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Abstract

Ville Tapani Lahtinen, “Interacting Non-Abelian Anyons in an Exactly

Solvable Lattice Model”, Ph.D. thesis, University of Leeds, March 2010.

In this thesis, we study the non-Abelian anyons that emerge as vortices in Ki-
taev’s honeycomb spin lattice model. By generalizing the solution of the model,
we explicitly demonstrate the non-Abelian fusion rules and the braid statistics that
characterize the anyons. This is based on showing that the presence of vortices leads
to zero modes in the spectrum. These can acquire finite energy due to short range
vortex-vortex interactions. By studying the spectral evolution as a function of the
vortex separation, we unambigously identify the zero modes with the fusion degrees

of freedom of non-Abelian anyons.

To calculate the non-Abelian statistics, we show how the vortex transport can be
implemented through local manipulation of the couplings. This enables us to employ
the eigenstates of the model to simulate a process where a vortex winds around
another. The corresponding evolution of the degenerate ground state space is given
by a Berry phase, which under suitable conditions coincides with the statistics. By
considering a range of finite size systems, we find a physical regime where the Berry

phase gives the predicted statistics of the anyonic vortices with high fidelity.

Finally, we study the full-vortex sector of the model and find that it supports a
previously undiscovered topological phase. This new phase emerges from the phase
with non-Abelian anyons due to their interactions. To study the transitions between
the different topological phases appearing in the model, we consider the Fermi sur-

face, whose topology captures the characteristic long-range properties. Each phase

iii



is found to be characterized by a distinct number of Fermi points, with the num-
ber depending on distinct global Hamiltonian symmetries. To study how the Fermi
surfaces evolve into each other at phase transitions, we consider the low-energy field
theory that is described by Dirac fermions. We show that phase transition driv-
ing perturbations translate to a coupling to chiral gauge fields, that always lead
to Fermi point transport. By studying this transport, we obtain analytically the

extended phase space of the model and its properties.
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Chapter 1

Introduction

I started my journey into topologically ordered systems more or less by an accident.
When back in 2005 I was pondering about a possible Master’s thesis topic, all I
knew was that I wanted to do something quantum information related. It turned
out that my previous supervisor did not know much about quantum information.
His latest research concerned quantum field theory in a non-commutative space-
time, which could hardly be further away. However, where physical theories are
related to particular problems, the mathematical structures underlying them know
not of such restrictions. The same mathematics may play a role in systems which
have nothing to do with each other. It was such a connection that set me on my

way to topologically ordered systems.

In non-commutative geometry one uses a piece of mathematics known as quan-
tum groups to quantize the space-time geometry [1]. My supervisor had encountered
them also earlier in connection with discrete lattice gauge theories [2]. Such theories
were known to give rise to anyons, particles with exotic intermediate statistics be-
tween bosons and fermions, that were first envisioned by Leinaas and Myrheim [3]
and later developed in a more physical setting by Wilczek [4, 5. However, due to
their limited applicability and the extreme physical conditions required, the research
of anyons had stayed on the fringes of contemporary theoretical physics. This all

changed with the seminal paper by Alexei Kitaev, [6], where he was the first to
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propose employing anyons for intrinsically fault-tolerant quantum computation, i.e.
performing topological quantum computation [7]. This paper was conceived already
in 1997, but it got published in a peer-reviewed journal only in 2003. So, when my
supervisor suggested me doing the master’s thesis on this topic, it was still a novel
field with nothing but open questions.

During spring 2006 when I was putting finishing touches on my Master’s thesis
[8], T discovered the KITP program “Topological Phases and Quantum Computation”
which one could follow online. The mood of the talks was enthusiastic, although the
field seemed to lack cohesion with a number of potential approaches and techniques,
all with their own advantages and shortcomings. This feeling was best captured in
an earlier talk by Michael Freedman [9], which I quoted for the opening paragraph
of my Master’s thesis. Now four years later, our understanding of topological phases
has taken significant steps forward. Still, I find these words resonating enough with

what is fascinating about the field for them to be repeated here:

“... you don’t want to do it unless there is a sweet way to do it. That is
sort of the way I feel about topological quantum computation, that the
word topological is going to make it sweet, that we are not going to take
some system and just make it more and more isolated, colder and colder
and force one or two more qubits in a year out of it. We are going to
do something that is beautiful and elegant and then even if we fail, we
have at least pursued the right course and will probably learn something

interesting about solid state physics on the way.”
-Michael H. Freedman, 2004, [9]

Looking at the field of topological quantum computing today, the research is still
more about “learning something interesting about solid state physics”, than putting
the final pieces together. Referring to the recent advances in topologically ordered
systems as just “something interesting”, however, does no justice to them.

On the conceptual side, a more holistic picture has been obtained. Anyon models

with up to 4 particle types have been catalogued [10], the general properties of sys-



tems giving rise to them have been classified [11, 12|, and the connections between
different approaches have also been clarified [13-16]. Topological entanglement en-
tropy, [17, 18], has been established as a robust characteristic of topological order in
finite temperatures [19], and the recently introduced entanglement spectrum, [20],
promises to provide a new characterization. The abstract theory of anyons has also
been extended to account for anyon-anyon interactions [21]. These were discovered
to drive phase transitions between topological phases [22-25], which can also result
from a condensation of anyons [26, 27]. Also, whereas a few years ago Preskill’s
lecture notes, 28], were the standard reference for topological quantum computing,

nowadays there exist several comprehensive review articles [29, 30].

The fractional quantum Hall effect has long been the primary field of research
in topologically ordered systems. The recent years have seen more candidate trial
wave functions being proposed [31-33|, and our understanding of the known ones
has improved [34]. With the proliferation of plausible candidates though, the field
seems to be waiting for a decisive experiment to guide the theory. Steps towards
this direction were taken by the first attempt to verify the existence of non-Abelian
anyons. Where the Abelian quasiparticles of the celebrated Laughlin state, [35], had
been detected by various groups 36, 37|, the direct detection of non-Abelian anyons,
[38], had remained an open question. A simple interferometric scheme was proposed
in 2006 [39, 40], and it was over the following years translated to an experiment on
the Moore-Read state [41]. Although non-conclusive, it gave for the first time strong

direct evidence for the existence of non-Abelian anyons [42].

Similar rapid experimental advances took place also with recently discovered
topological insulators [43—45]. Only a few years from the theoretical prediction,
Majorana fermions, that are essentially non-Abelian anyons, were detected [46, 47].
This led to a curious paradigm shift. Whereas back in 2006 the Fibonacci anyons
were the holy grail due to their universality for quantum computing, the experi-
mental accessibility suddenly made the Majorana fermions the hottest topic in the

field [48]. Although they are not universal for quantum computation by themselves,
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various supplementary schemes have been considered [49, 50.

Instead of searching for anyons in nature, one can nowadays envision engineer-
ing systems that support them in a laboratory. These usually take the form of
spin lattice models that can potentially be realized in optical lattices [51-54] or
in superconducting arrays [55]. In the optical lattices the experiments for verify-
ing topological order have been proposed [56], and the required steps to probe the
anyons directly have been considered [57-59]. On the other hand, in Josephson-
junction arrays topologically protected qubits have already been demonstrated [60],

and extended encoding schemes have been proposed [61].

Among the lattice models a pioneering role has been played by the Kitaev’s
honeycomb lattice model [62]. Its attractiveness is based in its analytic tractability as
well as it supporting both Abelian and non-Abelian topological phases. The simple
interactions required suggest that it is also likely to be the first one fully realized
in an optical lattice experiment [51]. This richness comes with a price though.
Unlike string-net, [63], or quantum double models, [6], that involve experimentally
complex interactions, the honeycomb lattice model is not tailored to identically
support anyons. This means that their characterization and control is both elusive
and experimentally hard. It is this combination of promise and challenge that has

made the model so fruitful for studying topologically ordered phases.

Since its introduction in 2005, the honeycomb lattice model has given birth to
numerous projects, with even some of its footnotes being developed into PRL level
publications. The original enthusiasm surrounding the model was based on the
Abelian phase, because it supports the so called toric code anyons, that are the pro-
totype for topological quantum memories [6]. Their emergence from the honeycomb
lattice model has been studied in numerous works [64—66]. Lately the interest has
shifted to the more elusive non-Abelian phase, which supports the so called Ising
anyons. These are essentially identical to the topical Majorana fermions [62]. Recent
studies have led to an explicit demonstration of edge states [67], topological degen-

eracy [68] and entanglement entropy [20]. A variation of the original model with
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spontaneous time-reversal symmetry breaking, [69], and a generalization to higher
spin systems, [70], have also been introduced. The non-Abelian Ising anyons have
also been the topic of my research. The original contributions include the demon-
stration of the vortex interactions and fusion rules [71], the direct calculation of the

non-Abelian statistics [72], as well as a discovery of a new chiral Abelian phase [73].

1.1 Motivation and the structure of the thesis

Topological order can be probed in many ways. Although partial characterization
can be obtained by studying, for instance, the ground state degeneracy [74] or the
entanglement entropy [17, 18], the ultimate unambiguous characterization is always
given by the statistics of the anyonic excitations. Unfortunately, this is usually very
hard. The emergence of anyons is a direct consequence of long-range entanglement
in the ground state, which can be characterized by a topological invariant called
the Chern number [75|. It was a remarkable discovery that in some systems like
the fractional quantum Hall effect, it is related to physically measurable quantities
[76, 77]. The problem of characterization becomes the much simpler problem of
measuring these currents.

However, in other systems like lattice models there is no such physical relation.
The information given by the Chern number is also limited, because it only tells
that a particular topological phase exists. It tells nothing about the microscopics
which influence the physics in any realistic system. For all practical purposes, one
always wants to study the anyonic excitations directly. A prime example of this is
the recent interferometric experiment on the non-Abelian fractional quantum Hall
state [41]. Although the conductivity predicting a state with non-Abelian anyons
had been measured to high accuracy [78], no one knew beforehand whether the
non-Abelian anyons could actually be realized in an experiment, not to even talk of
employing them for quantum information processing.

Our aim is to perform theoretically a similar direct study on the honeycomb

lattice model. While the low-energy theory of the Abelian phase of the honeycomb
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lattice model can be obtained using perturbation theory, no such prescription exists
for the non-Abelian phase. For a model that is exactly solvable, one should be
able to understand the non-Abelian anyons better than only through the Chern
number, as done in the original work [62]. This is important for both theoretical and
experimental reasons. The honeycomb lattice model is attractive for experiments,
because it involves only simple interactions. The trade-off is that anyonic excitations
are harder to identify. The microscopics of the model can endow them with non-
topological properties, such as interactions in our case, that can smear out their
anyonic character. Therefore, our original motivation was to do “The Dirty Work”,
i.e. to derive explicitly the defining properties of the anyonic vortices, and to study at
which length scales the topological properties emerge undressed by the microscopic
physics. Only by understanding how the anyons arise from the microscopic model

can one come up with schemes to control them.

Moreover, understanding the system beyond the Chern number is important,
because interactions between anyons have recently been discovered to lead to new
topological phases [24, 25]. When applied to the honeycomb lattice model, this
theory of anyon-anyon interaction driven phase transitions suggested that the non-
Abelian phase should give rise to a new phase with chiral Abelian anyons. Indeed, we
found a sector of the model where this happens, which provided the first verification

of the novel theory from a microscopic model.

Our aim was to go beyond mere verification. Since the honeycomb lattice model
is now supporting three distinct topological phases, all with distinct characteristics,
it provided an ideal setting to study phase transitions between them. To this end we
considered the Fermi surface of the model as its different topologies can be related to
different phases [79]. It provides a suitable platform to study the phase transitions
as, unlike the Chern number, it evolves continuously under perturbations. Motivated
by the success of low-energy field theory picture in graphene [80], we set out to study
the Fermi surface evolution in terms of the low-energy theory of Dirac fermions. The

hypothesis was that phase transition driving perturbations would lead to Fermi point
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transport, which in the low-energy theory of Dirac fermions could be understood as
being due to a coupling to gauge fields. By studying the transport we should then
be able to obtain the critical behavior analytically.

The thesis is organized as follows:

Chapter 2: Kitaev’s Honeycomb Lattice Model

In this chapter we review the honeycomb lattice model and the mapping to free
Majorana fermions as originally introduced by Kitaev [62]. We generalize the so-
lution to arbitrary vortex sectors. The relevant concepts to analyze the spectrum
are introduced and the phase space of the vortex-free sector is reviewed. We intro-
duce the Chern number as a characterization of the different topological phases and
summarize the properties of the non-Abelian Ising anyons.

This chapter is partially based on the published collaborative work [71]. The
analytic study of the generalized solution included in this thesis is by myself and Dr.
Jiannis Pachos. The numerics at the end of the published paper are contributed by
the NUI Maynooth group headed by Dr. Jiri Vala. These do not form part of the

thesis.

Chapter 3: Non-Abelian Fusion Rules and Braid Statistics

In this chapter we employ the solution to arbitrary vortex sectors to explicitly
demonstrate the characteristic non-Abelian fusion rules and braid statistics of the
Ising anyons. We introduce first an equivalence between the vortex sectors and
coupling configurations, which provides a method to physically implement vortex
transport. We employ this to study the spectral evolution as the separation be-
tween the vortices is varied. Oscillating short-range interactions are discovered, and
they are argued to reveal the characteristic fusion rules. Finally, we calculate the
non-Abelian statistics as a vortex is transported around another. By considering
various finite system sizes, we show how the braid statistics can be obtained as a

Berry phase corresponding to the evolution of the eigenstates during the transport
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process.

The first part concerning the fusion rules is based again on the published work
[71], although the results and analysis here extend those of the published version.
The second part on the braid statistics is based on the published work by myself
and Dr. Jiannis Pachos [72].

Chapter 4: Going Beyond: A New Chiral Topological Phase

In this chapter we show that the full-vortex sector of the honeycomb lattice model
supports a new topological phase with chiral Abelian anyons. We demonstrate that
this new phase appears due to the anyon-anyon interactions discovered in Chapter 3.
These give rise to a new band structure characterized by an emergent Hamiltonian
symmetry. The phase transitions between the different topological phases are studied
by considering the evolution of the Fermi surface under perturbations. We show that
this is equivalent to considering the low-energy field theory of Dirac fermions coupled
to gauge fields. Two distinct types of topological phase transitions are identified
based on Hamiltonian symmetries and the extended phase space including the new
phase is outlined.

This chapter is based on work with Dr. Jiannis Pachos, [73].

Chapter 5: Conclusions

In this final chapter we summarize and discuss our results. Their extensions as well

as future problems are considered.



