
THE UNIVERSITY OF SHEFFIELD 

DEPARTMENT OF CIVIL AND STRUCTURAL ENGINEERING 

PROJECTILE PENETRATION INTO FIBRE 

REINFORCED CONCRETE 

by 

Paul John Armstrong BEng (Sheffield) 

A thesis presented to the University of Sheffield 
for the degree of Doctor of Philosophy 

Y 

Y, " 

ý, 
ý) 

July 1987 



SUMMARY 

A wide range of fibre reinforced concretes, potentially capable of 

sprayed application, and which could be used for protecting buildings, has 

been tested. Specimens 450mm square have been impacted by 7.62mm A. P. 

projectiles, and the damage assessed in terms of penetration path lengths 

within the specimens and the volume of the impact face spall crater. It 

has been found that inclusion of fibres does not increase the penetration 

resistance, but a small proportion of fibres significantly reduces the 

impact face spalling. The mechanisms of penetration and spalling have been 

examined using high speed photographic techniques and instrumented 

specimens. 
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CHAPTER 1 

INTRODUCTION 

A need to rapidly upgrade existing buildings likely to be subject 

to small arms fire, and also to quickly construct acceptably resistant 

new structures, had provoked some limited assessment in the late 1970s 

of the potential of sprayed concretes as projectile-resisting materials. 

At the same time, the use of discrete fibres of various types and 

materials was being promoted as a means of enhancing the toughness and 

tensile characteristics of plain concretes. It was suggested that a 

material combining both of these qualities, that is a fibre-reinforced 

concrete capable of sprayed application, had the potential to fulfil all 

of the envisaged requirements. 

This thesis describes work carried out to optimise various plain 

concretes, of mix proportions suitable for sprayed application and 

reinforced with any one of several fibrous materials and fibre types. 

The aim was to reduce the effect of the impact and subsequent 

penetration of the materials when struck by a specific projectile. 

Initially a detailed literature survey of penetration mechanics 

was performed, whilst the properties of both fibre reinforced and 

sprayed concretes were ascertained by reference to the published 

material. The obtained information was used to select the most 

promising overall approach for the study and further, the most 

appropriate composite constituents and proportions to use as a basis for 

actual trials. The literature survey, including a summary of 

subsequently published work, is included as Chapter 2. 



A detailed review of the fibre market, considering both Europe and 

the USA, indicated that a large number of proprietary brands was 

available. Representative samples were chosen for preliminary trials, 

following which equipment for casting, curing and testing appropriately 

sized specimens was manufactured and assembled. As facilities were not 

available for the consistent production of specimens by the spraying 

process, standard procedures for the production and testing of poured 

targets, using sprayed concrete mix designs, were established. Specimen 

damage following impact was defined in terms of an "actual penetration 

path length" and a "true crater volume". Methods and equipment for 

measuring these were developed. Descriptions of both the experimental 

techniques and the tested materials are given in Chapter 3. 

The experimental approaches used to pursue the optimum composite 

mix designs are described in Chapter 4. After some exploratory trials, 

a statistical method was adopted to simultaneously examine the influence 

of a number of variables, including fibre and aggregate types, concrete 

mix proportions and fibre content. An ambitious programme of testing at 

three days age was curtailed when very significant variability was 

observed. A second major test series, encompassing a smaller number of 

variables, was then carried out on seven day old concretes. 

Examination of the impacted specimens indicated the existence of 

complex penetration and spalling (front cratering) mechanisms. Perusal 

of the available literature suggested that only very limited study of 

these mechanisms, for this specific target-penetrator combination, had 

been undertaken. Consequently, a study of the various aspects of the 

impact and penetration event was initiated. The work was concentrated 

on the development of several types of instrumented test, including both 

2 



high-speed and ultra-high-speed photography. These tests yielded some 

useful data, indicating the potential of the techniques for a future 

more rigorous study. The methods used and the results obtained are 

reported and discussed in Chapter 5. 

Conclusions for all aspects of the study and recommendations for 

future work are listed in Chapter 6. 

During the project a number of progress reports were produced and 

several facets of the work were published. Details are given in 

Appendix I. 

3 



CHAPTER 2 

LITERATURE SURVEY 

2.1 Penetration Mechanics and Analysis 

The mechanisms of penetration of several materials, impacted by 

various projectiles, have been considered in this literature survey. 

Historically, several conceptually different approaches have been developed 

to predict the systems involved in projectile-target collisions. The 

following catalogues the various techniques before discussing the 

applicability of each to the specific projectile-target combination 

considered in this research. 

It is generally accepted (Johnson, (1972)) that the first penetration 

equations were of the type; 

. Eq. 2.1 -d% = av2 + ßv+y .. dt 

where t= time 

v= velocity at time t 

p ß, y= positive constants 

Various specific forms of this equation were derived by Robins 

(c. 1742), Euler (c. 1750), Poncelot (c. 1829/1835) and Resal (c. 1895). Petry 

(1910) evaluated the constants in Poncelot's equation, publishing a 

penetration depth prediction equation. All equations of this type may be 

easily integrated, provided the boundary conditions are known. However the 

large amount of experimental scatter normally experienced in practical 

trials tends to indicate that such simple boundary assumptions are 

unrealistic. 

Vanzant (1963) investigated the penetration of projectiles, of 

various weights and geometry, into cement and marble. Penetration as a 

function of impact velocity was expressed as; 

4 



DF = kivömb ... Eq. 2.2 

where m= mass 

a, b and k, are constants 

Penetration was also related to initial kinetic energy at impact, Eo 

as; 

2 
/3 

DF aE 

Crater volume was considered in the same manner, the postulated 

relationships being; 

VaE 4/3 
0 

... Eq. 2.3 

... Eq. 2.4 

For bullets of less than 25mm length, the power term of equation 2.3 

was shown to reduce to %, whilst that of equation 2.4 reduced to 5/4. 

Young (1969) generated an empirical relationship from more than 160 

full-scale penetration tests into earth, using penetrators of up to 2.6 

tonnes. The developed formulae were presented as a penetration nomogram 

(Figure 2.1). Later work by Young (1972) lowered the minimum applicable 

value of projectile diameter from 75mm to 25mm and adapted the technique 

for use in layered homogeneous soils. 

Austin and Pringle (1971) reviewed the available literature dealing 

with the effect of concrete constituent variation on projectile 

penetration. A penetration equation was presented; 

DF = 870/f'cI (W/DH2)(DH/C)O. 1(vo/1750)n 
... Eq. 2.5 

where f'c = compressive concrete strength 

W= projectile weight 

DH = projectile calibre 

C= max. coarse aggregate size 

n 10.7/ (f') '/4 
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The conclusions indicated that much of the preceding empirically- 

based military work was conflicting. It was suggested also that aggregate 

segregation and target stratification were to be avoided as they had a 

significant effect on penetration resistance. 

Ross and Hanagud (1971) performed a theoretical analysis of the 

mechanics of penetration and perforation of a snow-covered Arctic Sea ice- 

sheet subjected to cylindrical, hemispherically-nosed projectile impact. 

Figure 2.2 illustrates the problem in a schematic sense, whilst Figures 2.3 

and 2.4 show the assumed material properties during the two penetration 

phases. The basic premise was that the pressure on the spherical cavity 

boundary, at any time t, is equivalent to the resisting force acting over 

the surface of the projectile (i. e. by Newton, Force = pressure x 

projectile cross-section area = mv). Hence, by modelling the compressive 

normal stress variation with time t, and integrating the resulting equation 

of motion, the exit velocity of the projectile at the snow-ice boundary may 

be calculated. This velocity is then used to repeat the procedure in the 

sea ice penetration phase, to yield a total penetration depth through the 

layered material. 

Young (1972) revised his earlier empirical formulae. Utilising new 

test data the range of applicability of the equations was extended to 

790m/s, with penetrators as small as 0.9kg being permitted. An accuracy of 

+ 20% was claimed for both depth and deceleration predictions, although 

correlation of results between natural and man-made targets was not 

attempted. 

Murff and Coyle (1973) suggested an empirical function of 'the form; 

d2x AAA dx A x2 Ax dx 1+2+3d+4+5 dt ... Eq. 2.6 

where An are functions of projectile and soil properties 
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By integration, penetration depth formulae were established using 

appropriate data for both sand and clay targets. Important projectile and 

soil properties were; 

U= unconfined compressive strength for the 

clay data. 

d= projectile diameter 

NL = nose length 

D= relative density of dry sand 
r 

The equations yielded excellent correlation with the experimental 

data, though extrapolation outside the data field was not successful. 

Zaid et al. (1973) studied the perforation of mild steel plate by 

flat-ended hardened steel cylindrical projectiles of 19mm to 75mm length. 

For 25mm mild steel plates, impacted at between approximately 50m/s to 

300m/s, the kinetic energy required for containment of the penetrator 

within the target increased slightly with increasing projectile length. 

Both the homogeneity and material properties of the steel targets are 

fundamentally dissimilar to those of concrete. Any discussion of metal 

impact in this survey is included only to highlight particular methods and 

approaches. 

Bernard and Hanagud (1975) documented the continuing development of 

spherical cavity expansion for use in dynamic stress conditions. The 

analysis was further developed for differing nose-shape, layered targets 

and oblique impact. The pressure model of a particular material was 

represented by a variable Ra, the "solid Reynolds Number"; 

R= ovo2 
s Y 

where p0 = initial target density 

vo = impact velocity 

Y= target yield strength 

... Eq. 2.7 
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This value representing an order of magnitude index of the ratio of 

inertial forces to shear forces in the target material. 

Butler (1975) used a computer code based on modifications of the 

Ross-Hanagud penetration theory to evaluate the accuracy and applicability 

of this rigid body approach when applied to rock impacts. Three rock 

targets were selected in the low-, medium- and high- strength categories of 

the Deere and Miller (1966) scheme. The projectiles had ogive noses with 

CRH (Calibre Radius Head - see Figure 2.6) values between 2-10 and weights 

of between 114-455kg. Impact velocities in the range 305m/s to 915m/s were 

recorded. In the accompanying parametric investigation a factor was 

presented to take account of the projectile ogivity (Figure 2.7), in the 

form of a multiplier function, f(E), applied to the inertial component of 

the pressure model. The required material properties used in the model 

enable this method to be used for a whole range of projectile-rock 

combinations, since no empirical penetration data is required. 

Hadala (1975) attempted to evaluate the applicability of five 

existing predictive methods to the design of Earth Penetrating 

Weapons(EPW). This is the opposing direction from which penetration 

analysis is often approached. The requirement in this case is to 

investigate the action of the penetrated material upon the structure of the 

penetrator. This is the reason that obtaining deceleration-time histories 

(and especially peak deceleration) is often of such importance in ballistic 

studies. All five methods were compared with a single actual trial using a 

182kg, 165mm diameter ogive projectile impinging normally at 152m/s. The 

five predictive approaches were; 

i) Young's empirical formulae - discussed earlier. 

ii) Spherical Cavity Expansion - discussed earlier. 

iii) Cylindrical Cavity Expansion - uses the same approach as ii). 

However, the target medium is assumed to move horizontally to 

admit the projectile, thus generating an infinitely long 

cylindrical cavity. 

8 



iv) Force Law for Viscoplastic Solids (Allen, 1974) -a force 

law of the type; 

-mv = av2 + ßv +Y 

where the target material is assumed to be viscoplastic; the 

generated equation is shown to be closely related to Young's 

empirical formulae. 

v) Avco Differential Area Force Law - attempts to predict the 

normal and tangential stresses, at every point on the 

external surface of a penetrator, as a function of time 

during its impact with, and penetration into, a target 

material (Figure 2.9). By integration, the stresses over 

the whole projectile surface may be calculated, hence leading 

to the complete rigid body motion of the projectile. 

Figure 2.10 illustrates a calculated penetration-time history 

compared with actual data, for an oblique impact. 

Unfortunately, this method is presently only suited to large 

penetrators impacting into homogeneous materials. 

It was recommended by Hadala that methods i), ii) and v) should be 

further developed for EPW design. 

An analysis of projectile penetration into rock and concrete was 

carried out by Rohani (1975). Simulations of impact were constructed by a 

computer code using the dynamic cavity expansion theory and an elastic- 

plastic compressible material assumption. A parametric study of the 

effects of concrete compressibility and concrete compressive strength on 

depth of penetration, at various velocities, was carried out for 880kg, 

340mm diameter British Armour Piercing Bombs. For the range studied, 

penetration depth was shown to be only slightly dependent upon compressive 

strength; whilst compressibility appears to have a more significant 
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influence (Figure 2.11). For rock, the spherical cavity expansion solution 

was successfully compared with a finite-difference deformable body 

calculation, as shown in Figure 2.12. (The oscillatory path of the finite- 

difference code deceleration curve corresponds to particle motion within 

the deformable projectile). Parametric assessments of the effect of target 

yield strength (Y), Calibre Radius Head (CRH) and the ratio, projectile 

weight/area, on penetration depth prediction were also carried out. It was 

noted that a reasonable variation in Y had a more significant effect on the 

predicted penetration depth than did a reasonable change in any of the 

other relevant material parameters. Figures 2.13 and 2.14 summarise the 

remaining findings. 

Chavez and Cassino (1975) studied the effect of pavement design on 

cratering damage from penetrating weapons. Both contact and buried 

explosive charges of up to 20kg were used. Steel fibre reinforced concrete 

slabs of 1300mm thickness comprised some of the trial specimens. However, 

although many photographs of the post impact condition of the slabs were 

presented, little useful information is given. 

Bernard (1976) extended the work of Bernard and Hanagud (1975) to 

take into account deep penetration at very high impact velocities into 

homogeneous and layered targets. A more simple, though acceptable, way of 

approximating the actual shear stress-strain behaviour curve to a bi-linear 

function (Figure 2.15) is published. Penetration predictions into various 

materials, including concrete, are shown to correlate well with 

experimental data and empirical and finite-difference calculations, 

provided only that the target density and unconfined strength are known 

with reasonable accuracy. 

A series of trials were carried out by Naus and Williamson (1976) to 

investigate the ballistic resistance of concretes reinforced with various 

fibres. Four types of impactor were used; small arms, mortars, grenades 

and explosives. For the specifically relevant trials, using small arms, a 
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number of weapons were employed including; M16 rifle, M37 (7.62mm) machine 

gun, 45-calibre pistol, 50-calibre machine gun and 20mm automatic gun. 

Ball ammunition was used in all cases, excepting that high explosive 

ammunition was included in the 20mm automatic gun trials. A number of 

300mm square specimens, of between 25mm to 150mm thickness, were fired upon 

from ranges between 9m and 180m, with the great majority of the single shot 

M37 (7.62mm) machine gun trials being at 100m. In many cases, the selected 

targets were too small to remove the global effects (tensile rear face 

scabbing or gross specimen cracking) of the impact. Notwithstanding this 

limitation, the following information was presented; 

i) Only a very slight trend for decrease in depth of penetration 

with increasing fibre content (0%-3% by concrete volume), for 

mild steel, drawn steel and glass fibre reinforced concretes 

impacted by small arm fire. 

ii) A reduction in back face scabbing, under small arms attack, 

with increasing fibre content, at each specimen thickness. 

The more ductile steel fibres had superior performance to the 

glass fibres. These conclusions were also obtained with 

repeated impact trials. 

iii) The relative magnitude of fragmentation, and probably the 

velocity of spalled particles, resulting from demolition 

charges or impact by small arms was significantly reduced 

with incorporation of fibres into the matrix. 

iv) The effectiveness of each specimen to resist perforation was 

directly proportional to its thickness and inversely 

proportional to the projectile energy. Thickness in excess 

of that required to resist perforation did not reduce the 

depth of penetration, although the ability of the specimen to 

resist repeated impact was improved. 

v) The effectiveness of the specimens in resisting penetration 

by small arms was directly proportional to range. 
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The Royal Ulster Constabulary (1976) carried out a series of 

preliminary trials to assess the potential of various thicknesses of fibre 

reinforced sprayed concretes for the protection of conventional cavity 

walls comprising 100mm concrete brick and concrete block. Steel fibres, 

0.25mm x 25mm length, and polypropylene fibres, were each included in an 

unspecified concrete mix and sprayed on to cavity wall backings as 1", 2", 

3" and 4" claddings. The weapons used were Garrand, SLR and Armalite 

rifles, handheld at 50m and 100m range. Both ball and armour piercing 

ammunition was used in the trials. Failure was defined as the penetrating, 

by the bullet, of a witness card placed in the wall cavity. The general 

conclusion was that between 2" and 3" of either steel or polypropylene 

fibre concrete was adequate to give complete protection to the inner skin 

of the cavity walls against the selected high velocity rifles. In these 

tests no compressive strength values were given for either brick or 

concrete nor was any plain concrete cladding assessed. At cladding 

thicknesses less than 2"-3", the likelihood of failure was significantly 

increased when armour-piercing, rather than ball, ammunition was used. 

Backman and Goldsmith (1978) surveyed the general field of 

penetration-target interaction. Both target and projectile characteristics 

were considered; the former from semi-infinite media through to thin 

plates. A review was performed of the various approaches and the 

experimental methods for modelling penetration events. 

Jonas and Zukas (1978) discussed the many approaches which have been 

used in the analysis of the mechanics of penetration. A concise section on 

the two different types of computer code was presented. Such numerical 

methods are the only way of solving the full equations of continuum 

physics, and thus providing as complete solution to an impact problem. A 

Lagrangian finite-difference code follows the motion of fixed elements of 

mass which have the computational grid fixed in the material. It has the 

ability to handle boundary conditions at free surfaces and material 
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interfaces, although inaccuracies arise when the grid becomes distorted due 

to shear and folding. For an Eulerian code, the grid is held fixed in 

space and the continuum passes through it, either as a set of discrete 

points or continuously. Hence large distortions can be accommodated 

although Lagrangian components may be necessary at material boundaries and 

interfaces. The overall advantages and disadvantages of finite-difference 

methods are discussed in Section 2.2. 

Sedgewick et al. (1978) and Wilkins (1978) provided examples of the 

use of finite-difference codes into homogeneous metallic targets. The 

former presented Eulerian methods, whilst the latter used a Lagrangian 

approach. 

Finch (1979) assessed the capability of various types of gravel 

armour against small arms fire. It was concluded that a 150mm thickness of 

loose gravel armour was adequate to defeat both armour piercing and ball 

30-calibre projectiles. 

As a development of the work carried out by the Royal Ulster 

Constabulary (1976), Port (1980) further considered the potential of 

sprayed concrete renderings to improve the penetration resistance of 

existing structures. Small arms weapons were used, with both armour- 

piercing and ball ammunition. A comparative test series indicated that, 

for practical purposes, the ballistic resistant properties of sprayed 

concretes are the same as poured concretes of similar specification. 

Whilst no specific information was presented regarding mix designs or 

actual experimental approach, it was reported that the sprayed concrete 

increased the ballistic resistance of masonry and similar construction 

materials and that the rendering, to have beneficial effect, should be of 

100mm thickness or greater. 

Various empirical formulae were assessed by Sliter (1980) for 

prediction of low velocity missile penetration into reinforced concrete 

structures. The National Defence Research Committee (NDRC) formula, 
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developed in 1946, was presented as; 

DF = 0.45KN3md(v0/83.3d)1-8 DF/d < 2.0 ... Eq. 2.8 

DF = 4.41KN3m(vo/83.3d)1.8 + 0.025d DF/d > 2.0 ... Eq. 2.9 

where N3 is a "missile shape factor" 

0.72 < N3 < 1.14 

K is a "concrete penetrability factor" = 15/f'c 

It is reported that no term for the quantity of reinforcement in the 

target is necessary in the formula as, at conventional percentages, it has 

been found to have no significant effect on local response up to and 

including the case of backface scabbing. A second formula, the CEA-EDF 

empirical perforation equation, is compared with the above, and was stated 

to generate more accurate results in the case of a solid cylindrical 

penetrator impacting a concrete target. 

Degen (1980) has carried out a very similar review of available 

empirical formulae for the penetration of concrete slabs by rigid missiles. 

Bernard (1980) presented an overview of earth penetration research in 

the United States of America. It was noted that the means of prediction 

had by this time turned full circle. For example, following the original 

development of Young's empirical formulae, cavity expansion theories had 

become popular. However, the limitations of these had since led to a 

resurgence in the use of empirical approaches. It was suggested that the 

more realistic contemporary approach was to use various separate empirical 

solutions for soils and rocks. 

HQlsewig et al. (1982) discussed the impact of a 50g cylindrical 

steel projectile impinging, at velocities of 400m/s to 700m/s, 450mm x 

450mm x 100mm thickness plain and fibre reinforced concrete specimens. The 

volume of the rear face "fragmentation zone" (tensile scabbing region) was 

the major damage parameter measured. It was located by sectioning the 
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target perpendicularly to the impact face. Two distinct angled cracks in 

the cross-section, running almost to the target rear surface, delineated 

the cone-shaped "zone". Fibre content was varied between 0 and 10%, by 

concrete weight, in 2% increments. Figure 2.16 shows the relationships 

noted between projectile kinetic energy and "fragmentation zone" volume, at 

each fibre content increment; the volume decreasing with increasing fibre 

percentage. Related tests indicated a decrease in fragmentation zone 

volume with increasing fibre aspect ratio (length: diameter). 

Haldar and Miller (1982) compared 117 actual impact trials into 

concrete with penetration predictions generated by the NDRC formulae 

(Eq. 2.8 and Eq. 2.9). The NDRC equations greatly underestimated the 

actual penetration depths of bullet-type projectiles, whilst grossly 

overestimating for all other types of larger projectile. An alternative 

formula, based on the parameters of the NDRC formula, was presented, 

generating a series of relationships of the form; 

DF/d = -B1 + B21 

where d= missile diameter 

2 I= B3NWvp/d3f' 
c 

This approach is only, of course, valid for the data used in 

generating it, being essentially a curve-fitting exercise. 

... Eq. 2.. 10 

The originators of the CEA-EDF formula, Berriaud et al. (1982) 

reported further on a method for calculating the minimum concrete thickness 

to resist perforation under impact by various penetrators at up to 200m/s. 

The CEA-EDF equation, presented as; 

v2 = 1.7f'Cpi/3(de2/m)4/3' 20<v<200m/s Eq. 2.11 

where e= concrete thickness 

m= missile mass 

p= concrete density 
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was compared favourably with a two-dimensional finite element analysis, the 

results being reasonably consistent for similar projectile/target 

combinations. 

A review of literature concerned with the penetration resistance of 

concrete was published by Clifton (1982). The range of impact velocities 

was from quasi-static to shock loading; with the mechanisms of impact 

damage being considered. It was suggested that front crater volume varies 

approximately inversely with (compressive strength)". Stress wave 

propagation was discussed, with the contention that, due to mechanical 

impedance mismatch between the concrete and any large air voids or cracks, 

the stress waves may be almost totally reflected with a change in stress 

form and with the same stress intensity as the incident wave (assuming the 

gap to be sufficiently large). It was postulated that the artificial 

creation of a microcrack system in the concrete would lead to an 

improvement in its wave-damping capability, with a consequent reduction in 

damage from dynamic loading. It was claimed that air-entrainment has been 

proven to generate this beneficial effect. The impact strength of concrete 

was reported to be enhanced by the inclusion of discrete fibre 

reinforcement, although it was suggested that under shock-loading 

sufficient time may not be available to permit a redistribution of stresses 

via the energy-absorbing processes. At rates of 2.76GN/m2s, the dynamic 

tensile strengths of fibre-reinforced and plain concretes had been shown to 

be very similar; possibly the main beneficial effect of fibres at high 

rates and intense loadings is to bridge cracks and thereby reduce 

fragmentation. 

Forrestal and Longcope (1982) extended the cylindrical cavity 

expansion analysis of Hadala (1975), developing closed-form solutions for 

several elastic-plastic models to predict forces on conical-nosed 

penetrators into geological targets of constant shear strength. 
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Henager (1983) reported on a comparison of conventional reinforced 

concrete, with and without steel fibre inclusions, under explosive loading. 

The steel fibre added greatly to the continuing post-impact target 

integrity. 

Clifton and Knab (1983) developed several impact test techniques from 

the work of Clifton (1982). Of relevance was the projectile penetration 

test equipment; a "Windsor Probe" gun explosively firing cylindrical steel 

missiles into concrete. This is a conventional non-destructive test used 

to assess in-situ concrete compressive strength. For the reported tests on 

discrete fibre reinforced, latex enhanced, expanded metal reinforced and 

plain concretes, the gun was adapted to allow a 102mm free flight before 

impact. The results indicated that the reinforcement type had no 

substantial effect on projectile penetration. Increases in compressive 

strength, however, generally resulted in decreases in the projectile 

penetration values. 

Longcope and Forrestal (1983) developed the cylindrical cavity 

expansion analysis of Forrestal and Longcope (1982) to include targets 

exhibiting increasing shear strength with increasing pressure. A single 

trial, a 162kg steel penetrator impinging rock at 520m/s, was presented for 

comparison purposes. The theoretical and actual deceleration-time 

histories showed reasonable coincidence, with a significant increase in the 

rate of deceleration just prior to the penetrator halting. 

During 1985, several important papers, in the increasingly studied 

area of penetration mechanics, were presented at a symposium entitled "The 

Interaction of Non-Nuclear Munitions with Structures". They are included 

in this literature review solely for information, since they were published 

too late to contribute to the research presented in this thesis. 

Wolfe and Coltharp (1985) reviewed the commonly used methods to 

calculate backface scabbing in concrete slabs. It was suggested that the 

NDRC formulae were adequate, though conservative, predictors for minimum 

thickness to avoid scabbing under small missile impact. 

17 



Wolfersberger (1985) published the results of a database search to 

locate existing concrete breaching data, confirming that some of the 

important early research was no longer on record. An analysis of the NDRC 

formulae was presented, once more showing them to be significantly 

reliable. It was suggested that penetration depth had often been shown to 

be related to (target compressive strength)-x. The normally observed wide 

scatter of concrete penetration data, regardless of the care exercised in 

performing the tests, was discussed in some detail. It was stated that; 

"Tests of identical projectiles at identical velocities against the same 

concrete target should produce identical penetrations; sometimes this 

occurs, but most of the time it does not", and on the same topic; "thus 

when seeking to demonstrate that some parameter or concrete variable has a 

small but predictable effect on penetration, somehow one must separate the 

signal from the noise; 'A graph of penetration versus one of the concrete 

variables does not necessarily imply a unique relationship"'. This is why 

the study of concrete penetration is so intrinsically difficult. There is 

a necessity to statistically validate all data, including identical results 

obtained using identical targets, penetrators and methods, to obtain an 

adequate indication of its likely reliability. This implies that the 

satisfactory completion of any research in this area will depend very much 

upon the successful development of an original programme. 

2.2 Applicability of Available Methods to Small Arms Penetration into 

Fibre Reinforced Concrete 

As was documented by Rohani (1975), there are four distinct 

approaches available for penetration depth prediction; 

a) Empirical 

b) Assumed Force Law 

c) Analytical Approach 

d) Numerical Methods (computer codes) 
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One of the earliest tasks during this study was the selection of the 

most appropriate means of analysis from these alternatives. 

The main advantage of the empirical approach is that a reasonably 

simple curve-fitting exercise may yield, under specific circumstances, the 

most accurate assessment of the penetration event. Unfortunately, the 

integrated equation of motion, which generates a deceleration-time history 

and depth prediction, may contain many parameters which are not defined 

explicitly in terms of the constitutive properties of the target material 

and/or projectile geometry, and which may only be determined from actual 

penetration data. As such, the accuracy of a conventional empirical method 

is limited to predictions within the data base from which it was developed. 

For fibre-reinforced concretes, the large number of different fibre types, 

material types and potential combinations implied that a very large number 

of trials would have to be carried out to obtain an adequate optimisation. 

In the second approach, a force law is defined which is assumed to 

adequately model the impact and penetration events. Again, the empirical 

parameters must be defined from experimental data, limiting the range of 

applicability of the derived equations. 

The Analytical approach c) consists of the initial definition of a 

constitutive law which adequately models the overall physical behaviour of 

the target material. A simple boundary-value problem is then used to 

derive the assumed force distribution corresponding to a simple field of 

motion. By integration, the force (which is assumed to be equivalent to 

the resisting force on the projectile) -motion equation yields a value for 

penetration depth and a complete deceleration-time profile. The spherical 

cavity expansion theory has, to date, been the most successful choice of 

boundary-value approximation. Using an analytical technique, all 

parameters appear in the penetration equations in terms of the particular 

projectile-target combination. As such, no limitation due to database 
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exists. However, the initial constitutive law may not be valid for 

materials of very different basic properties to those assumed. Whilst this 

approach may often be very arithmetical, it is normally relatively simple; 

as a result expensive computer runtime is used only sparingly. 

At the time of the initiation of the study, analytical approaches 

were available only for homogeneous layered materials. Since the extent of 

effective homogeneity of fibre reinforced concrete was uncertain, this 

technique was discounted. 

All of the above-mentioned techniques treat the projectile as a non- 

deformable rigid body; the fourth method however, allows for the elastic- 

plastic deformation characteristics of the penetrator. The computer code 

is currently the ultimate penetration study tool. Finite difference and 

finite element analyses can accurately model the penetration event by 

taking into account the entire set of field equations. They are 

approximate in that a set of discretised equations, corresponding to 

projectile-target interaction at points in space and time, are solved; but 

the inherent numerical errors present are of a much smaller order of 

magnitude than the errors introduced by approximating the target material 

properties, as carried out in the other procedures. 

There are several disadvantages to the numerical approach, rendering 

them an impractical option for this study; 

i) The computer codes are by no means "data in-results out" programs. 

Frequent interaction by an experienced operator is necessary. 

ii) Such analyses are extremely time-consuming; generating very long 

mainframe computer run-times and consequent great cost. It is 

conventionally considered that computer codes are best used to 

establish the most important parameters of a particular projectile- 

target interaction. A constitutive analysis is then substituted to 

"fine-tune" the observed trends. 
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It was considered that the extreme cost, caused by the preliminary 

investigation of a very large number of relevant variables, made the 

use of a computer code assessment of fibre reinforced concrete impact 

completely unviable in this study. 

iii) This type of program is presently valid only for homogeneous and, 

possibly, uniformly layered materials; a further reason for initially 

rejecting the approach when considering a material of uncertain 

effective homogeneity. 

2.3 Properties and Applications of Fibre Reinforced Cements and 

Concretes 

The use of fibres to improve the tensile resistance of otherwise 

brittle materials, for example in horsehair plaster, has long been an 

accepted process. However, much of this work has been qualitative; it is 

only within the last two decades that any real theoretical understanding 

has been attempted. 

The following review chronologically catalogues the most quoted 

sources on both the development of fibrous concrete technology and the 

theoretical explanation of its behaviour. It is not a completely 

comprehensive library of published material; a vast number of papers have 

been published in the general area of fibrous concrete materials, as well 

as several state-of-the-art summaries, since the early 1970's. 

Shah and Rangan (1971) investigated the mechanical properties of 

concrete and mortar reinforced with randomly distributed smooth steel 

fibres. Three-point bending tests were carried out on a series of 50mm x 

50mm x 250mm beams reinforced with varying volumes and lengths of low- 

carbon steel fibres. The area under the complete load-deflection plot was 

taken as a measure of toughness (resistance to crack propagation) of the 

beam. Figure 2.17 shows the results for concretes with various volumes of 

0.25mm x 0.25mm x 19mm fibre, in comparison to plain concrete of the same 

mix proportions. Whilst the toughness is greatly increased with increasing 
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fibre volume fraction, the flexural strength, although improved, does not 

exhibit such a striking trend. It was further shown that the increase in 

flexural strength and toughness is influenced by the fibre aspect ratio 

(that is the ratio length: diameter), an increase in 1/d causing an increase 

in the measured composite properties. However, above an aspect ratio of, 

say, 100, great problems of mixability exist; this will be further 

discussed in Section 2.4. The effect of the orientation of the fibres with 

respect to the direction of applied load was investigated for samples under 

tensile conditions. It was indicated that following cracking, the closer 

the fibres were to a parallel direction with the load, the higher the load 

which could be sustained, and consequently the greater the measured 

composite toughness. An important conclusion of the work was that the 

reinforcing action of the fibres could be predicted using a composite 

materials approach based upon the material properties of the individual 

constituents. 

Edgington and Hannant (1972) studied the effect of vibratory 

compaction on steel fibre orientation in concrete. It was concluded that 

when fresh concrete is externally compacted, as for example on a vertical 

vibrating table, then there is a tendency for the included steel fibres to 

align in planes perpendicular to the direction of vibration. Thus, the 

normal analytical assumption of three-dimensional random orientation is 

invalid should specimens be externally vibrated. 

McCurrich and Adams (1973), listed several factors affecting the 

composite tensile strength of fibrous cements and concretes. Increases in 

strength may be generated by: 

1 An increase in the modular ratio; E(fibre)/E(matrix). 

2 An increase in fibre content. 

3 An increase in the value of aspect ratio (1/d). 

4 An increase in the degree of fibre alignment with stress direction. 

22 



All of the above apply to the limits of practicality. A simple rule 

of mixtures analysis was performed to illustrate the effect of increased 

volume fraction of fibres on strengthening in direct tension. It was also 

required to define the value Vf(cri t), the volume fraction of fibres 

required to carry the tensile load sustained by the concrete immediately 

before cracking occurs. The analysis was carried out as follows; 

Assumptions; 

i) Before cracking, the fibres are fully bonded to the matrix. 

ii) Composite is under a uniaxial tensile load, magnitude F. 

iii) Poissons ratio in fibre and matrix =0 

(i) and iii) being rather unrealistic possibilities). 

Let cross-sectional area of composite Ac =1 

Let total volume of composite VC =1 

where subscript c= composite 

Fibre volume, Vt, is expressed as a fraction of the total composite volume 

Vf Vf 

V1 
c 

subscript f= fibre 

Before cracking, 

cc =Ef= Em 

subscript m= matrix 

Under elastic conditions, 

Gc of 
_ 

6m 

.. EC="EE Em 

Q= stress 

E= Youngs Modulus 

Also, F=a 
c 

Ao =Gf Af +Gm Am 

, 
'. Since AA -A and A 

CfC=1 

Qc = afAf +a (1-Af) 
m 

... Eq. 2.12 

... Eq. 2.13 

... Eq. 2.14 

... Eq. 2.15 

... Eq. 2.16 
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Considering a unit length of composite; 

Vc = A. 1 = 1, Vf = Af. 1 = Af 

. '. Oc = CfVf + am(1-Vf) ... Eq. 2.17 

Introducing a fibre efficiency factor n, to take account of random 

orientation effects; 

Composite tensile strength, Qc = ßm(1-Vf) + nafVf ... Eq. 2.18 

A graphical representation of Equation 2.18 is given as Figure 2.18. The 

value of Vt(crit) for strengthening in direct tension is noted at the 

intersection of the two plots ac = am(1-Vf) and ac = natVt. 

The problem of conglomeration of large volume fractions of high 

aspect ratio fibres in the mixing pan was also recorded in this paper. A 

large scale compressed air injection technique was cited as an efficient 

solution to the difficulty. 

A state-of-the-art report, prepared by the American Concrete 

Institute Committee 544(1973), explained the ability of fibres to increase 

the toughness of concrete by suggesting that additional energy must be 

expended in order to de-bond ("pull-out") the fibres from the concrete 

matrix. Hence a considerable amount of extra work may be done before 

complete fracture of the material occurs. It was also stated that the 

phenomenon of fibre conglomeration is related to a number of factors, of 

which the most important appeared to be the fibre aspect ratio. Other 

contributory causes were held to be fibre volume percentage, maximum 

aggregate size, aggregate gradation and proportion, water-cement ratio and 

mixing method. A maximum aspect ratio of 100 was advised. According to 

this report, a wide range of unspecified tests, generating various rates 

and magnitudes of tensile and compressive dynamic loading, had recorded 

increases in dynamic strengths of fibre-reinforced concretes of between 

five to ten times that of plain concretes under the same test conditions. 

Once again, the greater energy requirement to pull out the fibres was given 
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as the reason for increased impact strength and resistance to fragmentation 

and spalling. 

Pakotiprapha et al. (1974) investigated the mechanical properties of 

steel fibre reinforced cement mortar in flexure, torsion, axial compression 

and tension, by the application of the rules of mixtures. The use of this 

type of approach was validated using experimental data. The rupture 

strength results obtained supported the work of Shah and Rangan (1971), 

indicating little variation in flexural strength with increasing fibre 

volume; this contradicting a very early study by Romualdi and Mandel 

(1964). 

Tattersall and Urbanowicz (1974) studied the effects of various 

chemical and physical treatments on the surface of short steel wires used 

as concrete reinforcement, in order to determine what factors most greatly 

influenced bond strength at the fibre-matrix interface. Their pull-out 

tests indicated that over the short term (i. e. 7 days), galvanised wires 

exhibited a marked improvement in bond strength over plain steel fibres. 

However, by 28 days, this situation had reversed, the interaction of the 

smooth steel fibres with the matrix becoming markedly stronger than the 

galvanised fibre-matrix combination. It was considered that the best way 

of improving bond strength in fibre reinforced concrete was to provide 

fibres with positive anchorages, by the use either of indented wires or 

alternatively wires with looped ends - although the latter would certainly 

exacerbate the already difficult random mixing procedure. With looped end 

steel fibres, tensile failure of the test specimen occurred due to yielding 

of the fibre, that is, any further increase in bond strength above this 

would be irrelevant. It was also noted that the extent and method of 

curing of the specimens appeared to have a significant influence on the 

subsequent bond characteristics. 

Swamy (1974) gave detailed recommendations for the practical 
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use of steel fibre reinforced concretes. Amongst other aspects considered 

were mix design, fibre dispersion, batching, placing and finishing. An 

assessment of the likely properties of adequately produced steel fibre 

concrete was included in a very useful review. A suggestion was made that 

maximum coarse aggregate size should generally be limited to 10mm, whilst 

fine to coarse aggregate ratios of between 1: 1 and 3: 1 were cited as 

appropriate for concretes containing steel fibres. 

An appraisal of the use of steel fibres in gunite (sprayed concrete) 

was presented by Ryan (1975). This indicated strongly that sprayed 

application was a feasible proposition and implied that the inclusion of 

fibres actually assisted the overall process. It was suggested that the 

"matting" structure formed by the fibrous inclusions during impact 

subsequently acted to absorb up to 50% of the normal quantity of rebound 

material. However, it was stated also that much of the remaining rebound 

would consist of fibrous inclusions. It was emphasised that adequate 

supervision and compliance testing was vital as a consequence of these 

limitations; recommendations were given with respect to the size and type 

of test cores to be taken. 

Raouf et al. (1976) carried out several explosive tests on fibre- 

reinforced cement composites. Small explosive charges were glued on to one 

end of 25mm x 25mm x 210mm long fibre-reinforced cement paste bars. 

Carbon, steel, polypropylene and E-glass fibrous inclusions were tested 

(the last using High Alumina Cement, rather than OPC, in order to reduce 

the likelihood of alkaline attack upon the fibres). Plain cement bars were 

provided as controls. In this limited series of tests the effectiveness of 

each fibre type in holding together the impacted bars was listed, in 

descending order of effectiveness, as; 

a) E-glass (in conjunction with High Alumina Cement Paste). 

b) Polypropylene. 

c) Steel. 

d) Carbon. 
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It was considered that a more uniform distribution of fibres 

throughout the mix may have contributed to the greater impact resistance of 

the E-glass composite, the two types of cement pastes being assumed to have 

tensile strengths of the same order. 

The rule of mixtures analysis, as used by McCurrich and Adams (1973), 

was developed by Mangat (1976) specifically for steel fibre reinforcement 

in concrete. An alternative approach, based on an effective fibre spacing 

concept, was also derived. Both theories appeared capable of predicting 

the direct tensile strength of fibre reinforced concrete, as evidenced by 

the experimental data included in the paper. The effective spacing concept 

takes into account both the imperfect bond characteristics of short fibres 

in addition to their geometrical distribution through the matrix. The 

relation between "effective spacing" and tensile strength was shown to be 

non-linear; strength decreasing with increasing "effective spacing". The 

particular relationship was stated to be unique for any particular fibre 

aspect ratio, in a particular concrete matrix. 

Swamy and Stavrides (1976) carried out a statistical analysis of 

compressive and flexural strength results for both plain and steel fibre 

concretes. Using a mix design including 30% pulverised fuel ash and a 

water-reducing agent to improve workability, the authors found that the 

fibre concrete results for both types of loading exhibited larger standard 

deviations than the corresponding results in the plain concrete specimens. 

However, further analysis showed that, providing good quality control is 

ensured at all stages of manufacture and testing, there is no need to test 

a greater number of specimens than that conventionally used for plain 

concrete trials. A slight increase was observed in the compressive 

strength results of the fibre concrete specimens over their plain concrete 

equivalent. Detailed statistical analysis showed the observed difference 

was not due to chance but to the presence of the fibres. 

Finch (1977), in a restricted document, reported upon the 

27 



effectiveness of fibre-reinforced sprayed concrete against small arms fire. 

A series of full-scale trials, using both 7.62mm ball and 30-calibre 

armour-piercing ammunition, fired at 50m range from handheld weapons was 

carried out. The targets were either rendered on to existing masonry or 

were made effectively free-standing by the use of backing materials with no 

significant resistance. Information on mix designs was not given, though a 

curing time of 14 days was quoted. Both monofilament polypropylene and 

steel fibre reinforced concrete targets were tested. A 75mm thickness of 

each type, on dense concrete block and brick walls, showed an encouraging 

amount of ballistic protection. Both of these materials, when applied as 

150mm layers to thin skins of hessian, supported by wire mesh, produced a 

material of integrity; capable of resisting multiple rounds of 7.62mm ball 

penetrations. The targets also had the ability to withstand two rounds of 

7.62mm armour piercing impactors at the same point of strike. These tests 

were not comprehensive, but did conclude that both materials show 

considerable promise for use in the reinforcement of existing buildings and 

structures subject to ballistic or blast attack, or for the rapid repair on 

a permanent basis of structural damage. 

A report on Fibre Concrete Materials, prepared by RILEM Technical 

Committee 19-FRC (1977), attempted to prompt the development of appropriate 

test specifications, particularly with respect to material durability. A 

summary of much of the accumulated knowledge to date was included; both the 

composite and its potential constituents were discussed. A useful survey 

of fibrous inclusions, with predictions of the likelihood of successful 

future use, was a major feature of this work. The properties of many of 

these fibrous materials were also documented for comparison purposes. 

Hannant (1978) published a major text on fibre cements and fibre 

concretes. An analysis was given of the postcracking flexural behaviour of 

fibre-reinforced concretes. Although a simplification, it served to show 

the likely improvement in the moment of resistance of a section as a result 
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of the extra ductility imparted by fibre pull-out or extension ("necking") 

across a crack. The critical fibre volume for flexural strengthening was 

shown to be less than or equal to, that for direct tension (derived by 

McCurrich and Adams (1973)). This book reported also that sufficient 

consistent data was by now available to confirm that the addition of 

fibrous materials was of significantly greater percentage benefit to the 

flexural strength of fibre-reinforced concretes than to the direct tensile 

strength. A theoretical treatment, related to the change in shape of the 

tensile stress block after cracking in flexure was presented. It was 

reported that the major factors affecting the flexural strength are the 

volume fraction and the aspect ratio of the fibres, an increase in either 

of these parameters leading to a higher flexural strength. 

An attempt was made by ACI Committee 544 (1978) to define appropriate 

tests for the measurement of the properties of fibre reinforced concretes. 

Recommendations were made concerning specimen production; and the validity 

of standard plain concrete tests, when used for fibre concretes, was 

considered. New tests, designed to measure two of the more particular 

properties of fibre reinforced concrete, were proposed. 

It was suggested that a specific means of evaluating energy 

absorption under load would be a valuable contribution. A "toughness 

index", basically of the type used by Shah and Rangan (1971), was proposed. 

Using a similar approach as that in a standard modulus of rupture test, 

third point loading is applied to a 4" x 4" x 12" (100mm x 100mm x 300mm) 

specimen and the load at first crack recorded. The test is allowed to 

continue until a mid-span deflection of 0.075" (1.9mm) has been reached. 

The toughness index is then defined as; 

Area under load-deflection curve to 0.075" midspan deflection 
Area under load-deflection curve to first crack 

A dimensionless value results, with a reported range of 14 (for 
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fibrous concretes containing a low percentage of low strength, brittle 

short fibres) to 32 (for fibrous concretes with a high percentage of high 

strength, ductile long fibres). It was considered that this index is 

capable of showing the influence of fibre amount, length, configuration, 

strength and ductility. It was also reported to differentiate matrix 

factors such as cement content and aggregate proportions. 

A further new drop-weight test was nominated, to demonstrate the 

amount of impact energy necessary first to start a visible crack in a 

fibrous concrete, and then to propagate that crack. A 2%" (63mm) by 6" 

(150mm) diameter fibre concrete specimen is centrally placed on a floor 

standing jig consisting of a base plate with four attached reference lugs. 

The sample is then subjected to centrally placed blows from a standard, 

hand operated 101b (4.54kg) compaction-hammer, with a drop of 18" (457mm), 

via a 2% (63.5mm) diameter hardened steel ball freely held on the target 

surface by a specially designed bracket. 

A number of blows required to cause the first visible crack on the 

top surface of the specimen is recorded, as is the number of blows to 

ultimate failure. Ultimate failure is defined as the point at which the 

cracks in the specimen have opened sufficiently to permit the ensuing 

pieces of concrete to touch three of the four reference lugs, each of which 

was originally at a distance of 3/16" (4.8mm) from the specimen 

circumference. It was suggested that, using this test, a conventional 

plain concrete specimen may exhibit "impact strength" values of 30 blows to 

first crack and 32 blows to ultimate failure. A fibrous concrete may 

exhibit figures of say 45 blows, and at least 75 blows, for the same two 

failure criteria. (Later work by Henager (1981) and Swamy and Jojagha 

(1982) suggested values of about 100 and 500 respectively more correctly 

reflected the values likely to be recorded for fibre concretes). 

It was emphasised that the techniques documented in this paper were 

intended to be the basis of standardisation, although it was recognised 
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that usage was likely to promote discussion and subsequent development. It 

was ultimately envisaged that the finalised standards would provide an 

adequate basis to produce design criteria. 

An international symposium on "Testing and Test Methods of Fibre 

Cement Composites" was held during 1978. Verhagen (1978) discussed many 

practical methods developed to assess the impact resistance of various 

fibre concretes subjected to various types and magnitudes of impactors. 

Guidance was given on procedures, specimen dimensions, number of tests to 

be carried out and acceptable tolerances. For tests using bullets, the 

author suggested the results of five similar trials should not differ by 

more than 15%. It was stressed that this paper was to be used as an aid to 

development rather than as an established series of standards. At the same 

conference, Hibbert and Hannant (1978) reported on an instrumented Charpy- 

type pendulum impact machine designed to test 100 x 100 x 500mm specimens, 

over a span of 400mm, in flexure. the significant influence of the site 

and type of test machine on the obtained results was emphasised. Typical 

load-time curves for both steel and fibrillated polypropylene fibre 

reinforced concretes were given, along with similar data for a plain 

concrete sample. This design of machine provides a method of comparing 

specimens containing the various fibre types under identical test 

conditions. However, the results are not necessarily repeatable, even on 

another superficially identical machine, at a different site. 

