, in accordance with Darcy's law, the flow rates were 

proportional to the applied heads. For the whole set of permeability tests, 37 tests in 

total, the average variation of the permeability values measured at different applied 

heads was only 3.1% of the corresponding mean value. The permeability values 

presented in the following section were the average values from tests on each 

sample. 
For the sample with pure sand layers (Test I in Table 5.4), the measured 

permeability, of the sample installed with a circular drain was 1.47x10"6 m/sec. 

Moseley (1998) carried out two tests using the same testing procedures and layered 

sample materials. The measured permeabilities in these tests were 1.34x10 m/sec 

and 1.28x10"6 m/sec. Based on the measured pore water pressure distribution 

(Section 5.3.3), the normalised head loss due to smear, hs, caused by drain 

installation was 0.95 in Test I (Table 5.4) compared with 0.91 and 0.914 in the 

previous research. Furthermore, in these tests, the permeability of the sand layers 

was estimated (Section 5.3.4) by using the pore water pressure distribution across the 
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sample and found to be 1.65x10-5 m/sec in Test 1 (Figure 5.18) compared with an 

average of 1.50x10"5 m/sec in the previous research. 

For the pure clay sample (Test 9 in Table 5.4), the permeability result, 
k=1.16x109 m/sec, was also comparable with that reported by Hird & Moseley 

(2000), k=1.31x10-9 m/sec. In these tests, the corresponding normalised head losses 

due to smear, hs, were 0.34 and 0.33 respectively. The permeability of the clay 

estimated by using the pore water pressure distribution in Test 9 was 1.91 m/s, 

while the value reported by Hird & Moseley (2000) was 1.90x10"9 m/sec. 
For two of the layered samples with pure flint layers (Test 6 and Test 10 in 

Table 5.4), a band drain was installed at the middle of the sample. To estimate the 

whole sample permeability, an equivalent diameter of the drain was assumed, based 

on FEM analysis (Section 5.3.4), and the water flow was assumed to be only in the 

flint layers. The permeabilities from these two tests were comparable, (k=1.30x10-7 

m/sec in Test 6 and k=1.24x10"7 m/sec in Test 10). In terms of the pore water 

pressure distribution (Figure 5.16), some variation between these two tests was 

observed. The normalised head losses due to smear in Test 6 and test 10 were 0.166 

and 0.310 respectively. As discussed in Section 6.2.2, because the pore water 

pressures were measured in only one permeable layer, a difference in the degree of 

smear due to drain installation in each layer could produce a variation in the hs value. 
It can be seen from the above comparisons that, in terms of the measured 

sample permeability, the results showed very satisfactory repeatability. In terms of 

the pore water pressure distribution across the sample, a lack of repeatability was 

occasionally observed, presumably because of differences in the degree of smear and 

local non-uniformity of the layers (Section 6.2.4). 

6.2.4 Experimental problems and limitations 

a) Head loss across peripheral drain 

As mentioned in Section 5.3.3, pore water pressure readings across the 

sample were sometimes affected by a head loss at the peripheral drain. This head 

loss could be attributed to: 

" smearing of clay on the peripheral drain. 
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It was found that this phenomenon could happen as the clay layers were 

placed into the test cell during the layered sample construction. Providing 

greater clearance between the drain and the soil could minimise this problem. 

" smear at periphery due to consolidation. 

After being assembled, a soil sample was consolidated in the test cell which 

was lined with porous plastic (Section 3.3.2). Evidence of friction generated 

during consolidation was observed during the sample dissection (Section 

4.3.12). Figures 5.44 and 5.45 show that, at the periphery, the more 

permeable layers were curved due to the friction between the sample and the 

porous plastic. 

" migration of suspended kaolin into the more permeable layers. 

During layered sample preparation (Section 4.3.6), entrapping of clay 

particles in more permeable layers was countered by siphoning water with 

suspended kaolin out and replacing it with clean water before placing a more 

permeable layer. However, it was not possible to replace all the water and 

some kaolin could still have been trapped in the permeable layers, especially 

at the periphery where the water entered the layers. 

b) Deformation of the top permeable laver 

It can be seen from Figure 5.44 that the deformation of the uppermost 

permeable layer in the sample with a circular drain was not similar to that of the 

other more permeable layers. This phenomenon happened because, during the 

vertical drain installation, some kaolin from the top clay layer was forced into the 

gap between the drain and the cell base (now at the top of the sample). Therefore, 

there was not enough confined kaolin to push down the first permeable layer and 

form the "deflected fabric zone" (Section 6.2.1). In the samples tested by Moseley 

(1998), who had noted this phenomenon, the first clay layer was only l0mm thick. 

In order to reduce the effect in the present tests, the thickness of first clay layer was 

increased to 20mm. It was expected that the first permeable layer would still be 

smeared because of the formation of the "smearing film" (Section 6.2.1) as the drain 

was driven in and the sheath removed. Unfortunately, as also mentioned by Moseley 

(1998), this first layer was disturbed as the sample was separated from the cell base. 
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Therefore, the smearing film was usually disturbed and could not be clearly 

observed. Nevertheless, evidence of acceptable smear at the first permeable layer 

can be seen in Figure 5.19. If the first permeable layer had been smeared 

considerably less than the others, the reduction of the overall permeability (r5) would 

have been much less than the head loss (ha) based on the pore water pressure 

distribution measured in a more permeable layer near the mid-depth of the sample, 

especially for the cases of the layered samples with pure sand layers and 10%f-s 

layers. Such a difference was not observed. 

For the band drain case, a very small amount of clay was forced into the gap 

at the top during the installation and, after the sample dissection, it was seen (e. g. 

Figure 5.45) that the deformation of the first permeable layer was not very different 

from that of the other layers. 

c) Formation and uniformity of permeable lam 

More permeable layers of pure sand, 10%f-s and pure flint were prepared in 

acrylic moulds as described in Section 4.3.3-4.3.5. Uniformity of thickness and 

density of the layers was aimed for in the preparation. To achieve these 

requirements, the material was sprinkled evenly into the mould, vibrated to densify it 

as much as possible and then frozen to prevent disturbance during placement in the 

test cell. 

Thickness data for the permeable layers was presented in Figure 5.48. It can 

be seen that all the permeable layers, especially the pure flint, had a significant 

thickness variation, although the average values of thickness are not very different 

from the expected values (Section 5.2.2). Possible causes of the non-uniformity of 

the permeable layers could be as follows. 

" Before freezing, movement of the materials in the mould during handling 

could have occurred, especially in the case of the pure flint, for which the 

mould lid did not directly press on the surface of the material. 

" During the freezing process, ice crystal generated due to expansion of the 

water could have produced localised non-uniformity in the layers. 

174 



Discussion 

" Placement of the upper clay layers during sample assembly could have 

generated movement of the free water in the cell and, therefore, disturbed 

the de-frozen permeable layers already placed. 

d) Segregation in 10%f-s layers 

In the preparation of pure sand layers (Section 4.3.3), it was intended to 

minimise particle segregation by avoiding the use of gap-graded material (see Figure 

3.1 for particle size distribution). After sprinkling the sand into the mould, a wide- 

toothed comb was dragged through the sand, not only to level the sand but also to 

produce more uniformity. For the flint layers, again, gap-graded material was 

avoided (see Figure 3.1). The flint slurry de-airing method (Section 4.3.4), in which 

a spinning magnet was used, coupled with wide-toothed comb dragging of slurry in 

the mould, encouraged uniformity in the flint layers. 

In the case of 10%f-s, in order to get a required permeability, sand and flint 

were mixed. Due to the different particle sizes of these two materials, segregation in 

10%f-s was considered to be potentially more likely. As described in Section 4.3.5, 

these two materials were mixed in a dry condition before they were mixed with de- 

aired water and vacuumed. To reduce potential segregation, the amount of water put 

into the mixture was kept as small as possible. Again, the spinning magnet was used 

during de-airing and, after the mixture was put into the mould, the wide-toothed 

comb dragging was performed. Once the material was in the mould, the cell lid was 

put in place and a slight pressure was applied to reduce the water content in the 

material and, therefore, minimise the risk of segregation. 