Chapter 2

Kitaev’s Honeycomb Lattice

Model

In this chapter we review the honeycomb lattice model of Kitaev [62]. In Section
2.1 we introduce the spin lattice model and consider the important local symmetries
that underlie its analytic tractability. In Section 2.2 we present the mapping to
free Majorana fermions, which enables the model to be solved exactly. The exact
treatment of arbitrary vortex sectors is presented. As a verification of our method,
in Section 2.3 we review the phase space of the vortex-free sector, which supports
both Abelian and non-Abelian anyons. The different phases are characterized by
the Chern number, which gives the anyonic properties of the vortices. As we are
interested here only on the non-Abelian Ising anyons, their relevant properties are
summarized. The vortex-free sector is simple enough to accommodate analytic treat-
ment, but in general this is not possible. In Section 2.4 we discuss how to treat the

eigenvalues and eigenvectors when the diagonalization is performed numerically.
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Figure 2.1: The bi-colourable honeycomb lattice with the black and white sites
denoting the two triangular sublattices. (a) The links are labeled as x, y and z
and oriented such that there is always an arrow pointing from black sites to white
sites. (b) A single plaquette p with its six sites enumerated. (c) The oriented
summation convention for the next to nearest neighbour interactions originating
from the external magnetic field [62]. (d) The elementary unit cell with lattice basis
vectors n; and n,.

2.1 The spin lattice model

The Kitaev’s honeycomb lattice model, [62], consists of spin % particles residing at

the vertices of a honeycomb lattice. The spins interact according to the Hamiltonian

H=- > Y Jlotod-K (Z)afagag, (2.1)

ae{z,y,z} (i,j)Ea-links 7,k

where Ji% are positive nearest neighbour couplings on links (ij), and a = z,y or z
depending on the link’s orientation (see Figure 2.1(a) for link labeling). The second
term is an effective magnetic field of magnitude K. The sum runs over the sites

such that every plaquette p contributes the six terms

r Y _z z Y _x T _z Y Yy x _z
E 0,00 = 010503 +030304 + 030,05+
(i,4,k)ep
oiolol +otoiol + ofoios,
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where the sites have been enumerated as shown in Figure 2.1(b). This term can
be obtained as a third order term in a perturbative expansion when an anisotropic
weak (Zeeman) magnetic field of the form Hj, = ) . h- o; is applied. In this case
the couplings are given by K =~ %, where one assumes all the couplings Ji;
to be roughly equal. The model approximates the one with a Zeeman term when

he < J3

i, but in general one can regard (2.1) also as an independent model.

The physical motivation to add this term is that like the Zeeman term it explicitly
breaks the time-reversal invariance, while unlike the Zeeman term it preserves the
exact solvability of the model. To be precise, time-reversal symmetry is described
by a an anti-linear unitary operator T , which acts on Pauli operators as

TotTt = —of. (2.2)

1

Any product of an even number of Pauli operators with real coefficients will respect
the time-reversal symmetry, whereas any odd product, such as the Zeeman or the
three-spin term, will violate it. The advantage of using a Hamiltonian with the

three-spin coupling (2.1) is that it has the important local symmetries

[H,i,] = 0, ([mp,wp,] =0, J]wn= ]1) , (2.3)
P

where w, = ofofoiofiolof are Hermitian plaquette operators. The product is over
all plaquettes p and this constraint applies only when the system is defined on a
compact manifold. These local symmetries are at the heart of the exact solvability
of the model. Since ), are conserved quantities, the Hilbert space £ of N spins on
an infinite plane can be partitioned into 2V/2 sectors £, of dimension 2/V/2, each
labeled by a distinct pattern w = {w,} of the eigenvalues w, = £1. The physics of
each sector can be considered independently and in the corresponding subspaces the

three-spin term gives the leading order contribution from an external weak magnetic

field.

11
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2.2 Mapping to free Majorana fermions

The Hamiltonian can be brought to a quadratic form by representing the spin op-
erators with Majorana fermions. Let us introduce two complex fermionic modes
a1,; and ag; residing at each lattice site 7. These can be written in terms of four

Majorana fermions by

ci=ay;+al, b =ilal; —ay), b =ay;+al; bF=ilah; —az), (2.4)
where now all b§* and ¢; anti-commute with each other and satisfy bf‘T = by, c;-r =G.
Let us represent the spin matrices at site ¢ in terms of the Majorana fermions by

o =ibi'c;. (2.5)

i =

This representation respects the algebra of the Pauli matrices if one demands in
addition that the states in the physical space |¥) € £ have to satisfy

Di|U) = |¥), D; = bbbic;, [Di,o%] =0. (2.6)

(2

This follows from the operator identity 1 = icfo/o7 = b¥b/bic;. Observing that
using (2.4) we can write D; = (1 — QaLal,i)(l — 2a;ia27i), the constraint D; can
be interpreted as performing a projection from the four-dimensional space spanned
by two complex fermion modes a7 and as onto a two-dimensional subspace where
both of the complex fermionic modes are either empty or full. In this subspace our
representation of the spin operators is faithful.

Employing (2.5) the Hamiltonian terms become

a o iy T oY Lz s .
07 05 = —il;cic; and oj o;0) = 1l Uk Dycicy,

where we have defined the anti-symmetric Hermitian link operators

12



2.2. Mapping to free Majorana fermions

with o« = z,y, z depending on the type of link (ij). Consequently, in the physical

space £ the Hamiltonian (2.1) takes the quadratic form

i ; ; . .
H = Z Z Aijcicja Aij = 2Jijuij + 2K ; Uik Uk (28)
/L?]

The oriented nearest (the first term of fl,j) and next-to-nearest (the second term of
flij) neighbour summations are expressed conveniently pictorially in Figures 2.1(a)
and 2.1(c), respectively. The antisymmetry of the 4;; is taken into account by using
a convention such that one assigns an overall + (—) to every term involving sites 4

and j when the arrow points from i to j (7 to 7). If two sites are not connected by

an arrow the corresponding A;; element is zero.

The honeycomb lattice model as a lattice gauge theory

In the fermionized picture the Hamiltonian acquires a new physical interpretation.
One can verify that the Hamiltonian acts on the physical subspace, i.e. [H, D;] =0,
and that the link operators are local symmetries, i.e. [H,4;;] = 0. However, since
{t;5, D;} = 0, sectors labeled by their eigenvalue patterns u = {u;; = 1} are not
part of the physical space £. On the other hand, the plaquette operators (2.3), which
still commute with the Hamiltonian, become the products of the link operators and

act in L,

iy =[] s, [p, Di] = 0. (2.9)
i,j€ep

These observations allow for the following lattice gauge theory interpretation. The
link operators i;; can be thought of as classical Z> gauge fields with local gauge
transformations D;. As a single plaquette is the smallest loop that can be con-
structed from the gauge fields 4;;, the gauge invariant plaquette operators w, can
be identified with the Wilson loop operators. Consequently, the eigenvalues w, = —1
can be interpreted as having a w-flux vortez living on the plaquette p. The different
physical sectors of the model are then equivalent to configurations of vortices, that

are created by fixing the gauge u, i.e. the pattern of the eigenvalues of the gauge
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Chapter 2. Kitaev’s Honeycomb Lattice Model

fields. The eigenvalues wu;; = —1 can be visualized as an unphysical string passing
through the link (ij), that either connects two vortices or belongs to a loop. The
unphysicality follows from the constraint (2.6), which can be always satisfied by

performing the projection

N .
¥,) = D|W,), D:H(nle>, (2.10)
=1

where |¥,,) is some state belonging to a gauge sector u. Due to the anti-commutation
of D; and 1;;, the physical state |¥,,) € £ will be an equal amplitude superposition

of all loops and strings compatible with the vortex sector w.

2.3 Solution for arbitrary periodic vortex configurations

Let us now consider in more detail the form of Hamiltonian (2.8) for general periodic
vortex sectors and its diagonalization using a Fourier transformation. For conve-
nience, but without affecting the physics, the honeycomb geometry is deformed by
choosing the lattice basis vectors to be n, = (1,0) and n, = (0,1). To study general
vortex sectors, we define a (L, Ly)-unit cell, containing 2L, L, sites and assume u

to be fixed such that it is translationally invariant with respect to
vy = Lyng = (Ly,0), vy = Lyn, = (0, Ly). (2.11)

This cell is illustrated in Figure 2.2. For convenience, the labeling of site ¢ on the
original honeycomb lattice can be broken down to i = (r,1, \), where r is a vector in
basis {v;, vy} indicating the location of the unit cell, the vector 1 = (I, l,) in basis
{n,,n,} specifies a particular z-link inside the unit cell and A = b,w denotes the

sublattice the site belongs to.
A Fourier transformation of the operators cy j, with respect to r is given by
(Lﬂ%Ly) 2 .
ealr = \/5/ d%p ePTey b, (2.12)
BZ
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2.3. Solution for arbitrary periodic vortex configurations

Figure 2.2: An illustration of the generalized (L, L,)-unit cell using a (5,3)-unit
cell (shaded plaquettes) containing two vortices (blue squares). The gauge sector u
giving rise to this vortex configuration is given, for instance, by setting u;; = —1
on the links crossed by the string connecting the vortices (blue dashed line), while
ui; = 1 on all other links. This configuration is periodic with respect to v, = (5,0)
and v, = (0,3), with the pattern u repeated all across the infinite lattice.

where the integral is over the first Brillouin zone corresponding to the (L, L, )-unit

cell
(La,Ly) m/Le d m/Ly d
/ d2pE/ I / _Py (2.13)
BZ —n/Le /2Ly J—r/L, \/ 27/ Ly

In the Fourier basis the Hamiltonian (2.8) is reduced to the canonical form

T
1 [Ealy) Cp, hepp  how, Cy,
H = 5/ d2p P T PR Pl (214
BZ vap hbw,p —hg;),p Cw7p
where ci’p = (61’(1’1)’10, . ,cia(L%Ly)’p), and hppp and hy, p are LyL, X L, L, ma-

trices describing the nearest and next-to-nearest interactions, respectively.

The elements of the matrices hy, , and hy,, p can be derived by considering all the
allowed couplings inside the unit cell. All terms describing couplings between sites
i and ¢’ belonging to the unit cell, i.e. when i = (r,1,\) and ¢/ = (r,l', ), follow
straight from (2.8). On the other hand, when r’ = r+mv, +nv,, the corresponding

terms acquire due to Fourier transform, (2.12), the extra phases P (Mvatnvy) with
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Chapter 2. Kitaev’s Honeycomb Lattice Model

m,n = x1. Carrying out this analysis for arbitrary (L, L,)-unit cells,one finds that

the non-vanishing elements of hy,, p and hypp = Al

(L.’l/'7

cbhbwcw =2iy " (L) 1

and

C;ruhwbcb =21 ZILQC’Ly) (

bw,p

+ug J.,

+tug—n, Je€' i6(le —1)p-va

+ULI—n, Je 3(ly—1)p-vy
—Ul J
~Upn, Jpe WlemlopVe
—ULl4n, Jye 0y =Ly)pvy

.I.
Cp €

.I.
Co, 1,1+ ng

are given explicitly by

w,l

Cl,zc (2.15)

w,l—ng

T
Cb,lcw,lfny)v

T
Cuw,1C,1

(2.16)

.I.
Cop 1CbJl+ny) -

The addition in the indices 1 = (I,1,) is understood (I, mod L[, mod L,) and

d(x) =1 for = 0 and §(x) = 0 otherwise. Likewise, the diagonal blocks hy, p, and

hww,p =

CZ hbbcb =

2K Zl

+uj Ity
l—ng
ull Ng+ny
!

UL 4,

l—ny
+ul,l+n¢—ny

Lﬂchy)

e*ié(ly*Ly)P'Vy
e0(la—1)pva o —id(ly—Ly)pP-vy
efié(lszz)p-vz
efié(lszz)p-vz ei&(lyfl)p-vy
eié(l,c —1)p-vy

ei‘S(ly —1)p-vy
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_hg;,p originating from the three-spin term are given by

T

1%, 1+n,

CT C
b,l"b,l—ng+ny
i

Cb,1%%, 1+ ng (2.17)
d e

b,l=b,l+ne—ny

i
Cb,1C,1—ng

i
b,1C,1—n, )



2.3. Solution for arbitrary periodic vortex configurations

and

cLhwwcw = 2K Zfi’”’Ly)

(i, e
+U§,Jlrf$wc+ny e10le=1)p Ve g =id(ly—Ly)Pvy C:ru,lcw,l—ny-i-ny
+U§ﬁfmz g~ Wlla=Le)pve CL,le,an’ (2.18)
_’LLﬁJTrlfmz*ny e~ 10(lz=La)pVa gid(ly—1)pvy CIU,le,an—ny
—Uf,Z—nx ei0(le—1)pve C:ru,lcw,l—nx
+U§,zfny eidlly=1p-vy CIU,leJ*ny )

where we have used the short-hand notation ui; | = Uk U

These expressions give the most general Hamiltonian for periodic vortex sectors,
that can be studied at the thermodynamical limit. After choosing a particular vortex
sector, (2.9), by fixing the u;; = &1 on all links inside the unit cell, the Hamiltonian

can be readily diagonalized. This gives in general

(LarLy) ) LoLy T LoLy Eip
H= d%p E:lﬁp@pmp—-EZ—aL , (2.19)
BZ i=1 i=1

where b; , are L, L, fermionic mode operators and E; , are the positive eigenvalues
corresponding to each momentum mode. In an n-vortex sector, the ground state
|¥5") with energy Ef", and the lowest lying excited state |¥7) ) on the ith band
with energy E*Y are given by
LoLy (Loily) 'l g,
Z7p
=D [ T bl B = " ap S5 @)
=

i=1 —7w<pgz,py<m BZ

and

Uy ) =Dbl | [WEY), BN = A4 B (2.21)

respectively. Here D performs the gauge symmetrization (2.10), |¢) is an arbitrary

reference state and A" is the energy gap with respect to the ground state defined
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Chapter 2. Kitaev’s Honeycomb Lattice Model

nv — 3 nv
by Al = minp E7'.

2.4 The phase diagram in the absence of vortices

The phase diagram in the absence of vortices has been studied in the original work
[62]. In this section we reproduce these results using our more general Hamiltonian
(2.14), and outline the previously known phase space by studying the behavior of
the energy gaps. Further, we introduce the Chern number, which can be used to
characterize the different topologically ordered phases appearing in the honeycomb
lattice model.

The vortex-free configuration (w, = 1 on all plaquettes) can be created, for
instance, by setting u;; = 1 on all links in (2.15)-(2.18). Let us also assume that all
the couplings J;, J, and J, have uniform values on all z-, y- and z-links, respectively.
The resulting system is periodic with respect to each z-link. Choosing then simply

a (1,1)-unit cell gives a 2 x 2 Hamiltonian, (2.14), with

hbw,p = 2 (Jz + Jmeipz + Jyeipy) = Zf(p),

hopp = 4K (sin(p; —py) + sin(py) —sin(pz)) = g(p)-

The Hamiltonian is diagonal, (2.19), in the basis of the fermionic operators

Es—g | |2
bp = A (627 +i—L—Ley > , A2 = P ) (2.22)
i i i fo i P (Ep+gp)?+ [ fpl?

where the eigenvalues £F, are given by

Ey = \/Ifel*+ 95 (2.23)

fol? = A(JZ+ T+ J2+2(JeJ: cospe + JoJy cos(pa — py) + JyJz cospy)),

gf) = 16K> (sinpy — sinp, + sin(p, — py))2 .

These expressions agree with [62].