Walton and Majumdar (1978) provided some preliminary information on 

Kevlar-29 fibre reinforced cement paste specimens. It was suggested that 

the composite mechanical properties recorded were sufficiently encouraging 

to warrant further study. A reservation was noted with regard to the fire 

resistance of such composites. Kevlar fibres are organic and decompose at 

relatively low temperatures compared with say, glass or steel fibres. It 

was pointed out that full-scale tests would be necessary before the use of 

Kevlar in buildings could be recommended. 
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Denson and Monahan (1980) considered the use of fibre-reinforced 

lightweight concretes containing preformed foam or expanded polystyrene 

beads, giving a high degree of entrapped air, as construction materials for 

assault training villages. The concrete was required to absorb the impact 

energy of live small arms ammunition. In these tests preformed foam steel 

fibre concretes were most successful both in minimising penetration depth 

and also in prevention of ricochet and front-face spalling. Polypropylene 

and alkali- resistant glass fibres were also included in the trials. 

Henager (1981) summarised the contemporary state-of-the-art of steel 

fibrous shotcrete design and production. An enduring problem had been the 

unacceptable quantity of fibre rebound. It was suggested, following a 

high-speed photographic study, that a large percentage of the rebounding 

fibre was blown away by the high pressure air stream; that is, the observed 

effect was not simply the result of the fibres bouncing from the work 

surface. A parametric study indicated that the most effective measures to 

reduce rebound seemed to be; 

i) reduction of air pressure (air velocity or amount of air at the 

nozzle). 

ii) use of a higher proportion of fine aggregate, 

iii) use of smaller sized coarse aggregates, 

iv) use of fibres of lower aspect ratio, 

v) pre-dampening of aggregates to obtain the optimum moisture content, 

vi) application of a shotcrete with the wettest possible stable 

consistency. 

This review, and the dedicated issue of the journal containing it, is 

a useful starting point in obtaining a fundamental understanding both of 

the sprayed concrete process, and the more specific requirements of fibre- 

reinforced sprayed concretes. 

In the same journal, Ramakrishnan et al. (1981) compared the 

performances of field-produced fibre shotcretes containing four different 
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types of steel fibres. It was shown that both collated fibres (i. e. 

bundles of fibre glued with water-soluble adhesive to create an 

artificially low aspect ratio) and hooked steel fibres could be 

successfully incorporated in conventionally produced sprayed concrete. 

Impact resistance was tested using a variation of the ACI Committee 544 

(1978) procedure, differing only in the thickness of specimen used. Hooked 

fibre concretes showed a significant ability to control cracking and 

deformation under this type of impact loading, impact resistance increasing 

with increasing fibre content. 

In a laboratory study, Morgan (1981) confirmed the practicality of 

using hooked end fibres in sprayed concretes, and observed mechanical 

properties results in accordance with those produced by Ramakrishnan et 

al. (1981). 

Barr et al. (1982) advanced an alternative version of the toughness 

index suggested by ACI Committee 544 (1978). This new test removed the 

restrictions on specific specimen type and prescribed deflections; instead 

a specimen is loaded until the load-deflection graph extends to twice the 

measured deflection at first crack. Figure 2.19 illustrates a typical 

response for a polypropylene concrete, and defines the proposed toughness 

index. It was documented that this toughness index varies from 0.25 for 

plain concrete up to a maximum of unity for very tough fibre reinforced 

materials. 

Narayan and Kareem-Palanjian (1982) considered the factors 

influencing the workability of steel-fibre reinforced concretes. Standard 

slump and Vebe consistometer tests were used to assess the workability of 

several concrete mixes, containing varying volume fractions of several 

different steel fibre types and aspect ratios. It was concluded that the 

most likely way to achieve a workable mix, whilst incorporating a large 

volume fraction of fibres, was to set the fine aggregate content of the mix 

to as high a value as possible. 
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The limitations of the ACI Committee 544 (1978) impact resistance 

test method, applied to lightweight fibre concretes, were investigated by 

Swamy and Jojagha (1982). It was reported that extremely large variations, 

up to more than 1200% in one test, could occur in the number of blows 

recorded to first crack of identical specimens. It was suggested this 

reflected the randomness of cracking in concrete, the occurrence of weak 

sections as in all concrete elements, the non-uniformity of fibre 

distribution and also the inherent limitations of "drop-weight" type tests. 

Such large variation was not recorded in the number of blows required to 

produce ultimate failure; further, a low impact resistance to first 

cracking did not necessarily indicate low impact resistance to ultimate 

failure. It was reported that the test adequately reflected the influence 

of all the major material parameters, including aggregate strength, 

aggregate-matrix bond, fibre shape and fibre geometry. It was concluded 

that a high fibre length and aspect ratio, with surface deformations 

enabling extensive debonding, appeared to be essential characteristics for 

high impact resistance. 

Bijen (1983) carried out a direct comparison of several commercially 

available glass-fibre reinforced cements, including a number of alkali- 

resistant glass fibres. It was stated that these latter materials 

nevertheless suffered deterioration, with time, as the interfilament spaces 

of the glass fibre bundles gradually filled up with calcareous compounds 

under moist conditions. A polymerised cement matrix had been used to 

ameliorate this condition. However, it was concluded, on the basis of 

accelerated ageing tests, that all of the tested glass fibre composites 

were still liable to brittleness in the long term, with a consequent 

reduction in impact resistance. 

A fracture model to generate the crack growth resistance curve (R- 

curve) of fibre reinforced cementitious composites was developed by 

Visalvanich and Naaman (1983). It was documented that, using the 
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experimentally obtained tensile load-displacement relationship for the 

material, and an adequate model for the propagating crack shape (assumed to 

maintain the same shape with time), the entire plot of energy demand per 

unit crack extension could be generated. The model was compared with 

experimental data and showed good correlation. A similar approach was 

presented by Wecharatana and Shah (1983), using the concept of crack 

opening displacement (COD) to define the influence of the propagating crack 

shape. That is, a given crack in the matrix was considered to propagate 

when the COD reached a critical value at the boundary between the fibre 

bridging zone and the matrix zone - which provides some pre-cracking 

resistance as a result of aggregate interlock and microcracking. It was 

emphasised that this value was based only on an approximate analysis which 

required further refinement. Again good correlation with experimental data 

was observed. 

Raouf and Hussain (1984) discussed various properties of steel fibre 

concretes at early ages. Ultrasonic pulse velocity testing was used to 

assess the unconfined compressive strength of fibre concretes at between 3 

and 24 hours. It was evident that the presence of the fibres was greatly 

significant in terms of the evaluated percentage increase in unconfined 

compressive strength at very early ages; this influence reducing with time. 

At all of the tested ages, the percentage increase in unconfined 

compressive strength was found to be linearly related to the volume 

fraction of fibre. 

2.4 Limitations in Sprayed Fibre Reinforced Concrete Constituents 

Fibre reinforced and sprayed concretes are specialised materials, the 

successful production of each of which is dependent upon the selection of 

an appropriate mix design. The problems are compounded when the material 

is both to contain fibres and be potentially suitable for sprayed 

application. 
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Attempting to produce a sprayable fibre reinforced concrete 

constrains the final composite in a number of related ways; 

i) The matrix parameters are dependent upon the quantity, shape and type 

of fibre used. 

ii) The matrix parameters must reflect the requirements of the spraying 

process(es). 

iii) The limitations of the spraying process has an influence upon the 

fibres incorporated in the composite. 

The various parameters used in mix design are discussed below, taking 

into account these related aspects. 

Water: cement ratio 

In order that sprayed concrete should not have excessive flowability, 

a low w/c ratio, compared to ordinarily placed concrete, is desirable. The 

Concrete Society Code of Practice for Sprayed Concrete (1980) suggests 

values in the range 0.35 to 0.5 are necessary for the successful placing of 

sprayed concrete. The addition of fibres, however, substantially alters 

the composite workability and may promote variation from these values. 

Henager (1981) suggested that fibre and coarse aggregate rebound, a 

major problem with sprayed concretes, is reduced by applying the concrete 

at the wettest stable consistency. 

Aggrecate: cement ratio 

The Concrete Society Code of Practice for Sprayed Concrete (1980) 

recommends, for dry-mix processes, a range of 3: 1 to 4: 1 for this value. 

For the wet-mix process it is further suggested that an upper limit of 6: 1 

may be acceptable. (See Section 4.4.5 for definition of the "dry-mix" and 

"wet-mix" processes). 

Fine-coarse aggregate ratio 

Hannant (1978) documented that, by experience, a satisfactory mix for 

fibre concrete should contain a mortar volume of about 70%, the remainder 

being coarse aggregate. 
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Swamy (1974) observed that the fine: coarse ratio generally varied 

between 1: 1 to 3: 1 in successful mixes, whilst Henager (1981) recommended 

the use of an increased proportion of fine aggregate as an appropriate 

means of reducing rebound. 

Aggregate size 

The Concrete Society Code of Practice for Sprayed Concrete (1980) 

specified the nominal maximum sizes of coarse aggregates to be 20mm, 14mm 

and 10mm. It advised against the use of the larger sized aggregates as 

they were stated to cause excessive rebound, a view echoed by Henager 

(1981). 

Swamy (1974) recommended that, for successful steel fibre concretes, 

a maximum aggregate size of 10mm was appropriate. Hannant (1978) agreed 

with this view, providing diagramatic evidence that uniform fibre 

dispersion is more difficult to achieve as the aggregate size increases 

from 5mm to 10mm to 20mm. Figure 2.20 shows this effect, indicating the 

increase in fibre interaction with increasing aggregate size. 

Fibre Aspect ratio 

Many researchers, for example, McCurrich and Adams (1973), have 

confirmed the increasing improvement of composite material properties with 

increasing fibre aspect ratio (length: diameter). 

Swamy (1974) reported that an aspect ratio of 80-100 appeared to be 

optimum in terms of strength, mixing, placing and compaction requirements. 

Hannant (1978) recommended that an upper limit of 100 should be 

defined, in order to avoid fibre conglomeration. 

Fibre Length 

Hannant (1978) suggested that fibres of a length greater than half 

the specimen thickness should be avoided, since such fibres tend towards a 

two-dimensional alignment. 

The Concrete Society Code of Practice for Sprayed Concrete (1980) 

suggested that fibre lengths must be compatible with transporting hose 
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diameters (normally 50mm) to reduce the possibility of blockages. 

The above recommendations were used as a basis for the preliminary 

mix designs of this study. The later experimental programmes were then 

further influenced by the information obtained in the foregoing tests. 
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Figure 2.1 Penetration Nomogram (SI Units) 
(Young 1969) 
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CHAPTER 3 

MATERIALS, SPECIMEN PREPARATION, EQUIPMENT AND DAMAGE ASSESSMENT 

3.1 Materials 

Plain concrete has been used extensively in the construction industry 

for many years. It consists of a cementitious material capable of 

hardening progressively with time in the presence of water, and fine and 

coarse aggregates which act as filler and provide stability and strength to 

the cement paste. 

The relative proportions of the cement, aggregate and water dictate 

the properties of the concrete. The tensile strength of concrete is only 

10-20% of the compressive strength and to improve tensile behaviour, 

discrete fibres may be added to the mix. 

This investigation has examined the value of using fibre 

reinforced concretes to defeat high velocity penetrators and the materials 

used are described in the following sections. Details of all material 

suppliers and equipment manufacturers may be found in Appendix II. 

3.1.1 Mix Design 

The design of the concrete mixes was difficult because the resultant 

material had to be suitable for sprayed application and had to include 

discrete fibres. 

Available literature indicated an upper aggregate size limit of 10mm 

to ensure a random fibre distribution in an unconglomerated manner. For 

pumpability, a relatively cement rich paste is required, whilst the ratio 

of coarse to fine aggregate inclusions should be less than in a 

conventional concrete. 

The proportion of the constituent materials differed as work 

progressed; however, in all cases, mixes were developed assuming a target 

density of 2400kg/m3 and adopting "by weight" mix ratios. 
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3.1.1.1 Cement 

Ordinary Portland Cement to ß. S. 12: 1978 was selected as the standard 

basic constituent. Admixtures were not considered since these would not be 

readily available in some field situations. 

3.1.1.2 Aggregates 

Zone 2 or Zone 3 sands to B. S. 882: Pt. 2: 1973 have been used as fine 

aggregates. 

Three types of coarse aggregates were used: rounded river gravel, 

crushed limestone and crushed basalt. All of these complied with the 

requirements of B. S. 882: Pt. 2: 1973 for 10mm single size aggregate and 

details of their properties are given in Table 3.1 

3.1.1.3 Fibres 

During the last two decades, many different fibrous materials have 

been incorporated into cementitious materials. Each material may be placed 

in one of two distinct groups, those which have a modulus of elasticity 

less than the host matrix, such as nylon, polypropylene, cellulose and 

vegetable fibre, and those of a greater modulus including steel, asbestos, 

glass, Kevlar and carbon. Low modulus materials generally suffer from a 

high rate of creep under load, such that they cannot maintain high stresses 

over a period of time without gross deformation of the cracked composite. 

They may also have a high value of Poissons Ratio, such that any extension 

in length will be reflected by a significant reduction in the fibre 

diameter, this leading to a lowering of bond strength with increasing load 

so that composite failure will occur by fibre pull-out. In order to 

improve the bond characteristics of these fibres, mechanical aids have been 

considered, for example, using a fibrillated polypropylene (much like 

parcel string) to allow interaction between matrix and fibre, or producing 

fibres with surface irregularities. High modulus fibrous materials do not 

normally creep much, but, due to the smooth nature of some types, e. g. 

drawn steel wire, it is often considered necessary to improve the bond 
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characteristics by either producing fibres with an indented shape, an 

irregular surface profile, or by changing the fibre shape, e. g. adding 

hooked ends or forming a sinusoidal profile. 

Initially, no constraints were placed upon the choices of fibrous 

materials for this study. However, to reduce the experimental study to a 

manageable size, a number of fibrous types were rejected either before 

testing or in the early stages of the experimental work. These fibres are 

listed in Table 3.2 and the reasons for rejection stated. 

Since for impact resistance it was felt that the greatest possible 

local energy absorption would be necessary, fibrillated polypropylene was 

chosen as representative of the low modulus group in an attempt to avoid 

fibre pull-out. 

The choice of fibres with a higher modulus than the matrix material 

was even more difficult, since there is a very large variety of such 

fibres, particularly steel based ones. Several different methods of 

manufacture are applied to a number of grades of steel, the intention being 

to improve the mechanical bond between fibre and matrix, so that more of 

the impact energy is expended in fibre pull-out or, for fibres where an 

effective anchorage is generated, in fibre yielding. Both stainless and 

carbon steels with typical tensile strengths of 400 to 2100N/mm2 are used 

in the manufacture of fibres, which may be produced in circular section by 

drawing, or as by-products of scrap sheet steel, this giving rise to 

rectangular or square section inclusions. Alternatively a melt extract 

process exists by which a spinning notched disc produces fibres from molten 

steel held in an induction furnace. The disc is just in contact with the 

metal surface and flicks off irregularly edged crescent-section fibres, the 

length being defined by the disc thickness. Drawn fibres may be 

mechanically deformed by crimping, bending or die-stamping, in order to 

improve the bond characteristics of the composite material. O 
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Another high modulus fibre used was Kevlar, which is the trade name 

of a group of organic fibres, having very high strength. These fibres are 

produced as a large number of very fine (12um) filaments in various 

lengths. Two types were suggested for use in concrete, PRD-29, a fibre 

with a modulus of 58kN/mm2and a tensile strength of 2760N/mm2 and PRD-49, a 

higher modulus material (133kN/mm2) with the same strength. The lower 

modulus material was selected as it was considered adequate for inclusion 

in a matrix whose modulus was around 33kN/mm2. 

The types of fibre tested in the major part of this study are listed 

in Table 3.3 with an indication of their dimensions, costs and extent of 

usage. Further information about the manufacture of fibres and their use 

in concrete may be obtained from Hannant (1978). 

3.1.1.4 Ammunition 

At the selected size of projectile, 7.62mm, there was a choice of two 

conventional types of impactor. The first, and generally more common, of 

these was the standard ball type; whilst the alternative was the armour- 

piercing projectile. The core of the ball penetrator is formed of soft 

lead alloy, whereas the armour-piercing penetrator core is of hardened 

steel. 

During the very earliest trials, the relative penetrability of the 

two projectile types was considered. A few comparative trials, using 

typical concrete mix designs, were carried out. These decisively indicated 

that the armour-piercing missiles generated significantly greater path 

lengths, since total core disintegration at impact did not occur, as it did 

with the softer lead alloy centres of the ball projectiles. This finding 

was in accordance both with earlier work on fibre reinforced sprayed 

concretes (RUC(1976), Finch (1977)) and also with studies carried out on 

rock/elastomer composites by Anderson et al. (1980). Since it was proposed 

to establish the limits for safety of the fibre-reinforced concretes, the 

7.62mm armour-piercing projectile was selected as the standard impactor for 
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all subsequent trials. Details of both ammunition types are given in 

Table 3.4. 

3.2 Specimen Preparation 

3.2.1 Mix Production 

A Creteangle Type ME pan mixer with a diameter of 900mm and a 

capacity of 0.113m3 was used. This enabled three standard sized specimens 

(450 x 450 x 125mm) and three 100 x 100 x 100mm cubes to be cast as a 

single batch. Composites containing a high percentage of fibre tended to 

bulk so it was not usually possible to cast all the specimens from one 

mixer load. Two equally sized half-mixes were then used. The included 

fibre contents were expressed in terms of percentage weight of plain 

concrete weight. See Appendix III for details of the relationship between 

fibre volume, theoretical fibre weight and practical fibre weight. 

3.2.2 Moisture Content Measurement 

During this work, all of the concrete material has been cast by 

pouring under site conditions. As such, it was not possible to completely 

dry the aggregate constituents. It was thus necessary to make an allowance 

for the free water content of the aggregate in calculating the weights of 

the various concrete constituents. 

To have a reasonably quick measuring technique a 2kg sample of 

aggregate was tested in a standard siphon can as described in B. S.. 812: Part 

2: 1975. The siphon can measures moisture content relative to a known 

condition. In this case, the required constants were obtained for each 

aggregate in an oven-dry state, hence all moisture content values are given 

as percentage moisture content by aggregate dry mass. In analysing the 

results initially only a percentage (between 50-80%) of the measured value 

was assumed as aggregate surface water, the rest being taken as absorbed 

water. It was later decided that a more consistent result was obtained by 

assuming all aggregate moisture was available for combining with the cement 

during hydration. Although this is not a strictly valid assumption, its 
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consistent adoption meant that it was not necessary to estimate the actual 

values of absorbed moisture. 

3.2.3 Material Mixing Technique 

A standard mixing method was maintained throughout the project; 

1 Charge mixer with fine and coarse aggregate, mix for one minute or 

until thoroughly combined. 

2 Add Ordinary Portland cement and mix to a consistent material. 

3 Add water, mix for one minute or until a consistent matrix exists. 

4 Add fibre whilst mixer is rotating. The method dependent upon the 

characteristics of the material: 

i) With steel and polypropylene fibre, the material was 

already in a reasonably separated state and was added 

to the matrix directly sieving through a 50mm mesh on to 

the moving surface. The action of the mixer paddles then 

ensured that a random distribution occurred, up to the 

practical limit of fibre inclusion. 

ii) With the Kevlar materials each filament had a diameter of 

approximately 12 micron, and these clustered together and 

were extremely difficult to separate. To reasonably 

distribute the fibres, it was necessary to separate them 

into smaller clusters (approximately 50mm diameter) and 

then to pneumatically transport them, via a 50mm internal 

diameter hose, to the surface of the material. Whilst it 

was impossible to disperse the fibre as completely discrete 

inclusions, this led, with the lower fibre contents, to a 

reasonably uniform mixture. With higher fibre contents a 

significant amount of fibre clustering did occur. 

3.2.4 Concrete Casting Moulds 

After the preliminary testing, special timber units were 

manufactured. The first of these was a large mould, as shown in Figure 
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3.1, designed to hold nine 450 x 450 x 125mm slabs, whilst allowing them to 

be stripped by one person, if required. Later, two other five slab units, 

similar to Figure 3.1, were constructed and used in conjunction with the 

original one. All formwork was treated with Shell MRO, a standard mould 

release agent, before concrete casting. 

Twelve standard 100mm cube moulds were also used. 

3.2.5 Vibration Technique 

A three-dimensionally random distribution of fibres through the 

concrete matrix was considered desirable for all specimens. It has been 

found that external vibration may lead to a non-three-dimensional 

distribution (Edgington and Hannant(1972)), whilst poker vibration, if not 

carried out properly may lead to a non-random distribution because the 

fibre originally close to the poker may be dispersed from it, leaving a 

zone of unreinforced material. A compromise of a Kango 950 electric 

percussion hammer fitted with a 140mm x 100mm rectangular plate was adopted 

to compact the concrete to a constant state, after which a plastic float 

was used to level and finish the surface. 

3.2.6 Curing Method 

Immediately after casting the specimens were covered with polythene 

sheeting and allowed to cure for 24 hours before the formwork was removed. 

The slabs and cubes were then placed in a high humidity room operating to 

B. S. 1881: Pt. 3: 1970 requirements. The specimens were cured until 

immediately before testing when they were transferred, as a batch, to the 

firing range. 

3.3 Penetration Tests 

3.3.1 Gun, Gun Mounting Frame and Solenoid Firing System 

Projectiles were fired from a number 3 pressure housing fitted with 

7.62mm routine proof barrel. For the tests carried out up to 13: 05: 81, a 

barrel which had previously fired almost 12,000 rounds was used. After 
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this date a new barrel which had fired only 35 proofing rounds was 

substituted. 

The gun was connected with its solenoid firing system and trigger 

linkage to a sturdy box section frame and rawl-bolted to the range floor 

(Fig. 3.2). A D. C. solenoid, Philips Control type 32. was connected, via a 

stiff linkage, to the trigger mechanisms of the weapon. During testing, 

this connection was made just prior to the release of the trigger safety 

catch. Figure 3.3 shows the equipment in place, whilst Figure 3.4 shows the 

electrical firing circuit. The 11.4kgf, 18mm stroke length solenoid, 

rectified for A. C. mains connection, was itself triggered by a remote 

firing box comprising a safety lock-out switch and an off-biased firing 

switch. In order to reduce current fluctuation and electrical 

interference, all connections were co-axial and a large capacitor was 

placed across the live side of the two-pole switch. For several of the 

high speed photographic tests it was necessary to rectify the mains supply 

at the firing box rather than the solenoid. For this reason, the 

connectors at the solenoid were changed so that the bridge rectifier could 

be isolated without difficulty. 

3.3.2 Target Specimen Holder and Mounting Frame 

Preliminary tests carried out to assess typical target damage, 

indicated that a relatively large (450 x 450 x 125mm) and heavy 

(approximately 65kg) standard sample would be required to prevent gross 

cracking and tensile (back face) scabbing. A target stand which held the 

slab perpendicular to the bullet path whilst providing only edge restraint 

was manufactured from rectangular hollow section steel. Ease of 

positioning of the target was ensured by using a sloping frontal area, *as 

shown in Figure 3.5. The frame was rawl-bolted to the range floor and the 

tight-fitting slabs were located by a series of rubber straps. The target 

face was 20m down range from the end of the gun barrel. 
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3.3.3 Projectile Velocity Measurement Equipment and Mounting Frame 

Variations in projectile mass, amount to propellant, propellant 

temperature, barrel wear and mounting frame stiffness all have an effect on 

the projectile velocity. In order to detect "rogue" rounds, an optical 

velocity measurement rig as shown in Figure 3.6 was designed and 

constructed. Three identical bases were manufactured. Figure 3.7 shows 

the details, each station consisted of a 3V light source supplied from a 

constant power supply and a train of 50mm focal length bi-convex lenses 

incorporating a 2mm slit to provide a congruent beam of light. The light 

was focussed on a photodiode, part of an electronic circuit yielding a 

positive on-off triggering system as the light beam was momentarily broken. 

Each photodiode circuit was powered by an 18v battery pack, though output 

to the timing devices (initially a Racal-Dana 9903 electronic timer and a 

Racal-Dana 9904 electronic timer) was limited to approximately 13V, 

dropping to 1.2V as the light beam was broken by the passing projectile. 

Figure 3.8 illustrates the sharpness of the falling voltage profile, this 

making it eminently suitable as an electronic trigger. 

The three stations were placed 1.5,2.0 and 2.5m from the target 

front face, so that mean velocities 1.75 and 2.25m from the target could be 

obtained, both as a check on the timing equipment and also to give a value 

for the projectile deceleration. The stations were mounted on a 50mm x 

30mm box-section steel frame at the lm height of the bullet path. The 

first station was connected to the "start" channel of the first timer, the 

middle station to the "stop" channel of the first timer and the "start" 

channel of the second timer. Finally, the third station was connected to 

the "stop" channel of the second timer. In use cross-interference was 

encountered. Isolating the wiring gave very little improvement, so only 

two stations and the Racal-Dana 9904 timer were used for the majority of 

measured velocities. The stations were placed at 1.5 and 2.5m from the 

target face, leading to a mean velocity value at 2m from the target. 
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3.4 Penetration Test Procedure 

The target was located in its holder, the gun loaded, the bolt 

replaced, the trigger-mechanism screwed down, the trigger-solenoid linkage 

connected and finally trigger mechanism safety catch released. The range 

door was secured and warning sirens sounded. If transient recording 

equipment was in use, this was armed, as were the electronic timers. The 

interlock key was then placed in the firing box and the off-biased switch 

was tripped. 

In some cases, for example whilst using high speed cameras, the 

firing event was triggered by the instrumentation. In these cases an 

alternative interlock system was built into the firing sequence in order to 

maintain personnel safety. 

3.5 Assessment of Damage 

Preliminary tests showed that target damage consisted of several 

facets, present to differing degrees in different material combinations. 

Figure 3.9 illustrates the various characteristics. Basically, a crater 

was formed on the front face, a burrow dimensionally similar to the 

projectile diameter was generated through the material also occasionally a 

back face crater was caused by the removal of a "scab" of composite. Since 

this study was mainly concerned with the reduction of penetration and 

target damage for hard impact, a specimen was selected of sufficient 

thickness to ensure that scabbing never occurred. The two major failure 

characteristics were therefore, penetration path length and front crater 

volume. Techniques were developed to measure these in a consistent and 

repeatable manner. 

3.5.1 Measurement of Projectile Penetration 

For the very early tests, utilising the more consistent composites, a 

projectile path very nearly perpendicular to the target impact face (i. e. 

along the same line as the initial projectile flight path) was observed. 

This led to a decision to measure path length as normal penetration depth 
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from the target surface. When some of the other types of fibre and 

aggregate were incorporated, the projectile experienced a significant 

deviation from its initial line, in either a straight or curved direction 

in three-dimensions. Consequently normal penetration depth measurement 

became of limited value, since the actual path length could be much greater 

than the normal distance from target surface to projectile tip. An 

alternative measurement was recorded to take account of this effect. 

Immediately after testing crater volume was measured as described below. 

Then the specimen was positioned under a concrete coring machine fitted 

with a 100mm diameter bit, and a 125mm long cylindrical core encompassing 

the complete projectile path was removed from the specimen. This was 

placed in a Clipper concrete saw and 10mm thick slices were removed from 

the rear surface until the projectile tip was located. Using this point 

and the point of entry, it was possible to estimate a "most-likely" path 

for the projectile. The core was then sectioned along this path, normal to 

the target front surface, to expose the burrow and penetrator. In cases 

where a three-dimensional (rather than a planar) deviation had taken place, 

a further step was required. This involved the "joining up" of the exposed 

sections of the burrow by removing small amounts of concrete using a 4mm 

width cold steel chisel and small hammer. After the path was fully exposed 

it was measured as distance travelled using an appropriate method (Figure 

3.10). 

3.5.2 Measurement of Crater Volume 

The impact and subsequent penetration of the projectile, coupled with 

effects generated by the stress wave motion, caused the formation of a 

front face crater in the specimen. The actual dimensions of this crater 

were dependent upon the composite constituents and properties. Initially 

it was considered that stereometric photography, coupled with computer 

analysis to generate a three-dimensional "ground-model" would be the most 

appropriate measurement method, since it allowed a maximum of information 
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to be recorded and stored before the specimen was dissected to expose the 

projectile path. However, after preliminary investigation, it was realised 

that the very large number of samples required to carry out a valid 

statistical or parameter study precluded the use of such a time-consuming 

approach. It was decided to develop a mechanical version of this optical 

procedure. 

Figure 3.11 shows the general approach, a 125mm stroke length Linear 

Variable Displacement Transducer (LVDT) was placed accurately, relative to 

a known datum, in a Perspex frame. This was situated on a Perspex base- 

plate which could be accurately positioned on the specimen front face. The 

base-plate carried a central grid of 40 x 40 holes, spaced at 5mm 

intervals, giving an area large enough to cover the biggest crater. The 

LVDT was connected, through an 8-bit JMac PETSET 1 analogue-digital 

converter, to a Commodore 3032 Microcomputer, itself coupled to a printer 

and disk-drive. Thus, at grid spacings dependent upon the accuracy 

required, a series of three-dimensional coordinates (i. e. a depth reading 

at known plan coordinates) could be developed by placing the LVDT probe on 

the crater surface at each point in turn and transmitting the voltage (as a 

digital value) to the microcomputer. The computer was programmed to accept 

a complete set of data, to store it on disc if required, and then to 

calculate the crater volume using the standard trapezium rule, first in a 

"rows" direction and then in a "columns" direction, giving an arithmetical 

check for the computer program. It was also possible to generate a series 

of crater profiles using the collected data, again in two orthogonal 

directions. Figure 3.12 gives details of the connections between the 

various components of the system. Appendix IV contains more details of the 

computing approach and a full program listing. 

Several points are worthy of further comment. 
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i) An 8-bit Analogue-Digital converter allows for a resolution 

of 0-255 in 256 intervals. Using this in conjunction with a 

125mm LVDT therefore, a resolution of 125/256mm approximately 

0.5mm was possible for depth measurements. Due to the 

limitations of accuracy as discussed in ii) below, this was 

considered a reasonable compromise, since the maximum aggregate 

size was 10mm and the alternative type of A-D converter would 

have been a much more expensive 12-bit version capable of a 

resolution of 125/4096 (. 03)mm. 

ii) Early sectioning of post impact specimens showed the kind of 

effect recorded on Figure 3.13. That is, a zone of obviously 

damaged material below the visible crater. The initially 

present void was therefore defined as an "apparent crater". 

the "true crater" was exposed by removing the damaged concrete 

using a 4mm cold steel chisel and small hammer, cutting the 

restraining fibres when necessary. The volume of this "true 

crater" was then measured. This approach was deemed 

appropriate as it was considered that the extensively damaged 

zone could contribute little to the continuing integrity of the 

specimen. That is, under further attack, the loose and 

fractured areas would add little or nothing to the 

overall material resistance. 

iii) An important advantage of this approach was the recording of 

the data on disk, since this permitted further manipulation. 

For example, contour plans of the craters are possible using 

the stored data, whilst a digital ground model may also be 

developed. Since the subsequent coring and sectioning 

procedure caused a great deal of irreversible damage to the 

crater areas (particularly if the largest crater diameter was 

51 



more than the 100mm core bit diameter), it was valuable to 

retain the maximum possible information. 
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Omm single size Description Oven dry Saturated Aggregate Aggregate 
Aggregate type specific surface dry crushing impact 

gravity specific value value 
gravity 

Limestone Angular 2.67 2.68 23 23 
light grey 
crushed 
rock 

Basalt Angular 2.75 2.82 17 17 
dark grey- 
green 
crushed 
rock 

iver gravel Mixed 2.57 2.60 19 25* 
quartzite 
quartz, 
flint, 
sandstone, 
limestone 

* Quartzite component only. 

Table 3.1 Details of B. S. 812: 1975 Properties for Coarse Aggregates Used. 



Fibre Material Type Reasons for exclusion from test programme 

Asbestos Hazardous material 

Carbon High capital cost for full parametric study. 

Cellulose Hygroscopic, dimensions vary with the 
moisture content, material rots. 

Glass Alkaline attack causing brittleness in OPC 
matrices. Alkaline resistant glasses [e. g. 
cem-FIL] available only for non-structural 
applications. 

Nylon Polypropylene had similar properties at a 
more economic price. 

Rock Wool Difficult to produce consistently in a form 
useful for incorporation into concrete. 

Vegetable Sensitive to moisture changes, often 
difficulties with congolmeration during 
mixing. 

Table 3.2 Fibre Types considered but not used, with reasons for 
rejection. 
(Ref: Hannant (1978), RILEM Tech. Com. 19FRC(1977)) 



Fibre Type Dimensions 
(mm) 

Mild steel 38 x 0.3dia 
circular 

Mild steel 27 x 1.0dia 
circular 

Melt extracted 35 x 0.3dia 
carbon steel 

Cold-drawn 30 x 0.3dia 
circular steel 

(ME) Melt 25 x 0.3dia 
extracted 
carbon steel 

(DRA) 25 x 0.25dia 
Circular drawn 
brass-coated 
carbon steel 

(DUO) 25 x 0.25dia 
Circular drawn 
brass-coated 
indented 
carbon steel 
(Duoform) 

(13K) 13 x 12pm 
Kevlar-29 
(Type 970) 
polyamide 

(37K) 37 x 12pm 
Kevlar-29 
(Type 970) 

(POL) FORTA 37mm length 
FIBRE 
latticed bundled 
polypropylene 

Cost/kg 

N/A 

N/A 

N/A 

N/A 

183p at 
June 1983 

82.5p at 
January 1982 

82.5p at 
January 1982 

US$13.85 at 
January 1982 

US$16.23 at 
January 1982 

US$13.09 at 
January 1982 

Used for tests 
in sections 

4.2.1 

4.2.1 

4.2.2, 
4.2.3 

4.2.3 

4.3.1, 

4.3.1 
4.4.1 

4.2.3,4.3.1, 
4.4.1 

4.3.1 

4.3.1 

4.3.1 

Table 3.3 Fibres used during optimisation procedures 



a) 7.62mm NATO armour-piercing (AP) P80 ammunition 

General Cartridge comprising: case, bullet, lead alloy sealant, 
description percussion cap and propellant charge. 

Total assembly length = 71.1mm 

Bullet Bullet jacket made from 90/10 gilding metal. 
(i. e. Bullet length = approximately 33mm 
object in flight) Bullet mass = 9.6 - 9.9g. 

Core of bullet Hardened steel, Length = 23.8mm, Diameter = 6.10mm 
Core mass = 3.74g 

Stated Mean 825m/s @ 20m " 210C 
Velocity 

b) 7.62mm NATO ball ammunition 

General Cartridge comprising; case, bullet, percussion cap and 
description propellant charge. Total assembly length = 71.1mm. 

Total assembly weight = 24.4g. 

Bullet Bullet jacket - 90/10 gilding metal 
(i. e. Lead alloy core 
object in flight) Bullet length = approximately 29mm. 

Bullet mass = 9.3g. 

Stated Mean 849m/s 0 5m. 
Velocity 

Table 3.4 Details of projectiles used for testing 
(Manufacturers specification) 
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Figure 3,2 General Arrangement of Gun and Solenoid 
Activated Firing System. 



Figure 3.3 Detail of Gun, Breech and Solenoid Linkage 
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Figure 3.4 Electrical Firing Circuit for Trigger System 
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Figure 3.5 Target Frame for 450 x 450mm Specimens 
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Figure 3.6 Projectile Velocity Measurement Equipment 
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IC1 - 741 Operational Amplifier 
IC2 - 531 Operational Amplifier 

Figure 3.7 Elevation of Single Optical Velocity Measurement Base 
and Electronic Circuit Details 



Figure 3.8 Oscilloscope trace illustrating trigger profile 
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Figure 3.9 Typical Post-impact target damage 



Figure 3.10 Definition of Actual Path Length 
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Figure 3.11 Crater Volume Analysis Equipment 
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1.125mm Stroke Length Continuous coil L. V. D. T. 
2. Variable Voltage Output 

L. V. D T. 3. Constant 5.12V supply from AID converter 
4.8-bit Analogue-Digital Converter 
5. Digital Data input through User and IEEE-4ß ports 
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8. Display and Program Interaction 
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Figure 3.. 12 Crater Volume Measugement - Computer Interaction 

Figure 3.13 Illustration of Relationship Between "True" and 
"Apparent" Crater 
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CHAPTER 4 

EXPERIMENTAL STUDY OF FIBRE REINFORCED CONCRETE VARIABLES 

4.1 Introduction 

4.1.1 General Approach 

The literature shows that various approaches have been developed to 

define the displacement-time history of impact and penetration events. It 

was concluded that an empirical approach, neither requiring the definition 

of an accurate constitutive model of physical behaviour, nor employing 

large amounts of expensive computer time, was potentially the most useful 

analysis tool in the case of a specific penetrator impacting a material 

which was to be optimised in terms of minimum penetration path length and, 

possibly, front face spall damage. Earlier work, carried out by Anderson 

et al. (1980), had used a limited series of tests to fit an approximate 

mathematical model with a statistically valid result. This approach, known 

as surface response theory, was adopted and developed, allowing the 

statistical analysis to be performed by microcomputer. As a consequence of 

the variability observed in the completed early series however, the 

statistical technique was suspended and replaced by a more limited 

experimental programme. Subsequently, a conventional parametric study, 

varying coarse aggregate type, fibre type and fibre content was 

successfully completed. Each of the two approaches are discussed in this 

chapter. However, the choice of appropriate variables for the empirical 

studies and the results of some preliminary trials used to assess the 

influence of various factors of the event are reported first. 

4.1.2 Variables Considered (Materials and Measurement) 

The static properties of a plain concrete are dependent on the type 

and proportion of the material constituents and also upon the age at 

testing. For a fibre-reinforced concrete, the proportion, aspect ratio and 
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type of fibrous inclusion has a further effect upon the post-cracked 

properties of the composite. 

In this study, as it was not possible to accurately vary the impact 

energy, a standard impact was assumed and the effect of controlled change 

in various of the qualitative independent variables was monitored. The 

potentially measurable characteristics of damage, the "quantitative 

dependent variables" are listed as Table 4.1. It was initially recognised 

that the penetration resisting characteristics of a particular specimen 

could be defined in one of two ways, either as a true path length through 

the target, or as an orthogonal distance travelled into the target, 

measured from the impacted face. However, as was also found in similar 

rock/elastomer studies carried out by Anderson et al. (1980), significant 

deviation from the original orthogonal path was observed on sectioning the 

concrete targets. In a few cases this path deviation caused the penetrator 

to reverse its original direction completely, inducing a reduction in the 

measured value of orthogonal path length. As a consequence, and to ensure 

a limiting condition for safety, actual penetration path length was 

selected as the prime indicator of penetration resistance for the main test 

series. A specific, though laborious, exposure technique was developed to 

obtain this measurement to an accuracy of + 2mm, as described in Section 

3.5.1, at the cost of the less significant normal path length value. 

As the study was developed, the near surface effects of the impact 

and subsequent penetration were noted to change with variation in target 

materials, the size of the crater formed during the impact was considered 

the most reliable indicator of the overall local damage being caused by 

both penetrator presence and stress wave propagation in the target. As 

discussed in Section 3.5.2, the "true" volume of this crater was 

established and measured by a microcomputer-based method. 

Of the other characteristics given in Table 4.1, burrow diameter and 

volume were deemed to be of lesser importance, whilst burrow length was 
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adequately allowed for as a component of the actual penetration path length 

(though not as part of a normal path length measurement). It was initially 

believed that the maximum surface diameter of the crater formed would be of 

significance. However, following the realisation that the vast majority of 

impacted targets exhibited unsymmetrical actual crater plan shapes, this 

measurement was not pursued, as it gave no insight into the general 

material response. In a homogeneous material, such as steel or wax, this 

value is of importance and, where appropriate in these studies, was 

measured. 

In ideal circumstances, the quantity of comminution of the various 

matrix constituents could possibly be a useful indication of the amount of 

projectile energy expanded in the penetration of a particular component. 

However it was impractical to consistently obtain such information during 

this work. 

The intention of this research was to examine the effect of changes 

in both the qualitative and quantitative independent variables defining the 

event on the damage parameters considered to be of most significance. In 

all parametric studies, to minimise the number of trials required it is 

desirable to hold constant as many independent variables as is deemed 

possible. The relevant quantitative independent variables are given in 

Table 4.2, whilst the qualitative variables included fibre type, coarse 

aggregate type, fine aggregate type, cement type and projectile type. 

For the surface response theory approach, the primary independent 

variables (i. e. those not held constant) included quantitatively; 

water/cement ratio, aggregate/cement ratio and fibre content and 

qualitatively; fibre type and coarse aggregate type. The remaining 

(secondary) independent variables were held, or assumed, constant. 

In the case of the "limited variable" analysis, a single primary 

quantitative independent variable was selected, fibre content, and two 

primary qualitative independent variables, coarse aggregate type and steel 
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fibre type, were considered. The other (secondary) independent variables 

were then held, or assumed, constant. 

4.2 Preliminary Tests 

There are several difficulties in producing small quantities of 

sprayed concrete, not least being the lack of material consistency likely 

to be generated. As a consequence, poured concrete specimens were used 

throughout these trials. It is of interest to consider the possible effect 

of this decision upon the subsequent findings of the research. 

When the concrete is sprayed into wooden moulds a large quantity of 

coarse aggregate and fibre is initially lost by rebound, until a 

sufficiently thick cement paste cushion has been established on the 

formwork base and sides. This mortar layer tends to be more apparent at 

the corners of the mould. The resulting panel has significant 

inconsistency throughout its depth and width. The Concrete Society Code of 

Practice for Sprayed Concrete (1980) instructs that, where cores are 

required for compliance testing, test panels of plan dimensions no less 

than 750mm x 750mm should be used; with the subsequent cores not being 

taken within 125mm of the edges of the panel. Such a panel size would not 

be a practical proposition for manual handling, notwithstanding the 

remaining difficulty of unknown material inconsistency with depth and 

width. 

As a compromise, the search for an individual specimen size of 

sufficient dimension to successfully isolate local effects such as 

penetration and spalling from global effects, such as gross cracking to the 

edge of the specimens and consequent target break-up, was initiated. Each 

of these slabs was to be held in a vertical position by the frame discussed 

in Section 3.3.2 and illustrated as Figure 3.5. In this orientation, the 

slab was effectively two-way spanning under impact. However, so as to 

approach the same support condition as in a free-standing, and potentially 

quasi-semi-infinite, field situation, the selected target and frame 
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combination was to be sufficiently stiff to avoid significant elastic 

motion of the target and holder. (This was later confirmed as a by-product 

of the high speed photography trials (Section 5.2.1)). The target selected 

would, by virtue of its relatively small boundaries compared with any 

realistic field usage of the material, tend to generate a significantly 

more concentrated stress wave field. This, exacerbated by a lack of the 

pre-compression normally available to an actual structural unit, would, at 

first sight, imply a more damaging overall effect. However, this process 

was deemed to be unlikely to effect the parameter of prime concern, the 

overall penetration path length. Further, the selected square plan shape 

of the target meant that the effects of the edge reflected stress waves 

tended to cancel each other out at their point of intersection. Such a 

specimen could thus be considered to generate overall limiting conditions 

for safety and to be a valid means of comparing different target materials. 

During the parametric studies (Sections 4.3 and 4.4) only a single specimen 

suffered from gross target cracking and break-up, whilst potentially 

injurious tensile scabbing was not generated in any such target. Hence the 

sizes selected below fulfilled both the experimental and ergonomic 

requirements. 

4.2.1 Slab Frontal Area 

To establish the plan area of specimen required to ensure that only 

local effects were suffered by the slab (rather than "global" effects such 

as gross cracking to slab edges), a series of specimens of various mix 

types and proportions were cast and impacted centrally at 7 days. As this 

testing was carried out at a very early stage, available materials were 

used; the mixes given in Table 4.3 were selected after reference to the 

literature. All of the specimens were cast using rapid hardening cement, 

10mm single size river gravel and zone 2 (B. S. 882: Pt: 1973) limestone sand. 

Several of the large slabs were initially impacted centrally and then 
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attacked at other points on the face in order to define the "edge-distance" 

at which gross cracking could be expected. 

Table 4.4 gives a summary of the projectiles used and the results 

obtained. As a result of these tests, a target plan area of 450mm x 450mm 

was selected. 

4.2.2 Specimen Thickness 

As it was not considered practical to attempt to measure the residual 

energy of a projectile perforating a specimen, tests were carried out to 

determine the minimum thickness at which perforation was unlikely to occur 

in an average fibre concrete mix. Specimens of various thicknesses of 

steel fibre reinforced concrete were manufactured and impacted at 14 days 

by a 7.62mm armour-piercing (AP) projectile. Table 4.5 gives the details 

of the mix designs used, the basic constituents being Ordinary Portland 

Cement, zone 2 (B. S. 882: Pt. 2: 1973) limestone sand and 10mm single size 

limestone, in conjunction with 2.5% by concrete weight of 35 x 0.3mm 

(nominal) melt extract carbon steel fibre. In order to examine the 

sensitivity of the material to changes made in compensating for aggregate 

moisture content, half of the specimens were cast assuming that all of the 

siphon can moisture content value (by dry mass) was available as free water 

to the concrete matrix, whilst the second half were cast assuming only 50% 

of the measured value was available. This led to a much weaker matrix 

(higher water-cement ratio) in the latter case, reflected in the 

compressive strength values obtained. 

Table 4.6 gives a summary of the results obtained, the major 

conclusion being that a slab of 450 x 450mm plan area and 125mm thickness 

was sufficient to contain a 7.62mm armour-piercing projectile without 

global cracking occurring,. 

4.2.3 Variation in Fine Aggregate Type 

Initial indications were that the type of fine aggregate incorporated 

into the material had an insignificant effect on the measured damage 
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phenomena. Since it was attractive to use a single fine aggregate type for 

all specimens in order to reduce the required number of combinations 

tested, a small comparative series was carried out using a similar mix 

design and three different sand materials, i. e. i) zone 2 limestone sand, 

ii) zone 3 grit (sharp) sand, iii) zone 4 building sand, all zones defined 

by B. S. 882: Pt. 2: 1973. 

The mix design consisted of Ordinary Portland Cement (1 part), 10mm 

single size limestone (3 parts), fine aggregate (3 parts), water (0.55 

parts) and 6.7% by concrete weight of 25 x 0.3mm (nominal diameter) melt 

extracted carbon steel fibre. Three similar 450 x 450 x 125mm specimens 

were cast for each combination. The slabs were stripped from the moulds at 

one day and cured until impacted by a 7.62mm AP projectile at three days. 

This short period of time was chosen in order to highlight any differences 

present. The moisture contents, by dry mass, of the limestone sand and 

10mm single size limestone were derived using a standard siphon can test 

(B. S. 812: Pt. 2: 1975). However, constants for the other two fine-grained 

materials were not available and an oven-dried sample was used to derive 

the moisture content values by dry mass. This led to an inconsistency in 

the materials strengths, as shown in Table 4.7. The results (Table 4.7) 

obtained for mean penetration path length values of the three show only a 

20% reduction even though the mean strength value of the limestone sand 

based material was twice that recorded for the other two materials. As the 

scatter of the results is within the range of random variation usually 

experienced in this type of dynamic testing, it is reasonable to conclude 

that the type of sand used was of little significance. 