Consideration of the permeable layer permeability data obtained using several 

test methods (Figure 5.18) shows that, for pure sand and pure flint layers, the 

horizontal permeability tests performed on the pure material provided the highest 

values, while the falling head tests gave lower values close to those predicted by the 

pore pressure probe readings in the layered samples. However, all these values were 

within approximately plus or minus 30% of the mean value. 

However, for the 10%f-s, it was found that the values obtained from the 

falling head tests and the probe readings were much lower than that obtained from 

the horizontal permeability test. It was supposed that this phenomenon was due to 
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segregation. In the case of the falling head tests (Section 4.2.1), to prepare a sample, 

the material was uniformly sprinkled through water with a depth of less than 10mm 

in the test cell. Nevertheless, during this process segregation may have occurred and 

produced alternation of low permeability and high permeability layers in the cell. 

The layers of low permeability material would then have dominated the overall 

vertical permeability of the sample. In the case of the layered sample, due to 

segregation, a 10%f-s layer could have presented a horizontal permeability lower 

than that of a similar layer in the horizontal permeability test. This is because, in the 

layered samples, segregated 10%f-s layers could have had a high possibility of being 

subjected to clay particle migration. If the clay particles had migrated, even in a very 

small quantity, into the higher permeability part (presumably the lower part) of a 

layer, the overall permeability of the layer would have been greatly decreased. 

e) Limitations 

The most important limitations of the experiments to investigate the effects of 

smear due to vertical drain installation are that the effects of the sample configuration 

have not been studied and that the scaling relationships to larger vertical drains have 

not been established. 

As reviewed in Chapter 2, Hird & Moseley (2000) reported that, in a layered 

sample with pure sand layers, the smear increases as the clay layer thickness, the 

sand layer thickness or the driving speed reduces. In the present research, variations 

of sample configuration (i. e. layer thickness) have not been studied. Only the 

permeability ratio of the layering materials was varied, while the thickness of the 

clay and the permeable layers, and the size of the drain, were kept constant. 

Furthermore, in the present research, the samples were confined under a single 

effective stress of 250kPa. The effects of a variation in stress level and over 

consolidation ratio (of the clay) have not been studied. 

In terms of scaling relationships, the drains used in the present research are 

smaller than the drains used in the field, i. e. sand drains and pre-fabricated vertical 

drains. Although they are not geometrically scaled down from any particular drain 

used in practice, they could still be considered as small scale models for which it 

would be desirable to correctly scale the stresses and times of the installation event. 

176 



Discussion 

Generally in the physical modelling of geotechnical problems, if all the linear 

dimensions in the model have been reduced N times, in order to get the same stresses 

at equivalent depths of the model and full-scale soil (prototype), gravitational 

acceleration in the model must be N times the normal value (Atkinson, 1993; Powrie, 

1997). This can be achieved using a centrifuge. However, in the present research, 

stresses in the samples were controlled using laboratory pressure systems (Section 

3.3.12), and could be taken to represent conditions at a given depth. 

For the times, i. e. the speed of installation, Steenfelt et al. (1981), referring to 

model pile tests in clay, stated that, since dissipation of pore pressure occurs at a rate 

inversely proportional to the square of the linear scale, the installation time of a 

model pile should be equal to the installation time of a full-scale pile divided by a 

factor of N2. This implies faster absolute driving rates in the model (by a factor N) 

than in the field. In the present research, the vertical drain installation speed was 

kept at approximately 5mm/s which was actually lower than those used in the field 

(typically 150-500 mm/sec). Due to the limitations of the driving system, it would 

not be possible to scale the driving speed in the laboratory correctly to study full- 

scale vertical drains. However, as reported by Hird & Moseley (2000), the smear 

due to vertical penetration increases as the driving speed reduces. Therefore, it could 

be said that, with a lower penetration rate, the degree of smear obtained in the 

laboratory is higher than in the field and, that the experimental results are on the 

"safe side". 

For the case of a push-in piezometer, the size of the piezometer and the 

pushing rate may be not much different from those of the drain used in the present 

experiment.. In this case scaling effects would not be significant. 
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6.3 Miniature Piezocone Test in Layered Soils 

6.3.1 Pore water pressure behaviour in layered soils 

A miniature piezocone with a porous filter element located either at the tip or 

shoulder was driven into layered soil samples in order to investigate its performance 

in layer detection (Section 4.3.11). 

The location of the filter element greatly influenced the performance of the 

piezocone in terms of layer detection. Considering typical test results, for example 

Figure 5.24, as the piezocone approached the more permeable layers, very sharp 

peaks of excess pore water pressure were observed at the cone tip, while these sharp 

peaks were not observed at the cone shoulder. Furthermore, once the cone was 

driven through the more permeable layers, it was found that the excess pore water 

pressure at the cone tip suddenly reduced, while the reduction at the cone shoulder 

took longer to develop. The reductions of the excess pore water pressure at the cone 

tip were not only quicker but also larger than at the cone shoulder. 

As discussed by Lunne et al. (1997), soil adjacent to different parts of the 

piezocone will be subjected to different types of stress when the cone is driven into 

the soil. According to Lunne et al., the soil near the cone face will be mainly 

subjected to normal compressive stress while the soil near the shaft will be mainly 

subjected to shear stress. Therefore, in terms of the pore water pressure, the response 

at the cone face will be dominated by normal stresses, while the response at the shaft 

will be dominated by shear stresses. However, Bums & Mayne (1998) stated that, 

along the shaft, the normal compressive stress and shear stress induced components 

can be comparable in magnitude. Furthermore, in most saturated soil an increment 

of compressive stress will induce a positive excess pore water pressure, but a shear 

stress increment could yield either a negative or positive excess pore water pressure 

depending on the over consolidation ratio of the soil (Lunne et al., 1997; Burns & 

Mayne, 1998). 

With the above knowledge, it may be postulated that as the piezocone 

approached the more permeable layers with a higher stiffness than the clay layers, 

the total compressive stress near the cone tip greatly increased and this led to an 
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increase of pore water pressure at the tip. It should be noted that this was a localised 

phenomenon happening in a small area around the cone tip. As the cone advanced, 

the excess pore water pressure would have started dissipating towards the permeable 

layer but, due to the low permeability of the clay, the dissipation rate was evidently 

smaller than the rate of increase due to the increase of compressive stress. However, 

once the cone tip contacted the permeable layer, from which drainage was allowed, 

the excess pore water pressure in the piezocone was suddenly dissipated through the 

layer. At the same time, once the permeable layer was penetrated, the compressive 

stress at the cone tip would have reduced and, therefore, a reduction of excess pore 

water pressure would have occurred. Furthermore, dilation of the penetrated 

permeable layer may have produced negative changes of excess pore water pressure 

that contributed to the reduction of excess pore water pressure at the cone tip. 

Behind the cone tip, as described above, the excess pore water pressure 

developed during the piezocone driving was due to a combination of (possibly 

dominant) shear stress and compressive stress. The compressive stress increment at 

the cone tip as the cone approached the permeable layers was too localised to 

produce a sharp pore pressure increase at the cone shoulder. Also, it was found that 

the reduction of the excess pore water pressure at the shoulder sometimes started 

before the shoulder filter reached the permeable layer. Then the reduction gradually 

continued while the cone was passing the original level of the permeable layer. To 

account for this phenomenon, it should be realised that, before the cone shoulder 

reached the permeable layer position, the layer had already been penetrated and 

deformed (curved down) by the cone body and clay had possibly been smeared 

across the filter. As the cone shoulder was approaching the permeable layer, even if 

clay had smeared across the filter, the excess pore water pressure could still have 

been able to start dissipating through the smeared clay. Then the dissipation would 

have continued while the cone shoulder was passing the deformed layer. The 

minimum excess pore water pressure was thus reached after the cone shoulder had 

passed the original level at which the permeable layer was located. As the cone 

shoulder was passing the permeable layer, the permeable material was also 

continuously subjected to shear stress and, therefore, dilation of the permeable 
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material may again have been a factor contributing to the reduction of the pore water 

pressure. 