There it was shown that in the vortex-free sector the honeycomb lattice model
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2.4. The phase diagram in the absence of vortices

Jz>> Jx, Jy < K=0
K>0 ——K=1/15
1.5 —a—K=2/15 1
A, —e—K=1/5 i
Toric code
(Abelian) o
1
Ix+Jdy=Jz <
B
(oAb 0.5
Ax Ix=Jy=Jz Ay
Toric code Toric code
(Abelian) (Abelian) 0 L M A A A AAAAMA
0 0.25 0.5 0.75 1
J

(a) (b)

Figure 2.3: (a) An illustration of the vortex-free sector phase diagram with four
distinct phases A;, A, A, and B. The phases A, occurs when the couplings of type
Jo > Jg, Jy and the phase B when they all roughly equal. The boundaries between
the phases A, and B are given by J, = Jg + J,. The A, phases support Abelian
toric code anyons (v = 0), whereas for K > 0 the B phase supports non-Abelian
Ising anyons (v = —1). (b) The behavior of the energy gap A% across the transition
between A, and B phases. Here J = J, = J, when J, = 1. The phase A, is always
gapped with A% depending only on J, whereas the B phase is only gapped when
K > 0. The phase transition occurs for all K at J = % where the gap vanishes and
the Chern number changes.

exhibits four distinct phases denoted by A,, A, A, and B. These appear for different
values of the couplings J, such that the system is in the B-phase when one violates

all the inequalities
[Tyl + | T < [ Jaly ol + 1] < |yl [Tl + [yl <[ T2 (2.24)

The phase boundaries are given by the equalities and the phases A, occur when only
|Jg| + |Jy| < |Ja| holds and the other two inequalities are violated. The resulting

phase space is illustrated in Figure 2.3(a).

This analysis of the phase space relies on the behavior of the energy gap, i.e. the

energy of the lowest lying state above the ground state,

A% = min B, (2.25)

as a function of the parameters J, and K. Stable topological phases exist only for
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Chapter 2. Kitaev’s Honeycomb Lattice Model

a non-vanishing gap, with points of vanishing gap signaling phase transitions. We
plot in Figure 2.3(b) the behavior of the gap A% as calculated from (2.23). The A,
phases are always gapped, whereas the B-phase is gapped only when K = 0. In the
first the gap depends only on J, whereas in the latter it depends on both J, and K
with A% = 6v/3K when .J, = Jy = J, = 1. The gap vanishes always at J, = J,+J,
as expected from (2.24). The different behavior of the gap is due to topologically
distinct Fermi surfaces in the phases A, and B. We will return to discuss their role

in the characterization of the phases in Chapter 4.

2.4.1 The Chern number

The study of the energy gap reveals the phase space structure, but does not tell
anything about the properties of the phases. To probe whether they are topologi-
cally ordered, one can study whether the ground state degeneracy depends on the
topology of the space [74], whether the entanglement entropy has a constant term
[17, 18], or ultimately study directly the statistics of the excitations [94]. These all
can be connected to the properties of the ground state, which can be captured by
calculating by the so called spectral Chern number v. It is a topological invariant
whose importance to topologically ordered phases was first appreciated in the con-
text of quantum Hall effect [75, 76]. Later it was shown to characterize also more
general systems [77, 82, 83].

The Chern number can take only integer values, each corresponding to a different
phase with different anyonic properties. In a non-interacting gapped free-fermion
system with broken time-reversal symmetry, it gives the following information on

the statistical properties of the vortices [83]:
e v = 0: non-chiral Abelian anyons (e.g. v = 0 for the toric code)
e v even: chiral Abelian anyons
e v odd: chiral non-Abelian anyons (e.g. v = +1 for the Ising anyons)

In the honeycomb lattice model, there exists altogether eight different anyon models,
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2.4. The phase diagram in the absence of vortices

that correspond to different ’s. These have been catalogued in [62].

The Chern number is of particular importance in quantum Hall systems, where
its value is directly proportional to the physically measurable off-diagonal conduc-
tivity [76]. In the honeycomb lattice model there is no direct physical analogue, but
it is still useful in the theoretical characterization of the different phases. It can be

explicitly calculated from the eigenstates using the definition [84]

1
Y omi /BZ d2p (8pw“4y,p - 8py“4w7p) ’ (2'26)

- 2mi

where Ay p = (Vo p|0p,|Vo,p) and [¥(p) is a momentum component of the ground
state (2.20). Mathematically, the Chern number classifies the U(L,L,) fibre bundle
above the Brillouin zone formed by the L,L, occupied modes belonging to the

ground state (2.20).

For the vortex-free case |¥op) = |01 ;) with the analytic expressions (2.22) and
the Chern number can be evaluated analytically. However, in general the analytic
expressions are not available and the Chern number must be evaluated numerically.
A particularly useful form is given in [85]. Using an n x n mesh for the Brillouin

zone, the Chern number (2.26) can be written as

1 n—1
v=oo D Wi W N (Wi W) (Wi [ i) (Wi [ i), (2:27)
i,7=1
where |V, ;) = [¥, (i pj)> with pi, = 7=+ z—”f;ll This form is particularly
’ x’yY « «

convenient for calculations involving sparse vortex sectors. Evaluating the Chern
number for the four phases shown in Figure 2.3(a), we obtain v = 0 for A,, A, and
A, which means that the vortices behave as non-chiral Abelian toric code anyons.
On the other hand, for the phase B one obtains v = +1 (the sign depends on the

sign of K'), which corresponds to chiral non-Abelian Ising anyons.

It was also shown in [85] that the Chern number is robust with respect to the
discretization of the momentum space, i.e. to the mesh size n. This means the

phases characterized by it should be insensitive to the system size, with topological
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Chapter 2. Kitaev’s Honeycomb Lattice Model

order persisting down to small systems. This is a point we will be challenging from a
physical point of view in this thesis. Although the Chern number can indeed change
only at the phase transitions, we will show that system size does affect significantly
the physics. Without inducing a phase transition, these microscopic effects affect
the excitation spectrum and its properties, depriving it from the expected anyonic

behavior.

2.4.2 Ising anyons

By definition, anyons are particles obeying statistics that is neither bosonic or
fermionic. This exotic statistics leads to the anyons being labeled by some con-
served topological quantum numbers. Usually when talking about the low-energy
theories of topologically ordered phases, one talks in general about anyon models.
These refer to a set of all particles appearing in the system that carry conserved
quantum numbers. An anyon model describes the conservation of these quantum
numbers as well as the mutual statistics of the particles, some which are anyonic
and some other bosonic or fermionic. Mathematically these concepts are best unified
through category theory [62]. In this thesis we are interested in the so called non-
Abelian Ising anyons that appear in the B-phase of the honeycomb lattice model.
Their defining properties as an anyon model are summarized below.

The Ising anyon model has three types of particles types: 1 (vacuum), ¢ (fermion)
and o (non-Abelian anyon). These labels can be thought of as the topological quan-
tum numbers. The fusion rules, i.e. conservation laws for the quantum numbers,
are given by

Yvxp=1 Yxo=0 ocxoc=1+1, (2.28)

with the vacuum fusing trivially with the other particle types. The fusion rule for
the o’s implies that there is a degree of freedom associated with the different ways
a number of ¢’s can fuse. This is a unique property of non-Abelian anyons. As
the global quantum numbers have to be always conserved, this degree of freedom

appears when there is more than one way of fusing n ¢ particles to a given particle
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2.4. The phase diagram in the absence of vortices

a. To illustrate this, consider four o particles, for which the repeated associative

application of (2.28) gives
oxoxoxo=1+1+v+1. (2.29)

This means that there are two distinct ways the four o’s can fuse to either the

vacuum 1 or to the fermion .

These fusion degrees of freedom, or fusion channels, can be encoded in the fusion
space V 1. Due to the two possible global sectors 1 and ¢, it breaks down to two
orthogonal two-dimensional subspaces, V4 = V014 <) V;ﬁ. The bases in V7, are given
by the states associated with different intermediate fusion outcomes with respect to
some chosen fusion ordering. For future purposes, let us consider V;ﬁ and choose
a pair-wise fusion channel basis, where the basis states are associated with the
following processes:

1) (exohx(ox0) = ¢xl=1, (2.30)

|[Wa): (oxo)1 X (0x0)y — 1xtp=1.
These are illustrated diagrammatically in Figure 2.4(a). The state |¥q) (|¥s2)) cor-
responds to pair 1 (2) fusing to a v, with the other fusing to vacuum. In both cases

the global sector is .

Different choices for the fusion order of the o particles correspond to different
bases. As there are only a finite number of fusion order choices for a finite number of
particles, all the bases are related by so called F'-moves, whose action is illustrated
in Figure 2.4(b). These are a finite set of unitaries that act in the fusion space. They
are obtained by solving a set equations known as pentagon equations [62]. For the

fusion rules (2.28), the non-trivial F-moves acting in V;ﬁ are given by

F=FY% = — , F=rY

oo = Ff/jmp =—1, (2.31)
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Figure 2.4: Diagrammatic representations of the topological properties of anyons.
The diagrams represent world lines of the particles with time flowing upwards. (a)
The basis in V;ﬂ is chosen such that the state |¢);) corresponds to pair i fusing to
a 1. (b) Basis changes are implemented by fusing the anyons in different orders.
The F-move FZ = F;ﬂ gives the expansion of the state in the new basis in terms
of the original basis states. (c¢) When two o’s are exchanged clockwise, the braid
matrices RY, assign different phases depending on the fusion outcome a. In the
fusion space V;ﬁ it acts as a diagonal matrix whenever the ¢’s belonging to a same
pair are exchanged.
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which both are given in the basis {|U1), |¥2)} (2.30).

When the o particles are exchanged, there can be non-trivial evolution within
the fusion space V;ﬁ. This process is described by a braid operator, or an R-mouwe,
whose action is illustrated in Figure 2.4(c). Possible braid operators consistent with
the F-moves can be obtained by solving the so called hexagon equations, which
might in general have several solutions. When the ¢’s belonging to the same pair

are exchanged, the solution corresponding to the Ising anyons is given by
R=¢'s : (2.32)

which describes states corresponding to different fusion channels acquiring different
phases. When the o anyons from different pairs are exchanged or transported around
the each, the evolution is more complicated, but it can always be constructed as some
sequence of only the F-moves, (2.31), and the R-moves, (2.32). We will consider
such evolutions in Section 3.3 where the characteristic non-Abelian statistics are

evaluated from the eigenstates of the model.

To summarize, at a purely mathematical level an anyon model is specified by
its particle content ({1,%,0}), the fusion rules (2.28) and the F-, (2.31), and R-
moves, (2.32). Any evolution in a pure topological phase can be understood only in
terms of these discrete objects. In the presence of non-Abelian anyons, one expects
the fusion space to be manifest as a global ground state degeneracy. The statistics
correspond to the evolution of the ground state space under exchanges of the anyons.
However, in real physical systems this is rarely the case due to the microscopics of
the model. In Chapter 3 we will study to what degree and at what length scales do
the characteristics of Ising anyons appear for the vortices in the honeycomb lattice

model.
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2.5 Numerical diagonalization

To study the physics of the vortices, we need to employ large systems with sparse
vortex sectors. As the size of the Hamiltonian (2.14) grows polynomially with the size
of the unit cell, analytical solution can be readily obtained only for the limiting cases
of vortex-free [62] or full-vortex configuration |71, 86]. In general, the diagonalization
of the Hamiltonian (2.14) with the components (2.15)-(2.18) has to be performed
numerically. This corresponds still to exact treatment of the model. No numerical

approximations are involved except for the discretization of the Brillouin zone.

In general, the diagonalization amounts to finding the eigenvalues F; , and eigen-
vectors |¢Z-ip> that satisfy

Hplv;,) = £Eiplti,), (2.33)

where Hp is the 2L,L, x 2L, L, matrix with components hy, and hy, in (2.14).
The normalized complex valued vectors W:I) (14;p)) represent the fermionic one
particle modes b;r’p (bi p), whereas the eigenvalues E; ;, coincide with those in (2.19).

We call (2.33) the mode spectrum of the system.

Apart from the eigenvalues E; ;, that can be obtained directly from the mode
spectrum, we will also need the eigenstates corresponding to the ground state, (2.20),
and various excited states, (2.21). As the Hamiltonian is diagonal in a basis of free
fermions, these can be constructed as Slater determinants of the vectors [¢;) [87],
which represent the anti-commutation properties of the operators b;. Assuming
the Brillouin zone to be discretized using a n x n mesh, the ground state (2.20) is
represented by

Lely  Laly _n?

15
To)=D > ﬁ‘*;iﬂwgqp@---@\w;qn;, (2.34)

{a:i}eBZk,....I=1

where 7, is the fully anti-symmetric tensors of rank a. Choosing the reference

state in (2.20) such that b;p\@ = 0, the excited states (2.21) can be similarly
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represented by

LzLy L,cLy en’—1
q1,--,9,2 _
Wip) =D Y Z g ) 8 @ Wig, ) (23)
{a:}€BZE,..

{ai}#po

In order to perform the gauge symmetrization D numerically, one should di-
agonalize the Hamiltonian Hp for all equivalent gauges u under the local gauge
transforms (2.6) and form the corresponding linear combinations manually. For our
purposes this turns out not to be necessary, because all quantities of physical interest
can be expressed in terms of inner products. Since (V|DyD;|¥) = 6y, which follows
from {D;,u;;} = 0, only the states in the same gauge can have overlap. Hence, all
the inner products can be calculated using a single gauge choice u.

The fact one never needs to explicitly construct the representations of the states
is also a crucial technical point. The number of elements in (2.34) and (2.35) grows
exponentially with the system size and hence they are in general too large to be

stored in a computer.

2.6 Summary

In this first chapter we have reviewed the Kitaev’s honeycomb lattice model and
its diagonalization through the mapping to free Majorana fermions. At the heart
of the exact solvability is the breaking of the full Hilbert space in the sectors la-
beled by patterns of vortices. Previously only the limiting vortex-free sector had
been studied. We generalized the solution of the model to arbitrary vortex sectors
where the Hamiltonian has the components (2.15)-(2.18). In general these systems
are too complicated to accommodate analytic treatment, but they can be studied
numerically without employing any approximation methods.

This generalization of the solution allow us to go beyond the previously studied
vortex-free sector. We are now able to consider large systems with only a few vortices
and thereby directly study how they influence the spectrum. In particular, our aim

is to derive directly the properties of the Ising anyons that should appear as the
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low-energy vortex excitations in the B-phase. This will be the topic of Chapter 3.
The full-vortex sector has been studied for K = 0 in [86]. Our generalized

solution allows us to consider also the K > 0 case, which turns out to have dramatic

consequences for B-phase. It will turn out to support a new chiral Abelian phase,

which we will study in detail in Chapter 4.
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Chapter 3

Non-Abelian Fusion Rules and

Braid Statistics

In this chapter we do “The Dirty Work”, i.e. employ the solutions of sparse vortex
sectors to explicitly demonstrate the characteristic non-Abelian fusion rules and
braid statistics of the Ising anyons. To this end, we first introduce in Section 3.1
an equivalence between the gauge sectors and the coupling configurations. This
enables a theoretical interpolation between vortex sectors and provides a physical
protocol for vortex transport. In Section 3.2 we study the spectral evolution as the
separation between vortices is varied. The vortices are found to introduce zero modes
into the spectrum, which, however, can acquire finite energy when the vortices are
brought near each other. We argue that the vortices are interacting and that these
interactions reveal the characteristic fusion rules of Ising anyons. By studying the
interactions we obtain a characteristic length scale for the pure topological phase. In
Section 3.3 we calculate the non-Abelian statistics as a vortex is transported around
another. By considering various finite system sizes, we show how the braid statistics
can be obtained as a Berry phase corresponding to the evolution of the eigenstates

during the transport process.

