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Abstra
t
Ville Tapani Lahtinen, �Intera
ting Non-Abelian Anyons in an Exa
tlySolvable Latti
e Model�, Ph.D. thesis, University of Leeds, Mar
h 2010.In this thesis, we study the non-Abelian anyons that emerge as vorti
es in Ki-taev's honey
omb spin latti
e model. By generalizing the solution of the model,we expli
itly demonstrate the non-Abelian fusion rules and the braid statisti
s that
hara
terize the anyons. This is based on showing that the presen
e of vorti
es leadsto zero modes in the spe
trum. These 
an a
quire �nite energy due to short rangevortex-vortex intera
tions. By studying the spe
tral evolution as a fun
tion of thevortex separation, we unambigously identify the zero modes with the fusion degreesof freedom of non-Abelian anyons.To 
al
ulate the non-Abelian statisti
s, we show how the vortex transport 
an beimplemented through lo
al manipulation of the 
ouplings. This enables us to employthe eigenstates of the model to simulate a pro
ess where a vortex winds aroundanother. The 
orresponding evolution of the degenerate ground state spa
e is givenby a Berry phase, whi
h under suitable 
onditions 
oin
ides with the statisti
s. By
onsidering a range of �nite size systems, we �nd a physi
al regime where the Berryphase gives the predi
ted statisti
s of the anyoni
 vorti
es with high �delity.Finally, we study the full-vortex se
tor of the model and �nd that it supports apreviously undis
overed topologi
al phase. This new phase emerges from the phasewith non-Abelian anyons due to their intera
tions. To study the transitions betweenthe di�erent topologi
al phases appearing in the model, we 
onsider the Fermi sur-fa
e, whose topology 
aptures the 
hara
teristi
 long-range properties. Ea
h phaseiii



is found to be 
hara
terized by a distin
t number of Fermi points, with the num-ber depending on distin
t global Hamiltonian symmetries. To study how the Fermisurfa
es evolve into ea
h other at phase transitions, we 
onsider the low-energy �eldtheory that is des
ribed by Dira
 fermions. We show that phase transition driv-ing perturbations translate to a 
oupling to 
hiral gauge �elds, that always leadto Fermi point transport. By studying this transport, we obtain analyti
ally theextended phase spa
e of the model and its properties.
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Chapter 1
Introdu
tion
I started my journey into topologi
ally ordered systems more or less by an a

ident.When ba
k in 2005 I was pondering about a possible Master's thesis topi
, all Iknew was that I wanted to do something quantum information related. It turnedout that my previous supervisor did not know mu
h about quantum information.His latest resear
h 
on
erned quantum �eld theory in a non-
ommutative spa
e-time, whi
h 
ould hardly be further away. However, where physi
al theories arerelated to parti
ular problems, the mathemati
al stru
tures underlying them knownot of su
h restri
tions. The same mathemati
s may play a role in systems whi
hhave nothing to do with ea
h other. It was su
h a 
onne
tion that set me on myway to topologi
ally ordered systems.In non-
ommutative geometry one uses a pie
e of mathemati
s known as quan-tum groups to quantize the spa
e-time geometry [1℄. My supervisor had en
ounteredthem also earlier in 
onne
tion with dis
rete latti
e gauge theories [2℄. Su
h theorieswere known to give rise to anyons, parti
les with exoti
 intermediate statisti
s be-tween bosons and fermions, that were �rst envisioned by Leinaas and Myrheim [3℄and later developed in a more physi
al setting by Wil
zek [4, 5℄. However, due totheir limited appli
ability and the extreme physi
al 
onditions required, the resear
hof anyons had stayed on the fringes of 
ontemporary theoreti
al physi
s. This all
hanged with the seminal paper by Alexei Kitaev, [6℄, where he was the �rst to1



Chapter 1. Introdu
tionpropose employing anyons for intrinsi
ally fault-tolerant quantum 
omputation, i.e.performing topologi
al quantum 
omputation [7℄. This paper was 
on
eived alreadyin 1997, but it got published in a peer-reviewed journal only in 2003. So, when mysupervisor suggested me doing the master's thesis on this topi
, it was still a novel�eld with nothing but open questions.During spring 2006 when I was putting �nishing tou
hes on my Master's thesis[8℄, I dis
overed the KITP program �Topologi
al Phases and Quantum Computation�whi
h one 
ould follow online. The mood of the talks was enthusiasti
, although the�eld seemed to la
k 
ohesion with a number of potential approa
hes and te
hniques,all with their own advantages and short
omings. This feeling was best 
aptured inan earlier talk by Mi
hael Freedman [9℄, whi
h I quoted for the opening paragraphof my Master's thesis. Now four years later, our understanding of topologi
al phaseshas taken signi�
ant steps forward. Still, I �nd these words resonating enough withwhat is fas
inating about the �eld for them to be repeated here:� . . . you don't want to do it unless there is a sweet way to do it. That issort of the way I feel about topologi
al quantum 
omputation, that theword topologi
al is going to make it sweet, that we are not going to takesome system and just make it more and more isolated, 
older and 
olderand for
e one or two more qubits in a year out of it. We are going todo something that is beautiful and elegant and then even if we fail, wehave at least pursued the right 
ourse and will probably learn somethinginteresting about solid state physi
s on the way.�-Mi
hael H. Freedman, 2004, [9℄Looking at the �eld of topologi
al quantum 
omputing today, the resear
h is stillmore about �learning something interesting about solid state physi
s�, than puttingthe �nal pie
es together. Referring to the re
ent advan
es in topologi
ally orderedsystems as just �something interesting�, however, does no justi
e to them.On the 
on
eptual side, a more holisti
 pi
ture has been obtained. Anyon modelswith up to 4 parti
le types have been 
atalogued [10℄, the general properties of sys-2



tems giving rise to them have been 
lassi�ed [11, 12℄, and the 
onne
tions betweendi�erent approa
hes have also been 
lari�ed [13�16℄. Topologi
al entanglement en-tropy, [17, 18℄, has been established as a robust 
hara
teristi
 of topologi
al order in�nite temperatures [19℄, and the re
ently introdu
ed entanglement spe
trum, [20℄,promises to provide a new 
hara
terization. The abstra
t theory of anyons has alsobeen extended to a

ount for anyon-anyon intera
tions [21℄. These were dis
overedto drive phase transitions between topologi
al phases [22�25℄, whi
h 
an also resultfrom a 
ondensation of anyons [26, 27℄. Also, whereas a few years ago Preskill'sle
ture notes, [28℄, were the standard referen
e for topologi
al quantum 
omputing,nowadays there exist several 
omprehensive review arti
les [29, 30℄.The fra
tional quantum Hall e�e
t has long been the primary �eld of resear
hin topologi
ally ordered systems. The re
ent years have seen more 
andidate trialwave fun
tions being proposed [31�33℄, and our understanding of the known oneshas improved [34℄. With the proliferation of plausible 
andidates though, the �eldseems to be waiting for a de
isive experiment to guide the theory. Steps towardsthis dire
tion were taken by the �rst attempt to verify the existen
e of non-Abeliananyons. Where the Abelian quasiparti
les of the 
elebrated Laughlin state, [35℄, hadbeen dete
ted by various groups [36, 37℄, the dire
t dete
tion of non-Abelian anyons,[38℄, had remained an open question. A simple interferometri
 s
heme was proposedin 2006 [39, 40℄, and it was over the following years translated to an experiment onthe Moore-Read state [41℄. Although non-
on
lusive, it gave for the �rst time strongdire
t eviden
e for the existen
e of non-Abelian anyons [42℄.Similar rapid experimental advan
es took pla
e also with re
ently dis
overedtopologi
al insulators [43�45℄. Only a few years from the theoreti
al predi
tion,Majorana fermions, that are essentially non-Abelian anyons, were dete
ted [46, 47℄.This led to a 
urious paradigm shift. Whereas ba
k in 2006 the Fibona

i anyonswere the holy grail due to their universality for quantum 
omputing, the experi-mental a

essibility suddenly made the Majorana fermions the hottest topi
 in the�eld [48℄. Although they are not universal for quantum 
omputation by themselves,3



Chapter 1. Introdu
tionvarious supplementary s
hemes have been 
onsidered [49, 50℄.Instead of sear
hing for anyons in nature, one 
an nowadays envision engineer-ing systems that support them in a laboratory. These usually take the form ofspin latti
e models that 
an potentially be realized in opti
al latti
es [51�54℄ orin super
ondu
ting arrays [55℄. In the opti
al latti
es the experiments for verify-ing topologi
al order have been proposed [56℄, and the required steps to probe theanyons dire
tly have been 
onsidered [57�59℄. On the other hand, in Josephson-jun
tion arrays topologi
ally prote
ted qubits have already been demonstrated [60℄,and extended en
oding s
hemes have been proposed [61℄.Among the latti
e models a pioneering role has been played by the Kitaev'shoney
omb latti
e model [62℄. Its attra
tiveness is based in its analyti
 tra
tability aswell as it supporting both Abelian and non-Abelian topologi
al phases. The simpleintera
tions required suggest that it is also likely to be the �rst one fully realizedin an opti
al latti
e experiment [51℄. This ri
hness 
omes with a pri
e though.Unlike string-net, [63℄, or quantum double models, [6℄, that involve experimentally
omplex intera
tions, the honey
omb latti
e model is not tailored to identi
allysupport anyons. This means that their 
hara
terization and 
ontrol is both elusiveand experimentally hard. It is this 
ombination of promise and 
hallenge that hasmade the model so fruitful for studying topologi
ally ordered phases.Sin
e its introdu
tion in 2005, the honey
omb latti
e model has given birth tonumerous proje
ts, with even some of its footnotes being developed into PRL levelpubli
ations. The original enthusiasm surrounding the model was based on theAbelian phase, be
ause it supports the so 
alled tori
 
ode anyons, that are the pro-totype for topologi
al quantum memories [6℄. Their emergen
e from the honey
omblatti
e model has been studied in numerous works [64�66℄. Lately the interest hasshifted to the more elusive non-Abelian phase, whi
h supports the so 
alled Isinganyons. These are essentially identi
al to the topi
al Majorana fermions [62℄. Re
entstudies have led to an expli
it demonstration of edge states [67℄, topologi
al degen-era
y [68℄ and entanglement entropy [20℄. A variation of the original model with4



1.1. Motivation and the stru
ture of the thesisspontaneous time-reversal symmetry breaking, [69℄, and a generalization to higherspin systems, [70℄, have also been introdu
ed. The non-Abelian Ising anyons havealso been the topi
 of my resear
h. The original 
ontributions in
lude the demon-stration of the vortex intera
tions and fusion rules [71℄, the dire
t 
al
ulation of thenon-Abelian statisti
s [72℄, as well as a dis
overy of a new 
hiral Abelian phase [73℄.1.1 Motivation and the stru
ture of the thesisTopologi
al order 
an be probed in many ways. Although partial 
hara
terization
an be obtained by studying, for instan
e, the ground state degenera
y [74℄ or theentanglement entropy [17, 18℄, the ultimate unambiguous 
hara
terization is alwaysgiven by the statisti
s of the anyoni
 ex
itations. Unfortunately, this is usually veryhard. The emergen
e of anyons is a dire
t 
onsequen
e of long-range entanglementin the ground state, whi
h 
an be 
hara
terized by a topologi
al invariant 
alledthe Chern number [75℄. It was a remarkable dis
overy that in some systems likethe fra
tional quantum Hall e�e
t, it is related to physi
ally measurable quantities[76, 77℄. The problem of 
hara
terization be
omes the mu
h simpler problem ofmeasuring these 
urrents.However, in other systems like latti
e models there is no su
h physi
al relation.The information given by the Chern number is also limited, be
ause it only tellsthat a parti
ular topologi
al phase exists. It tells nothing about the mi
ros
opi
swhi
h in�uen
e the physi
s in any realisti
 system. For all pra
ti
al purposes, onealways wants to study the anyoni
 ex
itations dire
tly. A prime example of this isthe re
ent interferometri
 experiment on the non-Abelian fra
tional quantum Hallstate [41℄. Although the 
ondu
tivity predi
ting a state with non-Abelian anyonshad been measured to high a

ura
y [78℄, no one knew beforehand whether thenon-Abelian anyons 
ould a
tually be realized in an experiment, not to even talk ofemploying them for quantum information pro
essing.Our aim is to perform theoreti
ally a similar dire
t study on the honey
omblatti
e model. While the low-energy theory of the Abelian phase of the honey
omb5



Chapter 1. Introdu
tionlatti
e model 
an be obtained using perturbation theory, no su
h pres
ription existsfor the non-Abelian phase. For a model that is exa
tly solvable, one should beable to understand the non-Abelian anyons better than only through the Chernnumber, as done in the original work [62℄. This is important for both theoreti
al andexperimental reasons. The honey
omb latti
e model is attra
tive for experiments,be
ause it involves only simple intera
tions. The trade-o� is that anyoni
 ex
itationsare harder to identify. The mi
ros
opi
s of the model 
an endow them with non-topologi
al properties, su
h as intera
tions in our 
ase, that 
an smear out theiranyoni
 
hara
ter. Therefore, our original motivation was to do �The Dirty Work�,i.e. to derive expli
itly the de�ning properties of the anyoni
 vorti
es, and to study atwhi
h length s
ales the topologi
al properties emerge undressed by the mi
ros
opi
physi
s. Only by understanding how the anyons arise from the mi
ros
opi
 model
an one 
ome up with s
hemes to 
ontrol them.Moreover, understanding the system beyond the Chern number is important,be
ause intera
tions between anyons have re
ently been dis
overed to lead to newtopologi
al phases [24, 25℄. When applied to the honey
omb latti
e model, thistheory of anyon-anyon intera
tion driven phase transitions suggested that the non-Abelian phase should give rise to a new phase with 
hiral Abelian anyons. Indeed, wefound a se
tor of the model where this happens, whi
h provided the �rst veri�
ationof the novel theory from a mi
ros
opi
 model.Our aim was to go beyond mere veri�
ation. Sin
e the honey
omb latti
e modelis now supporting three distin
t topologi
al phases, all with distin
t 
hara
teristi
s,it provided an ideal setting to study phase transitions between them. To this end we
onsidered the Fermi surfa
e of the model as its di�erent topologies 
an be related todi�erent phases [79℄. It provides a suitable platform to study the phase transitionsas, unlike the Chern number, it evolves 
ontinuously under perturbations. Motivatedby the su

ess of low-energy �eld theory pi
ture in graphene [80℄, we set out to studythe Fermi surfa
e evolution in terms of the low-energy theory of Dira
 fermions. Thehypothesis was that phase transition driving perturbations would lead to Fermi point6



1.1. Motivation and the stru
ture of the thesistransport, whi
h in the low-energy theory of Dira
 fermions 
ould be understood asbeing due to a 
oupling to gauge �elds. By studying the transport we should thenbe able to obtain the 
riti
al behavior analyti
ally.The thesis is organized as follows:Chapter 2: Kitaev's Honey
omb Latti
e ModelIn this 
hapter we review the honey
omb latti
e model and the mapping to freeMajorana fermions as originally introdu
ed by Kitaev [62℄. We generalize the so-lution to arbitrary vortex se
tors. The relevant 
on
epts to analyze the spe
trumare introdu
ed and the phase spa
e of the vortex-free se
tor is reviewed. We intro-du
e the Chern number as a 
hara
terization of the di�erent topologi
al phases andsummarize the properties of the non-Abelian Ising anyons.This 
hapter is partially based on the published 
ollaborative work [71℄. Theanalyti
 study of the generalized solution in
luded in this thesis is by myself and Dr.Jiannis Pa
hos. The numeri
s at the end of the published paper are 
ontributed bythe NUI Maynooth group headed by Dr. Jiri Vala. These do not form part of thethesis.Chapter 3: Non-Abelian Fusion Rules and Braid Statisti
sIn this 
hapter we employ the solution to arbitrary vortex se
tors to expli
itlydemonstrate the 
hara
teristi
 non-Abelian fusion rules and braid statisti
s of theIsing anyons. We introdu
e �rst an equivalen
e between the vortex se
tors and
oupling 
on�gurations, whi
h provides a method to physi
ally implement vortextransport. We employ this to study the spe
tral evolution as the separation be-tween the vorti
es is varied. Os
illating short-range intera
tions are dis
overed, andthey are argued to reveal the 
hara
teristi
 fusion rules. Finally, we 
al
ulate thenon-Abelian statisti
s as a vortex is transported around another. By 
onsideringvarious �nite system sizes, we show how the braid statisti
s 
an be obtained as aBerry phase 
orresponding to the evolution of the eigenstates during the transport7



Chapter 1. Introdu
tionpro
ess.The �rst part 
on
erning the fusion rules is based again on the published work[71℄, although the results and analysis here extend those of the published version.The se
ond part on the braid statisti
s is based on the published work by myselfand Dr. Jiannis Pa
hos [72℄.Chapter 4: Going Beyond: A New Chiral Topologi
al PhaseIn this 
hapter we show that the full-vortex se
tor of the honey
omb latti
e modelsupports a new topologi
al phase with 
hiral Abelian anyons. We demonstrate thatthis new phase appears due to the anyon-anyon intera
tions dis
overed in Chapter 3.These give rise to a new band stru
ture 
hara
terized by an emergent Hamiltoniansymmetry. The phase transitions between the di�erent topologi
al phases are studiedby 
onsidering the evolution of the Fermi surfa
e under perturbations. We show thatthis is equivalent to 
onsidering the low-energy �eld theory of Dira
 fermions 
oupledto gauge �elds. Two distin
t types of topologi
al phase transitions are identi�edbased on Hamiltonian symmetries and the extended phase spa
e in
luding the newphase is outlined.This 
hapter is based on work with Dr. Jiannis Pa
hos, [73℄.Chapter 5: Con
lusionsIn this �nal 
hapter we summarize and dis
uss our results. Their extensions as wellas future problems are 
onsidered.

