The
& University
S Sheffield,

THE INFLUENCE OF RANDOM
MICROSTRUCTURE ON WAVE
PROPAGATION THROUGH
HETEROGENEOUS MEDIA

Yilang Song

A thesis submitted for the degree of Doctor of
Philosophy

Department of Mechanical Engineering

02/2015



Summary

In this thesis the influence of mechanical and geometrical properties of a heterogeneous
periodic composite material (in 1D and 2D), both deterministic and stochastic in nature,
on wave propagation has been analysed from the position of stop band phenomenon.

Numerical analyses have been used to identify those parameters that have the most
significant effect on the wave filtering properties of the medium. The study has started on
a 1D periodic laminate material. Further, a randomness has been added into the
material’s properties in order to study its influence on the stop band. The stop band
phenomenon has also been studied on the material in a 2D case, first with periodic
microstructure, then with randomness added into the microstructure to test its influence
on the stop band. Special attention has been given to the prediction of the first stop band
frequency with numerical analysis of an explicitly defined heterogeneous structure
compared and confirmed by results obtained using gradient theory and analytical
derivations.
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Chapter 1

Introduction

It is well known that heterogeneous materials behave very differently from their
homogeneous counterparts, particularly when they are subjected to dynamic loading.
This is principally ascribed to the presence of wave dispersion in heterogeneous
materials and leads to a wide variety of interesting dynamic effects. One certain
well-studied phenomenon caused by wave dispersion is the presence of what are known
as stop bands or band gaps (i.e., intervals of frequencies where wave propagation is not
permitted). Well described in the book by Brillouin [1], the phenomenon has mainly
been studied in two-phase materials with periodic structure [2—4].

1.1 Introduction of a stop band phenomenon

The stop band phenomenon was first found in ordinary crystals, when electrons
propagate inside them. The atoms inside the crystals are arranged periodically and can
interact with the electrons to create electron band gaps. The the stop band was found in
the photonic crystals, where electromagnetic waves can interact with the composite
material with dielectric properties to create photonic band gaps [5]. Following discovery
of the photonic crystals, a material with an elastic wave band was found and named the
phononic crystal material [6]. Phononic crystals, also named elastic band gap (EBG)
materials, are heterogeneous elastic media composed of periodic arrays of inclusions
embedded in a matrix. The propagation of sound and vibrations in these materials can be
strictly prohibited in certain frequency ranges [4,7, 8].

Hence, it is possible to apply phononic crystals in many circumstances. Phononic
crystals can be designed as an elastic filter with 1D [9], 2D [4, 7, 10-25]or 3D [26]
microstructure based on different applications. Phononic crystal has potential to be used
as noise attenuation material for reducing the noise from traffic. A noted experiment in
the stop band phenomenon field carried out by Martinez-Sala and co-workers [27]
demonstrated the sound attenuation effect of a sculpture built by Eusebio Sempere. The
phononic crystal can also be applied to manufacturing refractive acoustic devices [28]. In
addition to these uses, a phononic crystal can be employed as waveguide device [29].

Two developed theories explain the stop band phenomenon in phononic crystals: Bragg
scattering theory [10] and local resonance theory [30]. Based on the Bragg scattering

11



1.2. METHODS OF STUDYING STOP BAND PHENOMENA 12

theory, an elastic wave passing through an elastic periodic material at certain
frequencies, looses the possibility of vibration mode, thus resulting in the stop band.
However, this theory presents difficulty in explaining the phenomenon at low frequencies
(especially under 1kHz). Different from the above theory, Liu’s local resonance theory
indicates that the stop band phenomenon occurs because, at certain frequencies, scatter
in the composite material has resonance and interacts with the elastic wave to prevent its
propagation. This theory can properly explain the stop band at low frequencies.

1.2 Methods of studying stop band phenomena

To understand the stop band phenomenon, a number of studies have been undertaken both
experimentally and theoretically. Experimentally, research is mostly focused on finding
stop bands for composite materials in the two-dimensional case [8,31-40]. Theoretically,
several methods have been applied to predict stop bands for materials with both periodic
and non-periodic geometrical microstructures [5,30,41-51]. Both strands of research are
discussed in more detail below.

1.2.1 Experimental studies for stop band phenomenon

Experiments can help researchers understand the stop band phenomenon and verify and
validate theoretical predictions. At the same time, experiments can be the first step in
potential engineering applications of phononic crystal design. A number of experiments
have been conducted by researchers [9, 52-65], and most are based on material with
periodic microstructure. Experiments in the phononic crystal field can be divided into
two types: acoustic wave propagation experiments and elastic wave propagation
experiments.

Acoustic wave propagation experiments

In acoustic wave propagation experiments, waves are typically produced by
loudspeakers and received by microphones. These experiments are generally used to
discover stop bands for cylinders (made of steel, glass, PVC, and so on) that are
periodically arranged in air. Vasseur et al. [8] investigated stop bands for materials with
both solid and hollow copper cylinders periodically placed in air and water. The
experiments indicated that the thickness of the hollow cylinder does not influence the
properties of the stop band when the matrix is air, but does significantly influence them
when the matrix is water. Lu et al. [66] experimented with Al/air composites, including
solid, hollow, and semi-hollow-shaped Al cylinders. They found that, compared to solid
and hollow cylinder systems, semi-hollow cylinder systems obtained the best stop band
performance.

Elastic wave propagation experiments

In elastic wave propagation experiments, the well-known ultrasonic transmission
technique is applied. Vasseur et al. [6] proved band gaps (120-270 kHz and 430-510
kHz) existence in a steel/epoxy composite (steel cylinders are arranged by triangular
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array). The same material (steel/epoxy composite in which steel cylinders are arranged
by square array) has been studied by Zhang et al. [40] as well. The researchers
discovered two stop bands (100-200 kHz and 340-400 kHz); this result is in agreement
with finite element (FE) simulation results. These two experiments [6,40] show that fiber
arrangement can affect the stop band phenomenon.

1.2.2 Theoretical methods for stop band prediction

Phononic crystals have been studied not only experimentally but also theoretically.
Different methods have been proposed for calculating the frequency stop band, such as
the plain-wave expansion (PWE) method [2, 3], the multiple-scattering (MS) method [5],
the finite difference time domain (FDTD) method [6, 66, 67], the layered MS
method [30], the Finite element method [51], and the transfer matrix method [68].
Among them, PWE, MS, and FDTD methods are most commonly used, and are
examined in detail. Besides above mentioned approaches, a methodology for stop band
prediction, based on gradient theory has been developed in this study and will be
introduced in detail in this section as well.

Plain-wave expansion (PWE) method

The plain-wave expansion (PWE) method was first introduced to determine stop bands
by Kushwaha et al. [2], who claimed to have achieved “the first full calculation of an
“acoustic” or “phononic” band structure”. In this work, the authors analysed the stop
band phenomenon for two materials: nickel alloy cylinders (periodically arranged) in an
aluminum alloy background, and aluminum alloy cylinders (periodically arranged) in a
nickel alloy background. In both cases, they obtained full phononic gaps independent of
wave propagation direction [2]. The PWE method can be explained as follows:
expanding geometrical properties of periodic material into the Fourier series, then
applying the Bloch-Floquet theorem to calculate the eigenmodes [69]. This method is
explained in detail in [10].

Similarly, Sigalas and Economou [3] applied the PWE method to examine elastic waves
propagating through composite material which had a host material (Lucite) embedded
with periodically placed cylindrical inclusions (such as Fe, steel, Pb and Mo). In their
research, Sigalas and Economou studied the influence of different inclusions on stop
bands and found that, generally, stop bands are most likely to appear in materials with a
light component as a host and a heavy component as inclusion. Simultaneously, they
studied the influence of geometrical differences (square lattices and hexagonal lattices)
on stop bands, showing that material with hexagonal lattices were more favourable for
stop band creation.

Other materials, such as the carbon/epoxy composite [4], steel/epoxy composite [6] and
metallic rods/air composite [7, 8], have been studied based on the PWE method.
However, the PWE method can only be applied to material with a periodic structure and
in infinite space. As such this presents a limitation to its applicability in terms of real life
applications, where finite structure of non-periodic properties are of interest.
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Multiple-scattering (MS) method

The multiple-scattering (MS) method was originally developed to calculate the
propagation of electrons. The elastic wave propagation in phononic crystals can be
treated as an analogy to the propagation of electrons in an electronic structure. Hence,
the MS method has been transferred to calculate frequency stop bands in phononic
crystals [5].

The fundamental concept of the MS method is that for any scatter in a system, the
incident wave can be treated as a sum of scattered waves from other scatters in the same
system plus an external field. Based on this idea, a total field can be determined and the
transmission coefficient can be calculated. The MS method is discussed in detail in [5].

Biwa et al. [70] applied this method to predict stop bands for an SiC/Ti-alloy composite
with periodic and random fiber arrangements. In this work, they found that stop bands
occurred at kd = m and kd = 27w (where k is the wave number and d is the distance
between fiber centres) with square fiber arrangement and kd = 47/3 and kd = 2z with
hexagonal fiber arrangement. However, in this work, no significant stop band was
observed in composites with randomly arranged fibers. Based on the MS method,
Kobayashi et al. [71] studied the same material (SiC/Ti-alloy composite) in finite length
periodic material. In this research they indicated that stop bands appeared in a finite
length of the material at the same frequency (kd = mw and kd = 27x). In the same
paper [71], the authors compared the influence of the material’s length to stop bands.
This comparison showed that the longer the material is (26 fibers arrangement
comparing to 10 fiber arrangement in the material), the more significant the stop band
phenomenon will appear.

Finite difference time domain (FDTD) method

The finite difference time domain (FDTD) method has been applied in photonic [72-76]
and acoustic fields [77-79] successfully and has been introduced to calculate stop band
in phononic crystals. The FDTD method can a) obtain field results in both time and
frequency domains; b) do finite length material simulation which can be compared to
experiments directly [80]; and c) calculate stop bands for composites not only with
periodic microstructure but also random microstructure [5]. The FDTD method is based
on a discrete time and space domain, as discussed in [5].

Vasseur et al. [6] applied the FDTD method to calculate stop bands for a steel/epoxy
composite (solid/solid system) with periodically arranged steel cylinders. After
simulation, the researchers obtained two stop bands for the steel/epoxy composite,
compared them to the results generated from applying the PWE method on the same
material, and found good agreement. The FDTD method was also applied by Vasseur et
al. [8] to calculate stop bands for a copper/air composite (solid/fluid system). Lu et
al. [66] studied the stop band phenomenon for Al semi-hollow cylinder embedded in air
based on the FDTD method. They compared simulation results with solid Al/air
composite and hollow cylinder (Al)/air composites, which indicated that the semi-hollow
cylinder/air material exhibits a wider stop band.
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Stop band prediction based on gradient theory

Previous theoretical stop band prediction methods all suffer from being complex and
time consuming. In this project, to calculate the stop band more efficiently, gradient
elasticity theory [81] is introduced and applied to predict the stop band (see Chapter 3
and Chapter 4) .

Gradient elasticity theory is a homogenisation method which considers not only local
effects on the infinitesimal points of interest, but also the surroundings of these
infinitesimal points under loading by adding extra gradient terms in Hooke’s law. Using
gradient elasticity theory makes it possible to predict the wave dispersion effect in
material in which the classical Hooke’s law does not capture the wave dispersion [82].
By considering the influence of material microstructure, which is represented by a length
scale (an additional parameter preceding the extra gradient term), it is possible to use
gradient theory to predict the stop band. The gradient theory is introduced in detail in
Chapter 3 and followed in Chapter 4 by its application.

1.3 Material randomness and stop bands

Most of the works introduced earlier in this chapter are based on periodic material. When
materials’ parameters include randomness, the stop band predictions will be different.
The randomness could be introduced to the material during the manufacturing process,
for example in certain applications a carbon fiber composite material follows manual
manufacturing process: the carbon fibers are scattered manually over the host material.

Nakashima and co-workers [51] studied the influence of randomness on 2D material’s
geometrical properties on the stop band. In their work, the 2D material is a rectangular
material with five circle inclusions. The randomness is added to change the position of
these inclusions but the position change only happens in the direction perpendicular to
the wave propagation direction. The results show that, within randomness, the wave
transmission is reduced as a whole compared to material without any randomness.
However, the work only had three realizations with randomness which, as a sample
number, is quite small. In addition, the 2D material with randomness has only one
inclusion in the direction perpendicular to the wave propagation direction which means
the 2D material is an inadequate representation for the material with multiple inclusions
in the direction perpendicular to the wave propagation direction.

Liang and Patil [69] studied the influence of randomness on the stop band, based on
fiber-reinforced composite material with quasi-random fiber arrangements. Their
simulation result indicates that randomness can create a noticeable difference in wave
propagation. Moreover, at some frequencies, an addition of randomness into material
may change the stop band into a pass band.

To study the influence of randomness on wave propagation, such experiments have also
been carried out. Vasseur and Deymier [83] conducted an experiment to study acoustic
wave propagation though both periodic and random 2D composite material with circle
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inclusions. Their experiment indicates that the randomness only has limited influence on
wave propagation though the composite media. However, their experiment with
randomness only had one realization.

In this research, randomness will be added to 1D and 2D materials to test the influence
of randomness on the stop band. The randomness will be added into both the material’s
mechanical and geometrical properties. Additionally, the influence of different levels of
randomness in the material on the stop band will be studied.

1.4 Aim and scope

The aim of this work is to understand the influence of internal (and particularly
non-periodic) structure of a material on a time-harmonic elastic wave propagating
through it. Specifically, it is desired to understand how mechanical and geometrical
characteristics of the microstructure affect the appearance and / or other properties of
stop bands.

The main objectives to achieve the aforementioned aim are presented below:

1. To analyse the stop band phenomenon in a case of one-dimensional laminate
material based on classical elasticity, whereby
(a) analyse the contrast in mechanical properties;
(b) analyse the influence of geometrical characteristics;
(c) analyse the influence of periodicity and non-periodicity of materials’

mechanical and geometrical properties.

2. To research the stop band phenomenon analytically and numerically based on
gradient elasticity in one-dimensional case.

3. To study the stop band phenomenon in two-dimensional case based on classical
elasticity by

(a) analysing the influence of periodicity and non-periodicity of materials’
geometrical properties;

(b) analysing the influence of different shapes of inclusions.

4. To analyse the stop band phenomenon numerically in two-dimensional material
based on gradient elasticity.

Structure of the thesis. This thesis is divided into 6 Chapters.

Chapter 1 This chapter introduces the background of the research project and presents
the aim and objectives of the research.

Chapter 2 The stop band phenomenon is first studied based on a one-dimensional
periodic laminate material. By changing the materials’ mechanical and geometrical
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properties, the influence of the contrast of the heterogeneous components on the stop
band is studied. Further, randomness is added into the materials’ properties in order to
study its influence on the stop band.

Chapter 3 The gradient elasticity theory is introduced to predict the stop band both
analytically and numerically. Both analytical and numerical results based on gradient
theory are compared with previously obtained simulation results based on classical
elasticity theory for explicit heterogeneous material.

Chapter 4 The stop band phenomenon is studied on material with a two-dimensional
microstructure. Following the procedure introduced for a 1D case, the stop band based
on 2D material is first analysed for periodic structures. Then different levels of
randomness are added into the microstructure to test the influence of randomness on the
stop band. Gradient elasticity theory is also applied for the 2D case to confirm the
numerical results.

Chapter 5 This chapter concludes the thesis.

Chapter 6 This chapter presents the future research plans.



Chapter 2

Influence of material properties on the
stop band phenomenon based on
classical elasticity in 1D

In this chapter, the key parameters that influence the stop band (Young’s modulus, mass
density, and a length of a unit cell) have been analysed for the one-dimensional case.
To accomplish this, finite element analysis has been performed. The study was strictly
focused on periodic laminates first, followed by an investigation into the influence of
randomness added to materials’ properties on the stop band.

2.1 Simulation method

In order to define a stop band, band zones should be introduced first. Generally, band
zones refer to frequency ranges, in which the wave at all these frequencies has similar
propagating behaviour. If the wave can propagate at all frequencies in a frequency range,
it becomes a pass band zone, or what is known as a pass band. Otherwise, if the wave
cannot propagate at all frequencies in a frequency range, it becomes a stop band zone,
otherwise known as a stop band. Analytical techniques fail to produce reliable
predictions of the stop / pass band zones in cases of complex (e.g. random) geometries
and / or mechanical properties. Alternatively, the finite element method (FEM), which is
a numerical method used to solve differential equations that can describe a wide range of
physical problems, could easily describe complex geometry involving finite elements
with regular shape and discrete continuous problem. Meanwhile, the FEM method is
able to simulate dynamic problems with varying timeframes. Hence, in this project, the
finite element method has been chosen as the method for running the simulation.

The fundamental principle of FEM is that a complex domain can be divided into regular
small regions (known as finite elements), and differential equations which are used to
describe these physical problems that can be approximately solved in the small region.
Then all equations for small regions can be assembled to analyse the problem for the
whole complex domain.

18
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2.2 Simulation procedure

Generally speaking, a finite element simulation needs the following steps [84]:

a A geometrical structure should be created and materials’ parameters should be
assigned.

b The geometry and materials’ parameters should be translated into a numerical model
in an appropriate software, here MATLAB.

¢ The numerical model of the structure should be meshed by appropriate elements (such
as triangle element, or square element, the latter of which will be applied in this
project) depending on the requirement of the simulation interest.

d Loading and boundary conditions should be added to the structure.
e Running the simulation and recording relevant results.
f Post-processing of recorded results.

All these steps are described in detail in the following sections and one simulation
example is presented in detail.

2.2.1 Simulation set-up

A test example is discussed in this section to indicate the structure and the simulation
process used in this project for one-dimensional cases. A continuous longitudinal sine
wave has been sent through a bar and the signal has been recorded after the wave has
propagated through a testing material. By comparing the amplitude difference between
the input and output waves, the influence of the material microstructure on the wave
propagating through the testing material can be measured. Simulations employed in
Chapter 2 all have the same overall structure and are based on the same test set-up with
different material properties.

2.2.2 Structure of numerical simulation model in 1D

The numerical model is shown in Figure 2.1 with a bar of a total length L = 220 mm, both
ends of the bar being fixed horizontally, which became the boundary condition. As shown
in the figure, the bar contains four parts, indicated by A1, A;, B and C.