As we are interested only on the properties of the non-Abelian Ising anyons, we

set |Jz| = |Jy| = |J:| = 1 on all links for the purposes of this chapter.
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Figure 3.1: The equivalence between (a) the coupling configurations J and (b) vortex
configurations w. Fixing the gauge by setting u;; = 1 on all links, but tuning the
couplings such that .J;; = 1 on all solid links and J;; = —1 on all dashed links is
equivalent to creating the vortex configuration shown in (b).

3.1 Gauge/coupling configuration equivalence and vor-

tex transport

As described in the previous chapter, vortex configurations w = {w,} are created
through (2.9) by fixing the gauge configuration u = {u;;}. In order to manipulate w,
one should thus manipulate u locally. Even though u is not by itself gauge invariant
and thus not a physical parameter of the model, we can effectively manipulate it
through the coupling configurations J = {J;;}. As can be seen from (2.8), u;;
appears always uniquely paired with a local coupling J;;. Therefore, as u;; = —1
with J;; > 0 is equivalent to u;; = 1 with J;; < 0, we can regard the value of the

gauge field just as the sign of the couplings,
U5 = Sign(Jz‘j), = JZ‘]‘ — —Jz‘j < Ujj — —Ujy . (3.1)

Strictly speaking one should also imprint these signs on the local values of K. How-
ever, when the term approximates an external magnetic field, i.e. when K < J;;,
controlling the signs of J;; is sufficient. Therefore, assuming that the system has been
prepared in the ground state belonging to the vortex-free sector [88]|, we can treat
the gauge sectors, and thereby the vortex sectors, just as some non-homogenous cou-

pling configurations J with varying overall signs. From now on, we adopt this dual

30



3.1. Gauge/coupling configuration equivalence and vortex transport
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Figure 3.2: A protocol for vortex transport in s steps through local coupling manip-
ulation. (a) Initially the coupling configuration is chosen such that J;; = —1 on the
links crossed by the dashed line, while J;; = 1 on all other links. This corresponds
to a vortex on the left plaquette. (b) Consider changing the value coupling on the
link in the middle from J;; = 1 to J;; = —1 in S steps of size % At step s its value
is Jj; =1-— 2—55, which we interpret as the vortex occupying a location away from
the plaquette center. (c) When Ji; = 0, the Wilson loop operator is defined only on
the composite plaquette. As the vortex occupies both plaquettes simultaneously, we
interpret it as being right in the middle. (d) Finally, as Ji; = —1, the vortex moves
smoothly to the plaquette on the right.

perspective, which allows to relate the manipulation of vortices to the manipulation
of physically tunable parameters. We will still be referring to gauge and vortex sec-
tors, but these terms should be understood as referring to coupling configurations

that give rise to them.

To study the physics of the vortices, we define a sparse vortex configuration by
choosing a large (L, Ly)-unit cell and consider the system in the vortex-free sector
by setting u;; = 1 on all links. Consider then tuning the coupling configuration such
that J, = —1 on the d first z-links of the first row of the unit cell as shown in Figure
3.1(a). Due to the equivalence (3.1), this amounts to creating two vortices separated

linearly by d links as shown in Figure 3.1(b). By varying d we can study the spectral
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evolution as a function of the vortex separation up to distances of d = L, /2.
Instead of just placing vortices on plaquettes, we can imagine carrying out the
vortex transport "continuously” as follows. If the sign of the coupling J;; at the link
d+1 is reversed in S steps of size % such that at step s the value is J;; = 1— 2—5‘?, the
process will result in vortex transport as illustrated in Figures 3.2(a)-(d). We denote
the continuous vortex separation by ds = d + g, where s denotes the intermediate
vortex position and dg = d+1. Intuitively we can then regard the intermediate steps
for which |J;;| < 1 as the vortex occupying some intermediate position in between
the plaquettes. Although there is no a priori reason for this interpretation, we will
show below that the spectrum does indeed evolve continuously under such transport
process. Moreover, if this protocol is carried out on a link between empty plaquettes
or plaquettes with two vortices, the resulting process corresponds to creation and
annihilation of vortices, respectively. This means that we can study also the spectral
evolution when interpolating between vortex sectors of varying vortex occupation.
We note that it is also experimentally motivated to treat the vortex sectors and
the coupling configurations on equal footing. Given sufficient site addressability, the
local control of the couplings J;; is also how one could perform vortex creation and
transport in the proposed optical lattice implementations of the honeycomb lattice

model [51, 53].

3.2 Fusion rules from the spectral evolution

In this section we study how the presence of vortices modifies the spectrum and how
it depends on the vortex separation d,. Ideally we would like to use as large a unit
cell as possible in order to isolate the vortices from each other. It turns out that unit
cells of around 400 plaquettes (800 spins), such as a (20, 20)-unit cell, are sufficient
to extract the asymptotic behavior when d; — oo. The resulting Hamiltonians
are sparse 800 x 800 matrices, which can be diagonalized numerically using Matlab
on a tabletop computer. Employing (2.20) and (2.21), we can then calculate the

ground state Eyy and various excited state energies AY ~corresponding to the
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3.2. Fusion rules from the spectral evolution

vortex separation ds at an n-vortex sector.

3.2.1 Zero modes and vortex interactions

Figures 3.3(a)-(c) show the energy behavior of the three lowest lying modes in the
absence of vortices, and in the presence of two and four well separated vortices,
respectively. The first shows the already known fact that in the absence of vortices
the spectrum is gapped with all A%s being nearly degenerate and non-zero. On
the other hand, when a pair of vortices is introduced, Figure 3.3(b) shows that
A%f’ds becomes vortex separation dependent. The energy of the mode oscillates with
separation and converges to zero as ds — oo, whereas both A%f’ds and Agf’ds remain
insensitive to it. From Figure 3.3(c) we see that when a second vortex pair is
introduced away from the first one, both A‘llf’ds and A%f’ds acquire the oscillatory d
dependence, while A%?’ds remains insensitive. By considering a system of n isolated
vortex pairs, we find that the n lowest lying modes acquire this behavior.

Due to the large ds behavior, we call these modes zero modes. Since they only
appear in the presence of vortices and their energy decays with vortex separation, we
interpret the vortices having strong short-range interactions. In the presence of 2n
vortices there are n zero modes in the spectrum, which means that the diagonalized

Hamiltonian (2.19) takes the form

Ly Ly n Ly Ly E n Eds
_ 2 T ds T i,p i,p
H= [ &p| > Eiphpbip+ Y €pziptin— | X, 50+
BZ . : . :
i=n-+1 =1 i=n-+1 =1

We have renamed the n smallest eigenvalues and the corresponding modes as ¢; 7,
and z; p, respectively. Figures 3.3(b) and 3.3(c) suggest that when the vortex pairs

are far from each other, e?“‘p take the form

ds

ede s ~ AXY cos(wds)e” € (3.3)

where w > 0 and £ > 0 depend on the couplings and parametrize the frequency of

the oscillations and the convergence of the energy, respectively.
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Figure 3.3: The mode spectrum, (2.33), for the three lowest lying modes with ener-
gies Ay q,, Ao 4, and Az 4. (a) In the absence of vortices all the modes are gapped
and there is trivially no ds dependence. (b) In the presence of a single vortex pair
A%f’ds oscillates with separation and converges to zero energy ds — oc. A%f’ds and
A%f’ds are independent of ds. (c) In the presence of two vortex pairs (nine rows apart,
picture not on scale), both Af’ds and A%f’ds acquire this identical ds dependence (the

plots overlap) while is A%Uds still insensitive. The plots are produced for K = 0.1
and S = 20 using a (20, 20)-unit cell.
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Figure 3.4: A study of the 2-vortex ground state degeneracy as functions of the
vortex separation ds and magnetic field K using a (20, 20)-unit cell. (a) A plot of
log(Agf’ds) for K = 0.1. A linear fit gives £ &~ 1.2 (in units of d) for the characteristic

length scale. (b) ¢ a function of K showing & ~ %12 behavior.

In particular, we are interested in the magnitude of £ as it gives the characteristic
length scale of the interactions that are not part of the pure topological theory. In
Figure 3.4(a) we plot ln(Aff’ds) when K = 0.1 for the 2-vortex system illustrated
in Figure (3.3)(b). The linear fit with negative slope confirms the exponential con-
vergence of the zero mode energy with vortex separation, and distance between
successive dips gives the half of the wavelength of the oscillations. By performing
similar linear fits for ln(A%f’ds) for a range of K’s, we obtain Figure 3.4(b), which
shows ¢ ~ K~! behavior with ¢ ~ 1 when K = 0.12. For a particular value of K, we
expect the system to be well described by the Ising anyon theory when the vortex
separation satisfies ds > &.

The oscillatory behavior of the interactions, (3.3), does not play a significant role
in the present discussion and thus we leave its systematic study for future work. To
summarize it briefly, our numerical studies have shown that the frequency w depends
primarily on the couplings J, such that the frequency is higher the closer one is to
the phase boundaries (2.24). In Chapter 4 we will connect at a heuristic level these

interaction oscillations to the phase space behavior of the full-vortex sector.
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Figure 3.5: The behavior of the fermion gap, Ay, and the vortex gap, 2A,, in a
2-vortex system as functions of K. The scaling is nearly linear in both cases.

3.2.2 The low-energy spectrum

To outline the full low-energy spectrum of the model, we consider the energy gaps
to non-zero mode states and the relative ground state energies of different vortex
sectors. These are also of interest, because they describe the stability of the non-

Abelian phase against thermal fluctuations.

Figures (3.3)(a)-(c) show that A2"Y = A, i.e. that the energy of the first non-
zero mode coincides always with the fermion gap of the the vortex-free sector. This
suggests that in general the fermion gap for an 2n-vortex system should be defined

as

Ap =AY = mlgn Eni1p- (3.4)

This implies that the modes b; p, in (3.2) still describe free fermions, and reinforces
the notion that the modes z; p, although being fermionic operators, describe some
new degrees of freedom due to the presence of vortices. We will discuss their inter-

pretation in a moment.

We can also define asymptotically the vortex mass as the relative ground state

energy of the vortex-free and 2-vortex sectors,

20, = lim (E§Yy — EQY). (3.5)

ds—r00
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It describes the amount of energy needed to create a pair of vortices out of vacuum
and take them far enough for the interaction to be negligible. We plot in Figure
3.5 the behavior of both (3.4) and (3.5), which shows that both increase roughly
linearly with K. The fermion gap vanishes for K = 0, the vortices have mass also

in the gapless phase.

We can combine the mode spectra and the vortex gaps for the 0-, 2-vortex sectors
to outline the full low-energy spectrum of the Hamiltonian (3.2). Figure 3.6(a) shows
the evolution of the lowest lying states in the 2-vortex sector relative to the ground
state energy EJY of the vortex-free sector. At large ds the states [¥3V) and zI|\IJg”>
differing by the occupation of the zero mode are degenerate with energies 2A,, above
the vortex-free ground state. As the vortices are brought closer, the degeneracy is
lifted due to the mode zI acquiring energy, i.e. efs becoming non-zero as shown in
Figure 3.3(b). As ds — 0, the vortices are brought to the same plaquette which
corresponds to fusing them. We observe that the energy corresponding to |¥2?)
evolves to the energy of the ground state |Ug) of the vortex-free sector. On the
other hand, ZI\\IIg”> evolves to bl |Wo), the first excited free fermion state in the

17p0

vortex-free sector.

Before proceeding to connect this spectral evolution with the fusion rules, let us
comment on the hopping of the energies in Figure 3.6(a). It is due to the employed
transport protocol. The minima always occur for integer values of dg, i.e. for
configurations uniform in amplitude, |J;;| = 1, whereas the maxima occur at dg/s,
i.e. when the transported vortex occupies a composite plaquette twice the size of a
regular plaquette (see Figure 3.2(c)). We note that Egv’dS/Q - Egv’ds ~ A,, which
means an energy of A, is required to move a vortex to an adjacent plaquette. This
suggests that we can think the vortex mass A, equivalently as the depth of a local
potential that confines the vortices at the plaquettes. The energy gaps Ay and A,
give a measure of the stability of the vortex sectors against thermal fluctuations at

temperature 7. When T" < Ay, A, the creation and propagation of both fermions

and vortex excitations is exponentially suppressed.
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Figure 3.6: The low-energy spectrum of the B-phase when |J,| = 1 and K = 0.1 as a
function of vortex separation. All the energies in the 2-vortex (red lines) and 4-vortex
(green lines) sectors are with respect to the ground state energy of the vortex-free
sector (black lines). The solid lines are the total ground state energies, the dash-
dotted ones are states with occupied zero modes and the dashed lines correspond to
lowest lying free fermion states over the respective vortex sectors. (a) The 2-vortex
low-energy spectrum as a function of ds. (b) The low-energy spectrum including
both 2- and 4-vortex sectors for the integer values of d;. The near degeneracy of
the 2-vortex ground state with the first excited state of the vortex-free sector, i.e.
Ay~ 2A,, is accidental due to the choice of K = 0.1 as shown in Figure 3.5.
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3.2.3 Zero modes as fusion degrees of freedom

The distinct behavior of the 2-vortex states |¥2’) and z“\l’%”) in Figure 3.6(a) as
ds — 0 suggests that the occupation of the zero mode corresponds to the fusion
channel of the vortices. Let us identify the o particles of the Ising anyon model
with the vortices, and the ¢’s with free fermion modes sz' Then in accordance with
the fusion rules (2.28), an occupied zero mode means that the o’s will fuse to a 1,

whereas unoccupied mode implies that the fusion will give the vacuum 1.

This is further confirmed in Figure 3.6(b), where we plot the low-energy spectrum
including the 4-vortex sector when the separation of the two vortex pairs is varied
pair-wise (see Figure 3.3(c)). The plot is only for the integer values of ds to omit
the irrelevant hopping behavior. The 4-vortex sector has the physically non-trivial
two-dimensional fusion spaces V014 and V;ﬁ, (2.29). The spectral evolution shows
that when the vortices are fused, there are two nearly degenerate states (either z;
or zy occupied) that become the first excited state in the vortex-free sector. The
states with neither or both zero modes occupied become the ground state or the
two fermion state, respectively. Therefore we can identify these four states with the

fusion space basis states as:

|w3”) e V1, (cxo)1 X (oxo)y—>1x1=1, (3.6)
AW eV (ox0)ix(0x0)y =P xp=1,
and
z“\I/%”)EV;i: (cxo)1 X (0x0a)y =1 x1=1, (3.7
z;]\I/%v>€V;ﬁ: (o xo)1 X (0x0)y—=1xp=1.