8



Chapter 2
Kitaev's Honey
omb Latti
eModel
In this 
hapter we review the honey
omb latti
e model of Kitaev [62℄. In Se
tion2.1 we introdu
e the spin latti
e model and 
onsider the important lo
al symmetriesthat underlie its analyti
 tra
tability. In Se
tion 2.2 we present the mapping tofree Majorana fermions, whi
h enables the model to be solved exa
tly. The exa
ttreatment of arbitrary vortex se
tors is presented. As a veri�
ation of our method,in Se
tion 2.3 we review the phase spa
e of the vortex-free se
tor, whi
h supportsboth Abelian and non-Abelian anyons. The di�erent phases are 
hara
terized bythe Chern number, whi
h gives the anyoni
 properties of the vorti
es. As we areinterested here only on the non-Abelian Ising anyons, their relevant properties aresummarized. The vortex-free se
tor is simple enough to a

ommodate analyti
 treat-ment, but in general this is not possible. In Se
tion 2.4 we dis
uss how to treat theeigenvalues and eigenve
tors when the diagonalization is performed numeri
ally.9



Chapter 2. Kitaev's Honey
omb Latti
e Model

Figure 2.1: The bi-
olourable honey
omb latti
e with the bla
k and white sitesdenoting the two triangular sublatti
es. (a) The links are labeled as x, y and zand oriented su
h that there is always an arrow pointing from bla
k sites to whitesites. (b) A single plaquette p with its six sites enumerated. (
) The orientedsummation 
onvention for the next to nearest neighbour intera
tions originatingfrom the external magneti
 �eld [62℄. (d) The elementary unit 
ell with latti
e basisve
tors nx and ny.2.1 The spin latti
e modelThe Kitaev's honey
omb latti
e model, [62℄, 
onsists of spin 1
2 parti
les residing atthe verti
es of a honey
omb latti
e. The spins intera
t a

ording to the Hamiltonian

H = −
∑

α∈{x,y,z}

∑

(i,j)∈α-linksJαijσαi σαj −K
∑

(i,j,k)

σxi σ
y
j σ

z
k, (2.1)where Jαij are positive nearest neighbour 
ouplings on links (ij), and α = x, y or zdepending on the link's orientation (see Figure 2.1(a) for link labeling). The se
ondterm is an e�e
tive magneti
 �eld of magnitude K. The sum runs over the sitessu
h that every plaquette p 
ontributes the six terms

∑

(i,j,k)∈p

σxi σ
y
j σ

z
k = σz1σ

y
2σ

x
3 + σx2σ

z
3σ

y
4 + σy3σ

x
4σ

z
5 +

σz4σ
y
5σ

x
6 + σx5σ

z
6σ

y
1 + σy6σ

x
1σ

z
2 ,10



2.1. The spin latti
e modelwhere the sites have been enumerated as shown in Figure 2.1(b). This term 
anbe obtained as a third order term in a perturbative expansion when an anisotropi
weak (Zeeman) magneti
 �eld of the form Hh =
∑

i h · σi is applied. In this 
asethe 
ouplings are given by K ≈ hxhyhz

(Jα
ij)

2 , where one assumes all the 
ouplings Jαijto be roughly equal. The model approximates the one with a Zeeman term when
hα ≪ Jαij , but in general one 
an regard (2.1) also as an independent model.The physi
al motivation to add this term is that like the Zeeman term it expli
itlybreaks the time-reversal invarian
e, while unlike the Zeeman term it preserves theexa
t solvability of the model. To be pre
ise, time-reversal symmetry is des
ribedby a an anti-linear unitary operator T̂ , whi
h a
ts on Pauli operators as

T̂ σαi T̂
† = −σαi . (2.2)Any produ
t of an even number of Pauli operators with real 
oe�
ients will respe
tthe time-reversal symmetry, whereas any odd produ
t, su
h as the Zeeman or thethree-spin term, will violate it. The advantage of using a Hamiltonian with thethree-spin 
oupling (2.1) is that it has the important lo
al symmetries

[H, ŵp] = 0,

(

[ŵp, ŵp′ ] = 0,
∏

p

ŵp = 11

)

, (2.3)where ŵp = σx1σ
y
2σ

z
3σ

x
4σ

y
5σ

z
6 are Hermitian plaquette operators. The produ
t is overall plaquettes p and this 
onstraint applies only when the system is de�ned on a
ompa
t manifold. These lo
al symmetries are at the heart of the exa
t solvabilityof the model. Sin
e ŵp are 
onserved quantities, the Hilbert spa
e L of N spins onan in�nite plane 
an be partitioned into 2N/2 se
tors Lw of dimension 2N/2, ea
hlabeled by a distin
t pattern w = {wp} of the eigenvalues wp = ±1. The physi
s ofea
h se
tor 
an be 
onsidered independently and in the 
orresponding subspa
es thethree-spin term gives the leading order 
ontribution from an external weak magneti
�eld.

11



Chapter 2. Kitaev's Honey
omb Latti
e Model2.2 Mapping to free Majorana fermionsThe Hamiltonian 
an be brought to a quadrati
 form by representing the spin op-erators with Majorana fermions. Let us introdu
e two 
omplex fermioni
 modes
a1,i and a2,i residing at ea
h latti
e site i. These 
an be written in terms of fourMajorana fermions by
ci = a1,i + a†1,i, bxi = i(a†1,i − a1,i), byi = a2,i + a†2,i, bzi = i(a†2,i − a2,i), (2.4)where now all bαi and ci anti-
ommute with ea
h other and satisfy bα†i = bαi , c†i = ci.Let us represent the spin matri
es at site i in terms of the Majorana fermions by

σαi = ibαi ci. (2.5)This representation respe
ts the algebra of the Pauli matri
es if one demands inaddition that the states in the physi
al spa
e |Ψ〉 ∈ L have to satisfy
Di|Ψ〉 = |Ψ〉, Di ≡ bxi b

y
i b
z
i ci, [Di, σ

α
j ] = 0. (2.6)This follows from the operator identity 11 = iσxi σ

y
i σ

z
i = bxi b

y
i b
z
i ci. Observing thatusing (2.4) we 
an write Di = (1 − 2a†1,ia1,i)(1 − 2a†2,ia2,i), the 
onstraint Di 
anbe interpreted as performing a proje
tion from the four-dimensional spa
e spannedby two 
omplex fermion modes a1 and a2 onto a two-dimensional subspa
e whereboth of the 
omplex fermioni
 modes are either empty or full. In this subspa
e ourrepresentation of the spin operators is faithful.Employing (2.5) the Hamiltonian terms be
ome

σαi σ
α
j = −iûijcicj and σxi σ

y
jσ

z
k = −iûikûjkDkcicj,where we have de�ned the anti-symmetri
 Hermitian link operators

ûij = ibαi b
α
j ,

(

ûij = −ûji, û2ij = 1, û†ij = ûij

)

, (2.7)12



2.2. Mapping to free Majorana fermionswith α = x, y, z depending on the type of link (ij). Consequently, in the physi
alspa
e L the Hamiltonian (2.1) takes the quadrati
 form
H =

i

4

∑

i,j

Âijcicj , Âij = 2Jij ûij + 2K
∑

k

ûikûjk. (2.8)The oriented nearest (the �rst term of Âij) and next-to-nearest (the se
ond term of
Âij) neighbour summations are expressed 
onveniently pi
torially in Figures 2.1(a)and 2.1(
), respe
tively. The antisymmetry of the ûij is taken into a

ount by usinga 
onvention su
h that one assigns an overall + (−) to every term involving sites iand j when the arrow points from i to j (j to i). If two sites are not 
onne
ted byan arrow the 
orresponding Âij element is zero.The honey
omb latti
e model as a latti
e gauge theoryIn the fermionized pi
ture the Hamiltonian a
quires a new physi
al interpretation.One 
an verify that the Hamiltonian a
ts on the physi
al subspa
e, i.e. [H,Di] = 0,and that the link operators are lo
al symmetries, i.e. [H, ûij ] = 0. However, sin
e
{ûij ,Di} = 0, se
tors labeled by their eigenvalue patterns u = {uij = ±1} are notpart of the physi
al spa
e L. On the other hand, the plaquette operators (2.3), whi
hstill 
ommute with the Hamiltonian, be
ome the produ
ts of the link operators anda
t in L,

ŵp =
∏

i,j∈p

ûij , [ŵp,Di] = 0. (2.9)These observations allow for the following latti
e gauge theory interpretation. Thelink operators ûij 
an be thought of as 
lassi
al Z2 gauge �elds with lo
al gaugetransformations Di. As a single plaquette is the smallest loop that 
an be 
on-stru
ted from the gauge �elds ûij , the gauge invariant plaquette operators ŵp 
anbe identi�ed with the Wilson loop operators. Consequently, the eigenvalues wp = −1
an be interpreted as having a π-�ux vortex living on the plaquette p. The di�erentphysi
al se
tors of the model are then equivalent to 
on�gurations of vorti
es, thatare 
reated by �xing the gauge u, i.e. the pattern of the eigenvalues of the gauge13



Chapter 2. Kitaev's Honey
omb Latti
e Model�elds. The eigenvalues uij = −1 
an be visualized as an unphysi
al string passingthrough the link (ij), that either 
onne
ts two vorti
es or belongs to a loop. Theunphysi
ality follows from the 
onstraint (2.6), whi
h 
an be always satis�ed byperforming the proje
tion
|Ψw〉 = D|Ψu〉, D =

N
∏

i=1

(

11 +Di

2

)

, (2.10)where |Ψu〉 is some state belonging to a gauge se
tor u. Due to the anti-
ommutationof Di and ûij , the physi
al state |Ψw〉 ∈ L will be an equal amplitude superpositionof all loops and strings 
ompatible with the vortex se
tor w.2.3 Solution for arbitrary periodi
 vortex 
on�gurationsLet us now 
onsider in more detail the form of Hamiltonian (2.8) for general periodi
vortex se
tors and its diagonalization using a Fourier transformation. For 
onve-nien
e, but without a�e
ting the physi
s, the honey
omb geometry is deformed by
hoosing the latti
e basis ve
tors to be nx = (1, 0) and ny = (0, 1). To study generalvortex se
tors, we de�ne a (Lx, Ly)-unit 
ell, 
ontaining 2LxLy sites and assume uto be �xed su
h that it is translationally invariant with respe
t to
vx = Lxnx = (Lx, 0), vy = Lyny = (0, Ly). (2.11)This 
ell is illustrated in Figure 2.2. For 
onvenien
e, the labeling of site i on theoriginal honey
omb latti
e 
an be broken down to i = (r, l, λ), where r is a ve
tor inbasis {vx,vy} indi
ating the lo
ation of the unit 
ell, the ve
tor l = (lx, ly) in basis

{nx,ny} spe
i�es a parti
ular z-link inside the unit 
ell and λ = b, w denotes thesublatti
e the site belongs to.A Fourier transformation of the operators cλ,l,r with respe
t to r is given by
cλ,l,r =

√
2

∫ (Lx,Ly)BZ d2p eip·rcλ,l,p, (2.12)14



2.3. Solution for arbitrary periodi
 vortex 
on�gurations

Figure 2.2: An illustration of the generalized (Lx, Ly)-unit 
ell using a (5, 3)-unit
ell (shaded plaquettes) 
ontaining two vorti
es (blue squares). The gauge se
tor ugiving rise to this vortex 
on�guration is given, for instan
e, by setting uij = −1on the links 
rossed by the string 
onne
ting the vorti
es (blue dashed line), while
uij = 1 on all other links. This 
on�guration is periodi
 with respe
t to vx = (5, 0)and vy = (0, 3), with the pattern u repeated all a
ross the in�nite latti
e.where the integral is over the �rst Brillouin zone 
orresponding to the (Lx, Ly)-unit
ell

∫ (Lx,Ly)BZ d2p ≡ ∫ π/Lx

−π/Lx

dpx
√

2π/Lx

∫ π/Ly

−π/Ly

dpy
√

2π/Ly
. (2.13)In the Fourier basis the Hamiltonian (2.8) is redu
ed to the 
anoni
al form

H =
1

2

∫ (Lx,Ly)BZ d2p


cb,p

cw,p







†





hbb,p hbw,p

h†bw,p −hTbb,p













cb,p

cw,p






, (2.14)where c

†
λ,p = (c†

λ,(1,1),p
, . . . , c†

λ,(Lx,Ly),p
), and hbb,p and hbw,p are LxLy × LxLy ma-tri
es des
ribing the nearest and next-to-nearest intera
tions, respe
tively.The elements of the matri
es hbb,p and hbw,p 
an be derived by 
onsidering all theallowed 
ouplings inside the unit 
ell. All terms des
ribing 
ouplings between sites

i and i′ belonging to the unit 
ell, i.e. when i = (r, l, λ) and i′ = (r, l′, λ′), followstraight from (2.8). On the other hand, when r′ = r+mvx+nvy, the 
orrespondingterms a
quire due to Fourier transform, (2.12), the extra phases eip·(mvx+nvy) with15



Chapter 2. Kitaev's Honey
omb Latti
e Model
m,n = ±1. Carrying out this analysis for arbitrary (Lx, Ly)-unit 
ells,one �nds thatthe non-vanishing elements of hbw,p and hwb,p = h†bw,p are given expli
itly by

c
†
bhbwcw = 2i

∑(Lx,Ly)
l=(1,1) ( +ul,l Jz c†b,lcw,l

+ul,l−nx Jxe
iδ(lx−1)p·vx c†b,lcw,l−nx

+ul,l−ny Jye
iδ(ly−1)p·vy c†b,lcw,l−ny

),

(2.15)and
c
†
whwbcb = 2i

∑(Lx,Ly)
l=(1,1) ( −ul,l Jz c†w,lcb,l

−ul,l+nx Jxe
−iδ(lx−Lx)p·vx c†w,lcb,l+nx

−ul,l+ny Jye
−iδ(ly−Ly)p·vy c†w,lcb,l+ny) .

(2.16)The addition in the indi
es l = (lx, ly) is understood (lx mod Lx, ly mod Ly) and
δ(x) = 1 for x = 0 and δ(x) = 0 otherwise. Likewise, the diagonal blo
ks hbb,p and
hww,p = −hTbb,p originating from the three-spin term are given by

c
†
bhbbcb = 2iK

∑(Lx,Ly)
l=(1,1)

( +ull,l+ny
e−iδ(ly−Ly)p·vy c†b,lcb,l+ny

−ul−nx
l,l−nx+ny

eiδ(lx−1)p·vxe−iδ(ly−Ly)p·vy c†b,lcb,l−nx+ny

−ull,l+nx
e−iδ(lx−Lx)p·vx c†b,lcb,l+nx

+u
l−ny

l,l+nx−ny
e−iδ(lx−Lx)p·vxeiδ(ly−1)p·vy c†b,lcb,l+nx−ny

+ul−nx
l,l−nx

eiδ(lx−1)p·vx c†b,lcb,l−nx

−ul−ny

l,l−ny
eiδ(ly−1)p·vy c†b,lcb,l−ny

) ,

(2.17)

16



2.3. Solution for arbitrary periodi
 vortex 
on�gurationsand
c
†
whwwcw = 2iK

∑(Lx,Ly)
l=(1,1)

( −ul+ny

l,l+ny
e−iδ(ly−Ly)p·vy c†w,lcw,l+ny

+u
l+ny

l,l−nx+ny
eiδ(lx−1)p·vxe−iδ(ly−Ly)p·vy c†w,lcw,l−ny+ny

+ul+nx
l,l+nx

e−iδ(lx−Lx)p·vx c†w,lcw,l+nx
,

−ul+nx
l,l+nx−ny

e−iδ(lx−Lx)p·vxeiδ(ly−1)p·vy c†w,lcw,l+nx−ny

−ull,l−nx
eiδ(lx−1)p·vx c†w,lcw,l−nx

+ull,l−ny
eiδ(ly−1)p·vy c†w,lcw,l−ny

) ,

(2.18)
where we have used the short-hand notation ujk,l ≡ uk,juj,l.These expressions give the most general Hamiltonian for periodi
 vortex se
tors,that 
an be studied at the thermodynami
al limit. After 
hoosing a parti
ular vortexse
tor, (2.9), by �xing the uij = ±1 on all links inside the unit 
ell, the Hamiltonian
an be readily diagonalized. This gives in general

H =

∫ (Lx,Ly)BZ d2pLxLy
∑

i=1

Ei,pb
†
i,pbi,p −

LxLy
∑

i=1

Ei,p
2



 , (2.19)where bi,p are LxLy fermioni
 mode operators and Ei,p are the positive eigenvalues
orresponding to ea
h momentum mode. In an n-vortex se
tor, the ground state
|Ψnv

0 〉 with energy Env0 , and the lowest lying ex
ited state |Ψnv
i,p0

〉 on the ith bandwith energy Envi are given by
|Ψnv

0 〉 = D

LxLy
∏

i=1

∏

−π≤px,py≤π

bi,p|φ〉, Env0 = −
∫ (Lx,Ly)BZ dp LxLy

∑

i=1

Ei,p
2
, (2.20)and

|Ψnv
i,p0

〉 = Db†i,p0
|Ψnv

0 〉, Envi = ∆nv
i + Env0 , (2.21)respe
tively. Here D performs the gauge symmetrization (2.10), |φ〉 is an arbitraryreferen
e state and ∆nv

i is the energy gap with respe
t to the ground state de�ned17



Chapter 2. Kitaev's Honey
omb Latti
e Modelby ∆nv
i ≡ minpE

nv
i,p.2.4 The phase diagram in the absen
e of vorti
esThe phase diagram in the absen
e of vorti
es has been studied in the original work[62℄. In this se
tion we reprodu
e these results using our more general Hamiltonian(2.14), and outline the previously known phase spa
e by studying the behavior ofthe energy gaps. Further, we introdu
e the Chern number, whi
h 
an be used to
hara
terize the di�erent topologi
ally ordered phases appearing in the honey
omblatti
e model.The vortex-free 
on�guration (wp = 1 on all plaquettes) 
an be 
reated, forinstan
e, by setting uij = 1 on all links in (2.15)-(2.18). Let us also assume that allthe 
ouplings Jx, Jy and Jz have uniform values on all x-, y- and z-links, respe
tively.The resulting system is periodi
 with respe
t to ea
h z-link. Choosing then simplya (1, 1)-unit 
ell gives a 2× 2 Hamiltonian, (2.14), with

hbw,p = 2i
(

Jz + Jxe
ipx + Jye

ipy
)

= if(p),

hbb,p = 4K (sin(px − py) + sin(py)− sin(px)) = g(p).The Hamiltonian is diagonal, (2.19), in the basis of the fermioni
 operators
bp = Λp

(

c2,p + i
Ep − gp
fp

c1,p

)

, Λ2
p =

|fp|2
(Ep + gp)2 + |fp|2

, (2.22)where the eigenvalues ±Ep are given by
Ep =

√

|fp|2 + g2p, (2.23)
|fp|2 = 4(J2

x + J2
y + J2

z + 2 (JxJz cos px + JxJy cos(px − py) + JyJz cos py)),

g2p = 16K2 (sin py − sin px + sin(px − py))
2 .These expressions agree with [62℄.There it was shown that in the vortex-free se
tor the honey
omb latti
e model18