Part C (with length Lc = 100 mm) is the actual test material which can be heterogeneous
or homogeneous depending on the particular research question. Part B (with length Lg =
10 mm) is made up of homogeneous material located at the left and right end of Part C.
The centre of the left Part B is the source point of the waves and the centre of the right
part B is the receiver point after the wave propagates through Part C. Parts A; and A;
(with length Ly, = Ly, = 25 mm) attached to Parts B are perfect match layers (PML).
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Figure 2.1: Structure of the simulation sample

Table 2.1: Length of each material in the structure
| Material | A, | A [ B | C |
| Length (mm) | Ly, =25 [ Ly, =25 [ Lp=10 | Lc =100 |

The perfect match layers are materials that can absorb waves without creating any
reflection [85]. The PMLs (Parts A; and A,) are added here to remove reflection from
left Part A, to left Part B and reflection from right Part A, to right Part B. Assuming the
density of material in Parts B, A and A; to be pg, pa, = 10pp and ps, = 50pp and
Young’s modulus of material in Parts B, A; and A; to be Ep, E4, = 0.1Ep and
E4, = 0.02E. To create perfect match layers, the impendence of Parts B, A; and A,
should be the same and the relation is given by

VPBEB = \/Pa,Ea, = \/Pa,En, 2.1)

Furthermore, the wave speeds in the various parts are related by

|E
Va, = [ —2 = 0.1V 2.2)
P4,
IE
Va, = ([ =2 = 0.02V3 (2.3)
Pa,

In this way, when the wave propagates though Part B to Part A, there will be no
reflection; and because of low wave speed in Parts A; and A, there will be no reflection
from either end of the model before the simulation is complete. Theoretically, Parts A
and A; can combine into one part with an appropriate property and will not influence the
entire simulation. However, if the difference of wave speed between Part B and PML is
too large the noise of simulation will have a significant influence on the results. Hence,
in this project, perfect match layers are divided into Parts Aj and A to reduce the noise
of the simulation.

In this study, the value of damping and Poisson’s ratio of all materials are considered to
be zero to simplify simulation.
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2.2.3 Simulation process and transmission coefficient

The stop band frequency is assessed by the transmission coefficient (7). There are
different definitions of a “stop band”. In this project we assume that when 7 is less than
5% the wave propagation in the material can be interpreted as “stopped” and the
frequency of the wave fulfilling this condition is deemed to fall within the stop band. To
determine the stop band frequency, it is necessary to evaluate wave propagation for a
range of frequencies.

For each transmission coefficient of one test material at one frequency, two simulations
have been undertaken; one with homogeneous material in Part C which is then taken to
be the same as material in Part B; and one with heterogeneous material in Part C. In
simulation, the homogeneous material normally chosen has the average material
property for testing heterogeneous material. For both simulations, a continuous sine
wave with a single frequency has been used: set force F; = Agsin(wt) at the source point
where Ag is amplitude, @ is angular frequency and 7 is time. Furthermore, the boundary
condition and initial condition can be formulated as b.c., u(0) = u(L) = 0; i.c.,
t =0,v(x) = u(x) = 0 (u is displacement and v is velocity). U is the displacement
recorded at the receiver point: U, for homogeneous material simulation and U, for
heterogeneous material simulation. The displacements are recorded since the wave
approached the receiving point until the simulation ends. Then a Fourier transform has
been applied to Uj and U,, and the amplitude of the propagated wave at incident wave
frequency was obtained, indicated by the Fourier-transformed signal by A; and A.. In
this study, the signal received at the recording point usually contains more than 30
periods and is convergence (for heterogeneous testing material). Hence, when applying
the Fourier transform,the influence of the leakage is minor. The transmission coefficient
of the test material at the given frequency is then defined as

Ac
T=-°5 2.4
A, (2.4)

The transmission coefficient defined by Eq. (2.4) thus describes the amplitude change of
the wave after it propagates through the test material C at a given single frequency. As
such, for a particular frequency a conclusion can be made as to whether it falls within the
stop band or pass band.

Hence, the entire simulation process for one test material at one frequency can be
divided in to steps:

» Step 1, set up the geometry model.

» Step 2, calculate materials’ mechanical properties for all parts in the model for
homogeneous simulation and heterogeneous simulation.

* Step 3, run finite element simulation and perform Fourier transform to gain
amplitude A, of the wave propagating through the homogeneous material.
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* Step 4, run finite element simulation and perform Fourier transform to gain
amplitude A, of the wave propagating through the heterogeneous material.

 Step 5, calculate the transmission coefficient using Eq. (2.4).

To determine the stop band for one heterogeneous material, simulations covering a
certain range of frequencies are needed. One transmission coefficient will be obtained
for one frequency. Transmission coefficients for all test frequencies can indicate the stop
band and pass band in the testing frequencies.

In Steps 3 and 4, as mentioned earlier, to run finite element simulation, the geometry
model must be meshed with finite elements. In this chapter, because all simulations were
limited to 1D situation, the finite element was selected to be a bar element, which has
only one degree of freedom.

Additionally, when running a finite element simulation, a time integration procedure is
needed. In this study, the Newmark time integration procedure [84] was applied to all
simulations in 1D and 2D situations. The Newmark integration method can be expressed
by equations as:

A O+ [(1=8) U + 80 Ar (2.5)
A =T U UAH[(0.5 1)U +n' AT AP (2.6)

where U is displacement, U is velocity, U is acceleration, t is the present time step, At is
the time interval, ¢ + At is the next time step, and 6 and N are parameters which can
decide the accuracy and stability of the integration.

When 9§ is equal to 0.5 and 1 is equal to 0.25 the integration is unconditionally stable.
Hence, in this study, the value of § was set to 0.5 and the value of ] was set to 0.25 in all
simulations.

2.2.4 Simulation example for one frequency and convergence study

Following the process introduced in Section 2.2.3, one example is presented to explain
the transmission coefficient calculation at one frequency for a periodic laminate material
consisting of two different components. The convergence study of the simulation will be
discussed in this section as well.

The whole structure is as shown in Figure 2.1: a bar with total length L = 220 mm,
Ly, = Ly, = 25 mm, Lg = 10 mm and Lc = 100 mm. The microstructure of the
heterogeneous material (Part C) is shown in Figure 2.2, with an alternating pattern of
material component 1 (M;) and material component 2 (M;). This could be treated as a
1D representation of a matrix material, with inclusions embedded in the matrix. The
volume fraction of My is v = 50%. The total length of one layer of M| and one layer of
M, is the length of the unit cell (L), which is equal to 10 mm. Hence, Part C contains
10 layers arranged periodically.
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Figure 2.2: Structure of the heterogeneous material (Part C)

As mentioned in the Introduction, the stop band phenomenon only exists in
heterogeneous material. Hence, the differences between material components’ properties
is the key area to study in terms of the stop band phenomenon.

Assuming the Young’s modulus of M is E; =2 x 10! Pa and the Young’s modulus of
M, is E,. The ratio between E| and E; is denoted as g = E,/E;. Similarly, assume
mass density of M is p; = 8 x 10 kg/m? and density of M, is p,. The ratio between p;
and p, can be denoted as B, = p,/p;. For all simulations in Section 2, the mechanical
properties of M are kept the same.

As discussed in Section 2.2.3, two simulations are needed to calculate the transmission
coefficient at one frequency. In the first simulation, Part C is set to be homogeneous
material, which is the same as Part B. Material properties of Part B are calculated by the
average of M| and M,. In the second simulation, Part C is set to be heterogeneous
material but Part B is kept as the same homogeneous material used in the first simulation.

In the FE-based calculation, the size of finite elements becomes an important factor
which can have a huge impact on the simulation accuracy. A convergence study was
implemented to ensure that the simulation had acceptable accuracy. In this study,
dynamic loading was applied to simulate wave propagation. Hence, the size of the finite
elements should be able to capture the movement of the wave, which means the size of
the finite elements should be significantly smaller than the wavelength. Based on
engineering experience, the finite element length should be 10 times smaller than a
wavelength, which means using at least 10 elements to describe a single wave [84]. The
wavelength A can be calculated by Eq.(2.7), in which V is wave speed and f is
frequency.

2.7

<<
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For this convergence study, assume the homogeneous material placed in Part C is steel
(E; =2 x 10" Pa and p; = 8 x 103 kg/m?); the longitudinal elastic wave speed in the
material can be calculated by Eq. (2.8), which equals 5 x 10°> m/s.

V=y— (2.8)
p

For one-dimensional simulation, the maximum testing angular frequency that will be used
in this section is set to be 4.5 x 10° rad/s. Based on Eq. (2.7), if the wave speed is fixed,
the maximum frequency will lead to minimum wavelength. Hence, if the finite element
size fulfills the requirement at the maximum frequency, it will fulfill the requirements
of the lower frequencies as well. At the maximum testing frequency, the wavelength is
calculated as 6.98 mm. As mentioned before, finite element length should be at least 10
times smaller than the wavelength; thus, the finite element length for the first simulation
was chosen to be 0.5 mm. For the first simulation, a continuous sine wave was sent in at
the source point at the left B part, and displacements were recorded at the recording point
in the right B part (then transferred to amplitude). Several simulations were performed
with the same material and loading properties but with decreasing finite element length
(all simulations had the same time step as well) to study the convergence. The total length
of the model was L = 220 mm in all simulations but the finite element length decreased
from 0.5 mm to 0.025 mm in different simulations (the number of elements increased
from 440 to 8800). The results are shown in Table 2.2. They illustrate that the differences
between the recorded amplitudes for simulations 3, 4 and 5 are tiny. Hence, the simulation
results converge when the finite element length is less than 0.1 mm. In this study, to ensure
simulation accuracy, finite element length in all one-dimensional simulations is chosen to
be 0.05 mm.

Table 2.2: Convergence study of finite element length change

| Simulation || Length of finite element (mm) | Recording amplitude | Number of elements |

1 0.5 7.98 x 1077 44()
2 0.2 5.12x 1077 1100
3 0.1 5.18 x 1077 2200
4 0.05 517 x 1077 4400
5 0.025 517 x 1077 8800

Because this study includes wave propagation, the convergence study of time
discretisation is needed as well. Similar to finite element length, if the discrete time step
can ensure accuracy at the maximum frequency it will fulfill the requirements of lower
frequencies as well. According to Bathe [84], the time step should be at least 20 times
smaller than the period of the wave. For maximum testing angular frequency 4.5 x 10°
rad/s, the period is 1.4 x 107 s. The first time step was then set to be 5 x 1077 s and the
time step was reduced in further simulations. The results of the time step convergence
study are shown in Table 2.3. The difference between the recording amplitude of



2.2. SIMULATION PROCEDURE 25

simulation 8 and 9 was minor. In this study, to ensure the simulation accuracy, the time
step was set to be 1 x 1078 s.

Table 2.3: Convergence study of time step change
| Simulation | time step (s) | Recording amplitude |

6 5% 1077 422 %1077
7 1x1077 4.96 x 107
8 51078 5.12x 1077
9 1x10°8 5.17x 1077

Hence, the time step in the simulation was set to be 1 x 1073 s and finite element length
was 0.05 mm, which establishes 4400 finite elements for the one-dimensional model.

For homogeneous material, no reflection occurs inside the material when waves pass
though it, and the wave received at the recording point should be exactly the same as the
wave sent at the source point. Thus waves will not interact with each other when they
pass though homogeneous material. Waves will not interact with reflected waves from
boundaries because of the absorbing boundary conditions. Hence, when the test part is a
homogeneous material, theoretically, one wave is enough to test the transmission
coefficient. However, for heterogeneous material, waves will interact with each other
because of reflection inside the material. For this reason, sending only one wave though
the heterogeneous material will provide results limited in range of applicability. To
analyse both homogeneous and heterogeneous situations, the same continuous waves
should be sent at the source point for both situations, to test the transmission coefficient.

For this test example, the simulation frequency was set to be
3.18 x 10°Hz (2 x 10%rad/s). As introduced previously, a continuous wave is initiated at
the source point, and the simulation time should be long enough to ensure sufficient
periods of the wave for it to be captured at the recording point to calculate the transfer
coefficient. In the test example, the mechanical properties of material 1 (M) (component
of heterogeneous material) were as introduced earlier in this section (E] = 2 X 10" Pa
and p; = 8 x 103 kg/m3) and the difference ratio of M and M, in the heterogeneous
material was set to be Bg = 0.25 and B, = 0.1. The mechanical properties for the
homogeneous material can then be calculated as the average properties of M1 and M2:
Eg = 8 x 10'° Pa and pp = 4.4 x 10° kg/m3. The wavelength of the homogeneous
material was found to be 13.4 mm and the simulation time was set to be 1.023 x 10~*
seconds. During the simulation time, more than 30 periods of the wave were activated at
the source point and more than 20 periods of the wave were received there; this number
of periods is sufficient for applying the Fourier transform to ascertain amplitude.

The first test in this section was a continuous wave propagating through homogeneous
material (Part C). The displacements at the recording point are shown in Figure 2.3.
Here, the recorded displacements were regular sine waves (because the displacement
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changed to above zero which is the first time the wave reached the recording point). The
Fourier transform is then applied to the recorded displacements and the result is shown
in Figure 2.4. The maximum amplitude calculated by Fourier transform of homogeneous
material was A, = 2.43 x 1075 mm.
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Figure 2.3: Displacements at recording point of homogeneous material example
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Figure 2.4: Amplitude of recorded displacements of homogeneous material example
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The second test was for a continuous wave propagating though heterogeneous material
(in the second simulation, Part B was the same homogeneous material as in the first
simulation but Part C was replaced by a periodic laminate material). The displacements
at the recording point are shown in Figure 2.5. This depicts how the recorded
displacements are decreasing as the time changes. The Fourier transform was then
applied to the recorded displacements; the result is shown in Figure 2.6. The maximum

amplitude calculated by Fourier transform of heterogeneous material is
Ac=3.72x10"% mm.
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Figure 2.5: Displacements at recording point of heterogeneous material example

The transmission coefficient of the heterogeneous material under dynamic loading at this
frequency then can be calculated as
T =A./A, =3.72 x 1078/2.43 x 107% = 1.52 x 1072, The value of the transmission
coefficient T = 1.52 x 1072 at the frequency f = 3.18 x 10° Hz showed that the wave
has difficultly propagating through the material; thus, the frequency is located within the
stop band.

23 Stop band phenomenon in material with
deterministic properties in 1D

As has been shown in the previous section, the stop band phenomenon in wave
propagation will only occur when the wave propagates though heterogeneous materials.
Hence, the microstructure and the mechanical properties of components of the
heterogeneous material are of great importance. In this section, the influence of both the
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Figure 2.6: Amplitude of displacements of heterogeneous material example

material’s mechanical properties and geometrical properties on the stop band will be
studied.

2.3.1 Influence of Young’s modulus on the stop band

The first group of tests focused on analysing the influence of Young’s modulus on the stop
band phenomenon. In this group of simulations, the heterogeneous material of Part C is a
periodic laminate material consisting of two different components. Here four cases (Cases
1-4) were studied by varying Young’s modulus ratio of M to M, while keeping the other
parameters of M| and M; equal in all four cases (see Table 2.4). For each frequency in
each group of tests, the simulation procedure followed the process introduced in Section
2.24.

Table 2.4: Material parameters for Young’s modulus influence test
[ Case | Be [ Bp | Lunir |

1 0.5 1 | 10 mm
2 025 1 | 10 mm
3 0.1 1 | 10 mm
4 005 1 | 10 mm

In all cases, the incident wave frequency o ranged from 1 x 103 rad/s to 4.5 x 10 rad/s
with intervals of 5 x 10* rad/s. The result of case 1 (i.e. Bz = 0.5) is shown in Figure 2.7
in which the transmission coefficient 7 was plotted against the frequency f = ®/2.
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Figure 2.7: Simulation result of Young’s modulus influence test while Bg = 0.5

At low frequency (less than 1.5 x 10° Hz), the transmission coefficient is almost equal to
1 which means that waves can pass through the heterogeneous material without any drop
in amplitude. When increasing the test frequency, three significant drops of the
transmission coefficient became apparent. In particular, initially, the transmission
coefficient dropped to around 5% when the test frequency was approximately 2 x 10°
Hz. This results signifies that the waves were virtually unable to propagate through the
heterogeneous material at this frequency.

Figure 2.8 shows results for a range of contrasts in two material’s Young’s modulus. In
Figure 2.8, the solid line is the result of Case 1; the dotted line is the result of Case 2; the
dashed line is the result of Case 3; and the dotted dashed line is the result of Case 4.

The simulation results of the four cases show that with increasing difference in Young’s
modulus of two materials (decreasing Pg), the initial frequency of the first stop band
becomes lower and the transmission coefficient in the pass band drops, especially for
high contrast.

2.3.2 Influence of density on the stop band

The second group of tests focused on the influence of materials densities on the stop band
phenomenon. Similar to the simulations conducted in Section 2.3.1, four cases (Cases
5-8) were studied by varying the density ratio 8, while keeping the other parameters of
M; and M; equal (see Table 2.5).
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Figure 2.8: Simulation results of Young’s modulus influence test (Solid line: Bg = 0.5,
Dotted line: Bg = 0.25, Dashed line: B = 0.1, Dotted dashed line: Bg = 0.05)

Table 2.5: Values of material parameters for density influence test
| Case || Be [ Bp | Lunic_|

5 1 | 05 | 10mm

6 1 1025 | 10 mm

7 1 0.1 | 10 mm

8 1 | 0.05]| 10 mm

The simulation results of Cases 5-8 are presented in Figure 2.9 (here the solid line
indicates Case 5; the dotted line illustrates Case 6; the dashed line represents Case 7; and
the dotted dashed line shows Case 8).

As shown in Figure 2.9, when the ratio of density in two materials is increased the width
of the first stop band increases at the same time that the transmission coefficient of the
second pass band drops.

2.3.3 Influence of length of unit cell on the stop band

The third group of tests focused on the material’s geometrical features, i.e. on the
influence of the unit cell length. Similar to the simulations performed in Section 2.3.1,
four cases (Cases 9-12) have been studied using L,,;; = 2 mm, L,,; = 4 mm, Ly,; = 10
mm and L,;;; = 20 mm while other parameters of M and M; are the same in all cases
(as shown in Table 2.6).
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Figure 2.9: Simulation results of density influence test (Solid line: 8, = 0.5, Dotted line:
Bo = 0.25, Dashed line: B, = 0.1, Dotted dashed line: 8, = 0.05)

Table 2.6: Values of material parameters for geometry influence test
| Case | Br [ Bp [ Luni
9 0.25 (0.1 | 2mm
10 |/ 0.25|0.1 | 4 mm
11 0.25 (0.1 | 10 mm
12 | 025 | 0.1 | 20 mm

The simulation results are shown in Figure 2.10. Here, the solid line indicates the case
with L,,;; = 2 mm; the dotted line illustrates the case with L,,;; = 4 mm; the dashed line
represents the case with L,,; = 10 mm; and the dotted dashed line shows the case with
Ly = 20 mm.

Results in Figure 2.10 indicate that, by increasing the length of the unit cell in the
heterogeneous material, the frequency of the starting point of the stop band decreases
significantly.

2.3.4 Analysis and interpretation of influence of material’s
mechanical and geometrical properties on stop band
Simulation results of Cases 1-8 show that, when the difference of Young’s modulus

between inclusion material and matrix material is increased, the initial frequency of the
stop band decreases. Conversely, when the difference in density between the inclusion
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Figure 2.10: Simulation results of geometry influence test (Solid line: L,,; = 2 mm,
Dotted line: L,,;; = 4 mm, Dashed line: L,,,;; = 10 mm, Dotted dashed line: L,,;; = 20
mm)

material and matrix material is increased, the initial frequency of the stop band increases
slightly. To understand this, we focus on the wave speed (V) of the material, which is
given by Eq. (2.8). Here, the average wave speed (V) of the heterogeneous material is
defined by Eq. (2.9).

V= 2.9

|

in which the average Young’s modulus E of the heterogeneous material is found by the
arithmetic mean (where o is the volume fraction which is equals to 0.5), i.e.