The appearance of the fusion degrees of freedom as zero modes can be understood
in the context of p-wave superconductors to which the honeycomb lattice model
can be mapped [89]. There one can explicitly show that vortices bind unpaired
massless Majorana fermions 7; [83, 90|, that are responsible for the non-Abelian
behavior [81, 91, 92]. As fyZ-T = ~; by definition, one can not define a local degree

of freedom for an isolated Majorana mode. However, two such modes localized at
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1 and ¢ + 1, regardless of how far separated they are spatially, can be combined to
a complex fermion mode z; = (v + i7i+1)/2. The occupation of this mode is a
non-local property of a pair and it corresponds to the two possible fusion outcomes
of the anyonic vortices. When the vortices are nearby, tunneling processes between
the vortex cores lead to an oscillating interaction that lifts the degeneracy of the
fusion channels [93]. In the honeycomb lattice model we do not observe directly
the localized Majorana modes, but the oscillating zero modes, (3.3), are exactly as

predicted by this dual picture.

3.2.4 Discussion

By studying the spectral evolution as a function of vortex separation, we have demon-
strated that the presence of vortices in the B-phase introduces zero modes and that
these can be identified with the fusion degrees of freedom of the Ising anyons. The
anyonic vortices are shown to exhibit exponentially decaying interactions whose
magnitude oscillates with the vortex separation. When the vortices are nearby, the
vacuum channel is always energetically favoured. We found that the range of these
interactions is controlled by the K dependent parameter £. For vortex separations
ds > &, the states corresponding to the fusion channels are degenerate, and we an-
ticipate the low-energy spectrum to be well approximated by the pure topological

theory.

To identify the fusion rules from the zero modes, it was sufficient to consider only
the very short and the very long-range behavior and neglect the oscillatory term in
(3.3). Although these limiting behaviors are not altered by its inclusion, our further
numerical studies have shown that the oscillations depend strongly on the couplings
Jo. As one approaches the phase boundaries (2.24), their frequency increases while
the period decreases. As long as only very few vortices are present, the physics of
the non-Abelian phase is unaffected by them. However, when the vortex density is
increased, i.e. when many vortices interact simultaneously with each other, these

oscillations quickly smear out the vacuum channel as the favoured fusion channel.
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This turns out to have dramatic consequences on the collective states of interacting
anyons that can give rise to completely new phases. This effect will be discussed in
more detail in Chapter 4.

Apart from the interactions, another interesting microscopic detail of the model
is the dependence of the vortex mass A, on the local coupling configurations. As
showed in Figure 3.6(a), it seems to be directly proportional to the number of pla-
quettes the vortex occupies. This suggests that the ground state admits partial
stabilizer representation in terms of the plaquette operators, which agrees with the
form derived in [68]. The vortex mass can also be interpreted in terms p-wave super-
conductor picture. Since A, gives the amount of energy required to move a vortex
to an adjacent plaquette, it can be equivalently viewed as the height of the potential
barrier confining the Majorana modes to the vortex cores. This interpretation agrees
with a larger K suppressing the interactions (3.3). As a larger K increases also the
potential barrier, it suppresses the tunnelings which can be understood as giving

rise to them [93].
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3.3 Non-Abelian statistics as a Berry phase

In this section we explicitly calculate the non-Abelian statistics of the o anyons.
We transport the vortices around each other using the protocol in Figure 3.2 and
evaluate the corresponding evolution in the fusion space as a Berry phase. By
considering various finite systems, we are able to identify parameter ranges where
it corresponds to the statistics of Ising anyons with high fidelity. Together with the
fusion rules derived above from the spectral evolution, this conclusively demonstrates

the non-Abelian character of Kitaev’s honeycomb lattice model.

3.3.1 Statistics and holonomies

In general, when z; and 29 are the coordinates of some point-like particles, their
statistics is given by the transformation of the collective wave function under their

permutation,

¢(21,22) = U¢(ZQ,21), (38)

where U is the characteristic statistical phase or matrix. Due to topological argu-
ments [3], in three or more spatial dimensions U must satisfy U? = 1. The only
solutions are U = =+1, which correspond to bosons and fermions. On the other
hand, in two spatial dimensions one can have U? # 1, which can give rise to anyonic
statistics. In particular, if U = e for some phase 6, the statistics is called Abelian,
and the particles are Abelian anyons. If U is a unitary matrix acting in a degenerate

state space, the particles are called non-Abelian anyons.

In real physical systems the permutation of the coordinates corresponds to adia-
batically transporting the particles such that their positions are swapped [94]. Often
single exchanges can not be defined unambiguously. Instead one needs to consider
evolutions where a particle winds around another along a suitable chosen closed
path C. Regardless of the local details of the path, the process then is topologically
equivalent to two successive exchanges. As the evolution of the system is cyclic,

the wave function can acquire a non-trivial Berry phase I'c [95], or more generally,
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a holonomy [96]. In the presence of degenerate states, I'c can be a matrix imple-
menting a rotation in the degenerate subspace [97]. In general, the evolution due to
cyclic adiabatic transport can be split as 'c = T¢I into two contributions. Here
F% describes the geometric contribution, that depends on the local geometry of the
path. On the other hand, Ftc depends only on the path’s topology, i.e. only on the
evolution in the configuration space, which on a simply connected two-dimensional
manifold is due the particles encircling each other [98]. Therefore, if the path C' can
be chosen such that I“‘é = 1, the holonomy coincides with the mutual statistics of
the particles, i.e. I'c = U2. For bosons and fermions this is always trivial, with any

non-trivial evolution being a sign of anyonic statistics.

One can satisfy T'c = I't, if one demands that the evolution C'is not only cyclic
in all parameters employed, but that it is cyclic such that it spans no area in position
space [62]. In the honeycomb lattice setting, a suitable path is illustrated in Figure
3.7(a), where the dashed lines indicate the two oriented parts C and C5 of the total
path C'. The evolution along this path is cyclic in the space of coupling configurations
J where the transport is implemented. Neither does it span any spatial area as C
always involves both C; and C; !. Figures 3.7(b) and 3.7(c) illustrate that different
ordering of the parts C; and Cy give rise to topologically distinct evolutions. The
evolution Cj links the world lines of the particles from different pairs and thus should
correspond to the statistics of exchanging the particles twice. On the other hand, C,
spans exactly the same path in the position space, but topologically it corresponds

to trivial evolution in the configuration space.

If one regards the vortices connected by a solid lines being paired, the evolution C}
in Figure 3.7(b) corresponds to exchanging twice the vortices belonging to different
pairs. Restricting to considering a global i sector, i.e. considering the evolution
in V;ﬁ, and adopting the pair-wise fusion basis (3.7), we can predict the outcome
of such an evolution from the abstract theory of Ising anyons. In Figure 3.8(a) we
illustrate the required sequence of F-, (2.31), and R-moves, (2.32). One must first

use an F to move to a basis where the braided anyons are fused, then apply R?
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Figure 3.7: (a) The honeycomb lattice containing two vortex pairs. The parameter d
controls the minimal vortex separation in units of links. It is related to the unit cell
dimensions through L, = 4(d + 1) and L, = 2d + 1 (picture not on scale). The four
dashed arrows Cy, C| 1 ¢y and Cy L are the oriented parts of the path C along which
the vortices are transported. (b) C; = C1C2Cy 10{ Lis topologically equivalent to a
link. (c) C, = C1C] 10202_ is topologically equivalent to two unlinked loops.

to perform the braiding, and subsequently use F~! = F to return to the original
basis. In general, the process where a particle winds around another is known as a

monodromy. For this particular case it is given by
R?=FR)F =¢ 7 . (3.9)

The overall phase is a characteristic to the Ising anyons, whereas the off-diagonality
is a characteristic of non-Abelian anyons in general. As the basis on which R? acts
is associated with the information about which pair fuses to a 1, the monodromy
provides an intuitive illustration of the non-locality of the fusion degrees of freedom.
This process is illustrated in Figure 3.8(b). Regardless of how far the o particles are
spatially, their monodromy, (3.9), will result in a process which can be viewed as a

1) particle being teleported between the two pairs.
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Figure 3.8: (a) To find the evolution corresponding to braiding anyons from different
pairs, one must first use the F-moves to rotate to a basis where the anyons to be
braided are fused, i.e. where the action of R is defined (see Figure 2.4(c)). After
applying R to implement the exchange, one can return to the original basis with
F~! to find the corresponding evolution. (b) When the ¢’s from different pairs are
exchanged twice, the evolution in V;ﬂ with basis {|¥;), |¥2)} is proportional to a o*
rotation, (3.9). This process can be thought of as a ¢ being teleported between the
two pairs.
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3.3.2 Discrete holonomies

To evaluate the accumulated wave function evolution corresponding to the mon-
odromy, we need to employ the transport protocol of Figure 3.2 to simulate the
vortex transport using discrete steps. To this end we derive first a convenient dis-
crete expression for the holonomy.

Consider a Hamiltonian H(A) with n-fold degeneracy {|¥,(\))|la = 1,...,n}
that depends on some parameters \. When we adiabatically vary A along a closed

path C, the evolution of the degenerate subspace is given by the holonomy [97]

I'c =PeXP7€A*‘(A)d}w’ [A¥(Nlag = (Ta (M7 [Vs(N)) (3.10)

d)\“

where P denotes path ordering in A, and A¥(\) is the connection in the space of
states |V, (\)) above the control parameter space . Let us discretize the path C into
T infinitesimal intervals of length 6\ with A\; denoting the control parameter value

at step t. We can write
T
I'c= lim P|[|[1L+0X, A"\ 3.11
o= lim tHl + (A)] - (3.11)

Discretizing the derivative in A#()), it follows that

(AR ()]s = iwauu,tn%mm» s (3.12)

Inserting this into the discretized holonomy (3.11), and grouping the states at step

t together, we obtain

T n
e = TIEI;OPH (Z ‘\Iloz ()\t)><\pa ()‘t)’> . (3'13)

This convenient form means that in the limit A — 0 the holonomy can be calculated
as an ordered product of projectors onto the ground state space at each step ¢ along

the path C.
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Resolving the gauge freedom

In general, the non-Abelian holonomy (3.10) is not gauge invariant. This is due to
the freedom to rotate the basis vectors at every step t by |V, (1)) = g¢|¥a(Nt)) by

some n X n unitary matrix g;. This transforms the connection A* at step ¢ by
gt : AP\ = gl AR (N ge + 9} g (3.14)
It follows that the holonomy transforms as
g: To—gleg', (3.15)

where g = g1 = gr, which is guaranteed by choosing explicitly [V (A1) = [¥o (A1)
[98]. Because Tr(I'c) = Tr(¢'Tcg), only the trace of a non-Abelian holonomy is
gauge invariant, and thus resolving the full form of the matrix I'c is in general not

unambiguous.

In an actual physical system like ours, the states |¥,) are never perfectly degen-
erate. This means that instead of g being a rotation in a degenerate space, it only
assigns independent phases to each state, i.e. g = diag(e!, ..., e'»). The diagonal
elements of I'c will be naturally gauge invariant, with the off-diagonal elements ac-
quiring some correlated phases. To be precise, when I'¢ is a 2 X 2 unitary, the gauge

transform acts as

e - [Ie et (d1—02)
o e e 1o
[Tcly — [Tely e @r=92)

When I'¢ is unitary, and predominantly off-diagonal, i.e. |[['cli2| = |[['c21] = 1, we

can remove the phases by replacing the off-diagonal elements of I'c with
[Tchz, [Lelar = £/ [Teliz[lelar- (3.17)

The residual overall sign freedom is fixed by continuity requirements.
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3.3.3 Holonomy due to vortex transport

To reduce the complexity of the calculations, we consider a finite system of 2L, L,
spins on a torus. This is equivalent to a (L, Ly)-unit cell with elements (2.15)-
(2.18) when one sets p = 0 everywhere. The initial four-vortex configuration is
shown in 2.1(a), where the d parametrizes the minimal vortex separation at all

times during the transport process.

As shown in the previous section, for large d this system has altogether four de-
generate ground states arising from a pair of zero modes. Due to the conservation of
the global fermionic parity, the degenerate states split into two orthogonal subspaces
Vgl4 and V;/fl spanned by the pair-wise fusion channel states (3.6) and (3.7), respec-
tively. For technical reasons we consider here the latter case, where the numerical

representations, (2.35), of the states |¥;) = zI|\I/%”> and |¥y) = z;|\ll%”>} are given

by
LoLy—1 .
|W,) = Z #Wﬂ ® - ® [P). (3.18)
oy VTl = 1)
k,...,l1#a}

The continuous transport of the vortices is simulated by tuning the local cou-
plings J in T steps along the path C' in an ordered manner. Let us denote by |Wls)
the eigenvectors at step ¢, 1 <ty < Tg, where t indexes a particular plaquette along
the path and s the intermediate locations as required for the transport in Figure
3.2. Using the properties of determinants, the inner products of the eigenvector

representations (3.18) from steps 5 and ¢/ are given by
¢ tst! tsthy -
(TG1P5) = det(Byg*), [Bas'lu = (v (ts)ly (£)), (3.19)

where (¢ (t5)] (|¢; (t,))) spans now the modes belonging to the state (¥’ | (|\Iltﬁ/s>)

Taking {A\} = {J} to be the control parameter space and assuming Tg to be

a sufficiently large, the discrete holonomy (3.13) for the degenerate states (3.18) is
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3.3. Non-Abelian statistics as a Berry phase

well approximated by

Ts—1 [ qet(Blstt1)  det(Blstst!

FC ~ P H ( 11 ) ( 12 ) . (320)
ts,ts+1 ts,ts+1
te=1 \ det(Bsy™") det(Byy™" ")

This means that there is a simple algorithm to evaluate the holonomy:

1. Diagonalize the Hamiltonian at each step t; corresponding to a particular

coupling configuration J.
2. Form the four inner products (3.19) of the eigenvectors from steps ts and ts41.

3. Multiply the matrices containing the inner products together according to

(3.20).

This algorithm is convenient for two reasons. First, one never needs to construct the
states (3.18), which in general are too large to be stored on a computer. The inner
products (3.19) can be evaluated using only the mode spectrum (2.33). Second, all

these steps can be carried out in parallel.

3.3.4 The study of the holonomy

To study how the holonomy depends on the system size, degeneracy of the states
|¥,) and the fermion gap in a finite system, we calculate I'c for a range of K using

the three parametrizations shown in Table 3.1.

Adiabaticity of the transport

As the vortices are transported, their relative separations vary. Due to the vortex-
vortex interactions, this means that the spectrum varies also with ¢; during the
braiding process. To consider the effect on I, we define the minimal fermion gap,

A, and the maximum energy splitting between the two ground states, d, by

A= n%in(Eés —EY), 6= Ir%ax(Eés — Eb), (3.21)
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d S Ty 2L, L,
2 210° 32108 120
3
4

2.10%  48-103 224
4103 128-10° 360

Table 3.1: Three parametrizations (i), (ii) and (iii) for which the holonomy is eval-
uated. Here d is the minimal vortex separation in units of links, S is the number
of steps in changing the sign of the coupling at every link, Tg = 85d is the total
number of steps in C' and 2L,L, = 8(d + 1)(2d + 1) gives the number of spins in
the system. S has been increased in (iii) to suppress accumulation of discretization
errors due to longer path.