2.4. The phase diagram in the absen
e of vorti
es

0 0.25 0.5 0.75 1
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0.5

1
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∆ 0

K=0
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(a) (b)Figure 2.3: (a) An illustration of the vortex-free se
tor phase diagram with fourdistin
t phases Ax, Ay, Az and B. The phases Aα o

urs when the 
ouplings of type
Jα ≫ Jβ , Jγ and the phase B when they all roughly equal. The boundaries betweenthe phases Aα and B are given by Jα = Jβ + Jγ . The Aα phases support Abeliantori
 
ode anyons (ν = 0), whereas for K > 0 the B phase supports non-AbelianIsing anyons (ν = −1). (b) The behavior of the energy gap ∆0v a
ross the transitionbetween Az and B phases. Here J = Jx = Jy when Jz = 1. The phase Az is alwaysgapped with ∆0v depending only on J , whereas the B phase is only gapped when
K > 0. The phase transition o

urs for all K at J = 1

2 where the gap vanishes andthe Chern number 
hanges.exhibits four distin
t phases denoted by Ax, Ay, Az and B. These appear for di�erentvalues of the 
ouplings Jα su
h that the system is in the B-phase when one violatesall the inequalities
|Jy|+ |Jz| ≤ |Jx|, |Jx|+ |Jz| ≤ |Jy|, |Jx|+ |Jy| ≤ |Jz|. (2.24)The phase boundaries are given by the equalities and the phases Aα o

ur when only

|Jβ | + |Jγ | ≤ |Jα| holds and the other two inequalities are violated. The resultingphase spa
e is illustrated in Figure 2.3(a).This analysis of the phase spa
e relies on the behavior of the energy gap, i.e. theenergy of the lowest lying state above the ground state,
∆0v = min

p
Ep, (2.25)as a fun
tion of the parameters Jα and K. Stable topologi
al phases exist only for19



Chapter 2. Kitaev's Honey
omb Latti
e Modela non-vanishing gap, with points of vanishing gap signaling phase transitions. Weplot in Figure 2.3(b) the behavior of the gap ∆0v as 
al
ulated from (2.23). The Aαphases are always gapped, whereas the B-phase is gapped only when K 6= 0. In the�rst the gap depends only on Jα whereas in the latter it depends on both Jα and Kwith ∆0v = 6
√
3K when Jx = Jy = Jz = 1. The gap vanishes always at Jz = Jx+Jyas expe
ted from (2.24). The di�erent behavior of the gap is due to topologi
allydistin
t Fermi surfa
es in the phases Aα and B. We will return to dis
uss their rolein the 
hara
terization of the phases in Chapter 4.2.4.1 The Chern numberThe study of the energy gap reveals the phase spa
e stru
ture, but does not tellanything about the properties of the phases. To probe whether they are topologi-
ally ordered, one 
an study whether the ground state degenera
y depends on thetopology of the spa
e [74℄, whether the entanglement entropy has a 
onstant term[17, 18℄, or ultimately study dire
tly the statisti
s of the ex
itations [94℄. These all
an be 
onne
ted to the properties of the ground state, whi
h 
an be 
aptured by
al
ulating by the so 
alled spe
tral Chern number ν. It is a topologi
al invariantwhose importan
e to topologi
ally ordered phases was �rst appre
iated in the 
on-text of quantum Hall e�e
t [75, 76℄. Later it was shown to 
hara
terize also moregeneral systems [77, 82, 83℄.The Chern number 
an take only integer values, ea
h 
orresponding to a di�erentphase with di�erent anyoni
 properties. In a non-intera
ting gapped free-fermionsystem with broken time-reversal symmetry, it gives the following information onthe statisti
al properties of the vorti
es [83℄:

• ν = 0: non-
hiral Abelian anyons (e.g. ν = 0 for the tori
 
ode)
• ν even: 
hiral Abelian anyons
• ν odd: 
hiral non-Abelian anyons (e.g. ν = ±1 for the Ising anyons)In the honey
omb latti
e model, there exists altogether eight di�erent anyon models,20



2.4. The phase diagram in the absen
e of vorti
esthat 
orrespond to di�erent ν's. These have been 
atalogued in [62℄.The Chern number is of parti
ular importan
e in quantum Hall systems, whereits value is dire
tly proportional to the physi
ally measurable o�-diagonal 
ondu
-tivity [76℄. In the honey
omb latti
e model there is no dire
t physi
al analogue, butit is still useful in the theoreti
al 
hara
terization of the di�erent phases. It 
an beexpli
itly 
al
ulated from the eigenstates using the de�nition [84℄
ν =

1

2πi

∫

BZ
d2p (∂pxAy,p − ∂pyAx,p

)

, (2.26)where Aα,p = 〈Ψ0,p|∂pα |Ψ0,p〉 and |Ψ0,p〉 is a momentum 
omponent of the groundstate (2.20). Mathemati
ally, the Chern number 
lassi�es the U(LxLy) �bre bundleabove the Brillouin zone formed by the LxLy o

upied modes belonging to theground state (2.20).For the vortex-free 
ase |Ψ0,p〉 = |ψ−
1,p〉 with the analyti
 expressions (2.22) andthe Chern number 
an be evaluated analyti
ally. However, in general the analyti
expressions are not available and the Chern number must be evaluated numeri
ally.A parti
ularly useful form is given in [85℄. Using an n × n mesh for the Brillouinzone, the Chern number (2.26) 
an be written as

ν =
1

2π

n−1
∑

i,j=1

〈Ψi,j |Ψi+1,j〉〈Ψi+1,j |Ψi+1,j+1〉〈Ψi+1,j+1|Ψi,j+1〉〈Ψi,j+1|Ψi,j〉, (2.27)where |Ψi,j〉 = |Ψ
0,(pix,p

j
y)
〉 with piα = − π

Lα
+ 2π

Lα

i−1
n−1 . This form is parti
ularly
onvenient for 
al
ulations involving sparse vortex se
tors. Evaluating the Chernnumber for the four phases shown in Figure 2.3(a), we obtain ν = 0 for Ax, Ay and

Az, whi
h means that the vorti
es behave as non-
hiral Abelian tori
 
ode anyons.On the other hand, for the phase B one obtains ν = ±1 (the sign depends on thesign of K), whi
h 
orresponds to 
hiral non-Abelian Ising anyons.It was also shown in [85℄ that the Chern number is robust with respe
t to thedis
retization of the momentum spa
e, i.e. to the mesh size n. This means thephases 
hara
terized by it should be insensitive to the system size, with topologi
al21



Chapter 2. Kitaev's Honey
omb Latti
e Modelorder persisting down to small systems. This is a point we will be 
hallenging from aphysi
al point of view in this thesis. Although the Chern number 
an indeed 
hangeonly at the phase transitions, we will show that system size does a�e
t signi�
antlythe physi
s. Without indu
ing a phase transition, these mi
ros
opi
 e�e
ts a�e
tthe ex
itation spe
trum and its properties, depriving it from the expe
ted anyoni
behavior.2.4.2 Ising anyonsBy de�nition, anyons are parti
les obeying statisti
s that is neither bosoni
 orfermioni
. This exoti
 statisti
s leads to the anyons being labeled by some 
on-served topologi
al quantum numbers. Usually when talking about the low-energytheories of topologi
ally ordered phases, one talks in general about anyon models.These refer to a set of all parti
les appearing in the system that 
arry 
onservedquantum numbers. An anyon model des
ribes the 
onservation of these quantumnumbers as well as the mutual statisti
s of the parti
les, some whi
h are anyoni
and some other bosoni
 or fermioni
. Mathemati
ally these 
on
epts are best uni�edthrough 
ategory theory [62℄. In this thesis we are interested in the so 
alled non-Abelian Ising anyons that appear in the B-phase of the honey
omb latti
e model.Their de�ning properties as an anyon model are summarized below.The Ising anyon model has three types of parti
les types: 1 (va
uum), ψ (fermion)and σ (non-Abelian anyon). These labels 
an be thought of as the topologi
al quan-tum numbers. The fusion rules, i.e. 
onservation laws for the quantum numbers,are given by
ψ × ψ = 1, ψ × σ = σ, σ × σ = 1 + ψ, (2.28)with the va
uum fusing trivially with the other parti
le types. The fusion rule forthe σ's implies that there is a degree of freedom asso
iated with the di�erent waysa number of σ's 
an fuse. This is a unique property of non-Abelian anyons. Asthe global quantum numbers have to be always 
onserved, this degree of freedomappears when there is more than one way of fusing n σ parti
les to a given parti
le22



2.4. The phase diagram in the absen
e of vorti
es
a. To illustrate this, 
onsider four σ parti
les, for whi
h the repeated asso
iativeappli
ation of (2.28) gives

σ × σ × σ × σ = 1 + 1 + ψ + ψ. (2.29)This means that there are two distin
t ways the four σ's 
an fuse to either theva
uum 1 or to the fermion ψ.These fusion degrees of freedom, or fusion 
hannels, 
an be en
oded in the fusionspa
e Vσ4 . Due to the two possible global se
tors 1 and ψ, it breaks down to twoorthogonal two-dimensional subspa
es, Vσ4 = V 1
σ4 ⊕ V ψ

σ4
. The bases in V a

σ4 are givenby the states asso
iated with di�erent intermediate fusion out
omes with respe
t tosome 
hosen fusion ordering. For future purposes, let us 
onsider V ψ
σ4

and 
hoosea pair-wise fusion 
hannel basis, where the basis states are asso
iated with thefollowing pro
esses:
|Ψ1〉 : (σ × σ)1 × (σ × σ)2 → ψ × 1 = ψ,

|Ψ2〉 : (σ × σ)1 × (σ × σ)2 → 1× ψ = ψ.
(2.30)These are illustrated diagrammati
ally in Figure 2.4(a). The state |Ψ1〉 (|Ψ2〉) 
or-responds to pair 1 (2) fusing to a ψ, with the other fusing to va
uum. In both 
asesthe global se
tor is ψ.Di�erent 
hoi
es for the fusion order of the σ parti
les 
orrespond to di�erentbases. As there are only a �nite number of fusion order 
hoi
es for a �nite number ofparti
les, all the bases are related by so 
alled F -moves, whose a
tion is illustratedin Figure 2.4(b). These are a �nite set of unitaries that a
t in the fusion spa
e. Theyare obtained by solving a set equations known as pentagon equations [62℄. For thefusion rules (2.28), the non-trivial F -moves a
ting in V ψ

σ4
are given by

F ≡ Fψ
σ4

=
1√
2







1 1

1 −1






, F̄ ≡ Fψσψσ = F σψσψ = −11, (2.31)23
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e Model

(a)

(b)
(
)Figure 2.4: Diagrammati
 representations of the topologi
al properties of anyons.The diagrams represent world lines of the parti
les with time �owing upwards. (a)The basis in V ψ

σ4
is 
hosen su
h that the state |ψi〉 
orresponds to pair i fusing toa ψ. (b) Basis 
hanges are implemented by fusing the anyons in di�erent orders.The F -move F σσ3 ≡ Fψ

σ4
gives the expansion of the state in the new basis in termsof the original basis states. (
) When two σ's are ex
hanged 
lo
kwise, the braidmatri
es Raσσ assign di�erent phases depending on the fusion out
ome a. In thefusion spa
e V ψ

σ4
it a
ts as a diagonal matrix whenever the σ's belonging to a samepair are ex
hanged.

24



2.4. The phase diagram in the absen
e of vorti
eswhi
h both are given in the basis {|Ψ1〉, |Ψ2〉} (2.30).
When the σ parti
les are ex
hanged, there 
an be non-trivial evolution withinthe fusion spa
e V ψ

σ4
. This pro
ess is des
ribed by a braid operator, or an R-move,whose a
tion is illustrated in Figure 2.4(
). Possible braid operators 
onsistent withthe F -moves 
an be obtained by solving the so 
alled hexagon equations, whi
hmight in general have several solutions. When the σ's belonging to the same pairare ex
hanged, the solution 
orresponding to the Ising anyons is given by

R = e−i
π
8







1 0

0 i






, (2.32)whi
h des
ribes states 
orresponding to di�erent fusion 
hannels a
quiring di�erentphases. When the σ anyons from di�erent pairs are ex
hanged or transported aroundthe ea
h, the evolution is more 
ompli
ated, but it 
an always be 
onstru
ted as somesequen
e of only the F -moves, (2.31), and the R-moves, (2.32). We will 
onsidersu
h evolutions in Se
tion 3.3 where the 
hara
teristi
 non-Abelian statisti
s areevaluated from the eigenstates of the model.

To summarize, at a purely mathemati
al level an anyon model is spe
i�ed byits parti
le 
ontent ({1, ψ, σ}), the fusion rules (2.28) and the F -, (2.31), and R-moves, (2.32). Any evolution in a pure topologi
al phase 
an be understood only interms of these dis
rete obje
ts. In the presen
e of non-Abelian anyons, one expe
tsthe fusion spa
e to be manifest as a global ground state degenera
y. The statisti
s
orrespond to the evolution of the ground state spa
e under ex
hanges of the anyons.However, in real physi
al systems this is rarely the 
ase due to the mi
ros
opi
s ofthe model. In Chapter 3 we will study to what degree and at what length s
ales dothe 
hara
teristi
s of Ising anyons appear for the vorti
es in the honey
omb latti
emodel. 25



Chapter 2. Kitaev's Honey
omb Latti
e Model2.5 Numeri
al diagonalizationTo study the physi
s of the vorti
es, we need to employ large systems with sparsevortex se
tors. As the size of the Hamiltonian (2.14) grows polynomially with the sizeof the unit 
ell, analyti
al solution 
an be readily obtained only for the limiting 
asesof vortex-free [62℄ or full-vortex 
on�guration [71, 86℄. In general, the diagonalizationof the Hamiltonian (2.14) with the 
omponents (2.15)-(2.18) has to be performednumeri
ally. This 
orresponds still to exa
t treatment of the model. No numeri
alapproximations are involved ex
ept for the dis
retization of the Brillouin zone.In general, the diagonalization amounts to �nding the eigenvalues Ei,p and eigen-ve
tors |ψ±
i,p〉 that satisfy

Hp|ψ±
i,p〉 = ±Ei,p|ψ±

i,p〉, (2.33)where Hp is the 2LxLy × 2LxLy matrix with 
omponents hbb and hbw in (2.14).The normalized 
omplex valued ve
tors |ψ+
i,p〉 (|ψ−

i,p〉) represent the fermioni
 oneparti
le modes b†i,p (bi,p), whereas the eigenvalues Ei,p 
oin
ide with those in (2.19).We 
all (2.33) the mode spe
trum of the system.Apart from the eigenvalues Ei,p that 
an be obtained dire
tly from the modespe
trum, we will also need the eigenstates 
orresponding to the ground state, (2.20),and various ex
ited states, (2.21). As the Hamiltonian is diagonal in a basis of freefermions, these 
an be 
onstru
ted as Slater determinants of the ve
tors |ψ−
i 〉 [87℄,whi
h represent the anti-
ommutation properties of the operators bi. Assumingthe Brillouin zone to be dis
retized using a n × n mesh, the ground state (2.20) isrepresented by

|Ψ0〉 = D
∑

{qi}∈BZ LxLy
∑

k,...,l=1

ε
LxLy

k,...,l
√

LxLy!

εn
2

q1,...,qn2√
n2!

|ψ−
k,q1

〉 ⊗ · · · ⊗ |ψ−
l,qn2

〉, (2.34)where εai,j,...,k is the fully anti-symmetri
 tensors of rank a. Choosing the referen
estate in (2.20) su
h that b†i,p|φ〉 = 0, the ex
ited states (2.21) 
an be similarly26



2.6. Summaryrepresented by
|Ψi,p0

〉 = D
∑

{qi}∈BZ
{qi}6=p0

LxLy
∑

k,...,l=1

ε
LxLy

k,...,l
√

(LxLy)!

εn
2−1

q1,...,qn2−1
√

(n2 − 1)!
|ψ−
k,q1

〉 ⊗ · · · ⊗ |ψ−
l,qn2−1

〉. (2.35)In order to perform the gauge symmetrization D numeri
ally, one should di-agonalize the Hamiltonian Hp for all equivalent gauges u under the lo
al gaugetransforms (2.6) and form the 
orresponding linear 
ombinations manually. For ourpurposes this turns out not to be ne
essary, be
ause all quantities of physi
al interest
an be expressed in terms of inner produ
ts. Sin
e 〈Ψ|DkDl|Ψ〉 = δkl, whi
h followsfrom {Di, ûij} = 0, only the states in the same gauge 
an have overlap. Hen
e, allthe inner produ
ts 
an be 
al
ulated using a single gauge 
hoi
e u.The fa
t one never needs to expli
itly 
onstru
t the representations of the statesis also a 
ru
ial te
hni
al point. The number of elements in (2.34) and (2.35) growsexponentially with the system size and hen
e they are in general too large to bestored in a 
omputer.2.6 SummaryIn this �rst 
hapter we have reviewed the Kitaev's honey
omb latti
e model andits diagonalization through the mapping to free Majorana fermions. At the heartof the exa
t solvability is the breaking of the full Hilbert spa
e in the se
tors la-beled by patterns of vorti
es. Previously only the limiting vortex-free se
tor hadbeen studied. We generalized the solution of the model to arbitrary vortex se
torswhere the Hamiltonian has the 
omponents (2.15)-(2.18). In general these systemsare too 
ompli
ated to a

ommodate analyti
 treatment, but they 
an be studiednumeri
ally without employing any approximation methods.This generalization of the solution allow us to go beyond the previously studiedvortex-free se
tor. We are now able to 
onsider large systems with only a few vorti
esand thereby dire
tly study how they in�uen
e the spe
trum. In parti
ular, our aimis to derive dire
tly the properties of the Ising anyons that should appear as the27



Chapter 2. Kitaev's Honey
omb Latti
e Modellow-energy vortex ex
itations in the B-phase. This will be the topi
 of Chapter 3.The full-vortex se
tor has been studied for K = 0 in [86℄. Our generalizedsolution allows us to 
onsider also the K > 0 
ase, whi
h turns out to have dramati

onsequen
es for B-phase. It will turn out to support a new 
hiral Abelian phase,whi
h we will study in detail in Chapter 4.