E\Ep
(1 — OC)E 1+ aE>
and the average density of the heterogeneous material p is obtained by Eq. (2.11) [82].

E =

(2.10)

p=ap+(l—a)p; (2.11)

Note that these results come from low-frequency homogenization theory. For each
frequency the average wavelength A is calculated as
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v
f

We compared A obtained using Eq. (2.12) at each frequency with the length of the unit
cell L. Results indicate that A and 2L are equal for the first frequency within the first stop
band. Hence the first frequency within the stop-band, say f;; can be predicted as

A= (2.12)

Z = L E (2.13)
A 2L\ p

Note here that Eq. (2.13) contains information about the mechanical properties (Young’s
modulus and density) of the material as well as the geometrical properties (volume
fraction and length of unit cell), and can thus be used to predict the frequency at which
the first stop band arises. Here, the frequency at the first stop band is calculated by
applying Eq. (2.13) for each case, as shown in Table 2.7. Here the starting frequency of
the first stop band, calculated by Eq. (2.13), in each case is similar to the simulation
results.

fs1=

Table 2.7: Frequency at the first stop band

Case number || Starting frequency by calculation |  Starting frequency by simulation

1 2.05x10° 2.07 x 10°
2 1.58 x 10° 1.43 x 10°
3 1.07 x 10° 9.55 x 10*
4 7.72 x 10* 7.16 x 10*
5 2.89 x 10° 2.94 % 10°
6 3.16 x 10° 2.86 x 10°
7 3.37 x 10° 2.86 x 10°
8 3.45 x 10° 2.94 x 10°
9 1.07 x 10° Extended the testing frequency range
10 5.33x 10° 3.82 x 10°
11 2.13x 107 1.59 x 10°
12 1.07 x 10° 9.55 x 107

2.4 Stop band phenomenon in material with random
properties

So far, the discussion has been based around material with heterogeneous but strictly
periodic structure. In this section, the influence of the randomness of the material’s
mechanical properties (Young’s modulus and density) and geometrical property (length
of the unit cell) will be addressed. Unless mentioned otherwise, the same test parameters
and 1D bar employed in Section 2.2 are used (the frequency interval is changed to be
1 x 10° rad/s).
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In this section, to begin with, randomness has been added to the material’s Young’s
modulus to test its influence on the stop band. After this, randomness has been added to
the material’s density to test the influence on the stop band. Next, randomness has been
added to the length of the unit cell of the material to test the influence on the stop band.
Randomness has been added to the length of the unit cell in two different ways: first by
directly adding randomness to each unit cell following normal distribution; and second
by constructing a “Fibonacci bar” to realise the “semi-random” aspect of the geometry.
Finally, randomness has been added to both the mechanical properties (Young’s modulus
and density) and geometrical properties (length of the unit cell) of the material to test the
influence on the stop band.

2.4.1 Influence of randomness on Young’s modulus in the stop band

The first set of simulations tested the influence of randomness only in the Young’s moduli
of the heterogeneous material. To do this, Young’s moduli followed a normal distribution
with constant mean p and increasing standard deviation o, as indicated in Table 2.8.
The randomness was added to each layer in the heterogeneous material separately which
means that each layer had different mechanical properties but followed the same type of
randomness rule.

Table 2.8: Variations of material parameters for Young’s modulus influence test

Case Ep, Pum, Epy, Pum, Lynir
u| o ulolu| o b o
13 EM1 0 Pm, 0 EM2 0 P, 0 | 10 mm
14 EM[ O.OSEM1 Pm, 0 EM2 O.OSEM2 P, 0 | 10 mm
15 EM| O.IEM1 Pm; 0 EM2 O.IEM2 Pm, 0| 10 mm
16 EM] 0.2EM1 Pm; 0 EM2 0.2EM2 Pm, 0| 10 mm

The reference (deterministic) case is Case 13, in which the standard deviation of Young’s
modulus and density of both materials 1 and 2 is 0. For this section i.e. case (13-16) and
for further cases (17-22), Ey, = 2 x 101 Pa, Ey, = 0.25E,, py, = 8 x 10° kg/m?, and
pm, = 0.1py,. Five realisations were carried out in each of Cases 14-22 to obtain
average values of the results. The results of Cases 13-16 are shown in Figure 2.11, and it
is clear that the influence of randomness of the Young’s modulus on stop band frequency
is minimal. The frequency corresponding to the first stop band and the width of the first
stop band were unaffected by the small perturbations in Young’s modulus. In this study,
the small perturbation represented the randomness with standard deviation less than 0.2,
which can be treated as a low level of randomness. Note here, that different levels of
randomness, e.g. semi-random and fully random have been also looked at in Section
2.4.4 and Section 2.5. The slight change can only be noted in the value of transmission
coefficient in the second pass band. Note that, although the number of realisations is 5,
the randomness was added to each material component in each layer in the composite
material in each realisation. The composite material was constructed of 10 layers; hence,
the Young’s modulus of the material component was randomly sampled 20 times in a
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single simulation. This process ensured the composite material has randomly distributed
Young’s modulus. Hence, despite the small number of realisations, the simulation can
still provide qualitative trends.

Transmission Coefficient

3
Frequency (x 10° Hz)

Figure 2.11: Simulation results of randomness in Young’s modulus influence test (Solid
line: o = 0, Dotted line: o = 0.05, Dashed line: ¢ = 0.1, Dotted dashed line: o = 0.2)

2.4.2 Influence of randomness of mass density on the stop band

The second group of simulations tested the influence of randomness on the mass density.
Similar to the tests in Section 2.4.1, three cases have been studied and the values of all
the parameters of the heterogeneous material in these three cases are shown in Table 2.9.
Randomness was added to each layer in the heterogeneous material in a similar way as in
Section 2.4.1.

Table 2.9: Variations of material parameters of randomness in density influence test
Case EM] Pm, EM2 P, Luynit
wlolu| o wlolu| o

17 EM| 0 Pum; 0.0Sle EM2 0 Pm, 0.05[)]\/12 10 mm
18 EM[ 0 Pm; 0. 1[)M1 EM2 0 Pm, 0. lpM2 10 mm
19 EM] 0 P, 0-2pM1 EM2 0 Pm, 0-2pM2 10 mm

The results of Case 17-19 are shown in Figure 2.12 and compared with the deterministic
Case 13.

As shown in Figure 2.12, the influence of randomness on the stop band frequency range
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Figure 2.12: Simulation results of randomness in density influence test (Solid line: o =0,
Dotted line: ¢ = 0.05, Dashed line: ¢ = 0.1, Dotted dashed line: o = 0.2)

is similar to that noted in Section 2.4.1, and is minimal. All the conclusions regarding the
frequency of the first stop band and the width of the first stop band are again unaffected
by the small perturbation in the material’s densities. In fact, even the second pass band
virtually followed the deterministic case.

2.4.3 Influence of randomness of the unit cell length on the stop band
or “small perturbations” in the geometrical properties

The third group of simulations tested the influence of adding randomness to the unit cell
length, which means the third group of simulations was focused on geometry rather than
the mechanical properties studied in Sections 2.4.1 and 2.4.2. We achieved this by taking
random values of the unit cell length (L,y;), or rather the lengths of phases (Ly;, and
Ly,) within the cell length from a normal distribution, and keeping the total length of
test material fixed. The latter can be viewed as a case of conditional probabilities. The
microstructure of the heterogeneous material is as shown in Figure 2.2, but note that the
volume fraction is no longer exactly 50%. Again, three cases (Cases 20-22) were studied
and the parameter values are shown in Table 2.10. Note that so far randomness has been
discussed in terms of the “small perturbation” of the analysed properties. The
“semi-random” case and “fully-random” case will be studied in the following
subsections.

Table 2.10: Variations of material parameters of unit cell length study
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Case | Ey, | pm, | Em, | PM, Ly, Lwy,

p | o p | o

20 || Emy | Pmy | Em, | Pm, | Smm | 0.05 x5 mm | Smm | 0.05 x5 mm
21 Ey, | pm, | Emy | Py, | Smm | 0.1 X5mm | Smm | 0.1 X5 mm
22 Eym, | pmy, | Emy | Py, | Smm | 02X 5mm | Smm | 0.2 X5 mm

The results of Cases 20-22 are shown in Figure 2.13 and compared with Case 13.

Transmission Coefficient

Frequency (x 10° Hz)

Figure 2.13: Simulation results of randomness in geometry influence test (Solid line: ¢ =
0, Dotted line: ¢ = 0.05, Dashed line: o = 0.1, Dotted dashed line: 6 = 0.2)

As shown in Figure 2.13, in contrast to adding randomness to mechanical properties, as
discussed in Section 2.4.1 and 2.4.2, a significant effect is presented by adding
randomness to the microstructural geometry. In the second pass band the transmission
coefficient decreased rapidly with increasing standard deviation and even finally dropped
to zero when the standard deviation approached 0.2. This result signifies that adding
small perturbations to the geometry makes it possible to turn a pass band into a stop
band.

2.4.4 Stop band prediction based on 1-D Fibonacci layout or material
with “semi-random” geometry

In Section 2.4.3 the influence of randomness added to the material’s geometry on stop
band was discussed. Randomness was added in the form of small perturbations
following normal distribution with y and o. By applying this method the length of every
unit cell in the test material was random and had 99% possibility of being longer than
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U — 30 and shorter than u + 30. When o is small (“small perturbation” is generated in
the material) this method can generate appropriate lengths for the unit cell and the
computer is able to realize the simulation. However, when o is large, some of the unit
cells could be too long or too short and may lead the whole structure generated by the
computer to have unrealistic parts (some layer to be extremely large or small) or to miss
one or two layers, which changes the entire structure.

Hence, another method to realize “semi-random” material geometry is applied in this
section: it is the generation of a random microstructure by fixing the length of the unit
cell and arranging the cells in a Fibonacci sequence. The Fibonacci sequence is defined
as Fy = Fy_1 + Fy_» with seeds values F; = 1 and F, = 1. Here, following similar logic,
a “Fibonacci bar” (F} ) can be constructed.

The “Fibonacci bar” is defined as a laminate material with two different materials and
with the length of each layer fixed to be either “long” or “short”. The “long” layer is
defined as Ly and the “short” is defined as Lg. These two parts become the seed parts of
the “Fibonacci bar”:

1. for N =1, the “Fibonacci bar” (Fblar) is constructed by one “short” layer: Fblar =
Lg;

2. for N =2, the “Fibonacci bar” is constructed by one “long” layer: szar =1Ly.

3. for N = 3, the “Fibonacci bar” is constructed by two parts; the first part is F?2

bar
(Lz) and the second part is Fblar (Ls) which is placed at the end of the first part:
3 _
F} =LLs.
4. for N >=3, Flz . 1s generated by sz\ér—z placed at the end of Flﬁr_l

The geometry of the “Fibonacci bar” generating process is shown in Figure 2.14.

N=1] | 3

E—

]

| — ][t

N=5] | I | I .

Figure 2.14: The geometry of the “Fibonacci bar” from N =1to N =5

The constructed “Fibonacci bar” is a laminate material with two different material
phases (Materials 1 and 2). The length of each layer is determined by the Fibonacci
sequence. For example, for the N = 5 case shown in Figure 2.15, the length of each layer
is Ly LgLy Ly Lg but the material is M{MoM{MyM; .
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Figure 2.15: “Fibonacci bar” from N =1to N =5

When N is large enough, the distribution of the “long” layer and the “short” layer will
become as “semi-random” and distributed in F,;"a]r. Under this condition, the length of the
unit cell is fixed at two different lengths but randomly located. Hence, when running
simulations, the randomness can be realized by the computer without creating extremely
large or small unit cells. Here, the “short” layer is set to be 4.5 mm (Lg = 4.5mm) and
the “long” layer is set to be 5.5 mm (Lg = 5.5mm). With the chosen length of different
fixed layer lengths and the random position of the “long” and “short” layers, the
generated microstructure is then comparable to randomness added to the length of the
unit following normal distribution, with ¢ = 5Smm and ¢ = 0.5mm. To compare the
results to the previous cases in Section 2.4.3, the tested heterogeneous material for one
case had 20 layers and the total length of the testing material was around 100 mm. In this
section, 10 simulations were run. To generate the structure for 10 cases, a “Fibonacci
bar” with N = 20 was generated first. Fbljr had 233 layers and the position of “long” and
“short” layers in the bar was treated as randomly placed. For each simulation case, 20
layers were picked from Fbljr in sequence (for example, layer 1 to 20 of FbBr becomes the
testing heterogeneous material of Case 23(1) and layer 21 to 40 of Fblar becomes the
testing heterogeneous material of Case 23(2) ). The detail of the microstructure of each

case is shown in Table 2.11.

Table 2.11: Microstructure of cases of “semi-random” material

’ Case H Microstructure (L for L;, and S for Lg) \ Total length of testing part(mm) ‘

23(1) LSLLSLSLLSLLSLSLLSLS 102
23(2) LLSLLSLSLLSLLSLSLLSL 103
23(3) SLLSLLSLSLLSLSLLSLLS 102
23(4) LSLLSLLSLSLLSLSLLSLL 103
23(5) SLSLLSLLSLSLLSLSLLSL 102
23(6) LSLSLLSLSLLSLLSLSLLS 102
23(7) LLSLSLLSLSLLSLLSLSLL 103
23(8) SLSLLSLLSLSLLSLLSLSL 102
23(9) LSLSLLSLLSLSLLSLLSLS 102
23(10) LLSLSLLSLLSLSLLSLSLL 103

The simulation process for each case followed the procedure introduced in Section 2.2.4.
However, because the length of the testing heterogeneous material changed in every
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case, the total length of the simulation model was no longer fixed but altered with the
length of the testing material. The difference ratio of material 1 and 2 of the testing
heterogeneous material followed the previous section Bz = 0.25 and 8, = 0.1, and other
parameters were kept the same as the simulation example in Section 2.2.4. The
simulation frequency was from 1 x 10° rad/s to 4.5 x 10° rad/s with interval of
1 x 107 rad/s. After running the simulation for 10 cases, the transmission coefficient was
calculated for each testing frequency for each case. The average transmission coefficient
of 10 cases was then calculated and compared to the transmission coefficient results of
the wave propagated though the periodic laminate material (Case 13 in Section 2.4.1, in
which the mechanical properties of the two material components are the same as
material components simulated in this case). The comparison is shown in Figure 2.16.

Transmission Coefficient

3
Frequency (x 10° Hz)

Figure 2.16: Simulation results of “semi-random” compare with periodic case (Solid line:
periodic case, Dotted: “semi-random” case)

The results shown in Figure 2.16 indicate that the “semi-random” material can reduce
the value of the transmission coefficient in the second pass band significantly (the
maximum value of transmission coefficient dropped from 0.52 to 0.052), compared to
periodic laminate material without any randomness. Meanwhile, material with a
“semi-random” microstructure will not influence the first stop band properties,
compared to periodic material.

This research was carried out with Roth Voisey and Ellis Branwell from the University
of Manchester. They implemented wave propagation research through a mass spring
system, and when constructing the system they applied the Fibonacci random method.
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2.5 Stop band prediction based on “fully-random”
material

In Sections 2.4.1, 2.4.3 and 2.4.4, the wave propagation in periodic material, material
with small perturbations, and material with a “semi-random” microstructure (laminate
material following Fibonacci sequence layout) has been simulated. In this section, the
wave propagation in material with a higher degree of randomness (known as
“fully-random”) will be tested, to understand the influence of randomness in
microstructures in terms of identifying the stop band position for different randomness
levels.

The “fully-random” material presented in this section was constructed with randomness
added not only to the length of each unit cell but also the position of each unit cell. The
testing material was still constructed by two material phases, called Material 1 and
Material 2 and the difference between these two materials can still be described by Bg
and By, which in this simulation will be B = 0.25 and B, = 0.1. To realize the
“fully-random” aspect, the length of unit cells was again related to added randomness
following a normal distribution with mean value (¢t) of 5 mm and standard deviation (o)
of 0.2 mm. Then all unit cells became a testing bar with a total length of 100 mm (the
last one or two unit cells may need to modify the length to avoid extreme situations). At
the same time, the type of each unit cell was randomly decided, following uniform
distribution with 50% possibility, which means that each unit cell could either be
Material 1 or Material 2. Three typical examples of the microstructure with
“fully-random” material are shown in Figure 2.17.

Random microstructure 1

Random microstructure 2

Random microstructure 3

Figure 2.17: Microstructure of “fully-random” material

As shown in Figure 2.17, with randomness added into the length of the unit cell, the
length of each unit cell becomes different. At the same time, with randomness added into
the material decision progress, the testing material becomes “fully-random”.

In this section, 10 cases were constructed to test the influence of the “fully-random”
microstructure on wave propagation in the material. The simulation process for each
case followed the procedure introduced in Section 2.2.4. The difference ratio of two
material components of the tested heterogeneous material was B = 0.25 and B, = 0.1,
and other parameters were kept the same as the simulation example in Section 2.2.4. The
simulation frequency was from 1 x 10° rad/s to 4.5 x 10° rad/s with interval of



2.6. RESULTS AND DISCUSSION 42

1 x 10° rad /s. After 10 cases were simulated, the transmission coefficient was calculated
for each testing frequency for each case. The average transmission coefficient of 10 cases
was then calculated and compared to the transmission coefficient results of waves
propagating though the periodic laminate material (Case 13 in Section 2.4.1). The results
are compared in Figure 2.18.

Transmission Coefficient

3
Frequency (x 10° Hz)

Figure 2.18: Simulation results of “fully-random” compare to periodic case (Solid line:
periodic case; Dotted line: “fully-random” case)

As shown in Figure 2.18, when a harmonic wave was propagated through material with a
“fully-random” microstructure there was no clear stop band. However, the transmission
coefficient was kept around 10% from 2 x 103 Hz (the frequency of the first stop band
started in the periodic laminate material case) to the largest testing frequency and at
several frequencies the transmission coefficient was below 5% (for example, at
1.91 x 10° Hz). Hence, material with “fully-random” microstructure can reduce the
wave propagation to a certain level (around 10%) when frequency is high enough but
cannot create “strict” stop bands.

2.6 Results and discussion

In this chapter, the influence of both heterogeneous material’s mechanical and
geometrical properties on wave propagation were tested from the perspective of the stop
band phenomenon for the 1D case. Finite element simulations of wave propagation
through a homogeneous or heterogeneous material were performed. Whilst performing
the simulation, the longitudinal harmonic wave was actuated at the source point, and
after the wave had propagated though the testing material, it was recorded at the record
point on the testing model (see Figure 2.1). Here, the displacements caused by the wave
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propagation were recorded and then run through the Fourier transform to obtain
amplitudes of the propagated waves. By comparing amplitudes calculated by the wave
propagating through testing heterogeneous material to amplitudes calculated by the wave
propagating through homogeneous material, the transmission coefficient of the wave
propagating through the testing heterogeneous material could then be calculated by Eq.
(2.4). The value of the transmission coefficient determined the frequency ranges, that
either fell into the stop band range or the pass band range. As this study concentrated on
a wave propagating through finite length material, the stop band was then defined by the
transmission coefficient when lower than 5%, which, for each frequency, was calculated.
Then, all transmission coefficients were plotted against frequency to gain the stop band
and pass band picture for the tested frequency range.