Figure 3.9: The minimal fermion gap A and the maximum energy splitting between
the ground states 0, (3.21) as functions of K for parametrizations (i), (ii) and (iii)
given in Table 3.1. In agreement with the results on the thermodynamic limit, the
fermion gap grows linearly and the degeneracy improves with increasing K for all
parametrizations. The fermion gap is relatively insensitive to the vortex separation,
whereas the degeneracy improves when the vortices are further apart.
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3.3. Non-Abelian statistics as a Berry phase

respectively, where E,t: is now the kth eigenvalue at step t;. These are plotted in
Figure 3.9 for the three parametrizations (i)-(iii) of the holonomy. We observe that
both the fermion gap and the level of degeneracy improve as K and d increase.
These agree with the behavior in the thermodynamic limit as studied in Section 3.2.

Under the adiabatic approximation the holonomy corresponds to the exact time
evolution when A > § and 6 — 0 [99]. To physically accommodate these conditions
in a finite size system, the vortex transport should be fast enough compared to ¢ for
the states |Ul) to appear as degenerate, but slow enough compared to A so that no
fermionic excitation is produced.

We expect the parametrization (iii) where the vortices are furthest from each
other to be physically the most relevant one. Figure 3.9 shows that for it % <1072
when K 2 0.07. This region can support the adiabaticity conditions and hence we
take K ~ 0.07 as a lower bound for identifying a stable topological phase for the

finite size system in consideration.

The results

To quantitatively study the holonomy, we introduce a fidelity measure for a target

matrix U and a test matrix V as
_ 1 i i
s(U, V) = 1 [t (U VIi4+VU ) . (3.22)

When U and V' are unitary 2 x 2 matrices, we have that s(U,V) = 1 if and only if
U =V, while in general s(U,V) < 1.

We consider first the unitarity of the transport. It is captured by the fidelity
s(]l,FCZFTCZ), which measures how close FCzFTCl is to an identity matrix. We plot
it in Figure 3.10(a), where we can see that the unitarity measure is above 98% for
all parametrizations (i)-(iii) when K < 0.10. For larger K we observe the unitarity
reducing, which we interpret being due to the coarse graining in our simulation. The
employed algorithm, (3.20), approximates the holonomy well for the parametriza-

tions (i)-(iii) only when K < 0.10. Therefore, we take this as a bound for our
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Chapter 3. Non-Abelian Fusion Rules and Braid Statistics

simulation’s physical relevance. Together with the lower bound due to adiabaticity
of the transport, we expect the holonomy to coincide with an actual time evolution
in the range 0.07 < K < 0.10.

The monodromy R?, (3.9), is characterized by its off-diagonality. When the
transport is unitary, we can also characterize I'c by its off-diagonal elements. After
the gauge fixing (3.17), we take them to be some complex numbers [['c]12 = [['¢]o1 =
reio, where 0 < r < 1 and 0 < 0 < 27. To study I'c we construct two different

fidelity measures, which take the form:

s(R*,ITcl) = (3.23)
§(R2,Fc):%[s(}?2,l“cl)+1] _ %[rcos(%—i—@)—i—l]. (3.24)

Here |U| denotes a matrix U with its elements replaced by their absolute values.
s(|R?|,|T¢|) measures the off-diagonality that characterizes R?, wheres 5(R?,T¢) is
the total fidelity that accounts also for the overall phase. The residual sign ambiguity
in the gauge fixing, (3.17), has been resolved based on the continuity of s.

The holonomies for the three parametrizations (i), (ii) and (iii) in Table 3.1 are

plotted in Figures 3.10(b)-(d), respectively. We consider each separately:

(i) The holonomy shows no significant off-diagonality over the considered range of
K. We attribute this to the too small size of the system (120 spins) where the

vortices are always too near each other (d = 2).

(ii) The holonomy is predominantly off-diagonal for 0.02 < K < 0.04. There is
also a small region around K ~ 0.02 with 5 > 0.9. However, since in this region
% > 1071, the adiabaticity conditions do not hold and thus we disregard it as

unphysical.

(iii) The holonomy is predominantly off-diagonal for 0.02 < K < 0.09. The total
fidelity, 5, has two regimes of interest in this region. Around 0.02 < K < 0.05 it
takes the limiting value § &~ 0.481, and in the region 0.08 < K < 0.10 it peaks at

5~ 0.991. These correspond to overall phases of the so called SU(2), (5 = 1/2)
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Figure 3.10: (a) The unitarity measure, s(1L, FCzFTCZ)v as a function of K for the three
configurations given in Table 3.1. The measure of off-diagonality, s(|R?|, |T'¢,|), and
the total fidelity, 5(R%,T'¢,), as a function of K for the parametrizations (b) (i), (c)
(ii) and (d) (iii). Based on unitarity and the adiabaticity, we expect a stable phase
in the area 0.07 < K < 0.10 bounded by the dashed vertical lines.
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Chapter 3. Non-Abelian Fusion Rules and Braid Statistics

and the Ising anyons (§ = 1), respectively. Both theories have the same particle
content with the fusion rules (2.28), but their statistics differ [10]. We disregard
the again 0.02 < K < 0.05 regime, because it does not accommodate the
adiabaticity conditions. On the other hand, the 0.08 < K < 0.10 regime is
physically relevant in the light of both adiabaticity and the coarse graining in
our simulation. In this regime the holonomy is both off-diagonal and has the

highest total fidelity.

Finally, we verify the topological nature of our calculation for all the parametriza-
tions. First, when the evolution is topologically trivial as shown in Figure 3.7(c),
I'c, ~ 1 with error less than 1072, Second, when the orientation of the braiding
is reversed, we obtain inverse evolution, i.e. FCl—l = I‘a. Third, the holonomy is
not affected by path deformations C' — C’, i.e. I'c = I'¢r, as longs as the topology
of the path remains invariant. Together these mean that the holonomy I'c depends
only on the space-time topology of the path C' when it is chosen as shown in Figure
3.7(a). The result of our simulation should therefore correspond to the statistics of

the vortices.

3.3.5 Discussion

The main results are that the off-diagonality of the holonomy I'c improves system-
atically with the system size, and that the highest total fidelity § ~ 0.991 appears
in the physical region 0.07 < K < 0.10. We regard these giving a validation of the
non-Abelian nature of the vortices as well as providing strong support that they are
indeed Ising anyons. Our method is validated by the explicit demonstration that
the holonomy depends only on the space-time topology of the path C.

In Section 3.2 we identified the length scale £ associated with the vortex-vortex
interactions. The improvement of the holonomy with increasing system size can be
directly related to the minimal vortex separation becoming larger and larger than
&. For the parametrization (iii), there holds always d 2 4 in the physical region,

which provides damping of the interactions by a factor of at least 10~2. We regard
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3.3. Non-Abelian statistics as a Berry phase

this as providing a good approximation of the ds > £ criteria for the topological

behavior to emerge in a finite size system.

The physical domain of K was chosen such that it accommodated both the
adiabaticity and unitarity. The first was based on the energy splitting and fermion
gaps, while the latter is due to the coarse graining in the simulation. Although
we observe systematic improvement of off-diagonality with increasing system size,
strictly speaking only the parametrization (iii) accommodates both of these criteria
simultaneously. In order to unambigously confirm that the statistics converges to
the Ising statistics as the system size increases, one needs better numerics with larger
vortex separation d and more continuous transport, i.e. larger S. Larger systems
should also resolve the asymmetry between the off-diagonality and the total fidelity.
The first exhibits now systematic improvement with the system size, while such
behavior is absent for the latter. It would be interesting to study whether the phase
is indeed more sensitive to the degeneracy splitting than the non-Abelian character
given by the off-diagonality. Were the model ever employed for quantum information

processing, such studies would relate directly to the fidelities of quantum gates.

Our method of tuning the couplings J on the links along the path can be di-
rectly translated, given sufficient site addressability, to how one could perform vortex
transport in the experiments. Therefore, a calculation like ours provides exact pre-
dictions for experiments performed in finite size systems. However, it has been
recently shown that the sector with a single -particle should not actually exist on
a torus [68]. This problem could be circumvented by carrying out a similar calcu-
lation with a third vortex pair far away from the two used in the braiding. This
can be used to hide another 1 particle, such that the fermionic parity is even and
the degenerate ground states are still separated from the rest of the spectrum by
the energy gap. This calculation would be technically identical to ours and thus we
would expect similar results. Unfortunately systems of this nature were too large

for us to consider and thus better numerics are again desirable.

The reason we carried out the calculation in the sector with a single ¥-particle
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is purely technical. In order to calculate the inner products, (3.19), required for the
holonomy, the two degenerate states, (3.18), have to include an equal number of the
modes [1;). In a sector with four vortices, this is possible only when employing
states that differ by the inclusion of the zero mode ZI or z;. Physically there is
nothing prohibiting considering the global vacuum sector. It would be desirable to
find a method to carry out a similar calculation also directly there.

Despite of these technical limitations, we regard our study providing an im-
portant general demonstration that a direct calculation of non-Abelian statistics is
possible in a variety of physically relevant systems. Similar calculations have been

performed previously by only using trial wave functions [34, 94, 100]. Ours is the

first to employ exact eigenstates.

3.4 Summary

In this chapter we have explicitly demonstrated the non-Abelian fusion rules and
braid statistics of the Ising anyons by using the exact solutions of the model. In the
first part we found that the anyonic vortices are interacting with a characteristic
length £ that depends inversely on the magnitude K of the time-reversal symmetry
breaking term. When the vortices are nearby, the interactions allowed us to associate
different degenerate states with the fusion degrees of freedom.

In the second part we calculated the braid statistics as a holonomy associated
with process where a vortex is transported around another. For the largest consid-
ered system where the vortex separation satisfied d > 4¢, we found a region in K
where the holonomy coincides with high fidelity to the statistics of the Ising anyons.
As this region also accommodates the adiabaticity conditions, we regard it as a
strong direct evidence for existence of non-Abelian anyons in the honeycomb lattice
model.

This concludes “The Dirty Work”, which consisted of the explicit demonstration
of properties which, in a sense, were all anticipated by a single integer, the Chern

number v = —1. However, we showed that the information it gives on the physics
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of the system is limited. New physics was discovered in the form of the interactions,
which set limits on the system size and the vortex density for the predicted topolog-
ical behavior to be manifest. Understanding these limits is of crucial importance to
experiments, which will eventually be performed in finite size systems. Also, only by
understanding the microscopics of the system can one envisage control procedures
to carry out the experiments. A prime example of this is our method of simulating
vortex transport through manipulating the couplings J locally. As this corresponds
to how transport could be implemented also in laboratory, the performed calcula-
tions provide exact predictions for such experiments. Likewise, the energy gaps and
the lifting of zero mode degeneracy provide measures of stability and ways to detect
the fusion channels of the vortices, respectively.

The essential new discovery was the interactions, that are not part of the pure
topological theory, but arise due to the underlying microscopic model. Their role has
so far been two-fold. The identification of the zero modes with fusion channels was
only possible because of them. On the other hand, they made the calculation of the
statistics harder resource-wise. The vortices had to be kept as far as possible, and
thus larger systems were required. However, their significance for the physics of the
honeycomb lattice model goes beyond just modifying the pure topological theory.
In the next chapter we will show that the interactions can drive phase transitions

to completely new topological phases.
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Chapter 4

Going Beyond: A New Chiral

Topological Phase

In this chapter we study the B-phase in the full-vortex sector of the honeycomb
lattice model. In Section 4.1 we obtain the band structure analytically and outline
the phase space of the full-vortex sector. The B-phase is characterized now by
Chern number v = £2, which implies a new phase where the vortices behave as
chiral Abelian anyons. By studying the Fermi surface of the model, we identify an
emergent symmetry that is responsible for the new phase. To study the transitions
to the toric code (v = 0) and Ising (v = —1) phases, we consider in Section 4.2 the
evolution of the Fermi surface under global perturbations. This is discovered to be
equivalent to considering the low-energy field theory of Dirac fermions coupled to
gauge fields. We identify two distinct types of topological phase transitions based on
Fermi surface symmetries and outline the extended phase space. Finally, in Section
4.3 we illustrate the role of anyon-anyon interactions on the transition between the

non-Abelian Ising phase and the new chiral Abelian phase.
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Chapter 4. Going Beyond: A New Chiral Topological Phase

Figure 4.1: The full-vortex configuration can be created, for instance, by allowing
the sign J, to alternate in direction n,, while keeping the .J, and J, couplings
positive. Dashed links denote the links where J, < 0. (a) Inside the two plaquette
unit cell this is equivalent to setting J, ; = —J,,, which gives (b) a vortex on every
plaquette.

4.1 The full-vortex sector

The chiral Abelian phase emerges in the B-phase (J, ~ J, =~ J, and K > 0) of
the full-vortex sector (w, = —1 on all plaquettes). This sector can be created by
choosing a (2, 1)-unit cell and using a gauge where, for instance, u;; alternates on
z-links in direction n,. In terms of couplings, (3.1), this is equivalent to setting

inside the unit cell J, 1 = —J, 2 as illustrated in Figures 4.1(a) and 4.1(b).

Inserting these couplings into (2.15)-(2.18), we obtain a Hamiltonian which is

unitarily equivalent to [86]

h Rpw
A R (4.1)
hbw _h’rbIl‘)
where
i(JyePs 4+ J, ety iJ,
[ ( ve™) . . (4.2)
1J, i(—JgeP* 4 Jyev)
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Figure 4.2: (a) The fermion gap A/ as a function of J = .J, = J, when J, = 1 for
different values of K. The gap vanishes at J = 1/ V2 when K = 0, but shifts to
smaller J as K is increased. When J = 1 the gap scales as AV ~ 2v/2K. (b) The
phase diagram of the full-vortex sector. The shaded area shows the region where
the phase transitions occurs with the exact value of J, depending on K. In the
full-vortex sector the B-phase supports chiral Abelian anyons described by Chern
number v = —2.

and

sin(py — p sin(py) — ¢ cos(ps
— ( y) (Py) (pa) ) (43)

sin(py) + i cos(pz) —sin(py — py)

Diagonalization gives again the double spectrum with the eigenvalues

LEp = £2/f(p) + (-1)2/g(p),  i=1.2, (4.4)

where

fo = JiA4J]+ JZ+ 4K (sin®(pr — py) + sin® py + cos® pa),
g = JfJf, cos?(pz — py) + J2JZsin® p, + Jf,Jf cos® py, +
4K? [Jg sin? Dy + J; cos? pp + J2 sin?(p, — Dy)

—(Jody + Jpd + JyJ.) sin(py — py) sinpy cos py |-

The expressions for the eigenvectors are too complicated to be obtained analytically.
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Similar to the study of the vortex-free sector in Section 2.3, we outline the phase
space structure of the full-vortex sector by considering the behavior of the energy
gap

ATV = min £ p. (4.5)

Figure 4.2(a) shows the behavior of AV as functions of J and K. In contrast to
the vortex-free sector, in the full-vortex sector the gap persists deeper into the B-
phase with the gap closing point depending now also on K. This in agreement
with [86], where the phase boundaries for K = 0 between the A- and B-phases in

the full-vortex sector were shown to be
[T = [T+ 1P (P = 1P+ e 1P = 1 + 2 (4.6)

The B-phase is again gapped only if K # 0. The phase space of the full-vortex

sector is illustrated in Figure 4.2(b).