28



Chapter 3
Non-Abelian Fusion Rules andBraid Statisti
s
In this 
hapter we do �The Dirty Work�, i.e. employ the solutions of sparse vortexse
tors to expli
itly demonstrate the 
hara
teristi
 non-Abelian fusion rules andbraid statisti
s of the Ising anyons. To this end, we �rst introdu
e in Se
tion 3.1an equivalen
e between the gauge se
tors and the 
oupling 
on�gurations. Thisenables a theoreti
al interpolation between vortex se
tors and provides a physi
alproto
ol for vortex transport. In Se
tion 3.2 we study the spe
tral evolution as theseparation between vorti
es is varied. The vorti
es are found to introdu
e zero modesinto the spe
trum, whi
h, however, 
an a
quire �nite energy when the vorti
es arebrought near ea
h other. We argue that the vorti
es are intera
ting and that theseintera
tions reveal the 
hara
teristi
 fusion rules of Ising anyons. By studying theintera
tions we obtain a 
hara
teristi
 length s
ale for the pure topologi
al phase. InSe
tion 3.3 we 
al
ulate the non-Abelian statisti
s as a vortex is transported aroundanother. By 
onsidering various �nite system sizes, we show how the braid statisti
s
an be obtained as a Berry phase 
orresponding to the evolution of the eigenstatesduring the transport pro
ess.As we are interested only on the properties of the non-Abelian Ising anyons, weset |Jx| = |Jy| = |Jz | = 1 on all links for the purposes of this 
hapter.29



Chapter 3. Non-Abelian Fusion Rules and Braid Statisti
s
(a) (b)Figure 3.1: The equivalen
e between (a) the 
oupling 
on�gurations J and (b) vortex
on�gurations w. Fixing the gauge by setting uij = 1 on all links, but tuning the
ouplings su
h that Jij = 1 on all solid links and Jij = −1 on all dashed links isequivalent to 
reating the vortex 
on�guration shown in (b).3.1 Gauge/
oupling 
on�guration equivalen
e and vor-tex transportAs des
ribed in the previous 
hapter, vortex 
on�gurations w = {wp} are 
reatedthrough (2.9) by �xing the gauge 
on�guration u = {uij}. In order to manipulate w,one should thus manipulate u lo
ally. Even though u is not by itself gauge invariantand thus not a physi
al parameter of the model, we 
an e�e
tively manipulate itthrough the 
oupling 
on�gurations J = {Jij}. As 
an be seen from (2.8), uijappears always uniquely paired with a lo
al 
oupling Jij . Therefore, as uij = −1with Jij > 0 is equivalent to uij = 1 with Jij < 0, we 
an regard the value of thegauge �eld just as the sign of the 
ouplings,

uij = sign(Jij), ⇒ Jij → −Jij ⇔ uij → −uij. (3.1)Stri
tly speaking one should also imprint these signs on the lo
al values of K. How-ever, when the term approximates an external magneti
 �eld, i.e. when K ≪ Jij ,
ontrolling the signs of Jij is su�
ient. Therefore, assuming that the system has beenprepared in the ground state belonging to the vortex-free se
tor [88℄, we 
an treatthe gauge se
tors, and thereby the vortex se
tors, just as some non-homogenous 
ou-pling 
on�gurations J with varying overall signs. From now on, we adopt this dual30



3.1. Gauge/
oupling 
on�guration equivalen
e and vortex transport
(a) (b)
(
) (d)Figure 3.2: A proto
ol for vortex transport in s steps through lo
al 
oupling manip-ulation. (a) Initially the 
oupling 
on�guration is 
hosen su
h that Jij = −1 on thelinks 
rossed by the dashed line, while Jij = 1 on all other links. This 
orrespondsto a vortex on the left plaquette. (b) Consider 
hanging the value 
oupling on thelink in the middle from Jij = 1 to Jij = −1 in S steps of size 2

S . At step s its valueis Jsij = 1 − 2s
S , whi
h we interpret as the vortex o

upying a lo
ation away fromthe plaquette 
enter. (
) When Jsij = 0, the Wilson loop operator is de�ned only onthe 
omposite plaquette. As the vortex o

upies both plaquettes simultaneously, weinterpret it as being right in the middle. (d) Finally, as Jsij → −1, the vortex movessmoothly to the plaquette on the right.perspe
tive, whi
h allows to relate the manipulation of vorti
es to the manipulationof physi
ally tunable parameters. We will still be referring to gauge and vortex se
-tors, but these terms should be understood as referring to 
oupling 
on�gurationsthat give rise to them.To study the physi
s of the vorti
es, we de�ne a sparse vortex 
on�guration by
hoosing a large (Lx, Ly)-unit 
ell and 
onsider the system in the vortex-free se
torby setting uij = 1 on all links. Consider then tuning the 
oupling 
on�guration su
hthat Jz = −1 on the d �rst z-links of the �rst row of the unit 
ell as shown in Figure3.1(a). Due to the equivalen
e (3.1), this amounts to 
reating two vorti
es separatedlinearly by d links as shown in Figure 3.1(b). By varying d we 
an study the spe
tral31



Chapter 3. Non-Abelian Fusion Rules and Braid Statisti
sevolution as a fun
tion of the vortex separation up to distan
es of d = Lx/2.Instead of just pla
ing vorti
es on plaquettes, we 
an imagine 
arrying out thevortex transport �
ontinuously� as follows. If the sign of the 
oupling Jij at the link
d+1 is reversed in S steps of size 2

S su
h that at step s the value is Jij = 1− 2s
S , thepro
ess will result in vortex transport as illustrated in Figures 3.2(a)-(d). We denotethe 
ontinuous vortex separation by ds = d + s

S , where s denotes the intermediatevortex position and dS = d+1. Intuitively we 
an then regard the intermediate stepsfor whi
h |Jij | < 1 as the vortex o

upying some intermediate position in betweenthe plaquettes. Although there is no a priori reason for this interpretation, we willshow below that the spe
trum does indeed evolve 
ontinuously under su
h transportpro
ess. Moreover, if this proto
ol is 
arried out on a link between empty plaquettesor plaquettes with two vorti
es, the resulting pro
ess 
orresponds to 
reation andannihilation of vorti
es, respe
tively. This means that we 
an study also the spe
tralevolution when interpolating between vortex se
tors of varying vortex o

upation.We note that it is also experimentally motivated to treat the vortex se
tors andthe 
oupling 
on�gurations on equal footing. Given su�
ient site addressability, thelo
al 
ontrol of the 
ouplings Jij is also how one 
ould perform vortex 
reation andtransport in the proposed opti
al latti
e implementations of the honey
omb latti
emodel [51, 53℄.3.2 Fusion rules from the spe
tral evolutionIn this se
tion we study how the presen
e of vorti
es modi�es the spe
trum and howit depends on the vortex separation ds. Ideally we would like to use as large a unit
ell as possible in order to isolate the vorti
es from ea
h other. It turns out that unit
ells of around 400 plaquettes (800 spins), su
h as a (20, 20)-unit 
ell, are su�
ientto extra
t the asymptoti
 behavior when ds → ∞. The resulting Hamiltoniansare sparse 800× 800 matri
es, whi
h 
an be diagonalized numeri
ally using Matlabon a tabletop 
omputer. Employing (2.20) and (2.21), we 
an then 
al
ulate theground state Env0,ds and various ex
ited state energies ∆nv
i,ds


orresponding to the32



3.2. Fusion rules from the spe
tral evolutionvortex separation ds at an n-vortex se
tor.3.2.1 Zero modes and vortex intera
tionsFigures 3.3(a)-(
) show the energy behavior of the three lowest lying modes in theabsen
e of vorti
es, and in the presen
e of two and four well separated vorti
es,respe
tively. The �rst shows the already known fa
t that in the absen
e of vorti
esthe spe
trum is gapped with all ∆0v
i,ds

being nearly degenerate and non-zero. Onthe other hand, when a pair of vorti
es is introdu
ed, Figure 3.3(b) shows that
∆2v

1,ds
be
omes vortex separation dependent. The energy of the mode os
illates withseparation and 
onverges to zero as ds → ∞, whereas both ∆2v

2,ds
and ∆2v

3,ds
remaininsensitive to it. From Figure 3.3(
) we see that when a se
ond vortex pair isintrodu
ed away from the �rst one, both ∆4v

1,ds
and ∆4v

2,ds
a
quire the os
illatory dsdependen
e, while ∆4v

3,ds
remains insensitive. By 
onsidering a system of n isolatedvortex pairs, we �nd that the n lowest lying modes a
quire this behavior.Due to the large ds behavior, we 
all these modes zero modes. Sin
e they onlyappear in the presen
e of vorti
es and their energy de
ays with vortex separation, weinterpret the vorti
es having strong short-range intera
tions. In the presen
e of 2nvorti
es there are n zero modes in the spe
trum, whi
h means that the diagonalizedHamiltonian (2.19) takes the form

H =

∫BZ d2p LxLy
∑

i=n+1

Ei,pb
†
i,pbi,p +

n
∑

i=1

ǫdsi,pz
†
i,pzi,p −





LxLy
∑

i=n+1

Ei,p
2

+
n
∑

i=1

ǫdsi,p
2







 .(3.2)We have renamed the n smallest eigenvalues and the 
orresponding modes as ǫdsi,pand zi,p, respe
tively. Figures 3.3(b) and 3.3(
) suggest that when the vortex pairsare far from ea
h other, ǫdsi,p take the form
ǫdsn,p0

∼ ∆2nv
n+1 cos(ωds)e

− ds
ξ , (3.3)where ω > 0 and ξ > 0 depend on the 
ouplings and parametrize the frequen
y ofthe os
illations and the 
onvergen
e of the energy, respe
tively.33
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Figure 3.3: The mode spe
trum, (2.33), for the three lowest lying modes with ener-gies ∆1,ds , ∆2,ds and ∆3,ds . (a) In the absen
e of vorti
es all the modes are gappedand there is trivially no ds dependen
e. (b) In the presen
e of a single vortex pair
∆2v

1,ds
os
illates with separation and 
onverges to zero energy ds → ∞. ∆2v

2,ds
and

∆2v
3,ds

are independent of ds. (
) In the presen
e of two vortex pairs (nine rows apart,pi
ture not on s
ale), both ∆4v
1,ds

and ∆4v
2,ds

a
quire this identi
al ds dependen
e (theplots overlap) while is ∆4v
3,ds

still insensitive. The plots are produ
ed for K = 0.1and S = 20 using a (20, 20)-unit 
ell.
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tral evolution
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Figure 3.4: A study of the 2-vortex ground state degenera
y as fun
tions of thevortex separation ds and magneti
 �eld K using a (20, 20)-unit 
ell. (a) A plot of
log(∆2v

2,ds
) forK = 0.1. A linear �t gives ξ ≈ 1.2 (in units of ds) for the 
hara
teristi
length s
ale. (b) ξ a fun
tion of K showing ξ ≈ 0.12

K behavior.In parti
ular, we are interested in the magnitude of ξ as it gives the 
hara
teristi
length s
ale of the intera
tions that are not part of the pure topologi
al theory. InFigure 3.4(a) we plot ln(∆2v
1,ds

) when K = 0.1 for the 2-vortex system illustratedin Figure (3.3)(b). The linear �t with negative slope 
on�rms the exponential 
on-vergen
e of the zero mode energy with vortex separation, and distan
e betweensu

essive dips gives the half of the wavelength of the os
illations. By performingsimilar linear �ts for ln(∆2v
1,ds

) for a range of K's, we obtain Figure 3.4(b), whi
hshows ξ ∼ K−1 behavior with ξ ≈ 1 when K = 0.12. For a parti
ular value of K, weexpe
t the system to be well des
ribed by the Ising anyon theory when the vortexseparation satis�es ds ≫ ξ.The os
illatory behavior of the intera
tions, (3.3), does not play a signi�
ant rolein the present dis
ussion and thus we leave its systemati
 study for future work. Tosummarize it brie�y, our numeri
al studies have shown that the frequen
y ω dependsprimarily on the 
ouplings J , su
h that the frequen
y is higher the 
loser one is tothe phase boundaries (2.24). In Chapter 4 we will 
onne
t at a heuristi
 level theseintera
tion os
illations to the phase spa
e behavior of the full-vortex se
tor.
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Figure 3.5: The behavior of the fermion gap, ∆f , and the vortex gap, 2∆v, in a
2-vortex system as fun
tions of K. The s
aling is nearly linear in both 
ases.3.2.2 The low-energy spe
trumTo outline the full low-energy spe
trum of the model, we 
onsider the energy gapsto non-zero mode states and the relative ground state energies of di�erent vortexse
tors. These are also of interest, be
ause they des
ribe the stability of the non-Abelian phase against thermal �u
tuations.Figures (3.3)(a)-(
) show that ∆2nv

n+1 = ∆0v
1 , i.e. that the energy of the �rst non-zero mode 
oin
ides always with the fermion gap of the the vortex-free se
tor. Thissuggests that in general the fermion gap for an 2n-vortex system should be de�nedas

∆f ≡ ∆2nv
n+1 = min

p
En+1,p. (3.4)This implies that the modes bi,p in (3.2) still des
ribe free fermions, and reinfor
esthe notion that the modes zi,p, although being fermioni
 operators, des
ribe somenew degrees of freedom due to the presen
e of vorti
es. We will dis
uss their inter-pretation in a moment.We 
an also de�ne asymptoti
ally the vortex mass as the relative ground stateenergy of the vortex-free and 2-vortex se
tors,

2∆v = lim
ds→∞

(

E2v
0,ds − E0v

0

)

. (3.5)36



3.2. Fusion rules from the spe
tral evolutionIt des
ribes the amount of energy needed to 
reate a pair of vorti
es out of va
uumand take them far enough for the intera
tion to be negligible. We plot in Figure3.5 the behavior of both (3.4) and (3.5), whi
h shows that both in
rease roughlylinearly with K. The fermion gap vanishes for K = 0, the vorti
es have mass alsoin the gapless phase.We 
an 
ombine the mode spe
tra and the vortex gaps for the 0-, 2-vortex se
torsto outline the full low-energy spe
trum of the Hamiltonian (3.2). Figure 3.6(a) showsthe evolution of the lowest lying states in the 2-vortex se
tor relative to the groundstate energy E0v
0 of the vortex-free se
tor. At large ds the states |Ψ2v

0 〉 and z†1|Ψ2v
0 〉di�ering by the o

upation of the zero mode are degenerate with energies 2∆v abovethe vortex-free ground state. As the vorti
es are brought 
loser, the degenera
y islifted due to the mode z†1 a
quiring energy, i.e. ǫds1 be
oming non-zero as shown inFigure 3.3(b). As ds → 0, the vorti
es are brought to the same plaquette whi
h
orresponds to fusing them. We observe that the energy 
orresponding to |Ψ2v
0 〉evolves to the energy of the ground state |Ψ0〉 of the vortex-free se
tor. On theother hand, z†1|Ψ2v

0 〉 evolves to b†1,p0
|Ψ0〉, the �rst ex
ited free fermion state in thevortex-free se
tor.Before pro
eeding to 
onne
t this spe
tral evolution with the fusion rules, let us
omment on the hopping of the energies in Figure 3.6(a). It is due to the employedtransport proto
ol. The minima always o

ur for integer values of ds, i.e. for
on�gurations uniform in amplitude, |Jij | = 1, whereas the maxima o

ur at dS/2,i.e. when the transported vortex o

upies a 
omposite plaquette twi
e the size of aregular plaquette (see Figure 3.2(
)). We note that E2v,dS/2

0 − E2v,dS
0 ≈ ∆v, whi
hmeans an energy of ∆v is required to move a vortex to an adja
ent plaquette. Thissuggests that we 
an think the vortex mass ∆v equivalently as the depth of a lo
alpotential that 
on�nes the vorti
es at the plaquettes. The energy gaps ∆f and ∆vgive a measure of the stability of the vortex se
tors against thermal �u
tuations attemperature T . When T ≪ ∆f ,∆v, the 
reation and propagation of both fermionsand vortex ex
itations is exponentially suppressed.37
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0(b)Figure 3.6: The low-energy spe
trum of the B-phase when |Jα| = 1 andK = 0.1 as afun
tion of vortex separation. All the energies in the 2-vortex (red lines) and 4-vortex(green lines) se
tors are with respe
t to the ground state energy of the vortex-freese
tor (bla
k lines). The solid lines are the total ground state energies, the dash-dotted ones are states with o

upied zero modes and the dashed lines 
orrespond tolowest lying free fermion states over the respe
tive vortex se
tors. (a) The 2-vortexlow-energy spe
trum as a fun
tion of ds. (b) The low-energy spe
trum in
ludingboth 2- and 4-vortex se
tors for the integer values of ds. The near degenera
y ofthe 2-vortex ground state with the �rst ex
ited state of the vortex-free se
tor, i.e.

∆f ≈ 2∆v, is a

idental due to the 
hoi
e of K = 0.1 as shown in Figure 3.5.38



3.2. Fusion rules from the spe
tral evolution3.2.3 Zero modes as fusion degrees of freedomThe distin
t behavior of the 2-vortex states |Ψ2v
0 〉 and z†1|Ψ2v

0 〉 in Figure 3.6(a) as
ds → 0 suggests that the o

upation of the zero mode 
orresponds to the fusion
hannel of the vorti
es. Let us identify the σ parti
les of the Ising anyon modelwith the vorti
es, and the ψ's with free fermion modes b†i . Then in a

ordan
e withthe fusion rules (2.28), an o

upied zero mode means that the σ's will fuse to a ψ,whereas uno

upied mode implies that the fusion will give the va
uum 1.This is further 
on�rmed in Figure 3.6(b), where we plot the low-energy spe
trumin
luding the 4-vortex se
tor when the separation of the two vortex pairs is variedpair-wise (see Figure 3.3(
)). The plot is only for the integer values of ds to omitthe irrelevant hopping behavior. The 4-vortex se
tor has the physi
ally non-trivialtwo-dimensional fusion spa
es V 1

σ4 and V ψ
σ4
, (2.29). The spe
tral evolution showsthat when the vorti
es are fused, there are two nearly degenerate states (either z1or z2 o

upied) that be
ome the �rst ex
ited state in the vortex-free se
tor. Thestates with neither or both zero modes o

upied be
ome the ground state or thetwo fermion state, respe
tively. Therefore we 
an identify these four states with thefusion spa
e basis states as:

|Ψ2v
0 〉 ∈ V 1

σ4 : (σ × σ)1 × (σ × σ)2 → 1× 1 = 1,

z†1z
†
2|Ψ2v

0 〉 ∈ V 1
σ4 : (σ × σ)1 × (σ × σ)2 → ψ × ψ = 1,

(3.6)and
z†1|Ψ2v

0 〉 ∈ V ψ
σ4

: (σ × σ)1 × (σ × σ)2 → ψ × 1 = ψ,

z†2|Ψ2v
0 〉 ∈ V ψ

σ4
: (σ × σ)1 × (σ × σ)2 → 1× ψ = ψ.