In this thesis, a wave propagated through two types of material was tested; one being
periodic laminate material with varied mechanical and geometrical properties; the other
one being material with randomness added into either mechanical or geometrical
properties. Note, that the stop band phenomenon will only occur when a wave is
propagated through heterogeneous materials; hence, in both cases, heterogeneous
material was constructed in two different material phases: Material phase 1 (M) and
Material phase 2 (M;). Note also, that a convergence study was undertaken to ensure the
accuracy of the finite element simulation.

Periodic laminate material
For periodic laminate material three different tests have been conducted:

» Changing the difference ratio of Young’s modulus () of M; and M, to test the
influence of Young’s modulus contrast on the stop band.

* Varying the difference ratio of density (8,) of M; and M to test the influence of
density contrast on the stop band.

e Changing the length of the unit cell ( L,,; ) to analyse the influence of geometry
difference on the stop band.

The difference ratio of Young’s modulus with four values (Bg equals to 0.5, 0.25, 0.1 and
0.05) have been tested in Section 2.3.1. The results shown in Figure 2.8 indicate:

» With an increase in fg, the value of the transmission coefficient decays in both the
stop band and the pass band.

» With an increase in Pg, the frequency of the starting point of the first stop band
becomes lower.

* All four cases also indicate that, at low frequency (less than 1.5 x 103 Hz),
increasing Bg does not have a significant influence on wave propagation.
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To test the influence of the density contrast of the material on the stop band, four tests
were also completed (see Section 2.3.2). In these four cases, B, was set at 0.5, 0.25, 0.1
and 0.05 and the simulation results are shown in Figure 2.9, revealing the following:

* An increase in f, leads to the transmission coefficient dropping in both the stop
band and the pass band, which is similar to the influence of an increase in fg.

* The band width (frequency range) of the first stop band increase with an increase in

Bp-

* The frequency of the starting point barely changes with an increase in 5, which is
quite different from the change situation for fg.

Similar to simulations with changing values for 8, and B, four simulations were run
with the length of unit cell equal to 2 mm, 4 mm, 10 mm and 20 mm, to study the
influence of microstructure difference on the stop band (see Section 2.3.3).

The simulation results for these four cases, shown in Figure 2.10, indicate the following:

 with increased L,;; in the heterogeneous material the frequency of the starting point
decreases, which means that a short L,,; compared to a long L,,;; creates greater
difficultly in sensing the wave at low frequencies.

After the results of three different tests (Bg changing test, B, changing test, and Ly,
changing test) were analysed with periodic laminate material, the relations among the
average wavelength (1) of the heterogeneous material, the length of the unit cell, and the
frequency of the starting point of the first stop band (f;;) were studied. The process of A
calculation for the heterogeneous material at a certain frequency was introduced in
Section 2.3.4. The calculation process determined that the average wavelength contains
information related to the mechanical properties of M| and M, and the volume fraction
of each material in the heterogeneous material. Through analysis, it was found that when
the average wavelength is equal to two times the length of the unit cell (2 X L,;;;) the
corresponding frequency then becomes the frequency of the starting point of the first
stop band. This relation is expressed by Eq. 2.13.

In Young’s modulus contrast test, with an increase in Bg, the average Young’s modulus
of the heterogeneous material [calculated by Eq. 2.10] decreases significantly, leading to
A decreasing significantly, as well. Hence, with an increase in g, the A will equal 2L,
at the lower frequency, which means the f;; has decreased.

In the density contrast test, with an increase in f,, the average density of the
heterogeneous material [calculated by Eq. 2.11] increased slightly, which causes A to
decrease slightly. Hence, with an increase in By, the A will equal 2L,,; roughly at the
same frequency, which means the f;; will not change much in the four cases examined in
this test.
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In the difference of length of unit cell test, the average wavelength of the heterogeneous
material was the same for all cases, with an increase in L,,; in different cases, the
frequency of the A equal to 2L,,;; becomes lower, which means the f;; is decreased. All
analyses therefore agreed with the relations [Eq. (2.13)] among A, Lynit, and f;1 found in
this study.

Random laminate material

The simulations based on periodic laminate material presented the influence of the
material’s mechanical properties and geometrical properties on the stop band in an ideal
situation. However, in real life, errors can be introduced in various situations, such as
during the material manufacturing process. These errors can be treated as the
randomness of the material; thus, the study of the influence of randomness, added into
the material’s mechanical and geometrical properties on the stop band, then becomes
necessary. To accomplish the study, first, two tests were performed with randomness
added into material’s mechanical properties; second, two tests were performed with
randomness added into material’s geometrical properties; and finally, one test was
performed with randomness added into both the material’s mechanical properties and
geometrical properties. One simulation with a periodic laminate material (Case 13 in
Section 2.4.1) was treated as the reference case to identify the effect of randomness
added into the material. In this case, Bz = 0.25 and B, = 0.1 were applied to determine
the mean value of the mechanical properties of the material with randomness.

Different cases of randomness added into material’s mechanical properties have been
introduced in Section 2.4.1 and 2.4.2. In Section 2.4.1, the randomness in the form of
small perturbations, following normal distribution, is added into Young’s modulus of
each unit cell of the heterogeneous material. Three cases with the same mean value and
different standard deviation parameter values (shown in Table 2.8) have been simulated
and compared to the reference case of periodic laminate. The comparison of the results is
shown in Figure 2.11; it indicates that, compared to the reference case, the influence of
randomness added into Young’s modulus of the heterogeneous material on wave
propagation is minimal. With an increase in the standard deviation of the Young’s
modulus, the transmission coefficient at the second pass band dropped very slightly and
the transmission coefficient at other frequencies was almost the same in the testing
frequency range. Similarly, in Section 2.4.2, the randomness in the form of small
perturbations, following normal distribution, was added into the density of each unit cell
of the heterogeneous material. Three cases with the same mean value and different
standard deviation (parameter values shown in Table 2.9) were simulated and compared
to the reference case of the periodic laminate. The comparison is shown in Figure 2.12,
which indicates that the influence of randomness added into the density of the
heterogeneous material on the wave propagation was almost negligible for small
standard deviation cases (Cases 17 and 18), and the influence was rather limited for a
slightly larger standard deviation case (Case 19, in which the transmission coefficient at
the second pass band dropped a little, compared to the reference case).
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Tests of randomness added into the material’s geometrical properties were introduced in
Section 2.4.3, 2.4.4 and 2.5. In Section 2.4.3 the randomness in the form of small
perturbation, following the normal distribution, was added into the length of each unit
cell of the heterogeneous material. Three cases with the same mean value and different
standard deviation (parameter values shown in Table 2.9) were simulated. The mean
value was 5 mm and standard deviation was 0.05, 0.1 and 0.2. The simulation results
were compared to the reference case of the periodic laminate and presented in Figure
2.13. The results indicate that, with an increase in the standard deviation the transmission
coefficient at the second pass dropped significantly. When the standard deviation was
0.2, the influence of randomness almost removed the second pass band.

To study the influence of a higher degree of randomness (compared to small perturbation
cases) added into the material’s geometrical property on the stop band, wave propagation
in “semi-random” material was tested in Section 2.4.4. While generating the
microstructure, the computer program may create extremely large or small unit cells.
Hence, limited by the program’s realisations and with the conscious aim of avoiding
extreme situations, a new method of randomness realization was introduced, as the
material’s microstructure layout, following the Fibonacci sequence. Ten realisations with
different random microstructures were simulated to obtain the average transmission
coefficient at each tested frequency. For each case, the microstructure was constructed
from 20 unit cells picked from the “Fibonacci bar” (the method of “Fibonacci bar”
creation is introduced in Section 2.4.4) with a Fibonacci number equal to 20 in sequence.
The average transmission coefficient was then compared to the reference case of the
periodic laminate, shown in Figure 2.16. The results reveal that the heterogeneous
material with “semi-random” microstructure can reduce the transmission coefficient at
the second pass band significantly and the transmission coefficient retains almost the
same degree of success in the other frequency range as in the reference case.

By comparing the influence of randomness, added into the material’s mechanical
properties (Section 2.4.1 and 2.4.2) and the material’s geometrical properties (Section
2.4.3 and 2.16) on the stop band phenomenon, it is fair to say that, with the same
randomness level added into the material’s mechanical and geometrical properties,
geometry is more likely to influence the wave procreation at certain frequencies.

Generally speaking:

* The randomness added to the mechanical properties does not influence either the
starting frequencies of the first stop band, the width of the first stop band or the
second pass band.

* However, adding randomness of the same order (small perturbation) to the
geometrical characteristics changes the picture significantly. Although the
properties (the starting frequency and the width) of the first stop band remain
unaffected, the second pass band is significantly reduced: thus, the transmission
coefficient can be lowered by introducing small perturbations into material
geometry.
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The final test with randomness added into both the material’s mechanical properties and
geometrical properties was illustrated in Section 2.5, which referred to a “fully-random”
case. The randomness added into the material’s mechanical properties was realised by
adding randomness into the material type-choosing process of each unit cell (whether it
was to be Material 1 or 2); while uniform distribution and randomness added into the
material’s geometrical properties was realised by adding randomness into the length of
each unit cell following normal distribution. The example microstructure with both types
of randomness is shown in Figure 2.17. Ten realisations were simulated and the averaged
transmission coefficient then compared to the reference case of the periodic laminate.
The results are shown in Figure 2.18, which highlights the fact that no clear stop band
occurred but the transmission coefficient remained at a low level (around 10%) after the
initial drop. The “fully-random” case was also compared with the “semi-random” case
and small perturbation case, along with the reference case, together (see Figure 2.19).

Transmission Coefficient

Frequency (x 10° Hz)

Figure 2.19: Simulation results of periodic case, small perturbation case, “semi-random”
case and “fully random” case compared (Solid line: periodic case, Dotted line: small
perturbation case, Dashed line: “semi-random” case, Dotted dashed line: “fully-random”
case)

As shown in Figure 2.19, once randomness was added into the material’s geometrical
properties, the transmission coefficient at the second pass band was reduced
significantly. When comparing the “semi-random” to the small perturbation case, in the
first stop band the transmission coefficient was always less than 0.01 for the
“semi-random” case but at some frequencies the transmission coefficient was slightly
over 0.01 (still not over 0.05) for a small perturbation case. This means the
“semi-random” nature of the material can create a smoother stop band compared to the
small perturbation case. For the second pass band, at several frequencies the
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transmission coefficient became slightly over 0.05 for the “semi-random” case, but the
transmission coefficient was always lower than 0.02 for the small perturbation case. This
signifies that a small perturbation of the material can nearly remove the second pass band
but with a “semi-random” material, the wave can still pass into the second pass band.
Randomness in both cases had a slight influence on wave propagation in the stop band
compared to periodic material, but could reduce the transmission coefficient significantly
in the second pass band. However, the “fully-random” case changed the stop band into a
pass band (although it maintained the transmission coefficient at a low level) and
reduced the transmission coefficient at the second pass band.



Chapter 3

Stop band prediction based on gradient
elasticity

As an alternative way of describing the material without explicitly defining it, but still
including all the information of the material’s microstructure, a gradient-enriched
formulation can be used. Thus, it is of interest to analyse the emergence of stop bands
following gradient elasticity methodology. The gradient theory explored below is used
because it is simple to implement; alternative micro-structure theories based on nonlocal
(integral) assumptions [86] or micro-polar formulations [87, 88] have not been
considered here.

3.1 Introduction of gradient theory

Classical elasticity has been widely used in engineering after Robert Hooke discovered
the relation between stress and strain in materials in 1660. For a very simple case, the
relation is shown as follows:

c=F¢ 3.1

where 0, E and € are stress, Young’s modulus and strain, respectively. These relations are
limited to small displacements and one-dimensional situations. To describe the behaviour
of a continuum material, the constitutive equation is expanded as follows:

Cij = Djjxi€x (3.2)

where ©0;;, D;j; and &y are stress tensors, stiffness tensors and strain tensors,
respectively. Eq. (3.2) can be used to describe the behaviour of continuum material in
three dimensions.

However, classical elasticity is only valid when the material is homogeneous. When the
material is heterogeneous, results calculated by applying classical elasticity may become
unrealistic on the microscopic level. Hence, to overcome these anomalies, gradient
theory is developed by enriching the field equations with appropriate higher-order spatial
gradients of state variables. In the 1960s, gradient extensions of elasticity were
formulated by Toupin [87] and Mindlin [89]. After this, many formats of gradient

49
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elasticity were suggested with additional gradients of strain. In this section, different
ways to obtain gradient elasticity formats will be discussed and compared. The first was
introduced by Aifantis and co-workers [90-92] for the static case. The second was
developed by Eringen [93] for the dynamic case. The third was proposed by Metrikine
and Askes [94] for the response of a discrete material model.

In the previous chapter, while running different simulations, the heterogeneous material
has been modeled and meshed explicitly. However, by applying gradient theory, the
heterogeneous material has to be homogenised first to create an equivalent continuum
material. The modelling and meshing process will then be based on this homogenised
material. In this case the meshing process will be more efficient. Additionally, the
simulation time based on gradient theory is lower. This signifies that, the gradient theory
provides a more efficient tool.

3.1.1 Gradient elasticity formulation suggested by Aifantis

The gradient elasticity formulation suggested by Aifantis [81] is based on the static point
of view. This format was derived by extending the strain energy density with an additional
term, and the constitutive relation is modified to

6ij = Dijut (€1 — C*€xt yum) (3.3)
Kinematically, the strains are the same as in classical elasticity, namely
1 8uk 81/!1
& =5\ 3. T3 34
& 2 (8xl + 8xk ( )

where u; are the displacement components. Stresses (0;;) and stiffness (D;jx) have the
same meaning, as in Eq. (3.2). The difference between Eq. (3.3) and Eq. (3.2) is that
Eq. (3.3) includes higher-order spatial gradients of strain and an additional internal
length scale parameter ¢, which represents the microstructure of the material [95].

For statics, the equilibrium equation of gradient theory is the same as classical elasticity:

Gij,j+bi =0 3.5

where b; are the body force components. Combining Eq. (3.3) to (3.5) leads to a system
of partial differential equations:

Dijut (ug_j1 — g jimm) +bi =0 (3.6)

3.1.2 Gradient theory formulation suggested by Eringen

The gradient theory formulation suggested by Eringen is obtained based on the dynamic
viewpoint. Eringen considered nonlocal elasticity with integral formulation, in which
volume averages of relevant state variables are computed [93]. In particular, nonlocal
and local stresses are linked together and can be computed from local stresses via:

4 2 8 __ ~C
0;; — {70} 1 = Oij 3.7
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where Gf} and Gf}- represent gradient stress and classical stress, respectively. The equation
of motion is written as

Gié;',j—i_bi = pui; (3.8)

where p is the mass density.

The constitutive relation here is the same as in Eq. (3.2), but the reader should recall the
difference between gradient stresses and classical stresses. Combining Eqns. (3.2), (3.4),
(3.7) and (3.8) the irreducible form is derived:

D juu ji +bi = p (i — Eziii,mm) (3.9

3.1.3 Gradient theory formulation based on response of discrete
material model

This formulation of gradient theory can be obtained from the response of continualising
a discrete material model to capture the dynamic behaviour of heterogeneous materials.
The constitutive relation is derived as [88,94]:

Dijua (t jt + €t jimm) +bi = 0 (3.10)
The only difference between Eq.(3.10) and Eq.(3.6) is the sign of the higher-order term.
Because this relation is obtained via the continualisation of a discrete material model (for
example a mass-spring system), the length scale ¢ is related to the geometry
straightforwardly. However, this formulation of gradient theory is unstable [96].

Metrikine and Askes [97] modified this relation by combining it with the advantages of
Eq. (3.6) in the static part. The constitutive relation, now stable, becomes:

0ij = Djju (€u —ffekl,mm) + P o ju (3.11)

where /2 is the length scale with higher-order stiffness term and /2, is the length scale with
higher-order inertia term.

3.1.4 Length scale in gradient theory

In the gradient theory discussed above, two different length scales are proposed: the length
scale in statics, £, and the length scale in dynamics, ¢,,. Length scale in gradient theory is
a parameter used to quantify the influence of material near the sample point. Based on the
homogenisation of a Representative Volume Element (RVE) of a material [95], Gitman
and co-workers derived a relation between the length scale /;, and the size of the RVE in
statics [98]. For the length scale ¢,,, a similar relation could be identified with the linking
of /,, and the size of the RVE in dynamics [98]. These two relations are shown below:

1
0 =15tk (3.12)

1
2 = Ee,%VEm (3.13)
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The question of identifying the size of an RVE in the static case has been addressed by
Gitman [95]. However the dynamic RVE size requires further investigation.

3.2 1D Dispersion analysis

Dispersion analysis in this section is based on harmonic wave propagation. The
displacement is assumed to be the general harmonic solution:

u=Ae'k=00 (3.14)
where A, k and @ are amplitude, wave number and angular frequency.

For the homogeneous material with consideration of classical elasticity, substituting the
displacement with the general harmonic solution Eq. (3.14) and changing body force to
the standard inertia term in the equilibrium equation of classical elasticity Eq. (3.5),
yields:

_prAei(kxfwt) _ _EkZAei(kxfa)t) (3.15)

From Eq. (3.15), the dispersion relation based on classical elasticity can be found:

o> E

25 (3.16)
The left side of Eq. (3.16) is the phase velocity (¢ = @/k), and on the right side of Eq.
(3.16) is a constant value (where the elastic bar velocity c, is defined by cg =E/p)
depending on the material. As the phase velocity ¢ does not depend on the wave number
k, this result means that there is no dispersion effect in a homogeneous material, without
considering the influence of the material’s microstructure. However, with consideration
of the material’s microstructure, the wave dispersion effect can be predicted, based on
gradient theories. Following a similar procedure, the dispersion relations based on
different gradient theories have been obtained, as reported below [99]:

Dispersion relation based on Aifantis’ theory:

[\

= 1+ K202 (3.17)

fhﬁlﬁ
o

Dispersion relation based on Eringen’s theory:

2
c 1
= =——= 3.18
¢z 14k (3.18)
Dispersion relation based on the model modified by Metrikine and Askes:
SR N 2
R (3.19)

21+

From Egs. (3.17-3.19), it is obvious that phase velocity ¢ depends on the wave number k,
which means that all models can predict the dispersion of wave propagation in the
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material. Additionally, the length scale can influence phase velocity. Although, all
gradient theory models mentioned in this report can predict dispersion in material, the
results are different, based on different models. The dispersion analysis results based on
Aifantis’s gradient model, Eringen’s gradient model, and classical elasticity, are shown
in Figure 3.1.

45 / -
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Wave number k

Figure 3.1: Angular frequency @ versus wave number k for Aifantis’ model(dashed),
Eringen’s model(solid) and Classical elasticity model(dot-dashed)

Figure 3.1 shows that dispersion relation based on Aifantis’s gradient model is
unrealistic (angular frequency becomes ultimate when wave number keeps increasing,
shown in Figure 3.1 by dashed line). Dispersion relation based on Eringen’s gradient
model (solid line in Figure 3.1) shows that angular frequency will approach one certain
value when the wave number keeps increasing, which means that a wave cannot
propagate through material where the wave number increases to a significantly large
number. Hence, it is possible to apply gradient theory to predict stop band phenomenon
analytically [see Section (3.3)].