Evaluating the Chern numbers, (2.26), in the full-vortex sector, one finds that
the A,-phases still give v = 0 implying Abelian toric code anyons. However, the
B-phase gives now v = —2, which means it is a new topologically ordered phase. In
this phase the vortices behave as certain chiral Abelian anyons as catalogued in [62].
To clarify how vortices can appear in the full-vortex sector, we emphasize again that
the full-vortex sector should be viewed as the sign-alternated coupling configuration
over the vortex-free sector (see Figures 4.1(a) and 4.1(b)). Over this background

vortices can be defined as usual through the plaquette operators (2.9).

4.1.1 Symmetries of the Fermi surface

To understand why the B-phase turns out to be described by a new topological
phase, we study first its spectrum. Let us normalize the couplings as J, = J, = 1
and J, 1 = —J,2 = 1, which amounts to considering the system in the middle of
the B-phase. In particular, we are interested in the Fermi surface, the manifold of

occupied states of highest energy, that plays an integral role in fermion systems [79].
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4.1. The full-vortex sector

Figure 4.3: (a) The vortex-free band structure, (2.23), and (b) the full-vortex band
structure, (4.4), of the phase B plotted across the first Brillouin zone when J, =
Jy = J, =1 and K = 0. In the first case there are two Fermi points at Q! =

+(2F, — ), whereas in the latter case there are four Fermi points at Q} = F(%, F)

and Q2 = +(-3, %’r) The dispersion relation is linear around all the Fermi points.
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Different Fermi surface topologies correspond in general to different phases.

In our case the Fermi surface coincides with the band —F j, as it contains the
states highest (lowest negative) energy that belong to the ground state (2.20). Tt is
best visualized by plotting the band structure across the first Brillouin zone. For
comparison, we plot in Figures 4.3(a) and 4.3(b) the band structure of both the
vortex-free, (2.23), and full-vortex sectors, (4.4). Both are characterized by conical
Fermi points around which the dispersion relation is linear. To be precise, there are

momenta Q around which E; , satisfies
Ei1q =0, Eiqik~k, [k <1 (4.7)

The crucial difference is that while the vortex-free sector that has two Fermi points
QY = j:(%”, —%’T)), the full-vortex sector has four (QL = F(%,%) and Qf =

+(-3, 5%)) This means that they have distinct topologies, and hence correspond to
different phases in agreement with different Chern numbers. For K > 0 the Fermi
points are gapped with the dispersion relation around them becoming quadratic.

However, the characterization of the phases based on their Fermi surface topologies

still holds. Only when gaps close and reopen can the topology change permanently.

As the Fermi surface topology can differentiate between different phases, it is
important to understand what physical properties of a theory can give rise to a
particular Fermi surface. These are in general related to the global spatial symme-
tries Hamiltonian, which act locally in the momentum space. Let us consider the

Hamiltonian (4.1) of the full-vortex sector, which has the following symmetries when

K =0:
I =c*®1: TH,IT = —H,, (4.8)
O=0"®1: OH,0l = —H_,, (4.9)
A=1®0Y:  AHA' = —Hpim,. (4.10)

I' and © describe the particle-hole and sublattice symmetries that guarantee the
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4.2. The Fermi surface evolution

double spectrum and the even number of Fermi points, respectively. They both
arise due to the honeycomb lattice geometry and they are therefore present already
in the vortex-free Hamiltonian with the spectrum shown in Figure 4.3(a).

The symmetry A is new and specific only to the full-vortex sector. It acts on the
indices that correspond to the two z-links inside the unit cell. Exchanging these links
maps (J;1,J:2) = (—1,1) = (1,—1), which preserves the full-vortex sector. It is
still a non-trivial transformation, because the corresponding gauges are inequivalent
under the local gauge transformations D;, (2.6). At the level of the honeycomb
lattice, A can be thought of as an emergent global Z5 lattice symmetry, that is
responsible for the further doubling of the Fermi points. In Section 4.3 we provide
another interpretation in terms of the vortex-vortex interactions.

When K # 0, i.e. when the time-reversal symmetry is broken, the symmetries
(4.8)-(4.10) hold no longer independently. However, they can be combined such that

the Hamiltonian still satisfies

r=0=c’®l: THT = H,, (4.11)

o= TA=0"®0Y:  ToH,l) = Hpim,. (4.12)

These guarantee that the double spectrum structure still holds and that the relative
locations of the Fermi points remain invariant even when they are gapped. As the
structure of the Fermi surface is fully contained in the symmetries (4.11) and (4.12),
it is natural to expect that breaking them will lead phase transitions. This will be

the topic of next section.

4.2 The Fermi surface evolution

In principle one could carry out an analysis like that of Chapter 3 to verify the
characteristic properties of the new chiral Abelian anyons. We leave this for future
work and concentrate here instead on the phase transitions. This is performed by

studying the evolution of the Fermi surface that was shown above to distinguish the
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different phases. Unlike the Chern number, the Fermi surface evolves continuously
under perturbations and hence it provides a natural setting to study the phase
transitions. To this end we consider the low-energy theory of Dirac fermions, which
allows us to relate the Chern number to the Fermi surface topology and provides a

dual picture in terms of coupling to gauge fields.

4.2.1 The low-energy field theory of Dirac fermions

We have identified above the global Hamiltonian symmetries (4.11) and (4.12) that
are responsible for the distinct Fermi surface topologies. At the phase transitions
where the topologies change, the Fermi points have to be created or annihilated pair-
wise unless both symmetries are simultaneously broken. Therefore, it is natural
to assume that perturbations which drive phase transitions lead to a continuous
transport of the Fermi points. The way this occurs is most conveniently studied by
considering the low-energy theory around the Fermi points.

We set again J, = 1,J, = 1 and (J.1,J.2) = (—1,1), i.e. consider the system
first at the center of the chiral Abelian phase. The linearization is performed by
expanding the Hamiltonian (4.1) to first order around the Fermi point Q by writing

p = Q +k, with [k| < 1. In general, one obtains
Hq = HQ + H{k, + HYky + O(K?), (4.13)

for some 4 x 4 matrices Hg When K =0, H% must have two zero eigenvalues. It

follows that we can define a projection onto the 2-dimensional low-energy space by
Hq = PUQHQUYP, (4.14)

where in our normalization UQH%U(J‘[’2 = diag(1/6,0,0, —/6) and P = diag(0,1,1,0).

Around each of the four Fermi points Q’., the Hamiltonian becomes

_ . X K
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Here oi, = (0%, +(—1)'0¥) give different representations of the algebra of Dirac

matrices in two dimensions [101]. The momentum has been rescaled by k! =

(aiszky ke—a;ky
I+a; 7 14y

2 — (—1)'/3.

), with the Fermi point dependent constant being given by a; =

Fermi surface topology and the Chern number

Because the low-energy Hamiltonian (4.15) is linear in k, it describes relativistic
Dirac fermions [101]. Due to the appearance of the term proportional to o7, the
fermions are massive. We interpret this mass to be due to a scalar field of magnitude
K, which couples chirally, i.e. with a different sign, at the different Fermi points.
The effect of such chiral coupling is to give opposite mass to the Dirac fermions at
Qi and Q! . This general mechanism where the Fermi points are gapped due to
time-reversal symmetry breaking was discovered by Haldane [82]. It is known to
give rise to a chiral phase, which is characterized by a non-zero Chern number such
that every Fermi point pair will contribute v = +1.

We can verify this argument in our case by using a topological argument given by
Kitaev [62], which relates the Fermi surface topology to the Chern number. Let us
first normalize the Hamiltonian (4.15) by Hy = Hy/|Hy|. As a function of k across
the whole Brillouin zone, Hy can then be interpreted as defining an orientation
preserving mapping from a torus (the first Brillouin zone) to a unit sphere enclosing
the origin (coordinates given in the basis {c®}). The number of times this map winds
around the sphere gives the Chern number [102]. When K = 0 the orientation of

the Fermi points can be characterized by the winding number [103]

1
= Tr (TH-'dH 4.16
MQ 47” CQ ( P p) 9 ( )

where C is a loop in the momentum space around Fermi point Q and I' = 0% ® 1L.
This orientation is preserved for non-zero K. Due to the chiral coupling of K > 0,
the neighborhoods of both Q% (Q™) with orientations oy = +1 (ngi = —1) are

mapped to the lower (upper) hemisphere. As the contribution of K vanishes away
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m
A AT

Figure 4.4: The normalized Hamiltonian Hy defines a mapping from the Brillouin
zone, which is topologically a torus 72, to a unit sphere S?. Depending on the sign of
the term +Ko?, the Fermi points are mapped to either lower or upper hemisphere.
As the ones with same orientations y end up to same hemispheres, the map winds
around the unit sphere twice when viewed from the origin.

from the Fermi points, the rest of the Brillouin zone is mapped to the equator. We
illustrate this in Figure 4.4. When viewed from the origin enclosed by the unit
sphere, the four Fermi points imply that the map winds twice around the sphere

giving the Chern number v = —2.

4.2.2 Topological phase transitions driven by gauge fields

We have seen above that Fermi points together with the chiral scalar field K give
rise to a topologically ordered phase characterized by a non-zero Chern number.
Even though a non-zero K is required to open the energy gaps and calculate the
Chern number, it does not alter significantly the locations of the Fermi points, which
depend predominantly only on the couplings J. Therefore, the phase transitions are
due to J perturbations, that can transport the Fermi points. In the low-energy
theory of Dirac fermions, this is equivalent to coupling to gauge fields as shown
below. We set K = 0 for the time being and consider the system in the middle of
the chiral Abelian phase (J, =1,J, =1 and (J; 1, J.2) = (—1,1)).
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Figure 4.5: A numerical study of the evolution of Fermi point locations (black dots)
across the first Brillouin zone when (a) 6J; = 0 — oo (¥ = —2 — 0 transition) and
(b) 6Jo =0 — 1 (v = =2 — —1 transition). In (a) all the Fermi points annihilate
when 6J¢ = /2 — 1, whereas in (b) only the QL Fermi points annihilate when
§Js = 1.

Transition to the toric code (v = 0) phase

Let us consider first the transition to the phase with non-chiral Abelian toric code
anyons (v = 0). It appears, for instance, when [J,| > |J;|,|J,| as shown in Figure
4.2. In this limit the transition can be understood as being due to dimerization on

the z-links.

We model it as the Hamiltonian perturbation 0H; = idJ; ), ¢y rCw,r, Which in

the linearized picture (4.13) around each of the four Fermi points translates to

5H?,Qii =—0Ji0Y ®o”. (4.17)

Let us treat the Fermi points Qi and Q' as being paired, such that we can combine

their Hamiltonians (2.14) as

Assuming then the perturbation to be small, i.e. §J; < 1, a projection, (4.14), of
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the perturbation (4.17) gives the low-energy Hamiltonian

Here o' = (1®07%, (—1)'0*®0Y) form a four-dimensional representation of the Dirac

a-matrices, 7> = ¢ ® 1 is the chiral matrix and

(ai —1)

Al =45
! 1al—i—l

(1,1). (4.20)

This Hamiltonian describes the Dirac fermions being coupled to a gauge field Al. Tn
particular, due to the appearance of v°, which describes Ai1 coupling at the paired
Fermi points Qﬁr and Q' with opposite signs, we interpret it as a chiral gauge field
[104].

As k' = (0,0) no longer gives a vanishing Hamiltonian, the coupling to the gauge
field shifts the Fermi points QfF and Q. by A%. Due to chiral coupling, both of
the paired points are shifted towards each other, such that the direction is the same
for both pairs. This agrees with 6H?7Q§[ respecting both symmetries (4.11) and
(4.12). It implies also that if the Fermi points are to vanish, they have to do it
simultaneously. This is indeed the case as shown in Figure 4.5(a), where we plot the
trajectories of the Fermi points as functions of the perturbation magnitude é.J;. It

demonstrates that dimerization in the large 6J; limit can cause localization of the

fermions on the z-links and thus completely remove the Fermi points.

Transition to the Ising anyon (v = —1) phase

We can similarly study the transition to the non-Abelian Ising phase (v = —1),
which occurs for the uniform coupling configuration (J; 1, J;2) = (1,1) . Changing
the sign of the couplings on alternating z-links can be modelled by the Hamiltonian
perturbation 6 Hy = id.Js Zr(l—ei”r'n’”)cb,rcww, which interpolates between the sign-
alternated (6J5 = 0, full-vortex sector) and the uniform (6.J> = 1, vortex-free sector)

couplings configurations.

70



4.2. The Fermi surface evolution

A linearization of this perturbation around the four Fermi points gives

SHO

2Qi, = 0Jy0Y @ (0% — 1), (4.21)

which respects the sublattice symmetry (4.11), but breaks (4.12), the emergent
symmetry responsible for the chiral Abelian phase. The low-energy theory is again

a Dirac field coupled to a chiral gauge field (4.19), but now with

Al = af‘flu, (1)1 *1V/3). (4.22)

The crucial difference is that the components of A% depend now on the Fermi points,
which means that the coupling to this field shifts the pairs QL and Q2 independent
of each other. This is confirmed by Figure 4.5(b), where the trajectories of the Fermi
points are plotted as functions of d.Jo. It shows that large §Jo distortions can cause
the QL Fermi points to annihilate while only transporting the other two.

We interpret the transitions driven by (4.17) and (4.21) as being fundamentally
of different type. The first obeys the global symmetries (4.11) and (4.12), but a
localization mechanism drives the transition making the A, phases band insulators
with no Fermi points. Still, the ground state is topologically ordered, but the chiral-
ity is lost when the Fermi points vanish. On the other hand, §Jo driven transition
is due to a breaking of one of the symmetries and thus does not completely remove
the Fermi points. Although the Fermi surface topology, i.e. the number of Fermi
points, and the Hamiltonian symmetries responsible for them hold in principle the
same information about the phase, we regard the picture of symmetries more il-
lustrative. While the contrary is not always true, a perturbation breaking a Fermi

surface symmetry should always lead to a phase transition.

The extended phase space

Because of the symmetries (4.11) and (4.12), the study of the Fermi point transport

holds also for K # 0. As 0.J; is varied, the gapped Fermi points (the minima/maxima
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Figure 4.6: A section of the phase space as a function of 6.J; and d.J; when |J,| =1

and K > 0. The dashed lines are the phase boundaries and the circles are the
2

locations of the K dependent critical points §Jf = v2+ K2 — 1 and 6J5 = M-

of the bands Effp) follow the same trajectories, although slower for larger K. The
annihilations still occur at the points Q. = {(0,0),(%,0),(5,7)}, where the gap
always closes. We can use this information to obtain the K dependent critical

points 6.J¢.

At exactly the critical momenta Q. there must hold
PUQ.(H, +6H;) UL, P =0, (4.23)

which gives at every critical momenta the same single independent equation. For

0Hq, (4.17), and dHy, (4.21), this gives the analytic critical points

1+6J5 = V2+ K2 (4.24)

14+ K?
5J5 = +4 , (4.25)

respectively. We can see from Figure 4.2(a) that (4.24) agrees with the numerically

obtained shifting of the phase transition point.
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In Figure 4.6 we outline the extended phase space as functions of 4.JJ; and d.J5
showing the three distinct topological phases. The critical perturbations (4.24)
and (4.25) can be translated to relative coupling configurations. In general, the K

dependent tri-critical point 6.Jf occurs when
2 2 2 2
J,=Jy +Jy, + K7, (4.26)

and similarly also for the other phase boundaries, (4.6). Likewise, when §J; = 0
the transition between the chiral phases when occurs when the J, couplings on the

alternating rows satisfy
K?-1
Jo1 = 5 Jz2. (4.27)

Both (4.26) and (4.27) show that a larger K has a stabilizing effect on the v = —2
phase by making it more resistant to relative coupling fluctuations. The reason
behind this lies in the role of anyon-anyon interactions which are the topic of next

section.