(3.7)The appearan
e of the fusion degrees of freedom as zero modes 
an be understoodin the 
ontext of p-wave super
ondu
tors to whi
h the honey
omb latti
e model
an be mapped [89℄. There one 
an expli
itly show that vorti
es bind unpairedmassless Majorana fermions γi [83, 90℄, that are responsible for the non-Abelianbehavior [81, 91, 92℄. As γ†i = γi by de�nition, one 
an not de�ne a lo
al degreeof freedom for an isolated Majorana mode. However, two su
h modes lo
alized at39
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i and i + 1, regardless of how far separated they are spatially, 
an be 
ombined toa 
omplex fermion mode zi = (γi + iγi+1)/2. The o

upation of this mode is anon-lo
al property of a pair and it 
orresponds to the two possible fusion out
omesof the anyoni
 vorti
es. When the vorti
es are nearby, tunneling pro
esses betweenthe vortex 
ores lead to an os
illating intera
tion that lifts the degenera
y of thefusion 
hannels [93℄. In the honey
omb latti
e model we do not observe dire
tlythe lo
alized Majorana modes, but the os
illating zero modes, (3.3), are exa
tly aspredi
ted by this dual pi
ture.3.2.4 Dis
ussionBy studying the spe
tral evolution as a fun
tion of vortex separation, we have demon-strated that the presen
e of vorti
es in the B-phase introdu
es zero modes and thatthese 
an be identi�ed with the fusion degrees of freedom of the Ising anyons. Theanyoni
 vorti
es are shown to exhibit exponentially de
aying intera
tions whosemagnitude os
illates with the vortex separation. When the vorti
es are nearby, theva
uum 
hannel is always energeti
ally favoured. We found that the range of theseintera
tions is 
ontrolled by the K dependent parameter ξ. For vortex separations
ds ≫ ξ, the states 
orresponding to the fusion 
hannels are degenerate, and we an-ti
ipate the low-energy spe
trum to be well approximated by the pure topologi
altheory.To identify the fusion rules from the zero modes, it was su�
ient to 
onsider onlythe very short and the very long-range behavior and negle
t the os
illatory term in(3.3). Although these limiting behaviors are not altered by its in
lusion, our furthernumeri
al studies have shown that the os
illations depend strongly on the 
ouplings
Jα. As one approa
hes the phase boundaries (2.24), their frequen
y in
reases whilethe period de
reases. As long as only very few vorti
es are present, the physi
s ofthe non-Abelian phase is una�e
ted by them. However, when the vortex density isin
reased, i.e. when many vorti
es intera
t simultaneously with ea
h other, theseos
illations qui
kly smear out the va
uum 
hannel as the favoured fusion 
hannel.40



3.2. Fusion rules from the spe
tral evolutionThis turns out to have dramati
 
onsequen
es on the 
olle
tive states of intera
tinganyons that 
an give rise to 
ompletely new phases. This e�e
t will be dis
ussed inmore detail in Chapter 4.Apart from the intera
tions, another interesting mi
ros
opi
 detail of the modelis the dependen
e of the vortex mass ∆v on the lo
al 
oupling 
on�gurations. Asshowed in Figure 3.6(a), it seems to be dire
tly proportional to the number of pla-quettes the vortex o

upies. This suggests that the ground state admits partialstabilizer representation in terms of the plaquette operators, whi
h agrees with theform derived in [68℄. The vortex mass 
an also be interpreted in terms p-wave super-
ondu
tor pi
ture. Sin
e ∆v gives the amount of energy required to move a vortexto an adja
ent plaquette, it 
an be equivalently viewed as the height of the potentialbarrier 
on�ning the Majorana modes to the vortex 
ores. This interpretation agreeswith a larger K suppressing the intera
tions (3.3). As a larger K in
reases also thepotential barrier, it suppresses the tunnelings whi
h 
an be understood as givingrise to them [93℄.

41



Chapter 3. Non-Abelian Fusion Rules and Braid Statisti
s3.3 Non-Abelian statisti
s as a Berry phaseIn this se
tion we expli
itly 
al
ulate the non-Abelian statisti
s of the σ anyons.We transport the vorti
es around ea
h other using the proto
ol in Figure 3.2 andevaluate the 
orresponding evolution in the fusion spa
e as a Berry phase. By
onsidering various �nite systems, we are able to identify parameter ranges whereit 
orresponds to the statisti
s of Ising anyons with high �delity. Together with thefusion rules derived above from the spe
tral evolution, this 
on
lusively demonstratesthe non-Abelian 
hara
ter of Kitaev's honey
omb latti
e model.3.3.1 Statisti
s and holonomiesIn general, when z1 and z2 are the 
oordinates of some point-like parti
les, theirstatisti
s is given by the transformation of the 
olle
tive wave fun
tion under theirpermutation,
ψ(z1, z2) = Uψ(z2, z1), (3.8)where U is the 
hara
teristi
 statisti
al phase or matrix. Due to topologi
al argu-ments [3℄, in three or more spatial dimensions U must satisfy U2 = 1. The onlysolutions are U = ±1, whi
h 
orrespond to bosons and fermions. On the otherhand, in two spatial dimensions one 
an have U2 6= 1, whi
h 
an give rise to anyoni
statisti
s. In parti
ular, if U = eiθ for some phase θ, the statisti
s is 
alled Abelian,and the parti
les are Abelian anyons. If U is a unitary matrix a
ting in a degeneratestate spa
e, the parti
les are 
alled non-Abelian anyons.In real physi
al systems the permutation of the 
oordinates 
orresponds to adia-bati
ally transporting the parti
les su
h that their positions are swapped [94℄. Oftensingle ex
hanges 
an not be de�ned unambiguously. Instead one needs to 
onsiderevolutions where a parti
le winds around another along a suitable 
hosen 
losedpath C. Regardless of the lo
al details of the path, the pro
ess then is topologi
allyequivalent to two su

essive ex
hanges. As the evolution of the system is 
y
li
,the wave fun
tion 
an a
quire a non-trivial Berry phase ΓC [95℄, or more generally,42



3.3. Non-Abelian statisti
s as a Berry phasea holonomy [96℄. In the presen
e of degenerate states, ΓC 
an be a matrix imple-menting a rotation in the degenerate subspa
e [97℄. In general, the evolution due to
y
li
 adiabati
 transport 
an be split as ΓC = ΓgCΓ
t
C into two 
ontributions. Here

ΓgC des
ribes the geometri
 
ontribution, that depends on the lo
al geometry of thepath. On the other hand, ΓtC depends only on the path's topology, i.e. only on theevolution in the 
on�guration spa
e, whi
h on a simply 
onne
ted two-dimensionalmanifold is due the parti
les en
ir
ling ea
h other [98℄. Therefore, if the path C 
anbe 
hosen su
h that ΓgC = 11, the holonomy 
oin
ides with the mutual statisti
s ofthe parti
les, i.e. ΓC = U2. For bosons and fermions this is always trivial, with anynon-trivial evolution being a sign of anyoni
 statisti
s.One 
an satisfy ΓC = ΓtC if one demands that the evolution C is not only 
y
li
in all parameters employed, but that it is 
y
li
 su
h that it spans no area in positionspa
e [62℄. In the honey
omb latti
e setting, a suitable path is illustrated in Figure3.7(a), where the dashed lines indi
ate the two oriented parts C1 and C2 of the totalpath C. The evolution along this path is 
y
li
 in the spa
e of 
oupling 
on�gurations
J where the transport is implemented. Neither does it span any spatial area as Calways involves both Ci and C−1

i . Figures 3.7(b) and 3.7(
) illustrate that di�erentordering of the parts C1 and C2 give rise to topologi
ally distin
t evolutions. Theevolution Cl links the world lines of the parti
les from di�erent pairs and thus should
orrespond to the statisti
s of ex
hanging the parti
les twi
e. On the other hand, Cospans exa
tly the same path in the position spa
e, but topologi
ally it 
orrespondsto trivial evolution in the 
on�guration spa
e.If one regards the vorti
es 
onne
ted by a solid lines being paired, the evolution Clin Figure 3.7(b) 
orresponds to ex
hanging twi
e the vorti
es belonging to di�erentpairs. Restri
ting to 
onsidering a global ψ se
tor, i.e. 
onsidering the evolutionin V ψ
σ4
, and adopting the pair-wise fusion basis (3.7), we 
an predi
t the out
omeof su
h an evolution from the abstra
t theory of Ising anyons. In Figure 3.8(a) weillustrate the required sequen
e of F -, (2.31), and R-moves, (2.32). One must �rstuse an F to move to a basis where the braided anyons are fused, then apply R243
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Figure 3.7: (a) The honey
omb latti
e 
ontaining two vortex pairs. The parameter d
ontrols the minimal vortex separation in units of links. It is related to the unit 
elldimensions through Lx = 4(d+1) and Ly = 2d+1 (pi
ture not on s
ale). The fourdashed arrows C1, C−1
1 , C2 and C−1

2 are the oriented parts of the path C along whi
hthe vorti
es are transported. (b) Cl = C1C2C
−1
1 C−1

2 is topologi
ally equivalent to alink. (
) Co = C1C
−1
1 C2C

−1
2 is topologi
ally equivalent to two unlinked loops.to perform the braiding, and subsequently use F−1 = F to return to the originalbasis. In general, the pro
ess where a parti
le winds around another is known as amonodromy. For this parti
ular 
ase it is given by

R̄2 = FR2F = e−
π
4
i







0 1

1 0






. (3.9)The overall phase is a 
hara
teristi
 to the Ising anyons, whereas the o�-diagonalityis a 
hara
teristi
 of non-Abelian anyons in general. As the basis on whi
h R̄2 a
tsis asso
iated with the information about whi
h pair fuses to a ψ, the monodromyprovides an intuitive illustration of the non-lo
ality of the fusion degrees of freedom.This pro
ess is illustrated in Figure 3.8(b). Regardless of how far the σ parti
les arespatially, their monodromy, (3.9), will result in a pro
ess whi
h 
an be viewed as a

ψ parti
le being teleported between the two pairs.44
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s as a Berry phase

(a)

(b)Figure 3.8: (a) To �nd the evolution 
orresponding to braiding anyons from di�erentpairs, one must �rst use the F -moves to rotate to a basis where the anyons to bebraided are fused, i.e. where the a
tion of R is de�ned (see Figure 2.4(
)). Afterapplying R to implement the ex
hange, one 
an return to the original basis with
F−1 to �nd the 
orresponding evolution. (b) When the σ's from di�erent pairs areex
hanged twi
e, the evolution in V ψ

σ4
with basis {|Ψ1〉, |Ψ2〉} is proportional to a σxrotation, (3.9). This pro
ess 
an be thought of as a ψ being teleported between thetwo pairs.

45



Chapter 3. Non-Abelian Fusion Rules and Braid Statisti
s3.3.2 Dis
rete holonomiesTo evaluate the a

umulated wave fun
tion evolution 
orresponding to the mon-odromy, we need to employ the transport proto
ol of Figure 3.2 to simulate thevortex transport using dis
rete steps. To this end we derive �rst a 
onvenient dis-
rete expression for the holonomy.Consider a Hamiltonian H(λ) with n-fold degenera
y {|Ψα(λ)〉|α = 1, . . . , n}that depends on some parameters λ. When we adiabati
ally vary λ along a 
losedpath C, the evolution of the degenerate subspa
e is given by the holonomy [97℄
ΓC = P exp

∮

C
Aµ(λ)dλµ, [Aµ(λ)]αβ = 〈Ψα(λ)|

d

dλµ
|Ψβ(λ)〉 (3.10)where P denotes path ordering in λ, and Aµ(λ) is the 
onne
tion in the spa
e ofstates |Ψα(λ)〉 above the 
ontrol parameter spa
e . Let us dis
retize the path C into

T in�nitesimal intervals of length δλ with λt denoting the 
ontrol parameter valueat step t. We 
an write
ΓC = lim

T→∞
P

T
∏

t=1

[11 + δλµA
µ(λt)] . (3.11)Dis
retizing the derivative in Aµ(λ), it follows that

[Aµ(λt)]αβ =
1

δλµ
〈Ψα(λµ,t)|Ψβ(λµ,t+1)〉 − δαβ . (3.12)Inserting this into the dis
retized holonomy (3.11), and grouping the states at step

t together, we obtain
ΓC = lim

T→∞
P

T
∏

t=1

(

n
∑

α=1

|Ψα

(

λt
)

〉〈Ψα

(

λt
)

|
)

. (3.13)This 
onvenient form means that in the limit δλ→ 0 the holonomy 
an be 
al
ulatedas an ordered produ
t of proje
tors onto the ground state spa
e at ea
h step t alongthe path C. 46



3.3. Non-Abelian statisti
s as a Berry phaseResolving the gauge freedomIn general, the non-Abelian holonomy (3.10) is not gauge invariant. This is due tothe freedom to rotate the basis ve
tors at every step t by |Ψα(λt)〉 → gt|Ψα(λt)〉 bysome n× n unitary matrix gt. This transforms the 
onne
tion Aµ at step t by
gt : Aµ(λt) → g†tA

µ(λt)gt + g†t∂µgt. (3.14)It follows that the holonomy transforms as
g : ΓC → gΓCg

†, (3.15)where g ≡ g1 = gT , whi
h is guaranteed by 
hoosing expli
itly |Ψα(λ1)〉 = |Ψα(λT )〉[98℄. Be
ause Tr(ΓC) = Tr(g†ΓCg), only the tra
e of a non-Abelian holonomy isgauge invariant, and thus resolving the full form of the matrix ΓC is in general notunambiguous.In an a
tual physi
al system like ours, the states |Ψα〉 are never perfe
tly degen-erate. This means that instead of g being a rotation in a degenerate spa
e, it onlyassigns independent phases to ea
h state, i.e. g = diag(eiφ1 , . . . , eiφn). The diagonalelements of ΓC will be naturally gauge invariant, with the o�-diagonal elements a
-quiring some 
orrelated phases. To be pre
ise, when ΓC is a 2×2 unitary, the gaugetransform a
ts as
g :











[ΓC ]12 → [ΓC ]12 e
i(φ1−φ2)

[ΓC ]21 → [ΓC ]21 e
−i(φ1−φ2)

(3.16)When ΓC is unitary, and predominantly o�-diagonal, i.e. |[ΓC ]12| = |[ΓC ]21| ≈ 1, we
an remove the phases by repla
ing the o�-diagonal elements of ΓC with
[ΓC ]12, [ΓC ]21 → ±

√

[ΓC ]12[ΓC ]21. (3.17)The residual overall sign freedom is �xed by 
ontinuity requirements.47



Chapter 3. Non-Abelian Fusion Rules and Braid Statisti
s3.3.3 Holonomy due to vortex transportTo redu
e the 
omplexity of the 
al
ulations, we 
onsider a �nite system of 2LxLyspins on a torus. This is equivalent to a (Lx, Ly)-unit 
ell with elements (2.15)-(2.18) when one sets p = 0 everywhere. The initial four-vortex 
on�guration isshown in 2.1(a), where the d parametrizes the minimal vortex separation at alltimes during the transport pro
ess.As shown in the previous se
tion, for large d this system has altogether four de-generate ground states arising from a pair of zero modes. Due to the 
onservation ofthe global fermioni
 parity, the degenerate states split into two orthogonal subspa
es
V 1
σ4 and V ψ

σ4
spanned by the pair-wise fusion 
hannel states (3.6) and (3.7), respe
-tively. For te
hni
al reasons we 
onsider here the latter 
ase, where the numeri
alrepresentations, (2.35), of the states |Ψ1〉 ≡ z†1|Ψ2v

0 〉 and |Ψ2〉 ≡ z†2|Ψ2v
0 〉} are givenby

|Ψα〉 =
LxLy−1
∑

{k,...,l=1|
k,...,l 6=α}

εk,...,l
√

(LxLy − 1)!
|ψ−
k 〉 ⊗ · · · ⊗ |ψ−

l 〉. (3.18)The 
ontinuous transport of the vorti
es is simulated by tuning the lo
al 
ou-plings J in TS steps along the path C in an ordered manner. Let us denote by |Ψts
α 〉the eigenve
tors at step ts, 1 ≤ ts ≤ TS , where t indexes a parti
ular plaquette alongthe path and s the intermediate lo
ations as required for the transport in Figure3.2. Using the properties of determinants, the inner produ
ts of the eigenve
torrepresentations (3.18) from steps ts and t′s are given by

〈Ψts
α |Ψ

t′s
β 〉 = det(B

tst′s
αβ ), [B

tst′s
αβ ]kl = 〈ψ−

k (ts)|ψ−
l (t

′
s)〉, (3.19)where 〈ψ−

k (ts)| (|ψ−
l (t

′
s)〉) spans now the modes belonging to the state 〈Ψts

α | (|Ψt′s
β 〉).Taking {λ} = {J} to be the 
ontrol parameter spa
e and assuming TS to bea su�
iently large, the dis
rete holonomy (3.13) for the degenerate states (3.18) is48



3.3. Non-Abelian statisti
s as a Berry phasewell approximated by
ΓC ≈ P

TS−1
∏

ts=1







det(Bts,ts+1
11 ) det(Bts,ts+1

12 )

det(Bts,ts+1
21 ) det(Bts,ts+1

22 )






. (3.20)This means that there is a simple algorithm to evaluate the holonomy:1. Diagonalize the Hamiltonian at ea
h step ts 
orresponding to a parti
ular
oupling 
on�guration J .2. Form the four inner produ
ts (3.19) of the eigenve
tors from steps ts and ts+1.3. Multiply the matri
es 
ontaining the inner produ
ts together a

ording to(3.20).This algorithm is 
onvenient for two reasons. First, one never needs to 
onstru
t thestates (3.18), whi
h in general are too large to be stored on a 
omputer. The innerprodu
ts (3.19) 
an be evaluated using only the mode spe
trum (2.33). Se
ond, allthese steps 
an be 
arried out in parallel.3.3.4 The study of the holonomyTo study how the holonomy depends on the system size, degenera
y of the states

|Ψα〉 and the fermion gap in a �nite system, we 
al
ulate ΓC for a range of K usingthe three parametrizations shown in Table 3.1.Adiabati
ity of the transportAs the vorti
es are transported, their relative separations vary. Due to the vortex-vortex intera
tions, this means that the spe
trum varies also with ts during thebraiding pro
ess. To 
onsider the e�e
t on ΓC , we de�ne the minimal fermion gap,
∆, and the maximum energy splitting between the two ground states, δ, by