4.2.4 Variation in Steel Fibre Type 

For several of the fibrous materials, the choice and number of 

different types used was very much dependent upon limited availability (for 

example, Kevlar-29). However in the case of steel fibres it was necessary 

to carry out a preliminary study of more readily available fibres to 
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observe whether a measurable difference in damage parameters occurred with 

the different lengths and cross-sectional designs; in an attempt to reduce 

the number of combinations to be tested. The single concrete mix design 

selected consisted of 1 part O. P. C., 2.36 parts 10mm limestone, 2.33 parts 

zone 2 sand and 0.49 parts water to which 5% of fibre by concrete weight 

was added. This mix has the same basic material ratios as those used for 

the majority of the earlier dimensional evaluation tests (Sections 4.2.1 

and 4.2.2), although in this case 75% of the measured aggregate moisture 

content by dry mass was assumed to be available as free water. This 

requires an adjustment to the stated ratios to give a true comparison with 

the other presented designs, for which all moisture content was considered 

as free water. The slabs were cast, stripped from the moulds at one day 

and stored until immediately before central impact by a 7.62mm A. P. 

projectile at three days of age. Three similar specimens were cast for 

each of three different steel fibre types; 

i) 25 x 0.25mm brass-coated indented mild steel fibre (Duoform). 

ii) 35 x 0.3mm melt extract mild steel fibre. 

iii) 30 x 0.3mm cold-drawn circular steel fibre. 

The results obtained for mean normal penetration depth given in Table 4.8 

indicated that none of these fibres had an obviously superior performance 

in terms of penetration resistance. Hence, the fibres for the quadratic 

response surface analysis and later empirical approach were selected for 

each of casting and availability. 

4.3 Initial Statistical Approach 

4.3.1 Description of Method: Quadratic Polynomial Fitting 

The preliminary tests carried out indicated that, of the quantitative 

dependent variables given in Table 4.1, penetration path length was the 

most reasonable parameter by which to judge ballistic resistance, whilst 

the crater volume gave the most useful assessment of overall impact damage. 

As penetration resistance was considered of prime importance, it was 
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necessary to devise an experimental series to monitor the effect on 

penetration path length of variation in both types and proportions of 

constituent materials. Given the large number of qualitative and 

quantitative independent variables (Table 4.2), it was advantageous to 

hold as many as possible constant, thus reducing the overall number of 

material combinations to be tested. In this study, three independent 

quantitative primary variables were selected. 

A (i)Water cement ratio (w/c) - Designated xi (coded value) 

A (ii) Aggregate cement ratio (a/c) - 

A(iii) Fibre content (Wr') - 

Designated xz (coded value) 

Designated X3 (coded value) 

These values were varied whilst the other variables given in Table 4.2 were 

held, or assumed, constant. 

In considering which of the qualitative independent variables were to 

be constant, it was recognised that the number of combinations of this 

group dictated the total number of individual series to be carried out; 

thus it was advantageous to minimise the number of these variables. After 

the preliminary tests given in Section 4.2 it was decided to vary only: 

B (i) Fibre type 

B(ii) Coarse aggregate type 

In the light of earlier experiments and literature study, six fibres 

were selected as usefully representative of the available sources: 

i) ME-25 x 073mm nominal diameter melt extract carbon steel fibre. 

ii) DUO-25 x 0.25mm indented circular drawn brass-coated carbon 

steel fibre (known as DUOFORM). 

iii) DRA-25 x 0.25mm circular drawn brass-coated carbon-steel fibre 

iv) 13K-13mm length KEVLAR-29 (Type 970), 12pm diameter, polyamide 

fibre. 

v) 37K-37mm length KEVLAR-29 (Type 970), 12pm, polyamide fibre. 

vi) POL-37mm FORTA fibre, latticed bundled polypropylene fibre (see 

Figure 4.1) 
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Table 4.9 gives the material properties for all of the selected 

fibrous materials. Three coarse aggregate types described in section 

3.1.1.2 were chosen to give a contrast in hardness and particle shape. 

i) L-Limestone-low strength, angular. 

ii) B-basalt-medium strength, angular. 

iii) RG-river gravel-high strength, rounded. 

Hence in order to cover all combinations of qualitative independent 

variables, 6x3= 18 series were required. 

The usual approach to a parametric study is to select one of the 

quantitative independent variables and vary it through a relevant range 

whilst holding the other variables constant, and monitoring the effect on 

the damage parameters. Each variable is treated in this manner in order to 

locate the most significant factors and the approach may then be repeated 

for the most important variables, using a more sensitive range of values. 

In this particular case, a range of five values for each variable was 

considered necessary in order to sensibly cover the possible material mix 

designs. Hence, if a standard parametric study had been used, 53 = 125 

combinations would have been required for a full experimental plan. The 

results would only be valid for the particular combination of coarse 

aggregate type and fibrous material type considered. A full study of all 

aggregate and fibre combinations would therefore have necessitated the 

investigation of 3x6x 125 composite designs, some 2250 tests, each 

specimen consisting of a single 450 x 450 x 125mm slab of approximately 

62kg weight, a total of approximately 140 tonnes (58m3) of concrete 

material, all cast by hand. As this was considered an unreasonable 

proposition, it was decided to adopt a statistical method developed by 

Anderson, Watson and Johnson (1980) from work recorded by Cochran and Cox 

(1957). A mathematical model, or response surface, was generated for each 

fibre aggregate combination to prescribe an estimated value for penetration 

path length to any particular combination of water/cement ratio, 
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aggregate/cement ratio and fibre content. In this particular study, it was 

considered that as quadratic response surface approximation would yield 

sufficient accuracy. Thus a prediction equation of the form: 

Lp = b0 + b1x1 + b2x2 + b3x3 + b12x1x2 + b13x1x3 + b23x2x3 + ßiix1 + b22x22 

+b 33 x32... Eq. 4.1 

LP = predicted penetration path length 

bie = coefficients calculated from experimental tests 

Xk = values for A(i), A(ii), A(iii) 

was used. It is attractive to develop a model which is symmetrical and 

closed, since this reduces the number of points required for a reasonable 

approximation. In an experiment with three primary quantitative 

independent variables: 

A (i) Water/cement ratio (xi) 

A (ii) Aggregate/cement ratio (x2) 

A(iii) Fibre content (x3) 

the actual response surface generated by the infinite number of possible 

combinations may be represented as a sphere, centred at the origin, on the 

three axes xjL, xz, X3 (see Figure 4.2). A model must be selected which 

approximates to this surface. 

The explanation of the model is simplified by discussing the concept 

of coded levels. As an example, the fibre content of a particular test 

series may vary between 0% and, say, 7.0% weight by concrete weight. A 

series of coded levels is used, the values dependent upon the number of 

primary quantitative independent variables, i. e. 

X3 = -2k/4, -1,0, f1, f2k/4 

where K= number of primary independent quantitative variables = 3. 

In the case discussed above, 

0% by weight is equivalent to -23/4 

7% by weight is equivalent to 231+, 
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the values -1,0, +1 being correctly proportioned between these. This same 

proportioning procedure is also carried out for xi and xz. Then, the 

sphere is initially approximated by a cube of 8 points: 

(-1, -1, -1) (1, -1, -1) (-1,1, -1) (1,1, -1) 

(-1, -1,1) (1, -1,1) (-1,1,1) (1,1,1) 

(points ABCDEFGH in Fig. 4.2). 

This first estimate is improved by adding the points on the sphere which 

lie on the radii carrying the centre of each face of the cube, that is the 

6 points; 

(-23/4,0,0) (23/4,0,0) (0, -23/4,0) 

(0,23/4,0) (0,0, -23/4) (0,0,23/4) 

(points JKLMNP in Fig. 4.2). 

Then, so as to give a roughly equal precision to all of the predicted 

values of the response surface within a sphere of radius 1 (at coded 

scale), 6 more points are added at the origin, i. e. 

6 points at (0,0,0). 

Thus a total of 8+6+6= 20 combinations are required to give a 

potentially reasonable estimate of the actual coded response surface. This 

estimate can be shown to be the polynomial given as Eq. 4.1, where it can 

now be seen that the relevant coded values for xi, xz and x3 will yield a 

particular value of Lp, predicted path length, for any one of the 125 

combination alternatives, providing that the bik coefficients are known. 

The coefficients are calculated using the actual penetration path length 

values measured from the twenty combinations tested. Whilst the derivation 

of the coefficient equations may be found in Appendix V the results are 

given below: 

20 8 3/2 14 
b0 = 0.166338 [E Lil - 0.056791 (3 E Li +2E Lil ... Eq. 4.2 

i=1" i=1 i=9 
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8i1 
bi = 0.073224 [E(-1)L + 23ý41E(-1) Lil 

i=1 i=9 
... Eq. 4.3 

b2 =-0.073224 ((L1 + L2 + L5 + L6)-(L3 + L4 + L7 + L8) + 23/4 (L11-L12)] 

... Eq. 4.4 
48 

b3 =-0.073224 L. -EL. + 23 
4 (L13-L14)] ... Eq. 4.5 

i=1 i=5 

b12 = 0.125000 [(L1 + L4+L5 + L8)-(L2 + L3 + L6 + L7)] ... Eq. 4.6 

b13 = 0.125000 ((L1 + L3+L6 + L8)-(L2 + L4 + L5 + L7)] ... Eq. 4.7 

b23 = 0.125000 [(L1 + L2 + L7 + L8)-(L3 + L4 + L5 + L6)] ... Eq. 4.8 

8b=0.062500 
(EL. + 23/2 

lE 
Li]+ 0.006889 (3 E L. + 23/2 

lE 
Li] 

11 i=1 i-9. i=1 i=9 

20 

- 0.056791 [E Li] ... Eq. 4.9 
i=1 

b=0.062500 [EL. + 232 
lE 

Li ]+0.006889 [3 E Li + 232 
lE 

L 
22 i=1 i=11 i=1 i: 9 

20 

-0.056791 [ELiI... Eq. 4.10 
i=1 

8 3/2 14 8 3/2 14 

b33 = 0.062500 [EL. +2E Li I+0.006889 (3E Li +2EL 
i=1 i=13 i=1 i=9 

20 

-0.056791 ( fE Li ] ... Eq. 4.11 
i=1 

The values of Li to Leo are actual path length measurements coinciding with 

particular coded value combinations, as shown in Table 4.10. In testing 
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each of the 18 qualitative independent variable combination sets, the full 

statistical procedure was as follows: 

1 For each of the three primary quantitative independent variables, 

select the limits for the range levels e. g. water cement ratio 0.35- 

0.55, aggregate cement ratio 1: 3-1: 7, fibre content 0%-7% by concrete 

weight. 

2 Proportion these limits to give five values equivalent to 

_23/4, -1,0, f1, f23/a 

3 Cast twenty 450 x 450 x 125mm specimens with the coded level 

combinations of Table 4.10. 

4 Cure at 20 * 1°C, 90% + relative humidity. 

5 At three days, test each specimen with a single central impact of a 

7.62mm armour piercing projectile . 

6 Measure the actual penetration path lengths Lt-L20 (Table 4.10). 

7 Calculate the response surface coefficients bo-b33 (Eqns. 4.2-4.11). 

8 Using the quadratic response surface equation 4.1 calculate the 

predicted path lengths for the twenty tested combinations. 

9 Compare the actual and predicted path lengths, for the required level 

of significance, using a standard test, to check whether the lack 

of fit is significant. 

Then, assuming 9 is acceptable - 

10 Either - 

i) Differentiate the response surface Eqn. 4.1 with respect to 

each x-variable in turn, giving three simultaneous equations, 

which are solved to yield, if possible, a minimum value for 

the predicted penetration path length. Usually a complex 

result is derived, however, which is invalid as a minimum value 

estimation. 

or, 
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ii) Substitute all 125 alternative combinations into the response 

surface Eqn. 4.1 to locate the combination generating the 

smallest predicted penetration path length. This procedure may 

not give an accurate result, as extrapolation outside the 

bounds of the "star" defined by the analysis is taking place. 

The results are used to show trends for more sensitive 

experimentation. 

Following the collection of the experimental data, the above, with 

the possible exception of 10(i), is very suited to microcomputing 

techniques. 

Programs were written to; 

i) Calculate the values of bo-b33 using the measured penetration 

path length values. 

ii) Calculate the predicted path lengths for the twenty actual path 

length combinations and carry out the )k-test at any required 

significant level. 

iii) Fit all of the 125 combinations of the 3 x-variables into the 

prediction equation to locate the minimum value. 

The programmes are listed in Appendix V. 

A useful feature of this approach is that the coefficient formulae 

and response surface equation may be used in terms of any of the 

quantitative dependent variables (Table 4.1), simply by measuring the 

actual values of the particular phenomenon of interest (e. g. crater volume) 

from the twenty specimens tested in the series, and inputting them to the 

various computer programs in order to generate the necessary coefficients, 

statistical verification and minimum value. Thus the particular 

combination giving, for example, minimum true crater volume could be 

calculated using existing specimens and existing software. 
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4.3.2 Selection of Material Variable Ranges 

The variable ranges correlated to the coded values were selected 

after referring to the relevant available literature and in the light of 

the preliminary tests. 

i) Water/cement ratio 

The material was to be suitable for placing using the sprayed 

concrete process. The Concrete Society Code of Practice for 

Sprayed Concrete (1980), recommends that the water/cement ratio 

the material will be in the range 0.35-0.50 by weight in order 

that a dense impermeable concrete is produced. Early 

experiments had shown 0.35 to be a very low figure for fibre 

concrete, as the inclusions greatly reduced the material 

workability. The top limit was defined as 0.55 for the first 

series of tests, so as to raise the values of the intermediate 

(-1,0, +1) coded levels. 

For later series, as the problem of workability became more 

obvious, the upper limit was raised further and the coarse: fine 

aggregate ratio reduced to improve pumpability. 

ii) Aggregate/cement ratio 

The Concrete Society Code of Practice for Sprayed Concrete 

(1980), suggests that the aggregate/cement ratio should normally 

be within the range 3: 1 to 4: 1 for the dry mix process up to 

perhaps 6: 1 for the wet mix process for pumpability and high 

durability. In the first series of tests, an aggregate cement 

range of 3: 1 to 7: 1 was used to generate a response surface 

envelope containing the most acceptable values. It was later 

realised that including a value as high as 7: 1 meant that the +1 

and +23/4 coded values (6.2: 1 and 7.0: 1) in the statistical 

analysis were both below the minimum cement content required by 

the Code of Practice for the Structural Use of Concrete (1972), 
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assuming conditions of severe exposure in plain concrete. 

The upper limit of the aggregate/cement ratio range was then 

altered to 5.0: 1. According to Hannant (1978) a satisfactory 

mix for fibre-concrete should contain a mortar volume of about 

70% with only about 30% consisting of particles greater than 

5mm. However, preliminary mechanism tests had suggested 

projectile path length to be very much dependent upon the amount 

of coarse aggregate hit during the penetration process. As a 

compromise, the fine: coarse aggregate ratios were held at 1: 1 

for the first series cast. For later series the ratios were 

changed to 2: 1 (fine: coarse) when it was recognised that the 

pumpability of the first series was doubtful. This change 

brought designs more in line with Hannant's recommendation. 

iii) Fibre content 

Although much research has been carried out on the static 

properties of fibre-reinforced concretes and a more limited 

amount on the dynamic response of the material to explosive and 

drop hammer type loading, no literature was found which detailed 

the type of effects to be expected for this particular 

impactor/target combination. Hence the range of fibre 

proportions by concrete weight was selected mainly on the basis 

of published work with modifications made in the light of 

results obtained during the main test series. The actual ranges 

by weight vary with the particular density of each of the 

fibrous inclusions. For steel fibre, 0%-7.0% by concrete weight 

was used in the first series. After casting the first series of 

20 slabs, it was considered that, in order to ensure the 

guaranteed response surface enveloped the potential optimum 

combinations, a higher upper limit should be used as it was 

clearly possible to include more fibre in the composite 
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without causing a non-random distribution. From the Kevlar-29 

reinforced concrete preliminary tests, which were carried out to 

explore potential mixing methods and acceptable fibre 

concentrations, a value of 2.0% by concrete volume (equivalent 

to 1.23% by concrete weight) was selected as a high upper limit 

so as to cover all likely combinations. 

4.3.3 Results of Statistical Analysis 

Each of the eighteen planned series combinations was given a two-week 

turn-round time between casting and gathering of penetration event data. 

However, a delay in coring the slabs later led to a number of series being 

analysed almost simultaneously. Only when six of the envisaged eighteen 

combinations had been completed and analysed was the unacceptably random 

nature of the results fully appreciated. Also, more perforations of the 

specimens were observed than was expected. Since residual energy of the 

projectile had not been measured, an allowance on actual path length 

travelled was necessary for each perforated specimen in the statistical 

analyses. The microcomputer analysis was run several times, the perforated 

slabs being given a total path length value of actual length +0 to 30mm in 

5mm increments, so as to locate the best fit. 

The following sections confirm the details of the results and 

generated model for each fibre type/aggregate type combination tested. The 

specific information concerning mix designs, aggregate moisture contents, 

concrete compressive strengths, measured path lengths and the appropriate 

calculated path lengths may be found in Appendix VI. 

i) Series ME/B/1-20 

Three of the twenty slabs in this series perforated and were 

given incremental values, as discussed above. For all 

analyses, the chi-squared test between predicted and actual 

path lengths generated a confidence level of (0.5% (chance of 
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error >99.5%). Table VI. 1 gives details of the statistical 

analysis. 

ii) Series DUO/B/1-20 

Quadratic response surface analysis again gives a model with a 

confidence level of (0.5%. Four perforations were recorded 

with this series, for which the incremental procedure was 

adopted without any improvement to the model generated. The 

analysis uses a centre-weighting of six similar specimens of a 

mean mix design, (xl, xz, xa) _ (0,0,0). In this series, 

although the density and compressive strengths of the 100 x 100 

x 100mm cubes, taken from these identical mixes, was reasonably 

uniform, path lengths ranging from 27mm to 120mm were measured 

for the six supposedly identical specimens. The target 

yielding a 27mm path length contained neither projectile or 

burrow after impact, implying either a ricochet or very rapid 

change in projectile direction on impact, although velocity 

measurements indicated a normal round. For this specimen, the 

27mm crater depth was thus assumed to be the path length. 

Removing this value from the statistical analysis gave no 

improvement in correlation between the model and the actual 

response surface. Table VI. 2 has details of the incremental 

statistical analysis. 

iii) Series 13K/B/1-20 

Many perforations occurred in this series, due possibly to the 

difficulty of adequately separating and mixing the 12pm 

diameter Kevlar-29 filaments into the concrete matrix giving a 

non-homogeneous concrete containing fibre bunches. As shown in 

Table VI. 3, the best statistical fit when the incremental 

technique was used for perforations was when path length 
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equalled actual length + 0mm, giving a 25% confidence level. 

Indications were that a combination of: 

xi: water/cement ratio = 0.35 

x2: aggregate/cement ratio = 5.0: 1 (fine: coarse. 2: 1) 

x3: fibre content = 1.22% by concrete weight 

would yield the minimum penetration path length (104mm) at the 

stated confidence level. 

iv) Series 13K/RG/1-20 

Two of the twenty specimens were perforated. The statistical 

"best fit" at 50% confidence level was generated at a path 

length = actual + 0mm for these two slabs. The minimum valid 

path length was indicated at: 

xi: water/cement ratio = 0.35 

xs: aggregate/cement ratio: 5.0: 1 (fine: coarse, 2: 1) 

x3: fibre content = 0.98% by concrete weight 

The minimum path length for this combination was predicted at 

an unrealistic value of 1mm, all other predictions being 

negative. This is illustrated in Table VI. 4. 

v) Series 37K/RG/1-20 

A single slab of this series perforated, for which the 

technique of incremental additions was used; whilst another 

slab showed no trace of burrow or projectile, necessitating a 

best estimate of path length equal to crater depth. As shown 

in Table VI. 5, a "best fit" of 0.5% confidence level was 

calculated for the generated response surface models. With a 

Kevlar fibre of this length, many conglomerations of 

significant size occur, notwithstanding the pneumatic injection 

technique employed, so that a non-uniform material with obvious 

zones of weakness is produced. 
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vi) Series 37K/B/1-20 

The difficulty of adequately distributing the fibrous material 

through the concrete matrix was again encountered. A single 

perforation was dealt with incrementally in the statistical 

analysis. However, a confidence level of (0.5% was generated 

at all levels as shown in Table VI. 6. 

vii) Tests POL/B/1-5 and POL/B/10 

A standard statistical plan consisting of twenty tests was 

initiated using this 37mm length lattice bundled fibre. 

Unfortunately, only a small quantity was eventually received 

from the manufacturers, limiting the tests to an incomplete 

series. It was qualitatively observed that the polypropylene 

bundled lattice fibre has great potential in terms of its 

mixability in a standard concrete mixer, although its use in a 

dry-mixed sprayed concrete application would certainly require 

further investigation. The fibre did not appear to enhance 

matrix ballistic resistance to any greater degree than the 

other inclusions tested. Hence because of its cost and import 

difficulties, its use was discontinued. 

4.3.4 Discussion of Statistical Approach 

Although the approach described has been used successfully in the 

past, it was shown to be of very limited value in investigating fibre- 

reinforced concretes under the conditions employed. Possible reasons for 

this are: 

i) Variation in curing conditions during the first 24 hours, whilst 

the concrete was still held in the moulds, could be significant 

since testing is at only three days. 

Use of only a single slab at each selected point in the 

mathematical model, potentially leading to a non-representative 

value being input to the model. 
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iii) A larger number of perforations occurring than initially 

expected. 

iv) Several alternative types of projectile path development with 

different effects on path length, were observed. 

Although the optimisation of the fibre-reinforced composites has not 

been possible, some useful conclusions were drawn from these series: 

i) The very fine fibrous material Kevlar-29, consisting of 12pm 

diameter fibres, initially in bunches of 600 filaments, is not 

particularly suitable for uniformly random dispersion into a 

concrete containing coarse aggregate. Whilst it may be 

possible to develop specialised equipment to aid in the 

injection and dispersion of this material, its high cost and 

lack of availability make it an unattractive proposition at the 

present time. 

ii) Polypropylene lattice bundled fibre is an easily distributed 

material which may add to the post-impact structural integrity 

of a concrete material, but it is not readily available and its 

use for sprayed concrete application requires further study. 

iii) Steel fibrous materials are the most suitable for sprayed 

concrete application since their inherent stiffness encourages 

separation during mixing, assuming a length/diameter ratio of 

not greater than 100 is used. 

iv) The mechanisms involved when a projectile impacts and 

penetrates into fibre reinforced concrete are very complex. A 

better understanding of these may aid design of protective 

barriers. Therefore, in addition to the further studies to 

optimise fibre reinforced concrete (Section 4.4) some tests to 

examine impact and penetration mechanics were initiated 

(Chapter 5). 
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4.4 Limited Variable Approach 

Following the failure of the relatively complex statistical approach, 

in which the interaction of five primary independent variables was 

examined, a conventional parametric study was initiated. As discussed in 

Section 4.3.4, significant lack-of-fit of the generated mathematical models 

had been observed, due possibly to target inconsistency and non-typicality. 

The replacement approach reduced the likelihood of such difficulties by 

lowering the number of primary independent variables considered and 

increasing both the number of specimens at each particular material 

combination and the specimen age at testing. Such an emphasis made the 

microcomputer-based statistical analysis redundant, since neither 

aggregate/cement ratio nor water/cement ratio was varied to provide the 

appropriate model points. It was felt that this significant change in 

approach was necessary to produce data with an acceptable level of 

statistical confidence. It was further recognised that the quadratic 

response surface technique could, depending upon the results of the limited 

variable approach, possibly be used to fine-tune the obtained information 

in a further experimental programme. 

4.4.1 Description of Method 

Oa the basis of published information on sprayed concrete (for 

example, Concrete Society (1980), and Hannant (1978)) and on the preceding 

experimental studies; a single concrete mix design, detailed in Table 4.11, 

was selected for all tests using 10mm single size limestone, basalt and 

river gravel respectively as coarse aggregates. 

Fibre choice was governed by low unit cost, each of uniform mixing 

and availability. The earlier work had suggested fibrous inclusions had 

little, if any, effect on penetration resistance, so those fibres which had 

appeared to have the most significant effect on spall resistance were 

chosen, i. e. 25 x b: 3mm nominal diameter melt extracted carbon steel fibre, 
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25 x 0.25mm brass-coated indented circular drawn steel fibre (Duoform) and 

25 x 0.25mm brass-coated circular drawn fibre. 

Five levels of fibre content from 0% to 10% by weight, were chosen 

for each of the nine possible aggregate/fibre type combinations. The upper 

limit, equivalent to 3.0% fibre volume, which is very high, was chosen 

because some of the earlier work had shown that penetration path length 

could be greatly reduced if the projectile encountered less dense composite 

pockets, which are a result of fibre balling during mixing with high 

proportions of fibre. 

Three similar specimens were cast for each aggregate/fibre content 

combination. There were nine series of fifteen specimens, a total of 135 

tests. All tests were carried out using a single central impact of a 

7.62mm A. P. projectile after seven days curing, the first 24 hours in the 

mould and the remainder in a constant humidity room. Damage was assessed 

using the methods described in Section 3.5. 

4.4.2 Test Results 

The complete set of results are listed in Appendix VII, but in this 

section they are presented in graphical form for each coarse aggregate type 

in turn. At each fibre content there are three points, one for each slab 

cast. Occasionally, for reasons stated, not all three points have been 

used to find the mean value. The figures in brackets at each fibre content 

are the mean values for the experimental points actually used. The best 

fit lines through the mean points have been fitted by regression analysis. 

Graphs comparing the concrete compressive strength and density have only 

one point for each fibre content, as a single set of three cubes was taken 

for each series of three slabs and generally tested at 7 days. On a few 

occasions cubes were tested at 8 days and in two cases at 12 days. Neville 

(1981) suggests that the increase in cube strength from 7 to 28 days is of 

the order of 50%. Hummel (1959) has suggested a linear relationship 

between strength and logarithm of age within the range 3 days to 2 months. 
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As the 8 day and 12 day strengths would therefore be expected to be about 

5% and 20% respectively higher than the 7 day strength, they have been 

reduced by these amounts. This reduction caused a negligible change in the 

observed trends. 

4.4.2.1 Limestone Series 

Figure 4.3 shows penetration path length variation with fibre content 

for concretes cast using limestone aggregate. For melt extract fibres 

there is a trend for decreasing penetration with increasing fibre content. 

However, two specimens, one with no fibre and the other with 10% fibre had 

very low penetration path lengths due to no definite burrow being formed. 

When these two low values are disregarded, the rate of reduction in path 

length with increased fibre content remains the same, but the intercept 

with the path length axis is increased. 

A similar slight reduction in path length with increasing fibre 

content was noted for the Duoform fibres. One low penetration at 7.5% 

fibre content was disregarded in establishing the mean value because the 

projectile had glanced off the velocity measuring station before impact. 

For drawn fibres there was a large variation in penetrations for the 

0%, 7.5% and 10% fibre contents as a result of no projectile burrows being 

apparent in three specimens after sectioning. Including these low points 

gives a trend for reduction in path length with increasing fibre content, 

but the trend is less apparent if they are excluded. 

Figure 4.4 shows true crater volumes plotted against fibre content. 

The addition of 2.5% melt extract or Duoform fibres to plain concrete 

results in a very significant decrease in crater volume and a smaller 

decrease with the addition of more fibre, the minimum volumes being at 10% 

and 7.5% fibre contents for melt extract and Duoform respectively. The 

variability of the crater sizes when these fibres are included is much less 

than those found with plain concrete. For drawn fibres the effect of 
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increasing fibre content on crater volume was more gradual, with a minimum 

volume being recorded at 7.5% fibre content. 

Figure 4.5 is a plot of cube compressive strength against density for 

all of the limestone concrete. This shows the expected trend of increasing 

strength with density. The figures beside the experimental points are the 

percentages of fibres in the mix. Close examination will show that when 

melt extract fibres are included in the concrete, increasing fibre content 

gives an increase in concrete compressive strength and density. This 

corresponds with the trend for decrease in penetration path length and 

crater volume with increasing percentages of melt extract fibres shown in 

Figures 4.3(a) and 4.4(a). 

Figure 4.5 shows that for concrete with 7.5% and 10% Duoform fibres 

and 10% drawn fibres, low densities and strengths were measured. This is 

due to the higher percentages of these fibres preventing thorough mixing of 

the concrete/fibre composite and giving non-uniform voided specimens. 

Figures 4.3(b) and (c) and Figures 4.4(b) and (c) would suggest that, in 

terms of penetration path length and crater volume, these are good mixes 

though the relatively low values of the material properties at 7 days are 

such that they could be considered unsuitable for structural use, either on 

strength or durability grounds. 

4.4.2.2 Basalt Series 

Figure 4.6 shows penetration path lengths plotted against fibre 

content for concretes cast using basalt aggregate. For melt extract fibre 

concretes (Figure 4.6(a)) there appears to be a trend for actual path 

lengths to increase slightly with fibre content, more consistent results 

being obtained at higher fibre contents. One specimen with 2.5% fibre 

content had a low penetration path length of 30mm because there Was no 

evidence of a projectile burrow on sectioning. Omitting this value in the 

analysis does not change the overall trend. 
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Figure 4.6(b) shows that for Duoform fibre concrete although a 

minimum mean penetration path length was measured at 5% fibre content, the 

variation in mean path length over the range of fibre contents was small. 

The regression analysis indicated a very slight trend for increasing path 

length with fibre content. 

For concrete containing drawn fibres (Figure 4.6(d)) there appears to 

be a slight trend for decreasing penetration path length with increasing 

fibre content. It should be noted that one of the specimens containing 5% 

fibre was perforated, and although the actual penetration path length 

through the specimen was measured, this will be an under-estimation because 

of the residual energy in the projectile leaving the specimen. Omitting 

this value does not significantly alter the gradient of the linear 

regression. 

Figure 4.7 shows the relationships between true crater volume and 

percentage fibre for the three fibre types. For melt extract fibre 

concretes (Figure 4.7(a)) the inclusion of 2.5% fibre results in a very 

significant reduction in the mean crater volume. Only two values were 

available to find the mean for the 0% fibre content specimen as the third 

specimen split completely on impact. Increasing fibre content leads to 

further, but much smaller, reduction in the measured crater volumes. 

For Duoform fibre concretes (Figure 4.7(b)) there is a more gradual 

decrease in crater volume with increasing fibre content, the most 

significant reduction being measured when the fibre content was increased 

from 2.5% to 5.0%. 

In the case of the drawn fibre concretes (Figure 4.7(c)) a 

significant decrease in volume was noted when the fibre content increased 

from 0% to 2.5%. The general trend is for decrease in mean volume with 

increase in fibre content, although the minimum mean volume was actually 

obtained with 7.5% fibre. 
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Figure 4.8 is a plot of cube compressive strength against concrete 

density for all the basalt concretes, all values being adjusted to a seven- 

day equivalent. The trend for increased density and strength with 

increasing percentage of melt extract fibres, although apparent, is not so 

marked as with limestone concrete. Again, inclusion of higher percentages 

of Duoform and drawn fibres has led to mixing problems and yielded low 

densities and strengths making the concretes probably unsatisfactory for 

structural use. 

4.4.2.3 River Gravel Series 

Figure 4.9 shows penetration path length variation with fibre content 

for concretes cast using river gravel aggregate. Figure 4.9(a) shows that 

using melt extract fibres there was a large range of measured penetration 

path lengths for each fibre content, possibly due to the number of tests in 

which the projectile core was fractured. One of the 0% fibre specimens had 

no projectile burrow; however ignoring this specimen only slightly alters 

the apparent trend for path length to increase with increasing fibre 

content. 

Gross difficulties were encountered in trying to incorporate 10% 

Duoform fibres in the river gravel concrete so these three specimens were 

not cast. The results for the other four fibre levels are shown in Figure 

4.9(b). There is an indication of path length increasing slightly with 

fibre content. If the low value, due to lack of penetration burrow, at 

2.5% fibre content is ignored, the same trend is observed with a reduced 

correlation coefficient. Again in a number of tests the projectile core 

fractured during penetration and the measured path lengths are therefore 

probably on the conservative side. 

Two of the experimental points giving low values of path length in 

Figure 4.9(c), which shows the results for drawn fibre contents, have been 

disregarded because the projectiles glanced off the velocity rig shrapnel 

guard before impacting the targets. The remaining points indicate a trend 
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for reduction in path length with increasing fibre content. One of the 

values obtained using 10% fibre content is low due to the absence of a 

projectile burrow. If this point is ignored, then the general trend 

becomes less significant and the minimum mean penetration path length is 

recorded at 7.5% fibre content. 

Figure 4.10 shows the variation in true crater volumes with fibre 

content for concretes cast with river gravel aggregate. Figure 4.10(a) 

shows that for melt extract fibres there is a reduction in crater volume 

with fibre content up to 5% fibre. Increasing amounts of fibre results in 

slightly larger crater volumes being measured. It is noticeable that the 

reduction in crater volume from 0% to 2.5% fibre content is much less 

marked than with the other aggregates. 

The results for Duoform fibre concrete containing river gravel 

(Figure 4.10(b)) were inconclusive. Although the largest craters were 

formed with 0% fibre, there was no definite trend with increasing fibre 

content. 

Figure 4.10(c) shows a distinct decrease in crater volume with 

increasing percentage of drawn fibres, the most significant reduction 

occurring when the first 2.5% fibres were added. Two low points at 0% and 

5% fibre content should be ignored for reasons stated above. 

Figure 4.11 shows that as with other aggregate types there is a trend 

for increasing compressive strength with increasing density which is more 

marked for the melt extract type fibre concretes than the others. Again 

problems in mixing higher percentages of Duoform and drawn fibres are 

apparent with low strength being observed for the 7.5% and 10% drawn 

fibres. The 10% Duoform fibre mix was not cast because of its gross 

heterogeneity. It should be noted that for those specimens which could be 

considered adequately mixed, lower strengths were measured on river gravel 

cubes than those from cubes with the other two aggregates. 
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4.4.3 Discussion of Limited Variable Approach 

4.4.3.1 Variability of Results 

Before discussing the results of the limited variable approach 

further, it is worth considering the variation in the results from similar 

specimens so that the reliability of the trends may be appreciated. 

Examination of Figures 4.3,4.4,4.6,4.7,4.9 and 4.10 shows that for any 

set of three similar specimens there may be considerable variation in 

penetration path length and crater volume. In a few cases, as detailed in 

Section 4.4.2, low penetration values were obtained because no projectile 

burrows were found on sectioning the specimens. Possible reasons for this 

are discussed in Section 5.3.3 but in the following discussion these low 

penetration values have been omitted from the analyses. The crater volumes 

in these cases have, however, been included, since it is considered that 

these will be fairly representative. Some indication of the inherent 

scatter in the results of projectile penetration into concrete test data 

may be seen in Table 4.12. This shows the range, means and standard 

deviations of values obtained from tests on sets of nominally similar 

specimens which contained no fibres. The considerable scatter shown is 

similar to that found in penetration studies on rock/elastomer composites 

(Anderson et al. 1980)). Wolfersberger (1985) in a data base search of 

concrete penetration found that rarely did identical projectiles impacting 

identical concrete targets product identical results. In the present study 

the scatter may be due also to slight variations in some of the secondary 

variables listed in Table 4.2. The introduction of fibres into the 

concretes is likely to increase the variability, particularly when the 

inclusion of large amounts of fibre creates mixing difficulties and leads 

to non-uniform concretes. 

Figures 4.5,4.8 and 4.11 give plots of '7 day corrected' compressive 

strength against density for the limestone, basalt and river gravel 

concretes respectively and these highlight some of the mixing problems. 
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Linear regression analyses of these plots gave percentage fits of 82.5%, 

85.9% and 81.2% for limestone, basalt and river gravel concretes 

respectively, indicating highly significant relationships between 

increasing compressive strength and increasing density. However, more 

detailed examination of the plots shows that density and strength did not 

always increase with increasing fibre concentrations. 

For concretes cast with melt extract fibres there is a trend for 

increasing density with increasing fibre content, the trend being most 

marked for the limestone/melt extract fibre concretes as shown in Figure 

4.5. The increase in density in this case also leads to an increase in 

compressive strength with increasing fibre content. However for the other 

two aggregate types there is little increase in compressive strength with 

density increase due to increasing fibre content (Figs. 4.8 and 4.11). 

Melt extract fibres have a non-circular cross section and this 

provides them with an extra stiffness which reduces their effective aspect 

(length/diameter) ratio. This reduction aids the incorporation of the 

fibre into the concrete since there is little tendency for the fibres to 

bunch during mixing. For the limestone/ melt extract fibre concretes the 

strengths and densities would indicate a homogeneous material at all fibre 

content levels. For the basalt/melt extract fibre concretes it was 

concluded that the specimens were homogeneous up to 5% fibre content, but 

there was some heterogeneity probably due to air voids in the 7.5% and 10% 

fibre content specimens, as indicated by a slight decrease in compressive 

strength from the 5.0% fibre content value. The increase in density with 

fibre content in Figure 4.11 would indicate that the river gravel/melt 

extract fibre concretes were fairly homogeneous at all fibre content 

levels, although strength did not increase significantly. 

The trends for concretes cast with Duoform fibres were not so 

apparent as those for melt extract fibre concretes. Figure 4.5 shows that 

the addition of 2.5% Duoform fibres to the limestone concrete gave an 
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increase in both density and compressive strength, indicating a homogeneous 

mix. Addition of 5% fibres increased the density slightly but led to a 

strength decrease, perhaps indicating that the specimens were becoming non- 

homogeneous. As more fibre was added the density and compressive strength 

reduced considerably indicating a non-uniform voided concrete. For 

basalt/Duoform fibre concrete (Figure 4.8) the density and compressive 

strength increased when 2.5% fibres were added indicating a homogeneous 

material. Addition of 5.0% and 7.5% fibres led to a slight increase in 

density but with a corresponding slight decrease in strength indicating 

slight non-homogeneity. The addition of 10% fibres led to a significant 

drop in both density and strength values as a result of the specimens being 

voided. Figure 4.11 shows that, as with the other two aggregate types, and 

increase in both density and compressive strength, indicating homogeneity, 

was observed when 2.5% Duoform fibres were added to river gravel concrete. 

The addition of 5.0% and 7.5% fibres, whilst leading to density increases, 

gave compressive strengths lower than that found with a 2.5% fibre content, 

thus indicating that the specimens were beginning to show signs of non- 

homogeneity. The considerable mixing difficulties encountered when 10% 

Duoform fibres were introduced into river gravel concrete meant that this 

series of specimens was not cast. 

The combined results from the Duoform fibre test series would suggest 

that a homogeneous material can only be cast using 2.5% fibres. At 5% 

fibre content there may be slight non-homogeneity but this should have 

little effect on the strength or structural behaviour of the material. 

However, including 7.5% or 10% fibre content led to gross non-homogeneity 

and materials which are unsuitable for structural purposes. 

The trends for all concretes cast with drawn fibres are similar to 

those for the Duoform fibre composites. As shown in Figure 4.5, up to 5% 

fibre incorporated in limestone concrete gives slight increases in density 

and strength indicating homogeneous specimens, but a decrease in strength 
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is noted with 7.5% fibre indicating the onset of non-homogeneity. With 10% 

fibre a low density and strength are recorded indicating a voided specimen. 

Figures 4.8 and 4.11 show that for basalt and river gravel concrete with up 

to 5.0% drawn fibre content, density increases, although there is little 

strength improvement between 2.5% and 5.0% fibre content suggesting that at 

the latter level a little voiding may be occurring. Very low values of 

density and strength were recorded from those specimens containing 7.5% and 

10% drawn fibres confirming the difficulty of obtaining homogeneous mixes 

at these high fibre contents. 

Both Duoform and drawn fibres, although having nominally the same 

aspect ratio (100) as the melt extract fibres, are more flexible and tend 

to bunch during mixing. The density and strength measurements would 

suggest that although it may be possible to obtain satisfactory concretes 

containing up to 10% melt extract fibres, an acceptable upper limit for 

Duoform and drawn fibres would appear to be about 5% fibre content. There 

were also signs that it was more difficult to cast fibre concretes using 

the rounded river gravel aggregate than the more angular limestone and 

basalt aggregates. Figure 4.11 shows that trends with increasing fibre 

content are less marked and the slope of the strength/density regression 

line is much shallower than with the other two aggregates. 

Because of the inherent variability of penetration test results and 

the effects of non-homogeneity of some concretes cast with high fibre 

contents, statistical analysis of the results has been left at a fairly 

elementary level, and when examining trends in the following results, the 

variation should be considered before drawing any conclusions. 

4.4.3.2 Penetration Path Lengths 

Figure 4.3 shows the results for the concretes cast with limestone 

aggregates. With all fibre types the regression lines have a slight 

negative slope indicating a slight decrease in penetration path length with 

increasing fibre content, but it should be noted that in no series was the 
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minimum mean penetration path length associated with the maximum fibre 

content. 

In Figure 4.6 penetration path lengths are plotted against fibre 

content for the concretes cast with basalt aggregates. the regression line 

through the basalt/melt extract fibre results has a slight positive slope 

indicating a slight increase in penetration path length with increasing 

fibre content. At the higher fibre contents there is surprisingly little 

scatter of results. The regression line through the basalt/Duoform fibre 

results is almost horizontal indicating that penetration path length is 

independent of fibre content. In one of the tests in the basalt/drawn 

fibre series a target perforation occurred. The path length in the target 

was measured as 131mm and since the projectile will have had some residual 

kinetic energy when exiting the specimen, this figure will be an under- 

estimation of what the actual path length would have been if perforation 

had not occurred. This path length of 131mm is 14% higher than the next 

highest path length recorded in any of the nine test series. Including 

this point in the analyses has no significant effect on the regression line 

as shown in Figure 4.6(c), the trend being for a slight decrease in 

penetration path length with increasing fibre content. Figure 4.9 shows 

the penetration path length with increasing fibre content for the river 

gravel concretes. For melt extract and Duoform fibres there were slight 

positive slopes to the regression lines indicating a slight increase in 

penetration path length with increasing fibre content. The opposite trend 

was found for the river gravel/drawn fibre series. Significant amounts of 

scatter may be observed in these series, particularly for the river 

gravel/melt extract fibre tests. 

Table 4.13 lists the coefficients in the regression equations and the 

percentage fit of each regression line. The conflicting trends of positive 

slopes in some series and negative slopes in others suggests that 

increasing fibre content has no significant effect on penetration path 

86 



length. The low values of the slope coefficients and the low values of 

percentage fit confirms that the penetration path length is independent of 

the amount of fibre included in a concrete composite. It could be argued 

that only results from those specimens which appeared homogeneous should be 

considered in this analysis. However, some of the tests described in 

Section 4.3.3 indicated that non-homogeneities could destabilise the 

projectile and reduce its penetration path length. Results for the 

complete range of fibre levels were therefore included in the analysis. 

All the results for each aggregate type can be grouped together to 

give a sufficiently large population to examine the influence of aggregate 

type on the penetration resistance. Figure 4.12 shows histograms of 

penetration path lengths for each aggregate type. It can be seen that the 

shortest mean penetration path length of 78mm was found in concretes cast 

with river gravel aggregate, although there was a wide range of values as 

indicated by the standard deviation of 20mm. Limestone concretes gave a 

mean value of 84mm with a standard deviation of 12mm and basalt concretes 

yielded the largest mean value of penetration path at 89mm with a standard 

deviation of 16mm. 

Similar penetration studies of rock/elastomer composites (Anderson et 

al. (1980)) showed that the harder the rock and the denser the aggregate 

packing, the better the penetration resistance. For these rock/elastomer 

composites best performance was achieved with river gravel which gave a 

mean normal penetration depth of 51mm for the optimum composite mix. For 

limestone and basalt composites the mean normal penetration depths were 75 

and 81mm respectively. 

Comparison of the results with the present study shows that although 

the performances of the limestone and basalt aggregate fibre concretes are 

only slightly inferior to the rock/elastomer composites, and that best 

performance was achieved in both cases using the river gravel aggregates, 
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the improvement in performance using river gravel concretes was not nearly 

so marked as in the rock/elastomer composite study. 

In the rock/elastomer study it was found that the best performance 

was achieved using large size aggregate (26.5 to 37.5mm), and it was argued 

that the enhanced performance was due to the harder river gravel particles 

fracturing the cores of the armour piercing projectiles and thus reducing 

their efficiency as penetrators. Because the fibre reinforced composites 

were designed for sprayed application, maximum aggregate size was only 

10mm. These particles are therefore less likely to break up the projectile 

cores than the larger ones used with the elastomer composite. However, in 

a number of tests using river gravel/fibre concretes, broken cores were 

found and these were generally associated with the lower values of 

penetration path length. 

Comparison of the mean values and standard deviations in Table 4.12 

for the fibreless concretes and Figure 4.12 for all the specimens shows a 

great similarity between results, a further indication that inclusion of 

fibres leads to no significant improvement in reducing projectile 

penetration. Examination of the standard deviation in Figure 4.12 shows 

that considerable scatter was found in the river gravel tests, probably 

indicating a variation in performance depending on whether the projectile 

collided with a number of aggregate particles and possibly fractured, 

giving a low penetration value, or travelled mainly through matrix material 

giving large penetrations. Examination of the compressive strengths of 

those mixes which were considered fairly homogeneous, i. e. all melt extract 

fibre composites and those containing up to 5% Duoform and drawn fibres, 

shows that the river gravel concretes were the weakest with a mean 

compressive strength of 45N/mmz compared with values of 54N/mm2 and 49N/mm2 

for limestone and basalt concretes respectively. Thus projectiles which 

did not fracture on impact with hard gravel particles were likely to 

penetrate further through the specimen than in other aggregate concretes, 
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so giving the high values of penetration path length. The mean penetration 

path length found for basalt concretes was slightly greater than the mean 

value for limestone concretes. This may be due to the slightly lower mean 

compressive strength of the basalt concretes, as indicated above. 

Least scatter of results was found with limestone concretes where the 

nature of the aggregate led to a very homogeneous composite when combined 

with cement paste. 

The significance of the range of variations found for each aggregate 

type is indicated in Table 4.14. On the basis of the calculated mean 

values and standard deviations from the tests, the penetration path lengths 

have been predicted for certain degrees of confidence. 

It can be seen that although river gravel gave the lowest value of 

mean penetration path length in the test series, the predicted path length 

for 99% confidence is the largest because of the scatter of test results. 

The more homogeneous nature of the limestone concretes means that at the 

99% confidence level these concretes give the shortest predicted 

penetration path length. 

It is interesting to note that the penetration path length (131mm) 

measured when the one perforation occurred in the basalt test series is 

just marginally greater than the path length (129mm) predicted for 99% 

confidence in this series. 

It should be stressed that all measurements in this study are in 

terms of penetration path length, and as discussed in Chapter 5 of the 

report the projectile burrows are rarely straight and perpendicular to the 

impact face. If fibre reinforced concrete is cast to a thickness of 130mm 

this will be on the conservative side, particularly with limestone 

aggregates where there would appear to be a superior bonding between 

concrete matrix and aggregate due to the chemical nature of the latter. 



Reference to Table 4.6 will show that in the preliminary tests to 

determine suitable specimen thicknesses, none of the 125mm nor 150mm thick 

specimens were perforated. 