As for Metrikine and Askes’ model, with two length scale parameters, /5 and /,,, it is a
more complex model than the two discussed above. Figure 3.2 shows the results
predicted by applying Metrikine and Askes’ gradient model for dispersion analysis
(normalized phase velocity versus normalised wave number). Here, normalised phase
velocity not only depends on wave number but also relies on the ratio between static
length scale /5 and dynamic length scale ¢,,. As shown in Figure 3.2, if the wave number
k is large enough, the normalised phase velocity will lead to a constant number which is
the ratio of ¢y and /,,. This relation can also be derived analytically by assuming wave
number k to be infinitely large in Eq. (3.19) and it will be:
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c 1+Kk202 4
C i 3.20
co ko \ T R22 T 4, (3.20)
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Figure 3.2: Normalized phase velocity ¢/c, versus normalized wave number k¢ for
Metrikine and Askes’ model with ¢ /¢,, = 4 (dashed), ¢s/¢,, = 1 (solid) and ¢, /¢,, = 0.25
(dotted dashed)

3.3 Periodic laminate material stop band prediction
based on gradient elasticity

Since this study is focused on dynamic behaviour of the material, the gradient elasticity
format with inertia gradient will be applied to predict the stop band for a
one-dimensional, two-phase laminate material with periodic structure under dynamic
loading. By considering the influence of material microstructure, which is represented by
a length scale (an additional parameter preceding the extra gradient term), it is possible
to use gradient theory to predict the stop band [as introduced in Section (3.2)]. The
gradient theory applied in the calculation can be expressed by Eq. (3.21) (which is
similar to Eringen’s gradient model; see, for example, [82]), where p and E are the
averaged mass density and Young’s moduli, respectively, £ is the size of the periodic unit
cell in the laminate material (see Figure 2.2). They can be found by Eq. (3.22) and Eq.
(3.23), where « is the volume fraction with value of 0.5 for periodic microstructure; pf’
and pf are mass densities of material phases 1 and 2 for periodic microstructure,
respectively; E{l7 and Eé’ are Young’s moduli of materials 1 and 2 for periodic
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microstructure, respectively; coefficient Y is obtained by Eq. (3.24) [82]. Note that, the
coefficient 7y is created by Terry [82] that is only applied to the one-dimensional laminate
material [100] to ensure the accuracy of the length scale parameter.

Pity — YOPU e = Ett (3.21)

p=opl+(1—a)py (3.22)
EVE]

E= (3.23)

(1-o)EY + aEY

I [l —a)(Elp! —ESpD)]”

r=1;

(3.24)
12| (1-o)pEl+apEy

In this section, Young’s moduli of material phase 1 and 2 are suggested to be related:
EY = BgEY and mass densities of materials 1 and 2 are suggested to be p)’ = B, p!” where
Be = B, = B for simplicity is a constant proportionality coefficient. Based on Eq. (3.21),
and replacing displacement by a harmonic solution [see Eq. (3.14)], the dispersion relation
can be obtained:

_prAei(kx—COt) . ypgszkZAei(kx—a)t) — _EkZAei(kx—a)t) (325)
EK?

After substituting EV, EY, p¥, p5, and B into Eq. (3.26), the first stop band starting
frequency w can be found from Eq. (3.27) (assume k to be infinite).

. Ek? 24BEY
“’—%WW—\/W o

3.4 Finite element implementation

In this section the discussion on the finite element implementation will be presented for
the case of homogenised material based on gradient theory.

3.4.1 Implementation of gradient theory in finite element simulation

In this section, the discussion of the finite element implementation will be presented for
the case of homogenised material based on gradient theory. To apply gradient theory in
finite element simulation, discretisation of the gradient elasticity equations is necessary.
Based on different forms of the gradient elasticity, discretisation can vary. In this section,
the discretisation process is introduced in detail in relation to the 2D situation, but a
similar process can be applied to 1D and 3D.

By applying the finite element method, the continuous displacement u is approximated
by u in terms of the finite element’s nodal values d = [dlx,dly,dzx,dzy, - } d (depending
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on the shape of the finite element). The relation between d and u is linked by a shape
function N [shown in Eq. 3.28] as u = Nd.

N_[M 0 N0
0N 0N

For example, a bar element (the bar element has only one degree of freedom, hence it is
capable of simulations in 1D cases in this study) is shown in Figure 3.3.

(3.28)

Figure 3.3: The bar element

As shown in the figure, the displacement can be expressed as:

_ dy
u=[NN3] { 0 } (3.29)
where d; and d; are nodal displacement of two ends of the finite element and L is the
length of the finite element. Assuming the displacement is a linear variable, the shape
function Ny and N, become:

X x
-1 - :
Ny = ( L)’N2 I (3.30)

In the 2D situation, the relation of u and d is the same as in 1D, but the shape function is
different. For example, a square element is shown in Figure 3.4.

Assuming that the displacement is a linear variable in the square element, the shape
function (assume the shape function in the horizontal direction and vertical direction is
the same) is calculated:

Ni=(1-2)1-2) (3.31)
Ny = (1—2)2 (3.32)
Ny =22 (3.33)
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Figure 3.4: The square element

_Xq_?
=-(1-2) (3.34)

Meanwhile, the usual derivative operators V and L are defined:

Ny

rl
V=| % (3.35)
oy
d
%
L=| 0 % (3.36)
09
dy Jdx

At the same time, V2 = VIV

Applying the above process to the constitutive relation of normal classical elasticity, the
equation then changes from tensor notation to matrix-vector notation:

L'DLu+b=0 (3.37)

where D is the matrix form of the constitutive tensor D;jy;, and b = [bx,by]T is the body
force.

Similarly, applying the above process to the constitutive relation of gradient elasticity
with inertia gradient [Eq. (3.9)], the matrix-vector notation of the equation becomes

L"DLu+b = p (ii — *V7ii) (3.38)

Taking the weak form of Eq.(3.37) with domain €2 and boundary I', and then integrating
by parts, gives

/ (Lw)" DLudQ = / w!bdQ + / wltdl (3.39)
Q Q I

where w = [wy,w,]” is a vector with test functions and t = [t,,,]" are the user-prescribed
tractions on the Neumann part I';, of the boundary. The discretised equation of Eq. (3.37)
is then obtained as
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/ B'DBdQd =Kd =f (3.40)
Q

in which the stiffness matrix K and the strain-displacement matrix B = LN have been
defined. The force vector f includes the body force and the externally applied tractions.

Similarly, taking the weak form of Eq. (3.38) with domain £ and boundary I, then
integrating by parts, the equation becomes

T )i T
/ (Lw)” DLudQ + / o |whiis 2 (X028 oW 0WN T / wibdQ+ / wltdl
Q Q dx dx = dy dy
(3.41)

where w is the same as in Eq. (3.39) and t now also includes the inertia effects. After
discretisation, Eq. (3.38) leads to
Kd+ [M+/H|d=f (3.42)

in which K and f are the same as in Eq. (3.40). The two parts of mass matrix are defined
by the following equations:

M= / pNTNdQ (3.43)
ONT aN ONT ON
H= / ( S+ o ay)dQ (3.44)

The above process introduced the discretisation algorithm in the space domain; a time
integration algorithm in the time domain was also needed. In the next section, this finite
element methodology illustrated when it was used to simulate a 1D stop band behaviour,
while 2D numerical analysis will be covered in Chapter 4.

3.5 1D Numerical analysis based on gradient theory

The finite element simulation procedure based on gradient theory, followed the same
process introduced in Section 2.2. For each testing frequency as in Section 2.2, a
homogeneous reference case was used to calculate the amplitude (A;) of the wave
propagation. Then the homogeneous material was replaced and simulated with the same
loading and boundary conditions to obtain the amplitude of the wave propagating
through the heterogeneous material (A.). In Section 2.2, the amplitude A, was found
while considering the wave propagating through the explicitly constructed
heterogeneous material. In this section, information about the heterogeneous structure of
the material enters via effective properties, obtained through averaging, and the length
scale of the newly defined homogenised material. Then the wave propagating through
this homogenised material is simulated, and the amplitude of wave propagating through
the homogenised material can be calculated (defined as Ag). For each testing frequency
the transmission coefficient of the wave propagating through the homogenised material
can then be calculated as T = A, /Ay, similarly to Section 2.2.
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The initial heterogeneous material used here was similar to the one used in Section 2.2.4,
with two different components: M; with E = 2 x 10" Pa and p = 8 x 103 kg/m>. The
contrast ratio for Young’s modulus was B¢ = 0.25 and for the density was 8, = 0.1. The
average mechanical properties were obtained via Eq.(3.23) and Eq.(3.22), and resulted in
E =8x 10 Pa and p = 4.4 x 10> kg/m>. The information about the geometrical
properties enters via a “length scale” and is linked to the RVE of the heterogeneous
material (see Gitman [95] for reference). Here, the length scale was first chosen to be the
same length (¢ = 10mm) as the length of the unit cell (which can be treated as the RVE
size in the 1D case for a periodic material). The length scale was then chosen to be twice
(¢ = 20mm) the length of the unit cell, based on the prediction that the first stop band
should exist when the average wavelength is twice the length of the unit cell (see Section
2.3.4). Simulations were carried out with both length scales and are discussed later in
this section.

In the first simulation a continuous longitudinal harmonic wave was set to propagate
through the homogeneous material at a frequency of 2 x 10° rad/s. The displacements at
the receiving point were recorded and are shown in Figure 3.5, which match identically
with the homogeneous material test undertaken in Section 2.2.4. After applying the
Fourier transform of the displacements the amplitude was calculated as
Aj = 2.47 x 107%. The second simulation was for a continuous longitudinal harmonic
wave propagating through the homogenised material at the same frequency. The
displacements at the recording point were recorded and are shown in Figure 3.6.
Comparing the displacements with the wave propagating through heterogeneous material
(recorded displacements are shown in Figure 2.5), it can be seen that the displacement
changes, based on the homogenised material, are similar to the displacement changes
based on heterogeneous material in terms of the overall trend, but smoother. Following
the Fourier transform of the displacements, the amplitude was found to be
A, =1.22x 10~°. Hence, the transmission coefficient was:

A, 122x107°

o o -3
ARty T 1.08 x 10 (3.45)

At the next step, the testing frequency range from 1 x 10°rad/s to 4.5 x 10°rad/s is
considered with an interval of 1 x 105rad/ s, similar to those discussed in Section 2.2.
The simulation results are presented in Figure 3.7. The numerical result for homogenised
and heterogeneous materials are compared here with analytical prediction, calculated by
Eq.(3.27).

Two different numerical predictions for homogenised material with two different length
scales are presented in Figure 3.7, and compared with corresponding analytical
predictions. It illustrates that, when the length scale equals 20 mm (twice the length of
the unit cell) the simulation result, based on gradient elasticity and classical elasticity,
agreed well with the frequency of the starting point of the first stop band, and coincided
with the analytical prediction. Note here; that, together with the advantages described at
the beginning of this chapter, gradient elasticity, due to its nature, can only predict the
first stop band, which is a limitation of this type of gradient theory.
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Figure 3.5: Displacements at the receiving point for wave propagation simulation for
homogeneous material (classical elasticity)
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Figure 3.6: Displacements at the receiving point of wave propagation simulation for
homogenised material (gradient elasticity)

3.6 Influence of randomness on stop band phenomenon
using gradient elasticity theory

In this section, following the procedure introduced in Chapter 2, a discussion on the
influence of randomness in mechanical and geometrical material properties on the stop
band will be presented. Note: as the gradient elasticity is used to model the material’s
behaviour, the randomness could be added not only to the effective mechanical
properties, but also into the length scale.

The analysis starts with randomness added into the length scale (¢). The homogenised
material is a 100 mm bar with effective Young’s modulus E = 8 x 10'° Pa and effective
density p = 4.4 x 10° kg / m>. The deterministic length scale is taken as £ = 20 mm in
this case,after adding randomness into the length scale, in the form of a small
perturbation, following the normal distribution, with a mean value g = 20 mm and
standard deviation o = 0.2 x 20 mm. Because the randomness is added into the
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Figure 3.7: Results of wave propagation simulation. Solid line — classical elasticity; dotted
line — gradient elasticity with £ = 10mm; dashed line — gradient elasticity with ¢ = 20mm;
red circle — analytical prediction with ¢ = 20mm; and blue circle — analytical prediction
with £ = 10mm

homogenised material, the value of the length scale will not change for a single
realisation but will vary for different realizations. In this test, 10 realisations have been
generated. The simulation process is the same for every realisation as introduced in
Section 3.5; frequency ranges from 1 x 10° rad/s to 4.5 x 10 rad/s. At each frequency,
one average transmission coefficient was calculated by averaging ten different
transmission coefficients gained from 10 realisations with different length scales. All
averaged transmission coefficients were then analysed for the stop band and pass band
ranges.

Randomness was also added into the effective mechanical properties of the homogenised
material. The material used in this simulation is the same as that used above with
effective Young’s modulus E = 8 x 10'° Pa and effective density p = 4.4 x 10° kg/m?
and / = 20 mm. The randomness is added, similar to that described above, in the form of
a small perturbation, following the normal distribution: N(E,0.2E) and N(p,0.2p), i.e.
with mean values for effective properties g = E and U, = p and standard deviations of
og = 0.2E, op = 0.2p. The mechanical properties were kept the same for each
frequency in one realisation but varied in different realisations. Ten realisations with
frequencies ranging from 1 x 107 rad/s to 4.5 x 10° rad/s were implemented as well. The
average transmission coefficients for all frequencies for material with random effective
mechanical properties were compared to the average transmission coefficients gained
from the randomness added into the length scale and the transmission coefficients gained
from the simulation, based on gradient elasticity without any randomness added
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(simulation in Section 3.5). The results are compared in Figure 3.8.

Transmission Coefficient

3 i s 6 7
Frequency (x 10° Hz)
Figure 3.8: Results of wave propagating through material without randomness (Solid line)

and with randomness added into the length scale (Dotted line) or mechanical properties
(Dashed line)

As shown in Figure 3.8, the influence of randomness added to the material’s effective
mechanical properties and randomness added to the length scale produced nearly
identical results. An explanation of this phenomenon can be given as follows:

* As introduced in Section 3.1.4, the length scale quantities influence material near
to the infinitesimal point, i.e. the material’s actual micro-structure.

* Hence, the length scale can be expressed as a function of the Young’s modulus,
density and the geometry of the underlying heterogeneous material:
¢ = fi(E\,E,p1,p2,ge0metry); here Ey, Ep, p; and p; are Young’s modulus and
the density of the two material phase in the underlying heterogeneous material.

 Additionally, the Young’s modulus of the homogenised material can be expressed as
a function of Young’s modulus and the geometry of the underlying heterogeneous
material. E = fg(E|,E,,geometry)

* As such, it can be concluded that the length scale is coupled with effective E and p.

* Hence, adding similar types of randomness into the length scale and the effective E
and p leads to a similar effect on the stop and pass band curves.
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When randomness is added directly into the heterogeneous material’s microstructure
(see Sections 2.4.1-2.4.3), the results show that randomness added into the length of the
unit cell will reduce the second pass band significantly; and randomness added to the
mechanical properties will hardly influence the second pass band. Alternatively,
randomness added to both the material’s geometrical property and mechanical properties
will hardly change the first pass band and first stop band. In this section, randomness
added to effective material’s mechanical properties and geometrical properties separately
have almost the same influence on the first pass band and the first stop band. These two
results showed good consistency on the influence of randomness added to the material
on the first stop band. Although randomness added to homogenised material will reduce
the transmission coefficient slightly in the first pass-band, nevertheless the trend remains
consistent. More importantly, the randomness added to homogenised material will barely
change the lower bound of the first stop band. Hence, simulation with randomness added
to homogenised material can qualitatively replace simulation with randomness added
into heterogeneous material’s microstructure, to predict the first stop band. This
technique can reduce the computational resource and time required and still result in
acceptable accuracy.

3.7 Results, analysis, and discussion

The gradient elasticity theory was introduced to predict the stop band both analytically
and numerically. Both analytical and numerical results indicate that applying gradient
theory can predict the lower bound of the stop band with acceptable accuracy.
Furthermore, material with randomness added can also be simulated, based on gradient
theory.

To remind the reader, a very short overview of gradient theories is presented below. The
gradient extensions of elasticity were first formulated by Toupin [87] and Mindlin [89] in
the 1960s. The gradient theory was introduced to solve the problem encountered when
the scale is close to the microstructure of the material. The gradient theory considers not
only the local point but also the field surrounding it. In addition to this, the gradient
theory can be applied to analyse the dispersion effect during wave propagation [101].
Many formats of gradient elasticity have been developed and three were introduced in
this section: a) by Aifantis and co-workers [90-92] for the static case; b) by Eringen [93]
for the dynamic case; c¢) by Metrikine and Askes [94] for the response of a discrete
material model.

The gradient format introduced by Aifantis and co-workers [90-92] was derived by
extending the strain energy density with an additional term [shown in Eq. (3.3)]. This
format is based on the static point of view and the gradient term was only added to the
stiffness part [shown in Eq. (3.6)]. The gradient format developed by Eringen [93]
considered nonlocal elasticity with integral formulation [shown in Eq. (3.7)]. This format
is based on the dynamic point of view and the gradient term was only added into the
inertial part [shown in Eq. (3.9)]. The gradient format introduced by Metrikine and
Askes [94] was obtained from the response of continualising a discrete material model.
This format included the gradient term in both stiffness and inertial parts, as shown in
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Eq. (3.11).

In all formats of gradient elasticity, a parameter referred to as length scale exists. This is
a parameter that quantifies the influence of material surrounding the infinitesimal point.
The length scale is dependent on material, and can be a single scale [see Eq. (3.6) and
Eq. (3.9)] or multiple, different length scales [see Eq. (3.11)], depending on the format of
the gradient elasticity model chosen. One way to derive the length scale is to link it with
a Representative Volume Element. By applying this method, Gitman and co-workers
derived the relation between the length scale in statics and the size of the RVE in
statics [98].

Based on harmonic wave propagation, the dispersion analysis was conducted in this
section by applying different formats of gradient elasticity. The dispersion relation was
calculated based on different formats of gradient theory. Based on Aifantis’ format, it
indicates that the wave speed will become infinite with an increase in wave number. This
result is unrealistic for wave propagation because wave speed can not be faster than the
speed of light. The calculated dispersion relation, based on Eringen’s format shows that
the wave speed will decrease to zero with an increases in wave number. The calculated
dispersion relation, based on Metrikine and Askes’ format, shows that the wave speed
will equal the ratio of two different length scales [introduced in Eq. (3.11)], with the
increase in wave number. Dispersion analysis based on these gradient formats indicates
the possibility of predicting the stop band analytically.

In this chapter, a gradient theory has been applied to predict the stop band for the
harmonic wave propagating through homogenised material with an underlying
microstructure of periodic laminate material. The process was introduced in Section 3.3
in detail. The analytical prediction of the stop band, based on gradient elasticity, can
indicate the lower bound of the first stop band with acceptable accuracy [see Eq. (3.27)]
but is unable to predict further stop bands because the gradient theory applied here only
considered second-order derivatives.