∆ = min
ts

(Ets3 − Ets2 ), δ = max
ts

(Ets2 − Ets1 ), (3.21)49
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s
d S TS 2LxLy(i) 2 2·103 32·103 120(ii) 3 2·103 48·103 224(iii) 4 4·103 128·103 360Table 3.1: Three parametrizations (i), (ii) and (iii) for whi
h the holonomy is eval-uated. Here d is the minimal vortex separation in units of links, S is the numberof steps in 
hanging the sign of the 
oupling at every link, TS = 8Sd is the totalnumber of steps in C and 2LxLy = 8(d + 1)(2d + 1) gives the number of spins inthe system. S has been in
reased in (iii) to suppress a

umulation of dis
retizationerrors due to longer path.
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∆ (ii)
δ (ii)
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Figure 3.9: The minimal fermion gap ∆ and the maximum energy splitting betweenthe ground states δ, (3.21) as fun
tions of K for parametrizations (i), (ii) and (iii)given in Table 3.1. In agreement with the results on the thermodynami
 limit, thefermion gap grows linearly and the degenera
y improves with in
reasing K for allparametrizations. The fermion gap is relatively insensitive to the vortex separation,whereas the degenera
y improves when the vorti
es are further apart.
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3.3. Non-Abelian statisti
s as a Berry phaserespe
tively, where Etsk is now the kth eigenvalue at step ts. These are plotted inFigure 3.9 for the three parametrizations (i)-(iii) of the holonomy. We observe thatboth the fermion gap and the level of degenera
y improve as K and d in
rease.These agree with the behavior in the thermodynami
 limit as studied in Se
tion 3.2.Under the adiabati
 approximation the holonomy 
orresponds to the exa
t timeevolution when ∆ ≫ δ and δ → 0 [99℄. To physi
ally a

ommodate these 
onditionsin a �nite size system, the vortex transport should be fast enough 
ompared to δ forthe states |Ψts
α 〉 to appear as degenerate, but slow enough 
ompared to ∆ so that nofermioni
 ex
itation is produ
ed.We expe
t the parametrization (iii) where the vorti
es are furthest from ea
hother to be physi
ally the most relevant one. Figure 3.9 shows that for it δ

∆ . 10−2when K & 0.07. This region 
an support the adiabati
ity 
onditions and hen
e wetake K ≈ 0.07 as a lower bound for identifying a stable topologi
al phase for the�nite size system in 
onsideration.The resultsTo quantitatively study the holonomy, we introdu
e a �delity measure for a targetmatrix U and a test matrix V as
s(U, V ) =

1

4
Tr
(

UV † + V U †
)

. (3.22)When U and V are unitary 2 × 2 matri
es, we have that s(U, V ) = 1 if and only if
U = V , while in general s(U, V ) ≤ 1.We 
onsider �rst the unitarity of the transport. It is 
aptured by the �delity
s(11,ΓCl

Γ†
Cl
), whi
h measures how 
lose ΓCl

Γ†
Cl

is to an identity matrix. We plotit in Figure 3.10(a), where we 
an see that the unitarity measure is above 98% forall parametrizations (i)-(iii) when K . 0.10. For larger K we observe the unitarityredu
ing, whi
h we interpret being due to the 
oarse graining in our simulation. Theemployed algorithm, (3.20), approximates the holonomy well for the parametriza-tions (i)-(iii) only when K . 0.10. Therefore, we take this as a bound for our51



Chapter 3. Non-Abelian Fusion Rules and Braid Statisti
ssimulation's physi
al relevan
e. Together with the lower bound due to adiabati
ityof the transport, we expe
t the holonomy to 
oin
ide with an a
tual time evolutionin the range 0.07 . K . 0.10.The monodromy R̄2, (3.9), is 
hara
terized by its o�-diagonality. When thetransport is unitary, we 
an also 
hara
terize ΓC by its o�-diagonal elements. Afterthe gauge �xing (3.17), we take them to be some 
omplex numbers [ΓC ]12 = [ΓC ]21 =

reiθ, where 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π. To study ΓC we 
onstru
t two di�erent�delity measures, whi
h take the form:
s(|R̄2|, |ΓC |) = r, (3.23)

s̄(R̄2,ΓC) =
1

2
[s(R̄2,ΓCl

) + 1] =
1

2
[r cos(

π

4
+ θ) + 1]. (3.24)Here |U | denotes a matrix U with its elements repla
ed by their absolute values.

s(|R̄2|, |ΓC |) measures the o�-diagonality that 
hara
terizes R̄2, wheres s̄(R̄2,ΓC) isthe total �delity that a

ounts also for the overall phase. The residual sign ambiguityin the gauge �xing, (3.17), has been resolved based on the 
ontinuity of s̄.The holonomies for the three parametrizations (i), (ii) and (iii) in Table 3.1 areplotted in Figures 3.10(b)-(d), respe
tively. We 
onsider ea
h separately:(i) The holonomy shows no signi�
ant o�-diagonality over the 
onsidered range of
K. We attribute this to the too small size of the system (120 spins) where thevorti
es are always too near ea
h other (d = 2).(ii) The holonomy is predominantly o�-diagonal for 0.02 . K . 0.04. There isalso a small region aroundK ≈ 0.02 with s̄ > 0.9. However, sin
e in this region
δ
∆ > 10−1, the adiabati
ity 
onditions do not hold and thus we disregard it asunphysi
al.(iii) The holonomy is predominantly o�-diagonal for 0.02 . K . 0.09. The total�delity, s̄, has two regimes of interest in this region. Around 0.02 . K . 0.05 ittakes the limiting value s̄ ≈ 0.481, and in the region 0.08 . K . 0.10 it peaks at
s̄ ≈ 0.991. These 
orrespond to overall phases of the so 
alled SU(2)2 (s̄ = 1/2)52
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s as a Berry phase
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Figure 3.10: (a) The unitarity measure, s(11,ΓCl
Γ†
Cl
), as a fun
tion ofK for the three
on�gurations given in Table 3.1. The measure of o�-diagonality, s(|R̄2|, |ΓCl

|), andthe total �delity, s̄(R̄2,ΓCl
), as a fun
tion of K for the parametrizations (b) (i), (
)(ii) and (d) (iii). Based on unitarity and the adiabati
ity, we expe
t a stable phasein the area 0.07 . K . 0.10 bounded by the dashed verti
al lines.
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Chapter 3. Non-Abelian Fusion Rules and Braid Statisti
sand the Ising anyons (s̄ = 1), respe
tively. Both theories have the same parti
le
ontent with the fusion rules (2.28), but their statisti
s di�er [10℄. We disregardthe again 0.02 . K . 0.05 regime, be
ause it does not a

ommodate theadiabati
ity 
onditions. On the other hand, the 0.08 . K . 0.10 regime isphysi
ally relevant in the light of both adiabati
ity and the 
oarse graining inour simulation. In this regime the holonomy is both o�-diagonal and has thehighest total �delity.Finally, we verify the topologi
al nature of our 
al
ulation for all the parametriza-tions. First, when the evolution is topologi
ally trivial as shown in Figure 3.7(
),
ΓCo ≈ 11 with error less than 10−2. Se
ond, when the orientation of the braidingis reversed, we obtain inverse evolution, i.e. ΓC−1

l
= Γ†

Cl
. Third, the holonomy isnot a�e
ted by path deformations C → C ′, i.e. ΓC = ΓC′ , as longs as the topologyof the path remains invariant. Together these mean that the holonomy ΓC dependsonly on the spa
e-time topology of the path C when it is 
hosen as shown in Figure3.7(a). The result of our simulation should therefore 
orrespond to the statisti
s ofthe vorti
es.3.3.5 Dis
ussionThe main results are that the o�-diagonality of the holonomy ΓC improves system-ati
ally with the system size, and that the highest total �delity s̄ ≈ 0.991 appearsin the physi
al region 0.07 . K . 0.10. We regard these giving a validation of thenon-Abelian nature of the vorti
es as well as providing strong support that they areindeed Ising anyons. Our method is validated by the expli
it demonstration thatthe holonomy depends only on the spa
e-time topology of the path C.In Se
tion 3.2 we identi�ed the length s
ale ξ asso
iated with the vortex-vortexintera
tions. The improvement of the holonomy with in
reasing system size 
an bedire
tly related to the minimal vortex separation be
oming larger and larger than

ξ. For the parametrization (iii), there holds always d & 4ξ in the physi
al region,whi
h provides damping of the intera
tions by a fa
tor of at least 10−2. We regard54



3.3. Non-Abelian statisti
s as a Berry phasethis as providing a good approximation of the ds ≫ ξ 
riteria for the topologi
albehavior to emerge in a �nite size system.The physi
al domain of K was 
hosen su
h that it a

ommodated both theadiabati
ity and unitarity. The �rst was based on the energy splitting and fermiongaps, while the latter is due to the 
oarse graining in the simulation. Althoughwe observe systemati
 improvement of o�-diagonality with in
reasing system size,stri
tly speaking only the parametrization (iii) a

ommodates both of these 
riteriasimultaneously. In order to unambigously 
on�rm that the statisti
s 
onverges tothe Ising statisti
s as the system size in
reases, one needs better numeri
s with largervortex separation d and more 
ontinuous transport, i.e. larger S. Larger systemsshould also resolve the asymmetry between the o�-diagonality and the total �delity.The �rst exhibits now systemati
 improvement with the system size, while su
hbehavior is absent for the latter. It would be interesting to study whether the phaseis indeed more sensitive to the degenera
y splitting than the non-Abelian 
hara
tergiven by the o�-diagonality. Were the model ever employed for quantum informationpro
essing, su
h studies would relate dire
tly to the �delities of quantum gates.Our method of tuning the 
ouplings J on the links along the path 
an be di-re
tly translated, given su�
ient site addressability, to how one 
ould perform vortextransport in the experiments. Therefore, a 
al
ulation like ours provides exa
t pre-di
tions for experiments performed in �nite size systems. However, it has beenre
ently shown that the se
tor with a single ψ-parti
le should not a
tually exist ona torus [68℄. This problem 
ould be 
ir
umvented by 
arrying out a similar 
al
u-lation with a third vortex pair far away from the two used in the braiding. This
an be used to hide another ψ parti
le, su
h that the fermioni
 parity is even andthe degenerate ground states are still separated from the rest of the spe
trum bythe energy gap. This 
al
ulation would be te
hni
ally identi
al to ours and thus wewould expe
t similar results. Unfortunately systems of this nature were too largefor us to 
onsider and thus better numeri
s are again desirable.The reason we 
arried out the 
al
ulation in the se
tor with a single ψ-parti
le55



Chapter 3. Non-Abelian Fusion Rules and Braid Statisti
sis purely te
hni
al. In order to 
al
ulate the inner produ
ts, (3.19), required for theholonomy, the two degenerate states, (3.18), have to in
lude an equal number of themodes |ψ−
i 〉. In a se
tor with four vorti
es, this is possible only when employingstates that di�er by the in
lusion of the zero mode z†1 or z†2. Physi
ally there isnothing prohibiting 
onsidering the global va
uum se
tor. It would be desirable to�nd a method to 
arry out a similar 
al
ulation also dire
tly there.Despite of these te
hni
al limitations, we regard our study providing an im-portant general demonstration that a dire
t 
al
ulation of non-Abelian statisti
s ispossible in a variety of physi
ally relevant systems. Similar 
al
ulations have beenperformed previously by only using trial wave fun
tions [34, 94, 100℄. Ours is the�rst to employ exa
t eigenstates.3.4 SummaryIn this 
hapter we have expli
itly demonstrated the non-Abelian fusion rules andbraid statisti
s of the Ising anyons by using the exa
t solutions of the model. In the�rst part we found that the anyoni
 vorti
es are intera
ting with a 
hara
teristi
length ξ that depends inversely on the magnitude K of the time-reversal symmetrybreaking term. When the vorti
es are nearby, the intera
tions allowed us to asso
iatedi�erent degenerate states with the fusion degrees of freedom.In the se
ond part we 
al
ulated the braid statisti
s as a holonomy asso
iatedwith pro
ess where a vortex is transported around another. For the largest 
onsid-ered system where the vortex separation satis�ed d > 4ξ, we found a region in Kwhere the holonomy 
oin
ides with high �delity to the statisti
s of the Ising anyons.As this region also a

ommodates the adiabati
ity 
onditions, we regard it as astrong dire
t eviden
e for existen
e of non-Abelian anyons in the honey
omb latti
emodel.This 
on
ludes �The Dirty Work�, whi
h 
onsisted of the expli
it demonstrationof properties whi
h, in a sense, were all anti
ipated by a single integer, the Chernnumber ν = −1. However, we showed that the information it gives on the physi
s56



3.4. Summaryof the system is limited. New physi
s was dis
overed in the form of the intera
tions,whi
h set limits on the system size and the vortex density for the predi
ted topolog-i
al behavior to be manifest. Understanding these limits is of 
ru
ial importan
e toexperiments, whi
h will eventually be performed in �nite size systems. Also, only byunderstanding the mi
ros
opi
s of the system 
an one envisage 
ontrol pro
eduresto 
arry out the experiments. A prime example of this is our method of simulatingvortex transport through manipulating the 
ouplings J lo
ally. As this 
orrespondsto how transport 
ould be implemented also in laboratory, the performed 
al
ula-tions provide exa
t predi
tions for su
h experiments. Likewise, the energy gaps andthe lifting of zero mode degenera
y provide measures of stability and ways to dete
tthe fusion 
hannels of the vorti
es, respe
tively.The essential new dis
overy was the intera
tions, that are not part of the puretopologi
al theory, but arise due to the underlying mi
ros
opi
 model. Their role hasso far been two-fold. The identi�
ation of the zero modes with fusion 
hannels wasonly possible be
ause of them. On the other hand, they made the 
al
ulation of thestatisti
s harder resour
e-wise. The vorti
es had to be kept as far as possible, andthus larger systems were required. However, their signi�
an
e for the physi
s of thehoney
omb latti
e model goes beyond just modifying the pure topologi
al theory.In the next 
hapter we will show that the intera
tions 
an drive phase transitionsto 
ompletely new topologi
al phases.
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Chapter 4
Going Beyond: A New ChiralTopologi
al Phase
In this 
hapter we study the B-phase in the full-vortex se
tor of the honey
omblatti
e model. In Se
tion 4.1 we obtain the band stru
ture analyti
ally and outlinethe phase spa
e of the full-vortex se
tor. The B-phase is 
hara
terized now byChern number ν = ±2, whi
h implies a new phase where the vorti
es behave as
hiral Abelian anyons. By studying the Fermi surfa
e of the model, we identify anemergent symmetry that is responsible for the new phase. To study the transitionsto the tori
 
ode (ν = 0) and Ising (ν = −1) phases, we 
onsider in Se
tion 4.2 theevolution of the Fermi surfa
e under global perturbations. This is dis
overed to beequivalent to 
onsidering the low-energy �eld theory of Dira
 fermions 
oupled togauge �elds. We identify two distin
t types of topologi
al phase transitions based onFermi surfa
e symmetries and outline the extended phase spa
e. Finally, in Se
tion4.3 we illustrate the role of anyon-anyon intera
tions on the transition between thenon-Abelian Ising phase and the new 
hiral Abelian phase.
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Chapter 4. Going Beyond: A New Chiral Topologi
al Phase
(a) (b)Figure 4.1: The full-vortex 
on�guration 
an be 
reated, for instan
e, by allowingthe sign Jz to alternate in dire
tion nx, while keeping the Jx and Jy 
ouplingspositive. Dashed links denote the links where Jz < 0. (a) Inside the two plaquetteunit 
ell this is equivalent to setting Jz,1 = −Jz2 , whi
h gives (b) a vortex on everyplaquette.

4.1 The full-vortex se
tor
The 
hiral Abelian phase emerges in the B-phase (Jx ≈ Jy ≈ Jz and K > 0) ofthe full-vortex se
tor (wp = −1 on all plaquettes). This se
tor 
an be 
reated by
hoosing a (2, 1)-unit 
ell and using a gauge where, for instan
e, uij alternates on
z-links in dire
tion nx. In terms of 
ouplings, (3.1), this is equivalent to settinginside the unit 
ell Jz,1 = −Jz,2 as illustrated in Figures 4.1(a) and 4.1(b).Inserting these 
ouplings into (2.15)-(2.18), we obtain a Hamiltonian whi
h isunitarily equivalent to [86℄

Hp =







hbb hbw

h†bw −hTbb  , (4.1)where
hbw =







i(Jxe
ipx + Jye

ipy) iJz

iJz i(−Jxeipx + Jye
ipy)






(4.2)60



4.1. The full-vortex se
tor
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(a) (b)Figure 4.2: (a) The fermion gap ∆fv as a fun
tion of J = Jx = Jy when Jz = 1 fordi�erent values of K. The gap vanishes at J = 1/
√
2 when K = 0, but shifts tosmaller J as K is in
reased. When J = 1 the gap s
ales as ∆fv ≈ 2

√
2K. (b) Thephase diagram of the full-vortex se
tor. The shaded area shows the region wherethe phase transitions o

urs with the exa
t value of Jz depending on K. In thefull-vortex se
tor the B-phase supports 
hiral Abelian anyons des
ribed by Chernnumber ν = −2.and

hbb = K







sin(px − py) sin(py)− i cos(px)

sin(py) + i cos(px) − sin(px − py)






. (4.3)Diagonalization gives again the double spe
trum with the eigenvalues

±Ei,p = ±2

√

f(p) + (−1)i2
√

g(p), i = 1, 2, (4.4)where
fp = J2

x + J2
y + J2

z + 4K2(sin2(px − py) + sin2 py + cos2 px),

gp = J2
xJ

2
y cos

2(px − py) + J2
xJ

2
z sin

2 px + J2
yJ

2
z cos

2 py +

4K2
[

J2
x sin

2 py + J2
y cos

2 px + J2
x sin

2(px − py)

−(JxJy + JxJz + JyJz) sin(px − py) sin py cos px

]

.The expressions for the eigenve
tors are too 
ompli
ated to be obtained analyti
ally.61



Chapter 4. Going Beyond: A New Chiral Topologi
al PhaseSimilar to the study of the vortex-free se
tor in Se
tion 2.3, we outline the phasespa
e stru
ture of the full-vortex se
tor by 
onsidering the behavior of the energygap
∆fv = min

p
E1,p. (4.5)Figure 4.2(a) shows the behavior of ∆fv as fun
tions of J and K. In 
ontrast tothe vortex-free se
tor, in the full-vortex se
tor the gap persists deeper into the B-phase with the gap 
losing point depending now also on K. This in agreementwith [86℄, where the phase boundaries for K = 0 between the A- and B-phases inthe full-vortex se
tor were shown to be

|Jx|2| = |Jy|2 + |Jz|2, |Jy|2| = |Jz|2 + |Jx|2, |Jz |2| = |Jx|2 + |Jy|2. (4.6)The B-phase is again gapped only if K 6= 0. The phase spa
e of the full-vortexse
tor is illustrated in Figure 4.2(b).Evaluating the Chern numbers, (2.26), in the full-vortex se
tor, one �nds thatthe Aα-phases still give ν = 0 implying Abelian tori
 
ode anyons. However, the
B-phase gives now ν = −2, whi
h means it is a new topologi
ally ordered phase. Inthis phase the vorti
es behave as 
ertain 
hiral Abelian anyons as 
atalogued in [62℄.To 
larify how vorti
es 
an appear in the full-vortex se
tor, we emphasize again thatthe full-vortex se
tor should be viewed as the sign-alternated 
oupling 
on�gurationover the vortex-free se
tor (see Figures 4.1(a) and 4.1(b)). Over this ba
kgroundvorti
es 
an be de�ned as usual through the plaquette operators (2.9).4.1.1 Symmetries of the Fermi surfa
eTo understand why the B-phase turns out to be des
ribed by a new topologi
alphase, we study �rst its spe
trum. Let us normalize the 
ouplings as Jx = Jy = 1and Jz,1 = −Jz,2 = 1, whi
h amounts to 
onsidering the system in the middle ofthe B-phase. In parti
ular, we are interested in the Fermi surfa
e, the manifold ofo

upied states of highest energy, that plays an integral role in fermion systems [79℄.62