4.4.3.3 True Crater Volumes 

Figures 4.4,4.7 and 4.10 show true crater volumes plotted against 

fibre content for each combination of aggregate and fibre type. In all 

test series the largest craters were found in specimens without any fibres, 

and there was considerable variation in the crater volumes for these 

specimens, as shown in Table 4.12. The addition of fibres reduces the 

variability of the results up to the 5% fibre content level i. e. the range 

over which all specimens can be considered fairly homogeneous. This is 

demonstrated in Table 4.15 which gives the maximum percentage variation 

from the mean value in a set of three results from similar specimens for 

each test series. The effect of adding greater percentages of fibre to 

produce non-homogeneous specimens is reflected in the increased percentage 

variations at the 7.5% and 10% fibre concentration. 

Although the non-homogeneity of these higher fibre content specimens 

leads to more variation in the results, there is still a tendency for the 

true crater volume to decrease with the inclusion of more fibres. This may 

be due to the fact that front face spall is partly caused by the tensile 

stress waves which are reflected from the back face of the impacted 

specimen, and the non-homogeneities are likely to affect the transmission 

of these stress waves through the specimen. This is further discussed in 

Chapter 5. 

The trends for decreasing crater volume with increasing fibre content 

shown in Figures 4.4,4.7 and 4.10 are such that the use of linear 

regression analysis was not considered appropriate. To obtain an 

impression of the overall trends, the mean crater volumes for each fibre 

content level have been expressed as percentages of the mean crater volume 

at zero fibre level, and plotted against fibre content in Figure 4.13. 



This shows that crater volume reductions varying between 16% and 78% are 

found at the 2.5% fibre content level. At the 5% fibre content level one 

very large crater volume recorded in the river gravel/Duoform series is 

greatly influencing this result. The difficulties of incorporating rounded 

river gravel and the Duoform fibres gave a lower than expected strength at 

this fibre level, as indicated in Figure 4.11, suggesting a non-homogeneous 

mix which may be responsible for this anomalous result. Ignoring this 

series, Figure 4.13 shows that at the 5% fibre content level the total 

crater volume reduction varies by between 52% and 70% of the 'no fibre' 

crater volume. 

Ignoring the anomalous river gravel/Duoform series results, the 

maximum crater volume reduction occurred on increasing the fibre content 

from 2.5% to 5.0% in the basalt/Duoform fibre series and river gravel/melt 

extract series. and on initially adding 2.5% in all other series. 

The severity of the front face spall in an unreinforced concrete will 

be dependent on the tensile strength of the concrete. Although tensile and 

compressive strengths cannot be precisely related, it is interesting to 

look at the relationship between the mean true crater volume and the 

compressive strength of the fibreless specimens, as shown in Figure 4.14. 

There is a definite trend for decrease in crater volume with the increase 

in compressive strength, the percentage fit of the best straight line 

through the points being 52%. Although the addition of fibres may only 

increase the compressive strength of concrete by up to about 25%, a much 

more significant increase in tensile strength may be achieved, and this 

will greatly enhance the spall resistance as shown in Figure 4.13. 

An indication of the relative performance of the different aggregates 

and fibre types with respect to spall resistance may be obtained by looking 

at the mean true crater volumes for each aggregate and fibre type in turn. 

The values for the series with no fibres have been excluded because of the 

large variation in results (Table 4.12). In Table 4.16 mean values are 



only listed for the 2.5%, 5.0% and 2.5% + 5.0% combined because at higher 

fibre concentration heterogeneity is such that comparisons would not be 

valid. The table would suggest that within the ranges of variability found 

in this testing, limestone and basalt concretes are fairly similar, but 

fibre concretes cast with river gravel aggregate may be susceptible to 

greater front face spalling. Table 4.16 also indicates that at a 2.5% 

fibre content it is irrelevant which fibre type is used, but at 5% fibre 

content a slightly better performance may be obtained with melt extract 

fibres or Duoform fibres. 

4.4.4 General Discussion 

The major objective of this study was to examine the use of fibre 

reinforced concretes, suitable for application by a spraying process, as 

penetration resistant structural materials. The spraying techniques impose 

constraints on the mix, as do the requirements of a fibre concrete, and 

maximum aggregate size has been limited to 10mm. The relatively low 

water/cement ratios required by sprayed concretes produce a higher than 

"conventional" 7-day strength; a figure of 40N/mm2 is a reasonable estimate 

for the fibreless concretes used in this parametric study. This is an 

adequate value for most structural purposes. Addition of fibre, up to the 

limit of homogeneous mixing, will enhance this strength. The basic mix 

design of Table 4.11 has been found satisfactory. Depending on the type of 

spraying process used it may be difficult to control the water content and 

for any mix suitable compliance testing should be used at the point of 

application of the material. 

The tests carried out using the "limited variable" approach have 

shown that the addition of fibres does little, if anything, to improve the 

penetration resistance of the concrete. Addition of fibres does however 

considerably reduce the front face spall damage and so may improve the 

performance of the material against repeated fire. 



Although an addition of 2.5% fibre significantly improves spall 

resistance, examination of Figure 4.13 will show that, overall, more 

consistent improvement will be achieved by incorporating up to 5.0% fibre 

by concrete weight into the mix. However, at this fibre content, signs of 

non-homogeneity are becoming apparent. The 2.5% and 5.0% figures should 

thus be considered as minimum and maximum values respectively. 

Although there was little difference in the performance of concretes 

containing the different steel fibre types, the homogeneity produced in 

targets manufactured with the easily mixed melt extract fibres suggests 

that these should be used wherever possible. 

Of the aggregates, rounded river gravels should be avoided if 

possible since they produce a fibre concrete which is slightly more 

difficult to uniformly mix, causing lower compressive strengths and, unless 

the projectile core is fractured in the early stages of penetration, larger 

actual penetration depths. Such concretes also appear to generate larger 

front face "true" craters than either of the other two aggregates. Better 

performances are achieved with the more angular aggregates, particularly 

limestone which combined well with the cement matrix to give better 

penetration resistance with less variation in performance. 

For the materials tested, the optimum combination in terms of 

reliable performance would be the inclusion of 5% melt extract steel fibres 

in a 10mm limestone aggregate concrete mix. 

It is of interest to compare the results of this study with 

previously published work. However, as only a single projectile type at a 

single velocity has been used in these trials, there is no possibility of 

either definitively validating or disproving the available empirical 

formulae. only general comment may be made for these existing approaches, 

which were actually produced from trials using much larger missiles. The 

relevant penetration prediction equations from the literature survey 

(Chapter 2) are: 



i) Austin and Pringle (1971) - Equation 2.5 

ii) NDRC formulae (1946) - Equations 2.8 and 2.9 

iii) Berriaud et al. (1982) - Equation 2.11 

In each case, the penetration depth is inversely proportional to the 

concrete compressive strength. Such a result has not been found in these 

studies, where the obtained compressive strength was very much dependent 

upon the homogeneity of the composite, this being influenced by the fibre 

content of the target; whereas penetration path length was not greatly 

influenced by fibre proportion. A further factor may be the similarity of 

projectile to aggregate size, this aspect is worthy of further study for 

plain concretes which are not required to have a sprayed application. 

A comparison may qualitatively be made between this study and the few 

published researchers who have considered the particular projectile-target 

material combination. In general, these have been basic field trials, 

carried out by the military, and do not contain very much detail of 

material design and experimental procedure. Naus and Williamson (1976), 

for single shot 7.62mm ball ammunition fired from a M37 machine-gun at 

mainly 100m range, perceived "only a very slight trend toward a decrease in 

depth of penetration with increase in fibre content". The coarse aggregate 

used in the tests was described only as "3/8" gravel" and is not further 

specified. In this thesis, river gravel concretes showed the greatest 

scatter of results; any such trends are thus likely to be only tentative at 

best. It was also reported that back face scabbing reduced with increasing 

fibre content, at each specimen thickness between 25mm and 150mm. This is 

in line with the findings of iiüslewig et al. (1982); it is however not 

directly comparable with this study, where back face scabbing was 

specifically disallowed. 

The Royal Ulster Constabulary (1976) considered the use of 

unspecified steel and polypropylene fibre concretes sprayed as between 1" 

to 4" thickness claddings on to conventional brick/block cavity walls. The 



results obtained are not directly synonymous with this study but did 

indicate that, at lower cladding thicknesses, the likelihood of failure 

increased when armour-piercing rather than ball ammunition was used. Such 

a finding was noted from the very preliminary tests of this study. 

Other researchers, such as Finch (1977) and Port (1980) concluded 

that (sprayed) fibre concretes, incorporating both steel and polypropylene 

fibres, showed potential for overall ballistic resistance enhancement of 

existing structures. Such findings are in general agreement with this 

thesis; the extent and volume of "true" crater formation was reduced with 

increasing fibre content for all concrete and fibre combinations tested. 

However, the previously intimated improvement in penetration resistance was 

not confirmed by the research reported here. 
4.4.5 Field Use of Fibre-Reinforced Sprayed Concretes 

Against Small Arms Fire 

The basic mix used for the "limited variable" approach to testing was 

selected to permit the composite to be placed by either of the two commonly 

available sprayed concrete techniques. 

The first of these is known as the "wet-mix" process. It involves 

the transporting of ready-mixed concrete to the point of application 

through lengths of hose, the material being moved by a displacement type 

pump. On reaching its destination, compressed air is used to break up the 

composite and project it on to the structure or formwork. The advantages 

of this method are; 

i) The proportions of the concrete constituents are 

totally defined at the batching and mixing stage. 

ii) A smaller amount of aggregate (and fibre) rebound 

occurs than with the alternative dry-mix system. 

iii) Less dust is raised than with the dry-mix system. 

iv) Samples can more easily be taken for concrete compliance 

testing than with the dry-mix system. 
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In the alternative "dry-mix" process, a mix consisting of all of the 

concrete components (except water and, where appropriate, fibres) is 

charged into a mechanical feeder and carried pneumatically along the 

delivery hose. At the nozzle, water is injected into the dry-mix before 

its projection on to the work surface. The quantity of water added is left 

to the discretion of the nozzle operator. This approach means it is 

impossible to quantify the water/cement ratio of the as-placed concrete. 

Consequently, test panels must be manufactured at the site of the work to 

produce samples for compliance testing. The system, nonetheless, has 

several advantages over the wet-mix process; 

i) The dry mix may be carried over significantly greater 

distances by compressed air than it is practicable for 

a displacement pump to transport a wet mass. 

ii) Production may be temporarily halted without any need to 

clear the feeder and delivery hose. 

iii) The capital cost of dry-mix equipment is low compared 

with wet-mix. 

iv) Equipment is simpler, leading possibly to less maintenance 

and down-time. 

Both of these processes have been used for successful fibre concrete 

placement. In the wet-mix system fibres may be added either in the mixing 

hopper or at the delivery hose nozzle. A third possibility is to project 

the fibres on to the finished work before its initial set occurs. 

It is more difficult to add fibres without conglomeration during 

initial batching of dry-mixed materials. It is thus preferable to use a 

separate pneumatic feed for the fibres. This is normally a delivery hose 

tapped into the concrete feed at a point immediately before the water is 

added to the mix. Alternatively, fibres have been sprayed on to freshly 

placed concrete, the main problem being the impossibility of establishing a 
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truly random three-dimensional distribution of the fibre throughout the 

concrete. 

Various references are available discussing the area of sprayed 

concrete production. Undoubtedly, one of the most useful starting points 

is the American Concrete Institute Special Publication No 14: 

"Shotcreting", whilst the American journal "Concrete International", in 

January 1981, devoted a complete issue to an assessment of the then 

contemporary state-of-the-art. The proceedings of a Symposium on Sprayed 

Concrete (C180) held in London (1980) is a further source of information. 

Short courses, regularly organised by the Cement and Concrete Association, 

permit the detailed discussion of specific facets of the techniques. 

For the materials of this project, it is recommended that the wet-mix 

system be adopted wherever possible. The quality and consistency of the 

composite are more easily controlled and tested, as they are outside the 

influence of a nozzle operator. Also, personnel safety is greatly enhanced 

by employing a less rebound-prone technique to place a composite containing 

potentially dangerous steel-fibre inclusions. In either case the 

operatives should undergo supervised training and be supplied with adequate 

safety equipment, specifically suited to this very specialist procedure. 

Batching of the material should be by weight, converted perhaps into 

proportions equivalent to full bags of Ordinary Portland Cement. In ideal 

circumstances, a fully dry aggregates should be used. Otherwise, a standard 

moisture content test may be used to assess the aggregate free water 

content. 

The material should be placed in accordance with the recommendations 

of the Concrete Society Code of Practice for Sprayed Concrete (1980), 

complete with any later addenda or amendments. Areas particularly worthy 

of comment include; 
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i) Rebound 

Sprayed concrete suffers from an initial inconsistency upon 

application due to the rebound of coarse aggregate and fibre 

until a sufficiently thick 'cushion' of adhesive cement paste 

has built up on the host surface. The thickness of this fine 

aggregate composite must be accurately assessed by producing 

test panels for any particular mix and formwork construction. 

The indications of this work are that mortar-type material 

should not be considered to contribute any significant 

resistance to projectile passage. The selected thickness of 

protection must reflect this finding; the overall value being 

increased as required. 

For work which includes construction details such as internal 

wall returns and/or reveals, further operatives must be made 

available equipped with compressed air lances. The lances are 

used to remove any build-up of rebound material from potential 

"blind corners". Failure to remove the rebound will lead to a 

non-homogeneous voided construction of greatly reduced 

integrity and durability. 

ii) Flash Coating 

On completion of the sprayed application of a steel-fibre 

reinforced concrete, the finished surface will have 

numerous potentially injurious fibres projecting from it. 

These should be covered by the application of a flash coat of 

sprayed plain concrete. 

iii) Curing 

In large-scale use, one of the many liquid-based proprietary 

curing agents should be sprayed on to the finished work to 

avoid premature drying-out. 
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iv) Formwork 

Used as a cladding material, the composite will be sprayed on 

to an existing structure and will not require any formwork 

or supporting falsework. However the surface must be clean, 

sound and roughened before treatment. Dry surfaces should be 

thoroughly wetted. 

As a free-standing material adequate backing and support must 

be supplied. The falsework aspects of this will be very much 

dependent upon the structure being constructed. However, it 

is worth noting that both mesh-reinforced hessian, 

Finch (1977), and thick polyurethane sheeting have been 

successfully used as permanent formwork; the latter also being 

appropriate as insulation. In many cases it would be 

attractive to spray either side of the polyurethane in turn 

generating a filled-cavity construction. The use of inflatable 

structures, temporarily fixed in plan position, is becoming 

more common. The (often hemispherically shaped) pneumatic 

formwork is sprayed with concrete and deflated once the 

material has achieved adequate structural integrity. The 

mould may be re-used many times, with a rapid production cycle 

dependent only upon the strength-gaining characteristics of the 

concrete. 

4.5 Other Experimental Studies 

4.5.1 Use of X-Ray Photography to Monitor Fibre Distribution 

During this project a limited opportunity arose to have access to X- 

Ray photographic equipment. It was used on a number of occasions to 

confirm that the mixing methods employed were providing a random three- 

dimensional distribution of fibre throughout each specimen, consistent with 

the accepted assumptions. Figure 4.15 is one such photographic plate; it 

shows the distribution of 25mm length melt extract steel fibres through a 
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150mm diameter core taken from specimen number TS89. The random 

distribution of the fibre is clearly seen, as is the resting position of 

the projectile (at 138mm penetration path length). The impact crater, 

burrow and rear face crater are also readily apparent in the photograph. 

In future studies, the use of this type of equipment would remove the need 

to section and/or core the concrete specimens thereby ensuring that the 

tested material was not damaged during analysis. This would prove 

especially useful with significantly fractured targets, particularly if 

they contain various types of detector (see Section 5.2.9). 

4.5.2 Use of Electron Microscopy to Examine 
Proiectile Target Adhesion 

Throughout the study it was occasionally noted that cementitious 

material would adhere to the metallic projectile core during the 

penetration event, the resulting attachment being very difficult to break. 

whilst it was not possible to accurately assess when this adhesion was 

occurring it was nevertheless of interest to observe it more closely. 

Back Scatter Electroscopy was used to examine a single hardened steel 

core, Figure 4.16. At 80X magnification with the major axis of the core 

laying NNW to SSE in the photograph there is a clear indication of the 

surface indentations caused by the spinning of the projectile within the 

material. The implication is that the core itself retains some of the 

rotational force imparted by the rifling even after detachment from the 

projectile sheath. This effect may also be observed in Figure 4.17 where 

the impacted material is mild steel. At higher magnification, 390X, the 

adhered cement paste can be seen to have bonded within the scoring to a 

significant degree (Figure 4.18). It would thus seem reasonable to assume 

that the fusing has taken place as the projectile has come to rest. At 

this time the steel would be at a high temperature hence any bond generated 

would be likely to become more powerful as the materials cooled and 

contracted. 



Quantitative Dependent Variable Symbol (units) 

Normal penetration depth D (mm) 

Penetration path length L (mm) 

Crater volume - apparent VA(mm3) 

Crater volume - true Vr(mm3) 

Burrow diameter Da(mm) 

Maximum crater diameter Dc(mm) 

Burrow volume Va(mm3) 

Material comminution CM 

Table 4.1 Quantitative dependent variables for fibre reinforced 
concrete penetration event. 



Quantitative Independent Variable Symbol (units) Status 

* Water/cement ratio w/c (-) Variable/constants 

* Aggregate/cement ratio a/c (-) Variable/constant* 

* Fibre content (% weight) W'f (kg) Variable 

Age at testing t (days) Constant 3 days/7 days+ 

Fibre aspect ratio L/d (-) Constant-100 

Bullet velocity Vo (m/s) Assumed constant-820 

Specimen size - (mm) Constant-450x450x125 

Maximum aggregate size - (mm) Constant-10 

Angle of impact obliquity - (degrees) Constant-90 

Aggregate moisture content - (% by Adjusted to dryness 
dry mass) 

Primary variables in quadratic response surface generation. 
For "Limited Variable" Approach 

Table 4.2 Quantitative independent variables for fibre reinforced 
concrete penetration event. 



Spec. Specimen Fibre Fibre Coarse Fine Water Fibre Mix 
No Dimensions Type Dimensions Aggregate Aggregate Cement Content Design 

Cement Cement Ratio (%wt) Source 
(mm) 

--------------- ----- 

(mm) 

--------- 
Ratio 

--------- 
Ratio 

--------- ------ ------- -------- 

PS1 250x25Ox75 Mild 2.15 2.15 0.55 2.7 
Steel 

PS2 500x500x75 Circ. 38 x 0.3 2.15 2.15 0.55 2.7 
Sect. M10 

PS3 610x61005 2.15 2.15 0.55 2.7 Overlay 
Design 

PS4 250x25Ox75 2.15 2.15 0.55 2.7 

PS5 500x500x75 Mild 2.15 2.15 0.55 2.7 
Steel 

PS6 610x610x75 Circ. 27 x 1.0 2.15 2.15 0.55 2.7 
PS7 500x500x75 Sect. 2.36 2.36 0.45 5.0 National 

Standard 
PS8 610x610x75 2.36 2.36 0.45 5.0 Design 

Table 4.3 Summary of mix designs for slab frontal area tests. 



Specimen 
No 

Compressive 
Strength 

(N/mm2) 

Density 

(kg/m$) 

Projectile 
Type 

Impact Point 
NO ((0,0) 
is top left- 
hand corner 

Results 
and 

Comments 

PSi 36 2390 A. P. (120,140) Perforated, gross 
cracking to two 
nearest edges. 

PS2 36 2390 A. P. (230,260) Perforated, no gross 
cracking. 

PS3(1) 36 2390 Ball (305,310) Normal path length= 
40mm, no gross 
cracking. 

PS3(2) 36 2390 Ball (410,430) Gross cracking to 
nearest edge. 

PS3(3) 36 2390 Ball (200,405) Normal path length= 
40mm, no gross 
cracking. 

PS4 32 2400 A. P. (105,140) Perforated, gross 
cracking to two 
nearest edges. 

PS5 32 2400 A. P. (235,275) Perforated, gross 
cracking to two edges 
(possibly handling) 

PS6(1) 32 2400 A. P. (285,325) Perforated, no gross 
cracking. 

PS6(2) 32 2400 Ball (410,210) Perforated, gross 
cracking to nearest 
edge. 

PS7 45 2480 A. P. (250,285) No gross cracking, 
rear crater present. 

PS8(1) 45 2480 A. P. (285,345) Perforated, no gross 
cracking. 

p58(2) 45 2480 Ball (470,460) Gross cracking to two 
nearest edges 

p58(3) 45 2480 Ball (490,410) No gross cracking to 
edges. 

Table 4.4 Summary of specimens tested and ammunition used for 
slab area selection. 



Specimens No Coarse 
Aggregate 

Cement 
Ratio 

Fine 
Aggregate 

Cement 
Ratio 

Water 
Cement 
Ratio 

Comments 
and 

Mix Design Source 

TS1-TS8 2.36 2.36 0.45 National Standard Design 

TS9-TS16 2.35 2.30 0.52 Initially National 
Standard Design, however 
moisture content taken 
as 50% free water, 
requiring adjustment for 
comparison 

Table 4.5 Summary of mix designs used for specimen 
thickness determination. 



Specimen No Specimen 
Thickness 

(mm) 

Compressive 
Strength 
(N/mm=) 

Density 

(kg/ma) 
Perforation 

TS1 75 60 2450 Yes 

TS2 100 60 2450 Yes 

TS3 125 60 2450 No 

TS4 150 60 2450 No 

TS5 75 61 2450 Yes 

TS6 100 61 2450 No 

TS7 125 61 2450 No 

TS8 150 61 2450 No 

TS9 75 37 2340 Yes 

TS10 100 37 2340 Yes 

TS11 125 37 2340 No 

TS12 150 37 2340 No 

TS13 75 46 2350 Yes 

TS14 100 46 2350 Yes 

TS15 125 46 2350 No 

TS16 150 46 2350 No 

Table 4.6 Summary of perforation test results. 



Fine Aggregate 
Type 

Mean Density 
(kg/m3) 

Mean Compressive 
Strength (N/mm2) 

Mean Penetration 
Path Length (mm) 

Zone 2 Limestone 2560 44 103 

Zone 3 grit (sharp) 2340 21 127 

Zone 4 Building 2400 18 121 

Table 4.7 Summary of results obtained for fine aggregate 
type investigation. 



Steel Fibre Mean Mean Compressive Normal Penetration 
Type Density Strength (N/mm) Depth 

(Aspect Ratio=100) (kg/m3 ) (mm) 

uoform 2430 38 106 

Melt extract N/A N/A 108 

old-drawn circular 2440 31 109 

Table 4.8 Summary of results for tests to investigate 
variation in normal penetration depth with 
steel fibre type. 



Fibre Type Length 
(mm) 

Diameter 
(mm) 

Young's 
Modulus 
(kN/mm2) 

Tensile 
Strength 
(N/mm2) 

Density 
(kg/m$) 

ME - Melt 25 Equiv. 160 2100 7860 
Extract to 
Carbon Steel 0.3mm 

DUO - 25 0.25 200 1600 7860 
indented 
circular drawn 
brass-coated 
steel (Duoform) 

DRA - circular 25 0.25 200 1600 7860 
drawn brass- 
coated steel 

13K-Kevlar-29 13 12x10-3 58 2760 1440 
(Type 970) 

37K-Kevlar-29 37 12x10-3 58 2760 1440 
(Type 970) 

POL-Forta 37 N/A 4.8 483 900 
Fibre latticed 
bundled poly- 
propylene 

Table 4.9 Material properties of fibres used in Quadratic 
Polynomial Fitting Analysis. 



Coded Value Value of Li 

Water/Cement Agg/Cement Fibre Content 

Xi X2 X3 Actual Penetration Path Length 

-1 -1 -1 L1 

1 -1 -1 Lz 

-1 1 -1 L3 

1 1 -1 L4 

-1 -1 1 Lo 

1 -1 1 L6 

-1 1 1 L7 

1 1 1 Le 

-23 /4 0 0 L9 

23/4 0 0 Lio 

0 -23/4 0 Lii 

0 23/4 0 Llz 

0 0 -23/4 L13 

0 0 23/4 L14 

0 0 0 Lia 

0 0 0 L1 s 

0 0 0 L17 

0 0 0 Lis 

0 0 0 Lis 

0 0 0 Lao 

Table 4.10 Relationship between actual penetration path length and 
coded level values for coefficient calculation 



O. P. C. Water Zone 2 
Limestone Sand 

10mm Single Size 
Aggregate 

Fibre Content 
(% wt) 

1.0 0.5 2.67 1.33 0: 2.5: 5.0: 7.5: 10.0 

Table 4.11 Concrete mix design ratios for limited 
variable approach (by weight) 



Aggregate enetration Path Length Crater Volume 
(mm) (cm3) 

Limestone Number of tests 7 9 

Range 69-115 299-737 

Mean 86 357 

Standard Deviation 14 153 

Basalt Number of tests 9 8 

Range 73-108 138-434 

Mean 90 233 

Standard Deviation 13 114 

River gravel Number of tests 7 8 

Range 50-100 180-552 

Mean 78 305 

Standard Deviation 19 105 

Table 4.12 Penetration path lengths and crater volumes 
for specimens containing no fibres. 



Coarse Fibre Regression line equation % fit 
Aggregate Type 

Limestone Melt extract 92.8 - 1.28 Wf' 54 

Duoform 90.8 - 1.52 Wf' 42 

Drawn 84.4 - 0.48 Wf' 14 

Basalt Melt Extract 84.0 + 1.6 Wr' 42 

Duoform 85.0 + 0.16 Wr' 2 

Drawn L= 94.4 - 1.08 Wr' 24 

River gravel Melt Extract = 62.0 + 1.52 Wr' 18 

Duoform L = 76.9 + 0.76 Wt' 8 

Drawn L = 94.8 - 1.52 Wf' 36 

Table 4.13 Regression line equations and percentage 
fits for each test series 



Degree of Predictive 

Predicted path length (mm) 
for any degree of confidence 

Confidence Equation 
Limestone Basalt River Gravel 

80% LP =L+0.86a 95 103 95 

90% Le =L+1.32a 100 110 105 

95% LP =L+1.72a 105 116 113 

97.5% LP =L+2.09a 110 122 121 

99% LP =L+2.53a '115 129 130 

Table 4.14 Predicted penetration path lengths for each aggregate 
type for certain degrees of confidence, irrespective 

of fibre content. 



Test F ibre Content 
Series 0% 2.5% 5% 7.5% 10% 

L/ME 50 36 15 30 56 

L/DUO 35 46 15 5 35 

L/DRA 7 15 35 33 34 

B/ME 50 10 27 9 50 

B/DUO 27 31 18 120 2 

B/DRA 72 59 22 27 38 

RG/ME 16 13 31 37 55 

RG/DUO 59 8 34 18 - 

RG/DRA 20 30 9 40 47 

Average for 37 28 23 35 40 
all series 

Table 4.15 Maximum percentage variation of any 
crater volume from the mean volume 
value for a set of three similar tests. 



Fibre Content 

2.5% 5% (2.5% + 5%) 

All Limestone 122 130 252 

All Basalt 136 79 215 

All River Gravel 189 176 365 

All Melt Extract 157 123 280 

All Duoform 145 156 301 

All Drawn 145 205 350 

Table 4.16 Mean true crater volumes in cm3 for combined 
series at different fibre contents. 



Figure 4.1 Lattice-bundled Polypropylene Fibre 
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Figure 4.15 X-Ray Photograph through Steel 
Fibre Concrete Specimen Number TS89 
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Figure 4.16 Electron Microscope photograph (80 x Magnification) 
showing hardened steel core surface 

Figure 4.17 Hardened steel core after impact 
into mild steel target 



Figure 4.18 Electron Microscope photograph 
(390 x magnification) showing 

hardened steel core silt f, icc, 



CHAPTER 5 

EXPERIMENTAL STUDY OF IMPACT AND PENETRATION MECHANISMS 

5.1 Background to the Mechanism Tests Carried Out 

Following the variability of the results reported in Chapter 4, 

attempts were made to isolate the various parts of the impact and 

penetration event. It was hoped to develop an understanding of the 

processes involved-in both the material failure and the projectile motion 

within the test specimen. 

Various categories were postulated to separate the overall event into 

its component parts. The categories considered were: 

Projectile flight, 

Projectile impact, 

Projectile penetration, 

Projectile deceleration, 

Target front face damage (cementitious materials) 

Existing specimens from the optimisation series described in 

Chapter 4 were examined to partially provide the data for several of these 

categories. In conjunction with this, other target materials were used and 

monitored, in various ways, to provide information on the significant 

influences for the other categories. Materials used were: fibre reinforced 

concrete, plain concrete, mortar, mild steel, wax, plasticine, and several 

mortar/concrete combinations. 

Each of the mechanism tests is described in Section 5.2. Individual 

facets of the overall event, as listed above, are discussed as appropriate 

in Section 5.3, extracting the relevant data from the tests described. 

This approach is used as some of the tests carried out provide information 

in more than a single event category. 
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The techniques employed included high-speed and ultra-high speed 

photography and transient recording of various types, as well as simple 

observations and measurement. Whilst exhaustive testing using each 

technique was not possible in the time available, it is believed that in 

many cases the few tests carried out are typical of the likely results and 

act adequately as both a general guide to expected behaviour and, perhaps 

more importantly, an indication of potentially successful avenues for 

further investigation. 

5.2 Experimental Techniques Used to Investigate Failure Mechanisms 

5.2.1 Use of Hich Speed Rotating Prism Camera 

The flight and impact have been recorded using a Photec IV rotating 

prism camera. This is a high speed motion picture camera with a capacity 

of 137m of 16mm cine film. The camera operates by synchronising the motion 

of a quick-rotating prism with the passage of the film. The framing rate 

(pictures per second) of the camera may be varied between 100 and 

10000 pps, using the standard rotating prism. By incorporating a half- 

height prism, framing rates of up to 20,000 pps are possible. The rate is 

controlled by varying the supply voltage to the electric motor. The motor 

is accelerated from rest to the required framing rate; at this point the 

event is triggered by the camera. Film is passing through the camera 

during its acceleration period, so that only a percentage of the total film 

length is available for recording the event. At a rate of 12,000 pps 

approximately 11m of a 30m film is used to record the event, the other 19m 

being sacrificed. 

Although the camera is furnished with an f2.8 lens, at such fast 

framing rates the major difficulty is the provision of a high enough level 

of illumination. After initial feasibility testing, four 1kw cine lights 

were placed behind an opaque diffuser and aimed directly at the camera in 

order to throw the projectile and target motion into silhouette. The 

arrangement is illustrated in Figure 5.1. 
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Since the event was triggered by the camera, it was necessary to 

equip the firing system with safety devices to avoid premature projectile 

detonation. Figure 5.2 shows the general approach. As the firing solenoid 

was powered by a rectified mains voltage equivalent to some 450V d. c. it 

was appropriate to incorporate a system to protect the internal electronics 

of the camera. A 12V solenoid was connected through a 12V power source in 

circuit with the footage measurement switch of the camera. When the switch 

was closed by the camera at the correct framing rate, the solenoid 

completed the mains firing circuit for the projectile, assuming the safety 

devices had been unlatched. These devices consisted of the standard 

arming-key lockout and an isolation lead included to allow the photographic 

system to be tested without triggering the mains firing system. 

The restricted angle of view of the 45mm focal lens, as demonstrated 

in Figure 5.1, coupled with the relatively high velocity of the projectile, 

meant that, with a 30m film, a maximum of two frames showing the complete 

length of the projectile in motion were possible. Another important 

limitation was the mains electrical supply; the large power surge needed to 

induce a rapid enough acceleration of the camera motor dictated that light 

levels much above 6kW could not be used. At higher levels the mains 

circuit was momentarily overloaded causing the supply to be automatically 

shut-down. Consequently, a shutter with a 1: 2.5 ratio, producing an 

equivalent shutter speed of 3X 10-4 second at 12000 pps, was necessary to 

effect sufficient exposure for each frame. At a projectile velocity of, 

say, SlOm/s the impactor moves approximately 27mm in each frame. Whilst 

this is acceptable in considering general projectile and spall product 

trajectory, it is of little use for detailed examination of projectile 

motion. For this purpose, an ultra-high speed camera (Section 5.2.2) was 

employed. 
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Details of two plain concrete specimens, a fibre concrete target and 

a Plasticine model, which were photographed during impact, are given in 

Appendix VIII. 1. Also given are details of the photography. 

Figure 5.3 shows a typical sequence of frames obtained. The film was 

analysed by overlaying, at full scale, each frame on to the preceding one, 

eventually permitting a time-based "contour" elevation to be drawn. In all 

cases the blurring effect caused by the necessary exposure duration was 

considered uniform from frame to frame, not a strictly valid assumption 

since as each specific point decelerates the blurred length will shorten. 

Each test gave an individual photographic record, details of which are 

given below. 

Both the velocity of propagation of circumferential material 

movement on the target surface and also that of the spall product fronts 

were established by direct measurement. The movement of the upper half of 

the target was considered independently of the lower section to give two 

sets of information. The estimated velocities are given in Table 5.1. 

RP-1 

Figure 5.4 shows the material motion as a series of fronts 

corresponding to known points in time from frame 1 (the first frame showing 

the projectile in motion) to frame 10, a total interval of 819ps. Figure 

5.5 was produced for frames 11 to 16, a further period of 455ps. 

RP2 

Figure 5.6 and Figure 5.7 show the material motion for frames 1 to 10 

and 11 to 19 respectively. 

RP3 

Adequately referenced data was available only over nine frames. 

These are represented in Figure 5.8. 
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Plasticine 

Adequately referenced data was available over thirteen frames. These 

are represented in Figure 5.9. Between frames 12 to 13 it was possible to 

observe the motion of large discrete spall products; one was taken from 

each of the upper and lower zones. The velocities measured between the two 

frames were; 

i) Upper spall product velocity = 17.0m/s 

ii) Lower spall product velocity = 45.5 m/s 

This information is only of limited value since the weight of the 

particles, and the motion perpendicular to the photographic plane, cannot 

be accurately assessed. 

5.2.2 Use of the Ultra-High Speed Rotating Mirror Camera 

To further investigate projectile pre-impact flight, a Barr and 

Stroud ultra-high speed rotating mirror camera has been utilised. This 

equipment was fitted with a 35mm focal length lens with a maximum relative 

aperture of f2.8. The camera was capable of sequentially exposing thirty 

separate frames on standard 35mm film. This was accomplished through a 

series of 30 separate internal lens systems located in front of the 

stationary film, in an arc of approximately 600. 

A projection of the event is delivered to each system in turn via a 

rapidly rotating two-sided mirror. This turns on a horizontal axis in an 

evacuated clear glass sphere. It is attached to a small turbine powered by 

compressed nitrogen. By this means mirror rotations generating framing 

rates up to two million pictures per second are possible. At such high 

rates, the major problem is to sufficiently illuminate the event. A high- 

powered electronic xenon flash unit, capable of a peak energy of 200J for 

200Ns was employed. This equipment has a 50ps build-up time and a further 

50us delay period, so that light is produced for some 300ps altogether. 

Although normally the camera is capable of synchronising mirror 

rotation speed, event initiation and flash duration, the requirements of 

105 



this particular event were outside the range of the electronic control 

equipment. The camera triggers the event a maximum of 23ms before 

initiating film exposure. Since the projectile detonation and flight time 

were relatively uncertain (due to inherent delays in the 

electrical/mechanical triggering system) - but in any case were greater 

than 24ms (20m flight at 820m/s) - it was not possible to use the automatic 

system. As an alternative, all extraneous light in the firing range was 

extinguished before the projectile was fired and the camera was allowed to 

run free to approximately his interframe time with the shutter held open. 

The xenon flash was initiated by the closing of a contact switch, placed 

ahead of the target and shorted by the projectile passage. The switch 

consisted of two sheets of conductive material separated by an insulator. 

Placing the switch 120mm in front of the target and assuming a projectile 

velocity of 820m/s, allowed the flash unit approximately 150ps to achieve 

peak illumination before impact. This approach reduced the possibility of 

multiple exposure caused by repeated rotation of the mirror whilst the 

shutter remained open (i. e. "over-writing" of the original projectile 

image). 

Two different approaches to the positioning of the flash unit were 

found to be successful. Figure 5.10 shows an arrangement using a 

reflective screen to throw the projectile and the target edge into 

silhouette, whilst a front lit photographic arrangement is illustrated in 

Figure 5.11. in this case, an illuminated scale was included in the plane 

of the projectile to aid measurement. 

It should be noted that the limited arc of the film resulted in only 

a small probability of a full photographic record including both projectile 

flight and impact. At ips interframe time the most likely result was a 

series of photographs of the projectile in flight before impact, with a 

slight possibility of a second mirror pass causing overwrite. 
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Appendix VIII. 2 gives details of the ultra-high speed rotating mirror 

camera tests and includes both a typical frontlit and a typical backlit 

series of photographs showing the projectile in flight. 

5.2.3 Impact on a Plasticine Target 

A cylindrical target of 100mm diameter and 200mm length was 

constructed from a plasticine material. Figure 5.12 is an illustration of 

the model. A series of ten 55mm diameter discs were used to form the core. 

By alternating different colours a number of boundaries were established 

between each 20mm thick component. The remainder of the target was 

produced by placing plasticine circumferentially, again in 10 different 

coloured layers, around the core. 

The unrestrained target was placed 19.89m from the gun barrel end, 

the axis of the target being in line with the expected trajectory of the 

projectile. In order to fulfil the photographic requirements discussed in 

section 5.2.1, remote detonation for the 7.62mm armour-piercing projectile 

was used. 

Although a successful photographic record was obtained (see Appendix 

VIII. 1), Figure 5.13 shows that extensive damage has been caused by a 

circumferential bursting force propagating from the rear face of the 

target. The lack of lateral restraint permitted-this bursting, and also 

resulted in the projectile not being located after the event. The extent 

of the damage destroyed much potential quantitative evidence. However, 

around the immediate impact zone some valuable information was obtained. 

Through the thickness of the first disc (20mm) the diameter of the path 

increased from 12-17mm to 15-20mm (minimum and maximum values 

respectively). This is consistent with the photographic evidence which 

clearly showed the target expanding circumferentially from the rear 

indicating the stress wave travelling toward the front of the cylinder. At 

the front face impact point significant cratering has occurred to a 

distance of 5mm outside the entry hole, the material being uplifted by 2- 
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3mm at the edges. The petalling has manifested itself in a layered manner 

to a depth of some 2mm. The nature of the internal radial cracking 

typically shown on the third disc back (i. e. the blue component between 40 

and 60mm through the target) is particularly interesting. The disc has 

been punctured by the projectile and also reshaped by the stress wave 

effect. As a result the disc was perforated and left as an incomplete 

annulus. The minimum diameter of the puncture caused by the projectile was 

some 55mm, whilst the absent portion of the annulus shape had an equivalent 

diameter of at least 70mm. The radial cracking has occurred from the 

inside of the annulus in an outward direction. The projectile impact 

velocity was 820m/s. Assuming that little deceleration has occurred then 

the projectile will have taken 49ps to reach the front surface of the disc 

and a further 24ps to pass through it. From the high speed photography, 

the first material motion indicating tensile reflection of the initial 

compressive stress wave has occurred definitely by the second frame 

following impact, between 88ps and 176ps. The inference is thus that 

projectile passage has occurred well before the consequences of the stress 

reflection have been experienced. This would explain the noted crack 

pattern, since the diametric expansion of the target has caused 

longitudinal tearing to occur, eventually causing the stripping away of 

complete lengths of the target. In the subsequent local expansion the 

remainder of the annulus has then been encouraged to invert. 

5.2.4 Impact on a Wax Target 

To overcome the destructive effect observed in the unrestrained 

plasticine target, a paraffin wax cylinder was manufactured and placed in a 

compacted sand-filled box. The target was 350mm long and 135mm in 

diameter. The central 40mm diameter core was cast as a single unit of 

uncoloured wax. The remainder of the diameter was then provided by 

circumferentially laying approximately 15mm thick wax sheets on to the 

core. Cohesion was encouraged by carrying out this procedure in the 
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presence of heat. By varying the colours of the wax layers, it was hoped 

to recognise any lateral movement in the target. That is, sectioning the 

target would allow the different colours to indicate any differential 

motion. 

The specimen was placed centrally in a 375 x 375 x 375mm timber box, 

and held in position whilst sharp sand was compacted in 4 layers around it. 

The front face of the target was carefully squared off and located flush 

with the visible surface of the sand, the target axis being parallel with 

the box sides. The open end of the box was then covered with clear 

polythene sheeting to seal in the sand during impact and the target was 

placed in position 18.80m from the gun barrel end. The box was carefully 

located to ensure the wax target axis was coincident with the expected 

projectile trajectory. See Figure 5.14 for details of the arrangement. A 

single 7.62 mm A. P. projectile was then remotely fired into the wax target. 

The target was carefully sectioned, the stages being shown as Figures 

5.15 to 5.17. Whilst this was mainly a qualitative test, it did give some 

idea of the potential effects in relatively soft targets. In this 

particular instance the most interesting aspect concerned the very large 

degree of projectile instability induced during penetration. The impactor 

almost certainly hit the target face at a normal angle, the symmetry of the 

initial cratering being taken as adequate evidence. It cratered to a 

distance of 2mm back from the perimeter of the 10-11mm diameter orifice and 

had a 0.5-1.0mm elevation at the highest points. Inside the target, the 

penetration path was uniform for approximately 85mm, at which point the 

10-11mm diameter burrow significantly widened into a 50mm diameter chamber 

as the projectile became progressively less stable. The projectile was 

located at the bottom of the sand-box oriented at 1800 to its original 

direction of travel. This is in agreement with the path left through the 

wax, the widening of the penetration burrow being caused by the projectile 
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tumbling end-over-end whilst also unstably spinning along its major axis, 

the spin having been imparted by the barrel's rifling. 

Whilst no direct chronological evidence was produced by this test, a 

tentative ordering may be explored by considering the physical evidence in 

terms of the dynamic material response. This is attempted in Section 

5.3.3. 

5.2.5 Impact on Mortar Targets 

Since concrete may be considered as a composite of coarse aggregate 

and mortar, it was considered useful to investigate whether the fine 

aggregate paste acted as anything more than a binder to the coarse material 

whilst undergoing a severe impact. Earlier work on gravel armour by Finch 

(1979) has indicated that 150mm of contained loose gravel is adequate to 

defeat repeated single shots of 0.30" armour-piercing or ball ammunition. 

This calls into question the role of the mortar, although to permit a 

sprayed type permanent application a binder is certainly a necessity. 

For the first tests, a series of three 450 x 450 x 125mm thickness 

specimens was cast using a water/cement ratio of 0.6 and an 

aggregate/cement ratio of 3.0. Ordinary Portland Cement was used in 

conjunction with Zone 2 limestone sand. A single 7.62mm A. P. projectile 

was fired at each target when it had attained an age of 7 days. In each 

case the target was perforated, the penetration path being normal to the 

target face. Equally important, both front and rear face damage was 

minimal in all cases. In a single case the projectile was found in the 

range after the test. The jacket had been stripped from the core only for 

the initial 1mm of core length as shown in Figure 5.18. This indicates 

that the 125mm thickness of mortar generated very little resistance to the 

penetrator. 

The information gathered in these basic experiments was supplemented 

by a further two series of more sophisticated tests described in Sections 

5.2.6 and 5.2.7. 
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5.2.6 Impact on Mortar and Fibre Reinforced Concrete 
Composite Targets 

A series of nine melt extract steel fibre reinforced concrete 

specimens, each rendered with mortar to achieve a total depth of 125mm, was 

cast to investigate further the role of the mortar binder and its 

interaction with the remaining material constituents. 

These slabs were cast at each of three fibre concrete thicknesses, 

100,75 and 50mm, the corresponding mortar layers being of 25, , 50 and 75mm 

thick respectively. After conventionally curing for three days each 

specimen was subjected to a central impact, on the mortar face, by a 7.62mm 

A. P. projectile. Target mix details are given in Table 5.2 and impact test 

results in Table 5.3. In Series A (25mm mortar - 100mm fibre concrete) 

there is a considerable difference in measured penetration path lengths, 

specimen 1A having caused the projectile to deviate along a path 52mm 

greater than the specimen thickness before perforation, whilst in the case 

of 1B the projectile has halted at 73mm penetration. The corresponding 

entry crater volumes for these two specimens indicate that the smaller 

penetration path length has been achieved at a cost of significantly 

greater disruption of the target. The third specimen in this series was 

also perforated, a path length of 137mm being generated. The mean path 

length was thus 129mm within the target. 

Series B (50mm mortar - 75mm fibre concrete) adds further weight to 

an argument that reduced penetration path length may possibly be offset by 

increased target damage. Targets 2B and 3B have undergone penetrations of 

approximately equal lengths within the target, generating entry crater 

volumes of the same order. However, the third specimen (1B) has suffered 

much greater damage in the area of impact, a crater of some 172 700mm3 

being generated. In this case the penetrator has been deviated to such an 

extent that it has suffered ejection from the impacted face of the mortar, 

without ever reaching the fibre reinforced concrete layer. In terms of the 
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limits for safety, it is probably best to regard this last specimen as 

untypical. Discounting it then gives a mean value of penetration path 

length of 122mm. 

Series C (75mm mortar - 50mm fibre concrete) generated similar path 

lengths in two cases (2C and 3C) and a shorter path length in the third, 

this being the only target which did not suffer perforation. Dissection of 

the target provided a possible reason for the lesser penetration. The 

hardened steel core had fractured within the target due to the extent of 

its angular deviation. Again the greatest amount of front crater damage 

(though not significantly) was found in this target. For this series the 

mean penetration path length was 123mm. 

Considering all three series, it can be seen that the mean path 

length values were not significantly different. However, the series with 

the thickest mortar layer, (75mm (Series C)) certainly suffered the least 

front face damage. Investigation of the mode of penetration of the 

projectile through each specimen indicates a probable reason for this. 

In all cases where the projectile was subsequently located, the 

indications were that it had travelled largely undamaged through the mortar 

layer in a normal attitude. The jacket had stripped only after interaction 

with the fibre concrete to a depth of up to 35mm. The released core had 

then undergone an angular change leading to a new straight trajectory 

before coming to rest. In one case (1C) the core had been fractured by an 

extreme angular deviation. The inference is thus that the coarse aggregate 

and/or fibrous inclusion in the composite are sufficiently disrupting to 

cause the gilding metal sheath of the projectile to strip in a differential 

manner, thus causing the core to deviate, the deviation possibly being 

accentuated by direct projectile/aggregate impact. 

Having carried out the above tests, the next step was to separate the 

composite targets into combinations of mortar, plain concrete and fibre 

reinforced concrete. 
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5.2.7 Impact on Slabs Consisting of 2 from 3 Combinations of 
Mortar/Plain Concrete/Fibre Reinforced Concrete 

In an attempt to identify the major contributions to the observed 

projectile behaviour during penetration of fibre concrete containing 10mm 

coarse aggregate, various composite slabs were cast. Earlier tests 

suggested it was appropriate to assess possible means of promoting 

deviation within the target, this appearing to be a valid way of reducing 

penetration path length, albeit at the cost of increased front face damage 

should the deviation occur close to the impact surface. 

Each specimen was cast so as to have a diagonal interface running 

from the top of the front face to the bottom of the rear face, effectively 

giving the projectile a "choice" of material at a depth of 62.5mm below the 

original impact point, assuming that the penetrator has not commenced 

deviation before the material interface. 

A series of three 450 x 450 x 125mm slabs was cast for each two from 

three combinations, a total of nine specimens in all. The mix designs used 

for the component materials are given in Table 5.4. The static properties 

are also reported in Table 5.4. 