4.3 The role of anyon-anyon interactions in the phase

transition

The transition from the non-Abelian Ising phase to the chiral Abelian phase has
been predicted to arise due to anyon-anyon interactions [14, 25, 105, 106]. The
basic idea is that interactions between anyons act as a Hamiltonian on the fusion
degrees of freedom by favouring certain fusion channels while assigning an energy
penalty to others. This gives rise to a new emergent theory, where the new degrees
of freedom are the fusion channels of the underlying anyon model. Although the
original microscopic and anyonic properties are lost, the new theory can be thought
of as a nucleated topological liquid that can support other types of anyons as col-
lective quasiparticle excitations. Depending on the types of anyons interacting and

which fusion channels are favoured, both topological and non-topological phases can
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Figure 4.7: A schematic illustration of the emergence of the full-vortex band struc-
ture in Figure 4.3 due to interacting anyonic vortices (black squares) as the vortex
density is increased. (a) A separated pair of vortices carries a zero mode. (b) Short-
range interaction causes the zero mode to acquire momentum dependence. (c¢) The
presence of many interacting vortices causes the zero modes to form a band. (d)
The full-vortex band structure.

appear.

As demonstrated by Figure (3.6)(b), the non-Abelian Ising anyons appearing in
the honeycomb lattice model are interacting. These interactions exhibit oscillations,
(3.3), and their range is controlled by the parameter £. When the vortices occupy
neighbouring plaquettes, such as in the full-vortex sector, the vacuum fusion channel
is always favoured. For this case the general theory predicts that non-Abelian nature
is lost, while the chirality is preserved [25]. This is exactly the transition implied
by the Chern number change v = —1 — —2, which we have verified both through a
direct calculation using eigenstates, (2.26), as well as by studying the Fermi surface
evolution, (4.15).

We can establish the role of interactions also from the spectral evolution as the
vortex density is increased. Based on numerical studies, we provide a schematic

illustration in Figures 4.7(a)-(d):

(a) As demonstrated in Chapter 3, isolated vortices introduce zero modes, that
have zero energy when the vortices are much further from each other than the

characteristic interaction length &.

(b) When the vortices are nearby, the zero modes acquire a momentum dependence

due to the interactions (3.3).
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4.3. The role of anyon-anyon interactions in the phase transition

(c) When many vortices interact with each other simultaneously, the zero modes
describing the fusion channels can be no longer associated with certain vortex
pairs. Their characteristic behavior is lost and they start forming a new band

structure which is separated from the free-fermion bands.

(d) Finally, as the vortex density approaches the limiting full-vortex sector, this
band acquires the four Fermi points, that characterize the behavior of the new
phase. The emergent band and the free-fermion band are separated in energy.

Exactly half of the states in the spectrum belong to each.

Based on this spectral evolution, we can identify the bands ¢1i in Figure 4.3(b)
being due to the interacting anyonic vortices, whereas the bands w;ﬁ correspond still
to the free fermions. As the emergent low-energy bands ¢f are responsible for the
change in the Fermi surface topology, we can confirm the anyon-anyon interactions
as being responsible for the transition.

This role of interactions in the phase transition fits also with the observation
that a larger K has a stabilizing effect only on the v = —2 phase. This has to do
with the oscillations in the interactions, (3.3), which imply that anyons at different
separations favour different fusion channels. Near the phase boundaries the oscilla-
tion period is smaller and thus there is more competition between different fusion
channels. A larger K brings down the interaction range £ and dampens the oscil-
lations, which makes the nearest neighbour interactions stronger relative to longer
range ones. Therefore, a larger K extends the area in the phase space where the
nearest neighbour interactions responsible for the new phase dominate.

Finally, the role of interactions provides an intriguing alternative way to under-
stand the origin of the emergent symmetry A that is responsible for the new phase
in the full-vortex sector. Although we can not make this interpretation rigorous
yet, we present it here as it paves way to interesting future research. The idea is
as follows. In Chapter 3 we reviewed how the Ising anyons can be understood as
localized bound states of Majorana fermions ~; at the vortex cores [83], with the

interactions being due to their tunneling [93]. In the full-vortex sector the vortices
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Figure 4.8: In the full-vortex sector the vortices occupy the vertices of the triangular
dual lattice of the honeycomb lattice. The ground state for the Hamiltonian for
Majorana fermions on a triangular lattice occurs for §-flux per plaquette. This can
be effectively achieved by setting s;; = 1 on solid links and s;; = —1 on dashed
links, which gives a m-flux on every other triangular plaquette. Such configuration
is periodic respect to bi-coloring the columns black and white, which gives rise to
the lattice symmetry A under their exchange.

form a triangular lattice, which is the dual lattice of the honeycomb lattice. We
can thus envisage modeling the tunnelings of the Majorana fermions on a triangular

lattice by a Hamiltonian

H= tz 8%V (4.28)
]

where the ¢ is the tunneling amplitude related to the nearest neighbour interactions
and s;; = £1 describes a local gauge freedom. The ground state of such Hamiltonian
occurs when one imposes a §-flux per triangular plaquette [106], which requires the
unit cell to contain two sites, i.e. two vortices on the honeycomb lattice (see Figure
4.8). Therefore, we conjecture that the symmetry A, (4.10), acting on the z-links
of the honeycomb lattice, is inherently a lattice symmetry on the vortex lattice.
Likewise, we postulate that the states in the bands o) are eigenstates of (4.28)
and live on the dual lattice. This is exactly the picture envisaged in [25] about the
interactions nucleating a new topological phase on top of the original one. It is an

interesting project to make this connection rigorous.
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4.4 Summary

In this chapter the full-vortex sector of the honeycomb lattice model has been stud-
ied. We showed that the B-phase no longer supports non-Abelian Ising anyons, but
is instead described by chiral Abelian anyons. We showed that this agrees with the
prediction by anyon-anyon interaction driven phase transitions [14, 25|, and illus-
trated explicitly how the interactions microscopically give rise to the new phase.

To understand the different phases beyond the Chern number, we considered
their Fermi surfaces. These describe the characteristic long-range properties, which
are manifest as a differing number of Fermi points in each phase. In agreement
with [82], we showed that the discovered ¥ = —2 phase is characterized by four
Fermi points. As an alternative way to characterize the phases, we identified the
symmetries that are responsible for the Fermi surface topologies. In particular, we
discovered that the full-vortex sector gives rise to a new lattice symmetry, that is
responsible for the further doubling of Fermi points. We observed that phase transi-
tions may occur either through breaking of the Fermi surface symmetries or due to
other mechanisms such as localization. It is an interesting topic of future research to
obtain a more holistic picture of the different phase transition mechanisms manifest
in the honeycomb lattice model.

Having established the connection between Hamiltonian symmetries, the Fermi
surface topology and the different topological phases, we studied how the Fermi
surfaces evolve under phase transition driving perturbations. By monitoring the
transport of Fermi point we identified the locations in the momentum space where
the phase transitions occur and used them to derive analytically the critical behavior
of the extended phase space. This is a novel technique, which could be employed
in a variety of fermion problems. We performed the analysis numerically, but it
would be desirable to be able to infer the critical momenta, i.e the locations in the
momentum space where the gap closes, directly from the Hamiltonian.

As an analytic study of the Fermi surface evolution, we considered the low-energy

field theory of Dirac fermions. It was shown that perturbations translate to chiral
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gauge fields, that always lead to a transport of the Fermi points. We found that the
form of the gauge fields is directly related to the driving perturbations obeying or
breaking the Fermi surface symmetries. Although this offers an attractive alternative
picture, it does not reveal at the current level new physics beyond the Fermi surface
symmetries. Finding analytically a full gauge theory description similar to graphene,
[104], would provide new insight. Still, we note that although Fermi point transport
had been studied before in the context of fermion systems subjected to disorder
[107], strain [108] or non-Abelian gauge fields [109], our results show analytically

the role of gauge fields for the first time.

78



Chapter 5

Conclusions

In this thesis we have demonstrated that in exactly solvable systems one can go
beyond the Chern number when studying the anyonic excitations. The key advance
was the generalization of the solution of the model to arbitrary vortex sectors, which
enabled to study the physics of only few vortices at a time. These studies revealed
that the vortices introduce zero modes to the spectrum, which can acquire finite
energy due to short-range interactions. By considering the spectral evolution as
a function of the vortex separation, the interactions enabled us to unambiguously
identify the zero modes with the fusion degrees of freedom of the Ising anyons. Our
results using the exact solution agreed with the predictions of p-wave superconduc-
tors where the analysis employs effective field theory [81, 83, 89-93|. Furthermore,
we fully characterized the low-energy spectrum by obtaining the coupling dependent

energy gaps and the length scales of the system.

The understanding of the low-energy spectrum enabled us to consider the non-
Abelian statistics, that together with the fusion rules provide full characterization
of the anyon model. The calculation was carried out by evaluating the holonomy as-
sociated with a transport process where a vortex winds around another. We showed
that such a calculation is possible for any system where the ground state admits
representation in terms of Slater determinants, i.e. the Hamiltonian is diagonal in

the basis of free fermions. By considering a range of finite systems and parameters,
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we observed the holonomy converging systematically to non-Abelian statistics as
the system size and the vortex separation were increased. We also obtained strong
support that the statistics corresponds indeed to Ising anyons, but better numerics
using larger systems are still needed for conclusive confirmation. As opposed to
previous calculations employing trial wave functions [34, 94, 100], our calculation

was the first to employ exact eigenstates of a microscopic model.

The discovery of interactions demonstrates clearly that the Chern number does
not give a full description of the low-energy physics. Only a direct study of the
anyonic excitations can reveal the length scale where the pure anyon theory provides
a good approximation. This sets limits on the future experiments,[51]|, that are
going to be performed on finite size systems. As demonstrated by our holonomy
calculation, one has to be careful when preparing the system in order for it to
support the predicted topological behavior. When these systems become accessible
in the laboratory, our holonomy calculation provides both an experimental protocol
for vortex transport as well as exact predictions for braiding experiments. Likewise,
the energy gaps and the lifting of zero mode degeneracy provide measures of stability

and ways to detect the fusion channels of the vortices, respectively.

The importance of understanding and controlling the interactions is emphasized
by our demonstration that they not only interfere with the topological behavior, but
that they can even lead to phase transitions. To understand how these transitions
occur, we studied numerically the spectral evolution as the vortex density is increased
and observed directly the formation of new band structure with a modified Fermi
surface topology. The Fermi surface symmetry responsible for the topology could
be interpreted as an emergent lattice symmetry, that appears due to the interacting
anyons. This interplay of a parent model and an interaction driven emergent model
has only been proposed very recently parallel to our work [25]. Our results provide
the first confirmation of this novel extension to the theory of topologically ordered
systems. In Section 4.3 we took first steps in understanding how the interactions

give microscopically rise to a new lattice model. It is fascinating topic of future
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research to make this connection rigorous.

Future work

In general, the theory of interacting anyon liquids predicts different phase transitions
depending on the favoured fusion channels [14, 25]. A natural extension of our work
is to consider these in the context of the honeycomb lattice model. This is possible
because of the oscillations in the interactions. They imply that for certain sparse
vortex sectors the fermion channel can be favoured. It would be interesting to study
what happens in vortex sectors where this occurs or where a complex arrangements
of the vortices makes the fusion channels compete. Kitaev’s catalogue, [62], based
on Chern numbers allows for up to eight different anyon models and we believe that
at least some of them can be actually realized within the honeycomb lattice model.
It would also be interesting to see where does the honeycomb lattice model with
its various topological phases fit in the classification of topological insulators and

superconductors |11, 110].

Fermi surface symmetries that arise due to emergent lattice symmetries is a new
concept in the characterization of the phases. For the chiral Abelian phase, the
symmetry A could be interpreted as acting on the dual lattice. This is actually
a special case, because for sparse vortex sectors the lattice of vortices does not in
general coincide with the dual lattice of the honeycomb lattice. We predict that
the same mechanism should hold though. If other new phases are discovered, we
postulate that their Fermi surfaces are also characterized by emergent symmetries

that are lattice symmetries of the vortex lattice.

One can also turn this postulate around and envisage finding vortex lattices with
different symmetries. If one then starts from the vortex-free sector and creates a
particular vortex-lattice on top of it, the new symmetries of this lattice will im-
mediately imply a new phase due to increased number of Fermi points. Although
it is well known that lattice symmetries lead to doubling of Fermi points [82], to

our understanding the idea of using this mechanism to drive the system into other
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topological phases has not been considered before. As each Fermi point contributes
v = 41 to the Chern number, any emergent Z5 lattice symmetry, such as A, will
double the Fermi points and drive the system to some chiral Abelian phase. One
could also entertain a more ambitious scenario. If the interacting vortices can give
rise to a lattice with a Z3 symmetry by having a three-site unit cell, this would
lead to tripling of Fermi points giving rise to a transition between two non-Abelian

phases. It is hard to see immediately how this could occur though.

Even though the physical interpretation of the Fermi surface symmetries is not
yet fully understood, we regard them as useful tools to study transitions between
topologically ordered phases. As they are directly related to the Chern number
through the Fermi surface topology, a perturbation breaking one of these symmetries
will necessarily drive a phase transition. The critical perturbations can be obtained
by performing a study of the Fermi surface evolution, like the one we performed
in Section 4.2. However, they do not provide full characterization of the phase
transitions as illustrated by the transition to the Abelian toric code phase. It broke
no symmetries, but it still led to the removal of all Fermi points. Therefore, we
predict the Fermi surface symmetries to be useful for understanding transitions
between chiral phases, i.e. ones with non-zero Chern number. In general, it is a
fascinating topic of future work to fully map the phase space of the honeycomb lattice
model across all vortex sectors and understand the role of the different physical

mechanisms that give rise to it.

Finally, one would also like to understand the new chiral Abelian anyons better.
Although they have no fusion degrees of freedom and thus no zero modes, outlining
the low-energy spectrum would be the obvious first step. It could be employed to
understand microscopically how the anyonic character of the vortices changes at the
phase transitions. As a pairing of the non-Abelian Ising anyons is known to give
rise to the anyons of the chiral Abelian phase [26], one could investigate whether the
vortices in the v = —2 phase could somehow be understood as bound states of two

v = —1 vortices. Also, a braiding calculation similar to Section 3.3 could be readily
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carried out to verify the characteristic statistics of the vortices.

In summary, the contribution of the honeycomb lattice model to the contempo-
rary study of topologically ordered phases is far from being exhausted. In this thesis
we have investigated in detail its non-Abelian phase and obtained novel results on
the microscopic behavior. Our results pave the way to future experiments as well
as open new research directions. Once the honeycomb lattice model will hit the

laboratories, its significance as a testbed for topological order can only increase.
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