These phenomena have also been recently investigated in tests using the same 

mini-piezocone in larger soil samples (Hird et al., 2001). It was found that thicker 

clay layers, 80mm rather than 20mm, made a difference only in terms of the 

establishment of the excess pore water pressure response in the clay. Because the 

spacing of the permeable layers in the present research was only about 20mm, the 

response in the clay was only just re-established after passing a permeable layer 

before the next permeable layer was encountered. A steady excess pore water 

pressure in clay was more clearly re-established with 80mm clay layers. However, 

the response during penetration of a permeable layer was essentially the same in each 

case. 

6.3.2 Excess pore water pressure dissipation behaviour 

At the end of driving, the piezocone was stopped with the filter element 

approximately at the middle of a clay layer and a dissipation test was performed 

(Section 4.3.11). During the dissipation test, drainage from the soil sample to the 

peripheral drain was allowed. Dissipation tests were performed in pure clay and 

layered samples so that the effects of the layers with different permeabilities on the 

dissipation behaviour could be investigated. Results from the dissipation test were 

eventually used to calculate the coefficient of consolidation of the clay as described 

in Section 5.4.2. 

The test results from the dissipation tests in pure clay were presented in 

Figures 5.35 and 5.36. A couple of typical results are compared with the theoretical 

plot proposed by Teh & Houlsby (1991) in Figure 6.6. The Teh & Houlsby theory 

was selected for the comparison because it represents the most comprehensive 

theoretical study of the piezocone dissipation test. 

To compare the theoretical and experimental curves, it was assumed that the 

experimental curve crossed the theoretical one at 50% dissipation. Then, based on 

the dissipation time, the dimensionless time factor, T*, was calculated for the rest of 
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the experimental curve. However there are two important differences between the 

theoretical assumptions and the experimental situation as follows. 

" During the dissipation of the excess pore water pressure, the total stresses 
in the soil surrounding the cone are assumed to be constant in the 

theoretical analysis. In the real situation, total stresses might be reduced 

due to relaxation of the soil or the driving system. 

" Effects of smear due to the penetration are completely ignored in the 

theoretical analysis. In the present research (Section 5.3.5), it has been 

shown that smearing caused by penetration can considerably reduce the 

permeability of the soil surrounding the penetrating object. Therefore, in 

reality, the disturbance of the soil around the cone might significantly 

affect the pore water pressure dissipation behaviour. 

a) Dissipation behaviour at the piezocone tip 
Comparison of the theoretical curve and the typical experimental dissipation 

curve from the test performed in a pure clay sample, Figure 6.6, shows that the 

shapes of the two curves are quite different. An initial delay of the dissipation was 

observed experimentally and then the experimental dissipation proceeded at a faster 

rate than the theoretical one. During the last stages of dissipation, the rate of 

experimental dissipation was comparable to that of the theoretical dissipation. These 

results could be attributed to two mechanisms. 

Firstly, as mentioned in Section 5.4.2, the start of the dissipation in the 

dissipation analysis was defined by choosing a point at which the excess pore water 

pressure was a maximum, before the excess pore water pressure continuously 

reduced. This was because it was difficult to define the starting point from the cone 

displacement data. In order to stop the piezocone at the end of driving, the power to 

the drive unit was manually switched off, as described in Section 4.3.11, and then the 

motorised driving system would slow down before stopping completely. As shown 

in Figure 6.7, the deceleration from switching off the power to a complete stop (point 

B), took about 0.3 second. By inspection of many test results, it was found that 
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dissipation of the excess pore water pressure actually started during the deceleration. 

Therefore, it was difficult to base the starting point of the dissipation on the cone 

movement. Selecting a point at which the excess pore water pressure was a 

maximum (point A), as the starting point of the dissipation was thought to be the best 

solution. However, due to the tiny further movement of the piezocone after the 

designated starting point, the rate of dissipation was initially slower than it would 

otherwise have been. 

Secondly, once the piezocone was completely stopped, because of relaxation 

of the driving system or the soil surrounding the cone tip, the vertical total stress 

(expressed in terms of cone resistance) from the soil around the cone tip rapidly 

reduced, Figure 6.8. This stress reduction could have led to the rapid reduction of 

excess pore water pressure at the cone tip shortly after the beginning of the 

dissipation process. Later on, the vertical stress would often be observed to stabilise 

by increasing again to a constant value. However, the rate of this pressure increase 

was very slow and, therefore, could not have affected the pore water pressure 

response. 

Dissipation tests were also performed in the clay layers of the layered 

samples to investigate the effects of the permeable layers. As described in Section 

5.4.2, the results gained from the dissipation tests, both in the pure clay and layered 

samples, were used to determine the coefficient of consolidation of the clay. A 

summary of the Ch IX values determined by using three methods (logarithm of 

time (Equation 2.7), square root of time (Equation. 5.12) and least squares analysis) 

was presented in Table 5.5. 

It can be seen in Table 5.5 that, for pore water pressure dissipation at the cone 

tip, analysis using the square root of time method gave very high ch / I, values 

compared with the other two methods. In the square root of time method, most of 

the data points used are from the early stages of the dissipation process. As noted 

above, this stage was possibly affected by the total vertical stress reduction caused by 

soil or driving system relaxation after the piezocone driving was stopped. The total 

vertical stress reduction could lead to a faster reduction of excess pore water pressure 

and, hence, to a higher calculated ch / I, 
. 

182 



Discussion 

Furthermore, Table 5.5 shows that the Ch / I, values of pure clay samples 

determined by using the logarithm of time method and the least squares analysis 

were not very different from those of the layered soils. Thus, the permeable layers 

did not obviously influence the dissipation behaviour. Nevertheless, due to the 

"deflected fabric" described in Section 6.2.1, part of a deformed permeable layer 

could still be close enough to the cone tip to influence the dissipation of the excess 

pore water pressure. Figure 6.9 shows a piezocone hole after a horizontal cut was 

made through a clay layer. It can be seen that the distribution of the permeable 

material surrounding the cone is similar to those in the case of a circular drain 

(Figure 6.1). This could have an unpredictable and erratic effect because, not only 

the permeability of the permeable layers, but also their deformed shape could affect 

the excess pore water pressure dissipation at the cone tip. Therefore the dissipation 

rate in a sample with pure sand layers may sometimes be lower than that in one with 

pure flint layers, as evident in Figure 5.31 and, in terms of t50, in Table 5.6. 

It should be noted that, for the pure clay case in Table 5.5, the c, / I, values 

determined by the square root of time method are not presented because, after the 

data was plotted, a straight-line portion on the curve could not be identified. This 

may be, again, an effect of the relaxation and reduction of the total vertical stress at 

the cone tip. 

b) Dissipation behaviour at the piezocone shoulder 

Comparison of the theoretical and the typical experimental results obtained 
from the dissipation tests in pure clay samples showed that the shapes of these curves 

were comparable, Figure 6.6. 

A rapid change of the degree of consolidation is not initially predicted by the 

theory, so even though the deceleration of the driving system might initially slow 

down dissipation, as described above, there might not be any evidence of this in the 

comparison with theory. Also the total vertical stress reduction at the cone tip or 

face once the cone stopped might not have much effect on the pore water pressures at 

the cone shoulder. 
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The summary of the dissipation tests carried out by the piezocone with the 

filter at the cone shoulder, Table 5.5, shows that the Ch values calculated by the 

three calculation methods were very consistent. The effects of the permeable layers 

can be seen from the magnitude of ch / I, 
. 

The values from tests in soil samples 

with pure sand layers are, on average, higher than those from tests in soil samples 

with 10%f-s layers and the latter are, on average, higher than those from tests in soil 

samples with pure flint layers. The Ch / Ir values from tests in pure clay samples 

are the lowest and are comparable to those obtained from tests in pure clay using the 

piezocone with a tip filter. 