Each specimen was positioned with the characteristically weaker 

material (as defined by compressive strength) being the initially impacted 

face, this material having zero thickness at the top of the target and 

125mm thickness at the bottom edge. Each slab was impacted centrally by a 

single 7.62mm A. P. projectile. The age of the components at testing varied 

because each component had to be cast separately, and these ages are 

indicated in Table 5.5. The results of the tests are given as a series of 

sketches in Figures 5.19 to 5.27 and are summarised in Table 5.5. 

Several of the composite targets suffered de-bonding along the 

material interface during the impact event, thus reducing the validity of 

the observations. As expected, the specimens consisting of plain and fibre 

concrete combinations have the smallest mean penetration path lengths, 



followed by the mortar and fibre concrete specimens, the mortar and plain 

concrete combinations having performed worst. The compressive strengths of 

the three materials were very similar, implying that strength alone is not 

the major factor controlling penetration path length. Closer observation 

of the individual results confirms this. In the case of the PC/FC/1-3 

specimens, possible projectile ricochets have been noted within the plain 

concrete section in two of the three tests, this leading to much reduced 

path lengths, the projectile not even reaching the fibre concrete 

component. It would therefore seem that the coarse aggregate has played a 

significant part in disrupting the penetration. 

Studying the targets after the event yielded some interesting 

information. Each specimen is discussed in turn below; 

N/FC/1: (Figure 5.19) 

In this case, complete bond failure has not occurred across the 

specimen interface although the sample has started to separate. 

Indications are that this separation has commenced very early in the scheme 

of events since the major cracking has occurred only in the mortar section 

of the target, this being neither resisted by, nor carried through into, 

the fibre concrete section. 

M/FC/2: (Figure 5.20) 

The above comments are also valid for this specimen. 

x/FC/3: (Figure 5.21) 

This specimen has suffered a complete bond failure. The mortar 

section was particularly damaged, being separated into three distinct 

pieces, whilst the impact and penetration zone has experienced major local 

damage. One item of interest is that the front face spalling in the mortar 

has occurred, at least in part, before the major cracks have been 

generated; this view being supported by the existence of a spalled mortar 

plate Which fits directly over a major crack running from the burrow in a 
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south westerly direction through both mortar and fibre concrete parts of 

the specimen. 

M/PC/1: (Figure 5.22) 

Complete separation has occurred between the mortar and plain 

concrete components. The mortar section has suffered significant cracking, 

both to the top surface and also, in four cases, running right through the 

mortar. However, of these four cracks only one may have continued into the 

plain concrete section of the composite. The mortar has undergone 

extensive spalling in the impact areas, as the projectile passed through in 

a normal trajectory. Examination of the plain concrete portion of the 

target indicates however that the projectile has not been subjected to 

sufficient resistance to cause it to lose either its external sheath, or 

perhaps more significantly, the lead sealing, during its passage through 

the mortar. The projectile was located at the surface of the plain 

concrete component with 12mm of the complete unit projecting from the 

concrete. The rear surface of this target has also suffered extensive 

damage. Four major cracks were discernible carrying through from the back 

face of the plain concrete to the front face. A small tensile scab has 

also been generated from the rear face of the specimen. 

)(/PC/2" Figure 5.23 

This specimen provided some very interesting information, though its 

repeatability is open to conjecture. The mortar section of the target Was 

extensively damaged during the impact and subsequent normal penetration. 

your major cracks were noted, as well as a series of smaller surface cracks 

related to the spall pattern. The specimen has suffered a bond failure 

very early in the impact event. None of the above cracking has been 

transferred to the plain concrete part of the target, neither has the 

projectile continued into this second portion. The penetrator has in fact 

travelled normally through the mortar section before coming to rest on the 

surface of the plain concrete, its orientation implying that the projectile 
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has impacted sideways on to the plain concrete. The most likely 

explanation for this behaviour would seem to be that the de-bonding of the 

two materials has occurred sufficiently early, and to such a large degree, 

that by the time the projectile has passed through the mortar portion of 

the target the gap between the two constituent materials has been great 

enough to enhance an existing instability in the projectile, which is 

specifically designed for penetration only along its major axis. It is 

especially surprising that the potentially large transference of energy has 

had no visible effect on the plain concrete target. 

K/PC/3: (Figure 5.24) 

Again, this target has suffered a bond failure across the constituent 

material interface. The mortar section has several large cracks running 

through it, although the spalled area and subsequent crater is 

significantly smaller than the other two specimens of this series. The 

three major cracks on the front face of this portion are present, with only 

slight changes of position, on the rear face also. This face contains the 

projectile jacket which has stripped at the very edge of the interface, 

only the hardened steel core then travelling through to the plain concrete 

section of the target. As a result of what appears to be a completely 

separate impact, the plain concrete specimen has developed its own crack 

regime. Two major cracks have occurred, propagating from the outside edge 

of the target inwards, whilst a third, smaller, crack is also in existence. 

The projectile core has travelled into this section 43mm, giving a total 

path of 106mm length. 

pC/FC/1: (Fi(jure 5.25) 

A single crack has developed on the front face of the plain concrete 

segment (i. e. the target impact face) coupled with a crater of some 150mm 

maximum diameter. The penetrator did not travel to the de-bonded second 

section of this target; instead deviation within the plain concrete caused 

the core to fracture and come to rest some 75mm after initial impact. The 
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jacket had by this point been completely stripped from the core. The fibre 

concrete section of the target did not experience any damage whatsoever. 

PC/FC/2: (Figure 5.26) 

The main points of the above are also appropriate to this target. 

That is that the projectile did not reach the fibre concrete segment. The 

generated crater was 160mm diameter. The most significant difference 

though is that the missile was not located, there being no penetration path 

below the base of the crater. The conclusion drawn was that the projectile 

had undergone an extreme change of direction within the target and had 

emerged as a ricochet without greatly penetrating the target. The 

penetration path length was measured to the base of the crater as 37mm. 

PC/FC/3: (Figure 5.27)_ 

In this case the target did not de-bond during the impact event. The 

slab suffered only crater damage of some 170mm diameter. No cracking was 

discernible on either the front or rear face of the composite target. 

Again, no projectile was located within the target. A ricochet being 

indicated, the maximum penetration path length was taken as the crater 

depth, that is 41mm. 

It is interesting to note that in all cases when the observation was 

possible, the projectile has deviated downwards upon meeting the interface, 

effectively travelling toward the weaker material. 

5 . 2.8 Impact on Mild Steel Targets 

A number of trials were carried out on various types of mild steel 

specimens to investigate the initial impact and subsequent penetration for 

a homogeneous material having significant tensile strength. Two different 

types of target were used, one of a separated nature, the second a single 

mass. 
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i) Layered steel plate target 

A series of ten 100 x 100 x 12mm thick mild steel plates of Brinell 

Hardness value 149 were bolted together and embedded in a 450 x 450 x 125mm 

thick plain concrete specimen, the top surface of the two materials being 

coincident. The concrete mix ratios by weight were OPC - 1.0, free water - 

0.45,10mm single size limestone (water content 0.48%) - 2.36 and zone 2 

limestone sand (water content 5.3%) - 2.36. The concrete was allowed to 

cure for 14 days at 20+ 20C with a relative humidity of 90°+ before the 

central steel section of the target was impacted normally by a 7.62mm 

armour-piercing projectile. Figure 5.28 illustrates the general 

experimental arrangement; whilst Figure 5.29 shows the target after 

debonding from the concrete and separation into individual plates. The 

projectile has penetrated as far as the third plate, the path length being 

26mm. The hardened steel core may clearly be seen in the first and second 

layers. The 24mm length core has remained acceptably perpendicular to the 

target face. Closer examination of the first section, Figure 5.30, 

confirms by the symmetry of the petalling that the impact was orthogonal. 

The gilding metal sheath of the projectile was recovered after the test and 

this further supports the symmetry of penetrator entry; as shown in Figure 

5.30, the stripping has occurred in a uniform manner. 

This experiment indicated that a 7.62mm armour-piercing projectile 

impacting normally at 20m range can be expected to penetrate a restrained 

mild steel target with a Brinell Hardness value of 149, in an orthogonal 

manner to a depth approximately equal to the projectile core length. 

ii) Solid steel cylinder targets 

To assess the importance of orthogonal impact on subsequent 

penetration two simple tests were carried out. 

A 250mm long mild steel cylinder of 75mm diameter and 137 Brinell 

Hardness, was machined to obtain flat ends at 900 to the major axis. It 

was placed at 20m range length and orientated carefully so as to be normal 
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to the envisaged projectile flight path. The target was then impacted by a 

7.62mm A. P. projectile. Examination of the sectioned specimen, Figure 

5.31, shows that a total penetration depth of 27mm has been attained. The 

core has remained whole although the only indication of the original copper 

coloured sheath is a fusing of the mild steel and gilding metal at points 

within the petalling. It is also clear that the projectile has not 

penetrated orthogonally, although this has had little effect on the 

penetration depth. The target was unrestrained; whilst the initial impact 

was perpendicular, the 8.725kg target has shifted during the impact thereby 

inducing the projectile deviation. 

A superficially similar arrangement was adopted in a second test. 

However, the target was fully restrained and the projectile was induced to 

tumble in flight using a 0.25mm thick brass shim placed in the flight path. 

Figure 5.32 illustrates the effect upon the penetration characteristics. 

The projectile has impacted sideways causing total disintegration of the 

projectile and a much reduced penetration path length of some 6-7mm. These 

simple qualitative tests indicate further that a stable impact may 

confidently be expected at a 20m range assuming that the projectile is not 

destabilised by external influences. 

5.2.9 Deceleration of the Projectile within Plain Concrete 

Several tests were carried out to investigate the rate of velocity 

reduction for an armour-piercing projectile penetrating a 450 x 450 x 125mm 

concrete target. Although the results were scattered, a system was 

developed which at least pointed to the likely orders of magnitude of the 

rates of velocity change. 

Initially, the recording system shown in Figure 5.33 was used, each 

specimen containing a series of six detectors, 100mm square, placed through 

the thickness of the concrete at nominally 25mm centres at the centre line. 

Each detector consisted of a "sandwich" of 0.25mm acetate/0.1mm shim 

brass/paper/O. 1mm shim brass/0.25mm acetate sealed with rubber sealant and 



plastic tape to provide a waterproof electrical "make" circuit. The paper 

ensured that the circuit initially had a infinite resistance across the two 

brass plates, until shorted by the projectile passage. The detectors were 

connected to form the resistance breakdown circuit of Figure 5.33 and 

linked to a Gould 054000 storage oscilloscope. In these tests, the Barr 

and Stroud rotating mirror camera was used in an attempt to record 

projectile impact details. The overall arrangement is thus shown in Figure 

5.34. By this means it was hoped to have a full photographic record of the 

pre-penetration events and a time-based record of the post-impact details. 

The resistance breakdown circuit was so designed that as the 

projectile passed through each detector a sharp step-down of the voltage 

level would occur as a result of the mechanical bonding of the shim brass 

plates. Ideally, a series of six square steps would be recorded on the 

storage oscillscope, if all six detectors were punctured. 

Two tests were carried out using this approach. The details of mix 

design, oscilloscope settings, etc., may be found in Appendix VIII. 3. 

Since the main use of these two tests was to define the types of problem to 

be overcome, the results are discussed below, before going on to consider 

the improved techniques developed from them. 

TEST V1: The concrete was cured for three days before testing by a 

single central impact of a 7.62mm A. P. projectile. The event was frontlit 

using the xenon flash unit and a single ikW photoflood positioned to 

highlight the specimen edge, so that it could be photographed using the 

ultra high speed rotating mirror camera. Details of the photography are 

given in Appendix VIII. 2. The camera was accelerated up to approximately 

ijs interframe time, after which the 1kW photoflood was switched on and the 

projectile was fired, triggering both the flash unit and storage 

oscilloscope. 

Although a trace was captured on the oscillscope, it was of a less 

well-defined nature than expected, due to the mechanical connection of the 
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detector plates becoming disrupted as the projectile completed its passage. 

This caused the oscilloscope trace to "creep" back between each detector 

perforation, as shown in Figure 5.35, rather than to give the anticipated 

square steps. This was the trace obtained for the puncturing of three 

detectors. It was transferred via a Commodore PET 3032 microcomputer to a 

Computhink mini disk drive before printing on a Hewlett-Packard 7470A 

plotter. 

On coring and sectioning the slab it was found that the detector 

plates had moved during casting to the positions shown in Figure 5.36. 

Table 5.6 gives the positions of the detectors and recorded times during 

the penetration. The third detector possibly caused the projectile to 

deviate as both the jacket and core had come to rest before passing 

completely through it. 

Correlating the distance between the detectors with the times 

obtained by assuming perforation at the peak of each oscillation of the 

trace, the average velocity over the 35mm between detectors 1 and 2 was 

computed as 36m/s and over the 35mm between detectors 2 and 3 as 35m/s. 

The photographs did not show the bullet flight or impact. Penetration path 

length was 57mm. 

TEST V2: A second test using a similar technique was carried out. 

During casting, the detectors were restrained by a small frame to resist 

gross movement. In this case, the projectile again punctured three 

detectors, generating two velocity measurements (Table 5.6). The same 

"creep" phenomenon was noted on the recorded traces, (Figure 5.37) as in 

test V1. The assessed velocities were"89m/s between detectors 1 and 2 

(40mm spacing) and 43m/s over the next 15mm between detector 2 and detector 

3. The frontlit photographic technique yielded a very poor quality series 

of 30 frames (see Appendix VIII. 2, Figure VIII. 2) showing the projectile in 

flight, the distance covered over the 30 photographs being 26mm. 
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Figure 5.38 is a sketch of the cored specimen, it may be seen that 

the projectile core has stripped its jacket and then fractured within a 

short distance, the core having deviated quite extensively whilst 

undergoing break-up to give a total path length of 59mm. 

Whilst these tests furnished some valuable information on general 

technique and, in the case of V2, a series of potentially useful 

photographs, it was considered that the difficulties inherent in 

attempting to capture information from six detectors on a single recording 

channel made it attractive to develop an alternative approach. Little 

confidence could be attached to velocity measurements which implied that a 

projectile could penetrate concrete to a depth of over 50mm at a mean 

velocity of less than 100m/s. Also, the low probability of obtaining 

photographs using the Barr & Stroud camera, as discussed in Section 5.2.2, 

prompted a decision to concentrate instead on a more general view of the 

event, using the Photec IV rotating prism camera which was described in 

Section 5.2.1 and Appendix VIII. 1. 

A similar type of "make" detector was used, a series of six again 

placed centrally at nominally 25mm intervals through each 450 x 450 x 125mm 

plain concrete specimen. Each detector was connected independently to a 

capacitance breakdown circuit such as that shown in Figure 5.39. In this 

case the capacitor was charged immediately before the projectile was 

detonated. Closing of the two brass plates caused the capacitor to 

discharge, shown as a voltage change on an oscilloscope trace. Using a 

two-channel Gould 0S4000 storage oscillscope, a two-channel Gould 054020 

storage oscilloscope and two channels of a Biomation four-channel transient 

recorder, each detector circuit was monitored independently. Details of 

the system are given in Appendix VIII. 3. The event was photographed by the 

method described in Section 5.2.1, attempting to obtain both projectile 

flight and target impact information. Two tests, V3 and V4, were carried 

out, the specimen details being given in Appendix VIII. 3. 

10 
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Test V3: The photographic arrangement worked adequately. providing a 

series of silhouette type pictures with two frames showing the projectile 

in flight and many others showing the sequence of target break-up. 

Of the recording equipment, the Gould OS4000 and OS4020 oscilloscopes 

each performed well, generating the data shown in Figure 5.40. Passage 

through the fifth and sixth detectors, monitored on the Biomation transient 

recorder was however not apparent. Examining the specimen was 

unsuccessful, as the 100mm diameter concrete core disintegrated during 

preparation; it was not possible to ascertain the actual position of the 

projectile or the detector plates. Using the remainder of the specimen, 

the positions of the detectors were assessed and spacings are tabulated in 

Table 5.6. The projectile was assumed to have travelled normally through 

the concrete (relative to the impact face) and the distances correlated to 

the times obtained for the first four detectors. As shown in Table 5.6 

this implied that the projectile, which had been travelling at 822m/s two 

metres before impact, had a mean velocity of 665m/s over the first 21mm of 

penetration, 678m/s between detectors 2 and 3 (24mm spacing) and 311m/s 

over the next 24mm. It is not feasible that the projectile accelerated 

through detector 2. The implication is thus that it was not travelling the 

shortest path between each detector (i. e. an orthogonal one) but was 

deviating, a more likely circumstance in any case. These values should 

only be used therefore to represent orders of magnitude, and then with a 

great deal of caution. 

TEST V4: A similar test to V3 was carried out on a second plain 

concrete specimen. Again the details of mix design, recording equipment 

settings and photography may be found in Appendix VIII. 3. 

In this case, a total path length of 120mm was measured in a specimen 

in which a large amount of vertical detector movement had occurred during 

casting. There was considerable deviation of the projectile within the 

specimen. 
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The Biomation transient recorder failed to record any trace 

appropriate to passage through detectors 5 and 6. Coring the specimen 

(Figure 5.41) confirmed that the projectile had punctured only the initial 

four detectors. Table 5.6 gives the detector positions and timings which 

were obtained from the information shown in Figure 5.42. The indicated 

mean velocities were: 

702m/s between detectors 1 and 2 (13mm spacing), 630m/s during the next 

37mm and 591m/s between detectors 3 and 4 (13mm spacing). 

5.2.10 Investigation of Front Face Spallina 
Using Graphite Detectors 

Another technique tentatively examined towards the end of the 

project was the use of graphite rods to detect front face spalling 

mechanisms. 

To record the point at which spalling commenced it was necessary to 

produce a detector capable of picking up the initial gross material 

movement (later to form the crater) around the penetrator. The requirement 

was thus for a material brittle both in shear and direct tension. After 

some preliminary testing, it was observed that 0.7mm diameter drawing 

pencil refills, containing a high proportion of graphite, were particularly 

suitable. These combined the properties of brittleness and high electrical 

conductivity, the latter being useful to permit the exact time of breakage 

to be recorded using electronic sensing equipment. 

Having found a suitable detector medium, transducers were produced by 

directly soldering sheathed wire to each end of the graphite rod. This 

provided a satisfactory method in terms both of mechanical bond and 

electrical resistance, the value of the latter being between 1 and 2Q for 

the complete detector including approximately 600mm of copper stranded 

wire. 

A series of six slabs was produced, three of plain concrete and three 

of fibre reinforced concrete. Mix details are given in Appendix VIII. 4. 
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Your detectors were placed in each specimen orthogonal to the impact 

face and with one end of each 50mm long rod at the surface,. Great care 

was necessary to ensure the specimen received adequate compaction by 

vibration without breaking the detectors. The detectors were initially 

placed in the positions shown in Figure 5.43, the sets of two lying 

mutually at right angles. The first pair of each set were 50mm from the 

centre of the slab and the second pair were nominally a further 25mm away 

on the same lines. 

For the first three tests, carried out on the plain concrete 

specimens numbered GR/P/1 to GR/P/3, the breaking of the transducer was to 

be amplified using the system shown in Figure 5.44. That is, at the 

instant when the graphite rod broke the current would be shunted through 

the 42kQ resistance wired in parallel with the now open-circuit detector, 

causing a voltage change which would be recorded on the transient recorder. 

Details of the data recorder settings may be found in Appendix VIII. 4. The 

breaking of detectors 1 and 3 were the trigger signals for the 054000 and 

0S4020 respectively; the breaking of the second detector (2 and 4) then 

being recorded, on each respective storage device, relative to the trigger 

points. 

When the first test, GR/P/1, was carried out as described above, 

neither of the oscilloscopes triggered as only a very small voltage 

stepdown had been generated when the detector broke. This was surprising 

since a change of only 0.9v should have been adequate to trigger the 

devices at the sensitivities used. 

For tests GR/P/2 and GR/P/3, the 42kQ resistors were replaced by 1 MO 

resistors to promote a greater voltage change in the circuit. 

In both tests only three detectors were found to be operational after 

casting. Thus, detector 1 was used to trigger both oscillscopes. In both 

tests only a very small voltage change, which was incapable of triggering 

the storage devices, was noted. 
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At this stage it was realised that the fault was due directly to the 

detector circuit. The impedance of each oscillscope was approximately 1MO, 

similar to the shunt resistor. Hence when the voltage was shunted as 

detector 1 broke, the potential drop was balanced either side of the 

oscilloscope channel input so that no change was registered in the circuit. 

This situation occurred because neither oscilloscope nor target (and hence 

detector) was insulated from ground. An alternative amplification and 

recording circuit was developed which ensured a controlled voltage drop 

when the detector was broken. This is illustrated as Figure 5.45. 

Each of the tests on the fibre reinforced concrete specimens, GR/F/1 

to GR/F/3 used this alternative approach. Additionally, by triggering the 

two storage oscilloscopes simultaneously from a single source it was 

possible to consider the time of breakage of each detector relative to all 

others, rather than considering each set of two as a discrete unit. An 

oscilloscope trigger switch consisting of two sheets of aluminium foil, 

slightly separated, was placed on the surface of the target over the impact 

zone. This trigger was insulated from the target using a single sheet of 

paper. The passage of the projectile then closed the circuit, triggering 

the storage devices simultaneously. 

This revised procedure was used for tests GR/F/1 and GR/F/2. Whilst 

triggering successfully occurred, only one of the available graphite 

detectors was broken in each case, giving a single trace but no information 

on spall material propagation rates. 

For test GR/F/3 an alternative oscilloscope triggering unit was 

tried. Silver-loaded conductive paint was used to paint a arid on the 

impact zone of slab GR/F/3 and a 'standard' resistance breakdown circuit 

as shown in Figure 5.44 was employed to trigger the two storage 

oscilloscopes simultaneously. Figure 5.46 shows the details of the grid 

used. 



In this test the system triggered suitably on projectile impact but 

again no useful data was recorded on the storage devices. 

5.3 General Discussion 

5.3.1 Projectile Flight 

The projectile used throughout this study has been a standard 

ordnance 7.62mm armour-piercing bullet, allowed a flight length of 

generally 20m before impact. Its mean velocity measured at 18m was 808m/s, 

averaged over all recorded values. 

The projectile is energised as follows; 

i) the percussion cap is struck by the pin of the firing 

mechanism; 

ii) the propellant ignites, gas pressure then causing the 

cartridge case to expand and form a gas-tight seal in 

the rifle breech; 

iii) the hardened steel core, surrounded by its ductile 

gilding metal jacket, is propelled forward to engage 

in the barrel rifling; 

iv) a seal is then formed and the projectile is driven 

forward with a spiralling motion. 

The projectile, upon leaving the barrel, requires a length of flight 

path to recover from the instability induced by both the imparted spin and 

the non-symmetry along the longitudinal axis of the jacket seal. 

Initial information (Port, (1980)) suggested that at greater than 

about 12m flight path, the projectile would be stable and expected to 

impact orthogonally with a target placed perpendicular to the gun barrel 

axis. Therefore a 20m flight path was selected. However, as a consequence 

of the inconsistency of the penetration depth results, attempts were made 

to photograph the projectile flight, at various interframe rates, to 

confirm the orthogonality of the penetrator at impact. 
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The photographs acquired using the slower Photec IV rotating prism 

camera (Section 5.2.1 and Appendix VIII. 1) best served this purpose due to 

the more easily controllable illumination and event synchronisation. A 

series of images, each with an appropriate reference datum, was produced. 

Although the projectile was travelling up to 27mm during the exposure of 

each frame, the overall orientation of the projectile across the camera 

"window" could generally be observed as perpendicular to the impact face. 

The ultra-high speed photographic technique (Section 5.2.2 and 

Appendix VIII. 2) was, of necessity, a rather indiscriminate process. The 

limitations of the event synchronisation electronics, discussed in Section 

5.2.2, meant that a less than 16% probability existed of obtaining a series 

of 30 photographs. Ultimately only two tests were successful, a frontlit 

and a backlit one. The information obtained was valuable though tentative. 

The results of the frontlit test were disappointing as they showed 

none of the expected projectile jacket detail, either on the surface or 

along the trailing edge. However, they did confirm that an orthogonal 

flight could be expected with the impactor having passed through a trigger 

switch made up of two 0.001mm thick brass shims. 

For the reported backlit test a similar switch, consisting of two 

0. imm thick brass shims, was used to trigger the Xenon flash unit. The 

resulting photographs indicated that the projectile was destabilised within 

the last 120mm of its 20m flight path. An end-over-end instability was 

induced. 

A further check on the bullet stability was carried out by impacting 

a mild steel cylinder (Section 5.2.8). Without any obstruction between the 

rifle barrel and steel target a stable perpendicular impact was indicated 

by uniform ductile petalling around the impact point. 

However, when a 0.25mm thick brass plate was put in the flight path 

ahead of the target, it caused the projectile to tumble end over end, 
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finally impacting the target face sideways and disintegrating. This 

reduced the penetration depth into the steel from 27mm to 6mm. 

From the above evidence it can be concluded that if there is no 

external interference with the flight path, 20m is sufficient range to 

ensure normal impact. Brass switching devices placed in the flight path 

should be no more than 0.002mm total thickness, i. e. 2x0.001 shims, 

otherwise projectile instability may be regenerated with a significant 

effect on the penetrating power. 

5.3.2 Projectile Impact 

This aspect was defined as the stage at, and immediately following, 

the initial projectile-target contact. Its effects have been studied in 

two distinct manners; 

i) during its occurrence, by high-speed photographs, and 

ii) by inspection of various impacted materials after the 

event. 

The initial interaction between projectile and target was captured 

only by the relatively slow Photec IV rotating prism camera. The 

limitations of this equipment were given in Section 5.2.1, the most 

significant being the existence of projectile blur at the available 

exposure rates. However, within the limits of the attained interframe 

times, trends may be considered. 

The method of analysis employed for the successful 16mm films was 

documented in Section 5.2.1, the obtained data being presented as 

Table 5.1. 

For the impact on plasticine, at an interframe time of 88us and with 

a velocity of 820m/s, the projectile has completely disappeared into the 

target from frame 1 to frame 2. In the same 88ps interval extensive 

material motion has developed as a semi-transparent conical area, radiating 

from the impact point. From Table 5.1 it can be seen that a mean 

circumferential rate of propagation of 20.6m/s was observed for frames f2- 
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f6 (upper and lower sections). The mean spall velocity was 121.2m/s over 

frames f2 to f5 (upper) and 198.9m/s between frames f2 to f4 (lower 

section) giving an overall mean value of 160.1m/s. 

Similar considerations were applied to the other three rotating prism 

camera tests, using concrete-based targets. The analysis of frames as a 

contour sketch was limited by the point at which a reliable datum could be 

discerned. Within these constraints the obtained results were acceptably 

consistent. Average velocities for upper and lower sections of the 

'contours' have been given in Table 5.1. 

If the data for the 1-2ms interval of the photographs is averaged, 

the mean rates of propagation of the surface circumferential movement are 

32.5,54.3 and 30.3m/s for targets RP1, RP2 and RP3 respectively, giving an 

overall average of 39.0m/s. 

The mean velocity of the spall products (Table 5.1) showed a 

considerable reduction with time over the measured frames. In the first 

800 or so microseconds (i. e. average value for up to 9 or 10 frames), the 

mean rate was 109.5m/s. Using frames 11 to 16 (RP1) and 11 to 19 (RP2), 

the spall velocity was reduced to 38.9m/s. 

In order to have confidence in the observed trends it would be 

necessary to carry out many more trials. This limited set of results does 

indicate the orders of magnitude of the various material motion velocities. 

It is particularly interesting that the measured values for spall product 

velocity show a significant deceleration over the few frames examined. 

Examination of non-cementitious targets after impact gave the 

following dimensions of the craters in the various materials; 

Plasticine: 12-17mm diameter, petalling to 3mm height. 

Wax: 10-11mm diameter, petalling to 1mm height. 

Mild steel: 11-12mm diameter, petalling to 5mm height. 

In the cases of the Max and plasticine targets, the jacket did not 

strip on contact with the target surface and this was reflected in the 



measured crater diameters. The upper value for the plasticine target was 

caused by the extensive stress wave response. 

In the mild steel targets, a similar initial crater diameter was 

observed with a sudden reduction to a 6mm diameter, equivalent to the core 

diameter, by a depth of 6mm into the target. This indicates the point at 

which the jacket had been completely stripped from the core. 

In all of the ductile materials the extent of target damage was 

easily defined. Impact damage was more difficult to determine for the 

brittle cementitious materials, where significant manipulation was 

necessary to establish the boundaries of affected material (see Section 

3.5.2). This was particularly true of the high modulus fibre-reinforced 

concretes but less significant with the mortar targets. 

The photographic records of projectile impact and subsequent target 

motion gave no evidence that the sub-surface damage was solely a response 

to the physical presence of the impactor. The conclusion was drawn that 

this major material movement was probably a result of the stress wave, 

reflected as tensile from the rear concrete-air interface, acting on a zone 

of already weakened material. Assuming a stress wave velocity through 

concrete of 3.5mm/Ps (Watson et al. (1985)) and no significant attenuation, 

the initial compressive stress wave would travel through to, and be 

reflected back from, the rear surface of a 125mm thick target in 

(250/3.5=)71ps. In the same time a projectile travelling at 808m/s would, 

assuming no deceleration at impact, penetrate a distance of 57mm. Allowing 

for deceleration, using the tentative figures obtained for tests V3 and V4 

(Section 5.2.9), the penetration distance would be slightly less, about 

50mm. 

Hence, the photographs of material motion, with an interframe time of 

around 88us (see Section 5.2.1), first show the target movement after the 

complete reflection of the initial compressive stress wave and following 

significant penetration of the projectile into the target. It is therefore 



not possible to attribute the major material motion solely to the presence 

of the projectile, without allowing for the other effects of the impact. 

This also means that, for brittle materials, the examination of the crater 

zones of the targets following the event is an inappropriate way of 

assessing the immediate consequences of the projectile presence. That is, 

the first path of the projectile will almost certainly be completely 

destroyed during the subsequent spalling and cracking phase of the event. 

A potential solution to this difficulty would be to use targets of 

very great thickness in order to ensure sufficient attenuation of the 

stress waves before their reflection and influence on the impacted zone. 

Alternatively, free-standing "trap blocks" with a mechanical impedance 

similar to the target could be placed in close contact with the rear face 

to remove the material-air interface; causing the impact wave to pass away 

from the target, rather than be reflected. 

In terms of this study therefore, only the gross effects of the 

complete event may be considered by the inspection of the post-impacted 

cementitious targets. This aspect is further explored in Section 5.3.5. 

5.3.3 Projectile Penetration 

This parameter was one of the major target characteristics reported 

in Chapter 4. The original intention was to consider the orthogonal 

distance travelled into the target, so as to minimise the material 

thickness required to defeat the projectile. The first few series of tests 

demonstrated that this was not a valid means of assessing the material 

penetration resistance, as an excessive amount of random deviation, from a 

straight path, was observed in superficially similar targets. 

Consequently, actual penetration path length was used to measure the 

relative capabilities of the various concrete composites. 

The tests described in Section 5.2 permitted some of the 

inconsistencies to be further explored. The effects on various 



cementitious and non-cement-based targets were studied by careful post- 

impact sectioning and the taking of physical measurements. 

The target materials have again been classified into ductile and 

brittle categories. The former included wax and mild steel, the latter the 

various cement composites. (The unrestrained nature of the single 

plasticine specimen tested precluded any dissection of the impacted 

target). 

5.3.3.1 Ductile Targets 

The mild steel targets included both massive cylinders, large enough 

that global effects had no influence, and layered 12mm thick plates placed 

in intimate contact. The penetration response was similar for both. The 

gilding metal jacket of the impactor was stripped from the hardened steel 

core during the immediate impact, culminating in a total penetration path 

of 26mm, the first 5-6mm of which was significantly widened by the material 

motion as the jacket was stripped. 

The exposed burrow was seen to precisely follow the ogive shape of 

the hardened steel core. As discussed in Section 5.2.8, the path was 

orthogonal to the target face, so long as the projectile had attained a 

stable state before striking a restrained target. The significantly thick 

mild steel was thus capable of containing the hardened steel core, 

following its stripping, almost within its own length and without either 

fragmentation or deviation of the projectile. Close examination of the 

recovered core indicated that the bullet's spinning appeared to continue 

for approximately 75% of the attained penetration depth, subsequent to the 

shedding of the enclosing jacket. 

In passing through a wax target (see Section 5.2.4) the projectile 

suffered a total loss of its flight stability. Figure 5.17 illustrates the 

extensive damage caused by the end over end passage of the jacketed core 

through the target. The undamaged impactor was located at 1809 to its 

original orientation, at the base of the containing sandbox. As only a 
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single trial was carried out, it is impossible to confirm the typicality of 

the observed response. Hypotheses considered for this response included 

i) Movement of the whole target, both wax and containing 

sandbox, as a result of the impact. Such movement was 

not apparent. 

ii) Motion of the wax target within the containing sand, again 

as a result of the magnitude of the impact. Examination of 

the target did not support this assessment. The overall 

shape of the wax target was not significantly changed, nor 

was the surrounding sand in any way disturbed. 

iii) The disruption having occurred as a result of an inter- 

action between the changing target stress field and the 

penetrating projectile. A tentative value for stress wave 

velocity through wax, 3.45mm/ps, has been obtained from 

Morris (1986). An ordering of the events occurring within 

the target is possible using this value. Initially, an 

assumption is made that the original impact velocity of 

810m/s is not diminished before the projectile becomes 

unstable (i. e. at 85mm penetration depth). The time for 

the projectile to travel this 85mm is thus: 

85mm x1 us/mm = 105us 
810 x 10-3 

In this time, at a velocity of 3.45mm/ps, the stress wave 

front travels a distance of: 

3.45mm/ps x 105ps = 362mm 

through the target. A wax/sand interface occurs at 350mm. 

Assuming reasonably uniform stress wave transmission, 

the stress wave front will be continuing in an unchanged 

form until it reaches the target/air interface and is 

reflected at a time of 375mm/3.45mm/ps = 109us from the 
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impact, as a tensile wave. Alternatively if one assumes 

that the wax/sand interface promotes a tensile reflection, 

and taking a worst case, postulates a complete stress-reversal 

at this point, then up to a, 362mm - 350mm =, 12mm thick 

section of the wax cylinder may, from the rear face forward, 

be subjected to a tensile stress field at a time of 105ps 

after impact. In either of these limiting cases, the target, 

at 85mm from the front face, is still subject to the original 

compressive stress field when the projectile becomes unstable. 

The instability was thus categorically not initiated by any 

significant local change of stress field. 

Whilst none of the above adequately explains the observed gross 

instability, it is however valuable to note the extensive disruption caused 

to the penetrator by a "soft" target material located in a "hard" 

restraining medium. This phenomenon was also recorded during several of 

the trials reported in Chapter 4, particularly when conglomerated 

Kevlar-29 fibre was incorporated, at high volume concentrations, in plain 

concrete mixes. 

5.3.3.2 Brittle Targets 

In Chapter 4 it was concluded that the inclusion of fibres in the 

types of concrete used in this study had no effect on projectile 

penetration depth, although a beneficial effect on spall resistance was 

obtained. The mechanism tests carried out attempted to isolate the various 

composite constituents to permit the contributory factors to be 

established. 

Several plain mortar targets were fired at (Section 5.2.5) with 

minimal front face damage and total target perforation, the projectile 

following a straight path orthogonal to the impacted face. This strongly 

suggests that the mortar component of the composite acted simply as a 

binder for the coarser aggregate and fibrous inclusions. Considering the 



penetration characteristics of the plain concrete specimens (Chapter 4), 

some conclusions were drawn on the effect of differing coarse aggregate 

type. Table 4.12 records that river gravel-based plain concretes gave the 

lowest mean penetration path lengths, whilst basalt concretes gave the 

highest values. This ordering of concrete types (i. e. river gravel-based 

most resistant, followed by limestone-based, with basalt-based concretes 

least resistant to penetration) is not, as reference to Figures 4.5,4.8 

and 4.11 will confirm, obviously associated purely with the mean 

compressive strengths of the various concretes. These results are 

therefore not in agreement with most published penetration equations, such 

as those reviewed by Sliter (1980) and Haldar and Miller (1982), where, 

over a wide range of compressive strength values, penetration depth is 

reduced as concrete compressive strength increases. Most such penetration 

equations for concrete have been devised on the basis of penetrators which 

were orders of magnitude greater than the coarse aggregate size. This is 

not the case in these studies where aggregate and projectile were of 

similar size. However, Sliter (1980) has reported that the little evidence 

available on the effect of aggregate size suggests that penetration depth 

is only weakly influenced by projectile diameter/aggregate size ratio. It 

is nevertheless recommended that this aspect of resistance to small arms 

attack should be the subject of a more rigorous study. 

One reason for the lower penetration path lengths reported for river 

gravel concretes is that the mean value is significantly influenced by the 

relatively larger number of penetrations in river gravel concretes which 

have been disrupted by either projectile core fracture or ricochets. 

In the tests reported in Chapter 4, on targets massive enough to 

prevent rear face damage, the addition of fibres to the concrete matrix did 

not reduce actual penetration path length and did not appear to influence 

the direction of the projectile through the target. Various combinations 

of mortar, plain concrete and fibre reinforced concrete were tested 



(Sections 5.2.6 and 5.2.7) to explore the relative roles of fibre and 

coarse aggregate in the composite. These confirmed the observations of the 

main test series. That is, that plain mortar was not effective in 

resisting penetration, the addition of coarse aggregate being necessary to 

strip the gilding metal jacket from the hardened steel core. This action 

was usually observed to be the origin of the projectile deviation. 

Depending upon the extent and the rate of the direction change, the core 

could be fractured with a corresponding significant reduction in its 

efficiency as a penetrator. On several occasions the projectile changed 

direction by more than 900 resulting in a "ricochet", i. e. the presence of 

a crater without any sign of the projectile. In these cases it is probable 

that the projectile has stripped its jacket in contact with coarse 

aggregate and has then carried out the jacket during the subsequent path 

change. 

In terms of defeating the penetrator the optimum solution would 

therefore be to disrupt its passage as soon as possible after impact, since 

a loss of orientation has been seen to produce the most successful path 

length reduction. The types of concrete used in this study, aiming at 

homogeneous mixing with various fibres and designed for sprayed 

application, were not very appropriate materials to induce this disruption. 

The relatively small proportion of coarse aggregate required to ensure 

pumpability meant that the projectile had a greater chance of travelling a 

significant distance into the target before hitting a "hard" material. 

Further, the limiting of the coarse aggregate to a maximum size of 10mm to 

try to prevent conglomeration of fibres, meant that the rock particles were 

possibly less likely to induce instability than had there been larger rock 

particles in the mortar binder. Indications were that the projectile 

jacket would be more likely to strip during passage of a "hard" material 

than the relatively "soft" mortar binder. 



Paradoxically, the targets which most severely disrupted the 

projectile passage were those which were of a mixed construction, with non- 

resisting voids contained in the surrounding hardened material. As 

discussed earlier in this section, a wax target caused extreme 

disorientation of a penetrating projectile. In a similar manner, the 

sequence of events for specimen M/PC/2 (Section 5.2.7) caused the 

penetrator to perforate a mortar layer of approximately 60mm thickness 

before becoming unstable in a void between the mortar and its plain 

concrete second section. This instability was sufficient to render the 

projectile incapable of further significant penetration. 

An extreme example of this phenomenon is illustrated as Figure 5.47. 

A specimen containing 2.0% by volume of 13mm length Kevlar-29 polyamide 

fibre was tested early in the study. At this concentration the fibre 

tended to conglomerate into soft balls, as the material was similar to 

cotton wool in nature. As a result, distinct voids were formed in the 

hardened concrete. On impacting and later sectioning the specimen, the 

projectile was observed to have stripped its jacket at 78mm depth after an 

orthogonal impact and initial penetration. The core then exhibited an 

extreme deviation, turning through 180° in 10-15mm, to come to rest facing 

in the opposite direction to its original travel. The core was not damaged 

during this change of trajectory. 

5.3.4 Projectile Deceleration 

A small number of tests were reported in Section 5.2.9. These 

attempted to assess the rate of velocity reduction of a penetrator passing 

through a plain concrete matrix. A potentially successful technique Was 

developed (tests V3 and V4) which indicated the likely order of 

deceleration values. Figure 5.48 shows the penetration depth - time plot 

for these specimens assuming orthogonal penetration. 

The figures obtained appear to indicate that the initial impact and 

penetration (to a depth of approximately 20mm) results in a velocity 
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reduction of 15-20% of the impact velocity. In the case of V4, it is 

possible to suggest that the physical action of stripping the projectile 

jacket (at 43mm path length) did not greatly affect the rate of velocity 

reduction, occurring as it did between detectors 2 and 3, for which a mean 

velocity of 630m/s was obtained. According to the figures recorded, the 

projectile was travelling at a significant rate (591m/s) at a distance of 

55mm before its final resting position. Thus, the conclusion appears that 

the penetrator on becoming unstable (after jacket shedding) has 

progressively decelerated, at an increasing rate, as the angular deviation 

increased through the target. What cannot be defined was which of these 

phenomena was cause and which was effect. As already suggested, these 

tests should be mainly considered as development exercises. It is possible 

also that the very presence of the detectors in the specimens may have 

altered the recorded penetration characteristics. Under ideal 

circumstances, time-related X-ray photography would be a more appropriate 

way of assessing this aspect of the impact event. 

5.3.5 Target Front Face Damage (Cementitious Materials) 

This facet of the event was useful mainly as an assessment of the 

near impact surface damage to the specimen and as an indication of the 

continuing structural integrity of the specimen against further attack. It 

was established by the measurement of a "true" crater volume. A consistent 

method of appraisal was developed and the results were reported in 

Chapter 4 for all main series specimens. 

In Sections 5.2.5 and 5.2.6 the influences of the various concrete 

constituent materials on this damage parameter were further investigated. 

The information was used to initiate the process of separating this complex 

aspect of the material response into component parts, assessing both the 

sequence of the failure processes and also the contributions of each of the 

constituent materials of the fibre concretes. 

139 



The plain mortar targets of Section 5.2.5 suffered insignificant 

front face damage, a burrow being formed from very close to the front 

surface of the impacted specimen. Little resistance to penetration was 

generated, the projectile cores not being stripped of their surrounding 

jackets. 

The specimens comprising increasing thicknesses of mortar on a steel 

fibre concrete backing (Section 5.2.6) showed similar minor damage at the 

greatest thicknesses of mortar (75mm) but exhibited increasing front spall 

damage with decreasing mortar depth. In those cases where the stripped 

jacket of the projectile was found, it was removed only during contact with 

the fibrous concrete part of the target, the penetrator passing 

orthogonally through the mortar section. In a single case, the projectile 

was rendered sufficiently unstable to ricochet within the 50mm mortar 

facing of the target before reaching the concrete backing. A very large 

front crater was formed, with no burrow formation or sub-surface cracking. 

The intimation is that two very different front damage mechanisms were 

operating in these tests on mortar-faced fibre-reinforced concrete. In the 

first, a near reversal of the projectile occurs close to the surface of the 

target, that is a "ricochet" causing the already penetrated material to 

suffer further local disruption before being ejected, possibly both ahead 

of and around the projectile. Such a response generates a large, non- 

symmetrical front-face crater with no evidence of burrow formation. 

The second mechanism, a consequence of deeper projectile penetration 

into the composite target, has a greater number of facets. It is apparent 

from earlier trials that the mortar presented little resistance to the 

projectile, hence the front face damage sustained was most likely generated 

by the impact on the underlying fibre concrete layer. This would explain 

the increasing damage occurring to targets having mortar layers of 

decreasing thickness; that is the first significant effects of the impact 

were closer to the mortar-air interface with targets having thin facings of 
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mortar than with the targets having thicker mortar components. As a 

corollary to this, the front face damage is not solely a response to the 

approach of the tensile wave front caused by the reflection of the initial 

compressive wave from the rear face of the target. If it was, then it 

would be reasonable to expect the greatest degree of attenuation for the 

targets with a mortar/concrete interface close to the impact face (ie the 

thinnest mortar layers), with possibly a corresponding reduction in damage; 

this was not the observed damage response. For specifically layered 

mortar/fibre concrete targets therefore, the immediate front face damage 

mechanism would appear to be a consequence of the impact into the more 

resistant underlying fibre concrete; a general hypothesis for the front 

face damage to concrete targets is given below. 

In Chapter 4a comparison of "actual crater volume", representing the 

quantity of target impact face damage, was carried out for plain and 

various fibre concretes. This indicated a reduction of up to 70% in front 

face spall volume, in a consistent manner, at percentages of up to 5.0% 

fibre content by concrete weight. At greater percentage fibre contents, 

the crater volume continued to reduce, but significantly greater 

variability of results was noted as a consequence of the increasing 

heterogeneity. The role of the fibres in decreasing the target front face 

damage will be discussed here. 

In both plain and fibre-reinforced concretes the immediate post- 

impact "apparent" crater was typically of up to 50mm depth, with the angle 

formed by the side faces tending towards the obtuse, relative to the target 

front face, with depth. As shown in Figure 3.13, on the surface of this 

cratering, below the impact face of the target, though higher than the 

burrow initiation point, there normally existed a region of obvious 

cracking, developing from the central impact position and propagating 

outward and upward. The "true" crater assessed in this study was defined 

by positively removing the loose material down to these cracks, to locate 



the limits of the local damage. This action tended to produce a crater of 

a characteristic type, with a steep sided inner section and a less steeply 

raked outer. The plan shape of this crater was not very predictable, 

rarely being symmetrical, as illustrated by Figures 5.25 to 5.27, for 

concrete targets. In general terms it was found that the less the 

percentage fibre content, the greater the overall plan area of the target 

front face damage; to the point were significant target heterogeneity was 

generated, when crater diameter was likely to reduce. 

The steep sided "apparent" crater cross-section is thought to be 

formed by the immediate effects of the penetrator presence. Upon first 

penetrating, comminution will occur ahead of the projectile, whilst a 

radial pressure is exerted also. On any particular particle, this applied 

pressure will be resisted by the material directly behind it, thus setting 

up a tensile Poisson stress. Hence, a particle crack is initiated, and at 

the surface of the target this crack will tend to be parallel to the front 

face. However, as the penetration increases, some particles at the outer 

edges of the developing "apparent" crater will, as a consequence of higher 

adjacent particles not having been fully removed, have some small shear 

resistance. This is an accelerating effect, causing increased shear 

resistance with depth. Thus the angle of cracking will tend to steepen as 

the projectile penetrates, until the shearing resistance of the concrete is 

sufficient to permit the projectile to generate, by very localised 

comminution, a parallel burrow through the specimen. The stripping of the 

projectile jacket logically occurs at a point where the shear resistance of 

the immediate crater zone becomes more significant than the bond strength 

of the projectile components. 

The often reported crack-resisting capabilities of high modulus 

fibres is thought to have an influence on the higher part of the crater 

zone, controlling the progress of the sub-surface cracking. Considering a 
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sub-surface crack position propagating from a depth of 35mm into the crater 

zone; 

Time for initial stress wave to reflect = 125mm + (125-35)mm 
with the rear target/air interface and 3.5mm/us 
reach the sub-surface cracking 
propagation point. = 61ps 

From the deceleration tests (Section 5.2.9), a mean velocity of 

670m/s has been assumed over the first 50mm of penetration. In 61ps, the 

projectile would travel some 41mm into the concrete by the time of the 

return of the initial compressive stress wave as a tensile front. As a 

result of the projectile passage, material would already have been 

accelerated locally into motion by the "shearing" action discussed earlier. 