Following the analytical prediction of stop band based on gradient theory, numerical
simulations were performed to analyse the stop band. The simulation results were then
compared with the simulation results, based on classical elasticity, and analytical
prediction based on gradient theory (shown in Figure 3.7). The result shows that the
analytical prediction based on gradient elasticity can predict the lower point of the first
stop band, the value of which is similar to the numerical simulation results based on both
classical elasticity and gradient elasticity. The simulation results based on gradient
elasticity gave a similar first pass band as the results from the simulation based on
classical elasticity. This proves that simulation based on gradient elasticity can predict
the first stop band. However, both analytical prediction and numerical prediction based
on gradient theory failed to predict the second pass band due to its limitation. Although
the two results were consistent in terms of the first stop band prediction, the failure of the
second pass band prediction indicates the limitation of applying gradient theory in stop
band prediction.
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Furthermore, simulation of the influence of randomness added to homogenised material,
based on gradient theory, on the stop band had been implemented. Randomness was
added to the length scale and mechanical properties of the homogenised material
separately; and was added to both cases following the normal distribution with similar
parameters. With randomness added into the material, multiple realisations were
required. To perform a statistical analysis to study the randomness phenomenon several
(in our case, 10) realisations have been considered. The results were then averaged and
compared to the simulation results, based on gradient elasticity without randomness
(shown in Figure 3.8). The results indicate that, with the same randomness level, the
influence of randomness added to the length scale and to the mechanical properties on
the stop band is almost identical. Both lowered the transmission coefficient slightly but
retained the same trend as the simulation, based on gradient elasticity without any
randomness added. Comparing the simulation results with randomness added directly to
the microstructure of the heterogeneous material based on classical elasticity, the lower
bound of the first stop band was found to be similar in both cases, and randomness added
to material (either heterogeneous or homogenised material) barely changed the first pass
band.

Hence, the gradient theory can be applied to predict the stop band both analytically and
numerically. In higher-order situations, with a given materials’ mechanical and
geometrical properties, applying gradient theory to predict the stop band can save a huge
amount of time and resources compared to simulations with heterogeneous material.



Chapter 4

Influence of material properties on the
stop band phenomenon based on
classical and gradient elasticity in 2D

Wave propagation in 2D material is much more complex than it is in 1D material because
the wave can propagate in multiple directions. In this chapter, wave propagation through
heterogeneous material with a deterministic periodic microstructure will be studied first,
and then randomness will be introduced into the microstructure in different ways, to study
the influence of randomness on the stop band in the 2D case. After this, the influence of
the shape difference brought about by the inclusion of the testing material on the stop
band will be studied. Finally, FE simulation of 2D material based on gradient elasticity
will be undertaken, to research the possibility of applying gradient elasticity in a 2D case
to predict the stop band.

4.1 FE simulation process

To study the wave propagation in 2D material, a finite element simulation was applied.
The simulation procedure is similar to the 1D case, which was introduced in Section
2.2.3. However, because simulation in this section is applied to 2D material, the input
signal is not a point source anymore, but a source distributed along a straight line. Thus,
the recordings will also be obtained along this straight line. The illustration for the new
2D test set-up is shown in Figure 4.1.

As shown in Figure 4.1, the simulation model is constructed in three parts: test material
(Part C); signal input and output parts (Part B on the left for the input and Part B on the
right for the output); and perfect match layers (both Part A1 and Part A2). The length of
Part C was 20 mm; the length of Parts Al and A2 on both sides was 19 mm; and the
length of Part B on both sides was 2 mm. The width is the same along the entire model,
being set at 20 mm so that the test material becomes a square. In this chapter, all
simulations are based on the same geometry set-up but with different test materials (Part

O).
As mentioned above, unlike a point source in 1D, the input source in 2D is distributed
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Figure 4.1: Simulation model of wave propagation in 2D

along the vertical line at the horizontal center of the left Part B. Numerically speaking, in
this line, a continuous harmonic longitudinal wave was applied at each finite element
node to create the input source. The force at each node was set to be:

F, =Agsin(wt)

where A, is amplitude, o is forcing frequency and 7 is time, except for the two nodes on
the top and bottom of the line. The amplitude of the force applied at the top and bottom
edge is half of the force applied in other points on the source line (A, = 0.5 x A,, where
A, is the amplitude of the force applied on the edge of the source line). The reason for
this is that each node in the middle of the source line will provide force to four finite
elements. However, the node on the edge can only provide force to two finite elements.
Hence, to create a source line with the same reaction along the line, the amplitude set at
the points on the edge should be half the amplitude set at the point in the middle of the
line.

Although the input signal was applied as a line, to simplify the analysis process, only ten
points on the line were picked as testing input points (or reference input points), as
shown in Figure 4.1. The output displacements were recorded at the horizontal center of
the right Part B with a line as recording line. Similarly, only ten points on this line were
picked as reference recording points with the same vertical coordinates corresponding to
the reference input points. Both reference input points and recording points were
averaged and located at the corresponding source and recording line.

Similarly, as with the 1D case, at each testing frequency, the transmission coefficient was
calculated as an amplitude obtained from a simulation with heterogeneous material (Part
C) divided by an amplitude obtained from simulation with homogeneous material (Part
C). The transmission coefficient was calculated at each reference recording point. The
influence of heterogeneous material on wave propagation was then denoted by
transmission coefficient at each recording point.
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4.2 Stop band analysis for the material with deterministic
structure

Simulation of wave propagation in 2D material is first carried out based on periodic
chess board layout material. The whole material (20 mm x 20 mm) is constructed of 400
squares (1 mm x 1 mm) with two different materials, laid-out as a chess board. A part of
the microstructure is shown in Figure 4.2 (one fourth of the entire testing material).
Numerically, four nodes square finite elements have been used with the element size
0.1 mm x 0.1 mm, which brought the total elements number to 1.2 x 10° elements. As a
regular rectangular structure has been analysed, it has been assumed that square elements
offer smooth and accurate description. In this section, the attention is focused on
deterministic material; randomness will be discussed in later sections.
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Figure 4.2: Part of microstructure of deterministic heterogeneous material

The two different materials are labeled material A (My) and material B (Mp). The
Young’s modulus of M, is E4 = 1.6 x 10° kg/ms?, and the density of My is
pa = 10° kg/m3. The Young’s modulus of Mp is Ep = 0.25E,4, and the density of Mp is
pp = 0.1p4. Throughout this Chapter, the Poisson’s ratio of all material components in
analysed geometries was set to be zero. This simplification has been done in order to
numerically reinforce the roller boundary conditions, so that the deformation of the
material in the horizontal direction would not influence the deformation in the vertical
direction. The wave speed calculated by Eq. (2.8) in My was 40 mm/s and in Mp was
63.2 mm/s. When the testing frequency is 50 Hz the wavelength in any material (M4 or
Mp) will be less than the length of the unit square. Hence, if the testing frequency is set
between 1 Hz and 50 Hz, in this frequency range the stop band phenomenon should
occur. Note that the frequency range is different from the 1D case, due to numerical
restrictions. Following the process introduced in Section 4.1, the tests were performed in
the discussed frequency range, with results as shown in Figure 4.3.

As shown in Figure 4.3, at each testing frequency, 10 transmission coefficients were
calculated for 10 reference recording points. At certain frequencies the values of these
transmission coefficients were similar to each other (such as 12 Hz to 19 Hz) while at
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Figure 4.3: Simulation results of wave propagating through the deterministic
heterogeneous material

some frequencies the transmission coefficient was quite varied at different recording
points (such as 30 Hz to 40 Hz). In this case, the frequency range of the transmission
coefficient, which was similar at different reference recording points, could be divided
into two ranges: one at low frequencies (1 Hz to 3 Hz), where all transmission
coefficients are roughly equal to 1; another at mid frequencies (12 Hz to 19 Hz), where
all transmission coefficients are lower than 5%. A possible explanation for this
phenomenon is that at low frequencies, the wavelength is long (compared to the length
of the constructed square) and the influence of heterogeneous material on wave
propagation is minor; at mid frequencies, the wave propagation is blocked by the
heterogeneous material, and hence the values of the transmission coefficients at all
reference recording points decrease to below 5%. At other frequencies, the transmission
coefficients are different from each other at varying reference recording points because
the wave propagation inside the heterogeneous material is in both horizontal and vertical
directions. The vertically propagating waves may interact with each other, and with
horizontally propagating waves can create focus fields in which the transmission
coefficients could be significantly larger than other reference recording points (such as
the transmission coefficient calculated at point 6, compared to transmission coefficients
calculated at other points at 34 Hz). Hence, the definition of the stop band is given as a
certain frequency range where the transmission coefficients calculated at all reference
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recording points are below 5%.

To simplify the results and make them comparable with results obtained from other
simulations, the transmission coefficients calculated at 10 reference recording points
were averaged and denoted as average transmission coefficient (Ty). Then, the average
transmission coefficient for the entire testing frequency range was calculated, and is
shown in Figure 4.4. The reader should note that the averaged transmission coefficient
was only applied to indicate the trend of the transmission coefficient change along
frequencies but can not be treated as the only value to describe the wave propagating
through the testing material at a certain frequency. However, at the stop band, the
transmission coefficients of 10 reference recording points were roughly the same (as
shown in Figure 4.3). Hence, the value of the averaged transmission coefficient at the
stop band can represent the transmission coefficient distribution on the recording line. In
this case, with a periodic chess board lay-out, the microstructure of a testing material,
the stop band frequency range was from 12 Hz to 19 Hz, as shown in Figure 4.4.
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Figure 4.4: Averaged results of wave propagating through the deterministic heterogeneous
material

Scaling effect

In this simulation, the Young’s modulus of M, is E4 = 1.6 x 10° kg / ms?, and the density
of My is ps = 10° kg/m?>. The Young’s modulus of Mg is Eg = 0.25E,, and the density
of Mp is pp = 0.1p4, which means that the testing material was artificial. In the
simulation frequency range (from 1 Hz to 50 Hz), the properties of the artificial material
led the wavelength of material A to change from 40 mm to 0.8 mm and the wavelength
of material B to change from 63.2 mm to 1.26 mm. These two wavelength ranges are at
the same level as the length of the unit cells (2 mm), which led the stop band to appear.

Since the simulation is a linear analysis, the frequency range can be scaled with the wave
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speed without changing the transmission coefficient of the wave. The transmission
coefficient is related to the mechanical property difference of the material components in
the testing material, the shape of the unit cells, the size of the unit cells, the position of
the unit cells, the testing frequency, and the wave speed and the wavelength. Without
changing the mechanical property difference of the material components in the testing
material, the shape of the unit cells, the size of the unit cells, and the position of the unit
cells, but by instead changing the testing frequency and the wave speed at the same time
with the same ratio, the wavelength will remain the same as the case without any
changes added. The transmission coefficient of the new material at the new frequency
will be the same as the unchanged material at the unchanged frequency.

For example, assume that a test material M, has two components, M,; and M,;. The
Young’s moduli of M, and M, are E,| and E,,. The densities of M, and M, are p,;
and p,». The wave speeds of M, and M,; are V,;; and V. The length of the unit cells is
L,o0. Assume that a wave at frequency f, propagates through the material and the
transmission coefficient is 7,. The wavelength of M,,; and M, are A,; and A,;.

Assume that another test material M, has two components M, and M,,. The Young’s
moduli of M, and M, are E,; = 6E,; and E,, = OE,;. The densities of M, and M,
are Pn1 = Po1/6 and pyy = p,n/6. The wave speeds of M,; and M,; then become
Va1 = 0V, and V,p = 0V,». Assume that a wave at frequency f, propagates through the
material and the transmission coefficient is 7,,. Now, assuming that f, = 0f,, the
wavelength of M,; and M, then become A,; = 4,1 and A, = A,». While the length of
the unit cells remains the same (L,n = L, 0), the transmission coefficient 7, is then the
same as T,. The materials’ properties of M, and M,, are listed in Table 4.1.

Table 4.1: Materials’ properties comparison of M,, and M,,
| [ M, | M, |
Material M, | My M, M,
Properties | Eo1 | Eoo | Eq1 = 0E, | Epp = 0E,
Po1 Po2 | Pn1 = p()l/6 Pn2 = p02/6

L,o L,n=L,o

Wave fo fn=10f,
Properties | Vo1 | Voo | Vi = 0V Vo = 0V,
A01 2‘02 Anl - )‘01 AnZ - 1‘02

1, 1,=1,

Now, assume that the artificial testing material applied in the deterministic case is M,,
0 =1.25x 10°, the Young’s modulus of M,y is E;;; = 0E,] =2 X 10! Pa, and the density
of My1 is pp1 = Po1/0 = 8 x 10% kg/m>, which makes the material M,,; become steel. This
is the scaling process; after scaling, the simulation frequency range is between 1.25 x 10°
Hz and 6.25 x 10° Hz with interval of 1.25 x 10° Hz, but the transmission coefficient
remains the same as the deterministic case. The scaled transmission coefficient against
frequency is shown in Figure 4.5. In this chapter, limited by the computation resources, all
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simulations were undertaken with artificial materials. However, with the scaling process,
the simulation results could represent real materials.
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Figure 4.5: Scaled results of wave propagating through the deterministic heterogeneous
material

4.3 Influence of randomness in material properties on
stop band

As introduced in Chapter 2, adding randomness into the material will influence wave
propagation significantly. Hence, the influence of randomness added into the 2D material
on wave propagation will be studied in this section. As discussed in Section 2.6, adding
randomness into the material’s mechanical properties does not have a significant
influence on the wave propagation but adding randomness into a material’s geometrical
properties (even with a small perturbation) can influence the wave propagation
significantly. Based on the above mentioned conclusions, in this section, the randomness
will only be added into the material’s geometrical properties. Similarly to the previous
chapter, different types of randomness will be added into the material: small
perturbation and Fibonacci type. Note that both types of randomness only affect the
length of the unit square but will not affect the mechanical properties of each unit square.
Hence, the mechanical properties of each unit square remain the same as in the
deterministic material, as with the position of each unit square (on chess board layout).

To compare the simulation results of small perturbation and Fibonacci type of
randomness with the results obtained from deterministic material, the input signal,
testing frequency range (1 Hz to 50 Hz), and the mechanical properties of the material
(the mechanical properties of the constructed components, M3 and M,) are set at the
same level as with the deterministic material.
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4.3.1 Influence of small perturbation on geometrical properties on
stop band

As discussed above, the first type of randomness added into the 2D material is in the form
of a small perturbation following, similar to Section 2.4.3, normal distribution. The length
of a unit square can then be described as L,; = (i, 0), where u is the average length and
is the standard deviation. In this section, three different cases will be covered: randomness
only added in the horizontal direction, randomness added in the vertical direction and
randomness added into both horizontal and vertical directions.

Material geometry with small perturbation randomness in horizontal direction

The first simulation of material is with small perturbation added only in the horizontal
direction in the microstructure. This means that the horizontal length of each unit square
in the microstructure will follow normal distribution, but the vertical length of each unit
square must be kept at 1 mm, as with the deferministic material introduced in Section
4.2. When realising randomness, the chess board layout was treated as layered material.
The microstructure with 20 by 20 squares was seen as 20 by 1 layers, with each layer
including 10 squares. Randomness was added into the horizontal length of the bottom
square in each layer following normal distribution with ¢ =1 mm and ¢ = 0.2 mm. In
this way, the horizontal length of the bottom square decides the horizontal length of
other squares in the same column-layer. To avoid extreme situations, the lengths of the
two bottom squares were adjusted based on the total horizontal length (20 mm) of the
testing material. The microstructure of one realisation of the testing material is shown in
Figure 4.6.
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Figure 4.6: A part of the microstructure of the small perturbation randomness in
horizontal direction

In the testing frequency range at each testing frequency, five realisations were made. At
each reference recording point, five transmission coefficients are then calculated based
on these realisations. Then at each testing frequency at each recording point, the average
transmission coefficient (7)) was calculated from five transmission coefficients gained
from different realisations. The simulation results of the entire frequency range is shown
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in Figure 4.7.
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Figure 4.7: Simulation results of wave propagating through the small perturbation
randomness in horizontal direction

As shown in Figure 4.7, the stop band occurs for frequencies ranging from 12 Hz to 24
Hz. The averaged transmission coefficient (Ty) has been calculated at each frequency and
compared with the Ty gain from the simulation based on deterministic material.
Comparison results are shown in Figure 4.8. The results indicate that after adding a small
perturbation into the horizontal direction of the heterogeneous material, the width of the
stop band increases. At the same time, the average transmission coefficient drops
significantly to the second pass band. However, small perturbation randomness only has
a minor influence on wave propagation at low frequencies and would hardly influence
the lower bound of the stop band.
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Figure 4.8: Averaged results of wave propagating through the small perturbation
randomness in horizontal direction

(Solid line: small perturbation randomness in horizontal direction; Dashed line:
deterministic material; Point dashed line: indicates the position of 5% along frequency)
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Material geometry includes randomness in vertical direction

The second group of simulations is the analysis of small perturbations added only in the
vertical direction in the microstructure. The vertical length of each unit square in the
microstructure again follows normal distribution, but the horizontal lengths of all unit
squares were the same and equal to 1 mm. While realising randomness, the
microstructure was again treated as layered material, so the vertical length of the first
unit square in each horizontal row will decide the vertical length of the corresponding
horizontal row. The vertical length of the first unit square in each horizontal layer
followed normal distribution, with ¢ =1 mm and 6 = 0.2 mm. To avoid extreme cases,
the vertical length of the last two horizontal layers was adjusted under the condition that
the width of the testing material was kept at 20 mm. The microstructure of one
realisation of the randomness added into vertical length is shown in Figure 4.9.
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Figure 4.9: A part of the microstructure of the small perturbation randomness in vertical
direction

In the testing frequency range at each testing frequency 5 realisations were made. After 5
simulations, the averaged transmission coefficient at each point at each frequency (7))
was calculated and is plotted in Figure 4.10.

As shown in Figure 4.10, the stop band is now from 13 Hz to 20 Hz. The averaged
transmission coefficient was calculated as well and compared to the deterministic case.
The results are compared in Figure 4.11, and indicate that, with a small perturbation
randomness added into the vertical length of each unit square, the first stop band
remained the same as material without any randomness added to it. However, with
randomness added in the vertical direction, the transmission coefficient dropped
significantly in the second pass band.
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Figure 4.10: Simulation results of wave propagating through the small perturbation
randomness in vertical direction
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Figure 4.11: Averaged results of wave propagating through the small perturbation
randomness in vertical direction
(Solid line: small perturbation randomness in vertical direction; Dashed line:
deterministic material; Point dashed line: indicate the position of 5% along frequency)
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Material geometry includes randomness in both horizontal and vertical directions

The third group of simulations was performed for the material with small perturbation
added to both horizontal and vertical directions. Hence, both the horizontal and vertical
length of each unit square will follow normal distribution with average value g = 1 mm
and standard deviation ¢ = 0.2 mm. A similar randomness realisation technique has
been applied which treats the microstructure as layered material and the randomness in
the horizontal length of unit squares in the bottom layer and the vertical length of unit
squares in the first vertical layer, and then decides the geometrical parameter of the entire
microstructure. Still, adjustment had to be made (if necessary) to ensure that both the
horizontal and vertical length of the entire testing material was 20 mm. One realisation
of the microstructure is shown in Figure 4.12. Note, that the vertical and horizontal
layers were constructed independently from each other.
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Figure 4.12: A part of the microstructure of the small perturbation randomness in both
horizontal and vertical directions

In the testing frequency range at each testing frequency, five realisations have been
undertaken. After five simulations, the average transmission coefficient at each point at
each frequency (7)) was calculated and is plotted in Figure 4.13.