In the layered samples, it is likely that the excess pore water pressure 
dissipation at the cone shoulder, embedded in the middle of a clay layer, was affected 
by permeable material which was displaced downwards by the penetration. 
Compared with the tip, the cone shoulder filter area is larger and may be more easily 
influenced by parts of a deformed permeable layer. 

Levadoux & Baligh (1986) explained that, while the piezocone is driven into 

normally consolidated clay, undrained shearing develops positive pore pressure 

which causes a negative mean effective stress change. Under undrained conditions, 

the reduction of the effective stress brings the clay surrounding the cone into an 

"artificial overconsolidated" state. Subsequently, the excess pore water pressure 

dissipates and, during early stages of consolidation, the soil surrounding the cone 

undergoes recompression. Therefore, the determined values of Ch could be higher 

than those obtained from tests involving virgin compression of normally 

consolidated clay. Lacasse & Lunne (1982) performed piezocone dissipation tests in 

two soft Norwegian marine clays, Ons4y clay and Drammen clay, and reported that 

the Ch values from field tests and the re-consolidation stages of oedometer tests 

agreed very well. 

To validate the piezocone dissipation test results, independent consolidation 

tests were performed on kaolin in two Rowe cells, as described in Section 4.2.3. The 

horizontal coefficient of consolidation was directly measured under different loading 

conditions, namely virgin compression, swelling and re-compression. The values of 

time at 50% dissipation, t50, from piezocone dissipation tests performed in pure clay 
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samples were plotted against the independent Ch value on a chart showing also the 

theoretical solution by Teh and Houlsby (1991), for a realistic range of the rigidity 

index (I, = 50-500), as shown in Figures 5.37-5.38. It can be seen that, for Ch 

measured under swelling and re-compression conditions, the data plot in a realistic 

range of rigidity index whereas, for the Ch obtained from virgin compression stage, 

the data plot well below the expected range of I, The independent consolidation 

tests suggest that, once the piezocone was stopped in the clay after driving, the 

reduction of the excess pore water pressure around the cone was affected by the 

"artificial overconsolidation" described by Levadoux and Baligh (1986). 

6.3.3 Cone resistance in clay and layered soil 

In the present research, it was shown that, in terms of uncorrected cone 

resistance, the piezocone could not clearly detect the permeable layers in the soil 

sample. However, it was found that the uncorrected cone resistances of the layered 

samples are higher than those of the pure clay samples, e. g. compare Test 4 (Figure 

5.25) and Test 3 (Figure 5.24). Lunne et al. (1997) explain that, because the cone 

will start to sense a change in material type before it reaches a new material and will 

continue to sense a previous material even when it has entered a new material, the 

transition of cone resistance responses from one material to another will not 

necessarily be sharp. The thickness of penetrated material that would be enough for 

the cone to respond fully, for soft and stiff materials, is 2-3 and 10-20 cone diameters 

respectively. Hence, it may be postulated that, in the present research, the more 

permeable layers could not be detected because their thickness was not enough for 

the cone response to be fully established. At the same time, clay layers in the layered 

sample were not thick enough for the cone resistance to be unaffected by the 

permeable layers 

For the tests in pure clay (Tests 3 and 9, Figures 5.23 and 5.29), by averaging 

the results after approximately 60mm driving distance, the ratio of the excess pore 

water pressures measured at cone shoulder and at the cone tip, K, was determined. 

The calculated values were 0.71 and 0.66 for Test 3 and Test 9 respectively. These 

values are comparable to those (0.6 to 0.8) recommended for normally consolidated 
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clay by Lunne et al. (1997). It should be noted that piezocone drivel of Test 3 was 

neglected because, due to the slow response at the initial stages, it was considered 

that full saturation of the filter was not achieved. 

Cone resistances in the pure clay were corrected for the effect of water 

pressure acting over the area behind the cone (ISSMGE, 1999). Equation 2.1 was 

used in the correction. When the tip filter was used, the pore water pressure at the 

cone shoulder was calculated as follows. 

U2U d+ 
K(u 

I -U d) ------------- (6.1) 

where ul is the pore water pressure measured at cone tip, Ud is the pore water 

pressure before driving, u2 is the estimated pore water pressure at cone shoulder and 

K was assumed to be 0.7. 

In Tests 3 and 9, the uncorrected cone resistances, q,, and corrected cone 

resistances, q,, after approximately 40mm of driving distance were then averaged, 

Table 6.1(a) (column 5). It was found that the qt values from the piezocone with tip 

and shoulder filters were comparable. The highest qt value was obtained from Test 3 

drive3. This could be because, the soil sample was confined in the test cell for an 

unusually long period (10 days) before the piezocone test. 

In Table 6.1(a), by substituting the average values of qt (column 5) and the 

average undrained shear strength obtained from the vane tests (36kPa) (see Section 

6.3.7) into Equation 2.5, the values of Nkt for Tests 3 and 9 were calculated (column 

8). It should be noted that, due to the friction between the soil and the peripheral 

porous plastic, instead of using the total applied stress (450kPa), the total stress 

substituted into Equation 2.5 was the sum of the effective vertical stress in the kaolin 

estimated using the vane tests (average= I 90.5kPa) and the applied back pressure 

(200kPa). The Nkt values from Tests 3 and 9 were then compared with those 

predicted by theoretical solutions, Table 6.1(b), and empirical investigation, Table 

6.1(c). It can be seen that the present Nkt values fall within all the empirical ranges 

and agree well with Yu's (1993) theoretical solution in which the roughness of the 

cone was considered. However, the present Nkt values are higher than those 

predicted by the remaining theoretical solutions. This is possibly because the latter 

do not consider the effect of friction between the cone and the penetrated soil. 
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Therefore, they overestimate s� for the soil or, in the case that s� is known, 

underestimate Nkt. 

In the layered samples, as discussed in Section 5.4.1, it was difficult to obtain 

the proper cone resistance correction (Section 2.3.3) when a test was performed 

using the piezocone with a tip filter. In tests where the shoulder filter was used, 

corrections of cone resistance were made and changes of the response were 

investigated. No significant changes in the form of the responses were observed, e. g. 

Figure 6.10. 

6.3.4 Practical aspects 

During piezocone tests, responses in terms of cone resistance, excess pore 

water pressure and friction at the cone side are commonly used in the interpretation 

of ground conditions. The accuracy of the investigation is directly related to the 

quality of the data gained from the tests and their interpretation. In this section, 

relevant practical findings gained from the experimental work are discussed. 

a) Saturating the piezocone 

Saturation of the piezocone filter, and the cavity between the filter and the 

pore pressure transducer, is important because, once the piezocone is driven into the 

ground, changes in pore water pressure must be transmitted by the incompressible 

saturating fluid to the transducer inside the cone. Vacuum de-airing of the cone and 

the cone filters before use is widely accepted as a saturation technique (e. g. Lacasse 

& Lunne, 1982; Campanella & Robertson, 1988; Kurup, 1993; Moseley; 1998). With 

this saturation method, the piezocone is supposed to provide a full and rapid response 

to changes of pore water pressure during driving. In the current research, it was 

found that a rapid response of the piezocone to a change of pore pressure was not 

achieved immediately after the de-airing process (Section 3.3.13). A good response 

was obtained, however, after the piezocone was left in the saturation fluid under 

atmospheric pressure for about six hours. The following paragraph explains how this 

phenomenon may have occurred. 
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As described in Section 3.3.13, after the porous filter was de-aired under 

silicon oil, the cone was assembled under the silicon oil and de-aired by applying a 

vacuum. It was usually found that, after a period of vacuuming, some air bubbles 

were drawn out from the filter. Although good care was taken, very small air 

bubbles were possibly entrapped during the assembling processes. Under the 

negative pressure, any entrapped air bubbles in the cavity between the porous filter 

and the pore pressure transducer had to be expanded and expelled through the porous 

filter. At this stage, a space with a negative pressure might have developed in the 

cavity between the porous filter and the pore pressure transducer. Once the vacuum 

was released, the atmospheric pressure would have pushed the saturation fluid into 

the above space. It was considered that this process would take a time roughly equal 

to the time taken by the vacuum to pull the air bubbles out, i. e. 6 hours. Full and 

rapid responses of the cone to pressure changes would not be achieved if the space 

behind the filter was not replaced with saturation fluid. 