This means that an effective concrete-air interface, within the depth of 

the target, would exist. Assuming the ultimate dynamic tensile strength of 

the concrete to be locally exceeded, the correct conditions were present to 

cause cracking to develop. Such cracking manifests as an uplifting action, 

the angle of the cracking being shallow relative to the target impact face. 

The width of the outward and upward fracturing reducing with increasing 

radius from the crater centre. That is, the cracking is a consequence of 

an uplifting action, hinged at the extreme edge of the "true" crater. 

At levels of fibre concentration sufficiently high to produce a 

vastly heterogeneous voided target, front face damage continued to decrease 

with increasing fibre content. It is feasible that such greatly voided 

composites had little integrity and thus provided very significant damping 

of the internal stress wave transmission, greatly reducing its damage 

capability, whilst providing less than usual resistance to penetration. 

It is of interest to note that rendering the projectile unstable 

within the target has, for various materials, been shown to be the most 

effective means of reducing penetration. Hence, the removal of loosened 

material to locate the "true" crater boundaries could be considered 

detrimental to the continued success of the target against further attack. 
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That is, the very presence of areas of varying density and stability may 

possibly cause a significant, though unpredictable, level of projectile 

instability to occur in any subsequent attack. Whilst this may be true in 

practice; in the interests of consistency, and to provide the limits for 

safety, it was considered prudent to remove the loosened material to assess 

the consequences of single shot tests. 

5.3.6 Summary of Failure Mechanisms in Concrete Targets 

The various facets of the event may be tentatively ordered on the 

basis of the results obtained in the tests reported earlier in this 

chapter. 

On energising the electrical firing system, the 7.62mm A. P. 

projectile will be propelled from the barrel with a concentric spin induced 

by the rifling. Some 25ms or so later, having travelled a distance of 20m, 

the projectile will impact the target. The missile velocity at 18m flight 

length measured an average 808m/s. 

A compressive wave front will be established at the impact, radiating 

into a 125mm thick target at a velocity of 3.5mm/us. Some 36pslater this 

front will reach the rear concrete-air interface and be reflected as a 

tensile stress wave. This stress reversal will then continue to occur, at 

a diminishing rate, throughout the event. Notwithstanding this, the wave 

front interface will locally change position during the overall event, 

coming ever closer to the rear face as the crater develops. 

Within approximately 20mm of target penetration, in a period of some 

30ps or so, the projectile will have decelerated to around 670 m/s. 

Some 45ps or so later, certainly within 90ps of the first impact, a 

fine powder debris will be ejected as a hollow cone around the edge of the 

projectile burrow. This is likely to be loosened and comminuted material 

accelerated into motion by the tensile wave front passing toward the 

impacted face of the target. By the time that the reflected wave has 

reached the target front surface the missile will have penetrated a further 



30mm or so, to a total depth of say 50mm. During this period, it is 

probable that the "uplifting" of larger pieces of the target, within the 

eventual "true" crater area, will also have begun as a consequence of the 

same tensile front acting in the area of the developing (and subsequently 

destroyed) burrow being formed by penetrator passage. This phenomenon will 

manifest itself as diagonal cracking radiating from slightly above the 

eventually exposed burrow. 

The quantity of fine debris leaving the target will increase with 

time as a result of the propagation of a circumferential surface movement 

at a velocity of about 39m/s, starting between 90ps and 180ps after first 

impact. 

'Within the first 90ps of impact, corresponding to approximately 50mm 

depth of projectile penetration, changes will have occurred to the missile. 

Assuming it has impinged upon a coarse aggregate inclusion it will have 

shed its gilding metal jacket, with little consequent loss of velocity. 

Following this it is most likely that the hardened steel core will begin to 

deviate, in three dimensions, at an increasing rate from the orthogonal 

path it has held until this point. The increasing rate of angular 

deviation may or may not be associated with a corresponding increase in the 

rate of projectile deceleration; however, the projectile is likely to come 

to rest within the target, in most cases. 

The spall product motion will be continuing throughout the above- 

described projectile deceleration and subsequent halt. However, its 

velocity will be reducing with elapsed time. Measured values were 100m/s 

over the initial 800us or so of motion, reducing to 39m/s over the next 

700ps. By this point, some 1600-1700us after impact, all of the reported 

experimental methods had either failed or become unacceptably inconsistent. 

It is, however, probable that spall product motion will continue until the 

attenuating stress field can no longer overcome the material inertia. 
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It should be recognised that the above is no more than an approximate 

scenario of events. Until significantly more trials are performed this 

assessment should be considered as nothing more than a very tentative 

hypothesis. It should be used only to define the most useful potential 

areas for further experimentation and perhaps the appropriate time 

intervals for these areas. 
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Estimated Average Velocity (m/s) 

Specimen Circumferential Propagation Spall Product 

Upper Section Lower Section Upper Section Lower Section 

RP1 
25.3(f4-f9*) 

27.5(f ii-f16) 

42.9(f4- f9) 

34.1(f11-f16) 

95.2(f4-f10) 

46.2 (fll-f16) 

130 (f4-flO) 

-- 

RP2 
56.2(f4-flO) 

33.7(fll-f19) 

73.0(f4-flO) 

-- 

102.1(f4-flO) 

31.6(fll-f19) 

101.2(f4-flO) 

-- 

RP3 27.5(f3- f8) 33.0(f3- f5) -- 119 (f3- f9) 

Plasticine 18.5(f2- f6) 22.7(f2- f6) 121.2(f2- f5) 198.9(f2- f4) 

* Figures in brackets indicate frame numbers over which velocities were 
assessed. 

Table 5.1 Estimated average velocities for circumferential material movement 
on the target surface and spall product front. 



Component 

Mortar Fibre Content 

Mix OPC 1.0 1.0 
Design 
(ratio by Free Water 0.55 0.55 
weight) 

10mm single size - 3.0 
limestone 

Zone 2 limestone 3.0 3.0 
sand 

% melt extract fibre by concrete wt. - 6.7 

Aggregate limestone - 1.1 

m/c (% dry mass) sand 5.5 5.2 

Table 5.2 Details of mixes for mortar/fibre concrete composite targets. 



Specimen 
Number 

Entry Crater 
True Volume 
(mm3 X 103) 

Penetration 
Path Length 

(mm) 
Remarks 

1A 86.7 177 Perforation 

2A 122.6 73 

3A 64.6 137 Perforation 

1B 172.7 33 Ricochet 

2B 38.9 131 Perforation 

3B 92.8 114 

1C 34.0 106 Fractured core 

2C 14.3 132 Perforation 

3C 33.8 131 Perforation 

a) Individual test results 

Specimen Mortar Fibre Concrete Mean True Mean 
Type Thickness Thickness Crater Volume Penetration 

(mm) (mm) (mm3 x 103) Path Length 
(mm) 

A 25 100 91.3 129 

B 50 75 101.4 122* 

C 75 50 27.4 123 

Specimen 1B ignored 

b) Summary of results 

Table 5.3 Results of impact tests on mortar/fibre concrete 
composite targets. 



Component 

Plain Fibre 
Mortar Concrete Concrete 

Mix OPC 1.0 1.0 1.0 
Design 
(ratio by Free Water 0.5 0.5 0.5 
weight) 

10mm single size - 1.33 1.33 
river gravel 

Zone 2 limestone 3.0 2.67 2.67 
sand 

is melt extract fibre (25mm x 0.3mmo) - - 2.5 
by concrete weight 

Aggregate river gravel 1.79 1.79 1.79 

m/c (% dry mass) sand 1.80 1.80 1.80 

Compressive Strength (N/mm2) 41.5 41.9 43.3 

Density (kg/m3) 2226 2307 2345 

Table 5.4 Details of mixes and material properties for mortar/plain 
concrete/fibre concrete composite targets. 



Specimen Number Age at testing 
(days) 

Penetration 
Path Length 

(mm) 

Mean 
Penetration 
Path Length 

(mm) 

Depth into 
Second Material 

(mm) 

PC/FC/1 9/7 110 ) 47 

PC/FC/2 9/7 37 ) 63 0 

PC/FC/3 9/7 41 ) 0 

M/FC/1 8/7 75 ) 
) 

13 

M/FC/2 8/7 108 ) 87 45 

M/FC/3 8/7 83 ) 20 

M/PC/1 7/8 75 ) 13 

M/PC/2 7/8 102 ) 94 0 

M/PC/3 7/8 106 ) 42 

Table 5.5 Summary of results of impact test on mortar (M) /plain concrete 
(PC)/fibre concrete (FC) composite targets. 
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Figure 5.1 General Arrangement of Illumination for High Speed 
Rotating Prism Camera Tests. View From Camera. 
(Camera "window" shown dotted) 
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Figure 5.2 Firing Initiation System Used for High Speed 
Rotating Prism Camera Tests 
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Figure 5.3 Typical photographic sequence obtained 
from High Speed Rotating Prism Camera 

tests (Interframe time = 914s - Test RP1) 
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Figure 5.4 "Contours" Produced for Specimen RP1 showing 
Material Motion - Frames 1 to 10 
(Interframe time 91µs) 

16 
13 

11 

100 mm 

W 

L1. 

I- 
v 
Q 
a 

F- ui 
LV 

1ý 

Figure 5.5 "Contours" Produced for Specimen RP1 
Showing Material Motion - Frames 11 to 16 
(Interframe time 91µs) 
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Figure 5.6 "Contours" Produced for Specimen RP2 Showing 
Material Motion - Frames 1 to 10 
(Interframe time 784s) 
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Figure 5.7 "Contours" Produced for Specimen RP2 showing 
Material Motion - Frames 11 to 19 
(Interframe time 78µs) 
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Figure 5.8 "Contours" Produced for Specimen RP3 Showing 
Material Motion - Frames 1 to 9 
(Interframe time 924s) 
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Figure 5.9 "Contours" Produced for Plasticine Specimen 
Showing Material Motion - Frames 1 to 13 
(Interframe time 884s) 
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Figure 5.12 Cut-away section of Plasticine Target 

Figure 5.13 Plasticine Target after impact 
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Figure 5.16 Wax specimen sectioning - second stage 

Figure 5.17 Wax specimen sectioning - final stage 



Figure 5.18 Projectile after penetration of mortar target 

FRONT FACE - MORTAR COMPONENT -REAR FACE 
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Figure 5.19 Sketches showing post-impact damage M/Fc/1 
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Figure 5.20 Sketches Showing Post-Impact Damage M/FC/2 

FRONT FACE - MORTAR COMPONENT - REAR FACE 

FRONT FACE - FIBRE CONCRETE COMPONENT - REAR FACE 

Figure 5.21 Sketches Showing Post-Impact Damage M/FC/3 
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Figure 5.22 Sketches Showing Post-Impact Damage 
M/PC/1 
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Figure 5.23 Sketches Showing Post-Impact Damage 
M/PC/2 
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Figure 5.24 Sketches Showing Post-Impact Damage 
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Figure 5.25 Sketches Showing Post-Impact Damage 
PC/FC/1 
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Figure 5.26 Sketches Showing Post-Impact Damage 
PC/FC/2 
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Figure 5.27 Sketches Showing Post-Impact Damage 
PC/FC/3 
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Figure 5.28 General arrangement of Layered Steel 
Plates in Concrete Target 

Figure 5.29 Initial three 12mm mild steel plates 
after impact 
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Figure 5.30 Detail of uppermost 12mm mild steel plate 
and recovered guilding metal jacket 

,tCý 
ýiý 

j 

... 

'1 

)I. f{ä' Ät 3 

tk 
eýtýdrý txr 

'S "ýý 

. 

ý4ý x 
i>'t 

1 

ýý 

Figure 5.31 Sectioned cylindrical mild steel target 
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Figure 5.32 Cylindrical mild steel target 
after oblique impact 
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Figure 5.33 Velocity Through Concrete - Detector Circuit 
Progressive Resistance Breakdown 
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pigure 5.34 General Arrangement for Measurement of Projectile 
Deceleration Within Plain Concrete Targets 
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SCALE 1: 2 

Figure 5.36 Cross-Section of Core taken after Velocity 
Retardation Test V1 
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DIRECTION 
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Figure 5.38 Cross-Section of Core taken after Velocity 
Retardation Test V2 
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Figure 5.39 Single Detector Capacitance Breakdown Circuit 
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Figure 5.41 Cross-Section of core taken after Velocity 
Retardation Test V4 
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Figure 5.47 Cross-section of Kevlar-29 reinforced concrete 
specimen showing gross projectile deviation 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

6.1 Conclusions 

6.1.1 Fibre Reinforced Concrete 

General 

1. Under impact from a 7.62mm armour piercing projectile, a 450mm x 450mm 

x 125mm thickness fibre concrete specimen held in a rigid frame is 

sufficiently large to enable the local damage characteristics to be 

separated from global effects such as gross cracking and target break-up. 

2. An empirical study has been carried out by considering the effects of a 

single 7.62mm armour piercing projectile impacting standard sized fibre 

concrete targets of various material types. Whilst, given the use of a 

single velocity, it has not been possible to generate a general theorem for 

impact, information has been obtained regarding the effect of several fibre 

types on both the penetration resistance and the front face damage 

resistance of several concrete types. As a consequence of the very large 

number of potential material variables examined and the variability of 

results observed, guidelines only can be drawn from this work; the future 

development of a comprehensive relationship may eventually be possible by 

extrapolation and further specific experimentation. 

Pro_ ectile Penetration Resistance 

3. For concretes incorporating one of three 10mm single size aggregates; 

limestone, basalt or river gravel, the quantity of included fibre, to the 

practical limit of mixing, has no influence upon the measured actual 

penetration path length. 

4. On the basis of predicted penetration path lengths at the 99% 

confidence level, suggested thickness of fibre reinforced concrete to 

prevent perforation and backface scabbing are; limestone concretes - 115mm, 
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basalt and river gravel concretes - 130mm. The former value is less 

because of the greater consistency of results noted for limestone based 

concretes. 

Front Spall Resistance 

5. Addition of between 2.5% and 5.0% steel fibre by concrete weight 

significantly reduces spall crater volume. At the higher concentration 

concretes containing melt extract or Duoform steel fibres may perform 

slightly better than those containing drawn steel (smooth circular) fibres 

of an equal aspect ratio. Further, such concretes cast with limestone or 

basalt coarse aggregate experience slightly less spalling than those 

incorporating river gravel aggregate. 

6 . 1.2 Impact and Penetration Mechanisms 

6. Initial impact damage of concrete targets is generally masked by the 

subsequent cracking and spalling induced by the changing stress field. 

That is, post-event observation is not a valid way to assess the immediate 

first impact damage. One of two different mechanisms appears normally 

responsible for the observable target damage. In the first, the projectile 

enters the target and begins to move the surrounding material locally by 

comminution and lateral shear displacement. At this stage, the penetrator 

is turned and a "ricochet" with no subsequent burrow formation occurs. The 

second, more usual and more complex situation, is a combination of an 

identical local shearing ("bursting") and comminution phase, but with 

burrow formation as the penetrator travels deep enough for sufficient 

target shear resistance to be generated, with consequential stripping of 

projectile coverings. In both cases, the earliest shear indications are 

destroyed by the subsequent specimen motion (caused by reflected tensile 

stress waves from the rear target-air interface) generating uplift from the 

internal crater-air interfaces. 

7. Tentative results indicate that a 15-20% velocity reduction may be 

expected within the first 20mm of penetration of a concrete target by a 
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7.62mm armour-piercing projectile. The subsequent stripping of the gilding 

metal jacket of the projectile occurs with only little corresponding 

reduction in velocity. However, the induced deviation causes (or possibly 

is generated by) increased deceleration. The extent of this deviation is 

likely to be significant in a concrete target; as a consequence, actual 

projectile path length, rather than orthogonal depth of penetration, should 

be used as a damage parameter. 

8. Concrete targets impacted by a 7.62mm armour-piercing projectile 

generated a mean rate of propagation of the surface circumferential motion 

of 39m/s. The mean spall product velocity showed a significant reduction 

with time after impact, from 110m/s over the initial 800ps to 39m/s for the 

next 700us period. 

9. The most efficient way to defeat a penetrating 7.62mm AP projectile is 

to induce instability to as great a degree as soon as possible after 

impact. Concrete targets, containing coarse aggregate and in particular 

"hard" river gravel, generated this result with the greatest frequency. 

Mortar targets presented little resistance to penetration at 125mm 

thickness; the penetration path was most likely to be a straight line 

continuation of the flight path. High proportions of fibres in a concrete 

mix, causing a voided composite with inadequate structural performance, 

were also capable of causing gross projectile deviation and instability, 

though such a response was not predictable. Reduced front face spalling 

was a further advantage as a consequence of stress wave damping and 

disruption. 
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6.2 Recommendations for Future Work 

6.2.1 Fibre Reinforced Concrete 

1. Since fibre content has little effect on penetration resistance, any 

further assessment of fibre reinforced concretes should concentrate 

on reduction of front face spall damage and, possibly, rear face 

scabbing. The effects of repeated impact should be examined. 

2. A controlled study of the influence of concrete water content on 

impact damage should be undertaken to assess the acceptability of 

using the "dry mix" spraying process. 

3. Since stress wave transmission and projectile stability are 

influenced by non-homogeneities, the performance of fibre reinforced 

concretes which contain microcracks, air voids or some other "soft" 

inclusions should be studied. 

4. The performance of targets produced by a spraying process should be 

examined to see if stratification promoted by spraying affects 

performance under impact and penetration. 

5, Means of applying fibre reinforced concretes with aggregate particles 

larger than 10mm should be examined, since large particles appear to 

have a beneficial effect on penetration resistance. 

6. The resistance of fibre reinforced concretes to small explosive 

charges should be examined. 

7. The data produced in this study should be assessed with regard to 

existing predictive equations for projectile penetration. 

6.2.2 Impact and Penetration Mechanisms 

S. The techniques initiated in this study to examine the impact and 

penetration events should be further developed. 

9. Ultra high speed and high speed photography should be used to assess 

the energy transferred to spa11 products. 
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10. The graphite detector technique which was developed during this study 

should be used for a more detailed examination of front face 

spalling, including an examination of the target parameters which 

influence spalling. 

11. The deceleration of the projectile within the material should be 

studied in more detail. 

12. Stress wave propagation and attenuation within an impacted material 

should be further investigated. 

13. Methods of inducing projectile instability, both before and during 

penetration, should be further explored. 
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Proc. Symposium on the Interaction of Non-Nuclear Munitions with 
Structures, Colorado Springs, Vol. 1, pp. 17-22 (1983). 
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APPT'MfTY TT 

MANUFACTURERS AND SUPPLIERS OF 

MATERIALS AND EQUIPMENT 

II. 1 Materials 

II. 1.1 Concrete Materials 

Ordinary Portland Cement Blue Circle Ltd 
Hope Cement Works 
Hope 
Derbyshire 

Zone 2 limestone 'sand 

10mm single size limestone 

10mm single size basalt 

10mm single size river gravel 

11.1.2 Fibres 

Tarmac Roadstone Ltd 
Dale Road 
Matlock 
Derbyshire 
DE4 3PL 

Tarmac Roadstone Ltd 
Dale Road 
Matlock 
Derbyshire 
DE4 3PL 

Tarmac Roadstone Ltd 
Dale Road 
Matlock 
Derbyshire 
DE4 3PL 

ARC Eastern 
(Hemington Quarry) 

Ashby Road 
Shepshed 
Nr Loughborough 
Leicestershire 
LE12 9BU 

All of the following were received from MVEE (Christchurch); 

38 x 0.3mm diameter mild steel circular section 
27 x 1.0mm diameter mild steel circular section 
35 x O. mm diameter melt extract carbon steel 
30 x 0.3mm diameter cold-drawn steel circular section 

Melt extract carbon steel (ME) 

. 25 x 0.3mm diameter 
Fibre Technology 
Winsey Way 
Somercotes 
Derbyshire 
D55 4LS 
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Circular drawn brass-coated indented 

carbon steel-Duoform -25 x 0.25mm 

diameter (DUO) 

Circular drawn brass'coated carbon 
steel - 25 x 0.25 ma diameter (DRA) 

13mm and 37mm length Kevlar. 29 (Type 
970) polyamide (13K and 37K) 

37mm length FORTA FIBRE lattice- 

bundled Type w polypropylene (POL) 

11.2 Equi ment 

11.2.1 Specimen Production 

Creteangle type ME pan mixer 
(capacity 0.113M3) 

l00mm concrete cube moulds and 

siphon can equipment 

gango 950 electric percussion 
hammer 

Concrete coring drill and 100mm 

diameter diamond-tipped bit 

Concrete saw and fibre blades 

National Standard Co Ltd 
P0 Box 23 
Stourport Road 
Kidderminster 
DY11 7QX 

National Standard Co Ltd 
P0 Box 23 
Stourport Road 
Kidderminster 
DY11 7QX 

Du Pont de Nemours International S. A. 
50-52, Route des Acacias 
ch-1211 
Geneva 24 
Switzerland 

Forta Fibre Inc. 
World Agents 
147 Broad Street 
Grove City 
Penna 16127 
USA 

Edward Benton & Co Ltd 
Creteangle Works 
Brook Lane 
Ferring 
Worthing 
West Sussex 
BN12 5LP 

KAYEX-CAPCO 
P0 Box 19 
Elton Park Works 
Hadleigh Road 
Ipswich 
Suffolk 
IP2 OHY 

Robson Power Tools 
409 Petre Street 
Sheffield 
S4 8LL 

ELE International Ltd 
Eastman Way 
Hemel Hempstead 
Herts 
HP2 7HB 

Clipper Manufacturing Co 
Barkby Road 
Leicester 

163 



125mm stroke length Linear Variable Novatech Measurements Ltd 
Displacement Transducer (LVDT) 83 Castleham Road 

St Leonards on Sea 
East Sussex 
TN38 9NT 

11.2.2 Ballistics Equipment 

7.62mm A. P. and ball ammunition Conjay Arms Co Ltd 
118 Craven Park Road 
London 
NW1D 8QD 

No 3 pressure housing and 7.62mm Woolwich Arsenal 

proof barrel via MVEE 
Barrack Road 
Christchurch 

Replacement 7.62mm proof barrel QAD (Ordnance) 
SA & SAA Q. T. C 
Cold Meece 
Nr Stone 
Staffordshire 
ST15 OQR 

Firing Solenoid Phillips Control (Sales) Ltd 
Church Path 
Lynchford Road 
Farnborough 
Hants 

Type E30-2 Constant Power Supply Farnell Instruments Ltd 
Sandbeck Way 
Wetherby 
LS22 4DH 

50mm focal length biconvex lenses Griffin & George 
Bishop Meadow Road 
Loughborough 
Leicestershire 
LE11 ORG 

Photodiode Circuitry RS components Ltd 
P0 Box 99 
Corby 
Northants 
NN17 9RS 

Racal-Dana 9903 and 9904 Racal-Dana Instruments Ltd 
Electronic timers Duke Street 

Windsor 
Berkshire 
SL4 1SB 

iz. 2.3 Computing and Data Acquisition 

8-bit Petset1 Analogue-Digital 
converter 

Connecticut Microcomputer Inc 
34 Del Mar Drive 
Brookfield 
CT 06804 
USA. 
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Commodore 3032-32K Microcomputer 
Commodore 3022 Printer 
Computhink 400K dual disk drive 

Hewlett Packard 7470A Plotter 

Photec IV 16mm high speed 
rotating prism camera 

Barr and Stroud ultra-high speed 
rotating mirror camera 

Xenon electronic flash unit 

lkW Cine Lights 

Gould OS4000 storage oscilloscope 
Gould OS4020 storage oscilloscope 

Biomation four channel transient 
recorder 

ALMS-10 electrical resistance strain 

gauges 

11.3 Sundries 

Shell mould release oil 

Capacitors, Resistors, Switches, 
Connectors, Silver-loaded conductive 
paint 

10mm perspex sheet 
12mm perspex sheet 
0.25mm acetate sheet 

Compressed Nitrogen 

Datron Micro Centre 
2 Abbeydale Road 
Sheffield 7 

Hadland Photonics Ltd 
Newhouse Laboratories 
Newhouse Road 
Bovingdon 
Hemel Hempstead 
Hertfordshire 
HP3 ÖEL 

Hadland Photonics Ltd 
(as above) 

Hadland Photonics Ltd 
(as above) 

Ron Harrison Photographic 
77-79 London Road 
Sheffield 2 

Gould Advance Ltd 
Roebuck Road 
Hainault 
Essex 
1G6 3UE 

Gould Advance Ltd 
(as above) 

Techni Measure Ltd 
Alexandra Buildings 
59 Alcester Road 
Studley 
Warwickshire 
B80 7NJ 

Shell Lubricants UK 
Manchester Lubricants Marketing Ce 
7 Oxford Road 
Manchester 

RS Components Ltd 
P0 Box 99 
Corby 
Northants 
NN17 9RS 

VT Plastics Ltd 
Shoreham Street 
Sheffield 
Si 4SR 

British Oxygen Co Ltd 
Bawtry Road 
Brinsworth 
Rotherham 
S60 5NT 
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Shim brass (0.001mm, O. ltpm, 0.25mm) 

Paraffin Wax 

Plasticine 

12mm mild steel plate 
75mm diameter mild steel section 

IMI Righton Ltd 
Tyler Street 
Sheffield 
S9 1GG 

J Preston Ltd 
Netherthorpe Road 
Sheffield 
S3 7EY 

Peter Pan Playthings 
Bretton Way 
Bretton 
Peterborough 
PE3 8YA 

Gardner Steel Ltd 
Clubmill Road 
Sheffield 
S6 2FH 

(1983) Ltd 
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APPENDIX III 

RELATIONSHIP BETWEEN FIBRE VOLUME, THEORETICAL 
FIBRE WEIGHT AND PRACTICAL FIBRE WEIGHT 

In theoretical treatments of fibre-reinforced composites, the 

included fibre is generally defined in terms of Vf, the volume of fibre 

present in the composite. This is not an appropriate quantity to allow 

the batching and manufacture of the material, for which a weight of fibre 

per weight of composite is more useful. However, two alternative 

treatments exist to relate fibre weight to a particular fibre volume; 

i) In theoretical analysis; 

Wf = 
Weight of fibre 

x 100 percent Weight of matrix + weight of fibre 
Vfpf 

x 100% 
... Eq. AIII. 1 Wf = Vmpm + VfPf 

Where Wf = 'theoretical' fibre weight 

V= Volume 

p= Density 

f= Fibre 

m= matrix 

ii) In practical work 

Wo _ 
Weight of fibre x 100% 

f Weight of matrix 

Wl _ 
Vfpf 

x 100% 
... Eq. AIII. 2 

f Vmpm 

Where W'f = 'practical''fibre weight 

All other symbols are as above 

in this study, the weight of fibre has, in all cases, been calculated as a 

percentage using equation AIII. 2. 
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APPENDIX IV 

COMPUTER PROGRAME FOR CRATER VOLUME ANALYSIS 

VALUES FROM 

LINEAR VARIABLE 
DISPLACEMENT 

TRANSDUCER 

ANALOGUE VOLTAGE 
MEASUREMENTS 
CONVERTED TO 
DIGITAL FORM 

DIGITAL SIGNALS 
INPUT TO 

MICROCOMPUTER 

CONVERTED TO 
DISPLACEMENT, 

STORED AS THREE 
IMENSIONAL CO-ORDINATES 

STORAGE ON/ 
RETRIEVAL 

FROM FLOPPY DISC 
SYSTEM 

AREA OF EACH CROSS- 
SECTION IN LATITUDINAL 

DIRECTION AND TOTAL 
VOLUME (V1) CALCULATED 

AREA OF EACH CROSS- 
SEC, TION IN LONGITUDINAL 

DIRECTION AND TOTAL 
VOLUME (V2) CALCULATED 

V1 COMPARED WITH 
V2 AS DATA INPUT 

CHECK 

DISPLAY OF 

CROSS-SECTIONS MAUNIPULATION 
OF 

RESULTS 

HARD COPY OF 
SELECTED CROSS-SECTIONS 

DISPLAY OF CONTOURS HARD COPY OF 
CONTOURS 

Flow Chart for Manipulation of Crater Data 
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10 REM : RATER VOLUME ANALYSIS 11 
20 PR I t"iT''DZI MENU of 

. 30 PRINT": XIl1t"1ECTIOU AND MEASUREMENT DETRILS.. ... Cog 
40 PRINT" : I'ATA STORAGE/'DATA RETRIEVAL ............ D" 
50 F'R I FIT" a0 CALCULATE CRATER AREAS AND VOLUME... Vol 
50 PRIt1T": PTO DISPLAY SELECTED CRATER PROFILES .... T" 
70 PR I 11T" r? TÜ PRINT SELECTED CRATER PROFILES ... " .. P" 
80 F'RIHT": TO FINISH FOR IOW...... ."............... F" 
90 GETC :I FC$=" "THEI"490 
100 I FC$= ̀`C ̀̀ THEN GO i: 100 : 001020 
110 I FC ="D"THEN GOSUFP3C100 : 00TO20 
120 I FC$=" 5"'THEN GOSUF: 4000 : GfTCi2Q 
130 IFC$="T"THEN GOSUB5000: 00TC20 
140 "I FC: 1"=° F"THEN GOS, UB6CIOO : 00T020 
150 I FC$0'' F"THEN2O 
160 END 
1000 REM CONNECTION &: MEA'SUREMEHT DETAILS 
1010 PRItIT"090 INPUT THE DATA VIA THE KE'TF: OAF'D..... K" 
1020 PRINT" NTO INPUT DATA VIA THE A/D CONVERTER.... C" 
1030 flETTh .: IF B$=" "THEN 1 c130 
1040 I FD$="t; "THEN 1060 
1050 IFB<>"C"THEN1010 
1055 GOT01915 
1060 PRINT": ]AF: Attc DUCER STROKE LENGTH 125MM ? <Y/N) " 
1070 GETA$: IF A: 1`=" "THEt"11070 
1080 I FA: 1= "'T "THEN 1110 
1090 IFA <>``N"THEH1Üh0 
1100 COT01120 
1110 SL=125 :r fTU 1150 
1120 F'RIt"1T"naYF'E IN THE STROKE LENGTH IN till" 
1130 I t"iPUTSL:: 

U I WO PRINT" N 
1150 PRINT" º2_TR'i iKE LEtti_TH=®"; SLr "MM" 
1160 REM NEXT SEGMENT DEFINES THE GRID SPACING AND SIZE 
1170 PRINT'' N of 
1180 PRINT": 2_: ELECT REQUIRED PROFILE SPACIttr, " 
1190 F'R I NT" :. NM 10MM 251111 50MM 
1200 I NF'UTA% 
1210 F'RI t1T": 7: 2_ ELECT THE RELEVANT GRID SIZE AND PRESS 
1220 F'RINNT": I THE APPROPRIATE KE'T BELOW 
1230 FR I NT" :a 
1240 PRINT" : 1: ED GRID ............................ " .. R" 
1250 PRINT" *LACK GRID ............................. pie 
1260 PRINT" WHITE GRID ......... :........... 

. """"... WII 
1270 GETD: 1": IFD$=""THEN 1270 
1280 IFDA O''THEN1? 20 
1220 I FD$="E"THEN 1370 
1300 I FI': 0'W"THEN1210 
1310 00T01420 
1320 X= 100/Az : IFA':: 5THEHX;: =X +1 
1330 PRINT" :? ARE THE PARAMETERS CORRECT %' <Y M)'' I )'' 
1340 GETE:: I FEi =" "THEt"a 1340 
1350 I FE$="t1"THEtI1 UE0 
1360 I'I C<X%, X%) : DIt'lt, (XJX;. ' : CCT01470 
1370 'X%= 150/A%: IFA.: 5THEHxi: =X +1 
1380 PRINT" : : IRE THE PARAt1ETERS CORRECT ? ('ritt)" 
1390 GETE$: IFE: 1`=""THEM139O 
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1400 
1410 
1420 
1430 
1440 
1450 
1460 
1470 
1480 
1490 
1500 
1510 
1520 
1530 
1540r1550 

1560 
1570 
15101 
1590 
1600 
1610 
1620 
1630 
1640 
16; 0 
1660 
1670 
1680 
1690 
1700 
1710 
1720 
1730 
1740 
1750 
1760 
1770 
1780 
1790 
1800 
1810 
1820 
1r ýy ývrJ 

1 840 
1850 
1860 
1870 
1880 
1890 
1900 
1910 
1915 
1920 
1930 
1940 
1950 
1960 
197© 
1980 

IFES="H "THEN 1060 
DIt-1C<X::, X:: ' : DIh1D;;; r:, X) 00T0147 0 
X,: -ct_ 0/A :I FH:: D5THENX:: -`. ".;: + 1 
PRINT": RE THE PARAMETERS CORRECT ? ('Ml)" 
f ETE$ :I FE: t-=" "THEN 1440 
I FE$="tV"THEt11060 
DIMC( , X%, X1%) : DIMI'(X ", X%) 
REM NEXT SEGMENT DEFINES GRADIENT FM D 
PRIt1T": 7C: PLACE THE PROBE OH THE 'WR I P: I SURFAC: E 
PRINT" N TO GIVE ZERO DISPLACEMENT OF THE PRÜDE 
PRINT 6.1 PRINT" ; INPUT THE CORRES, Pi iNID I NO VOLTAGE 
REM THIS VOLTAGE IS THE INTERCEPT AT 
I UPLITC : C= (I HT < C+50+0. 
PRINT11.. 11 EXTEND 
PRINT" :1 

INTERCEPT CIF THE LI IIEFIR I 
11 

DISPLACEMENT =0 
5))/50 

THE 'F'F.: C'EE TO CI'; 'E"LL'r: "t1t14t1H; yIt1Ut17 DISPLHL: E1"IEt1T 

PRINT N INPUT THE CORRESPONDING VOLTAGE 11 
INPUT "E 
t'1=(VE-C)/=L : 
PPItlT"N ARE THE PRIIBcE PARAMETERS CORRECT? ('T M)" 
r ETFt :IF F$=" "THEt"116OO 
IFF$="ti"THEN14E: 0 
PRINT"00HE F'F: ÜEE SHOULD HOW BE PLACED IN THE " 
PRINT" MOP LEFT-HAND CORNER OF THE GRID H: PRINT 
PRINT" : LJG ARK FROM LEFT TO RIGHT MINL'T, :f ih1E ROW of 
PRINT": I AT A TIME, INPUTTING THE VOLTAGE It 
F'F; It1T": I'110 MATTER IJHAT SPACING IS USED. =tLUA'TS,: l 
PRINT": l BEGIN ARID END ON THE GRID EDGE W 

POKE53 120 
FOR K=1 TOX' 
I 1. IPUTP :IF P=OTHENP=C 
POKE( 3O96+K), I1JT(P45O+O. 5) : H=PEEK(_c0976+K)/ : PR111TH 
T1=IHT(K/10100) 
T2=INT(1(/1O0)-T1*10 
T3=IHT(t(/10)-T1 *1 O0-T2 : 10 
T4=ItlT(K); -T1+1000-T2* 100-T3#1O 
FGKE332 0, Ti+1 r6: POKE33«1. T2+1 ZG: FOKE33272, T3+176 : POKE332 3, T4+176 FIEXTK 
PRIHT"': 1 IJ DISPLRCEIIEHT(MN) " 
FORI=1TO % 
FORD=1TOX 
D( I, J)=((PEEK(30976+J+(I-1) XX)/50)-C>iP1 
PRINT" Hill nD(Ilj)n 
t 1EXTJ ' 
IJEXTI 
FR I t_1T" : 7I S THE DATA TO BE STORED ON DI ^C? (1 't"t) 
GETGT'1FGT=""IHbi11LrO 
I FGt="11"THEN GOTE 1910 
IFGA<>"Y" THEN 1860 
GOSUB3000 
RETURN 
REM NEXT SEGMENT ALLOWS DIRECT INPUT 
FR I t1T": i: ITRAt lSDUCER STROKE LENGTH 1251-1111 %' 
GETA$ : IF A$=" "THEt-1193ß 
IFAt="'r"'THEN 197G 
1 FAtO"11"THEN 1920 
001019 0 
8L'. =125 ! GGT02010 
PRIHT', TRITYPE IN THE STROKE LENGTH IN P1Ii" 

FROM AN A/D COtl'. 'ERTEF 
«'Aa> 11 
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1990 It-lF'UTSL: ': 
2000 PP Ii 1T" , "d 
2010 PRILIT": 23TRC KE LENGTH=R"; SL:: "MM" 
2020 REM NEXT SEGMENT DEFINES THE GRID SPACING AND SIZE 
2030 PRINT' '"N to 
2040 PRINT" : ELECT REQUIRED PROFILE SPACING" 
2050 FRII'JT" 5M1'1 10tH 251111 501111 " 
2060 I NPUTA; ': 
2070 F'F'IHT": ]: SELECT THE RELEVANT GRIP SIZE AND PRESS 
2080 PRI tNT" CI THE APPROPRIATE KEY FELON " 
2090 PRINT": ] 
2100 F'F I t1T" EIi GRID........... """"".. ............. R" 
2110 PRINT" OLACK GRID ............................. R" 
2120 F'F.. I tJT" : i, 1H I TE GRID ....... ............. .......: " l"J" 
2130 rETI$: IFI'$=""THEM 2130 
2140 IFI$="F: "THEt'1 '1F 
2150 IFI'$="f, "THEN2230 
2160 I FD$<">"l-1"THEI-1 0770 
2170 GOT022=: 0 
2180 X%=100/A, '.: IFA;:: 5THENX%=X.: +1 
2190 PRINT" N1RE THE PARAMETERS CORRECT ? (Y/H)" 
2200 GETE$ :I FE: =" "THEN22AG 
2210 I FE$="tt"THEtl1 20 

rý ý. J"J tJ"Jr rý"J" +1ý1ýý 22: _0 Iilt'U_ý: X%, ý"ýý... ': DIt'ý(1, ý%, X%): GOTn: 2C0 
2c: 30 X%=1 50,, A%" IFA%? 5THEN Xr. =X; -. '+1 
2240 PRINT" *RE THE PARAMETERS CORRECT ? (YIN)'' 
2250 GETE$ :I FE: t=" "THEM2'250 
2260 I FE ="H"THEU 1920 

'ý -t ýJ"J fur 
2270 PIt"1CC>:. 

_X;: 
)' LI11D(X. ý. r. X) " GOT02330 

r. 80 X "J- cEt'ir'ýýý. 
-rti 

ý", ý_X cL%= ciG_týý"ýr%ýIý;: ý}"_ý r: + 

2290 PRINT". 1HF: E THE PARAMETERS CORRECT'? <Y/N)II 
2300 GETE: : IFE$=""THEU2 0G 
2310 I FE$="U"THEFt 1920 
2320 DIMC(X;:. X%) : DIF1D{;:::,:; X) 
2330 PÜI(E59459,0 
2340 POKE59460PEEK(594E8)AtlI'254 
2350 Q=F'EEK (5945 7) : i! =0 
2360 F'R I NT"i: P'LACE THE PROBE 011 GRID SURFACE TO. GIVE " 
2370 PRINT" .1 ZERO DISPLACEMENT OF THE PROBE 
2380 PRINT 
2390 PRINT" 1 PRESS THE ELLE BUTTON ON THE PROBE FOX 
2400 REM THIS IS THE DIGITAL VALUE AT DISPLACEMENT=C+ 
2410 IF (PEEK (594 r9) AUD2 =0THEt'1241 G 
2420 C=PEEK (5945 t) : PRINT" X="C 
2430 T=TI 
2440 I FT I ZT+30THEt 1244 C 
2450 Q*EEt'09457; :C 
2460 PRINT" EXTEND THE PROBE TO GIVE "SLE''Ili 
2470 F'RI NT" :] (f1AXI MUM) DISPLACEMENT 
2480 PRINT" S F'F: E: =S THE BLUE EIJTTOOtt OH THE PROBE BOX 
2490 IF< PEEK (594 E9) AND2) =GTHEN249ß 
2500 VE=PEEK(59457) : RIHT": lv'E="VE 
2510 T=TI 
2520 I FT I CT+30THEt'12520 
2530 C1=PEEK ( 5: =+47) : 0=a 
2540 t"1= C'V'E-C) /SL:: 
2550 PRINT": a ARE THE PROBE PARAMETERS CORRECT? ('T'/tt)"" 
2560 GETF$ :IF F$=" "THEt12560 
2570 I FF: t-="ta"THEt12J330 
2580 FRI NT": 7: ITHE PROBE SHOULD 1-401-1 BE PLACED IN THE 11 
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25 0 

2610 
26X1 

1640 
2650 
2660 

2670 
2680 
1690 
ý7G1fj 
2710 
2720 
2730 
2743 
2750 
2760 
2770 
2780 
2790 
2800 
2810 
282r0 
2830 

2840 
2850 
2860 
2870 
2880 
289o 
2900 

2910 
2920 
3j 

JC 

3020 
3030 
301401 
053 
'060 r 

, 
070 

3190 
3110 
123 

3130 
3140 3150 
3160 
3170 
318© 
3190 
5200 
321© 
3220 
3230 

3240 
'210 

P'F: I1IT" : TTOP LEFT-HAND C URl IER OF THE GRIP ": PRINT 
FF: I HT" : d"IORk FROM LEFT TO RIGHT 4_'t ILY: THE F: ntd It FRItlT". 7 AT A TIME. -PRE : _; Itli_ THE F:! JTTI111 
PRINT' EF: IIJT" i . IIC, HATTER I"IHAT SPACIII' 
PR II IT :I tEo Ii 181111 Eilt' Cull 711E GRIP 
Fr_ýICEý3,120 
SCOR I=1 TOX 
FC'RJ= I TOX 
I F(F'EEI( (59469) At"lD2 ) =OTHEI1267o 
D( I, : 1)=F"EEI'(59457) : F"R IIITC( I, J) 
T=T I 
I FT I (T+30THE112 00 
Q=PEEL; <59457:: Q=0 

.:., 
T1=IIIT(T/1000) 
T2=IIlT(T/1@0)-Ti 4i0 
T3=1tlT(T/1O)-T1+1010-T2410 
T4=IIIT(T)-T! i0 O-Tz_+iO0-T jo 

EACH TIME" 
IS UISEI,, 1L1lFi'T:.:, 
rr'oE iv' 

P1lKE333? ß, T 1+1 r6: F'C'KE ='3391 T2+ 7F KE"ß; ':: 3 .:. " T3 HEXTJ : 3. +lrö 
HEM 
F' F'II IT', : 7; ) f III ^P"LHt_ Eh1Et IT r hlt"1) 
F0RI=11! Ji< 
FCIF, J= i TorW% 
DUI J)=IIIT<(C: (i11j-C?, 'ý1+cß, 5) 
PF: I I IT" 11191 "J" 
I1E<TJ 
INEXTI 
FF; IHIT". 7Is THE DATA TO f: E STORED 
GETH: # :I FHt=" "THEI 2380 
I FHf="11"THEIIGOTO29 'O 
I FHx<: "'T "THE11287 0 

G SUB3000 
RETUF: tN 
REM DATA II IF'UT/DATA RETRIEVAL 
PRIIIT": 7ºI IS DATA TO EE STORED OR 
C"ETJ :I FJý-=" "THEI I A20 
I FJ#="L "THEI1? O5 G 
I FJl-="F, "THEH::: z5 A 
lit= of 
FRIiIT"; 7; a 
IIIPUTD1 
PRItIT" MSC 

�nct.. 11 

C11-i DISC? ('T H) 

RETRIE%. 'EU < /R)11 

GIVE THE 'L'ATA A flAt"1E 

%RIvE IIUIIE: ERj I 
II IF'1_ITD : PR I [IT: Fi II IT" ". DATE? 
tC'I'Ic1;, P, "IV", P, I$ 
KW#l 
tWDISk R: 
R STF,: # M :: b1II I SI:, S 
F: =STR M :: t"1DI sI: " E$ 
Fc'RI=iTOXX 
FCIRJ= i TOS,:: 
F '=STR CD(1,. 5)) : Il"1DI^k, k. 
} IEXTJ 
I UEXT I 
PR II IT" :a DATA 1101-1 STORED Cott Ii I sc 
ýCI, ISt: 
PR II IT" :I PRESS C. TO COI IT II II jE 
E; ETI- : IFt: #=tI"THE1I32 0 
RETUF: tN 
F: EM DATA RETRIEVAL SEGMEI1T 

CDRTE^" IttFIJTI FRItIT 

;I* 
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32'60 PRIFIT"; 7: TYPE IN I'ATAFILE NAME" 
3270 IHF'UTI'$: PF.: It1T 
3280 PRIllT". zUlISC DRIVE NUMBER? " 
329iß I IIF'UTIi: P'RI lIT 

3310 0IºISt .- I1, "R". D$, I$ 
33200 PR I t1TD$; "EE I t1i, RECOVERED", "DATE RECORDED"; 1$: P'R I NT 
3RU 18K.. R$: PR I FlTR': #- 
32- 40 IFU-0, " "THEMA : =VAL( R) : 0OT03: 60 
:; =: 5O GOT03 

30 

3260 RD I St%. R$: , XX= ti'AL (R$ ) 
370 PRItlT". "IN IJ IiISPLACEt'1EIIT(MM)" 

3_: 80 FORI=1TOXX 
3+390 

34 C1C1 
S41 G1 
34.01 
: i4 'Gt 

3440 
3450 

460 
3470 
34 E: 0 
3490 

, MIO 
40C1C1 
40110 
4020 
500101 
5110 
5020 

50_0 
5040 
JC1 jC) 

5016 C1 
j070 

J, 
-z-ý 

5100 
5110 
51c: 0 

J1_0 
5140 
5150 
5160 
`170 
51ß; c1 
5190 
5200 
5210 
5220 
5230 
5240 
5250 
5260 
5270 
52K1 

Mclo 

5310 

FORJ= i TO. XX 
$RDISF;, R$: D( 
PRINT" 
t1E(, TJ 
I EXT I 
PRIIIT".. 1_RID 
F'RItIT": RRF'H'T 
PRINT: PRINT: 

/ $CDISI% 
PRINT". "N PRESS C TO CONTINUE 
CETL : IFLT=THEta 490 
RETURN 
REM NEXT SEGMENT CALCULATE=. AREA OF 
IFA, %=5THEtd GOS IB1 OOOO : F; ETLtR'td 
GC'Sl IB 1143O1O : F: ETURN 
REM HEXT SEGMENT DISPLAYS PROFILES 

EACH PROFILE FIND TOTAL VOL 

AS REQUIRED 
PR ItIT": ] EVERY tITH PROFILE MAY BE DISPLAYED 
PR I NT 1$tý It-1 EITHER ROW OR COLUMN DIRECTION 
PRINT PRINT : PRINT" :7 DO YOU WISH TO RETURN TO 
r_: ETW :IF I1$=" "THEI-15040 
I FI'J. ="'T "THEN RETURN 
IF41 C "ta"THEN5CI3O 
PRIIIT"ON IF H= HUMBER OF PROFILES= 
FCIRI=1TO1ß 

IHTC� /I+. 57 
PRINT" 
HJEXTI 
PRINT: PRIt-JT" "d INPUT THE VALUE OF 1-1 REQUIRED 
ItIF'UTH: /. 
r =ItIT(X /tIý: +. 5) 