As shown in Figure 4.13, the stop band ranged from 13 Hz to 25 Hz. The averaged
transmission coefficient was calculated and compared to the deterministic case; the
results are shown in Figure 4.14. The comparison indicates that, with a small
perturbation added into both horizontal and vertical length of each unit square, the upper
bound of the first stop band extended from 19 Hz to 25 Hz, but the lower bound
remained the same as that for the material without any randomness added in. In addition,
the average transmission coefficient reduced significantly in the second pass band, from
26 Hz to 50 Hz, while the average transmission coefficient remained consistently at
around 5%, which means that with randomness in both horizontal and vertical directions
the second pass band was nearly changed to a stop band.
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Figure 4.13: Simulation results of wave propagating through the small perturbation
randomness in both horizontal and vertical directions
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Figure 4.14: Averaged results of wave propagating through the small perturbation
randomness in both horizontal and vertical directions
(Solid line: small perturbation randomness in both horizontal and vertical directions;
Dashed line: deterministic material; Point dashed line: indicates the position of 5% along
frequency)
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4.3.2 Stop band prediction based on 2D Fibonacci layout material

As introduced in Section 2.4.4, to realise “semi-random” material the Fibonacci
randomness can be used. The technique of generating a 1D Fibonacci bar was introduced
in Section 2.4.4. In this section, the generation of the Fibonacci sequence and number
follow this process. Thus, a Fibonacci bar with Fibonacci number equal to 20 has been
generated (Fbljr). On this bar, the “short” part is set to be Lg and “long” part is set to be
Ly. This bar included 233 layers and was constructed from two materials (M3 and My),
for application in later cases simulated in this section.

In this section, two types of Fibonacci randomness will be studied, one is called small
Fibonacci, with Lg = 0.8 mm and L; = 1.2 mm which represents the same level of
randomness as the small perturbation case. Another one is called big Fibonacci, with
Ls = 0.5 mm and L; = 1.5 mm which contains a higher level of randomness compared
to the small perturbation case. The only difference between the two randomness types is
the length of the unit cell in these two Fibonacci bars. The simulation process and other
aspects of set-up follow the same procedure introduced in Section 4.3.1 for both types of
randomness.

Material including Fibonacci randomness in horizontal direction

The first group of simulations is Fibonacci randomness added into the horizontal
direction, which means that the length of unit squares in the microstructure followed the
Fibonacci sequence in the horizontal direction. As with the small perturbation
randomness material, the Fibonacci randomness realisation treated the microstructure as
layered material (with vertical column-layers) so that the length of the bottom unit
square decided the length of the corresponding layer.

The length of the bottom unit squares follows the Fibonacci sequence. To realise this, in
each randomness realisation, layers were picked from the generated Fibonacci bar ber.
The number of layers depends on the length of each layer, the total length of which is 20
mm. Hence, for both the small Fibonacci case and the large Fibonacci case, the number
of layers is roughly 20. To keep the length of the tested material to 20 mm, the length of
the last layer from the picked out bar was adjusted, where necessary. The length of the
bottom unit squares was then set to be the same as the length of each layer in the picked
out part of the Fibonacci bar. In different realisations, the picked out parts from the
Fibonacci bar were varied, to ensure randomness. For example, in one realisation, the
picked out part from the Fibonacci bar was laid out as SLSSLSLSSLSSLSLSSLSL, where
L represents Ly, and S represents Lg. A part of the microstructure generated based on this
picked out part for one realisation is shown in Figure 4.15.

In the testing frequency range five realisations were done at each testing frequency for
both types of randomness. After five simulations, the average transmission coefficient at
each point at each frequency (7)) was calculated. The simulation results of the small
Fibonacci randomness in the horizontal direction is plotted in Figure 4.16, and the
simulation results of the large Fibonacci randomness in the horizontal direction is
plotted in Figure 4.17.



4.3. INFLUENCE OF RANDOMNESS IN MATERIAL PROPERTIES ON STOP
BAND 81

vh

7

|
N\
H

N

N

A 4

V
.
i

7

.

724

A\

N
|
\

i B

7

2 2

7

2

V.
.

'
n

A

N
N
L

! A
7 %

/
A

..

h
|
A
\

2

u
N

-
0 X

Figure 4.15: A part of the microstructure of the small Fibonacci randomness in horizontal
direction
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Figure 4.16: Simulation results of small Fibonacci randomness in horizontal direction

As shown in Figure 4.16, the frequencies, producing the stop band of the small
Fibonacci in the horizontal direction case ranged from 13 Hz to 25 Hz. The average
transmission coefficient was calculated as well and compared to the deterministic case;
the results are shown in Figure 4.18. A comparison of the results indicates that with
small Fibonacci randomness added to the horizontal direction, the first stop band
increased and the average transmission coefficient dropped from 35 Hz to 40 Hz and



4.3. INFLUENCE OF RANDOMNESS IN MATERIAL PROPERTIES ON STOP
BAND 82

Transmission coefficient

Recording points
Frequency (Hz)

Figure 4.17: Simulation results of large Fibonacci randomness in horizontal direction

from 43 Hz to 50 Hz. The Fibonacci randomness in the horizontal direction barely
influenced low frequency wave propagation or the lower bound of the stop band,
compared to the deterministic case.

As shown in Figure 4.17, the stop band of large Fibonacci in the horizontal direction
case ranged from 13 Hz to 32 Hz. The average transmission coefficient was calculated as
well and compared to the deterministic case. The result is shown in Figure 4.19 and
indicates that, with large Fibonacci randomness added to the horizontal direction, the
upper bound of the first stop band increased from 19 Hz to 32 Hz, and the lower bound
remained almost the same. The average transmission coefficient remained around 5%
between 33 Hz and 50 Hz, which means with large Fibonacci randomness, the second
pass band was almost removed, compared to the deterministic case.
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Figure 4.18: Averaged results of wave propagating through the small Fibonacci
randomness in horizontal direction

(Solid line: small Fibonacci randomness in horizontal direction; Dashed line:
deterministic material; Point dashed line: indicates the position of 5% along frequency)
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Figure 4.19: Averaged results of wave propagating through the large Fibonacci
randomness in horizontal direction
(Solid line: large Fibonacci randomness in horizontal direction; Dashed line:
deterministic material; Point dashed line: indicate the position of 5% along frequency)



4.3. INFLUENCE OF RANDOMNESS IN MATERIAL PROPERTIES ON STOP
BAND 84

Material geometry includes Fibonacci randomness in vertical direction

The second group of simulations of material with Fibonacci randomness consisted of the
length of unit squares in the microstructure following the Fibonacci sequence in the
vertical direction. The microstructure is treated as a horizontal layered material so that
the width of the first unit square in each layer defines the width of the corresponding
layer. In each realisation, a part with roughly 20 layers was picked from generated Fblcfr
The width of all first unit squares of all horizontal layers (from bottom to top) was set to
be equal to the length of each layer of the picked part from Fbljr. An example of a part of

the microstructure is shown in Figure 4.20.
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Figure 4.20: A part of the microstructure of the small Fibonacci randomness in vertical
direction

In the testing frequency range, five realisations were carried out at each testing frequency
for both types of randomness: small Fibonacci and large Fibonacci randomness. After
five simulations, the average transmission coefficient at each point of each frequency
(T,) was calculated. The simulation results of small Fibonacci randomness in the vertical
direction is plotted in Figure 4.21 and the simulation results of large Fibonacci
randomness in the vertical direction is plotted in Figure 4.22.

As shown in Figure 4.21, the stop band of the small Fibonacci in vertical direction lies
between 13 Hz and 19 Hz. The average transmission coefficient was calculated as well
and compared to the deterministic case. The comparative results are shown in Figure
4.23, and the results indicate that, with small Fibonacci randomness added into the
vertical direction, the first stop band can remain the same as the deterministic material,
but the averaged transmission coefficient decreased significantly from 35 Hz to 40 Hz.
The Fibonacci randomness in vertical direction reduced the average transmission
coefficient from 6 Hz to 8 Hz at a low frequency range but did not change the lower
bound of the stop band.

As shown in Figure 4.22, the stop band of large Fibonacci randomness in vertical
direction lay between 16 Hz and 20 Hz. The average transmission coefficient was
calculated again and was compared to the deterministic case. The results, shown in
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Figure 4.21: Simulation results of wave propagating through the small Fibonacci
randomness in vertical direction

Figure 4.24, indicate that, with large Fibonacci randomness added to the vertical
direction, the average transmission coefficient dropped to low frequency (from 3 Hz to
11 Hz); part of the stop band changed to pass band (13 Hz to 15 Hz); and the average
transmission coefficient dropped significantly from 27 Hz to 40 Hz.
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Figure 4.22: Simulation results of wave propagating through the large Fibonacci
randomness in vertical direction
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Figure 4.23: Averaged results of wave propagating through the small Fibonacci

randomness in vertical direction

(Solid line: small Fibonacci randomness in vertical direction; Dashed line: deterministic
material; Point dashed line: indicate the position of 5% along frequency)
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Figure 4.24: Averaged results of wave propagating through the large Fibonacci

randomness in vertical direction

(Solid line: large Fibonacci randomness in vertical direction; Dashed line: deterministic
material; Point dashed line: indicate the position of 5% along frequency)
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Material geometry includes Fibonacci randomness in both horizontal and vertical
directions

The third group of simulations of material with Fibonacci randomness consisted of the
length of unit squares in the microstructure following the Fibonacci sequence in both
horizontal and vertical directions. The randomness realisation in horizontal and vertical
direction followed the process introduced earlier in this section. An example of a part of
the microstructure is shown in Figure 4.25.
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Figure 4.25: A part of the microstructure of the Fibonacci randomness in both horizontal
and vertical directions

Following the procedure introduced previously, again in the testing frequency range, five
realisations were implemented at each testing frequency for both types of randomness.
After five simulations, the average transmission coefficient at each point at each
frequency (7)) was calculated. The simulation results of small Fibonacci randomness in
both horizontal and vertical directions are plotted in Figure 4.26, and the simulation
results of large Fibonacci randomness in both horizontal and vertical directions are
plotted in Figure 4.27.

As shown in Figure 4.26, the stop band of small Fibonacci randomness in both
horizontal and vertical direction cases was from 13 Hz to 26 Hz. The average
transmission coefficient was calculated as well and compared to the deterministic case.
The results are shown in Figure 4.28. They indicate that, with Fibonacci randomness
added into both horizontal and vertical directions, the first stop band range increased
from 7 Hz to 14 Hz, which roughly doubled the stop band range. From 26 Hz to 50 Hz,
the average transmission coefficient was reduced by a significant amount, while the
value of the average transmission coefficient remained roughly at 5% in this frequency
range. This phenomenon signifies that Fibonacci randomness nearly removed the second
pass band. However, small Fibonacci randomness in both directions had limited
influence on wave propagation at low frequencies and did not change the lower bound of
the first stop band.

As shown in Figure 4.27, the stop band of large Fibonacci randomness in both
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Figure 4.26: Simulation results of wave propagating through the Fibonacci randomness
in both horizontal and vertical directions

horizontal and vertical direction cases ranges from 21 Hz to 48 Hz. The average
transmission coefficient was calculated as well and compared to the deterministic case.
The results, shown in Figure 4.29, illustrate how, when large Fibonacci randomness was
added into both horizontal and vertical directions, the average transmission coefficient
dropped to a low frequency range (from 2 Hz to 11 Hz); the stop band changed into a
pass band (from 13 Hz to 19 Hz) but kept the average transmission coefficient at low
value; and the second pass band changed into a stop band (between 21 Hz and 48 Hz).
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Figure 4.27: Simulation results of wave propagating through the Fibonacci randomness
in both horizontal and vertical directions
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Figure 4.28: Averaged results of wave propagating through the small Fibonacci
randomness in both horizontal and vertical directions
(Solid line: small Fibonacci randomness in both horizontal and vertical directions;
Dashed line: deterministic material; Point dashed line: indicate the position of 5% along
frequency)
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Figure 4.29: Averaged results of wave propagating through the large Fibonacci
randomness in both horizontal and vertical directions
(Solid line: large Fibonacci randomness in both horizontal and vertical directions;
Dashed line: deterministic material; Point dashed line: indicate the position of 5% along
frequency)
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4.4 Stop band analysis for material with circle inclusions

In previous sections (Section 4.2 and Section 4.3), the testing material were constructed
by two components with square unit cells (deterministic material in Section 4.2) or
rectangle unit cells (material with randomness in Section 4.3). In this section, the shape
of one component was changed to a circular shape and this component was treated as the
inclusion and another component as the matrix. In this way, the influence of the shape of
the inclusion on the stop band can be analysed. Additionally, the influence of
randomness added to the circular inclusion on the stop band can be studied as well.

4.4.1 Stop band analysis for material with circle inclusions with
deterministic radius

In this section, the analysis will focus on the influence of a microstructure shape
difference on the stop band. Hence, the simulation process and material parameters were
set to be the same as in Section 4.2 except for the shape of the inclusions. In this section,
the testing material was also constructed by two components, Material A and Material B.
Material A was treated as an inclusion in a circular shape. A fragment of the testing
material is shown in Figure 4.30.

Figure 4.30: A part of the microstructure of the deterministic circle inclusion material

In Figure 4.31, the case of “the chess board” material was presented, together with the
case of the material with circular inclusions. As can be seen, arrangements of these two
materials were the same; however, the actual shapes of the inclusions were different. The
diameters of all circular inclusions were similar (for this deterministic case) and equal to
1 mm, which was also the characteristic length of the unit squares on the “chess board”
configuration. This logic, on a first look of geometric parameter choice had a further
complication:  the area, occupied by one circular inclusion  was
Ac. = 0.25d°m ~ 0.79 mm?, but the area occupied by the square inclusion was
A, = lmm?, resulting in 10.5% difference in the volume fraction of inclusions overall in
these two materials. This difference in volume fraction is explored further in Section
4.4.2.
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Figure 4.31: Comparison of microstructure of “chess board” material and material with
circular inclusions (P1: microstructure of “chess board” material; P2: microstructure of
material with circular inclusions)

Numerically, again a mesh with square elements has been used. The size of finite
elements has been chosen to be 0.01 mm?, which signifies a circular inclusions having
around 80 elements. The number of finite elements in one circular inclusion is large
enough to ensure the accuracy of simulations.

The testing frequency range similarly to the previous simulations was set from 1Hz to
50Hz. Following the process introduced in Section 4.1, the tests were performed in the
discussed frequency range; results are shown in Figure 4.32.

As can be seen in Figure 4.32, the first stop band range was from 8Hz to 13Hz. The
average transmission coefficient (Ty) was calculated at each frequency and compared to
the average transmission coefficient Ty of the “chess board” material discussed in
Section 4.2. The results were compared in Figure 4.33. The results indicate that, with
circle inclusions, the stop band occurs at lower frequencies compared to material with
square units. From 14 Hz to 21 Hz, both types of materials showed a similar trend, but
from 22 Hz to 50 Hz, the transmission coefficient of these two cases showed a significant
variation. Hence, despite the same position arrangement, the change inclusions’ shapes
can significantly influence the stop band. Again, it should be noted here that the circular
inclusions reduce the volume fraction of inclusion. Strictly speaking, following the
conclusion of different volume fractions for the two analysed materials, the transmission
coefficient-frequency curves should not be compared on the same graph. In this thesis
they are presented together for the indicated reasons and to offer a starting point for
further research (on randomness, as presented in the following Section).

4.4.2 Stop band analysis for the material with circle inclusions with
random radius

After simulation of the wave propagation in deterministic material with circular
inclusions, randomness was added to the test. To generate a comparison with the random
“chess board” material (introduced in Section 4.3), randomness was only added to the
radius of the circular inclusions. To have full circles, the radius of all circles on the edge
was the same as with the deterministic circles, which was 0.5 mm. However, other radii
followed a normal distribution: R ~ N(u,0), where u was the average radius which
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Figure 4.32: Simulation results of wave propagating through the deterministic circle
inclusion material

equals 0.5 mm, and o was the standard deviation, equal to 0.1 mm (to ensure that no
overlap existed between circles). A part of the microstructure is shown in Figure 4.34.

In the testing frequency range, five realisations were undertaken at each testing
frequency. After five simulations, the averaged transmission coefficient at each point at
each frequency (7),) was calculated. The simulation results of the entire frequency range
is shown in Figure 4.35

As shown in Figure 4.35, the stop band occurred for frequencies ranging from 9 Hz to 14
Hz. The averaged transmission coefficient (Ty) was calculated at each frequency and
compared to Ty gained from the simulation, based on the deterministic circle inclusion
material. The comparison is shown in Figure 4.36. The results indicate that, after adding
randomness to the radius of circle inclusions, the transmission coefficient can be reduced
significantly at high frequency range but has limited influence at low and medium
frequency levels.
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Figure 4.33: Averaged results of wave propagating through the deterministic circle
inclusion material (Solid line: deterministic circle inclusion material; Dashed line:
deterministic square unit material; Point dashed line: indicate the position of 5% along
frequency)
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Figure 4.34: A part of the microstructure of the randomness circle inclusion material
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Figure 4.35: Simulation results of wave propagating through the randomness circle
inclusion material
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Figure 4.36: Averaged results of wave propagating through the randomness circle
inclusion material (Solid line: deterministic circle inclusion material; Dashed line:
randomness circle inclusion material; Point dashed line: indicates the position of 5%
along frequency)
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4.5 Stop band simulation based on gradient elasticity

The gradient elasticity theory can be applied to 2D material as well. The gradient theory
has been discussed in detail in Chapter 3. As introduced in Chapter 3, gradient elasticity
can be expressed in different forms, based on varying applications. Here, in this section,
to simulate the wave propagation, the gradient theory formulation suggested by
Eringen [93] was applied, as in Chapter 3.

Because the simulation was based on the gradient elasticity, the testing material had to
be homogenised. The testing material is homogenised from the heterogeneous material
used in Section 4.2, which was a periodic chess board microstructure. The Young’s
modulus of the homogenised material was the harmonic mean [see Eq. (3.23)] of the
Young’s modulus of the two components in the heterogeneous material used in Section
4.2 (deterministic material). The density of the homogenised material was the arithmetic
mean [see Eq. (3.22)] of the density of the two components in the heterogeneous
material used in Section 4.2 (deterministic material). The length scale was chosen to be 2
mm (the length of the unit cell), which, in the 2D sample, included 4 square units: 2
black square units and 2 white square units.