Figure 6.11 presents the effect of not allowing enough time before taking the 

cone out of the saturation fluid after de-airing. Figure 6.11(a) is a result of a 

piezocone test performed by Moseley (1998) on a layered soil sample with 20mm 

clay and 2mm sand layers and Figure 6.11(b) is a preliminary test from the present 

research on a sample with 40mm clay and 2mm sand layers. These two results were 

obtained from tests performed using the same piezocone, with the same tip filter, and 

the same sample preparation procedures. However, whereas Moseley (1998) 

performed his test immediately after the de-airing process, before the test in Figure 

6.11(b) the cone was left in the saturation fluid under atmospheric pressure for about 

six hours.. It can be seen that a much better performance was obtained in the latter 

case. 

In practice, due to time constraints, the piezocone preparation procedures 

may be shortened. For example, according to Lunne et al. (1997), the procedures 

commonly used are to oven-dry the filter, vacuum the filter under the saturation fluid 

and assemble the cone under the saturation fluid. As mentioned before, unless very 

good care is taken, especially during the assembling process, air bubbles could be 

entrapped in parts of the piezocone and affect the test results. De-airing after 

assembling is advisable to ensure that the piezocone is fully saturated before testing. 
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The time that the piezocone needs to be left under the saturation fluid after de-airing 

may be shortened by applying a high positive pressure to the cone under the 

saturation fluid. 

b) Response time as piezocone saturation indicator 

It should be noted again at this point that saturation of the filters and the 

cavity between the filter and the pressure transducer is an extremely important factor 

affecting the piezocone response during penetration and dissipation. As mentioned 

by Campanella & Robertson (1988), one of the major difficulties with piezocone 

testing can be the evaluation of saturation. Loss of saturation of the piezocone could 

happen during cone assembly, handling or driving through unsaturated soils above 

the ground water table. 

Several researchers, (Campanella et al., 1981; Lacasse & Lunne, 1982; Lunne 

et al, 1997) have published examples of the pore pressure response from a poorly 

saturated piezozone. Lacasse & Lunne (1982) reported that, for their piezocone tests 

in Onsey and Drammen, the quality of the probe saturation was indicated by the 

rapidity with which the pore pressures recovered their pre-dissipation level after a 

dissipation test. It was stated that recovery within a penetration distance of 50mm 

indicated satisfactory probe saturation. 

In the present research, it was considered that, with the standard driving 

speed of 20 mm/sec, the distance required for a full establishment of excess pore 

water pressure in the pure clay could be used as rough indicator to evaluate the 

quality of saturation of the piezocone. In the two tests on pure clay with a back 

pressure of. 200kPa, Test 3 and Test 9 (Figures 5.23 and 5.29), it was found that a 

driving distance of approximately 10mm and 30mm was enough for the full 

establishment of excess pore water pressure measured at the cone tip and cone 

shoulder respectively. It should be noted that these results were obtained by 

performing the piezocone tests very carefully in the laboratory with the benefit of 

back pressure and that they are therefore unlikely to be bettered in the field. 

In field tests, checking of the piezocone saturation by this method could be 

performed when driving is started, either at the beginning or after a dissipation test, 

in clay soils. To investigate the data in more detail at this stage, the logging speed 
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might usefully be set to at least 10 data/sec, which was also sufficient for soil fabric 

determination (Section 6.3.4(c)). The driving should be started after complete 

stabilisation of the pore water pressure measured by the piezocone. 

Table 6.2 presents the penetration distances required for the measured pore 

water pressure to reach a steady value in the study by Kurup (1985) and the 

estimated Ch values from the associated dissipation tests. It is seen that all Kurup's 

estimated Ch values were much lower than the reference values for reloading obtained 

from separate consolidation tests, and almost all, except those obtained by using 

Chan's (1982) method, were also lower than reference values for virgin compression. 

As discussed in Section 6.3.2, the Ch values estimated from piezocone dissipation 

tests generally tend to be close to those from consolidation tests under recompression 

loading. In Table 6.2, the penetration distances at which the measured pore water 

reached a steady value are much larger than those in the present research and those 

reported by Lacasse&Lunne (1982). By considering these pieces of evidence, it is 

possible to conclude, assuming Kurup's soil samples were saturated, that the 

piezocone used in the experiments was not properly saturated. 

c) Pore water pressure interpretation in soil fabric determination 

The present research has shown that, in terms of the pore water pressure 

response, a mini-piezocone with the filter element located either at its tip or shoulder 

can detect layers of pure sand, 10%f-s or pure flint with a thickness as thin as 

approximately 2mm. 

The test results showed that the pore water pressure change at the cone tip 

was very sensitive to localised effects. At this position, the excess pore water 

pressure would typically increase very quickly once the cone was penetrating a clay 

layer. Then a sharp peak and a reduction of the excess pore water pressure were 

observed as the cone approached and penetrated a more permeable layer. Positions of 

the permeable layers were clearly defined by these changes of pore pressure. In 

Section 6.3.1 the physical phenomena during the driving have been discussed. 

The peak magnitude of the pore water pressure probably depends on the 

stiffness of the permeable layer that the piezocone is approaching. In the layered 

samples, the stiffness of the permeable layer could depend on its thickness, its 
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density and the properties of the material in the layer. The shear strength and 

stiffness of the permeable layers have not been investigated but it is known 

(Moseley; 1998 and Hird et al.; 2001), that the peak magnitude of the excess pore 

water pressure increased as the sand layer thickness increased. 

It could be seen from the test results that the reduction of pore water pressure 

at the cone tip was largest as the cone was penetrating pure sand layers but that the 

reductions were not very different for penetration in 10%f-s and pure flint layers. 

Therefore, the magnitude of the pore water pressure reduction cannot be related only 

to the permeability of the permeable layers. As described in Section 6.3.1, the 

reduction of the excess pore water pressure at the cone tip results from the 

combination of factors which are a sudden reduction of total stress, dilation of the 

penetrated permeable layer and drainage through the permeable layer. 

Concerning the layer thickness, although the piezocone with the tip filter 

showed a sharp response in detecting the permeable layers, it is still difficult to 

determine the exact layer thickness from the measured pore water pressure response. 

It was found that the vertical distance over which a reduction of the excess pore 

water pressure occurred was longer than the thickness of the permeable layer. This 

could be due to the effects of smear of the soil at the cone tip. 

Due to the small size of the cone tip filter, the pore water pressure response at 

the tip could vary easily and, therefore, appear less consistent (see Section 6.3.5) if 

the piezocone is driven through thinner or thicker parts of the permeable layers, 

discontinuities or air pockets in the layers. Localised differences in the density of the 

layers could also affect the pore water pressure response at the tip, because the 

magnitude of the negative pore water pressure generated by dilation directly depends 

on the density. Furthermore, as in the case of circular vertical drain penetration 

(Section 6.2.1), breaking up of the permeable layer penetrated by the piezocone may 

not be symmetrical and consistent, Figure 6.9. This could also lead to inconsistency 

of the pore water pressure response at the cone tip. Therefore, in practice a 

comparison with the pore water pressure responses recorded at other locations, e. g. 

cone shoulder, could produce more confidence in the interpretation of fabric. 

For the cone shoulder position, it could be seen that the maximum pore water 

pressures induced during the penetration in layered soil samples and pure clay 
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samples were approximately the same. Therefore, approaching stiffer layers in the 

soil may not obviously affect the pore water pressure measured at the shoulder 

location. 