MENU? 'TYtJ , 11 

PRIt1T": 7: a EVERY "H;: "TH PROFILE IS TO IE DISPLAYED" 
PRINT" N THIS GIVES A TOTAL OF "C'! " EACH WAY is 
PRIt1T: PR: It1T PRINT": a ARE THE PROFILES TO BE DICE-PLAYED Iti 
PF' I t1T" r 8014 OR COLUI1t"19? R/C '" 
GETSº: 1 :IF; '$=" " THEN5 190 
IFX$="R"THEI15230 
IFXt<>"C, 'THEh1517 A 
rOT05470 
REM VDU PLOT, ROW DIRECTION 
FOR I =1 TCX :: STEPt-1;: 
PRItIT": 7: 1 PROFILE NUMBER "I", AREA='E(I) "1-11.2 to 
Ii1=0: PRIt1T: PRINT": ) MAGNIFICATION FACTOR? 
It1FUTM: PR II-IT": ]" 
FORL=0T024STEPI'l: FORJ=0TQ ? 
PO1(E3272S+4O+L+. J, 99: HE.; TJ : t1E`r; TL 
PRINTIIIT<5/t"i+. 5) "MM" : PRINNNT : PRIt1T: PRINIT: 
FRIt-ITI1lT(25/1'1+. 5)P RPRPR 

I, J)=VfiL(R$) 
1 

SPACItýý+=" sA : "t1t"1" * PRII"IT 
SIZE=" " ew. D'T "; X%" 

PRI14T": a DATA NOW RECOVERED 

"L7fI, J)11 
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5320 
53 

0 

$340 
5350 
53F- 
5370 
5380 JJ1ý 

5390 

5400 

5410 
5420 
5430 

5440 
5450 

5460 
5470 
5480 
5490 
5500 
5510 

5520 
5530 

5540 

5550 JJ"J. 
5560 
5570 
$580 
5 590 

5600 
5610 
5620 
5630 
5640 
5650 
5660 
5F? 4 
5680 
5690 
10000 

10010 
10020 
100 310 
10035 
10040 
10050 
10060 
10070 
10 00 
10090 
10100 
10110 
10120 
10130 
10140 
10150 
10160 
10170 
10180 
10190 

F'RI11TIIIT(5C1. t'1+. 5) : F'E'INT: F'F; It1T : PRINT: F'RIt-IT 
PRIt1TIHT(r5 1'1+. 5): F'R'INT: PRIf1T*PRII-IT: PRItNNT 
PR II-ITIHT (1010/1.1+. 5) : PRIt-IT: P'RItIT" 
FOF: J=1 TOXX 
YO= II IT ( M+D (I! J) /5+. 5) 
x8=ItIT(32 7 2_, +( 70 +ýý 40- GM -D1)+4 ? 
IF(::.. ' . 3r 2:: Or«v.. ' ".. ' r 2_"THEta5t. _0 IFItNT(YO 2)='TO/2THEtt'i 2=123 : G0TO5410 
T2=126 
PQt; Er; B, Y2 
P1=U1+1 
tIEXTJ 
GET'T IF'r$=""THEt-15440 
ttEXTI 
GOT05000 
REM NEXT SECTION DISPLAYS VARIOUS 
FC'RJ=1TOX': STEPtE 

PRESS C TO CONTINUE 91" 

PROFILES Its COLUMNS 

PRIt1T' PROFILE NUMBER "J ", AREAI="F{J) "t'1M'2" 
D1=O: PRINT: PRINT" V MAGNIFICATION FACTORY: IlIPUTH: F'RIt"1T": T' 
FORI=OTO24STEPtM1: FORL=0TQ3_? 
POKE32 28+40+ I +L :99: I IEXTL : NEXT I 
PRItITINT(5/P1+. 5) "MM" : PF.: INT: PRINT: PRItNT 
PRINTIUT125iM+. 5): F'RIt. fT: PR, INT: PRIHT: PRINT 
PRIIJTIt-IT(5 . "'M+. 5) : F'F'IHT: F'F'It-IT: PPIIIT: PPIIIT 
PRItITIt-1T(75/P1+. 5): F'F: INT: F'F; INT: F'F: IHT: PRINT 
FRItITIIJT(100/M+. 5) : PRINT: PRINT" 0 PRESS C TO r_: cflhTItNUE 
FOF: I=1TOX 
'Tci=ItlT(P1+D(I.. J)/5+. 5) 
XÜ=IFNT(3' 7 8+('TO+2)*4O-('X%-B1)+40/X%) 
I F%: -' 33728 R', ' 02728 CC 

IF IlIT( O/2)='rO/2THEII 1=123: GOT05640 
Y>126 
POKEXG, Y1 
D1=L1+1 
NEXT I 
GETZ: IFZ =""THEt156 0 
NEXTJ 
GOT05000 

REM AREA OF PROFILES AT 5MM SPACING 

REM # ROWS TAt Et1 FIRST # 
S=o: VR=O : Ii I ME (X;: ) 
FrOR I =1 TO. XX 
FC_'RJ=1 TOY� 
S=(D(I, 1)+D(I, X%))12 
L=; +D(I)J) 
FIEXTJ 
REM AREA OF ITH PROFILE=E(I) 
Eu I)=A; fS 
NEXTI 
PRINT". "WIRE PROFILE AREAS 
GETftt :I FU=" "THEFT 10 110 
IFP1 ="4"THEN10150 
IFPt-O"11"THENN 10100 
GOTO 
PRINT". "] .l 
PRINT gal PROFILE 
FCIRI=1TOXX 
PRINT" "(D" 
I-IE:: T I 

REQUI RED? (V/t-1) 

IN ROWS 
AR; EA(t'1t12) 

"E(I)" 
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10200 
10210 
1C22ß 
10230 
10240 
10250 
10260 
10270 
102_. 0 
102'90 
10.00 
10310 
10320 
110330 
10340 
10350 
10360 
10370 
10 380 
10390 
10400 
10410 
10420 
10430 
10440 
10450 
10460 
10470 
10480 
1049 0 
10500 
10510 
10520 
10530 
10540 
10550 
10560 
10570 
10580 
105074@ 
10600 
10610 
10620 
108 ;0 
11000 
11010 
11020 
11030 
11040 
11050 
110Fß 
11070 
11080 
11090 
11100 
11110 
11120 
11130 
11140 
11150 

FF: It1T" t7 PRESS C 
GETt-1 :I FH 1=" "THEt N 10210 
REM VOLUME SYMBOL Its ROW 
'vR=(E(1)+E<X%), Nr'2 
FURI=2TQ(X%-1? 
. 'R=": 'R+E(I ) 
11EXT I 

TO CONTINUE 

FEM AREA IS UU01,1 CALCULATED IMF 
S= ü: ,, C=O: DIfhiF(X: ": ) 
FORJ=1 To 
S=(U(1, J)+fl ri::, J)), ße2. 
FCIRI=2T0(Xx-1) 
S=S+D(I, J) 
f 1EXT I 
F(J)=AXES 
tIEXTJ 

DIRECTION IS VR 

COLUIItI DIRECTION 

PRINT"]: >HRE AREAS F: EQ! U I RED (COLUMN) PROF I LES? (Y/1-1) 
GETP : IFF': 1. =" "THEN10380 
I FP ="'T "THEtNa 10420 
I FP!: >"N "THEN 10370 
GOTT 10490 

-IT COLUMNS PRIt": 7 :7 It 
PRII-IT" 1 PROFILE AF: EA021 ) 11 
FORJ= I TOX'r: 
PRII-IT(J)� "F(J)" 
IIEXTJ 
PRINT" :a PRESS C. TO CONTINUE .a.. 10480 GETQ :I FQ =" "THEN 10480 
PEN VOLUME SYMBOL 11-1 COLI 1111.15 IS VC 
ti'C=<F(1)+F<X. %) )/2 
FOF: J=2TO (Xx-1) 
VC='v'C+F(J) 
t1E; <TJ 
" "1 _- vC+Ar'' . 

PRIlIT": J: a CRATER 'r'OLUME (B'; ROWS)='' F; "h1t. 13 
PRI1JT : F'R I11T" :) CRATER VOLUME (E: 'T COLUMNS) ="VC"MM3 " 
t-1=AF. S (VR-'; 'C ) 
PRINT' PRINT"u'd tai IMEF: ICAL DIFFERENCE=111,1 

.. _ Y , +VC 2 
PR I t-IT : F'R II IT" :a MEAN 'ALUE FOR CRATER tir'%iLUME="Pt'tir"htM3 
PRINT: PRINT" ;7 F'RESS C TO CONTINUE 11 
CETR3 '. I FF': t. =" "THEN 10620 
RETURN 
REM PROFILE AREAS AT A% SPACI1.1G 
REM -TRP. RULE WITH END CRH 
REM #If1ITIALLY I1-1 ROWS# 
111 ME (, ", ) . ̂ =0 : VR=0 
FOFI=1 TOS,;: 
I FX'«4THEH 11120 
E=4Ii4I, 1)+Ii( I,:;,: -1) )r2 
FORJ=2T atX. '-2 ) 
S=S+D(I'J) 
tIEXTJ 
GOT011130 
REM AREA SYMBOL IS EM 1) 
E<I7-A +{UCI, 1)+ICI,:;:: -i)) ' +<A;: - )+4Ii4I,;;;: -1}+PCI, Sýf))rC. 

--ýTrýi114cß ECI)=ýAr: +ý)+tF1:: -S: ýýCDCI, `r; ý-1)+I1rI,.;: ))r'2 
t1EXTI 
F'RIHT": i: a ARE PROFILE AREAS III ROWS REC! 11IREDf'T/IJ)° 
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11160 
11170 
11180 
11190 
11t0ß 
11210 
11220 

11230 
11240 
1150 
11^260 
11270 
11280 
11290 
11300 
11310 
11320 
11330 
11340 
11350 
11360 
11370 
11380 
11 _' 0 
11400 
1.1410 
11420 
11430 
11440 
11450 
11460 

11470 
11480 
11490 
11500 
11510 
11520 
11530 
11540 
11550 
11 Mr, 
11570 
11580 
11590 

116020 
11610 
11620 
11F=. ß 
11640 
11650 
11660 
11670 
11680 
11690 
11700 
11710 
11720 
11730 11730 

117ict 
READY 

GETP : IFR: $=""THEN11160 
IFPt="'T "THEtll 1NCO 
I FR: t <__:: "tt"THEt"N I 1150 
GOT011270 
F'RIHT' iN III ROWS 
P'RItill' PROFILE AREA ( 1112) 
F0RI=ITOX 
PRINT" "(I)" "E(I) 
NEXT I 
PPIHT: PP'It1T": a PRESS C TO CONTINUE 
GETS$: IFS '=" "THEtN 11258 
REM VOLUME SYMBOL III Rol-! IS VR 
VR=<E(1)+E(:;;: -1) )/2 
I FX,: 14THEta 11330 
FUF, 'I=2T0('XX-2) 
'r F: ='v'R+E (I ) 
tNEXTI 
VR=ß; ": *VR'+( (A%-5)*(E1)+E(X ))/2) 
REM PROFILE AREAS III CULUMtIS IS 
DIMF(X%): =0-V'C=ß 
FORJ=1TCX% 
I FX% 4THEN 11430 
S=(n(1, J)+n(', 4%-1, J) )/2 
FORI=2TO(%-2) 
S=S+Ii(I, J) 
NEXT I 
GOTO 11450 

1101.1 CAUL JLATED 

F(J)=A%+(I'(1, JT)+D(X -1, J) 
G OT011460 
F(J)=(A': +S)+(A:: -5)* (D(X%-1, J)+D(X 1J) )/2 
fIEXTJ 
FF'ItIT": 7: 1 ARE PROFILE AF: EFiS(COLUtM11-l'E; )R'EG! UIRED('T/ta)" 
GETT : IFT =""THEH11480 
IFT: t. ="'T " THEN 11520 
IFT#. <> "Ft"THEt-4114 0 
GOT01160i0 
PRINT" :1 IH COLUMNS ý! "" 
PRINT: PRIIIT" PROFILE AREACI1P12) 
FORJ= I TUX? 
F'RIFNT's "(j)" "F(J)" to 
t IEXTJ 
F'PItIT: PRINT". a PRESS C TO CONTINUE 
CETU : IFU: W=""THEN1158i 
F: EM VOLUME SYMBOL III COLUMNS IS VC 
Vi: ={F(1)+F(xx-1) )/2 
IFS <4THEt-111650 
FORJ=2TO(;;;: -2) 
4'C=VC+F(J) 
IIEXTJ 
c: =YC*: A%+(<A%-5) 4 (FCX;: -1)+F { X;: )) l2 ) 
PRINT"; ' CR, ATEF: VOLUME(E PIIHS)="VR"MM3 
PRINT: PRINT" ;a CRATER VOLUME (BY COLUMNS) ="y'C"Mt. 13 
tt=AB, S ("'R-VC) 
PRINT FRItuT"N HUFIERICAL DIFFERENCE="F1 
r, rr=<'YR+'YC)/2 
PRINT : FRI NT" ;a MEAN CRATER tir OLUHE="MV" MM33 
PRItIT: FRItIT PRINT"d PRESS C TO COtNTIIIUE 
GET Y: I FV =" "THEN 11 r ;Q 
RETURN 
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DERIVATION OF RESPONSE SURFACE COEFFICIENT 

EQUATIONS AND MICROCOMPUTER PROGRAM LISTING 

V. 1 Derivation of Response Surface Coefficient Equations 

The following is based upon an approach documented by Cochran and 

Cox (1957). 

CENTRAL COMPOSITE ROTATABLE DESIGN FOR THREE PRIMARY 

QUANTITATIVE INDEPENDENT VARIABLES 

Coded Values Actual 

Water: Agg: Fibre Arithmetical products of xl, x2, x3 
PLengthh 

g Cement Cement Content (mm) 

2 2 2 
x 1 x 2 x 3 x x 2 x 3 xx 12 xx 13 xx 23 L i 

-1 -i -1 1 1 1 1 1 1 L1 

1 -i -i 1 1 1 
-i -1 1 L2 

-1 1 -1 1 1 1 -1 1 -1 L3 

1' 1 -1 1 1 1 1. -1 -1 L4 

-1 -1 1 1 1 1 1 -1 -1 L5 

1 -1 1 1 1 1 -1 1 -1 L6 

-1 1 1 1 1 1 -1 -1 1 L7 

1 1 2 1 1 1 1 1 1 L 

0 2 0 
8 

-2 0 0 0 0 0 L9 

0 2 +2 0 0 0 0 0 0 L10 

0 
a- 

-2 
4 0 0 21 0 0 0 0 L 

0 0 2 0 
11 

0 2 0 0 0 L12 

0 2 0 0 2' 0 - 0 0 0 L 

2 21 
13 

0 0 0 0 0 0 0 L14 

0 0 0 0 0 0 0 0 0 L 15 
0 0 0 0 0 0 0 0 0 L16 

0 0 0 0 0 0 0 0 0 L17 

0 0 0 0 0 0 0 0 0 L18 

0 0 0 0 0 0 0 0 0 L19 

0 0 0 0 0 0 0 0 0 L 20 
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Then the coefficients are derived using the following development 

of the published solutions; 

20 3 20 
bo = 0.166338iE1L. - 0.056791 

iZ 
(x1 L 

2u 
bj = 0.073224iE1(xj Li) 

2u 
bjk = 0.125000iE1(xjxkLi) 

20 3 20 
b=0.062500 E (x2 L)+0.006889E E (x2. L) - ýJ i=1 i. j=1 

20 
0.056791 E. L. 

i=1 1 

(Cochran and Cox (1957)] 

That is: 
20 

b=0.16633? 0.056791 
{[1. 

L1 + 1. L2 + 1. L3 + 1. L4 + 1. L5 
0 l=1 

+ 1. L6 + 1. L7 + 1. L8 + 29-. L9 +2 . L10) + [1. L1 + 1. L2 + 1. L3 

+ 1. L4 + 1. L5 + 1. L6 + 1. L7 + 1. L8 + 24. L11 + 2. L12] + [L1+ 

L2 + L3 + L4 + L5 + L6 + L7 + L8 +2 . L13 + 2:. L14]J- 

20 81 14 
.. b0 = 0.1663381E1Li - 0.056791 [3E1Li +2 i_E Li] ... Eq. 4.2 

b1 = 0.073224 [-1. L1 + 1. L2 - 1. L3 + 1. L4 - 1. L5 + 1. L6 - 1. L7 

+ 1. L8 - 2ý. L9 + 21 L101 

eiy io i .. bl = 0.073224 i_E (-1) Li +2 
i=9(-1) 

L ... Eq. 4.3 

b2 = 0.073224 [-1. L1 - 1. L2 + 1. L3 + 1. L4 - 1. L5 - 1. L6 + 1. L7 

+ 1. L$ -24. L11 + 2-'. L12] 

;. bn = -0.073224 
C(L1 + L7 + LC + LG) - (L, + L., + L- +L. ) 

+ 2''(L11 - L12) ] 
... Eq. 4.4 

b3 = 0.073224 I-1. L1 - 1. L2 - 1. L3 - 1. L4 + 1. L5 + 1. L6 +1. L7 + 1. L8 

- 2ý. L13 + 21. L14) 

4 ti 
.. b3 = -0.073224 I=i. Li 

i=E. 
Li +2 (L13 - L14)] 

... Eq. 4.5 
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b12 = 0.125000 [1. L1 - 1. L2 - 1. L3 + 1. L4 + 1. L5 - 1. L6 - 1. L7 + 1. L8] 

:. b12 = 0.125000 [(L1 + L4 + L5 + L8) - (L2 +L3 + L6 + L7 )] ... Eq. 4.6 

b13 = 0.125000 (1. L1 - 1. L2 + 1. L3 - 1. L4 - 1. L5 + 1. L6 - 1. L7 + 1. L8] 

. 
'. b 

13 = 0.125000 ((L1 + L3 + L6 + L8) - (L2 + L4 + L5 + L7)] .. Eq. 4.7 

2} = 0.125000 [1. L1 + 1. L2 - 1. L3 - 1. L4 - 1. L5 - 1. L6 + 1. L7 + 1. L8] 

ß. b23 = 0.125000 ((L1 + L2 + L7 + L8) - (L3 +L4 + L5 + L6)] ... Eq. 4.8 

bll = 0.062500 [1. L1 + 1. L2 + 1. L3 + 1. L4 + 1. L5 + 1. L6 + 1. L7 + 1. L8 

+ 2+. L9 + 2'. L10] + 0.006889 
. [[1. 

L1 + 1. L2 + 1. L3 + 1. L4 + 1. L5 

+ 1. L6 + 1. L7 + 1. L8 + 24. L9 + 2ýL10] +(1. L1 + 1. L2 + 1. L3 + 1. L4 
3 

+ 1. L5 + 1. L6 + 1. L7 + 1. L8 +2 . L11 + 2TL. 
12] + [1. L1 + 1. L2 + 

1. L3 + 1. L4 + 1. L5 + 1. L6 + 1. L7 + 1. L8 + 23. L13 + 2ý. L14]} 
20 

- 0.056791 iZiLi 

8 10 8 
.. bll = 0.062500 

iEl 
Li +2j Li] + 0.006889 [3E. L 

i=1 i 

14 20 
+2 iZ Li] - 0.056791 j1 Li ... Eq. 4.9 

22 = 0.062500 (1. L1+ 1. L2 + 1. L3 + 1. L4 + 1. L5 + 1. L6 + 1. L7 + 1. L8 b 

+ 2'. L11 + 2L12] + 0.006889 
ý[l. 

L 1+1. L2 + 1. L3 + 1. L4 + 1. L5 

+ 1. L6 + 1. L7 + 1. L8 +2 L9 +2 . L10] + [1. L1 + 1. L2 + 1. L3 + 

1. L4 + 1. L5 + 1. L6 + 1. L7 + 1. L8 + 2'. L11 + 21. L 12] +[ 1. L1 + 1. L2 

+ 1. L3 + 1. L4 + 1. L5 + 1. L6 + 1. L7 + 1. L8 + '2`. L13 + 2+. L141} - 
20 -+ 

0.056791 E. L. 
i=1 18 

12 8 

.b=0.0625000 
( E. L +2EL]+0.006889 [3 

iEJ. 
Li + i 

� 22 i=i i=ll = 
2 

iEe. 
Lil - 0.056791 ZE 

. Li ... Eq. 4.10 i=1 
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b33 = 0.062500 (1. L1 + 1. L2 + 1. L3 + 1. L4 + 1. L5 + 1. L6 + 1. L7 + 

1. L8 + 21. L13 + 21. L14] + 0.006889 
tl 

1 . L1 + 1. L2 + 1. L3 + 1. L4 

+ 1. L5 + 1. L6 + 1. L7 + 1. L8 +2 . L9 + 2+. L101 + [1. L1 + 1. L2 + 
3 

1. L3 + 1. L4 + 1. L5 + 1. L6 + 1. L7 + 1. L8 + 2+. L11 + 2i. L12] + 

[1. L1 + 1. L2 + 1. L3 + 1. L4 + 1. L5 + 1. L6 + 1. L7 + 1. L8 + 2'. L13 

20 
+ 21. L14]1 - 0.056791 

iEl 
L. 

8 14 ö 
:. b33 = 0.062500 [iEl Li +2 E13. Li] + 0.006889 [3 

iEl 
Li 

i= 
14 

+ 23 E L. ] - 0.056791 L. ... Eq. 4.11 
1-9 1 1=1 1 

v. 2 Computer listings for relevant programs 

A program was written in BASIC for the Commodore PET 3032 micro- 

computer. This carried out the following: 

i) Calculated values of bo-b33 using the measured actual penetration 

path length values (Li). 

ii) Calculated the predicted path lengths for the twenty actual path 

length combinations and carried out a statistical X2 - test, 

indicating the lack of fit of the prediction equation relative to 

the measured results. 

iii)Fitted all of the 53=125 combinations of the 3 x-variables to the 

prediction equation to locate the combination yielding the minimum 

penetration depth. 

A listing of the program is given overleaf. 
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COMPUTER PROGRAM FOR 

APPLICATION OF RESPONSE SURFACE THEORY 

10 REM CO-EFFICIENT CALCULATION 
20 DIt1L(20): DIME (20) 
v0 

40 
cß 
60 
70 
80 
90 
100 
110 
120 
130 
14cß 
1s@ 
160 
170 
1 C: 9 
190 
200 
210 
220 
230 
240 
260 
260 
270 
280 
290 

310 
320 
330 

340 

3S0 

360 
370 
380 
390 
400 
410 
420 
430 
440 
4W 
460 
470 
480 
490 

F'RIt1T"TYFE IN PEN. 
FC+R I=1 T020 
1UUPUTL(I) : F'RIt1T"L(" 
NEXT 
Q=0 
FURI=1T00 
Q=Q+L(i) 

NEXT 
111=0 
FORI=9T02ß+ 
F1=F1+L (I 
NEXT 
F'=Q+h1 
t"1=0 
FOF: I=9TO14 
M=h1+L CI) 
t-IEAT 
p=t, l* 'Z^1. E. ) 

DEPTHS IN ORDER" 

I")="L(I)"t fll" 

B +=4.16633MR-O. OS6 91: +: <ARS ) 
r"1=a 
1-1=-L<1)+L(2)-L(3)+L(4)-L(E)+L(6)-L(7)+L<8) 
t"1=0 
t1=-f2". 7S): +: (L(9)-L(10) ) 
BI=O. 073224*: (1-1+t-1) 
T=L(11)-L(12) 
82=-0.073224: +: ((L(1)+L(2)+L( )+L(G))-tL(3)+L(4)+LC i :, +L. (. =; ) 
11=0 
1.1=-L(1)-L(2)-L(3)-L(4)+L(E)+L(6)+L(7)+L(9) 
t1=0 

) t1=-(2"'. 76) * (L ( 13) -L ( 14) 
E3=0.073224: +: (11+t 1) 
... _r .1 /I /41 ,, A". LI JP"I unkt a . r.. .. ,- 

) (2; `" 7 

E; S=d. 12S0E00: +: ((L(1)+L(3ýw+L(6)+L(8))-(L(2)+L(4>+L(S? +L(7 y>) 
86=0.1250E0G3*((L(1)+L(2)+L(r)+L(S))-(L(? }+L. (4? +L(S? +L(6) } 
t"1=O: t1=a: p=c, 
K=2^1. J 
84=d. 12500 : +: { (L(1? +L( )+L(S? +L(8?? -{L(2'}+L(3? +L(6)+L{ r)) ti 
ES=0.125000: +-((L(1)+L(3? +L(6)+L(87w-{L(am)+L(4)+L(S)+L(r ))) 
66=4.12SEý00: +: ((L<1)+L(2)+L(7)+L(8) ti-(L(3: ß+L(4; ß+L(S , +L(E, ) 

F=0 
t4=2^1. S 

(L(9)+L(1O+7 ? 
t'1=K (L(11)+L(1ý?? 
p=t(: F: (L(13? +L(14) ? 
L7=0.062500: +: (Gý+M}+0. OOe. 8S9: +: (3: +: C+S)_O. 0567 91: +'R 
Eý=4.062S0ß+: (C! +tl)+0.0@68 9: +: (3: +:! +5)-0. OS67 91: +: F. 
E9=0.062500*<Q+F'? +0. ý+ +r. ý. fi: *(3: +: Q+ý ti- +. 056 91: +'F; 
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Soß 
510 
6120 
630 

540 
550 
S60 
5%0 

580 590 
600 
700 
710 
720 
730 
740 
750 
760 
770 
780 
790 
Soo 
810 
820 
830 
840 
850 

860 
870 

Jr 

8r1,0, 
90 

J 

91(-) 
920 
930 

940 
950 

1664 
970 
980ry 

1000 
1010 
1020 
1030 
10411 
1050 
10+60 
1070 
1080 

PRINT" THE CO-EFFICIEATS ARE: 
FF: I HT : PR I FIT"6O="BO 
PRINT: PRINT"B1="B1 
PRINT: PRINT"B2="B2 
PRItNNT: P'R'INT"B3="B3 
FFAItNT: PRINT"P. 12="E. 4 
FRIHT: FR'IHT"B1Z%="ES 
PRItNT: PRItIT"B23="E? E 
PRINT : PRINT"E 11="E: 7 
PR 1111: PRIt-IT"B2 '="E: 8 
PR It IT: PR I t. IT"933="E9 
F'R: ItIT: PRINT" PRESE. C TO COHTIIIUE 
GETR.: I FA4 =" "THEF17 i Ed 
IFH$<>"C"THEt171E+ 
F (1) =B a-B 1-E2-E3+E: 4+BS+E: 6+E: 7 +68+E: 9 
F(2)=BO+E1-E2-E: 3-B4-E: +E: 6+Er+E: E: +B9 
F(3)=ECK-E1+B2-E: 3-E: 4+E: S-E: 6+E: 7+B +B9 
P (4)=60+B 1+B2-E: 3+E: 4-E: S-BF. +E 7 +E: E"+B9 
F' (S)=60-E 1-B2+E: 3+E4-E6-Er +E: 7+E: 3+E:: 
PC 6) =BEB+B 1-E2+B3 -E; 4+E: E-E: 6+B +F _: +E; ': 
P (7) =EE0-E 1 +E: 2+E3-E: 4-E: E+E: E. +E: 7+E: R +E:? 
P(8)=80+B 1 +E2+E: 3 +E4+E: E+E: r. +E: r +Er: +6 9 
FC9)=E: 0-2^. r 6*+: E: 1+t'2 . 7G-)``" ': +: E7 
P(1E+)=E: 02". 76: 4: B1+(2". E)"2: +: B7 
P(11)=60-2". 7E: }: E: 2+(2^. 7E )". "t: BG5 
P(12)=80+2A. r 6: f: B2+ (2". 7E ), %2*E: 
P(13)=60-2". 7S: f: E3+(2". 7) ^ c*E: 9 

2h 71-;: #: B3+(2 A 7S)"2: +: 89 
P(16)=E: a 
P(16)=EEC 
P(17)=ECK 
P(18)=E: 0 
P(19)=E: 0 
P(20)=60 
PRINT" PATH LENGTHS 
PRINT: PRINT" SLAB PREDICTED 
FCIRI=1TO1ß 
F'RII-IT: PRINT" 
tNEXTI 
FF; I IIT"PRESS C TO CONTINUE'' 
GETAl: IFA: =" "THE11 0 

I FAl< >"C"THEFT? _? fl 
PRINT" PATH 
PRINT: PRINT" SLAB 
FORI=11T020 

"P(I)" 

LENGTHS 
PREDICTED 

PRIIIT: PRIt1T" "I" "P(I? " 
IIEXT I 
PR I t1T"F'RES SC TO CONTINUE" 
rETC : IFC$=""THEtI10 0 
I FC"< }"C"THEt-t 10 70 
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REM TO CALCULATE SIGNIFICANCE 
S=O FORI=ITÖ20 
5=3+< L<I>-P(I)) 2)/P(I ) 
I TEXT I 
I FS>39.9THEI IGOTO i 290 
IFS<38.9THEI1T=0.9. S 
IFS<36.2THE1IT=9? 
IFS<32. ? THEIlT=9? .5 IFS<30.1THEIJT= 5 
IFS <27.2THEIIT=? 0 
I FS<22.7THEI IT= i5 
I FS< 18.3THEI IT=60 
IFS < 14.6THEt 1T=2S 
IFS < 11.7THEI IT=10 
I FS< 10.1 THEI1T=5 
IFS <8.91 THEI1T=2.5 
I FS<?. 6 THEt. 1T=1.0 
IFS <6.54THEI IT=0.5 
PRI1IT"THE SURFACE IS VALIt' IOITH "T";.. C: HAt1 E OF ERF.: OF: r "' 1r, rt-T"ý: S. L. )": 13010 PR II NT" SURFACE IS NOT VALID AT A C. L. OF <0.5:; " 1300 PRII-IT: PRIIIT"I; E'' S TO RE-STHF; T, CAF; G TO CONTINUE" 
SETC: t: IF C4=""THE1II3IO 

="I FC"S "THE[ I'3C'T030 
I FC '< >"C" THEI II 310 
: Ell TO FIiID OPTIMUM COI1BIIIATI011 
0_200: A- 0: E: =0: C=0 
FC'F: I=1T05 
FCIRJ= I TOS 
PRINT" PRESS C TO COI"IT II IUE 
PF: I U UT" e... I >: 2 3 PREDICTION (t"1t"1)) " 
FORK=1 TOS 
IFI=1THEt1:, 1=-2-`. E. 
IFI=2THEtl:: i=-1 
I FI=3THEt'lXl =0 
IFI=4THEtt : 1=1 
IFI=STHEIIXI=2A. 7'S 
IFJ=1THEII: <2=-2". "5 
I FJ=2THEI IX2=-1 
I FJ=3THEIIX2=o 
IFJ=4THEt1: 2=1 
I FJ=STHEU1: '; 2=2^. 76 
I Ft: = I THEtl:; 3 =-2^. 76 
I Ft: =2THEl1X3=-1 
IFI(=3THEtl> 3=G 
I FI; =4THEI1: >; 3 =i 
ýI' 

Ft, =5THEI I'-13=2^. 76 
R=EC+E; :: X 1 +E: 2: +: 

ii2+E: ti.. 
}. 

tir. "+ 
4: 4"r"ß 1"". 

t fýc { r'i l 
"+vr3+EF. ý: li2: f. ii3E 4,: "1 j : 4. j 

PRIt1T" of %. ý1.. ":; 2" ":: " "F: " 
I FR>QTHEUr, "0T01570 

F. 
X" 

vti " f-V7 
I1EY, TIC 
GETC ': IFC: 1"=" "THEt11' 5 
I FCI. < >"C" THEI I 15: 5 
1EXTJ 

tIEXTI 
PF: IIIT" THE 11I111HUM PREDICTED PEIN. DEPTH 
F"RI1IT: F'RIIIT" FOR THIS s'PRIIIT: 

PRIIIT" X. I=A 
PRII1T: F'RIflT" ", 2=l; 
F"RIIIT: PRIIIT" ;; 3=G 

FE: '? +;;? 
eX3 
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APPENDIX VI 

RESULTS OF RESPONSE SURFACE'THEORX'PENETRATION TESTS 

(i) SERIES ME/B/1-ME/B/20 

Concrete Cast 

Quantitative Independent Variable Ranges 

. Coded Levels 
% % Variable -2 -1 0 1 2 

X1: Water : Cement Ratio 0.35 0.39 0.45 0.51 0.55 

X2: Agg : Cement Ratio 1: 3.0 1: 3.8 1: 5.0 1: 6.2 1: 7.0 
(Fine : Coarse 1: 1) 

: Fibre Content X 0 1.4 3.5 5.6 7.0 3 
weight by concrete 
weight) 

Aggregate Moisture Contents 

Zone 2 Limestone Sand 

Standard Siphon Can Test 

w= 279m1, Vb = 249m1, V= 500m1 
w-Vb 

Percentage moisture content by dry mass = 2000-V-V x 100% 
w 

= 2.5% 

10mm Single Size Basalt 

Standard Siphon Can Test 

w= 224m1, Vb = 164m1, V= 500m1 

Percentage moisture content by dry mass = 4.7% 

All aggregate moisture taken as free. 
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Actual Mix Designs 

(Using Coded Level Values and taking aggregate moisture content into 

account) 

450x450x ordinary Free 10mm Zone 2 Fibre* 
125mm Portland Water Single Size Limestone 

Slab No. Cement (kg) (kg) Basalt (kg) Sand (kg) (kg) 

ME/B/ 1 14.3 3.6 28.5 27.9 1.04 
2 14.0 5.2 27.9 27.3 1.04 
3 9.8 1.6 31.8 31.2 1.04 
4 9.7 3.3 31.3 30.1 1.04 
5 14.3 3.4 28.5 27.9 4.17 
6 14.0 5.2 27.9 27.3 4.17 
7 9.8 1.6 31.8 31.2 4.17 
8 9.7 3.3 31.3 30.1 4.17 
9 11.7 2.0 30.7 30.0 2.60 

10 11.4 4.3 29.7 29.1 2.60 
11 16.7 5.7 26.3 25.7 2.60 
12 8.8 1.8 32.2 31.6 2.60 
13 11.5 3,1 30.2 29.5 0 
14 11.5 3.1 30.2 29.5 5.21 
15 All 
16 as 36.7 9.9 96.1 94.1 8.29 
17 one Three 100x100x100mm cubes cast also (C1, C2, C3) 

mix 
18 All 
19 as 36.7 9.9 96.1 94.1 8.29 
20 one Three 100x100x100mm cubes cast also (C4, C5, C6) 

mix i 
L7IIUIl X V. JLLL 1'1G11.. GAI. i Ci C: L . 71. C"-1 L1. LLe 

Cured in a controlled facility @ 20±2°C. R. H. > 90% 

Firing Tests (3-Day) 

le Central impact 7.62mm A. P. bullet. 

Slab No. 

ME/B/ 1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

15 
16 

18 
19 
20 

f 

Penetration Path Length (mm) 

81 
91 

108 
90 
86 

114 
135 (P) 
137 
145 (P) 
117 
145(P) 
132 
131 

Mean = 93mm ( 88 
s. d. = 5.7mm ( 99 

( 91 
Mean = 90mm (83 
s. d. = 7.0mm (91 

(97 
= Perforation i85 

Mean path length = 92mm 
Standard deviation = 5.8mm 



3-Day Compressive Strength Tests 

Cube No. Density (kg/m') Compressive Strength (N/mm2) 

SLABS (ME/B/Cl 2560 53 

15/16/ (ME/B/C2 2520 45 
17 (ME/B/C3 2530 46 

Mean = 2540 Mean = 48 
SLABS (ME/B/C4 2620 52 
18/19/ (ME/B/C5 2510 40 
20 (ME/B/C6 2590 49 

Mean = 2570 Mean = 47 

Statistical Analysis 

Slab No. 
ME/g/ 

Actual 
Penetration 
Depth (mm) 

Predicted Penetration Depths (mm) 
for incremental steps of 5mm 

to Perforated Values 

0 5 10 15 20 25 30 

1 81 111 113 114 115 117 118 119 
2 91 112 114 116 117 119 121 123 
3 108 125 126 127 127 128 129 129 
4 90 98 97 96 94 93 92 91 
5 86 98 100 102 103 106 108 110 
6 114 117 117 117 117 117 117 117 
7 135(P) 134 133 132 131 130 129 128 
8 137 126 125 125 124 124 124 123 
9 145(P) 120 118 117 115 113 112 110 

10 117 114 114 114 114 114 114 114 
11 145(P) 115 112 109 106 104 91 88 
12 132 134 135 137 137 139 140 142 
13 131 95 94 92 91 89 88 87 
14 99 107 107 107 106 106 106 106 
15 88 92 92 92 92 92 92 92 
16 99 92 92 92 92 92 92 92 
17 91 92 92 92 92 92 92 92 
18 83 92 92 92 92 92 92 92 
19 91 92 92 92 92 92 92 92 
20 97 92 92 92 92 92 92 92 

A2-Test: Confidence Level <0.5% <0.5% <0.5% <0.5% <0.5% <0.5% <0.5% 

Independent quanti- x1 0 0 1 1 1 1 1 
tative variable 
combination yielding 

* x 0 0 1 1 1 1 1 
minimum path length 2 

3/ 34 3' 3/4 3/1 
x3 -1 -1 -2 -2 _2 -2 -2 6 

nimum Predicted 91.7 91.2 90.5 88.6 86.3 85 0 83 2 
ath Length (mm) . . 

Table VI-1- Statistical Analysis for ME/B/1-20 
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(ii) SERIES DUO/B/1 - DUO/B/20 

Due to a delay in receiving the necessary fibres for this series, it was 

carried out in two parts. The initial casting was carried out on 01: 11: 82, 

whilst the remainder was produced on 21: 2: 83. For this reason, the mix 

design weights have different allowances for aggregate moisture content. 

Quantitative Independent Variables Ranges 

riable V 
Coded Levels 

a 

-27/` -1 0 1 23' 

X Water - Cement ratio 0.35 0.41 0.50 0.59 0.65 

X2: Agg : Cement ratio 1: 3.0 1: 3.4 1: 4.0 1: 4.6 1: 5.0 
(Fine : Coarse 2.1) 

X3: Fibre Content 0 1.8 4.5 7.2 9.0 
(% wt. by concrete wt. ) 

Aggregate Moisture Content 

Concrete cast 01/11/82 

Zone 2 Limestone Sand 

Standard Syphon Can Test 

v= 305m1, Vb = 249m1, V= 500m1. 

$ Moisture content by dry mass = 4.7% 

10ama Single Size Basalt 

Va = 225m1, Vb = 175m1, V= 500m1. 

% Moisture content by dry mass = 3.9% 

Slabs 1-9 cast on this date. 

Concrete Cast 21/02/83 

Zone 2 Limestone Sand 

Standard Siphon Can Test 

Vw= 285m1, Vb = 249m1, V= 500m1. 

$ Moisture Content by dry mass = 3.0% 
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10mm Single Size Basalt 

w= 226m1, Vb = 175m1, V= 500m1. 

% Moisture content by dry mass = 4.0% 

Slab 10-20 cast on this date. 

All aggregate moisture taken as free. 

Actual Mix Designs 

(Using Coded Level Values and taking aggregate moisture into account. ) 

450x45Ox ordinary Free 10mm Zone 2 Fibre* 
125mm Portland Water Single Size Limestone 

Slab No. Cement (kg) (kg) Basalt (kg) Sand (kg) (kg) 

DUO/R/ 1 16.0 4.2 18.7 37.7 1.38 
2 15.4 6.8 18.1 36.4 1.38 
3 12.8 2.6 20.4 40.9 1.38 
4 12.4 4.8 19.7 39.8 1.38 
5 16.0 4.2 18.7 37.8 5.53 
6 15.4 6.8 18.1 36.4 5.53 
7 12.8 2.6 20.4 40.9 5.53 
8 12.4 4.8 19.7 39.8 5.53 
9 14.4 2.5 19.8 40.0 3.46 

10 13.6 7.0 18.8 37.3 3.46 
11 17.1 6.9 17.8 35.2 3.46 
12 11.8 3.9 20.5 40.6 3.46 
13 17.1 6.3 23.6 46.9 0 
14 17.1 6.3 23.6 46.9 6.91 
15 All 
16 as 50.5 18.4 69.9 138.9 10.23 
17 one Three 100 x 100 x 100 cubes cast also (C1, C2, C3) 

mix 
-----f8- 

19 as 50.5 18.4 69.9 138.9 10.23 
20 one Three 100 x 100 x 100 cubes cast also (C4, C5, C6) 

mix 

* 25 x 0.25mm Duoform indented brass-coated steel fibre. 

Cured in a controlled facility @ 20±2°C, R. H. 90% 
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Firing Tests (3-day) 

Single central impact, 7.62mm A. P. Bullet 

Slab No. Bullet Velocity (m/s) Penetration Path Length (mm) 

DUO/B/ 1 806 105 
2 - 145 (P) 
3 - 100 
4 - 129(P) 
5 803 116 

6 - 163(P) 
7 - 136 (P) 

8 - 132 
9 808 137 

10 - 101 
11 - 106 
12 838 87 
13 830 101 
14 834 72 
15 818 Mean Value =95mm(105 
16 838 s. d. = 15.0mm (103 
17 833 Mean value = 84mm ( 78 

Standard deviation 
18 816 Mean Value = 73mm(120 
19 - s. d. = 46.5mm (72 = 33.2mm 

20 808 ( 27CR)) 

P= Perforation, R= Possible Ricochet. 

3-Day Compressive Strength Tests 

Cube No. Density (kg/m') Compressive Strength (N/mm2) 

(DUO/B/ 1 2460 36.8 
Slabs (DUO/B/ 2 2470 27.4 
15/16/17 (DUO/B/ 3 2460 30.5 

Mean = 2460 Mean = 31.6 
(DUO/B/ 4 "2420 28.5 

Slabs (DUO/B/ 5 2480 34.2 
18/19/20 (DUO/B/ 6 2420 36.4 

Mean = 2440 Mean = 33.1 
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Statistical Analysis 
0 

Actual Predicted Penetration Depths (mm) Using 
Slab No. Penetration 5mm Increments to Perforated Values 

D ) th ( DUO/B/ ep mm 
0T 5 10 15 20 25 30 

1 105 107 105 103 102 100 98 97 
2 145(P) 136 141 146 151 155 160 165 
3 100 111 111 112 113 114 114 115 
4 129(P) 109 111 114 116 118 120 122 
5 116 114 114 115 116 117 118 118 
6 163(P) 130 132 135 137 139 141 144 
7 136(P) 122 126 129 132 135 139 142 
8 132 108 108 107 107 107 107 106 
9 137 127 127 128 128 128 128 128 

10 101 140 142 145 148 150 153 156 
11 106 119 120 122 123 125 126 127 
12 87 103 105 106 107 109 110 112 
13 101 99 100 101 103 104 106 107 
14 72 103 105 106 108 109 110 112 
15 105 83 83 83 83 83 8.3 83 
16 103 83 83 83 83 83 83 83 
17 78 83 83 83 83 83 83 83 
18 120 83 83 83 83 83 83 83 
19 72 83 83 83 83 83 83 83 
20 27(R) 83 83 83 83 83 83 83 

2-Test: Confidence level <0.5% <0.5% <0.5% <0.5% <0.5% <0.5% <0.5% 

ndependent Quanti- x1 0 0 0 0 0 0 0 

tative variable 
Yielding-minimum 
path length 2 

x 0 0 0 0 0 0 0 

x3 0 0 0 0 0 0 0 

Minimum Predicted 
Path Length 

83.3 83.1 83.1 83.0 83.0 82.9 828 . 

using a mean value (96mm) of slabs 15-19 to compensate for unusual 

result (ricochet) of slab 20 gave the following result : 

X_ - Test Confidence level; <0.5% 

Minimum path length combination (Xi, X2, x 3) _ Co, Or 0) yielding 94.8mzn 

Table VI. 2 Statistical Analysis for DUO/B/1-20 
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(iii) SERIES 13K/B/1 - 13K/B/20 

Concrete Cast 

Quantitative Independent Variable Ranges 

Variable Coded Levels 
3/4 

-2`` -1 01 23/x' 

X1: Water - Cement Ratio 0.35 0.42 0.525 0.63 0.70 

X2: Agg - Cement Ratio 1: 3.0 1: 3.4 1: 4.0 1: 4.6 1: 5.0 
(Fine: Coarse 2: 1) 

X3: Fibre Content 0 0.25 0.61 0.98 1.22 

Aggregate Moisture Content 

Zone 2 Limestone Sand 

Using Standard Siphon Can Test 

Vw = 295m1, Vb 249m1, V= 500m1 

w % Moisture Content by dry mass = 2000-VVV X 100% 
w 

= 3.8% 

10mm Single Size Basalt 

Standard Siphon Can Test 

w= 220m1, Vb = 175m1, v= 500m1 

% Moisture content by dry mass = 3.5% 
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Actual Mix Designs 

450x450x Ordinary Free 10mm Zone 2 Fibre* 
125mm Portland Water Single Size Limestone 

Slab No. Cement (kg) (kg) Basalt (kg) Sand (kg) (kg) 

13K/B/ 1 16.5 4.8 19.3 38.6 0.196 
2 15.8 8.0 18.4 36.9 0.196 
3 13.2 3.3 20.8 41.7 0.196 
4 12.7 5.8 20.2 40.5 0.196 

5 16.5 4.8 19.3 38.6 0.773 

6 15.8 8.0 18.4 36.9 0.773 

7 13.2 3.3 20.8 41.7 0.773 

8 12.7 5.8 20.2 40.5 0.773 

9 14.8 3.0 20.4 40.9 0.485 

10 13.9 7.6 19.2 38.4 0.485 

11 17.5 7.2 18.1 36.3 0.485 

12 12.1 4.2 20.9 42.0 0.485 

13 14.4 5.3 19.8 39.7 0 

14 14.4 5.3 19.8 39.7 0.969 

15) All 
16) as 41.2 15.5 56.7 113.9 1.391 
17) one Three 10 0x 100x 100 mm cubes (C1, C2, C 3) cast als o 

mix 
18) All 
19) as 41.2 15.5 56.7 113.9 1.391 

20) one Three 100 x 100 x 100mm cubes (C4, C5, C6) cast also 
mix 

* 13mm length KEVLAR-29 (Tvue 970) 121jm diameter bundled fibre 

cured in a controlled facility @ 20±2°C, R. H. >90%+. 

Firing Tests (3-Day) 

Single central impact, 7.62mm A. P. bullet, 20m range. 