4.1. The full-vortex se
tor

(a)

(b)Figure 4.3: (a) The vortex-free band stru
ture, (2.23), and (b) the full-vortex bandstru
ture, (4.4), of the phase B plotted a
ross the �rst Brillouin zone when Jx =
Jy = Jz = 1 and K = 0. In the �rst 
ase there are two Fermi points at Q0

± =
±(2π3 ,−2π

3 ), whereas in the latter 
ase there are four Fermi points at Q1
± = ∓(π3 ,

π
6 )and Q2

± = ±(−π
3 ,

5π
6 ). The dispersion relation is linear around all the Fermi points.
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Chapter 4. Going Beyond: A New Chiral Topologi
al PhaseDi�erent Fermi surfa
e topologies 
orrespond in general to di�erent phases.In our 
ase the Fermi surfa
e 
oin
ides with the band −E1,p, as it 
ontains thestates highest (lowest negative) energy that belong to the ground state (2.20). It isbest visualized by plotting the band stru
ture a
ross the �rst Brillouin zone. For
omparison, we plot in Figures 4.3(a) and 4.3(b) the band stru
ture of both thevortex-free, (2.23), and full-vortex se
tors, (4.4). Both are 
hara
terized by 
oni
alFermi points around whi
h the dispersion relation is linear. To be pre
ise, there aremomenta Q around whi
h E1,p satis�es
E1,Q = 0, E1,Q+k ∼ k, |k| ≪ 1. (4.7)The 
ru
ial di�eren
e is that while the vortex-free se
tor that has two Fermi points(Q0

± = ±(2π3 ,−2π
3 )), the full-vortex se
tor has four (Q1

± = ∓(π3 ,
π
6 ) and Q2

± =

±(−π
3 ,

5π
6 )). This means that they have distin
t topologies, and hen
e 
orrespond todi�erent phases in agreement with di�erent Chern numbers. For K > 0 the Fermipoints are gapped with the dispersion relation around them be
oming quadrati
.However, the 
hara
terization of the phases based on their Fermi surfa
e topologiesstill holds. Only when gaps 
lose and reopen 
an the topology 
hange permanently.As the Fermi surfa
e topology 
an di�erentiate between di�erent phases, it isimportant to understand what physi
al properties of a theory 
an give rise to aparti
ular Fermi surfa
e. These are in general related to the global spatial symme-tries Hamiltonian, whi
h a
t lo
ally in the momentum spa
e. Let us 
onsider theHamiltonian (4.1) of the full-vortex se
tor, whi
h has the following symmetries when

K = 0:
Γ = σz ⊗ 11 : ΓHpΓ

† = −Hp, (4.8)
Θ = σx ⊗ 11 : ΘHpΘ

† = −H−p, (4.9)
Λ = 11⊗ σy : ΛHpΛ

† = −Hp+πny . (4.10)
Γ and Θ des
ribe the parti
le-hole and sublatti
e symmetries that guarantee the64



4.2. The Fermi surfa
e evolutiondouble spe
trum and the even number of Fermi points, respe
tively. They botharise due to the honey
omb latti
e geometry and they are therefore present alreadyin the vortex-free Hamiltonian with the spe
trum shown in Figure 4.3(a).The symmetry Λ is new and spe
i�
 only to the full-vortex se
tor. It a
ts on theindi
es that 
orrespond to the two z-links inside the unit 
ell. Ex
hanging these linksmaps (Jz,1, Jz,2) = (−1, 1) → (1,−1), whi
h preserves the full-vortex se
tor. It isstill a non-trivial transformation, be
ause the 
orresponding gauges are inequivalentunder the lo
al gauge transformations Di, (2.6). At the level of the honey
omblatti
e, Λ 
an be thought of as an emergent global Z2 latti
e symmetry, that isresponsible for the further doubling of the Fermi points. In Se
tion 4.3 we provideanother interpretation in terms of the vortex-vortex intera
tions.When K 6= 0, i.e. when the time-reversal symmetry is broken, the symmetries(4.8)-(4.10) hold no longer independently. However, they 
an be 
ombined su
h thatthe Hamiltonian still satis�es
Γ1 ≡ iΓΘ = σy ⊗ 11 : Γ1HpΓ

†
1 = H−p, (4.11)

Γ2 ≡ ΓΛ = σz ⊗ σy : Γ2HpΓ
†
2 = Hp+πny . (4.12)These guarantee that the double spe
trum stru
ture still holds and that the relativelo
ations of the Fermi points remain invariant even when they are gapped. As thestru
ture of the Fermi surfa
e is fully 
ontained in the symmetries (4.11) and (4.12),it is natural to expe
t that breaking them will lead phase transitions. This will bethe topi
 of next se
tion.4.2 The Fermi surfa
e evolutionIn prin
iple one 
ould 
arry out an analysis like that of Chapter 3 to verify the
hara
teristi
 properties of the new 
hiral Abelian anyons. We leave this for futurework and 
on
entrate here instead on the phase transitions. This is performed bystudying the evolution of the Fermi surfa
e that was shown above to distinguish the65



Chapter 4. Going Beyond: A New Chiral Topologi
al Phasedi�erent phases. Unlike the Chern number, the Fermi surfa
e evolves 
ontinuouslyunder perturbations and hen
e it provides a natural setting to study the phasetransitions. To this end we 
onsider the low-energy theory of Dira
 fermions, whi
hallows us to relate the Chern number to the Fermi surfa
e topology and provides adual pi
ture in terms of 
oupling to gauge �elds.4.2.1 The low-energy �eld theory of Dira
 fermionsWe have identi�ed above the global Hamiltonian symmetries (4.11) and (4.12) thatare responsible for the distin
t Fermi surfa
e topologies. At the phase transitionswhere the topologies 
hange, the Fermi points have to be 
reated or annihilated pair-wise unless both symmetries are simultaneously broken. Therefore, it is naturalto assume that perturbations whi
h drive phase transitions lead to a 
ontinuoustransport of the Fermi points. The way this o

urs is most 
onveniently studied by
onsidering the low-energy theory around the Fermi points.We set again Jx = 1, Jy = 1 and (Jz,1, Jz,2) = (−1, 1), i.e. 
onsider the system�rst at the 
enter of the 
hiral Abelian phase. The linearization is performed byexpanding the Hamiltonian (4.1) to �rst order around the Fermi point Q by writing
p = Q+ k, with |k| ≪ 1. In general, one obtains

HQ = H0
Q +Hx

Qkx +Hy
Qky +O(k2), (4.13)for some 4× 4 matri
es Hη

Q. When K = 0, H0
Q must have two zero eigenvalues. Itfollows that we 
an de�ne a proje
tion onto the 2-dimensional low-energy spa
e by

H̄Q = PUQHQU
†
QP, (4.14)where in our normalization UQH

0
QU

†
Q = diag(√6, 0, 0,−

√
6) and P = diag(0, 1, 1, 0).Around ea
h of the four Fermi points Qi

±, the Hamiltonian be
omes
H̄Qi

±
≈ σ

i
± · ki ∓ σz

K

2
√
3
. (4.15)66



4.2. The Fermi surfa
e evolutionHere σ
i
± = (σx,±(−1)iσy) give di�erent representations of the algebra of Dira
matri
es in two dimensions [101℄. The momentum has been res
aled by ki =

(
aikx−ky
1+ai

,
kx−aiky
1+ai

), with the Fermi point dependent 
onstant being given by ai =

2− (−1)i
√
3.Fermi surfa
e topology and the Chern numberBe
ause the low-energy Hamiltonian (4.15) is linear in k, it des
ribes relativisti
Dira
 fermions [101℄. Due to the appearan
e of the term proportional to σz, thefermions are massive. We interpret this mass to be due to a s
alar �eld of magnitude

K, whi
h 
ouples 
hirally, i.e. with a di�erent sign, at the di�erent Fermi points.The e�e
t of su
h 
hiral 
oupling is to give opposite mass to the Dira
 fermions at
Qi

+ and Qi
−. This general me
hanism where the Fermi points are gapped due totime-reversal symmetry breaking was dis
overed by Haldane [82℄. It is known togive rise to a 
hiral phase, whi
h is 
hara
terized by a non-zero Chern number su
hthat every Fermi point pair will 
ontribute ν = ±1.We 
an verify this argument in our 
ase by using a topologi
al argument given byKitaev [62℄, whi
h relates the Fermi surfa
e topology to the Chern number. Let us�rst normalize the Hamiltonian (4.15) by Ĥk = H̄k/|H̄k|. As a fun
tion of k a
rossthe whole Brillouin zone, Ĥk 
an then be interpreted as de�ning an orientationpreserving mapping from a torus (the �rst Brillouin zone) to a unit sphere en
losingthe origin (
oordinates given in the basis {σα}). The number of times this map windsaround the sphere gives the Chern number [102℄. When K = 0 the orientation ofthe Fermi points 
an be 
hara
terized by the winding number [103℄

µQ =
1

4πi

∮

CQ

Tr (ΓH−1
p dHp

)

, (4.16)where CQ is a loop in the momentum spa
e around Fermi point Q and Γ = σz ⊗ 11.This orientation is preserved for non-zero K. Due to the 
hiral 
oupling of K > 0,the neighborhoods of both Qi
+ (Qi

−) with orientations µQi
+
= +1 (µQi

−
= −1) aremapped to the lower (upper) hemisphere. As the 
ontribution of K vanishes away67



Chapter 4. Going Beyond: A New Chiral Topologi
al Phase

Figure 4.4: The normalized Hamiltonian Ĥk de�nes a mapping from the Brillouinzone, whi
h is topologi
ally a torus T 2, to a unit sphere S2. Depending on the sign ofthe term ±Kσz, the Fermi points are mapped to either lower or upper hemisphere.As the ones with same orientations µ end up to same hemispheres, the map windsaround the unit sphere twi
e when viewed from the origin.from the Fermi points, the rest of the Brillouin zone is mapped to the equator. Weillustrate this in Figure 4.4. When viewed from the origin en
losed by the unitsphere, the four Fermi points imply that the map winds twi
e around the spheregiving the Chern number ν = −2.
4.2.2 Topologi
al phase transitions driven by gauge �eldsWe have seen above that Fermi points together with the 
hiral s
alar �eld K giverise to a topologi
ally ordered phase 
hara
terized by a non-zero Chern number.Even though a non-zero K is required to open the energy gaps and 
al
ulate theChern number, it does not alter signi�
antly the lo
ations of the Fermi points, whi
hdepend predominantly only on the 
ouplings J . Therefore, the phase transitions aredue to J perturbations, that 
an transport the Fermi points. In the low-energytheory of Dira
 fermions, this is equivalent to 
oupling to gauge �elds as shownbelow. We set K = 0 for the time being and 
onsider the system in the middle ofthe 
hiral Abelian phase (Jx = 1, Jy = 1 and (Jz,1, Jz,2) = (−1, 1)).68
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e evolution
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(a) (b)Figure 4.5: A numeri
al study of the evolution of Fermi point lo
ations (bla
k dots)a
ross the �rst Brillouin zone when (a) δJ1 = 0 → ∞ (ν = −2 → 0 transition) and(b) δJ2 = 0 → 1 (ν = −2 → −1 transition). In (a) all the Fermi points annihilatewhen δJc1 =
√
2 − 1, whereas in (b) only the Q1

± Fermi points annihilate when
δJc2 = 1

4 .Transition to the tori
 
ode (ν = 0) phaseLet us 
onsider �rst the transition to the phase with non-
hiral Abelian tori
 
odeanyons (ν = 0). It appears, for instan
e, when |Jz | ≫ |Jx|, |Jy| as shown in Figure4.2. In this limit the transition 
an be understood as being due to dimerization onthe z-links.We model it as the Hamiltonian perturbation δH1 = iδJ1
∑

r cb,rcw,r, whi
h inthe linearized pi
ture (4.13) around ea
h of the four Fermi points translates to
δH0

1,Qi

±

= −δJ1σy ⊗ σx. (4.17)Let us treat the Fermi points Qi
+ and Qi

− as being paired, su
h that we 
an 
ombinetheir Hamiltonians (2.14) as
H̄Qi = diag(H̄Qi

+
, H̄Qi

−
). (4.18)Assuming then the perturbation to be small, i.e. δJ1 ≪ 1, a proje
tion, (4.14), of69



Chapter 4. Going Beyond: A New Chiral Topologi
al Phasethe perturbation (4.17) gives the low-energy Hamiltonian
H̄Qi + δH̄j,Qi = α

i · (ki + γ5Ai
j). (4.19)Here αi = (11⊗σx, (−1)iσz⊗σy) form a four-dimensional representation of the Dira


α-matri
es, γ5 = σz ⊗ 11 is the 
hiral matrix and
Ai

1 = δJ1
(ai − 1)

ai + 1
(1, 1). (4.20)This Hamiltonian des
ribes the Dira
 fermions being 
oupled to a gauge �eldAi

1. Inparti
ular, due to the appearan
e of γ5, whi
h des
ribes Ai
1 
oupling at the pairedFermi points Qi

+ and Qi
− with opposite signs, we interpret it as a 
hiral gauge �eld[104℄.As ki = (0, 0) no longer gives a vanishing Hamiltonian, the 
oupling to the gauge�eld shifts the Fermi points Qi

+ and Qi
− by Ai

1. Due to 
hiral 
oupling, both ofthe paired points are shifted towards ea
h other, su
h that the dire
tion is the samefor both pairs. This agrees with δH0
1,Qi

±

respe
ting both symmetries (4.11) and(4.12). It implies also that if the Fermi points are to vanish, they have to do itsimultaneously. This is indeed the 
ase as shown in Figure 4.5(a), where we plot thetraje
tories of the Fermi points as fun
tions of the perturbation magnitude δJ1. Itdemonstrates that dimerization in the large δJ1 limit 
an 
ause lo
alization of thefermions on the z-links and thus 
ompletely remove the Fermi points.Transition to the Ising anyon (ν = −1) phaseWe 
an similarly study the transition to the non-Abelian Ising phase (ν = −1),whi
h o

urs for the uniform 
oupling 
on�guration (Jz,1, Jz,2) = (1, 1) . Changingthe sign of the 
ouplings on alternating z-links 
an be modelled by the Hamiltonianperturbation δH2 = iδJ2
∑

r(1−eiπr·nx)cb,rcw,r, whi
h interpolates between the sign-alternated (δJ2 = 0, full-vortex se
tor) and the uniform (δJ2 = 1, vortex-free se
tor)
ouplings 
on�gurations. 70



4.2. The Fermi surfa
e evolutionA linearization of this perturbation around the four Fermi points gives
δH0

2,Qi
±

= δJ2σ
y ⊗ (σx − 11), (4.21)whi
h respe
ts the sublatti
e symmetry (4.11), but breaks (4.12), the emergentsymmetry responsible for the 
hiral Abelian phase. The low-energy theory is againa Dira
 �eld 
oupled to a 
hiral gauge �eld (4.19), but now with

Ai
2 =

δJ2
ai + 1

(1, (−1)i+1
√
3). (4.22)The 
ru
ial di�eren
e is that the 
omponents of Ai

2 depend now on the Fermi points,whi
h means that the 
oupling to this �eld shifts the pairs Q1
± and Q2

± independentof ea
h other. This is 
on�rmed by Figure 4.5(b), where the traje
tories of the Fermipoints are plotted as fun
tions of δJ2. It shows that large δJ2 distortions 
an 
ausethe Q1
± Fermi points to annihilate while only transporting the other two.We interpret the transitions driven by (4.17) and (4.21) as being fundamentallyof di�erent type. The �rst obeys the global symmetries (4.11) and (4.12), but alo
alization me
hanism drives the transition making the Aα phases band insulatorswith no Fermi points. Still, the ground state is topologi
ally ordered, but the 
hiral-ity is lost when the Fermi points vanish. On the other hand, δJ2 driven transitionis due to a breaking of one of the symmetries and thus does not 
ompletely removethe Fermi points. Although the Fermi surfa
e topology, i.e. the number of Fermipoints, and the Hamiltonian symmetries responsible for them hold in prin
iple thesame information about the phase, we regard the pi
ture of symmetries more il-lustrative. While the 
ontrary is not always true, a perturbation breaking a Fermisurfa
e symmetry should always lead to a phase transition.The extended phase spa
eBe
ause of the symmetries (4.11) and (4.12), the study of the Fermi point transportholds also forK 6= 0. As δJi is varied, the gapped Fermi points (the minima/maxima71
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al Phase

Figure 4.6: A se
tion of the phase spa
e as a fun
tion of δJ1 and δJ2 when |Jα| = 1and K > 0. The dashed lines are the phase boundaries and the 
ir
les are thelo
ations of the K dependent 
riti
al points δJc1 =
√
2 +K2 − 1 and δJc2 = 1+K2

4 .of the bands E±
1,p) follow the same traje
tories, although slower for larger K. Theannihilations still o

ur at the points Qc = {(0, 0), (π2 , 0), (π2 , π)}, where the gapalways 
loses. We 
an use this information to obtain the K dependent 
riti
alpoints δJci .At exa
tly the 
riti
al momenta Qc there must hold

PUQc(H
0
Qc

+ δHi)U
†
Qc
P = 0, (4.23)whi
h gives at every 
riti
al momenta the same single independent equation. For

δH1, (4.17), and δH2, (4.21), this gives the analyti
 
riti
al points
1 + δJc1 =

√

2 +K2, (4.24)
δJc2 =

1 +K2

4
, (4.25)respe
tively. We 
an see from Figure 4.2(a) that (4.24) agrees with the numeri
allyobtained shifting of the phase transition point.72