As described in Section 6.3.1, the reduction of the excess pore water pressure 

at the cone shoulder sometimes started before the filter reached the permeable layer. 

Then the reduction gradually continued while the cone was passing the position of 

the layer and the minimum excess pore water pressure was recorded after the filter 

had passed the level at which the layer was originally located. Due to this behaviour, 

prediction of the permeable layer thickness based on the pore water pressure 

response at the cone shoulder is very difficult. Furthermore, although the magnitude 

of the reduction of the pore water pressure seemed to increase as the permeability of 

the permeable layers increased, this trend was not very clearly seen. On the other 

hand, consideration of the results from the entire test series suggested that, for a 

given permeable layer type, the pore water pressure responses measured at the cone 

shoulder were more regular than those measured at the cone tip. This may be 

because the shoulder filter has a larger area than the tip filter and, therefore, the 

effects of localised variation in the soil are smaller. 

The logging rate used during the piezocone test is one of the most important 

factors affecting the quality of the results. As described in Section 3.3.14, the 

logging rate used in the present research was 205 data/sec. Figure 6.12 shows results 

of piezocone drive I of Test 4 presented as if the data had been recorded using 

different logging rates. This has been achieved by sampling from the full data set. 

At a driving speed of 20mm/sec, it can be seen that the minimum logging rate that 

would probably suffice for the layer determination is 10 data/sec or one reading 

every 2mm. This minimum logging rate is 10 times faster than that recommended by 

ISSMGE (1999) for a first class piezocone test. Therefore, with logging speeds 

currently used in practice, pore water pressure responses obtained from a piezocone 

test cannot be used for detailed soil fabric determination. 
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d) Prediction of ch in layered soil 

By inspection of all the c,, / I, values obtained from the dissipation tests 

(Table 5.5), it can be seen that the maximum value (Test I drive2) is different to the 

minimum value (Test 9 drive 4) only by a factor of 5. This indicates that although a 

soil may contain very high permeable layers with rather small spacing (i. e. about 2 

cone diameter in the present case), if a dissipation test is performed when the cone 

filter is in a layer of clay, a low value of Ch may still be observed. Therefore, if this 

Ch value is used to predict the consolidation behaviour of the ground, the 

consolidation rate could be significantly underestimated. 

e) Cone tip filter materials 

As reported by Campanella & Robertson (1988), Jacobs & Coutts (1992), 

several different materials with different properties (i. e. rigidity, permeability, 

durability) have been used in the filter elements of piezocones. In the present 

research, as described in Section 3.3.13, sintered glass filters made from 45-90 . im 

glass beads were used at the cone tip. These glass filters have a number of 

advantages. Glass beads can be purchased at a low price from many different 

companies. The permeability of the sintered glass filter can be changed by varying 

the size of the glass beads and the heating time in the oven. Glass filters can be 

produced with a preferred permeability that suits the saturation fluid to maintain a 

fast response time and a high degree of saturation. With a suitable bead size and 

heating time, the sintered glass can easily be machined to make the piezocone tip 

filters. Therefore, the filters can be produced in large quantities and changed 

following each piezocone test. This is to ensure, as suggested by Campanella & 

Robertson (1988), that the results obtained are not affected by clogging of the filter. 

In the present research the piezocone with the sintered glass tip filter was 

driven in soft clay with 2mm thick more permeable layers. After driving, no visible 

damage was noticed. In the field, piezocone tests are performed not only in soft clay 

but also in dense sand and gravelly soils in which high resistance to abrasion and 

toughness of the filter are required. Therefore, further investigation concerning the 

durability of the material would be needed before it could be used with confidence in 

the field. 
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6.3.5 Repeatability 

The piezocone tests were performed in ten soil samples with four different 

configurations (Table 5.1). In each soil sample, four piezocone tests were carried out. 

In order to check the repeatability of the test results, for each different configuration 

and filter element location (tip or shoulder) on the piezocone, at least two tests were 

performed under the same applied back pressure, which was normally 200kPa. 

As described in Section 3.3.13, the glass filters (Type A, B, C and D) used in 

the research were produced by sintering glass beads, at 680°C, for various lengths of 

time. Type A filters were used in Tests 3-5, Type B&C filters were used in Test 6 

and Type D filters were used in Tests 7-10. 

By inspection of Figures 5.21-5.30, in terms of pore water pressure, 

repeatability of the piezocone test results gained during driving was generally 

satisfactory. However, at a particular layer in layered samples, inconsistencies of the 

maximum and minimum magnitudes of the responses were observed (for example 

see Figure 5.24). It was found that variations of the maximum pore pressure were 

more obvious in case of the tip filter than in the case of the shoulder filter. For the 

minimum pore pressures, again, higher variations were observed at the tip. At the 

shoulder, maximum pore pressures were more consistent than the minimum values in 

a particular layer. As discussed in Section 6.3.4, inconsistency of the pore pressure 

responses was possibly due to thickness and density variation of the permeable layers 

and, due to small size of the filter, effects of these localised variations were more 

obvious when a tip filter was used. For the piezocone tests in pure clay samples 

(Figure 5.23 and 5.29), the pore water pressure responses, both at tip and shoulder, 

were very consistent except for Test 3 drivel in which a slow response at the initial 

stages of the drive was observed. It was considered that full saturation of the filter 

was not achieved in this drive. Fluctuation of the pore pressure responses at the cone 

tip (e. g. Test 3 drive 3, Figure 5.23) was attributed to variation in the clay caused by 

assembling the sample in layers. 

In terms of uncorrected cone resistance, it can be seen (e. g. Test 3 drive 3, 

Figure 5.23) that, the initial resistance value always decreased to a lower value 

during the first 10-20mm of driving distance. As described in Section 4.3.11, to 
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ensure saturation, before the cone was fully driven into the sample, the cone tip was 

embedded in the first clay layer (with a back pressure of 200kPa) for approximately 

6 hours. It was thought that, due to this procedure, the penetrated clay surrounding 

the cone was re-consolidated and, therefore, stiffer than the clay in other parts of the 

sample. 

In layered samples, inconsistency of the cone resistances was commonly 

observed, e. g. Test 4 in Figure 5.24. As described in Section 6.3.3, the clay layers 

and the permeable layers in the samples used in the present research may have been 

not thick enough for the cone responses to be fully established in either layer type. 

Therefore, in a sample with a small distance between soft (clay) and stiff (permeable) 

layers, the characteristics of the cone resistance could be erratic. Furthermore, not 

only distances between the layers but also non-symmetrical breaking up of the 

penetrated layers (Section 6.3.4) could lead to inconsistency of the cone resistances. 

In pure clay (Figure 5.23 and 5.29), much more consistent cone resistances were 

observed. It should be noted that, in Test 10 (Figure 5.30), possibly due to a cone 

load transducer fault, the results were very scattered and are considered not to be 

reliable. 

6.3.6 Saturation of samples 

It was considered that saturation of the soil samples was a very important 

factor affecting the piezocone performance. For example, any trapped air in the 

sample could have migrated into the piezocone filter, affecting the capacity of the 

piezocone to detect permeable layers and influencing the results of dissipation tests. 

While the piezocone was penetrating the permeable layers, any lack of saturation of 

these layers could have increased the pore fluid compressibility and influenced the 

pore pressure changes being measured. 

To ensure that the clay layers were fully saturated, a vacuum of about I OOkPa 

was applied to the slurry before consolidation (Section 4.3.2). With the known dry 

density of the slurry and specific gravity of the clay particles, the void ratio and 

degree of saturation of the slurry could be checked. It was found that the degree of 

saturation was very close to unity. During the layered sample construction, the 
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consolidated kaolin was wire-cut. There was no evidence of any air pockets or 

bubbles at this stage. 

For the permeable layers, de-aired and de-ionised water was used in the 

preparation, as described in Sections 4.3.3-4.3.5. In the sand layer preparation, the 

material was uniformly sprinkled into the mould through the water. For the pure flint 

and 10%f-s layers, the material was mixed with the water and then the mixture was 

de-aired by applying a vacuum before it was put into the mould. 