Slab No. Velocity (m/s) Penetration Path Length (mm) 

13K/B/ 1 112 
2 - 132(P) 
3 - 114 
4 811 149(P) 
5 810 117 
6 800 150(P) 
7 - 122 
8 - 152(P) 
9 799 141(P) 

10 - 178 
11 - 128 
12 - 128 
13 - 160(P) 
14 141(P) 

15 811 Mean = 143 mm 
(245(P) 

16 
17 

- 
- 

s. d. = 3.8 mm 
(139(P) 
(146(P) Mean Path 

Len th = 139 g mm 
18 Mean = 134 mm 

(123 Standard 
19 805 

s. d. = 26.6 mm 
(114 deviation = 17.8mm I 

20 600 (164 

P= Perforation 
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Compressive Strength (3-Day) Tests 

Cube No. Density (kg/m') Compressive Strength (N/mm2) 

(13K/B/Cl 2330 26.0 
Slabs (13K/B/C2 2330 30.6 
15/16/17 (13K/B/C3 2350 27.1 

Mean =. 2340 Mean = 27.9 
(13K/B/C4 2350 28.6 

Slabs (13K/B/C5 2380 31.2 
18/19/20 (13K/B/C6 2370 30.2 

Mean = 2370 Mean = 30.0 

Statistical Analysis 

Slab No. 
13K/B/ 

Actual 
Penetration 
Depth (mm) 

Predicted Penetration Depths (mm) 
(Incremental steps of 5mm to 

Perforated Values) 

0 5 10 15 20 25 30 

1 112 122 124 125 127 128 129 131 
2 132(P) 144 143 142 142 142 140 140 
3 114 126 128 129 130 132 133 135 
4 149(P) 154 153 152 152 151 150 150 
5 117 124 125 126 128 129 131 132 
6 150(P) 149 148 148 147 146 146 145 
7 122 122 123 124 126 127 128 130 
8 152(P) 153 152 152 151 150 149 149 
9 141(P) 128 125 122 119 116 113 110 

10 178 172 174 176 178 180 182 184 
11 128 116 115 115 114 114 113 113 
12 128 122 121 121 120 120 119 119 
13 160(P) 141 141 140 140 139 139 138 
14 141(P) 142 141 141 140 140 139 139 
15 145(P) 138 136 136 131 129 126 124 
16 139(P) 138 136 136 131 129 126 124 
17 146(P) 138 136 136 131 129 126 124 
18 123 138 136 136 131 129 126 124 
19 114 138 136 136 131 129 126 124 
20 164 138 136 136 131 129 126 124 
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A2-Test: Confidence Level 25% 10% 10% 5% 1% <0.5% <0.5% 

Independent Quariti- X1 -2 
32' 

-2'4 -23/4 -2 
3' 

-2 
3/' 

-2 
3/4 

-2 
3/4 

tative variable 
combination yielding 

um ath i i X 2 S/` 2 
3/" 

2 
3A 

2 SA 3/, # 3A 4/4 
p n m m 2 2 2 2 

length 
3,4 

X3 .2 1 1 1 1 0 0 

Minimum Predicted 104 104 104 104 104 103 102 Path Length (mm) 

At a confidence level of 25%, minimumpredicted path length = 104mm 

Actual values of coded levels are: 

X1: Water-Cement ratio = 0.35 

X2: Aggregate-Cement ratio = 1: 5.0 (Fine: Coarse Aggregate 2: 1) 

X3: Fibre Content = 1.22% by Concrete Weight (2.0% Concrete 

Volume) 

Table VI. 3 Statistical Analysis for 13K/B/1-20 
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(iv) SERIES 13K/RG/1-13K/RG/20 

Concrete Cast 

Quantitative Independent Variable Ranges 

Variable 3 
-2 

ýj4 
-1 0 1 2 

314 

X1: Water - Cement Ratio 0.35 0.42 0.52 0.63 0.70 

X2 Agg - Cement Ratio 1: 3.0 1: 3.4 1: 4.0 1: 4.6 1: 5.0 
(Fine: Coarse 2: 1) 

X3: Fibre Content 0 0.25 0.61 0.98 1.22 
% weight by concrete wt. 

Aggregate Moisture Content 

Zone 2 Limestone Sand 

Using Standard Siphon Can Test 

wV= 
309m1, Vb = 249m1, V= 500m1 

v 
Percentage moisture content by dry mass =wbx 100% 2000-V-V 

w 

= 5.0% 

10mm River Gravel 

Using Standard Siphon Can Test 

w= 290m1, Vb = 252m1, V= 500m1. 

Percentage moisture content be dry mass = 3.1% 

All aggregate moisture content assumed to be free. 
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Actual Mix Designs 

450x450x Ordinary Free 10mm Single Zone 2 Fibre* 
125mm Portland Water Size River Limestone 

Slab No. Cement (kg) (kg) Gravel (kg) Sand (kg) (kg) 

13K/RG/ 1 16.5 4.4 19.2 39.1 0 . 196 
2 15.8 7.5 18.4 37.4 0.196 
3 13.2 2.9 20.7 42.2 0 . 196 
4 12.7 5.4 20.1 41.0 0.196 
5 16.5 4.4 19.2 39.1 0 . 773 
6 15.8 7.5 18.4 37.4 0 . 773 
7 13.2 2.9 20.7 42.2 0.773 
8 12.7 5.4 20.1 41.0 0.773 
9 14.8 2.6 20.3 41.4 0 . 485 

10 13.9 7.2 19.1 38.9 0 . 485 
11 17.5 6.9 18.0 36.8 0 . 485 
12 12.1 3.8 20.8 42.5 0 

. 485 
13 14.4 5.0 19.7 40.1 0 
14 14.4 5.0 19.7 40.1 0 

. 969 
15 All 
16 as 41.2 14.4 56.5 115.2 1.391 
17 one Three 100 x 100 x 100mm cubes (1 3K/RG/C1, C2, C3) 

mix also cast 
18 All 
19 as 41.2 14.4 56.5 115.2 1.391 
20 one Three 100 x 100 x 100mm cubes (13K/RG/C4, C5, C6) 

mix also cast 

* 13mm length KEVLAR-29 (Type 970) 12km diameter bundled fibre 

cured in a controlled facility @ 20±2°C, R. H. 90%+ 
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Firing Tests (3-Day) 

Single central impact, 7.62mm A. P. bullet, 20m range. 

Slab No. Velocity (m/s) Penetration Path Length (mm) 

13K/RG/. 1 800 89 
2 802 65(R) 
3 - 72 
4 - 195(P) 
5 - 151(P) 
6 - 107 
7 787 82 
8 804 102 
9 - 93 

10 789 112 
11 - 86 
12 - 84(R) 
13 - 105 
14 - 123 

15 - Mean=108= 
(106 

16 824 
s. d. =3.2mm 

(112 
Mean Value = 107mm 

17 (107 
Standard 

18 Mean=105mm 
( 94 deviation = 11.0= 

19 _ s. d. =16.8mm(196 0 2 _ 

P= Perforation R= Possible ricochet 

Compressive Strength Tests 

These tests were carried out at 4 days in error 

Cube No. Density (kg/m') Compressive Strength (N/mm2) 

(13K/RG/C1 2230 19 
Slabs 2230 19 
15/16/17 (1 (13K/RG/C3 2240 18 

Mean = 2230 Mean = 19 
(13K/RG/C4 2250 19 

Slabs (13K/RG/C5 2240 21 
18/19/20 (13K/RG/C6 2270 21 

Mean = 2250 Mean = 20 
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Statistical Analysis 

Actual Predicted Penetration Depths (mm) 
Slab No. Penetration (Incremental steps of 5mm to 
13K/RG/ Depth (mm) Perforated Values) 

0 5 10 15 20 25 30 

1 89 78 77 77 75 76 75 75 
2 65 71 71 70 69 69 

. 
69 68 

3 72 77 76 76 75 75 74 74 
4 195(P) 176 181 185 189 194 199 203 
5 151(P) 163 167 172 175 181 185 190 
6 107 95 94 94 93 93 92 92 
7 82 68 68 67 66 66 66 65 
8 102 106 106 105 104 104 104 103 
9 93 93 94 95 95 96 97 97 

10 112 120 120 121 121 122 123 124 
11 86 84 85 86 86 87 88 89 
12 84 93 94 95 95 96 ' 97 97 
13 105 112 112 113 113 114 , 115 116 
14 123 124 125 126 126 127 128 128 
15 106 106 106 106 106 106 106 106 
16 112 106 106 106 106 106 106 106 
17 107 106 106 106 106 106 106 106 
18 94 106 106 106 106 106 

. 
106 106 

19 124 106 106 106 106 106 106 106 
20 96 106 106 106 106 106 106 106 

X2-Test: Confidence Level 50% 50% 
. 25% 25% 25% 25% 25% 

Independent x1 -2 
3/' 

-23/4 -23/4+ -23/4+ -2 
3/ 

-2 
3/' 

-2 
3/4 

quantitative 
variable combination x 2 

2 3/'+ 23 23/4 2 3/'+ 2 3/º 2 3/'. 2 3/'+ 
yielding minimum 
path length 

X3 1 1 1 1 1 1 1 

Minimum Predicted 1.2 -0.6 -2.5 -6.0 -6 1 -7 9 -9 7 Path Length (mm) . . . 

Table VI. 4 Statistical Analysis for 13K/RG/1-20 
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(v) SERIES 37K/RG/1-37K/RG/20 

Concrete Cast 

Quantitative Independent Variable Ranges 

Coded Levels 
Variable 3 A 3" 

-2 -1 0 1 2 

X1: Water - Cement Ratio 0.35 0.42 0.52 0.63 0.70 

X2: Agg - Cement Ratio 1: 3.0 1: 3.4 1: 4.0 1: 4.6 : 5.0 
(Fine: Coarse 2: 1) 

X3: Fibre Content 0 0.25 0.61 0.98 1.22 
% wt. b concrete wt. 

Aggregate Moisture Content 

Zone 2 Limestone Sand 

Using Standard Siphon Can Test .. 

w= 
308m1, Vb = 249m1, V= 500m1. 

Percentage moisture content by dry mass = w= 
x 100% 2000-V-V 

w 

= 5.0% 

10mm Single Size River Gravel 

Using Standard Siphon Can Test 

w= 290m1, Vb = 252m1, V= 500m1. 

Percentage moisture content by dry mass = 3.1% 

All aggregate moisture content assumed to be free. 
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Actual Mix Designs 

450x45Ox ordinary Free 10mm Zone 2 Fibre* 
125mm Portland Water Single Size Limestone 

Slab No. Cement (kg) (kg) River Gravel Sand (kg) (kg) 
(kg) 

37K/RG/ 1 16.5 4.4 19.2 39.1 0.196 
2 15.8 7.5 18.4 37.4 0.196 
3 13.2 2.9 20.7 42.2 0.196 
4 12.7 5.4 20.1 41.0 0.196 
5 16.5 4.4 19.2 39.1 0.773 
6 15.8 7.5 18.4 37.4 0.773 
7 13.2 2.9 20.7 42.2 0.773 
8 12.7 5.4 20.1 41.0 0.773 
9 14.8 2.6 20.3 41.4 0.485 

10 13.9 7.2 19.1 38.9 0.485 
11 17.5 6.9 18.0 36.8 0.485 
12 12.1 3.8 20.8 42.5 0.485 
13 14.4 5.0 19.7 40.1 0 
14 14.4 5.0 19.7 40.1 0.969 
15)All 
16)as 41.2 14.4 56.5 115.2 1.391 
17)one Three 100 X 10 0x 100mm cubes ( C1, C2, C3) 

mix also cast 
18) Al 
19)as 41.2 14.4 56.5 115.2 1.391 
20)one Three 100 x 100 x 100mm cubes (C4, C5, C6) 

mix also cast 

* 37mm Length KEVLAR-29 (Type 970) 12gm diameter bundled 

fibre (600 single filaments per bundle) 

cured in a controlled facility @ 20±2°C, R. H. 90%+ 
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Firing Tests (3-Day) 

Single central impact, 7.62mm A. P. bullet, 20m range. 

Slab No. Velocity (m/s. ) Penetration Path Length (mm) 

37K/RG/ 1 - 67 
2 - 141(P) 
3 - 40(R) 
4 - 84 
5 - 106 
6 - 89 
7 - 95 
8 - 92 
9 - 104 

10 814 81 
11 818 77 
12 815 75 
13 - 106 
14 - 79 
15 824 

Mean = 92 mm 
( 94 

16 
17 - 

s. d. = 14.6mm X1076 
5 Mean Value = 84mm 

Standard 
18 - Mean = 77mm (81 deviation = 15.6mm 
20 

s. d. = 15.0mm 
X89 

- 

P= Perforation R= Possible ricochet. 

Compressive Strength Tests 

(Carried out at 7 days) 

Cube No. Density (kg/m') Compressive Strength (N/mm2) 

(37K/RG/C1 2410 48 
slabs (37K/RG/C2 2400 55 s/17 (37K/RG/C3 2410 57 

Mean = 2410 Mean = 54 
(37K/RG/C4 2360 47 

Slabs Sl (37K/RG/C5 ab 2410 48 s/20 l (37K/RG/C6 2380 42 
Mean = 2380' Mean = 46 
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Statistical Analysis 

Slab No. 
37K/RG/ 

Actual 
Penetration 
Depth (mm) 

Predicted Penetration Depths (mm) 
(Incremental steps of 5mm to 

Perforated Values) 

0 5 10 15 20 25 30 

1 67 80 81 81 81 81 81 81 
2 141(P) 128 126 125 138 141 144 148 
3 40 52 51 50 50 49 48 48 
4 84 91 91 91 91 91 91 91 
5 106 97 96 95 95 94 94 93 
6 89 75 75 75 75 75 75 76 
7 95 106 107 108 109 110 111 113 
8 92 76 75 75 74 73 73 72 
9 104 86 86 85 85 85 85 84 

10 81 100 101 102 103 104 105 106 
11 77 88 89 90 91 92 93 94 
12 75 65 65 64 64 64 64 63 
13 106 93 94 " 95 96 96 97 98 
14 79 94 93 93 93 93 92 92 
15 94 84 84 84 84 84 84 84 
16 76 84 84 84 84 84 84 84 
17 105 84 84 84 84 84 84 84 
18 81 84 84 84 84 84 84 84 
i9 60 84 84 84 84 84 84 84 
20 89 84 84 84 84 84 84 84 

X2-Test: Confidence Level <0.5% <0.5% s<0.5% 
<0.5% <0.5%. <0.5% <0.5% 

Independent quanti- X1 -2 4 -2 
3/4 

-2 
3/4 

-2 
1/4 

.. 2 
3/4 

-2 
3/4 

-2 
3/4 

tative variable 

combination Yielding x 2 3/4 2 3"4 23/4 2a 2 3" 
2 3/4 

2 3/4 
2 

Minimum Path Length 
X3 -2314 -2314 -2ý/4 -2314 -2314 -23/4 -2314 

Minimum Path Length (mm) 7 5 4 3 2 0 -1 

Table VI. 5 Statistical Analysis for 37K/RG/1-20 
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(vi) SERIES 37K/B/1-37K/B/20 

Concrete Cast 

Quantitative Independent Variable Ranges 

Variable T, Pup- I -q 94 
-23/` -1 0 1 -3,4 2 

X1: Water - Cement Ratio 0.35 0.42 0.525 0.63 0.70 

X2: Agg : Cement Ratio 1: 3.0 1: 3.4 1: 4.0 1: 4.6 : 5.0 
(Fine: Coarse 2: 1) 

X3: Fibre Content 0 0.25, 0.61 0.98 11.22 % wt. by concrete wt. I 

Aggregate Moisture Content 

Zone 2 Limestone Sand 

Using Standard Siphon Can Test 

w= 315m1, Vb = 249m1, V= 500ml. 

Percentage Moisture Content by dry mass 
w- Vb 

=x 100% 2000-V-V 
w 

= 5.6% 

10mm Single Size Basalt 

Using Standard Siphon Can Test 

w= 203 ml, Vb = 175m1, V= 500m1, 

Percentage moisture content by dry mass = 2.2% 

All aggregate moisture assumed to be free. 
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Actual Mix Designs 

(Using Coded Level Values and taking into account moisture content) 

450x450x Ordinary Free 10mm single Zone 2 Fibre* 
125mm Portland Water size Basalt Limestone 

Slab No. Cement (kg) (kg) (kg) Sand (kg) (kg) 

37K/B/ 1 16.5 4.4 19.0 39.3 0.196 
2 15.8 7.5 18.2 37.6 0.196 
3 13.2 2.9 20.5 42.4 0.196 
4 12.7 5.4 19.9 41.2 0.196 
5 16.5 4.4 19.0 39.3 0.773 
6 15.8 7.5 18.2 37.6 0.773 
7 13.2 2.9 20.5 42.4 0.773 
8 12.7 5.4 19.9 41.2 0.773 
9 14.8 2.6 20.1 41.6 0.485 

10 13.9 7.2 18.9 39.1 0.485 
11 17.5 6.9 17.9 36.9 0.485 
12 12.1 3.7 20.6 42.8 0.485 
13 14.4 5.0 19.5 40.3 0 
14 14.4 5.0 19.5 40.3 0.969 
15) As 
16) one 28.0 9.8 38.1 78.6 0.945 

) mix Three 100 x 100 x 100mm cubes (C1 , C2, C3) 
cast a lso 

17) AS 
18) one. 28.0 9.8 38.1 78.6 0.945 

ix Three 100 x 100 x 100mm cubes (C4 , C5, C6) 
cast also 

19) As 
20) one 28.0 9.8 38.1 78.6 0.945 

) mix Three 100 x 100 x 100mm cubes (C7, C8, C9) 
cast also I 

*37mm length KEVLAR-29 (Type 970) 12I1. m diameter bundled (600 

filaments/bundle) 

N. B. Due to difficulties experienced in mixing this length of KEVLAR 

into a concrete in the amount required to cast three slabs, the six 

similar slabs of this series were cast as 3 separate mixes of two 

slabs each. Concrete was cured in a controlled facility @ 20±2°C. R. H. 90%+. 
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Firing Tests (3-Day) 

Single central impact, 7.62mm A. P. bullet, 20m range 

Slab No. Velocity (m/s) Penetration Path Length (mm) 

37K/B/ 1 - 111 
2 830 129 
3 - 92 
4 - 129 
5 834 70 
6 - 145 
7 818 140(P) 
8 - 121 
9 - 123 

10 - 131 
11 - 82 
12 - 123 
13 - 104 
14 819 144 
15 - 138IMean Value = 104mm 
16 - 69 standard deviation = 48.8mm 
17 - Mean Value = 106mm 72 Mean Value =* 99mm 
18 - Standard 126 standard deviation = 38.2mm 
19 - deviation.. = 28.8 110 Mean Value = 115mm 
20 809 119 standard deviation = 6.4mm 

P= Perforation 

Compressive Strength Tests (3-Day) 

Cube No. Density (kg /M3) Compressive Strength (N/mm') 

(37K/B/Cl 2440 33 
Slabs Sl Sl (37K/B/C2 2350 32 
15/16 (37K/B/C3 2390 33 

Mean = 2390 Mean = 33 
(37K/B/C4 2400 32 

Slabs S S (37K/B/C5 2350 27 
17/ 18 (37K/B/C6 2430 32 

Mean = 2390 Mean = 30 
(37K/B/C7 2290 29 

Slabs S S (37K/B/C8 2370 29 
19/20 (37K/B/C9 2340 29 

Mean = 2330 Mean = 29 
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Statistical Analysis 

Slab No. 
37K/B/ 

Actual 
Penetration 
Depth (mm) 

Predicted Penetration Depths (mm) 
(Incremental steps of 5mm to 

Perforated Values) 

0 5 10 15 20 25 30 

1 111 94 93 93 92 91 91 90 
2 129 131 132 133 134 135 136 138 
3 92 110 111 111 ill 111 111 111 
4 129 110 109 108 108 107 107 106 
5 70 89 90 90 90 90 90 90 
6 145 127 126" 125 125 124 124 123 
7 140(P) 139 142 145 149 152 155 159 
8 121 138 138 138 139 139 139 139 
9 123 110 111 112 113 114 115 116 

10 131 141 141 140 140 140 140 139 
11 82 89 89 89 89 88 88 88 
12 123 113 114 115 116 117 118 119 
13 104 113 112 112 112 111 111 111 
14 144 133 134 135 136 137 138 139 
15 138 105 105 105 105 105 105 105 
16 69 105 105 105 105 105 105 105 
17 72 105 105 105 105 105 105 105 
18 126 105 105 105 105 105 105 105 
19 110 105 105 105 105 105 105 105 
20 119 105 105 105 105 105 105 105 

X2-Test: Confidence Level <0.5% <0.5% <0.5% <0.5% <0.5% <0.5% <0.5% 

Independent quantita- X1 -2 
3/4 

-2 
V4 

-2-V4 -2 
4/4 

-2 
3/4 

-2 
3/4 

-2 
4/" 

tive variable combina- 
tion yielding minimum X -2 

3/4 
-23/4 -2 

a/4 
-2 

3' 
-2 

3/" 
-2 '4/4 

-3/4 2 
path length. 2 

X3 1 1 1 1 0 0 0 

inimum Path Length (mm) 67 66 66 65 64 63 62 

Table VI. 6 Statistical Analysis for 37K/B/1-20 
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(vii) POL/B/1-5 and POL/B/10 

The full statistical series of twenty slabs planned using this 

polypropylene fibre was not possible since only a small amount of fibre 

was received from the U. S. A., hence a part series used to investigate the 

mixing properties of the material, was carried out. 

Concrete Cast 

Quantitative Variable Ranges 

Variable Coded Levels 

-23A -1 0 1 2 3/4 

X1: Water: Cement Ratio 0.40 0.46 0.55 0.64 0.70 

: Agg: Cement Ratio 
1) 2 C 2. i 

1: 3.0 1: 3.4 : 4.0 : 4.6 1: 5.0 
oarse : (F ne: 

Fibre Content 
3. 

0 0.235 0.580 0.925 1.160* 
(. wt. b concrete wt. ) 

1 

* Equivalent to 3.0% volume by concrete volume. 

Aggregate Moisture Content 

Zone 2 Limestone Sand 

Using Standard Siphon Can Test 

Percentage moisture content by dry mass = 4.7% 

10mm Single Size Basalt 

Percentage Moisture content by dry mass = 3.9% 

All aggregate moisture taken as free. 
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Actual Mix Designs Planned 

450x450x ordinary Free 10mm single Zone 2 Fibre* 

125mm Portland Water size Basalt Limestone 

Slab No. Cement (kg) (kg) (kg) Sand (kg) (kg) 

POL/B/ 1 16.3 5.1 19.1 38.5 0.186 
2 15.7 7.7 18.5 37.2 0.186 
3 13.1 3.3 20.8 41.9 0.186 
4 12.7 5.5 20.2 40.6 0.186 

5 16.3 5.1 19.1 38.5 0.733 
6 15.7 7.7 18.5 37.2 0.733 
7 13.1 3.3 20.8 41.9 0.733 

8 12.7 5.5 20.2 40.6 0.733 
9 14.7 3.4 19.8 39.9 0.459 

10 13.9 7.3 19.2 38.7 0.459 
11 17.4 7.3 18.1 36.4 0.459 
12 12.1 4.0 20.9 42.2 0.459 
13 14.3 5.4 19.7 39.8 0 
14 14.3 5.4 19.7 39.8 0.919 
15)A11 
16)one 40.9 16.3 56.6 114.1 1.318 
17) mix 
18) All 
19)one 40.9 16.3 56.6 114.1 1.318 
20) mix 

* 37mm length Forta Fibre - polypropylene lattice bundled fibre. 

Ultimately, only slabs 1-5 and 10 were cast due to a lack of fibrous 

material. 

Slabs cast were cured in a controlled facility at 2012°C and a 

relative humidity of >90%. 

Firing Tests (3-Day) 

single central impact, 7.62mm A. P. bullet, 20m range. 

Slab No. Velocity Penetration Path Length (mm) 

POL/B/ 1 - 54 

2 - 129(P) 
3 803 125 
4 - 131 
5 808 139 

10 - 120 

The only useful observations were that this fibrous material did not 

appear to improve the ballistic resistance of the basalt-based concrete 
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to a greater degree than any other fibre type and that the polypropylene 

fibre was very easily and evenly distributed through the concrete matrix 

by the action of a standard paddle-type concrete mixer. 
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APPENDIX VII 

RESULTS OF LIMITED VARIABLE APPROACH 
PENETRATION TESTS 

Limestone/Melt Extract 

Typical Coding: L/ME/3/B 

Where L= Limestone, 10mm single size coarse aggregate 

ME = 25mm x 0.3mm melt extracted steel fibre 

3=5.0% fibre content by concrete weight 
[1,2,3,4,5 = 0,2.5,5.0,7.5,10% respectively] 

A, B, C - Designation for each of the three specimens cast per fibre 
content level 

Specimen Actual Path Mean Actual Actual Crate Mean Actual 
Coding Length (mm) Path Length Volume Crater Volume 

(mm) (x103mm' ) (x103 Mn3 ) 

L/ME/1/A 115 359.3 
L/ME/1/B 75 76 737.2 492.0 
L/ME/1/C 39 DisregardingC=95 379.5 DisregardingC=548.3 

L/ME/2/A 108 70.1 
L/ME/2/B 83 92 111.2 109.8 
L/ME/2/C 84 148.0 

L/ME/3 /A 82 129.5 
L/ME/3/B 94 80 173.2 150.5 
L/ME/3/C 63 148.8 

L/ME 4/A 64 71.6 
L/ME/4/B 96 80 53.6 73.7 
L/ME/4/C 80 95.9 

L/ME/5/A 82 19.9 
L/ME/5/B 29 66 55.2 35.3 
L/ME/5/C 87 DisregardingB=85 30.9 DisregardingB=25.4 

Specimen 
Class 

7-Day Compressive 
Cube Strength (N/mtf) 

7-Day 
Density (kg/m3 ) 

L/ME/1 47 2360 
L/ME/2 53 2398 
L/ME/3 54 2452 
L/ME/4 61 2514 
L/ME/5 66 2574 
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Limestone/Duoform 

Typical Coding: L/DUO/2/C 

Where L= Limestone, 10mm single size coarse aggregate 

DUO = 25 x 0.25mm brass-coated indented circular drawn steel fibre 
(DUOFORM) 

2=2.5% fibre content by concrete weight 
(1,2,3,4,5 = 0,2.5,5.0,7.5,10% respectively) 

A, B, C - Designation for each of the three specimens cast per fibre 
content level 

Specimen Actual Pa Mean Actual Actual Crate Mean Actual 
Coding Length (mm) Path Length Volume Crater Volume 

(mm) 
i 

(x103 mm') (x10' mm' ) 

L/DUO/1/A 97 243.6 
L/DUO/1/B 69 83 459.0 339.5 
L/DUO/1/C 82 315.9 

L/DUO/2/A 94 142.0 
L/DUO/2/B 102 94 115.4 104.7 
L/DUO/2/C 85 56.6 

L/DUO/3/A 97 134.9 
L/DUO/3/B 80 91 134.9 125.3 
L/DUO/3/C 95 106.0 

L/DUO/4/A 80 56.7 
L/DUO/4/B 67 DisregardingC=74 54.0 isregardingC=55.4 
L/DUO/4/C 25 52.6 

L/DUO/5/A 69 38.4 
L/DUO/5/B 76 74 79.1 59.1 
L/DUO/5/C 78 59.8 

Specimen 
Class 

7-Day Compressive 
Cube Stength (N/mm2) 

7-Day 
Density (kg/m') 

L/DUO/1 47 2367 
L/DUO/2 53 2406 
L/DUO/3 45 2446 
L/DUO/4 29 2245 
LJDUQ/5 14 1992 
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Limestone/Drawn 

Typical Coding: L/DRA/4/A 

Where L= Limestone, 10mm single size coarse aggregate 

DRA = 25 x 0.25mm brass-coated circular drawn fibre 

4=7.5% fibre content by concrete weight 
[1,2,3,4,5 = 0,2.5,5.0,7.5,10% respectively] 

A, B, C - Designation for each of the three specimens cast per fibre 
content level 

Specimen Actual Path Mean Actual Actual Crater Mean Actual 
Coding Length (mm) Path Length Volume Crater Volume 

(mm) (x10'mm') (x10'mm' ) 

L/DRA/1/A 81 256.2 
L/DRA/1/B 37 68 228.5 238.9 
L/DRA/1/C 85 DisregardingB=83 232.1 DisregardingB=244. 

L/DRA/2/A 85 156.7 
L/DRA/2/B 91 87 128.1 151.3 
L/DRA/2/C 85 169.0 

L/DRA/3/A 78 74.1 
L/DRA/3/B 83 83 153.1 114.2 
L/DRA/3/C 87 115.3 

L/DRA/4/A 35 78.0 
L/DRA/4/B 51 60 41.9 62.2 
L/DRA/4/C 94 DisregardingA=73 66.7 DisregardingA=54.3 

L/DRA/5/A 92 52.3 
L/DRA/5/B 35 68 88.7 78.8 
L/DRA/5/C 76 DisregardingB=84 95.5 DisregardingB=73.9 

Specimen 7-Day compressive 7-day 
Class Cube Strength (N/mm') Density (kg/m') 

L/DRA/1 56 2387 
L/DRA/2 55 2428 
L/DRA/3 58 2483 
L/DRA/4 51 2487 
L/DRA/5 30 2349 

212 



Basalt/Melt Extract 

Typical Coding: B/ME/3/A 

Where B= Basalt, 10mm single size coarse aggregate 

ME = 25mm x 5.3mm melt extracted steel fibre 

3=5.0% fibre content by concrete weight 
[1,2,3,4,5 = 0,2.5,5.0,7.5,10% respectively] 

A, B, C - Designation for each of the three specimens cast per fibre 
content level 

Specimen Actual Path Mean Actual Actual Crater Mean Actual 

Coding Length (mm) Path Length Volume Crater Volume 
(mm) (x103mm3) (x103mm' ) 

B/ME/1/A 108 137.9 
B/ME/1/B 80 87 415.9 276.9 
B/ME/1/C 73 Specimen split 

B/ME/2/A 30 119.5 
B/ME/2/B 108 62 115.7 124.0 
B/ME/2/C 49 Disregarding 136.8 

A=79 

B/ME/3/A 103 62.2 
B/ME/3/B 106 102 81.9 83.4 
B/ME/3/C 98 106.2 

B/ME/4/A 88 61.9 
B/ME/4/B 93 91 71.8 67.8 
B/ME/4/C 93 69.6 

B/ME/5/A 106 60.3 
B/ME/5/B 97 101 100.7 67.2 
B/ME/5/C 99 40.5 

Specimen 7-Day compressive 7-Day 
Class Cube Strength (N/mm2) Density (kg/m') 

B/ME/i 49 2397 
B/ME/1 51 2431 
B/ME/3 52 2466 
B/ME/4 49 2529 
B/1/5 51 2528 
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Basalt/Duoform 

Typical Coding: B/DUO/3/C 

Where B= Basalt, 10mm single size coarse aggregate 

DUO = 25 x 0.25mm brass-coated indented circular drawn steel fibre 
[DUOFORM] 

3=5.0% fibre content by concrete weight 
[1,2,3,4,5 = 0,2.5,5.0,7.5,10% respectively) 

A, B, C - Designation for each of the three specimens cast per fibre 
content level 

Specimen Actual Path Mean Actual Actual Crater Mean Actual 
Coding Length (mm) Path Length Volume Crater Volume 

(mm) (x103 mm3) (x103 mm3 ) 

B/DUO/i/A 101 157.8 
B/DUO/1/B 77 89 234.9 185.6 
B/DUO/1/C 89 164.0 

B/DUO/2/A 96 193.1 
B/DUO/2/B 95 84 126.7 147.7 
B/DUO/2/C 62 123.2 

B/DUO/3/A 67 62.6 
B/DUO/3/B 105 81 75.3 63.6 
B/DUO/3/C 71 52.8 

B/DUO/4/A 82 40.8 
B1DU4/4/B 94 84 5.0 56.8 
B/DUO/4/C 75 124.7 

B/DUO/5/A 86 31.2 
B/DUO/5/B 87 91 31.1 31.4 
B/DUO/5/C 99 31.9 

Specimen 
Class 

7-Day compressive 
Cube Strength (N/mm2) 

7-Day 
Density (kg/m3) 

B/DUO/i 52 2383 
B/DUO/2 54 2436 
B/DUO/3 50 2438 
B/DUO/4 48 2508 
B/DUO/5 24 2206 
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Basalt/Drawn 

Typical Coding: B/DRA/3/B 

Where B= Basalt, 10mm single size coarse aggregate 

DRA = 25mm x 0.25mm brass-coated circular drawn fibre 

3=5.0% fibre content by concrete weight 
[1,2,3,4,5 = 0,2.5,5.0,7.5,10% respectively) 

A, B, C - Designation for each of the three specimens cast per fibre 
content level 

Specimen Actual Path Mean Actual Actual Crater Mean Actual 
Coding Length (mm) Path Length Volume Crater Volume 

(mm) (x103mm3 ) (x10'mm3 ) 

B/DRA/1/A 75 140.8 
B/DRA/1/B 107 93 180.3 251.5 
B/DRA/1/C 97 433.5 

B/DRA/2/A 106 95.6 
B/DRA/2/B 79 85 95.5 135.5 
8/DRA/2/C 69 215.4 

B/DRA/3/A 131 71.0 
(perforation) 

B/DRA/3/B 102 102 87.2 88.9 
B/DRA/3/C 73 DisregardingA=88 108.5 DisregardingA=97.9 

B/DRA/4/A 101 46.3 
B/DRA/4/B 87 86 37.0 48.1 
B/DRA/4/C 71 60.9 

B/DRA/5/A 71 75.7 
B/DRA/5/B 77 79 88.1 68.9 
B/DRA/5/C 78 43.0 

Specimen 7-Day compressive 7-Day 
Class Cube Strength (N/mm') Density (kg/m3) 

B/DPJ /1 42 2367 
B/DRA/` 47 2415 
B/DRA/3 47 2457 
B/DRA/4 13 2103 
B/DRA/5 11 1947 
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River Gravel/Melt Extract 

Typical Coding: RG/ME/3/B 

Where RG = River Gravel, 10mm single size coarse aggregate 

ME = 25mm x . 3mm melt extracted steel fibre 

3=5.0% fibre content by concrete weight 
(1,2,3,4,5 = 0,2,5,5,0,7,5,10% respectively] 

A, B, C - Designation for each of the three specimens cast per fibre 
content level 

Specimen Actual Path Mean Actual Actual Crate Mean Actual 

Coding Length (mm) Path Length Volume Crater Volume 
(mm) (x103mm3 ) (x103mm3 ) 

RG/ME/1/A 51 307.6 
RG/ME/1/B 40 56 298.2 280.5 
RG/ME/1/C 77 DisregardingB=64 235.7 isregardingB=271.7 

RG/ME/2/A 60 263.5 
RG/ME/2/B 44 50 205.3 236.3 
RG/ME/2/C 46 240.1 

RG/ME/3/A 59 135.5 
RG/ME/3/B 87 86 176.7 135.2 
RG/ME/3/C 112 93.3 

RG/ME/4/A 60 174.1 
RG/ME/4/B 61 80 206.5 160.7 
RG/ME/4/C 118 101.5 

RG/ME/5/A 41 229.3 
RG/ME/5/B 90 68 106.7 147.7 
RG/ME/5/C 74 107.2 

Specimen 
Class 

7-Day compressive 
Cube Strength (N/mm2) 

7-Day 
Densit (k /m3) 

RG/ME/ 1 46 2327 
RG/ME/2 43 2371 
RG/ME/3 44 2427 
RG/ME/4 46 2464 
RG/ME/5 48 2539 
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River Gravel/Duoform 

Typical Coding: RG/DUO/3/A 

Where RG = River Gravel, 10mm single size coarse aggregate 

DUO = 25 x 0.25mm brass-coated indented circular drawn steel fibre 
(DUOFORM] 

3=5.0% fibre content by concrete weight 
(1,2,3,4,5 = 0,2.5,5.0,7.5,10% respectively) 

A, B, C - Designation for each of the three specimens cast per fibre 
content level 

specimen Actual Path Mean Actual Actual Crater ! -lean Actual 
Coding Length (mm) Path Length Volume Crater Volume 

(mm) (X103 mm' ) (X103 mm3 ) 

RG/DUO/1/A 93 551.7 
RG/DUO/1/B 50 74 306.4 346.1 
RG/DUO/1/C 79 180.1 

RG/DUO/2/A 48 193.4 
RG/DUO/2/B 102 67 183.7 181.1 
RG/DUO/2/C 51 DisregardingA=7 166.3 DisregardingA=175.0 

RG/DUO/3/A 99 375.7 
RG/DUO/3/B 108 93 277.5 280.5 

71 188.4 

69 74.2 
69 75 81.2 85.2 

r 

87 100.2 

Not cast due to fibre distribution difficulties 

Specimen 
Class 

7-Day compressive 
Cube Strength (N/mm2) 

7-Day 
Density (kg/m') 

RG/DUO/1 37 2302 
RG/DUO/2 47 2418 
RG/DUO/3 43 2452 
RG/DUO/4 46 2476 
RG/DUO/5 - 
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River Gravel/Drawn 

Typical Coding: RG/DRA/3/C 

Where RG = River Gravel, 10mm single size coarse aggregate 

DRA = 25mm x 0.25mm brass coated circular drawn fibre 

3=5.0% fibre content by concrete weight 
[1,2,3,4,5 = 0,2.5,5.0,7.5,10% respectively] 

A, B, C - Designation for each of the three specimens cast per fibre 
content level 

Specimen Actual Pat Mean Actual Actual Crater Mean Actual 
Coding Length (mm) Path Length Volume Crater Volume 

(mm) (x 103 m3) (x103=3 ) 

RG/DRA/1/A 93 223.4 
RG/DRA/1/B 37 isregardingB=97 195.8 DisregardingB=279.5 
RG/DRA/1/C 100 335.6 

RG/DRA/2/A 113 193.6 
RG/DRA/2/B 76 93 136.5 149.2 
RG/DRA/2/C 91 117.6 

RG/DRA/3/A 30 80.5 
RG/DRA/3/B 91 isregardingA=86 122.2 DisregardingA=112.6 
RG/DRA/3/C 81 103.0 

RG/DRA/4/A 77 49.9 
RG/DRA/4/B 76 71 33.5 52.1 
RG/DRA/4/C 61 72.9 

RG/DRA/5/A 93 23.7 
RG/DRA/5/B 85 68 48.2 32.7 
RG/DRA/5/C 27 isregardingC=89 26.2 

Specimen 
Class 

7-Day compressive 
Cube Strength (N/mm2) 

7-Day 
Density (kg/rn3) 

RG/DRA/1 44 2305 
RG/DRA/2 46 2385 
RG/DRA/3 48 2397 
RG/DRA/4 27 2262 
RG/DRA/5 12 1954 
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APPENDIX'VIII 

DETAILS OF TESTS TO STUDY IMPACT AN D' PENETRATION' MECHANISMS 

VIII. 1 High speed rotating prism camera tests 

The general arrangement for the tests is shown in Figure 5.1 whilst details 

of the camera and firing circuit are shown in Figure 5.2. The experimental 

procedure is described in Section 5.2.1. 

Specimen details 

The mix designs and properties of two plain concrete specimens (RP1 and RP2) 

and one fibre reinforced concrete specimen " Iare given in Table' VIII. 1. Concrete 

specimens were 450 x 450 x 125mm cured in a controlled atmosphere at 20±2°C with 

relative humidity > 90%. All specimens were impacted centrally by a single 7.62mm 

A. P. projectile at a range of 20m. Details of a single plasticine target are given 

in Section 5.2.3. 

Photographic details 

Photec IV Rotating Prism camera fitted with a 45mm focal length lens; sunshade and 

fisheye adaptor attached. 

Relative Aperture = f2.8 

Camera footage trigger (firing system) set to 21.3m of film. 

film - Ilford HP5 (400 ASA) 

Timing lights (Internal) - 1000Hz 

Lighting - four 1kw photofloods facing camera, two thicknesses of standard 90g 

tracing paper as diffusers. 

Framing rate - set to 5500pps, half height prism in use. Effective rate - 11000pps. 

Datum distance RP1 Target front face to marker 100mm 

RP2 Target front face to marker 103mm 

RP3 Thickness of specimen 125mm 

Plasticine Diameter of specimen 100mm 

Results 

The projectile mean velocity was only obtained for specimen RP1. Its value at 

18m range was 822 m/s. 
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6 

In all tests an adequate series of images was captured showing both the projectile 

before impact and the material res ponse after impact. The actual framing rate 

calculated from the timing lights varied from test to test as follows: 

RP1 198 frames in 18ms = 11000pps = 914s interframe time 

RP2 45 frames in 4ms = 11250pps - 784s interframe time 

RP3 55 frames in 5ms = 11000pps 92µs interframe time 

Plasticine 57 frames in 5ms = 11400pps = 884s interframe time 
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VIII. 2 Ultra-high speed rotating mirror camera tests 

Details of the principle of operation of this camera are given in Section 

5.2.2. Two methods of illumination were used - backlighting (see Figure 5.10) 

and frontlighting (see Figure 5.11). 

Specimen details 

For the backlighting test a concrete building block 450 x 210 x 100mm 

was used, and for the frontlighting test an instrumented plain concrete specimen 

450 x 450 x 125mm was used. Details of this latter target (V2) are given in 

Appendix VIII. 3. Both targets were impacted centrally by a single 7 . 62mm A. P. 

projectile at a range of 20m. 

Photographic details 

Barr & Stroud Rotating Mirror camera. 

Free run time - backlighting - approximately 1.54s interframe time. 

- frontlighting - approximately 1.0µs interframe time. 

Lens - 35mm focal length at f2.8 relative aperture giving 

a field of view approximately 125mm diameter. 

Film - 35mm Ilford HP5 black and white film ( 400 ASA uprated 

during development to 1600"ASA). 

Illumination - Xenon flash unit triggered using a contact switch consisting of 

two 0.001mm thick brass shim plates separated by a paper 

insulator placed 120mm ahead of the target. 

backlighting - reflection from a white screen (see Figure 5.10) 

frontlighting - direct lighting of projectile plus a single 

1kW photoflood light used to highlight slab edge detail. An 

illuminated scale with 5mm intervals was placed in the plane of 

the projectile trajectory (see Figure 5.11). 

Results 

Backlighting -A series of 30 frames showing the projectile flight between 

detector and target were obtained. No pre-impact projectile velocity was 



obtained but using an estimated velocity of 800 m/s the calculated interframe 

time of 0.94µs was of the expected order. 

Figure VIII. 1 shows the sequence of photographs obtained. The brass 

detector may have induced-tumbling in the projectile. Since the illumination 

was still increasing at the time of exposure the target edge is undefined 

making assessment of the rate and extent of projectile inclination impossible. 

The projectile perforated and fragmented the concrete building block 

target. 

Frontlighting -A series of 30 frames showing the projectile flight between 

detector and target were obtained. Using the photodiode based velocity 

measuring system projectile velocity 2m from the target impact face was 815 m/s. 

In the 30 photographic frames the projectile travelled 26mm giving an interframe 

time of 1.14s. 

Figure VIII. 2 shows the sequence of photographs whose quality is 

disappointing in that no projectile detail is observable, although it would 

appear that the projectile is travelling normal to the target impact face. 



VIII. 3 Tests to study deceleration of'the projectile in plain concrete targets 

As described in Section 5.2.9, six detectors were cast into each of four 

plain concrete targets. Figures 5.. 33 and 5.34 show the arrangement for the 

first two targets (V1 and V2), and Figure 5.39 shows the arrangement for the 

other two targets (V3 and V4). 

Specimen details 

The mix designs and properties of the plain concrete targets are given 

in Table VIII. 2. Specimens 450 x 450 x 125mm were cured in a controlled 

atmosphere at 20 ± 2°C with relative humidity > 90%. All specimens were 

impacted centrally by a single 7.62mm A. P. projectile at a range of 20m. 

Detector data recording details 

In tests on specimens V1 and V2 the detectors were connected in series, 

but in tests V3 and V4 separate capacitance breakdown circuits were used for 

each channel. Details of the recording systems are given in Table VIII. 3. 



VIII. 4 Tests to study front face spalling 

Graphite detectors were installed in spalt zones as described in Section 
5.2.10. 

Specimen Details 

The mix designs and properties of three plain concrete and three fibre 

reinforced concrete specimens are given in Table VIII. 4. All specimens 

were 450 x 450 x 125mm cured in a controlled atmosphere at 20 i 2°C, relative 

humidity > 900. All specimens were impacted centrally by a single 7.62mm AP 

projectile at a range of 20m. 

Detector data'recording details 

Details of the oscilloscope settings and trigger arrangements are given in 

Table VIII. S. 

Results 

In the tests on plain concrete specimens, although graphite detectors broke, 

triggering problems meant that no results were obtained. These triggering 

problems were overcome in the fibre reinforced concrete tests, but only 

one spall detector broke in each of these tests so velocities o. c spall 

propagation could not be obtained. Results are summarised in Table VIII. 5. 



Specimen Number 

RP1(V3) RP2(V4) RP3 

OPC 1.0 1.0 1.0 

Mix design Free water 0.525 0.525 0.50 

(ratio by 10mm single 1.33 1.33 1.33 
weight) size basalt 

Zone 2 limestone 2.67 2.67 2.67 
sand 

Duoform fibre (% concrete weight) 0 0 2.5 
25 x 0.25mm 

Aggregate basalt - 10mm 2.2 2.2 0.5 

m/c (% dry mass) sand - Zone 2 2.2 2.2 3.4 

Age at testing (days) 7 7 14 

Compressive strength (N/mm2) 39.0 39.0 - 

Density (kg/m3) 2370 2370 - 

Table VIII. 1 Details of concrete specimens prepared for rotating 
prism camera tests. 
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Specimen Number 

V1 V2 V3 (RP1) V4(RP2) 

OPC 1.0 1.0 1.0 1,0 

Mix design Free water 0.525 0.525 0.525 0.525 
(ratio by 10mm single 
weight) size basalt 1.33 1.33 1.33 1.33 

Zone 7 limestone 
sand 2.67 2.67 2.67 2.67 

Aggregate basalt 1.4 1.4 2.2 2.2 

m/c (% dry mass) sand 1.5 1.5 2.2 2.2 

Age at testing (days) 3 7 7 7 

Compressive strength (N/mm2) - - 39 39 

Density (kg/m') - - 2370 2370 

Table VIII. 2 Details of concrete specimens prepared for projectile 
deceleration tests. 
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Specimen number 

vi V2 V3 V4 

Type of "make" two 0.001mm thick brass shims held 2 aluminium 
triggering system 2mm apart foil sheets 

Distance of trigger 
from target face (mm) 120 103 

Recorder type * Gould OS 4000 Ch. 1/2 Gould OS4020 
Ch. 3/4 Gould OS4000 
Ch. 5/6 Biomation TR 

Recorder Volta e 0.5V/cm 1. OV/cm 10V/cm 10V/cm 
Ch 1-2 0.2ms/cm 

Setting Timebase lms/cm lms/cm O. Sms/cm Ch 3-6 0.5ms/cm 

* OS = Oscilloscope, TR - Transient recorder 

Table VIII. 3 Details of detector 'recording systems for projectile 
deceleration tests. 
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Specimen Number 

GR/P/1 - GR/F/1 - 
GR/P/3 GR/F/3 

Mix Design OPC 1.0 1.0 
(ratio by Free water 0.5 0.5 
weight) 

10mm single size 1.33 1.33 
basalt 

Zone 2 limestone 2.67 2.67 

sand 

Drawn Fibre (% composite weight) 0 2.5 

Aggregate m/c Basalt - 10mm single 0.1 0.0 

dry mass) 
size 

Sand - Zone 2 2.1 2.2 

Age at testing (days) 14 14 

Compressive strength N/mm2 (14 days) 56 58 

Density kg/m' 2340 2385 

Table VIII. 4" Details of concrete specimens prepared for graphite rod 
detector tests 
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Figure VIII. 1 Backlit sequence of photographs obtained using 
Ultra-high Speed Rotating Mirror Camera 

Figure VIII. 2 Frontlit sequence of photographs obtained using 
Ultra-High Speed Rotating Mirror Camera 