4.3. The role of anyon-anyon intera
tions in the phase transitionIn Figure 4.6 we outline the extended phase spa
e as fun
tions of δJ1 and δJ2showing the three distin
t topologi
al phases. The 
riti
al perturbations (4.24)and (4.25) 
an be translated to relative 
oupling 
on�gurations. In general, the Kdependent tri-
riti
al point δJc1 o

urs when
J2
z = J2

x + J2
y +K2, (4.26)and similarly also for the other phase boundaries, (4.6). Likewise, when δJ1 = 0the transition between the 
hiral phases when o

urs when the Jz 
ouplings on thealternating rows satisfy

Jz,1 =
K2 − 1

2
Jz,2. (4.27)Both (4.26) and (4.27) show that a larger K has a stabilizing e�e
t on the ν = −2phase by making it more resistant to relative 
oupling �u
tuations. The reasonbehind this lies in the role of anyon-anyon intera
tions whi
h are the topi
 of nextse
tion.4.3 The role of anyon-anyon intera
tions in the phasetransitionThe transition from the non-Abelian Ising phase to the 
hiral Abelian phase hasbeen predi
ted to arise due to anyon-anyon intera
tions [14, 25, 105, 106℄. Thebasi
 idea is that intera
tions between anyons a
t as a Hamiltonian on the fusiondegrees of freedom by favouring 
ertain fusion 
hannels while assigning an energypenalty to others. This gives rise to a new emergent theory, where the new degreesof freedom are the fusion 
hannels of the underlying anyon model. Although theoriginal mi
ros
opi
 and anyoni
 properties are lost, the new theory 
an be thoughtof as a nu
leated topologi
al liquid that 
an support other types of anyons as 
ol-le
tive quasiparti
le ex
itations. Depending on the types of anyons intera
ting andwhi
h fusion 
hannels are favoured, both topologi
al and non-topologi
al phases 
an73
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al Phase
(a) (b) (
) (d)Figure 4.7: A s
hemati
 illustration of the emergen
e of the full-vortex band stru
-ture in Figure 4.3 due to intera
ting anyoni
 vorti
es (bla
k squares) as the vortexdensity is in
reased. (a) A separated pair of vorti
es 
arries a zero mode. (b) Short-range intera
tion 
auses the zero mode to a
quire momentum dependen
e. (
) Thepresen
e of many intera
ting vorti
es 
auses the zero modes to form a band. (d)The full-vortex band stru
ture.appear.As demonstrated by Figure (3.6)(b), the non-Abelian Ising anyons appearing inthe honey
omb latti
e model are intera
ting. These intera
tions exhibit os
illations,(3.3), and their range is 
ontrolled by the parameter ξ. When the vorti
es o

upyneighbouring plaquettes, su
h as in the full-vortex se
tor, the va
uum fusion 
hannelis always favoured. For this 
ase the general theory predi
ts that non-Abelian natureis lost, while the 
hirality is preserved [25℄. This is exa
tly the transition impliedby the Chern number 
hange ν = −1 → −2, whi
h we have veri�ed both through adire
t 
al
ulation using eigenstates, (2.26), as well as by studying the Fermi surfa
eevolution, (4.15).We 
an establish the role of intera
tions also from the spe
tral evolution as thevortex density is in
reased. Based on numeri
al studies, we provide a s
hemati
illustration in Figures 4.7(a)-(d):(a) As demonstrated in Chapter 3, isolated vorti
es introdu
e zero modes, thathave zero energy when the vorti
es are mu
h further from ea
h other than the
hara
teristi
 intera
tion length ξ.(b) When the vorti
es are nearby, the zero modes a
quire a momentum dependen
edue to the intera
tions (3.3). 74



4.3. The role of anyon-anyon intera
tions in the phase transition(
) When many vorti
es intera
t with ea
h other simultaneously, the zero modesdes
ribing the fusion 
hannels 
an be no longer asso
iated with 
ertain vortexpairs. Their 
hara
teristi
 behavior is lost and they start forming a new bandstru
ture whi
h is separated from the free-fermion bands.(d) Finally, as the vortex density approa
hes the limiting full-vortex se
tor, thisband a
quires the four Fermi points, that 
hara
terize the behavior of the newphase. The emergent band and the free-fermion band are separated in energy.Exa
tly half of the states in the spe
trum belong to ea
h.Based on this spe
tral evolution, we 
an identify the bands ψ±
1 in Figure 4.3(b)being due to the intera
ting anyoni
 vorti
es, whereas the bands ψ±
2 
orrespond stillto the free fermions. As the emergent low-energy bands ψ±

1 are responsible for the
hange in the Fermi surfa
e topology, we 
an 
on�rm the anyon-anyon intera
tionsas being responsible for the transition.This role of intera
tions in the phase transition �ts also with the observationthat a larger K has a stabilizing e�e
t only on the ν = −2 phase. This has to dowith the os
illations in the intera
tions, (3.3), whi
h imply that anyons at di�erentseparations favour di�erent fusion 
hannels. Near the phase boundaries the os
illa-tion period is smaller and thus there is more 
ompetition between di�erent fusion
hannels. A larger K brings down the intera
tion range ξ and dampens the os
il-lations, whi
h makes the nearest neighbour intera
tions stronger relative to longerrange ones. Therefore, a larger K extends the area in the phase spa
e where thenearest neighbour intera
tions responsible for the new phase dominate.Finally, the role of intera
tions provides an intriguing alternative way to under-stand the origin of the emergent symmetry Λ that is responsible for the new phasein the full-vortex se
tor. Although we 
an not make this interpretation rigorousyet, we present it here as it paves way to interesting future resear
h. The idea isas follows. In Chapter 3 we reviewed how the Ising anyons 
an be understood aslo
alized bound states of Majorana fermions γi at the vortex 
ores [83℄, with theintera
tions being due to their tunneling [93℄. In the full-vortex se
tor the vorti
es75
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al Phase

Figure 4.8: In the full-vortex se
tor the vorti
es o

upy the verti
es of the triangulardual latti
e of the honey
omb latti
e. The ground state for the Hamiltonian forMajorana fermions on a triangular latti
e o

urs for π
2 -�ux per plaquette. This 
anbe e�e
tively a
hieved by setting sij = 1 on solid links and sij = −1 on dashedlinks, whi
h gives a π-�ux on every other triangular plaquette. Su
h 
on�gurationis periodi
 respe
t to bi-
oloring the 
olumns bla
k and white, whi
h gives rise tothe latti
e symmetry Λ under their ex
hange.

form a triangular latti
e, whi
h is the dual latti
e of the honey
omb latti
e. We
an thus envisage modeling the tunnelings of the Majorana fermions on a triangularlatti
e by a Hamiltonian
H = t

∑

ij

sijγiγj , (4.28)where the t is the tunneling amplitude related to the nearest neighbour intera
tionsand sij = ±1 des
ribes a lo
al gauge freedom. The ground state of su
h Hamiltoniano

urs when one imposes a π
2 -�ux per triangular plaquette [106℄, whi
h requires theunit 
ell to 
ontain two sites, i.e. two vorti
es on the honey
omb latti
e (see Figure4.8). Therefore, we 
onje
ture that the symmetry Λ, (4.10), a
ting on the z-linksof the honey
omb latti
e, is inherently a latti
e symmetry on the vortex latti
e.Likewise, we postulate that the states in the bands |ψ±

1 〉 are eigenstates of (4.28)and live on the dual latti
e. This is exa
tly the pi
ture envisaged in [25℄ about theintera
tions nu
leating a new topologi
al phase on top of the original one. It is aninteresting proje
t to make this 
onne
tion rigorous.76



4.4. Summary4.4 SummaryIn this 
hapter the full-vortex se
tor of the honey
omb latti
e model has been stud-ied. We showed that the B-phase no longer supports non-Abelian Ising anyons, butis instead des
ribed by 
hiral Abelian anyons. We showed that this agrees with thepredi
tion by anyon-anyon intera
tion driven phase transitions [14, 25℄, and illus-trated expli
itly how the intera
tions mi
ros
opi
ally give rise to the new phase.To understand the di�erent phases beyond the Chern number, we 
onsideredtheir Fermi surfa
es. These des
ribe the 
hara
teristi
 long-range properties, whi
hare manifest as a di�ering number of Fermi points in ea
h phase. In agreementwith [82℄, we showed that the dis
overed ν = −2 phase is 
hara
terized by fourFermi points. As an alternative way to 
hara
terize the phases, we identi�ed thesymmetries that are responsible for the Fermi surfa
e topologies. In parti
ular, wedis
overed that the full-vortex se
tor gives rise to a new latti
e symmetry, that isresponsible for the further doubling of Fermi points. We observed that phase transi-tions may o

ur either through breaking of the Fermi surfa
e symmetries or due toother me
hanisms su
h as lo
alization. It is an interesting topi
 of future resear
h toobtain a more holisti
 pi
ture of the di�erent phase transition me
hanisms manifestin the honey
omb latti
e model.Having established the 
onne
tion between Hamiltonian symmetries, the Fermisurfa
e topology and the di�erent topologi
al phases, we studied how the Fermisurfa
es evolve under phase transition driving perturbations. By monitoring thetransport of Fermi point we identi�ed the lo
ations in the momentum spa
e wherethe phase transitions o

ur and used them to derive analyti
ally the 
riti
al behaviorof the extended phase spa
e. This is a novel te
hnique, whi
h 
ould be employedin a variety of fermion problems. We performed the analysis numeri
ally, but itwould be desirable to be able to infer the 
riti
al momenta, i.e the lo
ations in themomentum spa
e where the gap 
loses, dire
tly from the Hamiltonian.As an analyti
 study of the Fermi surfa
e evolution, we 
onsidered the low-energy�eld theory of Dira
 fermions. It was shown that perturbations translate to 
hiral77



Chapter 4. Going Beyond: A New Chiral Topologi
al Phasegauge �elds, that always lead to a transport of the Fermi points. We found that theform of the gauge �elds is dire
tly related to the driving perturbations obeying orbreaking the Fermi surfa
e symmetries. Although this o�ers an attra
tive alternativepi
ture, it does not reveal at the 
urrent level new physi
s beyond the Fermi surfa
esymmetries. Finding analyti
ally a full gauge theory des
ription similar to graphene,[104℄, would provide new insight. Still, we note that although Fermi point transporthad been studied before in the 
ontext of fermion systems subje
ted to disorder[107℄, strain [108℄ or non-Abelian gauge �elds [109℄, our results show analyti
allythe role of gauge �elds for the �rst time.
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Chapter 5
Con
lusions
In this thesis we have demonstrated that in exa
tly solvable systems one 
an gobeyond the Chern number when studying the anyoni
 ex
itations. The key advan
ewas the generalization of the solution of the model to arbitrary vortex se
tors, whi
henabled to study the physi
s of only few vorti
es at a time. These studies revealedthat the vorti
es introdu
e zero modes to the spe
trum, whi
h 
an a
quire �niteenergy due to short-range intera
tions. By 
onsidering the spe
tral evolution asa fun
tion of the vortex separation, the intera
tions enabled us to unambiguouslyidentify the zero modes with the fusion degrees of freedom of the Ising anyons. Ourresults using the exa
t solution agreed with the predi
tions of p-wave super
ondu
-tors where the analysis employs e�e
tive �eld theory [81, 83, 89�93℄. Furthermore,we fully 
hara
terized the low-energy spe
trum by obtaining the 
oupling dependentenergy gaps and the length s
ales of the system.The understanding of the low-energy spe
trum enabled us to 
onsider the non-Abelian statisti
s, that together with the fusion rules provide full 
hara
terizationof the anyon model. The 
al
ulation was 
arried out by evaluating the holonomy as-so
iated with a transport pro
ess where a vortex winds around another. We showedthat su
h a 
al
ulation is possible for any system where the ground state admitsrepresentation in terms of Slater determinants, i.e. the Hamiltonian is diagonal inthe basis of free fermions. By 
onsidering a range of �nite systems and parameters,79



Chapter 5. Con
lusionswe observed the holonomy 
onverging systemati
ally to non-Abelian statisti
s asthe system size and the vortex separation were in
reased. We also obtained strongsupport that the statisti
s 
orresponds indeed to Ising anyons, but better numeri
susing larger systems are still needed for 
on
lusive 
on�rmation. As opposed toprevious 
al
ulations employing trial wave fun
tions [34, 94, 100℄, our 
al
ulationwas the �rst to employ exa
t eigenstates of a mi
ros
opi
 model.The dis
overy of intera
tions demonstrates 
learly that the Chern number doesnot give a full des
ription of the low-energy physi
s. Only a dire
t study of theanyoni
 ex
itations 
an reveal the length s
ale where the pure anyon theory providesa good approximation. This sets limits on the future experiments,[51℄, that aregoing to be performed on �nite size systems. As demonstrated by our holonomy
al
ulation, one has to be 
areful when preparing the system in order for it tosupport the predi
ted topologi
al behavior. When these systems be
ome a

essiblein the laboratory, our holonomy 
al
ulation provides both an experimental proto
olfor vortex transport as well as exa
t predi
tions for braiding experiments. Likewise,the energy gaps and the lifting of zero mode degenera
y provide measures of stabilityand ways to dete
t the fusion 
hannels of the vorti
es, respe
tively.The importan
e of understanding and 
ontrolling the intera
tions is emphasizedby our demonstration that they not only interfere with the topologi
al behavior, butthat they 
an even lead to phase transitions. To understand how these transitionso

ur, we studied numeri
ally the spe
tral evolution as the vortex density is in
reasedand observed dire
tly the formation of new band stru
ture with a modi�ed Fermisurfa
e topology. The Fermi surfa
e symmetry responsible for the topology 
ouldbe interpreted as an emergent latti
e symmetry, that appears due to the intera
tinganyons. This interplay of a parent model and an intera
tion driven emergent modelhas only been proposed very re
ently parallel to our work [25℄. Our results providethe �rst 
on�rmation of this novel extension to the theory of topologi
ally orderedsystems. In Se
tion 4.3 we took �rst steps in understanding how the intera
tionsgive mi
ros
opi
ally rise to a new latti
e model. It is fas
inating topi
 of future80



resear
h to make this 
onne
tion rigorous.Future workIn general, the theory of intera
ting anyon liquids predi
ts di�erent phase transitionsdepending on the favoured fusion 
hannels [14, 25℄. A natural extension of our workis to 
onsider these in the 
ontext of the honey
omb latti
e model. This is possiblebe
ause of the os
illations in the intera
tions. They imply that for 
ertain sparsevortex se
tors the fermion 
hannel 
an be favoured. It would be interesting to studywhat happens in vortex se
tors where this o

urs or where a 
omplex arrangementsof the vorti
es makes the fusion 
hannels 
ompete. Kitaev's 
atalogue, [62℄, basedon Chern numbers allows for up to eight di�erent anyon models and we believe thatat least some of them 
an be a
tually realized within the honey
omb latti
e model.It would also be interesting to see where does the honey
omb latti
e model withits various topologi
al phases �t in the 
lassi�
ation of topologi
al insulators andsuper
ondu
tors [11, 110℄.Fermi surfa
e symmetries that arise due to emergent latti
e symmetries is a new
on
ept in the 
hara
terization of the phases. For the 
hiral Abelian phase, thesymmetry Λ 
ould be interpreted as a
ting on the dual latti
e. This is a
tuallya spe
ial 
ase, be
ause for sparse vortex se
tors the latti
e of vorti
es does not ingeneral 
oin
ide with the dual latti
e of the honey
omb latti
e. We predi
t thatthe same me
hanism should hold though. If other new phases are dis
overed, wepostulate that their Fermi surfa
es are also 
hara
terized by emergent symmetriesthat are latti
e symmetries of the vortex latti
e.One 
an also turn this postulate around and envisage �nding vortex latti
es withdi�erent symmetries. If one then starts from the vortex-free se
tor and 
reates aparti
ular vortex-latti
e on top of it, the new symmetries of this latti
e will im-mediately imply a new phase due to in
reased number of Fermi points. Althoughit is well known that latti
e symmetries lead to doubling of Fermi points [82℄, toour understanding the idea of using this me
hanism to drive the system into other81



Chapter 5. Con
lusionstopologi
al phases has not been 
onsidered before. As ea
h Fermi point 
ontributes
ν = ±1 to the Chern number, any emergent Z2 latti
e symmetry, su
h as Λ, willdouble the Fermi points and drive the system to some 
hiral Abelian phase. One
ould also entertain a more ambitious s
enario. If the intera
ting vorti
es 
an giverise to a latti
e with a Z3 symmetry by having a three-site unit 
ell, this wouldlead to tripling of Fermi points giving rise to a transition between two non-Abelianphases. It is hard to see immediately how this 
ould o

ur though.Even though the physi
al interpretation of the Fermi surfa
e symmetries is notyet fully understood, we regard them as useful tools to study transitions betweentopologi
ally ordered phases. As they are dire
tly related to the Chern numberthrough the Fermi surfa
e topology, a perturbation breaking one of these symmetrieswill ne
essarily drive a phase transition. The 
riti
al perturbations 
an be obtainedby performing a study of the Fermi surfa
e evolution, like the one we performedin Se
tion 4.2. However, they do not provide full 
hara
terization of the phasetransitions as illustrated by the transition to the Abelian tori
 
ode phase. It brokeno symmetries, but it still led to the removal of all Fermi points. Therefore, wepredi
t the Fermi surfa
e symmetries to be useful for understanding transitionsbetween 
hiral phases, i.e. ones with non-zero Chern number. In general, it is afas
inating topi
 of future work to fully map the phase spa
e of the honey
omb latti
emodel a
ross all vortex se
tors and understand the role of the di�erent physi
alme
hanisms that give rise to it.Finally, one would also like to understand the new 
hiral Abelian anyons better.Although they have no fusion degrees of freedom and thus no zero modes, outliningthe low-energy spe
trum would be the obvious �rst step. It 
ould be employed tounderstand mi
ros
opi
ally how the anyoni
 
hara
ter of the vorti
es 
hanges at thephase transitions. As a pairing of the non-Abelian Ising anyons is known to giverise to the anyons of the 
hiral Abelian phase [26℄, one 
ould investigate whether thevorti
es in the ν = −2 phase 
ould somehow be understood as bound states of two
ν = −1 vorti
es. Also, a braiding 
al
ulation similar to Se
tion 3.3 
ould be readily82




arried out to verify the 
hara
teristi
 statisti
s of the vorti
es.In summary, the 
ontribution of the honey
omb latti
e model to the 
ontempo-rary study of topologi
ally ordered phases is far from being exhausted. In this thesiswe have investigated in detail its non-Abelian phase and obtained novel results onthe mi
ros
opi
 behavior. Our results pave the way to future experiments as wellas open new resear
h dire
tions. On
e the honey
omb latti
e model will hit thelaboratories, its signi�
an
e as a testbed for topologi
al order 
an only in
rease.
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