Furthermore, during the sample consolidation and most of the testing, 

including the piezocone tests, the back pressure was normally kept at 200kPa. All 

these procedures helped to ensure saturation of the layers. 

In order to check the saturation of the permeable layers, in at least one 

piezocone test on most of the layered samples, a higher back pressure of 400kPa was 

applied to the sample. If the samples had not been saturated, the excess pore water 

pressure responses of the cone under 200kPa and 400kPa back pressures should have 

been different. However, obvious differences were not observed, e. g. compare 

drives 1 &4 or drives 2&5 in Test 4 (Figure 5.24), drives 1 &3 in Test 6 (Figure 5.26) 

and drives 2&4 in Test 8 (Figure 5.28). 

6.3.7 Limitations of the piezocone tests 

Limitations are mainly concerned with boundary conditions in the test cell. 

a) Effects of side wall friction in the test cell 

The layered soil samples were prepared and consolidated in a test cell lined 

with a1 mm porous plastic sheet to allow radial drainage during the consolidation 

stages, permeability tests and the piezocone tests. 

It was realised that, as the soil sample was consolidated in the test cell, 

friction between soil sample and the porous plastic was generated. The wall friction 

at the periphery reduced the effective vertical stress towards the cell base from which 

the cone penetration started. The variation of effective stress caused non-uniformity 

in terms of undrained shear strength and over consolidation ratio in the sample. 
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To investigate the sample uniformity, laboratory vane tests were performed 

on a pure clay sample (Test 9) at three different depths. It was found that the vane 

shear strength, sup, varied from 27kPa to 45kPa, Figure 6.13. Rossato et al. (1992) 

proposed values of the normalised undrained shear strength of normally consolidated 

kaolin, s�/a',,, based on the method of testing. For triaxial compression, triaxial 

extension and direct simple shear tests, the values were given as 0.197,0.180 and 

0.152 respectively. However, it has been shown by several authors, e. g. Vaid & 

Campanella (1974), Lefebvre et al. (1983), Wroth (1984) and Koutsoftas & Ladd 

(1985), that, at a given effective stress, s� obtained from direct simple shear generally 

falls between those obtained from triaxial compression and triaxial extension. For 

this reason, the value of s�/a',, for direct simple shear quoted by Rossata et al. (1992) 

is substantially lower than would be expected. Wroth (1984) suggested that s� in a 

soft clay measured using the vane test would also fall between those obtained from 

triaxial compression and triaxal extension tests. Therefore, it could be postulated 

that s�, /a', was equal to about 0.189 (average of 0.197 and 0.180). Figure 6.13 

shows that, at the cell base (point A), the s,,,, value estimated by extrapolating the test 

results was 51.6kPa. If it was assumed that a',, at point A was equal to the confining 

pressure (250kPa), s,,,, /a',, can be calculated as 0.20. This is slightly higher than the 

postulated value, possibly because torsional resistance was generated along the vane 

stem during the test. According to the vane test results shown in Figure 6.13, the 

friction between the soil sample and the porous plastic caused a reduction of about 

57% in the vertical effective stress at the top of the sample as compared with the 

bottom. 

The' effect of the friction could be also seen from the pore water pressure 

response of the piezocone (Du) to a change of cell pressure (Oa) when the 

piezocone was located near the top and bottom of the sample. Figure 6.14 shows that 

when the cone was located near the cell base (before the drive) the recorded B value 

(B = Au/Au) was only 0.8, but when the cone was located near the loading plate 

(after the drive) the B value was approximately unity. This was because, once the 

cell pressure increment was applied to the sample, the total stress increment at a 

particular position in the sample was reduced by the friction at the periphery. Under 

undrained conditions, the maximum total stress increment was highest in the soil 
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close to the loading plate and then decreased with distance to the cell base. Hence, 

assuming that no changes of effective stress occurred, the increment of pore water 

pressure due to the cell pressure increment was highest close to the loading plate. 

It can be seen from Figure 6.14 that, initially and for a very short time, the B 

value measured close to the loading plate (after the drive) was higher than one. It 

was thought that, due to a small quantity of air bubbles trapped around the cell 

membrane or in the porous plastic, the sample was slightly compressible, although 

external drainage was not allowed during the cell pressure increment. Therefore, 

once the cell pressure increment was applied, a tiny relative moment of the soil and 

the cone could have occurred and generated an excess pore water pressure higher 

than the cell pressure increment. Thus, the calculated B value was higher than one. 

Furthermore, it can be seen from the figure that the B values, measured at the 

top and bottom of the sample, slightly decreased with time. This was possibly 

because the excess pore water pressure generated by the cell pressure increment 

caused solution of some of the trapped air in the cell. 

During the piezocone driving, the effects of the non-uniform vertical effective 

stress were not apparent in the uncorrected cone resistance. However, it was found 

that the excess pore water pressure generated in pure clay (Test 9) slightly increased 

as the piezocone was penetrating towards the loading plate. By drawing a straight 

line through the data points, a gradient of pore water pressure increment with driving 

distance could be determined and, if the piezocone had been driven through the 

whole sample, the maximum excess pore water pressure at the bottom of sample 

(loading plate level) could be predicted, Figure 6.15. The hypothetical excess pore 

water pressure at the top of the sample was determined by extrapolating the line 

backwards to the level of the cell base. Using measurements at the cone tip and cone 

shoulder, it was found that the excess pore water pressures at the top of sample were 

455kPa and 322kPa and at the bottom of sample were 694kPa and 45 l kPa 

respectively. Assuming that the excess pore water pressures generated during the 

penetration were proportional to the vertical effective stress in the clay, based on the 

excess pore pressures at the cone tip and cone shoulder, the friction at the periphery 

of the sample generated a loss of effective stress of approximately 34% and 29% 

respectively. It can be seen that these values are lower than that deduced from the 

198 



Discussion 

vane tests. This could be because, as mentioned above, the vane test results could 

have been affected by torsional resistance between the soil and the vane stem. 

However, the available evidence implies that the clay at the top of the sample was 

lightly overconsolidated rather than normally consolidated. 

b) Differentiating between layers and lenses 

As discussed in section 6.3.1, a factor that could affect the performance of the 

piezocone in permeable layer detection is dilation of the penetrated layers. If dilation 

is the dominant factor or if drainage is localised as the piezocone passes through the 

layer, the drainage boundary conditions of the permeable layers in the sample during 

penetration may not have influenced the pore water pressure behaviour. To 

investigate the pore water pressure change while the piezocone was penetrating a 

permeable layer under undrained boundary conditions, two sand layers, the third and 

fourth layers from the start, in Test 4 (Figure 5.24) were isolated using a 242mm 

diameter brass ring pushed down during sample preparation to cut off the drainage to 

the porous plastic drain. It can be seen that both the tip and shoulder pore water 

pressure responses at these two layers were similar to those at other layers (with 

peripheral drainage). Therefore, it is likely that localised dilation and drainage in the 

penetrated sand layers dominated the pore water pressure response at the tip and the 

shoulder of the piezocone. 

In natural soils, the drainage conditions of the permeable layers depend 

on their continuity. However, if drainage is very localised during penetration, the 

piezocone may not be able to differentiate between layers and lenses. This limitation 

could be a source of misinterpretation of the ground exploration data, whereby lenses 

are interpreted as layers. In this case the consolidation rate of the soil mass may be 

overestimated because the permeable layers in clay can speed up the consolidation 

by shortening drainage paths but the lenses cannot. 