The simulation process is introduced in Section 4.1. The loading and the testing
frequencies were the same as in the deterministic case (see Section 4.2). The simulation
results are shown in Figure 4.37.
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Figure 4.37: Simulation results of wave propagating through the homogenised material
with gradient elasticity

The simulation results shown in Figure 4.37 indicate that, at each frequency at each
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reference recording point, the transmission coefficient was the same, which is due to the
testing material being homogenised. The transmission coefficient decreased with the
increasing of frequency at low frequency range and stayed at a very low level (less than
5%) beyond 12 Hz. Note here, that, as discussed in Chapter 3, the artifacts of the
gradient elasticity approach led to the possibility of only capturing the first stop band.
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Figure 4.38: Averaged results of wave propagating through the homogenised material with
gradient elasticity (Solid line: material with gradient elasticity; Dashed line: deterministic
material with classical elasticity; Point dashed line: indicate the position of 5% along
frequency)

The simulation results was compared with the deterministic case based on classical
elasticity. The compared results are shown in Figure 4.38. The results indicate that
simulations based on the gradient elasticity are capable of predicting the lower bound of
the stop band (12 Hz in this case) but unable to simulate the wave propagation in the
second pass band (from 19 Hz to 50 Hz). This compared result is consistent with the
simulation results based on 1D material introduced in Section 3.5.

4.6 Results and discussion

In this chapter, the wave propagation was studied in 2D material from the position of the
stop band phenomenon. The finite element method has been applied to study the
influence of heterogeneous material on wave propagation. The study started with
heterogeneous material with periodic chess board shape microstructure constructed with
two different material phases. Then the influence of randomness added to the
heterogeneous material on the stop band was studied. Because the randomness added
into the material’s mechanical property only had a limited influence on the stop band
(see Section 2.6), in this chapter, randomness was added only into the material’s
geometrical properties. Two types of randomness were studied in this chapter, small
perturbation and Fibonacci type randomness (or semi-random material). The influence
of the shape difference of inclusion on the stop band has also been studied for the
deterministic definition of inclusions and random (small perturbation) inclusions.
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Additionally, the influence of randomness added into different shapes of inclusion was
studied (see Section 4.4). Finally, the finite element method was applied to simulate a
wave propagating through homogenised material with gradient elasticity.

All simulations were performed on a rectangular sample, as shown in Figure 4.1. The
sample was divided into three parts and, for different tests, the material in Part C varied
accordingly. A continuous longitudinal harmonic wave was initiated on the left Part B as
input signal. In right Part B, ten reference recording points were chosen to represent the
displacement distribution. The test frequency range was chosen to be the same for
different materials, ranging from 1 Hz to 50 Hz. The input signal was similar for all tests.
These set-ups ensured that the simulation results based on different materials were
comparable to each other.

The simulation based on periodic chess board layout material, is denoted as the
deterministic case, because no randomness was added into this material. Simulation
results indicate that the stop band existed when wave propagated through such periodic
chess board layout material (see Figure 4.3). At low frequencies, the transmission
coefficients at all reference recording points were approximately 1, which signifies that
the material had a limited influence on a wave with a long wavelength. At stop band
frequencies, the transmission coefficient at all reference recording points was lower than
5% which means that the wave cannot propagate through the material. At other
frequencies, the transmission coefficients at different recording points were different
because of the counteracting or overlap effect of the waves. The transmission coefficient
at all reference recording points can be averaged to gain a value denoted as average
transmission coefficient at each frequency. This cannot strictly define the frequency as
located at the stop band, but it can show the trend of transmission coefficient changes
along the frequency range. Furthermore, this parameter can be used while comparing
different cases.

The influence of randomness on wave propagation with 2D material was also studied in
this chapter. Two types of randomness were introduced and since the material was
analysed here in 2D, both types of randomness were added in three different ways: only
in the horizontal direction (the same direction as the input signal), only in the vertical
direction (perpendicular to the input signal) and in both horizontal and vertical
directions. The first type of randomness is small perturbation randomness which adds
randomness into the length of each unit square in the microstructure following normal
distribution. The second type of randomness is Fibonacci-type randomness which
contains two parts of different lengths, but with random positions. Two cases of
Fibonacci-type randomness have been considered, based on different levels of
randomness; they are denoted here as large Fibonacci and small Fibonacci.

The average transmission coefficients of small perturbation randomness in the horizontal
direction case and the small Fibonacci randomness in the horizontal direction case were
compared and this comparison is shown in Figure 4.39. The results indicate that the
influence of both types of randomness was roughly the same on wave propagation.
Comparing small perturbation randomness in the vertical direction case and small
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Fibonacci randomness in the vertical direction case gives the same conclusion as
comparing small perturbation randomness in both the horizontal and vertical directions
case, and small Fibonacci randomness in both the horizontal and vertical directions case.
All three comparisons indicate that, with a similar level of randomness, the small
Fibonacci randomness can represent small perturbation randomness well in 2D material.

Averaged Transmission Coefficient
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Figure 4.39: Influence of randomness in horizontal direction in 2D material on wave
propagation with small perturbation randomness and small Fibonacci randomness (Solid
line: small Fibonacci randomness case; Dashed line: small perturbation randomness case;
Dotted line: indicate the position of 5% along frequency)

The average transmission coefficients of the deterministic case, small perturbation
randomness in the horizontal direction case and large Fibonacci randomness in
horizontal direction case were compared and are shown in Figure 4.40. The results
indicate that compared to the deferministic case:

a) The randomness of both types added to the horizontal direction only have limited
influence at the low frequency range and do not change the lower bound of the stop band.
b) The randomness of both types added into the horizontal direction extend the stop
band.

c¢) The randomness of both types added into the horizontal direction reduced the
averaged transmission coefficient significantly at high frequency (from 36 Hz to 50 Hz).

The average transmission coefficient was reduced by more in the large Fibonacci
randomness case than the small perturbation case, from 26 Hz to 31 Hz. The complete
trend showed that large Fibonacci randomness has a more significant influence on wave
propagation compared to small perturbation randomness when they are added in a
horizontal direction.
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Figure 4.40: Influence of randomness in horizontal direction in 2D material on wave
propagation (Solid line: large Fibonacci randomness case; Point dashed line: small
perturbation randomness case; Dashed line: deterministic case; Dotted line: indicate the
position of 5% along frequency)

The average transmission coefficients of the deterministic case, small perturbation
randomness and large Fibonacci randomness in the vertical direction case were
compared and are shown in Figure 4.41. The results indicate that compared to the
deterministic case:

a) The randomness of both types added to the vertical direction reduced the average
transmission coefficient at the mid and high frequency range (from 20 Hz to 50 Hz) to
the same level.

b) The randomness of both types added into the vertical direction decreased the averaged
transmission coefficient for the low frequency range from 6 Hz to 11 Hz.

The large Fibonacci randomness in the vertical direction case had more influence on
wave propagation at the low frequency range (from 1Hz to 15Hz) compared to small
perturbation randomness in the vertical direction case. The influence of both
randomness types on wave propagation at mid and high frequency ranges was similar.

The average transmission coefficients of the deterministic case, small perturbation
randomness, and large Fibonacci randomness in both horizontal and vertical directions
cases are compared in Figure 4.42. The results indicate that compared to the
deterministic case:

a) The randomness of both types added into both horizontal and vertical directions
reduced the averaged transmission coefficient to around 5% from 20 Hz to 50 Hz, which
means that both types of randomness roughly removed the second pass band.

b) The randomness of both types added into both horizontal and vertical directions

reduced the averaged transmission coefficient slightly at the low frequency range (from 1
Hzto 11 Hz).
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Figure 4.41: Influence of randomness in vertical direction in 2D material on wave
propagation (Solid line: large Fibonacci randomness case; Point dashed line: small
perturbation randomness case; Dashed line: deterministic case; Dotted line: indicate the
position of 5% along frequency)

c) The large Fibonacci randomness in both the horizontal and vertical directions case
changed the stop band to a pass band at a frequency range from 12 Hz to 15 Hz, but the

small perturbation randomness in both the horizontal and vertical directions case
extended the stop band.

Based on a comparison of the results of three different directions (horizontally, vertically
and in both directions) of small perturbation randomness and large Fibonacci
randomness added into material, it is fair to say that large Fibonacci randomness had a
greater influence than small perturbation randomness on wave propagation.

The average transmission coefficients of the deterministic case and the three ways of
small perturbation randomness added into 2D material were compared and are shown in
Figure 4.43. Thus:

* The averaged transmission coefficient of randomness added into the vertical
direction has the same trend as randomness added into both horizontal and vertical
directions at low frequency (below 12 Hz).

* The influence of randomness added to the horizontal direction is larger compared
to randomness added to the vertical direction in the mid frequency range (from 26
Hz to 33 Hz).

* The influence of randomness added to the vertical direction is larger compared to

randomness added to the horizontal direction in the high frequency range (42 Hz to
50 Hz).

* Randomness added into both horizontal and vertical directions has the greatest
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Figure 4.42: Influence of randomness in both horizontal and vertical directions in 2D
material on wave propagation (Solid line: large Fibonacci randomness case; Point dashed
line: small perturbation randomness case; Dashed line: deterministic case; Dotted line:
indicates the position of 5% along frequency)

influence on wave propagation, because the second pass band was almost removed

in this case.
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Figure 4.43: Influence of small perturbation randomness 2D material on wave
propagation (Black solid line: randomness in both horizontal and vertical directions;
Red point dashed line: randomness in horizontal direction; Green point dashed line:
randomness in vertical direction; Dashed line: deterministic case; Dotted line: indicates
the position of 5% along frequency)
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The average transmission coefficients of the deferministic case and three ways of large
Fibonacci randomness were compared and are shown in Figure 4.44. The results indicate
that:

e Randomness added to the horizontal direction had more influence on wave
propagation in the mid to high frequency range (from 19 Hz to 50 Hz).

e Randomness added to the wvertical direction had more influence on wave
propagation in the low frequency range (from 1 Hz to 18 Hz).
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Figure 4.44: Influence of large Fibonacci randomness 2D material on wave propagation
(Black solid line: randomness in both horizontal and vertical directions; Red point dashed
line: randomness in horizontal direction; Green point dashed line: randomness in vertical
direction; Dashed line: deterministic case; Dotted line: indicates the position of 5% along
frequency)

The average transmission coefficients of small perturbation randomness in both the
horizontal and vertical directions case and in the random circle inclusion case, were
compared and are shown in Figure 4.45. The reason for comparing these two cases is
that, when randomness is added to the radius, the volume fraction of Material A
approaches the volume fraction of Material A in the “chess board” material, with
randomness added in the form of a small perturbation in both directions. The
randomness levels in these two cases are similar as well; i.e. the mean diameter of
circular inclusions and mean length of the squares in the “chess board” are the same.
Additionally, the standard deviation ¢ of the circular diameters matches the standard
deviation of the squares. Hence, these two cases have a similar microstructure
(mechanical properties and inclusion position arrangement) but with a different inclusion
shape. The results indicate that:

a) The stop band occurs at different frequencies in these two cases, which means the
shape of the inclusion can significantly influence the stop band.
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b) The transmission coefficient remains at a low level (around 5%) since the stop band
occurrence means that randomness can reduce the transmission coefficient to a certain
level, despite the difference in the shape of the inclusion. Hence, it can be concluded that
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Figure 4.45: Influence of inclusion shape difference with randomness on wave
propagation (Solid line: small perturbation randomness case; Dashed line: randomness
circle inclusion case; Dotted line: indicates the position of 5% along frequency)

randomness in a direction perpendicular to the wave propagation front is more
significant than randomness in the direction parallel to the wave propagation front in the
low frequency range. Furthermore, randomness added into both horizontal and vertical
directions can practically remove the second pass band even with a low level of
randomness.

The gradient elasticity formulation for the 2D material has also been analysed from the
position of wave propagation. The simulation process was the same as the deterministic
case but with homogenised material. The simulation result is shown in Figure 4.37, and
the result at each frequency was averaged and compared to the deterministic case (shown
in Figure 4.38). The results indicate that the gradient elasticity formulation can predict
the lower bound of the stop band but cannot predict the second pass band. This result is
consistent with the stop band prediction based on gradient elasticity in the 1D case.



Chapter 5

Conclusions

In this study, analysis of wave propagation through a heterogeneous material with
periodic and random microstructure situation was performed from the position of the
stop band phenomenon. The finite element method was used to simulate the wave
propagation, here a longitudinal wave propagating through a finite domain of a medium.
Stop or pass bands were predicted, based on the value of a transmission coefficient
which links the amplitudes of initial wave and the wave after it had passed through the
medium domain. The gradient elasticity theory was introduced in this study and applied
to predicting the stop band both analytically and numerically for the first time.

The study started with a wave propagating through 1D periodic laminate material. The
laminate material has two components. The influence of the Young’s modulus and mass
density contrast of the two components on the stop band was analysed. The simulation
results indicated that:

* a) By increasing the Young’s modulus contrast of the two material phases, the
frequency of the lower bound of the first stop band becomes lower and the
transmission coefficient in the pass band drops;

* b) By increasing the density contrast of the two material phases, the width of the
first stop band increases and the transmission coefficient associated with the second
pass band decreases.

The study also focussed on the laminate material where the whole sample length was
kept the same, but the unit cell size inside was varied. It was found that increasing the
unit cell length whilst keeping the test specimen fixed gives rise to a stop-band at a lower
frequency.

Following the analysis of the wave propagation in the periodic 1D laminate material,
different levels of randomness were added to the laminate material in terms of both
mechanical and geometrical properties. The simulation results suggest that when
randomness is added to the material’s mechanical properties, with different levels of
randomness, the influence on the stop band is minor. However, when the randomness is
added to a material’s geometrical properties, even in the form of a small perturbation, the
influence on the stop band is significant. With randomness added to the material’s
geometrical properties, the transmission coefficient in the second pass band was reduced
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significantly and even changed into a stop band at some frequencies. When increasing
the level of randomness, to avoid extremely large or small unit cells being generated, a
“Fibonacci” randomness was introduced and named “semi-random”. This material can
significantly reduce the transmission coefficient in the second pass band frequency range
but retains a similar transmission coefficient in another frequency range compared to the
periodic case. The picture changes, when analysing “fully-random” material; for some
frequencies, the stop band turned into a pass band (although the transmission coefficient
remained at a low level).

In this study, gradient theory was introduced and applied to predict the stop band, in a
novel manner. Three different forms of gradient elasticity were discussed and dispersion
analysis was performed based on these three methodologies. The dispersion analysis
showed the stop band prediction potential of the gradient theory. The gradient theory was
then applied to predict the stop band analytically for 1D homogenised material and the
result showed good agreement with simulation results, based on classical elasticity with
periodic laminate material. The gradient elasticity was applied to simulate the wave
propagation in both 1D and 2D material as well. The simulation results also agreed well
with simulation results based on periodic material.

The wave propagating through 2D material was researched in this study as well. Finite
element simulation was used to test wave propagation through periodic 2D material with
a “chess board” microstructure, microstructure with circle inclusions, and 2D
materials with introduced randomness. Different levels of randomness were added to the
material with “chess board’ configuration in three ways:

* only in the horizontal direction;
* only in the vertical direction;
 in both horizontal and vertical directions.

The material with circular inclusions had randomness added to the radius of circles. The
randomness was added into the material with “chess board” microstructure in two ways:
one was set at the length of the unit cell following normal distribution (“small perturbation
randomness”) and another was picked from the parts off the “Fibonacci bar” (“Fibonacci
randomness”). The levels of “Fibonacci randomness” were considered as follows:

e Lower levels of randomness are called “small Fibonacci randomness” which is
equivalent to “small perturbation randomness’.

 Higher levels of randomness are called “large Fibonacci randomness”.

The simulation results of 2D material with “a chess board” microstructure indicate that
the influence of “small perturbation randomness” and “small Fibonacci randomness” on
wave propagation is similar in all three “chess board” configurations. Bringing together
the simulation results, the following conclusion can be drawn:

1) With different levels of randomness added to the horizontal direction of the 2D
material with “chess board” microstructure,
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a) The stop band is extended.
b) The average transmission coefficient is reduced significantly at high frequency.

c) The “large Fibonacci randomness” has a larger influence on wave propagation
compared to “small perturbation randomness”.

2) With different levels of randomness added to the vertical direction of the 2D material
with “chess board’’ microstructure,

a) The average transmission coefficient was reduced at the mid and high frequency
range.

b) The average transmission coefficient was decreased at low frequency range.

3) With different levels of randomness added to both horizontal and vertical directions of
the 2D material with “chess board’’ microstructure,

a) The second pass band is practically removed.
b) The averaged transmission coefficient is reduced slightly in the low frequency range.

c) The “large Fibonacci randomness” changed the stop band into a pass band, but the
“small perturbation randomness” extended the stop band.

After comparing the simulation results gained from the same type of randomness added
to 2D material with “chess board” microstructure in different ways, it can be
concluded that randomness in the direction perpendicular to the wave front is more
significant than randomness in the direction coinciding to front propagation at low
frequency range.

The simulation results of the 2D material with circle inclusion in the microstructure
compared to the simulation results of the 2D material with “chess board’ microstructure
indicate that the stop band exists in the composite material with different shapes of
inclusion but the stop band range is different. The simulation results of randomness
added to 2D material with circle inclusion in the microstructure compared to the
simulation results of “small perturbation randomness” added to both horizontal and
vertical directions of the 2D material with “chess board” microstructure indicated that
randomness can maintain the transmission coefficient at a low level at medium and high
frequency range despite the shape difference of the inclusion but the starting point of the
stop band is different due to the shape difference of the inclusion.

The aims and objectives of this thesis were to analyse and be able to control the wave
propagation through heterogeneous materials. These were met and an extensive list was
complied, with information on the different material properties (periodic, random at
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different degrees) and their influence on wave propagation.

After wave propagation behaviour in the heterogeneous material is understood, material
with a stop band can be designed for specific requirements. For example, if a designer
needs a 1D laminate material with large stop band, the density contrast between the two
counterparts in the laminate material should be designed to be large enough.



Chapter 6

Future work

As a possible follow up to the current research, potential extensions of the work could be
located in these areas: study the wave propagation in the 2D composite material with
different shapes of inclusions; introduce randomness to the 2D composite material and
study the influence of it with different shapes of inclusions; study the wave propagation
in the 3D composite material with different shapes of inclusions; and undertake more
work on applying gradient elasticity to predict the stop band.

In the present work, wave propagation through 2D composite material with square and
circle inclusions was studied. In the future, the study could be carried out with inclusion
shapes such as regular triangle, regular hexagon, or other shapes (even irregular shapes).
Note that, in the present study, both square inclusions and circle inclusions in the
composite material were full parts. In the future, the inclusion in the composite material
could be designed to have hollows to test the influence of them on wave propagation.
Randomness could be added to the above materials to test their influence to the wave
propagation as well.

In the present work, the study has been limited to the 1D and 2D frames, but it could be
extended to 3D in the future. With one more dimension, the simulation process will be
more complicated and time consuming but the simulation results will carry more
information as well. In 3D, the study could begin with wave propagation through
composite material with regular shape inclusions periodically arranged in the material.
Then randomness could be added to the composite material to test its influence on wave
propagation. Similar to 2D, the shape of the inclusion could be different as well.

The gradient elasticity applied in the present work can only predict the first stop band
frequency. It may be possible to predict second or other stop bands by adding
higher-order space and/or time gradients into the gradient elasticity formulation. This
work will be conducted in the future as well.
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