Further investigation of the performance of the piezocone in soil with 

permeable lenses is needed. 
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Figure 6.1 Circular drain after horizontal slice 
through clay layer 5 from cell base 

Figure 6 
.2 

Band drain after horizontal slice 
through clay layer 6 from cell base 
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0.01 
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Figure 6.5 Effects of smearing film 
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Pore water pressure (kPa) 
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Test 7 

,! 
-- 

Figure 6.9 Piezocone hole after horizontal slice 
through clay layer 5 from cell base 
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Figure 6.10 Corrected and uncorrected cone resistance (Test 4, drivel) 
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Excess pore pressure (kPa) 
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Figure 6.11 Comparison of piezocone pore pressure responses 
(Moseley (1998) & trial test of present research) 
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CHAPTER 7 

MAIN FINDINGS AND FURTHER WORK 

7.1 Introduction 

The performance of a miniature piezocone and the effects of smear due to 

vertical penetration in layered soils are the two main aspects of the experimental 

work reported in this thesis. The corresponding aims of the work were given in 

Section 1.2. This chapter summarises the main findings of the research and suggests 

further work that could be done. 

7.2 Main findings 

7.2.1 Piezocone tests 

1) In terms of the pore pressure response, the Fugro 1 cm2 piezocone was able 

to detect more permeable layers (sand or silt) 2mm thick located with a spacing of 

about 20mm in a clay soil. As the piezocone approached the more permeable layers. 

very sharp peaks of excess pore water pressure were observed at the cone tip, while 

these sharp peaks were not observed at the cone shoulder. Once the cone was driven 

through the more permeable layers, the excess pore water pressure at the cone tip 

suddenly reduced, while the reduction at the cone shoulder took longer to develop. 

Dilation and localised drainage in the penetrated permeable layer may have produced 

negative changes of excess pore water pressure that contributed to the reduction of 

excess pore water pressure at both the cone tip and shoulder. At a driving speed of 
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20mm/sec, the minimum logging rate that would probably suffice for detailed 

profiling is 10 data/s or one reading every 2mm. 

2) During dissipation tests, once the piezocone was completely stopped, 

because of relaxation in the soil surrounding the cone tip or in the driving system, the 

vertical total stress in the soil around the cone tip rapidly reduced. This stress 

reduction could have contributed to the rapid reduction of excess pore water pressure 

at the cone tip shortly after the beginning of the dissipation process. However, the 

stress reduction, being localised, might not have had much effect on the pore water 

pressures at the cone shoulder. During the dissipation tests in pure clay, the 

reduction of the excess pore water pressure around the cone was affected by the 

"artificial overconsolidation" described by Levadoux & Baligh (1985). Based on the 

time at 50% dissipation, independently measured Ch values for the clay (kaolin) under 

one-dimensional swelling and re-compression plotted in a realistic range of rigidity 

index Or = 50-500) on a chart derived from the theoretical solution by Teh & 

Houlsby (1991) whereas, for the independent Ch values obtained during virgin 

compression, the data plotted well outside the above range of I, 

3) In the layered samples, the excess pore water pressure dissipation at the 

cone shoulder, embedded in the middle of a clay layer, was affected by permeable 

material which was displaced downwards by the penetration. However, the ch values 

determined from a sample with pure sand layers were not much higher than those 

determined from a sample with no permeable layers. Therefore, although a clay 

deposit may contain very permeable layers with rather small spacing (approximately 

twice the cone diameter), if a dissipation test is performed when the cone filter is in a 

layer of clay, a low value of Ch may still be observed. For dissipation tests using the 

piezocone with a tip filter, due to the smaller size of the filter, effects of the more 

permeable layers were even less obvious. 

4) During piezocone penetration in pure clay, the average ratio of the excess 

pore water pressures measured at the cone shoulder and at the cone tip was 0.69. 

This value is comparable to those recommended (0.6-0.8) for normally consolidated 
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clay by Lunne et al. (1997). In terms of cone resistance, the experimental values of 

the cone factor, Nkt, agreed well with Yu's (1993) theoretical solution in which the 

roughness of the cone was considered. 

5) For piezocone tests in pure clay, the distance required for a full 

establishment of excess pore water pressure could be used as an indicator to evaluate 

the quality of piezocone saturation. With the best achievable saturation and the 

standard driving speed of 20 mm/sec, a driving distance of approximately 10mm and 

30mm was enough for the full establishment of excess pore water pressure measured 

at the cone tip and cone shoulder respectively. 

6) Sintered glass filters made from 45-90mµ glass beads were successfully 

used as tip filters. However, further investigation concerning the permeability and 

durability of the material would be needed before it could be used in practice 

7.2.2 Vertical drain tests 

1) The smear zone in the soil surrounding a penetrating object consists of two 

main parts. The inner part is the "smearing film" caused by friction between the 

object and the soil. The outer part is the "deflected fabric zone" caused by 

displacement of the soil. In the latter part, the degree of disturbance would be 

expected to be a maximum at the point closest to the drain and then to decrease with 

distance. The overall degree of smearing in the outer part depends on the shape of 

the object.. The smearing film may not be influenced by the object shape but 

possibly depends on amount of friction between the soil and the object. The strain 

path solution (Baligh, 1985) underestimates the vertical displacement of the soil in 

the deflected fabric zone. 

2) Head losses due to the circular drain and band drain installation increased as 

the permeability ratio (the ratio of the permeability of the more and less permeable 

layers) increased. The head losses did not vary much when the permeability ratios 

(kr) lay between 1 and 100. Then they varied significantly with permeability ratios 
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between 100 and 10000. In most natural soils, the head losses for a circular drain are 
likely to be significantly larger than (almost twice as large as) those for a band drain 

of similar equivalent size. However, this is assuming that the mandrel shape is the 

same as the drain shape and that there is negligible inward movement of soil 

surrounding the drain after the mandrel is withdrawn. 

3) For natural soils containing pure clay or thin permeable layers for which k1 is 

less than 100, the head loss due to smear in in-situ permeability tests should be in a 

range of 35%-45% for circular piezometers with a comparable size to the laboratory 

device. 

7.3 Recommendations of Further Work 

1) In profiling soil layers using the piezocone, due to dilation and localised 

drainage in the penetrated permeable layers, the piezocone may not be able to 

differentiate between layers and lenses (Section 6.3.1). A parametric study 

concerning the size, thickness and permeability of the lenses, the size of the 

piezocone and the location of the pore pressure filter should be performed to evaluate 

the influence of these factors on the performance of the piezocone. To create small 

lenses at the piezocone driving positions, parts of the permeable layers could be 

isolated using small brass rings installed during sample preparation, as mentioned in 

Section 6.3.7. 

2) As mentioned in Section 6.3.1 and 6.3.4, due to the effects of smear at the 

cone tip and cone shoulder during penetration through a more permeable layer, the 

vertical distance over which a reduction of the excess pore water pressure occurred 

was greater than the thickness of the permeable layer. Further work is needed to 

determine the thickness of permeable layers from the pore water pressure responses 

obtained from the piezocone. This could be done by varying the thickness of the 

more permeable layers in the layered sample and, based on pore pressure responses, 

systematically analysing the error in predicting layer thickness. 
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3) Although the piezocone results from the present artificial samples are 

promising, the performance of the piezocone in determining fabric detail (in the form 

of thin layers) should be also investigated in natural soil deposits, in which the 

properties and spacing of the layers would be more variable than those in the 

artificial samples. In the artificial samples, the layering materials changed abruptly 

from one to another but in natural deposits this change is possibly more gradual 

(Kenney, 1963). 

4) In practice, the piezocone may be driven through unsaturated soil and 

saturation of the cone filter may not be maintained. The effects of driving through 

unsaturated soil with various thicknesses and degrees of saturation on the 

effectiveness of a piezocone should be evaluated. Soil samples containing 

unsaturated sand or clay layer at the top could be constructed in a calibration 

chamber for this purpose. 

5) Capability of the piezocone in detecting thin permeable layers in a clay soil 

may be different when the cone is driven at different speeds. Effects of driving 

speed on piezocone performance should be studied. 

6) The effects of a smearing film caused by drain installation on 

consolidation of a layered soil could be evaluated by performing a parametric study 

using the finite element method. The influences of the thicknesses and permeability 

ratio of the layering materials, the thickness and permeability of the smearing film 

and the spacing of the vertical drain on the rate of consolidation could be considered. 
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